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1 Abstract 

Today’s bipedal robots still are behind humans in terms of efficiency, speed, and 
resilience in movement. Consequently, this thesis proposes a control strategy 
for dynamic walking inspired by human motion control principles. Central to 
this approach are the utilization of passive dynamics, hierarchical control mecha- 
nisms, and reflex actions, all achieved without necessitating a complete dynamic 
model. Walking stability is ensured through a series of postural reflexes linked 
to the extrapolated center of mass motion. It is demonstrated that only a min- 
imal set of joints need simultaneous active control throughout different walking 
phases. Alongside detailing the control strategy, the thesis introduces an an- 
thropomorphic biped model and highlights the importance of features such as 
compliant actuation for optimal walking performance. Specifically, the proposed 
method relies on joints with characteristics akin to the human muscle-tendon 
system, including non-self-locking, torque-controllable mechanisms with parallel 
elasticity and minimal friction. The effectiveness of the approach is validated 
through simulations of 3D dynamic walking, revealing an efficient, smooth, and 
rapid gait capable of handling significant disturbances. Moreover, the result- 
ing joint trajectories closely resemble human walking patterns. In recent years, 
numerous researches have been done based on simulation of legged mechanism, 
especially on biped robots simulation and control. This research focuses on the 
biped robot simulation in Gazebo and the control of it over various trains such 
as flat environment, ascending and descending surfaces, passing a ditch and 
different obstacles with the aid of 3D modeling methods. the bipedal robot‘s 
movement is controlled by 3 different methods (Neural Network controller, Fuzzy 
Logic Control and PID controller). Finally the results of all these controllers 
are provided and the compression is done in later chapters. 
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4 Introduction 

Despite decades of research, bipedal robots still struggle to replicate the graceful 
motions and dexterity observed in human walking. Presently, most bipeds rely 
on analytical approaches rooted in multi body dynamics, pre-calculated joint 
trajectories, and Zero-Moment Point considerations to ensure stability. While 
these efforts have yielded impressive results in two-legged locomotion and other 
movement skills, they suffer from drawbacks such as strong model dependency, 
high energy and computational costs, and susceptibility to unknown distur- 
bances. In contrast, human locomotion is characterized by elegance, robustness, 
speed, and energy efficiency. This dichotomy forms the basis for the two main 
hypotheses explored in this thesis: firstly, that a control system informed by 
insights into human motion control can endow bipedal robots with human-like 
walking capabilities, and secondly, that certain properties of human morphology 
are essential to fully exploit such a control system. To address these hypothe- 
ses, a control methodology is developed based on key features of human walking 
control and applied to a biped model incorporating human-like characteristics. 
While research on transferring control and morphology aspects from biology to 
walking machines has been ongoing, this approach aims to differentiate itself by 
the depth of biological analysis included, the manner in which these aspects are 
integrated into a robot control system, and the complexity of the target robotic 
platform under consideration. Bipedal robot control is one of the most chal- 
lenging and popular research topics in the field of robotics. Despite significant 
progress, achieving the fluidity and adaptability of human walking remains a 
formidable challenge. Unlike classical control problems, such as industrial robot 
arm manipulation, the control of bipedal robots presents unique complexities. 
Various classical model-based control methods, including trajectory tracking, 
robust control, and model predictive control, have been proposed. However, 
these approaches often lack flexibility and struggle to ensure stability, adapt- 
ability, and robustness in bipedal robots. Several inherent characteristics of 
bipedal robots exacerbate these challenges: (1). Nonlinear Dynamics: Bipedal 
robots exhibit highly nonlinear and naturally unstable dynamics, rendering tra- 
ditional linear control theories inadequate. (2). Dynamic Discontinuity: Walk- 
ing cycles involve transitions between statically stable double-support phases 
and statically unstable single-support phases, necessitating adaptive control 
strategies. (3). Underactuation: Despite control over individual joints, bipedal 
robots remain underactuated due to their disconnectedness from the ground, 
posing additional control challenges. (4). Multivariable Systems: Bipedal lo- 
comotion involves numerous degrees of freedom, especially in three-dimensional 
spaces, complicating coordination and interaction between joints. (5). Chang- 
ing Environments: Bipedal robots must adapt to uncertain and evolving envi- 
ronments, such as uneven terrain or obstacles, requiring rapid adjustments in 
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control strategies. Advancements in computing power have facilitated the im- 
plementation of sophisticated learning algorithms, offering promising avenues 
to address these challenges. Learning-based control, situated at the intersec- 
tion of robotics and machine learning, enables robots to autonomously refine 
control policies through interaction with the environment. Unlike classical con- 
trol methods, learning control techniques leverage partial models and iterative 
parameter tuning to acquire desired skills. 

 

 

 
Fig. 1: Various robots and their link to a bipedrobot 
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5 Locomotion of a biped robot 

Biped robots, characterized by their two legs, have the capability to walk on various surface 

and perform tasks similar to those carried out by humans. The locomotion of biped robots 

is significantly influenced by the gait cycle and the environmental structure in which they 

operate. The gait of a biped robot refers to the coordination between its legs and body 

movements during locomotion on specific surface. It can be classified into periodic and 

non-periodic gaits. Periodic gaits involve the repetitive generation of the same sequence of 

steps from start to finish. Non-periodic gaits, however, adapt their gait cycle based on 

environmental conditions. The walking cycle of a biped robot consists of two distinct 

phases: the single support phase (SSP) and the instantaneous double support phase (DSP). 

During the SSP, the robot takes a forward stride and covers a certain distance, while the 

double support phase is a momentary phase that allows for the exchange of leg support. 

Gait generation for biped robots can be achieved through two approaches: active walking 

and passive walking. Active walking involves attaching actuators to the joints of the robots’ 

models, enabling controlled movements. In contrast, passive walking does not involve 

actuators and relies on natural dynamics and momentum [1]. Two main types of bipedal 

walking systems are static walking and dynamic walking. In static walking, the balance of 

the biped robot is determined based on the center of mass (COM). On the other hand, 

dynamic walking involves a faster walking cycle compared to static walking, with the 

balance of the biped robot assessed based on the zero-moment point (ZMP). The zero- 

moment point represents the point around which the sum of all moments generated by 

active forces equals zero. The balance of a biped robot can be measured using the concept 

of dynamic balance margin (DBM), which evaluates the robot’s ability to maintain stability 

during walking. The introduction of the concept of Zero Moment Point (ZMP) by researchers 

Vukobratovic and Stepanenko [2] has played a significant role in gait generation for biped 

robots. They considered the upper body of the biped walking model as an inverted 

pendulum, with the Zero Moment Point aid- ing in the determination of the Dynamic 

Balance Margin (DBM). The Dynamic Balance Margin provides an estimation of the robots 

stability in dynamically balanced systems. Various techniques have been employed to 

compensate for the ZMP and ensure stability, including preview control, AI-based gait 

generation, and model predictive control. Additionally, researchers have explored 

periodicity-based gait, capture point theory, and foot placement estimators to analyze 

dynamic stability in biped robots [3]. 
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Fig. 2: Gait phases (i) SSP ends, DSP begins, (ii) DSP, (iii) DSP ends, SSP 
begins (iv) SSP[4] 

 
 

 

6 MOTION GENERATION FOR DYNAMIC BIPEDAL 
LOCOMOTION 

Throughout the previous section, we outlined how the locomotion problem 
is fundamentally different from traditional approaches to modeling fixed-base 
robots. It is because of this inherent complexity that virtually all approaches to 
realizing dynamic walking must transcribe the locomotion problem into a mo- 
tion planner that can handle the various constraints naturally imposed on the 
problem. While several of the more classical walking paradigms offer simple so- 
lutions to conservative walking, there has been a push over the last two decades 
toward leveraging optimization to obtain increasingly dynamic maneuvers [5]. 

 

 

6.1 Step Planning with Linear and Reduced-Order Models 

For the simplest models of walking, such as traditional ZMP and LIPM ver- 
sions of the capture point, the linear dynamics of the restricted system of- ten 
yield straightforward approaches to planning the motion of the COM. The walk- 
ing characterized by these linear models often implicitly satisfies quasi- static 
stability assumptions, ultimately allowing a control designer to decouple the 
high-level step planner and low-level balance controllers [6]. vein, Kajita et al. 
[7] introduced the jerk of the COM as an input controlled by a discrete linear 
quadratic regulator controller with preview action to plan ZMP trajecto- ries for 
predefined footsteps. However, predefining the motions of the ZMP or 

∑ 

∑ 

∑ 
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Fig. 3: (a) Schematic diagram showing the ZMP acting on the foot support, (b) 

free body diagram showing all forces responsible for creating moment 
about ZMP, (c) schematic diagram showing the range of possible ZMP 
region and DBM region under the foot polygon [8]. 

 
footholds is not always necessary or desirable. If planners for these simple mod- 
els could instead be performed online, then the robot may be able to mitigate 
issues related to reactivity. Wieber [9] proposed using linear, trajectory-free 
model predictive control as a method for explicitly handling the constraints im- 
posed by the ZMP approach while continuously reevaluating the walking path. 
Stephens and Atkeson [10] presented the use of model predictive control for push 
recovery and stepping on the SARCOS humanoid, which could be extended to 
obtain walking behaviors. Studies have also shown how optimization and model 
predictive control can extend the notions of capture point to viable regions on 
which the biped can step and how push recovery can be planned over a horizon 
of multiple steps [11]. Despite the ability of these planners to adapt online, they 
cannot handle the discrete dynamics associated with foot strike, and they 
demand near-zero impact forces, which rules out the nontrivial impacts that are 
naturally associated with dynamic walking. It is also difficult to provide a pri- 
ori guarantees on whether any given reduceorder plan is feasible to execute on 
the full-order dynamics [12]. Such methods typically use inverse kinematics or 
inverse dynamics, sometimes in an operational-space formulation, to compute 
the full-order control inputs at each instant [13]. Solving such near-term inverse 
problems does not imply that future inverse problems in the trajectory will be 
feasible, which requires additional planning. 
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6.2 Nonlinear Optimization for Gait Generation 

As a result of the rapid developments within the trajectory optimization com- 
munity, researchers began to move toward utilizing nonlinear dynamic gait op- 
timizations rather than relying on the constraints imposed by linear modeling 
assumptions. The use of nonlinear optimization (i.e., numerical approaches) to 
generate stable walking behaviors on bipeds is not a new concept [14], though 
computational limitations were a considerable hindrance to generating motions 
on 3D robots. During the mid-2000s, computation power finally in- creased 
sufficiently to begin handling 3D dynamic walking behaviors [15]. 

 

 

6.3 Open-loop optimization 

The use of open-loop optimization to generate feasible motions for actuated 
robots is a natural extension of approaches used throughout the field of trajec- 
tory optimization, where the planning problem is seen as decoupled from the 
feedback control applied to the actual robot [16], and approximately optimal 
solutions are often sufficient. Furthermore, in recent years, the application of 
advanced trajectory optimization methods such as direct collocation has made 
the optimization of the full-body dynamics of Equation 1 more computationally 
tractable, sparking a growing interest in considering the full-body dynamics of 
the robot in the planning problem. For instance, in order to control the open- 
loop trajectory that results from the direct collocation optimization, a classical 
linear quadratic regulator–based feedback controller can be constructed to sta- 
bilize the resulting trajectory obtained for the constrained dynamical system. 
Complementary Lagrangian systems formed the basis of the approach used by 
Posa et al. [17], which allowed the optimizer to find walking behaviors without 
a prior enumeration of the type and order of contact events. Open-loop trajec- 
tory optimization has also been used to satisfy ZMP conditions in a nonlinear 
fashion, which considerably improved the dynamical nature of the conservative 
walking. 

 

 

6.3 Closed-loop optimization 

While the preceding nonlinear optimization approaches do consider the full- 
body dynamics of the robot, it is not always desirable to apply feedback con- 
trollers to stabilize an approximately optimal open-loop plan. Rather, it is often 
beneficial to couple the gait generation and controller synthesis problems into 
a single framework: closed-loop optimization. This framework allows, among 
other things, the generation of provably stable walking behaviors that simul- 
taneously satisfy the constraints on the system from admissible configurations 
to torque bounds. This idea forms the basis of designing walking gaits with the 
HZD method, where feedback control is used to generate provable stable 
periodic orbits [18]. 
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7 Gait generation and design issues of the biped robot 

This part covers the proposed taxonomy for various aspects of gait generation and 
the design of biped robots. we have attempted to simplify and classify the 
concerning factors and gait generation techniques for the gait generation prob- lem 
and design issues of the biped robot based on various perspectives through the 
proposed systematic taxonomy. This can help to identify the problem and then 
wisely select the appropriate strategy [19]. 

 

 
7.0.1 Gait GENERATION TECHNIQUES 

 
Gait Generation Techniques 

 
1. Model-Based Gait 

o Interpolation/Reference Trajectory-Based Gait: Relies on predefined trajectories to generate 
motion. 

o Inverted Pendulum Model (IPM): Utilizes the dynamics of an inverted pendulum, including 
linearized IPM approaches, for optimizing gait parameters. 

2. Natural Dynamics-Based Gait 
o Employs biped models enhanced with virtual components such as springs and dampers to replicate 

natural walking dynamics. 
3. Biological Mechanism-Based Gait 

o Human Motion Capture Data (HMCD): Mimics real human movements for naturalistic gait 
generation. 

o Central Pattern Generators (CPG): Neural network-based models that replicate rhythmic and 
periodic motion. 

o Biologically-Inspired Algorithms: Leverages mechanisms inspired by natural motion principles. 
4. Stability Criterion-Based Gait 

o Zero Moment Point (ZMP) Criterion: Ensures balance by keeping the center of pressure within the 
support area. 

o Center of Pressure (CoP) Criterion: Focuses on foot-ground interaction to maintain balance. 
o Center of Gravity (CoG) Criterion: Tracks the center of mass for stability. 
o Foot Rotation Indicator (FRI): Monitors foot placement to assess stability. 
o Periodicity-Based Gait: Includes methods such as limit cycle analysis to maintain consistent 

rhythmic motion. 

 
Factors Influencing Gait 

 
1. Trajectory Planning 

 

• Based on complex mathematical equations for path and motion generation. 

 
2. Terrain Adaptability 

 

• Structured Terrains: Motion planning for predefined surfaces, such as: 
o Flat ground 
o Ascending and descending slopes 
o Staircases 

• Semi-Structured Terrains: Tackling minor irregularities, such as: 
o Obstacles on flat ground 
o Small ditches 

• Unstructured Terrains: Adapts to unpredictable or uneven environments. 

 
3. Trajectory Types 
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• Polynomial Trajectories: Includes quadratic (second-order), cubic (third-order), quintic (fifth-order), etc. 

• Cyclical Trajectories: Repeating patterns for consistent motion. 

• Bezier Trajectories: Smooth path generation for complex movements. 

 
4. Path Planning 

 
• Avoidance of static obstacles. 

• Navigation around dynamic obstacles for smooth and adaptive motion. 
 

 

8 Chapter 2: Gait generation Methods 
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Fig. 4: Taxonomy for various design issues of the biped robot 

 

9 Types of gait generation techniques 

Fundamentally, there are four gait generation techniques; model-based, natural 
dynamics-based, bionic kinematics or biological mechanism-based, and stabil- 
ity criterion-based technique The model-based gait generation technique mainly 
consists of interpolation-based gaits which means generating reference trajecto- 
ries by polynomial satisfaction of the constraints and tracking them by using the 
control system [20]; linear inverted pendulum model (LIPM) dynamics- based 
modeling and optimization-based gaits that include the optimization of energy 
consumption, robot construction, control system, and adaptation. The draw- 
back of this technique is the requirement of all the information on the dynamic 
parameters of the respective biped model [21]. 

It is to be noticed that the biological mechanism-based gait generation is 
inspired by animal and human motion capture data (HMCD) which can gen- 
erate different stable rhythmic patterns along with the capabilities to change 
the pattern and its speed quickly [23]. Further, the central pattern generators 
(CPG) and neural networks (NN) are inside the spinal cord, capable of generat- 
ing rhythmic locomotion and lacking any sensory signals. The Matsuoka neural 
oscillator [24] and the Van der Pol oscillator [25], two popular models, are used 
for modeling the CPGs. It has been observed that the other approaches which 
are biologically inspired fall under artificial intelligence (AI)-based gait, which 
encompasses genetic algorithms (GA), fuzzy logic (FL), and NN. 

Moreover, natural dynamics-based gait is performed based on intuitive con- 
trol, natural dynamics of the biped, physics of the system, and virtual elements 
like dampers and springs that is why this technique does not need any pre- 
defined reference trajectories [26]. And also, the gait can be performed based 
on stability criterion-based gait generation techniques, including ZMP, DBM, 
CoP, COG, CoM, FRI, theory of capture points, foot placement estimator, 
periodicity-based gaits, and limit cycle analysis. 

Apart from these gait generation techniques, the researchers should also 
identify some factors while planning the gait generation of the biped robot, 
such as a suitable trajectory equation based on polynomial, cycloidal, and Bezier 
curves, avoiding static and dynamic obstacles for path planning, and types of 
terrain for estimation of the boundary conditions for swing foot, hip, and wrist 
trajectories. 

 

 
9.0.1 Biped robot design and its challenges 

The above discussion of fundamental gait generation techniques may help the 
researchers to identify standards and best practices for developing the biped 
robot and generating its gait on different terrains. The fundamentals of biped 
locomotion have been explained briefly in the introduction part of this thesis. 
At the same time, the design issues of the biped robot have been presented 
previously, which needs to keep in mind before planning and designing the biped 
robot. These factors also affect the ability of a robot to walk over uneven terrain. 
The fundamentals of modeling the biped robot, such as deciding the number of 
degrees of freedom of the robot, include the allocation of the actuators and their 
orientations [27]. Further, the type of trajectory must be planned for each part 
of the robot’s mechanism, such as the swing foot, wrist end, and hip, to enable 
the robot to move from the source to the aimed position, that is, path planning. 
The analytical modeling could be of the planner type, which includes trajectory 
planning only for the sagittal plane, whereas trajectory planning for both the 
sagittal and frontal planes or the sagittal, frontal, and horizontal planes, that 
is, 3D modeling must be done to enable the robot to walk in a real environment. 
In addition to, researchers discussed various types of walking patterns, type of 
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foot and ground contact, including probable forces developed due to the impact 
of the heel on the ground, and arrangement of heel and toe contact with the 
ground when planning the dynamics for improved stability robustness. Other 
than these, elastic and stiff links of robot may benefit with some flexibility to 
absorb impact and cause instability because of the uncertain motions generated 
by the elasticity factor [28]. However, the mobility of the links depends on active 
or passive joints. Moreover, various stability criteria as per their skills, such as 
ZMP, CoP, COG, FRI, can be possible to adopt. Therefore, the mathematical 
model of the biped robot consists of kinematics and dynamics by using any high- 
level programming language and also build their planned model with the help 
of software, such as CoppeliaSim, ROS, MATLAB, to do simulation and verify 
the feasibility of their planned model. Additionally, the researchers must 
concentrate on the characteristics of environments or terrains, optimization 
algorithms, autonomous navigation through biologically inspired learning 
algorithms for suitable decision-making and adaptively, designing the 
controller as per the nonlinearity present in the robot’s mechanism, suitable 
gait generation techniques, the number of under- actuated and over actuated 
joints, planning the robustness against the probable unbalanced external forces, 
and both online and offline modes of tracking the deviation of the trajectories 
from the planned mathematical model [29]. In addition to planning includes the 
hardware of the robot consists of structure of the robot, sensors for recording 
real-time data, and microcontrollers for operating the actuators, which could 
be electric, hydraulic, or pneumatic drives. Over and above, some challenges 
observed while designing the biped robots are as follows: 

• The biped robot joints are underactuated during SSP and overactuated 
during DSP [30]. Consequently, the dynamics and control laws are also changed 
during this phase transition. In addition to the above problem, the biped robot 
acts as an open chain mechanism in SSP and a closed chain mechanism in DSP, 
which consequently changes the dynamics equations to be used. 

Over-actuation of the biped mechanism is controlled by kinematic Jacobian 
[31] and minimization of the joint torques by algebraic optimization [32]. How- 
ever, the continuous dynamic response can still not be guaranteed [33]. Sim- 
ilarly, the problems that occurred during the SSP phase are encountered by 
using the four control techniques: port-Hamiltonian method [34], differentially 
flatness-based approach [35], hybrid zero dynamics (HZD) [36], and time scaling 
method [37]. 

• A humanoid robot can be made up of more than 30-DOF, which makes 
its stability and control more complex [38]. 

• When the biped robot is walking in various unknown environments in real 
time, it needs to develop robust algorithms for possible external disturbances 
and noises. 

• Unexpected shocks and instability of the robot are happened due to stiff 
joints [39]. Many researchers have used elastic joints to overcome the problem, 
which can be preferred and consequently increase the system’s DOF due to 
flexible joints. Remark: Despite the complexity of making the biped mechanism 
closer to imitating human walking, compliant legs are employed [40]. 

• The foot-ground contact needs to be designed appropriately to avoid impul- 
sive forces. To overcome these challenges, researchers suggest to use a suitable 
controller other than the right selection of gait generation methodology. 

 

 

10 Controllers used for generating the smooth gait 

Many researchers have developed various control algorithms to control the mo- 
tions and dynamic balancing of the biped robots for smoothly coordinated mo- 
tions among the different mounted motors in every joint. researchers have dis- 
cussed popular controlling techniques such as PID, CTC, NN, CMAC-NN, FLC, 
MPC impedance control in this section [41]. 
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10.1 PID controller 

The proportional integral derivative (PID) controller is most famous for indus- 
trial applications. The PID controller consists of proportional, integral, and 

 

 

 

 
Fig. 5: Various controllers applied for biped gait generation on various terrains 

 
derivative gains containing errors between target and achieved values. The PID 
controllers have been used widely for many years in the robotic field due to 
their simplicity and ease of controlling the controller’s proportional, integral, 
and derivative gains. This PID controller can be simplified as PI (Proportional 
Integral), PD (Proportional Differential), and ID (Integral Differential) con- 
trollers for minimizing the nonlinearities in the system. The tracking system 
based on PD (Proportional Derivative) controllers allows adaptivity to the sys- 
tem as per the parameter variation and external forces [42]. Above 80 percent 
uncertainty level, the PID controller fails to provide a stable gait generation of 
walking on flat terrain and staircase for single support and biped-in-air phases 
[43]. the cascaded control is discussed with all the versions of P, PID-PI, SISO, 
MIMIO MIMO-SISO cascaded controllers in detail. The constant gain of PID 
controller consequences to very high speed then slowly reduced while adaptive 
gain of PID controller consequently smooth operation of a biped robot [44]. 
The tracking error convergence rate is controlled by the PD controller for the 
continuous task of the swing leg and subdue the nonlinear impacts by HZD as- 
sumptions for the discrete assignment of foot impact on the ground [45]. Several 
well-known optimization techniques have been used to optimize the gains of the 
PID controller like NN, FL, GA, PSO, DE and MCIWO, with NN being the most 
used one. 

 

 
10.1.1 Computed torque controller (CTC) 

Other than this, the CTC is an efficient way to generate dynamically stable gaits 
that curbs the system’s nonlinearities [Reference Song, Yi, Zhao and Li66]. It 
can stabilize but requires an exact dynamic model of the robot mechanism. 
That factor puts limits on its applications. It can be described as a position- 
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oriented control technique. It is also called an inverse dynamics controller; it 
is one of the most widely used controllers. It was first introduced by a NASA 
scientist B. Markiewicz [46] in 1973. It is based on the principle of feedback 
linearization, a technique for simplifying a nonlinear model into a linear one. 
All nonlinearities and cross-coupling terms are calculated and eliminated in this 
method [47]. Its ability to transform a coupled, nonlinear mechanical system 
into a linear, decoupled, and stable system is one of its appealing qualities. As 
a result, the researchers are able to control nonlinear systems using linear 
controllers like PD and PID controllers. Accurate dynamical models of robotic 
manipulators are necessary for the CTC scheme [48] which puts limitation on 
its usage. Song et al. [49] made an effort to address this issue and proposed a 
method for trajectory tracking issues of robotic manipulators with structured 
uncertainty and/or unstructured uncertainty by integrating CTC and Fuzzy 
Control. Since the parameters of the majority of physical systems are either 
unknown or time-variant in reality, a computed torque-like controller is used to 
correct the dynamic equation of the robot. 

 

 

10.2 NN controller 

The NN technique ensures closed-loop execution for controlling the bounded 
errors. The NN have offline and online real-time learning characteristics for 
easy implementation [49]. The NN-based controller has been integrated with 
the cerebellar model articulation controller (CMAC) in most of the approaches, 
which is an integrative memory-type NN that was initially introduced by Albus 
[50]. Since then, it has been used in robotic applications for reinforcement 
learning architectures. It is a kind of NN which employs associative memory. It 
simplifies the large size of NN and its inherited problems. The CMAC executes 
better than the usual NN in terms of learning speed and is simple in computation 
and easy to implement. The NN involves entirely connected neurons, and all 
weights need to be updated in each learning cycle, which makes the NN slow. 
In contrast, CMAC is based on associative memory networking, but NN is more 
universal than CMAC [51]. 

 

 

10.3 Fuzzy logic controller (FLC) 

The FLC system is a control scheme that investigates the input parameters. 
It considers them as logical data from 0 to 1, representing false and actual 
values, respectively. Still, the FL does not represent exact true or false but 
partially accurate values since it varies from 0 to 1. It was first introduced by 
Lotfi A. Zadeh [52]. The FLC is heuristic in nature, consisting of a knowledge 
base and human thinking for reducing nonlinearities. Heuristic characteristics 
cannot be implemented with traditional techniques. The FLC does not require 
accurate mathematical modeling and perfectly designed inputs to reduce the 
nonlinearities better than most controllers. 
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10.4 Impedance controller 

The impedance controller is a dynamic control approach based on controlling 
the force and positions of the links. Controlling the impedance of any mecha- 
nism is controlling the force offered by the surroundings against the motions. It 
is being used in robotics, where the force and position of every link are essential 
in maintaining the dynamic stability and robustness to perform any gait. It was 
first introduced by Hogan [53] in 1984. By incorporating a feedback control 
algorithm for imposing a desired Cartesian impedance on the end effector of a 
nonlinear manipulator. The proposed method for controlling the dynamic be- 
havior of a manipulator with its surroundings. With the help of this algorithm, 
it is no longer necessary to solve the inverse kinematics problem to control the 
robot’s motion. Further, its unique characteristics allow the researcher to su- 
perimpose different controller actions for performing diversely targeted tasks. 
In addition to, the structure’s ability while resist motion un- der any harmonic 
force is known as its mechanical impedance which is ratio of applied force (i.e., 
potential) to resulting motion, that is, (flow) [54]. The magnitude of force re- 
quired to achieve a given velocity decreases as the swing’s admittance decreases. 
The main goal of impedance controller is to control both the robot’s motion and 
its contact forces. 

 

 

10.5 Model predictive control 

This technique is a broad control strategy that satisfies the system’s constraints 
and gives optimum responses. In this technique, the reference trajectories are 
provided, based on which it predicts the future progression of the model. It 
itself is a broad research topic, and it has often been used in robotics. Lee and 
Markus discussed the significance of model predictive control [55]. Later, Shell 
Oil engineers developed the model predictive control technique in the 1970s and 
applied in 1973 [56]. Despite the significant computational load, the MPC out- 
performs structured PID controllers in terms of changes in system parameters 
(robust control), and very easily it can be applied to complicated multi variable. 
On the basis of immediate state evaluations and anticipated process responses, 
it can calculate the best possible control actions [57]. Due to these character- 
istics, it is suitable for sophisticated multivariate process control systems. The 
architecture of MPC depends on an integrated linear or nonlinear model for 
capturing the dynamic behavior of the process and predicting its response over 
a finite horizon window in order to assess the best control trajectory by resolv- 
ing a dynamic optimization problem while taking input and state constraints 
into account at each sampling time. 
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11 Gait generation on various terrains 

Balancing the two-legged robot is more complicated than the wheeled robot. 
Moreover, the locomotion of the legged robot has more universal appeal than 
wheeled locomotion due to its complex and remote applications based on dif- 
ferent terrains where wheeled mobility is impossible. In this part we reviewed 
many approaches while generating the gait on different terrains such as flat, 
slope and staircase. 

Table 1: an over view to all the gait generation approaches on different 
terrains 

Terrain Type Key Challenges Gait Generation Methods Notable Techniques 

 
Flat 

Terrain 

 

Balancing, trajectory 

synthesis, foot- 

ground interaction 

Model-based (e.g., Linear Inverted 

Pendulum Model), Natural 

Dynamics, Stability Criterion, 

Bionic/Biological Mechanism 

Polynomial interpolation (cubic, 

fourth-order), ZMP control, 

virtual height inverted 

pendulum, NN optimization for 

swing leg trajectory. 

Maintaining Stability Criterion (e.g., ZMP- ZMP trajectory adjustment, hybrid 

Slopes stability with based), Biological Mechanism-based approaches integrating neural 

varying inclinations 
(e.g., CPG-inspired), AI algorithms 
for adaptability 

networks with optimization 

methods like PSO. 

 

Staircase 

Adjusting for step height 

and swing phase 

coordination 

Sliding Mode Control, NN- 

based controllers, and 

Stability Criterion 

Enhanced DBM with cubic trajectory 

optimization, adaptive PID control for 

trajectory adherence. 

 

Obstacle 

Navigation 

Perception-based control, 

avoiding dynamic/static 

obstacles 

Path planning and 

perception-based 

techniques using AI 

NN trained by GA/DE, hybrid 

controllers integrating sensory data with 

optimization (e.g., regression 

controllers). 

 

Ditches 

Crossing distances 

wider than the 

leg's length 

Analytical Modeling, NN 

and Fuzzy Logic Optimized 

by Genetic Algorithms 

Adaptive gait planners for dynamic 

balance margin optimization, trajectory- 

based methods for efficient energy use. 

 

Uneven 

Terrain 

 

 
Unknown 

Uncertainties in surface 

patterns, maintaining 

dynamic stability 

 

Real-time decision- 

making based on 

LIPM-based Modeling, 

Adaptive Algorithms, 

Hybrid Controllers 

 

Reinforcement Learning 

(RL), Neural Networks, 

Dynamic balancing via real-time 

adjustments (e.g., impedance controllers), 

hybrid intelligence (fuzzy-NN) for 

adaptive navigation. 

RL-trained CPG networks, vision- 

based navigation (RGB-D sensors), 

Environments incomplete data from 

sensors 

Environment Mapping and 

SLAM 

adaptive controllers for terrain 
mapping and locomotion 

optimization. 

 

 

 

11.1 Gait generation on the flat terrain 

While performing the gait of the biped robot on a flat surface, several issues 
need to be fulfilled to complete one walking cycle. The most crucial aspects of 
walking are balancing, controlling, trajectory synthesis, and foot-ground in- 
teraction. Figure. 6 is the gait generation of the biped robot on a flat surface 
with interpolation of cubic polynomial trajectory for the swing leg [58]. Various 
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methodologies for biped gait generation are being discussed here based on four 
fundamental gait generation techniques adopted by researchers. 

 

 
Fig. 6: Schematic diagram showing mass, length, and angles of each links of a 

biped robot walking on the flat terrain 

 
Most of the researchers adopted the model-based gait technique for walking 

on flat terrain, which is the simplest case compared to any other terrain. The 
dynamics laws for the biped robot were determined by using the fundamentals of 
LIPM [59], virtual height inverted pendulum mode [60], Euler- Lagrange formu- 
lation [61], Newton-Euler approach, and then after calculation of the dynamics, 
the whole-body gait can be generated by using forward and inverse kinemat- 
ics [62]. The complexity of the biped modeling can be dealt by arranging the 
hip, knee, and ankle joints of the biped model as under actuated and friction- 
less [63]. Interpolation of the joint trajectory is also adopted for gait generation. 
Chevallereau et al. [64] obtained optimal joint reference trajectories gait cycle by 
using fourth-order polynomial functions for joint variables while keeping ankle 
joint under actuated. The reduced ankle power was compensated by the motion 
of swinging leg and body for proper foot contact with the ground, smooth walk- 
ing was obtained for the lesser complex biped model, and also dynamically stable 
bipedal gait over the flat terrain was obtained. Similarly, scholars [65] assigned 
cubic polynomial trajectories for the swing foot, hip, and wrist joint of 18-DOF 
humanoid robot.Numerous researchers have developed many control schemes to 
reduce the effect of nonlinearities in the biped mechanism due to complex dy- 
namics. There- fore, nonlinear feedback control for 5-DOF biped model while 
moving in air and free fall motion; closed-loop Eigen structure assignment for 
prescribed gait of 5-DOF model [66]; two-level control scheme for generating pre- 
scribed gaits and motion to reduce large deviations; control scheme based on a 
novel integration of the multiple input multiple outputs (MIMO) framework for 
10-DOF biped model. control technique by selecting state variables dependent 
output functions such as angular orientations and velocities along with Pfaff- 
Darbous principle and differential geometric tools [67]; robust control technique 
based on series elastic actuation in “FLAME” “TUlip” for limit cycle walking; 
local feedback at each joint of the robot [68] and feedback control scheme for 
stable cyclic gait developed to obtain the dynamic stability of the biped walking 
on flat terrain. Other than these, a technique based on wireless monitoring and 
controlling of actuators and sensors by employing the tunneling method was 
introduced by Nicolau et al. [69] for robot YABIRO, which is done by employ- 
ing the tunneling method for enclosing CAN messages into a TCP/IP network 
over WiFi. Similarly, they developed an online adaptation technique based on 
a set of intuitions for tracking reference trajectories [70]. Researchers have also 
attempted to optimize the energy consumption for obtaining the periodic gaits 
by using Hamilton-Jacobi-Bellman type equations and obtaining the gait. It has 
been found that the gait transition from running to regular walking by releasing 
extra energy while shortening the legs with the help of an antagonistically driven 
hip joint consisting of two nonlinear springs, two AC servo motors and one free 
joint. Furthermore, Ji et al. [71] investigated the impulsive effects of the ankle 
push-off byaccelerating the swing leg and decreasing the changes in COM speed 
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to increase the gait speed. When the model’s physics helps to generate the gait, 
it is termed natural dynamics-based gait. In the initial time of biped develop- 
ment, the researchers preferred the physics-based gait due to the unavailability 
of intelligent techniques such as passive pendular gaits in the swinging phase; 
forward and reverse walking of BIPER-1, 2, 3, 4 5. virtual spring and a damper 
to the prevalent inverted pendulum-based biped robot; intuitive gait strategy for 
9-DOF biped model controlled by forces and posture and the virtual constraints 
for the able gait of 7-DOF biped model RABBIT [72]. A few approaches re- 
lated to stability criterion-based gait were also reported. For mimicking human 
motions by tracking ZMP trajectories and generating stable gait by modifying 
the horizontal COG positions efficiently with the help of dispersed force sensors, 
motion capturing mechanisms, and force plate. Further, the they obtained the 
ZMP by using the universal force-moment sensor on WL-12RIII. In addition, 
Tagawa and Yamashit [73] introduced the Zero Moment Joint (ZMJ) concept 
and showed a stable biped gait for the 8-link biped model when ZMJ was the 
only ankle joint. Apart from the above-discussed approaches, few researchers 
have also generated the biped gait inspired by bionic or biological mechanism- 
based gaits, which are discussed here. Such as, Yazdani et al. [74] developed a 
bi-layer controller consisting of high-level and low-level controllers. The high- 
level controller utilizes all sensory information to deal with the dynamics and 
produce stable rhythmic motions through conscious learning during training. 
The low-level controller consists of a control network in which every individual 
node is an oscillatory dynamic that learns and reproduces the desired paths. 
The critic agent in the node allocates a particular controller for any parameter 
based on its eligibility. The proposed controller proved robust and stable as 
a dynamic controller but mainly featured as a path or trajectory-based con- 
troller. Similarly, the nonlinear oscillator has also been used to observe the 
sensor output to obtain real-time online trajectories. 

 

 

11.2 Gait generation on ascending and descending the 
sloping terrain 

Gait generation of the biped robot on a sloping surface is a more challenging 
task than the flat terrain. Figure.7. show the biped robot’s gait generation in 
ascending and descending the sloping surface. Very few researchers have re- 
ported the model-based gait generation approach for ascending and descending 
sloping terrain. Kuo [75] developed an analogy of human gait with an inverted 
pendulum, provided a circular trajectory instead of a horizontal trajectory for 
COM, and found that a horizontal COM trajectory consumes more muscular 
energy. In addition to what has been said, Pratt [76] presented the natural 
dynamics and inherent robustness of the biped locomotion mechanism and de- 
veloped the Spring Flamingo robot using a low-impedance controller which can 
start and stop while moving on slopes and rolling surfaces with various speeds. 
The derived control algorithm exhibits three stages: the primary algorithm con- 
trol walking, the secondary algorithm exploits the kneecap, ankle, and passive 
swing leg natural dynamics, and the tertiary algorithm ensures fast walking of 
the swing leg. Scholars added lateral balance to the three- dimensional algo- 
rithm and simulated the 3D model. 

 

 
Fig. 7: Gait generation on a sloping surface (a) ascending the slope and (b) 

descending the slope 

 
Stability criterion-based approaches have also been developed and imple- 
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mented for gait generation on a slope. Massah et al. [77] used 3D inverted 
pendulum-based equations and ZMP concept for developing a trajectory plan- 
ner by employing the semi-ellipse EOM (equations of motion) for an NAO hu- 
manoid robot and simulated on Webots while walking on various slope terrains. 
Vundavilli and Pratihar [78] used ZMP concept and reported more DBM for 
ascending the slope than descending the slope. Furthermore, Hwang et al. [79] 
obtained momentum equations based on ZMP by treating biped robot as a pthe- 
sis and assuming the motion of CoM parallel to the slope and then simulated it 
by using ResurDyn and MATLAB commercial software. In addition to, Ito et 
al. [80] reduced the number of actuators of biped robot without sacrific- ing 
adaptability and ability then applied the gravity compensation mechanism and 
feedback from CoP of the ground reaction forces. Most of the researchers have 
attempted the biological mechanism-based gait for ascending and descend- ing 
the sloping terrain. The central pattern generator (CPG) has inspired the 
researchers to build learning architecture for biped robots of different configu- 
rations and enabled the biped robots for autonomous biped gait; smooth gait 
transition from flat to slope vice versa; walking on a flat plane with different 
friction properties and little change in inclination, stable gait on unknown incli- 
nation, and adaptively in different environments. Further, few gait generation 
algorithms have been developed for generating complex gait patterns using AI 
techniques such as Genetic Algorithm, neurons and neural pathways, genetic- 
neural (GA-NN) and genetic-fuzzy (GA-FLC), NN integrated with modified 
chaotic invasive weed optimization (MCIWO), and PSO algorithm. The AI has 
enabled the biped robots to walk on sloping terrains more efficiently, but if there 
is a change or increase in inclination angle, then some essential sensors must be 
attached to the biped legs. The researchers have employed the integration of 
position sensors (on joints) and force sensors (under foot) to identify slope gra- 
dient; gyroscope and accelerometer sensors to identify the upper body’s posture; 
inertial measurement unit (IMU) sensor; and 2-axes accelerometer sensor for ob- 
taining the smooth, balanced gait on slope terrain. To overcome the difficulty 
due to complex mathematical modeling, they developed a collective balancing 
reflex of threshold, PID, and hybrid control with a 2-axes accelerometer sensor, 
which does not need any mathematical modeling[81]. 

 

 

11.3 Gait generation on ascending and descending the 
staircase 

The gait generation on the staircase is very different from the flat and slop- ing 
surfaces due to the approximate relationship between the height-width of every 
step and the length of the robot’s leg. There are chances of collision of the robot 
with the staircase. Therefore, the swing phase take-off mechanism is essential 
in determining the gait pattern characteristics [82]. The synchronization of all 
robot links and defining the proper foot trajectory become vital for stabilizing 
the robot. Figure.8 show the gait generation of the biped robot for ascending 
and descending the staircase, respectively, by controlling the forward 
gaits speed and swing foot placement. In the early development stage of the 
biped robots, a 17-DOF biped robot consisting 15 active DOF and 2 passive DOF 
was developed by Espiau et al. [83] under the French joint project BIP that 
achieved walking on flat terrains, inclined terrain, ascending, and descend- ing 
stairs. Since then, many approaches and models have been developed and 
shown their improved robustness. they reported that the sliding mode control 
performs better than the torque-based pure CTC technique to overcome the 
high nonlinearities of gaits on the stair- case. In this direction, Albert [84] de- 
veloped a trunkless biped robot and designed a path planning mechanism to 
optimize nonlinearities. Some researchers have obtained stability by controlling 
the motion of the CoG of 7-DOF biped with large feet [85] and supervising of 
the ground center of pressure (GCoP) of 12-DOF biped by using the “hybrid- 
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state driven autonomous control (HyDAC)” algorithm. Besides that, researchers 
developed a mathematical model for interpolating third-order spline and moni- 
toring the ZMP using MATLAB/SIMULINK. Later, Mandava and Vun- davilli 

 

 
Fig. 8: Schematic diagram showing the gait generation of the biped robot (a) 

ascending the staircase and (b) descending the staircase 

 
developed an optimal PID controller for an 18-DOF mini-sized humanoid robot 
and reported its better performance when optimized by a novel MCIWO al- 
gorithm than PSO. The developed algorithm also encompasses the deviations 
in slope inclination and staircase dimension. Researchers reported enhanced 
DBM due to cubic polynomial trajectory in swing foot and reduced hip height 
and increment in the height of the stair slope [86]. Bionic gaits consisting of 
AI-based approaches helped the researchers generate adaptive and autonomous 
gaits. Intelligence has been developed in biped models by implementing multi- 
layered Hopfield kind NN, which resulted in autonomous trajectory generation 
[87]; architecture of building blocks comprising Reconfigurable Adaptive Mo- 
tion Primitives (RAMPs); controller consisting of numerous neurons for energy 
efficient gait of NAO robot and managing small disturbances. FLC rule base 
optimized by GA and controller composed of NN and FLC. researchers reported 
that the MPSONN (Neural Network optimized by Modified Pthesis Swarm Op- 
timization) required the least training time compared to MPSOFLC, PSONN, 
PSOFLC, and NN. And also, the they demonstrated better performance of the 
NN when optimized by MCIWO than differential evolution (DE) and PSO. 

 

 

11.4 Gait generation for avoiding, crossing, and stepping 
over the obstacles 
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Fig. 9: Stick diagram showing the gait generation (a) crossing the obstacle, (b) 
stepping over the obstacle 

 
The evolution of biped locomotion has the motive to develop a robust hu- 

manoid robot, efficient enough to perform all human motions. Humans inherit 
learnings from all sensory, intuitive knowledge, which is challenging to produce 
in the humanoid robot. But, applying some reinforced learning (RL) algorithms 
can develop intuitiveness in humanoid robots. To do so, many researchers have 
proposed some unique methodologies. Most of the researchers have shown in- 
terest in path planning to avoid obstacles. Very few have attempted to solve the 
problem of identifying the obstacles,and then crossing over or stepping over the 
obstacles. The perception-based control system was developed for generating 
walking primitive data of 16-DOF biped robot for step length adaptation, al- 
tering the direction and stepping over the obstacles. And also, the architecture 
consisting of the GA-NN and DE-NN that means NN trained by GA and DE, 
respectively, achieved the gait for crossing over the obstacles and positioning 
the foot on the obstacles as shown in Fig.9 along with generating the horizontal 
trajectory for hip and cubic polynomial trajectories for the swing foot respec- 
tively [88]. Gait while crossing the obstacles showed a more robust gait than 
positioning the foot on top of the obstacles. In addition to said methodologies, 
the self-navigation of biped robots has also been studied for a long time. De- 
tecting the perception of the terrain is a very complex impediment for biped 
robot’s navigation due to the limited view angle of visual sensors. That is why 
most of the navigation approaches are based on AI for the identification of the 
obstacles and then navigation around them for avoiding the obstacles. Such as, 
a novel hybridization framework consisting of a regression controller opti- 
mized with ant colony optimization (ACO); ZMP evaluation by using visual 
sensors; multi-modal sensory architecture having 6-DOF force-torque sensors at 
robot ankles and joint encoders for identifying the contact of the foot with a 
block [89];RA-FLC hybrid controller integrated with the Petri-net model and a 
control software consists of a stereo-camera driver; FL intelligent algorithm; 
integrated intelligence navigation controllers based on regression analysis and 
genetic algorithm approach for single and multiple NAO humanoid robots; a 
pure vision-based algorithm for the entire humanoid navigation strategy based 
on the topological map or visual memory (VM) by using an RGB-D camera [90] 
and 3D-SLAM (Simultaneous Localization and Mapping) by evaluating the next 
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viewpoint from a map through the camera for finding and holding the aimed 
object in unknown surroundings. 

 

 

11.5 Gait generation for avoiding the dynamic obstacles 

Many pieces of research have been carried out regarding the obstacles on the 
path of any biped robot. The proposed techniques and framework are efficient 
for avoiding, crossing, or stepping over stationary or static obstacles but do not 
consider moving or dynamic obstacles, representing a more realistic picture of 
walking in the natural environment. In this direction, Kashyap et al. [91] 
proposed an integrated DWA-TLBO (Dynamic-Window Approach and Teach- 
ing Learning Based Optimization) algorithm where positioning of target and 
obstacles are given to DWA as input for optimizing the speed and intermediate 
in-between consequences to TLBO and collectively evaluated optimum turning 
angle for avoiding the obstacles. The static navigation considers NAO, a mini- 
sized humanoid robot and stationary obstacles. In contrast, dynamic navigation 
con- siders several NAO robots where each NAO works as a dynamic obstacle 
for others with the help of a hybrid regression FL control approach. The re- 
searchers designed and applied a Petri-net controller in every NAOs to avoid 
clashing and validated the simulation and experiment results. 

 

 

11.6 Gait generation for crossing over the ditches 

 

Fig. 10: . diagram of gait generation for crossing ditch (a) SSP, DSP SSP (left to 
right) phases of ditch crossing, (b) simulation of biped robot crossing 
ditch 

The gait generation for crossing the ditches has been studied by only a few 
researchers, which is discussed in this section. Vundavilli and Pratihar [92] to- 
gether proposed a gait planner for ditch crossing based on analytical modeling 
and two other techniques; NN and FL-based optimization of the dynamic bal- 
ance margin and energy consumption for a 7-DOF biped robot. The NN and 
FL-based gait planners are trained offline by GA, enabling optimal online gait 
generation. The approaches other than the analytical modeling are more adap- 
tive and more balanced for the minor energy consumption of a biped robot. In 
addition, they developed a multibody dynamics framework for gait genera- tion 
of 5-DOF biped robot as shown in Fig.10 (a), for giant steps and walking across 
wide ditches of width more significant than the leg length. The paths are 
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produced using time-independent constraints based on the distance trekked 

by COM. The approach is suitable for a robot similar to an adult human for 
going across the ditch of 1.05 m width with 0.2 lowest coefficients of friction. 
Later on, Janardhan and Kumar R [93] again proposed an approach for gener- 
ating the dynamically balanced ditch crossing gait of width equal to or more 
than the length of the leg of a 7-DOF biped robot. The developed algorithm 
is incorporated with adopted constraints and adaptively tunes the time. Figure 
10(b) shows that the simulation gave optimal joint torques and angle trajecto- 
ries.the challenges and approaches for gait generation on uneven terrains have 
been presented in the next section. 

 

 

11.7 Gait generation on the uneven terrains 

 

 

 
Fig. 11: the principle of the homogeneous patch map 

 
Locomotion modeling on uneven terrain is challenging for modeling due to 

its uncertainties and not having specific patterns. That is why the foot place- 
ment is challenging to maintain dynamic balancing for biped robot walking on 
uneven or rough terrain. In this direction, worldwide researchers have de- 
veloped LIPM-based biped model of massless legs [94]; LIPM-based simplified 
model for 42-DOF humanoid robot HRP-4C with ZMP delay; 3D LIPM-based 
12-DOF model; algorithm for adopting 30 percent and 20 percent deviation in 
prescribed speed and step length respectively [95]; moving horizon technique 
for inheritance of human walking behavior on the INRIA designed biped robot 
“BIP”; versatile walk control framework by utilizing an ultra- sonic reach sensor 
for straight upset pendulum-based biped robot “Meltran-II” [96]; Poincare sec- 
tions for asymptomatically stable periodic gait while regulating the impact of 
foot on the ground for an under- actuated biped robot; horizontally composed 
plane having unknown step height for a biped mechanism made up of viscous 
elastomer; a hybrid control consisting impedance control and CTC for swing 
leg and stance leg respectively with higher damping of leg while making contact 
with the ground and a robust adaptive controller inspired from “Turkey 
Walking” by virtual control for controlling speed, posture, and height 
Researchers developed an algorithm virtually with intuitive natural dynamics 
and applied it on Spring Turkey and Spring Flamingo based on a 7-link planar 
biped robot hav- ing contact switches on the foot. Furthermore, Manchester et al. 
[97] designed a controller by first making a lower-dimensional arrangement of 
directions cross- over to the objective cycle and then utilizing a subsiding skyline 
input regulator to dramatically balance out the linearized elements of the cross- 
over states rel- evant to HZD system and obtained the gait of non-periodic 
trajectories and switching over rough and irregular terrains. Addedly, Iida and 
Tedrake [98] employed open-loop sinusoidal oscillation of hip actuator and 
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developed a biped model of passive gait based on compass gait by changing the 
parameters of the oscillator.Intelligence-based gait generation techniques have 
been employed to improve the biped gaits’ robustness on uneven terrain. 
researchers proposed hybrid intelligence methodology based on fuzzy NN 
controller and improved learning speed of any mobile robot to be controlled by 
itself on a real-time basis for sensing the direction of movement, target position 
by optical range finder and distances among various directions between 
obstacles with the help of ul- trasonic sensors in an unknown environment. In 
addition, they introduced a 

 

 
Fig. 12: bipedal robot on uneven trains 

 
scheme for modeling, mapping, and tracking of rough rocky terrains for proper 
foot placement of robots on real-time data obtained from RGB-D and IMU 
sensor with the help of a set of parameterized patch models and bio-inspired 
sampling algorithms. The foot contacts are detected as bounded curved patches 
similar to foot sup- port consisting of sparse seed point sampling, point cloud 
neighborhood search, and patch fitting and validation [99]. The researchers 
also applied a 3D foothold perception architecture that utilizes the developed 
patch mapping and tracking scheme. In general, the dynamically stable robots 
fail to walk on slippery terrain; scientists suggest using moderate speed, short 
step lengths, and swing backward velocity. In addition, they generated online 
trajectories for CoM and ZMP by using the stability constraints with the help 
of an intrinsically stable MPC controller and applied it on the NAO. The pre- 
sented problems collectively can be termed as the unknown environment, as 
demonstrated in the next section [100]. 

 

 

11.8 Gait generation in the unknown environment 

When modeling and mapping the exact perspective of the unknown or uncer- 
tain environment, it becomes difficult for a biped robot to make a quick decision 
based on observational and sensory data collected by various sensors and de- 
vices. The robot must have a quick decision-making framework that makes it 
an intelligence inbuilt mechanism. That is, more advanced technologies are re- 
quired for doing so. Along with the decision policy, its controller also needs to 
perform the basic controlling operations for maintaining the dynamic bal- 
ancing instantaneously. In comparing the various perspectives of intelligence in 
robotics and mechatronics, it can be said that animals are adaptable to their 
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environments, and humans make some changes in the environment for comfort 
[100]. That means basic intelligence is all about being adaptive to the dynamic 
environment and making some improvements in the environment is advanced 
intelligence. This section attempts to cover all perspectives and techniques pro- 
posed by various researchers around the globe in this direction. The bending of 
the knee joint at the lower hip position consumes more actuator torque. It was 
found that the minimum and maximum vertical distances between the ground 
and hip joint, and length of the shank and thigh greatly affect the torque [101]. 
The hip height has noble importance for stability, optimum actuator torques, 
preventing the link’s velocity discontinuities, and deriving the lower torso’s mod- 
ified motion. Initially, a foot mechanism was configured by Yamaguchi et al. 

[102] for two biped robots WAF-3 and WL-12RVIII, to evaluate the relative 
position of foot support concerning the landing surface and the inclination of 
the ground. 

 
Many researchers have proposed RL and training modules for interpolating 

intelligence and intuitive inheritance in bipedal walking robots. they used the 
inherited data from human locomotion and implemented all learnings to the ra- 
dial basis function neural network (RBFNN) algorithm to generate the real-time 
gaits by using a visual system for making an autonomous humanoid robot based 
on a minimum energy principle. The results obtained from the GA and RBFNN 
were verified and compared by simulation on the humanoid robot “Bonten-Maru 
I.” In addition to, the RL CPG actor-critic method learnt by policy gradient 
algorithm was implemented while introducing new schemes to the actor. Also, 
Pasandi et al. [103] discussed a CPG encompassing a novel bounded output 
oscillatory coherent network. Here, each oscillatory mechanism configures one 
dimensional intermittent function as a stable limit cycle. The CPG access the 
online trajectories library and generates the trajectory in real-time for the iCub 
humanoid robot. Later on, researchers developed a mathematical model to 
evaluate the path of the combined trajectory of a 7-DOF biped robot on differ- 
ent terrains. The effects of hip height on the torso’s modified motions and then 
applied third-order spline was applied due to high accuracy and precision for de- 
termining the inverse kinematic, dynamics, and control variables [104] Similarly, 
Rioux and Suleiman [105] conjointly presented an entire navigation framework 
for a humanoid robot by creating a map of the environment and setting some 
primitives as a base knowledge for loading weights and avoiding obstacles with- 
out any sensors. The researcher presented an efficient filtering procedure to 
enhance the performance of the SLAM algorithm and clear the field by remov- 
ing the cart from the view. The approach experimented on the NAO humanoid 
robot having an RGB-D sensor. In addition to this, Luo et al. [106] developed 
a real-time terrain realization sensory system by confining the vital hardware 
to a microprocessor and a single sort of force sensor and also investigated the 
gait pattern performance by grouping the SVM (Support Vector Machine) al- 
gorithm. Scholars observed that reinforcement learning, NN, CPG, mapping of 
the environment, and sensors-based systems had helped the researchers to make 
biped robots capable of walking in any unknown environment. 

 

 

12 Chapter 3: Control methods 

 
12.1 Overview of the Control Techniques 



12 Chapter 3: Control methods 25 
 

table 2 Overview of all the Control Techniques 

 

Control 
Technique 

Description Strengths Limitations 

 
PID 
(Proportional- 
Integral- 
Derivative) 

 
A feedback control system that 
calculates the error between 
desired and actual values, 
adjusting based on P, I, and D 
gains. 

 

 
Simple, easy to implement, 
effective for general control 
tasks. 

Struggles with large 
uncertainties (e.g., >80%) and 
nonlinear systems. Adaptive 
gain helps smooth operation, 
but less effective during 
complex phases like biped-in- 
air. 

 

 
Neural Network 
(NN) 

A control system with both 
offline and real-time learning 
capabilities, often integrated 
with Cerebellar Model 
Articulation Controllers 
(CMAC) for improved memory 
and learning speed. 

 
Can adapt to changing 
environments, handles 
complex control tasks, 
improved learning speed 
with CMAC. 

 
Computationally intensive, 
requires training data, and 
might struggle with very 
complex tasks without proper 
tuning. 

 
Fuzzy Logic 
Controller (FLC) 

Uses linguistic variables to 
handle imprecision in control 
tasks, adjusting for partial 
truths between 0 and 1. 

Effective in dealing with 
nonlinearities, no need for 
precise mathematical 
models, good for complex or 
imprecise tasks. 

May lack precision in highly 
structured environments; not 
ideal for tasks requiring exact 
models. 

 
Computed 
Torque 
Controller (CTC) 

Uses feedback linearization to 
simplify a nonlinear system 
into a linear one by eliminating 
cross-coupling and 
nonlinearities. 

Useful for stabilizing 
dynamic systems, enhances 
trajectory tracking, can 
handle nonlinear systems 
when paired with linear 
controllers like PID or PD. 

 
Requires an accurate dynamic 
model of the robot, limiting its 
applicability in real-time or 
uncertain environments. 

 
Impedance 
Controller 

Regulates the force and 
position of the robot's links by 
controlling the impedance, 
ensuring dynamic stability and 
robustness. 

Versatile in handling 
various tasks, does not 
require solving inverse 
kinematics, adaptable to 
different environments. 

 
Complex, may require tuning 
for specific environments and 
tasks. 

 

 
Model Predictive 
Control (MPC) 

Predicts future system behavior 
and computes optimal control 
actions based on dynamic 
optimization while respecting 
system constraints. 

Handles complex 
multivariate systems, 
provides robust control 
against system parameter 
changes, effective for 
sophisticated control tasks. 

 
Computationally expensive, 
requires a reliable model and 
real-time computation to adjust 
control actions. 

 
 

 
12.1.1 the Design of the 3D bipedal robot 

The bipedal model was developed in the Gazebo simulation environment, which 
can provide a high-performance 3-D physics simulation. The default physics 
engine used by GAZEBO is ODE (Open Dynamics Engine), which was used 
in this work. It also supports other physics engines, such as Bullet, Dynamic 
Animation and Robotics Toolkit (DART), and Simbody. GAZEBO [113] is 
popular in robotics and was used in the DARPA Robotics Challenge. It is often 
used with ROS (Robot Operating System), a popular API that provides 
commonly used tools for robotic applications. The simulated robot can be easily 
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controlled through the GAZEBO-ROS interface, as was done here. The model 
has a total of 12 joint DOF (degrees of freedom), 6 DOF on each leg, as shown 
in Figure.13: Three hip joint DOF, one knee joint, and two ankles joint DOF. 
Individual segment masses and lengths are proportioned based on human studies 
for a 1.8 m tall male. Mass and inertia are added to realistically represent an 
exoskeleton and its associated electronics as shown in Table 1. Joint limits are 
set to allow the full range of motion. The mass moment of inertia and the 
collision models are simplified as rectangular parallelepipeds. Mass and inertia 
properties for a particular user can be measured through experiments. The 
torso degrees of freedom are assumed fixed by the exoskeleton corset brace, as 
is done on the CPWS. In the GAZEBO environment we are going to test our 
bipedal robot balance in 3 different scenarios with 3 different control methods. 
first scenario is walking on the flat surface, second one is passing over a ditch 
and the third one is facing an obstacle. the PID, FLC and NN controllers are 
the controlling methods used in this research in order to see the efficiency and 
accuracy of each methods and compare their results with each other in the end. 
we especially chose these control methods because NN and FLC controllers are 
the most used controllers between other researchers and PID controller is the 
oldest control method which is also one of the common used controllers among 
the researchers. we wanted to compare the old control methods to the most 
recent ones and see their results. FIGURE.13. 

 
Table 3. 3D biped robot technical specification 

 
Link name Mass (kg) Dimension (mˆ3) Offset (m) 
Torso 50.85 0.36*0.18*0.72 (0,0,0) 

Thigh 7.5 0.1*0.1*0.441 (0,0,0) 
Shank 4.4875 0.1*0.1*0.414 (0,0,0) 
Foot 1.5 0.11*0.17*0.03 (0,0,0) 
Backpack 5 0.36*0.1*0.18 (0,0.1,0) 
Exoskeleton thigh 2 0.1*0.1*0.441 (0,0.05,0) 
Exoskeleton shank 2 0.1*0.1*0.414 (0,0.05,0) 

 

 

13 controlling approaches 

 
13.1 PID controller 

The PID controller, also known as a proportional–integral–derivative controller 
or three-term controller, serves as a feedback mechanism extensively utilized in 
industrial control systems and various other contexts necessitating continuous 
modulation of control. Its operation involves the continuous computation of an 
error value, represented as e(t), reflecting the disparity between a desired set 
point (SP) and a measured process variable (PV). The controller then applies 
corrections based on proportional (P), integral (I), and derivative(D) terms, 
hence its name [114]. PID systems autonomously administer precise and prompt 
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Fig. 13: GAZEBO simulation model. Each leg has six degrees of freedom: Three 
at the hip, one at the knee, and two at the ankle. 

 
adjustments to a control function. A common instance is the cruise control 
feature in automobiles, where ascending a hill would otherwise reduce speed if 
constant engine power were maintained. The PID algorithm of the controller 
promptly restores the measured speed to the desired level, mitigating delay and 
overshoot by systematically enhancing the engine’s power output. The initial 
theoretical analysis and practical application of PID originated in the domain 
of automatic steering systems for ships, evolving from the early 1920s onwards 
[115]. Subsequently, it found widespread adoption in the manufacturing industry 
for automatic process control, initially in pneumatic systems and later in 
electronic controllers. Presently, the PID concept enjoys universal utilization 
across applications necessitating precise and optimized automatic control. 

 
13.1.1 PID control on a flat surface 

The present work is focused on the design of a suitable PID controller that can 
generate dynamically balanced gaits for the 12-DOF biped robot on a flat sur- 
face. Once the gait is generated, the dynamic balance margin of the biped robot 
is verified by using the concept of zero moment point (ZMP)[116]. Further, the 
parameters such as linear and angular velocity of the joints are very important 
for locomotion of the biped robot. It is important to note that Jacobian is used 
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I 

pi 

e 

𝑖𝑗 

 

 
to determine the linear(Jvi) and angular velocity (Jwi) of the joints of the biped 
robot also the Zi−1: in eq (5) is The vector along the axis of the previous joint 

(frame oIr axis) [117]. 
i 

J = 
Jvi 

Jωi 
= 

Zi−1 × (On − Oi−1) 
(5) 

Zi−1 

The dynamics of the biped robot is determined with the help of Lagrange–Euler 
formulation, which is given below. 

 

 

τi,the 

 

Dn •• Dn Dn •  • 

Mij (q) qj + Cijk qj qk +Gi i, j, k = 1, 2 . . . n(6) 
j=1 j=1 k=1 

where Ti indicates the theoretical torque required at joint i(N-m), q, qj and 
represent the displacement, velocity (rad/s) and acceleration (rad/sec2) of the 
joint, respectively. Further, the expanded form of inertia term (Mij ), 
Coriolis/centrifugal forces (Cijk ) and gravity terms (Gi ) are given below[118]. 

 

 

Mi,j = 
n 

Tr 
p=max(i,j) 

 

dpjIpdT 
 

i, j = 1, 2 . . . n(7) 
L 

C = 
Dn 

Tr  
∂(dpk) IpdT i, j = 1, 2 . . . n(8) 

i,j,k 
p=max(i,j,k) 

∂qp pi 

 

 
Gi = − 

n 

p=i 

 
mpgdpi

prp  i, j = 1, 2 ............... n(9) 

where Ip 
represents mass moment of inertia (kg-m/s2) tensor and mass center (m) of 

pth link, respectively and g denotes acceleration due to gravity in (m/s2). While 
controlling the joint, the acceleration of the link plays a major role. Therefore, 
the expression in terms of acceleration will be obtained by rearranging the Eq. 
(10), and is given below. 

 
𝑛 𝑛 𝑛 

𝑞̈ 𝑦 = ∑ 𝑀−1(𝑞̈) [𝜏𝑖,the − ∑ ∑ 𝐶𝑖𝑗𝑘𝑞̈𝑦𝑞̈  𝑘 − 𝐺𝑖] (10) 
𝑗=1 𝑗=1 𝑘=1 

 

 
Now by considering the term 

n 

Mij(q)−1 × τi,the = τˆ(11) 
j=1 

 

 
13.1.2 Design of PID controller for the biped robot 

The Proportional-Integral Derivative (PID) controllers are widely used to con- 
trol the motors of the biped robot in various applications. The expression for 
the joint based PID controller that is used in this study is mentioned below 
[119]. 

• J 
τact = Kpe + Kd e +Ki edt(12) 

 
where Kp , Kd and Ki represents proportional, derivative and integral gains 

of the controllers, respectively. The expanded form of the above equation after 
including the meaning is given below. 

= 
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[𝑒(𝜃̈𝑖) = 𝜃̈𝑖𝑓 − 𝜃̈𝑖𝑠] 

𝜏𝑖,act = [𝐾𝑝𝑖(𝜃̈𝑖𝑓 − 𝜃̈𝑖𝑠 ) − 𝐾𝑑𝑖 𝜃̈𝜄̇ 𝑠 + 𝐾𝑖𝑖 ∫ 𝑒(𝜃̈𝑖𝑠 ) 𝑑𝑡] 𝑖 = 1,2, … , 𝑛 
(13) 

 
where Ti,act represent the actual torque supplied by the controller to indi- 

vidual joints to move from an initial angular position to final angular position . 

Further, the integral terms in the above equation need to be substituted by its 

state variables, namely and its meaning is given below. 

𝑥𝑖 = ∫ 𝑒(𝜃̈𝑖𝑠) 𝑑𝑡 ⇒ 𝑥 𝜄̇ = 𝜃̈𝑖𝑓 − 𝜃̈𝑖𝑠 𝑖 = 1,2, … , 𝑛(14) 

give
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control equation that represents the contr

]
ol action for all joints is 

𝑛 𝑛 𝑛 

𝑞̈𝑗 = ∑ 𝑀𝑖𝑗(𝑞̈)−1 [− ∑ ∑ 𝐶𝑖𝑗𝑘𝑞̈𝑦𝑞̈  𝑘 − 𝐺𝑖] + 𝐾𝑝𝑖(𝜃̈𝑖𝑓 − 𝜃̈𝑖𝑠) − 𝐾𝑑𝑖𝜃̈𝜄̇ 𝑠 + 𝐾𝑖𝑖 ∫ 𝑒(𝜃̈𝑖𝑠) 𝑑𝑡 

 
(15) 

𝑗=1 𝑗=1 𝑘=1 

PID Controller Pseudo Code 

START 

1. Initialize setpoint (SP), initial process value (PV), and gains (Kp, Ki, Kd). 
2. Set previous error (prev_error) = 0 and integral = 0. 
3. Loop until the system stabilizes: 

a. Calculate error = SP - PV. 
b. Calculate integral = integral + error * dt. 
c. Calculate derivative = (error - prev_error) / dt. 
d. Calculate output = (Kp * error) + (Ki * integral) + (Kd * derivative). 
e. Update system using the output. 
f. Set prev_error = error. 
g. Update PV from the system. 

4. End loop. 
END 
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13.2 Formulation as an optimization problem 

The design of controller for the biped robot to achieve a dynamically balanced 

gait on the flat surface can be considered as an optimization problem as ex- 

plained below. The controllers have to supply the torque that is required by the 

joint to move from an initial position to final position. Further, the torque sup- 

plied by the controller will be able to reduce the positioning error with certain 

limits on the range of the gain values of the controller. Moreover, the positional 

error related to the both swing leg and stance leg is also to be considered [120]. 

Then it may be posed as an optimization problem as given below: 

For Swing Leg 

D6 Minimize Z1: e = e (θ )(16) 
1 i=1 i 

Subjected to constraints: Kpi,min ≤ Kpi ≤ Kpi,max 

Kdi,min ≤ Kdi ≤ Kdi,max 

Kii,min ≤ Kii ≤ Kii,max i = 1, 2, . . . 6. 

 

For Stand Leg D 
Minimize Z2: e2 = 

 

 
12 

j=7 

 
e (θj)(17) 

 

 
Subjected to constraints: Kpj,min ≤ Kpj ≤ Kpj,max 

Kdj,min ≤ Kdj ≤ Kdj,max 

Kij,min ≤ Kij ≤ Kij,max   j = 7, 8, . . . 12. 

 
where e1 and e2 are the total error in the angular position of all the joints of 

the swing and stand leg, respectively. The e(0i) and e(0j) are the error at the 

individual joints of the both legs and rest of the terms carries their usual 

meaning. 

 
 

 
13.2.1 Proposed optimization algorithm 

 
in the present work, a non-traditional optimization algorithm, namely MCIWO 

is used to tune the gains of the PID controller and compared with another 

established nature inspired optimization algorithm such as, PSO [121]. 
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13.3 Modified chaotic invasive weed optimization algorithm 

Invasive weed optimization (IWO) is a stochastic optimization algorithm devel- 
oped by Mehrabain and Lucas in 2006 [122] and the algorithm is inspired from 

the colonizing behavior of the weeds. In a crop field the weeds are randomly 
dispersed and live in between them. After randomly placing these weeds, they 
take the unused resources in the cropping field and grows to a flowering weed 

plant and produce new seeds. 
The number of seeds produced by each flowering weed depends on the fitness 

of each flowering weed plant. These seeds will develop new weeds in the field, 
and they have better adaption in the environment and take more resources that 
are unused in the field. They grow very fast and produce more number of seeds 
from each weed plant. This process will continue until the maximum number 
of weeds grow in a field by using the limited resources. Initially, the seeds that 
represent the N- dimensional solution space of the problem will be generated at 
random [123]. 

the gains of the PID controller are considered as the solution space of the 
problem. Once the initial seeds grow into flowering plants after using the unused 
resources, the fitness of each plant will be evaluated. In the present problem, 
the fitness in terms of average angular positional error of the PID controllers 
are considered as the fitness of the plant[124]. Once the fitness is determined, 
the process of reproduction starts to determine the number of seeds produced 
by the plant. The equation that represents the reproduction scheme is given in 
Eq. (18). 

S=Floor Smin +  f−fmin  

max  min 

L 
× Smax 

 
(18) 

where (f min , f max ) and (S min , S max ) denotes the minimum and 
maximum fitness of the colony and minimum and maximum seeds produced by 
the plant, respectively. Then the newly produced seeds are randomly distributed 
using normal distribution with mean zero and variance in the search space. 

To improve the performance of the algorithm, in the present work two terms 
namely chaotic variable and cosine variable are added during reproduction. 
Here, the function of chaotic variable is to minimize the chances of the solu- 
tion to trap in the local optimum point by increasing the spread of the new seed 
dispersion area. It is derived by using chebyshev map and is represented by the 

expression give(n below. ) 
Xk+1 = cos kcos−1 (Xk) (19) 

Moreover, the value of standard deviation that is used to define the position 
of the seed is given as follows. 
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σGen 
= (Genmax−Gen) n 

× |cos (Gen)| × (σ 
(Genmax )n 

 
initial 

 

− σfinal 

 

) + σfinal (20) 

 
where Gen max is the maximum number of generations, n is the modulation 

index i.e. integer number, o initial and o final is the initial and final value 
of the standard deviation. The term [cos(Gen)] not only helps in determining 
the global optimal solution, but also enhances the search space by utilizing the 
minimum resources. It can be observed that after modification, the algorithm 
explores more search space compared to standard IWO algorithm. Once the 
new seeds are obtained from the reproduction scheme, their fitness is also being 
evaluated and ranked along with the parent plants. It is important to note that 
the maximum number of plants should not exceed Pmax. Then competitive 
exclusion is performed to remove the lower ranked plants. This process will 
continue until the maximum number of iterations are reached [125]. 

 

 

14 Gait generation while facing an obstacle 

The motion of the biped robot is considered in both the sagittal as well as frontal 
planes of the biped robot. The orientation of each joint of the biped robot has 
been calculated by using the concept of inverse kinematics. The mathematical 
expressions that are used to determine the joint angles of the swing leg (i.e., θ3 

andθ4) and stand leg (i.e., θ9 and θ10) in sagittal plane, and the joint angles of 
swing leg (i.e., θ2 and θ5) and stand leg (i.e., θ8 and θ11) in frontal plane are 
summarized below. 

θ4 = sin1 ( H1l3 sin ψ +L1l3cosψ(l4+l3cosψ)(l4+l3cosψ)2+(l3sinψ)2)(21) 
where L1 = l4 sin(θ4) + l3 sin(θ3), H1=l4 cos(θ4)+l3 cos(θ3),ψ =θ4 θ3 = 

arcos ( H1 2 + L1 2 l4 2 l3 2 2l4l3 ) (22) 
Thus, θ3 can be obtained from the equation θ3=θ4 –ψ.Similarly, theanglesθ9 

and θ10 are obtained by using the following mathematical expressions. 
θ10 = sin1 ( H2l9 sin ψ + L2(l10 + l9cosψ)/(l10 + l9cosψ)2 + (l9sinψ)2)(23) 
where L2 = l9 sin(θ9) + l10 sin(θ10), H2 = l9 cos(θ9) + l10 cos(θ10), =θ10 

θ9 =arcos ( H2 2+L2 2 l10 2 l9 2/ 2l10l9 ) (24) 

Thus, θ9 can be obtained from the equation θ9=θ10 – Ψ (25) 

. The included angle at the ankle joint with respect to the vertical axis is 
assumed to be equal to zero i.e., θ6=θ12=0. For determining the joint angles of 
the leg in frontal plane, the following equations are considered. 

= θ8 = tan1 ( fw/ H1 ) θ5 = θ11 = tan1 ( 0.5fw/ H2 ) (26) 
The following equations are used to determine the position of ZMP in X- 

direction and Y-direction. 

𝑥 = 
𝑛 
𝑖=1 (𝐼𝑖⋅𝜃̈ 𝑖⋅𝑚𝑖⋅𝑥 𝑖⋅𝑧̃𝑖+𝑚𝑖⋅𝑥𝑖⋅(𝑔⋅𝑧̃𝑖)) (27) 

𝑍𝑀𝑃 𝑛 
𝑖=1 𝑚𝑖⋅(𝑧̃ 𝑖⋅𝑔) 

∑𝑛  (𝐼𝑖⋅𝜃̈ 𝑖⋅𝑚𝑖⋅𝑦 𝑖⋅𝑧̃𝑖+𝑚𝑖⋅𝑦𝑖⋅(𝑔⋅𝑧̃𝑖)) 

𝑦𝑍𝑀𝑃 = 
𝑖=1 

𝑛 
𝑖=1 𝑚𝑖⋅(𝑧̃ 𝑖⋅𝑔) 

(28) 

∑ 

∑ 

∑ 
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where w denotes the angular acceleration (rad/s2), Ii is mass moment of 

inertia (kg·m2) of the i-th link, g is the acceleration due to gravity (m/s2), 

mi represents the mass (kg) of the link i, and and indicate the acceleration 
of the i-th link moving in z and x directions (m/s2) and (xi, yi, zi) signifies 
the coordinates of the i-th lumped mass. After determining the zero moment 
point, the dynamic balance margin has been calculated in both X-direction and 
Y-direction . The dynamic balance margin has been defined as the difference 
between the length of the foot to the point where ZMP is acting on the foot 
support polygon. It is interesting to note that while walking on the stair case, 
the foot of the robot is always parallel to the stair width. 

The gait generation method for the biped robot while descending the obstacle 
is similar to the ascending case except for a small difference in determining the 
position of ZMP. While descending the stair case, the acceleration due to gravity 
(g) is acting in the direction opposite to that of the movement of robot. The 
expressions for ZMP in both X-direction and Y-direction while descending the 
stair case are given below [126]. 

∑𝚗 (Ii⋅θ i⋅mi⋅ẍi⋅zi+mi⋅xi⋅(g⋅zi)) 

xZMP = 
i=1  

𝚗 
i=1 mi⋅(z i⋅g) 

(29) 

∑𝚗  (Ii⋅θ i⋅mi⋅ÿi⋅zi+mi⋅yi⋅(g⋅zi)) 

yZMP = 
i=1  

𝚗 
i=1 mi⋅(z i⋅g) 

(30) 

The torque based PID controllers are designed for each joint of the biped 
robot while moving on different terrain conditions. For designing a torque based 
PID controller initially, the dynamics of the biped robot is to be derived. here 
we used Lagrange-Euler formulation for calculating the dynamics of the biped 
robot. 

τi, the = nj = 1Mij(q)..qj+nj = 1nk = 1Cijk.qj.qk+Gii, j, k = 1, 2, , n.(31) 
Furthermore, the acceleration of the links plays a major role in controlling 

each joint of the biped robot. Therefore, the expression in terms of acceleration 
of the link can be obtained by rearranging the above equation as 

qj = n j=1 Mij (q) 1 [ n j=1 n k=1 Cijk . qj . qk Gi ] + (n j=1 Mij (q) 1 
× τi, the), i, j, k = 1, 2, , n(32) 

where the terms indicate the theoretical torque required for each joint i 
(N·m), denotes the displacement in (rad), represent the velocity in (rad/s), qs 
is the acceleration in (rad/s2) of the joint, respectively. Now consider the term: 
n j=1 Mij (q) 1 × τi, the = (33) 

After substituting the above term in (32), it can be written as 
qj = n j=1 Mij (q) 1 [ n j=1 n k=1 Cijk . qj . qk Gi ] + τi, j, k = 1, 2, , n(34) 

The actual torque required at different joints of the biped robot after utilizing 
the torque based PID controller is calculated by using the following expression 

τact = Kpe + Kd.e + Kiedt(35) 
where t act indicates the actual torque required at each joint and , and rep- 

resents proportional, derivative and integral gains of the controller,respectively. 
The expanded form of the above equation after including the meaning of e is 
given below 

e (θi) = θif θisτi, act = Kpi(θif θis)Kdi.θis + Kiie(θis)dt, i = 1, 2, , n(36) 

∑ 

∑ 
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where represents the actual torque supplied by the controller to individual 

joints to move from an initial angular position to final angular position . The 
final control equation that represents the control action for all joints is given 
below. 

qj = n j=1 Mij (q) 1 [ n j=1 n k=1 Cijk · qj · qk Gi ] + Kpi (θif θis)Kdiθis + 
Kiie(θis)dt.(37) 

Once the PID controller is designed for each joint of the biped robot, then 
tuning of the gains of the PID controller is posed as an unconstrained optimiza- 
tion problem. It is to be noted that the positional error related to both the swing 
and stance leg is considered as an objective function for the optimization 
problem as explained below. 

Minimize Z = σ6i = 1e(θi) + σ1j = 7e(θj).(38) 
Subjected to constraints 
Kpi,min Kpi Kpi,max 
Kdi,min Kdi Kdi,max 
Kii,min Kii Kii,max 

i = 1, 2, · · · , 6 
Kpj,min Kpj Kpj,max 
Kdj,min Kdj Kdj,max 
Kij,min Kij Kij,max 

j = 7, 8, · · · , 12 
where Kp, Kd and Ki are having their usual meanings and i and j represent 

the joints of swing and stance leg, respectively. 
 

 

15 Passing over a ditch 

 
15.1 Dynamics Equations 

 
Dynamics Modeling 

One walking step may include two phases, the single support phase (SSP), 
when one leg is virtually pivoted to the ground while the other leg is swinging 
in the forward direction (open kinematics chain configuration) and the double 
support phase (DSP), when both legs remain in contact with the ground while 
the entire system is swinging in the forward direction (closed kinematics chain 
configuration). 

Having θi, as the generalized coordinates, the dynamic equations of motions 
of the biped can be derived in a simpler form. Dynamic equations of the biped 
robot shown are derived using Lagrange formulation and can be expressed as: 

M(θ)θ¨ + V(θ)u + G(θ) = Tθ = Dτ (39) 

 
where θ is the 6 × 1 joint variable vector, M(θ) is the 6 × 6 symmetric inertia 

matrix, V(θ)u is the 6 × 1 vector of Coriolis and centripetal torques, G(θ) is the 
6 × 1 vector representing gravitational torques, Tθ is the 6 × 1 vector of 
generalized torques that corresponds to θ and τ is the 6 × 1 vector of control 
input torques of the six joints of the biped. 

 

 

1) Dynamics Equations in SSP: 

This phase begins with the foot of the swing leg leaving the ground and termi- 
nates with the swing foot touching the ground. The contact point between the 
stance foot and the ground is fixed in the fixed frame and the friction between 
the foot and the ground is assumed to be sufficient to prevent slippage during 
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J M , N = c J D 

 
walking. Hence, the robot has 6 DOF in this phase and general form of dy- 

namic equations of the motion can be written with elimination of the last row 

and column of M(θ) and V(θ) and also elimination of the last row of D, G(θ), 

u, and θ, in (39), namely: 
 

M6 × 6 
¨θ + V6×6u + G6×1 = D6×6τ (40) 

 
 

 

2) Dynamics Equations in DSP: 

In this phase, both feet are in contact with the ground while the body can move 

forward slightly. As both of the contact points between the feet and the ground 

are fixed d(uring the DSP, }t he r e  exist two holonomic constraint equations for 

walking on level ground as follows: 

𝜙(𝜃̈) = (𝑥ℎ − 𝑥𝑡 − 𝐿)(𝑧̃ℎ − 𝑧̃𝑡) = 0 (41) 

 
where (xt, Zt) is position of the tip of rear foot, (xh, Zh) is position of the 

heel of front foot and L is distance between this two contact points in x-axis 

direction. 

In (39), the vector of generalized coordinates is 6 × 1 and there are two 

constraints and thus the robot has 6 DOF in this phase. With the definition of 

λ as the 2 × 1 vector of Lagrange multipliers and J = ∂Φ/∂θ as 2 × 6 Jacobian 

matrix, dynamic equations of the motion in this phase can be expressed as: 

M(θ)θ¨ + V(θ)u + G(θ) = Dτ + JT(θ)λ 

φ(θ) = 0 
(42) 

These two set of the equations must be solved simultaneously which is not an 

easy task. Upon definition of Jc as orthogonal compliment of J namely Jc = 0, 

equations of motion can be expressed as: 

M6×6θ¨ + N6×1 = D6×5τ (43) 

where 
 

I 
T 

M = c 

 

I 
J T(Vu + G) 

 

I 
T 

, D = c 

 
(44) 

J J˙θ˙ 0 
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16 STABILITY CRITERION 

We use the ZMP criterion which was first introduced by Vukobratovic [126] to 
evaluate the stability of the humanoid robot. The ZMP is defined as the point 
on the ground where the tipping moment acting on the biped, due to gravity 
and inertia forces, equals zero. The convex hull of the contact points between 
the feet and ground are called stable region. If the ZMP is within the stable 
region, the robot can walk [127]. The minimum distance between the ZMP and 
the boundary of the stable region is called the stability margin. The larger the 
stability margin results in the higher stability of the robot. The ZMP in x-axis 
and y-axis directions can be computed using the following equations: 

∑𝑛 {𝑚𝑖(𝑧̃ 𝜄̇ − 𝑔𝑧̃)𝑥𝑖 − 𝑚𝑖(𝑥 𝜄̇ − 𝑔𝑥)𝑧̃𝑖 − 𝐼𝑦𝛼𝑦} 
𝑥 =  𝑖=1  (45) 
𝑍𝑀𝑃 𝑛 

𝑖=1 𝑚𝑖(𝑧̃ 𝜄̇ − 𝑔𝑧̃) 

 
 

 
∑𝑛 {𝑚𝑖(𝑧̃ 𝜄̇ − 𝑔𝑧̃)𝑦𝑖 − 𝑚𝑖(𝑦 𝜄̇ − 𝑔𝑦)𝑧̃𝑖 + 𝐼𝑥𝛼𝑥} 

𝑦 =  𝑖=1  (46) 
𝑍𝑀𝑃 𝑛 

𝑖=1 𝑚𝑖(𝑧̃ 𝜄̇ − 𝑔𝑧̃) 

 
where n is the number of links, mi is the mass of links, Ixi and Iyi are the 

inertial component of links, αxi and αyi are the absolute angular acceleration 
components around x-axis and y axis at the center of gravity of links respectively, 
(gx, gy, gz) is the vector of gravitational acceleration, (xi, yi, zi) is the coordinate 
of the center of mass of links in an absolute Cartesian coordinate system and 
(xZMP, yZMP, 0) is the coordinate of the ZMP. 

 

 
16.0.1 TRAJECTORY PLANNING 

Each leg trajectory in sagittal plane can be determined by a vector as Va(t) = 
[xa(t), za(t), θa(t)] where denotes the ankle joint position and the angle of the 
sole about the ground and a vector as Vh(t) = [xh(t), zh(t), θh(t)] where denotes 
the hip joint position and the angle of the trunk about the vertical line. If hip 
and ankle joints trajectories of each leg are known, all other joint trajectories 
will be determined using inverse kinematics. We only discuss trajectories in the 
sagittal plane but the hip abduction/adduction motion can be obtained similar 
to the sagittal hip motion. 

Each walking step includes two phases of SSP and DSP. Interval of the DSP 
should be determined carefully. If we assume that the DSP is instantaneous, the 
hip has to move too fast in order to maintain its stability, namely ZMP must be 
transferred from the rear foot to the front foot during the short interval. On the 
other hand, if we assume that the interval of the DSP is too long, it is difficult 
for the biped robot to walk at high speed. The interval of the DSP in human 
walking is about 20% [128], so we used this value for our calculation. Assuming 
that the interval of one walking step is Tc and the interval of DSP is Td. As 

mentioned before, we assume Td = 0.2 Tc. We define that a walking step starts 

with the heel of one of the feet leaving the ground at t = 0 and finishes with the 

∑ 

∑ 
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Fig. 14: one walking step 

 
heel of the same foot making first contact with the ground at t = Tc, as shown 
in Fig. 14. 

Since walking is a periodic phenomenon, trajectory of one of the legs can be 
used for another leg except with a Tc delay. Hence, we discuss only the 
generation of the right leg trajectory in a complete walking cycle. The left leg 
trajectory is same as the right foot trajectory except with a Tc delay. 

 

 

16.1 Foot Trajectory 

In most studies, it is assumed that the foot angle with the ground remains zero 
during the walking. Since the robot can not touch the ground first by the heel 
of the forward foot and leave the ground finally by the toe of the rear foot, these 
kinds of foot trajectories are not useful for high-speed walking. So, let say qb and 
qf be the angles of the right foot as it leaves and lands on the ground, 
respectively. We suppose that biped walks on a flat ground, so the foot angle 
constraints in a complete walking cycle can be expressed as: 

θra(t) = θ1(t) = { 0 t = 011qbt = Tdqf t = Tc0Tc + Td ≤ t ≤ 2Tc(47) 

To eliminate the impact effect of feet with ground, having the lowest energy 
consumption in ankle actuators as well as continuity of θra(t) and ZMP in all 
walking steps, the following constraints must be satisfied: 

{˙ θra(t) = 0, θ¨
ra(t) = 0t = 0 

θ˙
ra(t) = 0t = Td 

θ˙
ra(t) = 0t = Tc 

θ˙
ra(t) = 0, θ¨

ra(t) = 0t = Tc + Td (48) 

In environments with obstacles, it is necessary to lift the swing foot high 
enough to avoid obstacles. To this end, the following constraints must be satis- 
fied: 
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xra(t) = { l f (1 − cos θra) + la sin θra0 ≤ t ≤ Td Laot 

= Tm 

2Ds − lb (1 − cos θra) − la sin θraTc ≤ t ≤ 2Tc zra(t) = { l f sin θra + la cos θra + 

hgs0 ≤ t ≤ Td 

Haot = Tm 

lb sin θra + la cos θra + hgeTc ≤ t ≤ 2Tc (49) 

Here, (Lao, Hao) is the position of the highest point of the swing foot. Also 
Ds is the length of one step, Tm is the time when the right foot is at its highest 

position, 11 = l7 = la is the height of the foot, lf is the length from the ankle joint 
to the toe, 1b is the length from the ankle joint to the heel. Moreover, hgs and 
hge are the distances between the ground surface which is under the support 
foot (left foot) and the ground surface which is under the swing foot (right foot) 
at the start and end of the SSP, respectively. Since right foot ankle joint is at its 
highest position at Tm, the first time derivative of zra(t) at Tm must be zero. 

 

 
16.1.1 Hip Trajectory 

It is desirable when there is no waist joint, trunk angle stays constant during 
walking namely, θh(t) = 0. Studies show that the variation of hip height hardly 
affects the position of the ZMP. Also, to reduce the load on the knee joint, it 
is essential to keep the hip at a high constant position [129]. Hence, we specify 
hip height zh(t) to be constant during the walking. 

 

 
Fig. 15: walking parameters 

 
The change of hip position in x-axis direction xh(t) is the main factor that 

affects the stability of a biped robot during walking in the sagittal plane. Let xsd 

and xed denote distances along the x-axis from the hip to the ankle of the 
support foot at the start and end of the SSP, respectively, as shown in Fig.15. 
So, using Fig.14 and Fig.15 we have the following constraints: 

xh(t) = { xed t = 0 

Ds − xsdt = Td 

 
Ds + xedt = Tc (50) 
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To obtain smooth and periodic trajectories for hip motion, the following 

constraints must be satisfied: 

x˙ h (t = 0) = x˙ h (t = Tc) (51) 

ẍ h  (t = 0) = x¨ h (t = Tc) 

To generate smooth trajectories and continuous ZMP, it is necessary that the 
velocity and acceleration terms of foot and hip joint trajectories be continuous 
all the times. So with having the kinematics constraints for foot and hip joints, 
we can generate smooth trajectories for foot and hip joints using polynomials 
with suitable orders such that the first and the second time derivatives are 
continuous all the times. 

By varying the values of walking parameters qb, qf , La, Ha, xsd and xed, dif- 
ferent foot and hip trajectories can be easily produced but the trajectories that 
guarantee the dynamic stability of robot during the walking, must be selected. 
As mentioned, two parameters of hip motion in x-axis direction xsd and xed have 
the most effect on the stability of a biped robot in the sagittal plane. Therefore, 
we plan a method to find only these two parameters so that guarantees the 
dynamic stability of robot during the walking [129]. 

Stable region in a walking step is shown in Fig.16. In order to stable waking, 
the ZMP must cross A, B, and C points that are also shown in Fig.16. Since 
walking is a periodic phenomenon, the state of ZMP in A and C points are the 
same. Therefore, if the ZMP only cross A and B points, the biped is able to have 
a stable motion. 

 

 
Fig. 16: stable region in a walking step 

 
Using this method, we can also plan trajectories for walking on slope surfaces 

and stairs (with defining hgs = hge as stair height). 
 

 
16.1.2 OPTIMIZATION OF TRAJECTORY 

As shown, the position of the highest point of the swing foot (Lao, Hao) does not 
have any effect on the stability of biped in the sagittal plane. So upon com- 
putation of xsd and xed that guarantee the dynamic stability of robot during the 
walking, the robot can easily avoid obstacles with different heights. How- ever, 
for walking on flat ground without any obstacles, the parameters Lao and Hao 
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sd 
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ed 

 
can be computed such that the robot has maximum stability or minimum 
consumed energy during the walking [130]. Since Lao and Hao only affect on 
trajectory of swing leg ankle joint, the optimization of these two parameters 
during the walking should be done only in single support phase. 

 
16.1.3 Optimization for maximum stability 

Our purpose is to obtain the interested parameters such that the ZMP stays in 
the stable region and approaches to the midpoint of the stable region as much as 
possible to have a higher stability margin. For this purpose, the fitness function 
can be expressed as: 

𝑓 = ∫ [SSP 𝑥𝑍𝑀𝑃(𝑡) − (𝑈𝑆𝑅 + 𝐿𝑆𝑅)]2 𝑑𝑡 (52) 

 
where USR and LSR are upper and lower stable region 

 

 
16.1.4 Optimization for minimum consumed energy 

Here, our objective is to minimize the total energy of biped during the walking. 
To this end, the cost function can be expressed as follows: 

 
𝐽 

𝑓 = ∫ SSP ∑|𝜏𝑖𝜔𝑖| 𝑑𝑡(53) 
𝑅 𝑖=1 

where J is the number of the joints, τi is the torque of the joint i, and ωi is 
the angular velocity of joint i. 

Our trajectory is optimized by using each mentioned fitness functions. 
 

 
16.1.5 TRAJECTORY PLANNING FOR WALKING WITH 

DIFFERENT STEP LENGTHS 

In previous parts, it is assumed that a robot walks only with the same step 
length (Ds) in each walking step. However, for walking in environments with 
different obstacles and ditches, the robot has to change its step length (D′ ) 
during the walking [131]. Therefore, we define parameters x′  , x′ , x′′

ed and 

x′′
ed for hip joint motion for walking cycle that robot has to change its step 

length to Ds as shown in Fig.17. 

 

Fig. 17: walking parameters for walking with different step lengths 

Trajectory planning for walking with different step lengths that uses for 
online trajectory planning is similar to method mentioned before but with the 
following differences: 
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sd 

 
 

 
xra(t) = { l (1 − cos θra)+la sin θra0 ≤ t ≤ TdLaot = TmDs+D′ −lb (1 − cos θra)−la sin θra 

Tc ≤ t ≤ 2Tc (54) 
f s 

 

xh(t) = { x′
ed t = 0 

Ds − x′ t = Td 

Ds + x′′ t = Tc 
Ds + De′d− x′′ t = Tc + Td 
D + D

s  
− xsdt = 2T (55) 

s ′ ′ c 

s ed 

 

To obtain smooth and periodic trajectories for hip motion, the following 
constraints must be satisfied: 

x˙ h (t = 0) = x˙ h (t = 2Tc) 

ẍ h  (t = 0) = x¨ h (t = 2Tc) 
(56) 

Stable region in a complete walking cycle is shown in Fig.16. In order to 
have a stable waking, the ZMP must cross A, B, C, D, and E points. Since 
walking is a periodic phenomenon, the state of ZMP in A and E points are the 
same. Therefore, if the ZMP only cross A, B, C, and D points, the biped is able 
to walk stably. So whenever robot is forced to have different step lengths 
during walking, the parameters x′ , x′ , xed and x′′

ed can be determined by the 

following constraint equations: 

xZMP |t=0 = xA 

ed sd 

xZMP |t=Td 
= xB (57) 

xZMP |t=Tc = xC 

xZMP |t=Tc+Td 
= xD 

 

 
17 Fuzzy logic controller 

Fuzzy logic control (FLC) is well known artificial intelligence, based control 
technique [132]. It utilizes the prior experience of the functionary about the 
system to be controlled. The main role of the functionary is to set up decision- 
based rules by analyzing the system behavior and the linguistic input variables 
within the framework of the system. The inputs provided to the FLC have to 
process through three basic stages of fuzzification, decision-making stage, and 
defuzzification before generating the output [133]. In the fuzzification stage, the 
input variable is transformed into linguistic variable with the help of predefined 
membership functions (MFs). The output of the fuzzification stage is then used 
to generate the fuzzified output according to the rules set defined. Finally, in 
the defuzzification stage, the fuzzified output is transformed into the required 
output used for controlling the system. The most interesting fact with respect 
to the FLC is it does require the exact model of the system during its devel- 
opment. Therefore, The FLC has a extensive scope of applications in the field of 
machine control for systems that have high uncertainty and nonlinearity in their 
nature [134]. Consequently, the control strategy of FLC is relatively complex 
and demands high implementation costs. 



18 going over an obstacle 42 
 

 

 
Nowadays, fuzzy logic-based controllers are getting more popular in the field 

of photovoltaic (PV) systems. The PV source generates electricity from solar 
energy and shows nonlinear I-V and P-V characteristics [135]. Consequently, the 
output power is nonuniform for all the operating points and has single maximum 
power point (MPP) for the given atmospheric condition. Thus the PV source 
which is directly connected to the load is rare to operate at MPP for all the 
environmental condition. In addition, the dynamic or fast-changing atmospheric 
condition continuously changes the operating voltage corresponding to MPP and 
reduces the performance of the PV system. To tackle variable operating voltage 
due to changing environmental conditions various PV-maximum power point 
tracking (PV-MPPT) algorithms are given in the literature for the last 20 years 
[136]. Among the given solutions most classical and frequently used algorithm 
is perturb and observe (PO) algorithm. The given algorithm is trouble-free and 
easy to implement. However, it employs the fixed small change in the PV source 
operating point. It is more suitable for the slow gradual changing environmental 
conditions. Thus for the fast-changing environmental conditions, it may not be 
suitable. Here, algorithms using variable step change in the PV operating point 
may be useful. Such algorithms should be able to predict present operating 
location with respect to the peak operating point. When the peak operating 
point is away it may employ a large step change in the PV source operating 
point to reach near the MPP. And when it reaches near MPP operating it can 
employ the small step change in the operating point to track exact MPP. Fuzzy 
logic-based PV-MPPT is one solution for such variable step MPPT algorithm 
[137]. This part gives detail of both PO and fuzzy-based MPPT algorithms. 

The process of FLC control contains the following: 

 
• Fuzzification of the input signals. 

• Decide the best solution by the fuzzy decision making logic (DML) based 
on the expert knowledge base. 

• Defuzzification of the solution to obtain the revised angles. 

The complete system of fuzzy motion control includes feedback signals from 
the measurement of a vision system to construct the entire close-loop system. 

The inputs of the FLC are e and e¨ which are defined as follows: 
θd(t) 

90(9a)e(t)= e(t)−e(t−1)(9b)(58) 

 

In order to define the fuzzification interface (FI), the range of the angle error 
is divided into five fuzzy sets: negative big (NB), negative small (NS), zero (ZE), 
positive small (PS), and positive big (PB). Then, the membership function for 
these fuzzy sets is defined in some proper scales. DML utilizes the membership 
state generated by the FI. Each discourse is divided into five subsets so that the 
input will construct 25 fuzzy rules. Next, the singleton output u is defined in 
the defuzzification. 

Finally, a suitable turning angle is obtained through the equation that fol- 
lows: 

φ(t) = C · u(t)(59) 
where C=90 and is the FLC output that is used in the LPI system to 

generate the corresponding walking motion. When ——¿M (M is the maxi- 
mum revisable angle), the robot will stop walking and then turn in the proper 
direction toward the target. 

e(t) = - 
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𝑖=1 

 
 

 
Fuzzy Logic Controller (FLC) Pseudo Code 

START 

1. Define fuzzy variables (inputs, outputs) and membership functions. 
2. Create a rule base (if-then rules) for decision-making. 
3. Input current system states (e.g., error, change in error). 
4. For each rule: 

a. Evaluate the degree of truth for the rule's conditions. 
b. Combine results using fuzzy operators (AND, OR). 

5. Apply defuzzification to generate a crisp output. 
6. Update system using the output. 
7. Repeat until system stabilizes. 
END 

 

18 going over an obstacle 

 
18.0.1 Controller objective 

We want out controller to be robust enough to track all joint trajectories with 
full efficacy throughout the trajectory to ascend staircase while ensuring the 
stability.Along with joint space trajectory tracking, impedance modulation using 
fuzzy logic controller is proposed to ensure more stable staircase walk. ZMP 
criteria is considered to ensure the stability of the bipedal robot. 

Now lets define the joint space trajectory tracking error vectors e1(t) and 
e2(t) for joint space angular displacement errors and joint space angular velocity 
error respectively as following: 

 
e1(t) = xd(t) − x1(t)13e2(t) = x˙ d (t) − x2(t)(60) 

we can have dynamical equations for error vectors as following: 

 

e˙1(t) = e2(t)15e˙2(t) = −Ae2 (t)+B−Iinu(t)−IinF con(t)−∆d(t)+ẍd (t)+Ax˙ d (t), (61) 

where xd denotes 6 × 1 desired joint angles vector obtained as output from 

unsupervised inverse kinematics algorithm. x˙ d and x¨ d are 6 × 1 desired joint 
velocity and joint acceleration vector obtained using finite difference method. 

 

 
18.0.2 Stability model (ZMP formulation) 

One of the most significant tool to test the dynamic stability particularly for 
bipedal robot is Zero Moment Point. If ZMP lies within the boundary of convex 
hull formed by various ground contact points, then robot will remain stable and 
will not fall. xZMP was formulated in while planning the trajectory using Linear 

Inverted Pendulum Model (LIPM) based on which we got our hip trajectory 
[139]. While executing our controllers in presence of external disturbances with 
our dynamic model, actual ZMP must be within the convex hull to ensure the 
stability of our bipedal model which can be formulated by following equations 
in case of staircase: 

 

 
∑𝑛  𝑚𝑖𝑥𝑖(𝑧̃ 𝜄̇ + 𝑔) − ∑𝑛  𝑚𝑖𝑥 𝜄̇ 𝑧̃𝑖 

𝑥 = 
  𝑖=1 𝑖=1  (62) actual ZMP 𝑛 

𝑖=1 𝑚𝑖(𝑧̃ 𝜄̇ + 𝑔) − 𝛽 ∑𝑛 𝑚𝑖𝑥 𝜄̇ ∑ 
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where x¨ i and z¨i are evaluated in Cartesian space to get joint space accelera- 

tions and β denotes the virtual slope considered for modeling hip motion based 
on one-mass COG (Center of Gravity) model. Stability margin is modulus of 
the difference between convex hull boundary and actual ZMP. A higher stabil- 
ity margin is desired throughout the motion to ensure better preparedness of 
bipedal robot towards external disturbances or some unwanted events. 

 

 
18.0.3 Fuzzy logic based impedance modulation 

As we know while ascending a staircase, impact plays a very significant role. A 
significant change in impact force can lead the robot to tip over and finally fall. 
Magnitude of impact force plays a vital role for a stable landing of the bipedal 
robot. So to overcome this issue and getting the stable foot landing by 
modulating the impact forces, we have considered Fuzzy Logic controller to 

obtain the stiffness and damping matrices denoted by ks and kd which are 6 × 6 

diagonal matrices as output with time as fuzzy input. There are mainly two 
factors to consider fuzzy based impedance modulation: 

1) Gait phase inaccuracy: It takes into account the fact that each gait phase 
namely Double Support Phase 1 ( 0 to t1 ), Double Support Phase 2 ( t1 

to t2 ) and Single Support Phase ( t2 to t3 ) can have some distortion in their 
respective time bounds due to model inaccuracy or due to external disturbances. 
By taking time as input to our fuzzy logic controller we can relax time bounds 
for each gait phase. It can have values Zero, DSP1 for Double Support Phase 1, 
DSP2 for Double Support Phase 2, SSP for Single Support Phase. Trapezoidal 
membership function are used for input fuzzification. 

2) Load shared by contact points: Particularly in case while ascending or 

descending staircase there is variance in load or we can say burden carried 

by different contact point. So the impact force exerted by respective contact 

point should be according to the burden carried by it at a particular time 

instant. As we have considered 6 contact points using virtual spring damper 

model with variable stiffness and damping coefficients. So for 6 × 6kd and ks 

diagonal matrices, we can have 12 variables kd1, . . . , kd6 and ks1, . . . , ks6. These 

12 variables are taken as output to the fuzzy logic controller. 
Based on different gait phases fuzzy logic controller rules are in following 

form: 
IF time is X THEN kdj is Y and ksj is Z, 

where X can be Zero, DSP1, DSP2, SSP, Y and Z can be Low, Medium, 
High, Zero and j varies from 1 to 6 for each contact poin. 

 

Fuzzy Logic based Impedance Controller Pseudo Code 

START 

1. Define desired stiffness (K), damping (D), and inertia (M) properties. 
2. Input desired trajectory (x_d, x_dot_d). 

3. Measure current state (x, x_dot). 
4. Calculate force: 

a. F = K * (x_d - x) + D * (x_dot_d - x_dot). 
5. Apply force to the system. 
6. Update system state. 
7. Repeat until the desired motion is achieved. 
END 

 

19 Neural Networked based control 

Artificial neural networks have many advantages, especially when the underlying 
system dynamics are unclear or difficult to model. One disadvantage, however, 
is that the network training process is data thirsty. This can be mitigated by 
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using simulation to pre-train the network. Typically, the simulation needs to 
run many steps for the network to converge to a good result [139]. Here we first 
developed a core control system based on a simplified dynamic model. Then 
we used its outputs to train an artificial neural network (ANN) controller using 
a reinforcement learning algorithm.We chose to use artificial neural networks 
(ANNs) with reinforcement learning (RL) techniques to stabilize the biped robot 
because of the powerful new tools that are available and because of previous 
successes in applying them to stabilize bipedal walking. For bipedal gait control 
problems, the RL method is be able to handle continuous input and output. The 
core control system was developed using classical control methods, and is 
strongly dependent on the exact mechanical parameters of the model. The RL 
neural network controller was found to be superior because it is robust to 
model parameters. With the ANN controller, a different person could use the 
exoskeleton without changing the controller parameters. 

The core control system was based on classical control methods and a reduc- 
tion in the complexity of the system was essential for its success. To reduce the 
dimensions of the problem we used principal component analysis [140], whereas 
virtual constraints for a similar reason [141]. We reduced the dimensions and 
complexity of the control system by developing separate controllers for the swing 
and stance phases. To simplify the problem, we assumed that the swing leg’s 
reaction forces have little effect on the torso at the walking speed of the (1 m/s), 
and our subsequent results justify this assumption. Thus, we divided the control 
task into two parts: The torso stability task for the stance leg and the optimal 
foot placement task for the swing leg. The core control system stabilized the 
biped and rejected impacts and persistent disturbances, but it was not robust 
to changes in the model. 

A neural network was developed and trained using reinforcement learning, 
starting with data from the core controller. Two ANN controllers were devel- 
oped: A “local” controller and a “global” controller. The local controller was 
divided into two sub-controllers, one for swing and one for stance. The advan- 
tage of this method is that the action space is small for each sub-controller, so 
the neural net converged faster. But the disadvantage is that we needed to 
alternately freeze the parameters of one neural net and train the other one so 
that they can be better coordinated with each other. Although the stance leg 
controller is minimally dependent on or entirely independent of the swing foot 
placement controller based on this assumption, the reverse is not true. The 
foot placement controller takes both the motion of the swing leg and the stance 
leg into consideration, and the reinforcement learning optimization process also 
takes this into consideration. Thus, the parameters for the local neural net swing 
leg foot placement controller were optimized after the local stance controller was 
tuned such that the neural net learned the effect of the stance controller on the 
foot placement controller. 

The global controller was trained for the system as a whole rather than 
separating it into swing and stance controllers. We compared the convergence 
rates and the performances of the local and global controllers and found that 
the local controller converged faster but did not perform as well as the globally 
trained controller. 
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Neural Network (NN) Controller Pseudo Code 

START 

1. Initialize neural network weights and biases. 
2. Train the NN: 

a. Input training data (e.g., state-action pairs). 
b. Perform forward propagation to calculate output. 
c. Calculate loss between predicted and actual values. 
d. Perform backpropagation to adjust weights and biases. 
e. Repeat until convergence. 

3. Use the trained NN for control: 
a. Input current system state to the NN. 

b. Compute control output from the NN. 
c. Update system using the output. 

4. Repeat for real-time updates. 
END 

 

 

19.0.1 DEVELOPMENT OF A CORE CONTROLLER VIA CLASSICAL 

CONTROL METHODS 

The ”core controller” was developed using classical control methods and then 
used to create data to initialize the neural network controllers to start the rein- 
forcement learning process. 

 

 

19.1 Stance Leg Controller 

The stance leg controller is intended to stabilize the torso during the single-limb 
support phase. It is designed such that the torso’s pitch angle and rotational 
velocity are small, and its vertical acceleration and velocity are negligible. This 
greatly simplifies swing foot placement control by representing the single sup- 
port stance limb as a double inverted pendulum. For the stance leg controller 
development, we assume: 

 
1. The knee joint angle and its angular velocity are small, so the entire leg 

can be treated as a single link. 

2. The foot/ground friction is large enough so that there is no slipping. 

3. The reaction force resulting from the motion of the swing leg is small. 

4. The control torque in the ankle is small enough to not cause the foot to 
rotate about the toe. 

The equation of motion of the system can be derived from Lagrange’s 
equation: 

𝑑 𝜕(𝑇 − 𝑉) 𝜕(𝑇 − 𝑉) 

 
In matrix form: 

𝑑𝑡 
− 

𝜕𝑞̈  𝜕𝑞̈ 
= 𝑄1(63) 

D q¨ + Cq˙ + G = Q2 (64) 
q = [q1, q2, q3, q4] is the set of joint angles representing hip-x (Abduction/Adduction), 

hip-y (Flexion/Extension), ankle-x (Dorsiflexion/Plantarflexion) and ankle-y 
(Eversion/Inversion). Hip-z (Lateral/Medial) is locked during stance control. 
Q = [Q1 , Q2, Q3, Q4] is the control torque that acts on joints 1, 2, 3, and 4 . T and 

V are the kinetic and potential energies of the system. The goal is to find the 

control torque Q to drive the torso angle P and its velocity P˙ to zero. The 
torso angle P is defined as the angle between the torso z-axis and the global z- 
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axis. Assume a unit vector in the z-direction, k = [0, 0, 1]T , is attached to the 
torso. Then the vector expression transformed into the global frame is: 

k′(q) = Ranklex 
Rankley Rhipx 

Rhipy 
k(65) 

Where Ranklex , Rankley , Rhipx , Rhipy are rotational transformation matrices 
associated with each joint. The subscript x and subscript y designate rotation 
about the x or y axis, respectively. Then, the angle between the k′ and world 
z-axis can be calculated as: 

P(q)=acos([0, 0, 1] · k′(q)) (66) 

By taking derivatives of P , we can calculate the velocity and acceleration of 
the angle: 

𝜕𝑃(𝑞̈) 
𝑃 = 𝑞̈(6 7) 

𝜕𝑞̈ 

𝑃 = 
𝜕2𝑃(𝑞̈) 

𝜕𝑞̈2  𝑞̈  + 
𝜕𝑃(𝑞̈) 

𝑞̈ (68) 
𝜕𝑞̈ 

A constraint equation is imposed on the system so that it will drive the torso 
angle P to zero: 

P¨ + kpP + KvP˙ = 0 (69) 

Q1 and Q2 are control torques on the ankle. These are set to 0 because the 
ankle is assumed to be an un-actuated joint. One constraint equation is not 
enough, and there are infinite solutions. Thus, we instead consider the x and y 
components of vector k′. To minimize the angular rotations of the torso, we 
desire the x and y components of k′ to go to 0 at the same time. But in this way, 
we must assume that the torso angle P is smaller than π/2. Otherwise, when we 
decrease the x and y components of the vector, the angle P will increase instead 
of decrease. The case where angle P is larger than π/2 does not happen during 
normal walking. The velocity and acceleration of the x and y components of k′ 

can be calculated in the same way: 
X=[1,0,0] ·k′(q) 

X˙(q, q˙) = ∂X(q) q˙ 
 ̈

∂q 2X(q) 

X(q, q˙, q¨) = ∂ q˙ + ∂X(q) q¨ (70) 
∂q2 ∂q 

 

Y=[0,1,0] ·k′(q) 
Y˙(q, q˙) = ∂Y (q) q˙ 

 ∂q 2Y (q) 
Y (q, q˙, q¨) = q˙+ ∂Y (q) q¨ (71) 

 

∂q2 ∂q 

We design the acceleration so that X and Y are stable and converge to 0 so 
that the torso remains vertical. Thus, negative position and velocity feedback 
is used: 

X¨ 
d = −kpxX − KvxX˙ 

(72) 
Y¨

d = −kpyY − KvyY˙ (73) 

where Kp and Kv are feedback gains for position and velocity. By choosing 
different gain values, we can manipulate the behavior of these second-order sys- 
tems. Desired response time and overshoot values can be achieved by using the 
pole placement method. A large damping value is preferred because oscillation 
of the torso will decrease the stability of the foot placement controller. 

In summary, the following set of equations can be solved for the joint 
accelerations. 
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Du, Cu, Gu are the inertia, centrifugal-Coriolis, and gravity terms for the un- 

actuated joints. Then the control torques can be solved using Eq. 64. Next, a 
constraint on the ground reaction force is imposed so that there is no 
foot/ground slip, and the foot stays on the ground for the entire stance phase. 
The constraints are expressed as: 

F 2 + F 2 < µ2F 2 

x y z 

Fz > 0 
(75) 

A solution that satisfies these constraint was found using optimization. The 
variables that need to be optimized are control gains kp and kv in Eq. 72-73 for 

X and Y . The time domain solution can be expressed in terms of a matrix 
exponent. 

I 

X̄ = 
X 

= eAX t X¯ 
0 ( 7 6 ) 

 

AX = 
0 1 

−kpx −kvx 
(77) 

Y¯ equations are similar to Eq. 76 for X̄ . The objective function J is the 
integral of the square sum of the future error: 

J T ( AX t 
¯ 

)T AX t   ̄ ( AY t ¯ 
)T AY t ¯ 

J= e 
0 

X 0 e X 0+ e Y 0  e Y 0dt (78) 

 

 

 
Fig. 18: the time response of the torso angle for different initial conditions 

This optimization problem needs to be solved at every time step. It takes 

approximately 0.02 − 0.05 s using the MATLAB optimization toolbox function 
”fmincon ()”. This was found to consume much computational power and reduce 
the control frequency. So instead of performing this optimization, the difference 
between the generated joint acceleration and zero torque joint acceleration were 
used to limit the torque output of the controller. In a loop, if the constraint is 
not met, then the control output is reduced: 

q¨ ← q¨+ λ (q¨ − q¨0) , 0 < λ < 1 (79) 

q¨ is the zero-torque joint acceleration, and λ is the decay factor. Figure. 18 
shows the torso angle control in single limb support phase. 
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19.2 Foot Placement Controller 

After the torso angle is stabilized by the stance leg controller, if the torso an- 
gular velocity is small, then the motion of the biped during the swing can be 
approximated by a single 3-D inverted pendulum. A 3D Linear Inverted Pendu- 
lum Model was developed. If the mass center motion plane is parallel with the 
ground, then the pendulum’s time-invariant orbital energy can be calculated by 
integrating the equations of motion along the x and y axis with respect to time 
[143]. 

𝐸  = 
1 
𝑦 2 − 

𝑔 
𝑦2 

  

𝑦 2 2𝑧̃ 

𝐸 = 
1 
𝑥 2 − 

𝑔 
𝑥2(80) 

 

𝑥 2 
 

2𝑧̃ 

 
The phase plane of the trajectory shows that if the orbital energy is greater 

than 0 , then the trajectory will cross the zero position, and if the orbital energy 
is less than 0 , the trajectory will not. If the orbital energy is equal to 0 , then 
the trajectory will come to rest at a saddle point, also known as capture point 
[144]. So, for walking of a 3-D biped in the y direction, for example, then Ey 

must be greater than 0 , and for stability in lateral motion, it is preferred that 
Ex is less than 0 so that the COM can oscillate between the two feet. From 
Eq.80, the initial position can be calculated for the foot placement. 

 

𝑦 2 2𝑧̃ 
𝑦 = 𝑟 ( 

2 
− 𝐸𝑦) 

𝑔 

𝑥 2 2𝑧̃ 
𝑥 = 𝑞̈ ( 

2 
− 𝐸𝑥) 

𝑔 
(81) 

The calculated initial conditions for foot placement from this model can 
only generate several steps of stable walking before falling down because of the 
disturbances from the torso. The model has several restrictions: First, the 
mass center must move in a plane that is parallel to the ground. Second, the 
mass center is concentrated around the tip of the pendulum. Third, there is no 
control input. In practice, it is difficult to satisfy all these constraints[145] 
bound the nonlinear term resulting from the COM vertical motion to a region 
where the linear controller still generates a dynamically feasible solution. We 
added modified terms and coefficients to compensate the difference in modeling: 

 

 

√
𝑥 2 2𝑧̃ 

𝑥 = ±𝑑 + clip(𝑥, 1, −1) ⋅ − 𝐸𝑥 ⋅ ⋅ (1 + 0.1|𝑃|) 
2 𝑔 

 

√𝑦 
2 2𝑧̃ 

𝑦 = clip(𝑦, 1, −1) ⋅ − 𝐸𝑦 ⋅ ⋅ (1 + 0.1|𝑃|)(82) 
2 𝑔 

Where d is the horizontal distance between the hip joint and the center of 
mass. The clip coefficient regulates the sensitivity of the velocity influence. The 

coefficient 1 + 0.1|P| compensates for the influence from the torso angle. Initial 
conditions for the center of mass are transformed into foot placement by cal- 
culating the forward kinematics. The swing leg trajectory can be generated by 
inverse kinematics relative to the mass center. In our approach, the inverse kine- 
matics for x and y are relative to the mass center, and z is relative to the global 
reference frame. In this way, the z component of the foot displacement will 
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not be affected by sudden movements of the mass center and, thus, the ground 
contact is more controllable. The position of the foot Xf can be expressed as: 

0 
+ R · (Xc−h + F (q)) = Xf (83) 

zc 

Where zc is the z component of the mass center in global coordinates and R 
is the rotation matrix from global coordinates to body-fixed coordinates. F (q) 
is a vector of the Cartesian coordinates of the foot relative to the hip expressed 
as a function of the joint angles q.Xf is the foot coordinates partially relative 

to COM in global coordinates. Xc−h is a vector from the mass center to the hip 
joint in bodyfixed coordinates: 

 
Xc−h = XGC−hip − XGC−COM (84) 

 

XGC−hip is a vector from the torso’s geometric center to the hip joint in 
the body-fixed coordinates, and XGC−COM is a vector from torso’s geometric 
center to the mass center in body-fixed frame. XGC−COM is a function of the joint 
angles q. Taking the time derivative of both sides of Eq. 83: 

0 
 ̇ ) 

0 
z˙c 

+ R · (Xc−h + F ) + R · 
( X˙

c−h + Ḟ ) = Ẋ f  (85) 

R˙ is a function of Euler angles (α, β, γ) and their time derivatives. 
 

X˙ 
c−h = X˙ 

GC−hip − X˙ 
GC−COM = −X˙ 

GC−COM = −JGC−COM q˙(86) 

JGC−COM  is the system Jacobean: 

JGC−COM  = ∂XGC−COM (87) 

JGC−COM  can be expressed as [JGC−COM−l, JGC−COM−r], and q˙ can be 
I 

written as 
q l̇ 

q̇ r 
. The subscript” l” and” r” represent the left and right leg, 

 
respectively. Then: 

X˙ 
c−h = −JGC−COM q˙ = −JGC−COM−lq˙l − JGC−COM−rq˙r (88) 

And 
F  ̇= Jkq l̇orF  ̇= Jkq˙r (89) 

 
Depending on which leg is the swing leg. Jk is the foot position Jacobian for 

leg kinematics. For example, if the left leg is the swing leg, then substituting 
equations 

𝑅  ⋅ (𝑋𝐺𝐶−hip−𝑙 − 𝑋𝐺𝐶−COM + 𝐹𝑙) + 𝑅 ⋅ (−𝐽𝐺𝐶−COM − 𝑟𝑞̈ 𝑟 + (𝐽𝑘 − 𝐽𝐺𝐶−COM−𝑙)𝑞̈ 𝑙) 

(90) 

 
0 

And using i˙nverse kinematics, the left leg joint velocity can be calculated: 

 

q˙l = (RJk − RJGC−COM−l) · 

(XGC−hip−l − XGC−COM + Fl) 

+ RJGC−COM−r q˙r ) (91) 

 

−1   ̇  ̇
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This equation is then integrated to find the desired joint angles. 

 

 

19.3 DEVELOPING AN ARTIFICIAL NEURAL NET- 
WORK CONTROLLER AND TRAINING IT WITH 
REINFORCEMENT LEARNING 

the core controller derived in the previous part stabilized the biped for which it 
was designed. However, it was found to be brittle. It became unstable with even 
a small change in biped parameters. Thus, to create a more robust controller, 
an ANN was designed and trained using reinforcement learning starting with 
data from the core controller. 

The neural networks for enhancing the core controller need to be able to 
work with continuous inputs and outputs. There are many reinforcement learn- 
ing (RL) techniques that can be used to optimize a neural net in such a case. 
Many are gradient-based and require large samples of trajectories. The train- 
ing algorithm used in this work is called Proximal Policy Optimization (PPO) 
p[146]. It is a popular off-policy gradientbased optimization method. PPO is 
the default learning algorithm for Open-AI because it is efficient compared to 
many on-policy stochastic policy gradient methods, and it is straightforward to 
implement compared to its full version: Trust Region Policy Optimization 
(TRPO) [147]. For a policy gradient method, an agent interacts with its en- 
vironment, observes its state s, and then outputs action a according to policy 

πθ, and then the agent will move to the next state according to action a and so 

on. A trajectory τ (s1, a1, s2 , a2, s3, a3 . . .) of state and action can be recorded. 
The probability for τ is 

p(τ ) = p (s1) pθ (a1 | s1) p (s2 | a1, s1) pθ (a2 | s2) p (s3 | a2, s2) . . . (92) 

pθ represents the possibility for the agent to output a certain action given 
the state. This possibility is controlled by the policy parameter θ. The goal is 
to train this agent so that it will have a high possibility to output the action 
that can lead to a larger reward. The policy gradient method is an on-policy 
method, meaning that the data used to calculate the gradient must be 
gathered by the current policy. Otherwise, a different policy will give a different 
distribution, and the sampled gradient will not approximate the true gradient. 
Thus, every time the policy parameter is updated, all the data collected pre- 
viously will be outdated and cannot be used in the future. This results in the 
policy gradient method spending most of its computational time collecting data 
rather than training. 

PPO uses importance sampling to mitigate this problem [148]. Importance 
sampling allows one to calculate the expectation of a distribution p from a 
different distribution q. However, this expression becomes more difficult to 
approximate when the difference between the two distributions is large. So, in 
the PPO algorithm, a KL divergence is added to the objective function to 
measure the difference between distributions [149]. This KL divergence is used 
to penalize large differences between distributions. By using this approach, the 
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data can be used to update the parameters several times. PPO can also use 
a modified surrogate objective LCLIP (θ) to limit the step size during a trust- 
region optimization update. 

As mentioned previously, the goal is to develop a neural network trained 
using reinforcement learning initialized with data from the core control system. 
But the structure of the core control system separates the full biped action 
control into two parts: swing leg control and stance leg control. On the one 
hand, this reduces the difficulty of the design of each controller. On the other 
hand, it increases the training difficulty for the reinforcement learning algorithm. 
Two different methods of implementing the learning algorithm are used in this 
work and the results are compared. 

 

 

19.4 Local Reinforcement Learning 

In the first method, called the ”local” method, there are separate neural net- 
works for each action control task: A foot placement controller neural network 
and a stance leg controller neural network. Because the control task was di- 
vided into two parts, the optimization task was eased as compared to trying to 
optimize a single more complex control system for the entire interconnected 
dynamic system. Thus, we could find sufficient RL policies for each of these two 
control problems with fewer iterations. 

For the purpose of control, the gait cycle was divided into swing, double- 
support, stance, and toe-off (we treat the toe-off as a gait phase). Except for 
the double-support phase, the timing of the phase switching was controlled by 
feedback from contact sensors at the foot and the output of the controllers. The 
duration of the double support phase was linearly related to the torso velocity. 
Simulated experiments showed that this intuitively derived linear relationship 
was sufficient to represent the system. However, in future work, it could also be 
optimized using a neural net. 

Toe-off can be achieved in two ways. One is to generate a trajectory for the 
foot using inverse kinematics for the target joint angle controller to lift the foot. 
The other method is to disable the knee target joint angle controller and apply 
a direct reflexive torque to flex the knee. This is necessary because the 
disturbance caused by toe-off often causes the swing foot to hit the ground when 
the foot does not follow the designed trajectory, and a target angle controller 
will make the knee joint stiff. It is inefficient and may destabilize the system. 
Flexing the knee allows the swing foot to move forward freely without the knee 
pushing the foot against the ground. In normal walking, when there are no 
disturbances, the trajectory following method is used. But, when a premature 
foot contact is detected, the controller switches to the reflexive method. 

The simulations proceeded as follows. The foot placement controller neural 
network was active once every footstep. The input vector included torso linear 
and angular velocities in the x and y directions, torso angle, torso height, and 
which leg (swing leg) it should control at that instant. The outputs were the 
target hip joint angle in the x-axis, which controlled how far the biped should 
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step, and the duration of the step, which determined how fast the joint should 
rotate, and the timing of the knee extension. The stance leg controller neural 
network was active at 50hz during stance. The input vector to the controller 
was the same as the foot placement controller plus additional stance leg joint 
angle and joint velocity information. The output was the hip joint velocity 
of the stance leg. The reason to use target joint velocity control is that it 
can improve policy performance and learning speed [150]. The environmental 
reward function used for the foot placement controller neural network training 
was simply the forward travel distance of the biped, and the reward for the 
stance leg control controller neural network was the norm of the torso angle and 
angular velocity vector. Each episode ended when the mass center height was 
below the threshold or the travel distance reached a preset maximum value. 

After the foot placement controller neural network was optimized, its pa- 
rameters were frozen, and we then optimized the stance leg controller neural 
network. The optimization of the two neural networks changed the dynamics 
of both the stance leg controller and the foot placement controller. Thus, it was 
found useful to iterate this process so the neural network in each controller could 
adapt to changes and synergize better with the other. We have found that this 
training loop was prone to converge because, while the foot placement con- 
troller is strongly influenced by the stance controller, the stance leg controller 
depends little on the foot placement controller. Also, if the simulation displayed 
some unrealistic behavior due to the numerical solver in Gazebo, then the entire 
trajectory collected in that episode was not used in training. 

 

 

19.5 Global Reinforcement Learning 

In the second method, called the ”global” method, only one neural network is 
trained, and it controlled both the swing leg and the stance leg. The action 
space was much larger compared to the local method. This neural network was 
run at 50hz. The state input was a series of state vectors consisting of torso 
position and velocity, mass center relative position and velocity, joint angle and 
velocity, left and right contact sensors, and the output from the core controller. 
The state also included a target coordinate and the target speed. The input state 
series allowed the neural net to perceive some events that are hard for a single 
timestamp state input to represent, such as the ground contact and foot 
slipping. The length of the input series was set to 5 so that a total of 0.1 s of 
motion was recorded in the state series in a 50hz control loop. This is similar to 
a human’s 0.15 s reaction time for a touch stimulus. The environmental reward 
was the error norm of current torso position to the target coordinate and current 
speed to target speed. 

The output of the neural network was stance leg joint velocity (hip-x, hip-y, 
knee) and x, y and z coordinates of the predicted foot placement for the swing 
leg. The final output of the control system was the summation of the output 
from the neural net and the core controller. At the beginning of the training, 
the neural net was initialized to output zero means and small variances so that 
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Fig. 19: The relationship between the core controller and the ANN 

 
the total output was similar to the output of the core controller. Thus, the agent 
started its exploration near an optimal point. After the first parameter update 
of the neural net, the agent departed from the initialized parameters, and the 
stable gait provided by the core controller was no longer imposed. After some 
iterations, the agent optimized the policy and generated a stable gait. The RL- 
trained neural network controllers were much more robust to changes in the 
model’s mechanical parameters than the core controller. 

 

 
Fig. 20: Neural Networks Architecture 

 
the core controller for both methods and the policy in the local reinforcement 

learning method use only the current state of the biped. The global reinforce- 
ment learning method policy uses the current and a series of past states of the 
biped as input. In the global reinforcement learning method, the neural net 
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output modifies both foot placement control and stance leg control. While in 
the local reinforcement learning method, one neural net is trained to modify the 
foot placement control output, and another is trained to modify the stance leg 
control output. The switching between left-swing-right-stance and right-swing- 
left-stance is triggered by signals from the contact sensors. All the measured 
signals are sampled from the simulated environment. The foot placement con- 
troller converged relatively quickly in Method 1, the local reinforcement learning 
method. It needed about 15,000 walking steps and 150 iterations for a good pol- 
icy to emerge, while other tasks have been reported to need 105 to 107 steps.the 
global reinforcement learning method, needed longer trajectories in each iter- 
ation for training, and the overall convergent speed was slower than the local 
reinforcement learning method. The simulation ran in real time, and only one 
biped model was simulated. 

 

 

20 Chapter 4: The results and conclusions 

 
20.1 RESULTS 

The robustness of the control system was tested by adding a gradually increas- 
ing short-duration (impact) force on the center of the torso during walking until 
the biped fell [151]. There was a time delay between two consecutive forces to 
allow the biped model to return to its normal walking before the next impact. 
The duration of the impact force was 0.1 s. The test was performed with force 
applied to the torso in different directions and repeated six times for each di- 

rection. The direction of the impact force was varied from −π/2rad (rearward) 
to π/2rad (forward) for every 0.1rad. The results for the model are shown in 
Figure 21. 

 

 
Fig. 21: Impact test 
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As can be seen in Figure 21, all four controllers (core-clipped, raw-core, 

global reinforcement learning method, local reinforcement learning method) gen- 
erated stable gaits. However, the stable gaits generated by the neural network 
controllers were less robust to impact disturbances compared to the core-clipped 
controller. 

the performance of the system was tested when a constant force was added 
for a long period of time. This tested the system’s robustness against persistent 
disturbances such as wind. The force was added on the center of the torso link 
for 20 s. The global neural net controller can stabilize much larger persistent 
forces in the forward and lateral directions compared to the rearward direction. 
The velocity of the biped was decreased by the rearward force. The forward force 
caused a short time of increasing speed, but the controller adapted to slow the 
pace. After the force was cleared, the biped took about 5 s to recover to normal 
walking. The lateral force caused little change of the lateral speed because the 
neural net was trained to walk forward. So, the lateral error caused by the 
disturbance force was compensated by the controller. This result is shown in 
Figure 22. 

 

 
Fig. 22: Persistent disturbance test 

 
The neural network for the PPO policy and critic networks each have three 

densely connected layers with 400 units per layer. The activation function is 
Leaky-ReLu. Other parameters are listed in Table 3. 

 
Table 4: neural network parameters. 

 
Parameter Value 
Actor learning rate 1e − 5 

Critic learning rate 1e − 4 
Critic loss type L1 
Batch size 512 
Num of batches 100 
Max episode steps 32,000 
Gamma 0.995 
GAE-lambda 0.95 

PPO-epsilon 0.2 

The results show that the core-clipped controller, developed using classical 
control methods, is more robust to external perturbations than the reinforce- 
ment learning policy. However, the core-clipped controller is brittle to even 
small changes in the plant. For example, if the user picks up a bag of groceries, 
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the core clipped controller will have to be re-tuned. This is unacceptable for an 
exoskeleton. 

Instead of using the core controller alone, we used the core controller’s out- 
puts and the states of the biped as the inputs to a neural network and then 
trained the network using reinforcement learning. The trained neural network 
was then shown to control stable walking of the biped. We found this method 
has three advantages. First, because the core controller provided a good initial 
solution, the network converged relatively rapidly compared to results reported 
in the literature. Second, the NN controller produced stable walking of the 
three-dimensional biped that was robust to external perturbations and drastic 
changes in the biomechanical model. Third, additional goals for the 

controller were able to be realized because of the flexible choice of different 
reward functions for the RL training process [153]. 

The global reinforcement learning policy shows superior performance to the 
local reinforcement learning policy. In the global reinforcement learning pol- 
icy, stance and swing are learned in parallel, whereas in the local reinforcement 
learning policy, stance and swing are learned separately. Thus, the local re- 
inforcement learning policy is the sum of two smaller problems and converges 
much more rapidly. 

This method is attractive for use in biped robot control because it does not 
require a detailed dynamic model of the particular user. In future work, the joint 
control signal can be transformed into muscle/motor activation for muscle-first 
driven hybrid exoskeletons [154]. 

This method can be used to evaluate the efficacy of additional joint degrees 
of freedom . Adding degrees of freedom to a biped robot is done with care 
because of the added weight, complexity, and cost. Most exoskeleton’s confine 
the user to leg movements in the sagittal plane, which has drawbacks in terms 
of normal joint movements, walking speed, and stability. Additional joints can 
be easily added to or subtracted from a dynamic model and this method can be 
used to learn a controller. The performance of the system with the additional 
joints in terms of speed, stability, and robustness to perturbations and changes 
to the mechanical model (different users and carrying objects) can be evaluated. 
Thus, the method described in this thesis can be an important tool for design 
as well as system control. 

overall we first used classical control methods to design a core control sys- 
tem consisting of a stance-leg torso stabilization controller and a swing-leg foot 
placement controller. The stance leg controller was based on a double pen- 
dulum model. The acceleration of the torso angle was designed to mimic a 
stable second-order system. Then the required torque was calculated by using 
double pendulum dynamics. The output was then modified to further stabilize 
the system. After that, the swing leg foot placement prediction controller was 
designed using the modified orbital energy method. The resulting” core” con- 
troller generated stable walking and was robust to impact disturbances. But it 
cannot stabilize a biped with different biomechanics because the controller was 
designed on precise model data. Thus, we used reinforcement learning to train 
a neural network for biped walking using the outputs of the core controller and 
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the states of the biped as its inputs. Two different ways of training the policy 
were tested. The local reinforcement learning method used separate neural nets 
for swing leg control and stance leg control so that each of these neural nets 
only controls a portion of the action and can be trained with less computational 
cost. The global reinforcement learning method used just one neural net for the 
entire action control of the system. Results showed that the local reinforcement 
learning method indeed trained faster than the global one, but it is less robust 
than the global reinforcement learning method. 

 

 

21 Error Signals 

Control theory is a field of control engineering and applied mathematics that 
deals with the control of dynamical systems in engineered processes and ma- 
chines. The objective is to develop a model or algorithm governing the applica- 
tion of system inputs to drive the system to a desired state, while minimizing 
any delay, overshoot, or steady-state error and ensuring a level of control stabil- 
ity; often with the aim to achieve a degree of optimality. To do this, a controller 
with the requisite corrective behavior is required. This controller monitors the 
controlled process variable (PV), and compares it with the reference or set point 
(SP). The difference between actual and desired value of the process variable, 
called the error signal, or SP-PV error, is applied as feedback to generate a con- 
trol action to bring the controlled process variable to the same value as the set 
point. Other aspects which are also studied are controllability and observability. 
Control theory is used in control system engineering to design automation that 
have revolutionized manufacturing, aircraft, communications and other indus- 
tries, and created new fields such as robotics [155]. 

here we presented the Error signals of our 3D biped robot in the first scenario 
(walking on the flat surface) being controlled via PID, FLC and Neural Network 
controllers and depict which controlling method is more accurate one. first 
scenario is when the biped robot is walking on a flat surfaced and PID control 
is used in this stage. the results are shown here: As you can see it does take 

 

 
Fig. 23: PID control error signal 
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some time for the error signal to become stable. As you can see FLC controller 
is more stable than PID controller and the robot gets stable while walking 
sooner with FLC controller compared PID controller. As the figures depict NN 
controller the most stable and fattest controller compare to FLC and PID and 
more efficient one compare to others. So we conclude that NN controller is way 
more accurate compare to the 2 other ones. 

 
 
 

 
Fig. 24: FLC control error signal 

 
 
 
 

 

Fig. 25: neural network controller error signal 
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22 Conclusion 

Comparing real and desired trajectories after applying each controller on the 

biped walking robot in different scenarios In this scenario we are applying NN 
controller to the biped walking robot on the flat surface, the trajectory is as 
shown below: 

 

Fig. 26: biped robot trajectory after NN controller applied on the flat surface 

the second scenario is after applying NN controller to the biped walking 

robot while facing an obstacle, the trajectory is as shown below: 

the third scenario is after applying NN controller to the biped walking robot 

while passing over a ditch, the trajectory is as shown below: 

It can be seen that bipedal robot has most stable trajectory while walking 

on the flat surface as the real trajectory is completely like the desired one. the 

second place is while facing an obstacle and finally it’s when over passing a 

ditch. 
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Fig. 27: biped robot trajectory after NN controller applied while facing an 
obstacle 

 

 
Fig. 28: biped robot trajectory after NN controller applied while passing over a 

ditch 

In this work we only could demonstrate all the PID results due to the limited time. Here are the reasons 

why we chose the PID controller to fully cover over the other controlling approaches. 

 
1. Simplicity of Design and Implementation 

 
The design of a PID controller involves straightforward tuning of three parameters (Proportional, 

Integral, and Derivative gains). This simplicity makes it computationally light and easy to 

implement, particularly in systems with limited computational power or where cost-efficiency is 
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critical. 

 
Neural Networks (NN) and Model Predictive Control (MPC), while powerful, require significant 

computational resources for training and prediction, respectively. For example: 

 
o NNs involve iterative learning algorithms and matrix operations, which can be resource- 

intensive. 

o MPC requires solving optimization problems at each control step, which adds a 
considerable computational burden. 

 
2. Real-Time Responsiveness 

Its algorithm is based on simple arithmetic operations (error calculation, summation, and 

differentiation). This ensures minimal latency, enabling fast real-time adjustments. 

o Fuzzy Logic Controllers (FLC) must evaluate multiple fuzzy rules, increasing 

computational overhead as the number of rules grows. 

o NNs may introduce delays due to their forward propagation calculations, especially in 

larger networks. 

o MPC, due to its predictive nature, can struggle with real-time execution when dealing 

with high-dimensional systems. 

 
3. Low Computational Load 

PID calculations scale linearly with the number of control parameters, making it ideal for 

applications where computational resources are constrained. 

o NNs involve nonlinear computations and backpropagation during training, leading to 

quadratic or cubic complexity depending on the network's size. 

o CTC requires a detailed dynamic model of the system and involves matrix inversions, 

which can be computationally expensive. 

o MPC's predictive optimization is computationally intensive, often requiring high- 

performance hardware for real-time applications. 

 
4. Cost-Efficiency 

The simplicity of PID makes it cost-effective to implement in both software and hardware. It does 

not require specialized processors or extensive training data. 

 
o NNs and MPC often demand expensive hardware (e.g., GPUs or multicore processors) to 

handle their computations effectively. 

o The design and tuning of FLC require domain expertise and iterative testing, adding to 

development costs. 

 
5. Performance in Structured Environments 

PID excels in structured and predictable environments like flat terrain or controlled obstacles. It 

provides smooth and stable control with minimal effort. 

o FLC, NN, and MPC are more suitable for dynamic or unstructured environments but 

introduce unnecessary complexity and cost when applied to simpler problems. 

 
All in all, The PID controller's low computational cost, ease of implementation, and fast real-time 

performance make it an ideal choice for problems where resource constraints and simplicity are prioritized. 

While other controllers offer advanced features, their computational overhead and cost often outweigh the 

benefits in structured or moderately dynamic scenarios. For the tasks demonstrated in the document—such as 

walking on flat surfaces or handling simple gait dynamics—PID achieves efficient and effective results without 

the complexity of alternative approaches. 
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Overall, this thesis comprehensively investigates the intricate mechanisms and methodologies 

required to achieve stable, efficient, and adaptive locomotion for bipedal robots in a variety of environments. 

Addressing one of the most complex challenges in robotics—the emulation of human-like walking—the 

research delves into the interplay between control strategies, dynamic stability, and the ability to handle real- 

world uncertainties. By focusing on the design and control of a 3D biped robot, the study systematically 

evaluates and compares various control approaches, offering a nuanced understanding of their strengths, 

limitations, and applicability across different terrains and scenarios. 

 
A cornerstone of this work is the application of diverse control techniques, including PID controllers, 

Fuzzy Logic Controllers (FLC), Neural Networks (NN), Model Predictive Control (MPC), and Computed 

Torque Control (CTC). Each controller brings unique capabilities to the table: PID controllers provide a simple 

yet effective mechanism for addressing basic locomotion tasks, although their effectiveness diminishes with 

increasing uncertainty and complexity. Fuzzy Logic Controllers excel in managing nonlinearities without 

requiring precise 

 
models, offering robustness in unpredictable scenarios. Neural Networks, with their learning-based 

adaptability, enable the robot to refine its control policies in real-time, making them suitable for dynamic and 

evolving environments. Model Predictive Control stands out for its ability to predict and optimize future states, 

providing an advanced framework for handling multivariable systems and constraints. Lastly, Computed 

Torque Control demonstrates how precise modeling can lead to improved trajectory tracking and dynamic 

stability, albeit with the caveat of requiring highly accurate system representations. 

 
This study underscores the importance of stability criteria such as Zero Moment Point (ZMP) analysis, 

which plays a critical role in ensuring the robot's balance during locomotion. By integrating ZMP with 

techniques like trajectory interpolation and limit cycle analysis, the study bridges theoretical constructs with 

practical implementations. This blend of theoretical rigor and experimental validation is further enriched by 

the use of biologically inspired mechanisms, such as Central Pattern Generators (CPG), which emulate the 

rhythmic locomotion observed in humans and animals. These approaches not only enhance stability and 

adaptability but also reduce computational overhead by leveraging natural dynamics. 

 
The exploration of gait generation across varied terrains—including flat surfaces, slopes, staircases, 

and uneven or unknown environments—reveals the versatility and resilience required for real-world 

applications. On flat terrain, simpler model-based techniques suffice, but as the complexity of the terrain 

increases, more sophisticated controllers and adaptive algorithms become necessary. The ability to ascend and 

descend slopes, navigate obstacles, cross ditches, and maintain stability on uneven ground showcases the 

breadth of capabilities that a well-designed biped robot can achieve. In particular, the integration of sensory 

feedback, such as gyroscopes, accelerometers, and force sensors, enables the robot to perceive and respond to 

environmental changes in real time, further enhancing its autonomy and effectiveness. 

 
The simulation results in the Gazebo environment provide a robust testing ground for validating these 

control methods and assessing their performance under various conditions. By testing the robot in scenarios 

such as walking on flat surfaces, crossing ditches, and avoiding obstacles, the study highlights the practical 
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challenges and solutions for achieving smooth and balanced locomotion. The comparisons between 

control methods reveal the trade-offs between simplicity, computational efficiency, and adaptability, offering 

valuable insights for future research and development. 

 
This work not only advances the field of humanoid robotics but also lays a foundation for broader 

applications in healthcare, service robotics, exploration, and disaster response. The ability to navigate 

challenging environments with agility and stability has implications for improving the quality of life and 

extending human capabilities in environments that are hazardous or inaccessible. Furthermore, the 

integration of biologically inspired and learning-based techniques suggests a future where robots can 

seamlessly interact with their surroundings, adapting and improving their behavior over time. 

 
In conclusion, this work represents a significant step toward achieving human-like locomotion in 

bipedal robots. By combining diverse control strategies, stability criteria, and innovative design principles, it 

demonstrates the potential for creating robots that are not only functionally effective but also computationally 

efficient and adaptable to real-world conditions. The work invites further exploration into hybrid control 

methods, enhanced sensory integration, and real-time decision-making algorithms to address the remaining 

challenges in bipedal locomotion. As robotics continues to evolve, this research serves as a vital contribution to 

the ongoing quest for machines that move, think, and adapt like humans. 
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23 Abbreviations 

 
• AI artificial intelligence 

• ASD autism spectrum disorder 

• BBWR bird biped walking robot 

• BCI brain-computer interface 

• BLDC brushless DC 

• COG center of gravity 

• COT cost of transport 

• CPG central pattern generator 

• DC central drive of legs move 

• DG independent balancing drive 

• DL drive of left foot 

• DR drive of right foot 

• DC direct current 

• DOFs degrees of freedom 

• DSP double support phase 

• EHA electro-hydrostatic actuator 

• FLC Fuzzy Logic Control 

• HBWR human biped walking robots 

• ICT information and communications technology 

• IMU inertial measurement unit 

• LIDAR light detection and ranging 

• NN Neural Network 

• PID proportional–integral–derivative 

• RL Reinforcement Learning 

• SBWR synthetic biped walking robots 

• SMA shape memory alloys 

• SR specific resistance 

• SSP single support phase 

• VO visual odometry 

• ZMP zero moment point 
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Luo, Q., Kalouguine, A., P ámanes, J. A., Aoustin, Y. and Chevallereau, C., “An 
essential model for generating walking motions for humanoid robots,” Rob. Au- 
ton. Syst. 112, 229–243 (2019). doi: 10.1016/j.robot.2018.11.015.CrossRefGoogle 
Scholar [119] Jeong, H., Lee, I., Sim, O., Lee, K. and Oh, J.-H., “A robust walk- 
ing controller optimizing step position and step time that exploit advantages of 

footed robot,” Rob. Auton. Syst. 113, 10–22 (2019). doi: 10.1016/j.robot.2018.12.003.CrossRefGoogle 
Scholar [120] Chang, L., Piao, S., Leng, X., He, Z. and Zhu, Z., “Inverted pen- 
dulum model for turn-planning for biped robot,” Phys. Commun. 42, 101168 
(2020). doi: 10.1016/j.phycom.2020.101168.CrossRefGoogle Scholar [121] Kashyap, 
A. K. and Parhi, D. R., “Particle swarm optimization aided PID gait con- troller 
design for a humanoid robot,” ISA Trans. 114, 306–330 (2021). doi: 
10.1016/j.isatra.2020.12.033.CrossRefGoogle ScholarPubMed [122] Ding, J., Xin, 
S., Lam, T. L. and Vijayakumar, S., Versatile Locomotion by Integrating An- kle, 
Hip, Stepping, and Height Variation Strategies (2021). Jun. 2021. [On- line]. 
Available at: https://www.research.ed.ac.uk/en/publications/versatile- 
locomotion-by-integrating-ankle-hip-stepping-and-height.Google Scholar 

[123] Khan, A. T., Li, S. and Zhou, X., “Trajectory optimization of 5-link biped 
robot using beetle antennae search,” IEEE Trans. Circ. Syst. II Exp. Briefs, 
1(10), 3276–3280 (2021). doi: 10.1109/TCSII.2021.3062639.Google Scholar 

[124] Hemami, H. and Wyman, B., “Modeling and control of constrained dy- 
namic systems with application to biped locomotion in the frontal plane,” IEEE 

Trans. Autom. Control 24(4), 526–535 (1979). doi: 10.1109/TAC.1979.1102105.CrossRefGoogle 
Scholar 

[125] D.A.Bravo, M. and Rodas, C. F. R., “Design of a dynamic simulator for a 
biped robot,” Model Simul. Eng. 2021, 1–12 (2021). doi: 10.1155/2021/5539123.Cross- 
RefGoogle Scholar [126] Caux, S. and Zapata, R., “Modeling and control of 
biped robot dynamics,” Robotica 17(4), 413–426 (1999). doi: 10.1017/S0263574799001411.CrossRefGoogle 
Scholar 

[127] Vundavilli, P. R. and Pratihar, D. K., “Balanced gait generations of a two- 
legged robot on sloping surface,” Sadhana 36(4), 525–550 (2011). doi: 
10.1007/s12046-011-0031-7.CrossRefGoogle Scholar 
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