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Abstract

A framework is introduced for constructing models – called quantum miniatures
– which structurally resemble standard quantum systems. To construct quantum
miniatures, we consider an ordinary quantum system but restrict the set of physical
observables, in order to examine the implications of the commonly made assumption
that all self-adjoint operators represent observables.

We investigate various consequences of placing a restriction on observables, which
allows for a natural extension of the state space of a miniature beyond the usual
quantum states. Models are developed which maximally violate uncertainty relations
both for spin variables and for position and momentum, allowing for simultaneous
sharp prediction of non-commuting observables. Another model exhibits post-
quantum non-locality, including PR box correlations.

The quantum miniature framework includes standard quantum theory as a special
case, and allows us to define consistent foil theories to quantum theory, including
providing an explicit physical setting for a well-known family of GPTs, the polygon
models of Janotta et al.
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1

Introduction

1.1 MOTIVATION AND OUTLINE

In standard quantum theory, a physical system is represented by a Hilbert space, and
every physical observable is postulated to correspond to some self-adjoint operator
on this space. The converse – that every self-adjoint operator represents some
physical observable – was occasionally assumed by early pioneers of quantum theory.
For example, in Mathematical foundations of quantum mechanics, von Neumann
demonstrates that each observable corresponds to a Hermitian operator, but remarks
in a footnote that the only operators really known to correspond to observables at
that stage were those corresponding to position, momentum and energy [64, p. 200].
Seemingly as a matter of technical convenience, von Neumann proceeds a few pages
later to assume that in fact every Hermitian operator corresponds to an observable.
In Principles of quantum mechanics [24], Dirac effectively uses the word ‘observable’
as a synonym for ‘self-adjoint operator’,1 and then poses the question

can every observable be measured? The answer theoretically is yes. In
practice it may be very awkward, or perhaps even beyond the ingenuity
of the experimenter, to devise an apparatus which could measure some
particular observable, but the theory always allows one to imagine that
the measurement can be made [24].

Both von Neumann and Dirac therefore claim that every self-adjoint operator
represents a physical observable, but neither puts forward a robust justification.

1Dirac identifies ‘dynamical variables’ with linear operators (p. 26), called ‘real’ if the operator
is self-adjoint, and then writes ‘we call a real dynamical variable whose eigenstates form a complete
set an observable.’ [24, p. 37]
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10 Chapter 1. Introduction

Many more authors tacitly make this assumption, which we will term ‘the operator
assumption’, or often avoid the question altogether.

Some doubt has been raised on the operator assumption. As Wigner points out,

there is, however, no rule which would tell us which self-adjoint operators
are truly observables, nor is there any prescription to know how the
measurements are to be carried out, what apparatus to use, etc. [94]

and more strongly,

for some observables, in fact for the majority of them (such as xypz),
nobody seriously believes that a measuring apparatus exists [93].

Furthermore, there are positive reasons to reject the operator assumption. The
existence of super-selection rules [91] is a widely cited example [92, 45, 28]. Another
indication against the operator assumption comes from the field of computability
theory, where it has been argued that this assumption leads to a contradiction with
the Church-Turing thesis [65].

One indication in favour of a weaker version of the operator assumption is given
by Swift & Wright, who have shown that, using suitable electric and magnetic fields
compatible with Maxwell’s equations, measurement of an observable corresponding to
any self-adjoint operator in a finite-dimensional space can be implemented arbitrarily
well by means of a generalised Stern-Gerlach apparatus [85]. However, no comparable
result appears to be known for observables in infinite-dimensional systems.

In this thesis, we examine the possible consequences of removing the operator
assumption, while retaining many other features of quantum theory. We consider
quantum-like theories – called quantum miniatures – in which we explicitly assert
which operators correspond to observables, motivated by the availability of experi-
mental apparatus. This modification naturally leads to the possibility of extending
the state space relative to standard quantum mechanics. We consider a range of
restrictions. Particular attention is paid to models where the restriction is especially
austere, leaving only a small finite number of observables. These models can serve as
extreme examples which starkly illustrate the consequences of restricting the set of
observables. A dual benefit is the relative simplicity of a comprehensive exposition.

The main motivation for studying quantum miniatures is to examine the role
played by the operator assumption in standard quantum theory. To isolate the
effect of the operator assumption, we consider foil theories which retain most of the
formal structure of quantum theory – we retain the familiar Hilbert space setting,
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with states acting as linear operators, and we retain the Born rule for probability
assignment.

The non-positive operators which naturally arise as states in quantum miniatures
have previously been considered in isolated cases. For example, restricted spin
measurements have been considered, with a non-quantum state space leading to a
modified notion of entanglement. This has consequences for, e.g., the possibility
of classical simulation of such a system [74]. Also, non-positive operators have
been considered in connection with the non-local correlations achievable in various
theories [1]. Quantum miniatures may provide a unified framework for a systematic
study of these and other features. Another motivation is that quantum miniatures
may provide a useful framework for defining non-quantum theories with continuous
variables, as discussed in Chapter 4.

1.2 BACKGROUND

1.2.1 Foil theories

The quantum miniature framework is situated within a broad program of constructing
foil theories for quantum mechanics. This approach aims to clarify our understanding
of quantum mechanics by contrasting with other logically conceivable theories: ‘ways
the world might have been’ [19]. The point of departure for construction of a foil
theory may be either the operational content of quantum theory, or its formal
structure.

Concerning the operational content, one may identify certain features of quantum
theory (such as the strength of its non-local correlations, the appearance of uncertainty
relations, its utility for some information theoretic protocol etc.), and construct a foil
theory which mimics some of these features. This approach can help to clarify what
is distinctive about quantum theory, and give hints towards possible reformulations
(on an operational footing). A common framework for developing foil theories is that
of generalised probabilistic theories (GPTs) [7, 48, 71]. The GPT framework aims to
describe conceivable physical theories in terms of the statistics of some allowed class
of measurements, and encompasses a broad range of qualitatively different theories,
including quantum theory and classical probability theory. GPTs provide a useful
setting to explore re-axiomatisations of quantum theory (e.g. [38, 62, 17]); in this
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context, foil theories can play a role in testing the sufficiency or the independence of
certain possible axioms.

A prominent class of foil theories lying outside the GPT framework are epis-
temically restricted (or epistricted) theories, which start from a classical statistical
theory and add an epistemic restriction [81, 82]. Epistricted theories reproduce many
phenomena occurring in quantum theory [39]. However, the underlying ontology is
essentially classical, so a primary aim is to elucidate those features of quantum theory
which are not reproducible in any epistricted theory, and may thus be considered
‘intrinsically quantum’ [50].

Other approaches take a specific technical formulation of quantum theory and
modify or replace this by a structurally similar formalism. The idea is that, by
modifying some aspect of a theory and following through the logical consequences,
one can gain insight into the connections between different aspects of the theory. For
example, modal quantum theory [79] replaces complex Hilbert space by a vector space
over a finite field. Rather than assigning probabilities to measurement outcomes,
modal quantum theory prescribes only whether an outcome is possible or impossible.
Remaining formally closer to the standard formulation, it was realised by Birkhoff
and von Neumann that much of the logical structure of quantum theory is compatible
with a replacement of the complex Hilbert space by a real or quaternionic alternative
[12]. Foil theories involving such real [84, 16, 2] or quaternionic [30] Hilbert spaces
have been constructed. The real version has been shown to be experimentally
falsifiable [76].

Finally, one may consider foil theories where the basic setting remains the
familiar complex Hilbert space formulation, but where individual postulates are
altered. Weinberg has considered a foil theory with the possible dynamics extended
to allow non-linear time evolution [89]. This extension of the possible dynamics has
been shown to have radical implications, such as the possibility of arbitrarily fast
communication [35]. A recent foil theory involves replacing the projection postulate of
standard quantum theory with a ‘passive’ alternative, in which the state is unaffected
by measurement [31]. This modification affects the interpretation of mixed states,
and allows for state reconstruction on a single system, with repercussions for e.g. the
computational power of this theory relative to standard quantum theory.

The quantum miniature framework is closest in spirit to these latter approaches.
We maintain most of the formal structure of standard quantum theory, but alter one
postulate, with the aim of seeing how this affects other aspects of the theory.
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1.2.2 Algebraic Quantum Theory

The quantum miniature framework is based on restricting the set of observables
relative to a reference quantum system. This restriction can result in sets of
observables which are not closed under addition. This limitation marks a departure
from standard quantum theory, where an important feature is that the collection
of observables forms an algebra. Indeed, there is significant literature devoted to
re-deriving (and generalising) the Hilbert space formulation of quantum theory from
an abstraction of the algebraic structure of observables (herein referred to as the
algebraic approach) [51, 80, 28].

The basic elements in the algebraic approach are a set of observables O, a set
of states S, and a map ⟨⟨· , ·⟩⟩ : O × S → R, which is interpreted as providing
expectation values for observables in any state. It is postulated that observables are
entirely defined by expectation values so, for X, Y ∈ O,

⟨⟨X,ω⟩⟩ = ⟨⟨Y, ω⟩⟩ for any ω ∈ S =⇒ X = Y. (1.1)

Alternatively, this can be thought of as defining an equivalence relation, and then
dealing with equivalence classes of observables.

Given any two observables, X, Y ∈ O, the sum X ⊕ Y is defined by the property
that

⟨⟨X ⊕ Y, ω⟩⟩ = ⟨⟨X,ω⟩⟩ + ⟨⟨Y, ω⟩⟩ for all ω ∈ S. (1.2)

It is then a postulate that the sum, X ⊕ Y , is an element of O, i.e., an observable
(Structure Axiom 3(iii) in [28]). Similarly, given an observable X ∈ O and a real
number λ, the scalar multiple λX is defined by the property that

⟨⟨λX, ω⟩⟩ = λ⟨⟨X,ω⟩⟩ for all ω ∈ S, (1.3)

and it is postulated that any scalar multiple of an observable is also an observable. The
map ⟨⟨· , ·⟩⟩ thus furnishes O with the structure of a real vector space. Furthermore,
O is equipped with a partial order ⪯, defined by

X ⪯ Y if and only if ⟨⟨X,ω⟩⟩ ≤ ⟨⟨Y, ω⟩⟩ for all ω ∈ S. (1.4)

Further postulates furnish O with the structure of a Jordan algebra – the full
details are unnecessary for the present discussion but may be found in e.g. [28, 83].
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It suffices to note that integer powers of any observable are also assumed to be
observable.

In the algebraic approach, the expectation value of a series of measurements of
an observable X is treated as fundamental. The possible outcomes of an individual
measurement of X are then derived as the support of a probability measure which
is defined by its moments ⟨⟨Xn⟩⟩, for n ∈ N. In contrast, the quantum miniature
framework takes the possible outcomes of an individual measurement to be funda-
mental, with expectation values derivable from the probabilities for each outcome in
a given state.

1.3 PRELIMINARIES

Before describing some examples of quantum miniatures, we introduce some useful
concepts from standard quantum mechanics.

Notation Given a Hilbert space H, the space of all self-adjoint linear operators
H → H is denoted by L∗(H). An operator ρ : H → H is called positive if the
quadratic form |ψ⟩ 7→ ⟨ψ| ρ |ψ⟩ is positive semi-definite. We adopt the following
notation:

• Tr [X] denotes the trace of a trace-class operator X ∈ L∗(H).

• ⟨X, Y ⟩HS = Tr
[
X†Y

]
is the Hilbert-Schmidt inner product (used for finite-

dimensional miniatures).

• ⟨X⟩ρ = Tr [ρX]; when ρ is a state and X is an observable, this has the
interpretation of the expectation value for X in the state ρ.

• ∆2(X|ρ) = ⟨X2⟩ρ − ⟨X⟩2
ρ; when ρ is a state and X is an observable, this has

the interpretation of the variance of X in the state ρ.

• ∆(X|ρ) =
√

∆2(X|ρ).

• [X, Y ] = XY − Y X.
Given a vector space V and a subset X ⊂ V ,

• cone(X) = {λx |x ∈ X,λ ∈ R+}.

• conv(X) = {λx+ (1 − λ)y |x, y ∈ X,λ ∈ [0, 1]}.

• A cone C ⊂ V is pointed if C ∩ (−C) = {0}.

• A cone C ⊂ V is generating if C − C = V .
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1.3.1 Postulates for quantum theory

We adopt the following postulates for quantum theory, synthesised from e.g. [64, 29,
68, 86]:
Kinematics:

Q A physical system is represented by a complex Hilbert space, H.

O Observables are represented by self-adjoint operators on H.

S States of a system are represented by positive, unit-trace operators on H.

C Given systems A and B, with Hilbert spaces HA and HB, respectively, the
Hilbert space of the joint system AB is given by the tensor product HA ⊗ HB.

Measurement: Given a system in state ρ, and an observable represented by X ∈
L∗(H), with eigenvectors |x⟩ and corresponding eigenvalues x,

E the possible outcomes of a measurement of X are the eigenvalues x;

B the probability to obtain outcome x is given by the Born rule,

P(x|ρ) = Tr [ρ |x⟩⟨x|] . (1.5)

Dynamics:
P If an observable represented by X is measured and the eigenvalue x is obtained,

then the post-measurement state of the system is a projector onto the associated
eigenvector |x⟩.

T Between measurements, states ρ evolve via unitary operators U on H according
to the map ρ 7→ UρU †.

1.3.2 Uncertainty relations

Quantum theory predicts certain constraints on the uncertainties of two or more
observables in a given state. ‘In its most general form, the uncertainty principle
states that it is never possible to simultaneously predict the measurement outcomes
for all observables of the system’ [42]. Quantitative statements to such an effect are
known as uncertainty relations, and typically consist of an inequality involving the
variances of two or more observables. The best known of these is the Heisenberg
relation for position Q and momentum P [40, 52, 90]:

∆Q∆P ≥ ℏ
2 . (1.6)
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This follows immediately from the more general Robertson relation [77],

∆2(A|ρ)∆2(B|ρ) ≥ 1
4 ⟨[A,B]⟩2

ρ . (1.7)

This is universally valid, i.e., it holds for any pair of observables A and B, in
any number of dimensions. The relation (1.7) is particularly useful in the case of
position and momentum (or other canonical pairs), since ⟨[Q,P ]⟩ is state-independent.
However, in general, the Robertson relation does not provide a state-independent
bound. Indeed, unless all eigenvalues of [A,B] are strictly negative or strictly positive,
then ⟨[A,B]⟩ρ = 0 for some state ρ, so (1.7) gives no bound at all for the variances
under consideration, and does not entail the general conclusion above.

In finite dimensions, for any collection of observables, Ai, which do not share a
common eigenstate, there is no quantum state for which all of these observables may
all be sharply predicted [42]. Hence, there is a non-zero lower bound on the sum of
the variances:

∑
i

∆2(Ai|ρ) ≥ U. (1.8)

The particular constant U will depend on algebraic relations between the observables
Ai.

Several results are known in the case where the observables in question are spin
components. For a spin s system,

∑
i=1,2,3

∆2(Sηi
|ρ) ≥ s. (1.9)

where η1,η2,η3 are any three mutually orthogonal directions [9, 23]. For spins up
to s = 3/2, results are also known for the sum of variances in any two directions [23],
which may not be reduced to a truncated version of the 3 component bounds [42]:

∑
i=1,2

∆2(Sηi
|ρ) ≥ c2(s). (1.10)

For spin s = 1/2 in particular, c2(1/2) = 1/4 and the result (1.10) can be generalised
to any pair of directions, not necessarily orthogonal to one another. Namely, if η

and η′ are a pair of directions separated by an angle of ϕ, then

∆2(Sη) + ∆2(Sη′) ≥ 1
2 sin2 (ϕ/2) . (1.11)
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Uncertainty relations such as those discussed above place limitations on the
set of possible values for the uncertainties achievable by some quantum state. A
more complete description of this set is given by the preparation uncertainty region
[14]. Given a collection of N observables, Ai, the quantum uncertainty region,
PURQ(A1, . . . , AN), is defined as the set of possible values that may be realised as
the uncertainty in each observable in some quantum state:

PURQ(A1, . . . , AN) = {(∆A1, . . . ,∆AN) | ∃ρ ∈ ΩQ : ∆ρ(Ai) = ∆Ai} . (1.12)

We emphasise the word ‘quantum’ here, and add a subscript Q, since we later
consider uncertainty regions for models other than quantum theory. For the case
of position and momentum, the quantum uncertainty region is fully defined by the
Heisenberg relation (1.6), i.e., [14]

PURQ(Q,P ) =
{

(∆Q,∆P )
∣∣∣∣∆Q∆P ≥ ℏ

2

}
. (1.13)

Similarly, for the case of spin s = 1/2, the quantum uncertainty region for a
pair of spin components in orthogonal directions is fully defined by the additive
uncertainty relation (1.10), along with the individual maxima ∆Sx,∆Sy ≤ 1/2:

PURQ(Sx, Sy) =
{

(∆Sx,∆Sy)
∣∣∣∣∆Sx,∆Sy ≤ 1

2 , ∆S2
x + ∆S2

y ≥ 1
4

}
. (1.14)

1.3.3 Wigner functions

The usual description of a quantum state gives the probability densities for either
position or momentum. However, given one of these it is not straightforward to
visualise the other. It would be desirable to encode both within a single function,
akin to a probability distribution over phase space.

This is the idea of the Wigner function [95], defined as the Wigner transform [41]
of the density operator:

Wρ(q, p) = 1
πℏ

∫
dq′e−2ipq′/ℏ ⟨q + q′| ρ |q − q′⟩ . (1.15)

Since ρ is Hermitian, the function Wρ is real-valued, and since ρ is normalised, Wρ

is normalised. Wρ is not a true probability distribution, since it will in general
assume negative values at some points. However, the marginals for each variable do
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Figure 1.1: The quantum uncertainty region for position and momentum,
PURQ(Q,P ), as defined in (1.13).

constitute valid probability distributions, and agree with the distributions given by
the original density operator:∫

R
dpWρ(q, p) = Tr [ρ |q⟩⟨q|] , (1.16)∫

R
dqWρ(q, p) = Tr [ρ |p⟩⟨p|] . (1.17)

For any quantum state, ρ, the magnitude of the Wigner function is bounded:

|Wρ(q, p)| ≤ 1
πℏ
. (1.18)

Since W is normalised, this restricts how localised a Wigner function can be.
Given the Wigner function of a state, one can recover the density operator via

the Weyl transform [90, 41]:

ρ = ℏ
2π

∫
R4

da db dp dqWρ(q, p) exp
(
ia(Q̂− q) + ib(P̂ − p)

ℏ

)
. (1.19)



1.3. Preliminaries 19

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

∆Sx

∆
S

y

Figure 1.2: The quantum uncertainty region for an orthogonal pair of spin compo-
nents, PURQ(Sx, Sy), defined in (1.14).

Another way to express the correspondence between Hilbert space operators and
functions on phase space is given by the Wigner kernel [78, 33, 3]. The Wigner kernel,
∆̂(q, p), may be expressed in terms of the parity operator, Π, and a two-parameter
family of operators effecting phase-space translations,

T (q, p) = exp
(
ipQ̂+ iqP̂

ℏ

)
, (1.20)

as

∆̂(q, p) = 1
πℏ

T (q, p)ΠT †(q, p). (1.21)

The Wigner transform (1.15) may then equivalently be written

WA(q, p) = Tr
[
A ∆̂(q, p)

]
. (1.22)

Similarly, the Weyl transform (1.19) may be written

A =
∫

dq dpWA(q, p)∆̂(q, p). (1.23)
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The use of an operator kernel to establish a correspondence between Hilbert space
operators and phase space functions admits a generalisation to quantum systems
other than the non-relativistic particle, such as spin systems [87, 33]. Wigner
functions for spin systems are discussed briefly in Appendix A.

1.3.4 Coherent states and squeezed states

Coherent states are eigenstates of the annihilation operator for the harmonic oscillator,
â = (Q̂+ iP̂ )/

√
2. Labelling these states by their eigenvalue, α, we have

|α⟩ = e−|α|2/2 ∑
n∈N

αn

√
n!

|n⟩ . (1.24)

Here, |n⟩ are the harmonic oscillator eigenstates. These have position-basis wave-
functions

⟨q |n⟩ = 1√
2nn!

(πℏ)−1/4 exp
(

− q2

2ℏ

)
Hn

(
q√
ℏ

)
, (1.25)

where Hn are the Hermite polynomials. The harmonic oscillator ground state is
itself a coherent state, with α = 0.

The Wigner function of a coherent state is a Gaussian in q and p, centered at
(q0, p0) = (

√
2Reα,

√
2Imα):

W|α⟩(q, p) = 1
πℏ

exp
(

−(q − q0)2 + (p− p0)2

ℏ

)
. (1.26)

The width of this Gaussian in each direction is directly related to the variances in q
and p.

∆2Q = ℏ
2 ; ∆2P = ℏ

2 (1.27)

Coherent states are states of minimum uncertainty in the sense that they saturate
Heisenberg’s uncertainty relation for position and momentum [40, 52, 90],

∆2Q∆2P ≥ ℏ2

4 . (1.28)

A more general class of minimum uncertainty states are the squeezed states.
Squeezed states are obtained by applying the squeezing operator,

S(z) = exp
z∗a2 − za†2

2

 (1.29)
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to the harmonic oscillator ground state |0⟩. The parameter z is a complex number
which describes how the distribution in phase space is altered. For real positive z,
the distribution is contracted along the position axis and correspondingly stretched
along the momentum axis, preserving the product of their variances. This may be
seen in the Wigner function for such a state:

W|z⟩(q, p) = 1
πℏ

exp
(

−q2/t+ p2t

ℏ

)
, (1.30)

where t = exp(2z). The variances are

∆2
|z⟩Q = ℏ

2
√
t

; ∆2
|z⟩P = ℏ

√
t

2 . (1.31)

In the limit t → ∞, we recover a position eigenstate, and in the opposite limit t → 0,
we recover a momentum eigenstate.

If z is not real, this distribution is also rotated in phase space by an angle given
by the phase of z.
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Quantum Miniatures

In this Chapter, we introduce the general framework of quantum miniatures. We
begin with the central idea of taking a reference quantum system and restricting the
set of available measurements. We then introduce the general description of states in
quantum miniatures. This involves a natural extension of density operators familiar
from usual quantum mechanics, and a discussion of equivalence classes.

We introduce postulates for quantum miniatures regarding each aspect of the
theory in turn, using as a reference the postulates for standard quantum theory given
in Section 1.3. The postulates for quantum miniatures are collected in Section 2.6.

2.1 REDUCED SETS OF OBSERVABLES

In describing observables within quantum miniatures, we take the approach that
the set of observables in a given theory is directly informed by the experimental
apparatus available. We further assume that any observable we can measure is
correctly described by quantum theory. If, according to standard quantum theory,
a given experimental setup may be used to measure a particular observable, then
we assume that the same setup in a quantum miniature allows measurement of the
same observable. This observable is represented by the same Hermitian operator,
and we continue to assume that the possible outcomes of the measurement are the
eigenvalues of this operator.

We therefore make the following postulates for quantum miniatures, cf. postulates
Q and O in standard quantum theory:

22
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M A physical system is represented by a complex Hilbert space, H, and a set
OM ⊆ L∗(H).

OM Observables are represented by elements of OM .

For each particular quantum miniature, we will present an experimental scenario,
according to which we assert that some particular collection of observables may be
measured. These are called the basic observables, which define the miniature. It is
then implicit that any function of a single basic observable may be considered to
be observable. In particular, we always implicitly assume that the identity operator
on the relevant Hilbert space is an observable for every miniature. The set of basic
observables for each miniature will be denoted OM , with a subscript specifying
the particular miniature in question. In each case, OM is a subset of the set, OQ,
consisting all Hermitian operators: OM ⊆ OQ.

We do not, however, make any general assumptions about an experimenter’s
ability to measure combinations of observables, such as the sum or symmetric product.
As noted in Section 1.2.2, this marks a departure from standard quantum theory,
which is illustrated especially clearly by comparison with the algebraic approach.
An essential component of the algebraic approach is the assumption that the sum
of any two observables, defined by (1.2), is also an observable. The motivation for
this postulate has been questioned [69], and we do not adopt any such postulate in
general for quantum miniatures. As Bell points out (though in a different context),

a measurement of a sum of noncommuting observables cannot be made
by combining trivially the results of separate observations on the two
terms – it requires a quite distinct experiment [10].

It is not guaranteed that such an experiment exists or, more weakly, that it is
available to an experimenter. It has been pointed out that demanding compatibility
of states with sums of observables as defined in (1.2), i.e., characterising states as
positive linear functionals constitutes ‘a non-trivial extrapolation over the strict
physically motivated structure’ [83, p. 19]. If we decline this extrapolation, then it is
possible to find probability distributions for a pair of observables, X and Y , such
that the value given by (1.2) has no tenable interpretation as the expectation value
of their sum. For example, we will see in Section 3.1.1 an example of a miniature
which provides consistent statistical predictions for spin components in orthogonal
directions but, if linearly extended to account for spin in other directions, predicts
expectation values lying outside the spectrum of possible outcomes, and negative
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‘probabilities’ for supposed measurement outcomes.

2.2 STATES IN QUANTUM MINIATURES

We now turn to the definition of states in quantum miniatures. In the standard
quantum case, we can think of Postulate S as a restriction on the types of operators
which are admissible as states, in particular that these operators must be positive and
have unit trace. These restrictions are related to Postulate B in that they describe
conditions under which the Born rule produces valid probability distributions. In
particular, positivity of the operator implies the distribution defined in (1.5) will be
everywhere non-negative, and having unit trace implies the distribution is normalised.
Assuming that all Hermitian operators constitute valid observables, we have also the
converse, i.e., the distribution (1.5) being non-negative for all observables implies
that ρ is positive, and normalisation of the distribution implies that ρ has unit trace.
We may therefore alternatively classify states in quantum mechanics as exactly
those operators which furnish valid probability distributions for measurements of all
observables.

We carry over this alternative classification to quantum miniatures. Staying
close to standard quantum theory, we postulate that states are described by linear
operators acting on a Hilbert space, and that probabilities are given by a trace
rule (1.5). However, the set of operators which give valid probability distributions
for all observables may differ from that of standard quantum theory, since the set
of observables is different. Since there are in general fewer observables than in
quantum mechanics, the requirement of valid probability distributions will place
fewer constraints on the states of a restricted quantum theory. We will still require the
operators corresponding to states to be self-adjoint so that probability distributions
are real-valued, and to have unit trace so that probability distributions are normalised.
There is, however, no general requirement that states correspond only to positive
operators.

We define a quasi-density operator to be a self-adjoint operator with unit trace.
Given a quasi-density operator ρ and an observable X we say that ρ is compatible
with X (and vice versa) exactly if

Tr [ρ |x⟩⟨x|] ≥ 0 (2.1)
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for any eigenvector |x⟩ of X. A quasi-density operator predicts non-negative, nor-
malised probability distributions for any observable with which it is compatible. For
a quantum miniature having a set of observables OM we therefore require that any
quasi-density operator representing a state in that miniature is compatible with all
elements of OM . We also assume that every quasi-density operator compatible with
all observables represents a state – this assumption is similar to the no-restriction
hypothesis for generalised probabilistic theories [18, 49]. This leads to the following
postulate on states in a miniature:
SM States of a system are represented by quasi-density operators, ρ, on H, subject

to the requirement that

Tr [ρ |x⟩⟨x|] ≥ 0 (2.2)

for every eigenvector, |x⟩, of every observable. Every quasi-density operator
satisfying (2.2) represents a state.

We denote the space of all states in a given miniature by ΩM . This set is determined
by the set of observables OM ; we can think of each observable as placing a set of
constraints on the state space, i.e., each eigenvector of each observable places a
linear inequality on the possible states, and ΩM consists all quasi-density operators
satisfying these inequalities. Note that compatibility of a quasi-density operator, ρ,
with an observable X, implies that ρ is also compatible with any function f(X), since
the projectors onto eigenstates of f(X) are a subset of the projectors for X itself. To
define the state space of a miniature, it therefore suffices to demand compatibility
with every basic observable.

There are some features common to the state spaces of all miniatures. Firstly, we
note that ΩM is convex for every miniature, since compatibility with any observable
is preserved by convex combinations. Given any |x⟩ ∈ H, we have

Tr [(λρ+ (1 − λ)ρ′) |x⟩⟨x|] = λTr [ρ |x⟩⟨x|] + (1 − λ)Tr [ρ′ |x⟩⟨x|] , (2.3)

so, for any 0 ≤ λ ≤ 1,

Tr [ρ |x⟩⟨x|] ≥ 0 and Tr [ρ′ |x⟩⟨x|] ≥ 0 =⇒ Tr [(λρ+ (1 − λ)ρ′) |x⟩⟨x|] ≥ 0. (2.4)

Applying this result to each eigenvector of the observables within a given miniature,
we find

ρ, ρ′ ∈ ΩM =⇒ λρ+ (1 − λ)ρ′ ∈ ΩM (2.5)
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for any 0 ≤ λ ≤ 1, i.e., ΩM is a convex set1. We call a state extremal if it can not be
expressed as a convex combination of other states.

Another feature common to all miniatures is that ΩM always contains ΩQ as a
subset, ΩQ ⊆ ΩM . This is because any positive operator ρ satisfies (2.1) for any |x⟩,
and is therefore compatible with every possible observable. Hence, these operators
(corresponding to quantum states) are always elements of the state space of any
quantum miniature. As a particular special case, we may consider the miniature
where the set of observables consists all self-adjoint operators, so that OM = OQ. In
this case, states must satisfy

Tr [ρ |x⟩⟨x|] ≥ 0 (2.6)

for every projector |x⟩⟨x| on H, i.e., they must be positive operators. The state space
is therefore equal to that of standard quantum theory, ΩM = ΩQ. The quantum
miniature framework includes standard quantum theory as a special case.

There are also many cases where the inclusion ΩQ ⊂ ΩM is strict, so that ΩM

contains non-quantum states represented by quasi-density operators with some
negative eigenvalues. These negative eigenvalues only occur if a measurement
containing a projector onto the associated eigenspace is impossible to perform using
the apparatus available, so negative eigenvalues can never be observed in a miniature.

A broad class of miniatures which are readily seen to contain non-quantum states
are those miniatures where the dimension of the Hilbert space and the number of basic
observables are both finite. In this case, every basic observable introduces finitely
many linear inequalities, and ΩM is therefore a convex polytope (not necessarily
bounded). Since ΩQ is not a polytope, we immediately conclude that ΩM ̸= ΩQ.

2.3 EQUIVALENCE CLASSES

In standard quantum mechanics, distinct density operators may always be distin-
guished by appropriate measurements2. Viewing quantum mechanics within the

1The fact that quantum miniatures always have a convex state space indicates compatibility
with the GPT framework.

2For example, given distinct density operators ρ and ρ′, the operator D = ρ − ρ′ is Hermitian
and therefore an observable in quantum theory. D is non-zero since ρ and ρ′ are distinct and
hence has non-zero Hilbert-Schmidt norm. Noting that ∥D∥2

HS = ⟨D⟩ρ − ⟨D⟩ρ′ , we have that
⟨D⟩ρ ̸= ⟨D⟩ρ′ , so the density operators may be distinguished by repeated measurements of D. In a
given quantum miniature, this measurement may not be performable.
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framework of generalised probabilistic theories, this is essential in matching density
operators to the more general notion of state: by definition, states in a generalised
probabilistic theory are distinguishable on the basis of probability measurements.

In the case of quantum miniatures, the hypothetical measurement which could
distinguish between a given pair of quasi-density operators may not correspond to
an observable in the miniature. This means that, with the apparatus available, these
quasi-density operators can not be distinguished on the basis of experimental data
obtained from performable experiments.

We can instead define states as equivalence classes of operators, where two
operators, ρ and ρ′, are equivalent (denoted ρ ∼ ρ′) if they generate identical
probability distributions for all available measurements. Thus, ρ ∼ ρ′ if and only if,
for every observable X ∈ O, and for every eigenvalue x of X, we have

Tr [ρ |x⟩⟨x|] = Tr [ρ′ |x⟩⟨x|] , (2.7)

i.e., the probability for each outcome of every performable measurement is the same.
We denote equivalence classes by square brackets:

[ρ] = {ρ′ ∈ Ω | ρ′ ∼ ρ} , (2.8)

and the space of all equivalence classes by an overbar:

Ω̄ = {[ρ] | ρ ∈ Ω}. (2.9)

In many cases, we define this set by a convenient choice of representative for each
class.

The space Ω̄ inherits a natural convex structure from Ω if we define convex
combinations of equivalence classes in the following way:

λ[ρ] + (1 − λ)[ϕ] = [λρ+ (1 − λ)ϕ], (2.10)

where λ ∈ [0, 1] and ρ and ϕ are any representatives of their respective equivalence
classes. We can define probability maps for equivalence classes:

P(x|[ρ]) = P(x|ρ) for any ρ ∈ [ρ]. (2.11)

By construction this is independent of the choice of representative. The probability
maps [ρ] 7→ P(x|[ρ]) are convex-linear.



28 Chapter 2. Quantum Miniatures

We note that, while quantum miniatures generically contain additional non-
quantum states, the property of observational indistinguishability is not a novel
feature of these states. The indistinguishability rather arises as a result of miniatures
not possessing the full set of measurements available in standard quantum theory.
We will see examples in Section 3.1.1 of pairs of proper quantum states which are
indistinguishable, as well as quantum states which are indistinguishable from non-
quantum states. It is often of interest, within a particular miniature, to distinguish
between those equivalence classes which contain at least one proper density operator,
and those which do not. We will refer to equivalence which contain at least one
proper density operator as quantum states.

2.4 SYMMETRIES

In many miniatures of interest, the set of observables has some symmetry, i.e. OM

is invariant under some collection of unitary maps, G. The state space inherits this
symmetry in the sense that, given a state ρ ∈ ΩM and a unitary U ∈ G, the operator
ρ′ = U †ρU is also a valid state. This is related to the covariance of the positivity
constraints of SM. To see this, let ρ be a state of ΩM . Given any X ∈ O, denote
X ′ = UXU † so that, by assumption, X ′ ∈ OM . If |x⟩ is an eigenvector of X with
eigenvalue x, then U |x⟩ is an eigenvector of X ′, also with eigenvalue x. Now,

Tr [ρ′ |x⟩⟨x|] = Tr
[
U †ρU |x⟩⟨x|

]
(2.12)

= Tr
[
ρU |x⟩⟨x|U †

]
(2.13)

= P(X ′ = x|ρ). (2.14)

Since ρ is a state and X ′ is an observable, we have that

0 ≤ P(X ′ = x|ρ) ≤ 1, (2.15)

and so

0 ≤ Tr [ρ′ |x⟩⟨x|] ≤ 1. (2.16)

The quasi-density operator ρ′ is therefore compatible with the observable X. Since
X was chosen arbitrarily, ρ′ must be compatible with all observables, so represents
a state. Hence, the state space is invariant under the map ρ 7→ ρ′ = U †ρU .
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Furthermore this map is invertible and the inverse is convex-linear so that, if ρ is an
extremal state, ρ′ is also extremal.

We finally note that symmetry transformations acting on quasi-density operators
preserve equivalence classes. More generally, we have the following:

Proposition 2.4.1. If the state space is closed under a linear map U : L(H) → L(H),
then U preserves equivalence classes, i.e., if

U Ω ⊆ Ω (2.17)

then

ρ ∼ ρ′ =⇒ Uρ ∼ Uρ′ for all ρ, ρ′ ∈ Ω. (2.18)

Proof. Assume U : ρ 7→ U(ρ) is a linear map which does not preserve equivalence
classes. There thus exists a pair of quasi-density operators, ρ and ρ′, such that ρ ∼ ρ′

and U(ρ) ≁ U(ρ′), so (without loss of generality)

P(x| U(ρ)) > P(x| U(ρ′)) (2.19)

for a measurement outcome x of some observable. Define

σ = (1 + λ)ρ′ − λρ; (2.20)

this is a valid state for any value of λ since P(x|σ) = P(x|ρ) ≥ 0 for all x.
Under U , this maps to

U(σ) = (1 + λ) U(ρ′) − λU(ρ), (2.21)

so that
P(x| U(σ)) = (1 + λ)P(x| U(ρ′)) − λP(x| U(ρ)) (2.22)

This, however, is negative for any value of λ satisfying

λ >
P(x| U(ρ′))

P(x| U(ρ)) − P(x| U(ρ′)) . (2.23)

For such values of λ, the operator U(σ) is not a valid state and so the state space is
not closed under the map U .
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2.5 COMPOSITE SYSTEMS

In quantum miniatures, we maintain the postulate, C, that the Hilbert space of a
joint system is given by the tensor product of the Hilbert spaces of each subsystem,

HAB = HA ⊗ HB. (2.24)

In standard quantum mechanics, with the additional postulate that all Hermitian
operators are observable, this tensor product postulate is sufficient to determine the
complete sets of observables and states for the joint system (since each is entirely
determined by the Hilbert space). There are therefore general relations between OA

Q,
OB

Q and OAB
Q , and between ΩA

Q, ΩB
Q and ΩAB

Q . The space of observables in this case
is itself a Hilbert space and inherits the same tensor product structure3:

OAB
Q = OA

Q ⊗ OB
Q. (2.25)

We can also define a valid tensor product of convex sets, ⊗̃, by the property

D(HA)⊗̃D(HB) = D(HA ⊗ HB), (2.26)

where D(H) denotes the space of density operators on H (for details, see e.g. [71],
sections 5.1 and 8.2), so that

ΩAB
Q = ΩA

Q ⊗̃ ΩB
Q. (2.27)

For a quantum miniature, the set of observables must be specified in its own right,
and the state space is determined from the observables. Just as for single systems,
the set of observables of a joint system is determined by the scope of the experimental
apparatus available. This is decided not only by the individual capabilities of the
measurement apparatuses for each subsystem, but also by the manner in which
these apparatuses are able to interact and be used jointly. Hence, OAB is not fully
determined by OA and OB; it is necessary also to give the full physical context.

For example, we may wish to describe an experimental set-up involving distant
parties, A and B, where each party has access to a localised measurement apparatus.
In this case we assume that A can measure observables from a set OA, and B can

3Note that it is more common in the GPT literature to refer to tensor products between the
effect space of each party. In our context, the effect space is the convex hull of the set of projectors
associated to each observable.
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measure observables from a set OB. We further assume that there is no interaction
between the apparatuses, and that A and B are both able to communicate the
results of their measurement. This experimental setup allows the measurement of
any observable which is the tensor product of observables for each party. Thus, the
set of joint observables, OAB, consists exactly those of product type:

OAB =
{
X ⊗ Y |X ∈ OA, Y ∈ OB

}
. (2.28)

Note that this is different from the minimal tensor product, which would also include
convex combinations of product observables4.

We may also imagine setups where the subsystems are more localised. In this
case, there may be measurement devices capable of performing non-separable joint
measurements and projecting onto non-separable elements of the joint Hilbert space.
In all cases, the joint state space is determined by the joint observables in accordance
with the postulate SM.

Reduced states Given a composite physical system, we may wish to describe the
reduced state of a particular subsystem. In standard quantum mechanics, this
reduced state is given by the partial trace. A defining property of the partial trace
is that it correctly reproduces the statistics for measurements performed by a single
party. Given a density operator ρ ∈ D(HAB), denote the reduced state ρA = TrB(ρ),
then for any projector E on HA,

Tr [ρ(E ⊗ 1)] = Tr [ρAE] . (2.29)

This property is not dependent on the positivity of ρ, and continues to provide
a useful notion of reduced state in the context of quantum miniatures. Consider a
bipartite miniature which allows for measurements on a single subsystem, A, and
denote the space of all observables measurable in this way by OA. Then the partial
trace of any bipartite state produces a valid state within the single-system miniature
defined by the observables OA, i.e., if

X ∈ OA =⇒ X ⊗ 1 ∈ OAB (2.30)

then

ρ ∈ ΩAB =⇒ TrB(ρ) ∈ ΩA. (2.31)

This follows immediately from (2.29).
4The minimal tensor product would correctly describe the joint effect space.
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2.6 POSTULATES FOR QUANTUM MINIATURES

We now summarise the postulates developed over the course of the preceding section.
Kinematics:

M A physical system is represented by a complex Hilbert space, H, and a set
OM ⊆ L∗(H).

OM Observables are represented by elements of OM .

SM States of a system are represented by quasi-density operators ρ on H, subject
to the requirement that

Tr [ρ |x⟩⟨x|] ≥ 0 (2.32)

for every eigenvector, |x⟩, of every observable. Every quasi-density operator
satisfying (2.32) represents a state.

C Given systems A and B, with Hilbert spaces HA and HB, respectively, the
Hilbert space of the joint system AB is given by the tensor product HA ⊗ HB.

Measurement: Given a system in state ρ, and an observable represented by X ∈ OM ,
with eigenvectors |x⟩ and corresponding eigenvalues x,

E the possible outcomes of a measurement of X are the eigenvalues x;

B the probability to obtain outcome x is given by the Born rule:

P(x|ρ) = Tr [ρ |x⟩⟨x|] . (2.33)

If we supplement these postulates with the assumption that all self-adjoint
operators correspond to observables, the postulates above are equivalent to those
presented in 1.3 for kinematics and measurement in standard quantum theory.

In this work, we do not treat dynamics in full generality for miniatures, so we do
not adopt any general postulates. For individual models, it is possible to identify
some possible options. For example, Section 4.1 describes a quantum miniature for
a particle system; in this case we can define a consistent dynamics, and can also
rule out certain seemingly reasonable alternatives, including evolution by the free
Hamiltonian. In general, it is expected that miniatures having a state space larger
than quantum theory, the dynamics will be restricted relative to the usual quantum
case. At the minimum, we will require that dynamics must preserve the state space.
In Section 3.1.1, we identify a possible source of ambiguity when seeking to define a
rule for state update in quantum miniatures.
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2.7 QUANTUM MINIATURES AS GPTS

In this section, we will show how quantum miniatures can be described within
the framework of generalised probabilistic theories (GPTs). A particular theory in
the GPT framework is specified by a collection of possible ways for systems to be
prepared; a collection of possible measurements on a system, and a collection of
possible outcomes for each measurement; the probability for a measurement on a
system to return a specified outcome, given a specified preparation of the system. If
two preparations of a system yield the same probability for any given measurement
outcome to occur, these preparations are said to be operationally equivalent. A state
is defined to be an equivalence class of such operationally equivalent preparations.
Similarly, two measurement outcomes are said to be operationally equivalent if
they occur with equal probability for any given preparation. Equivalence classes of
measurement outcomes are called effects. For a comprehensive review of GPTs, see
e.g. [48, 71].

There are several equivalent approaches to defining specific theories within the
GPT framework, as discussed in [71]. One may start from the state space (with
effects acting as probability-valued maps on states), or start from an effect algebra
(with states acting on probability-valued maps on effects), or from a description of
the collection of conditional probabilities which may theoretically be observed. In
quantum miniatures, a specific model is defined by the set of observables, and the
state space derived therefrom. The approach which most closely resembles this is to
construct a GPT from an abstract effect algebra.

An effect algebra [32] consists of a set E with a partially defined binary operation
+ and elements 0, 1 ∈ E . Given a, b ∈ E we write a ⊥ b if a + b exists. For any
a, b, c ∈ E we require that:
(E1) If a ⊥ b then b ⊥ a and a+ b = b+ a.

(E2) If a ⊥ b and (a+ b) ⊥ c then b ⊥ c, a ⊥ (b+ c) and (a+ b) + c = a+ (b+ c).

(E3) For every a ∈ E there exists a′ ∈ E such that a ⊥ a′ and a+ a′ = 1.

(E4) If a ⊥ 1 then a = 0.
An effect algebra E is called a convex effect algebra [36] if for every a ∈ E and

λ ∈ [0, 1], there exists an element λa such that the following conditions hold for all
λ, µ ∈ [0, 1], a, b ∈ E :
(C1) µ(λa) = λ(µa).
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(C2) If λ+ µ ≤ 1, then λa ⊥ µa and λa+ µa = (λ+ µ)a.

(C3) If a ⊥ b, then λa ⊥ λb and λa+ λb = λ(a+ b).

(C4) 1a = a.
A representation theorem for convex effect algebras establishes a useful description

in terms of convex cones. Given a vector space V and a convex, pointed cone C ⊂ V ,
we may define a partial order ⪯C on V such that, for v, w ∈ V ,

v ⪯C w ⇐⇒ w − v ∈ C. (2.34)

It has been shown that, for any convex effect algebra E , there exists a vector space
V and a pointed convex cone C ⊂ V such that E is affinely isomorphic to an interval
with respect to the partial order ⪯C [37],

E ∼= {v ∈ V | 0 ⪯C v ⪯C u}, (2.35)

where u is a non-zero element of V . Conversely, any convex pointed cone equips the
interval (2.35) with the structure of a convex effect algebra [71].

Given an effect algebra characterised by a cone C, we define the pre-state space
S(E) by

S(E) = {f ∈ C∗ | f(u) = 1}, (2.36)

where C∗ is the dual cone to C. If C is a generating cone, then this is a state space
(cf. Definition 3.29 in [71]).

In standard quantum theory, effects are represented by positive operators,
bounded by identity [32]:

EQ = {X ∈ L∗(H) | 0 ≤ X ≤ 1}. (2.37)

Projection operators are extremal elements of this convex set [25].

Effect algebras for quantum miniatures We may define effect algebras for quantum
miniatures in a similar way, by considering different partial orders on the space
L∗(H). Consider a given quantum miniature with set of observables OM and denote
by PM the set consisting of all projectors onto the eigenvectors of each observable in
OM . From the set PM , we construct the smallest cone containing the projectors in
PM , and their convex combinations,

CM = cone(conv(PM)). (2.38)
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We will show that this cone is pointed and convex.
By definition, every element of CM is a non-negative multiple of a convex combi-

nation of projectors in the set PM . Hence, given X,X ′ ∈ CM , we may write

X = α
∑
i∈I

µiEi, X ′ = α′ ∑
j∈J

µ′
jE

′
j, (2.39)

where α, α′ ∈ R+, {µi}i∈I , {µ′
j}j∈J are probability distributions and Ei, E

′
j ∈ PM .

Now, given λ ∈ (0, 1), we have

λX + (1 − λ)X ′ =
∑
i∈I

λαµiEi +
∑
j∈J

(1 − λ)α′µ′
jE

′
j (2.40)

= α′′ ∑
k∈I∪̇J

µ′′
kE

′′
k , (2.41)

where α′′ = λα + (1 − λ)α′ and

µ′′
k =


λα
α′′µk k ∈ I

(1−λ)α′

α′′ µ′
k k ∈ J

, E ′′
k =


Ek k ∈ I

E ′
k k ∈ J

. (2.42)

Here, α′′ ∈ R+, {µ′′
k}k∈I∪̇J is a probability distribution and E ′′

k ∈ PM , so λX + (1 −
λ)X ′ ∈ CM , which demonstrates that CM is convex.

Furthermore, note that PM contains only positive operators (in particular, projec-
tion operators). Any convex combination of elements of PM , and any non-negative
scalar multiple thereof, is also a positive operator, i.e., CM contains only positive
operators. Hence, X ∈ CM ∩ (−CM) only if X = 0, i.e., CM is a pointed cone.

We can then define the effect algebra EM of the quantum miniature in analogy
with (2.37) as an interval with respect to the partial order ⪯M ,

EM = {X ∈ L∗(H) | 0 ⪯M X ⪯M 1}. (2.43)

By Proposition 3.23 in [71], EM has the structure of a convex effect algebra.
Since CM contains only positive operators, we have

X ⪯M Y =⇒ X ≤ Y. (2.44)

It follows that the effect algebra of a quantum miniature is always a subset of
the quantum effect algebra EQ. Elements of PM are extremal points in EM : being
projection operators, they can not expressed as non-trivial convex combination of
elements in EQ, in particular of elements in the subset EM . It also follows that the
effect algebra of a quantum miniature is equal to the quantum effect algebra only if
PM contains all projectors.
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Quasi-density operators as pre-states We now construct the naturally associated
pre-state space S(EM ), in the sense of (2.36). First we must construct the dual cone,
C∗

M . This is a cone in the dual vector space [L∗(H)]∗ of linear maps L∗(H) → R,
defined by

C∗
M = {f ∈ [L∗(H)]∗ | f(X) ≥ 0 for all X ∈ CM} (2.45)

Since L∗(H) is a real inner product space under the Hilbert-Schmidt inner product,
the Riesz representation theorem [75] guarantees that, for every map f ∈ [L∗(H)]∗,
there exists a unique operator ρ ∈ L∗(H) such that5

f(X) = Tr [ρX] for all X ∈ L∗(H). (2.46)

Hence, C∗
M is isomorphic to a set of self-adjoint operators:

C∗
M

∼= {ρ ∈ L∗(H) | Tr [ρX] ≥ 0 for all X ∈ CM}. (2.47)

The pre-state space associated to EM consists of the normalised elements of the dual
cone,

S(EM) = {f ∈ C∗
M | f(1) = 1}. (2.48)

This is isomorphic to a set of quasi-density operators:

S(EM) ∼= {ρ ∈ L∗(H) | Tr [ρ] = 1,Tr [ρX] ≥ 0 for all X ∈ CM}. (2.49)

Note finally that the quasi-density operators in the set (2.49) are exactly those which
are compatible with all projectors in PM , since

Tr [ρX] ≥ 0 for all X ∈ CM ⇐⇒ Tr [ρX] ≥ 0 for all X ∈ PM . (2.50)

The set of quasi-density operators in (2.49) is therefore exactly the set ΩM described
in Section 2.2.

Equivalence classes By definition, states in GPTs are distinguishable on the basis of
measurement probabilities. Distinct quasi-density operators may generate identical
probabilities for all available measurements in a miniature. To align with the GPT

5The operator ρ is specified uniquely by the action of f on the whole of L∗(H); distinct operators
may result in the same action on a given subspace of interest. This point is developed below in the
discussion of equivalence classes.
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definition of states, quasi-density operators may be sorted into equivalence classes,
as discussed in Section 2.3. By construction, equivalence classes are distinguishable
on the basis of measurement probabilities.

An alternative approach when describing miniatures in terms of convex cones is to
recognise that CM may be understood as a cone in the subspace of L∗(H) spanned by
the projectors onto eigenstates of the basis observables, VM = span(PM ), rather than
the full vector space L∗(H) if these differ. In this case, CM is a generating cone in
VM . We may then understand the dual cone C∗

M as a cone in the dual space V ∗
M . The

Riesz representation theorem still holds, which shows that all equivalence classes have
a unique representative in span(PM ). Note that we always have 1 ∈ span(PM ) since
PM contains at least one measurement, i.e., a collection {Ei}i such that ∑i Ei = 1.



3

Finite dimensions: quantum miniatures
for spin systems

3.1 SPIN s = 1/2

3.1.1 Square-world

Set-up Consider an experimental set-up where one has access to a Stern-Gerlach
apparatus to perform measurements of spin. This particular apparatus can not
be rotated arbitrarily so as to measure spin components in an arbitrary direction,
but rather is limited to a fixed pair of mutually orthogonal directions, which we
label x and z respectively. It is observed that there are two possible outcomes from
each measurement, which we label + and −, respectively. We aim to construct a
Quantum Miniature, which we call Square-world, to describe this set-up. It will be
shown that this theory reproduces the predictions of Boxworld (also known as the
g-bit or squit), a well-known example of a GPT, studied in detail in [7].

Following the principles laid out in Chapter 2, the theory is developed in terms of a
Hilbert space, here H = C

2, and anything which can be measured by the experimental
apparatus is to be considered an observable within the theory. Furthermore, we
assume that any such observable is represented by the same Hermitian operator as
appears in the usual quantum mechanical description. Any property which can not
be measured is not treated as an observable in the theory.

In the case considered here, the apparatus allows measurements of spin in the
directions x and z, so we include the usual operators σx and σz as observables in the
theory. Since our apparatus is limited to these directions we do not, for example,

38
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take spin in other directions to be observable.
The full set of basic observables, Osquare, for this particular miniature is therefore

Osquare = {σx, σz}. (3.1)

State space We now construct the state space of Square-world. In line with the
general idea of Quantum Miniatures, we allow as a state any normalised Hermitian
operator ρ : H → H which is compatible with all available measurements. Given
any Hermitian operator, ρ, we may write

ρ = 1
2 (aσx + bσy + cσz + d1) (3.2)

for some a, b, c, d ∈ R. Compatibility is defined by the condition that these gen-
erate valid probabilities for each possible measurement outcome of the available
measurements σx and σz. The projectors onto the eigenstates of σx and σz are

Ex
+ = 1+ σx

2 , Ex
− = 1− σx

2 , (3.3)

Ez
+ = 1+ σz

2 , Ez
− = 1− σz

2 , (3.4)

and these define the probabilities for each outcome:

P(σx = ±|ρ) = Tr
[
ρEx

±

]
, P(σz = ±|ρ) = Tr

[
ρEz

±

]
. (3.5)

By direct computation,

Tr [ρ] = d, (3.6)

and the predicted probabilities are

Tr
[
ρEx

±

]
= d± a

2 , Tr
[
ρEz

±

]
= d± c

2 . (3.7)

We require that states have unit trace1, and that predicted probabilities are non-
negative. No other positivity constraints are enforced. Hence, ρ is a valid state if
and only if d = 1, −1 ≤ a ≤ 1 and −1 ≤ c ≤ 1. This defines the space, Ωsquare, of
Square-world states:

Ωsquare =
{1

2 (1+ aσx + bσy + cσz)
∣∣∣∣− 1 ≤ a, c ≤ 1, b ∈ R

}
. (3.8)

1If we adopt the idea of unreliable preparations from the generalised probabilistic theories
framework, then we take 0 ≤ Tr [ρ] ≤ 1, and the state space is a square-faced pyramid rather than
the square face itself. Throughout this work, we restrict attention to reliable preparations, i.e., all
states considered have unit trace.
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We can compare this with the space, ΩQ, of states available in standard quantum
theory:

ΩQ =
{1

2 (1+ aσx + bσy + cσz)
∣∣∣∣(a2 + b2 + c2)1/2 ≤ 1

}
. (3.9)

We see that ΩQ is a strict subset of Ωsquare, so that Square-world contains all quantum
states, but also states which are not admissible in quantum theory with a full set of
observables. In particular, there are states which predict negative probabilities if we
apply the Born rule to operators which are observable in standard quantum theory
but not in the miniature.

Consider, for example, the state ρ = (1 + σx + σz)/2. For a hypothetical
measurement of the operator (σx + σz)/

√
2, we would predict, according to the Born

rule, that

P
(
σx + σz√

2
= +

∣∣∣∣ ρ
)

= 1 +
√

2
2 , P

(
σx + σz√

2
= −

∣∣∣∣ ρ
)

= 1 −
√

2
2 . (3.10)

Placing a restriction on the available measurements has thus allowed for a wider
class of states to be admissible in the theory.

An alternative approach is to consider a construction in the manner of (1.2).
Thus, we can define an operator A by the property that

⟨A|ρ⟩ = 1√
2

(⟨σx|ρ⟩ + ⟨σz|ρ⟩) for all ρ ∈ Ωsquare. (3.11)

This uniquely identifies

A = 1√
2

(σx + σz). (3.12)

However, ⟨A|ρ⟩ has no tenable interpretation as an expectation value if we assume
that measurement outcomes are eigenvalues of the associated operator. Making this
assumption, then a measurement of A has possible outcomes ±1. A probability
distribution over two outcomes is completely determined by its expectation value:

“P(A = +1|ρ)” = 1
2(1 + ⟨A|ρ⟩), (3.13)

“P(A = −1|ρ)” = 1
2(1 − ⟨A|ρ⟩) (3.14)

For some states, this ‘probability’ is negative, e.g. for ρ = (1+ σx + σz)/2,

“P(A = −1|ρ)” = 1 −
√

2
2 < 0. (3.15)
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We therefore can not interpret A as being observable, even in principle. We see
that compatibility with some collection of operators does not imply compatibility
with linear (even convex) combinations thereof. Hence, the state space – being
defined by compatibility with basic observables – is not necessarily compatible with
an extension of Osquare by closure under linear combinations.

Equivalence Classes So far, we have carried over the notion from quantum me-
chanics that (quasi-) density operators correspond to states one-to-one. In quantum
mechanics, distinct density operators may always be distinguished by appropriate
measurements. In Square-world and other miniatures, however, it is not guaranteed
that the measurement which could distinguish the relevant operators is admissible
in the theory.

It may be more appropriate then to define states in Square-world as equivalence
classes of operators, where two operators are equivalent if they generate identical
probability distributions for σx and σz measurements.

Two operators in Ωsquare,

ρ = 1
2 (1+ aσx + bσy + cσz) , ρ′ = 1

2 (1+ a′σx + b′σy + c′σz) , (3.16)

are equivalent if and only if a = a′ and c = c′. Hence, the equivalence class of an
operator ρ = (1+ aσx + bσy + cσz)/2 is

[ρ] =
{1

2 (1+ aσx + b′σy + cσz)
∣∣∣∣ b′ ∈ R

}
. (3.17)

Denote by Ω̄square the space of equivalence classes:

Ω̄square = {[ρ]| ρ ∈ Ωsquare} . (3.18)

We can identify each equivalence class by any operator within the class, and for
convenience we will choose representative operators for which b = 0:

Ω̄square =
{1

2 (1+ aσx + cσz)
∣∣∣∣− 1 ≤ a, c ≤ 1

}
. (3.19)

This set of representatives is closed under convex combinations, and gives a concrete
realisation of the convex structure of Ω̄square, in accordance with (2.10). Any state
in Ω̄square may be written as a convex combination of the four extremal states

ρ̃1 = 1+ σx + σz

2 , ρ̃2 = 1+ σx − σz

2 , (3.20)

ρ̃3 = 1− σx − σz

2 , ρ̃4 = 1− σx + σz

2 . (3.21)
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ρ̃1 ρ̃2 ρ̃3 ρ̃4
Ex

+ 1 1 0 0
Ex

− 0 0 1 1
Ez

+ 1 0 0 1
Ez

− 0 1 1 0

Table 3.1: Table of fiducial probabilities for Square-world.

Using these and the projectors (3.3), we can generate the following table of fiducial
probabilities: These reproduce the statistics for fiducial measurements in Boxworld
[7]. The probabilities of any measurement outcome in any state may be calculated
from these fiducial probabilities by linearity.

From the probability table 3.1 we see that the additional, non-quantum, states
found in Square-world have properties different from any quantum state. For example,
the extremal states all predict definite outcomes for a measurement of σx, and also
predict definite outcomes for a measurement of σz. No quantum state has this
property since the operators σx and σz have no eigenstates in common.

The extremal states, ρ̃n, are examples of joint quasi-eigenstates. A state, ρ,
is a quasi-eigenstate of an observable, X, if ρ predicts a definite outcome for a
measurement of X, or equivalently if the variance vanishes,

∆2
ρ(X) = 0. (3.22)

We do not, however, require that Xρ = λρ.

ρ̃3

ρ̃4 ρ̃1

ρ̃2

Figure 3.1: For a Square-world state ρ = 1
2(1 + r · σ), r may lie anywhere in the

blue square shown, while quantum states are restricted to the dashed circle.
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Uncertainty Relations Quantum theory predicts certain constraints on the uncer-
tainties of two or more observables in a given state. The observables available in
Square-world, Sx and Sz, have no eigenstates in common. Quantum mechanics
therefore predicts that there is no state in which both of these observables can
simultaneously be sharply predicted, i.e., in which the variance for both observables
is zero. For spin-1/2, a quantitative bound is given by

∆2
ρ(Sx) + ∆2

ρ(Sz) ≥ 1
4 , (3.23)

where ρ is any quantum state.
We have seen, however, that Square-world contains states which are not quan-

tum states. The proof of relation (3.23) does not apply to these states, since the
corresponding quasi-density operators are not positive-semidefinite. In fact, there
is no non-trivial lower bound on the sum of the variances, since all four extremal
states, ρ̃i, predict zero variances for both measurements:

∆2
ρ̃i

(Sx) + ∆2
ρ̃i

(Sz) = 0. (3.24)

A general expression for the sum of variances in a state ρ = (1+ aσx + cσz)/2 is
given by

∆2
ρ(Sx) + ∆2

ρ(Sz) = 1
2 − a2 + c2

4 , (3.25)

which illustrates that the relation (3.23) is in fact violated by all non-quantum states
of Square-world. The full Square-world uncertainty region, PURsquare(Sx, Sz), for
the observables Sx and Sz is defined simply by independent upper and lower bounds,
with the lower bounds themselves being trivial:

PURsquare(Sx, Sz) = [0, 1/2] × [0, 1/2]. (3.26)

In moving to the quantum miniatures framework, we have not changed the
description of observables compared to the ordinary quantum mechanical description.
In particular, any relationship between these is preserved, including commutation
relations. Thus, while uncertainty relations like (3.23) refer explicitly only to Sx and
Sz, their validity is implicitly related to the ability (in principle) to measure other
observables which do not feature directly in the relation.
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Dynamics and state update A spin-1/2 system in standard quantum mechanics has
spherical symmetry, related to the ability to (in principle) rotate the measurement
apparatus in an arbitrary direction, or a passive equivalent. Restricting the measure-
ments breaks this symmetry, leaving a state space which is symmetric only under
permutations of the extremal states. This is related to a relabelling of the directions
available to the measurement apparatus, and of the outcomes spin-up or spin-down.
There are no non-trivial continuous dynamics which respect this symmetry.

Another novel feature of Square-world is that the state in which measurement of
a given observable has definite outcome is non-unique. For example, in any state
which is a convex combination of ρ̃1 and ρ̃2, a measurement of σx will result in the +
outcome with probability 1. This may have implications for the post-measurement
state.

3.1.2 Polygon-worlds

It is possible to construct a wide variety of quantum miniatures in the same spirit
as Square-world, by considering similar Stern-Gerlach apparatuses with different
restrictions. We again assume we have access to an ensemble of spin-1/2 systems and
a Stern-Gerlach apparatus, which may be directed in a certain set of directions. An
interesting family of miniatures – including Square-world as a special case – arises if
we take these allowed directions to exhibit discrete rotational symmetry. The state
space of each miniature is a polygon which inherits the symmetry of the observables
in each case, illustrating the general argument of 2.4. Disk-world may be seen as a
limiting case where the number of directions approaches infinity, and reproduces the
rebit, a subtheory of quantum mechanics [16, 2].

Observables The Hilbert space in each case is H = C
2. A particular miniature

within the Polygon-world family is specified by a natural number, N , which specifies
how many directions spin can be measured in. In each case, we take these directions,
ηn, to be evenly spaced around the xz-plane:

ηn =


cosϕn

0
sinϕn

 , where ϕn = 2π(n− 1)
N

(3.27)

for n = 1, . . . , N . Our experimental apparatus allows measurements of spin com-
ponents in each available direction, Sηn

= (ηn · σ)/2. We note that there is some
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symmetry inherent in the set-up. This is because, for any direction η, we have that
S−η = −Sη, so any apparatus capable of measuring Sη is also effectively capable of
measuring S−η. The directions available to our apparatus therefore come in pairs,
and it is natural to only consider cases where N is even. Furthermore, it suffices
to take only those spin components within a given half-plane, say with 0 ≤ ϕn < π.
This gives the set of basic observables for an N -gon model:

ON -gon = {ηn · σ}n=1,...,N/2 . (3.28)

States States of each model are those quasi-density operators which predict valid
probabilities for each outcome of each observable. The projectors onto to the ±
eigenstates of ηn · σ are

E±
n = 1± ηn · σ

2 . (3.29)

Given any quasi-density operator ρ = (1+ r · σ)/2, we have

Tr
[
ρE±

n

]
= 1 ± ηn · r

2 . (3.30)

Thus, ρ is a state exactly if each of these probabilities is non-negative for every basic
observable. Since the respective probabilities for the + and − outcomes sum to one,
positivity also implies that each probability is no greater than 1.

The state space is thus constrained by N inequalities:

ηn · r ≥ −1
ηn · r ≤ 1

for each n = 1, . . . , N2 , (3.31)

or, equivalently,

ηn · r ≤ 1 for each n = 1, . . . , N. (3.32)

These inequalities define N lines bounding the state space. The lines indexed by
n and m respectively are linearly independent if and only if n ̸= m. The extremal
states are at points where two of these lines meet, subject to satisfying the remaining
inequalities. This occurs only for lines whose indices differ by one, intersecting at
the N points, rn, which satisfy ηn · rn = ηn+1 · rn = 1:

rn = sec
(
π

N

)cos
(

2πn
N

− π
N

)
sin

(
2πn
N

− π
N

) . (3.33)
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The extremal states, ρ̃n, are then given by

ρ̃n = 1
2 (1+ rn · σ) . (3.34)

These are joint quasi-eigenstates of ηn · σ and ηn+1 · σ, each having value +1 with
probability 1. Extremal states therefore violate the quantum uncertainty relation
(1.11).

The state space is the convex hull of the extremal points rn. This is a regular
N -gon with radius RN = sec(π/N), defined as the maximum magnitude of the vector
r compatible with (3.31). The edges of the polygon are normal to the directions in
which spin measurements can be performed.

These models reproduce the predictions for single-party systems of the polygon
models introduced by Janotta et al [47].

3.1.3 Disk-world and the Bloch Disk

We now consider an experimental setting where we again have a Stern-Gerlach
apparatus which is limited to the xz-plane, but we now assume that this apparatus
is able to rotate freely within the plane. Every spin component within this plane is
therefore an observable. Denote by Pxz the set of unit vectors within the xz-plane,
then

Odisk = {η · σ | η ∈ Pxz} (3.35)

The state space is constrained by inequalities of the form (3.32), related to every
direction in the xz-plane:

η · r ≤ 1 for all η ∈ Pxz. (3.36)

These inequalities are collectively satisfied only if ρ is equivalent to a positive operator,
after modding out ry. Every state of Disk-world is therefore also a quantum state.
We have an equality of equivalence classes,

Ω̄disk = Ω̄Q. (3.37)

Here, Ω̄Q denotes the set of quantum states, modulo the equivalence relation

ρ ∼ ρ′ ⇐⇒ ry(ρ) = ry(ρ′). (3.38)
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We can characterise Ω̄Q by a set of representatives which have ry = 0:

Ω̄Q =
{1

2 (1+ aσx + cσz)
∣∣∣∣ a2 + c2 ≤ 1

}
. (3.39)

These representatives constitute all positive semi-definite 2 × 2 matrices with real-
valued entries and unit trace. This gives the Bloch disk, the state space of the
rebit.

The state spaces of the n-gon models converge to the state space of Disk-world
as n → ∞, in the sense that Ωdisk ⊂ Ωn for all n and, given any point r /∈ Ωdisk,

∃N ∈ N such that n > N =⇒ r /∈ Ωn. (3.40)

In particular,

lim
n→∞

Rn = 1. (3.41)

The equality of equivalence classes Ω̄disk = Ω̄Q implies that the uncertainty
region [14] for any tuple of observables in Disk-world is identical to the quantum
uncertainty region: no quantum uncertainty relation concerning operators which
represent Disk-world observables can be violated by any Disk-world state.

3.1.4 Cylinder-world

We have so far considered models in which the available directions for spin measure-
ments are restricted to (a subset of) the plane. We now consider an experimental
apparatus which can freely rotate within the xz-plane, similarly to Disk-world, and
can also rotate discretely at an angle of π/2, in a manner similar to Square-world,
to point in the y-direction.

Thus, with this apparatus one can measure spin components in all directions
within the xz-plane, and in the y-direction, but not in any intermediate directions.
The observables are

Ocyl = {η · σ | η ∈ Pxz} ∪ {σy}. (3.42)

This model exhibits continuous symmetry under rotations in the xz-plane.

States Every Disk-world observable is also an observable within Cylinder-world. We
therefore have all of the constraints imposed in Disk-world, (3.36), and additionally
a pair of constraints on ry, reflecting compatibility with the additional observable σy:

Tr
[
ρE±

y

]
≥ 0 ⇐⇒ −1 ≤ ry ≤ 1. (3.43)
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Figure 3.2: Illustration of the cylindrical state space of Cylinder-world, Ωcyl. The
state space of standard quantum mechanics is the inscribed sphere (the Bloch sphere),
also shown.

These constraints are independent of the constraints (3.36), which only affect the
components rx and rz. The space of quasi-density operators fitting these constraints
can therefore be expressed in a factorisable form:

Ωcyl = Ωdisk × [−1, 1]. (3.44)

The state space is a cylinder. This cylinder circumscribes the Bloch sphere, as
illustrated in Figure 3.2.

The set of Disk-world observables Odisk is a strict subset of the set of Cylinder-
world observables, Ocyl. Accordingly, the set Ωcyl of quasi-density operators compati-
ble with Ocyl is a strict subset of Ωdisk, the set of quasi-density operators compatible
with Odisk, since all constraints from Odisk are imposed, as well as additional con-
straints.

However, the larger set of observables in Ocyl allows for finer distinction between
quasi-density operators, impacting the structure of equivalence classes. Indeed, Ocyl

is tomographically complete, so that any pair of quasi-density operators can be
distinguished on the basis of available measurements (for example, the parameters
a, b, c in (3.2) are equal to the expectation values of σx, σy, σz respectively, so may
be determined by these measurements which are all contained in Ocyl). Hence, all
equivalence classes in Cylinder-world are trivial, containing exactly one quasi-density
operator. This means that Ωcyl ⊂ Ωdisk, whereas Ω̄cyl ⊃ Ω̄disk. In particular,

Ωcyl = Ωdisk ∩ (R2 × [−1, 1]) (3.45)



3.1. Spin s = 1/2 49

and

Ω̄cyl = Ω̄disk × [−1, 1]. (3.46)

3.1.5 Recovering standard quantum theory

In general, any miniature in which every self-adjoint operator is observable has a
state space equal to that of the corresponding quantum system. For spin-1/2, an
arbitrary Hermitian operator X on H = C

2 can be written

X = aσx + bσy + cσz + d1 (3.47)

with a, b, c, d ∈ R. This expression can be equivalently written as a function of a
single spin component,

X = A(η · σ) + d(η · σ)2, (3.48)

where A =
√
a2 + b2 + c2 and η · σ is the spin component in the direction

η = 1
A


a

b

c

 . (3.49)

To recover the usual quantum state space, it is therefore sufficient to assume that
spin components in every direction can be measured.

It is also sufficient to assume that any dense subset of the sphere correspond to
spin components which can be measured. Let D be a dense subset of S2, then given
any direction η ∈ S2, there exists a Cauchy sequence (ηn)n∈N within D such that

lim
n→∞

ηn = η. (3.50)

Given any vector r parameterising a quasi-density operator, the function x 7→ x · r
is continuous, so

lim
n→∞

(ηn · r) =
(

lim
n→∞

ηn

)
· r = η · r. (3.51)

It then follows that

−1 ≤ ηn · r ≤ 1 for all n ∈ N =⇒ −1 ≤ η · r ≤ 1, (3.52)

so any quasi-density operator which is compatible with ηn · σ for all n ∈ N is also
compatible with the spin component η · σ. Hence, any quasi-density operator which
is compatible with spin components on a dense subset of the sphere is compatible
with spin components in all directions, and is therefore a proper density operator.
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3.2 SPIN s = 1

3.2.1 General setting

In this section, we consider quantum miniatures for spin-1 systems. The general
setting is similar to that developed in Section 3.1 for spin-1/2 systems. For each
miniature under consideration, we take the set of observables to be dictated by
the capabilities of some Stern-Gerlach apparatus. In each case, we specify a set of
directions, D ⊆ S2, which we assume are available to the measurement apparatus.
Given a direction specified by a unit vector η ∈ S2, the spin component in that
direction is

Sη = η · S. (3.53)

The basic observables are then the spin components in each available direction:

OD = {Sη | η ∈ D} . (3.54)

Spin-1 systems provide more scope than spin-1/2 for the range of observables
that may be considered. In spin-1/2, any Hermitian operator may be written as
a function of a single spin component; in particular as a linear combination of a
spin component and the identity operator. Spin-1, in contrast, allows for non-trivial
quadratic expressions in the spin components. For example, given spins in mutually
orthogonal directions, Sη and Sη′ , the symmetric product (SηSη′ + Sη′Sη)/2 is not
expressible as a function of any single spin component.

States We can parameterise quasi-density operators for spin-1 systems in a similar
way to those of spin-1/2 systems. Given any unit-trace Hermitian operator ρ : H →
H, we may write [85]

ρ = 1
31+

8∑
i=1

riTi = 1
31+ r · T, (3.55)

where ri ∈ R and Ti are spin multipole operators:

T1 = Sx, T2 = Sy, T3 = Sz; (3.56)

T4 = 1
2(SxSy + SySx), T5 = 1

2(SySz + SzSy), T6 = 1
2(SzSx + SxSz); (3.57)

T7 = S2
x − 2

31, T8 = S2
y − 2

31. (3.58)
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Each of these operators is traceless. With respect to the Hilbert-Schmidt inner
product, ⟨A,B⟩HS = Tr

[
A†B

]
, each pair of basis elements is orthogonal, with the

exception that ⟨T7, T8⟩HS = −1/3. The Hilbert-Schmidt norms of each multipole
operator are

|T1|2 = |T2|2 = |T3|2 = 2, |T4|2 = |T5|2 = |T6|2 = 1
2 , |T7|2 = |T8|2 = 2

3 . (3.59)

Expressing as matrices in the Sz eigenbasis:

T1 = 1√
2


0 1 0
1 0 1
0 1 0

 , T2 = 1√
2


0 −i 0
i 0 −i
0 i 0

 , (3.60)

T3 =


1 0 0
0 0 0
0 0 −1

 ; (3.61)

T4 = 1
2


0 0 −i
0 0 0
i 0 0

 , T5 = 1
2
√

2


0 −i 0
i 0 i

0 −i 0

 , (3.62)

T6 = 1
2
√

2


0 1 0
1 0 −1
0 −1 0

 ; (3.63)

T7 = 1
6


−1 0 3
0 2 0
3 0 −1

 , T8 = 1
6


−1 0 −3
0 2 0

−3 0 −1

 . (3.64)

By definition, states are required to give valid probabilities for each outcome of
any available observable, i.e., for any η ∈ D,

0 ≤ Tr
[
ρE+

η

]
≤ 1, 0 ≤ Tr

[
ρE0

η

]
≤ 1 and 0 ≤ Tr

[
ρE−

η

]
≤ 1. (3.65)

These inequalities contain redundant information; states are normalised and the
projectors sum to identity, so that (identically, independent of any positivity con-
straints)

Tr
[
ρE+

η

]
+ Tr

[
ρE0

η

]
+ Tr

[
ρE−

η

]
= Tr [ρ1] = 1. (3.66)

It is therefore sufficient to require that probabilities be non-negative:

Tr
[
ρE+

η

]
≥ 0, Tr

[
ρE0

η

]
≥ 0 and Tr

[
ρE−

η

]
≥ 0 (3.67)
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and it follows that each of these must be less than 1.
For any direction η, Sη has eigenvalues +1, 0,−1 and so we can write the spectral

decomposition:

Sη = E+
η − E−

η , (3.68)

where E±
η are the projectors onto the +1 and −1 eigenstates respectively. Hence,

the projectors onto the eigenvalues are

E±
η = 1

2
(
S2

η ± Sη

)
(3.69)

E0
η = 1− S2

η (3.70)

Given a quasi-density operator ρ, the probabilities for each outcome are given by
P(+|ρ) = Tr

[
ρE+

η

]
etc., and ρ is compatible with the observable Sη if and only if

each of these quantities is a valid probability. Compatibility is then expressed by
the following inequalities:

⟨S2
η⟩ρ + ⟨Sη⟩ρ ≥ 0 (3.71)

⟨S2
η⟩ρ − ⟨Sη⟩ρ ≥ 0 (3.72)

1 − ⟨S2
η⟩ρ ≥ 0 (3.73)

or, equivalently,

| ⟨Sη⟩ | ≤ ⟨S2
η⟩ ≤ 1. (3.74)

These can be expressed by linear inequalities on the vector r = (r1, . . . , r8) appearing
in (3.55):

2|η · r| ≤ Vη · r + 2
3 ≤ 1, (3.75)

where

η =



a

b

c

0
0
0
0
0



, Vη =



0
0
0
ab

bc

ca

a2 − 1/3
b2 − 1/3



. (3.76)
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Note that any value pair {⟨Sη⟩ , ⟨S2
η⟩} consistent with (3.74) is attainable by

some quantum state. Consider

ρ = α

(
1 + β

2 |1⟩⟨1| + 1 − β

2 |−1⟩⟨−1|
)

+ (1 − α) |0⟩⟨0| ; (3.77)

this is a quantum state for any 0 ≤ α ≤ 1, −1 ≤ β ≤ 1, and

⟨Sz⟩ = αβ, ⟨S2
z ⟩ = α, (3.78)

which exhausts all possible values consistent with (3.74). This suggests that the
non-quantum character of any states which may appear in a spin-1 miniature can not
be identified by the measurement statistics of any individual spin component, but
rather in relationships between the statistics of distinct measurements. Uncertainty
relations are an example of such relationships.

For each miniature we consider, we aim to identify the range of parameters ri

such that the associated quasi-density operator represents a state of that miniature.
In standard quantum theory, the analogous problem has received much attention [15,
54, 11], and various bases have been used for parameterising density operators [46,
55, 11]. Even for standard quantum theory, the problem of identifying the space of
parameters corresponding to valid states is known to be complicated. The basis we
use, introduced in (3.55), does not have the property of a ‘practical basis’ [11], since
not all basis elements are orthogonal, but is well adapted to specific consideration of
spin measurements.

Overview We consider three models for spin-1 miniatures. One of these, Cube-world,
has its state space completely characterised, with a complete list of extremal states
given in (3.97). For the other two models, Cylinder-world and Sphere-world, partial
results are available. In Cylinder-world, two distinct continuous families of extremal
states have been identified, (3.127) and (3.140), but we are able to show that this
list is incomplete. The full set of extremal states is unknown. For Sphere-world,
no non-quantum states have been identified, and it is unknown whether or not the
state space of Sphere-world is equal to that of standard quantum theory. Some
implicit steps towards characterising the state space include a demonstration that
Sphere-world states are compatible with symmetric products of orthogonal spin
components, despite these not being observables in the model.
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3.2.2 Cube-world

Observables Consider firstly a spin-1 system where only three orthogonal spin
components Sx, Sy and Sz are assumed observable,

Ocube = {Sx, Sy, Sz}. (3.79)

Recall that this implies that any function of a single spin component such as
α1+βSx +γS2

x is also observable, but joint functions such as Sx +Sy or SxSy +SySx

are not. We refer to this miniature as Cube-world.

States Given a quasi-density operator, ρ = 1
31+ r · T,

⟨Sx⟩ρ = 2r1, ⟨S2
x⟩ρ = 2

3r7 − 1
3r8 + 2

3; (3.80a)

⟨Sy⟩ρ = 2r2, ⟨S2
y⟩ρ = −1

3r7 + 2
3r8 + 2

3; (3.80b)

⟨Sz⟩ρ = 2r3, ⟨S2
z ⟩ρ = −1

3r7 − 1
3r8 + 2

3 . (3.80c)

According to (3.74), ρ represents a Cube-world state if and only if

2|r1| ≤ 2
3 + 2

3r7 − 1
3r8 ≤ 1, (3.81a)

2|r2| ≤ 2
3 − 1

3r7 + 2
3r8 ≤ 1, (3.81b)

2|r3| ≤ 2
3 − 1

3r7 − 1
3r8 ≤ 1. (3.81c)

The parameters r4, r5 and r6 do not feature in the probabilities, so factor out when
considering equivalence classes. In the following, we therefore work with a reduced
parameter vector, r = (r1, r2, r3, r7, r8). By rearranging, the constraints (3.81) can
be expressed as a set of nine linear inequalities,

vi · r ≤ xi (3.82)
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for each i ∈ Ī = {1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c}, where

v1a = (−6, 0, 0,−2, 1)⊤, x1a = 2, (3.83)
v1b = (6, 0, 0,−2, 1)⊤, x1b = 2, (3.84)
v1c = (0, 0, 0, 2,−1)⊤, x1c = 1, (3.85)
v2a = (0,−6, 0, 1,−2)⊤, x2a = 2, (3.86)
v2b = (0, 6, 0, 1,−2)⊤, x2b = 2, (3.87)
v2c = (0, 0, 0,−1, 2)⊤, x2c = 1, (3.88)
v3a = (0, 0,−6, 1, 1)⊤, x3a = 2, (3.89)
v3b = (0, 0, 6, 1, 1)⊤, x3b = 2, (3.90)
v3c = (0, 0, 0,−1,−1)⊤, x3c = 1. (3.91)

Each inequality defines a half-space and the state space of Cube-world is the convex
polytope given by the intersections of these half-spaces:

Ωcube = {r ∈ R5 | ∀i ∈ Ī, vi · r ≤ xi}. (3.92)

The polytope Ωcube is bounded by the hyperplanes vi · r = xi, for i ∈ Ī.
Identifying extremal states, which are vertices of the polytope, represents a vertex

enumeration problem [27], for which a wide range of algorithms are known [63, 26,
5]. In this simple case, the vertices can be enumerated by hand. In dimension d,
any linearly independent collection of d hyperplanes intersect at a unique point,
known as a basic solution. Such a point saturates d inequalities; if it also satisfies
the remaining inequalities, it is an extremal point of the polytope, known as a basic
feasible solution. If a basic solution for one collection of inequalities violates another
inequality, it corresponds to a point lying outside the polytope.

Here, d = 5. Given a 5-element subset I ⊂ Ī we can form the matrix VI , whose
rows are the vectors vi for each i ∈ I. We similarly define the vector, xI , with
entries xi for each i ∈ I. For example, if I = {1b, 1c, 2b, 3a, 3b},

VI =



v⊤
1b

v⊤
1c

v⊤
2a

v⊤
3a

v⊤
3b


=



6 0 0 −2 1
0 0 0 2 −1
0 6 0 1 −2
0 0 −6 1 1
0 0 6 1 1


, xI =



2
1
2
2
2


. (3.93)
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The intersection, rI , of the five hyperplanes in I satisfies

VIrI = xI . (3.94)

Since we consider linearly independent sets of hyperplanes, the matrix VI will in
each case be non-singular, and can therefore be inverted to find rI :

rI = V −1
I xI . (3.95)

To identify all extremal points, it therefore suffices to construct VI for all linearly
independent, 5-element subsets I, to solve (3.95) for the basic solutions, and finally
to check whether each of these is compatible with the remaining inequalities.

To identify the linearly independent subsets, note that every such set must contain
at least one of vka or vkb for each k ∈ {1, 2, 3}. We can therefore eliminate from
consideration sets which do not meet this requirement or which contain any of the
following linearly dependent subsets:

{1a, 1b, 1c}, {2a, 2b, 2c}, {3a, 3b, 3c}, {1c, 2c, 3c}, {1a, 1b, 2c}, {2a, 2b, 1c}. (3.96)

It may be verified by exhaustion that this eliminates all linearly dependent sets.
Table 3.2 lists all linearly independent 5-element subsets I ⊂ Ī, and the associated

basic solutions rI . The table also indicates which of these are the feasible solutions:
these correspond to the extremal states. The following is a complete list of the 12
extremal states of Cube-world:

ρ̃(±,±,0) = 1
31+ 1

2(±Sx ± Sy) +
(
S2

x − 2
31
)

+
(
S2

y − 2
31
)
, (3.97a)

ρ̃(±,0,±) = 1
31+ 1

2(±Sx ± Sz) +
(
S2

x − 2
31
)

+
(
S2

z − 2
31
)
, (3.97b)

ρ̃(0,±,±) = 1
31+ 1

2(±Sy ± Sz) +
(
S2

y − 2
31
)

+
(
S2

z − 2
31
)
. (3.97c)

Each of these is a joint quasi-eigenstate of all three basic observables, Sx, Sy and
Sz. Exactly one of these observables has eigenvalue zero in each case, while the
remaining two are ±1, with every combination being possible. The subscripts in
(3.97) indicate the eigenvalues of (Sx, Sy, Sz) for each state.

A degenerate model A miniature related to Cube-world emerges if we consider an
experimental set-up where only the squares of spin components can be measured,
i.e.,

Ocube′ =
{
S2

x, S
2
y , S

2
z

}
. (3.98)
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v1a v1b v1c v2a v2b v2c v3a v3b v3c rI

• • ✓ • • ✓ • ✓ X (0, 0,−1,−2,−2)
• • ✓ • ✓ • • ✓ ✓✓ (0, −1/2, −1/2, −1, 0)
• • ✓ • ✓ X • • ✓ (0,−1, 0, 0, 2)
• • ✓ • ✓ ✓✓ • ✓ • (0, −1/2, −1/2, −1, 0)
• ✓ • • • ✓ • ✓ ✓✓ (−1/2, 0, −1/2, 0, −1)
• ✓ • • ✓✓ ✓ • ✓ • (−1/2, 0, −1/2, 0, −1)
• ✓ • • ✓ ✓✓ • • ✓ (−1/2, −1/2, 0, 1, 1)
• ✓ X • • ✓ • • ✓ (−1, 0, 0, 2, 0)
• ✓ ✓✓ • • ✓ • ✓ • (−1/2, 0, −1/2, 0, −1)
• ✓ ✓✓ • ✓ • • • ✓ (−1/2, −1/2, 0, 1, 1)
• ✓✓ ✓ • ✓ • • ✓ • (0, −1/2, −1/2, −1, 0)
✓ • • • ✓ ✓✓ • • ✓ (1/2, −1/2, 0, 1, 1)
✓ • • • ✓✓ ✓ • ✓ • (1/2, 0, −1/2, 0, −1)
✓ • X • • ✓ • • ✓ (1, 0, 0, 2, 0)
✓ • ✓✓ • • ✓ • ✓ • (1/2, 0, −1/2, 0, −1)
✓ • ✓✓ • ✓ • • • ✓ (1/2, −1/2, 0, 1, 1)
✓✓ • ✓ • ✓ • • ✓ • (0, −1/2, −1/2, −1, 0)
• • ✓ ✓ • X • • ✓ (0, 1, 0, 0, 2)
• • ✓ ✓ • ✓✓ • ✓ • (0, 1/2, −1/2, −1, 0)
• ✓ • ✓ • ✓✓ • • ✓ (−1/2, 1/2, 0, 1, 1)
• ✓ • ✓✓ • ✓ • ✓ • (−1/2, 0, −1/2, 0, −1)
• ✓ ✓✓ ✓ • • • • ✓ (−1/2, 1/2, 0, 1, 1)
• ✓✓ ✓ ✓ • • • ✓ • (0, 1/2, −1/2, −1, 0)
• • ✓ • • ✓ ✓ • X (0, 0, 1,−2,−2)
• • ✓ • ✓ ✓✓ ✓ • • (0, −1/2, 1/2, 0, −1)
• ✓ • • ✓ • ✓✓ • ✓ (−1/2, −1/2, 0, 1, 1)
• ✓ • • ✓✓ ✓ ✓ • • (−1/2, 0, 1/2, 0, −1)
• ✓ ✓✓ • • ✓ ✓ • • (−1/2, 0, 1/2, 0, −1)
✓ • • ✓ • ✓✓ • • ✓ (1/2, 1/2, 0, 1, 1)
✓ • • ✓✓ • ✓ • ✓ • (1/2, 0, −1/2, 0, −1)
✓ • ✓✓ ✓ • • • • ✓ (1/2, 1/2, 0, 1, 1)
✓✓ • ✓ ✓ • • • ✓ • (0, 1/2, −1/2, −1, 0)
✓ • • ✓✓ • ✓ ✓ • • (1/2, 0, 1/2, 0, −1)
✓ • ✓✓ • • ✓ ✓ • • (1/2, 0, 1/2, 0, −1)
• • ✓ ✓ • ✓✓ ✓ • • (0, 1/2, 1/2, −1, 0)
• ✓✓ ✓ ✓ • • ✓ • • (0, 1/2, 1/2, −1, 0)
✓ • • ✓✓ • ✓ ✓ • • (1/2, 0, 1/2, 0, −1)
✓✓ • ✓ ✓ • • ✓ • • (0, 1/2, 1/2, −1, 0)

Table 3.2: Table with columns labelled by the vectors vi, and rows consisting all
linearly independent, 5-element subsets I ⊂ Ī. Dots indicate elements of I for each
row, with other entries denoting whether the associated solution, rI , is compatible
(✓) or incompatible (X) with each inequality, vi · rI ≤ xi. Double checkmarks
indicate that the inequality is saturated, i.e., vi · rI = xi. Basic feasible solutions
are marked in bold.
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The possible outcomes of each measurement are 0,+1. In this case, each basic
observable is degenerate, having a 2-dimensional eigenspace associated to the outcome
+1 and a 1-dimensional eigenspace associated to the outcome 0. Physically, such a
measurement might be implemented by an apparatus similar to the Stern-Gerlach
device which performs Cube-world measurements, but is unable to distinguish the
sign of the outcome.

The rank-2 projector onto the +1-eigenspace of S2
η is just S2

η itself, and the rank-1
projector onto the 0-eigenspace is 1− S2

η. Hence, in a state ρ, the probabilities for
each outcome are given by

P(S2
η = 1|ρ) = Tr

[
ρS2

η

]
, P(S2

η = 0|ρ) = Tr
[
ρ(1− S2

η)
]
, (3.99)

so a quasi-density operator ρ is compatible with S2
η if and only if

0 ≤ ⟨S2
η⟩ρ ≤ 1. (3.100)

Applying this to η = x, y, z, a quasi-density operator ρ = 1
31+ r · T is compatible

with Ocube′ if and only if

0 ≤ 2
3 + 2

3r7 − 1
3r8 ≤ 1, (3.101a)

0 ≤ 2
3 − 1

3r7 + 2
3r8 ≤ 1, (3.101b)

0 ≤ 2
3 − 1

3r7 − 1
3r8 ≤ 1. (3.101c)

The parameters (r7, r8) are therefore limited to a triangle with vertices at (−1, 0),
(0,−1) and (1, 1). This provides a simpler model since the equivalence classes are
2-dimensional.

3.2.3 Cylinder-world: invariance under U(1) × Z2

Observables For the next miniature, Cylinder-world, we postulate that we can
measure spin in the z-direction, as well as any direction in the xy-plane. We
abbreviate Sϕ = cosϕSx + sinϕSy, and the basic observables are

Ocyl = {Sz} ∪ {Sϕ |ϕ ∈ [0, 2π)}. (3.102)

This model has cylindrical symmetry. Denote by Uϕ,ϕ′ the unitary operator which
maps Sϕ to Sϕ′ , while leaving Sz invariant:

Sϕ′ = Uϕ,ϕ′SϕU
†
ϕ,ϕ′ . (3.103)
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Define ρ′ = Uϕ′ϕρU
†
ϕ′ϕ, then

⟨Sϕ′⟩ρ′ = ⟨Sϕ⟩ρ and ⟨S2
ϕ′⟩ρ′ = ⟨S2

ϕ⟩ρ (3.104)

so that

ρ is a state =⇒ ρ′ is a state. (3.105)

We use the shorthand Uϕ = U0,ϕ, so that Uϕ,ϕ′ = Uϕ′U †
ϕ and

UϕTU †
ϕ = (Rϕ ⊕ Pϕ)T (3.106)

where Rϕ and Pϕ are the actions of a rotation on the linear and quadratic basis
elements respectively:

Rϕ =


cosϕ sinϕ 0

− sinϕ cosϕ 0
0 0 1

 , (3.107)

Pϕ =



cos2 ϕ− sin2 ϕ 0 0 − cosϕ sinϕ cosϕ sinϕ
0 cosϕ − sinϕ 0 0
0 sinϕ cosϕ 0 0

cosϕ sinϕ 0 0 cos2 ϕ sin2 ϕ

− cosϕ sinϕ 0 0 sin2 ϕ cos2 ϕ


. (3.108)

We can then express the action of an azimuthal rotation on an arbitrary state, ρ:

ρ 7→ ρ′ = 1
31+ r′ · T (3.109)

where

r′ = (R⊤
ϕ ⊕ P⊤

ϕ )r = (R−ϕ ⊕ P−ϕ)r. (3.110)

The model also exhibits symmetry under reflection in the z-direction, Πz. Under
such a reflection Sz 7→ −Sz while leaving Sx, Sy invariant, we can again express the
action on an arbitrary state via the parameters r:

r 7→ diag(1, 1,−1, 1,−1,−1, 1, 1)r. (3.111)
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States A quasi-density operator ρ is a state if and only if

| ⟨Sz⟩ρ | ≤ ⟨S2
z ⟩ρ ≤ 1, (3.112a)

| ⟨Sϕ⟩ρ | ≤ ⟨S2
ϕ⟩ρ ≤ 1 for all ϕ ∈ [0, 2π). (3.112b)

Given a quasi-density operator, ρ = 1
31+ r · T, the relevant expectation values are

⟨Sz⟩ρ = 2r3, (3.113a)

⟨S2
z ⟩ρ = −1

3r7 − 1
3r8 + 2

3; (3.113b)

⟨Sϕ⟩ρ = 2(r1 cosϕ+ r2 sinϕ), (3.113c)

⟨S2
ϕ⟩ρ = r4 cosϕ sinϕ+ r7

(
cos2 ϕ− 1

3

)
+ r8

(
sin2 ϕ− 1

3

)
+ 2

3 . (3.113d)

The parameters r5 and r6 do not feature in the probabilities, so factor out when
considering equivalence classes.

In the majority of miniatures we have considered so far, there have been finitely
many basic observables, and the systems have all been finite-dimensional. This
means that there are finitely many positivity constraints. The state space for each
of these miniatures is a polytope, and therefore completely characterised by a finite
number of extremal states, which can be identified from the positivity constraints by
vertex enumeration. In the case of cylinder-world, there is an uncountable family
of basic observables, leading to an uncountable family of positivity constraints, so
techniques of vertex enumeration are not applicable in this case.

These previous miniatures do however give an indication of properties we may
expect extremal states to have. In all miniatures considered so far, every extremal
state is a joint quasi-eigenstate of some pair (or triplet) of non-commuting observables.
Furthermore, if any joint quasi-eigenstates of a given pair of observables do exist,
then there is an extremal state which is a joint quasi-eigenstate of these observables.
In seeking the extremal states of Cylinder-world, we therefore aim to construct such
states.

To this end, we first consider the case where one of these observables is the spin
component in the z-direction, Sz. This does not commute with any of the azimuthal
spin components, Sϕ. If any joint quasi-eigenstate of Sz and Sϕ exists for some value
of ϕ, then this is connected by a unitary map to a joint quasi-eigenstate of Sz and
Sϕ′ for any other angle ϕ′, with the same pair of eigenvalues. It is therefore sufficient
to consider joint quasi-eigenstates of Sz and Sx. Furthermore, it is sufficient to
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consider those having eigenvalues 0 or +1, since the −1 quasi-eigenstates of Sx are
+1 quasi-eigenstates of S−x, which means they are related by a unitary rotation map.

Recall that, for any state, ρ,

⟨S2
x⟩ρ + ⟨S2

y⟩ρ + ⟨S2
z ⟩ρ = 2. (3.114)

It follows that there are no joint quasi-eigenstates having both values 0, since this
would then imply that ⟨S2

y⟩ = 2, in contradiction with the constraints (3.112).
There are also no joint quasi-eigenstates having both values +1. Assume that ρ

is a state such that

⟨Sx⟩ρ = ⟨S2
x⟩ρ = 1, (3.115)

⟨Sz⟩ρ = ⟨S2
z ⟩ρ = 1. (3.116)

From (3.113), r1(ρ) = r3(ρ) = 1/2, and thus from (3.113c), r2(ρ) = 0. Note that

⟨S2
x⟩ = 2

3r7 − 1
3r8 + 2

3 (3.117)

⟨S2
z ⟩ = −1

3r7 − 1
3r8 + 2

3 , (3.118)

so that r7(ρ) = 0 and r8(ρ) = −1. Thus, for this hypothetical joint quasi-eigenstate,
ρ, we can simplify the expressions (3.113c) and (3.113d):

⟨Sϕ⟩ρ = cosϕ, (3.119)

⟨S2
ϕ⟩ρ = r4(ρ) cosϕ sinϕ+ cos2 ϕ. (3.120)

In particular,
〈
S2

π/4

〉
ρ

= 1
2r4(ρ) + 1

2 , (3.121)〈
S2

3π/4

〉
ρ

= −1
2r4(ρ) + 1

2 , (3.122)

while
〈
Sπ/4

〉
ρ

=
〈
S3π/4

〉
ρ

=
√

2
2 , (3.123)

so we require that

1
2r4(ρ) + 1

2 ≥
√

2
2 (3.124)
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and

−1
2r4(ρ) + 1

2 ≥
√

2
2 ; (3.125)

adding these we have

1 ≥
√

2. (3.126)

This is a contradiction, so the initial assumption ⟨Sx⟩ = ⟨S2
x⟩ = 1 and ⟨Sz⟩ = ⟨S2

z ⟩ = 1
must be false, i.e., no joint quasi-eigenstate of Sx and Sz, having both values +1,
exists.

There are, however, joint quasi-eigenstates of Sz and Sϕ having definite values 0
for Sz and 1 for Sϕ for some given angle ϕ. Denote

r̃0
φ =

(1
2 cosφ, 1

2 sinφ, 0, 0, 1, 1
)

(3.127)

and the associated quasi-density operator, ρ̃0
φ = 1

31+ r̃0
φ · T, then

⟨Sz⟩ρ̃0
φ

= 0, ⟨S2
z ⟩ρ̃0

φ
= 0 (3.128)

⟨Sϕ⟩ρ̃0
φ

= cos(ϕ− φ), ⟨S2
ϕ⟩ρ̃0

φ
= 1. (3.129)

The requirements (3.112) are satisfied, so ρ̃0
φ is a state. This is a joint quasi-eigenstate

of Sz, with eigenvalue 0, and Sφ, with eigenvalue 1 (and hence is a non-quantum
state). Azimuthal rotations act on the parameter φ in this one-parameter family.

Furthermore, each state in the above family is extremal, i.e., for states ρ1 and ρ2,

ρ̃0
φ = λρ1 + (1 − λ)ρ2 for some λ ∈ (0, 1) =⇒ ρ1 = ρ2 = ρ̃0

φ. (3.130)

To prove this implication, we will assume the equality on the left-hand side, and
demonstrate that each of the parameters ri must be equal for the states ρ̃0

φ, ρ1 and
ρ2, and hence that the states are equal. Firstly, we note that

λ⟨S2
z ⟩ρ1 + (1 − λ)⟨S2

z ⟩ρ2 = ⟨S2
z ⟩ρ̃0

φ
= 0, (3.131)

but ⟨S2
z ⟩ρ1 ≥ 0 and ⟨S2

z ⟩ρ2 ≥ 0, so equality is only possible if ⟨S2
z ⟩ρ1 = ⟨S2

z ⟩ρ2 = 0.
This zero expectation value is sufficient to determine the parameters r3, r4, r7

and r8. Assume that ρ is any state for which ⟨S2
z ⟩ρ = 0. By compatibility with Sz, we

have also that ⟨Sz⟩ρ = 0, and so r3(ρ) = 0. By (3.114) we have that r7(ρ)+r8(ρ) = 2,
and we can simplify the expression for S2

ϕ in any such state:

⟨S2
ϕ⟩ρ = r4(ρ) cosϕ sinϕ+ r7(ρ) cos2 ϕ+ r8(ρ) sin2 ϕ. (3.132)
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In particular,
〈
S2

0

〉
ρ

= r7(ρ) and
〈
S2

π/2

〉
ρ

= r8(ρ). (3.133)

Compatibility with these spin measurements then implies r7(ρ) ≤ 1 and r8(ρ) ≤ 1,
so r7(ρ) + r8(ρ) = 2 only if r7(ρ) = r8(ρ) = 1. Thus, the parameters r7 and r8 are
fixed and we can further simplify:

⟨S2
ϕ⟩ρ = r4(ρ) cosϕ sinϕ+ 1. (3.134)

It is clear that ⟨S2
ϕ⟩ρ ≤ 1 for all ϕ ∈ [0, 2π) only if r4(ρ) = 0. Combining these

results, we obtain

⟨S2
z ⟩ρ = 0 =⇒ r3(ρ) = r4(ρ) = 0, r7(ρ) = r8(ρ) = 1, (3.135)

so that ρ1, ρ2 and ρ̃0
φ all agree in these parameters.

It remains to show that ρ1, ρ2 and ρ̃0
φ also agree in the parameters r1 and r2.

Given a quasi-density operator, ρ, define v(ρ) = (r1(ρ), r2(ρ)). Firstly note, since
the expectation value of all azimuthal spins is bounded, ⟨Sϕ⟩ ≤ 1, we have from
(3.113c) that

v(ρ) · u ≤ 1
2 for all unit vectors u, (3.136)

i.e., |v(ρ)| ≤ 1/2. Hence, for any λ ∈ (0, 1),

λ|v(ρ1)| + (1 − λ)|v(ρ2)| ≤ 1
2 , (3.137)

with equality only if |v(ρ1)| = |v(ρ2)| = 1/2. If ρ̃0
φ = λρ1 + (1 − λ)ρ2, then

v(ρ̃0
φ) = λv(ρ1) + (1 − λ)v(ρ2). (3.138)

By the triangle inequality,

λ|v(ρ1)| + (1 − λ)|v(ρ2)| ≥ |v(ρ̃0
φ)| = 1

2 , (3.139)

with equality only if v(ρ1) is parallel to v(ρ2). Combining (3.137) and (3.139), both
inequalities must be saturated, so that |v(ρ1)| = |v(ρ2)| = 1/2, and v(ρ1) ∥ v(ρ2).
Along with (3.138), these imply that v(ρ1) = v(ρ2) = v(ρ̃0

φ). We have therefore
proved the result (3.130), i.e., that ρ̃0

φ is extremal.
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Cylinder-world also contains joint quasi-eigenstates for Sz = 1 and Sϕ = 0:
consider

r̃+
φ =

(
0, 0, 1

2 ,−2 cosφ sinφ,− cos2 φ,− sin2 φ
)

(3.140)

and the associated quasi-density operator, ρ̃+
φ = 1

31+ r̃+
φ · T. The expectation values

predicted by this state are

⟨Sz⟩ρ̃+
φ

= 1, ⟨S2
z ⟩ρ̃+

φ
= 1 (3.141)

⟨Sϕ⟩ρ̃+
φ

= 0, ⟨S2
ϕ⟩ρ̃+

φ
= sin2(ϕ− φ). (3.142)

Again, the conditions (3.112) are satisfied, so ρ̃+
φ is also a state.

We have thus constructed continuous families of joint quasi-eigenstates, ρ̃0
φ, ρ̃0

φ+π,
ρ̃+

φ and Πzρ̃
+
φ , having eigenvalue pairs (Sz, Sφ) = (0,+1), (0,−1), (+1, 0) and (−1, 0)

respectively, and ruled out the existence of joint quasi-eigenstates having any other
eigenvalue pair. We can show, however, that these states do not exhaust the full
set of extremal states in Cylinder-world. To this end, consider the quasi-density
operator

ρ̃ = 1
31+ r̃ · T, where r̃ =

(1
4 ,

1
4 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2

)
. (3.143)

This operator lies outside the convex hull of the states identified so far, but is
nevertheless a Cylinder-world state. We have

⟨Sz⟩ρ̃ = 1, (3.144)
⟨S2

z ⟩ρ̃ = 1; (3.145)

⟨Sϕ⟩ρ̃ = 1
2(cosϕ+ sinϕ), (3.146)

⟨S2
ϕ⟩ρ̃ = 1

2(cosϕ sinϕ+ 1). (3.147)

It is clear that that ρ̃ is compatible with Sz. To see that ρ̃ is also compatible with
Sϕ for all ϕ ∈ [0, 2π), we note that the function f : [0, 2π) → R defined by

f : ϕ 7→ ⟨S2
ϕ⟩ρ̃ − | ⟨Sϕ⟩ρ̃ | (3.148)

is non-negative:

f(ϕ) = 1
2(cosϕ sinϕ+ 1 − | cosϕ+ sinϕ|) = 1

4 (1 − | cosϕ+ sinϕ|)2 ≥ 0. (3.149)
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Furthermore, supϕ(cosϕ sinϕ) = 1
2 , so

⟨S2
ϕ⟩ρ̃ ≤ 3

4 . (3.150)

Hence,

| ⟨Sϕ⟩ρ̃ | ≤ ⟨S2
ϕ⟩ρ̃ ≤ 1 for all ϕ ∈ [0, 2π), (3.151)

i.e., ρ̃ is compatible with all available spin measurements and so is a state.

3.2.4 Sphere-world: invariance under SU(2)

Observables In Sphere-world, we assume that our Stern-Gerlach apparatus may be
rotated freely, so that spin components in all directions may be measured.

OSph =
{
Sη

∣∣∣η ∈ S2
}
. (3.152)

States Similar to Cylinder-world, the state space of Sphere-world is defined by an
uncountable collection of positivity constraints. Namely, for every direction η ∈ S2

we require states to be compatible with Sη, so that

| ⟨Sη⟩ | ≤ ⟨S2
η⟩ ≤ 1 for all η ∈ S2. (3.153)

Let us check that the positivity conditions are compatible with the symmetry of
the model at hand. To do so, consider any Sphere-world state, ρ. Then, for any η,
with η′ related according to Sη = USη′U †,

⟨Sη⟩U†ρU = ⟨Sη′⟩ρ , ⟨S2
η⟩U†ρU = ⟨S2

η′⟩ρ. (3.154)

Since ρ is a state, it is compatible with all spin components, so in particular is
compatible with Sη′ , i.e.,

| ⟨Sη′⟩ρ | ≤ ⟨S2
η′⟩ρ ≤ 1. (3.155)

By the above, then

| ⟨Sη⟩U†ρU | ≤ ⟨S2
η⟩U†ρU ≤ 1, (3.156)

i.e., U †ρU is compatible with all spin components Sη. Furthermore the map ρ 7→
U †ρU is invertible and the inverse is convex so that, if ρ is an extremal state, U †ρU

is also extremal.
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A complete characterisation of the state space of Sphere-world is not yet known.
However, numerical sampling indicates that Sphere-world contains non-quantum
states, as discussed later in this section. We therefore have a quantum miniature
with full spherical symmetry which differs from standard quantum theory. The
existence of continuous reversible transformations between extremal states has been
identified as a ‘special feature’ of quantum theory in contrast to commonly studied
theories such as Boxworld [48]. Sphere-world shares this special feature.

As a step towards characterising the non-quantum states of Sphere-world, we
show that compatibility with linear spin components implies compatibility with
symmetric products of spin components in perpendicular directions. This is despite
the fact that a symmetric product can not be expressed as a function of any of the
basic observables, i.e., of a single spin component. We also show that non-quantum
Sphere-world states do not allow the violation of the additive uncertainty relation
(1.9).

The state space is bounded Before investigating non-quantum states, it is useful
to establish quantitative bounds on the state space. We demonstrate boundedness
component by component, using the parameterisation (3.55). From the inequalities
(3.153), we have that |η · r| ≤ 1/2 for any η ∈ S2. This holds in particular for the
spin components aligned with the axes x, y, z. Hence,

−1
2 ≤ ri ≤ 1

2 for i = 1, 2, 3. (3.157)

We also have that 0 ≤ ⟨S2
η⟩ ≤ 1 for the spin components aligned with the axes x

and y. Hence,

−1 ≤ r7 ≤ 1
2 , −1 ≤ r8 ≤ 1

2 . (3.158)

To see that the parameters ri are bounded for i = 4, 5, 6, consider measurements
of spin along the following directions:

η1 = 1√
3

(−1, 1, 1), (3.159)

η2 = 1√
3

(1,−1, 1), (3.160)

η3 = 1√
3

(1, 1,−1). (3.161)
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We have

Vη1 · r = −r4 + r5 − r6

3 , (3.162)

Vη2 · r = −r4 − r5 + r6

3 , (3.163)

Vη3 · r = r4 − r5 − r6

3 , (3.164)

where Vveta are as defined in (3.76). By adding these pairwise, (3.153) yields

−1
2 ≤ ri ≤ 1 for i = 4, 5, 6. (3.165)

All components of r are therefore bounded for any Sphere-world state, lying within
a hypercuboid Q ⊂ R

8,

Q = [−1/2, 1/2]3 × [−1/2, 1]3 × [−1, 1/2]2. (3.166)

Sphere-world contains non-quantum states Numerical sampling of quasi-density
operators indicates the existence of non-quantum states in Sphere-world. To identify
such states, one can generate a collection of pseudo-random points in the parameter
space Q. This collection of points can be mapped to a collection of quasi-density
operators by the parameterisation (3.55). Non-quantum Sphere-world states can
then be identified by applying a series of filters.

Firstly, we discard from the collection any quasi-density operators which are
positive (i.e., proper density operators corresponding to quantum states). Next,
we successively generate a series of pseudo-random directions η ∈ S2. For each
η, discard any quasi-density operators which are not compatible with Sη i.e., do
not satisfy the conditions (3.153). This is checked by evaluation of the relevant
expectation values.

At each stage of computation, we are left with a collection of quasi-density
operators which are compatible with spin components in all directions sampled so far.
Finally, we select a candidate ρ̃ from the remaining quasi-density operators. To check
that ρ̃ is indeed a Sphere-world state, i.e., is compatible with all spin components
(not just those in the directions sampled), we minimise the following functions:

f0 : η 7→ 1 − ⟨S2
η⟩ρ̃, (3.167)

f1 : η 7→ ⟨S2
η⟩ρ̃ + ⟨Sη⟩ρ̃ , (3.168)

f2 : η 7→ ⟨S2
η⟩ρ̃ − ⟨Sη⟩ρ̃ . (3.169)
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The conditions (3.153) are satisfied if and only if each function is non-negative on
the unit sphere, i.e.,

min
η∈S2

f0(η) ≥ 0 ⇐⇒ ⟨S2
η⟩ ≤ 1 for all η ∈ S2, (3.170)

min
η∈S2

f1(η) ≥ 0 ⇐⇒ − ⟨Sη⟩ ≤ ⟨S2
η⟩ for all η ∈ S2, (3.171)

min
η∈S2

f2(η) ≥ 0 ⇐⇒ ⟨Sη⟩ ≤ ⟨S2
η⟩ for all η ∈ S2. (3.172)

Note also that f1(η) = f2(−η), so min f1 = min f2 and it suffices to minimise just
one of these functions.

An example of a quasi-density operator ρ̃ generated by the process described
above is

ρ̃ =


0.64491 0.03659 − 0.00434i −0.00991 − 0.34284i

0.03659 + 0.00434i 0.29667 −0.03659 + 0.00434i
−0.00991 + 0.34284i −0.03659 − 0.00434i 0.05842

 , (3.173)

expressed as a matrix in the Sz eigenbasis. The operator ρ̃ is not positive, having
eigenvalues 0.805179, 0.298345 and −0.103524, so ρ̃ is not a quantum state. Min-
imising the functions f0 and f1 (with expectation values evaluated with respect to
ρ̃), we find that

min
η∈S2

f0(η) = 0.00307632, (3.174)

occuring at η = (0.694883, 0.705908, 0.137231), and

min
η∈S2

f1(η) = 0.0553177, (3.175)

occuring at η = (0.516326, 0.444366, 0.732083). The functions f0 and f1 are therefore
both non-negative everywhere on S2, so ρ̃ is indeed a Sphere-world state.

Compatibility with symmetric products We now show that all Sphere-world states
are compatible (in the sense of (2.1)) with symmetric products of spin components,
(SηSη′ + Sη′Sη)/2, for any pair of mutually perpendicular directions η,η′.

Consider first the symmetric product of Sx and Sy,

T4 = 1
2(SxSy + SySx). (3.176)
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T4 has eigenvalues ±1/2 and 0. The projectors onto eigenstates of T4 are

E+
4 = T4 + 2T 2

4 , (3.177)
E−

4 = −T4 + 2T 2
4 , (3.178)

E0
4 = 1− 4T 2

4 . (3.179)

Note that 4T 2
4 = S2

z .
Consider a measurement of spin in the directions

ζ1 =
(

1√
2
,− 1√

2
, 0
)
, (3.180)

ζ2 =
(

1√
2
,

1√
2
, 0
)
. (3.181)

We have, for any state ρ ∈ ΩSph,
〈
S2

ζ1

〉
ρ

= 1 −
〈
E+

4

〉
ρ
, (3.182)〈

S2
ζ2

〉
ρ

= 1 −
〈
E−

4

〉
ρ

(3.183)

and also

⟨S2
z ⟩ρ = 1 −

〈
E0

4

〉
ρ
. (3.184)

Since Sζ1 , Sζ2 and Sz are observable in Sphere-world,

0 ≤
〈
S2

η1

〉
ρ

≤ 1, 0 ≤
〈
S2

η2

〉
ρ

≤ 1, 0 ≤ ⟨S2
z ⟩ρ ≤ 1, (3.185)

so that

0 ≤
〈
E+

4

〉
ρ

≤ 1, 0 ≤
〈
E−

4

〉
ρ

≤ 1, 0 ≤
〈
E0

4

〉
ρ

≤ 1. (3.186)

These are exactly the conditions that ρ be compatible with T4.
Since the state space is invariant under SU(2) transformations, we also have that

every state is compatible with the symmetric product (SηSη′ + Sη′Sη)/2 for each
pair of mutually perpendicular directions, η and η′.

Uncertainty relations The additive uncertainty relation (1.9) holds in Sphere-world.
To see this, let ρ ∈ ΩSph be an arbitrary Sphere-world state and construct a vector,
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v(ρ), whose components are the expectation values for spin along the coordinate
axes x, y, z:

v(ρ) =
(
⟨Sx⟩ρ , ⟨Sy⟩ρ , ⟨Sz⟩ρ

)
. (3.187)

Note that

|v(ρ)|2 = ⟨Sx⟩2
ρ + ⟨Sy⟩2

ρ + ⟨Sz⟩2
ρ = |v(ρ)|Tr

[
ρSv̂(ρ)

]
(3.188)

where v̂(ρ) is a unit vector in the direction of v(ρ), and Sv̂ is the spin component in
that direction. Since Sv̂ is an observable, we have from (3.153) that Tr

[
ρSv̂(ρ)

]
≤ 1.

Hence,
|v(ρ)|2 ≤ |v(ρ)| so |v(ρ)| ≤ 1 . (3.189)

Note also that

⟨S2
x⟩ρ + ⟨S2

y⟩ρ + ⟨S2
z ⟩ρ −

(
⟨Sx⟩2

ρ + ⟨Sy⟩2
ρ + ⟨Sz⟩2

ρ

)
= 2 − |v(ρ)|2, (3.190)

and so

∆2
ρ(Sx) + ∆2

ρ(Sy) + ∆2
ρ(Sz) ≥ 1. (3.191)

This is the same bound attained for quantum states, and the bound is optimal – it
is saturated by e.g. a highest weight eigenstate of Sz.

It remains open to determine whether other quantum uncertainty relations
regarding spin may be violated by Sphere-world states.

A simpler model may be considered along the lines of the degenerate model
described in Section 3.2.2, where the squares of spin components in every direction
are taken as observables. This model would have a reduced parameter space, since
the coefficients r1, r2 and r3 of the linear terms in the multipole expansion (3.55) do
not feature. However, this degenerate model would be of interest since it shares the
symmetry properties of Sphere-world described above.

3.3 BIPARTITE SPIN MINIATURES

3.3.1 A pair of Square-world systems

Consider a situation where two parties, A and B, each have access to a spin-1/2
system and a Stern-Gerlach apparatus restricted in the manner described in Section
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3.1.1. Each party can therefore measure spin components in either the x or z
direction. We assume that A and B are widely separated, so that no non-separable
measurements can be performed.

Hence, the experimental set-up allows spin measurements on either system
individually, while performing no measurement on the other system – described
by observables of the form σi ⊗ 1 or 1⊗ σj. We also assume that the two parties
can communicate the results of their measurements, so can perform joint spin
measurements – described by observables of the form σi ⊗σj . This set-up is described
by a bipartite quantum miniature, with the set of basic observables being

O2SW = {σx ⊗ 1, σz ⊗ 1,1⊗ σx,1⊗ σz, σx ⊗ σx, σx ⊗ σz, σz ⊗ σx, σz ⊗ σz}.
(3.192)

We will show that this miniature allows all bipartite non-signalling correlations.

State space For composite systems, we maintain the idea that the possible states
of a theory are dictated by compatibility with all observables. States are there-
fore represented by quasi-density operators on the joint Hilbert space, subject to
the requirement that states must generate valid probability distributions for any
measurement which we are able to perform.

As such, we do not directly postulate any relationship between the state space,
ΩAB, of the composite system and the state spaces, ΩA and ΩB, of the constituent
sub-systems; in particular we do not postulate any particular tensor product, such as
the maximum or minimum tensor products described in [71]. Instead the composite
state space is defined by the set of observables, OAB, and any tensor product structure
which does appear in ΩAB will be a consequence of the structure of O.

The Hilbert space for the joint system in this case is HAB = HA ⊗HB ∼ C
4. Any

quasi-density operator, ρ, on HAB can be parameterised by the expectation values
predicted for measurements of spin on each subsystem [43] – namely, rj = ⟨σj ⊗ 1⟩
and sk = ⟨1⊗ σk⟩ – and joint spin measurements, tjk = ⟨σj ⊗ σk⟩:

ρ = 1
4

1⊗ 1+ r · σ ⊗ 1+ 1⊗ s · σ +
∑
j,k

tjkσj ⊗ σk

 . (3.193)

From the nine real parameters, tjk ∈ R, we form a matrix t.
Given a system in state ρ, having parameters r, s, t, we can express the probability

that a joint measurement of spin in direction j ∈ {x, z} by party A and in direction
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k ∈ {x, z} by party B will have the results mA and mB ∈ {±1}:

P(mA,mB|j, k; ρ) = 1
4(1 +mArj +mBsk +mAmBtjk). (3.194)

The probabilities for single-system measurements for each system are

P(mA|j; ρ) = 1
2(1 +mArj) (3.195)

P(mB|k; ρ) = 1
2(1 +mBsk). (3.196)

The quasi-density operator ρ is a state exactly if all of these probabilities are non-
negative for each outcome of each available measurement. Note that the probabilities
for single-system measurements are equal to coarse-grainings of the probabilities for
joint measurements:

P(mA|j; ρ) =
∑
mB

P(mA,mB|j, k; ρ), (3.197)

P(mB|k; ρ) =
∑
mA

P(mA,mB|j, k; ρ). (3.198)

Hence, we can characterise the state space entirely by the set of positivity constraints
for joint measurements:

P(mA,mB|j, k; ρ) ≥ 0 ∀mA,mB ∈ {±1}, j, k ∈ {x, z}, (3.199)

and the positivity constraints for single-system measurements, e.g. P(mA|j; ρ) ≥ 0,
are implied.

Furthermore, the equations (3.197) demonstrate that quasi-density operators
which differ only in the parameters ry, sy, tjy and tyk generate identical probability
distributions. Hence, these parameters factor out in equivalence classes and, for
convenience, we may describe any equivalence class by a representative for which
each of these parameters is zero.

The state space is a convex polytope bounded by finitely many linear inequalities,
and so is entirely specified by its extremal points. To identify the extremal states, we
note that (3.194) defines a map, π, from the state space Ω2SW to the non-signalling
polytope with two inputs and two outputs, N S [8]. The non-signalling polytope is a
convex subspace of R16, whose elements can be represented as vectors (‘behaviours’),
P , with 16 components indexed by the 16 total choices of inputs and outputs. In
this context we identify the inputs as the choice by each party of which direction to
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measure the spin, j, k ∈ {x, z}, and the outputs as the results of those measurements,
mA,mB ∈ {±1}:

P =



P (+1,+1|x, x)
...

P (mA,mB|j, k)
...

P (−1,−1|z, z)


. (3.200)

We can thus define the map π : Ω2SW → N S component-wise:

π : ρ 7→ π(ρ) =



P(+1,+1|x, x; ρ)
...

P(mA,mB|j, k; ρ)
...

P(−1,−1|z, z; ρ)


, (3.201)

where the components P(mA,mB|j, k; ρ) are as given in (3.194).
It is straightforwardly verified component by component that the map π is

convex-linear, i.e., for all ρ, ρ′ ∈ Ω2SW and λ ∈ (0, 1),

π(λρ+ (1 − λ)ρ′) = λπ(ρ) + (1 − λ)π(ρ′). (3.202)

Furthermore, π is invertible:

π−1(P ) = 1
4

1⊗ 1+ r(P ) · σ ⊗ 1+ 1⊗ s(P ) · σ +
∑
j,k

t
(P )
jk σj ⊗ σk

 , (3.203)

where the parameters r(P ), s(P ) and t(P )
jk are the expectation values generated by the

behaviour P for random variables chosen to have inputs and outputs matching the
relevant spin measurements. Concretely2,

r
(P )
j = P (+1,+1|j, k) + P (+1,−1|j, k) − P (−1,+1|j, k) − P (−1,−1|j, k), (3.204)
s

(P )
k = P (+1,+1|j, k) − P (+1,−1|j, k) + P (−1,+1|j, k) − P (−1,−1|j, k), (3.205)
t
(P )
jk = P (+1,+1|j, k) − P (+1,−1|j, k) − P (−1,+1|j, k) + P (−1,−1|j, k). (3.206)

2Note that the expressions (3.204) and (3.205) are well-defined due to P being non-signalling.
This implies that the given expression for r

(P )
j is independent of k, and the expression for s

(P )
k is

independent of j.
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Hence, π : Ω2SW → N S is a convex-linear bijection. This demonstrates that all
non-signalling correlations may be achieved in the bipartite Square-world miniature,
and the extremal states of Ω2SW are exactly those which map to the extremal
behaviours of the non-signalling polytope. There are 24 distinct extremal behaviours,
characterised in [8]. These can be divided into two groups: 16 are local states and 8
are maximally non-local, in regards to the CHSH correlations discussed in Section
3.3.2.

The sixteen local states return determinate values for spin measurements by
either party in both available directions. Local states can therefore be classified
by these values: denote by ρ̃

mA
x ,mA

z

mB
x ,mB

z
the state for which a measurement of spin in

direction j by party A and direction k by party B is certain to return the values mA
j

and mB
k :

ρ̃
mA

x ,mA
z

mB
x ,mB

z
= 1

4
(
1+mA

x σx +mA
z σz

)
⊗
(
1+mB

x σx +mB
z σz

)
. (3.207)

The 16 possible choices for mA
x ,m

A
z ,m

B
x ,m

B
z give 16 distinct extremal states. The

expectation values for each available measurement in the state ρ̃mA
x ,mA

z

mB
x ,mB

z
are as follows:

⟨σj ⊗ 1⟩ = mA
j , ⟨1⊗ σk⟩ = mB

k , ⟨σj ⊗ σk⟩ = mA
j m

B
k . (3.208)

The states (3.207) are all joint quasi-eigenstates of all available measurements, and
therefore are non-quantum states. The reduced state for either party is an extremal
state of single-system Square-world, e.g. the reduced state ρA for subsystem A is
given by

ρA = TrB

[
ρ̃

mA
x ,mA

z

mB
x ,mB

z

]
= 1

2
(
1+mA

x σx +mA
z σz

)
. (3.209)

The eight maximally non-local states may be labelled by three parameters,
α ∈ {±1} and ℓ,m ∈ {x, z}:

ρ̃α
ℓm = 1

41⊗ 1+ α

4 (σℓ ⊗ σm + σℓ′ ⊗ σm + σℓ ⊗ σm′ − σℓ′ ⊗ σm′) , (3.210)

where the directions ℓ′,m′ are defined to be different from ℓ,m.
The expectation values for each available measurement in the state ρ̃α

ℓm are as
follows:

⟨σj ⊗ 1⟩ = ⟨1⊗ σk⟩ = 0, ⟨σj ⊗ σk⟩ =

−α, if j ̸= ℓ and k ̸= m

+α, otherwise
. (3.211)
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If A, B measure in directions ℓ′, m′ respectively, it is guaranteed that the product of
their measurement outcomes will be −α, whereas if they measure in any other pair
of directions, the product of their measurement outcomes is guaranteed to be +α.
The reduced state for either party is maximally mixed, i.e.,

TrA[ρ̃α
ℓm] = TrB[ρ̃α

ℓm] = 1
21, (3.212)

and individual outcomes are maximally unpredictable.

3.3.2 Correlations

Consider a Bell scenario [70, 13], where each party has a choice of two measurements
– say A can measure either X or X ′ and B can measure either Y or Y ′ – with all
measurements having ±1 as their possible outcomes.

For any statistical theory assigning conditional probabilities to these measure-
ments, the expectation value of their product is

E(X, Y ) = P (+ + |X, Y ) + P (− − |X, Y ) − P (+ − |X, Y ) − P (− + |X, Y ).
(3.213)

The CHSH score is

CXY X′Y ′ = E(X, Y ) + E(X, Y ′) + E(X ′, Y ) − E(X ′, Y ′). (3.214)

There are fundamental bounds to the value that this quantity can obtain in
different classes of theory. For any probabilistic theory obeying local causality,
−2 ≤ CXY X′Y ′ ≤ 2 [21]. Quantum theory violates this bound, allowing CHSH scores
up to 2

√
2 (discussed below). Larger violations are possible in post-quantum theories

such as the PR box, which satisfies relativistic causality but allows CHSH scores up
to the algebraic maximum of 4 [73].

For a quantum miniature (including ordinary quantum mechanics), expectation
values are determined by the state, ρ, via a trace rule:

E(X, Y ) = Tr [ρX ⊗ Y ] . (3.215)

For a given state, ρ, we can thus express the associated CHSH score, C(ρ), in a
compact form:

CXY X′Y ′(ρ) = Tr
[
ρ ĈXY X′Y ′

]
, (3.216)
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where ĈXY X′Y ′ = X ⊗ Y +X ⊗ Y ′ +X ′ ⊗ Y −X ′ ⊗ Y ′.
In standard quantum theory, the maximal CHSH score attainable in a given

scenario is given by the operator norm of the associated operator [58]:

max
ρ∈ΩQ

CXY X′Y ′(ρ) = ∥ĈXY X′Y ′∥. (3.217)

This norm may be calculated by means of the Khalfin-Tsirelson-Landau identity [57,
53],

Ĉ2
XY X′Y ′ = 41⊗ 1− [X,X ′] ⊗ [Y, Y ′], (3.218)

from which we may derive

∥ĈXY X′Y ′∥ =
√

4 + ∥[X,X ′] ⊗ [Y, Y ′]∥. (3.219)

Tsirelson’s bound [20] is given by considering the maximum possible value of the
right hand side of (3.219), and gives a scenario-independent limit on the possible
values of the CHSH score obtainable by any quantum state:

−2
√

2 ≤ C(ρ) ≤ 2
√

2. (3.220)

Note that this derivation relies on the positivity of all states under consideration,
specifically

ρ is positive =⇒ Tr
[
ρ Ĉ
]

≤ ∥ρ∥∥Ĉ∥ (3.221)

and also

ρ is positive and Tr [ρ] =⇒ ∥ρ∥ ≤ 1. (3.222)

In the context of a quantum miniature, we may have a state, ρ, which is not positive
and so neither of the inequalities on the right are necessitated. Indeed, bipartite
Square-world miniature contains states violating the first of these inequalities, and
we see violations of Tsirelson’s bound up to the algebraic maximum C = 4.

In the bipartite Square-world system, the measurements for each party must
be chosen from those performable by the apparatus, i.e., the choice is between σx

and σz. There are thus four distinct CHSH scenarios we may consider (neglecting
scenarios where X = X ′ or Y = Y ′), labelled by the directions, ℓ and m, chosen for
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the unprimed measurements, X and Y , for parties A and B respectively. To each
scenario we associate an operator, Ĉℓm:

Ĉxx = σx ⊗ σx + σx ⊗ σz + σz ⊗ σx − σz ⊗ σz, (3.223)
Ĉxz = σx ⊗ σz + σx ⊗ σx + σz ⊗ σz − σz ⊗ σx, (3.224)
Ĉzx = σz ⊗ σx + σz ⊗ σz + σx ⊗ σx − σx ⊗ σz, (3.225)
Ĉzz = σz ⊗ σz + σz ⊗ σx + σx ⊗ σz − σx ⊗ σx. (3.226)

For the non-local extremal states (3.210) we have

Cℓm(ρ̃α
pq) = 4αδℓ,pδm,q (3.227)

Hence, each non-local extremal state saturates the algebraic bounds −4 ≤ C ≤ 4 for
exactly one of the four available CHSH scenarios. Note that ∥ρ̃α

pq∥ = (1 +
√

5)/4,
and ∥Cℓm∥ =

√
5, so

Tr [ρ̃α
ℓmCℓm] > ∥ρ̃α

ℓm∥∥Cℓm∥ ≃ 1.809. (3.228)

For the local extremal states (3.208),

Cℓm(ρ̃mA
x mA

z

mB
x mB

z
) = mA

ℓ (mB
m +mB

m′) +mA
ℓ′(mB

m −mB
m′). (3.229)

This may take values ±2, and therefore produces only local correlations (despite
ρ̃

mA
x mA

z

mB
x mB

z
lying outside the set of quantum states).

3.3.3 Other bipartite Miniatures

In the bipartite Square-world miniature described in Section 3.3.1, each party was
able to perform spin measurements in the x and z directions. We can generalise this
construction by allowing each party to perform spin measurements in an arbitrary
pair of fixed non-collinear directions; say party A can measure spin in the directions
η1 and η2, while party B can measure spin in the directions ξ1 and ξ2. We will refer
to the resulting miniature as Rhombus-world.

The Hilbert space for each of these miniatures is the same, namely H = C
4, so

in each case we can use the same parameterisation for states:

ρ = 1
4

1⊗ 1+ r · σ ⊗ 1+ 1⊗ s · σ +
∑
j,k

tjkσj ⊗ σk

 (3.230)
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In terms of these parameters, the expectation values for each measurement are
〈
ηj · σ ⊗ 1

〉
= ηj · r, (3.231)

⟨1⊗ ξk · σ⟩ = ξk · s, (3.232)〈
ηj · σ ⊗ ξk · σ

〉
= ηj · tξk, (3.233)

and the probabilities for joint measurements are

P(mA,mB|ηj,ηk; ρ) = 1
4
(
1 +mAηj · r +mBξk · s +mAmBηj · tξk

)
. (3.234)

A slight modification of the argument in Section 3.3.1 shows that every miniature
in this family allows all 2-2 non-signalling behaviours, i.e., given any P ∈ N S, there
exists ρ(P ) ∈ Ω such that

P(mA,mB|ηj, ξk; ρ(P )) = P (mA,mB|j, k). (3.235)

To show that all non-signalling behaviours can be realised by some Rhombus-
world state, it is sufficient to demonstrate that the conditional expectation values
agree. Given any non-signalling behaviour, P , the conditional expectation values are

EA(j) = P (+1,+1|j, k) + P (+1,−1|j, k) − P (−1,+1|j, k) − P (−1,−1|j, k),
(3.236)

EB(k) = P (+1,+1|j, k) + P (+1,−1|j, k) − P (−1,+1|j, k) − P (−1,−1|j, k);
(3.237)

EAB(j, k) = P (+1,+1|j, k) + P (−1,+1|j, k) − P (−1,+1|j, k) − P (−1,−1|j, k).
(3.238)

We aim to construct a state,

ρ(P ) = 1
4(1⊗ 1+ r(P ) · σ ⊗ 1+ 1⊗ s(P ) · σ + σ · t(P )σ), (3.239)

for which the expectation values expressed as in (3.231) agree with those calculated
from P , i.e.,

ηj · r(P ) = EA(j), (3.240)
ξk · s(P ) = EB(k) (3.241)

ηj · t(P )ξk = EAB(j, k). (3.242)
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As long as η1 ∦ η2 and ξ1 ∦ ξ2, both sets {η1,η2} and {ξ1, ξ2} span R2, and the
set {η1ξ

⊤
1 ,η2ξ

⊤
1 ,η1ξ

⊤
2 ,η2ξ

⊤
2 } spans the space of 2 × 2 real-valued matrices. Hence,

we can write

r(P ) = aη1 + bη2, (3.243)
s(P ) = cξ1 + dξ2, (3.244)
t(P ) = αη1ξ

⊤
1 + βη2ξ

⊤
1 + γη1ξ

⊤
2 + δη2ξ

⊤
2 . (3.245)

Imposing the equalities (3.240) then establishes a set of linear relations between
the coefficients a, b, . . . , γ, δ and the conditional expectations EA(1), EA(2), . . . ,
EAB(2, 2). These relations are invertible and we find, defining u = η1 · η2 and
w = ξ1 · ξ2,

r(P ) = EA(1) − uEA(2)
1 − u2 η1 + EA(2) − uEA(1)

1 − u2 η2, (3.246)

s(P ) = EB(1) − wEB(2)
1 − w2 ξ1 + EB(2) − wEB(1)

1 − w2 ξ2, (3.247)

t(P ) = αη1ξ
⊤
1 + βη2ξ

⊤
1 + γη2ξ

⊤
1 + δη2ξ

⊤
2 , (3.248)

where 
α

β

γ

γ

 =


1 u w uw

u 1 uw w

w uw 1 u

uw w u 1



−1
E(1, 1)
E(2, 1)
E(1, 2)
E(2, 2)

 . (3.249)

Note that, if u = w = 0, these expressions simplify to the corresponding expres-
sions (3.204)-(3.206) previously derived in the case that each party can perform
measurements in a mutually orthogonal pair of directions.

Having thus defined r(P ), s(P ) and t(P ), we define the quasi-density operator
ρ(P ) having these parameters, as in (3.230). This quasi-density operator is a state
since, by construction, it satisfies (3.235) and therefore generates valid probabilities
for every possible measurement. Since P was chosen arbitrarily from the set of
non-signalling behaviours, it follows that any such behaviour may be realised as the
collection of conditional probabilities produced by the available measurements on
some state of the miniature.

Since every Rhombus-world miniature produces the same probabilities, they all
produce the same range of CHSH scores, independent of which directions are chosen.
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However, if we restrict the measurements to those performable in a given miniature
but only have quantum states available, then the range of possible CHSH scores
does depend on the directions. Specifically the commutators appearing in (3.219)
depend on the angles between η1 and η2, and between ξ1 and ξ2.

The results of this Section and Section 3.3.1 resemble a result by Acìn et al., that
every N -partite non-signalling behaviour with arbitrary inputs and outputs can be
expressed in terms of local quantum measurements [1]. Specifically, they show that,
given any N -partite non-signalling behaviour P with m inputs and r outputs, there
exists

1. A Hilbert space H with dimension dim(H) = max{r,m},

2. For each set of inputs {xi}i=1,...,N , a POVM on H, i.e., a set of positive operators
{Mxi

ai
}ai=1,...,r on H such that

r∑
ai=1

Mxi
ai

= 1 (3.250)

3. A unit-trace self-adjoint operator (i.e., a quasi-density operator) ρ on H⊗N ,
such that, for each set of inputs and outputs,

Tr
[
ρ
(
Mx1

a1 ⊗ . . .⊗MxN
aN

)]
= P (a1, . . . , aN |x1, . . . , xN). (3.251)

A constructive example is given for the case of PR box correlations.
On the basis of this result, [1] provides a common framework in which to discuss

different classes of correlations by imposing different levels of constraint on the
operator ρ appearing in (3.251). However, this work does not directly consider a
physical scenario where only the measurements described by {Mxi

ai
}ai=1,...,r can be

performed, and does not give the interpretation of ρ as a physical state compatible
with this scenario.

3.4 GENERAL FEATURES OF SPIN MINIATURES

3.4.1 Link between extremal states and quasi-eigenstates

In exploring the various quantum miniatures considered so far, identifying the
extremal states is crucial in describing the state space of each miniature. We have
seen that these extremal states demonstrate many of the novel features seen in
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quantum miniatures, such as the violation of quantum uncertainty relations, and
the possibility of post-quantum correlations, for example. Related to the violation
of uncertainty relations is the fact that extremal states are, in many cases, joint
quasi-eigenstates of some pair of non-commuting observables.

For any quantum miniature with finitely many observables defined on a finite-
dimensional Hilbert space, the state space is a convex polytope, as discussed in
Section 2.2. As such, the state space can be defined as the interior of a collection of
bounding hyperplanes, each defined by some linear inequality of the form

P(some measurement outcome|ρ) ≥ 0. (3.252)

Quasi-eigenstates of an observable are states which predict definite outcomes for
that observable (equivalently, those which predict zero variance). This means that
the probability of obtaining any other outcome for that observable must be zero,
i.e., must saturate one of these inequalities. In a spin s miniature, there are 2s+ 1
possible outcomes for the measurement of any non-degenerate observable, so a
quasi-eigenstate must saturate 2s inequalities pertaining to the same observable.

For a d-dimensional state space, extremal states lie at the intersection of d or
more bounding hyperplanes (of which, d must be linearly independent), and therefore
saturate d or more of these inequalities, though these need not all pertain to the
same observable.

Both of these properties – extremality and being a joint quasi-eigenstate – are thus
related to the saturation of multiple inequalities, and a simple counting argument
establishes a sufficient criterion to conclude that all extremal states of a given
miniature are quasi-eigenstates of some observable in that miniature. Consider a spin
s miniature with N basic observables, having a d-dimensional state space. Extremal
states saturate at least d bounding inequalities. In general, these inequalities may
pertain to different observables. However, if d > N(2s − 1), then there must be
at least one observable contributing 2s inequalities, and the state must therefore
be a quasi-eigenstate of that observable. If d > N(2s − 1) + 1, then there must
be two observables each contributing 2s inequalities, so the state is necessarily a
joint quasi-eigenstate of both. This counting criterion is satisfied for many of the
miniatures we have considered, as shown in Table 3.3. In particular, it is satisfied by
all miniatures with finitely many observables in the case of spin s = 1/2.

A similar argument establishes that, if d > N(2s−1)+k, then all extremal states
are joint quasi-eigenstates of at least k + 1 observables. This condition is sufficient
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but not necessary – there may be linear dependences between different positivity
constraints which impose the joint quasi-eigenstate condition without this inequality.
These relationships may be used as a guide to determining extremal states in other
miniatures, as well as helping to construct miniatures which maximally violate
quantum uncertainty relations through the existence of joint quasi-eigenstates.

Miniature Spin # basic observables Dimension
d > N(2s− 1) + 1?

s N d
Square-world

1
2

2 2 ✓
Cube-world 3 3 ✓
n-gon world n/2 2 ✓
Square-world

1
2 4 ✓

Cube-world 3 5 ✓
n-gon world n/2 5 for n < 8

Table 3.3

3.4.2 Useful properties of extremal states

We have established that, under certain conditions, extremal states must be joint
quasi-eigenstates. Conversely, if joint-quasi eigenstates exist in a given miniature,
they must be extremal. This result follows as a special case of a more general
statement: if an additive uncertainty relation regarding a collection of observables
{Ai}i=1,...,N ,

N∑
i=1

∆2(Ai|ρ) ≥ U, (3.253)

is saturated by any state, then it is saturated by some extremal state. This is because
– by the law of total variance – the map

ρ 7→
∑

i

∆2(Ai|ρ) (3.254)

is concave. Thus, writing an arbitrary state ρ as a convex combination of extremal
states,

ρ =
∑

j

λj ρ̃j, (3.255)
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we have
∑

i

∆2(Ai|ρ) ≤
∑

j

λj

(∑
i

∆2(Ai|ρ̃j)
)

(3.256)

≤ min
j

{∑
i

∆2(Ai|ρ̃j)
}
. (3.257)

Hence,
∑

i

∆2(Ai|ρ) = U =⇒
∑

i

∆2(Ai|ρ̃j) = U for some j. (3.258)

If the collection {Ai} has a joint quasi-eigenstate, then the constant U appearing in
this uncertainty relation is zero, which establishes the special case.

Similarly, given a miniature with state space Ωmin, the existence of any state
ρ ∈ Ωmin which is incompatible with a given Hermitian operator implies the existence
of an extremal state which is incompatible with the same operator. It follows that
the existence of any non-quantum state implies the existence of a non-quantum
extremal state. In developing future models in the quantum miniature framework,
these properties may help to reduce the problem of finding states with particular
interesting properties to the problem of finding extremal states with those properties,
which in many cases means consideration of a finite set.



4

Quantum miniatures for particle systems

In this chapter, we extend the ideas of the previous chapters to particle systems. We
define miniatures in this setting by taking the Hilbert space to be that of a single
non-relativistic quantum particle moving in one dimension, and by restricting the set
of observables. Quantum miniatures thus provide a natural setting to consider non-
quantum models with continuous variables, whereas GPTs are commonly restricted
to consideration of finite-dimensional systems [48, 56, 71]. Other approaches to
generalised theories for continuous variables include [72].

Some modifications are required when discussing an infinite-dimensional system
compared with finite dimensions, just as is typical in standard quantum theory.
For example, for observables with a continuous spectrum of possible outcomes, the
probability map is replaced by a map describing the probability distribution over
these possible outcomes.

4.1 CROSS-WORLD

4.1.1 Observables

The quantum miniature Cross-world is defined by specifying the set OC of observables
which are assumed to be accessible in experiments. This set is chosen to be a proper
subset of the observables of a quantum particle with a single degree of freedom.
We base our discussion on the Hilbert space L2(R) of square-integrable functions
R → C.

In order to have a notion of phase space, we assume position, Q, and momentum,
P , to be observable. Given a function ψ : R → C, the action of these operators is

84
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given by

Qψ(q) = qψ(q) and Pψ(q) = −iℏ ∂
∂q
ψ(q). (4.1)

For details relating to the domains of Q and P , see Appendix B. Thus, we define
the set of basic observables to be

OC = {Q,P}. (4.2)

We denote by Eq and Ep respectively the projectors onto generalised eigenstates of
position and momentum (see Appendix B) :

Eq = |q⟩⟨q| and Ep = |p⟩⟨p| . (4.3)

The probability distributions for measurements of position and momentum are given
by a trace rule, as in standard quantum theory. Specifically, for a state ρ, the
probability density at q for a position measurement is given by

P(q|ρ) = Tr [ρEq] , (4.4)

and similarly for momentum,

P(p|ρ) = Tr [ρEp] . (4.5)

As a shorthand, we write

Eq(ρ) = Tr [ρEq] , Ep(ρ) = Tr [ρEp] . (4.6)

We can then define the state space of Cross-world to consist of exactly those
quasi-density operators which produce valid probability distributions, i.e., which are
non-negative and normalised:

ΩC = {ρ : H → H | ρ† = ρ, Tr [ρ] = 1, Eq(ρ) ≥ 0, Ep(ρ) ≥ 0 ∀q, p ∈ R}. (4.7)

We also include eigenstates of position and momentum as states, viewing these as a
limiting case of infinitely squeezed states (see Section 1.3.4).

All quantum states, i.e., all positive operators with unit trace, satisfy the con-
straints described in (4.7) and are therefore contained in ΩC . In addition, there exist
states in Cross-world which do not correspond to quantum states, since they are not
positive; this is shown in Section 4.1.3.
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4.1.2 Quasi-Wigner functions

An alternative to the density operator formulation of standard quantum theory is
provided by the Wigner function (see Section 1.3.3). Extending the state space to
include quasi-density operators also introduces new distribution functions which we
call quasi-Wigner functions. Quasi-Wigner functions are obtained by applying the
Wigner transform (1.15) to the quasi-density operators representing non-quantum
states in Cross-world. Since quasi-density operators are Hermitian and have unit
trace, quasi-Wigner functions are still real-valued and normalised. Furthermore, the
identities ∫

R

dpWρ(q, p) = Tr [ρ |q⟩⟨q|] , (4.8)∫
R

dqWρ(q, p) = Tr [ρ |p⟩⟨p|] . (4.9)

still hold, so that probability densities for position and momentum are calculated
in the same way as for usual Wigner functions, integrating along lines of constant
q or constant p. However, quasi-Wigner functions can have different properties
from standard Wigner functions corresponding to quantum states; for example,
quasi-Wigner functions may be more localised than is possible for a standard Wigner
function, and do not have to obey the condition (1.18). A quasi-Wigner function
W (q, p) describes a valid Cross-world state if and only if it generates valid probability
distributions for position and momentum measurements, i.e.,

0 ≤
∫
R

dpW (q, p) ≤ 1 for all q, (4.10)

0 ≤
∫
R

dqW (q, p) ≤ 1 for all p. (4.11)

4.1.3 States and equivalence classes

We have seen in the case of Square-world that (quasi-) density operators may in
some cases be indistinguishable by measurements, and so fall into equivalence classes.
For Cross-world this raises the question of whether two operators may, in general, be
distinguished based only on the statistics of position and momentum measurements.
In quantum theory, this question gives rise to the Pauli problem for quantum states
[66, 67], and has been answered in the negative: there are distinct quantum states
generating identical probability distributions for both position and momentum [88,
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22]. Another way of saying this is that the set {Q,P} is tomographically incomplete
within quantum theory.

We say two Cross-world operators, ρ and ρ′, belong to the same equivalence class
if and only if they generate the same probability distributions for both position and
momentum measurements, i.e.,

P(q|ρ) = P(q|ρ′) and P(p|ρ) = P(p|ρ′) (4.12)

for all p and q.

Proposition 4.1.1. Each equivalence class contains an element whose associated
quasi-Wigner function is factorisable.

Proof. Given any Cross-world operator ρ, define the factorisable quasi-Wigner func-
tion W̃ by

W̃ (q, p) = P(q|ρ)P(p|ρ), (4.13)

where P(q|ρ) and P(p|ρ) are the marginal probability distributions for position and
momentum generated by ρ. Note that W̃ is not in general the Wigner function
associated to the operator ρ. By construction, however, it does generate the same
probability distributions for both position and momentum measurements. Define now
the operator ρ̃ as the Weyl transform of W̃ . Since this operator generates the same
probability distribution for position and momentum measurements as ρ, they belong
to the same equivalence class. Since ρ was chosen arbitrarily, any equivalence class
must therefore contain an operator whose associated Wigner function factorises.

Proposition 4.1.2. Any pair of probability distributions over R may be realised as
the respective probability densities for position and momentum measurements in
some Cross-world state.

Proof. Given any pair of probability densities P1 and P2, define the quasi-Wigner
function

W (q, p) = P1(q)P2(p). (4.14)

This expression corresponds to a valid Cross-world state since its marginals in each
variable are non-negative and normalised.

Based on these results, we may completely characterise the space of equivalence
classes, which we describe by convenient representatives. From the result 4.1.1, we
may always take a representative with a factorisable quasi-Wigner function. The
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space of all such representatives, Ω̄C , is closed under convex combinations, and by
4.1.2 is equivalent to the space of all pairs of probability distributions over R:

Ω̄C = Prob(R) × Prob(R). (4.15)

Hence, an equivalence class is extremal if and only if each factor in its factorisable
representative is extremal in the convex space of probability distributions, i.e., if

W̃[ρ](q, p) = δ(q − q0)δ(p− p0) (4.16)

for some q0, p0 ∈ R. Applying the Weyl transform (1.23) expressed in terms of the
Wigner kernel, we see that the quasi-density operator associated to W̃ is equal to
the Wigner kernel defined in (1.21), evaluated at the point (q0, p0):

ρ̃ =
∫

dq dp δ(q − q0)δ(p− p0)∆̂(q, p) = ∆̂(q0, p0). (4.17)

We thus have a complete characterisation of all extremal states in Cross-world. These
form a continuous two-parameter family, parameterised one-one by points of phase
space. Each extremal state is a joint quasi-eigenstate of position and momentum.

We see that Cross-world does allow quasi-Wigner functions beyond the usual
Wigner functions associated to quantum states. Indeed, the delta distribution
appearing in (4.16) has been presented as a specific example of a generalised function
on phase space which does not represent a valid Wigner function in standard quantum
theory [33, p. 235, 41, p. 127]. In Cross-world, this distribution is a valid quasi-Wigner
function, describing an allowed state of the theory. Also, it has been shown that a
pure quantum state has a non-negative Wigner function only if it is a coherent state
[44]. An extension of this result to mixed quantum states establishes a bound on the
non-Gaussianity of any state with a non-negative Wigner function [60, 61], which
places limitations on the set of position probabilities. In Cross-world, on the other
hand, no limitation can be placed since all position marginals are compatible with a
positive overall quasi-Wigner function. In some cases, the non-quantum character of
particular Cross-world states may be detected directly from experimental data, by
the violation of uncertainty relations.

4.1.4 Uncertainty relations

For position and momentum, quantum mechanics provides a state-independent
bound on the joint uncertainties, namely the Heisenberg uncertainty relation [40,
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52],

∆2Q∆2P ≥ ℏ2

4 . (4.18)

All quantum states satisfy the relation (4.18), so any violation of this signifies that
an operator is non-quantum. Violations will occur for Cross-world states for which
the probability distributions in both position and momentum are highly localised.

An example of such a state has a quasi-Wigner function similar to the Wigner
function of a coherent state, where now we rescale both variables by a common factor
1/

√
τ , with 0 < τ < 1:

Wτ (q, p) = 1
πℏτ

exp
(

−q2 + p2

ℏτ

)
. (4.19)

Note that Wτ (0, 0) = 1/(πℏτ), in violation of (1.18). Applying the Weyl transform
(1.19), we find the operator corresponding to this quasi-Wigner function:

ρτ = ℏ
2π

∫
R2

da db exp
(

−τ(a2 + b2)
4ℏ

)
exp

(
iaQ̂+ ibP̂

ℏ

)
. (4.20)

Its matrix elements in the position basis are given by

⟨q1| ρτ |q2⟩ = (πℏτ)−1/2 exp
(

−(τ + 1/τ)(q2
1 + q2

2) − 2(τ − 1/τ)q1q2

4ℏ

)
. (4.21)

The uncertainties in position and momentum are

∆2
ρτ
Q = ℏτ

2 , ∆2
ρτ
P = ℏτ

2 . (4.22)

These violate Heisenberg’s uncertainty relation for any τ < 1, and can simultaneously
get arbitrarily small as τ → 0. Hence, the operator ρτ cannot be the density operator
of a quantum state, but it does correspond a valid state in Cross-world: it is
a unit trace Hermitian operator furnishing positive probability distributions for
both position and momentum. In the limit τ → 0, the quasi-Wigner function Wτ

approaches that of an extremal state (4.16).
Furthermore, the Cross-world uncertainty region for position and momentum,

PURC(Q,P ), may be fully characterised. Since any pair of probability distributions
may be realised as the respective probability densities for position and momentum
measurements, it follows that any pair (∆Q,∆P ) may be realised as the respective
uncertainties for these observables. Hence,

PURC(Q,P ) = R+ ×R+, (4.23)

where R+ denotes the set of non-negative real numbers.
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4.1.5 Symmetry and Dynamics

While we do not give a full general account of dynamics for an arbitrary quantum
miniature, Cross-world provides an illustration of some novel features which are
likely to appear in such an account compared to standard quantum mechanics.

Reversible transformations Motivated by standard quantum theory, we consider
unitary evolutions of the form

ρ 7→ ρ(t) = U(t)ρU †(t), (4.24)

where ρ is any initial state and U(t) constitute a one-parameter family of unitary
operators. However, in contrast to standard quantum theory, not every unitary
operator will lead to a valid transformation.

We have seen that, generally speaking, restricting the set of observables allows
for extended sets of states in miniatures. In a similar manner, these extended
state spaces will restrict the possible dynamics of a theory. For example, evolution
generated by the free Hamiltonian, where

U(t) = exp
(
itP 2

2m

)
(4.25)

is not permissible in Cross-world, as we now show.
Under this evolution, the quasi-Wigner function corresponding initially to an

arbitrary state, ρ0, evolves as follows:

W (q, p; t) = 1
πℏ

∫
du e2iqu/ℏ ⟨p+ u|U(t)ρ0U

†(t) |p− u⟩ (4.26)

= 1
πℏ

∫
du exp

[2iu
ℏ

(
q − p

m
t
)]

⟨p+ u| ρ0 |p− u⟩ (4.27)

= W
(
q − p

m
t, p; 0

)
. (4.28)

We now show that this evolution is not admissible in Cross-world, in the sense that
it does not preserve the state space, ΩC . According to the arguments of Section
2.4, it suffices to show that evolution under the free Hamiltonian does not preserve
equivalence classes.

Consider a pair of initial states, with initial Wigner functions W θ,τ and W−θ,τ

respectively:

W θ,τ (q, p; 0) = C exp
[
−τ(q cos θ + p sin θ)2 − 1

τ
(q sin θ − p cos θ)2

]
. (4.29)
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At time t = 0, the two Wigner functions W θ,τ (q, p; 0) and W−θ,τ (q, p; 0) correspond
to squeezed coherent states, rotated equally in opposite directions. These represent
valid Cross-world states (in particular, they are also valid quantum states) and they
are Pauli partners, i.e., they generate identical probability distributions for position
and momentum measurements. However, if we evolve each state under the free
Hamiltonian, this relationship is not preserved.

Under the free Hamiltonian (4.25),

W θ,τ (q, p; t) = C exp
− τ

((
q − pt

m

)
cos θ + p sin θ

)2

− 1
τ

((
q − pt

m

)
sin θ − p cos θ

)2
 (4.30)

The probability density for position measurements at time t is
∫

dpW θ,τ (q, p; t) = C

√
π

β
exp

[
−
(
α− γ2

β

)
q2
]

(4.31)

where α, β and γ depend on t as well as on the parameters θ and τ :

α = τ cos2 θ + 1
τ

sin2 θ (4.32)

β = τ
(

sin θ − t

m
cos θ

)2
+ 1
τ

(
cos θ + t

m
sin θ

)2
(4.33)

γ = τ
(

cos θ sin θ − t

m
cos2 θ

)
+ 1
τ

(
− cos θ sin θ − t

m
sin2 θ

)
. (4.34)

We see that, for non-zero times, the two Wigner functions W θ,τ and W−θ,τ give
different probability distributions for position measurements. This demonstrates
that evolution under the free Hamiltonian does not preserve equivalence classes, so
does not preserve the state space of Cross-world.

It is nevertheless possible to define a consistent dynamics for Cross-world, which
respects the symmetry of the observables and the state space. Similar to Square-
world, the symmetry of the full quantum system is broken by the restriction on
observables, leaving a smaller symmetry group. As the restriction on spin components
leads to a preferred set of orientations, removing linear combinations of position and
momentum from the available observables picks out a preferred class of Galilean
frames. These frames are related by rigid translations parallel to the phase space
axes – Galilean boosts, which map the position operator to a linear combination of
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q

p free evolution

q

p

Figure 4.1: Schematic depiction of the evolution of two squeezed states under the
free Hamiltonian. The states are initially Pauli partners, but do not remain as such
under this evolution.

position and momentum, do not preserve the observables of Cross-world. We also
have symmetry under the finite phase space rotation Q → P , P → −Q. Extremal
states of Cross-world are mapped among each other under these transformations.

Rigid translations in phase space are generated by the position operator, for
translations parallel to the momentum axis:

ρ 7→ ρ′ = e−iQtρeiQt, Wρ(q, p) 7→ Wρ′(q, p) = Wρ(q, p+ t), (4.35)

and the momentum operator, for translations parallel to the position axis:

ρ 7→ ρ′ = e−iP sρeiP s, Wρ(q, p) 7→ Wρ′(q, p) = Wρ(q + s, p). (4.36)

These maps can be composed to produce any phase space translation,

ρ 7→ ρ′′ = T †(s, t)ρT (s, t), Wρ(q, p) 7→ Wρ′′(q, p) = Wρ(q + s, p+ t). (4.37)

We have a continuous two-parameter family of symmetry transformations, each
providing a one-one map from the set of extremal states onto itself.

Measurement In Square-world, we saw that each basic observable had two distinct
extremal quasi-eigenstates, leading to a possible ambiguity in the post-measurement
state. In Cross-world, there are now an uncountable family of quasi-eigenstates
for both basic observables. One possible update rule is that, for a system initially
described by the quasi-Wigner function W , after a position measurement returning
the outcome q̄, the quasi-Wigner function describing the system updates to W q̄,
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where

W q̄(q, p) = δ(q − q̄)
∫

dq′W (q′, p). (4.38)

Immediate subsequent measurement of Q is then guaranteed to return q̄, and
immediate measurement of P has the same statistics as the original state. This
rule is manifestly covariant under phase space translations, and respects equivalence
classes. It also has the property that measurement of both basic observables leaves
the system in a uniquely identified extremal state, i.e., the joint-quasi eigenstate
(4.19) centred at the the measured values. The update rule described by (4.38) is
not tenable in standard quantum theory, since an initially quantum state can be
projected onto a non-quantum state.

4.2 STAR-WORLD

In a similar spirit to the polygon models for spin systems, we define a family of
miniatures containing Cross-world as a special case. These miniatures arise by
assuming particular sets of linear combinations of position and momentum to be
observable – in particular we choose collections of linear combinations exhibiting
discrete rotational symmetry in phase space.

Observables Let θn = nπ/N for N ≥ 2, and define the linear combinations

Qn = Q cos θn + P sin θn for n = 0, 1, . . . , N − 1. (4.39)

For given N , these are taken to be the basic observables in a miniature we call
N -pointed Star-world, ONSW = {Qn}. For N = 2, we recover Cross-world.

The probability densities for each observable Qn in a state ρ may be calculated
by integrating its quasi-Wigner function Wρ along lines of q cos θn + p sin θn = const.:

P(Qn = α|ρ) =
∫
R

dtWρ(α cos θn + t sin θn, α sin θn − t cos θn). (4.40)

States Each Star-world miniature admits quasi-Wigner functions outside the usual
quantum Wigner functions. For example, the ‘super-sharp’ state (4.19) generates
valid probability distributions for all observables in each case, despite being non-
quantum.
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Q = Q0

P = Q4

Q1

Q2

Q3Q5

Q6

Q7

Figure 4.2: Illustration of the observables for 8-pointed Star-world.

Including additional observables relative to Cross-world does, however, imply
additional constraints on admissible states. Consider an N -pointed Star-world
miniature for some even number N > 2, so that the set of basic observables, ONSW ,
contains OC = O2SW as a strict subset. Let ρ be a quantum state (which is therefore
compatible with both O2SW and ONSW ), and let Wρ be the corresponding Wigner
function. Now consider the modified quasi-Wigner function, W ′, defined by adding
positive perturbations centred at the points (q0, p0) and (−q0,−p0) and corresponding
negative perturbations centred at (q0,−p0) and (−q0, p0):

W ′(q, p) = Wρ(q, p) + f(q − q0, p− p0) − f(q − q0, p+ p0)
− f(q + q0, p− p0) + f(q + q0, p+ p0). (4.41)

By construction, this quasi-Wigner function provides the same marginal distributions
for measurements of position and momentum as does the original Wigner function Wρ,
since the positive and negative perturbations exactly cancel out in these marginals.
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q

p

Q1
q cos θ1 + p sin θ1 = α

Figure 4.3: The probability density, P(Q1 = α|ρ), for the outcome α in a measure-
ment of Q1 is given by integrating Wρ(q, p) over the line q cos θ1 + p sin θ1 = α.

The quasi-density operator described by W ′ is therefore compatible with these
observables, so represents a Cross-world state. However, it is possible to choose f in
such a way that the integral along the line through (q0, p0) and (−q0,−p0) is negative;
for example, we may take f to a normalised Gaussian tightly peaked around zero. If
q0 and p0 are chosen so this integral represents the probability for measurement of
an observable, then W ′ would predict negative probabilities for this measurement:
the corresponding quasi-density operator is thus incompatible with the observable
and does not represent a state of N -star world.

More generally, if N is any integer multiple of M , then the M -pointed Star-world
miniature admits quasi-Wigner functions which are incompatible with the N -pointed
miniature. Examples may be constructed in a very similar manner to (4.41), by
adding perturbations which are highly localised along the appropriate lines in phase
space.

The structure of equivalence classes is also affected by adding extra observables.
For example, the squeezed coherent states W θ,τ and W−θ,τ (4.29) are equivalent
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(a) The perturbed quasi-Wigner function, W ′(q, p)
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(b) A projection of W ′(p, q) along the line p = −q

Figure 4.4: Plots of (a) the perturbed quasi-Wigner function, W ′(q, p), from (4.41)
and (b) its projection along the line p = −q. The integral over R of this projection
gives the predicted value for P(P +Q√

2 = 0|ρ′); this value is negative, demonstrating
that W ′ is incompatible with the observable (P +Q)/

√
2.
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in Cross-world since they generate identical probability distributions for position
and momentum, but are not equivalent in other Star-world miniatures, since the
probability distributions for any rotated observable Qn will differ.

4.3 PLANE WORLD

A final miniature, Plane-world, is given by assuming all linear combinations of
position and momentum are observable:

OP W = {Q cos θ + P sin θ | θ ∈ [0, π)}. (4.42)

States Since every observable in N -pointed Star-world is also an observable of
Plane-world, then the set of quasi-Wigner functions compatible with OP W is a subset
of those compatible with ONSW for every N .

OP W =
⋃

N∈N
ONSW , ΩP W =

⋂
N∈N

ΩNSW . (4.43)

Plane-world also admits non-quantum states, including super-sharp states. These
are joint quasi-eigenstates of an uncountable family of mutually non-commuting ob-
servables. Specifically, given a super-sharp state ρ̃ centred at (q0, p0), a measurement
of the observable Q cos θ + P sin θ returns the value q0 cos θ + p0 sin θ with certainty.

This model has a continuous non-Abelian symmetry group generated by phase
space rotations and translations.



5

Summary and Conclusions

We have introduced the framework of quantum miniatures, aimed at examining the
role played in quantum theory by the operator assumption, i.e., the assumption that
all self-adjoint operators correspond to observables. This framework retains most of
the formal structure of standard quantum theory except that, for each model, the
operator assumption is supplanted by a specific list of operators which are taken to
represent observables.

Quantum miniatures represent internally consistent foil theories to standard
quantum theory which, importantly, demonstrates that the operator assumption is
not a logical necessity. On the other hand, quantum miniatures display qualitatively
different behaviour to standard quantum theory, which further clarifies the specific
role of the operator assumption.

We developed several models for spin systems and particle systems, with specific
assumptions as to the available observables in each case. We then derived the
state spaces of each miniature, with the exception of Cylinder-world, Sphere-world,
Star-world and Plane-world, where partial results were obtained.

We have investigated uncertainty relations, including a full determination of the
uncertainty regions for all available observables in Square-world and Cross-world.
The results clarify the implicit dependence of uncertainty relations upon observables
which do not explicitly feature in the relation. For a bipartite Square-world system
with local measurements, we investigated non-local correlations, and found that all
non-signalling correlations are achievable.

Some results regarding dynamics have been obtained, but this remains the main
area for further development of the miniature framework. This would involve updating
the postulates to account for reversible transformations, and an investigation of
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possible state update rules.
Regarding kinematics, open questions also remain. For example: can we charac-

terise the conditions for a miniature to have the same state space as usual quantum
theory; is it required that all Hermitian operators are observable, or is there a subset
which suffices? Can we characterise which GPTs may be realised as a quantum
miniature? We have seen that polygon models, bipartite Square-world, and quantum
theory can all be realised as such.

This work also indicates possible future directions for research. Quantum minia-
tures may provide a fruitful framework for defining GPTs with continuous variables,
and a basis for investigating bipartite correlations, or other information-theoretic
features of these. Another useful aspect of quantum miniatures is that realising
different models in terms of operators on a common Hilbert space can allow for direct
comparison between theories, such as identifying quantum states as a subset. For
example, building upon results obtained so far, quantum miniatures may be used to
investigate relationships between uncertainty relations and non-local correlations.



A

Wigner functions for spin

For a spin-s system, phase space functions can be defined over the sphere [87, 3]
(alternative notions of phase space for finite-dimensional systems have also been put
forward, including vector spaces over a finite field [96]). To each operator A ∈ L∗(H),
we assign the phase space function WA : S2 → R given by

WA(η) = Tr
[
A∆̂s(η)

]
, (A.1)

where ∆̂s is the Wigner kernel for spin. The kernel is not uniquely defined, but an
option is [3]

∆̂s(η) = Ds(Sη) =
s∑

m=−s

Ds(m) |m,η⟩⟨m,η| , (A.2)

where |m,η⟩ is the eigenvector of Sη with eigenvalue m, and the function Ds can be
expressed in terms of Clebsch-Gordan coefficients as

Ds(m) =
2s∑

l=0

2l + 1
2s+ 1

〈
s l

m 0

∣∣∣∣∣∣ sm
〉
. (A.3)

Spin s = 1/2 For spin s = 1/2, we have D(±1/2) = (1 ±
√

3)/2, so the kernel
evaluted at a point η ∈ S2 is

∆̂1/2(η) = 1
21+

√
3

2 η · σ. (A.4)

Given a spin-1/2 quasi-density operator ρ = (1 + r · σ)/2, the corresponding
quasi-Wigner function given by (A.2) is

Wρ(η) = 1
2 +

√
3

2 r · η. (A.5)
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The quasi-Wigner function provides a simple criterion to identify non-quantum
states in any spin-1/2 miniature. Specifically, ρ is a quantum state if and only if

max
η∈S2

|Wρ(η)| ≤ 1 +
√

3
2 , (A.6)

and equality holds if and only if ρ is a projector.
For spin-1/2 miniatures other than quantum theory, the modulus of the quasi-

Wigner function may exceed the bound (A.6). In Square-world, for example,

max
m∈S2

|Wρ(m)| ≤ 1 +
√

6
2 , (A.7)

and equality holds if ρ is an extremal Square-world state.

Spin s = 1 For spin-1, the Wigner kernel is

∆̂1(η) = 1
31+ 1√

2
η · T +

√
10
2 Vη · T, (A.8)

with Vη defined in (3.76). Quasi-Wigner functions may provide a useful tool to help
identify non-quantum states in spin miniatures, and to investigate their properties.



B

Rigged Hilbert space treatment of
position and momentum

The position and momentum operators discussed in Chapter 4 are unbounded. This
poses questions not encountered in finite dimensions such as the domain of definition
and the existence of eigenvalues for such operators. These questions may be dealt
with by the formalism of rigged Hilbert space [34], which gives rigorous meaning to
the Dirac ‘bra-ket’ notation [4, 6, 59]. A rigged Hilbert space is a triplet

Σ ⊂ H ⊂ Σ×, (B.1)

where H is a Hilbert space, Σ is a dense subset of H and Σ× is the space of antilinear
functionals over Σ (for detailed requirements on the subspace Σ, see [34]). We will
introduce some aspects of rigged Hilbert space theory relevant to the discussion of
Chapter 4.

For a generic function ψ ∈ L2(R), the functions Qψ and Pψ given by (4.1)
may not belong to L2(R). Furthermore, we may wish to consider powers of these
observables (e.g., when considering uncertainty relations). We therefore seek a
subspace Σ ⊂ H = L2(R) on which the action of both Q and P is well defined,
as well as any of their powers. We take Σ = S(R), the Schwartz space of rapidly
decreasing smooth functions on R,

S(R) = {f ∈ C∞(R,C) | ∥f∥n,m < ∞ ∀n,m ∈ N}, (B.2)

where

∥f∥n,m = sup
q∈R

|qn∂mf(q)|. (B.3)
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The Schwartz space is dense in L2(R) [75] and the triplets

Σ ⊂ H ⊂ Σ′, Σ ⊂ H ⊂ Σ× (B.4)

both constitute rigged Hilbert spaces [4, 59].
Given this structure, Dirac bras may be understood as elements of the dual space

Σ′, and kets as elements of the antidual space Σ×. Namely, to a continuous linear
functional F : Σ → C we associate a bra ⟨F |, defined by its action on Σ,

⟨F |ψ⟩ = F (ψ) for any ψ ∈ Σ. (B.5)

To a continuous antilinear functional G : Σ → C we associate a ket |G⟩,

⟨ψ|G⟩ = G(ψ) for any ψ ∈ Σ. (B.6)

The bras ⟨q|, ⟨p| and kets |q⟩, |p⟩ appearing in (4.3) are of particular relevance. For
any q ∈ R and any ψ ∈ Σ,

⟨q|ψ⟩ = ψ(q) and ⟨ψ|q⟩ = ψ∗(q). (B.7)

The Dirac delta may be understood as the kernel of the first (linear) functional [75].
For any p ∈ R and any ψ ∈ Σ,

⟨p|ψ⟩ = ℏ−1/2ψ̃(p) and ⟨ψ|p⟩ = ℏ−1/2ψ̃∗(p), (B.8)

where ψ̃ is the Fourier transform of the function ψ [6, 59].
The operators Q and P , defined so far on Σ, may be extended to maps on Σ×.

Given |F ⟩ ∈ Σ×, the action of Q is defined by

Q |F ⟩ = |F ′⟩ ∈ Σ× such that ⟨ψ|F ′⟩ = F (Qψ) for any ψ ∈ Σ, (B.9)

and similarly for P . The ket |q⟩ is a generalised eigenvector of Q, with eigenvalue q
in the sense that [34, 4]

⟨ψ|Q|q⟩ = q ⟨ψ|q⟩ for any ψ ∈ Σ. (B.10)

Similarly, |p⟩ is a generalised eigenvector of P . A discussion of the status of |q⟩⟨q| as
a projection operator may be found in [4].
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