Developing Real-time MRI
Using Simultaneous Multislice

Acceleration and
Compressed Sensing

IsaACc WATSON

Doctor of Philosophy
University of York
School of Physics, Engineering and Technology

July 2024






Abstract

Real-time MRI (rtMRI) is an imaging method which allows motion to be
recorded at high temporal and spatial resolutions without the need for syn-
chronization equipment or assumptions regarding periodicity of motion. To
achieve a high temporal resolution, rtMRI methods employ fast imaging se-
quences and highly undersampled non-Cartesian k-space sampling. The need
for fast data acquisition prevents the acquisition of multiple slices without
loss of temporal resolution, limiting the anatomical coverage of rtMRI.

This thesis describes the development of an rtMRI sequence which uses
radial sampling and simultaneous multislice (SMS) excitation to rapidly im-
age multiple slices simultaneously. Thus, overcoming the single-slice limi-
tation of standard rtMRI methods. This SMS rtMRI sequence can record
movement at a temporal resolution of up to 37.5ms and spatial resolution
of 2.2mm? in multiple (1-7) locations simultaneously. A compressed sensing
image reconstruction pipeline is implemented and is shown to have improved
performance, at the cost of increased reconstruction time, compared to stan-
dard reconstruction methods.

The thesis then explores potential applications of the rtMRI sequence.
First applications in head/neck imaging are shown such as, recording speech
and swallowing. Next, dynamic musculoskeletal imaging applications are

shown such as, knee movement, foot/ankle movement and wrist movement.
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Introduction

1.1 Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality which
exploits the nuclear magnetic moment of atomic nuclei [1]. The most com-
monly imaged isotope in clinical MRI is hydrogen (*H) as the body contains
large amounts of this isotope in water and hydrocarbon based fat chains. The
local chemical environment can alter the magnetic properties of the nuclei
and hence, 'H MRI can be used to generate a wide range of contrasts, which
reflect different aspects of the anatomy. This can range from traditional
structural images to contrasts unique to MRI such as susceptibility weighted
imaging (which exploits subtle phase differences between populations of nu-
clei) [2].

MRI has the advantageous properties of being non-invasive and using
non-ionizing radiation[1]. Unfortunately, compared to other medical imaging
modalities (e.g. ultrasound and x-ray) MRI is slow to acquire data. This is
due to the time needed to embed spatial information into the recorded signal
[3]. In the past, this has limited MRI to the recording of static images or
the monitoring of slow (on the timescale of seconds) or repetitive dynamic

processes. However, a human body is defined not only by its structure but
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also by its functions. Thus, a static representation of the body (in the form
of an image), although useful, is limited. There is a need for MRI techniques

that capture both structure and function [4].

From the 1970’s, simultaneous developments in scanner hardware, com-
puting hardware, data acquisition and reconstruction algorithms enabled nu-
merous developments in MRI [4, 5]. This includes the development of cine
MRI which uses the signal from an electrocardiogram (ECG) to synchro-
nise data acquisition with the cardiac cycle, this synchronisation technique
is referred to as gating. Gating substantially reduced artefacts caused by
cardiac motion and has allowed MRI to become a key imaging modality
in cardiac applications. However, this technique is not suitable for record-
ing dynamic processes which are not repetitive (for example speech). This
limitation motivated the development of MRI methods capable of record-
ing motion at sufficient spatial and temporal resolutions without the need
for additional synchronisation/timing equipment [4]. These methods are re-
ferred to as real-time MRI (rtMRI). This thesis is focused on a particular
rtMRI method which was first introduced in 2010 by Uecker et al. [6l 4,
5] which combines highly undersampled acquisition strategies with iterative
reconstruction algorithms. They used their method to achieve high tem-
poral resolutions (20-250ms) with a spatial resolution of up to 1.4mm? [6].
This technique has provided unique insights into complex movement such as

speech[7], cardiac motion [8] and joint movement [9).

The majority of current real-time MRI approaches (including the one
presented by Uecker et al. (2010)) have the disadvantage that they can only

record a single plane (known as a slice) during data acquisition (Fig[L.1]left)
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Figure 1.1: lllustration of single slice acquisition (left) and multi-slice acquisition
(right) in the sagittal plane. For example, if the data sampling takes 100ms and
data is acquired every 500ms the 400ms gap can be used to record an additional
4 slices.

[10]. This is due to there only being a small gap between acquiring data
samples; in standard MRI it is common to use this gap to acquire data from
a separate slice (Figl[L.1] right) [1]). Thus, recording multiple areas (while
retaining temporal resolution) requires the acquisition to be repeated but
at a different area. This introduces challenges when imaging the movement
of structures which are not close together. The scans have to be repeated
several times, requiring the subject to repeat the movement. It is impossible
for the required movement to be repeated identically. This may be particu-
larly problematic when observing processes where the structures operate syn-
chronously. For example, the movement of both temporomandibular joints
(TMJ) during speech and eating [10]. Additionally, the recording of multiple
slices simultaneously is of interest when structural asymmetries, which may

affect function in specific regions, are present.

This thesis develops novel rtMRI data acquisition methodologies capable
of recording multiple slices simultaneously (this is referred to as simultaneous

multi-slice (SMS) [11]). It further develops a reconstruction pipeline to pro-
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cess SMS rtMRI data. To understand how these methods can be developed

one must first appreciate the underlying physical principles of MRI.

1.2 Thesis Objectives

This thesis has three principle objectives:

e The development of real-time MRI imaging methodologies capable of
recording movement at a temporal resolution of up to 37.5ms and
spatial resolution of 2mm? in multiple (1-7) locations simultaneously.
These values have been selected as they have been shown to be suitable
(in terms of spatial and temporal resolution) for the majority of speech

imaging applications [7].

e The development of an image reconstruction pipeline capable of recon-
structing both single slice and simultaneous multislice real-time MRI
data, with improved image reconstruction quality compared to stan-

dard reconstruction approaches.

e The exploration of fast imaging sequences in a variety of clinical and

sports science applications.

1.3 Background]|

1.3.1 Introduction to MR Physics

The physical principle of MRI is based on the interaction of nuclei (usually

'H, which is a single proton) with magnetic fields. These principles can be

1112, |3, |13] are used as general references for this section.
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approached from a semi-classical perspective, in which quantum mechanics
is used to describe the behaviour of individual nuclei, whereas an ensemble
average describes the behaviour of the macroscopic sample. In the following

sections only protons (spin-1/2) will be discussed.

Protons have intrinsic angular momentum called spin. The value of the
spin is denoted by the quantum number, m and for 'H has the value m = 1/2.
According to quantum mechanics, a spin-1/2 nuclei can only have two spin
states, these are referred to as the spin-up (m = +1/2) and spin-down states
(m = —1/2). The sign of m indicates the direction of the project of the
angular momentum along the z-axis. When no magnetic field is present the
two states are degenerate. The application of a magnetic field causes the
two spin states to become separated by an energy gap, AE. This is known
as Zeeman splitting (Fig{l.2). The energy gap is the energy required to
transition between states, either by the absorption (to move from lower to
higher energy state) or emission (to drop from the higher to lower energy
state) of a photon with a specific frequency v (in Hz). The value of AFE is
determined by the Planck-Einstein relationship and is defined as the product

of the photon frequency and the Planck constant, h, which has the value

6.626 x 10~34J /Hz (eq.(T.1)).

AE = vh (1.1)

The photon energy can be related to the applied magnetic field strength
(measured in units of Tesla), By, through eq.(1.2]), where v is a nuclei specific
constant called the gyromagnetic ratio. For 'H this has the value 42.58 x

105571 T~ For nuclei with positive v the lower energy level is the spin-up
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state, and the higher energy level is the spin-down state.

AE = yhB, (1.2)

Spin =-1/2

_—

AE =hv =hyB,

Energy

Spin = +1/2

>
Magnetic Field Strength

Figure 1.2: Diagram of Zeeman splitting. The increase in magnetic field strength
results in an increased energy gap, AFE, between the two spin states

The angular momentum of a nucleon is a vectorial property and its di-
rection is referred to as the spin polarization axis (Fig.. This vector can
point in any direction in space. The angular momentum combined with the
intrinsic electric charge of a proton results in a nuclear magnetic moment,
p. The value of u is related to a quantum mechanical operator S through
eq.. When no field is applied and v > 0 the magnetic moment is par-
allel with the spin polarization axis. If we consider an ensemble of nuclei

in a sample, without an external magnetic field applied, the distribution of
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Figure 1.3: Diagram showing the spin polarization axis of a collection of nuclei.
When no magnetic field is applied these axes point randomly in space.

magnetic moments will be near isotropic. Therefore, the net magnetization

vector, M, will be 0.

p="-8 (1.3)

The application of an external magnetic field will exert a torque on the
nuclear magnetic moments. This torque results in the spin polarization axis
rotating around the applied magnetic field at a constant angle between the
nuclear magnetic moment and the applied field. This circular motion around
the applied field is known as precession (Fig. In classical mechanics an
analogy to this behaviour is a tilted gyroscope spinning on its own axis but
also precessing around the gravitational axis. The frequency of the precession
is given by eq., where w is the Larmor frequency and By is the applied
magnetic field. The negative sign indicates the direction of rotation around
the axis. The magnitude value of the precession frequency is identical to

the photon frequency energy gap (i.e. |w| = v) between the spin-up and
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spin-down states.

w = —vDB (1.4)

The spin-up state has a magnetic moment which aligns with the spin
polarization axis while the spin-down state has an anti-parallel alignment.
The number of nuclei in the two energy levels is given by the Boltzmann
distribution (eq.(L.5)), where Nj is the number of spins in the lower energy
level, Ny is the number of spins in the higher energy level, & is the Boltzmann
constant (1.38 x 10723 J-k!) and T is the temperature in Kelvin. The excess
of spins in the low energy spin-up state is small (approximately one in one
million at a 1T field strength). This small excess of spins in the spin-up
state results in a net magnetization vector which now aligns with the applied
magnetic field (F ig, By. From this point forward we will take a classical

physics perspective of how the magnetization vector can be manipulated.

— = *T (1.5)

The nuclei can be excited using a radio frequency (RF) pulse, applied
using a current-carrying wire referred to as a coil. The current induces a
magnetic field, this additional magnetic field is called the B; field. The RF
pulse is applied perpendicular to the By field with a frequency equal to the
Larmor frequency. The application of the pulse results causes the spins in
M to gain phase coherence and rotation of the M onto the transverse plane
(relative to the direction of the main external magnetic field) by a given angle,
0. This angle is referred to as the flip angle of the pulse. The higher the

desired flip angle, the longer the pulse must be left on for (or a high power
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Figure 1.4: Diagram showing precession of the magnetic moment (green line) of
a 'H nuclei (blue) around an applied magnetic field (black line). The direction
of precession is shown by the dashed lines.



10 Introduction

/."\‘\ -@-
L § I N

Figure 1.5: The application of an external magnetic field B, across a sample
results in the net magnetization vector, M, partially aligning in the direction of
the field. This figure represents a snapshot of time, M will remain relatively con-
stant but the individual nuclei may change there orientation due to interactions
with their local environment.

must be used). After the application of the RF pulse, the magnetization

vector will start to relax back to its initial alignment.

The relaxation process consists of two components which describe the evo-
lution of the magnetization vectors in the longitudinal and transverse planes.
Longitudinal relaxation (also known as spin-lattice relaxation) describes the
recovery of longitudinal magnetization (i.e recovery of the magnetization in
the direction of the By field), this is described using eq.(L.6) which is an
exponential recovery with the time constant 77 and the equilibrium magne-
tization Mj,. The longitudinal relaxation represents a loss of energy to the
surrounding lattice as protons return from the high energy state to the low
energy state. This results in the net magnetization returning to its ther-

mal equilibrium. For biological tissues typical T; values (at a magnetic field
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Time [s]

Figure 1.6: Plot of longitudinal relaxation. The longitudinal magnetization, M,
follows an exponential recovery to return to its initial value.

strength of 3T) range from ~ 400ms (fat) to ~ 4000ms (cerebrospinal fluid)
[14].

M, = M, (1 - e‘%) (1.6)

The transverse relaxation (also known as spin-spin relaxation) describes
the exponential decay of the magnetization, M,,, on the transverse plane
(perpendicular to the By field). This is described mathematically as an
exponential decay, from initial value Mxyo, with time constant 7. This
relaxation is due to the dephasing of excited nuclei as they interact (mag-
netically) with each other and the environment (inducing variable precession
frequencies via eq.). The loss of coherence results in the decay of the

transverse component of the magnetization vector.
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My = Mxyo- € T (1.7)

In an ideal system the rate of the transverse magnetization decay is de-
termined solely by the time constant 75. In practice, the actual decay will
be determined by the time constant 77, this value is lower than 75. The 7%
value incorporates the spin-spin relaxation effects (73), but also includes sys-
tem imperfections such as inhomogeneity in the By field. The imperfections
can be described using eq.(L.8) where T, is the additional contribution to
the relaxation caused by magnetic field inhomogeneities. 75 is on a shorter
timescale than 7T7. Examples of typical values in biological tissues (at 3T)

are ~ 40ms (muscle), ~ 75ms (white matter) and ~ 100ms (fat) [14].

1 1 1
T_Q* = T + ?2, (1.8)

The values of 77 and T, differ between tissues due to the differences in
molecular motion and interactions. The relaxation properties of tissues are
used as a mechanism to generate image contrast in MRI. An MRI experiment
can be designed to give images that emphasise either the differences in T}
( Ty-weighted image) or Ty (Ty-weighted image). Both T; and T, weighted
images are also affected by the number of protons in the imaged volume; the

number of protons is often referred to as the proton density.

1.3.2 Signal Detection

To record the decay of the transverse magnetization, M,,, a coil is used. The

signal reception coil can either be the same coil used for RF transmission or
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Figure 1.7: Plot of transverse relaxation. The transverse magnetization, M,
follows an exponential decay. In an ideal system the time constant is T, (solid
line) but in a real system the time constant will be T (dashed line).

can be an independent piece of hardware. The coil can be modelled as an
LC circuit tuned at the Larmor frequency (Fig. The tuning capacitor,
Cr, value is chosen such that the resonant frequency \/%70 is equal to the
Larmor frequency. The value of the matching capacitor, Cyy, is set to ad-
just the impedance of the circuit to 502 to minimise signal reflection. In
modern clinical systems the process of tuning the LC circuit is performed
automatically using digitally controlled variable capacitors.

Due to Faraday’s law of induction, the precessing magnetization will in-
duce a time-oscillating current in the coil. This signal will be digitized using
an Analogue-to-Digital converter (ADC) and will then be demodulated using

a reference waveform supplied by the RF generation hardware. The demodu-
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Figure 1.8: Circuit diagram of a simple reception coil consisting of a tuning
capacitor Ct, matching capacitor Cy, and inductor L.

lation process results in two channels which represent the real and imaginary
parts of the signal. The resulting time domain signal, s(¢), is known as a free
induction decay (FID). It has the form of a dampened sinusoid (eq.(1.9))
oscillating at the Larmor frequency with a decay rate of Ty (Fig[L.9).

t

s(t) = cos(wt) -e T2 (1.9)

1.3.3 Spatial Localisation and k-space

Recording the FID is not sufficient to generate an image, the resulting signal

is a superposition of all 'H nuclei excited by the RF pulse. To generate an
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Figure 1.9: Plot showing the Free Induction Decay (FID) signal (black) over
time. The red envelope represents the 77 decay over the same period.

image, additional spatial localisation is required. This is done using spatially
varying magnetic field gradients (from now on just referred to as gradients).
A gradient is defined as a spatial variation of the magnetic field (B,). The
amplitude of a gradient has the units mT/m. In MRI there are three magnetic
field gradients, G,,G, and G, applied in the z, y and 2z directions respec-
tively. Summing the three gradients yields the gradient vector G' as shown
in eq., where 7, ¢ and Z are the Cartesian coordinate unit vectors. In
this equation the magnetic fields in the  and y directions are assumed to be

negligible and are therefore neglected.

2= G+ G+ G2 (1.10)
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One of the gradients will be used for slice encoding (Gy), this is the slice
selection gradient. The amplitude of the slice selection is varied linearly
over space. This introduces a position dependent variation, Aw, around the
Larmor frequency, w. By applying an RF pulse at a specific carrier frequency,
a specific region of the sample can be excited. The RF pulse, B;, can be
described as an amplitude modulated exponential function, eq.. The
shape of the pulse is described by A(t) and the exponential term, e 74«
provides the required frequency modulation to excite the desired location.
The pulse shape is typically chosen to be a truncated sinc function. This is

due to the Fourier transform of a sinc function being a square wave which

provides uniform excitation across the slice [1].

Bi(t) = A(t) - e=38t (1.11)

The two other gradients are used following slice selection for in-plane lo-
calisation. These gradients are referred to as the phase encoding (G,) and
frequency/read encoding (G /G, ) gradients. The phase encoding gradient is
used to generate a spatially dependent phase difference between magnetiza-
tion vectors across the subject. This is done by briefly turning the gradient
on (for a time T"), which results in the spins precessing at different frequen-
cies. The gradient is then turned off resulting in the spins returning to their
original precession frequency, but there is now a spatially dependent phase
difference between them. Mathematically, for the one-dimensional case of

spins distributed over the y dimension, the phase at position y, ¢(y), can be

described using eq.(|1.12]).
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o) =y / G, (¢t (1.12)

The frequency encoding gradient, which is a linearly varying gradient, is
applied during the readout of the signal. This results in the spins having
different precession frequencies across the sample. Thus, by using these two
gradients we can embed spatially dependent frequency and phase shifts into
the signal we record. The resulting signal is referred to as k-space. In MRI,
we typically vary the phase encoding gradient, in linearly increasing steps, to
acquire parallel lines of k-space. This is referred to as Cartesian sampling as
we obtain a set of equispaced k-space points. k-space can then be converted to
the image domain using a Fourier transform (spatial frequency to distance).
When Cartesian sampling is used, the Fourier transform can be computed
extremely efficiently using a Fast Fourier transform algorithm [15].

Mathematically we can derive the Fourier relationship between k-space
and image space by considering the spatial distribution of the transverse
magnetization, M (x,y), which is what we aim to recover. The signal, s(t),
(after demodulation and ignoring relaxation) will be the spatial integral of
the transverse magnetization (eq.(1.13)). In this expression there is no way

to recover the signal from each x and y position.

s://M(x,y)dxdy (1.13)

The application of the two gradients (referred to as G, and G,) will cause
a position dependent shift in the Larmor frequency. This can be incorporated
into eq. by introducing an additional exponential term where G, and
G, are the spatially varying gradient values, this results in eq..
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s(t) = //M(x,y) c e NG Gyl g gy (1.14)

We can now define the quantities k, and k, where, 5 = 3.

. Ga: -t
ky( ) =75-Gy-t
This yields eq.(l.15). This equation shows that the signal is a spatial

Fourier transform of the transverse magnetization.

s(t) = //M(gj’y) e P 2m ke Oz tky (Y] 1 gy (1.15)

In summary, when we record an MR signal, we are recording the spatial
frequencies which make up the image. To convert to the image domain
an inverse Fourier transform is used. For a more compact notation it is
common to write eq. as eq. where y is the recorded k-space data,
y € C™ is composed of N, measurements, x € C" is the image composed
of M = N, x N, pixels and F is the 2D Fourier transform operator. This
is known as the forward MRI model, which maps the image space to the
recorded k-space. The MRI model can be extended to incorporate more
complex effects such as multiple receiver coils (this is discussed in more detail

in Chapter 3).

y =Fx (1.16)

The left side of Fig shows an example of a k-space and the resulting
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image. The central area of k-space contains low frequency information, this
provides information about the general shape and contrast of the image [16].
The center of Fig[I.10|shows the result of retaining only the central portion of
k-space while discarding the high frequency information. The general shape
and contrasts of the image can be seen but there is a lack of detail around the
contours of the image. The outer portion of k-space encodes high frequency
information, in the image domain this provides information about the edges

and contours of the image (Fig{l.10|right).

Figure 1.10: The effect of removing different regions of k-space. The full k-
space and the resulting image are shown on the top and bottom left respectively.
With only the inner section of k-space preserved (center top) the resulting image
(center bottom) retains contrast but information about the edges is lost resulting
in blurring. When only the outer portion of k-space is preserved (right top) the
resulting image (bottom right) contains information about the edges of the image
but all contrast has been lost.

The gap between k-space samples, Ak, determines the field-of-view (FOV)
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of the image (i.e. the distance over which image is measured), this relation-
ship is shown in eq.(L.17) [17]. In this equation, we assume that the FOV in
the z and y direction is identical, this implies Ak = Ak, = Ak,. A rectan-
gular FOV can be obtained by using separate Ak, and Ak, values. It can

be shown the that the maximum k-space values, bz maz; ky,maz, determine the

image resolution, Az, Ay, through eq.(1.18) and eq.(1.19).

1
F = — 1.1
oV =4 (1.17)
P (1.18)
v 2kx,max .
Ay— 1 (1.19)
V= 2ky,ma:r '

In a standard MRI experiment the typical way of filling k-space is to
acquire parallel lines of k-space. Thus, a large amount of the acquisition
duration is spent acquiring high frequency k-space. More sophisticated ac-
quisition schemes which exploit the structure of k-space to repeatedly acquire
the low frequency information have been developed [4]. These allow for faster

imaging and are described in more detail in Chapter 3.

1.3.4 MRI Methods

The combination of RF pulses and gradients (and the timings between them)
is called a pulse sequence. A pulse sequence is commonly based on recording
either a spin-echo (SE) or gradient recalled echo (GRE) [3]. In this thesis

only GRE sequences are considered.
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In a gradient echo sequence (Fig., an RF pulse (along with slice
selection gradients) is applied, resulting in the rotation of the magnetization
vector by flip angle 6. The resulting FID is then dephased (i.e. its decay
accelerated) by turning on the read gradient, at the same time the phase
encoding is applied. To form an echo, the read gradient (and the ADC is
turned on) is reapplied with an inverted polarity. The rephasing of the spins
creates an echo which is recorded by the ADC. This echo is referred to as
a gradient recalled echo or more commonly a gradient echo. This process
is repeated, with a linearly increasing phase encoding gradient, to acquire

different lines of k-space.

In a GRE sequence, unlike a SE sequence, the flip angle of the pulse can
be set to be a value less than 90°. The amount of magnetization that is tipped
into the transverse plane is given by Mj-sin(f), where Mj is the magnetization
currently in the longitudinal plane. Using a high flip angle (such as a 90°
pulse) results in more magnetization being transferred into the transverse
plane, however, when the TR is short (relative to 7}), the magnetization
will not have had sufficient time to move back to the longitudinal plane.
Thus, there will be a smaller pool of longitudinal magnetization to rotate in
subsequent excitations. Therefore, in short TR sequences it is beneficial to
use a smaller flip angle in order to maintain a larger pool of magnetization

which can be excited, and thus achieve a higher steady-state signal.

GRE sequences commonly employ spoiling, a technique which removes
any undesired steady-state transverse magnetization |18} 2]. This ensures
that the resulting image contrast will be Tj-weighted (unless TR and TE are

made significantly longer to ensure 75 -weighting). The two most commonly
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Figure 1.11: Pulse sequence diagram of a gradient-echo sequence.

used spoiling techniques (which can be used independently or combined)
are RF-spoiling and gradient spoiling. In RF spoiling the phase of the RF
pulse is altered every TR. It can be shown that this causes the transverse
magnetization to be cancelled out. In gradient spoiling additional gradient
pules (typically in the slice or read) direction are added after the frequency
encoding gradient. This introduces additional dephasing of spins on the
transverse plane. For a spoiled GRE sequence the recorded signal, s, can be
related to TE, TR and 6 through eq. where [H] is the proton density.
By lowering the TR (or increasing the flip angle) the recorded signal can be
made more Tj-weighted. If the TR is kept high and the TE and flip angle

kept low, the signal will mainly reflect the proton density of the tissues.
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Thus, the contrast of a GRE sequence is dependent on three user controllable

parameters: TE, TR and 6.

s =[H] - e Tz (1.20)
1 —cos(f)-e T

sin(0) - (1 - 6_%) TE

The main advantage of using a GRE sequence is that the TR can be kept
extremely short (in ms) compared to the hundreds of ms required for a SE
sequence [19]. This allows for fast acquisition of k-space. This is important
when imaging moving organs such as the heart or when the patient may not
be able to tolerate extended periods of time in the MRI scanner. The main
disadvantage of GRE sequences is that, unlike the SE sequence, the T effects

are not eliminated.

1.4 Thesis Structure

Chapter 2: This chapter provides an overview of the MRI scanner system
used in this thesis. This is followed by an overview of the software needed to
implement pulse sequences and reconstruction algorithms.

Chapter 3: Provides an overview of techniques that are used to reduce
the acquisition time in MRI. This begins with how spatial redundancy can be
exploited, then more complex data sampling schemes are introduced. Finally,
the concept of sparsity and compressed sensing is introduced.

Chapter 4: Based upon existing literature a real-time MRI sequence
using radial sampling is developed. The sequence is extended to use SMS
acceleration to acquire multiple slices with no loss of temporal resolution. A

compressed sensing reconstruction pipeline is implemented for rtMRI data.
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Chapter 5 Using the sequence developed in Chapter 4, in-vivo single-
slice and multi-slice rtMRI data is acquired. The effect of undersampling,
data compression and SMS acceleration on image quality and reconstruction
time is evaluated.

Chapter 6: This chapter describes the design, construction and evalua-
tion of a semi-realistic, dynamic phantom of the oral cavity for use in MRI
scanners. Its application to dynamic imaging is discussed.

Chapter 7: Potential applications of the developed real-time MRI se-
quences are discussed. This includes applications in head /neck imaging and
musculoskeletal imaging.

Chapter 8: This chapter summarises the main findings of the thesis.
Future work extending the sequences and reconstruction algorithms is dis-

cussed.
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2.1 Introduction

This chapter details the hardware and software used to acquire and recon-
struct the MRI data used in this thesis. The MRI system is first introduced,
followed by the software environment used to develop new pulse sequences.

Finally, the reconstruction hardware and software is discussed.

2.2 Magnet and Gradient System

In this work all data was acquired on a clinical whole body 3T MAGNE-
TOM Vida system (Siemens Healthineers, Germany) with a bore size of 70cm
(Fig2.1)). A liquid helium cooled superconducting magnet provides the static
By field, at this field strength the Larmor frequency of 'H is 127.74MHz. The
gradient system equipped on this scanner is capable of gradient amplitudes
of 45mT/m at a slew rate of 200T/m/s [20].

To improve magnetic field homogeneity, the system has additional sets
of coils, known as shim coils [3]. The scanner system adjusts the current
through these coils, thus adjusting the magnetic field generated by them. The

summation of the shim fields with the By results in a more homogeneous field.
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The shim adjustment can either be done manually or through an automated

process before the start of a scan. In this thesis the latter process is used.

Figure 2.1: Photograph of the 3T MAGNETOM Vida scanner.
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2.3 RF Transmit and Receive System

The MRI system has a body coil around the magnet, this is used to transmit
the RF pulse required to excite the spins. The resulting signal is recorded
by an array of receiver coils located around the anatomy of interest.
The receiver array coils used in this thesis are: head/neck 64 coil receiver
array, knee 18 coil receive/transmit array and a foot/ankle 10 coil array.
The knee coil has additional functionality to transmit RF in order to

improve the homogeneity of spin excitation.

2.4 Data Acquisition and Processing

To acquire data, the scanner operator selects what sequence to run and the
parameters of the sequence, which is referred to as the scan protocol. This is
done at a computer located in the control room using a software application
called syngo (Siemens Healthineers, Germany). This information is then
passed to the measurement and reconstruction system (MARS). MARS is
a Linux system that controls the application of the RF amplifiers, gradient
amplifiers and turns on the ADCs to record data.

The signal recorded by the receive coils is digitised using an ADC and then
sent through an optical link back to MARS. If an appropriate reconstruction
algorithm is available the data is then reconstructed and images are sent back
to the host computer. An overview of the system is shown in Fig[2.2]

Raw k-space data is referred to by Siemens as TWIX data and is stored
separately to the image data. The raw data can be exported for reconstruc-

tion on a separate computer system.
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Figure 2.2: Block diagram showing the structure of the MRI system used in this
thesis.

2.5 Sequence Development Software

Development of pulse sequences and reconstruction code is performed in
the Integrated Development Environment for Applications (IDEA) (Version
XA30; Siemens Healthineers, Germany). All pulse sequence and scanner
reconstruction code is written using C++.

IDEA is divided into two sections:

e Sequence Development Environment (SDE): all pulse sequence devel-
opment is done in the SDE section of IDEA. It is responsible for com-
piling the pulse sequence code to generate the dynamic linked libraries
(DLL) and system object (SO) files needed to execute the sequence
on the scanner. SDE also provides a basic simulation package to test

sequences.

e Image Calculation Environment (ICE): image reconstruction code for
the scanner is done in the ICE section of IDEA. ICE controls the com-
pilation of the source code into DLL and SO files. Software to test

reconstruction algorithms and open TWIX files is also provided.

The DLL and SO files generated by IDEA are then transferred onto the
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scanner.

2.6 Computational Resources and Reconstruc-
tion Software

The k-space data is exported from the scanner and reconstructed on a sep-
arate computer. The computer used for reconstruction has the following
specifications: AMD Ryzen 7700X, 64GB DDR5 RAM, NVidia 4070 GPU.

The majority of the reconstruction software used in this thesis is written
in MATLAB (version 2023a, Mathwork) running on a CPU. The exception
to this is the Non-Uniform Fast Fourier Transform algorithms. These are run
on a Graphical Processing Unit (GPU) to reduce computation time. GPU
code is implemented in the CUDA C programming language [21]. A MEX

script is used to interface the CUDA C code to the main MATLAB scripts.

2.7 Standard Imaging Protocol

Due to the explorative nature of this project, a fixed imaging protocol is not

used. However, a typical scanning session can be divided into two sections.

e The first section of the scan session consists of structural scans. This
begins with a T,-weighted localiser followed by a Ts-weighted high res-
olution (Imm?) structural scan with the field of view and number of

slices selected to cover the anatomy of interest.

e Real-time MRI scans (with parameters and slice position dependent on

the application) are then performed. The static structural scans are
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used to assist in determining optimum slice position/orientation.

2.8 Ethics

Ethical approval for all scanning was approved by Manchester Metropolitan
University. All in-vivo scanning was conducted on healthy volunteers who
signed a consent form and a general safety questionnaire.

All data was pseudo-anonymised and stored securely on an encrypted file

store.
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3.1 Introduction

MRI provides a diverse array of clinical information through its ability to
generate multiple types of contrasts [1]. A limitation of MRI is the long
acquisition time required to fully sample k-space [22]. For standard Carte-
sian sampling the total acquisition time, TA, to acquire a single image (in
milliseconds) is determined by the number of acquired k-space phase lines,

N, and the repetition time, TR (in milliseconds).

TA=N-TR (3.1)

For example, a standard T}-weighted GRE sequence with TR= 2.5ms and
128 lines of k-space would take 320ms to acquire. When imaging movement,
such as cardiac motion or joint motion, the movement over the acquisition
duration will result in motion artefacts [22]. It is also problematic when
high-resolution data sets covering a large FOV are required as many k-space
samples are needed. For example, to achieve a Imm resolution (in the phase
encoding direction) over a FOV of 300mm would require 300 lines of k-space.
A long acquisition time is problematic as patients can struggle to remain still

during the scan |23, 24].
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Hardware improvements in MRI, such as fast-switching gradients, have
allowed for faster data acquisition [25]. For example, early MRI systems had
gradient slew rates of ~ 10T /m/s compared to the 200T /m/s slew rate of the
system used in this thesis [26]. Alongside these developments, over the past
30 years a wide variety of data sampling and reconstruction techniques have
been developed to significantly (between 2-20 time reduction in scan time)
accelerate MR imaging by acquiring fewer lines of k-space |27, 28| 23]. This
chapter introduces the most significant developments in accelerated image
acquisition and discusses how they can be combined to further reduce image

acquisition time, preferably with minimal degradation in image quality.

3.2 Multi-coil Imaging

As discussed in Section [I.3.2] the MR signal is recorded using a coil placed
near the subject. Modern clinical systems (including the system used in
this work, Chapter 2) now use multiple small receiver coils located in dif-
ferent positions to record the MR signal (Fig3.1)) [29]. These small receiver
coils record signal from a highly localised area. This provides an increase
in signal-to-noise ratio (SNR) (in the area near the coil) compared to a sin-
gle large coil. The N, coils each record a k-space signal, y; € CYs where
[l =1[1,...,N.], consisting of N; samples. The k-space from each coil can
be Fourier transformed yielding a set of images, x;. These images can then
be combined to form a single image, x. To combine the coil images, a root
sum-of-squares approach is typically used (eq.). Larsonn et al. (2003)
proved that this combination method provides the optimal SNR when the

only information available for reconstruction is the k-space data from each
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coil [30].

(3.2)

3.3 Parallel Imaging

Initially, multiple reception coils were used solely to improve the SNR of
images [31]. It can be shown that, theoretically, the SNR of the reconstructed
image increases proportionally to the square-root of the number of coils [30].
In practice, when high numbers of small reception coils are used, the resulting

SNR will vary spatially [32].

The signal recorded by each coil is not identical, it varies depending on
the spatial position of the coil [33]. The signal recorded from tissues close to
the coil is larger than tissues further away because each small coil acts as a
surface coil. This embeds additional spatial information (along with spatial
information embedded through gradient encoding) into the recorded signal
[34]. This relationship between position and signal intensity is known as the
coil sensitivity profile (Fig[3.1).

The effects of multiple coils and their respective sensitivity profiles can be
incorporated into the MR signal model. The recorded signal can be linked to
the image through eqf3.3] The additional term S; has been introduced into
the signal model. This term is a diagonal matrix with a size equal to the
number of pixels in the image, which models the interaction between coil I’s
sensitivity profile and the image. This can be rewritten as eq., where

A; = F'S; is referred to as the system matrix.
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Figure 3.1: lllustration of multi-coil acquisition. Four coils located in different
positions are used for signal reception. Each coil has a specific spatial sensitivity
pattern. The data from each coil can be Fourier transformed to form an image.
These can be combined using the root sum-of-squares (eq.
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Y = FSlX (33)

Y = AZX (34)

The set of measurements from each coil can be stacked to form a vector
of size N;- N,.. The signal is now related to the image through eq.(3.5)) where

A =[A4,...,Ay.] is a stacked matrix of forward operators for each coil.

y = Ax (3.5)

The additional spatial information introduced by the coil sensitivity can
be used to decrease the acquisition time. In effect, the SNR gain of using
multiple receiver coils is sacrificed to reduce acquisition time. The methods
to do this are collectively referred to as Parallel Imaging (PI) [35]. In PI, the
scan time is reduced by lowering the number of k-space lines acquired during
a scan. The process of reducing the scan time is commonly referred to as
acceleration. The amount of acceleration is referred to as the acceleration
factor, R, and is defined as the ratio of the number of k-space lines required
to fully sample the image, Ng,;, to the number of acquired k-space lines,
Nacq (eq.(3-6)) [36]. For example, skipping every other line in k-space would
result in R = 2. If k-space lines are skipped, there are no longer enough
spatial frequencies to reconstruct the image. In the image domain, this lack
of information manifests itself as foldover/aliasing artefacts (Fig3.2)) [37].
The aim of all parallel imaging methods is to recover an undistorted image

from the undersampled k-space measurements.
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(3.6)

Figure 3.2: Left: fully sampled k-space (top) and the resulting image (bottom).
Right: the same k-space with every other line removed (top) and the resulting
reconstructed image which shows aliasing (bottom).

The earliest example of Parallel Imaging is Simultaneous Acquisition of
Spatial Harmonics (SMASH) [38 [39]. The main principle of SMASH is
that linear combinations of weighted coil sensitivities can be combined to

synthesise the missing k-space lines. The required weights are found by
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fitting the coil sensitivity profiles to spatial harmonics. SMASH requires
extremely careful coil design in order to generate the spatial harmonics in
the selected phase encoding direction with the high accuracy needed. This
poses a limitation in clinical applicability as SMASH does not work effectively

with all available coils [40].

One of the most commonly used parallel imaging methods is SENSE
(SENSitvity Encoding) developed by Pruessmann et al. in 1997 [37, 41|
42]. Unlike SMASH, the SENSE method works with any coil array [40].
SENSE alters the system matrix to account for the data undersampling by
introducing a diagonal matrix, P € RN*N+ (eq.(3.7))). The values along the
diagonal can take the value of 1 or 0. The sampling operator, P, can be
viewed as a binary mask which selects if a k-space point has been sampled
or skipped.

A =P -F-S (3.7)

SENSE aims to find a solution to eq.. A common technique to do this
is to pose the image reconstruction problem as a least-squares minimization
problem (eq.(3.8)) [43, [41]. This optimization problem attempts to find
an image, x, which when transformed into k-space matches the data, y,
measured from each receiver coil. The final solution is given by %X. Using
the Ly norm provides a measure of goodness of fit. The lower the norm, the
more the generated image fits the measured data. This is referred to as the
data fidelity term. It is common to add Tikhonov regularization ( \||x||;
term) [44]. Regularization assists in the finding of a unique solution and
helps to prevent overfitting [45]. The level of regularization is controlled by

A and determining this parameter is critical to effectiveness of regularization.
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The Ly norm of an image is not expected to be small (as many pixels are a
non-zero value) and forcing it be small (using an inappropriate A value) can

result in the reconstructed image being too smooth [46].

. 1
X = arg min §||AX—Y||§+)\||X||§ (3.8)

This optimization problem has a closed form solution given in eq.,
where I denotes the identity matrix. Directly implementing the matrix in-
version would require an infeasible amount of memory for the computation
[41]. Instead, the solution to this is found using an iterative algorithm, the

most commonly used is the Conjugate Gradient (CG) algorithm [43, 41, 47].

%= (AA" + XI)'AHy (3.9)

A full derivation of the CG algorithm can be found in Shewchucks 1994
review [48]. The algorithm (Algol[l]) requires the implementation of both A
and its Hermitian, AH. The Hermitian of the system matrix is given by
eq., and represents the transformation from the k-space domain to the
image domain. The Hermitian of the Fourier transform term represents the

inverse FT and (.)* denotes the complex conjugate.

The algorithm is run for Ny, iterations or (optionally) until a conver-
gence criterion is met. This criterion is typically based upon the ratio of the
residual vector r; at iteration ¢ to the initial residual vector rg. If the ratio
is below a certain threshold ¢ the algorithm is terminated. It is difficult to
pick this termination threshold, thus most implementations of CG-SENSE

are run for a set number of iterations [43].
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AY, =87 . FH.P (3.10)

Algorithm 1: Conjugate Gradient Algorithm

Input: System matrix A, Convergence threshold ¢,

Number of iterations Ny,

Output: Data at final iteration x
Data: Recorded k-space data y
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Accurate reconstruction using the SENSE method requires the coil sen-

sitivity profiles [37]. This can be achieved using short scans before the main

acquisition, these are known as prescans [49]. Prescans acquire low-resolution

images from each coil by recording the central lines of k-space. Any move-

ment between the prescan and the main acquisition will result in the misalign-

ment between the coil sensitivity profiles and the actual image, significantly

degrading the SENSE reconstruction [49]. To resolve this, it is now common

to acquire a central region of k-space during the acquisition, which can then
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be used to generate low-resolution images [34]. The disadvantage of this is
that the overall acceleration is lower than the prescan approach as more lines
of k-space are required. This method is referred to as autocalibrated recon-
struction as the coil sensitivity is estimated for the data itself [34]. A variety
of algorithms have been developed which use these low-resolution images to
estimate the sensitivity of each coil |28, 34]. Coil geometry is another im-
portant aspect of parallel imaging [31]. There should be as little overlap as
possible between the coil sensitivity profiles for each coil to record a unique
signal. In practice, there will always be overlap in the coil sensitivity profiles.

Theoretically, the maximum achievable acceleration using PI is Ryse.: =
N.. This assumes that there is no noise present in the recorded data, the coil
sensitivity profiles are known exactly for each coil and the coil sensitivity pro-
files are completely independent [50]. In reality, this is impossible to achieve,
and the image quality of SENSE degrades significantly as the acceleration
factor increases (Fig, resulting in severe artefacts and reduction in the
signal-to-noise ratio |31, 40]. In clinical settings the maximum acceleration

factor used (for 2D imaging) rarely exceeds R = 3 [51].
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Figure 3.3: Four images of a brain acquired using a GRE sequence, the fully
sampled k-space is composed of 128 lines. From left to right: no SENSE ac-
celeration, R = 2 SENSE acceleration, R = 3 SENSE acceleration and R = 4
SENSE acceleration. At the higher levels of acceleration foldover artefacts can
be seen, as indicated by the yellow arrow.

3.4 Non-Cartesian MRI

Another method to accelerate acquisition is to use non-Cartesian sampling
schemes (also known as non-Cartesian trajectories). In non-Cartesian sam-
pling, the low-frequency areas of k-space are typically acquired more fre-
quently than in standard Cartesian sampling. The effect of this is to allow
a large amount of data undersampling to be performed, while maintaining
sufficient image quality. This is due to the structure of k-space (described
in Section in which the low-frequency area contains the majority of
the important structural/contrast information and the high-frequency area

contains the information about the edge in the images.

One of the most common non-Cartesian sampling schemes is Echo-planar
Imaging (EPI) (Figl3.4) introduced by Mansfield in 1977 [52]. EPI acquires
multiple lines of k-space from a single excitation in contrast to Cartesian
sampling which acquires a single line of k-space per TR . This is done by

repeatedly applying the frequency encoding gradient with alternating polar-
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ity. The phase encoding gradient is applied at small amplitudes in between
the application of the frequency encoding gradient. This results in the k-space
being acquired in a snake or 'zig-zag’ pattern (Fig bottom). During the
reconstruction, alternate lines of k-space are flipped such that all lines of
k-space align, next, a standard FFT is used to transform the k-space to the

image domain.

Compared to standard Cartesian sampling, EPI is susceptible to a variety
of artefacts [2]. The most common artefact is ghosting in the phase encoding
direction (Fig[3.5)). The main cause of ghosting are eddy currents [2]. These
result in shifts between the lines of k-space. Ghosting can be corrected using
a variety of methods. The most common method involves a prescan which
acquires the central line of k-space at alternating gradient polarities. This
can then be used to generate a phase correction term which removes the

ghosting.

Another limitation of EPI is sensitivity to By inhomogeneity, this is typ-
ically referred to as off-resonance. This results in signal dropout and distor-
tions around the area of off-resonance. This is particularly problematic at
air-tissue boundaries such as those in the nasal sinuses [53], this is due to
differences in magnetic susceptibility. Reconstruction techniques have been
developed to overcome this issue [54, 55, |56]. However, no correction method
is perfect and they introduce additional complexity into the reconstruction.
Off-resonance effects can also be reduced using spin-echo sequences, at the

cost of increased tissue heating [57, |58].

EPI is used extensively in functional MRI [59] and diffusion MRI [60]

with typical temporal resolutions of 1 — 2s. EPI has also been used for
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Figure 3.4: Top: GRE sequence with EPI sampling scheme. Bottom: The
resulting EPI trajectory showing the snaking pattern through k-space.
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Read direction

Phase encoding direction

Figure 3.5: Example of ghosting in an EPl image. The ghosting can be seen at
the front and back of the head.
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dynamic imaging applications, such as joint and cardiac imaging. However,
it is susceptible to motion artefacts which manifest in the image domain as
geometric distortions and ghosting [4]. Many motion correction algorithms
for EPI have been developed, however, these methods are not suitable for
dynamic imaging applications in which we want to observe movement rather

than correct for it [61, 62].

An alternative to EPI is spiral sampling [63]. This sampling scheme uses
sinusoidally varying gradient waveforms (Fig top) to acquire a k-space
that starts at the center and spirals outwards (spiral-out)[63]. It is also
possible to start at the outside of k-space and spiral inwards towards the
center (spiral-in). A spiral-out sampling pattern is shown in Figi3.6f The
gradient waveform for spiral sampling must be carefully designed such that
the rate of gradient change does not exceed the gradient systems slew rate and
the maximum amplitude does not exceed the maximum gradient amplitude.
A variety of analytical solutions have been developed to generate the spiral

waveform [64].

An advantage of spiral sampling is that it allows for very short (near
zero) echo times [65], |66]. This allows a spiral sequence to record signals from

tissues with very short T5 values, such as myelin [67].

Another advantage of spiral sampling is that, compared to Cartesian sam-
pling and EPI, it is more robust to motion, due to oversampling of the central
region of k-space. The robustness to motion allows spiral sampling to be used
effectively for dynamic imaging. Spiral sampling has been used to acquire

dynamic images of cardiac motion [68], joint kinematics [69] and speech [70].

As with EPI, spiral sampling is sensitive to blurring and signal drop out
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Figure 3.6: Top: GRE sequence using sinusidally varying gradients. Bottom:
resulting k-space trajectory, starting from the center and spiralling out.
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due to off-resonance artefacts |[71]. For example, in spiral imaging of speech, it
is common to see distortion around the tongue due to the air-tissue boundary
[71]. A variety of correction methods have been developed. These involve
estimating the inhomogeneity in the B, field either from a separate scan or
from the data itself [71]. The inhomogeneity estimation can then be built

into the reconstruction model.

Spiral sampling is also sensitive to imperfections in gradient hardware.
If the gradients do not perform exactly as expected, the actual k-space tra-
jectory will be different than expected, this introduces errors into the re-
construction. Additional hardware which monitors the fields applied by the
gradient system in real-time can be used (for both spiral and EPI sampling)
[72, 73]. These measurements can be used to calculate the exact trajectory
used to acquire data. However, this hardware is expensive and not com-
monly available on clinical systems. Another calibration technique involves
calculating the gradient impulse response function (GIRF) which measures
the performance of the gradient system [74]. This involves a separate scan
with a spherical phantom. The GIRF information is then used during recon-

struction to account for gradient imperfections.

A final consideration of a sampling technique is known as radial acquisi-
tion. This was the first sampling scheme used in MRI, presented by Lauterbur
in 1973 [75]. However, it was replaced with Cartesian sampling due to the
latter sampling scheme being more robust to the high amount of gradient
imperfections present in early MRI systems. In radial sampling, k-space is
acquired using a series of lines, often referred to as spokes, which are ro-

tated around k-space by an angle, 6 [76]. Unlike spiral sampling, which
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requires complex oscillating gradient waveforms, only simple modifications
to the pulse sequence are required as trapezoidal gradients are still used.
The read and phase encoding gradients (now denoted as G, and G, however
any combination of gradients can be used) are now applied simultaneously.
Their amplitude is modulated by either a sine or a cosine term (eq.(3.11]) and
eq.) where Gy is the gradient amplitude required to sample the centre

line of k-space.

G, = Gy - cos (0) (3.11)

Gy = Gy -sin (6) (3.12)

The sampling efficiency (i.e. how many samples are required to fully
sample the image) is lower than in Cartesian sampling [76]. It can be shown
that a fully sampled radial image would require 7 times the number of spokes
compared to Cartesian sampling. However, the repeated acquisition of low-
frequency k-space means that a significant amount of data undersampling can
be performed while preserving image quality (in terms of noise, contrast and
edge sharpness). This is due to the majority of information being contained
in the low-frequency areas of k-space. An example of this is shown in Fig[3.§]
where the number of acquired spokes is decreased. A degradation in image
quality can be seen. However, there is no fold over artefact when compared to
Cartesian undersampling, thus radial sampling can be used to achieve higher
acceleration than Cartesian undersampling would allow.

Radial sampling, like spiral sampling, is robust to motion due to contin-

ued oversampling of the low frequency area of k-space. This has motivated
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term respectively. This results in k-space trajectory consisting of rotating spokes

separated by an angle 6 (bottom).
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Figure 3.8: A numerical phantom (left) reconstructed using (from left to right)
128, 64 and 32 spokes. The increased IeveI of undersampling results in an increase
in aliasing throughout the image.

the use of radial sampling in dynamic imaging applications. For example, a
large number of rt MRI methods employ highly undersampled radial sampling
schemes to image movement; this will be discussed in detail in Chapter [}
In addition to rtMRI, other examples of the use of radial acquisition include
imaging the change in image intensity after the injection of a contrast agent
(Dynamic Contrast Enhanced MRI). Radial sampling is used in this appli-
cation as the organ of interest (the liver) moves due to respiratory motion,

resulting in artefacts if Cartesian sampling is used [77, [78].

Compared to EPI and spiral sampling, radial sampling is less suscepti-
ble to off-resonance artefacts, resulting in fewer artefacts around air-tissue
boundaries. Radial sampling, like spiral sampling, is also sensitive to gra-
dient imperfections. However, a wide variety of automated software-based
trajectory correction methods exist, which can estimate the actual trajectory
from either a set of prescans or from the data itself |79, 80, 81]. An addi-
tional advantage of radial sampling is that, due to the short readout times,
the minimum TR when using radial sampling is typically lower than EPI or

spiral sampling schemes.
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3.5 Non-Cartesian Reconstruction

In standard Cartesian sampling, the Fourier transform, used to move between
image and k-space, can be computed using a Fast Fourier transform (FFT)
algorithm. The FFT assumes that sampled points lie on an equispaced Carte-
sian grid [82]. This assumption is no longer valid when using non-Cartesian
sampling, thus making the image reconstruction problem challenging. Non-
uniform Fast Fourier Transform (NUFFT) algorithms have been developed
to overcome these challenges. Of specific interest to non-Cartesian MRI is the
type-2 NUFFT which calculates the Fourier transform of frequency points at
arbitrary sampling location [83].

The majority of type-2 NUFFT algorithms work by interpolating the
acquired trajectory onto a Cartesian grid, which then allows for a standard

FFT to be used. The NUFFT is a four or five-step algorithm:

Density Compensation (optional)

Convolution onto an oversampled Cartesian grid. This step is often

referred to as gridding.

FFT into the image domain

e Cropping to desired image size.

Deapodisation

Density compensation is required to compensate for the increase in den-
sity of low frequency k-space values compared to higher frequency values
[84, 185]. Without density compensation, there is an overweighting of the

low-frequency values, which leads to blurring in the image domain (Figi3.9).
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Figure 3.9: Image of a phantom reconstructed with 95 spokes without (left)
density compensation and with density compensation (right). When density
compensation is not used the image appears blurry due to the overweighting of
the central region of k-space.

Density compensation is performed by multiplying the acquired data with
a set of weights, d, referred to as density compensation coefficients. The
calculation of d is dependent on the non-Cartesian trajectory used. For den-
sity compensation in radial sampling, a simple triangular filter can be used,
eq., where r is a point along the spoke and Ng,; is the number of
spokes. This attenuates the lower k-space frequencies, thus removing the ef-
fect of them overweighting k-space. Iterative approaches can also be used to
calculate the values of d. It has been shown that iterative design approaches
can result in improved reconstruction quality compared to the triangular

filter [85).

. 3.13
Noor (3.13)

To move the non-Cartesian points, (k,,k,), onto a Cartesian grid, each

point is convolved with a kernel function, C'(k,, k,). The result of this con-
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volution is then sampled onto a Cartesian grid. The finite length of the
convolution kernel results in artefacts around the sides of the image. To re-
move this, an oversampled grid can be used (i.e. the number of grid points
is larger than the desired image size). The oversampling increases the field
of view, thus pushing the artefacts away from the image. The amount of
oversampling is typically denoted by «, with typical values ranging from 1.2

to 2 [86].

The ideal convolution kernel would be a sinc function of infinite dura-
tion, but this is not computationally possible. Instead, as was shown by
Jackson et al. (1991), the Kaiser-Bessel window (KB-window) provides a
good approximation [87]. The convolution kernel, using the KB-window, is
defined in eq. where [ is the zeroth order modified Bessel function.
The Bessel function can be quickly and accurately approximated using a
Chebyshev polynomial expansion [88]. The width of the kernel is determined
by the parameter W, this value is chosen to balance numerical accuracy and
computation time. A smaller kernel will decrease numerical accuracy but will
also decrease computation time. Width values typically lie in the range of
3-7. The ( value is a tuning parameter which modifies the shape of the KB-
window, affecting the accuracy of the gridding. Beatty et al. (2005) showed

the optimum [ value for a given kernel width and oversampling factor is

given by eq.(3.15)). [86].

2 2
C(kz,ky):%Jo 8 1-(1’3) 5| 8 1—(2Wﬁ) (3.14)
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Figure 3.10: Ground truth image of a phantom (left). When no deapodization
is used (centre) variations in intensity can be seen in the centre of reconstructed
image. This intensity variegation is suppressed when deapodization is applied

(right).

6:7r-\/2/—22(a—%)—0.8 (3.15)

A standard FF'T can then be used to move from the Cartesian k-space to
the image domain, and the image is then cropped to the desired size. The
final step required is deapodization, which is the division of the image by the
Fourier transform of the kernel. This step is required as the finite length of
the kernel in the k-space domain results in intensity variations in the image
domain (Fig[3.10).

Non-Cartesian trajectories are often used in conjunction with parallel
imaging [47]. This allows for higher acceleration factors that neither non-
Cartesian trajectories or PI could provide independently. Non-Cartesian PI
reconstruction was first described in work by Prusseman et al. in 2001, they
demonstrated that SENSE can be used with any non-Cartesian trajectories
[41]. They showed that by combining SENSE with radial or spiral trajecto-
ries, it is possible to improve the temporal resolution of cardiac MRI from

112ms to 54ms. To use SENSE with non-Cartesian trajectories, the signal
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equation previously shown was adapted to use a NUFFT rather than the sim-
ple FFT. After this alteration, the reconstruction can be carried out using
the conjugate gradient algorithm. Non-Cartesian PI has now been applied to
a variety of different non-Cartesian trajectories, including radial and spiral,
in a variety of applications such as brain, cardiac and musculoskeletal imag-
ing [47, 89,90, 91]. One of the main drawbacks of this technique, in addition
to the previously described problems with non-Cartesian trajectories, is the

increase in reconstruction time required to repeatedly compute the NUFFT.

Density compensation is an optional step when using iterative recon-
struction algorithms. It can be shown that density compensation improves
the convergence speed of PI algorithms, allowing for fewer iterations and,
therefore, a lower reconstruction time [41]. A disadvantage of using density
compensation is that it can be shown to result in increased reconstruction

error as measurements are attenuated [92].

As shown in Section iterative PI methods require a transformation
from the image domain to the k-space domain. For Cartesian trajectories,
this is simple to accomplish using an inverse FFT. For non-Cartesian trajec-
tories, this mean that as well as using the type-2 NUFFT discussed previously
(Non-Cartesian k-space to Cartesian image space), a type-1 NUFFT which
moves from Cartesian image space to non-Cartesian k-space is required [93].
The algorithm to do this is very similar to the type-2 NUFFT. Instead of
cropping the image it is instead zero padded to the size of the oversampled
grid, then an inverse FF'T is used to create a Cartesian grid of k-space. The
density correction step is not required as the Cartesian grid has a uniform

density. The type-1 NUFFT can therefore be summarised as a four-step
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algorithm:

Application of deapodization function to the image.

Zero-padding of the image to the size of the oversampled grid.

Inverse FF'T to transform from image domain to frequency domain.

Convolution to move from Cartesian grid to the desired non-Cartesian

trajectory.

3.6 Compressed Sensing

The parallel imaging techniques discussed so far exploit the redundancy in
spatial information due to multiple receiver coils. In 2006, Candes et al.
introduced a new mathematical optimization technique called compressed
sensing (CS), which recovers a signal x of length M from a set of Ny mea-
surements, y, where Ny < M [94, 95]. CS exploits the sparsity of the signal
in the signal reconstruction algorithm [96]. The sparsity of a signal can be
measured using the L; norm (eq.(3.16)) denoted by ||x||, - a lower value

reflects a higher sparsity.

M
Ixll, =) |z (3.16)
=1

The level of sparsity required to achieve perfect reconstruction can be an-
alytically derived in extremely specific circumstances for matrices consisting
of random values [94]. However, generally, it is not possible to compute the

exact level of sparsity required for optimum reconstruction quality [96].
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The methodology developed by Candes et al. (2006) remained mainly an
abstract mathematical technique until it was applied to MRI image recon-
struction by Lustig et al. in 2007 [97]. This work highlighted the three main
components required for CS to work in the context of MRI image reconstruc-

tion:

e The image must be sparse in a transform domain.
e The image domain aliasing due to undersampling must be incoherent.

e A non-linear recovery algorithm must be used to recover the image

from the set of undersampled k-space measurements.

Although an MR image is not sparse in the original image domain (with
the exception of MR angiography images), they can be made sparse by using
an appropriate transform. Lustig et al. (2007) showed the Total Variation
(TV) transform and the Wavelet transform can provide a sparse representa-
tion of the image (Fig. The TV transform takes the difference between
adjacent pixels, and if we assume that adjacent pixels have similar values,
this results in a sparse representation. The Wavelet transform decomposes
the image into a series of coefficients which represent band-passed filtered fre-
quency values and hold both position and frequency information [98]. It can
be shown that the wavelet coefficients decay rapidly, resulting in a sparse
representation of the image in the wavelet domain. These two transforms
are the most commonly used sparsity-promoting transforms due to their ro-
bustness in most situations - a wide variety of other transforms have been

developed over the subsequent years [99].
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Figure 3.11: An MRI image of the brain (left), the same image after being
transformed to the total variation (center) and wavelet (right) domains. In the
two transform domains it can be seen that the image is now sparse, mainly
consisting of pixels with low values.

The second requirement of incoherent aliasing can be achieved by ran-
domly sampling the signal; this was the original technique used by Candes et
al. (2006) in their theoretical work on CS [94) |100]. However, in the context
of MRI, randomly sampling k-space is both not desirable and not practically
possible [97]. It is not desirable as image information is mainly contained
in the center of k-space, thus, it is beneficial to acquire more of these lower
frequencies. It is also not possible to achieve truly random sampling as we
acquire lines of k-space at a time rather than acquiring individual points.
Achieving incoherent aliasing is not possible using the standard approach of
skipping k-space lines used in SENSE, as this results in structured aliasing
in the form of the folder over artefact shown previously in Fig[3.2l Instead,
Lustig et al. (2007) proposed using a variable density Cartesian sampling
scheme, which acquires a fully sampled centre region and then selects high-
frequency lines to sample based on a Poisson distribution [97, |101]. They
showed that this results in incoherent noise while still acquiring the useful
low-frequency information. The requirement for incoherent aliasing is also

fulfilled using radial and spiral trajectories, this was demonstrated in Fig[3.§]
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which showed that the effect of radial undersampling was not structured
foldover artefacts but instead an increase in noise throughout the image [47,
97).

Finally, to recover the images using sparsity constraints, Lustig et al.
(2007) posed the MR image reconstruction problem as an optimization prob-
lem. The structure of the optimization problem is similar to that shown previ-
ously for parallel imaging, with the addition of the L; norm term (eq.(3.17))).
Lustig et al. (2007) solve this optimization problem using a non-linear con-

jugate gradient algorithm (NLCG).

1
X = argmin 3 IFx —y|j3 + M| Tx|, (3.17)

This optimization problem balances the data consistency (3 [|[Fx — yl2)
which measures how much our generated image x matches the data, y, with
the level of sparsity we desire. The ||Tx||; term measures the sparsity of
the generated image in the transform domain, where T is an operator which
converts from the image domain to the transform domain. The data fidelity

term and sparsity term are balanced using .

There is currently no analytical way to select the optimum value of A,
instead this parameter is usually manually tuned to achieve “good” image
quality [102]. The image quality can be measured using metrics such as the
signal-to-noise ratio or contrast-to-noise ratio [103]. However, these metrics
do not fully capture the artefacts present in the image (for example, blurring)
[104]. Thus, it is routine to complement these metrics with visual inspection
of the image quality and comparison against fully sampled reference images

[103).
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Compressed sensing can be combined with parallel imaging. For exam-
ple, Liang et al. (2009) and Otazo et al. (2010) developed implementations
of SENSE, which exploit both the spatial information introduced by coil
sensitivity maps and the transform domain sparsity of images [105, [106].
To combine the two techniques, the SENSE reconstruction model is altered
by adding a sparsity transform term to the SENSE optimization problem
(eq.) yielding eq.. This technique is often referred to as CS-
SENSE. This combination of PI and CS allows for very high acceleration
factors to be achieved. For example, Otazo et al. demonstrated that CS-
SENSE can be used to perform cardiac imaging at a temporal resolution of

60ms with fewer artefacts than parallel imaging could achieve alone [106].

1
% = argmin | - | Ax -yl + | Tx]| (3.18)

A disadvantage of CS is an increase in reconstruction time. For example,
a fully sampled Cartesian k-space may take seconds to reconstruct using an
FFT whereas CS reconstruction may take minutes or possibly hours [107].
This is problematic when images are required immediately, for example, to
plan subsequent scans. The long computation time is a consequence of the
reconstruction algorithm requiring multiple iterations to converge to a solu-
tion. Parallel computing is now used extensively to reduce the reconstruction
time [108],|109]. The parallel computing approaches typically split the recon-
struction problem into smaller sub-problems. For example, by performing
reconstruction across each receiver coil in parallel [109, 110]. One main area
of focus, in the context of non-Cartesian reconstruction, is reducing the com-

putation time of the NUFFT operations. This is particularly important in
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non-Cartesian parallel imaging applications due to the NUFFT needing to be
applied repeatedly to the data recorded from each coil. It is typical for 90%
of the overall computation time for CS reconstruction to be spent performing
NUFFTs [111} 112]. A variety of GPU and multi-core CPU NUFFT algo-
rithms have been developed, which significantly decrease the computation
time [113| |114) 115]. The CS reconstruction time is also lowered through
using more efficient optimization algorithms, which converge to a solution
in fewer iterations compared to the NLCG algorithm. An overview of com-
monly used compressed sensing reconstruction algorithms can be found in a
recent review paper by Fessler (2019) [116] and a specific discussion of the

reconstruction algorithm used in this work can be found in Section [4.4]

3.7 Simultanteous-Multislice

3.7.1 Introduction to Simultanteous-Multislice

In standard MRI, an RF pulse excites a single region (a slice). If Ng; slices
are desired, then the acquisition will need to be repeated for each slice (as-
suming that the TR is not high enough to interleave slices). This results in

a total acquisition time, which scales with the number of slices (eq.(3.19)).

TA = N-TR - Ng; (3.19)

The final acceleration technique, which will be discussed is Simultaneous
Multislice (SMS) acceleration (also referred to as multiband acceleration).
SMS enables data from multiple slices across a plane to be recorded simul-

taneously [117]. Thus, SMS is referred to as a through-plane acceleration
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technique (rather than in-plane acceleration techniques such as SENSE).

3.7.2 RF Pulse Theory

The main component of SMS acceleration is a slice selective RF pulse, which
can excite multiple regions via the application of multiple frequencies simul-
taneously [11§]. A singleband pulse (i.e. a pulse that excites a single region),

RF(t), can be described (in the time domain) as the product of two functions

A(t) and P(t) (eq.(3-20)).

RF(t) = A(t) - P(t) (3.20)

The A(t) component describes the shape of the pulse in the time do-
main; this is commonly a truncated sinc function. This determines the slice
excitation profile (in the frequency domain), it is typically desirable that
this profile be as close to rectangular as possible in order to have uniform
excitation across the slice (Fig[3.12).

The second component is a phase modulation function (eq.), which
determines the slice position of the pulse and its phase (¢). The position
of the slice is determined by the frequency offset (relative to the Larmor

frequency) Aw.

P(t) =exp (i - Aw - t + 1) (3.21)

The simplest multiband pulse, RFyg, to excite Ng;; slices simultaneously
can be described as the sum of single slice RF pulses at the desired slice

locations (eq.(3.22))), where Aw’ denotes the frequency offset required to
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Figure 3.12: lllustration showing that the Fourier transform of a truncated sinc
function (in the time domain) results in an approximately rectangular function
in the frequency domain.

excite slice j [117].

Nsii Nsi; Nsi;
RFyp = » RF = A(t)- Y Pi(t)=A(t)- ) exp(i-Aw’-t) (3.22)
j=1 j=1 Jj=1

A consideration when using multiband RF pulses is the increase in energy
deposited into the subject, resulting in increased tissue heating [117]. It can
be shown that the power of the pulses is proportional to the square of the
number of excited slices. This is particularly problematic when spin-echo
sequences are used due to the inversion pulses, which often have large power
requirements. This problem can be partially mitigated through the use of
low flip angle GRE sequences (such as the one used in this thesis Chapter
. More sophisticated RF pulse design methods can also be used to reduce

the peak RF amplitude; however, these are not used in this thesis [119, 120,
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121] [122).

3.7.3 Reconstruction

After excitation using a multiband pulse, the recorded signal, yM2, is a
summation of the k-space data from each slice, this is shown in eq.(3.23])

where y’ is the k-space data from slice j.

Nsii

y"r ="y (3.23)
j=1

The inverse Fourier transform of this k-space results in a image, which is
a superposition of the two excited slices (FigJ3.13)). This is a consequence of
the linearity properties of the Fourier transform (eq.(3.24))).

FHyMB::E:FH T=FHY y (3.24)

Without any additional information, it is impossible to separate the slices
from the superimposed k-space data. However, as with parallel imaging, if
multiple receiver coils are used there is spatial information embedded in the
recorded signal through coil positions (Section . Consider two simulta-
neously excited slices A and B. The coils closer to slice A will weigh the
data from that slice higher than the data for slice B, thus, embedding addi-
tional spatial information into the recorded signal. In contrast to PI methods
discussed previously, we are now aiming to exploit the variations in coil sen-
sitivity between slices rather than through a single slice. The SENSE model
shown previously can be adapted for SMS image reconstruction. This is

shown in eq.(3.25)), where A7 is the forward model used to transform the
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Figure 3.13: lllustration of slice superposition. The top two slices are added
together, the result, shown in the bottom row, is a superposition of the two
slices.
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image for slice j, x7, into the k-space domain. As with the original SENSE
problem this optimization problem can be solved using a variety of algorithms

(such as the Conjugate gradient algorithm).

Nsii

Z (ijj) —y

J=1

(3.25)

X = argmin | —
x 2

2

3.7.4 CAIPIRINHA

The geometry of the coil array used to record the MRI signal has a substan-
tial impact on the reconstruction algorithms’ ability to separate slices [29).
If there is not enough variation between coil sensitivity profiles, then recov-
ery of separate slices will not be possible. Breuer et al. (2006) introduced
the Controlled Aliasing In Parallel Imaging Results in Higher Acceleration
(CAIPIRINHA or CAIPI for short) method. The main principle of CAIPT is
the introduction of additional aliasing between the excited slices; the result
of this is that they are no longer superimposed. It can be shown that this ad-
ditional aliasing improves slice separation. The aliasing is generated through
the use of multiple RF pulses with slice dependent phase shifts between the
bands of the multiband RF pulses.

The simplest example of CAIPI is the simultaneous excitation of two slices
(Fig.. Two multiband RF pulses, RF; and RF,, are used to achieve a
shift between slices A and B. A 7 phase shift is introduced between the bands
in RF; and RF, that excites slice B. Applying these pulses sequentially will
result in the desired shift of slice B in the image domain. Using a 7 phase
difference results in a shift in the image domain that is equal to half the

FOV.
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Figure 3.14: Diagram of the CAIPIRINHA technique. Two multiband RF pulses
are generated with a 7 phase shift between the bands that excite slice 2 (green
pulse). The application of these pulses in a sequential order (bottom left) results

in slice 2 displaying aliasing.
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When CAIPI phase cycling is used, the recorded k-space is modulated

Ns where j denotes

by the slice-dependent phase cycling profile ®/ ¢ CNs*
the excited slice. The definition of @7 is shown in eq.(3.27), it is a diagonal

matrix where ¢’ [a] denotes the phase modulation applied to the k-space point

a in slice j.
Nsui
y=>» &y (3.26)
j=1
el 0
&/ = diag(e' Ny = | o (3.27)
0 . eIV

The previous SMS reconstruction model shown in eq.((3.25)) must be mod-
ified to take into account the phase modulation. This is done through the

addition of ® into the forward model term yielding eq.(3.28)).

2 2

1 Nsii o Nsii ' o
X = arginin 5 ]Zl (Aix7) —y = arginin 3 ZJ (®FS'x)) —y
= 2 = 2

(3.28)

The initial CAIPI paper used standard Cartesian sampling. Yutzy et

al. (2011) showed that SMS with CAIPI phase cycling can be combined
with radial sampling [123]. The effect of phase cycling when radial sampling
is used is very different to Cartesian sampling. Rather than a FOV shift
between slices, the phase cycling results in destructive interference between
spokes. Returning to the two-slice example, the CAIPI phase cycling pattern
described previously is used with radial sampling, slice A is preserved while

slice B, which has the 0 — 7 modulation between adjacent spokes, becomes
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noise due to destructive interference (Fig shows a simulation of this for a
Shepp-Logan phantom). Maximum destructive interference is achieved when
radial spokes with differing phase modulations are located close together in

k-space.

Slice 1 Slice 2

0 0
0 0 ] 0
0 0
0 0
\\\“_/’/

A

'Slice 1 + Slice 2
(0,1) (0.0 (0,m)
(0,0) 0,0)
(0,m) (0,m)
(0,0)

Figure 3.15: Simulation of CAIPIRINHA with radial sampling. Slice 1 has no
phase modulation between spokes and slice 2 has m modulation between spokes.
The result of this modulation is destructive interference that effectively results in
slice 2 becoming noise. The summation of the two slices therefore appears as a
noisy version of slice 1. The slices can be recovered using SENSE reconstruction.

3.7.5 SMS Acceleration in Dynamic Imaging

The first example of simultaneous multislice acquisition was demonstrated

by Larkman et al., in this work 4 slices across the knee were acquired [11].
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SMS acceleration in conjunction with EPI and PI is now routinely used to
accelerate functional MRI and diffusion MRI sequences [117] 124}, [125] 126,
118].

SMS is emerging as a useful acceleration technique in dynamic imaging
sequences [4]. The motivation for using SMS accleration in dynamic imaging
applications is based upon the necessity of using short TRs in order to attain
high temporal resolutions. This small time between excitation limits the
sequence from acquiring multiple slices in between the excitation gaps. Thus,
dynamic sequences typically have reduced anatomical coverage. Achieving
anatomical coverage, therefore, requires repeating the scan multiple times at
different slice positions, increasing the overall time spent in the scanner or by
increasing the TR which would lower the temporal resolution. Through using
SMS acceleration - multiple slices can be acquired with no loss of temporal

resolution.

The majority of dynamic SMS sequences are focused on cardiac appli-
cations 127, (128} [129]. This is likely due to two main factors. The first is
clinical need: cardiovascular disease is the most common cause of death in
the world [130]. It is important that imaging methodologies are developed,
which can be used for evaluation of cardiac health. The second reason is that
gating techniques can be used to synchronise acquisition and cardiac move-
ment. Nazir et al. (2018) demonstrated gated cardiac imaging using SMS
acceleration. This work doubled the in-plane spatial coverage of a standard
cardiac perfusion sequence using SMS acceleration while preserving temporal
resolution, through-plane spatial resolution and image quality [131]. Sun et

al. (2020) demonstrated a gated cardiac imaging sequence combining spiral
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sampling and SMS (with CAIPI phase modulation) [132]. Using this se-
quence, they acquired three slices simultaneously and showed that the image
quality, using metrics such as ventricular volume and mean-squared error, is
comparable to the equivalent single-band acquisition.

There is a limited number of examples of non-gated SMS dynamic se-
quences. One example is a work by Wang et al. (2016), this work demon-
strated the combination of a radial trajectory with CAIPI SMS acceleration,
reconstructed using a compressed sensing pipeline [133]. In-vivo examples
of perfusion imaging were shown in dogs and humans at temporal resolu-
tions (with 3 excited slices) of 144ms. If cardiac applications are excluded,
the number of relevant examples is extremely limited. Wu et al. (2016)
presented a radial SMS sequence with compressed sensing reconstruction
pipeline and used this to excite four slices simultaneously [134]. They used
this technique to study the shape of the upper airway in healthy volunteers
and sleep apnea patients [134) [135]. This technique required the use of a
custom array coil designed specifically for upper airway imaging; in addition
to this, the temporal resolution achieved was relatively low (96ms - 128ms).
Although sufficient for the desired application, this temporal resolution is
not fast enough for some speech related tasks, which can require temporal

resolutions of 70ms [7].

3.8 Summary

In this chapter, a variety of methods to accelerate MRI acquisition have
been presented. Although the level of acceleration is determined by the

sequence (i.e acquiring less k-space), the reconstruction plays a critical role
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in recovering the final image. This interlinked connection between acquisition

and reconstruction is critical to the success of all acceleration methods.



Development of Compressed Sensing

Real-time MRI

4.1 Introduction

As discussed in Section[I.1], the human body is defined through both its struc-
tures and the functions these structures enable [136]. This has motivated the
development of dynamic imaging methods capable of recording the body in
motion. Of particular interest is real-time MRI as it makes no assumptions
regarding the periodicity of motion and does not require gating equipment.
An early example of an rt MRI method, called MR fluroscopy was presented in
1986 by Riederer et al. [137,138]. This work used a Cartesian GRE sequence
and was capable of acquiring an image every 500ms. At this slow temporal
resolution, MRI is unable to capture the fast motion that occurs in many situ-
ations, such as speech and swallowing |136} |4, 7]. Developments in hardware,
computational speed and parallel imaging have substantially increased the
temporal resolutions that rttMRI methods are capable of achieving [4]. A key
work presented by Uecker et al. (2010) demonstrated, through using a highly
undersampled radial GRE sequence and parallel imaging reconstruction, that
temporal resolutions of up to 30ms can be achieved in cardiac imaging (with

no gating) with a spatial resolution of 2mm? [6]. In the same work, examples
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of speech imaging using rt MRI at a temporal resolution of 55ms and spatial
resolution of 2.2mm? were demonstrated. To further increase temporal res-
olution, while maintaining image quality, compressed sensing reconstruction
can be used. For example, Steeden et al. demonstrated the use of a spi-
ral rtMRI sequence to asses ventricular volumes at a temporal resolution of
29.5ms at a spatial resolution of 1.68mm?; they also showed that the image
quality was comparable to standard gated acquisitions [139).

The majority of rtMRI sequences (including the examples above) are
single slice due to the short TRs required. In this chapter, a radial GRE se-
quence is developed for rtMRI acquisition with the aim of improving anatom-
ical coverage using SMS acceleration. The sequence is designed such that it
is able to record both standard single slice rttMRI data and multiple slices
using SMS acceleration. In terms of reconstruction, a compressed sensing
pipeline is developed to reconstruct the highly undersampled radial k-space

data. The results from using this sequence will be shown in Chapter

4.2 Data Acquisition

For data acquisition, a GRE sequence is used to enable short TRs and, thus,
attain a higher temporal resolution. Alternative short TR sequences exist
such as balanced steady state free precession sequences (bSSFP), which have
are used for rtMRI [140, |141, 142]. bSSFP has the advantage (compared
to GRE) of having a higher SNR and improved contrast. However, bSSFP
is extremely susceptible to off-resonance artefacts at 3T (and above) field
strengths. These artefacts appear as dark bands across the image [2|. This

problem is exacerbated when non-Cartesian sampling is used due to the fast
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switching of gradients which cause eddy currents [143].

If the sequence is set to acquire multiband data, then the multiband
RF pulses are generated at sequence runtime following the summation of
singleband pulses shown previously in eq.. A Hanning-windowed sinc-
shaped pulse with a pulse duration of 0.6ms is used for excitation.

A radial trajectory is used to sample k-space and was mainly chosen for

three reasons:

e High levels of undersampling can be used while preserving image qual-

ity. This allows for high temporal resolutions to be achieved.

e As discussed in Section [3.4] compared to EPI and spiral sequences,
radial sampling is more robust to off-resonance effects. This is par-
ticularly important for head/neck imaging applications where many

tissue/tissue and tissue/air boundaries are present.

e Radial undersampling results in incoherent aliasing, this allows radial
data to be reconstructed using compressed sensing algorithms to im-

prove image quality.

At the start of this thesis there was no pulse sequence code for radial
imaging available. Therefore, I developed a radial pulse sequence for this
thesis. Radial rt MRI data consists of [’ frames, each acquired frame consists
of K radial spokes, which are then transformed into the image domain. The
order that radial spokes are acquired in is important to the resulting image
quality. It is desirable that k-space coverage (per frame) is maximised, thus
acquiring the greatest amount of information [5]. Two methods of ordering

spokes are used in this thesis. The first ordering method is golden-angle
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(GA) sampling [144]. In this sampling scheme N = F' - K radial spokes are
acquired. The number of spokes is chosen to reach the total acquisition time.
For example, using a TR = 2.5ms and a total acquisition time of 15s, the
number of spokes required is N = 15/0.0025 = 6000 spokes. The angle of
spoke i in degrees, 6;, is given by eq. where GR = %5 ~ 1.618 is a
constant referred to as the golden ratio. This results in each spoke being
rotated by 111.25° relative to the previous spoke (Fig.. It can be shown
that using this angular increment maximises k-space coverage when K is
a Fibonacci number and provides near uniform k-space coverage when an

arbitrary number of spokes are used per frame [76].

180 } (1)

0=111.25°

Figure 4.1: Demonstration of golden-angle sampling with three spokes. The
angular increment between subsequent spokes is given by § = 111.25°

Another advantage of GA sampling is that the same location in k-space
will not be repeated. Thus, when a large number of spokes is used, such as
in rtMRI, the resulting k-space will be fully sampled. This fully sampled
k-space can then be used for coil sensitivity profile estimation.

The CAIPRINHA phase modulation scheme proposed by Wu et al. was

used in this thesis [134]. In this scheme a number of pulses equal to the num-
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Slice 1 Slice 2 Slice 3
RF1 = + +
0 0 0
RF2 = + +
0 2m/3 4n/3
RF3 = + +
0 4n/3 2n/3

Figure 4.2: A demonstration (for 3 slices) of the phase cycling scheme used to
generate the RF pulses required for the sequence.

ber of slices, Ng;, are generated (Figi.2)). For multiband pulse n the phase

difference, v, between the summed single-band pulses is cycled following

eq. (D).

Y, = mod [ 21 -, 27r} (4.2)

sli

As discussed in Section [3.7.4] it is desirable when using radial sampling
with CAIPIRINHA that the spokes with different phase modulations are
close together in order to maximise destructive interference. When GA sam-
pling is used, this does not occur, reducing the amount of interference. The
second ordering method is referred to as SMS adapted Golden-Angle (SMS
GA), proposed by Wu et al. (2016). It is designed to improve the destruc-

tive interference |134]. To achieve this. a modified form of GA sampling,
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Figure 4.3: Comparison of Golden angle (left) and SMS adapted Golden angle
(right) sampling schemes, showing the SMS GA trajectory creates a more even
distribution of the RF pulses. This improves the destructive interference between
slices. The sampling patterns shown are for a frame consisting of 25 spokes and
three slices acquired simultaneously. The red solid lines correspond to the first
RF pulse, green dashed lines correspond to the second RF pulse and the blue
dotted lines correspond to the third RF pulse.

shown in eq.7 is used. The angle between spokes is now related to the
number of slices acquired simultaneously. This adjustment results in spokes
with different phase modulations being closer together. Figl5.35 provides a
comparison of the two trajectories when 25 spokes are used and three slices
are simultaneously excited. It can be seen that the SMS GA method results
in a more uniform distribution of the phase modulated spokes. However, the
publication by Wu et al. (2016) did not compare the sampling scheme they
proposed to the standard GA sampling.
180

The scheme proposed by Wu et al. is similar to the Tiny Golden angle
(TGA) scheme proposed by Wundrak et al. [145]. In TGA the angle between
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spokes is given by eq., where the additional parameter 1" has been intro-
duced. The effect of T"is to reduce the angular increase between spokes. The
reduction in angular increase also reduces the changes in gradient amplitude,
which reduces the amount of eddy currents. The value of T' can be decided
arbitrarily while in Wu et al. it is determined by the number of slices excited
simultaneously.

180

4.3 Choice of Sequence Parameters

The temporal resolution of a radial rtMRI sequence is defined by the number
of spokes per frame multiplied by the TR. Thus, to achieve a high temporal
resolution (for a given number of spokes), the sequence parameters must be
chosen to minimise the TR.

A low TR requires a low TE. To reduce the TE, a high receiver bandwidth
is used, as this allows for a shorter gradient duration. A receiver bandwidth of
1447 Hz/Pixel is used. Slightly higher bandwidths are possible. However, it
was observed that past the chosen value, the reduction of TE/TR is minimal,
indicating that receiver bandwidth is no longer the limiting parameter. The
limiting parameter at this point is likely the RF pulse duration, reducing this
further would increase the RF heating particularly when SMS acceleration is
used.

The TE is also affected by the number of points acquired per spoke.
Lower numbers of points allow for a shorter TE at the cost of reduced image

resolution. This value was set to 128, over a field of view of 280mm, resulting
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in an in-plane spatial resolution of 2.2mm?. A slice thickness of 8mm is used.
Using a lower number of points and a higher slice thickness would further
reduce the TE; however, this would reduce the image resolution, resulting in

a blocky appearance lacking anatomical detail.

The flip-angle of the sequence does not affect the acquisition time but
has a significant effect on the contrast of the image. The optimum flip-angle
to attain maximum signal for a spoiled GRE sequence is given by the Ernst

angle, 6., which is determined by the T} value of the tissue being imaged and

the TR (eq.(4.5])) [146].

6. = cos! <67%> (4.5)

Using a TR=2.5ms and assuming a 77 = 800ms (an average value for
muscle tissue in the head [14]) results in an Ernst angle of 6, = 4.55° ~ 5°.
This is verified by performing a set of in-vivo scans using the developed radial
sequence in which the flip angle is varied between 3 — 15°. The images are
reconstructed by gridding the data from each coil and combining them using

the root sum-of-squares, 95 spokes/frame are used.

Results from this experiment are shown in Fig[l.4 and Fig[l.5 At a flip
angle of 3° (smaller than the Ernst angle), there is little contrast between
different tissues. The contrast improves as the flip angle increases, this im-
provement is particularly visible in the brain. However, past the Ernst angle,
the overall signal level begins to decrease, resulting in the images appearing
nosier and containing increased levels of streaking artfacts. The increase in

streaking artefacts could be caused by out-of-slice aliasing from the shoulders.

The mean signal in the frontal area of the brain is plotted in Fig[4.6]
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%107 %104

Figure 4.4: A frame from rtMRI videos acquired using a variety of flip angles
(indicated in the top left corner), each image is scaled independently. As the flip
angle increases past the Ernst angle (5°), an increase in contrast can be seen, at
the cost of an overall reduced signal level.
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Figure 4.5: The same frames shown in Fig[4.4} normalized to the same intensity
scale. This aids in highlighting the differences in signal levels/contrast between
the images.
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This plot confirms that the signal is maximised at the estimated Ernst angle.
The noise levels in the images are quantified using the SNR. The SNR is
calculated using eq.(4.6)) where S is the mean signal in a selected region of

interest (ROI), o is the standard deviation of the noise.

SNR = 2 (4.6)

g

The value of ¢ is found by selecting a ROI in the background of the
image (i.e where signal should be zero if no noise was present). In practice,
multiple noise ROIs are chosen and the mean value used to calculate o. In
the following results four noise ROIs, placed in the corners of the image,
were used. These areas were selected to attempt to minimize the amount of
contribution from streaking artefacts (which would result in a underestimated
SNR) in the SNR calculation. However, it was not possible to fully avoid
contamination from streaking artefacts. Although SNR is not an ideal metric
for image quality quantification (as will be discussed in detail in Section [5.5)),
it can be seen (Fig that the SNR decreases as the flip angle increases.
Based upon visual inspection and the quantitative results, a flip angle of 5°

is selected.
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Figure 4.6: Plot of the mean signal acquired from the frontal region of the brain
at varying flip angles, error bars reflect the standard deviation in signal intensity
in the selected region. A peak at the Ernst angle (5°) can be seen.
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Figure 4.7: Plot of the SNR measured at varying flip angles, error bars reflect
the standard deviation in SNR from four different noise regions. As the flip angle
increases, a clear decrease in SNR can be observed.
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4.4 Reconstruction Models

4.4.1 Singleband Reconstruction Model

In rtMRI the k-space data is binned to create set of k-spaces for each frame;
this is often referred to as k-t space. The multi-coil k-space data from
time frame t can be related to its image domain representation, x;, through
eq. where A; is the forward operator. The forward operator changes
between frames due to different k-space sampling patterns for each frame. In

this work, the coil sensitivity profiles are assumed to be invariant over time.

yi = Axy = FiSxy (4.7)

The data from each time point is stacked to yield a single variable y =
[V1,¥2,---,¥Nt]- This is repeated for the image series and the forward op-
erator yielding x = [x1,Xa,..., Xy and A = [A;, As, ..., Any]. Using these
two variables a linear forward model is established where Ax maps the image
frames to the k-t space.

This forward model is combined with the compressed sensing reconstruc-
tion model shown previously in Section [3.6] yielding the reconstruction model
shown in eq.. The regularization term, T, is an operator which takes
the difference between adjacent image frames. This form of regularization

exploits sparsity present in the temporal dimension.

% = arg min | Ax — | + A || Tx], (48)

Theoretically, regularization in the spatial dimensions can be incorpo-

rated into the proposed reconstruction model. Using spatial regularization
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was attempted, however, it caused a oversmoothing of images resulting in a
loss of fine detail, such as blurring of the tip of the tongue. Thus, in this

work, only temporal regularization is used.

4.4.2 Multiband Reconstruction Model

When multiband excitation is combined with radial k-t sampling, the forward
model for a time frame is given by eq.(d.9) where x/ denotes the image from
slice 7 at time frame t and A{ is the forward operator for that time point

and slice.
Nsi;

YMB = Z Alx] (4.9)

j=1

Combining this forward model with the compressed sensing model yields
the optimization problem shown in eq.(4.10]), where & = [x!, ..., x5 is the
multislice data for every time frame. The temporal regularization is applied

to each slice.

Ngi; 2 Ngii
X = argmin E Alx) —yll + A E ||TXJH1 (4.10)
xlx2,. xNsl |55 9 j=1

4.4.3 Reconstruction Algorithms

The optimization problems shown in Section 4.4.1] and Section [4.4.2| are
solved using the Alternating Direction Method of Multipliers (ADMM) al-

gorithm [147]. ADMM was chosen for two main reasons:

e ADMM is known to have good convergence properties so will tend

towards a solution quickly [14§].

e The algorithm is relatively simple to implement, requiring only three
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steps per iteration [147].

ADMM is used to solve optimization problems of the form shown in
eq.(4.11)) where f(x) and g(z) are convex functions and z is the variable

we are minimizing and Z is the optimum solution.

%X = argmin (f(x) + g(x)) (4.11)

X

In the context of this thesis, the f(x) term represents the data fidelity

(eq.(4.12))) and the g(z) term represents the sparsity promoting regularization

(eq.(4.13)).

fx) =5 [[Ax =y, (4.12)

9(x) = ATx]|, (4.13)

ADMM solves the optimization problem by first making the variable sub-

stitution z = Tx, resulting in the constrained optimization problem shown

in eq.([1).

1
X = argmin (§||Ax—}’||§+)\||z||1) st.z="Tx (4.14)

It can be shown that problems in this form can be reformed into an
unconstrained form referred to as the Augmented Lagrangian (eq.).
This requires the introduction of two new variables. The first is u, which is
referred to as the scaled dual variable. The second parameter, p, is referred

to as the Augmented Lagrangian penalty parameter.
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1 p
L(x,2z,u,p) = 5 [|Ax ~ yls+ Azl + 5 (ITx =z +ull; — [ul3) (4.15)

ADMM then solves the Augmented Lagrangian using an approach called
dual descent - this approach alternates between descent updates of the vari-
ables x and z and an ascent update of u. This results in an iterative three
step algorithm to find the optimum solution for x. The algorithm is run for
Nier iterations. The first step solves eq. to find an updated estimate of
x;, where ¢ denotes the current iteration. A few iterations (typically between
1-5) of the conjugate gradient algorithm are used to find an approximate

solution to this problem.

xi11 = (AMA + pTHT)f1 (Afy + pTH (z; + w;)) (4.16)

Next, the z value is updated using eq.(4.17) where soft() is the soft-
thresholding function defined in eq.(4.18]) .

A
Zi.1 = soft (TXiH + u;, —) (4.17)
p
0 if x| <a
soft(x, a) = (4.18)
(el i ) 5 o

x|
The final step updates the dual variable, u;, through a simple summation

(eq.(4.19)).

W41 = u; + (TXi-i-l — Zi-i-l) (419)
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In the standard ADMM implementation the value of p is fixed. This
parameter requires careful selection as it affects the convergence rate of the
algorithm. In this thesis, p is adapted dynamically using the residual bal-
ancing method described by Wohlberg (2017) [149].

For single-slice rtMRI the proposed ADMM reconstruction is compared

against two reference methods:

e Coil-by-coil gridding: this is a non-iterative approach and requires no
knowledge of the coil sensitivity maps. The k-space data from each
channel is gridded and Fourier transformed independently (using a
NUFFT) to form an image. The images from each coil were then
combined using the root sum-of-squares to form the final image. This

process is repeated for every frame of the rtMRI data.

e CG-SENSE: this reconstruction algorithm was shown previously in Sec-
tion . In brief, the sparsity term shown in eq. is removed, leav-
ing the data fidelity term. The resulting optimisation problem is then
solved using the conjugate-gradient method. This algorithm was se-
lected as it is a widely used iterative reconstruction algorithm and is
commonly used as a benchmark to analyse the performance of new re-
construction approaches |150} 43]. The CG-SENSE algorithm was run
for 8 iterations. This value was determined empirically based upon

visual inspection of images at different iterations.

When SMS acquisition is used, the coil-by-coil gridding approach can
no longer be used as coil sensitivity profiles are required to separate the
simultaneously excited slices. Thus, only the CG-SENSE algorithm, with 15

iterations, is used as a comparison.
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The algorithms are compared in terms of reconstruction quality and re-

construction speed in Chapter

4.5 Preprocessing

4.5.1 Coil Compression

The use of multiple receiver coils is critical to parallel imaging-based re-
construction techniques. The data from each coil requires separate Fourier
transforms, which increases the overall reconstruction time. This is partic-
ularly problematic when iterative reconstruction is used with non-Cartesian
sampling, as it requires multiple NUFFT operations, which are computation-
ally expensive. To reduce the computational burden, compression algorithms
have been developed to reduce the set of Ng coils to a smaller set of Ny ¢
“virtual” coils. This compression is purely software based and requires no
adaptation to the physical receiver coils used to record the signal.

In this thesis, a compression method based upon Sigular Value Decom-
positon (SVD) is used [151]. The compression algorithm requires a set of
calibration data; in this work, the full set of recorded spokes is used (i.e. the
data before it is binned into frames). The calibration data from each of the
N, coils contain N, samples. This is arranged into a Ny X N, matrix ®comp,
this can either be done in the image or k-space domains. This work keeps the
data in the k-space to avoid applying additional NUFFT operations. SVD is
then used to decompose ® into a set of three matrices (eq.([.20)) [88]. These
three matrices are: the left singular values U € CNs*¥s | singular values

> € CNo*Ne and the right singular values V. € CNexNe,
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Figure 4.8: Plot showing the rapid drop of the magnitude of singular values using
data obtained from a 64 channel head coil.

®comp = USVH (4.20)

Figld.8 shows that the magnitude of the singular values decreases rapidly.
For example, using the data shown in Figl.§ to retain 90% of the total
singular value magnitude, only approximately 10 singular values need to
be retained. Using this information, a calibration matrix id designed such
that the resulting compressed signal retains a fixed percentage of the total

magnitude of singular values.

To construct the calibration matrix, the right singular values V¥ are used.
These represent the eigenvectors of the covariance matrix, q)?ompq)comp. The
compression matrix, I', is formed by retaining the first Ny right singular

values, resulting in a matrix of dimensions Nyc X Ng. This matrix can

then be applied to the recorded multi-channel data y € CMe*¥s through
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multiplication (eq.(4.21])), yielding the compressed data yeomp € CNve* e,

Yeomp = L'y (4.21)

A discussion of the effect of coil compression on image quality and recon-

struction time is shown in Section [(.2.4.

4.5.2 Coil Sensitivity Estimation

Both the reconstruction models shown in Section [£.4] and the CG-SENSE
algorithm requires the coil sensitivity profiles of each receiver coil (or vir-
tual coil). To estimate the coil sensitivity profiles, all of the recorded k-space
data is used (rather than a single individual frame). A widely used approach,
proposed by Uecker et al. (2014), called ESPIRIT is used to estimate the
profiles [152]. In brief, ESPIRIT forms a calibration matrix from a central
region of the multichannel k-space. It can be shown that the eigenvectors
corresponding to the eigenvalues = 1 are the coil sensitivity profiles. ES-
PIRIT cannot be directly applied to non-Cartesian data. To resolve this, the
central data (1/3 of the data) from the radial k-space is transformed to the
image domain (using a NUFFT). This yields a low resolution image for each
coil. These low resolution images are then transformed back to the Cartesian
k-space domain using a standard FFT. The central region (of size 24 x 24)
of this k-space is then extracted and used for the ESPIRIT coil sensitivity
estimation.

When multiband acquisition is used, the coil sensitivity estimation step
is slightly adapted. First, the k-space data from each slice must be separated

from the simultaneously acquired k-space. This is achieved through multi-
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plying the measured k-space by the complex conjugate of the CAIPIRINHA
phase cycling profiles. Once the k-space for each slice is obtained, the coil

sensitivity estimation method described previously is used.

4.6 Post-processing

Radial undersampling results in increased levels of noise. This problem is
exacerbated when CAIPI based SMS is used due to the introduction of de-
structive interference. To reduce residual noise post reconstruction, following
the approach demonstrated by Uecker et al., a temporal median filter is ap-
plied to every frame [6]. The filter calculates the mean value of a pixel over
a series of frames, the width of the filter determines how many frames are
used. The effect of median filter window size is discussed in Section [5.4]

In theory a median filter could be replaced by increasing the level of
regularization. However, in practice the median filter is more effective. This
could be due to the non-Gaussian nature of the streaking/aliasing being more
amenable to removal through median filtered than through temporal finite
difference regularization (which typically assumes Gaussian noise). Work by
Ahmad et al. has shown that median filtering can be used as a regularizer
in ADMM, this approach could be explored in the future to remove the need

for this post-processing step [153].

4.7 Reconstruction Pipelines

The post-processing, reconstruction and post-processing steps are joined to

form the reconstruction pipeline used in this thesis. The pipeline for single-
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slice reconstruction is shown in Figd.9 and the pipeline for SMS rtMRI
reconstruction (for the case of three simultaneously excited slices) is shown
in Figld.10]

Pre-Processing:
Coil Compression & Coil Sensitivity Maps

Single-slice Coil Sensitvity Map Compressed
Data Compression Estimation Sensitvity Maps

Reconstruction & Post-processing

Coil Compressed ADMM Temporal

. . . — Filtered Video
Single-slice Data Reconstruction Median Filter

Figure 4.9: Reconstruction pipeline for single-slice rtMRI data. The pre-
processing stage compresses the data and estimates the coil sensitvity profiles.
This compressed data is then reconstructed using the ADMM reconstruction al-
gorithm. After which it is filtered using a temporal median filter.
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Pre-Processing:
Coil Compression & Coil Sensitivity Maps

Multiband data —— Coil compression —— Phase Demodulation

Compressed Coil Maps __ Sensitvity Map Slice 1
Slice 1 Estimation
Compressed Coil Maps __ Sensitvity Map

Slice 2 Estimation Sl 2

Compressed Coil Maps ___ Sensitvity Map

Slice 3 Estimation Slicers

Reconstruction & Post-processing

. Temporal Filtered Video
Slice 1 — . . i .
Median Filter Slice 1
L Compressed sensing : Temporal Filtered Video
& — | Slice2 == Median Filter ~—  Slice 2
Coil maps reconstruction eailan riiter Ice
Slice 3 Temporal Filtered Video

Median Filter Slice 3

Figure 4.10: Reconstruction pipeline of SMS rtMRI data. The pre-processing
stage compresses the data and estimates the coil sensitivity profiles for each slice.
This compressed data is then reconstructed using the ADMM reconstruction
algorithm, this produces an rtMRI video for each slice. These videos are then
filtered using a temporal median filter.

4.8 Sliding Window Viewsharing

Viewsharing is a technique to improve apparent temporal resolution in dy-
namic MRI. In this technique, rather than binning the k-space into com-
pletely separate groups, a sliding window is used to combine the k-space
spokes into frames (Fig. This allows for the sharing of spokes between
frames. The stride of the window denotes how many spokes the sliding win-
dow moves between frames. The maximum value of the stride is equal to the

number of spokes per frame. This prevents spokes from not being used in
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the reconstruction.

Frame 1 Frame 2

Frame 3 Frame 4
Frame 2 — — — - — — — A
Frame 1 r — — — — - — —

Figure 4.11: Example of sliding window viewsharing using 6 spokes and 3 spokes
per frame. When no viewsharing is used (i.e. a stride of 3) this results in 2 frames
with no spokes shared between frames. If a stride of 1 is used, then 4 frames
will be reconstructed. The red dotted lines indicate the extra frames generated
through the use of the sliding window.

The sliding window does not create any additional information or remove
motion artefacts; it can be viewed as a form of temporal interpolation, which
results in videos with smoother movements. A disadvantage of viewsharing
is the substantial increase in overall reconstruction time. This is due to the

large number of frames that need to be reconstructed.

4.9 Summary

In this chapter, a radial real-time MRI GRE sequence capable of both single-
slice and SMS acquisition has been developed. This sequence was developed

as there was no openly available radial pulse sequence code to use. The data
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recorded using this sequence is then inputted into the appropriate (single-
slice or SMS) CS reconstruction pipeline. The results for using this sequence

are presented in the next chapter.
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Evaluation of Compressed Sensing

Real-time MRI

5.1 Introduction

This chapter evaluates the rtMRI sequence and reconstruction pipeline de-
veloped in Chapter [4] First, results for single-slice rtMRI are shown. Videos
are reconstructed at a variety of temporal resolutions, levels of regulariza-
tion and levels of coil compression. The results are evaluated in terms of
image quality, temporal resolution and computation time. This process is
repeated for SMS accelerated rtMRI using both sampling schemes discussed
in the previous chapter. Next, the performance of the post-processing tem-
poral median filter is evaluated. This chapter concludes with a discussion
on why the quantification of image quality in rtMRI (and in dynamic MRI

more generally) is a challenging problem.

5.2 Singleband Real-time MRI

5.2.1 Methods

The experimental data used in this section was obtained (using the head

coil discussed in Chapter [2)) from a volunteer performing a simple tongue
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mobility test in which they extend and retract their tongue. This task is
chosen for two reasons. The first is that it involves both large scale motion
within the confines of a standard MR head coil, such as the mouth opening,
and small scale motion such as the tip of the tongue moving. Secondly, this
task demonstrates a useful future clinical application of rtMRI for assessing
tongue mobility and movements.

Real-time MRI data is recorded for 15s using the sequence parameters
described in Section [£.3] this results in a total of 6000 spokes. These were
then binned to the desired temporal resolution. To reduce the computation
time, the data from the 64 coils is compressed to 15 virtual coils using the
coil compression method described in Section [4.5.1] (the effect of the coil

compression on image quality and reconstruction time will be discussed in

Section 5.2.4)).

5.2.2 Parameter Selection

The ADMM reconstruction algorithm requires the selection of the regular-
ization value, A. This parameter was found using a search approach. The
data used for this search is the previously described rt MRI dataset of tongue
movement binned to an undesampling level of 25 spokes/frame. This level
of undersampling was chosen as it results in a temporal resolution 62.5ms
which is adequate for most applications in head/neck imaging 7, 154].
Initially, a coarse search (Figf5.1)) was performed on a scale ranging from
1 x107* to 1 x 107! with values increasing in logarithmic steps. At A values
between 1 x 107* and 1 x 1073 there is relatively little difference between the

images. For values between 1 x 1072 and 1 x 1072 an improvement in image
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quality, in terms of noise reduction, can be seen. However, when \ reaches
1 x 107!, the resulting images are over-smoothed, eliminating most of the

contrast, indicating that the regularization value is too high.

Figl5.2| shows the effect of regularization on an intensity profile. Between
A=1x10"*and A = 1 x 1073 there is little difference between the profiles.
The transition between tissue edges is sharp, this is seen in the transition
into the ventricles (denoted by the red lines). However, inside the ventricular
space, variations in signal intensity, which may be a result of random noise,
are visible. At A = 1 x 1072 the edge transition remains sharp and the in-
tensity profile through the ventricle shows less variations. Further increasing
the regularization to 1 x 107! results in an extremely smooth signal inside
the ventricle, however, as can be seen in both the image and the profile, the
transitions are no longer sharp, showing that contrast between tissues has

been reduced and the edges of the image are blurred.

Based upon visual inspection of these results, it appears that the optimum
parameter, in terms of producing the best image contrast and edge sharpness,
for this application is between 1 x 1072 and 1 x 10~2. The ) search is then
performed on a more refined scale between 1 x 1073 and 1 x 1072 in steps
of 0.001. Fig[5.3] shows the results from this fine search. It can be seen that
past A = 5 x 1073 there is little visible difference in image quality. Based
upon this search, a A = 5 x 1072 is selected as it provides noise reduction
while preserving contrast between different tissues. Unless stated otherwise,

this A value is used throughout this section.

The A search approach described above is inefficient due to the large

number of images required to be reconstructed, a more efficient approach
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A=
A= 1x103
AL =1x10"
A =1x10"

Time

Figure 5.1: Results (three frames 1s apart) from the coarse A search. From this
coarse search it can be seen that the optimum A value lies between the range of
A=1x10"3and A=1x 1072
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Figure 5.2: A rtMRI frame (left) and a profile through the frame (right) at
increasing levels of regularization. The white line indicates the position of the
profile and the red lines indicate the approximate position of the ventricles.
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would be a binary search based method, but the brute force approach used

in this thesis effectively demonstrates the substantial effect of varying .

Figure 5.3: Results taken from the fine A search showing the same frame recon-
structed with \ values ranging from 1 x 1072 to 1 x 1072 in steps of 1 x 1073,
From these results a value of A =5 x 1073 is chosen.

The required number of iterations for the ADMM algorithm is determined
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by performing reconstruction using a high number of iterations (100) and
saving the result after each iteration. This is done for three levels of under-
sampling (45, 25 and 10 spokes/frame). The convergence of the ADMM algo-
rithm is quantified using the approach described by Le et al (2017) [155]. This
approach calculates the normalized root-mean-squared distance (NRMSD,
eq.(5.1)) between the final solution, x'%, and the solution at the current

iteration, x*.

it Xlong

2
1101

X

NRMSD = | (5.1)

Figl5.5] shows a convergence plot for a variety of undersampling levels.
The NRMSD rapidly drops for the first 10 iterations before leveling off. From
a visual perspective (Fig a clear improvement in image quality can be
seen between iterations 1 and 10 with more fine detail becoming clearer.
Changes in image quality between 10 iterations and 25 iterations are more
subtle. After this there is little visible change as the number of iterations
is increased. Figlp.6| shows the difference images between iterations, it can
be seen that the areas with the largest changes are the edges in the image
and the background of the images. Based upon the visual results and the
quantitative results, the number of iterations used is set to 25. The number
of iterations is important as it affects not just the reconstruction quality
but also the reconstruction time. Using 100 iterations (for 25 spokes/frame)
takes approximately 2.5 hours to reconstruct (the entire rtMRI video) while
25 iterations require 40 minutes. If a faster reconstruction time is required

and some image quality can be sacrificed, fewer iterations could be used.
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Figure 5.4: Plot of convergence, measured using NRMSD, at a range of under-
sampling factors. For all undersampling factors a steep initial drop in NRMSD is
seen before the slope levels off.

5.2.3 Undersampling Experiment

The temporal resolution of an rtMRI scan is defined as the product of the
number of spokes per frame and TR. Therefore, for a fixed TR the only way
to increase temporal resolution is to reconstruct a frame from fewer spokes.
However, higher levels of undersampling may result in reduced image quality
in the form of blurring, increased noise and structural artefacts.

To ascertain the effect of undersampling on image quality, the rtMRI data
is binned to increasingly lower numbers of spokes/frame. The number of
spokes is lowered from 95 to 10 in steps of 5. The images are reconstructed
using the proposed ADMM algorithm and the two reference methods dis-
cussed in Section [4.4] Figl5.7 shows three frames acquired at the increasing
levels of undersampling (Video 5.1 shows the full rtMRI videos). At low lev-

els of undersampling all three methods produce similar image quality. When



5.2 Singleband Real-time MRI 107

Iterations

N
N

(S
=)

Number of Spokes
N
n
- . . H

Figure 5.5: Visual comparison of reconstructed images (at a range of undersam-
pling levels), at different iterations of the proposed reconstruction algorithm. A
clear improvement in image quality can be seen between iterations 1 — 10. The
improvements in image quality are subtle between iterations 10 and 25. Very
little difference can be seen between iteration 25 and iteration 100. Differences
in image contrast are due to the images being normalized to the same intensity

scale.
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Number of Spokes

Figure 5.6: Difference images, at different levels of undersampling, between A:
1 and 5 iterations, B: 10 and 5 iterations, C: 25 and 10 iterarations and D: 100
and 25 iterations.
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a moderate level of undersampling (45 spokes/frame) is used, the images
reconstructed using CS and CG-SENSE are visually similar. In contrast,
the images reconstructed using gridding appear to have increased levels of
noise. For 20 and 15 spokes/frame, the proposed reconstruction method
yields significantly improved image quality compared to the reference meth-
ods. When 10 spokes/frame is used the proposed method does show blurring
and the contrast between tissues is reduced. However, the image quality is

still higher than the reference methods.

A high level of undersampling is required to reach high temporal resolu-
tions. To visualise the effect of undersampling on temporal fidelity, a line of
pixels across the lower lip is extracted for each time frame and plotted (this
is referred to as an x-t plot). This is performed for 75 spokes/frame (tempo-
ral resolution 187ms) and for 15 spokes/frame (temporal resolution 37.5ms).
At the higher temporal resolution (Fig.??) the x-t plot has a smoother ap-
pearance compared to the lower temporal resolution (Fig/5.8). This allows
for rapid motion to be viewed, for example, the tip of the tongue mov-
ing, which may be blurred if lower temporal resolutions are used. This is
demonstrated in Figf5.9, which compares a frame from an rtMRI video recon-
structed with 75 spokes/frame against the equivalent timepoint reconstructed
with 15 spokes/frame. The lower temporal resolution image shows blurring
in the lower lip, tongue and chin. A profile through both images shows
that when 15 spokes/frame are used, the transition between the air/tongue
boundary is clearer. In this example, the temporal median filter has not been
applied; this was done to emphasise that the motion artefact is due to the

lower temporal resolution rather than being caused by the post-processing
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CG-SENSE Gridding

95 spokes/frame
(243ms)

45 spokes/frame
(113ms)

20 spokes/frame
(50ms)

15 spokes/frame
(37.5ms)

10 spokes/frame
(25ms)

Figure 5.7: A comparison of three reconstruction algorithms (ADMM, CG-SENSE
and coil-by-coil gridding) at a range of undersampling levels (from top to bottom
95 45, 20 15 and 10 spokes/frame). The ADMM algorithm results in higher
image quality at all levels of undersampling. However, at the highest level of
undersampling the resulting image appears blurry and lacking contrast.
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step.

75 Spokes/frame

Time

15 Spokes/frame

Figure 5.8: Top: x-t plot of rtMRI data binned to 75 spokes/frame (temporal
resolution of 187ms. Middle: the x-t plot of the same rtMRI data now binned to
15 spokes per frame. The numbers on the plot correspond to the images shown
at the bottom of the figure. The white marker on the images shows the line of
pixels used to form the x-t plot.

The maximum temporal resolution (without sliding window viewshar-

ing) achieved, without significant degradation in image quality, is 37.5ms (15



112 Evaluation of CS rtMRI

75 spokes/frame 15 spokes/frame
Temporal resolution: 188ms Temporal resolution: 37.5ms

Signal [a.u]

Position [pixels]

Figure 5.9: Comparison of two frames (at the equivalent time point) acquired
using 75 spokes/frame (top left) and 15 spokes/frame (top right). When a higher
number of spokes is used (i.e lower temporal resolution) blurring around the chin,
lower lip and tongue is seen. The coloured lines through the frames form a line
plot (bottom). It can be seen that the 15 spokes/frame line plot (red) shows a
steeper rise in intensity compared to 75 spokes/frame plot (blue), this is due to
the reduced blurring around the tongue.
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2. This temporal

spokes/frame) at an in-plane spatial resolution of 2.2mm
resolution is sufficient, following guidelines of rtMRI speech imaging pro-
posed by Lingala et al. (2016), to image the fastest articulating movements
which occur during speech [7]. The performance of this approach (in terms
of temporal resolution) is slightly inferior to the 33ms temporal resolution
reported by Niebergall et al. (2013), which used a radial GRE sequence to
study speech [156]. However, in this thesis a standard clinical head /neck coil

is used rather than a custom upper-airway coil which would provide more

signal in the desired area of interest.

5.2.4 Coil Compression Results

As discussed in Section 4.5.1] coil compression is used to accelerate recon-
struction time by compressing the data acquired from all coils into a reduced
set of virtual coils. To measure the effect of coil compression on image qual-
ity, the number of virtual coils is varied from 63 to 2. Real-time MRI videos
(25 spokes/frame) are then reconstructed using the ADMM algorithm. These
are then compared to a reconstruction using the uncompressed data from all
64 coils.

Figf5.10[shows examples of the effect of coil compression on image quality
(Video 5.2). From this figure, it can be seen that only high levels of compres-
sion result in substantial changes to image quality. The reduction in image
quality appears in the form of signal dropout.

The image quality, compared to using all 64 coils, is measured using two
metrics. The first is the root mean-square error (RMSE), defined in eq.(5.2),

where z; is the value of the image at pixel j when coil compression is used
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Difference Image

Number of coils

Figure 5.10: The effect of varying levels of coil compression on image quality. The
top image is reconstructed using the data from all 64 coils. The compression
level is then increased, with the number in the top left corner indicating the
number of virtual coils used. The left images are a frame reconstructed from the
compressed data and the right images are the absolute difference between the
frame reconstructed using the compressed data and the reference image.



5.2 Singleband Real-time MRI 115

and ; is the value at the same pixel location when no coil compression is
used. A lower RMSE indicates that there is only a small difference between
the two images (i.e. the coil compression has had minimal effect on the
image quality). The second metric used is peak signal-to-noise ratio (PSNR),
defined in eq., where max(X) is the maximum pixel intensity of the image
when no coil compression is used. A higher PSNR value indicates that the

compressed data closely matches the uncompressed data.

N

RMSE = VMSE = |} "z — 4 (5.2)
j=1
s\2

PSNR = Max(X) (5.3)

MSE

Figf5.11] and Figf5.12| show plots of the RMSE and PSNR. Both plots
show the degradation in image quality at very high levels of compression.
However, in both plots the image quality rapidly improves as the level of

compression is lowered. This matches the visual results shown in Figl5.10

The effect on image reconstruction time is shown in Fig[5.13] This plot
highlights a disadvantage of the proposed reconstruction method, its long
reconstruction time. For example, at the proposed level of 15 virtual coils
the ADMM reconstruction time is 1031s substantially longer than the CG-
SENSE reconstruction time of 61s and the gridding reconstruction time of
2s. The per coil reconstruction time for all three reconstruction methods is
estimated through performing a linear fit to the measured data and calculat-
ing the gradient. This value for the proposed CS reconstruction algorithm is

42.5s; this is 15 times higher than CG-SENSE (2.8s) and 436 times higher
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Figure 5.11: Plot of RMSE at varying levels of coil compression (2-63 coils). The
error bars represent the standard deviation of RMSE across the entire time series
of frames. From the plot it can be seen that RMSE drops rapidly, this indicates
that a high level of compression can be used with minimal difference between
compressed and uncompressed images.
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Figure 5.12: Plot of PSNR at different levels of coil compression (2 — 63 coils).
The error bars represent the standard deviation of PSNR across the entire time
series of frames. Using a higher number of coils results in a higher PSNR.
However, even at very high levels of compression (10 coils) the PSNR is only
20% lower despite the 85% reduction in the number of coils.
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than gridding (0.09s).

These results support the use of the current level of coil compression (15
coils) and suggest that even higher levels of coil compression would be an
appropriate way to further reduce the reconstruction time for some applica-

tions.

The current reconstruction pipeline uses GPU acceleration for the NUFF'T
operations solely. To further reduce computation time multiple GPUs in par-
allel could be used, with data from each coil processed in parallel [110]. This
parallelisation scales extremely well as the application of the NUFFT, which
is the main computational burden in the reconstruction, can be applied to
the data from each coil separately. Additionally, to speed up reconstruction,
other parts of the reconstruction could be moved onto the GPU (such as the

finite different transforms and coil sensitvity multiplications).

The loss of information being focused around the front of the head is
likely related to hardware used for signal reception. Although the used array
coil is technically designed to image the head and neck, the majority of
receiver elements are located around the top of the head. Thus, the coil
compression algorithm may be preserving information from these areas. The
current coil compression algorithm does not take into account the desired
anatomy of interest (in this case the oral cavity) as prior information. A more
sophisticated coil compression algorithm called region-optimized virtual coils
(RoVir), presented by Kim et al. in 2021, may provide the solution for this
problem as it allows a region of interest to be specified and the signal from

that region to be preserved [157].

An alternative to coil compression is manually turning off coil elements
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Figure 5.13: Plot of reconstruction time (in seconds) for an entire 15s rtMRI
video (25 spokes/frame) at varying number of virtual coils for the three different
reconstruction techniques. The ADMM reconstruction (black) is substantially
higher than both the CG-SENSE reconstruction (blue) and the gridding recon-
struction (red). An undersampling level of 25 spokes/frame is used for data
shown in this plot.
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before running the scan. This has the equivalent effect of reducing the data
size and, therefore, lowering the reconstruction time. However, on Siemens
systems, only blocks of coils (typically 8 at a time) can be turned off. This is
a reduced level of control compared to coil compression (where any number
of coils can be selected). Additionally, manually turning off coils requires

knowledge of the coil geometry, this has not been provided by Siemens.

5.2.5 Evaluation

This section of the chapter has shown that the proposed reconstruction
pipeline improves image quality of rtMRI images, particularly at very high
levels of undersampling, compared to CG-SENSE and gridding. This is im-
portant for applications, such as speech, which require high temporal resolu-
tions in order to image the fast movement of articulators. Further improve-
ments in image quality may be obtained through the use of different regular-
ization approaches. For example, by combining the temporal regularization
with spatial regularization or by using low-rank regularization (discussed in

Section [8.2.2)).

The main drawback of the proposed approach, as discussed in Section
F.2.4, is the substantial (15 times higher than CG-SENSE and 436 times
higher than gridding) increase in the per coil reconstruction time (compared
to the reference methods). This prevents the proposed algorithm from pro-
viding near real-time reconstruction on the scanner (which can be achieved
when gridding reconstruction is used). An additional limitation of the CS
reconstruction is the regularizer is non-causal as it relies on having the time

series available, for real-time reconstruction the regularizer would need to be
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adapted to only use images that are currently available. Thus, the developed
method is currently only relevant in applications where it is acceptable to

not have the images available immediately after the acquisition.

5.3 Simultaneous Multislice Real-time MRI

5.3.1 Methods

The experimental data used in this section was obtained from a healthy vol-
unteer performing the tongue mobility test described in the previous section.
Using the sequence parameters described in Section 158 of SMS rtMRI
data is recorded resulting in 6000 spokes. An SMS acceleration factor of 3
is used (i.e. 3 slices are acquired simultaneously). Data is acquired using
the GA and SMS GA sampling schemes to allow for a comparison to be per-
formed. A slice thickness of 8mm was used and the slice distance varied (an
illustration of slice thickness and slice distance is shown in Fig..

Based upon the results from single-slice rtMRI reconstruction, the SMS
k-space data is compressed to a set of 15 virtual coils to accelerate recon-

struction.

5.3.2 Parameter Selection

The search approach to select an appropriate A parameter was repeated.
The data used in this search is sampled using the SMS GA sampling scheme
and is binned to 25 spokes/frame. The results (for all three slices. 12mm
slice distance) from the coarse search (using the same coarse A range shown

previously) are shown in Figf5.15| A line profile through the central slice was
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Figure 5.14: An illustration of slice thickness and slice distance.

then used to assist in the evaluation of edge sharpness and noise (Fig5.16]).
From these profiles it was decided that A = 1 x 1072 provides the best balance

of edge sharpness and noise reduction.

A fine search was then performed between the range of A = 1 x 1072 and
A =1x10"!in steps of 1 x 1072 (Fig}5.17). From these results A = 4 x 1072
was selected as, from a visual perspective, it best balances noise reduction
and blurring. This A value is higher than the A used for single-slice rttMRI.
This could be due to needing more regularization to remove the additional
noise introduced by the CAIPI phase modulation. An additional reason the
regularization values may have changed between the single-slice and SMS
results is the change in problem scaling due to the increase in the number

of slices, and, therefore, an increase in the overall number of voxels in the
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Figure 5.15: Results (showing all 3 slices, 12mm apart, the blue lines through
coronal slice at the top of image show the approximate slice locations) from the
coarse A search. From this coarse search it can be seen that the optimum A\
value lies between the range of A\ =1 x 1072 and A = 1 x 10~ %.
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Figure 5.16: A central slice of an SMS rtMRI frame (left) and a profile through
the frame (right) at increasing levels of regularization. The white line indicates

the position of the profile and the red lines indicate the approximate position of
the ventricles.
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image. Although not investigated in this thesis, it could be useful to explore
normalizing the A values (for example, by dividing by the number of total
voxels) in order to make the regularization parameter more consistent across

single-slice and SMS rtMRI.

Figure 5.17: Results from a fine A search (only central slice shown) with A
values increasing from A =1 x 1072 to A = 1 x 107! in steps of 1 x 1072, Past
A =5 x 1072 blurring is visible.

To determine the number of ADMM iterations that should be used, the

convergence experiment shown in Section [5.2.2]is repeated for SMS rtMRI.
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Fig[5.18 shows convergence plots at a range of undersampling factors when
SMS GA sampling is used. There is a steep initial decline, which then levels
off. Examples of image quality (from the central slice) are shown in Fig}5.19
for three different undersampling levels. In all three levels of undersampling,
the initial ten iterations result in the most substantial changes in the images.

There is little visible difference between iterations 25 and 100.
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Figure 5.18: Plot of convergence when SMS GA sampling is used (3 slices,
12mm slice distance), measured using NRMSD, at a range of undersampling
factors. A steep initial drop in NRMSD is seen before the slope levels off for all
undersampling factors.

This convergence experiment is repeated for the GA sampling scheme
(Fig[5.21). The convergence rate for the 25 and 15 spokes/frame level of
undersampling is reduced compared to the SMS GA sampling (Fig. The
plot also shows that the convergence at 45 spokes/frame is faster than the
higher levels of undersampling. This is not seen in the convergence plots when
SMS GA sampling is used (where all three levels of undersampling converge

at approximately the same rate). This indicates that the convergence of GA
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Figure 5.19: Visual comparison of reconstructed images (acquired using SMS GA
sampling, 3 slices, 12mm slice distance) at different iterations of the proposed
reconstruction algorithm. Results (from the central slice) are shown at 3 different
levels of undersampling. A clear improvement in image quality can be seen
between iterations 1 — 25, however, little difference can be seen between iteration

25 and iteration 100.
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sampling is more strongly coupled to the level of undersampling compared to
SMS GA sampling. It is reflected in Fig)5.21] which shows that at the highest
level of undersampling (10 spokes/frame), the image quality (in terms of
blurring and contrast) at five iterations appears worse than at the equivalent

point in the SMS GA sampling scheme.
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Figure 5.20: Plot of convergence when GA sampling is used (3 slices, 12mm slice
distance), measured using NRMSD, at 3 different undersampling factors. The
rate of convergence of the 45 spokes/frame level of undersampling is higher than
the other two levels of undersampling.

Based upon these convergence experiments, the number of iterations was
set to 25. This value is chosen for both sampling schemes due to the result
at 25 iterations having near identical image quality to the results at 100

iterations.
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Iterations

Number of Spokes

Figure 5.21: Visual comparison of reconstructed images (acquired using GA
sampling, three slices, 12mm slice distance) at different iterations of the proposed
reconstruction algorithm. Results (from the central slice) are shown at three
different levels of undersampling. A clear improvement in image quality can be
seen between iterations 1 — 25, however, little difference can be seen between

iteration 25 and iteration 100.
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5.3.3 Undersampling Experiment

The undersampling experiment conducted for single-slice rtMRI is repeated
for the multiband datasets acquired using the SMS GA and GA sampling

schemes.

Fig[5.22] shows the effect of undersampling on SMS rtMRI data acquired
using the SMS GA trajectory (at a slice distance of 4.8mm). When 95
spokes/frame are used, the proposed reconstruction method and CG-SENSE
have similar image quality. At the four higher levels of undersampling (45, 20,
15, 10 spokes/frame), the CG-SENSE reconstruction shows increasing levels
of blurring, artefacts and noise. When the proposed reconstruction pipeline
is used, these artefacts are removed. This figure shows a single frame from
rtMRI videos - the main effect of undersampling is most apparent in Video
5.3 (which compares the image quality at different undersampling levels).
From this video, it is seen that the main artefact is temporal variations in

signal intensity, these are particularly visible around the top of the head.

This experiment is also repeated for data acquired using standard GA
sampling (Figl5.23] Video 5.4). If two frames from both sampling schemes
are directly compared (Fig., there is little visual difference. However, it
can be seen in Video 5.5 that, when GA sampling is compared to SMS GA
sampling, increased variations in intensity are visible, particularly around
the top of the head. This is likely due to the destructive interference (intro-
duced by the CAIPI phase modulation) not being fully removed during the

reconstruction process.

The difference between GA and SMS GA sampling is visualised using
temporal SNR (tSNR) images. The definition of tSNR (for pixel ¢) is shown
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Figure 5.22: A comparison of two reconstruction algorithms (ADMM and CG-
SENSE) at a variety of undersampling levels (from top to bottom 95 45, 20
15 and 10 spokes/frame). The data used in this experiment is acquired using
SMS GA sampling with a slice distance of 4.8mm, the blue lines through the
coronal slice at the top of the figure indicate the approximate positions of the
three slices. The ADMM algorithm results in higher image quality at the highest
levels of undersampling.
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Figure 5.23: A comparison of two reconstruction algorithms (ADMM and CG-
SENSE) at a variety of undersampling levels (from top to bottom 95 45, 20 15
and 10 spokes/frame). The data used in this experiment is acquired using GA
sampling with a slice distance of 4.8mm, the blue lines through the coronal slice
at the top of the figure indicate the approximate positions of the three slices.
The ADMM algorithm results in higher image quality at the highest levels of
undersampling.
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GA sampling

Figure 5.24: Comparison of a frame (15 spokes/frame) reconstructed from data
acquired using GA sampling (top) and SMS GA sampling (bottom). Both frames
appear visually very similar with the bottom frame having slightly more fine detail
visible in the brain.
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in eq.(5.4)) where meangn(7) and oyime () are respectively the mean and stan-
dard deviation of pixel 7 over the entire time series; the tSNR is calculated
for every pixel to generate the tSNR images.

meanme(4)

tSNR(4) = ooitime t) (5.4)

Otime (1)

As expected, in both sampling schemes, the region with the lowest tSNR
is the mouth as this is where bulk movement occurs (thus, the standard
deviation is high). However, the GA sampling scheme shows an overall lower
tSNR than the equivalent data acquired using SMS GA sampling. The areas
of low tSNR (in the brain) correspond to areas where intensity variations
can be seen. This visualisation is repeated for an undersampling factor of 45
spokes/frame (Fig[5.26). The tSNR in the brain appears higher and more
homogeneous compared to Fig[5.25]

GA Sampling SMS GA Sampling

Figure 5.25: The tSNR of the central slice of 3 slice SMS rtMRI data recon-
structed with 15 spokes per frame acquired using the GA (left) and SMS GA
(right). The images have the same intensity scaling (maximum intensity limited
to 100) to emphasise the overall higher tSNR in the data acquired using SMS
GA sampling.
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GA Sampling SMS GA Sampling

Figure 5.26: The tSNR of the central slice of 3 slice SMS rtMRI data recon-
structed with 45 spokes per frame acquired using the GA (left) and SMS GA
(right). The images have the same intensity scaling (maximum intensity limited
to 100) to emphasise the overall higher tSNR in the data acquired using SMS
GA sampling.

The differences in tSNR, at the different undersampling levels, are caused
by changes in either the signal level or noise level (or both). To determine
which variable is causing the change, the mean and standard deviation of
a ROI in the center of the brain (which is not affected by movement) was
calculated for the 15 and 45 spokes per frame datasets (this was repeated for
both sampling schemes). The mean values, when using SMS GA sampling,
were 4.108 x 10~* and 4.104 x 10~* for the 15 and 45 spokes per frame datasets
respectively. The standard deviation values were 1.158x 107> and 5.907x 1076
for the 15 and 45 spokes per frame datasets respectively. The large decrease
in standard deviation, as the number of spokes increases, indicates that the
main contribution to the change in tSNR is an increase in noise (or increase in
radial undersampling aliasing). The same trend was seen when GA sampling
is used, the mean values were 4.109 x 10~ and 4.096 x 10~ for the 15 and 45
spokes per frame datasets respectively. While the standard deviation results

were 2.222 x 107° and 7.978 x 1075,
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5.3.4 Effect of Slice Distance

The previous results showed data reconstructed from three slice data with
a slice distance of 4.8mm and slice thickness of 8mm. SMS rtMRI data at
a range of slice distances is acquired to see if the proposed sequence and
reconstruction pipeline is robust at smaller slice distances. The following
slice distances are used: 16mm, 12mm, 8mm, 4.8mm and 2mm. Figl5.2

and Fig5.28| shows images reconstructed at these slice distances using 25
spokes/frame acquired respectively with the GA and SMS GA trajectories
(Video 5.6 shows the rtMRI videos at these slice distances). In both cases
no artefacts in the images can be seen. These results indicate that the pro-
posed technique is robust even at small slice distances. This is important
for applications in which it may be desirable to image multiple slices close
together. When viewing the central slice acquired at a 2mm slice distance,
finer details can be seen, particularly in the brain, compared to the same
slice acquired at a 16mm slice distance. The difference image between the
16mm and 2mm slice distance is shown in Fig., the extra details visible seen
in the 2mm slice distance are emphasized in the difference image. A potential
reason for the differing levels of fine details is that at the high slice distances
the non-central slices contain large regions of no signal, particularly in the
sinuses. This results in a lower proton density which reduces the overall
signal level. This reduction in signal may be preventing the reconstruction

algorithm from recovering fine details.



5.3 Simultaneous Multislice Real-time MRI 137
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4.8mm

2mm

Figure 5.27: Images (3 slices, 25 spokes/frame) reconstructed using data ob-
tained with GA sampling at a range of slice distances. From top to bottom:
16mm, 12mm, 8mm, 4.8mm and 2mm slice distances. No artefacts due to slice
leakage are visible.
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Figure 5.28: Images (3 slices, 25 spokes/frame) reconstructed using data ob-
tained with SMS GA sampling at a range of slice distances. From top to bottom
16mm, 12mm, 8mm, 4.8mm and 2mm slice distances. No artefacts due to slice
leakage are visible.
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Slice distance: 16mm Slice distance: 2mm

Difference Image

0

Figure 5.29: A frame from three slice SMS rtMRI videos acquired with slice
distances of 16mm (left) and 2mm (middle). The difference image between
these two images is shown on the right. This difference image shows the fine
details in the brain, which is seen in the middle image but not the left image.

5.3.5 Effect of Increased SMS Acceleration

The previously shown SMS rtMRI results demonstrate the use of SMS exci-
tation to image three slices simultaneously. In some applications it may be
desirable to further increase the number of excited slices in order to further
increase anatomical coverage. For example, Figl5.30] shows the results of a
five slice reconstruction (16mm slice distance, 25 spokes/frame) using the
SMS GA and GA sampling schemes respectively. The extra slices may be
useful when imaging motion enabled by anatomy across a wide region. For
example, when imaging swallowing it is useful to see the central slices (to
observe the main process of swallowing), but also see the temporomandibular
joints at the sides of the head, as dysfunction in these joints can cause issues

when swallowing.

To see the effect of data undersampling at this higher level of SMS ac-
celeration, the undersampling experiment shown in the previous section is
repeated for the five slice rtMRI data. rtMRI videos at undersampling levels
of 45, 25 and 15 spokes/frame are reconstructed (Video 5.7). Figl5.31] com-
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

SMS GA
Sampling

GA
Sampling

Figure 5.30: Frames from five slice rtMRI data (25 spokes/frame) acquired using
SMS GA sampling (top) and GA sampling (bottom). The blue lines through the
coronal slice (bottom) indicate approximate positions of these slices.
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pares three frames, reconstructed using 15 spokes/frame, acquired using GA
sampling and SMS GA sampling and, in both cases, significant blurring and
artefacts are visible. The tSNR images (Fig show that the artefacts in
the GA sampling appear to have more structure compared to the SMS GA

sampling scheme.

GA
sampling

Time

Figure 5.31: Comparison of three frames (15 spokes/frame) acquired using the
GA sampling scheme (top) and SMS GA sampling scheme (bottom). The central
slice from a 5 slice acquisition is shown. Blurring and artefacts are present in
both sampling schemes. An example of one of these artefacts is indicated by the
yellow arrow.

Increasing the number of spokes/frame to 25 suppresses the most se-
vere artefacts at the cost of reducing temporal resolution from 37.5ms to
62.5ms (Figl5.33). This reduction in artefacts is reflected in the tSNR im-
ages (Figlp.34). Compared to the previous tSNR image (Figl5.32), the over-

all tSNR (in areas without movement) is increased, and the large artefacts
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GA Sampling SMS GA Sampling

Figure 5.32: The tSNR of the central slice of 5 slice SMS rtMRI data recon-
structed with 15 spokes/frame acquired using the GA (left) and SMS GA (right)
sampling schemes. Both images have the same intensity scale with a maximum
of 100.

present in the GA sampling scheme appear reduced. In Video 5.7, the SMS
GA sampling scheme appears to have an increased level of intensity variation
compared to GA sampling, this is also reflected in the tSNR images. This
could indicate that the reduction in k-space coverage (shown in Fig
using SMS GA sampling is outweighing the benefit of improved destructive

interference.

At 45 spokes/frame (Figl5.36) the intensity variations in both sampling
schemes are further reduced. The tSNR images (Fig reflect this with
the tSNR in the brain appearing larger and more homogeneous than the
previously shown tSNR images. However, this improvement in image quality
requires a reduction in temporal resolution from 37.5ms to 112ms. This
temporal resolution is now below the recommended temporal resolution of

70ms, required to image the fastest movements which occur during speech

uk
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Figure 5.33: Comparison of three frames (25 spokes/frame) acquired using the
GA sampling scheme (top) and SMS GA sampling scheme (bottom). The central
slice from a 5 slice acquisition is shown.

GA Sampling SMS GA Sampling

Figure 5.34: The tSNR of the central slice of 5 slice SMS rtMRI data recon-
structed with 25 spokes/frame acquired using the GA (left) and SMS GA (right)
sampling schemes. Both images have the same intensity scale with a maximum
of 100.
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Golden-angle SMS Golden-angle
(15 spokes, 5 slices) (15 spokes, 5 slices)

Figure 5.35: lllustration of the golden-angle trajectory (left, 15 spokes and 5
slices) and the SMS golden-angle trajectory (right, 15 spokes and 5 slices). The
SMS GA trajectory has a reduced k-space coverage compared to the GA trajec-
tory.
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Figure 5.36: Comparison of three frames (45 spokes/frame) acquired using the
GA sampling scheme (top) and SMS GA sampling scheme (bottom). The central
slice from a 5 slice acquisition is shown.



5.3 Simultaneous Multislice Real-time MRI 145

GA Sampling SMS GA Sampling

Figure 5.37: The tSNR of the central slice of 5 slice SMS rtMRI data recon-
structed with 45 spokes/frame acquired using the GA (left) and SMS GA (right)
sampling schemes. Both images have the same intensity scale with a maximum
of 100.

These five slice results are obtained using the previously determined A =
4 x 10~2. However, this parameter is based upon a A search performed for
three-slice rttMRI data, thus, it is not optimized for higher levels of SMS
acceleration. Repeating the reconstruction with the value of X\ increased
to 5.5 x 1072 reduces the intensity variations (Video 5.8). However, care is
needed as further increasing A to 6 results in blurring. These results show that
careful parameter tuning is necessary in order to maximise the performance

of the proposed reconstruction approach.

Further in-plane acceleration using an SMS acceleration factor of 7 will
now be briefly explored (using A = 5.5 x 1072) at a slice distance of 12mm.
Fig shows the anatomical coverage achieved at this level of SMS accel-

eration (and slice distance).

Frames reconstructed at undersampling levels of 15 spokes/frame and 25

spokes/frame are shown in Fig and Fig respectively (these results
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— P ‘ =
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Figure 5.38: A frame reconstructed from seven slice (25 spokes/frame, 12mm
slice distance) rtMRI data acquired using GA sampling (top) and SMS GA sam-
pling (middle). The blue lines through the coronal slice (bottom) show the
approximate positions of all seven slices.

are also shown in Video 5.9). A large amount of blurring is visible at the
highest level of undersampling. Yet, the large artefacts seen previously for
the five-slice results are not present - this may be due to the larger A value
suppressing some of these effects. Increasing the number of spokes/frame to
25 reduces the blurring, however, the variations in intensity can still be seen.
Finally, at 45 spokes/frame (Fig[5.41) these artefacts are removed, however,
this improvement in image quality requires a reduction in temporal resolution

(from 37.5ms to 112ms) which may not be acceptable in some applications.

These results show the trade off between through-plane and in-plane ac-
celeration. If high (above three slices) SMS acceleration is desired, then

temporal resolution must be reduced (i.e. more spokes acquired per frame)
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Figure 5.39: Comparison of three frames (15 spokes/frame) acquired using the
GA sampling scheme (top) and SMS GA sampling scheme (bottom). The central
slice from a seven slice acquisition is shown. Due to the high level of undersam-
pling and high SMS acceleration artefacts are visible, particularly in the brain.

to maintain an equivalent image quality. Further exploration of regulariza-
tion parameter tuning is needed to maximise the image quality at a particular
level of SMS acceleration and data undersampling. In addition to this, the
data for all SMS acceleration factors is compressed to 15 virtual coils, the
next section will show that this is suitable for three slices. However, more
testing is needed to verify that this compression level can be used at higher

levels of SMS acceleration.
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Figure 5.40: Comparison of three frames (25 spokes/frame) acquired using the
GA sampling scheme (top) and SMS GA sampling scheme (bottom). The central
slice from a 7 slice acquisition is shown.
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Figure 5.41: Comparison of three frames (45 spokes/frame) acquired using the
GA sampling scheme (top) and SMS GA sampling scheme (bottom). The central
slice from a seven slice acquisition is shown.
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5.3.6 Coil Compression

The coil compression experiment shown in Section is repeated for SMS
rtMRI (Video 5.10). A dataset with a slice distance of 2mm is used for this
experiment. This slice distance is chosen as it is the smallest distance used.
Therefore, this presents the biggest challenge (in terms of slice separation):
if the compression is robust for this distance, it is expected to be robust for
the larger distances. As with the single-slice experiment, the data is binned

to 25 spokes/frame.

Examples of image quality (for the central slice) at increasing levels of coil
compression are shown in Figl5.42] As with the single-slice rtMRI results, it
can be seen that a significant degradation in image quality (compared to the
reconstruction using all coils) is only seen at very high levels of compression.
The MSE and PSNR are calculated (for the central slice) at each level of coil
compression, these are shown in Fig/5.43| and Figl5.44] respectively. These
plots, as is seen in the single-slice results, show that the degradation in the
image quality decreases rapidly as the level of compression is reduced (i.e.
the number of virtual coils is increased). In the PSNR plot, a sharp decrease
in the PSNR can be be seen between 42 and 41 virtual coils. The reason for
this is not known, however, it does not appear to have a noticeable effect on
image quality. These quantitative and visual results indicate that the level
of coil compression used (15 virtual coils) does not substantially degrade the
image quality and higher levels of compression could be used to reduce the

computation time.

As discussed in the single-slice results, the use of RoVir to focus on specific

areas may improve performance. The combination of RoVir and SMS is
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Difference Image

Number of coils

Figure 5.42: The effect of coil compression on SMS rtMRI data (3 slices, 2mm
slice distance) at varying levels of coil compression. The top left image (the
central slice of the 3 slices) is reconstructed using all 64 coils. The compression
level is then increased, with the number in the top left corner indicating the
number of virtual coils used. The left images are a frame reconstructed from
the compressed data and the right image is the absolute difference between the
frame reconstructed using the compressed data and the reference image (using
all coils). The intensity scaling of each image is independent, this is done to
emphasize the areas of anatomy affected by the coil compression.
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Figure 5.43: Plot of RMSE (for the central slice) at varying levels of coil com-
pression (2-63 coils).The error bars represent the standard deviation of RMSE
across the entire time series of frames. From the plot it can be seen that RMSE
drops rapidly. This indicates that a high level of compression can be used with
minimal difference between compressed and uncompressed images.

demonstrated in a recent work by Kim et al. (2023), which applied the
combination of these two techniques for use in gated cardiac imaging [15§].
They show that whole heart coverage can be achieved in a single breath-hold

compared to the nine breath-holds required without the acceleration.

As was shown in the single-slice rttMRI results, the proposed algorithm
requires a substantially longer reconstruction time than CG-SENSE. The
per coil reconstruction time for both methods is estimated using the linear
fit method described in Section [5.2.4, The ADMM algorithm has a per
coil reconstruction time of 126.3s, this is 10.5 times higher than the per
coil reconstruction time of CG-SENSE (12.03s). Compared to single-slice
rtMRI, using SMS rtMRI further increases reconstruction time as multiple

slices are reconstructed. For example, at 20 virtual coils, the single-slice
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Figure 5.44: Plot of PSNR (for the central slice) at different levels of coil com-
pression (2 — 63 coils). The error bars represent the standard deviation of PSNR
across the entire time series of frames. Using a higher number of coils results in
a higher PSNR. However, even at very high levels of compresssion (10 coils) the
PSNR is only 18% lower despite the 85% reduction in the number of coils.
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Figure 5.45: Plot of reconstruction time (in seconds) at a range of coil compres-
sion levels for the both reconstruction techniques. The ADMM reconstruction
(black) is substantially higher than both the CG-SENS recon (blue). An under-

sampling level of 25 spokes/frame is used for data shown in this plot.

rtMRI CS reconstruction takes 1200s, while the three-slice SMS rtMRI has
a 3700s reconstruction time. This is approximately a threefold increase in
reconstruction time, which is expected as there are three slices to reconstruct,

thus, triple the number of computational operations is required.

5.3.7 Evaluation

This section has shown that the developed SMS rtMRI sequence combined
with CS reconstruction enables motion across three slices to be recorded at
temporal resolutions equivalent to single-slice rtMRI shown in the previous
section.

The SMS GA sampling scheme has also been directly compared to the

standard GA sampling. In the case of three slice acceleration, the use of
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SMS GA sampling scheme results in reduced intensity variations compared
to GA sampling. This is shown in both videos and tSNR images. However, at
higher levels of SMS acceleration, the results indicate that for both sampling
schemes, the temporal resolution must be reduced to reduce artefacts. In
addition to this, it appears that the standard GA sampling scheme, at these
higher levels of SMS acceleration, has reduced intensity variation compared
to SMS GA sampling. However, tuning the A\ parameter for specific SMS
acceleration levels has a large impact on the resulting image quality.

There are two main limitations of the current SMS sequence and recon-
struction pipeline. The first, as with single-slice rtMRI, is the lengthy re-
construction time compared to CG-SENSE (10.5 times higher). The second
limitation is the degradation of image quality at higher SMS acceleration
factors. As shown in Section [5.3.5] at 5 and 7 slice acceleration the temporal
resolution must be sacrificed. From a reconstruction perspective, the use
of more advanced regularization techniques may improve the image quality.
SMS rtMRI may also benefit from array coils designed specifically to image
the oral cavity. An example of this a 12 coil array designed by Voskuilen et
al. (2020) to image the tongue [159]. They show improved SMS performance
(in diffusion imaging) in terms of SNR over a conventional head coil similar

to the one used in this thesis.

5.4 Effect of post-processing

In Sections [5.2] and unless stated otherwise, a temporal median filter of
width 3 has been applied to the reconstructed images. The aim of this filter

is to suppress residual noise present after reconstruction.
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To determine the effect of the filter, images are compared at filter widths
of: 0 (i.e. no filter applied), 3, 5 and 7. This experiment is performed
for single-slice rtMRI and three-slice SMS rtMRI. In both cases, a temporal
resolution of 37.5ms is used (i.e. 15 spokes/frame).

Results for single-slice rtMRI are shown in Video 5.11, it can be seen
that even when no filter is applied, there is little noise present after the
reconstruction, indicating that the post-processing step, only has minimal
effect on the final images. The tSNR images reflect this (Fig[5.46)): there
is little visible difference between the different filter widths. These results
also demonstrate the effectiveness of the proposed reconstruction approach
as the unfiltered video does not display a visibly noticeable amount of noise
compared to its filtered equivalents.

When SMS rtMRI is used, the effect of the median filter is more substan-
tial. Video 5.12 compares the results from a three-slice SMS rtMRI video,
reconstructed using 15 spokes/frame, at a variety of filter lengths. From this
video, it can be seen that the median filter suppresses some of the variations
in image intensity. This can also be observed in the tSNR images (Fig:
when no filter is applied there are areas (indicated with a black arrow) which
show reduced tSNR compared to the rest of the head. As the filter width is
increased the tSNR becomes more uniform. This indicates that, in the case of
SMS rtMRI, the median filter is a necessary post-processing step. Improve-
ments/fine tuning of regularization may suppress these artefacts making the

median filter post-processing step less important.
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No Filter Filter width: 3

Figure 5.46: A comparison of tSNR from rtMRI videos (15 spokes/frame) with
different filter widths applied after reconstruction. It can be seen that there is
little difference between the tSNR images.
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No Filter . Filter width: 3

Filter width: 5 Filter width: 7

Figure 5.47: A comparison of tSNR from SMS rtMRI videos (three slices, 15
spokes/frame, SMS GA sampling scheme) with different filter widths applied
after reconstruction. The black arrow indicates a region of low tSNR present
when no filter is applied.
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5.5 Quantitative Evaluation

In general, the previous sections describe image quality in terms of visual
appearance (for example, if blurring is present in the image). It is desir-
able to have quantitative image quality metrics to complement this visual
assessment. Unfortunately, the quantification of image quality in dynamic
MRI reconstruction is an extremely challenging problem. For example, a
standard metric to judge image quality in image reconstruction/processing
is SNR, this was defined previously (eq.(4.6))) . This metric assumes that the
profile of the noise is Gaussian (or Rician when magnitude images are used)
[32]. This is not a valid assumption when coil sensitivity profiles are incor-
porated into the reconstruction as they introduce spatial variations into the
noise profile. This assumption is also not true when radial sampling is used
as the streaking artefacts, caused by undersampling, do not obey a Gaussian
distribution. The use of CS reconstruction introduces further challenges in
the use of SNR as the artefacts introduced by CS may not be captured. For
example, consider Figl5.48] the image on the left is reconstructed using a
A = 1x 1072 while the image on the right is reconstructed with A = 1 x 107
Although the left image has better contrast and edge sharpness, the tSNR
is an order of magnitude lower than the right image. If image quality was
solely judged on this metric, the over-regularized image would be considered

the best image despite the severe loss of image detail.

For static imaging, to overcome this limitation, it is typical to first ac-
quire a fully sampled k-space and the retrospectively undersample it. The
undersampled k-space is then reconstructed using the proposed and reference

approaches. The images are then compared to the fully sampled reference
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A= 1x10"* A= 1x10"
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Figure 5.48: Top: comparison of an rtMRI (25 spokes/frame) reconstructed
using A = 1 x 1073 (left) and A = 1 x 10! (right). This shows that although
large regularization suppresses noise, it also results in elimination of structural
details (for example, the tip of the tongue), and contrast. Bottom: comparison
of the tSNR using these regularization values, the higher regularization results in
an order of magnitude increase in tSNR.

image using a variety metrics, such as the Structural Similarity Index Met-
ric , Mean-Squared Error and Peak Signal-to-Noise. Unfortunately, in
ungated dynamic imaging this is not possible, as no fully sampled reference
image exist, as undersampling is required to obtain images at high temporal
resolutions. Referenceless metrics have been proposed which do not require a

ground truth. A recent review by Kastryulin et al. (2023) describes a variety
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of these methods and highlights that the results from these metrics do not

always align with the clinicians perceived image quality [161].

A limitation of all rtMRI techniques (and for other MRI methods) is
the lack of such rigorous quantitative evaluation of image quality due to the
problems described above. A potential solution to obtain semi-quantitative
results would be by conducting an expert reader trial. This involves showing
a group of expert readers (typically a selection of experienced radiologists)
a selection of images, in a random order, reconstructed using the proposed
approach or the reference approaches. The images are then scored (typically
on a 5-point scale) for a variety of criteria. Relevant criteria for this work
could include: perceived SNR, perceived temporal fidelity and ability to dis-
tinguish relevant anatomy such as the tip of tongue. The scoring results
can then be analysed to determine if the proposed approach outperforms the
reference methods. This is not a perfect method due to issues such as reader
bias and fatigue [161]. However, it does provide a measure of how a group

of clinicians judge a newly developed method against existing methods.

Finally, application specific metrics may provide a useful way to quantify
image quality. For example, in speech imaging, a metric which has been
proposed is the tongue boundary sharpness score, which attempts to quantify
blurring at the air-tissue boundary of the tongue [71]. However, by their
definition, these metrics are only useful for a specific application so cannot

provide general measurements of image quality.
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5.6 Summary

In this chapter, the rtMRI sequence and reconstruction pipeline introduced
in Chapter [ has been evaluated in the context of single-slice and SMS rtMRI.
For single-slice rtMRI, it has been shown that a temporal resolution of up
to 37.5ms is achievable. When SMS rtMRI acceleration is used it has been
shown that this temporal resolution of 37.5ms is still achievable, however, at
higher levels of SMS acceleration the temporal resolution must be reduced
to preserve the image quality. The performance, in terms of image quality,
between SMS GA and GA sampling is hard to determine. In the case of three
slice SMS acceleration, the SMS GA sampling scheme results in a higher and
more homogeneous tSNR. However, at higher levels of SMS acceleration, the
GA sampling scheme shows improved performance. It is likely that fine tun-
ing A (at different levels of SMS and in-plane acceleration) for both sampling
schemes is needed to fully determine which of the two schemes should be
used. The effect of slice distance has also been evaluated for SMS rtMRI, it
has been shown that, in the case of three slices, a slice gap of 2mm is achiev-
able with no artefacts. However, further exploration is needed to understand
the effect of higher SMS acceleration on slice distance. In addition to these
results, this chapter has described the challenges, due to the lack of a ground
truth and the reconstruction techniques used, in quantitatively evaluating

image quality.
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Dynamic MRI phantom of the oral cavity

6.1 Introduction

Using phantom objects in the design and evaluation of novel MRI sequences
is standard practice [162]. Typically, and depending on the purpose of the
new MRI experiment, phantoms are made of plastic sample tubes containing
water or aqueous solutions, various hydrocolloids, small plastic objects with
known dimensions (for example, LEGO bricks or plastic beads and rods) with
or without added relaxation agents. Such phantoms are cheap, versatile, and

easily accessible tools for laboratory-based work.

Where MRI methodology development is aimed at clinical applications,
often the next step in the process will be scanning sessions with animals such
as rats, or with healthy human volunteers. However, the step from water-
filled plastic tubes to humans in the MRI scanner is large. Simple phan-
toms cannot reproduce the rich and dense structural details and functions of
certain parts of the human anatomy. Furthermore, static phantoms are of
limited use in the testing of dynamic imaging techniques such as real-time
MRI [6} 4]. These shortcomings can be addressed by using a more anatomi-
cally realistic phantom with biomimetic structure and movements. This can

provide an intermediate stage in the development of an MRI methodology,
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allowing it to be evaluated to a more advanced level before animal or hu-
man subjects are required. It also allows for the exploration of experimental
conditions that would otherwise not be feasible with human volunteers.

Real-time MRI of the oral cavity is an example of circumstances in which
a dynamic phantom with semi-realistic anatomical features and MRI prop-
erties offers a useful intermediate step toward clinical applications. This
chapter describes the design, construction and testing of a dynamic oral cav-
ity phantom suitable for the evaluation of a range of rtMRI studies of the
oral cavity.

The phantom described in this chapter was developed before the SMS
rtMRI sequence was completed. Thus, only single-slice rtMRI results are
shown in this chapter. Due to the limitations of the phantom (discussed in

this chapter) SMS rtMRI data of the phantom was not acquired.

6.2 Phantom Design

As a complement to the standard T'1/T2 weighted structural imaging toolkit,
the emphasis of rtMRI investigations of the oral cavity is on functional /movement
aspects. This defines the design criteria for the phantom. Considering the
oral cavity and its mobile components, a modular oral-cavity phantom needs
to include a mandible, a tongue, cheeks, and a floor of the mouth. Each
of these components needs to have semi-realistic dimensions, range of mo-
tion, and range of movement speeds. Some of the natural movements of
the mouth are compound and require concerted motion of some components,
whereas other natural dynamic behaviours are more isolated (such as stick-

ing the tongue out); this needs to be replicated by the phantom. The soft-
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tissue equivalents in the phantom (tongue and cheek muscles) are made from
agar gel commonly used in phantom construction [163]. The anatomy of
the mandible includes cortical (compact) and cancellous (spongy) bone; this
should also be reflected by the phantom. The assembly of the components
should produce a cavity of dimensions like those of the human oral cavity.
Non-destructive disassembly of the phantom must also be possible, for exam-
ple, to facilitate replacement of agar gel inside the cavities. Finally, it must
be possible to attach the phantom securely inside the scanner and head coils,
whilst being able to activate and maintain various motions of the components

such as opening and closing of the mouth during scanning.

6.3 Phantom Construction

The construction of the phantom is depicted in Figl6.1] The acrylic frame of
the phantom comprises of a front and back plate joined by an upper palate
plate and two lower struts. Nylon fasteners, rather than glue, are used to
join the acrylic plates and struts to enable easy disassembly and storage.

All structural elements of the phantom are confined to a compact cylin-
drical volume so that it may be used in a 30cm horizontal magnet bore but
also easily adapted for use in the head coils of larger scanners. In the setup,
a 3D printed bracket enables it to be clamped securely to a rear slot in the
head coil (Figl6.2)).

The tongue has two cavities for filling with agar gel, mounted and sealed
by clamping its flanged base between two acrylic plates (having two separate
compartments of the tongue mimics the tongue’s anatomy and a common

post-surgical situation following partial resection and reconstruction of the
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Figure 6.1: Making of the components of the phantom. A: actuation method,
shown on early prototype with fixed-base tongue only. Insets show the embedded
steering tip and tongue geometry. B: backplate view of full phantom assembly
with mandible and cheeks. The tongue is now on a separate backplate (1),
hinged from an acrylic rod (2) along with the mandible (3). Clamping bracket
(4) secures the phantom in the head coil. C: front view of full assembly. Mandible
is actuated by the lower control cable that passes round a pulley on the backplate
(5). Cheeks are suspended from the palate plate (6) and they join underneath
the mandible to form the floor of the mouth. D: multipart mould for silicone
cheeks casting; inset shows resulting silicone.

tongue). Nylon cables tied to a plastic steering point are embedded in the
tongue tip during the liquid-silicone casting process and passed through ta-
pered 3D printed bushings mounted on the front plate. Puppet-like pulling
of these cables thereby enables simple lateral movement in two axes, and
the tongue can be stuck out by pulling multiple cables simultaneously. This
allows for more random motion than could be achieved with MR compati-

ble actuators that would always deliver similar movements. The cheeks each
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Figure 6.2: Phantom mounted in a head/neck coil array (64 coils) with (right)
and without (left) the top section of the head coil attached

have a cavity for filling with agar gel, flanges like the tongue, and pass up and
through holes in the palate plate to be secured and sealed by sandwiching
the flanges between acrylic clamping plates and the topside of the palate.
Clamping the flanges between acrylic plates prevents leakage from the agar

gel-filled phantom cavities.

To incorporate mandibular motion, the tongue backplate and the mandible
are suspended from an acrylic rod on the main backplate, allowing both parts
to swing back around its axis. The lower control cable is attached to the chin
and exits through the front plate via a pulley on the backplate, directing its
pulling force along the correct line of action for opening the mouth. An op-
posite force is required to return it to the closed position, which is provided

by the floor of the mouth upon which the mandible rests. This is integrated
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with the cheeks in a single silicone casting. The cheeks stretch when the
mandible pivots downwards and provide an elastic restoring force to pull the
chin back up again.

The silicone parts are cast in 3D printed moulds with laser cut lids with
holes for air to escape as they fill. Cavities for filling with agar gel are
created by attaching 3D printed inserts to the lid, which project into the
casting volume and hence leave behind voids when they are removed. Liquid
silicone is injected upwards into a hole in the mould base to avoid trapping
air bubbles, which is then plugged while the silicone cures. For the cast
silicone to be removable, it must neither enclose nor be enclosed by plastic
in the direction of removal. For this reason, the moulds have an open-ended
design, and consist of multiple segments clamped together with bolts, such

that the mould can be disassembled to release the casting.

6.4 Methods

The tongue, bilateral floor of the mouth and cheeks were constructed from
moulded silicone ‘skins’ (Smooth-On Ecoflex00 — 20 FAST) and filled with
agar hydrocolloid (Biozoon, Germany; concentration of 2g per 100ml of wa-
ter). The mandible was derived from a 3D scanned STL mesh model of a
human mandible (donated, from high-resolution CT scans), processed with
Autodesk Meshmixer to form a printable hollow solid, and 3D printed on a
Stratasys F170 using Stratasys acrylonitrile styrene acrylate (ASA) plastic
to represent the cortical bone. Hollow spaces inside the mandibular structure
were filled with plaster (West Design Products, UK) to represent cancellous

bone in the mandible. The phantom frame was constructed using laser cut
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3mm acrylic sheet (Hindleys, UK). M5 and M3 nylon fasteners were used to
attach the different parts of the phantom to the frame. Nylon strings were
attached to the tongue and jaw to provide a mechanism for moving them.
The associated hinge and pivot parts were created from 6mm solid acrylic
rod and 3D printed ASA plastic.

Single-slice rtMRI data is acquired using the sequence developed in Chap-
ter [, both sagittal and axial videos are acquired. The imaging parameters
described in Section are used and the data is binned to 95 spokes/frame.
A sliding window with a stride of five is used to increase the apparent tem-
poral resolution from 243ms to 17ms. During the acquisition, the wires con-
trolling the tongue are pulled forward and upwards (simulating the action of
sticking the tongue out). Image reconstruction is performed on the scanner

using the gridding reconstruction method (Section [4.4)).

6.5 MRI Use of the Oral-Cavity Phantom

Frames from a single-slice rttMRI video are shown in Figl6.3| (Video 6.1). In
the sagittal orientation, the tongue and chin can be clearly seen. The tip
of the tongue displays a dark area where the plastic steering point has been
embedded. The axial/transverse view shows the two cheeks of the phantom
and highlights the two compartments of the tongue. These two compart-
ments could be filled with slightly different agar (or other) hydrocolloids,
which, due to differences in relaxation properties, would result in slightly
differing contrast across the two compartments and, thus, could mimic the
local situation after surgical tongue reconstruction.

The SNR of these reconstructed frames appears lower than in the equiv-
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Figure 6.3: Two frames each taken from rtMRI videos of the phantom where
the tongue is being moved up and stretched forwards. Top: sagittal orientation.
Bottom: axial orientation.
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alent imaging conducted on the oral cavity of a human. This is due to the
lower proton density present in the phantom. The only MRI-active parts of
the phantom are the agar gel-filled pockets of the tongue and cheeks, whereas
the human oral cavity contains many more MRI-visible types of different soft
tissues. This lower proton density also makes automated shimming challeng-
ing. Despite this, contrast in the phantom-based rtMRI videos is sufficient
to resolve the dynamics of important small features of the phantom such as

the tip of the tongue.

The phantom is also a useful tool to observe the effects of surgical re-
construction plates on image quality. Reconstruction plates are routinely
used in oral and maxillofacial surgery, thus, understanding artefacts caused
by them is important if imaging post-surgery is required while the recon-
struction plates remain in situ. Artefacts induced by susceptibility effects
vary between different pulse sequences (and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>