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Abstract

The contents of this thesis present experimental measurements performed on III-V,
predominantly GaAs/AlGaAs, nanohole infilled quantum dots. Through the use of optically
detected nuclear magnetic resonance the nuclear spin system is investigated. The results of
these investigations are presented across three interconnected chapters, each highlighting
distinctive insights on the elimination of decoherence and the enhancement of the longevity
and initialisation of nuclear spins.

The first experimental chapter discusses the inherent strain within quantum dot samples.
GaAs, InGaAs, and AlxGa1−xAs quantum dots embedded in AlyGa1−yAs barriers are studied
using optically detected nuclear magnetic resonance techniques with nanometre scale
resolution. These spectra are then reproduced using a Monte-Carlo method; the simulation
parameters are optimised through a differential evolution algorithm, which show the presence
of atomic scale strain. The evaluated results of these atomic scale strain magnitudes, in a
pristine crystal lattice, were found to differ considerably from previous studies which used
powderised samples. The breadth of the quadrupolar splitting was determined to increase from
∼ 55 kHz to ∼ 300 kHz due to the addition of 10% Al into pure GaAs quantum dots.

Nuclear spin dynamics are studied in the second set of experiments. The Knight-field-gradient
barrier, hypothesised to occur due to the introduction of an electron into a quantum dot, is
shown not to be applicable in the case of GaAs/AlGaAs epitaxial quantum dots. In fact, the
presence of an electron is found to increase nuclear spin diffusion at a large range of magnetic
fields due to electron mediated nuclear spin flip-flops.

In the final experimental chapter, we achieve levels of nuclear spin polarisation that, for nearly
two decades, were met with theoretical scepticism regarding their attainability. We reliably
achieve polarisations well above 95% in a statistically significant set of randomly chosen
individual quantum dots. The process for reaching these levels only requires time scales of the
order of one minute and can be applied/is compatible with standard quantum dot designs.
Within this chapter the underlying mechanism behind this process is both understood and
explained.
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Chapter 1

Introduction

Quantum Mechanics (QM) is said, by many, to have been ‘discovered’ by Planck on 14th

December 1900 when he explained black body radiation by discretising energy levels [1–3].
124 years later this ‘new’ approach to physics has become a pillar of modern day life. A notable
innovation that has stemmed from QM is quantum computing. The rationale behind a quantum
computer, as stated by [4–9], is the need to simulate quantum systems that classical computing
techniques are realistically unable to handle. This led to the development of quantum algorithms,
such as the eponymous Shor’s, Deustch-Jozsa’s and Grover’s algorithms, which demonstrated
the exponential computational time savings that could be utilised through quantum computing.

For all of these algorithms to work, however, one must not use a classical bit which has the
logical values of |1⟩ and |0⟩, but a qubit. A qubit relies upon the QM property of a wavefunction;
more precisely, it is dependent on the superposition of the pure two-level binary state, so that
the wavefunction, ψ, can be defined as:

|ψ⟩ = α |0⟩+ β |1⟩ . (1.1)

In Equation 1.1, binary states of 0 and 1 have probability amplitudes α and β. These represent
the likelihood that when the wavefunction collapses the observable state will be either |0⟩ or
|1⟩. Ideal qubits can be set in any arbitrary superposition state and entangled with other qubits
to form quantum gates, which can then be used for a quantum computer [10]. For these qubits to
be useful in quantum computing, the system which they are within must be able to meet certain
criteria. Some of these requirements were initially stated by DiVincenzo in 2000 [11], but these
were then rephrased by Ladd et al. in 2010 [12], which we will state here:

Scalability The computer should be able to be scaled exponentially without there being an
exponential increase to the resources required to run the system (energy, time, space, et
cetera).

Universal logic The system needs to be accessible using a set and finite number of control
operations, whose resources should also not grow exponentially, to perform all necessary

1



Chapter 1. Introduction 2

computations.

Correctability The entropy of the computer must be extractable, i.e. the system must be able
to be effectively initialised, manipulated and measured.

The question arises as to what the qubits can be created from, the answer to which is a variety
of materials. A few examples being: ions trapped within an electric field [13–17], defects in
crystals [18–20], Nitrogen Vacancy (NV) centres in diamond [21, 22], superconducting qubits
[23–28], and Quantum Dots (QDs) [12, 29–31]. By no means is this an exhaustive list, but its
shows the diversity of techniques that physicists are using. A more detailed comparison of qubit
sources can be found in the aforementioned paper by Ladd et al. [12]. In this thesis the work
focuses on III-V semiconductor nanohole infilled QDs; I will provide a brief introduction to the
pros and cons of these dots, as to enhance the overall understanding of the field for the reader.

The semiconductors used for growing QDs have a direct bandgap, which allows for
efficient/strong light matter interactions (strong optical dipole moment [32]). In addition to
this, QDs have also been found to be an excellent source for single-photon sources [33–36].
This enables the photon to be used as a, so-called, ‘flying’ qubit, where information can be
transported between ‘stationary’ QD qubits. These stationary qubits can be created due to the
spin degrees of freedom, and the confinement of an electron, within QDs. These QDs can be
grown within cavities/waveguides to enhance their properties [36–42], which also paves the
way forward for on-chip integration of the qubits. However, there are issues with QDs, some
of which are non-trivial. Firstly, the placement of QDs is random; there are techniques for
registration of the locations of QDs prior to any optical cavities/waveguides et cetera being
fabricated, however these methods have not yet been developed enough for high success rates
of registered QDs with the same optical properties as randomly located dots.

Another difficulty with solid-state QDs is when a confined spin, such as an electron, is
utilised as a qubit within a QD. This structure is an example of a central spin system, where
the electron is not isolated from its environment of approximately 105 neighbouring nuclei,
which all have fluctuating quadrupolar nuclear spins (explained in Section 2.4.1.3). This raises
a potential inherent issue with QDs, as there are not only strong light-matter interaction but also
matter-matter interactions. The central spin of an electron interacts with the nuclear spins of a
QD adding to their decoherence (more details in Chapter 5). To add to this, there are phonons
present which can interact with the crystal lattice, which can add another layer of ‘noise’ into
the system [43].

The work in this thesis can be summarised as an investigation into the longevity of nuclear
spins and improving the initialisation of QD states. This is to improve the “correctability” factor
as previously mentioned, so that one could utilise nuclear spins as quantum memories, registers
and logic devices [31, 44–47]. This is, predominantly, achieved through the use of Nuclear
Magnetic Resonance (NMR) techniques to non-invasively probe both the dynamics and spectral-
domain properties occurring within the QD. A brief outline of the thesis chapters are as follows:
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Chapter 2 introduces the basics of QD growth. It then discusses the optical selection rules
and spin system of QDs. These are then considered with the specific application of the
measurements used in the thesis.

Chapter 3 outlines the experimental techniques and equipment required. The pump-probe
technique is explained along with a description of how it is incorporated into NMR
measurements.

Chapter 4 presents the investigation into the strain within QDs with different chemical
compositions. Altering the isotopes within the QDs resulted in distinct NMR spectra.
The spectral broadening of these spectra was used to analyse internal (nanoscale) strain
within QDs.

Chapter 5 exposes the nature of the nuclear spin ensemble dynamics when an electron is
introduced in the QD. Nuclear spin diffusion is studied with and without an electron
being present and a conclusion on the Knight-field-gradient barrier is made.

Chapter 6 contains experimental findings that show, for the first time in III-V semiconductor
QDs, nuclear spin polarisations ≥ 95% being reached.

Chapter 7 summaries the work contained within the thesis, as well as future directions that
could be studied for advancements in the field.



Chapter 2

Background

2.1 History of Confined Heterostructures

The electron’s de Broglie wavelength, λD, as defined in Equation 2.1 can be, very broadly,
used to describe the electron’s ability to travel. Where h is Planck’s constant, m∗

e is the
electron’s effective mass, kB is the Boltzmann constant and T is the temperature. By creating a
semiconductor structure with confined dimensions, for example through heteroepitaxy, it is
possible for the confinement length to be similar to the electron wavelength. For context if one
takes m∗

e = 0.067me [48], me being the classical mass of an electron, then the de Broglie
wavelength of an electron is 42 nm/350 nm at room temperature/liquid helium temperatures.
The result of this is the quantisation of the electron’s motion, i.e. the confinement of its ability
to travel. As can be seen in Figure 2.1, in bulk material there is no confinement and the density
of states, D(E), for the conduction band is continuous, after the bandgap, Eg, of the
semiconductor. If one restricts a dimension, say the z axis, then the smooth D(E) has a
step-like form; if the confinement is in all dimensions then the result is a density function
consisting of δ peaks. With this δ distribution the electron/hole movement within the structure
is essentially stopped.

λD ∼ h√
m∗

ekBT
(2.1)

Experimental evidence for this three-dimensional confinement effect was not found until
less than a century ago. In 1981 Ekimov and Onushchenko discovered that there was a shift
of absorption lines of excitons which they attributed to this “quantum size effect”1 [52]. It
was later found by Goldstein et al. in strained-layer superlatices that these δ distributions were
possible. These works then spurred on further research into reduced dimensionality systems
with the prospects of discovering a variety of new physical properties [53].

1In 2023 Ekimov, would receive a Nobel prize due to this work along with Brus and Bawendi for “the discovery
and synthesis of quantum dots” [49–51].
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Figure 2.1: Comparison of the density of states as the level of confinement of the system
changes. In a bulk system there is no dimensionality constraint, resulting in a smooth D(E).
For quantum wells one dimension, chosen to be z axis here, has been confined which leads to a
step-like form ofD(E). In a quantumwire two dimensions are confined, here in z and x, leading
to a D(E) that has an inverse square root relationship. Finally, the QD has three-dimensional
confinement and has a D(E) that is a series of δ distributions. This figure has been adapted

from [54].

2.2 States of Optically Active Quantum Dots

2.2.1 Quantum Dot Growth

The growth techniques used for the generation of QDs vary depending on the materials
and properties that the QD is made from/for. Typically for group III-V semiconductors, such
as: GaAs, InAs, InP, and GaN, the preferred methods for growth are either Molecular Beam
Epitaxy (MBE) or Metal Organic Vapour Phase Epitaxy (MOVPE). MBE was first established
by Günther, further developed by Davey and Pankey, and then majorly advanced by Cho and
Arthur [55–57]. It can be defined as the “epitaxial growth of compound semiconductor films by a
process involving the reaction of one or more thermal molecular beams with a crystalline surface
under ultra-high vacuum conditions” [57]. MOVPE, on the other hand, results in the growth of
structures due to chemical reactions rather than physical deposition, importantly the process
also does not happen in vacuum but in a gaseous atmosphere with pressures ranging between
0.01 − 1 atm. This lack of vacuum allows for the quicker growth of samples, however it can
lead to more dirty samples, due to impurities being present. All the samples in this thesis were
created using the MBE technique so that these contaminations are not present when conducting
measurements, this is especially important for the findings of Chapter 4 where the strain of QDs
is being researched.

There are different growth mechanisms one can use to create the QDs once the fabrication
technique has been chosen, as shown in Figure 2.2. Apart from the nanohole infilling
technique, all these methods require a small amount of strain at the interface of each layer2.

2There is a threshold amount of strain required which is on the scale of %. In the case of GaAs/AlGaAs QDs,
for example, Stranski-Krastanov can not be used as the growth technique as the lattice mismatch is too small.
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Figure 2.2: The three primiary forms of heteroepitaxy are shown along with the nanohole
infilling technique used for QDs in this thesis. This has been adapted from [58].

The first form of hetreoepitaxy we shall discuss is Frank-Van Der Merwe growth. This is also
known as monolayer by monolayer growth and, as the name implies, complete layers of
differing material can be added to a substrate. This is possible due to the sum of both the
surface energy of the film being added and the substrate/film interface being smaller than the
initial substrate’s surface energy (surface energy is reduced with the addition of the film) [59].
This contrasts with the second growth mechanism where the surface energy of the substrate is
larger than the sum (the lattice constant mismatch is higher) [60]. This is called Volmer-Weber
growth; rather than perfect monolayers being grown, due to surface energy minimisation,
islands are formed. The formation of these islands occurs to maximize the proximity of
matching atoms within the system, by reducing the presence of atoms from a differing material
at the interface. Probably the most well known type of growth is called Stranski-Krastanov,
which resembles the combination of these two techniques. The lattice mismatch of the
substrate and the additive are still significant, however they are lower than in the
Volmer-Weber growth [61]. This results in a couple of monolayers forming on the surface of
the substrate (wetting layer) and after a critical thickness is reached the transition to islands
growth begins [53]. This ‘critical thickness’ is due to the elastic energy accumulating in the
strained layers before the self-assembly of QDs forms due to the crystal minimising its total
energy [53, 62].

In an ideal world there would be no wetting layer present as the interaction of this with the
QD states increases the sources of decoherence as well as causing broadening of
Photoluminescence (PL) lines [63, 64]. This brings us onto the growth technique used for the
QDs in this thesis, nanohole infilling through Local Droplet Etching (LDE). LDE, initially
referred to as nanodrilling [65], works by preparing the substrate similarly to the other
techniques discussed. A small flux of Ga (Al is used for the QDs in this thesis, but we shall
proceed with the example case of Ga) is deposited onto the sample; the growth pattern of the
Ga follows that of the Volmer-Weber mechanism, where small droplets form on the surface.
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After the formation of these droplets there is some desorption of the underlying GaAs
substrate, as shown in Figure 2.3, due to GaAs being unstable in Ga-rich environments [57].
This Ga can then be removed through an annealing process, leaving the etched nanohole
behind. The size and depth of these holes will be dependent on the
temperatures/concentrations/timings used during the deposition phase. The result of this LDE
can be seen in Figure 2.4. The QD material can then be added to the vacuum chamber, to
deposit onto the substrate, filling in the nanoholes. As no strain mechanics are used to create
the QD, this is an excellent technique for creating high quality/uniform QDs which have low
internal strain (see Chapter 4 for more details on this) with narrow PL linewidths [66–69].

Ga
As

[100]

[011]
[01-1]

Escaped As Ga Droplet

GaAs
Surface

GaAs
Surface

GaAs
Surface

GaAs
Surface

GaAs
Surface

GaAs
Surface

T
im

e

Figure 2.3: The proposed model as to why
LDE occurs according to [65]. As time passes,
the Ga droplet desorb the GaAs substrate
thereby etching a hole. Used with permission

from [65].
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Figure 2.4: a) 42.5 × 2.5 µm2 Atomic Force
Microscopy (AFM) image of an AlGaAs
surface after LDE. Arrows A/B show the
location of a deep/shallow hole respectively.
Location A would be the precursor to a QD.
b) Profiles of the deep hole marked by arrow
A and of a deep hole after a pulsed-mode
deposition of thin GaAs layer (dF = 0.45 nm).
c) Calculated height hQD of a QD inside a deep
hole as a function of the dF and calculated radii
of the elliptical QD base area. The dashed
lines indicate the number np of GaAs filling
pulses. Used with permission from [66].
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2.2.1.1 Distributed Bragg Reflector

While on the topic of growing QDs it is useful to discuss Distributed Bragg
Reflectors (DBRs). A schematic of a DBR can be seen in Figure 2.5. The physics behind this
structure is fairly simple; alternating layers of semiconductor, in this case AlAs and GaAs,
with differing refractive indices are grown on top of one another. The optical reflectivity, R, of
the DBR, at the centre of the stopband, is given by Equation 2.2, as derived in [70]. In this
equation, n0 and ns are the refractive indices of the originating and terminating layers
respectively, n1 and n2 refer to the alternating semiconductor substrate refractive indices and
N is the number of repeated pairs. In Figure 2.5 the originating, terminating and one of the
alternating layers is GaAs, so n0 = ns = n2. The assumption with this equation is that the
repeated pair layers all have a thickness which is one quarter of the incident light wavelength.
If one was using 700 nm light, at room temperature for simplicity, then the reflectivity from 15

pairs of AlAs/GaAs would be 98.5% [71, 72]. As to not trap the light between the two Bragg
reflectors, a smaller number of pairs are grown above the dots. With 4 pairs of AlAs/GaAs the
reflectivity would be 40.2%, therefore causing more light to be transmitted through the top of
the sample, allowing for the PL collection necessary for Optically Detected Nuclear Magnetic
Resonance (ODNMR).

R =

(
n0 (n2)

2N − ns (n1)
2N

n0 (n2)
2N + ns (n1)

2N

)2

(2.2)

2.2.2 Discretised Energy States within a Quantum Dot

The III-V semiconductors used for creating the QDs in this thesis form a zinc-blende
structure, which can be seen in Figure 2.6. In this configuration, the bulk state exhibits a
parabolic-like band structure in the Conduction Band (CB) and Valence Band (VB) near the Γ
(k = 0) point in reciprocal space. The form of the energy dispersions, Ec/v (k), for the CB and
VB follow Equation 2.3, where: Eg is the bandgap, h̄ is the reduced Planck constant, k is the
crystal momentum, andm∗

carr is the effective mass of the relevant charge carrier.

Ec (k) ≈ Eg +
h̄2k2

2m∗
carr

and Ev (k) ≈ − h̄2k2

2m∗
carr

(2.3)

The bandgap arises from the absence of permissible electron states between the CB and VB. In
the case of GaAs this is a direct bandgap, i.e. it occurs at the centre of the Brillouin zone (Γ
point); this means that no phonons are required to optically excite charge carriers. The band
structure for GaAs, which can be simulated using Density Functional Theory (DFT), is shown
as a function of the wavevector k in Figure 2.7. The Kohn-Sham form of DFT used here
underestimates the bandgap3, however the line shape reflects that of reality. There is a 1.81 eV

3A so-called scissor function is often used to correct this, as it will not change the form of the band structure.
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Figure 2.5: Structure of a GaAs QD sample, with DBR structures grown within the sample. The
bottom/top Bragg reflector has 15/4 GaAs/AlAs layer pairs.

= As= Ga

Figure 2.6: The zinc-blende structure of GaAs.

bandgap present for Al0.3Ga0.7As4 and a 1.42 eV for GaAs, at 300 K [74]. These bandgaps
change as the temperature of the sample decreases; at liquid helium temperatures there is a
bandgap of 1.88 eV and 1.52 eV for Al0.3Ga0.7As and GaAs respectively [73, 75, 76]. As the
work in this thesis focuses on improving quantum computation using electron spin qubits, it is
useful to consider electron/hole confinement. A free electron would have a single continuous

4The bandgap of AlxGa1−xAs depends on the concentration of Al in the sample [73]; a 30% concentration has
been used as an example here as it is similar to the typical Al composition used in the barrier layers of the samples
discussed across Chapters 4-6.
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energy dispersion [76], however this is not useful for quantum computing where the
electrons/holes need to be confined. For this reason QDs are made from semiconductors, such
as GaAs embedded within AlGaAs. The three-dimensional confinement present in a QD
suppresses spin-orbit interaction and makes for useful optical properties. The GaAs/AlGaAs
semiconductor structure has a straddling gap (type I) alignment, which means that the CB
within the QD region is lower (and the VB is higher) in potential than the surrounding bulk
material (as seen in Figure 2.8). This results in excellent confinement of the electrons/holes
within the QD.
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Figure 2.7: Band structure for unstrained GaAs along the line L-Γ-X-Γ in the Brillouin zone
found with ABINIT software using Hartwigsen-Goedeker-Hutter (HGH) pseudopotentials [77].
The free-electrons would be in the CB, while holes are split in the VB, the separation of which is
the bandgapEg. There are three sub-bands in theVBwhich are, in decreasing energy, the: Heavy
Hole (HH), Light Hole (LH) and Split-Off (SO) band. The HH and LH bands are degenerate
at the Γ point, but as one travels along a line in k-space the LH energy starts to decrease (at a
faster rate) than the HH band. At k = 0 the HH/LH and SO band are separated by a spin-orbit

splitting ∆, which has been added to the plot in this magnification for clarity.

The CB is primarily composed of s-type atomic electron orbitals, which means that they
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have no orbital angular momentum, L̂ = 0. The VB, however, is primarily comprised of p-type
electrons, meaning that L̂ = 1. The total angular momentum, Ĵ is simply the sum of L̂ and the
spin angular momentum, Ŝ,

Ĵ = L̂+ Ŝ. (2.4)

Due to the motion of electrons within the potential of an atom (non-zero orbital angular
momentum) there is some spin-orbit interaction. However if one temporarily neglects this, and
with the knowledge of GaAs being a cubic crystal system, one can explain the two-fold
degeneracy of the VB seen in Figure 2.7. For the CB the quasi-momentum of the electron
would be p = 0, as L̂ = 0, but the VB is more complex due to the triple degeneracy of the
orbital angular momentum, ml, [78]. For simplicity, one can project ml onto the QD growth
axis, êz, as the basis for p. This means we have the degenerate states of ml = [−1, 0, 1]. Then
using the Luttinger Hamiltonian, Equation 2.5, leads to the eigenvalues in Equation 2.6 [78].
In Equation 2.5: A and B are arbitrary constants, I is a unit 3 × 3 matrix, and we can use(
p · L̂

)2
= p2L2

z.

HLutt = Ap2I +B
(
p · L̂

)2
(2.5)

Eh(p) = (A+B)p2 for Lz = ±1, El(p) = Ap2 for Lz = 0

A+B =
1

2m∗
HH

, A =
1

2m∗
LH

(2.6)

As in Equation 2.3, here we have introduced the effective mass of charge carriers. This ‘effective
mass’ is a mathematical contraption that arises as the charge carriers response to forces when
interacting with other particles differs from the bare electron mass. The effective mass ascribed
to the carriers is the mass that the particle appears to have in response to these forces. Here
m∗

HH andm∗
LH are the effective masses for the HH and LH respectively. The descriptive words

heavy and light come from B =
m∗

LH−m∗
HH

m∗
LHm∗

HH
< 0, which therefore means m∗

LH < m∗
HH . It can

be noted that the HH has two-fold degeneracy itself due to Lz = ±1.
If one includes the effect of spin, all the energy states are essentially doubled (both in the

VB and CB). However, the spin-orbit interaction results in an extra energy which is
proportional to L̂ · Ŝ. The momenta L̂ and Ŝ are no longer conserved quantities, but the total
angular momentum, Ĵ from Equation 2.4, is. The eigenvalues for J2 are j(j + 1) where
|l − s| ≤ j ≤ l + s [78]. For holes, in GaAs, this results in two bands with jh = 3

2
and jh = 1

2
.

When these are projected onto the direction of growth, êz, the values are
mj,h =

[
+3

2
,+1

2
,−1

2
,−3

2

]
for the jh = 3

2
band andmj,h =

[
+1

2
,−1

2

]
for the jh = 1

2
band. This

latter band is referred to as the SO band, and is separated by an energy difference∆ ≈ 0.34 eV
(in GaAs) compared to that of the j = 3

2
band [78, 79]. The holes withmj,h = ±3

2
are referred

to as HHs while those with mj,h = ±1
2
are LHs. A visualisation of the energy levels is shown
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Figure 2.8: a) There is strong confinement for the QD in the growth direction êz, it can be treated
as a finite quantum well. b) The weaker confinement in the x− y plane can be treated as a 2D
harmonic potential, with an atom-like structure in the valence and conduction band. When non-
resonant excitation occurs to the wetting layer electrons will be excited into the conduction band,
leaving a hole in its place. Nearby carriers will be quickly carried into higher shells in the QD,
which then relax non-radiatively. The electron/hole then recombine to emit a photon, which can
then be detected optically. and are the spin up and down heavy holes respectively while
and are the spin up/down states of the electron respectively. These are often shown as ⇑⇓ for

HHs and ↑↓ for electrons.

in Figure 2.8, where the different shells of the electrons/holes are denoted by se/sHH , pe/pHH

(which would continue in the same manner with d, f, ... shells)5.

Considering the three-dimensional confinement of a QD, as illustrated in Figure 2.1, the
energy levels can be approximated using a very simplified model: the infinite potential quantum
box. In this model, the potential inside the box is assumed to be zero, while outside the box, it
is infinite. The side lengths of the box are Lx, Ly, and Lz. The time-independent Schrödinger
equation for this system is shown in Equation 2.7, where h̄ is the reduced Planck constant, ψ
is the electron wavefunction, m∗

e is the effective mass of the electron, and Ex,y,z represents the
total energy, which is the sum of Ex, Ey, and Ez. Solving for Ex,y,z, as shown in Equation 2.8,
reveals that the energy levels of the electron are quantised with respect to the quantum numbers
nx, ny, and nz [80].

5It should be noted that the energy levels in this figure are not identical to those atomic sub-orbitals in 3D. In
Figure 2.8b, for example, the potential has been defined in only 2D, with there being a fixed energy offset (due to
the z axis confinement), which will naturally distort the energy levels.
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− h̄2

2m∗
e

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ (x, y, z) = Ex,y,zψ (x, y, z) (2.7)

Ex,y,z =
h̄2π2

2m∗
e

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(2.8)

Amore refined approach to this model incorporates specific characteristics of the QD system
and relaxes the assumption of an infinite potential. As can be determined from Figure 2.5, the
potentials for in-plane and out-of-plane confinement differ significantly due to the higher degree
of confinement in the growth direction [81]. Figure 2.8 shows the potential modelled as a finite
square well in the êz direction6. The energy, Ej of an electron in state j is given by Equation 2.9
[86], where: d is the dot height, V0 is the potential outside the well, the potential V (z) inside
the well is zero, and m∗

dot/m∗
bulk being the effective mass in the QD/surrounding bulk material.

The solutions to this equation are symmetric/antisymmetric wavefunctions, when values of j
are even/odd.

√
m∗

bulk (V0 − Ej)

m∗
dotEj

= tan

(
d

2

√
2m∗

dotEj

h̄2
+
π

2
mod (j + 1, 2)

)
(2.9)

For the x− y plane the confinement is weaker, causing a broadening of the potential, which
is modelled as a parabola in Equation 2.10 [80]. ωcarr is a constant energy separation frequency
and, once again,m∗

carr refers to the effective mass of the charge carrier (electron or hole).

V (x, y) =
1

2
m∗

carrω
2
carr
(
x2 + y2

)
(2.10)

The eigenvalues for Equation 2.10 are:

Ecarr
m,n = h̄ωcarr (k + l + 1) . (2.11)

Here one can see the quantised shell-like states, which are called s, p, d, f , ... with quantum
number values n = l+ k = 0, 1, 2, 3, ... [53]. These shells have degeneracy values of (2n+ 1).
The energy splitting for adjacent shells would be Ep−s

carr = h̄ωp−s
carr , which for electrons/HHs the

values are ∼ 55/20 meV [87]. From Figure 2.8 one can also see that there is an offset from the
bottom/top of the CB/VB to the first shell, these offsets are approximately Eoff

1,e ≈ 190meV and
Eoff

1,HH ≈ 130 meV [88, 89]. However, all these values vary significantly between QDs as they
are determined by the dot’s geometry as well as the composition of the dot and its surroundings.

6There are other considerations/assumptions that can go into the the modelling of the potentials based upon the
geometry of the QD. There exist different theoretical models for these e.g. for lens/disc/pyramid QDs there are
[81, 82]/[83]/[84, 85].
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2.2.3 Charge Tuning

If QDs are grown in a p-i-n diode structure, then it becomes possible to tune the energy levels
of the system. The n-doped layer, as shown in Figure 2.9a, acts as the Fermi sea (a reservoir
of electrons existing under the Fermi energy, EF ). As a bias voltage, Vb, is applied across
the sample, the energy level of the n-doped layer shifts relative to EF (the direction of the shift
depends on the polarity of the applied electric field). The strength of the electric field that couples
to the QD is dependent on the thickness of the tunnelling barrier, tB that separates dot layer from
the n-doped substrate. At large reverse biasesEF is lower than the first charging state within the
QD. As is shown in Figure 2.9b, as one increases Vb the difference between EF and the 1e state
decreases until an electron can tunnel into the QD at a bias of V1e. This effect can be seen in
Figure 2.10, which is where a single electron has tunnelled in at∼ 0.43 V. There is a separation
of energy levels due to the Coulomb blockade, which is due to the Coulomb repulsion between
electrons [90]. This is why there exist plateaus between the filling of electrons in Figure 2.10.
The middle of this plateau (0.517 V in Figure 2.10) can then be used to deterministically fill a
QD with a single electron, which can be seen as an on-demand electron spin qubit. The filling
of the QD with electrons continues for n electrons (at biases V2e, V3e, ...), however the ‘length’
of the plateaus decreases as one increases the number of electrons, as the separation between
energy levels decreases. Building on Figure 2.10, Figure 2.14 shows the effect of varying the
bias on exciton states, as observed through their PL spectra. In Chapter 5 the filling of a dot
with an electron was used in order to determine whether a Knight-field-gradient barrier exists.

2.3 Excitons and Optical Selection Rules

While QDs do have discrete energy levels, for this to be of any practical use, the temperature
of the sample needs to be lowered. This is because thermal excitations, which are governed
by phonons, can occur promoting electrons to higher energy levels. To reduce these unwanted
excitations, one can cool down the sample to lower the phonon’s thermal energy, kBT (kB being
the Boltzmann constant and T the temperature in Kelvin). By doing this one ensures that the
separation of discrete energy levels in the QD is larger than the thermal energy of electrons.
This is why most work with QDs is performed in cryogenic temperatures (< 50 K), to ensure
that discrete energy levels are present and any electron/holes that are generated only occupy the
lowest energy state. In Sections 5 and 6 the selective control of electron occupancy was crucial
for the work, so it was essential low temperatures were used to ensure electrons/holes were not
able to escape the QD entirely.

GaAs and AlxGa1−xAs both have direct bandgaps, i.e. the smallest separation of the VB
and CB occur at the Γ point in the Brillouin zone7. This results in the trivial conservation of
crystal momentum; QDs interact strongly with photons as they do not require the absorption of

7The direct bandgap for AlxGa1−xAs is true when x < 0.4, as is the case for QDs used in this thesis [93].
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studied in the main text and examined in Supplementary Fig. 4 we find the 95% confidence esti-

mate ge ≈ −0.101±0.007 for the g-factor of a single resident electron. From the hole spin splitting

of X− at B = 10 T we estimate the hole g-factor in presence of two electrons to be gh ≈ +1.68.

This value should be treated as a rough estimate because of the significant nonlinearity in hole

Zeeman splitting for this type of QDs [11]. We also measure the g-factors in a neutral exciton

X0, using PL of the dark states: we find ge ≈ −0.090 ± 0.035 for the electron in presence of one

hole. It is notable that the electron g-factor is nearly unaffected by the extra hole [16]. Using PL

spectroscopy of the X− trion state, we have measured g-factors in two more QDs from the same

sample to find ge ≈ −0.077±0.018 and ge ≈ −0.107±0.002 for a sole resident electron in QD6 and

QD7, respectively. From the X0 PL of QD6 we find ge ≈ −0.12±0.01 for an electron in presence of

a hole, whereas no dark excitons could be observed in QD7. The g-factors found here are in good

agreement with the previous studies on the samples where QDs were grown in nanoholes etched in

pure GaAs [11].

E. Quantum dot charge state tuning

The sample gate bias VGate is controlled by the output of an arbitrary waveform generator

connected through a 1.9 MHz low pass filter. During the dark evolution time TDark the bias can be

set to an arbitrary value. For an empty dot regime (0e) we use large reverse bias VGate = −1.3 V.

The bias corresponding to 1e Coulomb blockade is found by measuring the bias dependence of

Figure 2.10: Bias dependency of the nuclear spin relaxation rate for a QD with an external field
of 0.5 T while at 4.2 K. The centre of the 1e plateau is at 0.517 V, where a single electron has
tunnelled into the QD. The Coulomb blockade is preventing a second electron from tunnelling
into the QD. Figure is reproduced with permission from Springer Nature and is from the

publication [92], which is used for Chapter 5.

extra phonons. Under optical excitation, where the photon energy, h̄ω, is greater than or equal
to EGaAs

g +
(
Eoff

1,e + Eoff
1,HH

)
, an electron is promoted from the VB into the CB, and a hole is

left behind. Equally, an electron can recombine with a hole to emit a photon with that same
energy. The bound pair of electron and hole is called an exciton, which can be treated as a
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quasi-particle. This exciton forms due to the Coulomb interaction between oppositely charged
(spatially separated) particles. In semiconductor nanostructures this interaction is enhanced due
to the confinement of the electron/holes, which increases their wavefunction overlap [94]. The
binding energy between an electron in a state ψe

i (r) and hole in state ψh
j (r) is [95]:

Eeh
ij =

e2

4πϵ0ϵr

∫ ∫ |ψe
i (re)|

2
∣∣ψh

j (rh)
∣∣2

|re − rh|
dredrh, (2.12)

where ϵ0 is the vacuum permittivity, ϵr is the relative static permittivity in the QD and re/rh are
the positions of the electron/hole respectively. The optical transition energy is lowered by this
excitonic binding energy, which will vary based upon the size of the QD [95]. In bulk GaAs, the
excitonic binding energy is 4.2 meV [96], which is significantly lower than that observed in a
QD. Specifically, the binding energy in a QD is roughly half of that found in bulk GaAs, owing
to the enhancement resulting from the confinement within the QD [95–97].

When a photon is absorbed that has an energy larger than the QD resonance, non-resonant
excitation occurs. This results in electron-hole pairs being created at higher energy levels (e.g.
p/d levels) in the QD or perhaps even the wetting layer. These pairs are captured by the QD on a
picosecond timescale, much faster than the radiative lifetime of the ground state QD exciton (on
the order of nanoseconds [98]). When the exciton recombines to emit a photon, the energy will
be equal to that exciton’s resonant energy. This means that if one uses a different wavelength of
light to that of the emitted photon it is easy to distinguish the emission spectra of the QD. While
not required for the work in this thesis, one could however use a resonant energy photon for
excitation to get resonant PL. One would then need to suppress scattered light from the sample,
in order to truly observe the emission lines of the QD. This can be achieved by cross polarisation
and by using spatial filters, so that any scattered backscattered light is suppressed [99].

There are optical selection rules which determine which transitions are allowed. This is
due to a photon carrying a net angular momentum, Jγ,z, of ±1 and intrinsic parity, πγ , of −1

[100]. The Bloch functions for the CB and VB have opposite parity, therefore only interband
transitions are allowed (e.g. se ↔ sHH or pe ↔ pHH). For intraband transitions the Bloch states
must be identical which only occurs when the change in orbital angular momentum,∆L̂, is ±1

(e.g. se ↔ pe). When an electron absorbs a photon, its angular momentum is altered by ±1

dependent on the incident helicity of light (σ+/σ−). To describe this, the notation we shall use
is ↑ /↓ for a spin up/down electron and ⇑ /⇓ for a spin up/down HH. As the angular momentum
of the photon is unity, only the states |↑⇓⟩ (where Jex = 1) and |↓⇑⟩ (where Jex = −1) are
optically active, as shown in Figure 2.11a. The optically forbidden states would have parallel
spins for the hole and electron (|↓⇓⟩ and |↑⇑⟩); this is not optically active as it would require
the photon to have an angular momentum of ±2. The states that are optically active are called
bright excitons,Xb, and those that are not are called dark excitons,Xd . In Figure 2.11a one can
not distinguish the forbidden states for the trions (a trion consisting of three charged particles
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Figure 2.11: a) Positive and negative trions (X+/X−) have two possible spin configurations.
The neutral exciton (X0) has two possible states, bright and dark (X0

b /X
0
d ). OnlyX0

b is allowed;
X0

d if optically forbidden. The Crystal Ground State (CGS) is sometimes labelled as |0⟩. b) The
states here are shown in the case of Faraday geometry with a large magnetic field. Each spin
state, for the trions, is coupled to a particular circular polarisation of light, which allows for set
spin states to be prepared. Energies shown are not to scale, and the transitions of the trion states

are shifted in energy with respect to the X0 transition.

bound together rather than two), without the presence of a magnetic field, since the initial and
final spin states are degenerate. In GaAs QDs the Dark Exciton (DE) is lower in energy than
the Bright Exciton (BE) due to the form of exchange interaction between the hole and electron,
resulting in its protection from a separate spin flip of one of its constituents and longer lifetimes
[101, 102]. Asymmetries present in the QD at the atomic scale also affect DE more strongly
than for the BE, as discussed in [103]. If the symmetry of a QD is broken there is mixing of the
eigenstates for the BE and DE, allowing for the DE to become partially optically active [103].
Due to the hyperfine interaction mixing of exciton states and/or a tilted dot quantisation axis,
it is possible to see, experimentally, the DEs when using PL spectroscopy under low-power
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optical excitation, due to some finite coupling to the ∆J = ±2 transitions [104], as shown in
Figure 2.12.
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Figure 2.12: PL spectra of a QD showing the splitting of a BE with an orange arrow and a DE
with a blue arrow. This data was taken while the QD was within an external field of 4.5 T in

Faraday geometry and taken with a 0.2 µW 690 nm excitation laser.

2.3.1 Heavy Hole-Light Hole Mixing

When there is asymmetry in the QD, for example due to elongation, then there will be
some degree of HH-LH mixing. This mixing can be observed through the polarisation of
exciton emission, as shown in Fig. 2.13. When a conduction electron recombines with a HH
one would get a perfectly circular polar diagram. However, if an electron recombines with a
LH instead of a HH a photon with the exact opposite polarisation is produced [105]. When two
opposite polarisations interfere with each other, from HH and LH recombination, the resultant
superposition is elliptically polarised. The exact polarisation state depends on the amplitude
and phase of the two components. If there is tensile strain added to the QD, either due to the
growth or as implemented in [106], then HH and LH states become energetically closer. This
can lead to mixing of the HH-LH states, required for the anisotropic hyperfine interaction
discussed in Section 2.4.1.1. The mixing of these states will also reduce the efficiency of
optical spin pumping, discussed in Section 3.2.2 as additional, previously forbidden, optical
transitions become allowed.



Chapter 2. Background 19

any dynamic nuclear polarization and to assure that an equal
proportion of carriers in spin up and down states relaxes
toward the dot. All the experiments are performed at T
=4 K.

Single dot PL spectra show three transitions that we at-
tribute to the X0, the X+ and the neutral biexciton 2X0 �two
electrons +2 holes�. This attribution is based on measure-
ments of PL intensity as a function of Laser excitation power
�not shown� and analysis of the fine structure �Fig. 1�. In the
absence of nuclear spin effects the X+ shows as expected no
fine structure.25 The presence of X+ suggests residual p- type
doping. To verify if the conduction electrons recombine in-
deed with pure heavy hole states ��3/2, we measure the de-
pendence of the linearly polarized PL intensity as a function
of the angle with the crystallographic axis for the X+, see
Fig. 2�a�. In the X+ ground state the two valence holes are in
a spin singlet state �total spin S=0� and the anisotropic Cou-
lomb exchange interaction with the conduction electron can-
cels out to zero. This makes the X+ emission an ideal probe
for the quantum dot symmetry.12

For a conduction electron recombining with pure heavy
hole states the polar diagram in Fig. 2�a� would show a per-
fect circle. We make two important observations: �i� a clear
distortion of the circular pattern resulting in elliptical polar-
ization �ii� neither the maximum nor the minimum of the

ellipse are aligned with �110� and �11̄0� �note the tilt by an
angle ��6° in the figure�.

There is no HH-LH mixing for the valence ground state
of an unstrained, flat cylindrical dot with circular base and
perfectly symmetrical interfaces i.e., the strength of the
HH-LH coupling x= �I� /�HL	1 where the modulus of the
matrix element I couples HH and LH states in the Luttinger–
Kohn �LK� Hamiltonian. Recent STM measurements show
deviations from this ideal dot shape.23 To interpret our data
quantitatively, our calculations assume for simplicity a har-
monic confinement potential with two orthogonal reflexion
planes parallel to the z axis, leading to C2v symmetry for this
confinement potential.

Along z an infinite quantum well potential is used, in the
xy plane an harmonic oscillator potential.26 For strain free
dots only the LK Hamiltonian is taken into account, unlike
for strained dots, where the Bir–Pikus �BP� Hamiltonian
dominates.12,13 The resulting Hamiltonian is treated through
the envelope function approximation. Concerning the ellipti-
cal polarization pattern, the recombination of electrons with
LH states ��1/2 is associated with photon polarization ex-
actly opposite to that of HH transitions ��3/2 �dotted arrows
in Fig. 1�, resulting in elliptical polarization. The mixed

states are �̃�3/2= ���3/2+
��1/2� /�1+ �
�2 where 
=e�i��1
−�1+4x2� /2x. Subsequently the optical selection rules with
the usual oscillator strength ratio fHH / fLH=3:1 are applied.
The tilting of the polar diagram of the trion is controlled by
�=arg�I�. The PL intensity as a function of the angle of the
analyzer in Fig. 2�a� can be very well fitted by the function

L��� = c�a2 + b2 − 2ab cos 2�� + ��� , �1�

where a=�x�
� / �3–6x�
��, b=�x / �
��1–2x�
��, and the ra-
tio between the electron-LH and electron-HH overlap inte-
grals 	�hh ��e
 / 	�lh ��e
�1. The fitting parameter c is pro-
portional to the oscillator strength of the optical transition
between pure HH and conduction states. The ratio 
 between
the two axis of the elliptical polarization plot is directly re-
lated to the HH-LH mixing coefficient and can be expressed
as 
= ��3− �
��2 / ��3+ �
��2. The ratio 
 being different from
unity is a direct consequence of the elliptical base of the
quantum dot, see Fig. 2�a�. The fit of L��� with the experi-
mental data shown in Fig. 2�a� yields c=0.18, x=0.27 and a
tilting angle of ��6°. This allows us to extract for the dot in
Fig. 2�a� 
�0.57 and a strong mixing �
�=0.25 which lies
within the typical range 0.16� �
��0.3 for strain free dots in
our samples, compared to 0.2� �
��0.7 reported for
strained InAs, CdSe, and CdTe dots.12–14

Concerning the observed tilting angle � of the polariza-
tion plot with respect to �110�: this depends on the tilting
angle � of the main dot axis with respect to the crystallo-
graphic axis and on ��2−�3� / ��2+�3� �which is taken to be
is zero in the spherical approximation�, where �2,3 are the
Luttinger parameters. As a consequence, the direction of the
polarization tilt is not necessarily parallel to that of the dot
elongation. The tilting angle � of the polarization plot is zero
if the quantum dot base is of perfectly circular shape and
more interestingly, if �=n� /4, where n�Z. Moreover it is
maximal for �=� /8+n� /4. This is a direct consequence of
the fourfold rotational symmetry of the crystal structure.

As expected the X0 shows a fine structure, see Fig. 1.
The two bright X0 states �X
= ��⇑ ,↓
+ �⇓ ,↑
� /�2 and �Y

= ��⇑ ,↓
− �⇓ ,↑
� / i�2 are separated in energy by �1�EX

−EY due to anisotropic electron hole exchange.27 Here ⇑�⇓ �
stands for the heavy hole pseudo spin up �down� and ↑�↓ �
for the electron spin up �down� projections onto the z-axis.
The same splitting ��1� is found for the 2X0, but as expected
with the order of the peaks reversed. It is important to note
that the total energy difference Eion between discrete quan-
tum dots states and delocalized states is about 100 meV,22
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FIG. 2. �Color online� �a� Polar plot of the charged
exciton X+ emission intensity for different positions of
the linear polarization analyzer relative to �110� crystal-
lographic direction. �b� Neutral excitons X� �gray� and
Y� �red�. The solid �black� lines indicate the theoretical
calculation. by fitting with Eqs. �1�–�3� we obtain 
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Figure 2.13: a) Polar plot of theX+ exciton emission intensity for different positions of a linear
polarisation analyser relative to [110] crystallographic direction in a GaAs/AlGaAs QD. b)
Neutral excitons X ′ grey and Y ′ red. The theoretical calculation is shown by the solid black

lines. Used with permission from [105].

2.3.2 Charged Excitons

If an extra hole or electron is present within the QD, different types of excitons can be
produced. This can be exploited if one uses a charge tunable sample, as one can tune the voltage
across the sample to change the Fermi level (sea of electrons) relative to the differences in QD
energy states (charging energy). This behaviour is shown in Figure 2.14, which depicts the PL
spectra of a QD measured at various gate biases. These different species of excitons are shown
in Figure 2.11. If the QD has an extra electron the negative trion, X−, can form, if there is an
extra hole the positive trion, X+, can form. As can be seen in Figure 2.11b, different circular
polarisations of light can be used to pump a QD deterministically to a particular spin state. When
looking at the PL spectra of a QD, one would tend to find X−(X+) at lower (higher) energies
when compared to X0. This difference exists due to differences in magnitude of the Coulomb
interaction. The X+ and X0 excitons will also be present at a larger reverse bias than X−. X0

and X− will have a fairly static PL emission energy as one changes the bias, while the X+

would have its emission energy vary. These factors allow for identification of the excitons from
a QD. It is also possible for a 4-particle biexciton (XX or occasionally 2X) to form which will
consist of a pair of the lowest energy transitions (being comprised of two carriers with opposite
spin projection). This biexciton will have a total angular momentum of zero, however it will not
have double the energy of X0. This is because there also exists a binding energy EB

XX , caused
by the Coulomb interaction, which increases the energy of this exciton.
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Supplementary Figure 9. Photoluminescence spectroscopy of QD excitons. a, Bias dependent pho-

toluminescence spectra of QD1 at Bz = 10 T measured at a low excitation power PExc = 1.5 nW and an

excitation wavelength of 632.8 nm.

The emission at ≈ 1.785 eV is ascribed to the quantum well (QW) formed when the nanoholes are

infilled with GaAs. The narrower lines observed at low excitation power around ≈ 1.73 − 1.75 eV

are attributed to the QW excitons bound by the thickness fluctuations of the QW. Single-QD

emission is observed between ≈ 1.56 − 1.59 eV as a series of Zeeman doublets that switch over

as the gate bias VGate is changed. The higher-resolution spectra of the QD excitons are shown in

Supplementary Fig. 9. At VGate ≈ +0.5 V photoluminescence is dominated by the neutral exciton

X0, identified from its fine structure splitting at Bz = 0 T. At more negative biases the emission of

positively charged excitons dominates, since electrons rapidly tunnel out of the dot, leaving excess

photogenerated (non-equilibrium) holes. At more positive biases the emission of X0 is superseded

by the negatively charged trion X−, which becomes dominant when QD confines a resident (equi-

librium) electron. At even more positive biases the dot is charged with multiple resident electrons.

The spectral features originating from doubly (X2−) and triply (X3−) charged excitons can be

distinguished, while the photoluminescence peaks at even higher charge numbers tend to overlap.

When the power is increased (PExc = 20 µW in Supplementary Fig. 8b) the emission peaks of

Figure 2.14: Bias dependent PL spectra of a QD with an external field of 10 T in Faraday
geometry, measured with a 1.5 nW 632.8 nm laser. Figure is reproduced with permission from

Springer Nature and is from the publication [107], which is used for Chapter 6.

2.3.3 Fine Structure for Excitons

Due to the electron-hole exchange interaction, there is a structure in the exciton energy
spectrum. These spin interactions are mediated by the Coulomb interaction, and can be split
into short and long range couplings. Both of these couplings, however, will be sensitive to
anisotropy or strain present in the QD [108]. An example is in [109], where QDs were grown
in anisotropic/imperfect nanoholes, leading to asymmetry along the

[
110
]
axis. The

consequence of this is the mixing of the two bright and two dark excitons [108].

The electron-hole exchange interaction, for a confined exciton formed by an electron with
spin Se and a hole with spin Jh, is given by Equation 2.13 [53, 111, 112].

Hexch = −
∑

i=x,y,z

(
aiJh,iSe,i + biJ

3
h,iSe,i

)
(2.13)

In Equation 2.13, ai and bi are the spin-spin coupling constants and Jh,i is the spin projection
of the hole in the i direction. Equally, the Hamiltonian can be expressed in terms of the BE and
DE states as in Equation 2.14, through substitution of the electron and hole spin matrices into
Equation 2.13. This would follow along from Figure 2.11a, where the BE has the eigenstates
of |+1⟩ and |−1⟩, while the DE is |+2⟩ and |−2⟩. In this BE/DE description the exciton
splittings, which would be: δ0 = 1.5(az + 2.25bz), δb = 0.75(bx − by) and δd = 0.75(bx + by),
form Equation 2.14 [112]. These splittings are present within all QDs and can be seen within
Figure 2.15.
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Figure 2.15: The spin-independent Coulomb interaction reduces the transition energy of the
neutral exciton by EB

X0 (orange). Reduced symmetry causes the p-type hole band splitting
between the HH and LH by EHL (blue). The isotropic part of the exchange interaction lifts
the spin degeneracy between the bright and darks states by δ0 and mixes the dark states by δd
(green). The transitions of the bright exciton are circularly polarised (σ+/σ−), while the dark
states are optically forbidden. The anisotropic part of the exchange interaction then further
splits the bright states by δb (pink). The fine structure of splitting of the bright states results in
changed eigenstates leading to, at zero external magnetic field, the linearly polarised ΠX and

ΠY . Adapted from [110].

Hexch =
1

2


δ0 δb 0 0

δb δ0 0 0

0 0 −δ0 δd

0 0 δd −δ0

 (2.14)

Within Equation 2.14, δ0 is the splitting between the bright and dark states B ↔ D. This is a
short range interaction which is characterised by the probability of an electron and hole being
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found in the same space. Its value can range between 150−230 µeV in GaAs QDs [108]. There
is also a smaller splitting, δd, which splits the dark states by ∼ 10− 25 µeV [108]. Both δ0 and
δd occur due to the isotropic part of the exchange interaction. In contrast, δb exists due to the
anisotropic exchange interaction (pink in Figure 2.15), and will vary strongly from dot to dot.
To be more precise, this interaction occurs due to the lack of full rotational symmetry in the x−y
plane and bx ̸= by [86]. For exciton doublets δd > δb (δb ≈ 3− 13 µeV [113]), but generally
both δb and δd are small when compared to δ0, as they are coupling coefficients proportional to
J3
h [112]. The effect of δb is the mixing of bright states, affecting optical selection rules. Due to
this mixing the total exciton angular momentum, Jex = ±1, will no longer be a good quantum
number; this results in the two split states no longer being able to be selected with circularly
polarised light. Instead, when no magnetic field applied, these two states would be observed to
be linearly polarised (Πx/Πy) [112].

2.3.4 Excitons in an Electric Field

Due to the nature of an exciton being a bound state between an electron and hole, there is
an intrinsic permanent electric dipole. The associated moment, for the case of X0 say, is
pd,0 = e · r, e being elementary charge and r being the displacement vector for the hole
wavefunction relative to the centre of the electron wavefunction. When a static electric field,
F , is applied this separation can be further shifted, introducing an additional dipole moment
whose magnitude will be dependent on the electric polarisability, α, of the exciton.

pd = e · r + α · F (2.15)

For a diode sample, F = −Vbi−Vbias

d
where: Vbi is the built-in bias for the diode, Vbias is the

applied bias, and d is the thickness of the intrinsic layer . A coupling then exists between this
electric dipole and the field, which acts to shift the excitonic transition energies. The shifts can
be much larger than in bulk material and even exceed that of the exciton binding energy due to
quantum confinement [114, 115]. Denoting the transistion energy with no applied field as E0,
the change in energy is:

∆EQCSE = E0 − pd · F = E0 − pd,0 · F − α · F 2 (2.16)

This shift is called the Quantum Confined Stark Effect (QCSE) and contains both linear and
quadratic terms. Using the QCSE, one can tune two QDs of similar wavelengths into resonance
with one another [116] or an optical cavity [117]. If one uses an oscillating electric field another
type of Stark shift occurs. Due to time-varying nature of the electric field resembling Alternating
Current (AC) in conventional electronics, this effect is called the AC Stark effect. This often
uses high-power optical excitation to shift one of the eigenstates, therefore removing the fine
structure splitting [118, 119]. The shift is related to the frequency of field produced by the
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incident optical signal. As the AC Stark effect is not used for work in this thesis the details of
its principles are not discussed, but they can be found in [120–122].

2.3.5 Excitons in a Magnetic Field

There are two geometries commonly used to apply an external magnetic field. The first type
is called Faraday geometry, which is where the applied field is oriented parallel to the optical
axis (+z). This is the geometry mainly used for the work in this thesis. The alternative is Voigt
geometry, where the magnetic field is applied perpendicular to the optical axis (x− y plane). A
summary of exciton selection rules in a magnetic field in these two configurations can be seen in
Figure 2.16. The external field transforms the initially linear polarised components of B± into
circularly polarised components, as the Zeeman splitting becomes larger than the fine structure
splitting, i.e. ∆EZeeman > δb.

The general Zeeman Hamiltonian in an external field, B, between an electron, Se, and a
hole, Jh, spin in an arbitrary direction is given by Equation 2.17 [111, 123].

HZeeman = µB

∑
i=x,y,z

(ge,iSe,i − gh,iJh,i)Bi (2.17)

In Equation 2.17, µB is the Bohr magneton and ge and gh are the electron and hole g-factors.
There is a linear dependence with respect to the magnetic field for this interaction, as would
be expected for a Zeeman splitting. There is also some squeezing of the wavefunction due
the strong geometrical confinement of the exciton in the QD, which can be characterised by a
diamagnetic coefficient, γ2, defined in [124]. This spin-independent mechanism shifts exciton
energies to higher levels in a quadratic manner, with increasing magnetic field. As the work in
this thesis is in Faraday geometry, one can simplify Equation 2.17 by using B = (0, 0, Bz), to
give Equation 2.18.

HZeeman = µB (ge,zSe,z − gh,zJh,z)Bz (2.18)

One can find the total of the exchange and Zeeman interaction of the
exciton (Equation 2.14+ Equation 2.18) and diagonalise this Hamiltonian. This allows for the
the effect of the exchange and Zeeman interactions on the exciton energy levels to be seen, as
shown in Table 2.1.
At high external magnetic fields, where βb/d ≫ δb/d, the usually quadratic splitting of the exci-
tonic states, becomes linear. At strong magnetic fields, there is also coupling between the cir-
cularly polarised light and bright excitons, which breaks the linear polarisation basis caused by
the exchange interaction [112].

In the Voigt configuration there is in-plane mixing between the bright and dark states,
allowing the dark states to be observed. This occurs due to the lack of rotational symmetry that
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Figure 2.16: Schematic illustrating the effect of an external magnetic field, B, on the neutral
exciton fine structure. With no external field the splitting of the B± to the D± states is δ0
(isotropic exchange interaction). The eigenstates of the bright excitons are linearly polarised
(Πx, Πy). In Faraday geometry when a large external field is applied, the bright states transition
into circularly polarised states (σ+, σ−). However for the Voigt configuration both the bright
and dark states (which become optically active) remain linearly polarised. The orange arrows
at the bottom of the figure show the incident photon on the sample with black arrow being the

external B field for both configurations. Adapted from [110].

occurs, as mentioned in Section 2.3.3. This leads to four linearly polarised carrier states; The
bright and dark states lose their distinguishability, making it inappropriate to categorise them
as such.

2.4 Quantum Dot Spin System

2.4.1 Interactions with Nuclear Spins in Quantum Dots

The wavefunction of a trapped electron within a QD can penetrate into the surrounding
barrier material. There are approximately 105 nuclei in a single QD, all of which will have
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State Eigenstate Energy Shift Total Energy

B± |±1⟩ +1
2

(
δ0 ±

√
δ2b + β2

b

)
EB = E0 +

1
2

(
δ0 ±

√
δ2b + β2

b

)
+ γ2B

2
z

D± |±2⟩ −1
2

(
δ0 ±

√
δ2d + β2

d

)
ED = E0 − 1

2

(
δ0 ±

√
δ2d + β2

d

)
+ γ2B

2
z

Table 2.1: Energy shift and total energy for excitons (in an anisotropic QD) in an external
magnetic field Bz > 0 setup in a Faraday configuration. This combines the QD
bandgap energy, E0, at zero field, diamagnetic shift, exchange interaction and Zeeman

interactions. βb = µB (ge,z + gh,z)Bz and βd = µB (ge,z − gh,z)Bz [112].

an associated quadrupolar nuclear spin, (explained in Section 2.4.1.3), a schematic of which
is shown in Figure 2.17. This results in the central spin problem8, where the electron spin is
linked to the mesoscopic (and fluctuating) nuclear spin bath [125]. The collection of interactions
for nuclear spins within a solid can be combined into a single Hamiltonian, H , described in
Equation 2.19 [126].

H = HZ + Hhf + Horb + Hdd + HQ (2.19)

In Equation 2.19, HZ describes the Zeeman energy of the nuclei, when in a magnetic field
Bz. For a sum of i nuclear spins, Iz, this Zeeman term is written explicitly in Equation 2.20.

HZ = −
∑
i

h̄γNi
BzIz,i (2.20)

This Zeeman Hamiltonian will be dependent on the gyromagnetic ratios of the nuclear spin
species in the system. The gyromagnetic ratio is also related to the nuclear g-factor, γN = gNµN

h̄
.

Due to the nuclear magneton, µN , (which is defined by fundamental constants) being smaller
than the equivalent Bohr magneton, µB, for the electron, the energy splitting of the nuclear states
is significantly smaller than the Zeeman splitting of the electron [125]. The second term,Hhf , in
Equation 2.19 is the hyperfine interaction. Horb describes the coupling between the nuclear spin
and electron orbital angular momentum. Hdd and HQ are the nuclear-nuclear and quadrupolar
interactions respectively.

2.4.1.1 Hyperfine Interaction

The hyperfine interaction describes how the magnetic field produced, due to the electron’s
orbital and spin angular momentum, affects the energy of the nuclear spin magnetic moment,
as well as the reverse interaction. It can be split into three constituent parts: isotropic Fermi-
contact, anisotropic, and orbital, denoted as H fc

hf , H an
hf , and H orb

hf respectively, so that Hhf =

H fc
hf + H an

hf + H orb
hf .

The Fermi-contact hyperfine interaction relates the electron spin Se
z = σe

2
, where σe is the

8The central spin problem is an approximation of the QD spin system.
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Figure 2.17: Nuclear spin bath for a GaAs QD. Each isotope in GaAs has a nuclear spin I=3
2
,

which have magnetic moments µi associated with them. These magnetic moments are summed
to form an overall magnetisation M of the QD. There are nuclear dipole-dipole interactions
which induce spin flips across the QD, as shown throughHdd. While the envelope wavefunction
is depicted here, it is important to remember the periodic Bloch wavefunction, which has the

shell-like properties, e.g. s, p, et cetera.

Pauli matrix operator, to the nuclei in a QD, and is written in Equation 2.21 [127–129].

H fc
hf =

ν0
2

∑
j

Aj|ψ (rj)|2
(
2IjzS

e
z +

[
Ij+S

e
− + Ij−S

e
+

])
(2.21)

In Equation 2.21, ν0 = a30 is the volume of the unit cell with lattice constant a0, Aj is the
hyperfine coupling constant, Ij and rj refer to the nuclear spin and position of the j th nucleus
respectively and finally ψ is the normalised electron envelope wavefunction. The first term in
Equation 2.21 is the Overhauser shift (OHS), which acts as an effective field shifting the energy
of the electron spin. The Knight field is this process in reverse, where the average electron
spin acts as an effective field upon each nucleus. The second term acts leads to so-called flip-
flops, where polarisation is transferred between an electron and a nucleus. This transfer can
lead to Dynamic Nuclear Polarisation (DNP) as well as Nuclear Spin Diffusion (NSD) [130],
see Chapter 5 for details on this. Aj is defined as [131]:

Aj =
2µ0

3
h̄γN,jgeµB|ψ(0)|2, (2.22)

where µ0 is the vacuum permeability and ge is the free electron g-factor, which will be
approximately equal to two. The electron density at the nucleus, rj = 0 (hence the zero in
|ψ (0)|2), varies between materials, which is a reason why Aj varies for different elements.
Table 2.2 shows the values for this parameter for arsenic and the gallium isotopes along with
other parameters required for the NMR work in this thesis.
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Isotope
Nuclear
Spin, I

Nuclear Magnetic
Moment, µi

Hyperfine
Constant,
Aj (µeV)

Quadrupolar
Moment
(Q fm−2)

Gyromagnetic
Ratio, γ/2π
(MHz T−1)

Natural
Abundance

(%)
27Al 5/2 3.64 - 9 14.7 11.103 100
75As 3/2 1.44 46 31.4 7.315 100
69Ga 3/2 2.01 43 17.1 10.248 60.1
71Ga 3/2 2.56 54 10.7 13.021 39.9

Table 2.2: Properties of nuclear spin for 27Al, 75As, 69Ga, and 71Ga isotopes within a QD
which are fundamental to NMR. Nuclear magnetic moments were taken from [132], hyperfine
constants were taken from [125, 131] and quadrupolar moments/gyromagnetic ratios were taken

from [133].

The spin of both the hole and the electron in QDs is more robust than in bulk or quantum
well structures, due to the discrete energy states and strong confinement. The anisotropic term
in the hyperfine interaction acts similarly to a dipole-dipole interaction, but between nuclear
spins and p-type hole spins, Sh. For this interaction to occur some mixing between the LH and
HH states is required, as otherwise it would be energetically forbidden (as a consequence of
the HH-LH splitting) [125, 135–137]. This mixing can be denoted by β, where |β| is much
smaller than unity and typically below 0.3 [105, 125, 138]. The mixed state spin is considered
in Equation 2.23 [125].

∣̃∣∣∣±3

2

〉
=

1√
1 + |β|2

(∣∣∣∣±3

2

〉
+ β

∣∣∣∣∓1

2

〉)
(2.23)

For bands that are mainly composed of p-orbitals, as opposed to the s-orbitals in contact inter-
action, the wavefunction ‘vanishes’ at the nuclear sites, which is where the anisotropic interac-
tion has its largest influence [139]. This anisotropic term of the Hamiltonian can then be writ-
ten as:

H an
hf = ν0

∑
j

Ah
j

1 + β2
|ψ (rj)|2

(
IjzS

h
z +

|β|√
3

[
Ij+S

h
− + Ij−S

h
+

])
, (2.24)

where Ah
j is the hole dipole-dipole hyperfine constant, which has a similar form as Aj in the

contact hyperfine interaction [140]. Hidden (for simplicity) within the form that Equation 2.24
is written in is the anisotropy factor, which is α = 2|β|/

√
3.

A Hamiltonian can be written using the Pauli exclusion principle for an electron with a
momentum p in a vector potentialA. This is under the assumption thatA is being generated by
the magnetic moments of the nuclear spins Ik which are located throughout the crystal [126].

9There is no literature value of the hyperfine constant for 27Al, however it can be estimated by scaling the
hyperfine constant for 69Ga, as done in [134].
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Horb = −µ0

4π

∑
k

γSγjk
Lk · Ik

|r − rk|3
(2.25)

In Equation 2.25, Lk is the operator for the total electron orbital angular momentum about the
nuclear site rk, and r is simply the electron position operator. γS and γj refer to the gyromagnetic
ratios for the free electron (which is always negative) and the nucleon (which can be positive or
negative) respectively. The combination of Equations 2.24 and 2.25 is useful in the description of
electrons in the p-type valence band of III-V semiconductors (i.e., for holes) [139], for example
in experiments such as in [140, 141].

2.4.1.2 Nuclear Dipolar Interaction

The dipolar interaction relates to the coupling between magnetic moments. Mutual cross-
relaxation (spin flips) occur due to dipolar interactions, resulting in proton-proton OHSs [142].
The OHS is “a direct measure of the magnetization transferred from one nucleus to another,”
[143], i.e. the diffusion of spin polarisation from ‘spin-active’ nuclei to another [144]. The
process of NSD in the central spin system of a GaAs QD is described within Chapter 5.

The Hamiltonian for the nuclear dipolar interaction for nuclei i and j, separated by a
displacement vector rij, is given by [127]:

Hdd =
µ2
N

2

∑
i ̸=j

gigj
r3ij

(
I i · Ij − 3

(
I i · rij

) (
Ij · rij

)
r2ij

)
(2.26)

Within Equation 2.26 is the dipolar coupling constant expressed as its equivalent value of
rather than using its symbol R, which is a measure of the strength of the interaction. The
dipolar coupling strength, which is proportional to 1

r3
, is significantly influenced by the spatial

separation between nuclei. As a result, the interaction is weak for nuclei that are spatially
distant. In Equation 2.26, for moderate magnetic fields (larger than 10−4 T) only the secular
(spin-conserving) part of the interaction contributes to nuclear spin dynamics [126]. This is as
it commutes with the Zeeman term, HZ . This results in the static part ∝ I iIj and the nuclear
flip-flop term ∝

[
I i+I

j
− + I i−I

j
+

]
acting on nuclei of the same isotope.

2.4.1.3 Nuclear Quadrupolar Interaction

The intrinsic electric dipole moment of a nucleus is usually assumed to be zero [127], and if
non-zero it must be very small (a nice collective table of electric dipole moments from different
sources is shown in [145]). This means that nuclei are insensitive to a homogeneous electric
field, however a nucleus with I > 1

2
(a prolate charge distribution) can interact through an

Electric-Field Gradient (EFG) due to its electric quadrupole moment. Figure 2.18 shows what
such a distribution would look like.
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Figure 2.18: A non-spherical (prolate) charge distribution is equivalent to a spherical charge
distribution plus a charge distribution with positive polar charge and negative equatorial charge,

adapted from [146].

In the process of making a GaAsQD, there will be inherent strain due to the lattice mismatch,
which breaks the cubic symmetry found in bulk GaAs [125]. The local Elastic-Strain Tensor
(EST), ϵij , is then linked to the traceless EFG, Vij , by the Gradient-Elastic Tensor (GET), Sijkl,
as shown in Equation 2.27 [147], where V is the electrostatic crystal field potential.

Vij =
∂2V

∂xi∂xj
=

3∑
k,l=1

Sijklϵkl (2.27)

In Equation 2.27, the x, y, and z components are chosen to be over the crystallographic axes,
which in the case of GaAs is cubic, with the z axis being aligned with the direction of QD
growth, [001]. The zincblende lattice (cubic crystal) of GaAs results in only two independent
components for the GET. These are S11 and S44, as S12 = −S11

2
, due to the traceless property of

Vij . These relate the diagonal and off-diagonal components of the strain and EFG respectively,
e.g. Vzz = S11ϵB, Vxy = 2S44ϵxy, et cetera, where the biaxial strain, ϵB, is defined as, ϵB =

ϵzz − ϵxx+ϵyy
2

[148].
If one assumes cylindrical (axial) symmetry for the EFG in a QD then one can use

Equation 2.28, which describes the secular (spin-conserving) term of HQ [126].

H sec
Q =

1

4

∑
k

νkQf (θ)

(
(Izk)

2 − 1

3
Ijk
(
Ijk + 1

))
(2.28)

In Equation 2.28: νkQ is the quadrupolar coupling strength (dependent on the EFG), f (θ) =

(3 cos2 θ − 1), and θ is the angle between the unit vector n̂ and the applied magnetic field in the
z direction. Solving f (θ) = 0 results in θ ≈ 54.7°, which is commonly known as the Magic
Angle in NMR. At this angle the angular dependence ofH sec

Q goes to zero, resulting in an NMR
spectrum where only the Central Transition (CT) is present. This magic angle is used in Magic
Angle Spectroscopy (MAS).

The total Hamiltonian for the quadrupolar interaction is shown in Equation 2.29 [127, 149].
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HQ =
eQ

4I(2I − 1)

(
3I2z′ − I2 + η(I2x′ − I2y′)

)
,

η =
Vx′x′ − Vy′y′

Vz′z′
.

(2.29)

In Equation 2.29: η is the asymmetry parameter, Q is the quadrupolar moment for a particular
nucleus , and {êx′ , êy′ , êz′} are the principal axes of the symmetric tensor Vij (note these axes
should not be confused with the crystallographic axis used in Equation 2.27). η has the
constraints of 0 ≤ η ≤ 1 and the EFG components satisfy |Vz′z′ | ≥ |Vx′x′ | ≥ |Vy′y′ |.

When in a high magnetic field, the quadrupolar effect can be treated as a perturbation to the
Zeeman part of the Hamiltonian. If one again assumes cylindrical symmetry of the EFG, as to
cause η to vanish, one can also introduce the Larmor frequency, ωL

10, as:

ωL = −γBz, (2.30)

where Bz is parallel to the Oz axis. Then using perturbation theory [127] the energy levels of a
statem from Equation 2.29 can be written, as in Equation 2.31.

Em = E(0)
m + E(1)

m + E(2)
m + ... (2.31)

We can then define the terms E(n)
m in Equation 2.31 upto the second order, n = 2, [127].

E(0)
m = h̄ωLm (2.32)

E(1)
m = −hωQ

12

(
I (I + 1)− 3m2

) (
3 cos2 (θ)− 1

)
(2.33)

E(2)
m = −

hmπω2
Q

16ωL

sin2(θ)

(
1− 2I(I + 1) + 2m2+(
18I(I + 1)− 34m2 − 5

)
cos2(θ)

)
(2.34)

Here we have introduced the quadrupolar coupling strength, ωQ = 3e2qQ
2hI(2I−1)

[127], which is
sometimes shown within Equation 2.29. Within this coupling strength is the field gradient
parameter q, where q =

Vz′z′
e
. From these one can now determine the energy difference

between adjacent energy levels for given spin states, e.g. whenm = Iz and Iz + 1.

∆E(0) = E
(0)
Iz+1 − E

(0)
Iz

= h̄ωL (2.35)

∆E(1) = E
(1)
Iz+1 − E

(1)
Iz

=
hωQ

4
(2Iz + 1)

(
3 cos2(θ)− 1

)
(2.36)

10Note that for Equations 2.32 to 2.37 we have changed the notation from what Abraham used in [127], where
they defined ωL = γBz

2π . This is to keep the notation used in this thesis consistent, but will result in a factor of−2π
difference (which can be absorbed into the reduced Planck constant h̄).
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∆E(2) = E
(2)
Iz+1−E

(2)
Iz

=
hπω2

Q

16ωL

sin2(θ)

(
2I(I + 1)− 6Iz(Iz + 1)− 3+

3 cos2(θ) (34Iz(Iz + 1)− 6I(I + 1) + 13)

)
(2.37)

I = - 3
2

3
2I = +

ℏωL

ℏωL

ℏωL

Bz > 0 1st Order
Quadrupolar

2nd Order
Quadrupolar

ℏ(ωL-ωQ
(1)) ST

ℏωL CT

ℏ(ωL+ωQ
(1)) ST

ℏ(ωL-ωQ
(1))

ℏ(ωL+ωQ
(2))

ℏ(ωL+ωQ
(1))

Bz = 0

I = 3
2

I = - 1
2

I = + 1
2

Figure 2.19: Energy diagram of a single nucleus with spin I = 3/2. Under a magnetic field
of BZ , to the zeroth order of quadrupolar interactions, the degeneracy of I = 3/2 is lifted,
resulting in four equally spaced states, separated by the Larmor frequency (ωL). Under first
order perturbation the CT is unaffected, whereas the Satellite Transitions (STs) are strongly
perturbed by ω(1)

Q . Including second order effects, the CT is affected weakly by ω(2)
Q . The effect

of ω(2)
Q has not been included for the STs as ω(1)

Q ≫ ω
(2)
Q . Note that this diagram is true for the

Ga isotopes; for 75As the±3
2
↔ ±1

2
transition would have the sign of ω(1)

Q switched, for our QD
samples.

As before, if one uses θ ≈ 54.7° the first order perturbation vanishes. It can also be noted that in
the first order when Iz = −1/2, as would be the case for the CT,∆E(1) = 0; the CT is insensitive
to first order quadrupolar interactions. If the EFG major axis is parallel to the magnetic field,
θ = 0°, then similarly the second order perturbation vanishes. Generally this second order effect
can be neglected for the STs due to ω(1)

Q ≫ ω
(2)
Q

(
where ω(1)

Q = ∆E(1)/h̄ and ω(2)
Q = ∆E(2)/h̄

)
.

All isotopes in GaAs contain nuclei with I = 3/2, so one may, naively, assume that for the
initial state with Iz = −3/2 (Iz = 1/2) the value of ω(1)

Q is negative (positive). This is would
also result in the ST transition−3

2
↔ −1

2

(
1
2
↔ +3

2

)
, appearing on the lower (higher) frequency

side of the CT. However, this is not always correct. While the statement is true for Ga isotopes
under compressive strain, the opposite holds true for As isotopes or under dilation conditions.
The spectral positions of the STs are determined by the sign of the values in the GET, Sijkl, and
by the type of strain the QD is under.
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2.5 Manipulation of the Nuclear Spin Ensemble

2.5.1 Initialising Nuclear Spin

For QD nuclear spin to be useful for a qubit, it must be possible to initialise a desired
polarisation state, which can be achieved by using circularly polarised light. Figure 2.20 shows
the process one would use to to initialise and manipulate nuclear spins. The different colours
show the different elements/isotopes (only 2 shown for simplicity). Initially, the nuclear spins
are randomly fluctuating with no net polarisation. One can then shine a high-power circularly
polarised laser onto the QD. Depending on the wavelength of the laser, there are two pathways
that both lead to the same outcome. The generation of spin-polarised electron-hole pairs
occurs either within the QD, as explained through resonant excitation in Figure 2.11, thanks to
the optical selection rules in III-V semiconductors. Alternatively, the pairs can also form in the
wetting layer of the QD, from where they are subsequently captured into the dot. This process
is further explained in Section 3.2.2. As the electron (the hole too but it affect is much weaker)
relaxes it interacts with the nuclear spin ensemble through the flip-flop term in the hyperfine
interaction. This occurs for all nuclei that are within the wavefunction of the electron in the
QD. The electron-nuclear spin interaction occurs as a result of the non-zero hyperfine
constants (see Table 2.2) for all the elements within the QD. This transfer of spin aligns the
nuclei spin, i.e. increases nuclear spin polarisation, which is shown in Figure 2.20 as all the
arrows being in the same direction. It should be noted that not 100% of the nuclei would be
polarised using this technique alone, a more realistic polarisation degree that is commonly
attainable would be around 60% [150]. The polarisation of the pump laser (σ+/σ−) will
change the sign of the polarisation degree of the nuclei. The pump laser wavelength can be
varied as shown in Figure 3.6, and different degrees of DNP are reached. This is mentioned in
greater depth within Section 3.2.5 and Chapter 6.

Once optical pumping has occurred, a Radiofrequency (RF) pulse with a set spectral shape
can be used. Within this thesis a range of RF spectral and temporal shapes have been used,
which are discussed within Section 3.3.1. The RF pulse will selectively depolarise nuclei based
on the frequencies it is composed off. In Figure 2.20 this is shown by the pink nuclei no longer
being aligned in the same direction.

2.5.2 Measuring Nuclear Spin

Once the nuclear spin state of the ensemble has been initialised it can be readout using optical
spectroscopy. For the nuclear system this is done using theOHS. When the ensemble is polarised
there will be an additional shift (in addition to the Zeeman effect) to the spectral splitting of an
exciton doublet. This shift is directly related to the polarisation degree of the nuclear spin bath
[152]. For a GaAs QD, the maximum additional splitting that one can expect to see, i.e. 100%
nuclear polarisation, is & 110 µeV, but this is dependent on the chemical composition, e.g.
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Figure 2.20: A template timing diagram for the pump-RF-probe cycle, for initialising then
measuring nuclear spin. In the initial state distribution of nuclear spins is uniform/randomly
orientated. A polarised pump laser is then used to align all the nuclear spins. A RF burst can
then be used to selectively depolarise nuclei of a set isotope, here the pink nuclei are depolarised.
The final net spin polarisation can then be measured using a low power probe laser. Figure is

based from [125, 151].

Ga/Al ratio, of the QD [126, 153, 154]. An increase of DNP is useful in multiple ways, for
example it will aid in: techniques such as NMR, increasing electron spin qubit coherence times
[155, 156], and quantum memory operations [156, 157]; but, there are limits to reaching such a
high polarisation due to several loss rate, e.g. NSD and Nuclear Spin Relaxation (NSR) [126].
These factors are discussed in the context of measurements within Chapters 5 and 6.

2.5.3 Nuclear Spin Relaxation

A qubit would have to be isolated from its environment, otherwise information may be lost
[11, 12]. Therefore in order to use QDs as spin qubit devices, one must understand the relaxation
mechanisms that result in shorter spin lifetime/coherence times. There are threemain parameters
which are used to describe the effect of spin relaxation, which can be seen Figure 2.22.

The Bloch equations of motion, named after Felix Bloch’s work in the 1940s [159], describe
the general exponential relaxation behaviour of the magnetisation vectorM . Let us consider a
spin system in which the spin has been initialised in a spin up state, |↑⟩, parallel to the external
magnetic field, B0, in Faraday geometry (see Section 2.3.5 for an explanation on this). As
shown in Figure 2.17,M is the summation of all the nuclear spins in the ensemble11. From this
initialised situation,M y andMx would decay to zero andM z would decay to the equilibrium
valueM0. The equations governing this are Equations 2.38 and 2.39 [161].

11In reality M would be weighted by the electron wavefunction density [160]. This treatment of the
magnetisation vector is based on the simplest approximation, called the box model.
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Figure 2.21: PL spectra using both σ+ and σ− pumping of anX− exciton in a GaAs QD at 10 T.
The spectral splitting of the σ+/σ− components is 1033.2/809.7 µeV leading to a total difference
(σ+−σ− ) in splitting of 223.5 µeV. The zero-DNP level is at 920.5 µeV and, through NMR spin
thermometry, it has been shown that the spin polarisation of the QD is over 90% (see Chapter 6

for details).

Ṁx,y = γ|M ×B|x,y −
Mx,y

T2
(2.38)

Ṁ z = γ|M ×B|z +
M0 −Mz

T1
(2.39)

In Equations 2.38 and 2.39, Ṁ is the derivative ofM with respect to time. Solving these two
equations, one arrives at Equations 2.40 and 2.41.

Mx,y(t) =Mx,y(0)e
− t

T2 (2.40)

Mz(t) =M0 − (M0 −Mz(0)) e
− t

T1 (2.41)

The longitudinal, sometimes called spin-lattice, relaxation time is denoted by T1 and
characterises the likelihood of a spin flip along the êz axis. The initial polarised state along êz

decays back to its equilibrium value in a characteristic time T1; after a time T1 the magnitude
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Figure 2.22: Spin relaxation and dephasing times T1, T2 and T ∗
2 represented on a Bloch

sphere. a) T1 is the longitudinal relaxation time describing the decay of spin polarisation.
Note the horizontal axis is not indicative of time; rather, it is presented in this manner to aid
comprehension and visualisation. b) T2 is the transversal decay time, measuring the loss of
the magnetisation vector due to spin-spin interactions. It occurs due to intrinsic magnetic field
inhomogeneities. It does not change the polarisation along the longitudinal direction. c) T ∗

2 is
the pure dephasing of phase information due to local variations in the magnetic field, which
includes random T2 effects as well as non-random effects, e.g. field inhomogeneities [158].
This accelerates the decay of the magnetisation vector in the x − y plane. d) The effect when
both T1 and T ∗

2 are combined. There is both a loss of magnitude of the magnetisation vector and
dephasing. The radius at a given point of the spiral signifies the increase in dephasing, rather

than the phase itself.

of the magnetisation vector will be 63% of its initial value. T2 is the transverse component
related to NSR, sometimes called coherence time. Unlike T1 it is not related to the transfer of
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energy, but rather a loss of phase information, in the x − y plane due to random spin-spin
interactions. T2 describes the loss of phase coherence of the nuclear spins precessing around
êz. When using an ensemble of nuclear spins, as in a QD, there is another timescale related to
the dephasing of spin along the x − y plane. This is the T ∗

2 time, sometimes called purely the
dephasing time. In some protocols for using electron spin qubits, e.g. [31], RF pulses are used
to address/initialise nuclear spin states. However, after the RF has been applied nuclei in the
spin ensemble will precess at varying speeds, due to local fluctuations in the magnetic field.
These varying precession speeds will cause dephasing. This dephasing need not be
permanently lost, and can be recovered using spin echo techniques [162] or with specific
pulses of RF [163]. The relation between all three timescales is shown in Equation 2.42.

1

T2
=

1

2T1
+

1

T ∗
2

(2.42)

It can be deduced from this equation that T2 ≤ 2T1, it should also be noted though that T ∗
2 is

always less than T2 as it includes both the random and non-random mechanisms for dephasing
[158].

2.5.4 Radiofrequency Induced Depolarisation

One can use a RF pulse to systematically depolarise nuclei in the ensemble. When the nuclei
are subjected to a magnetic field, with a frequency resonant with the nuclear Larmor frequency
(Iz ↔ Iz + 1 transition), Rabi rotations of nuclear spins occur. This is where the field drives
rotation of the spin state of the nuclei polarisation back and forth (parallel/antiparallel to the
external magnetic field) [164]. The nuclear-nuclear dipolar interactions (see Section 2.4.1.2)
mean that each nucleus will be subject to a local field. The randomness of the local fields
causes ensemble dephasing as the Rabi precession frequencies are perturbed by the local fields.
After a long pulse of resonant RF, the ensemble of nuclei will become depolarised (randomly
orientated with respect to the external magnetic field) as the populations of each spin state are
equalised. This has been done in many experiments, and is explained in more detail in [151],
where they use the energy from the applied RF field to depolarise the nuclei into the surrounding
lattice [158].
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Experimental Techniques

Themajority of the experiments within this thesis involve a combination of optical excitation
of QDs and RF depolarisation of nuclei. The overall aim of these experiments is to investigate
the nuclear spin system in epitaxial semiconductor QDs. The experimental setup includes a
bath cryostat to maintain the low-temperature environment, lasers for optical excitation of the
QDs and for measuring the degree of nuclear spin polarisation, and a RF system designed to
selectively depolarise the nuclear spins. A carefully timed sequence of laser pulses and tailored
RFwaveforms allows us tomanipulate the spin states of nuclei within theQDs. These operations
are performed to probe the underlying physics, particularly the mechanisms behind nuclear spin
polarisation and its interaction with electron spins.

3.1 Bath Cryostat

The main housing for the majority of measurements in this thesis is an Oxford Instruments
Teslatron liquid helium bath cryostat. However, for some initial sample characterisation a
continuous flow cryostat system was used1. The flow cryostat requires constant pumping of
liquid helium to cool the sample, which leads to instabilities due mechanical vibrations. For
our setup, this results in frequent optical realignment being necessary, typically required every
minute. Additionally, our flow cryostat lacks a magnet, whereas the bath cryostat can reach
fields of up to 10 T. As the majority of experiments in this thesis require measurements to run
over the course of days and high magnetic fields, a flow system is not often appropriate. As
explained in Section 2.3, the separation of QD energy levels must be larger than the thermal
energy, which is why the work in this thesis uses liquid helium as a coolant.

The bath cryostat is shown in Figure 3.1. The sample is housed within a cage-like structure
comprised of four non-magnetic stainless steel rods held in place by aluminium blocks. This
cage system, which is depicted as black lines in Figure 3.1, is inserted into an ‘insert’. On top

1The setup of our flow cryostat is very similar to our bath setup, hence I will not discuss its construction in depth
here. However, it is described in detail within Chapter 3 in [58], where it was used to characterise self assembled
QDs.
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Figure 3.1: Schematic illustrating the bath cryostat. The cryostat is filled with liquid helium
which keeps the sample at a temperature of approximately 4.2 K. The laser used for optical
excitation travels, through a glass window at the top of the cryostat, into a sealed insert (which
contains a small amount of helium exchange gas) before travelling through a lens to focus onto
the sample. RF signals are carried through a coaxial cable to a copper coil located close to the
sample. The sample is mounted on an aluminium pedestal which is attached to the piezo stages.
The piezo stages and temperature sensor are linked through a 12-pin connection to a Bayonet
Neill-Concelman (BNC) line. This setup allows for the piezo stages, and hence the sample, to
be moved and the temperature of the sample to be recorded. If the sample is charge tunable it
is connected to a sample bias line made from a coaxial cable, where this is again connected to a

BNC line outside of the cryostat.

of this insert there is a glass window, allowing for optical spectroscopy to be performed on the
sample. There is no direct contact of liquid helium with the sample. Instead, the 1.55 m long
insert, with a diameter of ≈ 50 mm, is pumped to < 1 mbar and then ∼ 6 cm3 of helium
exchange gas is added. The pressure within the insert, at room temperature, is then ≈ 3 mbar.
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This enables the sample to cool down gently, via conduction. If too little He gas is added then
the sample will not cool down to/maintain the required 4.2 K, if too much is added then the
liquid helium reservoir will be consumed at a faster rate. The aforementioned ∼ 6 cm3 of He
gas is a compromise of these two variables. The advantage of using an insert to house the
sample rather than an immersion cryostat is that, the optical path (see Figure 3.2) required for
spectroscopy travels through a low pressure gas rather than the boiling liquid He. This again
aids in the stability of the setup. The insert, once inserted into the cryostat, passes through a
bore of a superconducting magnet that is controlled by an Oxford Instruments IPS120-10 power
supply, allowing for a maximal static field, Bz, of 10 T.

Along the length of the cage system there exists cabling to allow for the connection of devices
near the sample to outside the cryostat. One of these cables is used to transmit the RF produced
by the generators (see Section 3.3.1) to a small copper coil. This coil is made of 10 turns of
a 0.1 mm diameter enamelled copper wire which has been wound on a ≈ 0.4 mm spool in
5 layers, with 2 turns in each layer. This coil is aligned ≈ 0.5 mm from the sample and is
used to generate the required oscillating magnetic field perpendicular to Bz, which depolarises
nuclei. The sample is located near the end of this cage system, at the end of the optical path, and
positioned underneath the sample are piezo stages. These are controlled through an Attocube
ANC350 Piezo Motion Controller allowing for submicron accuracy of the sample position. As
there are mechanical vibrations that cannot be stopped in the building, these piezo stages allow
for the adjustment of the position of the sample, i.e. to realign a QD with the optical path of
incident light. For some experiments in this thesis (Chapter 5) the temperature of the sample
was also adjusted. To achieve this, a heater plate was fabricated in-house. This was made from
a titanium plate which had ≈ 8 m of 63 µm diameter enamelled copper solderable wire dual
wrapped around it. Through adjustment of the voltage across the heater coil one can deliver
power (dissipated as heat) to the sample. The temperature is monitored using a Cernox CX-
1050-SD-HT-1.4L Resistor, where the resistive sensor is located underneath the sample, which
is connected to a Keithley 2000 Bench Multimeter.

3.2 Optical Spectroscopy

To investigate the energy level transitions of the QD system we employ confocal optical
spectroscopy. The ODNMR techniques described in Section 2.5 require a pump-probe process
to initialise and measure the nuclear spin states of a QD. Therefore, an optical breadboard setup
is essential, and in this section this experimental setup is described.

3.2.1 Optical Breadboard

A diagram of the optical setup is shown in Figure 3.2, which comprises two ‘arms’: the
pump arm and the probe arm. The pump laser is a Matisse 2 tunable ring laser, which has a
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15 W Millennia eV 532 nm laser as its optical power supply. The Matisse laser’s wavelength
can be set between 670 nm to 1050 nm. While the spectral range that QDs are visible at
changes from sample to sample, the typical range of wavelengths is from 740 nm to 800 nm.
Therefore, the pump arm’s wavelength range is well above and below the optical range that the
QDs used in this thesis require, meaning resonant excitation is possible. The probe arm’s laser
can be chosen according to the experiment, the rationale for which is explained in
Section 3.2.5.4. Both the pump and probe arms pass through Neutral Density (ND) filters
(which have an exponential gradient) as to control the power of the beam. The probe arm’s
laser passes through a manually set filter wheel, as to ensure the laser power is below the
saturation point (defined in Section 3.2.5.4) for the QD; importantly, the filter wheel remains
fixed once a measurement begins, as to not alter the power. However, the pump arm’s laser
passes through a ND filter, which is attached to a linear translation stage. This stage is attached
to a stepper motor and a KST101 K-Cube Stepper Motor Controller, which allows the power
of the beam to be varied all while ensuring that the beam path remains unaltered. A feedback
loop is then created, through the addition of a Fieldmaster GS power meter later in the arm that
monitors the power of the laser. Through user-created LabVIEW programs running on a
master computer, the desired power of the pump arm can be set through this stepper
motor-power meter combination. The two laser beams pass through mechanical optical
shutters which have switching times on the order of a few milliseconds. This allows for the
timings shown in Figure 2.20 to be designated to a high degree of accuracy.

After these filters and optical shutters, both arms are coupled into Single Mode (SM) fibres.
Up to this point all of the optical setup has been located on an optical bench near the bath
cryostat, rather than on top of the cryostat. This is due to both the limited space available and
weight consideration of the equipment on top of the cryostat. The pump laser passes through a
Linear Polariser (LP) and then a Half-Wave Plate (HWP), allowing for any arbitrary orientation
of linear polarised light to be produced. The pellicle BS allows the pump/probe laser power to be
monitored, but due to short probe times (explained in Section 3.2.5.4) during measurements the
probe power cannot be recorded. However, if the probe shutter is manually opened, the probe
power can be measured using the power meter. This can be done before, during (by pausing) and
after measurements to ensure that the probe power remains constant. The now combined laser
paths then travel through a 70:30 (70 for QD PL) cube BS before passing through a Quarter-
Wave Plate (QWP). The QWP is installed last to allow for a high degree of circular polarisation
to be generated, as here it can compensate any polarisation imperfections introduced by the cube
BS.

The laser path then travels through a glass window on top of the bath cryostat and into
the insert. For Chapters 4 and 5 an aspheric lens with a focal distance of 1.45 mm and a
numerical aperture of 0.58 was used as an objective for optical excitation of the QD and for PL
collection. For Chapter 6 this was changed to be a cryo-compatible apochromatic objective with



Chapter 3. Experimental Techniques 41

Pump
Laser

ND
Filter

Wavelength
Meter

Master Computer

Probe
Laser

Sample

Monitor

CCTV
Camera

Filter
Wheel

Power
Meter

LP

HWP

QWP

Beam
Dump 70:30 BS

Pellicle BS

Flipper
Mirror

Stepper
Motor

Fibre Coupler

Optical Shutter

SM Fibre

BS

Stepper Motor Controller

CCD

Spectrometer

Lens

Figure 3.2: Schematic of the optical setup used for optical PL spectroscopy in this thesis. The
pump/probe arms are shown by the red/green paths and the PL path is shown by the blue path,
note the colours are not representative of the wavelength of light. These paths travel through
a series of filters, shutters, Beam Splitters (BSs), and wave plates in order to create circularly
polarised light that is then used in a pump-probe cycle. The PL from a QD is directed through
a shutter, into a double spectrometer and then recorded by a Charge Coupled Device (CCD).

Figure was made with aid from [165].

a focal distance of 2.89 mm and a numerical aperture of 0.81. The 70:30 cube BS then allows
the PL to be transmitted into a fibre coupler, which passes the light through an optical shutter
into the SPEX1404 double spectrometer (located on the optical bench). This spectrometer has a
resolution of approximately 10 µeV. The optical shutter, immediately before to the spectrometer,
is essential to ensure that the CCD is only exposed to PL from the QD during the pump-RF-probe
cycle. The position of the SM fibre leading to the spectrometer can be adjusted to ensure that
both cross-polarised components of PL, for an exciton in a magnetic field (see Figure 2.21),
have equal optical signal, as not to hinder any fitting occurring in data analysis. A CCD is used
to record the light. The exposure set for this CCD can be set to any arbitrary value, which varies
for differing measurements. For the experiments within Chapter 6 a pair of doublet lenses, with
a magnification of 3.75, were put between the spectrometer and the CCD allowing for a greater
resolution, however it limited the spectral window. This is not included in Figure 3.2 as it was
not present for all experiments. A flipper mirror is present, offering the option to reflect the laser
beam away from the spectrometer and towards a Closed-Circuit Television (CCTV) camera and
monitor. This is a useful tool for looking at the reflectance of the pump/probe laser off the
sample. This gives one the ability to: check that there are no surface defects, perform initial PL
alignment, and to map the borders of the sample within the cryostat.
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3.2.2 Optical Spin Pumping

Optical spin pumping is a method used for initialising the spin state of the QD with high
fidelity [166]. Figure 3.3 shows the mechanism of spin pumping. In units of h̄, the electron’s
projected spin angular momentum,mS , has values of±1

2
(↑ or ↓), reflecting the electron’s nature

as a lepton with half-integer spin.
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Figure 3.3: A simplified version of Figure. 2.11 showing optical selection rules for interband
transitions involving valence band electrons with total angular momentum Jve = 3

2
in units of

h̄, the corresponding photon polarisation σ+ or σ− is indicated. Adapted from [125].

Light can be circularly polarised, so the electric and magnetic components rotate clockwise
(σ+) or anti-clockwise (σ−) from the point of view of the source. An interesting phenomenon
occurs when circularly polarised light is incident on the QD, due to the structure of the valence
band in III-V semiconductors, such as GaAs. As there is no centre of inversion (inversion
symmetry) there is an energy splitting between energy bands, and the spin and orbit degrees of
freedom mix [167, 168]. In addition to this, the two helicities of light have angular momenta
L = ±1, in units of h̄, which leads to optical selection rules. By changing the helicity of the
absorbed photons, one can pump electrons to certain states within a QD. For example, Figure 3.3
shows a σ+ photon being absorbed by a valence electron with a projected angular momentum
Jve
z = −3

2
. This results in the electron being promoted to the conduction state, mS = −1

2
, and

a HH forming in the valence band. The hole is described as heavy as it has a higher effective
mass,m∗

e, than the LH at the Γ point in the Brillouin zone (see Section 2.2.2). The projection of
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total angular momentum of a HH is Jz = ±3
2
(⇑ or ⇓); a LH would be described with a projected

total angular momentum of Jz = ±1
2
(↑ or ↓)2. The absorption of the photon has caused the

creation of a neutral exciton, X0, which is a bound state of the electron-hole pair, governed by
the electrostatic Coulomb force. These excitons can then be used to investigate the spin-carrier
mechanisms that occur within the QD.

3.2.3 Selecting a Suitable QD

Before conducting any experiments, a suitable QDmust be selected. In our setup, we follow
a specific procedure to achieve this. First, once the sample is loaded into the cryostat, has cooled
down to 4.2 K, and the pump/probe lasers are focused on the sample, we map out the edge of
the sample. This can be done using several methods. For example, a CCTV camera can be used
to detect reflections from the sample surface, or if a diode sample is used, one can employ the
pump laser and a Source/Measure Unit (SMU) to measure the photocurrent generated by the
QDs in the sample.
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Figure 3.4: PL spectrum of a suitable QD for measurements at 0 T. TheX− exciton is visible at

pixel ∼ 672 and multi-charged states are visible between pixels 250-520.

After determining the boundaries of the sample, the next step is tomove at least 15µm inward
to avoid any potential edge effects. The back reflection from the sample, viewed through the
CCTV camera, is also used to check for surface defects in the region where QDs will be searched
for. If there is a possibility that the sample will be remeasured in the future, selecting a QD near
a well-defined feature, such as the corner of the sample, is advisable. This sharp feature can
help in relocating the QD later. However, it is essential not to restrict measurements to one

2Note there is a difference in notation for the arrows of HHs and LHs. Frustratingly, the notation for a LH is
often the same as an electron, which can add to confusion when reading literature. Fortunately, due to the energy
splitting∆HL between the two states, typically several tens of meV, the LH states can often be ignored as they are
not used for optical excitation [125]. This is unless there is: a break in rotational symmetry, strain, and or shape
anisotropy which introduces HH-LH coupling [105, 112, 169, 170].
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location on the sample. For a statistically significant set of data, QDs should be selected from
various regions across the sample. Once a potential QD candidate is found, its suitability for
measurement is assessed by measuring its PL using a probe laser. At 0 T a sharp exciton line
should be visible, as shown in Figure 3.4 ,where the full width at half maximum of this line is
1.45± 0.06 pixels, as well as some multi-charged states.

The QD must be spectrally and physically isolated from nearby dots. This can be checked
by tuning the spectrometer range and scanning a region of approximately 15 µm2 around the
QD to ensure no other QDs are detected. If the QD is confirmed to be spatially and spectrally
isolated, located in a suitable part of the sample, and exhibits sharp exciton lines, the next
criterion is the brightness of its PL. To determine this, several other QDs that also meet the
aforementioned criteria are identified, and their locations and maximum PL intensities are
recorded. The brightest QD is then chosen for further measurements.

3.2.4 Measuring Hyperfine Shifts

The spectral splitting of an exciton doublet can be optically measured using a PL spectrum,
as shown in Figure 3.5. In this figure, the QD is optically pumped with a circularly polarised
laser to generate DNP. As the pump time increases, the degree of nuclear spin polarisation
rises, resulting in a larger hyperfine shift of the exciton. To quantify this shift, one can measure
the exciton’s spectral splitting when the QD nuclei are completely depolarised, and take the
difference between this baseline and the splitting observed after optical pumping. The spectral
splitting, and consequently the hyperfine shift, is obtained by fitting the exciton doublet. The
precision of this fit is influenced by the resolution of the spectrometer, along with other factors
such as signal to noise ratio, spectral linewidth, et cetera. These combined factors typically result
in a fitting accuracy on the order of 1 µeV. In NMR measurements using an RF erase pulse, the
spectral splitting can be measured both with and without the RF applied. The difference in
exciton doublet splittings in the presence and absence of RF is known as the NMR signal.

3.2.5 Optimising Dynamic Nuclear Polarisation

In order to perform the NMR measurements that this thesis relies upon it is important that
one can reliably create DNP. Without this, there would be no contrast to the spectral splitting
of an exciton doublet under varying conditions of RF application, as explained in Section 2.5.
There are numerous variables to consider, described in the sections below, all of which must
be optimised to maximise DNP. Ideally this multidimensional search for finding the global
optimum of variables would be done in parallel, i.e. a single measurement where all
parameters are changed (as there may be some interdependency between them)3. However, it

3This methodology is to some extent used in Chapter 6 where the pump laser’s power, wavelength, and the bias
applied during pumping are all varied at the same time. It was performed in this way as, the aim here was to reach
higher degrees of nuclear spin polarisation than previously attained.
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Figure 3.5: PL spectra of a X− exciton for a QD at 10 T after optical pumping with a σ+

polarised laser, shown for different pumping durations. As the pumping time increases, the
spectral splitting of the exciton doublet increases due to the hyperfine shift.

is significantly simpler to do a line search for a single parameter, and then use the optima of all
of these parameters in substantive measurements. Utilising this framework, nuclear spin
polarisation degrees ranging from 60 − 80% have been demonstrated [131]. However, in
Chapter 6, we present the our ability to generate polarisation degrees ≥ 95%.

3.2.5.1 Pump Laser

For the pumping of the QD there are a few variables that need to be optimised in order to
increase DNP. The first that is usually optimised is the wavelength of laser used. The pump
laser used is a Matisse 2 Tunable Ring Laser. This allows for a broad range of laser wavelengths
which can also be at high powers, however the lasing power usually is heavily attenuated as it
would cause damage to the SM optical fibres. A wavelength calibration measurement can be
run, as shown in Figure 3.6, using the method outlined in Section 2.5.2. In Figure 3.6, it is shown
that a pump wavelength of∼ 791 nm yields the highest degree of DNP for this QD. For QDs on
the same sample there is usually some variation of optimum pump wavelength, however as the
optimal DNP is via s-shell exciton excitation, one would not expect it to fluctuate by more than
a couple of nanometres. This has two advantages, it makes pumping with diode lasers possible
as the peaks of DNP will occur in similar spectral locations from QD to QD. It also means that
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when changing QDs after a measurement set has been completed, a smaller spectral range can
be probed, as to save experimental time. The power and time that one pumps for also have an
effect on the DNP of the QD and its surrounding area through nuclear spin diffusion. For details
on the way power affects the DNP see Chapter 6 and for nuclear spin diffusion see Section 2.5.3
and Chapter 5.
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Figure 3.6: Pump wavelength dependency on the spectral splitting of an X− exciton for a QD
at 10 T using a σ+ polarised laser. The peak DNP occurs at ∼ 791 nm, which creates a spectral

splitting that is ∼ 105 µeV above the zero DNP level.

3.2.5.2 Radiofrequency Excitation

When applying a RF pulse during the pump-RF-probe cycle within a measurement, the
centre of the RF’s bandwidth often needs to be centred on the CT frequency, near the Larmor
frequency, for an isotope within the QD. When applying a RF burst, it is important not to
apply too high an amplitude wave, as it may cause heating of the sample and/or damage the RF
coil inside the cryostat. If the duration of the RF pulse is too short (less than a couple of
milliseconds) then Rabi oscillations may be induced, resulting in not all of the nuclei being
depolarised. If the RF time is long, one could ensure that the majority of the nuclei are
depolarised. However, due to the exponential decay of polarisation, there are diminishing
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returns with this and it uses more experimental time. If one does desires a shorter RF pulse
time, a faster depolarisation rate can be achieved by increasing the amplitude of the RF
waveform. From Figure 3.7 one can see the effect of varying the RF depolarisation time for
differing isotopes, where the RF frequency has been centred on each isotope individually.
From this, an exponential function can be fitted to determine the decay constant for each
isotope, with a characteristic decay time of ≈ 30 ms usually desired. A RF pulse combining
frequencies from different isotopes is then generated, with each isotope’s decay factor
employed to weigh its respective contribution. This waveform is then used for multi-isotope
depolarisation, as shown by the blue line in Figure 3.7. By using this method one can ensure
that all the isotopes decay at the same rate. The combined multi-isotope depolarisation rate can
then be measured and fitted. Five times the decay constant, from this fit, is then used as the
total depolarisation time in experiments. This will ensure that the nuclear spin polarisation of
all isotopes has fully decayed without wasting experimental time.
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Figure 3.7: RF time/power calibration on a QD at 1 T. The spectral splitting of a reference
spectra, where the RF is gated off, is subtracted from the splitting in a spectrum where the RF
has been enabled. As the RF time increases, a greater difference emerges between the reference
spectrum, where minimal depolarisation has occurred, and the spectrum obtained with the RF
enabled. As to not complicate the plot, the RF amplitudes for all three individual isotopes are
the same; the combined isotope waveform has had its power increased, from the single isotope
waveforms, as to depolarise the nuclei with a characteristic decay time of 64 ms. In calibration

measurements these powers may be changed to try to obtain a ≈ 30 ms decay constant.
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3.2.5.3 Half and Quarter-Wave Plates
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Figure 3.8: Calibration of the HWP/QWP angles for both σ± for a QD at 10 T.

The degree of circular polarisation for the pump laser can be optimised for each QD
studied, as shown in Figure 3.8. While in Figure 2.15 the formation of excitons are described
as a consequence of a purely circular polarised excitation, in reality when elliptically polarised
light is used higher values of DNP can be obtained. The reasoning for this is due to the
anisotropy of the QD shape, as explained in Section 2.3.3 and Chapter 6. The pump arm laser
initially goes through a LP to ensure that the laser is linearly polarised before passing through
the HWP, see Figure 3.3 for reference. The HWP can be adjusted to arbitrarily orientate the
polarisation direction of the lineally polarised light. The pump and probe laser both then pass
through the QWP which converts the linearly polarised light into circularly polarised light. By
adjusting the angles for these wave plates one changes the degree of linear polarisation of the
lasers, allowing for a more helical polarisation of light. In HWP/QWP calibration
measurements one can fit the data with a sin function. For σ+/σ− one usually desires the
maximal/minimal splitting of the exciton doublet (signifying larger DNP), in GaAs QDs in
external magnetic fields above ≈ 0.5 T. For Figure 3.8 this would mean a QWP angle of
42/51° and a HWP angle of 54.0/4.6° for σ+/σ−.
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Figure 3.9: Probe time calibration for a QD at 10 T. The two data sets show the decay of nuclear
spin polarisation for a QD pumped using σ+/σ− light in black/red.

3.2.5.4 Probe Laser

The initial optimisation for the probe laser involves selecting an excitation wavelength
with which the PL from a QD sample can be seen. There are a selection of diode lasers in the
laboratory that we can use, for example 532/690/710/730 nm as well as a HeNe laser that
produces 632 nm. When probing a QD with a laser it is important to optimise the power of the
laser and time that you probe for. If the power is too high then the PL from the exciton doublet
being investigated will be saturated, leading to a less sensitive measurement of its splitting.
Saturation is where the PL intensity of the exciton doublet no longer increases linearly as the
power increases. However, if the power is too low then the signal to noise ratio of the PL from
the QD will become difficult to fit. The optimum probe power used for QDs in this thesis,
unless stated otherwise, is with a power that is just below where the QD saturates. A quick
optimisation process is manually performed for several probe lasers, where the power of each
laser is chosen to be just below saturation, as to determine which laser generates the brightest
PL for the exciton. Figure 3.9 shows how varying the probe laser duration affects the
measured DNP of the QD, as seen by the change in the spectral splitting of the exciton. As the
probe time increases, the probe laser induces a decay of the DNP that was created by the
pumping process. In other words, the probe laser causes a parasitic depolarisation which
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returns the nuclear polarisation degree back to the depolarised state. A similar issue arises in
optimising probe time as it did for probe power; if the pulse is too short the PL signal to noise
ratio is poor, too long and the detected DNP is distorted. Throughout this thesis most
measurements were conducted so that the probe time only caused a total decrease of DNP of
≈ 2%. A decaying exponential model, of the form ∝ Ae−(

t
τ ), was used to fit the curves in

order to determine said probe time. In Figure 3.9, the decay times are 0.168/0.288 s for σ+/σ−

respectively. As these values differ, a probe time not exceeding the shorter time of 0.168 s
would be used, to ensure that the 2% loss of DNP was not surpassed. To combat short probe
times, leading to low PL signal intensities, multiple exposures can sometimes be taken for
experiments. To do this several pump-RF-probe cycles can be run, with the CCD having one
continuous exposure. In the optical path preceding the CCD, there is an optical shutter which
is timed to open/close by a master computer. This ensures the CCD is solely exposed to QD
PL emission induced by the probe laser, and not the pump laser.

3.2.5.5 Bias

When using a sample that is charge tunable, one can use the bias across the sample to
increase the DNP achievable. This is not a direct relation, rather the bias changes the electric
field and charge states which affect DNP. The peaks one can see in Figure 3.6 are shifted when
different biases are applied, during the pumping process. Optimum DNP occurs when the QD
is pumped under a large reverse bias. This quickly ionises electron-hole pairs that have been
optically generated, before they can recombine to emit a photon (optical recombination times
are appropriately 300 ps in GaAs QDs [171, 172]). However to achieve high DNP with large
reverse biases, it is essential that a high pump power is used. This is to generate a sufficient
number of spin-polarised electrons capable of undergoing a spin flip to polarise the nuclei
before their ionisation (see Chapter 6 for information on this process). In addition to this, the
bias shifts the spectral position of the DNP peaks seen in Figure 3.6, therefore one must
optimise the bias, pump power, and pump wavelength simultaneously.

3.2.5.6 Bistability of Nuclear Polarisation

To build up the DNP, as described in Subsection 2.4.1.1, electron spin flips need to occur.
The rate that these spin flips occur is proportional to the ratio of the absolute square of the

electron hyperfine coupling to the electron spin state energy splitting
(
wff ∝

(
|Aj |
∆Ee

)2)
[125]4.

The QD samples discussed in the thesis are subjected to an external magnetic field Bz . The
Overhauser field, generated by nuclei with DNP, can align either parallel or antiparallel to this
external magnetic field. This in turn will either increase/decrease ∆Ee, altering the rate of

4This is a highly simplified equation, in the perturbative regime, that assumes an electron wavefunction is
uniform over the ensemble of nuclei within a III-V semiconductor QD. This is whyAj is a constant here; a precise
description of the electron spin dynamics is beyond the scope of this thesis.
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electron flip-flops, and change the rate of nuclear spin polarisation for the QD. This leads to non-
linearities within the, usually, pure exponential curves seen in Figure 3.9. These non-linearities
can be occasionally eluded by adjusting the pump/probe/RF power as to alter the rate of electron
flips that are occurring. However as noted in the literature, the prevalence of these non-linearities
is, in part, determined by the external magnetic field, which can make these non-linearities
harder to evade when a designated external field is required [86, 173–175]. In measurements
using adiabatic RF sweeps and where a large variation of hyperfine shifts are required for fitting,
as performed in Chapter 6, these non-linearities are a potential source of irritation.

3.3 Nuclear Magnetic Resonance

In this thesis, the focus is solely on Continuous Wave (CW) ODNMR, in contrast to the
pulsed NMR techniques utilised in similar experimental setups [163, 176, 177]. Unlike pulsed
NMR, which operates in the time domain, CW ODNMR operates in the frequency domain.
The underlying principles of NMR spectroscopy via nuclear spin manipulation are discussed in
Section 2.5; this chapter focuses on detailing the experimental implementation of the technique.

3.3.1 Generation of Radiofrequencies for Nuclear Magnetic Resonance

In order to use NMR as a form of spectroscopy it must be possible to create the RF signals
that selectively depolarise nuclei, the hardware to do so is shown in Figure 3.10. The total
frequency bandwidth of any one isotope in our GaAs/AlGaAs QD samples, without external
strain, is usually < 1.5 MHz. This is due to the inhomogeneous broadening of nuclear spin
transitions (see Chapter 4 for a comparison of nuclear spin transition broadening for QDs with
differing chemical compositions). To approximate this frequency range with digital devices a
RF comb can be employed, as illustrated in Figure 3.13. This comb is first generated, through
direct synthesis of a waveform, and then mixed with a carrier waveform to shift it in the spectral
domain. Typically, the carrier signal’s frequency is selected to be near resonancewith the Larmor
frequency of a specific isotope. The comb signal is an arbitrary waveform consisting of a linearly
spaced series of discrete modes, with the mode spacing, wm, typically set to be 125 Hz. This
mode spacing is chosen to be smaller than the homogenousNMR linewidth of the isotopeswithin
the QD. This ensures that all nuclear spin transitions within the RF bandwidth are depolarised
by multiple modes, leading to an exponential decay in nuclear spin polarisation [178], as shown
in Figure 3.7. If the RF waveform is for the Inverse Nuclear Magnetic Resonance (InvNMR)
technique, discussed in Section 3.3.2.3, then the generator internallymodulates the carrier signal,
to create an upper and lower sideband (two-toned signal), while also suppressing the carrier
frequency. In either case, the carrier and envelope signals are mixed together resulting in a
linearly spaced series of modes around the carrier frequency.

The frequency comb is then amplified using an amplifier rated up to a maximum power
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Figure 3.10: Circuitry required for InvNMR measurements. A carrier (blue) waveform and an
envelope (orange) arbitrary waveform aremixed together to create the required RFwaveform. A
gated amplifier is then used to amplify the signal, which can be monitored using the directional
coupler and signal analyser, before passing through a RF cascade. This cascade then connects

to a coil within the cryostat which transmits the RF to the sample.

of 20 W (100 W) for Chapters 4 and 5 (Chapter 6). The amplification is gated, so it can be
switched on/off via an external signal. The benefit of this gated amplification is that when no
RF is required in the pump-RF-probe cycle, the amplifier can be gated off to prevent any noise
being amplified. The amplified comb first passes through a directional coupler, then progresses
into a RF cascade, before ultimately entering the cryostat and reaching the RF coil. Using the
directional coupler and a signal analyser, the reflected and transmitted signals are measured, as
shown in Figure 3.11. In order to produce a magnetic field at the coil, the RF signal must be



Chapter 3. Experimental Techniques 53

transmitted; however, the load impedance of the coil, due to being an inductor, is frequency
dependent as ZL ≈ iωLC , where LC is the inductance. Due to the imaginary component of the
impedance, it will never match that of the RF coaxial delay line (completely real Z0 = 50Ω),
constructed from BNC cables. To compensate for this, a variable length cascade and shunt stub
are implemented, in order to match the impedance of the coil to the 50 Ω impedance of the RF
source and amplifier. The fully analytical approach to determining the length required for the
cascade/stub is given in Chapter 5 of [179], however in practise we use an empirical approach.

For this procedure one must choose a set magnetic field, from which one can estimate the
Larmor frequency for a given isotope using its gyromagnetic ratio, before any measurement is
performed. For example, at 8 T the frequencies of 75As, 69Ga and 71Ga would be 58.5 MHz,
82.1 MHz and 104 MHz respectively, as shown in Figure 3.11. A broadband (120 MHz
bandwidth) white noise RF waveform is then generated on an arbitrary waveform generator.
The forward and reverse ports of the directional coupler can then be used to monitor this RF
signal, using a spectrum analyser, to see how the transmitted (forward) power differs from the
reflected (reverse). The differential of the forward and reverse powers is shown by the green
data in Figure 3.11. For InvNMR the difference between the transmitted and reflected powers
need only be ≈ 3 dBm for a strong enough magnetic field to be produced at the coil. These
non-zero differentials between forward and reverse power signify that some power from the
RF signal has been transmitted by the RF coil, at that frequency. By changing the length of the
cascade/stub one can change where the large differentials in power occur, in order to match the
desired transmitted frequency. It is important that these differential power peaks, where
transmission of the RF signal occurs, are not too narrow, as the quadrupolar shifts in QDs can
span over hundreds of kHz. It is crucial to depolarise the spectrally broad components, thus
necessitating the presence of a broadband peak. As well as this, while the magnetic field
decays so will the frequency that needs to be generated to depolarise nuclei. Inevitably if
enough time passed, the frequency necessary for depolarisation would shift away from a peak
of transmission. This alteration would lead to a modified depolarisation rate for the nuclear
spins, from that already determined in measurements such as the one shown in Figure 3.7.

An alternative approach is to use a broadband cascade, where no effort is made to get a
high transmittance at set frequencies, as shown in Figure 3.12. With this setup, there is a
relatively flat transmittance dependency for the transmittance against frequency, however the
actual transmittance is significantly lower than for a resonant cascade, averaging about
0.5 dBm in Figure 3.12. One may question why such a cascade would be used, as it would
both cause a greater reflection of power to the amplifier and be less efficient in transmitting
power. However, due to the relatively frequency independent transmittance it allows the
cascade to be used for a large range of magnetic fields. This means that one does not need to
physically change the cascade each time a different magnetic field is used. Also, the power
delivered to each isotope in the sample will be roughly equal, so their RF waveform
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Figure 3.11: The signal from the forward and reverse ports of a directional coupler, as seen in
a spectrum analyser. The RF being generated is a 120 MHz bandwidth white noise waveform.
The cascade being used here has been designed for InvNMRmeasurements occurring at 8 T. The
blue/orange/grey arrows represent the 75As/69Ga/71Ga Larmor frequencies at a magnetic field
strength of 8 T. The green signal is the calculated differential between the forward and reverse

powers, which is the power transmitted by the RF coil.

amplitudes, governing the rate of nuclear spin depolarisation, are easier to equalise.
There are a few other factors that affect the magnetic field strength present at the QD due

to the RF produced at the coil, including coil geometry and distance from the coil to the QD.
The RF transmittance from the coil will have the most significant impact, although these other
considerations are also important. The coil used in this thesis is made from 0.1 mm copper
enamelled wire with 10 turns with an inner diameter of approximately 0.4 mm spooled in 5

layers with 2 turns in each layer. Equation 3.1, derived from the Biot-Savart law, describes the
magnetic field strength, Bx, for a coil with N turns of radius R at distance x along the central
axis with current I running through it, where µ0 is the permittivity of free space. As this is not
quite the geometry of our coil, and different turns will produce very different fields, we can use
N = 1 to estimate the magnetic field strength. With: the coil values described above, a distance



Chapter 3. Experimental Techniques 55

0 1 0 2 0 3 0 4 0 5 0

- 0 . 5

0 . 0

0 . 5

1 . 0

0 1 0 2 0 3 0 4 0 5 0
- 1 1 0
- 1 0 5
- 1 0 0
- 9 5
- 9 0
- 8 5
- 8 0
- 7 5
- 7 0
- 6 5

Tra
nsm

itte
d P

ow
er 

(dB
m)

F r e q u e n c y  ( M H z )

Po
we

r (d
Bm

)

F r e q u e n c y  ( M H z )

 F o r w a r d
 R e v e r s e

Figure 3.12: The forward and reverse port of a directional coupler attached to a broadband NMR
cascade. The blue/orange/grey arrows represent the 75As/69Ga/71Ga Larmor frequencies at a
magnetic field strength of 2.87 T. The irregularities in power at low frequencies occur because
they fall outside the amplifier’s effective frequency range, specified as between 3 to 200MHz.

of 0.2mm from coil to the QD, an impedance matched cascade, and a 1 A current, the magnetic
field magnitude at the QD would be ≈ 1 mT. Note, there must always be a non-zero distance
between the coil and the sample to ensure that the coil does not get damaged when moving the
sample in the cryostat, as well as to minimise any heating of the sample.

Bx =
µ0

4π

2NIπR2

(x2 +R2)
3
2

(3.1)

3.3.2 Types of Nuclear Magnetic Resonance Spectroscopy

There are several types of NMR, however the research in this thesis focuses mainly on inte-
gral saturation NMR and InvNMR. The differences between these types of NMR are shown in
Figure 3.13.

3.3.2.1 Optically Detected Nuclear Magnetic Resonance

Before discussing integral saturation NMR or InvNMR it is useful to understand how
standard CW saturation ODNMR works. Some details of ODNMR have already been



Chapter 3. Experimental Techniques 56

R
F

 A
m

pl
it

ud
e 

(a
rb

.)

0

1

f f f

+1/2 +3/2-3/2 -1/2

a)

-3
/2
↔

-1
/2

f

-1
/2
↔

+
1/

2

+
3/

2↔
+

1/
2

Iz

b) c) d)

Optical Pumping Saturation NMR
Integral

Saturation NMR Inverse NMR

Iz Iz Iz

wexc
wm
wgap

σ+ σ-

0

1

CT Offset (Hz) CT Offset (Hz) 

R
F

 I
np

ut
 E

ne
rg

y 
(a

rb
.)

CT Offset (Hz) 

Frequency (Hz) Frequency (Hz) Frequency (Hz) 

0 0 0

+1/2 +3/2-3/2 -1/2 +1/2 +3/2-3/2 -1/2 +1/2 +3/2-3/2 -1/2

Figure 3.13: a) Depolarisation of nuclear spins after optically pumping nuclei with 3/2 spin.
Note as was the case for Figure 2.19, the−3

2
↔ −1

2
transition occurs at lower frequencies in the

case of Ga isotopes, for 75As this would be the higher frequency ST, in our QD samples. Nuclear
spin depolarisation due to and spectral shapes of b) SaturationNMR, c) Integral saturation NMR,
d) InvNMR. Beneath the nuclear spin depolarisation figures, the individual combs that form
the RF waveform are shown. Underneath these combs the way these waveforms would be
varied to collect data is shown. In the case of integral saturation NMR, the required RF input
power increases as the bandwidth increases as to ensure the power density remains constant.
To maintain clarity in the spectral shape of the InvNMR waveform, where a gap occurs for one
measurement state the RF waveforms for the other states are not shown. For instance, at the
0 kHz CT offset, a gap is shown in the waveform of the black line. The RF waveforms for the
blue, pink, and green lines are not shown here, but there would be no gap present. In reality,
each measurement state would exhibit only one decrease in RF energy within its bandwidth.

This figure is based on those in [151, 176].

discussed in Section 2.5, so a brief summary is provided here. This technique utilises the
pump-RF-probe method as shown in Figure 2.20. A circularly polarised pump laser is used to
create electron-hole pairs, which through the hyperfine interaction create nuclear spin
polarisation. Figure 3.13 shows how the initial polarisation changes for σ± pump lasing. More
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analytically, after pumping and before any application of RF, the population probabilities, pm,
of the levels of nuclear spin projections, m, for a 3

2
nuclear spin QD, can be expressed as the

canonical Boltzmann distribution [131, 151], as shown in Equation 3.2.

pm =
emβ

+I∑
m=−I

emβ

(3.2)

In Equation 3.2, β is the inverse spin temperature defined as β = h̄ωL

kBTe
, kB is the Boltzmann

constant, h̄ is the Planck constant, ωL is the Larmor frequency and Te is the spin temperature of
the electron which has induced the DNP. The total nuclear spin polarisation, PN , is then defined
in Equation 3.3.

PN =
+I∑

m=−I

mpm
I

(3.3)

Through optically detecting the spectral splitting of an exciton’s PL doublet, one can measure
the nuclear spin polarisation. After this initialisation of nuclear spin polarisation, an excitation
band, of width wexc, of RF is applied via the coil, as described in Section 3.3.1, which depolarises
nuclear spins. Physically, it causes the equalisation of population probabilities of nuclear spin
states with different spin projections. As there is a frequency splitting of these nuclear spin
states, one can scan this excitation band across a frequency range to selectively depolarise set
transitions, shown in Figure 3.13, while having no effect on other transitions. The NMR signal
from this measurement is proportional to the difference in population probabilities of the affected
states, so in Figure 3.13 where the RF is applied to the−3

2
↔ −1

2
transition the signal would be

∝ p− 3
2
− p− 1

2
.

3.3.2.2 Integral Saturation Nuclear Magnetic Resonance

Integral saturation NMR is similar in concept to frequency-swept saturation NMR
spectroscopy, but it deviates from the latter by not employing a constant excitation bandwidth
that scans across frequencies. Instead, this form of NMR usually remains centred on the CT
frequency, at the −1

2
↔ 1

2
transition, and varies the excitation bandwidth. By using a large

number/range of excitation bandwidths one can integrate the change in nuclear spin
polarisation over a span of frequencies. This technique is not useful for detecting sharp
spectral features, however it is very practical when investigating broad components. With this
integral technique one needs to keep the power density constant, so that the rate of nuclear spin
depolarisation is kept constant. If one were to simply increase the RF waveform’s bandwidth
then the power of each mode in the comb would decrease. To remove this issue, the RF
amplification needs to increase for broader waveforms. However, this means that as one
increases the bandwidth the total power required increases too, which will increase any heating
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effects occurring near the sample. This heating will cause unwanted depolarisation of nuclei
within the sample and, if the power is too high, may even damage the RF coil itself. In order to
prevent this occurring, when calibrating the RF amplitudes, as in Figure 3.7, one can use a
low-power long (≈ 6 s) RF pulse with a large (6 MHz) bandwidth. One can then slowly
increase the power of the waveform, by increasing the voltage output of the RF waveform
generator, and measure the temperature increase in the cryostat. The maximum increase in
temperature that we wish to have, due to the RF coil, is 0.5 K. Once we have increased the
power enough as to reach this temperature change we note down the voltage set on the
generator. This will then be used to set the maximum amplification allowed for the RF
waveforms. The RF duration in an experiment is usually between 10 ms ≤ TRF ≤ 0.5 s, so
this maximum heating is never reached, however it is a useful benchmark to set. As a 6 MHz
bandwidth comb is chosen, it is also unlikely that larger bandwidths are required to depolarise
the nuclear spins.

3.3.2.3 Inverse Nuclear Magnetic Resonance

Themost common form of NMR used in this thesis is InvNMR, which was developed by our
research group in Sheffield in 2012 [151]. This novel approach uses a specialised RF waveform
to significantly enhance the detectable change in nuclear spin polarisation for quadrupolar nuclei
with large nuclear spin. Specifically, this improvement can bewritten as the ratio of the change in
total polarisation for NMR using InvNMR and standard saturation ODNMR. If comparing these
measurements for NMR on the CT of an isotope with I ≥ 3

2
, this ratio is ∆P InvNMR

N /∆P Sat
N >(

I + 1
2

)3 [151]. For the GaAs QDs mainly used in this thesis, all isotopes have a nuclear spin
I = 3/2; this means the InvNMRwould give eight times larger total change in total polarisation
than ODNMR.

The InvNMR waveform has an ‘inverse’ shape to that of saturation NMR, as shown in
Figure 3.13. Rather than a single excitation band which depolarises nuclei in a frequency span,
wexc, there are two excitation bands with a small gap, wgap, in between. The total width of wexc

is large enough to fully depolarise all the nuclear spin transitions of a given isotope (usually
≈ 1.5 MHz in our GaAs QDs), when centred on its CT frequency. However, any nuclear
transitions that occur within the gap of the RF waveform are left in their polarised state,
thereby creating a large differential signal.

The width of the gap can be chosen to either maximise the InvNMR spectral resolution or
the signal strength. This is shown in Figure 3.14. In this figure, the InvNMR data of the CT has
been fitted with a unit box convolved with a Gaussian distribution. This form is chosen because,
as the gap size increases the CT signal amplitude saturates, as all the nuclei within this−1

2
↔ 1

2

transition are kept in a polarised state. The maximum InvNMR signal is a differential between
two different nuclear polarisation states. The first of these is when the nuclei are in a polarised
state, due to the optical pumping, with no RF applied. The second is when there has been RF
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Figure 3.14: InvNMR data obtained by varying wgap around the CT of 75As nuclei in a QD
at 4.2 K with an external field of 7.01244 T. These measurements were kindly performed by
George Gillard on a separate experimental setup using an externally strained QD sample, as to
not incorporate any broad components of STs, which was not used in this thesis. a) Convolution
of a unit box with a Gaussian function to fit the InvNMR data. b) Percentage of the maximum
InvNMR signal achieved for the varying gap sizes shown in (a). The dashed red line represents

an empirical fit of the data.

saturation with a broadband signal and no gap, resulting in all the nuclei in the waveform’s
bandwidth depolarising. The differential of these two states describes the maximum possible
signal in a measurement.

Let it be clear that this maximum possible NMR signal does not describe the maximumDNP
possible or that there is a polarisation degree of ±1, but simply the maximum InvNMR signal
possible in the current configuration. If the pumping conditions, for example, were changed
then this maximum NMR signal would also change. This percentage of the maximum signal
is shown in Figure 3.14b as a function of wgap. It can be seen that increasing the gap width
increases the maximum signal possible, however it eventually plateaus out. The empirical fit
shows that in order to reach 95% of the maximum signal, for the CT in this measurement, the
value of wgap should be 6.6 kHz. In reality a full calibration of gap width and maximal signal
is rarely performed. Typical values of wgap are chosen to be 6 kHz for measuring both the STs
and CT in a single spectrum and then a higher resolution 2 kHz spectrum is taken for just the
CT. However, in some measurements where the InvNMR signal itself is too weak, for example
for a non-abundant isotope in the QD, the gap size must be increased, decreasing the maximal
resolution possible.



Chapter 4

Strain and Disorder in AlGaAs

If one wanted to use electrons as spin qubits, it is imperative to ensure that their coherence
times are sufficiently long for practical applications. To extend these electron spin qubit
lifetimes, the strain inhomogeneity of the QD needs to be reduced. However, knowledge of the
strain of the system is difficult to characterise. Inhomogeneous strain results in broadening of
the nuclei precession rates, due to changes in the local fields. Through the hyperfine
interaction between an electron and this broadened nuclear environment, there is a decrease in
spin coherence times [30, 125, 131, 155, 163, 180–183]. It is therefore important to be able to
characterise the strain within QDs, to understand whether it would be appropriate to use them
as a source for spin qubits.

The following chapter examines a variety of QDs, with varying chemical compositions, to
determine the appropriateness to electron spin qubits. All QDs are grown via nanohole infilling,
as opposed to the Stranski-Krastanov method, to minimise strain. GaAs/AlGaAs QDs serve as
the base system, towhich small amounts of Al or In are added to provide a detailed understanding
of the strain effects. The strain of QDs has been investigated using a combination of InvNMR
and the integral saturation NMR technique. The breadth and magnitude of the quadrupolar
splittings, to the first order, are analysed. The work then expands upon this by using a Monte-
Carlo simulation to identify the strain distribution present within the QD.

We derive the mean major strain within AlxGa1−xAs QDs to be 0.023%, 0.031%, and
0.039% for x = 0%, 5%, and 10%, respectively. The incorporation of Al into the QDs results
in inhomogeneous quadrupolar broadening of the NMR spectra. For Al0.1Ga0.9As QDs, the
broadening is approximately 0.3 MHz, while for In0.1Ga0.9As QDs, the broadening is more
pronounced due to the larger lattice constant mismatch, increasing to 2MHz.

The work presented in this chapter has been written as a draft manuscript. In this work the
NMR experiments were conducted by Peter Millington-Hotze and Evgeny Chekhovich. The
simulations were conducted by Peter Millington-Hotze, with advice from Evgeny Chekhovich.
The samples were grown by Santanu Manna, Saimon F. Covre da Silva and Armando Rastelli.
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We use optically detected nuclear magnetic resonance (NMR) to non-invasively probe the strain
within pure GaAs, AlxGa1−xAs, and InyGa1−yAs quantum dots (QDs) embedded in AlzGa1−zAs
barriers with z = 0.3 and z = 0.33 Increasing Al content x (from 0 to 10 %) or In content y (from 0
to 10 %) results in elastic strains, which manifest through inhomogeneous quadrupolar broadening
of the single-QD NMR spectra. Since both the Al and In isovalent dopants replace atoms only in the
Ga sublattice, the quadrupolar shifts are more pronounced for the 75As nuclei. The maximum strain
induced by an isolated Al dopant in a pure GaAs matrix is found to be ≈ 0.3 MHz. This value, found
in a high-quality crystal lattice of an epitaxially-grown QD, is a significant revision of the previous
estimates tens of MHz derived from NMR on powderized AlGaAs samples. We further examine
internal strains in QDs embedded in optical microcavities formed by Al0.95Ga0.05As/Al0.2Ga0.8As
Bragg reflectors, finding a reduced mean strain but a similar inhomogeneous strain broadening. Our
studies establish the properties of unit-cell-scale strains in the alloys formed by ubiquitous group III-
V semiconductors, including GaAs, InAs, and AlAs. Understanding of the alloying effect parameters
is crucial for future developments of QD-based devices where internal strains have recently been
shown to limit the purity of the quantum light sources and coherence of the spin qubits.

I. INTRODUCTION

Strained semiconductor nanostructures have the pos-
sibility for quantum logic devices [1, 2]. However, a
comprehensive understanding of the strain distribution
within quantum dots (QDs) is essential for their effec-
tive application in quantum logic gate operations. This
is particularly crucial as the strain distribution signif-
icantly influences the coherence time of electron spin
qubits [3–11]. Moreover, the nanoscale variation of strain
has been found to reduce the efficacy of dynamical decou-
pling methods [5, 7, 12]. Thus, a thorough investigation
into the spatial distribution and magnitude of strain in
semiconductor nanostructures is imperative for advanc-
ing the development and functionality of quantum logic
devices.

Tunneling electron microscopy and atomic force mi-
croscopy techniques have previously been employed to
measure the strain of QDs by assessing lattice mis-
matches between the QD and its surrounding barrier
[13, 14]. However, determining the distribution of strain
within the QD presents a more formidable challenge.
Nuclear magnetic resonance (NMR), a well-established
method for non-invasive QD probing [6, 15–19], could po-
tentially address this challenge. Previous NMR studies
have focused on AlGaAs samples, although in powdered
form and with an emphasis on local ordering rather than

∗ E.Chekhovich@sussex.ac.uk

strain characterization [20–22]. However, this method in-
troduces additional strain, further complicating the un-
derstanding of strain distribution.

Here we investigate a variety of QD samples, with-
out pulverizing them, including: GaAs/Al0.3Ga0.7As,
AlxGa1−xAs/Al0.33Ga0.67As QDs with x = 5%
and 10%, GaAs/AlAs, In0.1Ga0.9As/Al0.33Ga0.67As,
Al0.05Ga0.95As/Al0.329Ga0.667In0.004As, as well as a
GaAs/Al0.33Ga0.67As microcavity sample using optically
detected NMR techniques. The array of samples included
in this study offers a comprehensive overview on the im-
pact of additional isotopes in QDs. Due to this diversity,
this paper will be arranged to focus on each sample in
turn.

II. SAMPLES AND EXPERIMENTAL
TECHNIQUES

All of the QDs studied in this paper were grown via
molecular beam epitaxy, using nanohole infilling to cre-
ate the QDs. The typical QD dimensions are ∼ 40 nm
in diameter and ∼ 7 nm in depth. More information
regarding the growth is given in Supplementary Informa-
tion Section 1. Faraday geometry, where the direction of
the static external magnetic field is parallel to the opti-
cal axis, is used for all of the experiments in this paper.
The samples are kept at 4.2 K within a liquid helium bath
cryostat. A small copper coil is mounted close to the sam-
ple, which is used to produce a radiofrequency (RF) oscil-
lating magnetic field perpendicular to the static magnetic
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FIG. 1. PL spectra of randomly selected QDs from all samples used in this paper. All spectra were taken using a single-stage
grating spectrometer, while the sample was at 4.2 K and with no external magnetic field applied.
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FIG. 2. PL spectra of randomly selected QDs from all samples used in this paper. All spectra were taken using a single-stage
grating spectrometer, while the sample was at 4.2 K and with no external magnetic field applied. This figure has reduced the
spectral range to focus on the QD region of Fig. 1, while using a higher resolution spectrometer grating. The neutral exciton,
X0, and multi-charged states, XC , are labeled on representative spectra per sample where identifiable.

field. A confocal microscopy configuration is used, where
a QD is optically excited and its photoluminescence (PL)
collected through an aspheric lens with a focal distance
of 1.45 mm and numerical aperture of 0.58. The collected
PL is dispersed in a two-stage grating spectrometer and
recorded with a charge-coupled device (CCD) camera.

PL spectra of randomly selected QDs from the sam-
ples are shown in Figs. 1 and 2. Fig. 1 shows the sig-
natures of the bulk GaAs, quantum wells (QWs), and

QDs. The bulk GaAs emission can clearly be seen at
∼ 830 nm. The efficacy of the microcavity which contains
GaAs/Al0.33Ga0.67As QDs is shown by the enhanced
emission of the QDs and QWs. The emission wavelength
of all the QDs from the samples, with the exception of
the GaAs/AlAs sample, is between 760-800 nm. Within
the higher spectral resolution shown of the QDs in Fig. 2,
one can see a ∼ ±3 nm spectral range that QDs were vis-
ible at for the majority of the samples. A trend is seen
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where the addition of 27Al dopants into the QD causes
the spectra to blueshift, consistent with previous findings
[23]. These spectral shifts confirm the incorporation of
dopants into the QDs.

To perform optically detected NMR, one must first po-
larize the initially unpolarized nuclear ensemble, to cre-
ate spectral contrast. This polarization process involves
using a circularly polarized pump laser to generate spin
polarized electrons within the QD. In III-V semiconduc-
tors the polarization of the electron’s spin is dictated by
the helicity of the polarized pump light, due to strict op-
tical selection rules [4]. Subsequently, the electron’s spin
interacts with a nuclear spin via the hyperfine interac-
tion. These electron-nuclear flip-flops generate dynamic
nuclear polarization (DNP) [18]. The build-up of nu-
clear spin polarization generates an additional magnetic
field, from the static external field, which alters the spec-
tral splitting, ∆EPL, of a negatively charged trion (X−).
This trion is optically probed to measure the average nu-
clear polarization of the ∼ 105 QD nuclei. The pump
laser wavelength and power, as well as the probe time,
are calibrated to maximize the DNP measured from the
QD, as explained in Ref. [19].

Initial Pump RF Probe

TPump TRF TProbe

TCycle

FIG. 3. The pump-RF-probe cycle used for NMR experi-
ments. The nuclear spin ensemble is initially depolarized. A
circularly polarized pump laser is employed, for a time TPump,
to generate spin polarized electrons which produce nuclear
spin polarization. RF is then applied to selectively depolarize
nuclei. The time of this RF burst is chosen to effectively de-
polarize all the nuclei transitions, within the frequency band-
width, without applying excess heat to the sample. Finally,
a probe laser is used to measure the spectral splitting of the
X− trion. The probe time selected is a compromise between
PL intensity and the parasitic depolarization caused by the
laser.

The nuclear isotopes in this work are quadrupolar
(nuclear spin > 1/2), so they are sensitive to varia-
tions in the electric field gradient (EFG), e.g. due to
strain. In this work we use both integral saturation NMR
and the ‘inverse’ NMR signal amplification technique
[15], whose waveforms are shown in Fig. 4, to observe
these strain effects. The integral saturation measure-
ment works similarly to optically detected NMR tech-
niques. However, rather than using a fixed excitation
bandwidth that is scanned across a span of frequencies,
a variable size bandwidth, wexc, is used. wexc is cen-
tered on the −1/2 ↔ +1/2 central transition (CT) of
an isotope and its width is varied symmetrically. As the
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FIG. 4. (a) Polarization of nuclear spins due to optical
pumping on nuclei with 3/2 spin. After this polarization has
occurred a RF waveform is applied. The nuclear spin polariza-
tion states and the RF spectral shape, with individual comb
modes visible, is shown for (b) Integral saturation NMR, (c)
Inverse NMR.

breadth increases more nuclei (transition states) become
saturated, increasing the contrast in hyperfine shift to
that of a polarized nuclear spin ensemble. However, with
the inverse NMR measurement the excitation bandwidth
remains constant, and has enough breadth to fully de-
polarize all nuclear transitions of a selected isotope. A
frequency gap, wgap, is present within this waveform, and
its position is adjusted so that specific nuclear transitions
remain polarized. Further details of this inverse tech-
nique can be found in Ref. [15]. The integral saturation
technique allows for the broad spectral components to be
determined, however it is not effective at detecting sharp
spectral features or the quadrupolar splitting, which the
inverse technique can resolve. By using the complemen-
tary NMR procedures more information can be extracted
about the strain present in the QDs.

III. NMR EXPERIMENTS ON QUANTUM
DOTS

A. GaAs/Al0.3Ga0.7As QDs

GaAs is a widely used III-V semiconductor material
for QDs. This is attributed to its exceptional optical
properties and capability to generate low intrinsic strain
QDs, facilitated by its lattice matching with AlzGa1−zAs
barriers [8, 24, 25]. These GaAs QDs will be the basis
of comparison for the rest of the samples in this paper,
as one can picture the other samples as having addi-
tions made to this base configuration. The inverse NMR
spectra of 75As and 69Ga in Figs. 5(a) and 5(b) show
well defined satellite transitions (STs) with a quadrupo-
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FIG. 5. Inverse NMR conducted at 2.87 T on a GaAs QD for (a) 75As (b) 69Ga isotopes. The central transition (CT) NMR
spectra had a wgap of 2 kHz, the broad spectra used 8 kHz and 6 kHz for 75As and 69Ga respectively. In (a) the first and
second order quadrupolar shifts are denoted by ν

(1)
Q and ν

(2)
Q respectively. The first-order quadrupolar contribution exhibits at

least an order of magnitude larger shift than the second-order contribution. For this reason the approximation νQ ≈ ν
(1)
Q ± ν

(2)
Q

is often used. Next to this spectra is a sketch showing the nuclear spin states with their labeled transitions, with the Larmor
frequency denoted as νL. (c) Integral saturation NMR conducted at 2.87 T using a σ+ polarized pump on (c) 75As (d) 69Ga.

lar splitting magnitude, |νQ|, of ∼ 30 kHz and ∼ 15 kHz
respectively, matching similar QD samples [16]. This
splitting indicates the presence of uniaxial strain in the
sample, where greater separations reflect larger magni-
tudes of strain [26]. A large quadrupolar splitting can
be useful in nuclear spin quantum registers for quantum
computing, such as in [24], however the stress is usually
applied externally. The integral saturation NMR spec-
tra, shown in Figs. 5(c) and 5(d), show that the nuclear
transition states are 90% saturated with wexc

2 ≈ 90 kHz
and 30 kHz for 75As and 69Ga respectively. There is
broadening spanning up to 1 MHz for 75As, similar to
the presence of a broader pedestals seen previously [11].
This signal, if real, is incredibly weak, only comprising
< 3 µeV, close to the noise of the measurement technique.

B. AlxGa1−xAs/Al0.33Ga0.67As QDs

Now that we have introduced our base configuration of
GaAs QDs, we can investigate the effect of adding other
elements. The first we shall try is the addition of 27Al,
which will ensure that the QDs are still lattice matched
with AlGaAs barriers. The literature on AlxGa1−xAs has
mainly focused on the ordering parameter and string-
ing, where ‘strings’ of atoms line up along low-indexed
crystallographic directions, of 27Al atoms with varying
concentrations [20–22, 27–29]. Among the studies that
employed some form of NMR [20–22], the samples were
AlGaAs thin films. These films were fabricated using
metalorganic vapour-phase epitaxy (MOVPE) and often
powdered. There are a couple of issues of determining the

strain in these systems. As MOVPE is inherently con-
ducted in a non-vacuum environment, an increased risk of
impurities exists during the growth procedure. This may
lead to dislocations or point defects in the sample [30],
which would also contribute to strain. The samples in
this study are grown via molecular beam epitaxy (MBE)
with nanohole filling, to avoid this complication. The act
of powderization, as performed in previous work [20–22],
adds mechanical defects into the lattice, which are indis-
tinguishable from any inherent strain caused by the addi-
tion of 27Al, hence the samples used here do not undergo
this procedure. Previous works have seen broad spectral
NMR components, that span into the MHz range [21, 22];
detecting these using inverse NMR would be challenging
due to their weak signal, therefore we compliment the
inverse technique with integral saturation NMR.

Fig. 6 shows NMR spectra comparison between vary-
ing levels of 27Al concentration in AlxGa1−x QDs. In
Figs. 6(a) and 6(b), it is clear that the addition of 27Al
into the QDs increases the total breadth of the spectra.
For 75As (69Ga) this increase is from 55 kHz (30 kHz) to
300 kHz (70 kHz). The extent of the broadening can be
seen in Figs. 6(c) and 6(d); to obtain half the total sat-
urated signal wexc

2 increased from 30 kHz to 44 kHz and
then to 65 kHz for the 0%, 5%, and 10% concentrations
respectively.

As nearest neighbour interactions are the dominant in-
fluence for nuclei, one would expect 75As to have an in-
creased sensitivity to strain, compared to 69Ga, to the
27Al concentration. This is because 27Al atoms replace
the 69/71Ga atoms in the lattice. The 69/71Ga atoms will
be surrounded by four nearest neighbors of 75As, while
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FIG. 6. Inverse NMR conducted at 2.87 T on differing concentrations of 27Al in AlxGa1−x QDs on (a) 75As (b) 69Ga. wgap

was set to be 8 kHz, 20 kHz and 30 kHz in (a) and 6 kHz, 6 kHz and 12 kHz in (b) for the 0%, 5% and 10% concentrations
respectively. All optical pumping was σ+. Integral saturation NMR conducted at 2.87 T using a σ+ polarized pump on differing
concentrations of 27Al in AlxGa1−x QDs on (c) 75As (d) 69Ga.

75As will be surrounded by either 69/71Ga atoms or 27Al
if Ga has been replaced. This increased sensitivity to
strain is confirmed by the more pronounced broadening
observed in the NMR spectra for 75As compared to 69Ga
in Fig. 6. If we examine the concentrations of 27Al, x,
within these QDs, we can derive the likelihood of each
nucleus having n 27Al nearest neighbors:

POccurrence =
4!

n!(4− n)!
xn(1− x)4−n. (1)

Eq. 1 assumes that each occupational site is equally likely
to be filled, i.e. that no stringing/ordering occurs, which
may not be the case as mentioned previously. How-
ever, even with this limitation, it gives an approxima-
tion of the probability that n nearest neighbors are re-
placed with 27Al. The results from this approximation
are shown in Tab. I. Since NMR samples nuclei within
the QD (weighted by the electron density), these proba-
bilities will reflect the actual proportion of 27Al nearest
neighbors for the nuclei in the spectra. Due to the low
probability of two or more neighboring atoms, it must

be the case that the majority of the nuclei have zero
or one nearest neighbor; this means that the resultant
of any strain mechanics occurs on an atomic scale. A
simulation of the AlxGa1−xAs QDs was developed to in-
vestigate the distribution of strain in the QD, which is
discussed in Section IV A.

Concentration
of 27Al (%)

Probability of n 27Al Nearest Neighbors (%)

n = 0 n = 1 n =2 n = 3 n = 4

5 81.450625 17.1475 1.35375 0.0475 0.000625
10 65.61 29.16 4.86 0.36 0.01

TABLE I. Probability of n 27Al nearest neighbors where the
27Al concentration in the QDs is 5% and 10%, as calculated
from Eq. 1.
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FIG. 7. Probability of occurrence for zero to four nearest
neighbors in a zinc-blende structure. The QDs used in this
paper are in the 0 to 0.1 concentration range for the fraction
of 27Al. This results in the majority of configurations having
zero neighbors with a non-negligible contribution from a single
nearest neighbor.

C. GaAs/AlAs QDs

To investigate the effect of diffusion between the QD
and the barrier, a GaAs/AlAs sample was produced. As
there is no Ga in the barrier, there is a greater lattice
mismatch between the QD and the surrounding barri-
ers, given that the lattice constants follow the sequence
GaAs < AlGaAs < AlAs. Upon initial probing of the
QDs on this sample, the disparity observed in PL spec-
tra, compared to the GaAs QDs with AlGaAs barriers
or AlGaAs QDs, was striking. This is shown in Fig. 8.
In the GaAs QD with Al0.3Ga0.7As barriers there is a
clear exciton doublet at ∼ 786.2 nm. At longer wave-
lengths, spectrally separated from the exciton, there are
multi-charged states. However, for the AlAs barrier
QDs there was no spectral separation between excitons
and the charged states. We were also unable to iden-
tify the different charge states of the QD, through the
usual processes of varying excitation power or applied
bias. A wider spectral range, extending from 650 nm to
820 nm, was employed to explore multiple QDs and val-
idate whether this observation was unique, but all QDs
seen showed similar PL signatures with emission occur-
ring at ∼ 736 nm. Within this charged state amalgam,
there are some PL lines that were responsive to nuclear
polarization. However, the maximum hyperfine shift ob-
tained was ∼ 40 µeV, which is approximately half of
that obtained with the other samples used in this paper.
Similar to the PL spectra, multiple QDs were measured
and they all displayed consistently low levels of hyperfine
shifts. It is impossible to determine whether these issues
are specific to the individual sample or are inherent to
the AlAs barriers, as only one sample was available for
analysis.

An example of the inverse NMR spectra for 75As from
a GaAs/AlAs QD is shown in Fig. 9. Even though a
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FIG. 8. PL spectra of a GaAs/AlAs QD at 4.2 K with an
external magnetic field of 8 T using a 690 nm probe laser.
The inset figure shows a GaAs/Al0.3Ga0.7As QD spectra also
at 4.2 K and with an 8 T field, but using a 645 nm probe. The
difference in probe laser is to maximise the PL signal from the
dot.

relatively large gap width of 14 kHz was used to measure
the spectra, the CT amplitude is only ∼ 5.5 µeV, which
is half that in GaAs/Al0.3Ga0.7As QDs studied with a
6 kHz gap size. It is also visible that |νQ| is larger for the
AlAs barrier QD as compared to the GaAs/Al0.3Ga0.7As,
which is indicative of a larger magnitude strain present
in the dot. Due to the low signal amplitude, it was not
possible to determine whether there are any spectrally
broad components, using the inverse NMR technique.
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was set to 14 kHz and 6 kHz for AlAs and GaAs spectra
respectively.
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D. In0.1Ga0.9As/Al0.33Ga0.67As QDs

Thus far in this paper, the chemical composition of the
QDs have been nearly lattice matched with the barriers,
to ensure that there is minimal strain within the dot.
The lattice constant difference between GaAs and AlAs,
at cryogenic temperatures, is only approximately 0.138%
[31–34], hence why it is often highlighted as an asset
[16, 24, 25, 35–38]. However, InGaAs QDs, which have
been used historically due to favorable traits for Stran-
ski–Krastanov growth, have a larger lattice mismatch,
7% in the case of InAs/GaAs [4].

The consequence of this large lattice constant dif-
ference is visible in Figs. 10 and 11. These figures
also demonstrate the significance of integral saturation
NMR in complementing the inverse technique. In the
75As inverse NMR spectra, the spectral broadening spans
±350 kHz before the signal decreases to approximately
background noise. However, in the integral saturation
technique, the NMR signal increases even with full RF
bandwidths above 2 MHz. This is a significant increase,
for both 75As and 69Ga, compared to the GaAs or even
AlGaAs QDs discussed previously. For the Al0.1Ga0.9As
QDs, achieving half the maximum integral saturation
NMR signal, i.e. the median quadrupolar shift, required
a wexc

2 of 65 kHz (25 kHz) for 75As (69Ga), while for
these In0.1Ga0.9As QDs it is 217 kHz (122 kHz). This
is attributed to the significantly larger contrast in lattice
differences. The breadth of the NMR spectra is not as
wide as in In0.2Ga0.8As QDs, where a MHz breadth is
common [15, 39]. Hence, similar to the effect observed
with the inclusion of 27Al, elevated concentrations of ad-
juncts worsen the broadening of spectra due to the strain
they induce.

E. Al0.05Ga0.95As/Al0.329Ga0.667In0.004As QDs

As seen in Section IIID, it was shown that the large lat-
tice difference of 115In within the QD causes significant
broadening. The question arises, does this broadening
occur only if the dopant is within the QD, or does the
barrier’s composition result in similar spectra. To exam-
ine this, we use Al0.05Ga0.95As/Al0.329Ga0.667In0.004As
QDs, i.e. dots with a small concentration (0.4%) of 115In
within the barrier. If intermixing occurs between 115In
in the barrier and the QD, we anticipate results similar
to those observed for InGaAs QDs. Conversely, if this al-
loying is negligible, the NMR lineshapes would resemble
those of Al0.05Ga0.95As/Al0.33Ga0.67As QDs. The results
from the inverse and integral saturation NMR are shown
in Fig. 11. In Fig. 11(a) the inverse spectra are near iden-
tical for QDs with and without the 115In present in the
barrier; one might argue that the higher-order peaks (ab-
solute frequency offsets from the CT > 50 kHz) exhibit a
larger amplitude in the 115In barrier case. However, this
variation can be attributed to differences between indi-
vidual QDs. To complement this reasoning, when ana-

lyzing the integral saturation NMR spectra in Fig. 11(b),
it can be seen that there are no significant differences be-
tween the spectrally broad components. This does not
mean that there is no intermixing with 115In in the bar-
rier. However, any intermixing effects are minimal in
comparison to the introduction of 27Al in Al0.05Ga0.95As
QDs.

F. GaAs/Al0.33Ga0.67As QDs Embedded in
Distributed Bragg Reflector Microcavities

One way to aid in the coupling of the QD excitons
to the optical modes, as well as increasing the emit-
ted PL, is to use a distributed Bragg reflector (DBR)
[40, 41]. The DBR is made by alternating layers of dif-
fering refractive index (in this sample Al0.95Ga0.05As and
Al0.2Ga0.8As), which act as mirrors. These DBRs are
grown both below and above the QDs, to construct a mi-
crocavity, but the number of layer pairs above the QDs
is reduced to allow for the transmission of light out of
the sample. Microcavities and DBRs are advantageous
for various applications of QDs; however, NMR studies of
strain using microcavities have been limited to InGaAs
QDs [15, 42, 43]. Given the broad spectral components
of InGaAs QDs [15, 39], any strain effects due to the in-
troduction of the microcavity would be obscured. In this
paper we use GaAs/Al0.33Ga0.67As nanohole infilled dots
to ensure that the strain within the QD is minimal.

Figs. 12(a)-12(c) show a significant deviation in the in-
verse NMR lineshape compared to the data from Fig. 5,
which is shown in Fig. 12 as the purple lines. The ex-
pected spectral triplet is replaced by a broad-tailed peak,
with the tail appearing on the higher (lower) side of the
Larmor frequency for σ+ and σ−pumped QDs in 75As
(69/71Ga). In Fig. 5, where the quadrupolar triplet is
fully resolved, the higher and lower frequency STs ex-
hibit differing amplitudes due to the predominance of
nuclear spin states with positive or negative Iz, depend-
ing on the sign of optical pumping. Therefore, the data
in Figs. 12(a)-12(c) is particularly interesting because,
unlike in Fig. 5, where these amplitude differences were
polarization-dependent, the tails in these figures appear
on the same side for both optical pumping signs across
all isotopes. Furthermore, the inverse NMR spectra in
Fig. 12 show that the signal reaches background noise
levels at approximately 30 kHz for 75As and 10 kHz for
69/71 Ga. This means that the magnitude of biaxial
strain in the microcavity sample is smaller than in the
GaAs/Al0.3Ga0.7As QDs. Consequently, the lattice con-
stant of the GaAs layer comprising the QDs is closer to
that of bulk GaAs with the microcavity structure than
without it.

One may consider that this lineshape is a result of
the magnetic field direction. If the external magnetic
field were aligned, relative to the growth direction, at
the ‘magic’ NMR angle of approximately 54.7◦, the STs
would merge with the CT [26, 39]. However, the sam-
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FIG. 10. NMR spectra on In0.1Ga0.9As QDs at 4.2 K with an external magnetic field of 2.87 T. (a) Inverse NMR spectra on
75As. The CT spectra were taken with wgap = 2 kHz while the broad spectra used 100 kHz. (b) same as (a) but with 69Ga
and the broad spectra used wgap = 70 kHz. (c) Integral saturation NMR on 75As. (d) Same as (c) but for 69Ga. In (a)-(d) the
NMR measurements from the GaAs/Al0.3Ga0.7As sample, with an external field of 2.87 T, have also been plotted in purple,
to serve as a comparison.
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FIG. 11. Comparison of NMR spectra for: GaAs, Al0.05Ga0.95As with and without 115In in the barrier, and In0.1Ga0.9As
QDs, at 4.2 K with an external magnetic field of 2.87 T. (a) Inverse NMR spectra on 75As. (b) Integral saturation NMR on
the same QDs, also on 75As.

ple is in the Faraday geometry, so this angle is approx-
imately 0◦. The magic angle hypothesis can also be
dismissed as the one-sided broad-tailed lineshape means
that the STs cannot just simply collapse into the CT,
but must be spectrally on the same side of the CT.

Moreover, in Fig. 12(d), the total excitation bandwidth
necessary to completely saturate all nuclear transitions
of 75As amounts to hundreds of kHz. This span ex-
ceeds the linewidth of the CT observed in the pure
GaAs/Al0.3Ga0.7As QDs by two orders of magnitude,
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FIG. 12. NMR spectra of a GaAs QD within a microcavity at 4.2 K with an external magnetic field of 8 T. Inverse NMR
spectra on (a) 75As (6 kHz/2 kHz for the broad/CT spectra), (b) 69Ga (4 kHz for the broad/CT spectra), (c) 71Ga (3 kHz).
(d) Integral saturation NMR on the three isotopes within the same QD as (a)-(c). In (a)-(d) the NMR measurements from the
GaAs/Al0.4Ga0.6As sample, with an external field of 2.87 T, have also been plotted in purple, to serve as a comparison.

further suggesting that the STs have not merged with
the CT. This broadening is usually a signature of inho-
mogeneous strain. However, strain inhomogeneity alone
cannot simultaneously explain both the inverse and inte-
gral saturation NMR spectra.

One may consider that the DBR itself could be the
source of strain for the QDs. According to Saint-
Venant’s principle, the effect of localized stress dimin-
ishes as one moves farther from the source of the stress,
with the strain becoming negligible at distances signif-
icantly larger than the size of the stressed region. In
this case, the separation between the QD layer and the
nearest Al0.95Ga0.05As layer is approximately 120 nm.
For the In0.1Ga0.9As/Al0.33Ga0.67As QDs, where spec-
trally separated transitions were observed in their in-
verse NMR spectra, the distance from QDs to the AlAs
layer is approximately 200 nm. Since the QD size is
around 40 nm, the distance to the Al0.95Ga0.05As (AlAs)
layer is three (five) times the QD size for the microcav-
ity (In0.1Ga0.9As/Al0.33Ga0.67As) sample. In both cases,
the distance to the strain source is not comparable to, but
significantly greater than, the size of the QDs. Therefore,
the differences observed in the inverse NMR spectra can-
not be categorically explained by the DBR alone. To fur-
ther test this hypothesis, samples with larger or smaller
cavity widths would be required. However, modifying
this layer would also alter the stopband wavelength, ne-
cessitating further optimization.

IV. SIMULATION OF STRAIN IN AlGaAs QDs

From experimental results for QDs with differing 27Al
concentrations an estimation of the magnitude of strain
that occurs in a QD can be deduced, as done in Ref. [15].
Taking the average νq values obtained in this study and
applying the same methodology as in Ref. [15] with 69Ga,
we estimate the magnitude of average biaxial strains to
be approximately 0.033%, 0.038%, and 0.052% for the
AlxGa1−xAs samples with x = 0, 0.05, and 0.1, respec-
tively. We can equally approximate the maximum mag-
nitude of strain from the largest observed quadrupolar
shift, which for 69Ga was ≈ 85 kHz for the Al0.1Ga0.9As
sample, to be 0.19%. However, to obtain a more precise
strain distribution, a more sophisticated approach is nec-
essary. Empirical modeling is employed to determine the
statistical distribution of strain magnitudes within the
QD volume that could account for the observed NMR
spectra.

A. Simulation Setup

To reproduce the NMR spectra the Hamiltonian of the
system must be defined. We define the external magnetic
field, B, to be tilted away from the crystalline axis OZ

([001]) by an angle θ. The in-plane component is along
the line making the angle ϕ with the Ox ([100]) axis. The
Zeeman Hamiltonian is then described by:

HZ = − 1

2πℏ
ℏγ

∑
i=x,y,z

JiBi, (2)
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where J refers to the momentum operators of a spin-3/2
nuclei, and the 1/(2πℏ) factor converts the Hamiltonian
from energy into frequency units. The external magnetic
field is also converted into NMR frequencies, νz. The
gradient-elastic tensor, Sijkl, is defined explicitly as:

Sijkl =



 Sxxxx 0 0

0 Sxxyy 0

0 0 Sxxyy


 0 Syzyz 0

Syzyz 0 0

0 0 0


 0 0 Syzyz

0 0 0

Syzyz 0 0

 0 Syzyz 0

Syzyz 0 0

0 0 0


 Sxxyy 0 0

0 Sxxxx 0

0 0 Sxxyy


 0 0 0

0 0 Syzyz

0 Syzyz 0

 0 0 Syzyz

0 0 0

Syzyz 0 0


 0 0 0

0 0 Syzyz

0 Syzyz 0


 Sxxyy 0 0

0 Sxxyy 0

0 0 Sxxxx




,

(3)
where the high crystal symmetry of the system has been
imposed, resulting in only three non-zero parameters
(Sxxxx, Syzyz and Sxxyy) [26]. The convolution of the
gradient-elastic tensor and strain tensor, ϵij , is then
summed, as in Eq. 4 to get the EFG, Vi,j .

Vi,j =
∑
k,l

Sijklϵkl, (4)

where we are using Voigt notation for the indices, where:

S11 = Sxxxx = Syyyy = Szzzz (5)

S12 = Sxxyy = Syyzz = Szzxx = Syyxx = Szzyy = Sxxzz

(6)

S44 = Syzyz = Szxzx = Sxyxy (7)

Eq. 4 is then simplified by taking into account cubic
symmetry, S12 = −S11/2 [44]. We use QS11 = 0.758 ×
10−6 V (QS11 = −0.377 × 10−6 V) and QS44 = 1.51 ×
10−6 V (QS44 = 0.151× 10−6 V) for 75As (69Ga) nuclei,
as found in Ref. [26], where Q is a nuclear quadrupole
moment [4]. The quadrupolar Hamiltonian is then:

HQ =
1

2πℏ
eQ

6Iz (2Iz − 1)

∑
a,b=x,y,z

Va,b

(
3

2
(JaJb + JbJa)− δa,bJ

2

)
,

(8)
where,

J2 = Jx · Jx + Jy · Jy + Jz · Jz, (9)

e is the elementary charge of an electron, δa,b is a Kro-
necker delta, and Iz is the nuclear spin. The complete
Hamiltonian, HzQ under a generic strain tensor ϵ is the
sum of Eq. 2 and 8. The major strain value, ϵm, corre-
sponding to the largest absolute eigenvalue of the strain
tensor, is used to form a principal axis system (PAS)
as shown in Fig. 13. N spin-3/2 nuclei are then as-
signed their own strain tensor, for which HzQ is diagonal-
ized and solved using numerical parameters. This gen-
erates a list of eigensystems with transition frequencies

B
θ

φ

θε

φε

αε

ε
m

x [100]

z [001]

y [010]

[110]

[001]

[110]

FIG. 13. Geometry used for experimentation and simulation.
All angles are not sketched to scale, especially that of the
external magnetic field with respect to the growth axis of the
sample (θ). The blue circle at the origin of the (x, y, z) axes
is the location of a QD.

(
± 3

2 ↔ ± 1
2 and 1

2 ↔ − 1
2

)
. In this way one can emulate

inhomogeneous broadening of strain within a real QD. In
this work only the transitions between adjacent eigenen-
ergies (±1 difference in spin) are used, while strictly
speaking more transitions are allowed, they have a small
magnetic dipole moment, so only transitions with fre-
quencies similar to the CT are efficiently driven.

These nuclear transition frequencies are then used to
calculate the total inverse/integral saturation NMR sig-
nal. This is accomplished by comparing the RF spectral
shape to the nuclear transition frequencies, to determine
which nuclei transitions are saturated by the RF. The
spectral shape is varied, as it would be in the experi-
ments, e.g. for inverse NMR the frequency that the gap
occurs at is altered. The sum of all these saturated nu-
clei transitions is given in terms of the change in nuclear
polarization degree, ∆Pn. This is then multiplied by the
product of the hyperfine constant and nuclear spin to get
the NMR signal. In the simulation, the spectral position
of the excitation gap and the width of the depolarization
band for inverse and integral saturation NMR, respec-
tively, are defined to match those selected experimentally.
This allows for a direct Chi-squared (χ2) comparison be-
tween the simulated and experimental spectra by directly
calculating the difference between them, without requir-
ing interpolation.

A differential evolution algorithm is employed (follow-
ing Ref. [45]) to determine the global minimum for the
χ2 of the simulation. Using Wolfram Mathematica 12.0,
a Monte-Carlo simulation was created where each of the
parameters (defined in Supplementary Tabs. 2-5) for the
diagonalized Hamiltonian are assumed to vary indepen-
dently from one another. For these parameters, initial
starting conditions were given based on the experimental
data to help speed up the optimization.

The strain distribution within the QD is modeled by
two distinct strain distributions: one for homogeneous
strain and another for inhomogeneous strain, with the
major strain direction differing between the two distribu-
tions. For most of the parameters required to solve the
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Hamiltonian, we randomly sample N points from nor-
mal distributions. However, for the inhomogeneous ma-
jor strain, the angles at which ϵm is directed at, θϵ and ϕϵ,
are assigned random values within a spherical geometry.
For ease of explanation, the homogeneous and inhomoge-
neous distribution of strains shall be called ‘pure GaAs
nuclei’ and ‘alloyed nuclei’ strain respectively. The al-
loyed nuclei strain distribution is also allowed to have a
differing magnitude of strain, ϵm,alloy, to that of the pure
GaAs nuclei strain distribution. In the alloyed nuclei
strain distribution, the magnitude of ϵm,alloy can vary
for different isotopes of nuclei. This variation is per-
mitted because nuclei in different locations within the
zinc-blende lattice will experience varying strains from
their nearest neighboring nuclei. The weighting between
whether nuclei followed the pure GaAs or alloyed dis-
tribution was itself an optimization parameter. To be
clear, the distinction between the pure GaAs and alloyed
distribution is empirically based and artificial in nature.

The accuracy of the integral saturation technique de-
creases with narrower excitation bandwidths, mainly due
to difficulties in precisely fitting the center of the Lar-
mor frequency distribution. However, by measuring a
high-resolution inverse NMR CT spectrum, the Larmor
frequency can be determined with a high degree of preci-
sion, thereby improving the accuracy of the integral sat-
uration. Equally, if the bandwidth of the integral satura-
tion measurement is too large it may start to depolarize
unwanted isotopes. For example at 2.87 T the CT fre-
quencies, in MHz, for 75As : 115In : 69Ga : 27Al : 71Ga are
20.97 : 26.86 : 29.40 : 31.85 : 37.36. When studying 69Ga,
if bandwidths more than ≈ 5 MHz are used, a decrease
in the hyperfine shift can occur due to depolarization
of 115In and 27Al nuclei. To avoid these inaccuracies in
experimental data, the simulation can selectively target
a safe bandwidth range, excluding the data points that
may lead to erroneous results.

A key consideration in simulating the strain distribu-
tion within a QD is the number of Monte-Carlo sam-
ples. Simulating for a large number of samples is pos-
sible; however, as illustrated in Fig. 14, the benefits di-
minish with increasing numbers. When simulating with
a sample size over 1000, the standard deviation of the χ2

value is ≈ ±10−4, which is 0.15% the value of the mean.
While running the differential evolution minimization al-
gorithm there will be some error incorporated from this.
The simple solution is to increase the number of sam-
ples simulated, the complication with this being running
a simulation with more samples requires more time. Ul-
timately, it is a trade-off as to how many samples to use,
but we decided that 1000 was a reasonable amount.

After conducting simulations, it became apparent that
the integral saturation and inverse NMR measurements
were not entirely consistent with the simulated spectra.
Specifically, the amplitude of the computed inverse NMR
spectra was disproportionately large compared to the in-
tegral saturation spectra. As a result, simultaneous fit-
ting of the two NMR forms was not feasible. To ad-

1 0 1 0 0 1 0 0 0 1 0 0 0 0

0 . 0 9 0

0 . 0 9 5

0 . 1 0 0

0 . 1 0 5

0 . 1 1 0

χ2

N u m b e r  o f  M o n t e - C a r l o  S a m p l e s
FIG. 14. χ2 values for simultaneously reproduced inverse and
integral saturation NMR spectra at 2.87 T. 20 iterations were
run for each value of the Monte Carlo sample size to determine
the standard deviation (error bars) around the mean value.
Each simulation used the same input parameters.

dress this discrepancy, an empirical scaling factor was
introduced to artificially reduce the overall signal of the
inverse NMR spectra, enabling an accurate fit for both
NMR forms with the experimental data. A phenomeno-
logical distribution was also introduced to allow variation
of the Larmor frequency around a central peak, repre-
senting dipolar broadening. The full width at half max-
imum (FWHM) of this broadening was constrained to
remain comparable to the known scale of dipolar broad-
ening (∼ 1 kHz [6]) during the minimization process.

B. Simulation Results

The simulated spectra accurately reproduce the spec-
tral features seen in the experimental data, as presented
in Fig. 15. In Figs. 15(a) and 15(b) the quadrupolar
splitting of the STs, which are representative of the mag-
nitude of unimodal strain within the QD, corresponds
well to the measured STs.

The mean major strain derived from simulations for
the pure GaAs strain distribution was 0.023%, 0.031%,
and 0.039% for the x = 0%, 5%, and 10% AlxGa1−xAs
QDs, respectively, with FWHM values of 0.006%, 0.01%,
and 0.009%. These strain values are smaller than the
estimated values but are similar to previously measured
GaAs/AlGaAs QDs [16]. In the simulated Al0.1Ga0.9As
QD, where more 75As nuclei have 27Al as nearest neigh-
bors and inhomogeneous strain is more pronounced, the
alloyed nuclei mean major strain for 75As nuclei was
derived to be approximately 0.14% with a FWHM of
0.007%. This matches the AlAs/GaAs lattice constant
difference of 0.138% [31–34]. The percentage of Monte-
Carlo samples following the alloyed strain distribution
for 75As (69Ga) nuclei increased with the concentration
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FIG. 15. (a) Inverse NMR conducted on 75As for QDs, at 2.87 T and 4.2 K, with a varying 27Al concentrations. All optical
pumping has σ+ polarization. (b) Same as (a) but for 69Ga. (c) Same as (a) but with the integral saturation NMR technique.
The polarization chosen for optical pumping, σ+/σ−, was based on which produced the largest hyperfine shift. (d) Same as
(c) but for 69Ga. Dotted lines show the simulated results, which have also been normalized.

of 27Al, derived as 21%, 42%, and 80% (8%, 21%, and
48%) for the x = 0%, 5%, and 10% AlxGa1−xAs QDs
respectively. The non-zero percentage in the base GaAs
configuration could result from the electron wavefunction
penetrating into the barrier or diffusion of 27Al nuclei
into the QD from the barrier. The impact of the in-
creased contribution from the alloyed strain distribution
is shown in Fig. 16, where the strain distribution now
accounts for a significant proportion of the total integral
saturation NMR spectra. Beyond a half RF bandwidth
of 68 kHz, all of the increase in the total NMR signal orig-
inates from the alloyed nuclei distribution. This confirms
that the broad spectral features in the NMR spectra are
predominantly due to the alloyed strain distribution.

In the experimental 75As inverse NMR spectra,
Fig. 15(a), reasonably pronounced second-peak struc-
tures are observed between 60-100 kHz for the x = 5%
and 10% AlxGa1−xAs QDs. However, these peaks could
not be replicated in the Monte-Carlo simulation. One po-
tential reason for this is the absence of structural informa-
tion in the Monte-Carlo sample points. In AlxGa1−xAs
QDs, a zinc-blende crystal structure defines the arrange-
ment of nuclei and their nearest/next nearest neighbors.
In contrast, the simulation lacks such structural con-
straints, each Monte-Carlo sample point is independent.
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FIG. 16. Comparison between the integral saturation NMR
for simulated spectra, using optimized parameters, and exper-
imental data. Data is for the 75As isotope in an Al0.1Ga0.9As
QD at 2.87 T and 4.2 K. The weighted strain distributions,
which sum to form the total distribution, are presented for
comparison.
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This absence of structure will contribute to the discrep-
ancy between experimental and reproduced NMR spec-
tra. A different modeling approach, such as tight bind-
ing would provide a more comprehensive interpretation
of strain [46, 47].

CONCLUSION

A combination of inverse and integral saturation NMR
techniques have been used to study the effect of dis-
order in a variety of QD samples. From Monte-Carlo
simulations we have derived the major strain within
AlxGa1−xAs QDs to be 0.023%, 0.031%, and 0.039% for
the x = 0%, 5%, and 10% dots respectively. We have also
determined that, in addition to this major strain, there
exists an inhomogeneous strain within the dot, approxi-
mately equal to the lattice mismatch of GaAs/AlAs. The
presence of this inhomogeneous strain leads to broad-
ened nuclear spin transitions, thereby adversely affecting
electron spin decoherence, which is undesirable for quan-
tum information processing using electron spin qubits
[4, 6, 11]. The research was further extended to examine
the effect of adding 115In to the sample. When present in

the QD, it was shown to increase the spectral broaden-
ing by up to 2 MHz. However, the presence of 0.4% 115In
in the barrier did not produce the same effect, possibly
due to the low concentration of 115In in the sample. An
optical microcavity constructed from DBRs was found to
exhibit lower biaxial strain compared to the same QDs
without the structure. However, a one-sided broad-tailed
triangular lineshape was observed, with its origin remain-
ing unclear. Given the widespread use of these structures,
further investigation is warranted to understand and ad-
dress this phenomenon.
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Supplemental Material: Strain and disorder effects in AlGaAs

Supplementary Section 1. SAMPLE STRUCTURE

There are many quantum dot (QD) samples used within this paper, the schematics of which are

all shown within Supplementary Fig. 1. These samples are all grown using molecular beam epitaxy

(MBE) on a semi-insulating GaAs (001) substrate. The details of each structure are detailed in

the sections below.

A. GaAs/Al0.3Ga0.7As QDs

The GaAs QD sample structure is shown in Supplementary Fig. 1(a). On top of the GaAs

substrate a 100 nm layer of Al0.3Ga0.7As is grown. Aluminium droplets are then grown on the

surface of this layer, which are used to etch nanoholes [1, 2]. These nanoholes are then infilled by

growing a 2 nm layer of GaAs on top of the Al0.3Ga0.7As. A 100 nm layer of Al0.3Ga0.7As is then

grown on top of the GaAs, which confines the QDs and quantum well (QW) layer.

B. AlxGa1−xAs/Al0.33Ga0.67As QDs

The structures of both the Al0.05Ga0.95As and Al0.1Ga0.9As QD samples are depicted in Sup-

plementary Fig. 1(b) and differ only in the infilling layer. On a GaAs substrate, a 120 nm layer

of Al0.33Ga0.67As is initially grown. Subsequently, aluminium droplets are grown on the surface of

this layer to facilitate nanohole etching [1, 2]. These nanoholes are then filled by depositing a 4 nm

layer of either Al0.05Ga0.95As or Al0.1Ga0.9As atop the Al0.33Ga0.67As. Finally, a 120 nm layer of

Al0.33Ga0.67As is grown atop the GaAs to confine the QDs and the QW layer.

C. GaAs/AlAs QDs

The GaAs/AlAs QD sample structure is shown in Supplementary Fig. 1(c). On top of the GaAs

substrate a 100 nm AlAs layer is grown. Aluminium droplets are used to etch into the AlAs to

create nanoholes [1, 2]. 2 nm of GaAs is then grown on top of this AlAs layer, which fills in the

nanoholes and forms a QW layer. A 100 nm AlAs layer is then grown on top of this to form the

other barrier to the QDs. The sample is then capped with a 4 nm layer of GaAs.
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Supplementary Figure 1. Schematic of the QD sample structures. (a) The GaAs QDs that are used for the

basis of comparison for this paper. (b) The 5% and 10% AlxGa1−xAs QD samples; these are identical apart

from the infilling layer. (c) GaAs QDs with an AlAs barrier. (d) In0.1Ga0.9As QDs with a superlattice of

GaAs/AlAs. (e) Al0.05Ga0.95As QDs with 0.4% 115In added to the barrier. (f) GaAs QDs grown inside a

microcavity.

D. In0.1Ga0.9As/Al0.33Ga0.67As QDs

The In0.1Ga0.9As QD sample structure is shown in Supplementary Fig. 1(d). After the GaAs

substrate, a GaAs/AlAs superlattice is grown, where each of the 60 layers is 2.5 nm. A 200 nm

layer of Al0.33Ga0.67As is then grown on top of the superlattice, followed by aluminium droplets

which etch nanoholes [1, 2]. A 0.5 nm layer of In0.1Ga0.9As is grown on top of these nanoholes

followed by a 200 nm layer of Al0.33Ga0.67As. Finally the sample is capped with a 0.5 nm layer of
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In0.1Ga0.9As.

E. Al0.05Ga0.95As/Al0.329Ga0.667In0.004As QDs

The Al0.05Ga0.95As/Al0.329Ga0.667In0.004As QD sample structure is shown in Supplementary

Fig. 1(e). On top of the GaAs substrate a 120 nm Al0.329Ga0.667In0.004As layer is grown to form

one side of the barrier. Nanoholes are etched into this layer using aluminium droplets [1, 2]. A

3 nm layer of Al0.05Ga0.95As is then grown on top of these etched nanoholes, followed by a 120 nm

layer of Al0.329Ga0.667In0.004As to form the other barrier to the QDs.

F. GaAs/Al0.33Ga0.67As QDs Embedded in Distributed Bragg Reflector Microcavities

The microcavity is the most complex sample discussed in this paper, with its schematic shown in

Supplementary Fig. 1(f). After the GaAs substrate, the first Bragg reflector is grown, which consists

of ten pairs of Al0.95Ga0.05As and Al0.2Ga0.8As layers. Each Al0.95Ga0.05As layer is 69.35 nm thick,

whereas each Al0.95Ga0.05As layer is 60.289 nm thick. This Bragg reflector then has 65.159 nm of

Al0.33Ga0.67As grown on top of it. Aluminium droplets are used to etch nanoholes into this layer

[1, 2], which are subsequently filled with a 2.1 nm layer of GaAs. This GaAs then has 58.818 nm of

Al0.33Ga0.67As grown on top of it, followed by a 60.289 nm layer of Al0.2Ga0.8As. The second Bragg

reflector is then grown, which consists of four pairs of Al0.95Ga0.05As and Al0.2Ga0.8As layers. The

individual layer thicknesses in this Bragg reflector are identical to those in the first Bragg reflector.

Using fewer layers in this Bragg reflector reduces its reflectance, thereby enabling the transmission

of QD photoluminescence (PL) through the top of the structure. A GaAs cap with a thickness of

4 nm is then grown on top of this second Bragg reflector.

Supplementary Section 2. EXPERIMENTAL DETAILS

All of the experiments within this paper are performed within a liquid helium bath cryostat,

which provides a base temperature of 4.2 K. The sample is located within an insert tube, filled with

a low-pressure heat-exchange gas, which itself is inserted into the bore of a superconducting magnet.

This magnet can generate a maximal static field of 10 T. The optical excitation and magnetic field

are applied along the direction of the sample’s growth, z, (Faraday geometry). We use a confocal

microscopy configuration. An aspheric lens, with focal length 1.45 mm and NA= 0.58, is used as

an objective for optical excitation and PL collection of the QDs. The optical excitation laser is
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Supplementary Figure 2. PL of an Al0.1Ga0.9As QD at 8 T using a 730 nm probe laser. The spectral

splitting of the exciton doublet depends on the helicity of the optical pumping due to the buildup of nuclear

spin polarization. The black/red arrow shows the spectral splitting due to σ+/σ− polarized light.

focused into a spot of ≈ 1 µm diameter on the sample. The PL emission from a QD is dispersed

into a two-stage grating spectrometer and then recorded using a charge-coupled device (CCD)

camera. The spectral splitting of an exciton, as shown in Supplementary Fig. 2, is used to measure

the hyperfine shift, which is proportional to the nuclear spin polarization degree.

A. Optical Pumping

We utilize optical pumping to create the dynamic nuclear polarization (DNP) for QDs. This

method has been proven to be effective in a wide variety of QDs [3–7]. The optical pumping process

consists of three stages, all of which occur in TCycle in Fig. 3 of the main text. The initial stage

involves optically generating spin-polarized electron-hole pairs using circularly polarized light. This

is possible due to the selection rules in III-V semiconductors. The electron then exchanges its spin

to one of the nuclei in the ensemble, enabled because of the spin flip-flop term in the electron-

nuclear hyperfine Hamiltonian. The final step is the optical recombination of the electron-hole

pair, which removes the spin-flipped electron. This last stage is important, as it allows the QD

to accept a new spin-polarized electron. During this pumping process, the polarization degree of

the ≈ 105 nuclear spins will increase. In charge-tunable structures, nuclear polarizations of ≥ 95%

can be achieved [8], but since none of the samples in our study are charge-tunable, the maximum



5

achievable polarization degree is ≈ 80% [9].

B. Radiofrequency Depolarization

To conduct the measurements in the main text, it must be possible to effectively depolarize

nuclear spin polarizations. This is achieved through saturating the nuclear magnetic resonance

(NMR) of the isotopes within the sample. An oscillating magnetic field is produced, Bx ⊥ z, by a

coil located ≈ 0.5 mm away from the sample. This coil is made from 10 turns of 0.1 mm diameter

enameled copper wire wound on a 0.4 mm spool in 5 layers, with 2 turns in each layer. When the

oscillating Bx is resonant with the Larmor frequency of an isotope, nuclear spins undergo Rabi

rotation, where the spins will periodically transition from being parallel to antiparallel with the

external magnetic field [10]. Each nuclear spin in the ensemble is subject to a local field, due

to the nuclear-nuclear dipole interactions. The randomness of these local fields perturbs the Rabi

precession frequencies, resulting in ensemble dephasing. After a long resonant radiofrequency (RF)

saturation pulse, the nuclear spins become randomly oriented (depolarized). The coil that provides

this RF pulse is driven by a class-A RF amplifier, rated up to 20 W.

C. Optical Probing

A variety of probe wavelengths were used for the measurements in the main text, shown in

Supplementary Tab. 1. For each of these probe lasers the probe power is chosen to maximize

(saturate) the PL intensity of an exciton. Following either σ+ or σ− optical excitation from the

pump laser and any RF, the spectral splitting of the exciton is measured by applying the probe

laser for a time TProbe, as shown in Supplementary Fig. 2. Supplementary Fig. 3 shows how TProbe

is calibrated. A longer probe duration allows for the collection of more PL; however, the probe

laser induces a parasitic depolarization of nuclear spin. A compromise is reached between the

PL intensity and this DNP distortion. In the case of the In0.1Ga0.9As QD described in the main

text, TProbe = 10 ms, as shown in Supplementary Fig. 3. To increase low PL intensities from the

QD, especially if the probe duration is short, multiple pump-RF-probe cycles are taken with a

continuous CCD exposure.
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Supplementary Figure 3. Calibration for the optical probing of an In0.1Ga0.9As QD at 2.87 T. The spectral

splitting is measured as a function of the probe time, following either σ+ or σ− optical pumping. The gray

dashed line represents the value of TProbe chosen for the inverse and integral saturation NMR.

Sample Probe Wavelength (nm)

GaAs/Al0.3Ga0.7As 645

Al0.05Ga0.95As/Al0.33Ga0.67As 730

Al0.1Ga0.95As/Al0.33Ga0.67As 730

GaAs/AlAs 690

In0.1Ga0.9As/Al0.33Ga0.67As 532

Al0.05Ga0.95As/Al0.329Ga0.667In0.004As 532

GaAs/Al0.33Ga0.67As QDs embedded in distributed Bragg reflector microcavities 645

Supplementary Table 1. Probe laser wavelengths used for the NMR measurements in the main text.

Supplementary Section 3. SIMULATION DETAILS

A. Description of Parameters

Supplementary Tabs. 2-5 describe the parameters which the Monte-Carlo simulation adjusts in

order to minimize the difference between the measured and computed NMR spectra.
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Variable Description Variable Description

LarmorFreq[“As”,

“2.87T”, “σ+”]

The mean Larmor frequency of 75As nuclei, for a gen-

eralized normal distribution, using σ+ optical pump-

ing at a field of 2.87 T

LarmorFreq[“As”,

“2.87T”, “σ-”]

The mean Larmor frequency of 75As nuclei, for a gen-

eralized normal distribution, using σ− optical pump-

ing at a field of 2.87 T

LarmorFreq[“Ga”,

“2.87T”, “σ+”]

The mean Larmor frequency of 69Ga nuclei, for a gen-

eralized normal distribution, using σ+ optical pump-

ing at a field of 2.87 T

LarmorFreq[“Ga”,

“2.87T”, “σ-”]

The mean Larmor frequency of 69Ga nuclei, for a gen-

eralized normal distribution, using σ− optical pump-

ing at a field of 2.87 T

CTFWHMAs The full width at half maximum of the generalized

normal distribution for 75As nuclei at the Larmor fre-

quency, for the homogeneous strain distribution

CTFWHMGa The full width at half maximum of the generalized

normal distribution for 69Ga nuclei at the Larmor fre-

quency, for the homogeneous strain distribution

CTFWHMAsBarr The full width at half maximum of the generalized

normal distribution for 75As nuclei at the Larmor fre-

quency, for the inhomogeneous strain distribution

CTFWHMGaBarr The full width at half maximum of the generalized

normal distribution for 69Ga nuclei at the Larmor fre-

quency, for the inhomogeneous strain distribution

ExponentAs The exponential factor for the Larmor frequency dis-

tribution of 75As nuclei, for the homogeneous strain

distribution

ExponentGa The exponential factor for the Larmor frequency dis-

tribution of 69Ga nuclei, for the homogeneous strain

distribution

BarrierExponentAs The exponential factor for the Larmor frequency dis-

tribution of 75As nuclei, for the inhomogeneous strain

distribution

BarrierExponentGa The exponential factor for the Larmor frequency dis-

tribution of 69Ga nuclei, for the inhomogeneous strain

distribution

Supplementary Table 2. Description of variables used in the simulation relating to the Larmor frequencies.

Variable Description Variable Description

θϵMeanValueAs The mean θϵ value in a normal distribution, for 75As

nuclei

θϵSTDValueAs The normal distribution’s standard deviation for θϵ,

for 75As nuclei

θϵMeanValueGa The mean θϵ value in a normal distribution, for 69Ga

nuclei

θϵSTDValueGa The normal distribution’s standard deviation for θϵ,

for 69Ga nuclei

ϕϵMeanValue The mean ϕϵ value in a normal distribution ϕϵSTDValue The normal distribution’s standard deviation for ϕϵ

αϵMeanValue The mean αϵ value in a normal distribution for the

homogeneous strain distribution

αϵSTDValue The normal distribution’s standard deviation for αϵ

for the homogeneous strain distribution

αϵMeanValueBarrierAs The mean αϵ value in the normal distribution for the

inhomogeneous strain distribution of 75As nuclei

αϵSTDValueBarrierAs The standard deviation of the normal distribution for

αϵ in the inhomogeneous strain distribution for 75As

nuclei

αϵMeanValueBarrierGa The mean αϵ value in the normal distribution for the

inhomogeneous strain distribution of 69Ga nuclei

αϵSTDValueBarrierGa The standard deviation of the normal distribution for

αϵ in the inhomogeneous strain distribution for 69Ga

nuclei

Supplementary Table 3. Description of variables used in the simulation relating to the major strain angles.
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Variable Description Variable Description

ϵmMeanValue The mean major strain value, corresponding to the

largest absolute eigenvalue of strain, in a normal dis-

tribution of homogeneous strain

ϵmSTDValue The standard deviation of the normal distribution for

the major strain in the homogeneous strain distribu-

tion

ϵrηMeanValue The strain asymmetry in a normal distribution (trun-

cated to be between 0 and 1) for the homogeneous

strain distribution

ϵrηSTDValue The standard deviation of the normal distribution for

the strain asymmetry in the homogeneous strain dis-

tribution

ϵinhomoAs The mean major strain value, corresponding to the

largest absolute eigenvalue of strain, in a normal dis-

tribution of inhomogeneous strain, for 75As nuclei

ϵinhomoSTDAs The standard deviation of the normal distribution for

the major strain in the inhomogeneous strain distri-

bution, for 75As nuclei

ϵinhomoGa The mean major strain value, corresponding to the

largest absolute eigenvalue of strain, in a normal dis-

tribution of inhomogeneous strain, for 69Ga nuclei

ϵinhomoSTDGa The standard deviation of the normal distribution for

the major strain in the inhomogeneous strain distri-

bution, for 69Ga nuclei

ϵrηMeanValueBarrierAs The strain asymmetry in a normal distribution (trun-

cated to be between 0 and 1) for 75As nuclei, for the

inhomogeneous strain distribution

ϵrηSTDValueBarrierAs The standard deviation of the normal distribution for

the major strain in the inhomogeneous strain distri-

bution of 75As nuclei

ϵrηMeanValueBarrierGa The strain asymmetry in a normal distribution (trun-

cated to be between 0 and 1) for 69Ga nuclei, for the

inhomogeneous strain distribution

ϵrηSTDValueBarrierGa The standard deviation of the normal distribution for

the major strain in the inhomogeneous strain distri-

bution of 69Ga nuclei

Supplementary Table 4. Description of variables used in the simulation relating to the major strain magni-

tudes and asymmetry.

Variable Description Variable Description

Pn[“2.87T”, “σ+”] Nuclear spin polarization degree induced through σ+

optical pumping, with an external magnetic field of

2.87 T

Pn[“2.87T”, “σ-”] Nuclear spin polarization degree induced through σ−

optical pumping, with an external magnetic field of

2.87 T

AHyperfine[“As”] Hyperfine constant of 75As AHyperfine[“Ga”] Hyperfine constant of 69Ga

AsInBarrier Fraction of 75As nuclei that follow the inhomogeneous,

rather than homogeneous, strain distribution

GaInBarrier Fraction of 69Ga nuclei that follow the inhomogeneous,

rather than homogeneous, strain distribution

PhenScalFactorAs Empirical factor which reduces the simulated inverse

NMR signal for 75As nuclei

PhenScalFactorGa Empirical factor which reduces the simulated inverse

NMR signal for 69Ga nuclei

Supplementary Table 5. Description of variables used in the analysis relating to the degree of nuclear spin

polarization, hyperfine interactions strength, strain distribution fractions, and empirical scaling factors.
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Chapter 5

Nuclear Spin Diffusion

Now that the strain within QDs has be investigated using NMR techniques, we can
investigate the nuclear spin physics of the QD system. The pump-probe technique discussed in
Section 2.5 is used to polarise nuclear spins; if III-V semiconductor QDs are to be used as
electron spin qubits for quantum computing then it is essential that the spin dynamics of the
system are understood, after optical pumping has occurred. If a QD were to exist that was both
addressable via optical means and ideally responsive to RF pulses (nuclear spin state
population transfer), but the nuclear states lasted for such a short duration that the system
could not be read, then the QD would not be a useful spin qubit.

It has been hypothesised that the central spin of a localised electron within a QD could
suppress NSD. This is because the hyperfine interaction of the central spin generates
inhomogeneous Knight shifts in the nuclear spin energy levels, a phenomenon known as the
Knight-field-gradient diffusion barrier. This would, naturally, be beneficial to the application
of electron spin qubits; however, thus far the consensus in the literature is mixed as to whether
this is a genuine effect ([144, 184, 185] argue for acceleration of NSD while [144, 160,
186–189] favour suppression). The argument for accelerated NSD is that the central spin
allows for electron mediated spin flip-flops which would enhance the diffusion of spin away
from the QD. In this chapter we focus on which of these two sources dominate the system,
using an optical pump-probe cycle on a charge tunable GaAs/AlGaAs sample. The critical
factor of this methodology is that, the QD can be determinately charged with/without an
electron without altering the initial spin dynamics of the system, thereby directly investigating
the effect of the electron on the nuclear spin system. Our measurements reveal that nuclear
spin relaxation is accelerated by the presence of the electron, indicating that the
Knight-field-gradient diffusion barrier does not apply to GaAs epitaxial QDs.

The work presented is in the form of a paper, which I am first author on, and has been
published in a peer-reviewed journal on 9th May 2023, reproduced with permission from
Springer Nature. The citation is:
P. Millington-Hotze, S. Manna, S. F. Covre da Silva, A. Rastelli, E. A. Chekhovich. “Nuclear

61



Chapter 5. Nuclear Spin Diffusion 62

spin diffusion in the central spin system of a GaAs/AlGaAs quantum dot”. Nat Commun 14,
2677 (2023). doi: 10.1038/s41467-023-38349-0.

In this work the NMR experiments and analysis were conducted by Peter Millington-Hotze
and Evgeny Chekhovich. The numerical modelling was conducted by Evgeny Chekhovich. The
samples were grown by Santanu Manna, Saimon Covre da Silva and Armando Rastelli.
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Nuclear spin diffusion in the central spin
system of a GaAs/AlGaAs quantum dot

Peter Millington-Hotze 1, Santanu Manna2,3, Saimon F. Covre da Silva 2,
Armando Rastelli 2 & Evgeny A. Chekhovich 1

The spin diffusion concept provides a classical description of a purely
quantum-mechanical evolution in inhomogeneously polarized many-body
systems such as nuclear spin lattices. The central spin of a localized electron
alters nuclear spin diffusion in a way that is still poorly understood. Here, spin
diffusion in a single GaAs/AlGaAs quantum dot is witnessed in the most direct
manner from oscillatory spin relaxation dynamics. Electron spin is found to
accelerate nuclear spin relaxation, from which we conclude that the long-
discussed concept of a Knight-field-gradient diffusion barrier does not apply
to GaAs epitaxial quantum dots. Our experiments distinguish between non-
diffusion relaxation and spindiffusion, allowingus toconclude that diffusion is
accelerated by the central electron spin. Such acceleration is observed up to
unexpectedly highmagnetic fields –wepropose electron spin-flip fluctuations
as an explanation. Diffusion-limited nuclear spin lifetimes range between 1 and
10 s, which is sufficiently long for quantum information storage and
processing.

Interactingmany-body spin ensembles exhibit a variety of phenomena
such as phase transitions1,2 spin waves3,4 and emergent
thermodynamics5,6. Spin diffusion7,8 is one of the earliest studied
phenomena, where unitary quantum-mechanical evolution results in
an irreversible dissipation of a localized spin polarization—a process
that is well described by the classical diffusion model. Pure spin dif-
fusion in homogeneous solids has been observed in a few notable
examples9,10. However, most systems of interest are inhomogeneous
by nature. In particular, magnetic (hyperfine) interaction with the
central spin of a localized electron [Fig. 1a] causes shifts (known as the
Knight shifts11,12) in the nuclear spin energy levels [Fig. 1b]. The result-
ing nuclear spindynamics are complicated, asobserved in awide range
of solid-state impurities13–19 and semiconductor nanostructures17,20–25.
Due to this complexity, it is still an open question whether the inho-
mogeneous Knight shifts accelerate23,26,27 or suppress16,25,27–30 spin dif-
fusion between the nuclei. Resolving this dilemma is both of
fundamental interest and practical importance for the recent propo-
sals to use nuclear spins as quantummemories and registers31–33, since

spin diffusionwould set an ultimate limit to the longevity of any useful
quantum state. Beyond semiconductor nanostructures, under-
standing of spin diffusion plays an important role in NMR signal
enhancement and structural analysis of polymers34,35,
biomolecules36–38, proteins39, and pharmaceutical formulations40.

Figure 1 sketches the central spinmodel where an electron can be
trapped in a GaAs layer surrounded by the AlGaAs barriers, and for
simplicity, spin-1/2 particles are used to describe the energy levels of
the nuclei subject to the strong external magnetic field Bz. Any two
nuclear spins i and j are coupled by the dipole-dipole interaction
/ 2Îz,i Îz,j � ð̂Ix,i Îx,j + Îy,i Îy,jÞ, where Îx,i ,̂Iy,i and Îz,i are the Cartesian
components of the spin operator Ii of the ith nucleus. The /
ð̂Ix,i Îx,j + Îy,i Îy,jÞ term describes a flip-flop spin exchange process
(curved arrows at z = −1 and 0 in Fig. 1b), responsible for the transfer of
spin polarization in space, known as spin diffusion. The electric
quadrupolar moments of the spin-3/2 nuclei make them sensitive to
electric field gradients (EFGs), which can be induced by the GaAs/
AlGaAs interface roughness (z = 4.5) or atomic-scale strains arising
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from random positioning of the aluminium atoms41,42 in AlGaAs (z ≥ 5).
These quadrupolar effects lead to mismatches in the energy splittings
of adjacent nuclei, which in turn impede the nuclear spin diffusion.

When an electron is added, its spin s couples to the nuclear spin
ensemble via hyperfine interaction:

Ĥhf =
X

j

Ajðŝx Îx,j + ŝy Îy,j + ŝz Îz,jÞ, ð1Þ

where the summation goes over all nuclei j, and the coupling energies
Aj are proportional to the electron density ∣ψe(rj)∣2 at the nuclear sites
rj. There are two competing effects of the hyperfine interaction. On the
one hand, through the term ŝz Îz, the electron spin can produce a fur-
ther diffusion barrier16,25,27–30, at the points of strong Knight shift gra-
dient (z = 3 in Fig. 1a). On the other hand, the electron spin canmediate
spin flip-flops between two distant nuclei with similar energy splitting
(e.g., z = −2 and z = 2), potentially opening a new channel for spin
diffusion, especially at low magnetic fields23,26,27. Both of these effects
have been known for decades, and both were claimed to be dominant
in different previous studies, often without giving consideration to the
other alternative. The main purpose of this study is to settle this
dilemma through systematic experimental work.

Here, we examine electron-controlled nuclear spin diffusion in
high-quality epitaxial GaAs/AlGaAs quantum dots (QDs), which
emerged recently as an excellent platform for quantum light
emitters43–45 as well as spin qubits33,46 and quantum memories32. Cru-
cially, we design experiments where nuclear spin dynamics are
examined either in the absence or in the presence of the electron
central spin, but under an otherwise identical initial nuclear spin state.
In this way, we distinguishwith high accuracy the effects specific to the
electron spin. This allowsus todemonstrate thatnoobservableKnight-
field-gradient diffusion barrier is formed. Instead, the nuclear–nuclear
interactions, mediated by the electron spin, accelerate nuclear spin
diffusion up to unexpectedly highmagnetic fields—we attribute this to
the impact of the electron spinflips. Our results answer a long-standing
question in spin physics, and provide practical guidelines for the

design and optimization of quantum dot electron-nuclear spin qubits
and quantum memories.

Results
Sample and experimental techniques
The studied heterostructure is grown by in situ etching of
nanoholes47,48 in the AlGaAs surface [Fig. 2a, b], which are then infilled
with GaAs to form the QDs. The structure is processed into a p − i − n
diode [Fig. 2c] where an external bias VGate is applied to charge QDs
deterministically with individual electrons (See details in Supplemen-
tary Note 1). In this way, it is possible to study nuclear spin dynamics in
an empty (0e) or single electron (1e) state. A static magnetic field Bz is
applied along the growth axis z (Faraday geometry) and the sample is
kept at a liquid helium temperature of 4.3K. We use a confocal
microscopy configuration where QD photoluminescence (PL) is exci-
ted and collected through an aspheric lens with a focal distance of
1.45mm and numerical aperture of 0.58. The collected PL is dispersed
in a two-stage grating spectrometer, and recorded with a charge-
coupled device (CCD) camera.

The change in the PL spectral splitting ΔEPL of a negatively
charged trion X− [see Fig. 2d] is the hyperfine shift Ehf, which gives a
measure of an average spin polarization degree of the ≈105 QDnuclei12.
The hyperfine shifts (also known as Overhauser shifts) arise from the
ŝz Îz term of the hyperfine interaction Hamiltonian [Eq. (1)]. Large
nonequilibrium nuclear spin polarization is generated on demand by
exciting the QD with a circularly polarized pump laser12, which
repeatedly injects spin-polarized electrons into a QD, and causes
nuclear spin polarization build up via electron-nuclear spin flip-flops
described by the ŝx Îx + ŝy Îy part of Eq. (1). A small copper wire coil is
placed near the sample to produce radiofrequency (RF) oscillating
magnetic field perpendicular to the static magnetic field. Application
of the RF field allows for the energy spectrumof the nuclear spins to be
probed via nuclear magnetic resonance (NMR). Moreover, the RF field
canbe used to depolarize the nuclear spins on demand. Further details
can be found in Supplementary Note 2, including sample growth
details, PL spectra, characterization of QD charge state control, and
additional results at an elevated temperature of 15.2 K.

Nuclear spin system of a GaAs quantum dot
Figure 2e shows NMR spectra of 75As in a single GaAs QD, measured
using the “inverse NMR” technique with an optical Pump-RF-Probe
cycle shown in the top inset. For an empty QD (open symbols), an
NMR triplet is observed49, corresponding to the three magnetic-
dipole transitions between the four Zeeman-split states Iz = {−3/2,
−1/2, +1/2, +3/2} of a spin-3/2 nucleus (left inset). The central
resolution-limited peak originates from the −1/2↔ +1/2 NMR transi-
tion that is weakly affected by strain. The two satellite transition
peaks ±1/2↔ ±3/2 are split from the central transition peak by the
strain-induced EFGs. The average splitting νQ ≈ 24 kHz between the
triplet components corresponds to an average elastic strain of
≈2.6 × 10−4 (refs. 50,51). The satellite transitions are inhomogeneously
broadened, with non-zero NMR amplitudes detected approximately
in a range of νQ∈ [10, 50] kHz, indicating that elastic strain varies
within the nanoscale volume of the QD. The 69Ga and 71Ga nuclear
spins are also affected by the strain, but the quadrupolar shifts νQ are
smaller by a factor of ≈2 and ≈3, respectively50–52.

When a single electron occupies the QD, it induces inhomoge-
neous Knight shifts that exceed the quadrupolar shifts, leading to a
broadened NMR peak [solid symbols in Fig. 2e]. From the NMR peak
width, the Knight frequency shifts, characterizing the typical coupling
strength between the electron spin and an individual nuclear spin, are
estimated to be Aj/(2h) ≈ 50kHz, where h is Planck’s constant.

These NMR characterization results indicate a complex interplay
of dipolar, quadrupolar, and hyperfine interactions governing the
nuclear spin dynamics, which we now investigate experimentally.
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Fig. 1 | Schematic of a central spin model. The sketch is for the one-dimensional
case, along the growth axis z of a GaAs/AlGaAs structure. a Wavefunction density
∣ψe∣2 of an electron (e, ball with arrow) localized in GaAs. b Energy levels of the
nuclei, that are depicted for simplicity as spins 1/2, and can occupy states with +1/2
and−1/2 spinprojections (up anddownarrows).Dashed lines show thebulk nuclear
spin energies dominated by the external magnetic field Bz. These bulk energies are
generally different in GaAs (z ≤ 4) and AlGaAs (z ≥ 5) due to the difference in che-
mical shifts and homogeneous strain. The energies of the individual nuclei are
further shifted by the electron Knight field (mainly inGaAs) and by the atomic-scale
strain disorder in the AlGaAs alloy. Magnetic-dipole interaction between the nuclei
can result in spin exchange via aflip-flopprocess, sketchedby the curvedarrows for
nuclei at z = −1 and z =0 as anexample. If energymismatch is larger than thenuclear
spin level homogenous broadening, for example for nuclei at z = 4 and z = 5, the
spin exchange becomes prohibited, suppressing nuclear spin diffusion.
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Observation of nuclear spin diffusion in a GaAs quantum dot
While nuclear spin diffusion is a well-known phenomenon, its direct
observation is rarely possible9,10. Thuswe startwith an experiment that
reveals spin diffusion in a QD structure in a most convincing manner.
The measurement cycle [see timing diagram in Fig. 3a] starts with a
long σ+ polarized optical pump. It creates a negative nuclear polar-
ization degree PN that diffuses out of the QD into the surrounding
material. The resulting spatial profile of PN(z) is depicted in the left-
most sketch in Fig. 3b. Then, a much shorter σ− pump is applied. This
second pump is too short for diffusion to take place, so a positive PN is
localized only in a QD, while the surrounding remains negatively
polarized (second sketch in Fig. 3b). This two-stage pumping (similar
to “hole burning” implemented previously in shallow donors15) is fol-
lowed by a dark time TDark. Finally, the remaining polarization within
the QD volume (i.e., around z = 0) is probed through an optically
detected hyperfine shift Ehf. The measured dependence Ehf(TDark) is
plotted in Fig. 3b and shows non-monotonic spin dynamics. A sign-
reversal occurs atTDark ≈ 10 swhen thenegative PN, inducedby thefirst

pump and stored in the surrounding barriers, refluxes back into the
QD. This diffusion reflux peaks around TDark ≈ 100 s where Ehf reaches
its minimum. At even longer TDark nuclear spin polarization decays
monotonically towards Ehf ≈0.

We point out that the thermal-equilibrium hyperfine shifts are
very small ∣Ehf∣ ≲ 0.15 μeV, so that, any non-zero Ehf can only arise
from dynamical nuclear spin polarization. The non-diffusion
nuclear spin relaxation (NSR) mechanisms, such as direct spin-
lattice coupling and hyperfine interaction with electrons, can only
lead to monotonic decay of Ehf towards ≈0. Spatial transfer of
polarization is the only mechanism that can produce non-
monotonic free evolution and sign-reversal of Ehf. Another way to
describe the diffusion reflux experiment is to note that switching
between σ+ and σ− essentially corresponds to time-oscillating
nuclear spin pumping, which creates a wave-like initial spatial pro-
file. In the subsequent free evolution, this spatial polarization wave
is converted back into temporal oscillations of nuclear polarization
at the QD site. To our knowledge, such oscillating spin relaxation
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Fig. 2 | Optically active epitaxial GaAs/AlGaAs quantum dots. a Atomic force
microscopy (AFM) profile of the AlGaAs surface after nanohole etching. b Surface
level profiles taken along the horizontal and vertical lines through the center of the
nanohole in (a). c Schematic (not to scale) of the sample structure. GaAs QDs are
formed by infilling of the in situ etched nanoholes in the bottom Al0.33Ga0.67As
barrier. The bottom (top) Al0.15Ga0.85As layer is n (p) type doped to form a p − i − n
diode structure. External gate bias VGate is applied for deterministic QD charging
with electrons. d Photoluminescence (PL) spectra of a negatively charged trion X−,
following either σ+ (triangles) or σ− (squares) optical pumping, which induces
nuclear spin polarization. This polarization manifests in hyperfine shifts Ehf of the
Zeeman doublet spectral splitting ΔEPL. e Optically detected NMR of the 75As spin-

3/2 nuclei measured in a single QD. Strain-induced quadrupolar shifts of the
nuclear spin-3/2 levels (left inset) give rise to an NMR triplet with splitting
νQ ≈ 24 kHz, observed in an empty QD (0e, diamonds). Charging the QD with a
single electron (1e, circles) induces inhomogeneous Knight shifts observed asNMR
spectral broadening. The measurement is conducted using the “inverse NMR”
signal amplification technique68, with spectral resolution shown by the horizontal
bars (smaller for 0e and larger for 1e). The measurement Pump-RF-Probe cycle is
shown in the top inset. The bias VGate is tuned to 0e charge state for the optical
pumping of the nuclear spins and to 1e state for their optical probing. The radio-
frequency (RF) pulse is applied in the dark under either 0e or 1e bias.
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gives by far the most direct evidence of nuclear spin diffusion
between an individual QD and its surrounding.

Nuclear spin relaxation in a GaAs quantum dot
We now proceed to quantitative NSR measurements with a timing
diagram shown in Fig. 4a. First, any remnant nuclear spin polarization
is erased by saturating the 75As, 69Ga, and 71Ga NMR resonances in the
entire heterostructure53. This is followed by a single variable-duration
(TPump) optical pumping pulse15,17,20,22. In order to localize the nuclear
spin polarization to the QD nanoscale volume, we choose the pump
photon energy to be below the AlGaAs barrier bandgap. After the
pump laser is turned off, the gate biasVGate is set to a desired level for a
dark time TDark—this way evolution under 0e or 1e QD charge state is
studied for nominally identical initial nuclear spin polarizations.
Finally, Ehf is measured optically, which provides nuclear spin polar-
ization averaged over all nuclei of the QD. The relative isotope con-
tributions to Ehf arising from 75As, 69Ga, and 71Ga are ≈49, 28, and 23%,
respectively54.

Figure 4b shows the average QD nuclear spin polarization as a
function of the pump-probe delay TDark during which the sample is
kept in the dark. The decay is non-exponential, thus we characterize
theNSR timescaleT1,N by thehalf-life timeoverwhich theQDhyperfine
shift Ehf decays to 1/2 of its initial value. The NSR rate is then defined as
ΓN = 1/T1,N. When the pumping time TPump is increased, T1,N notably
increases, as canbe seen in Fig. 4c, d. Suchdependence ofT1,N onTPump

is observed both in empty (0e) and charged (1e) QD states, and in a
wide range of magnetic fields.

Relaxation dominated by nuclear spin diffusion
In order to explain the results of Fig. 4, we note that nuclear spin
dipole-dipole interactions conserve the nuclear spin polarization for
any magnetic field exceeding the dipolar local field, typically ≲1mT.
Therefore, at a high magnetic field the decay of nuclear spin polar-
ization canproceed via two routes: either via spin-conserving diffusion
to the surrounding nuclei, or spin transfer to external degrees of

freedom, including quadrupolar coupling to lattice vibrations16,55 or a
hyperfine interaction with a charge spin16,56–58 that is in turn coupled to
the lattice or other spins. Spin diffusion can only take place if the
spatial profile of the initial nuclear spin polarization is inhomoge-
neous, as exemplified in the reflux experiment in Fig. 3. By contrast,
direct spin-lattice and hyperfine interactions have no explicit depen-
dence on the spin polarization spatial profile. Optical pumping time
TPump that is short compared to spin diffusion timescales creates
nuclear spin polarization localized to theQDvolume15,17,20,22. Therefore,
observation of short T1,N at short TPump is a clear indicator that spin
diffusion is the dominant NSR mechanism in the studied QDs. Con-
versely, if the pumping durationTPump is long, there is enough time for
nuclear polarization to diffuse from the QD into the surrounding
AlGaAs barriers, suppressing any subsequent spin diffusion out of the
QD and increasing T1,N, as observed in Fig. 4c, d.

In order to complement our experimental investigationwemodel
the spatiotemporal evolution of the nuclear spin polarization degree
PN(t, z) by solving numerically the one-dimensional spin diffusion
equation

∂PNðt,zÞ
∂t

=DðtÞ∂
2PNðt,zÞ
∂z2

+wðtÞ∣ψeðzÞ∣2ðPN,0 � PNðt,zÞÞ, ð2Þ

where the last term describes optical nuclear spin pumping with a rate
proportional to electrondensity ∣ψe(z)∣2 and the time-dependent factor
w(t) equal to 0 or w0 when optical pumping is off or on, respectively.
Correspondingly, the spin diffusion coefficient D(t) takes two discrete
values DDark or DPump when optical pumping is off or on, respectively.
PN,0 is a steady-state nuclear spin polarization degree that optical
pumping would generate in the absence of spin diffusion. Eq. (2) is
solved numerically and the parameters such asDðneÞ

Dark,w0ðBzÞ,DPump(Bz)
are varied to achieve the best fit to the entire experimental datasets of
Ehf(TPump, TDark)measured atBz = 0.39 and 9.82 T for empty (n =0) and
charged (n = 1) QD states. The best fit calculated dynamics are shown
by the lines in Fig. 4b and capture well the main features of the
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pulse induces photoluminescence (PL). The hyperfine shifts Ehf detected in PL
spectra provide a measure of the average polarization of ≈105 QD nuclear spins,
weighted by theQDelectron density ∣ψe∣2.bDark timedependenceof the hyperfine
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spin relaxation. This indicates a diffusion reflux where spin polarization induced by
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experimentally measured nuclear spin decay, confirming the validity
of the spin diffusion picture. The one-dimensional character of
diffusion, occurring predominantly along the sample growth z
direction, is justified by the large ratio of the QD diameter ≈70 nm to
QDheight < 9 nm, and is further verified bymodeling two-dimensional
spin diffusion (see Supplementary Note 4).

Effect of central spin on nuclear spin diffusion
Dividing the typical Knight shift of ≈50kHz by half the QD thickness
(4.5 nm) we calculate the gradient and roughly estimate the Knight
shift difference of ≈4.4 kHz for the two nearest-neighbor spins of the
same isotope separated by a0=

ffiffiffi
2

p
(here, a0 = 0.565 nm is the lattice

constant). The energy corresponding to such a difference significantly
exceeds the energy that can be exchanged with the nuclear dipole-
dipole reservoir for a spin flip-flop to happen25 (the dipole-dipole
energy is on the order of ≈h/T2,N, where T2,N∈ [1, 5]ms is the nuclear
spin-echo coherence time33,59). The flip-flops would then be limited to
the few nuclear spin pairs whose vector differences are nearly ortho-
gonal to the Knight field gradient. Therefore, onemay naively expect a
Knight-field-gradient barrier to form and suppress spin diffusion in an
electron-chargedQD. By contrast, Fig. 4c, d showthat in anexperiment
the NSR is faster when theQD is occupied by a single electron (1e, solid
symbols) for all studied TPump, demonstrating that no significant
Knight-field-gradient barrier is formed. However, in order to quantify
the effect of the central spin on nuclear spin diffusion we must dis-
tinguish it from other non-diffusion NSR mechanisms introduced by
the electron spin. To this end, we examine the magnetic field depen-
dence shown in Fig. 5.

First, we examine a case where long optical pumping is used to
suppress spin diffusion, thus highlighting the non-diffusion NSR
mechanisms. Figure 5a shows the experimental dependence ΓN(Bz) for
long TPump = 990 s. The results indicate that in an empty QD (0e) spin
diffusion is still the dominant NSR mechanisms at TPump = 990 s.

Indeed, the observed rates Γð0eÞN 2 ½1 × 10�3,6 × 10�3� s−1 are con-
siderably higher than those found in bulk crystal experiments55, where
spin diffusion is negligible, resulting in relaxation rates as low as
ΓN ≈ 6 × 10−5 in semi-insulating GaAs16. The electron-induced (1e) rates
under long pumping Γð1eÞN 2 ½4× 10�3,2 × 10�2� s−1 are nearly indepen-
dent of Bz, and exceed the 0e rates by no more than a factor of
Γð1eÞN =Γð0eÞN <4 [squares in Fig. 5c]. Such a small effect of the electron is
explained by the small strain of the GaAs/AlGaAs structures, which
reduces the efficiency of the non-diffusion NSRmechanisms related to
phonon and electron cotunneling. This is in stark contrast to the large
magnetic field-induced variation Γð1eÞN 2 ½5 × 10�4,1 × 101� s−1 in
Stranski–Krastanov self-assembled InGaAs QDs58, where phonon and
cotunneling non-diffusionmechanisms dominate, both enabled by the
noncollinear hyperfine interaction56,58, arising in turn from the large
strain-induced nuclear quadrupolar shifts.

In the case of long optical pumping, the NSR rates are nearly
constant, exhibiting only a small irregular dependence on the
magnetic field [Fig. 5a]. The long-pumping absolute NSR rates are
also consistent across different individual QDs, as demonstrated in
Fig. 5b. The main reason for the residual scatter in Fig. 5a, b is the
dot-to-dot variation and magnetic field dependence of the QD
optical absorption spectrum. As a result, the same optical pump
power and wavelength lead to a different nuclear spin pumping
rate, which affects the initial spatial profile of the nuclear spin
polarization and the subsequent spin diffusion dynamics. Other
uncontrollable parameters may include the charge state of the
nearby impurities. While the absolute NSR rates Γð1eÞN and Γð0eÞN are
subject to uncontrollable effects, their ratio Γð1eÞN =Γð0eÞN is a robust
quantity. This is exemplified in Fig. 4e, where at high magnetic field
Bz = 9.82 T (triangles) the rate ratio is seen to be constant, even
though the absolute rates depend strongly on TPump (Fig. 4d). At low
Bz = 0.39 T there is a significant dependence of Γð1eÞN =Γð0eÞN on the
pumping time TPump (squares in Fig. 4e). Therefore, we use the
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Γð1eÞN =Γð0eÞN ratio to gauge the electron spin’s effect on NSR, including
its impact on spin diffusion.

In order to discriminate the diffusion-related effect of the QD
electron spin, in addition to the long-pumping measurements dis-
cussed above [squares in Fig. 5c], we choose for each magnetic field a
short pumping time, typically TPump∈ [0.08, 0.6] s, that yields initial
QD nuclear spin polarization at ≈1/2 of the steady-state long-pumping
polarization. The resulting short-pumping ratio Γð1eÞN =Γð0eÞN is shown by
the triangles in Fig. 5c. The ratio Γð1eÞN =Γð0eÞN combines all the electron-
induced effects. However, the significant excess of the short-pumping
ratio Γð1eÞN =Γð0eÞN [triangles in Fig. 5c] over the long-pumping ratio
Γð1eÞN =Γð0eÞN [squares in Fig. 5c] is ascribed to spin diffusion alone, dis-
criminating it from any non-diffusion mechanisms introduced by the
electron spin. The electron spin-induced acceleration of the nuclear
spin diffusion is seen to be particularly pronounced at low magnetic
fieldsBz≲0.5 T, consistent with the influenceof the electron-mediated
nuclear–nuclear spin interaction23,26,27. Such pairwise indirect interac-
tion of nuclei j and k is derived from the second-order perturbation
expansion of Eq. (1):

Hind
hf,j,k / AjAk

ΔEe
ŝz Î

ð+ Þ
j Î

ð�Þ
k , ð3Þ

where Î
ð± Þ
j = Îx,j ± îIy,j and ΔEe = μBgeBz + Ehf is the electron spin splitting

due to both the Zeeman effect and the nuclear spin-induced hyperfine
shift Ehf. In our experiments, both contributions are negative, so that
any nuclear spin pumping increases ∣ΔEe∣. The rate of the indirect
nuclear–nuclear spin flip-flops scales as / ΔE�2

e . Consequently, the
resulting acceleration of nuclear spin diffusion in gate-defined GaAs
QDs was previously found to be limited to the low fields
B <0.02−0.75 T (refs. 23,27,60). By contrast, Fig. 5c shows that such
acceleration persists at unexpectedly high magnetic fields, well above
Bz ≳ 2 T. The short- and long-pumping Γð1eÞN =Γð0eÞN ratios converge only at
the maximum field Bz = 9.82 T.

Figure 5d shows Γð1eÞN =Γð0eÞN for five different QDs in the same
sample. Since it is too time-consuming to measure full dependence, a
fixed TPumpwas chosen for eachQD, which inevitably leads to variation
in the actual Γð1eÞN =Γð0eÞN ratios. However, for all QDs, we observe an
excess of the short-pumping ratios over the long-pumping ratios at
Bz = 0.5 T, which becomes negligible at Bz = 10 T. This confirms that
electron-induced acceleration of nuclear spin diffusion is a systematic
effect.

Acceleration of spin diffusion at high magnetic fields
We now examine why the electron-induced acceleration of nuclear
spin diffusion is observed at highmagnetic fields. The electron g-factor
in the studied epitaxial QDs is ge ≈ −0.1 (see Supplementary Note 2),
much smaller than ge ≈ −0.4 in the gate-defined QDs. Moreover, the
number of nuclei is anorder ofmagnitude smaller in our epitaxial QDs.
These factors result in a smaller ∣ΔEe∣ and larger Aj, respectively, which
should lead to a stronger hyperfine-mediated coupling in the studied
QDs (Eq. (3)). However, this difference does not explain the magnetic
field dependence. At high field Bz = 9.82T the electron spin Zeeman
splitting is ∣ΔEe∣ ≈ 58μeV. At low field Bz = 0.39 T we take into account
both the Zeeman splitting ≈ −2.3μeV and the time-averaged hyperfine
shift Ehf ≈ −2.5μeV (half of the initial Ehf ≈ −5μeV under the shortest
used TPump ≈ 8ms) to estimate ∣ΔEe∣ ≈ 4.8μeV. This suggests a factor of
(58/4.8)2 ≈ 150 reductions in the hyperfine-mediated rates. However,
themeasured short-pumpingNSR rate forQD1 reduces only by a factor
of ≈ 6 from Γð1eÞN ≈0:74 s�1 at low field [Fig. 4c] to Γð1eÞN ≈0:12 s�1 at high
field [Fig. 4d]. Prompted by these observations, we point out that
Eq. (3) treats the central electron spin as isolated,while in a real system,
the electron is coupled to external environments such as phonons and
other charges.

A fluctuating electron spin can accelerate nuclear spin diffusion,
provided there is a frequency component in the time-dependent
Knightfield that equals the energymismatch of a pair of nuclei61,62. This
contributionhasbeen considered for deep impurities14, and, aswenow
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discuss, should also be taken into account in the context of III-V
semiconductor nanostructures. Electron spin flips are always present
due to phonons and cotunneling coupling to the electron Fermi
reservoir of the n-doped layer58,63,64. It is worth noting that the accel-
erationof spindiffusiondiscussed in this paragraph is distinct fromthe
non-diffusion NSR mechanisms, where the phonon bath and Fermi
reservoir act as a sink for the nuclear spinmomentum, carried through
the electron spin. Preliminary studies of the relaxation dynamics are
conducted using single-shot readout of the electron spin via nuclei65

(see SupplementaryNote 5, details to be reported elsewhere). Electron
spin lifetimes are found to be T1,e ≈ 7ms at Bz = 2 T, reducing to
T1,e ≈0.5ms at Bz = 7 T. The electron flips are dominated by phonons
and occur as abrupt jumps (telegraph process). Hence the Knight field
should have a significant spectral density around the [1, 10] kHz range,
matching the typical differences in the nuclear spin energies found
from NMR spectra of Fig. 2e. Thus we speculate that the electron spin
flips contribute to the acceleration of nuclear spin diffusion in the
studied GaAs QDs, especially at high magnetic fields. In other words,
the widely used model of hyperfine-mediate nuclear–nuclear interac-
tions [Eq. (3)] considers only the zero-frequency component, whereas
our data suggest that the entire electron spin fluctuation spectrum
must be included. Our explanation is supported by numerical model-
ing (Supplementary Note 4), which yields a significant increase in the
nuclear spin diffusion coefficients under optical pumping
DPump≫DDark where electron spin flips are accelerated66. Future work
may address this phenomenon through the measurement of nuclear
spin diffusion under simultaneous flipping of the central electron spin
with microwave pulses.

Comparison with previous results on nuclear spin diffusion
In order to understand what controls the rate of spin diffusion we first
make a comparison with Stranski–Krastanov InGaAs/GaAs and InP/
GaInP self-assembled QDs, where quadrupolar shifts are so large (MHz
range67,68) that all nuclear spins are essentially isolated from each
other, eliminating spin diffusion and resulting in very long nuclear spin
lifetimes T ð0eÞ

1,N > 104 s in empty (0e) QDs26,29,56,56,58,69,70. Even in the pre-
sence of the electron spin (1e) the nuclear spin diffusion takes place
only inside theQD26,56, without diffusion into the surroundingmaterial.

In the lattice-matched GaAs QDs, the strain-induced effects are
smaller but not negligible, characterized by quadrupolar shifts νQ
ranging approximately between 10 and 50kHz within the QD, as
revealed byNMRspectra in Fig. 2e. Nuclei in Iz = ±1/2 and ∣Iz∣ > 1/2 states
must be considered separately. The central transition between the
Iz = −1/2 and +1/2 spin states is affected only by the second-order
quadrupolar shifts, which scale as/ ν2Q=νL and arewithin a few kHz for
the studied range of nuclear spin Larmor frequencies νL∈ [1, 130]MHz.
These second-order quadrupolar shifts are comparable to the homo-
geneous nuclear spin linewidth∝ 1/T2,N, and therefore spin diffusion in
GaAs/AlGaAs QDs is expected to be nearly unimpeded for the nuclei in
the Iz = ±1/2 states. By contrast, the Iz = ±3/2 spin states experiencefirst-
order quadrupolar shifts νQ, which are tens of kHz, significantly
exceeding the homogeneous NMR linewidths in the studiedGaAsQDs.
The resulting dynamics of the Iz = ±3/2 nuclei are therefore sensitive to
nanoscale inhomogeneity of the strain-induced νQ. Such inhomo-
geneity is expected to be most pronounced for 75As in the AlGaAs
barriers, where random positioning of Ga and Al atoms produces unit-
cell-scale strains41,68. From the NSR experiments [Fig. 4b], we observe
that nuclear spin polarization relaxes to zero, even in an empty QD
(0e). This can only happen if spin diffusion is unimpeded not only for
the Iz = ±1/2 states, but also for the Iz = ±3/2 states that are subject to the
larger first-order quadrupolar shifts. Our interpretation is that strain in
the studied GaAs/AlGaAs QDs is a smooth function of spatial coordi-
nates: for nearly each QD nucleus it is possible to find some neigh-
boring nuclei with a strain variation small enough to form a chain that
conducts spin diffusion out of the GaAs QD into the AlGaAs barriers.

Similarly fast NSR was observed previously in neutral QDs formed
by monolayer fluctuations in GaAs/AlGaAs quantum wells22. However,
the opposite scenario was realized in QDs with nanoholes etched in
pure GaAs49 where nuclear spin polarization in an empty QD (0e) was
preserved for over T1,N > 5000 s, suggesting that some of the nuclei
were frozen in the Iz = ±3/2 states, akin to quadrupolar blockade of spin
diffusion in Stranski–Krastanov self-assembled QDs. This contrast is
rather remarkable since the average strain, characterized by the
average νQ ≈ 20−30 kHz, is very similar for QDs grown in nanoholes
etched in AlGaAs (studied here) and in GaAs (ref. 49). This comparison
suggests that bare nuclear spin dynamics (without the electron) are
sensitive to QD morphology down to the atomic scale, and could be
affected by factors such as QD shape, as well as GaAs/AlGaAs interface
roughness and intermixing71–73. One possible contributing factor is the
QD growth temperature, whichwas 610° C in the structures used here,
considerably higher than 520° C in the structures studied
previously48,49. Further work would be required to elucidate the role of
all the underlying growth parameters. Conversely, NSR can be a sen-
sitive probe of the QD internal structure.

We now quantify the spin diffusion process and compare our
results to the earlier studies in GaAs-based structures. The best fit of
the experimental NSR dynamics [lines in Fig. 4b] yields
Dð0eÞ
Dark = 2:2

+0:7
�0:5 nm2 s−1 (95% confidence interval) for the diffusion

coefficient in an emptyQD and in the absence of optical excitation, in
reasonable agreementwithD = 1.0 ± 0.15 nm2 s−1 measuredpreviously
for spin diffusion between two GaAs quantum wells across an
Al0.35Ga0.65As barrier

41. This is approximately an order of magnitude
smaller than the first-principle estimate74–76 of Dð0eÞ

Dark ≈ 19 nm2 s−1 for
bulk GaAs (see Supplementary Note 3) and the D = 15.0 ± 7 nm2 s−1

value measured in pure AlAs77. The reduced diffusion in the AlGaAs
alloy can be explained by the quadrupolar disorder, arising from the
random positioning of the aluminium atoms41. Charging of the QD
with a single electron accelerates spin diffusion: we find
Dð1eÞ
Darkð9:82TÞ=4:7+ 1:2

�1:0 nm2 s−1, which increases to Dð1eÞ
Darkð0:39TÞ=

7:7 ± 1:9 nm2 s−1 at low magnetic fields where hyperfine-mediated
nuclear–nuclear spin exchange is enhanced in accordance with
Eq. (3). While the spin diffusion Eq. (2) gives an overall good
description of the experimental data in Fig. 4b, some residual
deviation is also apparent. The imperfect fit could be linked to a
range of simplifications, such as ignoring the spatial variations of the
nuclear–nuclear couplings and the dependence of the electron spin
splitting ΔEe on the instantaneous nuclear spin polarization. Our
model also neglects any spin diffusion orthogonal to the sample
growth z direction. Furthermore, the nuclei of 75As, 69Ga, and 71Ga are
not resolved in the present diffusion experiments. Therefore, these
isotopes are treated as identical in the model since their dipole and
quadrupolar moments differ only by a factor of ≈2 (see Supplemen-
tary Note 3). On the other hand, all these assumptions are justified
since the very concept of classical spin diffusion is an inherently
simplified description of the underlying quantum dynamics. As such,
the diffusion coefficients D should be treated as a coarse-grained
description, aggregating the numerous lattice constant-scale para-
meters of the many-body spin ensemble evolution.

Discussion
The GaAs/AlGaAs QDs grown by nanohole infilling combine excellent
optical properties with low intrinsic strain, allowing for nuclear spin
qubit and quantum memory designs32,33,46. The key performance
characteristic is the nuclear spin coherence time, which can be
extended up to T2,N ≈ 10ms (ref. 33), but is ultimately limited by the
longitudinal relaxation time T1,N. Moreover, it is the state longevity of
the nuclei interfaced with the QD electron spin that is relevant. Thus,
one should consider the NSR time in the regime of short pumping,
found here to range from T ð1eÞ

1,N ≈ 1 s at lowmagnetic fields to T ð1eÞ
1,N ≈ 10 s

at high fields. For nuclear spin quantum computing with the typical 10
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μs coherent control gates33, a large number of operations ≳105 would
be possible without the disruptive effect of spin diffusion. Spatially
inhomogeneous nuclear spin polarization, such as generated in the
two-pump diffusion reflux experiment, may itself be of use for all-
electrical control of the electron spin78.

In conclusion, we have addressed the long-standing dilemma of
whether the central spin of an electron accelerates or suppresses dif-
fusion in a nuclear spin-lattice. We have used variable-duration optical
pumping15,17,20,22 to identify nuclear spin diffusion as the dominant NSR
mechanism. In contrast to previous studies of nuclear spin
diffusion15,16,20,21,24,25, we use a charge tunable structure and probe
nuclear spin dynamics with and without the electron under otherwise
identical conditions – importantly, our QD charge control is achieved
without reverting to optical pumping24,25, thus eliminating the
unwanted charge fluctuations. Combining these two aspects, we con-
clude that in a technologically important class of lattice-matched
GaAs/AlGaAs nanostructures, the electron spin accelerates the nuclear
spin diffusion, with no sign of a Knight-field-gradient barrier. We
expect these findings to be relevant for a range of lattice-matched
QDs22,23,27,60 and shallow impurities16, whereas anefficient spindiffusion
barrier can arise from an electron with deep (sub-nanometer)
localization14. Future work can examine the reduction of spin diffusion
in low-strain nanostructures. The proximity of the n-doped layer, act-
ing as a sink for nuclear polarization, as well as QDmorphology, can be
optimized. Alternatively, pure AlAs barriers can be used to grow GaAs
QDs with well-isolated Ga nuclei, potentially offering long-lived spin
memories and qubits.

Data availability
The key data generated in this study are provided in the Source Data
file SourceData.zip. The rest of the data that support the findings of
this study are available from the corresponding author upon reason-
able request. Source data are provided with this paper.
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Supplementary Note 1. SAMPLE STRUCTURE

The sample is grown using molecular beam epitaxy (MBE) on a semi-insulating GaAs (001)

substrate. The growth starts with a layer of Al0.95Ga0.05As followed by a single pair of Al0.2Ga0.8As

and Al0.95Ga0.05As layers acting as a Bragg reflector in optical experiments. Then, a 95 nm thick

layer of Al0.15Ga0.85As is grown. The rest of the structure follows the schematic shown in Fig. 2c

of the main text beginning with a 95 nm thick layer of Al0.15Ga0.85As doped with Si at a volume

concentration of 1.0× 1018 cm−3. The low Al concentration of 0.15 in the Si doped layer mitigates

the issues caused by the deep DX centers [1–3]. Under optical excitation this Al0.15Ga0.85As:Si

gives rise to broad photoluminescence between 730 nm and 770 nm as observed in Supplementary

Fig. 1a. The n-type doped layer is followed by the electron tunnel barrier layers: first a 15 nm thick

Al0.15Ga0.85As layer and then a 15 nm thick Al0.33Ga0.67As layer. Aluminium droplets are grown

on the surface of the Al0.33Ga0.67As layer and are used to etch the nanoholes [4, 5]. An atomic

force microscopy (AFM) image of a similar sample in Fig. 2a of the main text shows a typical

nanohole with a depth of ≈ 6.5 nm and ≈ 70 nm in diameter. Next, a 2.1 nm thick layer of GaAs

is grown to form QDs by infilling the nanoholes as well as to form the quantum well (QW) layer.

Thus, the maximum height of the QDs in the growth z direction is ≈ 9 nm. Low temperature PL

of QDs and QW is observed [Supplementary Fig. 1a] at 785 nm and 690 nm, respectively. The

GaAs layer is followed by a 268 nm thick Al0.33Ga0.67As barrier layer. Finally, the p-type contact

layers doped with C are grown: a 65 nm thick layer of Al0.15Ga0.85As with a 5× 1018 cm−3 doping

concentration, followed by a 5 nm thick layer of Al0.15Ga0.85As with a 9×1018 cm−3 concentration,

and a 10 nm thick layer of GaAs with a 9× 1018 cm−3 concentration.

∗ e.chekhovich@sheffield.ac.uk



2

The sample is processed into a p−i−n diode structure. Mesa structures with a height of 250 nm

are formed by etching away the p-doped layers and depositing Ni(10 nm)/AuGe(150 nm)/Ni(40

nm)/Au(100 nm) on the etched areas. The sample is then annealed to enable diffusion down to

the n-doped layer to form the ohmic back contact. The top gate contact is formed by depositing

Ti(15 nm)/Au(100 nm) on to the p-type surface of the mesa areas. The sample gate bias VGate is

the bias of the p-type top contact with respect to the grounded n-type back contact. By changing

VGate the equilibrium charge state of the quantum dot is tuned using the Coulomb blockade effect

(see Supplementary Note 2E). Due to the large thickness of the top Al0.33Ga0.67As layer, the

tunneling of the holes is effectively blocked, whereas tunnel coupling to the n-type layer enables

deterministic charging of the quantum dots with electrons.

Supplementary Note 2. EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

The sample is placed in a liquid helium bath cryostat. A superconducting coil is used to apply

magnetic field up to Bz = 10 T. The field is parallel to the sample growth direction and the optical

axis z (Faraday geometry). We use confocal microscopy configuration. An aspheric lens with a

focal distance of 1.45 mm and NA=0.58 is used as an objective for optical excitation of the QD and

for photoluminescence (PL) collection. The excitation laser is focused into a spot with a diameter

of ≈ 1 µm. The collected PL is dispersed in a two-stage grating spectrometer, each stage with a

0.85 m focal length, and recorded with a charge-coupled device (CCD) camera. The changes in

the spectral splitting of a negatively charged trion X−, derived from the PL spectra, are used to

measure the hyperfine shifts Ehf proportional to the nuclear spin polarization degree.

Supplementary Fig. 2 is a detailed version of Fig. 4a of the main text and shows the timing

of the NSR measurement. In what follows we describe the individual elements of the timing

sequence. While this discussion is specific to the NSR measurement, the same principles apply to

other time-resolved measurements. The differences applicable to NMR spectroscopy and diffusion

reflux measurements are highlighted below accordingly.

A. Radiofrequency depolarization of nuclear spin polarization

Investigation of spin diffusion relies on the ability to prepare a reproducible spatial distribution

of the nuclear spin polarization. This is achieved with a radiofrequency (RF) erase pulse (Supple-

mentary Fig. 2) which effectively resets the nuclear spin polarization to zero in the entire sample.
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Supplementary Figure 1. Photoluminescence of GaAs/AlGaAs QD samples. a Broad range photo-

luminescence (PL) spectra measured under 532 nm laser excitation at different gate biases VGate. Spectra

are offset in a vertical direction (log scale) by a factor of 10 for clarity. Spectral features arising from the dif-

ferent parts of the sample are labeled accordingly. b High resolution PL spectra of a negatively charged X−

trion following σ+ (triangles) or σ− (squares) circularly polarized optical pumping, which creates sz = −1/2

(↓) and sz = +1/2 (↑) spin polarized electrons, respectively. The electrons transfer their spin to the nuclei

via magnetic (hyperfine) interaction, resulting in a build up of negative or positive net nuclear spin polar-

ization, respectively. Through the same hyperfine interaction, the average nuclear spin polarization shifts

the sz = −1/2 and sz = +1/2 electron spin energy levels in the opposite directions. These Overhauser shifts

(Ehf) lead to the observed change in the spectral splitting EPL of the trion PL, where the two components of

the doublet correspond to an electron-hole recombination in presence of another electron with sz = −1/2 or

sz = +1/2 state. c Energy level diagram. The electron ground state is split by the Zeeman energy µBgeBz

and the hyperfine shift Ehf . The X− trion energy includes the QD bandgap energy Egap and the Zeeman

splitting of the unpaired hole with a positive (⇑) or negative (⇓) momentum projection. The valence band

hole hyperfine effect can be neglected due to its smaller magnitude [6]. The electron and hole g-factors are

ge and gh, respectively, with |gh| ≫ |ge| in the studied QDs. Solid arrows depict the two optically allowed

transitions responsible for the spectral doublet in (b). The dashed lines show the two forbidden “diagonal”

transitions.

This is achieved by saturating the nuclear magnetic resonance of the As and Ga isotopes. When

subject to an oscillating magnetic field, resonant with the nuclear Larmor frequency, the nuclear

spins undergo Rabi rotation, periodically transitioning between the spin states parallel and antipar-

allel to the external magnetic field [7]. Due to the nuclear-nuclear dipolar interactions each nuclear

spin is subject to a local field. The randomness of these local fields perturbs the Rabi precession

frequencies, resulting in ensemble dephasing. Consequently, the nuclei become randomly oriented
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Supplementary Figure 2. Timing diagram of the nuclear spin relaxation measurement cycle.

(depolarized) after a long resonant radiofrequency saturation pulse. The required oscillating mag-

netic field Bx ⊥ z is produced by a coil placed at a distance of ≈ 0.5 mm from the QD sample. The

coil is made of 10 turns of a 0.1 mm diameter enameled copper wire wound on a ≈ 0.4 mm diameter

spool in 5 layers, with 2 turns in each layer. The coil is driven by a class-A RF amplifier (rated

up to 20 W) which is fed by the output of an arbitrary waveform generator. The spectrum of the

RF excitation consists of three bands, each 340 kHz wide and centered on the NMR frequency of

the corresponding As or Ga isotope. For each magnetic field the frequencies are adjusted based on

NMR spectroscopy. To give a specific example, the central frequencies at 10 T are 73.079, 102.471

and 130.199 MHz for 75As, 69Ga and 71Ga, respectively. Each RF band is generated as a frequency

comb [6] with a mode spacing of 120 Hz, much smaller than the homogeneous NMR linewidth.

The RF power density in the comb is chosen to be low enough and the RF pulse duration TErase

long enough (ranging between 0.1 and 10 s depending on magnetic field) to achieve noncoherent

exponential depolarization of the nuclear spin ensemble.

B. Optical pumping of the quantum dot nuclear spins

Optical pumping of the QD nuclear spin polarization (labelled Pump in Supplementary Fig. 2) is

achieved using the emission of a 690 nm circularly polarized diode laser, which is resonant with the

GaAs QW states, as seen in Supplementary Fig. 1a. Optical dynamical nuclear spin polarization

is a well known process, that has been observed in many types of QDs [8–12], see Ref. [13] for

a review. In brief, dynamic nuclear polarization is a three-stage cyclic process. At the first stage

a spin polarized electron is created optically. This is made possible by the selection rules, which

allow conversion of the circularly polarized photons into spin-polarized electron-hole pairs in group
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III-V semiconductors. At the second stage, the electron exchanges its spin with one of the nuclei

through the flip-flop term of the electron-nuclear hyperfine Hamiltonian. The third stage is the

electron-hole optical recombination, which removes the flipped electron. This final step is required

in order to let the QD accept new spin-polarized electrons and continue polarizing the ensemble of

≈ 105 nuclear spins of the QD. Given that optical pumping is resonant with the QW, it is possible

that dynamical nuclear polarization takes place not only in the QDs but also in the adjacent parts

of the QW. On the other hand, the pump laser photon energy is well below the bandgap of the

AlGaAs barriers. For that reason we assume that dynamic nuclear polarization in AlGaAs is

induced only through spin diffusion from the GaAs layer of the QW and QDs. During the optical

pump the sample gate is set to a large reverse bias, typically VGate = −2 V. The pump power is

≈ 300 µW, which is two orders of magnitude higher than the ground-state PL saturation power.

The resulting hyperfine shifts do not exceed |Ehf | < 50 µeV, corresponding to initial nuclear spin

polarization degree within |PN,0| ≲ 0.4. While polarization as high as PN,0 ≈ 0.8 is possible [14], we

deliberately use lower values to ensure linear regime of spin diffusion, free from hyperpolarization

regime corrections [15]. In the diffusion reflux experiments, presented in Fig. 3 of the main text,

the first (long) pump pulse is as described above. The second (shorter) pump is chosen to have

a higher power ≈ 3000 µW and a longer wavelength ≈ 793 nm, resonant with the s-shell exciton

transition in order to generate inverted nuclear spin polarization localised to the QD volume.

C. Optical probing of the quantum dot nuclear spins

For optical probing of the nuclear spin polarization we use a diode laser emitting at 640 nm.

Sample forward bias, typically +0.5 V, and the probe power are chosen to maximize (saturate)

PL intensity of the ground state X− trion. Supplementary Fig. 1b shows X− PL probe spectra

measured at Bz = 1 T following optical pumping with σ+ (triangles) or σ− (squares) circular

polarization. The difference in spectral splitting of the X− trion doublet reveals the hyperfine

shifts Ehf [see energy level diagram in Supplementary Fig. 1c]. These shifts are used to monitor

the average QD nuclear spin polarization in NSR experiments such as shown in Fig. 4b of the

main text. Illumination with a probe laser inevitably acts back on the nuclear spin polarization.

An example of the probe pulse calibration is shown in Supplementary Fig. 3. In this experiment

the QD is first pumped with a σ+ or σ− polarized laser in order to create large initial nuclear

polarization. Then a probe laser pulse is applied. The hyperfine shift Ehf is measured from PL

spectroscopy at the end of this probe. Such calibration is carried out for each individual QD at each
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Supplementary Figure 3. Calibration of the optical probing of the QD nuclear spin polarization.

Hyperfine shift measured as a function of the probing time TProbe following a σ
+ or σ− pumping of the nuclear

spin polarization in a QD. Vertical dashed line shows the TProbe value chosen for the NSR measurements on

this individual QD at this particular magnetic field of Bz = 10 T.

magnetic field. It can be seen that the probe induces decay of the nuclear spin polarization on a

timescale of a few seconds. The probe time TProbe used in the NSR experiments is chosen to ensure

minimal distortion of the measured Ehf . For example, for the data shown in Supplementary Fig. 3

we choose TProbe = 0.075 s which limits the parasitic depolarization to less than 1% of the true

hyperfine shift Ehf . Typical TProbe values range between 10 and 80 ms, depending on individual

QD and magnetic field.

D. Quantum dot electron g-factors

The energy splitting of the two electron spin states ∆Ee is a sum of the Zeeman splitting µBgeBz

(where µB is the Bohr magneton) and the hyperfine splitting Ehf , arising from the nuclear spin

polarization. We quantify the g-factor ge of a resident electron using photoluminescence spec-

troscopy of a negatively charged trion. In Faraday geometry, two out of four optical transitions

are forbidden, so that only the difference gh − ge of the heavy hole and electron g-factors can be

accessed. In order to derive the individual g-factors, we measure photoluminescence in oblique field

configuration, where the sample growth axis is tilted by θ ≈ 12◦ away from the static magnetic
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Supplementary Figure 4. Electron g-factor measurement. Photoluminescence spectra of a negatively

charged trion X− measured in oblique magnetic field B = 10 T tilted by θ ≈ 12◦ from the Faraday geometry.

The measurement uses a pump-probe protocol, where the angle of a half-wave plate on the pump laser is

varied, while the probe laser is used to detect the resulting changes in PL spectrum. The two bright lines

correspond to the two allowed transitions. When the circularly polarized pump generates a sufficiently large

hyperfine shift, the two weakly allowed trion transitions, labeled by the arrows, become resolved. Fitting of

the PL energies reveals the electron and hole g-factors. Other (broad) spectral features correspond to PL

of excitons charged with more than one electron.

field. In this configuration the “diagonal” transitions, shown by the dashed lines in Supplementary

Fig. 1c, become weakly allowed. Owing to the nearly vanishing electron g-factor in this type of

GaAs/AlGaAs QDs [11], all four X− transitions can be resolved in our setup only in high mag-

netic field B = 10 T and in presence of the optically induced hyperfine shifts. The experiment is

conducted using an optical pump-probe method. The probe PL spectra are shown in Supplemen-

tary Fig. 4 as a function of the half-wave plate angle. The angle is varied to control the degree

of circular polarization of the pump laser and the resulting hyperfine shift Ehf . The two weak

transitions (labeled by the arrows) become visible when the splitting of the two bright transitions

is maximized by the hyperfine shift. We further measure the spectral splitting of the two bright

transitions after RF depolarization of the nuclei, which results in Ehf ≈ 0. It is then possible to

perform linear fit of the PL energies of all four X− transitions and derive the g-factors. For QD1
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Supplementary Figure 5. Bias dependence of the nuclear spin relaxation rate ΓN. Error bars are

95% confidence intervals.

studied in the main text and examined in Supplementary Fig. 4 we find the 95% confidence esti-

mate ge ≈ −0.101±0.007 for the g-factor of a single resident electron. From the hole spin splitting

of X− at B = 10 T we estimate the hole g-factor in presence of two electrons to be gh ≈ +1.68.

This value should be treated as a rough estimate because of the significant nonlinearity in hole

Zeeman splitting for this type of QDs [11]. We also measure the g-factors in a neutral exciton

X0, using PL of the dark states: we find ge ≈ −0.090 ± 0.035 for the electron in presence of one

hole. It is notable that the electron g-factor is nearly unaffected by the extra hole [16]. Using PL

spectroscopy of the X− trion state, we have measured g-factors in two more QDs from the same

sample to find ge ≈ −0.077±0.018 and ge ≈ −0.107±0.002 for a sole resident electron in QD6 and

QD7, respectively. From the X0 PL of QD6 we find ge ≈ −0.12±0.01 for an electron in presence of

a hole, whereas no dark excitons could be observed in QD7. The g-factors found here are in good

agreement with the previous studies on the samples where QDs were grown in nanoholes etched in

pure GaAs [11].

E. Quantum dot charge state tuning

The sample gate bias VGate is controlled by the output of an arbitrary waveform generator

connected through a 1.9 MHz low pass filter. During the dark evolution time TDark the bias can be

set to an arbitrary value. For an empty dot regime (0e) we use large reverse bias VGate = −1.3 V.

The bias corresponding to 1e Coulomb blockade is found by measuring the bias dependence of
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ΓN(VGate) such as shown in Supplementary Fig. 5. In agreement with the previous studies on

InGaAs QDs [17, 18] we observe tunnelling peaks (at ≈ 0.43 V and ≈ 0.6 V), where the electron

Fermi reservoir energy matches the QD charging energy. Under these resonant conditions NSR

is accelerated by a non-diffusion mechanism, where the nuclear spin momentum is carried into

the Fermi reservoir by the rapidly cotunnelling electron. A bias at the middle of the Coulomb

valley between the peaks, 0.517 V in this case, is used to charge the QD with one electron (1e).

Supplementary Fig. 5 shows that when the QD is charged with two electrons (2e) forming a spin

singlet, the NSR rate is identical to the 0e case, confirming that the NSR acceleration produced

by the single electron (1e) is related to its spin.

F. Pump probe experiment implementation

Optical pump and probe pulses are formed by mechanical shutters with a switching time of a

few milliseconds. In order to accommodate these shutter transients, small delays TDel = 10 ms

are introduced in the timing sequences as shown in Supplementary Fig. 2. Under certain regimes

in Bz and VGate (e.g. resonant cotunnelling with the Fermi reservoir) this TDel is comparable to

the nuclear spin relaxation times T1,N. However, the relaxation time in an empty (0e) or singly

charged (1e) QD is always considerably longer. Thus, during the switching delay the QD is kept

under either the 0e bias (after the pump) or the 1e bias (prior to the probe). The dark time TDark

is implemented by pulsing the gate bias to the chosen dark-state value VGate for a duration TDark.

The QD device responds to the bias on a sub-microsecond scale. This way we ensure that the

switching delays TDel have minimal effect on the measured NSR dynamics.

G. Nuclear magnetic resonance of individual quantum dots

Nuclear magnetic resonance (NMR) characterization (Fig. 2e of the main text) is conducted

using the inverse NMR method [19] which enhances the signal for I > 1/2 spins and improves

the signal to noise ratio. In this method the nuclear spins are first polarised with a pump laser

(TPump = 6.5 s) and are then depolarized by a weak RF field, whose spectral profile is a broadband

frequency comb with a narrow gap of width wgap in the center. The frequency comb has a total

spectral width of 600 kHz and its mode spacing is 125 Hz. The value of wgap controls the balance

between the measured NMR signal and the spectral resolution. In an empty QD (0e), NMR

spectra of As and Ga measured with wgap = 6 kHz consist of well-resolved quadrupolar-split
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triplets, consistent with previous observations for similar QD structures [11, 20]. The spin of a

single electron (1e) leads to inhomogeneous Knight shifts comparable to the quadrupolar splitting.

As a result, the NMR triplets are no longer resolved (solid circles in Fig. 2e of the main text).

Moreover, the electron spin lifetime, which is on the order of milliseconds in the studied QDs,

is much shorter than the radiofrequency burst (typically 0.18 s), and the average electron spin

polarization is therefore close to 0. Each nucleus then experiences both positive and negative

Knight shifts during the RF burst. These dynamic spectral shifts disrupt the enhancement of the

inverse NMR method: for example, if a nuclear spin transition fits into the RF spectral gap wgap

under one sign of the Knight shift, it may be moved out of the gap and into resonance with the

depolarizing RF field under the opposite Knight shift. As a result, the NMR spectrum amplitude

is reduced in the 1e measurement. By varying the gap width wgap, we find that a spectrum with

a reasonable signal to noise ratio is obtained at wgap = 70 kHz, as shown by the circles in Fig. 2e

of the main text. Although the deterioration of the inverse NMR method precludes an accurate

measurement of the NMR lineshape in presence of the electron, the overall width ≈ 50 kHz of the

resonance still provides a valid order-of-magnitude estimate of the Knight shifts experienced by

the nuclear spins in the QD. More sophisticated measurements, using pulsed NMR (to be reported

separately elsewhere) confirm this rough estimate based on inverse NMR measurement.

H. Additional data on nuclear spin relaxation

The QD NSR curves measured at Bz = 0.39 T and shown in Fig. 4b of the main text are

reproduced in Supplementary Fig. 6a, together with the similar measurements carried out at high

magnetic field Bz = 9.82 T and shown in Supplementary Fig. 6b. Similar to the low fields, at

Bz = 9.82 T shorter optical pumping time TPump results in faster NSR through spin diffusion.

However, the acceleration of NSR in presence of a single electron (1e) is less pronounced at high

magnetic field, owing to the reduction of the hyperfine-mediated nuclear-nuclear spin interaction.

It is also worth noting that the optical spin pumping becomes slower at high magnetic field. While

TPump = 0.018 s at Bz = 0.39 T is sufficient to achieve ≈ 1/4 of the steady state nuclear spin

polarization, it takes an order of magnitude longer TPump = 0.17 s to reach the same ≈ 1/4 level at

Bz = 9.82 T. This difference limits the shortest TPump for which NSR dynamics can be measured

at high magnetic field, as can be seen in Fig. 4d of the main text.
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Supplementary Figure 6. Nuclear spin relaxation in GaAs quantum dots. a Dark time dependence

of the hyperfine shift Ehf , which probes average nuclear spin polarization weighted by the QD electron

density |ψe|2. Nuclear spin decay is measured (symbols) at Bz = 0.39 T for different pumping times TPump

while keeping QD empty (0e, open symbols) or electron-charged (1e, solid symbols) during the dark time.

Lines show numerical solution of the spin diffusion equation. b Same as (a) but for Bz = 9.82 T.

I. Nuclear spin relaxation at elevated temperatures

The experiments presented in the main text are conducted at the cryostat base temperature,

measured with a resistive sensor to be T ≈ 4.27 K. Additional measurements, similar to those shown

in Fig. 4c,d of the main text, have been conducted on an empty QD (0e) at an elevated temperature

T = 15.2 K and are shown in Supplementary Fig. 7. We find that at high temperature the

relaxation rate follows the same trend of reduction at short pumping times TPump, consistent with

NSR dominated by spin diffusion. In case of a pure spin diffusion driven by nuclear dipole-dipole

interactions, one would expect the rate to be independent of the temperature. From Supplementary

Fig. 7 we find that for any given TPump the relaxation is slightly accelerated at T = 15.2 K. One

possibility is that temperature dependence of the optical nuclear spin pumping process [21] creates

different spatial distributions of the nuclear spin polarization for the same TPump. Contribution of

the temperature-dependent non-diffusion mechanisms, such as two-phonon quadrupolar relaxation

is also possible, but expected to be small below 20 K (Refs. [22, 23]), in agreement with Fig. 7.
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Supplementary Figure 7. Temperature dependence of the quantum dot nuclear spin relaxation.

Fitted QD nuclear spin half-life times T1,N (right scale) and the corresponding NSR rates ΓN = 1/T1,N

(left scale) measured for different pumping times TPump at Bz = 0.5 T. Experiments are conducted at base

sample temperature (T = 4.27 K, squares) and an elevated temperature (T = 15.2 K, triangles). Error bars

are 95% confidence intervals.

Supplementary Note 3. FIRST PRINCIPLE ESTIMATE OF THE GaAs NUCLEAR SPIN

DIFFUSION COEFFICIENT

In the absence of free electrons, nuclear spin diffusion is driven by the dipole-dipole magnetic

nuclear spin interaction. The total dipole-dipole Hamiltonian term is a sum of pairwise couplings:

HDD =
∑
i<j

bi,j

(
2Îz,iÎz,j − Îx,iÎx,j − Îy,iÎy,j

)
,

bi,j =
µ0ℏ2

4π

γiγj
2

1− 3 cos2 θi,j
r3i,j

, (S1)

where µ0 = 4π × 10−7 NA−2 is the magnetic constant, ℏ is the reduced Planck’s constant and ri,j

denotes the length of the vector, which forms an angle θ with the static magnetic field direction

(z) and connects the two spins i and j. The typical magnitude of the interaction constants for

the nearby nuclei in GaAs is max (|bj,k|)/h ≈ 100 Hz. The Hamiltonian of Eq. S1 has been

truncated to eliminate all spin non-conserving terms, which is justified for static magnetic fields

exceeding ≳ 1 mT, as used in this work. The evolution of a large nuclear spin ensemble can be

described in terms of spin diffusion with coefficientD. In crystalline solids the nuclear spin diffusion
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coefficient D, is a rank-2 tensor which can be calculated from the first principles using density

matrix approach [24] or the method of moments [25, 26]. The calculation involves a somewhat

lengthy evaluation of the various lattice sums. Here we use a more recent version of the method

of moments from Ref. [27]. We re-evaluate numerically the sums of Eqns. 8 and 10 from Ref. [27]

using an FCC lattice of 6859 spins. Our results are in good agreement with the those derived for

1330 neighboring spins previously [27]. We find the following values for the diagonal components

of D: Dxx = Dyy ≈ 0.2594µ0

4π
ℏγ2

a0
ρ1/3 and Dzz ≈ 0.3289µ0

4π
ℏγ2

a0
ρ1/3, where a0 ≈ 0.565 nm is the

GaAs lattice constant and γ is the nuclear gyromagnetic ratio. Here we use the coordinate system

aligned with the cubic crystal axes x ∥ [100], y ∥ [010], z ∥ [001], and the strong magnetic field is

parallel to the z direction. We have also introduced the correction factor ρ1/3 to account for the

increase of the average internuclear distance for the isotope whose abundance ρ is less then unity.

In case of arsenic, 75As is the only stable isotope, so that ρ = 1. For gallium isotopes we

have the natural abundances ρ = 0.601 and ρ = 0.399 for 69Ga and 71Ga, respectively. The

gyromagnetic ratios γ are known [28] and, since we approximate the spin diffusion as a one-

dimensional process along the sample growth direction z, we are interested in the Dzz component

of the tensor. Substituting the numerical values we find Dzz ≈ 13, 21, 30 nm2 s−1 for 75As,

69Ga and 71Ga, respectively. The experiments presented in this work do not resolve between spin

diffusion of the individual isotopes. As a simple approximation we can treat the observed NSR

dynamics as a result of spin diffusion within one type of nuclei but with a weighted average diffusion

constant. We use as weights the relative contributions of the isotopes to the optically measured

hyperfine shift Ehf . From the previous studies of the similar QDs [14] these contributions are

estimated as 0.49, 0.28 and 0.23 for 75As, 69Ga and 71Ga, respectively, from where the average

diffusion coefficient is approximated as Dzz ≈ 19 nm2.

Supplementary Note 4. NUMERICAL SIMULATION OF NUCLEAR SPIN DIFFUSION

The spatiotemporal evolution of the nuclear spin polarization degree PN(t, z) is modeled by

solving the partial differential spin diffusion equation

∂PN(t, z)

∂t
= D(t)

∂2PN(t, z)

∂z2
+ w(t)|ψe(z)|2(PN,0 − PN(t, z)), (S2)

where the last term describes optical nuclear spin pumping with a rate proportional to electron

density |ψe(z)|2 and the time-dependent factor w(t) equal to 0 or w0 when optical pumping is off or

on, respectively. The spin diffusion coefficient D(t) also takes two discrete values DDark or DPump
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Supplementary Figure 8. Numerical modeling of the nuclear spin diffusion. Calculated normalized

nuclear spin polarization as a function of the z coordinate at different TDark. a Calculations for TPump = 1 ms.

b Same calculations as (a) but for TPump = 1000 s.

when optical pumping is off or on, respectively. PN,0 is a steady state nuclear spin polarization

degree that optical pumping would generate in the absence of spin diffusion. At each time point

we assume the same diffusion coefficient D across the entire structure. The equation describes a

one-dimensional problem where diffusion can take place only along the z coordinate so that the

nuclear spin polarization degree PN does not depend on x or y. The GaAs QD layer is modeled

by taking a Gaussian profile for the electron density |ψe(z)|2 ∝ 2
−
(

z−z0
hQD/2

)2

, where hQD is the full

width at half maximum of the |ψe(z)|2 function and the center of the QD is set to be z0 = 0. We

use Dirichlet boundary condition PN = 0 to model fast nuclear spin depolarization in presence

of the free carriers both in the n- and p-type doped layers. The boundary coordinates, where

Dirichlet conditions are enforced, are chosen to match the actual sample structure as described

in Supplementary Note 1. We note that the hyperfine interaction of the valence band holes is

approximately 10 times weaker than for the conduction band electrons [6]. Moreover, the p-type

layer is approximately 10 times further away from the QDs than the n-type layer. As a result the

dynamics of the nuclear spin polarization at the QD are dominated by the n-type layer, while the

exact boundary condition at the p-type layer is less important, justifying the use of the Dirichlet

condition at both doped layers.

Supplementary Eq. S2 is solved numerically using the method of lines implemented in wolfram

mathematica 12.0. The initial condition is taken to be PN = 0 ∀ z, which models the result of
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the RF Erase pulse at the start of each measurement cycle. Optical nuclear spin pumping starts

at t = −TPump and the equation is solved until t = 0 with D = DPump and w = w0. At t = 0

optical pumping is switched off by setting w = 0 and the equation is solved until t = TDark

with D = DDark. Supplementary Fig. 8 shows the calculated spatial profiles of the final nuclear

spin polarization PN(TDark, z) normalized by its steady-state value PN,0. The results are shown

for several TDark values in case of a short pumping (a, TPump = 1 ms) and long pumping (b,

TPump = 1000 s). Short pumping results in a small-magnitude (PN ≪ PN,0) spatially-narrow

nuclear spin polarization, which quickly dissipates at t > 0. By contrast, long pumping leads

to a steady-state spatial distribution where polarization peaks at the quantum dot coordinate

z = 0 and reduces linearly towards the doped layers which act as nuclear spin polarization sinks.

Interestingly, this calculation predicts that the maximum polarization PN,0 is not achieved because

of the diffusion towards the doped layers, especially the closely located n-type layer at z < 0.

In order to compare simulations with the experimental results the final spatial distribution

PN(TDark, z) is multiplied by |ψe(z)|2 and integrated over z. This way we reproduce the op-

tical probing of the nuclear spin polarization, where the measured hyperfine shift Ehf is effec-

tively weighted by the electron envelope wavefunction density |ψe(z)|2. The simulated hyperfine

shift is then derived as Ehf = AIPN, where I is the nuclear spin number and A is the hyper-

fine constant. We then use a differential evolution algorithm to vary the parameters such as

D
(ne)
Dark(Bz), w0(Bz) and DPump(Bz) and fit the simulated Ehf dynamics to the entire experimental

datasets of Ehf(TPump, TDark) measured at Bz = 0.39 and 9.82 T for empty (n = 0) and charged

(n = 1) QD states. As discussed in the main text the best-fit diffusion coefficients in the dark are

D
(1e)
Dark(9.82 T) = 4.7+1.2

−1.0 nm2 s−1, D
(1e)
Dark(0.39 T) = 7.7± 1.9 nm2 s−1 and D

(0e)
Dark = 2.2+0.7

−0.5 nm2 s−1

independent of magnetic field. For spin diffusion coefficients under optical pumping we find sig-

nificantly larger values D
(1e)
Pump(9.82 T) = 96+44

−28 nm2 s−1 and D
(1e)
Pump(0.39 T) = 850+240

−220 nm2 s−1.

Such increase in D can be ascribed to the spectrally broad fluctuations of the optically generated

electron spins which facilitate coupling between the distant nuclear spins, thus accelerating the

spin diffusion. This is also consistent with the proposed influence of the phonon-induced electron

spin flips on nuclear spin diffusion in the dark (see main text). The other best-fit parameters

are w0(0.39 T) = 37+7
−5 s−1, w0(9.82 T) = 5.7+1.1

−0.9 s−1 and hQD = 2.1+0.3
−0.2 nm. Previous studies on

GaAs/AlGaAs QDs emitting at a similar wavelength estimated that 0.92 of the electron density re-

sides in the GaAs layer [14], whose full width can then be estimated as hQD
erf−1(0.92)√

ln(2)
= 3.2+0.4

−0.3 nm.

This best-fit value somewhat underestimates the true QD thickness in z direction, but is within

the range bounded by the QW thickness (2.1 nm) and the maximum QD thickness (≈ 9 nm)
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Supplementary Figure 9. Numerical modeling of 1D and 2D nuclear spin diffusion. Numeri-

cally simulated nuclear spin polarization degree PN weighted by the electron envelope wavefunction density

|ψe(z)|2 and normalized by the maximum nuclear spin polarization PN,0 in the absence of spin diffusion.

The weighted polarization is plotted as a function of the dark time TDark for different TPump. The results are

shown for the case of one dimensional diffusion (1D, solid lines) and two dimensional diffusion (2D, dashed

lines, PN values multiplied by 1.5).

estimated from the nanohole depth in AFM. The spatial profiles shown in Supplementary Fig. 8

are calculated with the best-fit parameters for the 1e case at Bz = 0.39 T.

The use of the one dimensional spin diffusion model is motivated by the large aspect ratio of

the QD. Indeed, the diffusion proceeds predominantly along the direction of the strongest gradient

in the nuclear spin polarization degree, which is the growth z direction. For numerical simulations,

the one dimensional model is also advantageous as it requires significantly less computational

resources than a full three dimensional diffusion model. In order to evaluate the limitations of

the one dimensional model we run a simulation of a two dimensional diffusion problem, where the

equation now reads:

∂PN(t, x, z)

∂t
= D(t)

(
∂2PN(t, x, z)

∂x2
+
∂2PN(t, x, z)

∂z2

)
+ w(t)|ψe(x, z)|2(PN,0 − PN(t, x, z)) (S3)

The electron density is taken to be |ψe(x, z)|2 ∝ 2
−
(

x−x0
dQD/2

+
z−z0

hQD/2

)2

, where dQD is a full width at
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half maximum diameter of the QD, which we set to dQD = 47 nm in order to match the 0.92

electron wavefunction density in a QD with a full diameter of 70 nm. The same |ψe(x, z)|2 is used

to calculate the weighted nuclear spin polarization degree, emulating the optical probing of the QD

hyperfine shift Ehf . The computational domain is limited to |x| < 700 nm and we implement the

additional Dirichlet boundary condition PN(x = ±700 nm) = 0.

Supplementary Fig. 9 shows the simulated QD NSR dynamics in the one dimensional (1D, solid

lines) and two dimensional (2D, dashed lines) cases, following nuclear spin pumping with different

durations TPump. One apparent difference in the resulting dynamics is the lower weighted nuclear

spin polarization degree within the QD volume in the 2D case. Consequently, all the 2D-case PN

values in Supplementary Fig. 9 have been multiplied by 1.5, to simplify comparison with the 1D

case. At short TPump ≤ 0.1 s QD nuclear spin polarization decays on the same timescale both in

the 1D and 2D cases. This is expected since the spatial profile of the nuclear spin polarization

produced by short pumping is proportional to ∝ |ψe(x, z)|2 in the 2D case. As a result, the

subsequent diffusion in the dark proceeds predominantly along the direction of the highest gradient

(the growth z direction), making diffusion essentially one dimensional. By contrast, long pumping

TPump ≥ 0.1 s in a 2D model makes the polarization profile more isotropic in the xz plane (for an

unbounded problem at TPump → ∞ the polarization will tend to a profile with circular contour

lines in the xz plane). In other words, after long pumping the system “forgets” the initial profile

∝ |ψe(x, z)|2 of the QD pumping source. The subsequent diffusion in the absence of pumping

(i.e. in the dark) is controlled by the dimensionality of the unpolarized space, and is seen to be

faster in the 2D case. From these additional results we conclude that the one dimensional model is

sufficient to capture the key aspects of QD NSR dynamics, such as slower relaxation following long

optical nuclear spin pumping. However, some deviation of the 1D model from the real dynamics

is inevitable, especially at long TPump, where dimensionality affects the diffusion dynamics. Such

discrepancies are likely to introduce systematic errors in the best fit dynamics (Supplementary

Fig. 6) and spin diffusion coefficient D values. On the other hand, in a real QD system D is

not constant, and the approximate nature of the spin diffusion concept itself entails a range of

systematic errors. This justifies the use of a simplified one dimensional model to describe our

experimental results.

Supplementary Note 5. ELECTRON SPIN RELAXATION TIME

Here we present electron spin lifetimes T1,e obtained from preliminary measurements in a sep-
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Supplementary Figure 10. Electron spin lifetime measurements. a-c Histograms of the single-shot

NMR measurements in presence of an electron conducted for different intervals TDark between the two

detuned RF pulses. d Frequency of the events where the electron spin does not flip over the TDark time

interval (symbols). Lines shows fitting used to derive the electron spin relaxation time.

arate piece of the same epitaxial GaAs/AlGaAs QD structure. Experimental investigation of the

relaxation dynamics requires a tool to measure the state of the resident electron spin trapped in a

QD. We use a variation of the method demonstrated recently in Stranski-Krastanov QDs [29]. The

technique uses the nuclear spin ensemble of a QD and the Knight shifts, which reduce (increase)

the NMR frequency if the electron spin is in the sz = −1/2 (sz = +1/2) state. The state of the

electron is encoded into the nuclear spin polarization by applying an RF pulse whose frequency is

tuned to be resonant with the nuclei only if the electron is in the sz = −1/2 spin state. The ampli-

tude and the duration of the pulse are calibrated to produce a π rotation (polarization inversion)

of the nuclei when sz = −1/2. By contrast, for sz = +1/2, the Knight field detunes the nuclei

out of resonance with the RF pulse, meaning that nuclear polarization is not inverted. Following

the RF π pulse an optical probe is used to measure the changes in the nuclear spin polarization

(the changes in the hyperfine shift Ehf). In this way, a single-shot readout of the electron spin is

performed with high fidelity, exceeding 99%.

We take this method one step further by applying two RF π pulses separated by a free evolution

time TDark. The first pulse performs heralded initialization of the electron spin state through
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measurement, while the second RF pulse probes whether the state of the electron spin has changed

during the free evolution time TDark. There are three possible outcomes of such an experiment:

(i) The electron is in the sz = +1/2 state initially and remains in this state. Both RF pulses

are then out of resonance with the nuclei, so that a minimal NMR signal (variation in Ehf) is

expected. (ii) The electron is in the sz = −1/2 state initially and remains in this state. Both RF

pulses are in resonance, so that the nuclei get rotated twice. While a 2π rotation is supposed to

return the nuclei into the original state, the Knight shift inhomogeneity means that the rotations

are imperfect. Thus a small but finite variation in Ehf is expected. (iii) The electron is in the

sz = ±1/2 state initially, but flips into the opposite state sz = ∓1/2 during the TDark interval. In

this case one of the RF pulses will be in resonance and one out of resonance. The overall rotation

will be π, so that a large change in Ehf is expected.

The results of the single-shot NMR measurements are shown in Supplementary Figs. 10a-c for

different TDark. At short TDark there is a bimodal distribution of the NMR signals. The two modes

correspond to the no-spin-flip cases (i) and (ii), where the electron preserves its spin during TDark.

As the free evolution time becomes longer, the third mode emerges, corresponding to the spin-flip

case (iii), where the electron has the opposite spin projections at the start and the end of the TDark

interval. From such histograms, we evaluate the frequency of the events where the electron spin

is not flipped and plot it as a function of TDark (symbols in Supplementary Fig. 10d). At short

TDark the frequency is close to unity, while in the limit of long TDark the frequency tends to 0.5

because the initial and the final electron spin states become completely uncorrelated. The solid

line in Supplementary Fig. 10d shows the best stretched-exponential fit, which reveals the electron

spin relaxation time T1,e ≈ 8.5 ms in this particular experiment conducted at Bz = 1.6 T. Similar

measurements at different magnetic fields yield T1,e ≈ 7 ms at Bz = 2 T, reducing to T1,e ≈ 0.5 ms

at Bz = 7 T. Further details and results are to be reported by H. E. Dyte, G. Gillard, et al. in a

forthcoming publication.

Supplementary Note 6. RAW DATA

The raw data of Fig. 3b from the main text (diffusion reflux measurement) can be found in

Supplementary file Fig3b.xls. This experimental dataset is not filtered.

The raw data for nuclear spin relaxation measurements can be found in Supplementary File

FigS6.xls. This file contains a full dataset, part of which is shown by the symbols in Supplementary

Fig. 6 and Fig. 4b of the main text. The data shown in the figures is mildly filtered (Gaussian
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kernel filter with full width at half maximum of 0.2 in log10 units). The filtered data is given in

the first four sheets of the file. The same unfiltered data is given in the last four sheets of the

file. Each sheet corresponds to a certain QD charge state and magnetic field. In each sheet, the

first column is the dark time TDark (horizontal axis) and the remaining columns are the Ehf values

(vertical axis) for different pump times TPump.
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Chapter 6

Approaching a Fully-Polarised Nuclear
Spin State

Thus far we have discussed the strain present in QDs and the spin dynamics of the nuclei
after they have been polarised; however, the polarisation degree, PN , of the QDs, which is an
important metric, is yet to be discussed.

Let us consider an initial eigenstate, |i⟩, of a Hamiltonian independent of hyperfine coupling,
which connects a spin up electron with the nuclear spins of a QD. This eigenstate would be a
basis vector for an electron spin qubit. Due to hyperfine interactions, the electron spin can flip
(i.e. dephase) resulting in the system going into a final state |f⟩. |f⟩ is also an eigenstate of the
original Hamiltonian, but the electron is now spin down. For this spin flip to have occurred, the
total spin of the system needs to be conserved, so a single nucleus’ spin must also have increased
by 2s = 1 [190]. As |PN | approaches unity the rate at which this electron spin qubit dephasing
occurs decreases; this response rate is not linear, rather it scales as

√
1− P 2

N [191]. Apart from
the rate of electron spin qubit dephasing, another figure ofmerit is the entropy of the system. This
characterises the disorder within the nuclear ensemble; optically cooling the QD nuclear spins
(by increasing PN ) reduces this disorder. Similar to the rate of electron spin qubit dephasing, the
difference in entropy from |PN | = 80% to PN = 0 is minimal (approximately a factor of two
smaller). However, when |PN | exceeds 95% for every additional ‘9’ in the place value after the
decimal point the entropy decreases by approximately an order of magnitude. This allows for a
new, more interesting, regime to be achieved in which there is a highly-correlated many-body
nuclear state.

In the theoretical literature there is some debate about whether it is even possible to reach near
unity polarisations. References [192, 193] state that the maximum possible nuclear polarisation
is ≈ 75%. They state this limitation is due the formation of dark states, which prevent any
further polarisation build up [192–195]. Experimental work that occurred at a similar time to
these papers was consistent with this high polarisation limit, only ever reaching PN ≈ 65%.
However, later work by that same group reached polarisations degrees of . 80% [131]. In the
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early 2000s there was a paper that reached PN = 95% (and PN = −55%), however this was
for a different electronic system compared with QDs. A rhodium (spin-1

2
) crystal at ∼ 10 mK

was used, and the time take to reach these polarisations was on the order of hours [196]. For
practical quantum computing applications this duration is fairly limiting, as spin states would
need to be repeatedly initialised; therefore, a process which requires such lengthy times would
not be viable. It is also desirable to attain high polarisations at elevated temperatures, provided
that the system maintains stability, thus the sub-Kelvin temperatures used here are not preferred.

In this chapter we will discuss our success in obtaining a higher degree of polarisation than
has been demonstrated in the past, in GaAs/AlGaAs QDs at 4.2 K. This achievement paves the
way for leveraging these QDs as quantum memories, providing a practical approach for
addressing challenges in advanced tasks such as quantum error correction or quantum
repeaters [197–199]. The work presented is in the form of a paper, which I am first author on,
and has been published in a peer-reviewed journal on 2nd February 2024, reproduced with
permission from Springer Nature. The citation is:
P. Millington-Hotze, H. E. Dyte, S. Manna, S. F. Covre da Silva, A. Rastelli, E. A.
Chekhovich. “Approaching a fully-polarized state of nuclear spins in a solid”. Nat Commun
15, 985 (2024). doi: 10.1038/s41467-024-45364-2.

In this work the optical spin pumping and NMR experiments along with their analysis were
conducted by Peter Millington-Hotze and Evgeny Chekhovich. Additional NMRmeasurements
on externally strained QDs was conducted by Harry Dyte and Evgeny Chekhovich. The samples
were grown by Santanu Manna, Saimon Covre da Silva and Armando Rastelli.

https://dx.doi.org/10.1038/s41467-024-45364-2
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Approaching a fully-polarized state of
nuclear spins in a solid

Peter Millington-Hotze 1, Harry E. Dyte1, Santanu Manna2,3,
Saimon F. Covre da Silva 2, Armando Rastelli 2 & Evgeny A. Chekhovich 1

Magnetic noise of atomic nuclear spins is a major source of decoherence in
solid-state spin qubits. In theory, near-unity nuclear spin polarization can
eliminate decoherence of the electron spin qubit, while turning the nuclei into
a useful quantum information resource. However, achieving sufficiently high
nuclear polarizations has remained an evasive goal. Here we implement a
nuclear spin polarization protocol which combines strong optical pumping
and fast electron tunneling. Nuclear polarizations well above 95% are gener-
ated in GaAs semiconductor quantum dots on a timescale of 1 minute. The
technique is compatible with standard quantum dot device designs, where
highly-polarized nuclear spins can simplify implementations of qubits and
quantum memories, as well as offer a testbed for studies of many-body
quantum dynamics and magnetism.

The capability of initializing a quantum system into a well-defined
eigenstate is one of the fundamental requirements in quantum science
and technology. This has been demonstrated for individual and
dilute nuclear spins in the solid state1,2, but remains a long-standing
challenge for dense three-dimensional lattices of nuclear spins. For the
quantum ground state of a spin ensemble the polarization degree is
PN = ± 100%, which is equivalent to absolute zero spin temperature.
Very high polarizations, PN ≈ 95–99%, can be reached through brute-
force cooling in certain bulk materials, but the cooling cycle may take
hours or even days3,4. More scalable approaches seek to use individual
or dilute electron spins to polarize the dense nuclear ensembles.
Microwave pumping of paramagnetic impurities in bulk solids5,6 pro-
vides polarizations up to PN ≈ 80–90%. In semiconductor nanos-
tructures, PN ≈ 50–80% is achieved either through electronic
transport7 or optical excitation8. However, polarizations much closer
to unity are needed to suppress the electron spin qubit dephasing,

whose rate scales as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� P2
N

q

9, or reduce the nuclear ensemble

entropy, which scales as 1�PN
2 ð1� lnð1�PN

2 ÞÞ10. Therefore, different tech-
niques are needed to approach a fully-polarized nuclear state.

Extensive theoretical studies have been conducted to understand
what limits nuclear spin pumping in a central-spin scenario, where the

electron can be polarized on demand, while the ensemble of N nuclei
can only be accessed through hyperfine (magnetic) coupling with that
central electron (Fig. 1a). The formation of coherent “dark” states11 has
been shown to suppress the transfer of polarization from the electron
to nuclei12. Thus an open question remains – is it possible, even in
principle, to reach a fully-polarized nuclear state in a real central-spin
system?

We work with GaAs/AlGaAs quantum dots (QDs) and use optical
excitation to polarize nuclear spins. While the optical method is well
known13, achieving near-unity polarizations and understanding the
underlying physics proved challenging. Here, we show that the solu-
tion is to combine strong optical excitation with fast carrier tunneling,
which resolves the main bottleneck of slow optical recombination.
Moreover, no “dark”-state limitation occurs, whichwe also attribute to
the extremely short lifetimeof the electron spin. As a result, weachieve
nuclear polarization degrees well above PN > 95%. The maximum
polarizations vary between individual QDs, which we ascribe to slight
fluctuations inQD shapes andpartial relaxation of the optical selection
rules. For the best dots we derive PN ≳ 99%, limited only by the accu-
racy of the existingmeasurement techniques. These high polarizations
surpass the predicted PN ≳ 90% threshold for achieving extended
electron spin qubit coherence14,15, quantum memory operation15,16,
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superradiant electron-nuclear spin dynamics17,18, as well as magnetic-
ordering phase transition19,20.

Results
The semiconductor device, sketched in Fig. 1b, is a p − i − n diode
with epitaxial GaAs QDs embedded into the AlGaAs barrier layers
(see Supplementary Note 1). By changing the gate bias VGate it is pos-
sible to charge the QD with individual resident electrons21,22 and apply
a tunable electric field. Each individual QD contains N ≈ 105 nuclei,
with the three abundant isotopes 75As, 69Ga and 71Ga, all possessing
spin momentum I = 3/2. The sample is cooled to ≈4.25 K and placed
in a magnetic field Bz parallel to the electric field and sample growth
direction (see Supplementary Note 3). Thanks to the selection rules13,
optical excitation creates spin-polarized electron-hole pairs; σ± polar-
ized photons with ±1 angular momentum (in units of ℏ) generate
electrons with spin projection sz = ∓ 1/2. Owing to the electron-nuclear
hyperfine interaction (Fig. 1a), a polarized electron can transfer its spin
to one of the nuclei and, through repeated optical pumping, induce a
substantial polarization ∣PN∣. Conversely, the energy of the photon
emitted from electron-hole recombination depends on the mutual
alignment of the electron spin and the total magnetic field, which is a
sum of Bz and the effective field of the polarized nuclei. The resulting
optical spectrum is a doublet (Fig. 1c), whose splitting ΔEPL is used as a
sensitive probe of the nuclear spin polarization state. We define the
exciton hyperfine shift Ehf = − (ΔEPL −ΔEPL,0), where ΔEPL,0 is the split-
ting measured for depolarized nuclei (PN ≈0).

The high resolution optical spectra (Fig. 1c), required to measure
Ehf, can only be observed for a narrow range of gate biases and optical
excitation powers. Therefore, we use a pump-probe technique
(Fig. 1d),where the nuclear spins arepolarized by an optical pumpwith
an arbitrary set of parameters, while the optical probe parameters are
fixed and optimized for the readout of Ehf. Conducting experiments at
high magnetic field Bz = 10 T, we maximize the hyperfine shift ∣Ehf∣ by
optimizing the following parameters: the elliptical polarization of the
optical pump, its power PPump, photon energy EPump and the biasVPump

during pumping. The results are interpreted with reference to photo-
luminescence data. Figure 2a shows low power luminescence spectra,
which reveal awell-knownbias-controlled charging of the ground state
(s-shell) exciton in a QD22. High optical power (Fig. 2b) broadens the
spectra, also populating the higher shells p, d, etc.23,24. (See additional
data in Supplementary Note 4).

The dependence of nuclear-induced shift Ehf on EPump and VPump,
shown in Fig. 2c, reveals spectral bands thatmatch the excitonic shells
in Fig. 2b, demonstrating that nuclear spin pumping proceeds through
resonant optical driving of the QD exciton transitions. The largest
∣Ehf∣ is observed when the pump is resonant with the s shell
(EPump ≈ 1.565 eV), and at a large reverse bias VPump = −2.3 V, where
photoluminescence is completely quenched. Moreover, the optimal
pump laser power PPump = 1.5 mW is five orders of magnitude higher
than the saturation power of the s-shell luminescence. Based on these
observations, the nuclear spin pumping effect can be understood as a
cyclic process sketched in Fig. 2d. First, circularly-polarized resonant

Fig. 1 | Optical control of quantum dot nuclear spins. a Schematic of a central
electron spin and an ensemble of nuclear spins coupled through hyperfine inter-
action with constants aj. The nuclei are coupled through dipolar interactions with
pairwise constants bj,k (see Supplementary Note 2). b Schematic cross-section of a
p − i − n diode with embedded epitaxial GaAs quantum dots. Laser excitation,
photoluminescence collection and the external magnetic field are directed along
the sample growth axis z. Doped semiconductor layers are used to apply the gate
bias VGate, resulting in a tunable electric field along z. c Typical photoluminescence

spectra of a negatively charged trion X− in an individual QD. The spectral splitting
ΔEPL depends both on magnetic field Bz and the helicity (σ+ or σ−) of the optical
pumping due to the buildup of the nuclear spin polarization. d Experimental cycle
consisting of nuclear spin optical pumping, nuclear magnetic resonance (NMR)
excitation, and optical probing of the photoluminescence spectrum. VGate is swit-
ched between an arbitrary level VPump and the levels that tune the QD into the
electron-charged (1e) and neutral (0e) states.
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optical excitation creates a spin-polarized electron-hole pair in the
quantum dot. Then, the electron has a small but finite probability to
undergo a flip-flop with one of the nuclei, increasing the ensemble
polarization ∣PN∣. Finally, in order to proceed to the next cycle, the
electron is removed through tunneling. The tunneling time, estimated
from bias-dependent photoluminescence in Supplementary Note 4, is
≲ 0.1 ps, much shorter than the ≈ 300ps radiative recombination
time25. The combination of high-power optical pumping and fast tun-
neling escape results in rapid cycling. This in turn leads to a high rate of
nuclear spin pumping, which helps to outpace the inevitable nuclear
spin relaxation. The cycling time is also much shorter than the period
of coherent electron precession≳ 20 ps, ensuring the spin-flipped
electrons are removed before they can undergo a reverse flip-flop26.
The ultimate result is a large steady-state nuclear hyperfine shift
∣Ehf∣ > 110 μeV, exceeding ∣Ehf∣ observed previously8,27.

Although Ehf scales linearlywith nuclearpolarizationdegree PN, its
absolute value depends on the QD structure. The electron wavefunc-
tion leaks into the barriers where the fraction of Ga atoms replaced
with Al atoms is not known precisely. A more reliable measurement of
the PN is achieved through nuclear magnetic resonance (NMR) spin
thermometry (see Supplementary Note 5 for details). The method
assumes Boltzmann probability distribution pm∝ emβ for each nucleus
to occupy a state with spin projectionsm, where β is the dimensionless
inverse spin temperature. For spin I = 1/2, where m = ± 1/2, any statis-
tical distribution has the Boltzmann form. By contrast, for I > 1/2, the
Boltzmann distribution expresses the non-trivial nuclear spin tem-
perature hypothesis28, verified for epitaxial GaAs quantum dots
previously8.

In order to perform spin thermometry, we first measure the
single-QD NMR spectra29, as exemplified in Fig. 3a for 69Ga spins. The

Fig. 2 | Tunneling-assisted optical nuclear spin pumping. a Bias-dependent
photoluminescence spectra of an individual dot QD1 measured at Bz = 10 T at low
excitation power PExc = 0.5 nW and excitation photon energy EExc = 1.96 eV. Labels
show neutral (X0), positively (Xn+) and negatively (Xn−) multi-charged QD excitons.
Broad spectral features at higher energies arise from the AlGaAs layers.
b Photoluminescence spectra at an increased power PExc = 20 μW reveal saturated
emission from higher QD exciton shells, labeled s, p, d. c Hyperfine shift measured
in a pump-probe experiment (Fig. 1d) on QD1 as a function of gate bias VPump and

the photon energy EPump of the σ+ polarized optical pump with power
PPump = 1.5mW. Parameter regions where no data has been measured are shown in
gray. Excitonic spectral features are labeled up to the h shell. The dashed ellipse
highlights the parameters that result in themost efficient nuclear spin polarization.
dSchematic of the conduction and valencebandedges along the zdirection, aswell
as confined electron (full circles) and hole (open circles) states. The three stages of
the cyclic nuclear spin pumping process are shown schematically. Source data for
a–c are provided as a Source Data file.
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three magnetic-dipole transitions of the 3/2 spins are well resolved
thanks to the quadrupolar shifts νQ, which originate from the lattice
mismatch of GaAs and AlGaAs. Compared to the Larmor frequency
νL ≈ 100MHz, these strain-induced quadrupolar effects ∣νQ∣ ≲ 100 kHz
are still too small to impede nuclear spin pumping. This is a significant
advantage over the highly-strained Stranski–Krastanov QDs29, where
∣νQ∣ ≈ 1–10MHz so that large ∣PN∣ is prohibited simply because nuclear
eigenstates are not aligned along the magnetic field30 (the misalign-
ment is characterized by the ratio / ðνQ=νLÞ2). The resolved NMR tri-
plet is essential, as it allows β to be derived from the Boltzmann
exponent, which then relates to PN through the standard Brillouin
function. Qualitatively this is demonstrated in Fig. 3b with simple
saturation NMR spectroscopy31. At moderate polarization PN ≈ −0.6
(dashed line) all three magnetic-dipole transitions m↔m + 1
are observed, and their amplitudes are proportional to the differences
∣pm+1 − pm∣ (Fig. 3c). At themaximumpositive polarization (solid line) a
single NMR peak +1/2↔ +3/2 is observed, indicating that nearly all
spins have been cooled to the m = + 3/2 state.

For quantitative spin thermometry we measure the peak areas
of the −3/2↔ −1/2 and +1/2↔ +3/2 NMR transitions at different
nuclear polarizations. The results are shown in Fig. 3d (circles and
triangles), together with the total signal obtained by saturating all
three NMR transitions (squares). We take into account the small
overlaps of the NMR triplet components (see Supplementary Note 5)
and use Boltzmann model fitting (lines) to derive the polarization

degree PN (top axis). The model reproduces well both the linear
dependence of the total NMR signal and the non-linear dependencies
of the selective ± 1/2↔ ± 3/2 signals, revealing a close approach to
PN ≈ −1. Qualitatively, at PN = −1 the m = +1/2, +3/2 states must be
depopulated, resulting in a vanishing +1/2↔ +3/2 signal, as indeed
observed experimentally. Moreover, at PN = −1 the −3/2↔ −1/2 signal
must be 2/3 of the total NMR signal, also in good agreement with
experiment. By switching from σ+ to σ− optical pumping we also
approach PN ≈ +1. The largest positive and negative PN are shown in
Fig. 3e for individual dots QD1–QD3, chosen for their highest ∣Ehf∣. At
the highest static field Bz = 10 T the best-fit estimates for 69Ga are
around ∣PN∣ ≈0.99, with somewhat lower ∣PN∣ ≈0.98 for 75As. With 95%
confidence, ∣PN∣ exceeds 0.95, but the data is also compatible with
∣PN∣ = 1. It is thus possible that the actual polarization is much closer to
unity – at present, the measurement accuracy is the main limitation.
Spin thermometry on one of the QDs at Bz = 4 T yields similarly high
polarizations ∣PN∣ ≳0.93, although the measurement accuracy is
reduced due to the less efficient optical probing.

A simpler measurement of the largest positive and negative
hyperfine shift Ehf is shown in Fig. 3f for 12 randomly chosen dots. For
some QDs, nuclear polarization does not exceed ∣PN∣ ≈0.9. We also
observe that for all studied QDs the optimal optical polarization of the
pump is not circular, but is rather elliptical32, with a randomly-oriented
linearly-polarized contribution ranging between 0 and 0.4 (see Sup-
plementary Note 3). This points to heavy-light hole mixing, which is
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tions m = ± 1/2, ± 3/2. The resonance betweenm = ± 1/2 is at a pure Larmor fre-
quency νL, whereas the satellite transitions involving m = ± 3/2 are split off by the
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b Low-resolution spectrum of the same QD1, but measured using the saturation
technique in order to reveal the population probabilities of the nuclear spin levels.
c Population probabilities of spin levelswith differentm, sketched for the same two
nuclear polarization degrees as in b. d Hyperfine shift variation arising from
selective NMR manipulation of the 69Ga nuclear spins plotted against the initial
photoluminescence spectral splitting ΔEPL, varied by changing the optical pump

wavelength and polarization. Squares show the total 69Ga hyperfine shift measured
by broadband saturation of the entire NMR triplet, which equalizes populations pm
for all m. Circles and triangles show the selective signals of the ± 1/2↔ ± 3/2 reso-
nances measured via frequency-swept adiabatic inversion. Lines show fitting, from
which nuclear spin polarization degree is derived and plotted in the top horizontal
scale (see Supplementary Note 5). e Maximum positive and minimum negative
nuclear spin polarization degrees PN derived for 69Ga (triangles) and 75As (circles) in
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Source Data file. Source data for e can be found in Supplementary Information.
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always present in QDs33 and is more pronounced under low-symmetry
confinement34,35. In additional measurements, where the symmetry is
reduced on purpose through uniaxial stress or tilting the magnetic
field by ≈ 12∘, we indeed find a significant reduction in maximum ∣Ehf∣.
Therefore, the dot-to-dot variation of PN is attributed to the random-
ness of the QD morphology.

The buildup dynamics, measured under optimal nuclear spin
pumping, are shown in Fig. 4a. The approach to the steady state is non-
exponential since the nuclei that are further away from the center of
the QD are less coupled to the electron and take longer to polarize. It
takes on the order of ≈ 60 s to reach the steady-state PN within the
measurement accuracy. Once optical pumping is switched off, nuclear
spins depolarize in the dark (squares in Fig. 4b) on a timescale of
minutes, mainly through spin diffusion36. Such long lifetimes mean
that a highly-polarized nuclear spin state can be prepared and used to
extend electron spin qubit coherence over a large number of short
(few nanoseconds) qubit operations. We further examine the effect of
the initial PN on the relaxation dynamics by augmenting the optically-
pumped nuclear state with a short partially-depolarizing NMR pulse
(triangles and stars in Fig. 4b). When normalized by the initial polar-
ization, the plot reveals accelerated nuclear spin relaxation under
reduced initial polarization (inset in Fig. 4b). This is quantified in
Fig. 4c, where at high polarization the nuclear spin relaxation half-
lifetime T1,N is seen to be a factor of ≈ 2–3 longer than in case of low
initial polarization (the lowest studied initial polarization is limited by
the accuracy of the T1,N measurement). This is a non-trivial result:
scaling of the initial PN should not change T1,N within the linear spin
diffusion model.

In order to explain the non-linear diffusion, we consider the
eigenspectrum of a nuclear spin ensemble, with an example shown in
Fig. 4d for N = 6 spins I = 3/2. The adjacent bands are separated by the
large Zeeman energy hνL (typical νL ≈ 100MHz at Bz = 10 T), which
corresponds to a flip of a single nucleus, accompanied by a ± 1 change

in the total ensemble spin projection M. Each band consists of all
possible superpositions with a given M, with degeneracy lifted by the
small (νdd ≈ 1 kHz) nuclear-nuclear dipolar magnetic interaction. For
M ≈0 (i.e. PN ≈0) the broadening of each band is maximal, character-
ized by the dipole-dipole energy hνdd. With ∣PN∣ approaching unity, the
distribution of the available dipolar energies narrows, eventually van-
ishing for the two fully-polarized states withM = ±NI (i.e. PN = ± 1). The
dipolar reservoir can act as a sourceor sink of energy for aflip-flop spin
exchange between two nuclei whose energy gaps are slightly different
(for example due to the inhomogeneity of the quadrupolar shifts νQ).
Nuclear spin diffusion proceeds through suchflip-flops. Therefore, the
slow-down of diffusion at high initial ∣PN∣ is well explained by the nar-
rowing of the dipolar reservoir.

The narrowing of the nuclear dipolar reservoir is conceptually
similar to the state-narrowing technique, which aims to reduce the
statistical dispersion of the nuclear Zeeman energies∝M in order to
enhance the coherence of the electron spin qubit. An example of a
narrowed mixed state is sketched in Fig. 4e for PN ≈0, but with
uncertainty in M reduced down to a few units, as demonstrated
experimentally previously37,38. The fundamental advantage of a polar-
ized state (also sketched in Fig. 4e), is that it not only narrows the

uncertainty in M by a factor /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� P2
N

q

(see derivation in Supple-

mentary Note 4D and Supplementary Data 1 and 2), but also reduces
the dipolar broadening. In other words, our scheme represents true
cooling with ∣PN∣→ 1, whereas the narrowing schemes can be seen as
partial cooling of certain degrees of freedom of the nuclear ensemble.
The ultimate limit of PN = ± 1 corresponds to the only two non-degen-
erate nuclear states, for which the electron spin qubit coherence is
predicted to be essentially non-decaying14,15. By contrast, even if the
dispersion of M is reduced to zero, the dipolar energy uncertainty of
a depolarized ensemble may still cause dynamics on the timescales of
1/νdd≈ 1ms, leading in turn to electron spin qubit decoherence.
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Investigation of electron spin coherence in a highly-polarized nuclear
spin environment is an interesting subject for futurework andmayalso
provide a more sensitive tool for nuclear spin thermometry near
∣PN∣ ≈ 1. Alternatively, more accuratemeasurement of PN can be sought
through “trigger” detection method28, relying on nuclear-nuclear
interactions.

Discussion
Large nuclear polarizations are achieved here on a standard p − i − n
diode device, fully compatible with high-quality electron spin qubit
operation, as demonstrated recently in the same semiconductor
structure39. The technique is simple to implement and robust – once
optical pumping parameters are optimized for a certain QD, they do
not require any correction over months of experiments. Even larger
nuclear polarizations canbe sought by combiningQDs of high in-plane
symmetry with biaxial strain in order to reduce the heavy-light
hole mixing. Our nuclear spin cooling method uses the purity of the
optical pump polarization as the final heat sink, ultimately limiting the
achievable PN. This is different from the resonant “dragging”
schemes40–42 where the ultimate heat sink is the photon number in the
optical mode, offering in principle a much closer approach to ∣PN∣ ≈ 1,
provided the dark-state bottleneck could be avoided. Combining the
advantages of the twoapproaches in a two-stage cooling cycle can be a
route towards the ultimate goal of initializing a nuclear spin ensemble
into its fully-polarized quantum ground state. This would be a pre-
requisite for turning the enormously large Hilbert space of the N ≈ 105

QD nuclei into a high-capacity quantum information resource.

Data availability
The key data generated in this study are provided in the Source Data
file SourceData.zip. The rest of the data that support the findings of
this study are available from the corresponding author upon
request. Source data are provided with this paper.
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Supplementary Note 1. SAMPLE STRUCTURE

The sample is grown using molecular beam epitaxy (MBE) on a semi-insulating GaAs (001)

substrate. The layer sequence of the semiconductor structure is shown in Supplementary Fig. 1.

The growth starts with a layer of Al0.95Ga0.05As followed by a single pair of Al0.2Ga0.8As and

Al0.95Ga0.05As layers acting as a Bragg reflector in optical experiments. Then, a 95 nm thick layer

of Al0.15Ga0.85As is grown, followed by a 95 nm thick layer of Al0.15Ga0.85As doped with Si at a

volume concentration of 1.0 × 1018 cm−3. The low Al concentration of 0.15 in the Si doped layer

mitigates the issues caused by the deep DX centers [1–3]. The n-type doped layer is followed by

the electron tunnel barrier layers: first a 5 nm thick Al0.15Ga0.85As layer is grown at a reduced

temperature of 560 ◦C to suppress Si segregation, followed by a 10 nm thick Al0.15Ga0.85As and then

a 15 nm thick Al0.33Ga0.67As layer grown at 600 ◦C. Aluminium droplets are grown on the surface

of the Al0.33Ga0.67As layer and are used to etch the nanoholes [4, 5]. Atomic force microscopy

shows that typical nanoholes have a depth of ≈ 6.5 nm and are ≈ 70 nm in diameter. Next, a

2.1 nm thick layer of GaAs is grown to form QDs by infilling the nanoholes as well as to form

the quantum well (QW) layer. Thus, the maximum height of the QDs in the growth z direction

is ≈ 9 nm. The GaAs layer is followed by a 268 nm thick Al0.33Ga0.67As barrier layer. Finally,

the p-type contact layers doped with C are grown: a 65 nm thick layer of Al0.15Ga0.85As with

a 5 × 1018 cm−3 doping concentration, followed by a 5 nm thick layer of Al0.15Ga0.85As with a

9× 1018 cm−3 concentration, and a 10 nm thick layer of GaAs with a 9× 1018 cm−3 concentration.

The sample is processed into a p−i−n diode structure. Mesa structures with a height of 250 nm

are formed by etching away the p-doped layers and depositing Ni(10 nm)/AuGe(150 nm)/Ni(40

nm)/Au(100 nm) on the etched areas. The sample is then annealed to enable diffusion down to

the n-doped layer to form the ohmic back contact. The top gate contact is formed by depositing

Ti(15 nm)/Au(100 nm) on to the p-type surface of the mesa areas. Quantum dot photoluminescence

(PL) is excited and collected through the top of the sample. The sample gate bias VGate is the

bias of the p-type top contact with respect to the grounded n-type back contact. Due to the large

thickness of the top Al0.33Ga0.67As layer, the tunneling of the holes is suppressed, whereas tunnel

coupling to the n-type layer enables deterministic charging of the quantum dots with electrons by

changing VGate.
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Supplementary Figure 1. Quantum dot sample structure used in this work.

Supplementary Note 2. ELECTRON-NUCLEAR SPIN SYSTEM OF A QUANTUM DOT

The band structure of the electrons and holes in a GaAs QD is sketched in Supplementary Fig. 2

(see for example Ref. [6] for a review). The electron conduction band in GaAs has spin s = 1/2,

with two possible spin projections sz = ±1/2 along the quantizing magnetic field. The valence

band is four-fold degenerate at the center of the Brillouin zone in bulk GaAs. The confinement

along the z growth axis is sufficient to split the valence band into the heavy hole and light hole

subbands with total momentum projections jz = ±3/2 and jz = ±1/2, respectively. The typical

heavy-light hole splitting is ∆Ehh−lh ≈ 10 − 15 meV in GaAs/AlGaAs quantum wells, depending

on their thickness [7, 8]. The selection rules for the ground state heavy-hole excitons are such

that σ+ (σ−) circularly polarized light couples only to the sz = −1/2 (sz = +1/2) electron state

in the conduction band. For the light hole excitons the selection rules are inverted. This means

that high-fidelity initialization of the electron spin via circularly-polarized optical pumping is only



4

QD
 st

ate
 en

erg
y ↑↓⇓

↑↓⇑

↑

↓

( � B g e B z + E  eh f ) / 2

−( � B g e B z + E  eh f ) / 2

E G a p + ( � B g h B z + E  hh f ) / 2

E G a p −( � B g h B z + E  hh f ) / 2

c

σ+σ−

1 . 5 7 4 2 1 . 5 7 4 4 1 . 5 7 4 6 1 . 5 7 4 8

Q D 1 ,  B z  =  4  T

Ph
oto

lum
ine

sce
nc

e i
nte

ns
ity

P h o t o l u m i n e s c e n c e  p h o t o n  e n e r g y  ( e V )

  σ+  p u m p  
  σ−  p u m p

∆ E P L

↑↓⇓ → ↓

↑↓⇑ → ↑

b 7 8 7 . 5 7 8 7 . 4 7 8 7 . 3
P h o t o l u m i n e s c e n c e  w a v e l e n g t h  ( n m )

QD
 st

ate
 en

erg
y

⇓
⇑

↑
↓| � B g e B z |

E G a p

| � B g h B z |

a

s z = + 1 / 2
s z = � 1 / 2

j z = � 3 / 2
j z = + 3 / 2

j z = � 1 / 2
j z = + 1 / 2

σ+σ−σ+σ−

∆E h h - l h

C B

V B

Supplementary Figure 2. Optical transitions in a GaAs quantum dot. a, Electron energy levels in

the conduction band (CB) and hole energy levels in the valence band (VB). Electron states with spin up

(↑) and down (↓) have spin projections sz = +1/2 and sz = −1/2, respectively. The heavy hole states with

pseudospin up (⇑) and down (⇓) have momentum projections jz = +3/2 and jz = −3/2, respectively. The

light hole states have momentum projections jz = ±1/2. Dashed (solid) arrows show σ+ (σ−) polarized

optical transitions. b, Typical photoluminescence spectra of an individual QD. The spectral splitting ∆EPL

depends on the helicity of the optical pumping (σ±) due to the buildup of the nuclear spin polarization. c,

Energy level diagram of a negatively charged trion in a GaAs QD. The electron ground state is split by the

Zeeman energy µBgeBz and the hyperfine shift Ee
hf . The X− trion energy includes the QD bandgap energy

EGap, the Zeeman splitting and a small [9] hyperfine shift Eh
hf . The electron and hole g-factors are ge and

gh, respectively, with |gh| ≫ |ge| in the studied QDs. Arrows depict the two optically allowed transitions

responsible for the spectral doublet in (b). Note that the g-factors shown in (a) do not necessarily coincide

with those shown in (c), since the states used for excitation and detection are in general different.

possible for a sufficiently large spectral separation ∆Ehh−lh of the heavy and light hole exciton

transitions.

Apart from the quantum-well type of confinement along the z axis, carriers in a QD are also

confined in the orthogonal xy plane. In a real semiconductor structure there is always some

breaking of the symmetry in the xy plane. Such in-plane anisotropy can mix the heavy and light

holes, so that the eigenstates are no longer described by pure jz = ±3/2 or jz = ±1/2 projections.

As a result of such mixing the selection rules change, and the optical transitions in general become

elliptically polarized.

In the pump-probe experiments we use photoluminescence of a negatively charged trion X−,

where the electron-hole recombination occurs in presence of another resident electron. The X−
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spectra, such as shown in Supplementary Fig. 2b, tend to have the narrowest linewidths and their

Zeeman splittings are free from the non-linearity which is presented for neutral excitons X0 due to

the fine structure splitting. The energies of the states involved in X− photoluminescence are shown

in Supplementary Fig. 2c. The energy of the ground state resident electron is (µBgeBz + Ee
hf)sz,

while the energy of the optically excited trion is EGap + (µBghBz + Eh
hf)jz/3, where EGap is the

X− transition energy in the absence of Zeeman and hyperfine shifts. Taking the differences and

substituting the momentum projections allowed by the selection rules sz + jz = ±1, we find the

photon energies of the two optically-allowed transitions EGap ±
(
µB(gh − ge)Bz + (Eh

hf − Ee
hf)

)
/2,

where ge (gh) is the electron (heavy hole) g-factor, Ee
hf (Eh

hf) is the electron (heavy hole) hyperfine

shift. The splitting of the spectral doublet is then

∆EPL = µB(gh − ge)Bz + (Eh
hf − Ee

hf). (S1)

Next we eliminate the Zeeman contribution and define the excitonic hyperfine shift:

Ehf = −(∆EPL − ∆EPL,0) = Ee
hf − Eh

hf , (S2)

where ∆EPL,0 is the photoluminescence doublet splitting at zero nuclear spin polarization. The

valence band hole hyperfine interaction is of the order of 10% of the electron hyperfine interaction

[9]. Consequently, the excitonic hyperfine shift Ehf is dominated by the electronic contribution

Ee
hf .

The Hamiltonian describing the nuclear spin system alone includes the Zeeman, the quadrupolar

and the dipole-dipole terms. The Zeeman term accounts for the coupling of the QD nuclear spins

Ij to the static magnetic field Bz directed along the z axis:

HZ,N = −
N∑
j=1

ℏγjBzÎz,j , (S3)

where the summation goes over all individual nuclei 1 ≤ j ≤ N , ℏ = h/(2π) is the reduced

Planck’s constant, γj is the gyromagnetic ratio of the j-th nuclear spin and Îj is a vector of spin

operators with Cartesian components (Îx,j , Îy,j , Îz,j). The result of the Zeeman term alone is a

spectrum of equidistant single-spin eigenenergies mℏγjBz, corresponding to 2I+1 eigenstates with

Îz projections m satisfying −I ≤ m ≤ +I.

The interaction of the nuclear electric quadrupolar moment with the electric field gradients is

described by the term (Ch. 10 in Ref. [10]):

HQ,N =

N∑
j=1

qj
6

[3Î2z′,j − I2j + ηj(Î
2
x′,j − Î2y′,j)], (S4)
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where qj and ηj describe the magnitude and asymmetry of the electric field gradient tensor, whose

principal axes are x′y′z′. The strain is inhomogeneous within the QD volume, so that qj and ηj vary

between the individual nuclei. The axes x′y′z′ are different for each nucleus and generally do not

coincide with crystallographic axes or magnetic field direction. In lattice-matched GaAs/AlGaAs

QDs the electric field gradients at the nuclear sites do not exceed qj/h ≈ 200 kHz, as witnessed via

NMR spectroscopy. At sufficiently strong magnetic fields |ℏγjBz| ≫ |qj |, quadrupolar effects can

be treated perturbatively – the main effect is the anharmonicity of the nuclear spin energies and

the resulting quadrupolar NMR multiplet of 2I magnetic-dipole transitions, split by νQ ≈ qj/h.

The m = ±1/2 states of a half-integer nuclear spin are influenced by quadrupolar effects only in

the second order, resulting in a smaller inhomogeneous broadening, which scales as ∝ ν2Q/νL with

nuclear spin Larmor frequency νL = γBz/(2π).

Quadrupolar effects have a direct impact on nuclear spin cooling, which we now discuss briefly.

According to the Hamiltonians of Supplementary Equations S3 and S4, the nuclear eigenstates

have well-defined spin projections along the external magnetic field only under special conditions.

For example, if the quadrupolar shifts are absent (νQ = 0), or if the quadrupolar tensor has

high symmetry (ηj = 0) with the major axis parallel to magnetic field (z′ ∥ z), then the energy

eigenstates are also the eigenstates of the nuclear spin z-projection operator Îz,j , with eigenvalues

m = ±1/2, 3/2 in case of spin-3/2 nuclei. But this is not the case for an arbitrary quadrupolar

tensor. Thus, if a nuclear spin is initialized into a state with a definite m (for example through

interaction with optically pumped electron spins), it will be a superposition state, which will

evolve in time, decaying probabilistically (through decohering) into one of the energy eigenstates.

In simple words, the nuclear spin eigenstates are generally not aligned with the external magnetic

field. As a result, achieving complete nuclear spin polarization is strictly speaking impossible

in the presence of low-symmetry quadrupolar interactions, as has been pointed out previously

[11]. The scale of the effect can be characterized by considering the expectation value of the

spin projection operator Îz,j for the true energy eigenstates. First-order expansion of the exact

solution of the Hamiltonians of Supplementary Equations S3 and S4 shows that the deviation of

the Îz,j expectation values from the ideal half-integer values scales as ∝ (νQ/νL)2. For GaAs QDs

(|νQ| ≲ 200 kHz) in high magnetic field (νL ≈ 100 MHz) the deviation parameter is very small

(νQ/νL)2 ≈ 4 × 10−6. The picture is very different with Stranski-Krastanov InGaAs QDs, where

quadrupolar effects are large (up to |νQ| ≲ 10 MHz) and the distribution of the major quadrupolar

axes is inhomogeneous [11, 12]. As a result, for a realistic range of magnetic fields, near-unity

polarization of nuclear spins is fundamentally unachievable with InGaAs QDs [11].



7

Direct interaction between the nuclei is described by the dipole-dipole Hamiltonian:

HDD =
∑

1≤j<k≤N

bj,k

(
3Îz,j Îz,k − Îj ·Îk

)
,

bj,k =
µ0ℏ2

4π

γjγk
2

1 − 3 cos2 θj,k
r3j,k

(S5)

Here, µ0 = 4π×10−7 NA−2 is the magnetic constant and rj,k denotes the length of the vector, which

forms an angle θ with the z axis and connects the two spins j and k. The typical magnitude of the

interaction constants for the nearby nuclei in GaAs is max (|bj,k|)/h ≈ 100 Hz. The Hamiltonian

of Supplementary Eq. (S5) has been truncated to eliminate all spin non-conserving terms – this is

justified for static magnetic field exceeding ≳ 1 mT. While the eigenstates of an isolated nucleus

have well-defined spin projections m, the presence of the dipole-dipole interactions means that the

true eigenstates of the nuclear spin ensemble in general cannot be written as product states of the

single-nucleus states. The only two states where the nuclei are not entangled are the fully-polarized

states, where all individual spins occupy the states with the samem = −I or with the samem = +I.

On the other hand, at high magnetic field the total z-projection operator
∑

j Îz,j approximately

commutes with the nuclear spin Hamiltonian. Therefore, the nuclear ensemble eigenstates can be

described by the well-defined total spin projections M . An example of an eigenenergy spectrum,

calculated for N = 6 nuclei of 75As, is shown in Fig. 4d of the main text. In this calculation

we use νL = 1.8 kHz, νQ = 0 and the nuclei are taken from a single cubic cell of the group-III

face-centered-cubic sublattice of GaAs. The bands observed in the spectrum correspond to the

different values of M , ranging between −NI and +NI. The broadening of each band is due to the

dipole-dipole interactions, which lifts the degeneracy of the different states with the same M .

The interaction of the conduction band electron spin s with the ensemble of the QD nuclear

spins is dominated by the contact (Fermi) hyperfine interaction, with the following Hamiltonian:

He
hf =

N∑
j=1

aj(ŝxÎx,j + ŝyÎy,j + ŝzÎz,j), (S6)

where the hyperfine constant of an individual nucleus j is aj = A(j)|ψ(rj)|2v . Unlike aj , the

A(j) hyperfine constant is a parameter describing only the material and the isotope type to which

nucleus j belongs, |ψ(rj)|2 is the density of the electron envelope wavefunction at the nuclear site

rj of the crystal lattice, and v is the crystal volume per one cation or one anion. The definitions of

the hyperfine constants differ between different sources. With the definition adopted here, a fully

polarized isotope with spin I, hyperfine constant A and a 100% abundance (e.g. 75As), would shift
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the energies of the electron spin states sz = ±1/2 by ±AI/2, irrespective of the shape of |ψ(rj)|2.

With such definition, the typical values in GaAs are A ≈ 50 µeV [13].

For valence band holes the contact (Fermi) contribution vanishes, leaving the weaker dipole-

dipole terms to dominate the hyperfine interaction. Compared to the valence band electrons, the

coupling has a more complicated non-Ising form [9]. The effect of the net nuclear polarization on

the heavy-hole spin splitting can be captured by a simplified expression:

Hh
hf ≈

N∑
j=1

1

3
C(j)|ψ(rj)|2v ĵzÎz,j , (S7)

where ĵz is the z component of the hole spin momentum operator. The valence band hyperfine

material constants C(j) are sensitive to heavy-light hole mixing and both their signs and magnitudes

depend on the material [9].

Owing to the flip-flop term ∝ (ŝxÎx,j + ŝyÎy,j) of the hyperfine Hamiltonian (Supplementary

Eq. S6) the eigenstates of the electron-nuclear central spin system are in general entangled, i.e. they

cannot be written as a direct product of the electron spin single-particle state and the nuclear spin

ensemble state. Consequently, when such a product state is generated through optical injection of

a spin-polarized electron into the quantum dot, the wavefunction of the central spin system starts

evolving. We estimate the rate of coherent evolution using the Rabi frequency ∝
√∑

j a
2
j/h ≈

A/(h
√
N) derived previously in Ref. [14] for the limit of vanishing electron spin splitting. For a

fully polarized nuclear spin ensemble coupled to an electron spin polarized in the opposite direction,

this Rabi frequency describes the exact solution of periodic spin exchange between the electron

and the collective nuclear spin state. Therefore, in order for dynamic nuclear spin polarization

to be efficient, the polarized electron spins need to be removed and injected much faster than

the hyperfine-induced Rabi rotations (otherwise the electron spin will periodically polarize and

depolarize the nuclei, without any net spin transfer). For a typical GaAs QD with N ≈ 105 nuclear

spins we have h
√
N/A ≈ 25 ns. When electron spin splitting is not zero, there is an increase in the

frequency of coherent oscillations that follow initialization into a product electron-nuclear state. In

the limit of large electron spin splitting this is approximately the electron spin resonance frequency.

For experimental conditions used in our work the maximum sum of the net hyperfine shift and the

electron Zeeman splitting at Bz = 10 T does not exceed ≲ 180 µeV, which corresponds to electron

Larmor period of ≳ 20 ps. From these basic derivations, we arrive to a rough estimate that electron

spin recycling must occur on a sub-picosecond timescale in order to achieve near-unity nuclear spin

polarization.
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Supplementary Note 3. EXPERIMENTAL METHODS AND TECHNIQUES

All measurements are performed in a liquid helium bath cryostat. The sample is placed in an

insert tube filled with a low-pressure heat-exchange helium gas. The base temperature is ≈ 4.25 K.

We use confocal microscopy configuration where QD photoluminescence (PL) is excited by a laser

beam focused by a cryo-compatible apochromatic objective with a focal length of 2.89 mm and a

numerical aperture of 0.81. The excitation spot diameter is ≈ 1 µm. Both the optical excitation and

a static magnetic field Bz up to 10 T are applied along the sample growth axis z (Faraday geometry).

Quantum dot photoluminescence is collected and collimated by the same cryo-compatible objective.

The PL signal is dispersed in a two-stage grating spectrometer, followed by a pair of achromatic

doublets, which transfers the spectral image onto a charge-coupled device (CCD) detector with

a magnification of 3.75. The orientation of the semiconductor sample is verified by reflecting a

collimated laser off the sample surface – the small unintentional tilt of the sample is found to be

≈ 0.7◦. The laser used for optical pumping of the nuclear spins is a ring-cavity tunable titanium

sapphire (Ti:Sa) laser, operating in a single-mode continuous-wave regime. This laser is coupled

with a wavelength meter (30 MHz accuracy) for precise tuning and stabilization of the optical

pumping wavelength. The sample gate bias is connected by a combination of a twisted pair (inside

the cryostat) and a 50 Ω coaxial cable (outside the cryostat) to an arbitrary function generator

through a low-pass LC filter with a 1.9 MHz cut-off frequency. Selective manipulation of the nuclear

spins is achieved with a resonant radiofrequency oscillating magnetic field, generated by a small

copper wire coil. This coil is placed to have its axis within the top surface of the semiconductor

sample and perpendicular to the static magnetic field. A 50 Ω cryogenic coaxial cable is used to

connect the coil to a radiofrequency amplifier with a maximum rated power of 100 W.

A. Pump probe experiment timing

Supplementary Fig. 3 shows the timing diagrams for the different types of experiments. Sup-

plementary Fig. 3a shows the experimental cycle used in NMR spectroscopy, adiabatic sweep

calibration and in nuclear spin polarization measurement (nuclear spin thermometry). The cycle

consists of a radiofrequency burst between the pump and the probe optical pulses. During the

cycle, the sample gate bias VGate is switched between the required levels by an arbitrary function

generator. Both the pump and the probe optical pulses are implemented with mechanical shutters.

A mechanical shutter on the spectrometer is synchronized with the probe laser shutter to prevent
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the pump laser reaching the detector. Multiple pump-probe cycles, typically between 5 and 15,

are accumulated by the CCD detector in order to improve the signal to noise ratio. For inverse

NMR spectroscopy and adiabatic sweep calibration the pump duration is reduced to TPump = 5 s

to speed up the measurements. For saturation NMR spectroscopy and spin thermometry we use

TPump between 25 s and 30 s in order to approach the steady-state of the nuclear spin polarization.

The maximum TPump is limited by the need to collect photoluminescence from a sufficient number

of probe pulses and the thermal noise of the CCD detector, which affects long exposures. While

radiofrequency pulses can be applied at any bias, in this work we use VPump = −1.3 V in order to

keep the quantum dot free of charges during the radiofrequency manipulation of the nuclei.

Supplementary Fig. 3b shows a cycle used in the measurements of the nuclear spin buildup

dynamics. Each cycle starts from a radiofrequency pulse that saturates the resonances of 75As,

69Ga, 71Ga and 27Al in order to depolarize these nuclei in the entire sample. Next, the pump pulse

of a variable duration TPump is applied, and the resulting hyperfine shift is measured with a probe

pulse.

Supplementary Fig. 3c shows a cycle used in the nuclear spin relaxation measurements. The

cycles start with radiofrequency depolarization that is sufficiently long to eliminate any effect

of the nuclear polarization left over from the previous measurement cycle. This is followed by

optical pumping for TPump = 60 s. After the pump, the sample is kept in the dark for a time

TDark under gate bias VDark. After that, a probe pulse is applied to measure the fraction of the

nuclear spin polarization that decayed during TDark. In this type of experiments the number of

the pump-probe cycles used to collect the probe photoluminescence signal varies between 1 and

10 – single-shot probing is required when TDark exceeds a few hundred seconds. Furthermore, we

perform measurements using the cycle of Supplementary Fig. 3c, but with a second radiofrequency

(Rf) pulse added after the pump and before the dark interval. The duration of this second Rf

pulse TRf,2 is typically varied between 0 and 5 s to control the degree of the initial nuclear spin

polarization. In principle, there are multiple ways to control the degree of the initial nuclear

spin polarization in the quantum dot, such as the duration TPump of the pump or its power and

wavelength. However, any such changes in the optical pumping also affect the rate of nuclear spin

diffusion into the barriers around the quantum dot [15]. The degree of nuclear polarization in

the barriers then affects the rate of nuclear spin relaxation in the subsequent dark interval. The

advantage of the second radiofrequency pulse is that it depolarizes the nuclei at the same rate

in the entire sample. Therefore, the spatial profile of the nuclear spin polarization PN after the

second pulse is simply a scaled profile of the PN profile produced by the optical pulse. Spin diffusion
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Supplementary Figure 3. Timing diagrams of different experiments. a, NMR spectroscopy and

measurement of nuclear spin polarization. b, Nuclear spin buildup dynamics. c, Nuclear spin relaxation in

the dark. d, Optical pump power and wavelength dependence of the steady state nuclear spin polarization.

is described by a linear differential equation, so that proportional reduction of PN in the entire

sample should not affect the timescales of the subsequent nuclear spin diffusion and relaxation in

the dark. Consequently, any dependence of the relaxation time on the degree of the initial nuclear

spin polarization (left after the second radiofrequency pulse) is ascribed purely to the reduction

(narrowing) of the energy that the dipole-dipole reservoir can supply or absorb during the nuclear

flip-flop events of the spin diffusion process. We note that the second radiofrequency pulse has
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minimal effect on the measurement of the subsequent relaxation dynamics, since its duration is

no more than 10% of the shortest measured nuclear spin relaxation time T1,N (except for one

measurement with TRf,2 = 18 s).

Supplementary Fig. 3d shows the timing of the experiment used to study the dependence of

the steady-state nuclear spin polarization on the optical pumping parameters such as gate bias

VPump, pump power and wavelength. The experiment cycle starts with a single radiofrequency

erase that eliminates any leftover nuclear polarization. Then the pump and probe pulses start,

but the acquisition (CCD detector exposure) of the probe photoluminescence begins only after a

delay TBuildup = 50 s. This delay allows nuclear spin polarization to build up closer towards its

steady state so that relatively short pump pulses TPump = 5 s can be used for faster acquisition

of the photoluminescence signal. The probe pulses are kept short, in order to produce minimal

nuclear spin depolarization during each pump-probe cycle (see details in Supplementary Note 3 C).

The probe pulses are also much shorter than the pump (TProbe/TPump < 0.003), to ensure minimal

effect on the steady-state nuclear spin polarization.

B. Optical pumping of quantum dot nuclear spins

The steady-state nuclear spin polarization depends on the wavelength of the pump laser. Max-

imum hyperfine shifts |Ehf | are found to occur when the laser is resonant with a certain optical

transition of the quantum dot. Calibration of the optimal pumping parameters starts with a mea-

surement of a broad-range wavelength dependence – an example is shown in Supplementary Fig. 4.

Once the individual spectral features, such as s-, p-, d- and f -shell exciton peaks, are identified a

more detailed optimization is performed. We focus on the s-shell pumping peak and measure more

detailed dependencies on the wavelength (or equivalently the pump photon energy) at different val-

ues of pump power PPump and sample gate bias VPump. The inset in Supplementary Fig. 4 shows

an example of such a detailed dependence at the optimum PPump = 2.7 mW, VPump = −2.7 V. It

can be seen that the pump laser needs to be tuned to within a narrow margin of ≈ 0.2 meV in

order to achieve the highest possible |Ehf |.

In the experimental setup the collimated pump laser beam first passes through a linear polarizer

and then a λ/2 waveplate installed in a motorized rotation mount. This way it is possible to create

arbitrary orientation of the linearly polarized beam, which is then directed to a cube beamsplitter,

followed by a λ/4 waveplate installed in another motorized rotation mount. By placing the λ/4

waveplate last, it is possible to compensate for any polarization imperfections of the nominally non-
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Supplementary Figure 4. Calibration of the pump laser wavelength. Hyperfine shift measured as a

function of the pump laser wavelength expressed in terms of the photon energies EPump. Results are shown

for QD1 at Bz = 10 T under σ+ pumping. The pump power is PPump = 1.5 mW and the gate bias is

VPump = −2.3 V. Inset shows a zoomed in dependence for the s-shell peak measured at slightly different

optimized parameters PPump = 2.7 mW, VPump = −2.7 V.

polarizing beamsplitter and obtain a beam with high degree of circular polarization. This beam is

then directed through a quartz window of the cryostat insert and the cryogenic objective, which

focuses it on the surface of the QD semiconductor sample. In order to account for any polarization

imperfections in the optical path we perform calibration measurements where both the λ/2 and

λ/4 waveplate orientations are scanned and the resulting hyperfine shifts Ehf are measured. The

results shown in Supplementary Fig. 5, indicate that the waveplate must be set within ±2◦ in order

to attain the highest nuclear spin polarization degree. The optimal orientations of the λ/2 and λ/4

waveplates are different for the minimum negative (triangles) and the maximum positive (squares)

Ehf .

Once the orientations of the λ/2 and λ/4 waveplates are optimised, we examine the polarization

state of the pump beam directed to the cryostat. To this end, we place a linear polarizer (analyzer)

after the λ/4 waveplate, followed by a power meter. The linear polarizer is rotated to find the

minimum (Imin) and the maximum (Imax) intensities of the transmitted beam. For a perfect

circularly polarized beam Imin = Imax, whereas for a linearly polarized beam Imin = 0. We
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Supplementary Figure 5. Calibration of the optical polarization of the pump. Hyperfine shift

measured as a function of the orientation angle of a λ/2 waveplate installed in the pump laser beam. Other

parameters, such as λ/4 waveplate orientation, pump power, wavelength and bias are optimized separately

for both σ+ (triangles) and σ− (squares) pumping of the QD nuclear spin polarization. Results are shown

for QD1 at Bz = 10 T.

characterise the optimized beams using the degree of linear polarization ρlin = (Imax − Imin)/Imax

and the analyzer orientation angle αmax where the maximum intensity is achieved. These results

are summarized in the polar plot of Supplementary Fig. 6.

The optimal degree ρlin and orientation αmax of the linearly polarized components vary between

individual quantum dots. Moreover, optimal polarization parameters are different for σ+ and σ−

pumping and even depend on magnetic field for the same QD1. Such variability, as well as the large

values of ρlin ≲ 0.4 suggest that polarization imperfections in the optical elements (e.g. mechanical

stress in the cryo-objective) are not the major contribution. The large deviation of the optimal

optical pumping from pure circular polarization is therefore attributed to the properties of the

individual quantum dots. These may include anisotropy of the QD shape and inhomogeneous

microstrains that make semiconductor material around the QD act as an optical waveplate and

give rise to heavy-light hole mixing [16] that causes optical selection rules to depart from those of

the bulk GaAs. Indeed, previous studies have shown that a sufficiently large uniaxial strain ≳ 0.5 %

can flip the valence band hole quantization axis into the sample growth plane [17]. We note that
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Supplementary Figure 6. Optical polarization properties of the optimal nuclear spin pumping

beams. Vectors show the orientation of the linear polarization and the magnitude of the linear polarization

degree ρlin of the pump beam that produces maximum nuclear spin polarization in individual dots QD1

- QD12. The bottom part shows the results for minimum negative hyperfine shift (σ+ character of the

circularly polarized component of the pump) while the top part shows results for maximum positive hyperfine

shift (σ− character). The horizontal and vertical axes of the plot correspond approximately to the edges of

the semiconductor sample, cleaved along the [110] and [11̄0] crystallographic directions.

the indirect effect of strain on nuclear spin cooling through mixing of the valence band states

should be distinguished from the direct effect through modification of the nuclear spin eigenstates

discussed in Supplementary Note 2.

Another measure of the QD anisotropy is the fine structure splitting (FSS) of a neutral exciton

at zero magnetic field. While we have not conducted systematic correlation studies, selective

measurement on QD1, where very large nuclear spin polarization has been achieved, reveals a

FSS of ≈ 28 µeV. This is considerably larger than the few-µeV FSS observed in symmetric GaAs

QDs [18]. This comparison suggests that QD anisotropy does not preclude large nuclear spin

polarization, as long as optical selection rules permit coupling to spin-polarized conduction band

electronic states. Depending on the type of anisotropy, the heavy hole state jz = +3/2 is mixed

with the jz = −1/2 or the jz = +1/2 light-hole state. In case of jz = −1/2 admixing to jz = +3/2

the resulting exciton state becomes elliptically polarized, whereas the admixture of jz = +1/2

to jz = +3/2 is associated with optical transition dipole element polarized along the sample

growth axis z [19, 20]. From that perspective, optimization of the λ/2 and λ/4 waveplate angles

can be understood as matching of the optical pump polarization to the elliptical polarization of
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the QD optical transition, allowing generation of spin-polarized electrons. In case of z-polarized

optical transition, such polarization matching is not possible, which may explain why nuclear spin

polarization degree is much lower than unity in some of the QDs (Fig. 3f of the main text) even

after optimizing the elliptical polarization of the pump laser.

It is also possible that spin-polarized holes contribute to nuclear spin pumping, although the

hyperfine flip-flops of the heavy holes are expected to be much smaller than for electrons [9].

Further investigations (both experimental and theoretical) would be needed to elucidate which

types of QD anisotropies are compatible with efficient nuclear spin polarization. For brevity,

throughout this work we use the term “σ+ pumping” (“σ− pumping”) to describe the optimized

elliptically-polarized optical pumping beam with a σ+ (σ−) character of the circularly polarized

component.

C. Optical probing of quantum dot nuclear spins

For optical probing of the nuclear spin polarization we use a diode laser emitting at 690 nm.

Sample forward bias, typically +0.7 V, and the probe power are chosen to maximize (nearly

saturate) PL intensity of the ground state X− trion. The difference between the spectral splitting

∆EPL of the X− trion doublet and the same splitting ∆EPL,0 measured for depolarized nuclei

reveals the hyperfine shifts Ehf = −(∆EPL − ∆EPL,0). Illumination with a probe laser inevitably

acts back on the nuclear spin polarization. In order to quantify such back-action we perform

calibration measurements with examples shown in Supplementary Fig. 7. In these experiments the

QD is first pumped with a σ+ or σ− polarized laser with power and bias set to maximize the steady

state nuclear polarization. Then the pump is switched off and the probe laser pulse is applied. The

hyperfine shift Ehf is measured from PL spectroscopy at the end of this probe. It can be seen that

the probe induces decay of the nuclear spin polarization. For QD1 the unwanted probe-induced

depolarization is faster at Bz = 4 T (solid symbols) compared to Bz = 10 T (open symbols),

even though the same probe power of PProbe = 30 nW is used at both fields. For selective-NMR

measurements of the nuclear spin polarization (spin thermometry) in QD1 we use TProbe = 15 ms

at Bz = 10 T, so that the resulting depolarization is negligible (< 1%). PL intensity of the same

QD1 is weaker at Bz = 4 T so we use a longer TProbe = 24 ms in order to obtain a sufficiently

strong probe PL signal. However, this leads to a larger depolarization of ≈ 4% under σ− pumping.

Depolarization itself is not an issue, since it would simply rescale all the measured Ehf , which would

not affect the differential NMR spin thermometry. In practice, the probe-induced depolarization
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Supplementary Figure 7. Calibration of the optical probing of the QD nuclear spin polarization.

Hyperfine shift measured as a function of the probing time TProbe following a σ+ (triangles) or σ− (squares)

pumping of the nuclear spin polarization in a QD. For QD1 results are shown for Bz = 4 T (solid symbols)

and Bz = 10 T (open symbols), measured with a probe power of PProbe = 30 nW. For QD2 results are

shown for Bz = 10 T (crossed symbols), measured with a probe power of PProbe = 7 nW.

also depends on the instantaneous Ehf – such nonlinearity is what causes the distortion, resulting

in larger uncertainties of the nuclear spin polarization measured at Bz = 4 T. For QD2 we use a

lower probe power PProbe = 7 nW (crossed symbols in Supplementary Fig. 7), which leads to an

even slower probe-induced depolarization than for QD1. This allows to have a longer probe pulse

(TProbe = 40 ms) for QD2, while keeping parasitic depolarization small (< 1%).

D. Radiofrequency control of nuclear spins

The radiofrequency oscillating magnetic field Bx ⊥ z is produced by a coil placed at a distance

of ≈ 0.5 mm from the QD sample. The coil is made of 10 turns of a 0.1 mm diameter enameled

copper wire wound on a ≈ 0.4 mm diameter spool in 5 layers, with 2 turns in each layer. Two

main types of radiofrequency signals are used in this work. The first type is a frequency-swept

monochromatic excitation which is used for adiabatic inversion of the nuclear spin population.

The amplitude of the radiofrequency field is constant and the frequency is swept linearly in time.

Radiofrequency sweeps are discussed further in Supplementary Note 5 D.
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The second type is the broadband radiofrequency excitation which is required to saturate inho-

mogeneously broadened quadrupolar resonances. The typical width of the resonances that needs

to be saturated is tens to hundreds of kHz (further details are given in Supplementary Note 5 B),

which is significantly larger than the typical homogeneous NMR linewidth (< 1 kHz). Therefore

monochromatic radiofrequency excitation cannot provide a sufficiently uniform saturation of the

entire inhomogeneously broadened resonance. This necessitates the use of a broadband radiofre-

quency excitation. Ideally, one wants a signal with a rectangular spectral profile, which has a

constant spectral density in the required frequency interval, and a zero intensity outside that in-

terval. In practice, when implementing the radiofrequency waveforms on a digital generator, it

is convenient to approximate the required rectangular spectral band with a frequency comb. In

spectral domain, the comb consists of periodically spaced monochromatic modes of constant am-

plitude, covering the desired interval of frequencies. The mode spacing of 120 Hz is chosen to be

smaller than the homogeneous NMR linewidth. Under these conditions, by using a sufficiently

small amplitude of each mode we achieve exponential depolarization (i.e. without nuclear spin

Rabi oscillations) of the nuclear spin ensemble [21] with a typical time constant of τ ≈ 30 ms. The

saturation of a chosen NMR resonance is achieved by applying a frequency comb excitation for a

period of ≈ 5τ . When subject to such excitation, the nuclear spins undergo slow Rabi rotation,

transitioning between the spin states parallel and antiparallel to the external magnetic field [22].

Due to the nuclear-nuclear dipole-dipole interactions each nuclear spin is subject to a local field.

The randomness of these local fields results in dephasing between Rabi precessions of the individual

nuclei. Consequently, the nuclear spin ensemble becomes depolarized (i.e. each nucleus is randomly

polarized) after a long saturation pulse.

For the saturation NMR spectra, shown in Fig. 3b of the main text, we use a frequency comb

with a total width of 6 kHz. The central frequency of the comb is scanned to obtain the spectra

– this frequency is the horizontal axis of the spectral plots. For the high-resolution NMR spectra,

shown in Fig. 3a of the main text, we employ the “inverse NMR” technique [23] which enhances the

NMR signal and allows the spectra to be measured even on those nuclear spin transitions that are

depopulated at high polarization degrees. In this approach the radiofrequency excitation spectrum

is a broadband frequency comb with a narrow gap. The central frequency of the gap is scanned

and is used for the horizontal axis of the “inverse NMR” spectra. The width of the gap controls

the balance between the NMR signal amplitude and the spectral resolution. For the spectra of

Fig. 3a of the main text we use a 4 kHz gap to measure the satellite transitions and a 2 kHz gap

to measure the narrow central transition NMR peak. The spectra of Fig. 3a are measured with
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σ+ optical pumping. When measured with σ− pumping, the NMR spectral peaks are shifted to

a higher frequency, typically by ≈ 1 kHz. This shift is attributed to dipolar interaction of the

measured isotope with the polarized nuclei of the other isotopes.

During the NMR measurements, the superconducting magnet is set into persistent mode, re-

sulting in a predictable nearly-linear decay of the NMR frequencies with time. The typical relative

decay rate is ≈ 5 × 10−10 s−1. The NMR measurements are programmed to track this decay of

the persistent magnetic field. The typical errors in NMR frequencies resulting from uncertainty in

the decay rate are within 1 kHz. Some apparent shifts between the same NMR peaks plotted in

Fig. 3a and in Fig. 3b of the main text include these contributions of the dipolar interactions and

the decaying magnetic fields. In addition, the difference in the spectral resolutions causes some

apparent shifts. In particular, in the higher-resolution spectra (4 kHz, Fig. 3a of the main text)

the satellite transitions appear as asymmetric peaks. By contrast, in the lower-resolution spectra

(6 kHz, Fig. 3b of the main text) the same peaks are smoothed and appear shifted.

Supplementary Note 4. ADDITIONAL EXPERIMENTAL DATA AND DISCUSSION

A. Extended data from nuclear spin pumping measurements

Our approach to maximizing the nuclear spin polarization is through line-search optimization of

the optical pumping parameters, such as pump photon energy EPump, pump power PPump, optical

polarization and the sample bias VPump. In order to understand the physics of the nuclear spin

pumping process we also measure a systematic parametric dependence. Given the typical timescales

of the nuclear spin process (1−100 s) it is not possible to explore the entire parameter space within

a reasonable experimental time. Therefore, we measure various one- and two- dimensional sections

in the multidimensional parameter space. An example is shown in Supplementary Fig. 4, where

a one-dimensional dependence on EPump is shown. The spectral dependence of the nuclear spin

polarization is interpreted by comparing it with photoluminescence spectroscopy.

Supplementary Fig. 8a is a bias-dependent photoluminescence spectroscopy map measured un-

der non-resonant optical excitation (HeNe laser emitting at 632.8 nm). At low excitation power

PExc = 0.5 nW we observe multiple spectral features, labelled accordingly. The emission of the

bulk GaAs free exciton is observed at ≈ 1.518 eV, accompanied by a low energy band at ≈ 1.50 eV

arising from doping and impurities. The broad emission between ≈ 1.57 − 1.67 eV is attributed

to both the Si-doped and C-doped AlGaAs layers. The peak at ≈ 1.675 eV is also ascribed to
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Supplementary Figure 8. Power dependence of nuclear spin pumping. a, Bias dependent photolu-

minescence spectra of QD1 at Bz = 10 T measured at a low excitation power PExc = 0.5 nW. Optical

excitation is continuous wave at a wavelength of 632.8 nm. Each spectrum is an average of three 20 s long

exposures. b, Same photoluminescence spectra but at a high power of PExc = 20 µW. Each spectrum is an

average of three 50 ms long exposures. c, Steady-state hyperfine shift measured as a function of the pump

power PPump and the pump photon energy EPump. Measurement is conducted on QD1 at Bz = 10 T using

σ+ pump polarization. The gate bias is kept at VPump = +0.5 V during pumping. The regions where no

data was measured are shown in gray. d, Same as (c) but for VPump = −2.3 V. “LH” labels the feature

ascribed to the resonant absorption of a light-hole exciton.

AlGaAs:C. The undoped Al0.15Ga0.85As layers emit at ≈ 1.71 eV under positive bias VGate ≈ +1 V.

When the bias is reduced to VGate ≈ 0 V the emission of the Al0.15Ga0.85As electron tunnel bar-

rier Stark-shifts down to ≈ 1.675 eV. By contrast, the luminescence of the Al0.15Ga0.85As layer

bellow the n-type barrier is not affected by the applied electric field and remains at ≈ 1.71 eV.
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Supplementary Figure 9. Photoluminescence spectroscopy of QD excitons. a, Bias dependent pho-

toluminescence spectra of QD1 at Bz = 10 T measured at a low excitation power PExc = 1.5 nW and an

excitation wavelength of 632.8 nm.

The emission at ≈ 1.785 eV is ascribed to the quantum well (QW) formed when the nanoholes are

infilled with GaAs. The narrower lines observed at low excitation power around ≈ 1.73 − 1.75 eV

are attributed to the QW excitons bound by the thickness fluctuations of the QW. Single-QD

emission is observed between ≈ 1.56 − 1.59 eV as a series of Zeeman doublets that switch over

as the gate bias VGate is changed. The higher-resolution spectra of the QD excitons are shown in

Supplementary Fig. 9. At VGate ≈ +0.5 V photoluminescence is dominated by the neutral exciton

X0, identified from its fine structure splitting at Bz = 0 T. At more negative biases the emission of

positively charged excitons dominates, since electrons rapidly tunnel out of the dot, leaving excess

photogenerated (non-equilibrium) holes. At more positive biases the emission of X0 is superseded

by the negatively charged trion X−, which becomes dominant when QD confines a resident (equi-

librium) electron. At even more positive biases the dot is charged with multiple resident electrons.

The spectral features originating from doubly (X2−) and triply (X3−) charged excitons can be

distinguished, while the photoluminescence peaks at even higher charge numbers tend to overlap.

When the power is increased (PExc = 20 µW in Supplementary Fig. 8b) the emission peaks of
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the s-shell QD excitons with different charging broaden into a single red-shifted band (≈ 1.572 eV).

Emission of the higher-shell excitons (p, d and f) also becomes visible. By contrast, photolumines-

cence intensity of the AlGaAs layer (located below the doped region) increases with power without

saturation.

Supplementary Fig. 8c shows the two-dimensional map of the hyperfine shift Ehf measured

as a function of the pump power PPump and photon energy EPump at a fixed VPump = +0.5 V,

which roughly corresponds to a bias where the QD equilibrium state switches from 0 to 1 electron.

Nuclear spin pumping evidently takes place at powers as low as PPump ≈ 10 nW (which is close to

saturation power of the s-shell QD excitons) as long as the pump laser is tuned above the s-shell

exciton transition, so that the QD can absorb the pump photons. However, the resulting nuclear

spin polarization degree is low, characterized by Ehf ≈ −30 µeV. Spin pumping efficiency increases

when the pump power is increased to hundreds of µW, which is well above the ground state exciton

saturation. The lowest negative Ehf ≈ −90 µeV is achieved at PPump ≈ 1 mW. At this high power,

a series of spectral peaks is observed. Their periodicity matches the periodicity observed in the

high-power photoluminescence spectra (Supplementary Fig. 8b), which allows us to identify the

peaks as originating from different excitonic shells (up to six visible). The mechanism of nuclear

spin pumping can then be understood to arise from resonant absorption of the circularly polarized

pump photons, which generate spin-polarized electrons and holes in the excited orbital states. It

also follows from Supplementary Fig. 8c that at VPump = +0.5 V the steady-state |Ehf | produced

by pumping via the higher d and f shells is larger than via the p and ground s shells. Excitation

via higher shells means that excitons can relax towards the ground state before recombination.

Such energy relaxation provides a route for a simultaneous exchange of spin with the nuclei [24],

since it helps to absorb or supply a small amount of energy required to compensate the mismatch

of the electron and nuclear Zeeman energies. Without the coupling to external energy reservoirs

the electron-nuclear spin flip-flop would be energetically forbidden.

At high powers PPump ≳ 100 µW, nuclear spins can be polarized even via optical excitation

well below the ground state QD exciton transition, indicating that it’s a distinct spin pumping

mechanism which we further discuss below.

Supplementary Fig. 8d shows the same dependence of Ehf on PPump and EPump but with the

sample gate voltage changed to a large reverse bias regime VPump = −2.3 V. At this bias, no QD

photoluminescence is observed, even at high optical excitation power, meaning that the excitons

become ionized before they can recombine to emit a photon. Nevertheless, nuclear spin pumping

is observed and is more efficient than at VPump = +0.5 V. Under large reverse bias, a higher
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threshold power (of a few µW) is needed to induce measurable nuclear spin polarization, which can

be explained by the need for the optical excitation to outpace the fast tunneling of the charges from

the QD. We again observe spectral peaks that can be matched to the individual excitonic shells

(at VPump = −2.3 V the shells are red-shifted with respect to VPump = +0.5 V because of the Stark

shift). Large |Ehf | are observed for all four lowest exciton peaks, but from experiments on multiple

individual QDs we consistently find that pumping through the ground state s-shell exciton under

large reverse bias leads to the most efficient spin pumping (characterized by the highest |Ehf |).

It is also worth noting that inverted Ehf is observed under certain pumping conditions. For

example, in Supplementary Fig. 8d we observe Ehf > 0 around PPump ≈ 10 µW and EPump ≈

1.580 eV, which is ≈ 16 meV above the energy of the s-shell nuclear spin pumping peak. This

feature at EPump ≈ 1.580 eV, labelled “LH”, is ascribed to a light-hole exciton. Optical excitation of

a heavy-hole exciton transition with a σ+ polarized light (with photons carrying a +1 momentum

in units of ℏ) generates a hole with momentum projection jz = +3/2 and an electron with a

sz = −1/2 spin projection. The sz = −1/2 electrons then lead to nuclear spin pumping with a

negative Ehf < 0, as indeed observed in Supplementary Fig. 8d for a wide range of the pump

parameters. However, when resonant with a light-hole exciton transition, the same σ+ photon

generates a hole with jz = +1/2 and an electron with sz = +1/2 (see Supplementary Fig. 2a),

which then leads to an inverted Ehf > 0. The same argument applies to σ− optical excitation, and

manifests in experiments as Ehf < 0, observed under resonant excitation of the light-hole exciton

transition.

In order to investigate the nuclear spin pumping mechanisms further, we fix the pump power at

PExc = 1.5 mW and measure Ehf as a function of EPump and VPump. The results are presented in

Supplementary Fig. 10c, which shows an extension of the data from Fig. 2c of the main text. The

spectral peaks, ascribed to individual excitonic shells, are seen to Stark-shift with the applied bias

(Supplementary Fig. 10c). The largest hyperfine shift |Ehf | is again observed for the s-shell exciton

at reverse bias, which varies between −2.7 and −2.1 V for different individual QDs. The higher-

shell excitons (p, d, etc.) differ from the s shell in that their excitation can be followed by relaxation

into a lower energy shell. The slightly lower |Ehf | can then be ascribed to such relaxation between

shells, which may involve flipping of the electron without spin transfer to the nuclei. In other

words, relaxation between shells may result in a reduced electron spin polarization, which in turn

leads to reduction of the maximum achievable |Ehf |. Resonant pumping into the s-shell can only

generate up to two electrons and two holes in the QD. This leaves only four excitonic complexes

that can take part in dynamic nuclear spin polarization: neutral exciton X0, neutral biexciton
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Supplementary Figure 10. Bias dependence of nuclear spin pumping. a, b, Same bias-dependent pho-

toluminescence spectra as in Supplementary Figs. 8a,b reproduced for reference. The scale of the horizontal

axis is changed at 1.49 eV for better visibility and resolution. c, Steady-state hyperfine shift measured as a

function of the pump bias VPump and the pump photon energy EPump. Measurement is conducted on QD1

at Bz = 10 T. Excitation power is PExc = 1.5 mW with a σ+ polarization. The regions where no data was

measured are shown in gray.

XX0, negatively charged trion X− and positively charged trion X+. We have performed the same

measurements as in Supplementary Figs. 4 and 10c but with σ− pump polarization (producing

positive Ehf). We find that the spectral positions EPump of the optimal nuclear spin pumping

peaks under σ+ and σ− pumping are split by ≈ 900 µeV at Bz = 10 T, matching excitonic spectral

splitting observed in photoluminescence (Supplementary Fig. 9). However, it is not possible to

determine directly which excitonic feature is responsible for nuclear spin pumping with maximum

|Ehf |. The biexciton XX0 is unlikely to play a role – it consists of an electron spin singlet (two

electrons, one with spin projection sz = −1/2 and one with sz = +1/2) and a hole spin singlet

(two holes, one with momentum projection jz = −3/2 and one with jz = +3/2) which do not

couple to nuclear spins. The X− trion is also unlikely to cause efficient nuclear spin pumping,

because the two electrons are in a singlet state. Moreover, spin-selective optical excitation of
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X− requires prior injection of another spin-flipped electron, for which there is no sufficiently fast

process that could compete with rapid tunneling. The X+ trion is more likely to contribute to

nuclear spin pumping, since it contains only one (spin-polarized) electron. However, to form a hole

spin singlet, X+ excitation would still need to be accompanied by hole spin flipping, which would

create a bottleneck and slow down the cyclic nuclear spin pumping process. Therefore, we argue

that resonant optical excitation of X0 is the most likely route for efficient nuclear spin pumping, as

it enables fast optical reexcitation upon tunneling of the previously-excited electron-hole pair out

of the QD. In addition to the broad resonance that gives the most efficient nuclear spin pumping

(EPump ≈ 1.564 eV at VPump = −2.3 V in Supplementary Fig. 10c), there are narrower and less

efficient Stark-shifting resonances observed at lower EPump (intersecting the same VPump = −2.3 V

around EPump ≈ 1.552 eV and EPump ≈ 1.546 eV). These narrow resonances may correspond

to optical excitation of X+ and X−. This would be consistent with photoluminescence spectra

(Supplementary Fig. 10a), which show that all charged exciton transitions appear on the low-energy

side of X0. Further investigation, both experimental and theoretical, would be needed to establish

with certainty which excitonic transition is responsible for high-efficiency nuclear spin pumping in

the regime of fast tunneling.

Supplementary Fig. 10c shows that nuclear spins can be polarized at photon energies down

to EPump ≈ 1.25 eV, which is well below the ground state QD exciton energy and bulk GaAs

bandgap. This mechanism leads to negative hyperfine shifts Ehf ≈ −30 µeV for both σ+ and σ−

pumping, suggesting that optical excitation plays a different role, possibly related to activation

of charge traps or Auger effect. The trapped-charge hypothesis is further supported by the bias

dependence, which shows that the sub-bandgap nuclear spin pumping disappears for VPump <

−0.5 V and VPump > +0.9 V. The buildup time of the nuclear spin polarization is found to be

around ≈ 5 s, which is approximately an order of magnitude slower than nuclear spin pumping

via resonant excitation of the QD excitons (see Supplementary Note 4 C). The exact mechanism

of sub-bandgap optical nuclear spin pumping is currently unclear and would require a separate

systematic investigation.

Focusing on the s-shell pumping, we plot the minimum Ehf (i.e. maximum |Ehf |) as a function

of bias VPump in Supplementary Fig. 11a. The corresponding photoluminescence intensity of the

s-shell exciton under above-gap excitation is shown in Supplementary Fig. 11b. At positive VGate

the electric field in the sample is small and the band structure is close to flat-band (right sketch in

Supplementary Fig. 11c). As a result, optical recombination is the only way the photo-generated

carriers can leave the QD. The typical radiative lifetimes for the studied type of GaAs QDs are
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≈ 300 ps, which creates a bottleneck for how quickly the spin-polarized electrons can be injected

into the QD, limiting in turn the rate of the nuclear spin pumping. When the sample gate is

tuned towards larger reverse (negative) bias, the maximum hyperfine shift |Ehf | increases. At

the same time, photoluminescence intensity gradually decreases when VGate < −1 V, indicating

that electrons and holes tunnel out of the QD (left sketch in Supplementary Fig. 11c) faster than

they can recombine optically. We attribute this correlation to the key role that the tunneling

plays in dynamic nuclear spin polarization. Fast tunneling overcomes the radiative-recombination

bottleneck, so that high-power optical excitation can be used to inject spin polarized electrons at

a high rate. The efficiency of nuclear spin pumping reaches its maximum at VPump = −2.3 V.

For even larger reverse bias (i.e. more negative VPump) the maximum hyperfine shift |Ehf | is seen

to reduce slightly. For VPump < −2.3 V tunneling becomes even faster, which would require an

even higher pump power PPump ≳ 10 mW to maintain steady-state occupation of the QD with

spin-polarized electrons. However, when focused into a diffraction-limited spot, such high-power

optical excitation causes heating of the crystal lattice, which may result in accelerated nuclear spin

relaxation, explaining why the highest achievable nuclear spin polarization is reduced at very large

reverse biases.

B. Estimate of the electron tunneling rate

In order to quantify the optical nuclear spin pumping process, we estimate the electron tun-

neling rate using the photoluminescence intensity data. We employ a rate equation approach by

considering the probability peh that the QD s-shell is occupied by an electron-hole pair. Since we

are only interested in an order of magnitude estimate, we ignore the contributions of the biexcitons

(two electron-hole pairs) and charged excitons (an electron-hole pair with extra one electron or one

hole). The steady state is defined by the balance between the rate of the optical excitation (ΓExc)

and the rates of deexcitation through optical recombination (ΓR) and tunneling ionization (ΓTun):

(1 − peh)Γexc − peh(ΓR + ΓTun) = 0 ⇒

peh = Γexc/(Γexc + ΓR + ΓTun)
(S8)

The intensity of photoluminescence IPL is proportional to peh. We further assume that the maxi-

mum observed PL intensity IPL,max corresponds to a regime where the tunneling rate is negligible

ΓTun → 0. With this assumption we eliminate the unknown PL intensity that would be observed
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Supplementary Figure 11. Bias dependence of nuclear spin pumping via s-shell excitation. a,

Steady-state hyperfine shift measured as a function of the pump bias VPump for pump photon energy EPump

tuned into resonance with the s-shell exciton at each bias. Measurement is conducted on QD1 at Bz = 10 T.

b, Photoluminescence intensity of the s-shell exciton measured as a function of bias VGate under 632.8 nm

high-power saturation. c, Calculated rate for the electron to tunnel out of the QD, shown as a shaded area

between lower and upper bound estimates. Sketches show conduction and valence band profiles at positive

and negative VGate.

at peh = 1 and find for the tunneling rate at an arbitrary bias:

ΓTun = (ΓR + Γexc)

(
IPL,max

IPL
− 1

)
(S9)

It then follows that the reduction of the photoluminescence intensity IPL under reverse bias signi-

fies that the tunneling rate exceeds the sum (ΓR + Γexc) of the radiative recombination and optical

excitation rates. The radiative recombination time is 1/ΓR ≈ 300 ps [25] for the studied type of
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QDs (ΓR ≈ 3.3 × 109 s−1). Since photoluminescence intensity of the s-shell exciton is saturated,

we assume that the excitation rate exceeds the recombination rate ΓExc > ΓR. This gives the

lower bound estimate for the tunneling rate. The photoluminescence measurement shown in Sup-

plementary Fig. 11b was conducted at high excitation power, exceeding the ground state exciton

saturation power by a factor of ≈ 150. Thus we write ΓExc ≲ 150ΓR, which gives an upper bound

estimate, since some of the photo-excited electron-hole pairs can recombine from higher shells,

without reaching the s-shell. Using Supplementary Eq. S9 we calculate ΓTun taking IPL and the

maximum observed intensity IPL,max from Supplementary Fig. 11b. The range between the lower

bound (ΓExc = ΓR) and the upper bound (ΓExc = 150ΓR) estimates is shown by the shaded area

in Supplementary Fig. 11c. Such direct evaluation of ΓTun is possible only when the bias is high

enough to detect photoluminescence, but also low enough to have a substantial reduction of IPL

compared to IPL,max. These estimates show that the tunneling time at VGate = −2 V is on the

order of ≈ 0.1 − 1 ps.

In order to estimate ΓTun below VGate < −2 V we consider the well-known WKB approximation

of the tunneling rate through a triangular barrier (see e.g. Ref. [26]). Up to a constant factor, we

have:

ΓTun ∝ exp

(
−4

√
2me

ℏeFz
|ϵe|3/2

)
, (S10)

where m∗
e is the effective electron mass, ϵe is the electron ionization energy and Fz is the electric

field in the growth direction. The total thickness of the structure between the doped layers is

≈ 300 nm, so the electric field is estimated as Fz = −(VGate − VGate,0)/300 nm, where VGate,0 =

+1.55 V is the built-in potential of the structure, deduced as the bias at which the PL Stark

shift vanishes. Based on Ref. [27] we estimate the conduction band discontinuity between GaAs

and Al0.33Ga0.67As to be Ue ≈ 0.28 eV and take m∗
e = 0.067me, where me is the free electron

mass. The s-shell photoluminescence of the QD is observed at ≈ 0.055 eV above the bulk GaAs.

Taking that 0.63 of this offset is in the conduction band [27], we estimate the ionization energy

ϵe = Ue − 0.63 × (0.055 eV) ≈ 0.25 eV. Substituting this, we find the numerical estimate ΓTun ∝

exp
(

64.2
VGate−1.55

)
, where VGate is in the units of Volts. Firstly, we see that the exponent is far from

saturation in the studied range of VGate, so that further reduction of VGate (i.e. making the bias

more negative) would result in shortened tunneling times. Secondly, going from VGate = −2 V,

where photoluminescence is measurable, to VGate ∈ [−2.7,−2.3] V, where dynamical nuclear spin

polarization is most efficient, results in an order of magnitude higher ΓTun. Therefore we estimate

ΓTun ≈ 1013 − 1014 s−1 for optimal nuclear spin pumping (tunneling time ≈ 0.01 − 0.1 ps).
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We can now independently estimate the optical excitation rate that leads to optimal nuclear

spin pumping. Resonance fluorescence intensity, measured on InGaAs/GaAs QDs in the same

setup and under similar experimental conditions, saturates at PExc ≈ 5 nW. We assume that

ΓExc ≈ ΓR at saturation, where the radiative rate is ΓR ≈ 109 s−1 for InGaAs QDs. Assuming that

the excitation rate scales linearly with optical power, we find that the resonant pumping power of

PPump ≈ 1.5 mW, used for optimal nuclear spin pumping, corresponds to ΓExc ≈ 1.5 mW
5 nW 109 s−1 ≈

3 × 1014 s−1. This corresponds to optical reexcitation time of ≈ 0.0033 ps. These estimates yield

ΓExc that are comparable to or somewhat higher than the above-calculated ΓTun, as would be

expected for a steady-state condition. In other words, having ΓExc ≳ ΓTun ensures that optical

excitation generates as many spin-polarized electrons per unit of time as permitted by the rate of

the tunnel escape. The typical linewidths of the excitonic shell peaks in the spectra of the steady

state Ehf at large reverse biases (Supplementary Figs. 4, 10c) are on the order of ≈ 10 meV, which

translates to ≈ 0.4 ps, corroborating our order-of-magnitude estimates of ΓTun.

Apart from the fast cycling of the optically-generated electrons, we expect that fast tunneling

also facilitates the nuclear spin pumping by disrupting the formation of coherent nuclear “dark”

states, which are otherwise predicted to prevent the approach to a near-unity nuclear spin polar-

ization [28, 29]. Indeed, recent studies have shown that fluctuations of the electron spin reduce the

coherence of the nuclear spins in a QD [30]. Moreover, the short (tunneling-limited) lifetime of the

electron spin can be interpreted as spectral broadening of the electron spin levels. Such spectral

broadening can facilitate nuclear spin pumping by compensating the energy mismatch of the elec-

tron and nuclear spin Zeeman energies, which otherwise inhibits the electron-nuclear spin flip-flops.

The role played by tunneling is then similar to the effect that elevated lattice temperatures have on

nuclear spin polarization, as studied previously in InGaAs QDs [24]. Future theoretical work may

explain the details of the nuclear spin pumping process by treating optical excitation, tunneling

and electron-nuclear spin interactions in a unified framework.

C. Nuclear spin buildup dynamics

The nuclear spin buildup dynamics under optical pumping are non-exponential (Fig. 4a of the

main text). The exact description of nuclear spin buildup dynamics is complicated due to the

multitude of the contributing factors, including spin diffusion [15] and the inhomogeneity of the

hyperfine coupling between the nuclei and the localized QD electron. Precise description of the

buildup dynamics is beyond the scope of this work. Therefore, we limit the analysis to an empirical
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fit of the data by a sum of two stretched exponentials:

Ehf = Ehf,fast (1 − exp(−(t/τfast)
κfast)) + Ehf,slow (1 − exp(−(t/τslow)κslow)) . (S11)

The best fits are shown by the solid lines in Fig. 4a of the main text and are seen to capture well the

strongly non-exponential buildup dynamics. The fitting parameters for the optimal steady-state

nuclear spin pumping of QD2 at Bz = 10 T are as follows:

Parameter σ+ pumping σ− pumping

τfast 0.1215 s 0.2446 s

τslow 0.5174 s 1.1903 s

Ehf,fast −43.03 µeV 69.46 µeV

Ehf,slow −67.51 µeV 41.44 µeV

κfast 0.88 0.68

κslow 0.44 0.36

(S12)

Due to the empirical nature of the fitting model, its parameters should be treated as estimates.

Nevertheless, we can establish that the fast initial buildup occurs on a 0.1−0.3 s timescale, slowing

down to 0.5 − 1.5 s when the nuclear spin polarization approaches closer to its steady state. The

fast initial buildup is likely dominated by the nuclear spins located at the center of the QD, and

therefore characterizes the inherent nuclear spin pumping rate. The slower dynamics at the later

stage are likely dominated by the nuclei that are further away from the QD center. This slower

component is a result of a complex interplay between several competing processes. On the one

hand, these distant nuclei are polarized both directly by the electron and indirectly through spin

diffusion from the center of the QD. On the other hand, spin diffusion from these nuclei further

into the barriers also causes the depolarization.

Electron-nuclear spin dynamics become nonlinear when electron spin Zeeman splitting is can-

celled by the hyperfine shift. This is manifested in a kink in the nuclear spin buildup dynam-

ics, observed at Ehf ≈ +50 µeV in Fig. 4a of the main text. From the zero-splitting condition

Ehf ≈ −µBge,zBz we can estimate the electron g-factor ge,z ≈ −0.09, in agreement with previous

measurements on the same structure [15].

It is also interesting to estimate the rate of the electron-nuclear spin flip-flops. Starting from a

depolarized state, it takes IN spin flips to achieve a fully polarized state of N ≈ 105 nuclei with spin

I. The hyperfine shift Ehf corresponding to a fully polarized state is IFtot ≈ 110−115 µeV. On the

other hand, from the nuclear spin buildup dynamics measurements we find that the highest rate of

change in Ehf (the derivative at the start of pumping from a depolarized state) is ≈ 600 µeV/s, in
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Supplementary Figure 12. Nuclear spin buildup dynamics. Symbols show nuclear spin buildup dynamics

measured for an individual dot QD1 at Bz = 10 T under σ− (squares) and σ+ (triangles, circles) optical

pumping. Optical pump photon energy is tuned into the s-shell resonance at pump bias VPump = −2.7 V

(squares, triangles) or VPump = −0.6 V (circles). Lines show biexponential fitting.

agreement with τfast derived above. Combining these parameters we estimate the electron-nuclear

flip-flop rate to be ≈ 8×105 s−1 (i.e. one nucleus flipped every ≈ 1 µs). Assuming that the cycling

of the spin-polarized electrons is limited by the tunneling rate of ΓTun ≈ 1013 s−1, we estimate that

only a small fraction ≈ 10−7 of the injected electrons transfer their spin to the nuclei, while the

rest tunnel out of the QD without polarizing the nuclear spins.

Supplementary Fig. 12 shows the buildup dynamics in another individual quantum dot (QD1).

Here, the pump bias is set to either the optimal value of VPump = −2.7 V (squares, triangles) or a

suboptimal value of VPump = −0.6 V (circles), and the photon energy of the optical pump is tuned

into the s-shell resonance at each pump bias. The best fits for σ+ pumping are shown by the lines.
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The fitting parameters for QD1 at Bz = 10 T are as follows:

Parameter σ−, VPump = −0.6 V σ+, VPump = −2.7 V

τfast 0.1391 s 0.1228 s

τslow 1.325 s 1.5697 s

Ehf,fast −44.13 µeV −71.37 µeV

Ehf,slow −35.80 µeV −37.39 µeV

κfast 0.72 0.69

κslow 0.58 0.50

(S13)

The fitted buildup times for QD1 are similar to those found for QD2 (Supplementary Eq. S12).

Moreover, although the steady-state nuclear polarization is lower at the suboptimal bias of VPump =

−0.6 V, the buildup times are nearly the same as at the optimal bias VPump = −2.7 V where the

steady-state nuclear polarization is maximized. This is rather unexpected and is in contrast to

the tunneling rate dependence, which is seen to change by orders of magnitudes between VPump =

−2.7 V and −0.6 V (Supplementary Fig. 11c). This indicates that the change in the cycling rate of

the spin-polarized electrons is not the only effect of the bias. The alternative effects of a large reverse

bias, discussed above, may include the relaxation of the coherent-dark-state bottleneck, and the

bridging of the electron-nuclear energy gap by the tunneling-broadened electron spin states. There

are further effects of the large reverse bias which may explain why the largest nuclear polarization

is observed at VPump = −2.7 V, even though the tunneling escape rate is already sufficiently fast

at VPump = −0.6 V. For example, the large electric field, produced by the reverse bias, changes the

composition of the valence band in terms of the heavy and light hole contributions [31], which in

turn may change the purity of the electron spin polarization produced by the elliptically polarized

pump light. A large electric field may also increase the spatial spread of the electron envelope

wavefunction, helping to polarize the nuclear spins that are further away from the center of the

QD. These considerations highlight the considerable complexity of the processes responsible for

cooling of a many-body nuclear spin ensemble. Our demonstration of experimental conditions that

lead to a large nuclear polarizations is an important starting point for future work which would be

needed to unravel this complexity.

D. Relation between nuclear spin cooling and state narrowing

Here we compare nuclear spin polarization, described in this work, to the class of “state nar-

rowing” techniques [32–34], which are sometimes also described as spin cooling. The simplest way
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to describe the difference is to note that dynamic nuclear polarization with |PN| → 1 corresponds

to the true cooling of the nuclear spin ensemble, whereas the narrowing schemes can be described

as partial cooling of certain degrees of freedom, while leaving the remaining degrees of freedom of

the nuclear ensemble in a “hot” state. In order to explain this in more detail, we refer to Figs. 4d,e

of the main text. Fig. 4d of the main text sketches the density of states calculated for N = 6

dipolar-coupled I = 3/2 nuclei (without the electron). At high magnetic fields the density of state

spectrum consists of well resolved bands. Each individual band corresponds to a well-defined total

spin projection M . The adjacent bands are split by the Zeeman energy hνL, where the Larmor

frequency is in the νL ≈ 30 − 100 MHz range in our experiments. The transition between any two

adjacent bands can be described as flipping (i.e. a ±1 change in the z-projection m) of a single

spin in the ensemble. Without the nuclear-nuclear interaction, each band would represent a degen-

erate state. The dipole-dipole interaction between the nuclei lifts the degeneracy, broadening each

band. The broadening of each band is governed by the magnitude of the nuclear-nuclear dipolar

couplings hνdd ∝ max |bj,k| and is on the order of νdd ≈ 1 kHz in GaAs based structures. The

origin of this broadening can be understood as follows. There are a large number of combinations

of the individual nuclear states that result in a given total polarization M . However, each such

combination (microstate) has a slightly different energy depending on the mutual orientation of

the adjacent nuclei in the ensemble. For M ≈ 0 (i.e. for small nuclear spin polarization PN ≈ 0)

the broadening is maximal and the number of microstates is large, meaning that such bands have

a quasicontinuous spectrum. With the increasing polarization degree PN the number of possible

microscopic configuration reduces and the distribution of the available dipolar energies becomes

narrower. There are only two non-degenerate many-body eigenstates, achieved in the ultimate

limit of a fully-polarized ensemble (i.e. at M = ±NI, PN = ±1). Notably, these fully-polarized

states are separated by a large Zeeman energy gap hνL from all the other states many-body states.

The difference between polarization and state narrowing is illustrated in Fig. 4e of the main

text. In case of state narrowing, the degree of freedom that is cooled down is the distribution of the

total z-projection M of the nuclear spins (blue bars show Gaussian distribution of M with a full

width of half maximum of 2). In an ideal case, one aims to narrow the distribution down to just

one value of M . However, even for such ultimate narrowing the dipolar energy reservoir remains

in a “hot” state, in a sense that a fixed M can be implemented with equal probability by any

of the large number of microstates. In case of a polarized state (true cooling), the probability to

find the ensemble in a microstate with a total projection M approximately follows the Boltzmann

distribution ∝ exp(βM), where β is the dimensionless inverse spin temperature. The probabilities
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of the microstates are shown by the red bars in Fig. 4e for a polarized ensemble at PN = 0.99.

It can be seen that true cooling (polarization) both narrows the distribution M and narrows the

dipolar energy distribution. This is a fundamental advantage of true cooling via polarization.

Due to the difference between polarization and state narrowing the figures of merit are also

different. One metric is the polarization degree PN. Although state narrowing protocols are

primarily designed to reduce the uncertainty in M , they can be tailored to produce a non-zero

mean M . However, the resulting polarization degrees are modest, for example PN ≈ 0.3 in a recent

demonstration [34]. The likely limiting factor is the nuclear spin polarization rate, arising from

the need to have a coherent electron spin qubit in the QD. The polarization protocol reported here

benefits from operating the QD in a regime of fast tunneling, which allows much high polarizations

|PN| ≥ 0.95 to be achieved.

Another figure of merit is the uncertainty in M . Recent algorithmic cooling experiments [34]

reported an uncertainty of 5.7. In case of polarization, currently there is no measurement of uncer-

tainty in M . Such measurement would require additional experiments, for example a measurement

of the electron spin qubit dephasing. However, we can calculate the uncertainty in M from the first

principles. To this end we describe the state of the nuclear spin ensemble in terms of probabilities

pm for each nuclear spin to occupy a state with spin z projections m. In case of the spin-3/2 nuclei

m ∈ {−3/2,−1/2,+1/2,+1/2}. For the state induced by optical dynamical nuclear polarization

we model these probabilities using the Boltzmann distribution:

pm = emβ/
+I∑

m=−I

emβ, (S14)

where β = hνL/kbTN is the dimensionless inverse temperature, expressed in terms of the nuclear

spin Larmor frequency νL and the spin temperature TN (h is Planck’s constant and kb is the

Boltzmann constant). We then consider an ensemble of N identical spins, assuming that their

states follow the Boltzmann distribution independently. We are interested in the random variable

M , which is the total of the spin projections m of the individual spins. We calculate the variance

of M . The details of the calculations, carried out using Wolfram Mathematica software, can be

found in the Supplementary file SupplementaryData1.nb (pdf version of this file can be found

in SupplementaryData2.pdf). The variance can be written in terms of the hyperbolic cosecant

functions:

V (M) =
N

4

(
csch2[β/2] − (2I + 1)2csch2[(I + 1/2)β]

)
, (S15)

We consider a QD with N ≈ 105 nuclei with spin I = 3/2. For an unpolarized state (PN ≈ 0)
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the standard deviation uncertainty is
√
V (M) ≈ 354. For a conservative estimate of PN ≈ 0.95

(β ≈ 2.66) in the best QDs we find
√
V (M) ≈ 90. For PN ≈ 0.99 (β ≈ 4.2), the uncertainty

in M reduces to
√
V (M) ≈ 39. This is still worse than the state-of-the-art performance of the

state narrowing techniques. However, our assumption of independent spins could be leading to

an overestimate. Usually nuclear spin pumping processes result in some additional narrowing of

M , for example through electron-nuclear spin feedback [6]. Investigation of nuclear spin statistics

beyond the measurement of PN is a subject for future work.

Overall, the polarization protocol implemented in our work and the state narrowing techniques

use rather different approaches, with their advantages and disadvantages. The state narrowing

methods offer a reliable reduction of M , which is key to reducing the QD electron spin qubit

dephasing time T ∗
2,e. Yet, even in an ideal case, where M is known down to one unit of spin, such a

narrowed state still has a large statistical uncertainty associated with different mutual orientations

of the nuclear spins. When the electron spin qubit is added into consideration, such uncertainty in

the dipolar energy also translates into uncertainty of the effective nuclear field acting on the electron

(due to the inhomogeneity of the hyperfine coupling of the localized electron). The quasicontinuous

distribution of the dipolar energies for any given M opens the channels for electron-nuclear spin

dynamics which can reduce the electron spin coherence time T2,e. Our approach of cooling through

polarization requires further investigation and improvement to be comparable with state narrowing.

However, true cooling has a unique fundamental advantage of being the only route towards a ground

eigenstate of a many-body nuclear spin ensemble. Since such a ground state is non-degenerate and

is spectrally isolated by a large energy gap hνL it results in essentially nondecaying electron spin

coherence, as shown through exact analytical solution [35]. For practical applications one may

envisage combining the true cooling and the state narrowing into a two-stage process with the aim

of achieving new levels of control over the nuclear spin ensemble state.

Supplementary Note 5. DERIVATION OF NUCLEAR SPIN POLARIZATION

A. Nuclear magnetic resonance thermometry of spin-3/2 nuclei

We use again the model of Supplementary Eq. S14. We assume νL > 0 and Bz > 0, so that

m = +I is the ground state for nuclei with γ > 0, in agreement with Supplementary Eq. S3. For

spin I = 1/2 where m = ±1/2 any statistical distribution is described by Supplementary Eq. S14

with some TN. By contrast, for I > 1/2 Supplementary Eq. S14 states the non-trivial nuclear
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spin temperature hypothesis [36] – previous experimental studies on low-strain epitaxial quantum

dots [13] have shown its validity for the state induced by optical dynamical nuclear polarization.

Nuclear spin polarization degree is defined as

PN =
1

I

+I∑
m=−I

mpm. (S16)

For the Boltzmann distribution of Supplementary Eq. S14 the polarization degree is given by the

Brillouin function:

PN =
1

2I
((2I + 1) coth[(I + 1/2)β] − coth[β/2]) . (S17)

It is worth noting that the polarization degree PN and the dimensionless inverse temperature β

provide more relevant description of the nuclear spin state than the temperature TN. Indeed,

when the Larmor frequency νL is changed (by varying the external magnetic field) PN and β are

preserved, whereas TN is not constant, even if it is the same optically-pumped nuclear spin state.

The temperature TN only gains physical meaning at low magnetic fields ≲ 1 mT, comparable to

the local nuclear dipolar fields. PN and β are also related to entropy [37, 38]. For N spin-1/2 nuclei

the entropy reads:

S

NkB
≈ ln 2 − 1

2
[(1 + PN) ln(1 + PN) + (1 − PN) ln(1 − PN)] . (S18)

For PN → 1 this can be approximated as

S

NkB
≈ 1 − PN

2
(1 + ln 2 − ln(1 − PN)) =

1 − PN

2

(
1 − ln

(
1 − PN

2

))
. (S19)

The dependence is plotted by the solid line in Supplementary Fig. 13 and is very nonlinear. A

significant reduction in the entropy (i.e. reduction in disorder) requires PN to be close to unity.

For example, at PN ≈ 0.8 the entropy is reduced only to ≈ 1/2 of its maximum value at PN = 0,

while a factor of 10 reduction requires PN ≈ 0.974. The minimum in entropy is achieved only

for PN = ±1 (β → ±∞). An alternative way to characterize the polarization degree of a nuclear

spin ensemble is through the reduction of the dephasing time of the central (electron) spin qubit

coupled to such an ensemble. Under certain approximations, the dephasing rate can be shown to

scale as
√

1 − P 2
N with nuclear spin polarization degree [39]. This is shown by the dashed line in

Supplementary Fig. 13, once again demonstrating that nuclear polarization must be close to unity

in order to make a difference in terms of the central spin coherence.

The hyperfine shift experienced by the quantum dot exciton is linearly proportional to the

nuclear spin polarization degree PN:

Ehf =
∑
j

F (j)IjPN,j , (S20)
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Supplementary Figure 13. Nuclear spin ensemble properties as a function of nuclear spin polar-

ization degree PN. Solid line shows entropy per nucleus of a nuclear spin ensemble. Dashed line shows the

factor by which the dephasing time of an electron spin qubit is reduced, when its nuclear spin environment

is polarized.

where the sum is over individual isotope species. Although the hyperfine shift Ehf can be measured

accurately from the photoluminescence spectra, the proportionality factor F (j) depends not only

on the material’s hyperfine constants A(j), but also on the leakage of the electron wavefunction into

the AlGaAs barrier. Since it is difficult to estimate this leakage independently, the measurement

of Ehf alone is not suitable for accurate derivation of PN. The unknown proportionality factor

between Ehf and PN can be eliminated for I > 1/2 nuclei, provided that it is possible to address

selectively the magnetic dipole transitions between states with spin projections m and m+ 1. For

example, if a long radiofrequency (Rf) pulse is applied to saturate the m↔ m+1 NMR transition,

it equalizes the populations of these states. The resulting final population probabilities pm, pm+1

both equal the average (pm + pm+1)/2 of their initial populations. For an ideal selective NMR Rf

excitation the population probabilities of all other nuclear spin states remain unchanged.

One can then substitute Supplementary Eq. S16 into Supplementary Eq. S20 to calculate the

change in the optically detected hyperfine shift ∆Ehf resulting from selective saturation of a single

NMR transition m ↔ m + 1. For example, for +1/2 ↔ +3/2 of the j-th isotope, we calcu-

late ∆E
+1/2↔+3/2
hf = F (j)

[
(+3

2)
p+3/2+p+1/2

2 + (+1
2)

p+3/2+p+1/2

2

]
− F (j)

[
(+3

2)p+3/2 + (+1
2)p+1/2

]
=
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−F (j)(p+3/2 − p+1/2)/2. This result has a simple interpretation that the hyperfine shift variation

∆Ehf depends only on the difference in the initial populations of the states that are selectively

saturated with Rf.

In the same manner, simultaneous selective saturation of the NMR transitions m↔ m+ 1 and

m + 1 ↔ m + 2 leads to complete averaging of the populations of the three involved spin states.

Their final population probabilities become pm, pm+1, pm+2 → (pm + pm+1 + pm+2)/3. Saturation

of all three NMR transitions of spin I = 3/2 nuclei leads to complete depolarization and equal

populations of all four spin states p−3/2 = p−1/2 = p+1/2 = p+3/2 = 1/4. Using Supplementary

Eqs. S16 and S20 we evaluate the changes in the hyperfine shift ∆Ehf,j arising from the j-th isotope,

to arrive to the following results, derived previously in Ref. [13]:

∆Em↔m+1
hf,j = −F (j)(pm+1,j − pm,j)/2 = −F (j) e(m+1)βj − emβj

4 cosh(βj/2) + 4 cosh(3βj/2)
,

∆Em↔m+2
hf,j = −F (j)(pm+2,j − pm,j) = −F (j)e(m+1)βj sinh(βj/2)/ cosh(βj),

∆E−I↔+I
hf,j = −F (j)PN,jIj = −F (j)[3/2 + 1/ cosh(βj)] tanh(βj/2).

(S21)

The last expression in each of these equations is obtained by substituting the Boltzmann distribu-

tion (Supplementary Eq. S14) for spin I = 3/2.

B. Corrections for the nuclei with small or inverted quadrupolar shifts

For a fully resolved NMR triplet, Supplementary Eq. S21 is sufficient to extract the inverse

temperatures βj and derive the polarization degree of the spin-3/2 nuclei. In a real semiconductor

system the separation of the quadrupolar NMR components is not perfect. Here we examine the

role that the nuclei with small or inverted quadrupolar shift νQ have on the derivation of nuclear

spin polarization from experimental data. The case of an experiment where a radiofrequency comb

is used to saturate two out of three NMR transitions is considered in Supplementary Fig. 14. For

unstrained GaAs, nuclear quadrupolar effects are absent (νQ = 0) and all NMR transitions of

the spin-3/2 nucleus appear at the same Larmor frequency νL. Strain induces quadrupolar effects

which are characterized to first order by the shift νQ. In all our experiments |νQ| ≪ |νL|, so that

first-order approximation is valid. The central transition −1/2 ↔ +1/2 between nuclear states

with spin projections m = ±1/2 is unaffected by quadrupolar shifts in the first order, hence its

NMR frequency is νL for all nuclei (vertical solid line in Supplementary Fig. 14). The satellite

transitions are affected by quadrupolar shifts: the NMR frequency of the −3/2 ↔ −1/2 transition

is νL + νQ, whereas the NMR frequency of the +1/2 ↔ +3/2 transition is νL − νQ (solid lines in
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Supplementary Figure 14. Effect of the nuclei with different quadrupolar shifts in a two-transition

comb saturation measurement.

Supplementary Fig. 14 with slopes +1 and −1, respectively).

The strain varies within the QD volume, so there is a statistical distribution of νQ values

within the ensemble of the nuclei (sketched in the left part of Supplementary Fig. 14). The

majority of the 75As nuclei have a positive quadrupolar shift νQ > 0 (for Ga nuclei the shift is

predominantly negative νQ < 0). Therefore, if we want to saturate simultaneously the two NMR

transitions −3/2 ↔ −1/2 and −1/2 ↔ +1/2 (labelled −3/2 ↔ +1/2 for brevity) we choose a

radiofrequency comb band sketched by the shaded area in Supplementary Fig. 14. The low-offset

edge of the band at frequency νL + νOffs,L (with negative νOffs,L < 0) is tuned just below the

Larmor frequency, in order to saturate the narrow −1/2 ↔ +1/2 transition. The high-offset edge

of the band νL + νOffs,H (with positive νOffs,H > 0) is chosen to be far enough from the Larmor

frequency to cover the −3/2 ↔ −1/2 satellite transition for most nuclei. The typical values in

two-transition comb saturation experiments are νOffs,L = −5 kHz, νOffs,H = +178 kHz for 75As and

νOffs,L = +5 kHz, νOffs,H = −80 kHz for 69Ga. For the −1/2 ↔ +3/2 two-transition saturation the

values of νOffs,L and νOffs,H are inverted.

As can be seen in Supplementary Fig. 14 the nominal −3/2 ↔ +1/2 comb saturates the desired
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transitions for the majority of nuclei, which have −νOffs,L < νQ < νOffs,H (note that the lower

bound −νOffs,L is positive for a negative νOffs,L < 0). These nuclei give a correct contribution to

the Rf-induced hyperfine shifts. But there are also several cases, where nuclei give contributions

that differ from those intended. For a fraction of nuclei with small quadrupolar shifts νOffs,L <

νQ < −νOffs,L all three NMR transitions are excited by the comb, resulting in full depolarization

of such nuclei. Furthermore, for those 75As nuclei where quadrupolar shift is inverted −νOffs,H <

νQ < νOffs,L, the −3/2 ↔ −1/2 transition will be out of resonance with the Rf band, while the

+1/2 ↔ +3/2 transition will be saturated. Such nuclei will produce hyperfine shifts that would

correspond to the −1/2 ↔ +3/2 two-transition saturation, rather than the intended −3/2 ↔ +1/2

saturation. Finally, for a small fraction of nuclei with very large absolute quadrupolar shifts

|νQ| > |νOffs,H|, only the central −1/2 ↔ +1/2 transition will be saturated. Thus, introducing

the empirical coefficients c, the observed hyperfine shift ∆E
−3/2↔+1/2
hf,Obs in the −3/2 ↔ +1/2 two-

transition saturation experiment can be written as:

∆E
−3/2↔+1/2
hf,Obs = cSat,Ideal∆E

−3/2↔+1/2
hf +

+ cSat,Full∆E
−3/2↔+3/2
hf + cSat,Inv∆E

−1/2↔+3/2
hf + cSat,CT∆E

−1/2↔+1/2
hf ,

(S22)

where we have dropped the isotope index. If the quadrupolar NMR triplet is fully resolved, then

cSat,Ideal = 1 with all other c coefficient equal to zero. In a real quantum dot cSat,Ideal < 1 and

the remaining coefficients are non-zero, so that the observed hyperfine shift ∆E
−3/2↔+1/2
hf,Obs deviates

from the ideal ∆E
−3/2↔+1/2
hf . For example, if all nuclei are in a m = +3/2 state (that is PN = +1),

the expected ideal is ∆E
−3/2↔+1/2
hf = 0. In reality, due to the non-zero contributions of the fully-

saturated nuclei (cSat,Full > 0) and the nuclei with an inverted quadrupolar shift (cSat,Inv > 0) the

observed hyperfine shift ∆E
−3/2↔+1/2
hf,Obs is non-zero even if nuclei are fully polarized.

The expression for the hyperfine shift in the other two-transition experiment ∆E
−1/2↔+3/2
hf,Obs can

be obtained from Supplementary Eq. S22 by changing the sings of all the m indices. It is worth

noting that in the experiment with intentional saturation of all three-transitions (−3/2 ↔ +3/2) all

nuclei get fully depolarized as long as the satellite transitions fit within the Rf band. In the three-

transition experiments we use frequency combs with total widths of 347 kHz (69Ga) and 578 kHz

(75As), centred at the Larmor frequency νL. These widths are sufficient for complete depolarization

of essentially all the nuclei of the quantum dot and the surrounding barriers. Therefore, the three-

transition non-selective saturation measurement is expected to be more robust than the selective

two-transition Rf depolarization.

Similar analysis applies to selective Rf excitation of a single NMR transition (Supplementary
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Supplementary Figure 15. Effect of the nuclei with different quadrupolar shifts in a single-

transition adiabatic inversion measurement.

Fig. 15. Here, rather than saturating the NMR resonance we perform a radiofrequency sweep,

which adiabatically inverts the populations of the chosen pair of spin states. Adiabatic sweep

has the advantage of doubling the hyperfine shift compared to saturation – this simple relation

holds only if a single NMR transition is excited. By contrast, for an adiabatic sweep over multiple

quadrupolar NMR transitions the result is more complicated, making comb saturation preferable

for two-transition and three-transition NMR excitation. The radiofrequency is always swept in

the direction away from the central NMR transition, starting at νL + νOffs,L and ending at νL +

νOffs,H. The amplitude and the sweep rate are derived from calibration measurements discussed in

Supplementary Note 5 D. For adiabatic sweeping of the −3/2 ↔ −1/2 transition we use νOffs,L =

+8 kHz, νOffs,H = +180 kHz for 75As and νOffs,L = −5 kHz, νOffs,H = −50 kHz for 69Ga. For

the sweep over the +1/2 ↔ +3/2 transition the values of νOffs,L and νOffs,H are inverted. The

−3/2 ↔ −1/2 sweep works as designed for the majority of nuclei with νOffs,L < νQ < νOffs,H (note

that both νOffs,L and νOffs,H are positive in this example). For the small number of nuclei with

−νOffs,H < νQ < −νOffs,L the nominal −3/2 ↔ −1/2 sweep results in an adiabatic inversion of the

+1/2 ↔ +3/2 transition instead. The remaining nuclei with |νQ| < |νOffs,L| or |νQ| > |νOffs,H| are
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not affected by the Rf sweep. Thus the observed hyperfine shift ∆E
−3/2↔−1/2
hf,Obs in the −3/2 ↔ −1/2

single-transition sweep experiment can be written as:

∆E
−3/2↔−1/2
hf,Obs = 2

(
cSwp,Ideal∆E

−3/2↔−1/2
hf + cSwp,Inv∆E

+1/2↔+3/2
hf

)
(S23)

An important property of the single-transition selective excitation is that the nuclei with small

absolute quadrupolar shifts νQ are eliminated from the measured hyperfine shifts. This is preferred

over the two-transition saturation measurement, where such nuclei are fully depolarized, resulting

in a parasitic hyperfine shift characterised by the cSat,Full coefficient in Supplementary Eq. S22.

C. NMR spectra of the QD nuclei

Supplementary Figs. 16a,b show typical nuclear magnetic resonance spectra measured on 75As

and 69Ga nuclei in QD1. The three magnetic dipole transitions of each of the spin-3/2 isotopes are

split due to the natural elastic strain within the quantum dot volume, arising most likely from the

lattice mismatch between the GaAs QD and the AlGaAs barriers. Although the NMR triplet is well

resolved, there is a few-percent overlap between the spectral components. When quantifying nuclear

spin polarization degrees close to unity, such overlap must be taken into consideration. In order to

quantify the spectral overlap, we study a piece of the same QD sample but subject to a uniaxial

stress along the [110] crystallographic direction (i.e. the strain is applied perpendicular to the

sample growth direction). Nuclear quadrupolar shifts induced by the external stress significantly

exceed the intrinsic quadrupolar shifts. As a result the NMR triplet is fully resolved, as can be seen

in the inverse NMR spectra of Supplementary Figs. 17a,b where we focus on the −1/2 ↔ +1/2

and −3/2 ↔ −1/2 transitions.

The spectral shapes of the −3/2 ↔ −1/2 satellites measured in a stressed QD sample are

similar to those in the unstressed sample (Supplementary Fig. 16). The satellite lineshape consists

mainly of an asymmetric peak, but also shows evidence of spectral wings that are broad enough to

overlap with the −1/2 ↔ +1/2 central transition in an unstressed sample. In principle, the overlap

can be derived by integrating the relevant part of the satellite lineshape, measured with inverse

NMR and shown in Supplementary Figs. 17a,b. However, this approach is vulnerable to noise –

it is more efficient to incorporate integration into the NMR spectroscopy method [40, 41]. Such

an integral NMR measurement is performed by selectively saturating all nuclear spin transitions

within a certain spectral band. The high-frequency edge of the saturating band (implemented as

a frequency comb) is kept fixed. The low-frequency edge is scanned and the resulting change in
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Supplementary Figure 16. Nuclear magnetic resonance spectra of a single quantum dot. a, Nuclear

magnetic resonance spectra of the 75As nuclei measured in QD1 at Bz = 10 T using the “inverse NMR”

technique for signal enhancement [23]. The −1/2 ↔ +1/2 central transition is measured with a 2 kHz

resolution, while the satellites −3/2 ↔ −1/2 and +1/2 ↔ +3/2 are measured with a 6 kHz resolution.

Vertical dashed lines are offset from the central transition by ±8 kHz and indicate the starting points of

the frequency sweeps over the satellite peaks. b, Same as (a) but for 69Ga nuclei. The −1/2 ↔ +1/2

central transition is measured with a 2 kHz resolution, while the satellites are measured with a 4 kHz

resolution. Vertical dashed lines are offset from the central transition by ±5 kHz. c, Integrated lineshape of

the −3/2 ↔ −1/2 transition of 75As, derived from experiments on a stressed piece of the same semiconductor

QD sample. d, Same as (c) but for the −3/2 ↔ −1/2 transition of 69Ga.

the hyperfine shift ∆Ehf is measured. This dependence of ∆Ehf reveals the fraction of the nuclei

covered by the saturating Rf band, and therefore provides a scaled definite integral of the NMR

lineshape. For 75As nuclei the fixed-frequency edge of the Rf band is detuned by +500 kHz from

the central transition to ensure that the entire −3/2 ↔ −1/2 transition can be covered. For 69Ga

nuclei the fixed-frequency edge of the Rf band is detuned by +230 kHz from the central transition,
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Supplementary Figure 17. Nuclear magnetic resonance spectra of a quantum dot under external

uniaxial stress. a, Inverse NMR spectrum of 75As at Bz = 5.227 T measured with a 4 kHz resolution. b,

Inverse NMR spectrum of 69Ga at Bz = 5.024 T measured with a 4 kHz resolution. c, Integral saturation

NMR spectrum of 75As measured (symbols) under the same condition as inverse NMR in (a). Line shows a

smoothed fitted profile. d, Integral saturation NMR spectrum of 69Ga measured under the same condition

as inverse NMR in (b).

so that the entire −1/2 ↔ +1/2 and +1/2 ↔ +3/2 transitions are also included in the band, in

order to amplify the integral NMR signal of the −3/2 ↔ −1/2 satellite.

Supplementary Fig. 17c shows the integral NMR spectrum of the −3/2 ↔ −1/2 transition

of the 75As nuclei in a stressed sample. The steepest rise in the integral signal matches the

position of the sharp peak in the inverse NMR spectrum of Supplementary Fig. 17a. However,

we also observe the slopes that stretch as far as ≈ ±150 kHz from the satellite peak maximum,

indicating the contribution of a broad NMR signal. Broad spectral features are also observed in

Supplementary Fig. 17d for 69Ga nuclei, though in a narrower spectral range and with an overall

smaller contribution. This broad background can be ascribed to the NMR signal from AlGaAs
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barriers or any Al atoms diffusing into the GaAs QD layer [41]. The Al atoms that randomly

replace the Ga atoms distort the tetrahedral symmetry of the four nearest neighbours surrounding

each As atom. The resulting unit-cell-scale strain results in pronounced quadrupolar shifts. By

contrast, all Ga atoms have four identical As atoms as nearest neighbours. Therefore, Ga atoms

are affected by Al/Ga random alloying only through next-nearest neighbours, explaining why the

broad nuclear quadrupolar wings are smaller than for As nuclei.

Integral NMR spectra are processed in order to derive the correction coefficients. The experi-

mental data is first smoothed (lines in Supplementary Figs. 17c,d) by fitting with a sum of three

skew normal distribution peaks. The integral lineshapes are then normalized and shifted along the

frequency scale to have the −3/2 ↔ −1/2 satellite NMR peaks in the stressed sample (Supplemen-

tary Figs. 17a,b) match the peak positions in the unstressed sample (Supplementary Figs. 16a,b).

The resulting integrals of the −3/2 ↔ −1/2 lineshapes are shown by the solid lines in Supplemen-

tary Figs. 16c,d and are used to derive the c correction coefficients in Supplementary Eqs. S22, S23.

For example, the vertical dashed lines in Supplementary Figs. 16a,b indicate the starting points

of the frequency sweeps over the satellite peaks. The integral value at the lower starting point

for 75As is ≈ 0.07 and approximately corresponds to the fraction cSwp,Inv of the nuclei where the

+1/2 ↔ +3/2 satellite is swept instead of the intended −3/2 ↔ −1/2. The difference of the

integral at the higher and lower sweep starting points gives approximately the fraction of nuclei

(≈ 0.03) that are not swept at all. The summary of all the coefficients derived from the integrated

lineshapes can be found in the following table:

Coefficient 75As 69Ga

cSat,Ideal 0.8979 0.9424

cSat,Full 0.0170 0.0341

cSat,Inv 0.0750 0.0234

cSat,CT 0.0100 0.0003

cSwp,Ideal 0.8893 0.9272

cSwp,Inv 0.0721 0.0234

(S24)

It can be seen that the contributions of the ideal signals are higher for the 69Ga nuclei due to

their smaller inhomogeneous quadrupolar broadening. As a result, nuclear spin polarization mea-

surements are more accurate for 69Ga than for 75As. It is worth noting that the nuclear spin

thermometry data measured on QDs in an unstrained sample is corrected with the c coefficients

measured on a different individual QD (in a stressed sample). However, measurements conducted
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on several individual QDs from the same sample reveal NMR spectra very similar to those shown

Supplementary Fig. 16a,b. Thus, while there is always some uncertainty arising from dot-to-dot

variation, its effect is expected to be smaller than the actual correction introduced through the c

coefficients.

D. Calibration of the adiabatic radiofrequency sweeps

Supplementary Fig. 18 shows the dependence of the Rf-induced hyperfine shift on the frequency

sweep rate. The amplitude of the Rf field is expressed in terms of the corresponding Rabi frequency

ν1. Supplementary Fig. 18a shows the results of an experiment where radiofrequency is swept from

−50 kHz to +50 kHz around the 69Ga Larmor frequency. This sweep range covers nearly the entire

69Ga quadrupolar triplet. For a sufficiently large Rf amplitude ν1 ≳ 1.64 kHz and a sufficiently low

rate the sweep is adiabatic, resulting in population transfer from the optically-populated m = −3/2

states into the m = +3/2 states. The variation of the hyperfine shift under adiabatic conditions is

∆Ehf ≈ 53 µeV (dashed horizontal line). As expected [42], the sweep rate that produces adiabatic

transfer increases quadratically with the Rf amplitude ν1. When ν1 is reduced below ≈ 1 kHz, the

magnitude of the hyperfine shift ∆Ehf in the slow-sweep limit decreases, indicating that population

transfer becomes non-adiabatic. This non-adiabaticity is a result of demagnetization in the rotating

frame, where Zeeman energy is transferred into the nuclear dipole-dipole interaction reservoir

[10, 42, 43]. For all ν1 the sweep also becomes non-adiabatic in the large-rate limit.

Supplementary Fig. 18b shows sweep rate dependence for the range starting from −5 kHz to

−50 kHz, which selectively covers the −3/2 ↔ −1/2 satellite NMR transition (the starting points

of the sweeps are shown by the dashed lines in Supplementary Fig. 16b). The adiabatic inversion

of the subspace spanned by the m = −1/2 and m = −3/2 states results in a hyperfine shift

of ∆Ehf ≈ 20 µeV. Unlike for −1/2 ↔ +1/2, adiabaticity is achieved at a lower Rf amplitude

ν1 ≳ 0.27 kHz. This is explained by the difference in the inhomogeneous broadening of the satellite

transitions and the central transition −1/2 ↔ +1/2. In case of the −1/2 ↔ +1/2 transition

(that is driven when the frequency is swept over the entire quadrupolar triplet) the inhomogeneous

broadening is due to the second order quadrupolar shifts which are small compared to dipolar

nuclear-nuclear interactions. By contrast, the first-order inhomogeneous quadrupolar broadening

of the −3/2 ↔ −1/2 satellite (≳ 10 kHz) is much larger than the dipole-dipole interaction. As

a result the Zeeman and the dipolar energy reservoirs remain isolated during the sweep over the

satellite, inhibiting the demagnetization. In other words, the Rf field sweeping over the broadened
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Supplementary Figure 18. Calibration of the radiofrequency adiabatic sweeps. a, In these experi-

ments σ+ optical pumping is first used to produce negative nuclear spin polarization. Optical pumping is

followed by a frequency-swept Rf burst and the resulting hyperfine shift variation is plotted as a function

of the frequency sweep rate. The radiofrequency field is swept from −50 kHz to +50 kHz with respect

to the Larmor frequency of the 69Ga nuclear spins. This range covers all three quadrupolar-split NMR

transitions. Results are shown for several amplitudes of the radiofrequency field, expressed in terms of the

Rabi frequency ν1 that such a field produces when tuned in resonance with the satellite NMR transition

−3/2 ↔ −1/2. Dashed horizontal line shows the hyperfine shift variation under adiabatic conditions. b,

Same as (a), but the frequency range of the sweep is from −5 kHz to −50 kHz, covering only the satellite

NMR transition −3/2 ↔ −1/2.

−3/2 ↔ −1/2 satellite excites only a small fraction of the nuclei at any given frequency, while

the majority of the nuclear spins remain out of resonance and therefore cannot participate in

the exchange between the Zeeman and dipolar reservoirs. When the Rf amplitude is increased

(ν1 ≳ 1.64 kHz), the magnitude |∆Ehf| of the hyperfine shift increases further beyond the adiabatic-

inversion level. This can be explained by the parasitic driving of the −1/2 ↔ +1/2 transition,

which occurs when ν1 becomes non-negligible compared to the minimal offset (−5 kHz from the

−1/2 ↔ +1/2 frequency) during the sweep over the −3/2 ↔ −1/2 transition. Based on these

calibrations, we use adiabatic frequency sweeps only on the ±3/2 ↔ ±1/2 satellites, avoiding any

sweeps that involve the −1/2 ↔ +1/2 central transition. For the spin temperature measurements

on 69Ga we use ν1 ≈ 0.496 kHz and a sweep rate of 1 MHz s−1. From the data of Supplementary

Fig. 18b this combination of parameters is seen to provide good adiabatic inversion of the satellite
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Supplementary Figure 19. Derivation of nuclear spin polarization from selective NMR excitation.

Spectral splitting ∆EPL of a QD negatively charge trion measured without Rf excitation is plotted on the

bottom horizontal axis. Rf-induced hyperfine shift variation ∆Ehf is plotted on the vertical axis. Each point

is obtained by changing the initial degree of the optically induced nuclear spin polarization and conducting

two measurements: with selective Rf excitation and without Rf excitation. ∆Ehf is the difference of these

two measurements. Several types of 69Ga Rf excitation are employed: non-selective saturation of the entire

NMR triplet (squares), adiabatic frequency sweep over the −3/2 ↔ −1/2 satellite (circles) and adiabatic

frequency sweep over the +1/2 ↔ +3/2 satellite (triangles). Solid lines show the best fit, whereas dashed

lines show a fit constrained by the |PN| < 0.9 hypothesis. The top horizontal scale shows the nuclear spin

polarization degree PN evaluated from the best fit. Experiments are conducted on an individual QD1 at

Bz = 10 T.

transitions without any noticeable parasitic excitation of the central transition. Similar results were

obtained from calibrations on the 75As satellite transition resonance – the optimal Rf amplitude

was found to be ν1 ≈ 0.560 kHz, with a sweep rate of 0.8 MHz s−1.
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E. Model fitting for derivation of the nuclear spin polarization degree

The experimental measurement of the nuclear spin polarization (spin thermometry) uses the

Pump-Rf-Probe cycle shown in Supplementary Fig. 3a. The variable parameter is the initial

degree of nuclear spin polarization produced by the optical pumping. The steady-state nuclear spin

polarization is changed either by detuning the pump laser wavelength away from the optimum or by

altering the degree of circular polarization of the pump. For any given initial nuclear polarization

the Pump-Rf-Probe measurements are carried out with different types of NMR Rf excitation or

with no Rf pulse at all. The spectral splitting of the trion ∆EPL detected in the probe pulse

is then used as the horizontal axis for the data plots in Supplementary Fig. 19. On the vertical

axis we plot the difference between the trion spectral splitting measured with the Rf pulse (final

state) and without the Rf pulse (initial state). This difference yields the change in the hyperfine

shift resulting purely from the selective Rf excitation of a certain NMR transition for a chosen

isotope, whereas hyperfine shifts arising from other transitions and isotopes remain unaffected. In

the experiment we avoid a certain range of positive initial nuclear spin polarizations (characterised

by 850 µeV < ∆EPL < 900 µeV for QD1 at Bz = 10 T) where electron spin energy splitting is

close to zero due to the hyperfine shift and the Zeeman effect cancelling each other out. Such

cancellation is characterised by accelerated nuclear spin dynamics (observed as a kink in Fig. 4a of

the main text), making it difficult to perform non-perturbing optical probing. Therefore, in order

to discuss the spin thermometry fitting, we focus on the negative nuclear polarizations, where most

of the datapoints are collected (Supplementary Fig. 20).

The splitting in the photoluminescence spectrum of a negatively charged trion X− (see Supple-

mentary Fig. 2b) can be written as (see Supplementary Eq. S2):

∆EPL = ∆EPL,0 −
∑
j

F (j)IjPN,j . (S25)

where ∆EPL,0 is the trion splitting corresponding to depolarized nuclei and the summation goes over

all isotope species with their individual polarization degrees PN,j . The individual proportionality

constants can be written as F (j) = kj(A
(j) − C(j)), where both the electron (A(j)) and the hole

(C(j)) hyperfine material constants are included since the photoluminescence of the trion is only

observed for recombination of an electron and a hole with the opposite spin z projections (see

Supplementary Note 2). The factors 0 < kj ≤ 1 account for the Ga nuclei atoms replaced by Al,

resulting in a reduced hyperfine shift experienced by the electron spin. If all I = 3/2 isotopes have
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Supplementary Figure 20. Derivation of nuclear spin polarization from selective NMR measure-

ments. Same as Supplementary Fig. 19, but focusing on the range of negative nuclear spin polarizations. a,

Data and fits for 69Ga nuclei. Hyperfine shift variations are shown for saturation of the entire NMR triplet

(squares) and selective two-transition saturation (circles for −3/2 ↔ +1/2, triangles for −1/2 ↔ +3/2). b,

Data for the non-selective saturation (same data as in (a), squares) and selective adiabatic frequency sweeps

over NMR satellites (circles for −3/2 ↔ −1/2, triangles for +1/2 ↔ +3/2). c, d, Same as (a,b) but for

75As nuclei.

the same polarization degree, Supplementary Eq. S25 simplifies to

∆EPL = ∆EPL,0 − IPN

∑
j

F (j). (S26)

Resolving this for PN and substituting into the last of Supplementary Eq. S21, we find that the

change in the hyperfine shift (final minus initial) arising from the non-selective saturation of all
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three NMR transitions of the j-th isotope is a linear function of the trion spectral splitting:

∆E−I↔+I
hf,j = (∆EPL − ∆EPL,0)

F (j)

Ftot
= wj(∆EPL − ∆EPL,0),

Ftot =
∑
j

F (j),
(S27)

where wj is the weight coefficient of the j-th isotope in the total hyperfine shift Ehf , and Ftot is

the total proportionality factor. The measured ∆E−I↔+I
hf,j are shown by the squares in Supplemen-

tary Figs. 20a,c for 75As and 69Ga, respectively. The dependence on ∆EPL is indeed seen to be

linear. For precise modelling we take the squared differences between the measured ∆E−I↔+I
hf,j and

∆E−I↔+I
hf,j computed from Supplementary Eq. S27 with spectral splitting ∆EPL measured under

the same optical pumping but without radiofrequency depolarization.

The same approach is applied to the hyperfine shift variations ∆Em↔m+1
hf,j and ∆Em↔m+2

hf,j aris-

ing from selective saturation (or adiabatic inversion) of one or two NMR transitions, respectively.

Here, Supplementary Eq. S26 is first resolved to find PN as a function of ∆EPL, and PN is then

substituted into Supplementary Eq. S17 to find β. Since there is no explicit form for the inverse of

the Brillouin function, this relation is kept in an exact analytical form using the Root[ ] function

in Wolfram Mathematica 12.3 software. The inverse temperature β is then inserted into Sup-

plementary Eqs. S21. Finally, the ideal ∆Em↔m+1
hf,j and ∆Em↔m+2

hf,j calculated in this way, are

inserted into Supplementary Eqs. S22, S23 using the c coefficients from Supplementary Eq. S24

to account for the small spectral overlaps between the individual components of the quadrupolar

NMR triplet. Taking these model hyperfine shifts at the experimentally measured ∆EPL, we calcu-

late the squared differences with respect to the measured Rf-induced hyperfine shifts (triangles and

circles in Supplementary Figs. 20a,c for two-transition saturation and in Supplementary Figs. 20b,d

for single-transition sweeps). We then sum up the squared differences for all individual Rf types

and all isotopes to form the total χ2 functional.

As a last step, we include in our model the possibility that different isotopes have different

polarization degrees PN,j . For arbitrary PN,j it is not possible to resolve the trion PL splitting

∆EPL as a function of PN,j , requiring some explicit assumptions. As a simplest approximation, we

assume that polarization degrees of the three abundant spin-3/2 isotopes ( 75As, 69Ga and 71Ga)

are linearly interdependent. Mathematically, this is equivalent to allowing the total scaling factor

Ftot to deviate for the different measured isotopes. The introduction of Ftot and wj as model

fitting parameters is also convenient in that the data does not have to be collected on all isotopes,

in particular on 71Ga, which has not be studied in this work.

The χ2 is a function of only five fitting parameters: the zero-polarization trion splitting ∆EPL,0,
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the total scaling factors Ftot of 75As and 69Ga as well as the weight coefficients wj of 75As and

69Ga. In case of QD1, where the data was measured at two different magnetic fields, we fit

these datasets independently in order to account for the different degree to which the probe laser

pulse introduces parasitic depolarization in the optically measured hyperfine shifts. The best fits

obtained by minimizing the χ2 functional are plotted by the solid lines in Supplementary Fig. 20

and show a good match to the measured data. The best fit parameters are listed below together

with the total number of experimental datapoints Ndata and the root-mean-square (RMS) residual

Rmin =
√
χ2
min/Ndata derived from the minimized functional value χ2

min. In addition, we quote

the residual R′
min obtained from a separate linear fit where only the three-transition saturation

hyperfine shift ∆E−I↔+I
hf,j is considered:

QD Bz w(75As) w(69Ga) IFtot(
75As) IFtot(

69Ga) Ndata Rmin R′
min

QD1 4 T 0.416 0.292 112.0 µeV 104.5 µeV 346 0.875 µeV 0.803 µeV

QD1 10 T 0.442 0.300 112.3 µeV 110.7 µeV 510 0.749 µeV 0.778 µeV

QD2 10 T 0.429 0.294 112.3 µeV 110.3 µeV 336 1.108 µeV 0.946 µeV

QD3 10 T 0.424 0.294 113.9 µeV 112.8 µeV 170 0.987 µeV 0.968 µeV

(S28)

As discussed above, the three-transition saturation experiment is the most robust against the

errors arising from NMR spectral overlaps. Therefore, the RMS residual R′
min obtained from linear

fitting of ∆E−I↔+I
hf,j alone characterizes the true random measurement errors. These errors in

the optically-detected hyperfine shifts originate mainly from the noise of the CCD detector used to

collect the optical photoluminescence spectra of a single quantum dot. Any excess of Rmin obtained

from the nonlinear fit of the entire selective-NMR dataset over R′
min is an indicator of systematic

deviation between the model and the data. According to the table of Supplementary Eq. S28

such excess is small, confirming the validity of the Boltzmann distribution model (Supplementary

Eq. S14). The spread in the isotope-specific weights wi, and the scaling factor Ftot is on the order of

1% for the Bz = 10 T data collected from three individual quantum dots, affirming the systematic

nature of these results. The fit of the Bz = 4 T data shows the most deviation, which is explained

by the need for shorter probe pulses TProbe, resulting in more noisy photoluminescence spectra as

well as larger systematic deviations arising from the probe-induced nuclear spin depolarization.

In order to derive the nuclear spin polarization degree, we use the highest and the lowest

trion spectral splitting ∆EPL detected without any radiofrequency manipulation in a separate

measurement. For this measurement we use the timing diagram of Supplementary Fig. 3d, where we

allow the nuclear spin polarization to build up over TBuildup > 100 s, giving a closer approach to the
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steady state than what can be achieved in the NMR thermometry measurements (Supplementary

Fig. 20), where the pumping time TPump ≲ 30 s is limited by the maximum duration of the CCD

detector exposure. It is worth noting that this approach of using the separately measured steady-

state ∆EPL is the reason why we build our fitting model on relating the polarization degree PN

to spectral splitting ∆EPL via Supplementary Eq. S25. Otherwise, ∆EPL can be eliminated and

polarization degree can be derived purely from the Rf-induced hyperfine shifts of Supplementary

Eq. S21. The best fit value of ∆EPL,0 is subtracted from the steady state ∆EPL to derive the lowest

negative and the highest positive hyperfine shifts. For QD1 at Bz = 10 T we find Ehf = −109.6 µeV

and Ehf = +112.3 µeV. The latter number exceeds the best-fit product IFtot(
69Ga) by ≈ 1%. By

definition, the IFtot product is the maximum |Ehf | corresponding to full polarization PN = ±1. The

discrepancy with the measured Ehf reveals the scale of errors in the derived polarization degrees

PN, both due to the random noise in the raw data and any systematic inaccuracy of the fitting

model.

F. Error analysis in model fitting of the nuclear spin polarization data

In order to systematically analyze the fitting errors we construct a multidimensional confidence

region (Chapter 9 in Ref.[44]) defined as a collection of all points in the fitting parameter space for

which

χ2 < (1 +Q(γ, n)/Ndata)χ
2
min, (S29)

where we have approximated the standard error in the experimental data by the RMS fit residual

Rmin =
√
χ2
min/Ndata. (Note that here we define χ2 and χ2

min as sums that are not normalized

by the standard error.) We define Q(γ, n) as a quantile of the χ2-distribution with n parameters

corresponding to the confidence level 1 − γ. We use 1 − γ = 0.95 where the relevant quantile is

Q(1 − 0.95, 5) ≈ 11.07. We implement a Monte-Carlo calculation, where the χ2 sum is computed

for a large number of random sets of the fitting parameters around the best-fit point. For each

trial parameter set that satisfies Supplementary Eq. S29 we calculate the polarization degrees

PN from the maximum and minimum steady-state spectral splitting ∆EPL measured with long

TBuildup > 100 s. Finally, the confidence intervals are derived separately for the maximum positive

and the minimum negative polarization degree as maximum and minimum PN values from the

random Monte-Carlo set, coerced to satisfy the condition −1 ≤ PN ≤ 1. The confidence intervals
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are shown by the symbols in Fig. 3e of the main text and are tabulated below:

QD Bz max 75As PN min 75As PN max 69Ga PN min 69Ga PN

QD1 4 T [0.890, 0.974] [−0.989,−0.903] [0.982, 1] [−1,−0.998]

QD1 10 T [0.969, 1] [−0.994,−0.954] [1, 1] [−1,−0.984]

QD2 10 T [0.956, 1] [−1,−0.962] [0.989, 1] [−1,−0.998]

QD3 10 T [0.954, 1] [−1,−0.951] [0.964, 1] [−1,−0.959]

(S30)

This systematic evaluation agrees with the rough estimates above, confirming that the accuracy of

our PN estimates is on the other of a few percent. The fit returns similar values for polarization

degrees of 75As and 69Ga – this is expected for a spin pumping mechanism [13] where the inverse

temperature β of each individual nucleus is independently equilibrated with the β of a spin-polarized

electron. The somewhat wider confidence intervals of 75As could be simply due to the larger

overlaps of the NMR spectral components, making the fit less sensitive to PN and more dependent

on the accuracy of the c coefficients tabulated in Supplementary Eq. S24. The derived |PN| values

are similarly high at Bz = 4 and 10 T, in a sense that their deviation from unity is comparable to

the uncertainty of the estimate. For that reason, it is currently not possible to make any conclusion

about the dependence of nuclear polarization on the external magnetic field, which is a point of

interest for a follow up work.

In order to further evaluate the error estimates we approach the problem of data modelling from

the opposite direction. Namely, we start with a hypothesis that the maximum absolute polarization

degree |PN| is no more than a certain value < 1, and then evaluate how well our experimental data

can be matched to this hypothesis. In order to demonstrate this approach, we constrain the fit to

|PN| < 0.9 and search for the fitting parameter combination that minimizes the χ2 functional (using

the same model as the one used to derive the unconstrained best fit). The resulting constrained

best-fit is shown for QD1 by the dashed lines in Supplementary Fig. 20. There are visible systematic

deviations from the measured data, already suggesting that the |PN| < 0.9 hypothesis is inadequate,

and the actual absolute polarization degree is well above 0.9. Quantitatively, the RMS residual from

the fit of the Bz = 10 T datasets constrained to |PN| < 0.9 is ≈ 1.73 µeV for QD1, ≈ 2.91 µeV

for QD2 and ≈ 2.17 µeV for QD3. These residuals are a factor of ≳ 2 larger than the best-fit

residuals tabulated in Supplementary Eq. S28 – statistically, such deviations are improbable for

our datasets containing hundreds of datapoints. It then follows that the |PN| < 0.9 hypothesis

should be rejected, leading to a conclusion that polarization is in fact well above 0.9.

Next, we fit the same experimental data but without correcting for the overlaps of the NMR

spectral components. This is equivalent to setting cSat,Ideal = cSwp,Ideal = 1 with the remaining
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Supplementary Figure 21. Nuclear spin polarization derived from an uncorrected fit. Maximum

positive (horizontal axis) and minimum negative (vertical axis) nuclear spin polarization degree PN derived

from the measurements on 75As (circles) and 69Ga (triangles) nuclei in individual dots QD1 - QD3. The PN

values in this plot are derived from a fit that ignores the small spectral overlaps between the NMR triplet

components. Error bars are 95% confidence intervals.

c coefficients set to 0. Such a fit can be seen as a lower bound estimate for the absolute polar-

ization degree |PN|. Without correction, the RMS fit residual slightly increases from 0.749 µeV

to 0.819 µeV for QD1 at Bz = 10 T. The resulting uncorrected PN are shown in Supplemen-

tary Fig. 21. The uncorrected polarization degrees for 75As (PN ≈ 0.88) are lower than for 69Ga

(PN ≈ 0.94), contradicting the expectation of equal β across different isotopes. Moreover, the

maximum uncorrected |PN| are very close to the corresponding cSat,Ideal coefficients. Additional

computations confirm that this is to be expected – a naive uncorrected fit of the data affected by

NMR spectral overlap returns for fully polarized nuclei a reduced polarization |PN| which roughly

equals the fraction of the “ideal” nuclei that are not affected by the overlap. Nevertheless, even

without the corrections, a high polarization degree is derived for 69Ga nuclei, since they are less

prone to NMR spectral overlaps than 75As.

Finally, we discuss the different possible sources of systematic errors. Since electron localization

in a GaAs quantum dot is not infinitely strong, the electron wavefunction leaks into the AlGaAs

barriers where it gradually decays with the increasing distance from the dot. This means that both

the nuclear spin pumping efficiency and the sensitivity of the electron hyperfine shift to nuclear
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spin polarization are spatially inhomogeneous. The resulting steady-state nuclear spin polarization

is also spatially inhomogeneous, if only because the QD layer is sandwiched between the two doped

semiconductor layers, where free charge carriers result in PN ≈ 0. On the other hand, when

considering spins as a quantum resource, a significant role is played only by the nuclei within the

QD electron wavefunction. Recent studies of nuclear spin relaxation in the same sample have shown

that spin diffusion is the dominant mechanism of nuclear spin decay in a QD [15]. The nuclear

spins at the center of the QD are quickly polarized by the optically-pumped electron spin and

then transfer their polarization to more distant nuclei via nuclear spin flip-flops. For a sufficiently

long pumping the nuclei in the AlGaAs barriers around the dot become gradually polarized. This

manifests in a slow-down of the subsequent relaxation without the pump. The relaxation times of

the nuclear spins are on the order of hundreds of seconds, much longer than the nuclear spin buildup

times, which are less than one second. Such a large ratio of the timescales suggests that competition

between spin pumping and polarization leakage would not be a limiting factor for achieving |PN|

up to ≈ 0.99. Moreover, relaxation much slower than pumping means that spin diffusion creates a

smooth spatial profile of the nuclear spin polarization – the extent of the polarized volume is larger

than the volume of the electron wavefunction. Therefore, we expect that the electron probes a

volume with a nearly uniform nuclear spin polarization degree PN. In other words, the existence of

spin diffusion combined with long nuclear spin pumping means that there is no realistic mechanism

that would result in abrupt spatial variations of PN. Under these conditions the selective-NMR

thermometry measurements return the average of nuclear polarization, weighted by the electron

envelope wavefunction density. Then, observation of a near-unity average polarization itself implies

that polarization is very homogeneous for all nuclei within the electron wavefunction volume. For

example, if we take the typical leakage of the electron wavefunction into the AlGaAs barriers

at ≈ 0.1 (estimated previously in Ref. [13]) and assume full polarization within the GaAs layer

(|PN| = 1), then observation of a weighted average of |PN| = 0.99 implies that polarization within

the AlGaAs barriers cannot be much smaller than |PN| = 0.9. To summarize, although our present

technique is not capable of revealing the spatial profile of the nuclear spin polarization, the most

plausible hypothesis is that nuclear spin polarization achieved under steady-state optical pumping

is nearly uniform within the volume of the QD electron wavefunction. In practice, this implies

the ability to polarize nearly all nuclei whose coupling to the electron is strong enough to have

any relevance to electron-nuclear coherent spin dynamics [14]. This also justifies our model, which

assumes PN to be constant within the quantum dot volume and its surrounding. From the ratio of

the nuclear spin buildup and decay times we estimate the errors caused by PN inhomogeneity to
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be on the order of 1%.

Although 75As, 69Ga and 71Ga are the three abundant isotopes, the inevitable penetration of

the electron into the AlGaAs barriers implies some hyperfine interaction with the spin-5/2 27Al

nuclei. And yet it turns out that 27Al hyperfine shift is too small to be studied quantitatively with

our present spin thermometry techniques. As it has been shown previously [13], this is a combined

effect of several factors. The small fraction of the wavefunction overlapping with AlGaAs (≈ 0.1),

the small fraction of Al atoms (0.33 in our sample) and the small hyperfine constant (≈ 0.3 of

that of As and Ga) mean that the 27Al relative contribution to the total electron hyperfine shift

is within ≈ 1%. In addition to that, the lack of Al at the center of the QD, where the overlap

with the electron is the strongest, suggests inhibition of the pumping-through-diffusion mechanism

discussed above. The 27Al spins can only be polarized through direct (and weak) contact with the

spin-polarized electron, meaning that aluminium polarization can be reduced. In the context of

the present work where we focus on polarization of As and Ga, these observations mean that any

systematic errors arising from 27Al are small (within ≈ 1%). Investigation of 27Al spin polarization

would be an interesting subject for future work – this would require more sensitive experimental

techniques, such as trigger detection via abundant isotopes [36].

Summarising this analysis, we see that there is a handful of potential error sources, both ran-

dom and systematic, but all on the order of 1%. Taking a conservative approach we conclude

with confidence that nuclear spin polarization degrees well above 0.95 are achieved. In reality, the

polarization is likely to be higher, with rigorous confidence-interval analysis returning polarization

degrees as high as |PN| ≈ 0.99 (for 69Ga at high magnetic field Bz = 10 T in all three selected

individual quantum dots). Achieving even higher polarizations would depend critically on develop-

ment of more sensitive thermometry techniques. One possibility is to use the dephasing dynamics

of the electron spin qubit, since this would gain sensitivity at high polarizations as ∝ 1/
√

1 − P 2
N

(Ref. [39]).

Supplementary Note 6. RAW DATA

Raw data is provided in text files using a tab-separated format.

Photoluminescence (PL) spectra (Figs. 2a,b of the main text) are tabulated in files Fig2a.tsv

and Fig2b.tsv, respectively. Each file is a matrix of the measured PL intensity values. There

are 787 rows, each row corresponding to a fixed sample gate bias VGate. The bias changes linearly

from VGate = +1.43 V for the first row, to VGate = −2.5 V for the last row. There are 1617
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columns, each column corresponding to a fixed PL energy EPL. The energy changes linearly from

EPL = 1.4995 eV for the first column, to EPL = 1.83961 eV for the last column.

The file EhfPumpDep(sigma+).txt contains the data for the dependence of the hyperfine shift

Ehf on the optical pumping parameters. The data is for σ+ optical pumping. Each line represents

a measurement datapoint. The first column is the sample bias VPump during the optical pumping

in V. The second column is the measured optical pump power PPump in µW. The third column

is the measured optical pump photon energy EPump in eV. The fourth column is the measured

QD hyperfine shift Ehf in µeV. This dataset is used to generate subsets of data, such as shown in

Fig. 2c of the main text, Supplementary Fig. 4, Supplementary Figs. 8c,d, Supplementary Fig. 10c.

The data of the nuclear spin temperature measurements can be found in several files named

SpinT(QDn,Isotope,Bz=x).txt, where “QDn” in the filename is the label of the individual quan-

tum dot between QD1 and QD3, “Isotope” is either 69Ga or 75As, and “Bz=x” gives the numeric

value x of the static magnetic field, which is either 4 or 10 T. Each file consists of pairs of columns

of data. For each pair, the first column is the measured value, while the second column is half

of the confidence interval for this value. All data values are in µeV. The column header labels

the type of the measurement, which is “NoRf” for a measurement without any radiofrequency

excitation, “Comb” for a selective frequency comb saturation, “Swp” for an adiabatic sweep mea-

surement. For the last two types, the type of the measurement is followed by a list of the NMR

transitions that are excited by the radiofrequency. The list is given in curly brackets {}, and can

include “CT” for the central transition −1/2 ↔ +1/2 and “STL”(“STH”) for the low-frequency

(high-frequency) quadrupolar satellite transition. For 69Ga, the low-frequency satellite corresponds

to the −3/2 ↔ +1/2 NMR transition, while for 75As it corresponds to the +1/2 ↔ +3/2 NMR

transition. These datasets are used to generate subsets of data, such as shown in Fig. 3d of the

main text, Supplementary Fig. 19, and Supplementary Fig. 20.

The data for the maximum positive and minimum negative hyperfine shifts shown for individual

dots QD1 - QD12 in Fig. 3f of the main text can be found in file Fig3f.txt. Each line corresponds

to an individual QD and all values are in µeV.

The data of the nuclear spin buildup dynamics (Fig. 4a of the main text) measured under

σ+ and σ− optical pumping can be found in files Fig4a(sigma+).txt and Fig4a(sigma+).txt,

respectively. The first column is the pumping time TPump in s, the second column is the hyperfine

shift Ehf in µeV.

The data of the nuclear spin relaxation dynamics (Fig. 4b of the main text) can be found in file

Fig4b.txt. The first column is the dark time TDark in s. The subsequent columns are the hyperfine
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shift Ehf in µeV. Each column corresponds to a fixed duration of the second Rf pulse TRf,2 used to

control the degree of the initial nuclear spin polarization. The value of TRf,2 in s is given in square

brackets at the top of each column. Values that are missing for a particular combination of TDark

and TRf,2 are shown with “-”.

Nuclear spin relaxation times T1,N as a function of the initial hyperfine shift Ehf (Fig. 4c of

the main text) can be found in files Fig4c(QD2).txt and Fig4c(QD3).txt for QD2 and QD3,

respectively. The first column in each file is the initial Ehf in µeV, the second column is half

the confidence interval of the initial Ehf , also in µeV. The third column is T1,N in s, with its half

confidence interval given in the fourth column.

The calibration data of the optical polarization of the pump (Supplementary Fig. 5) can be

found in files FigS5(sigma+).txt and FigS5(sigma-).txt for optical pumping close to σ+ and

σ−, respectively. The first column is the rotation angle of the half-wave plate in degrees, the second

column is the hyperfine shift Ehf in µeV.
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S. Höfling, R. Trotta, and A. Rastelli, Resolving the temporal evolution of line broadening in single

quantum emitters, Opt. Express 27, 35290 (2019).
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C. Le Gall, and D. A. Gangloff, Optimal purification of a spin ensemble by quantum-algorithmic

feedback, Phys. Rev. X 12, 031014 (2022).

[35] A. V. Khaetskii, D. Loss, and L. Glazman, Electron Spin Decoherence in Quantum Dots due to Inter-

action with Nuclei, Phys. Rev. Lett. 88, 186802 (2002).

[36] M. Goldman, Spin temperature and nuclear magnetic resonance in solids (Oxford University Press,

Oxford, 1970).

[37] T. A. Knuuttila, J. T. Tuoriniemi, K. Lefmann, K. I. Juntunen, F. B. Rasmussen, and K. K. Nummila,

Polarized nuclei in normal and superconducting rhodium, Journal of Low Temperature Physics 123,

65 (2001).

[38] W. T. Wenckebach, The solid effect, Applied Magnetic Resonance 34, 227 (2008).



62

[39] C. Kloeffel and D. Loss, Prospects for spin-based quantum computing in quantum dots, Annual Review

of Cond. Matt. Phys. 4, 51 (2013).

[40] G. Ragunathan, Nuclear Spin Phenomena in III-V and II-VI Semiconductor Quantum Dots, Ph.D.

thesis, University of Sheffield (2019).

[41] L. Zaporski, N. Shofer, J. H. Bodey, S. Manna, G. Gillard, M. H. Appel, C. Schimpf, S. F. Covre da

Silva, J. Jarman, G. Delamare, G. Park, U. Haeusler, E. A. Chekhovich, A. Rastelli, D. A. Gangloff,
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Chapter 7

Summary and Conclusions

In Chapter 1 the requirements for a viable spin qubit were described. The work in this thesis
has been conducted on III-V semiconductor, mainly GaAs/AlGaAs, QDs with the ambition of
ultimately attaining an electron spin qubit. For this to be achieved, multiple avenues of research
are needed to progress. Here we have addressed efforts to eliminate decoherence of electron spin
qubits and shown a substantial enhancement of nuclear spin polarisation. This was accomplished
using optical spectroscopy and NMR techniques to non-invasively probe the nuclear spin bath
of nanohole infilled QDs. For the conclusion of this thesis we will summarise each experimental
chapter’s results and suggest some future pathways of research.

In Chapter 4, the nanoscale strain in various III-V semiconductor QDs was investigated.
By combining InvNMR and integral saturation NMR experimental data with Monte-Carlo
simulations, we determined the major strain within AlxGa1−xAs QDs to be 0.023%, 0.031%,
and 0.039% for the x = 0%, 5%, and 10% dots, respectively. The magnitude of
inhomogeneous atomic-scale strain was measured at approximately 0.14%, consistent with the
GaAs/AlAs lattice constant difference of 0.138%. Additionally, the inclusion of In within the
QD significantly increased the broadening effect observed in the InvNMR/integral saturation
NMR spectra, where quadrupolar splitting breadths exceeded 2 MHz. This is consistent with
the larger lattice mismatch of InAs/GaAs, which is 7%. Understanding the strain distribution
within QDs is crucial, as even though built-in strain in GaAs/AlGaAs QDs is often considered
negligible [106], it still significantly effects electron spin coherence times [30, 125, 131, 155,
163, 180–183]. These findings provide valuable insights for guiding future QD sample
growth. To minimise nuclear spin transition broadening, it is recommended to use
lattice-matched QD systems, such as GaAs/AlGaAs, as well as using nanohole infilling
techniques over strain-driven methods such as the Stranski-Krastanov growth mode.
Furthermore, reducing contaminants, either through careful control of the growth process or
avoiding material mixing with the barriers, is essential, as even small amounts of impurities
can induce detectable nanoscale strain.

For Chapter 5, the nuclear spin dynamics of GaAs/AlGaAs QDs were studied. We
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addressed the long-standing question of the existence of the Knight-field-gradient diffusion
barrier, by demonstrating its absence within this system. It was shown that the addition of an
electron spin into a QD accelerates NSR within a large range of external magnetic fields, with
the proposed cause being electron spin-flips. In the diffusion-limited QD, the nuclear spin
lifetimes were found to be between 1 and 10s, significantly slower than in
Stranski-Krastanov-grown InGaAs/GaAs QDs, yet still acceptably long for quantum
information processing and storage. To further extend the nuclear spin lifetimes beyond those
demonstrated in this study, one could increase the degree of nuclear spin polarisation or extend
the optical pumping durations, as explored in greater detail in Chapter 6. Future work could
focus on investigating the longevity of multi-electron charged QDs. It would be intriguing to
see whether these states exhibit similar behaviour to single electrons in terms of spin dynamics
and coherence times.

In the final chapter, we developed an experimental technique to address the long-standing
theoretical scepticism surrounding high nuclear spin polarisations in semiconductors, a debate
that has persisted for over two decades. It was demonstrated that nuclear spin polarisations well
above 95% could be achieved in a statistically significant number of randomly selected GaAs
QDs. These near-unity polarisations are crucial for suppressing electron spin qubit dephasing
and reducing the entropy of the nuclear spin ensemble. Given the novelty of this discovery,
several promising avenues for future research and additional experiments emerge.

A key next step would be to revisit many of the previous measurements to assess how high
nuclear polarisation affects the system’s properties. For instance, with a highly polarised
nuclear spin ensemble, it would be valuable to measure nuclear spin coherence times both in
the presence and absence of an electron, as well as to investigate nuclear spin diffusion with an
electron present. These experiments would provide deeper insights into nuclear spin lifetimes
and diffusion rates, building upon the work described in Chapters 5 and 6. By exploring QDs
under conditions of near-unity polarisation, we could connect the findings from these chapters
and gain a more comprehensive understanding of spin dynamics in QDs.

Future research could also focus on the impact of strain, particularly through studies on
uniaxially or biaxially strained QDs. Strain-induced quadrupolar interactions are known to
slow nuclear spin fluctuations, so investigating how different strain configurations influence
nuclear spin lifetimes and diffusion under high degrees of nuclear spin polarisation could
provide valuable insights. Such studies would contribute to the design of more stable quantum
systems by controlling strain in the QDs and fine-tuning their nuclear spin properties.

Another exciting direction for investigation involves the use of specialised RF pulse
sequences, such as Combined Hahn and Solid Echo (CHASE) [163]. By combining high
nuclear spin polarisation with dynamical decoupling techniques, it would be particularly
interesting to see how long a spin-polarised electron can maintain coherence in such an
environment. A potential proof of concept for electron spin qubits could involve polarising the
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nuclear spins to a high degree, introducing an electron into the QD electrically, applying a
CHASE sequence to filter out unwanted interactions, and then reading out the electron’s spin
state. This experimental setup would not only test the system’s ability to store and retrieve
quantum information but also help refine methods for preserving electron spin coherence in
quantum dot samples.



Bibliography

[1] D. T. Haar. Old quantum theory. Pergamon, 1967, pp. 79–81.

[2] M. J. Klein. “Introduction”. Max Planck and the beginnings of the quantum theory.
Archive for history of exact sciences, 1962, pp. 32–32.

[3] D. F. Styer. “Appendix A: A Brief History of Quantum Mechanics”. The Strange World
of Quantum Mechanics. Cambridge Univ. Press, 2004.

[4] I. I.Manin.Vychislimoe I nevychislimoe [Computable andUncomputable]. [In Russian].
Sov. radio, 1980.

[5] P. Benioff. “The computer as a physical system: A microscopic quantum mechanical
hamiltonian model of computers as represented by Turing machines”. Journal of
Statistical Physics 22.5 (1980), pp. 563–591. DOI: 10.1007/bf01011339.

[6] P. Benioff. “Quantum mechanical hamiltonian models of Turing machines”. Journal of
Statistical Physics 29.3 (1982), pp. 515–546. DOI: 10.1007/bf01342185.

[7] R. P. Feynman. “Simulating physics with computers”. International Journal of
Theoretical Physics 21.6–7 (1982), pp. 467–488. DOI: 10.1007/bf02650179.

[8] Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
400.1818 (1985), pp. 97–117. DOI: 10.1098/rspa.1985.0070.

[9] R. P. Feynman. “Quantummechanical computers”. Foundations of Physics 16.6 (1986),
pp. 507–531. DOI: 10.1007/bf01886518.

[10] P. Kok. Five Lectures on Optical Quantum Computing. URL: https://www.pieter-
kok.staff.shef.ac.uk/docs/LNP787_187.pdf (visited on 13/10/2023).

[11] D. P. DiVincenzo. “The Physical Implementation of Quantum Computation”.
Fortschritte der Physik 48.9-11 (2000), pp. 771–783. DOI:
https : / / doi . org / 10 . 1002 / 1521 - 3978(200009 ) 48 : 9 / 11<771 :: AID -
PROP771>3.0.CO;2-E.

[12] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien.
“Quantum Computers”. Nature 464.7285 (2010), pp. 45–53. DOI:
10.1038/nature08812.

68

https://doi.org/10.1007/bf01011339
https://doi.org/10.1007/bf01342185
https://doi.org/10.1007/bf02650179
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1007/bf01886518
https://www.pieter-kok.staff.shef.ac.uk/docs/LNP787_187.pdf
https://www.pieter-kok.staff.shef.ac.uk/docs/LNP787_187.pdf
https://doi.org/https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1038/nature08812


Bibliography 69

[13] J. I. Cirac and P. Zoller. “Quantum computations with cold trapped ions”. Physical Re-
view Letters 74.20 (1995), pp. 4091–4094. DOI: 10.1103/physrevlett.74.4091.

[14] R. Blatt and D. Wineland. “Entangled states of trapped atomic ions”. Nature 453.7198
(2008), pp. 1008–1015. DOI: 10.1038/nature07125.

[15] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish,
M. Harlander, W. Hänsel, M. Hennrich, and R. Blatt. “14-Qubit Entanglement:
Creation and Coherence”. Phys. Rev. Lett. 106 (13 2011), p. 130506. DOI:
10.1103/PhysRevLett.106.130506.

[16] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage. “Trapped-Ion Quantum
Computing: Progress and Challenges”. Applied Physics Reviews 6.2 (2019). DOI: 10.
1063/1.5088164.

[17] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H.
Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, and et al. “Demonstration of the trapped-
ion quantum CCD computer architecture”. Nature 592.7853 (2021), pp. 209–213. DOI:
10.1038/s41586-021-03318-4.

[18] M. H. Abobeih, J. Randall, C. E. Bradley, H. P. Bartling, M. A. Bakker, M. J. Degen, M.
Markham, D. J. Twitchen, and T. H. Taminiau. “Atomic-scale imaging of a 27-nuclear-
spin cluster using a quantum sensor”. Nature 576.7787 (2019), pp. 411–415. DOI: 10.
1038/s41586-019-1834-7.

[19] J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle,
and D. D. Awschalom. “Quantum computing with defects”. Proceedings of the National
Academy of Sciences 107.19 (2010), pp. 8513–8518. DOI: 10.1073/pnas.1003052107.

[20] J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle,
and D. D. Awschalom. “Defects in SIC for quantum computing”. Journal of Applied
Physics 109.10 (2011). DOI: 10.1063/1.3578264.

[21] J. Harrison, M. Sellars, and N. Manson. “Measurement of the optically induced spin
polarisation of N-V centres in Diamond”. Diamond and Related Materials 15.4–8
(2006), pp. 586–588. DOI: 10.1016/j.diamond.2005.12.027.

[22] M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R.
Hemmer, andM.D. Lukin. “Quantum register based on individual electronic and nuclear
spin qubits in Diamond”. Science 316.5829 (2007), pp. 1312–1316. DOI: 10.1126/
science.1139831.

[23] B. Josephson. “Possible new effects in superconductive tunnelling”. Physics Letters 1.7
(1962), pp. 251–253. DOI: 10.1016/0031-9163(62)91369-0.

https://doi.org/10.1103/physrevlett.74.4091
https://doi.org/10.1038/nature07125
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1073/pnas.1003052107
https://doi.org/10.1063/1.3578264
https://doi.org/10.1016/j.diamond.2005.12.027
https://doi.org/10.1126/science.1139831
https://doi.org/10.1126/science.1139831
https://doi.org/10.1016/0031-9163(62)91369-0


Bibliography 70

[24] P. W. Anderson and J. M. Rowell. “Probable Observation of the Josephson
Superconducting Tunneling Effect”. Phys. Rev. Lett. 10 (6 1963), pp. 230–232. DOI:
10.1103/PhysRevLett.10.230.

[25] M. H. Devoret and R. J. Schoelkopf. “Superconducting Circuits for Quantum Informa-
tion: An Outlook”. Science 339.6124 (2013), pp. 1169–1174. DOI: 10.1126/science.
1231930.

[26] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. Brandao, D. A. Buell, and et al. “Quantum supremacy using a
programmable superconducting processor”. Nature 574.7779 (2019), pp. 505–510.
DOI: 10.1038/s41586-019-1666-5.

[27] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson,
and W. D. Oliver. “Superconducting qubits: Current State of Play”. Annual Review of
Condensed Matter Physics 11.1 (2020), pp. 369–395. DOI:
10.1146/annurev-conmatphys-031119-050605.

[28] I. Siddiqi. “Engineering high-coherence superconducting qubits”. Nature Reviews Ma-
terials 6.10 (2021), pp. 875–891. DOI: 10.1038/s41578-021-00370-4.

[29] K. D. Greve, D. Press, P. L. McMahon, and Y. Yamamoto. “Ultrafast optical control
of individual quantum dot spin qubits”. Reports on Progress in Physics 76.9 (2013),
p. 092501. DOI: 10.1088/0034-4885/76/9/092501.

[30] A. Bechtold, D. Rauch, F. Li, T. Simmet, P.-L. Ardelt, A. Regler, K. Müller,
N. A. Sinitsyn, and J. J. Finley. “Three-stage decoherence dynamics of an electron spin
qubit in an optically active quantum dot”. Nature Physics 11.12 (2015),
pp. 1005–1008. DOI: 10.1038/nphys3470.

[31] E. A. Chekhovich, S. F. da Silva, and A. Rastelli. “Nuclear spin quantum register in
an optically active semiconductor quantum dot”. Nature Nanotechnology 15.12 (2020),
pp. 999–1004. DOI: 10.1038/s41565-020-0769-3.

[32] E. Evers, N. E. Kopteva, I. A. Yugova, D. R. Yakovlev, D. Reuter, A. D.Wieck,M. Bayer,
and A. Greilich. “Suppression of nuclear spin fluctuations in an InGaAs quantum dot
ensemble by GHz-pulsed optical excitation”. npj Quantum Information 7.1 (2021). DOI:
10.1038/s41534-021-00395-1.

[33] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and
A. Imamoglu. “A quantum dot single-photon turnstile device”. Science 290.5500 (2000),
pp. 2282–2285. DOI: 10.1126/science.290.5500.2282.

[34] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto. “Single-photon
generation with InAs quantum dots”. New Journal of Physics 6 (2004), pp. 89–89. DOI:
10.1088/1367-2630/6/1/089.

https://doi.org/10.1103/PhysRevLett.10.230
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1038/s41578-021-00370-4
https://doi.org/10.1088/0034-4885/76/9/092501
https://doi.org/10.1038/nphys3470
https://doi.org/10.1038/s41565-020-0769-3
https://doi.org/10.1038/s41534-021-00395-1
https://doi.org/10.1126/science.290.5500.2282
https://doi.org/10.1088/1367-2630/6/1/089


Bibliography 71

[35] D. Pinotsi and A. Imamoglu. “Single Photon Absorption by a Single Quantum Emitter”.
Phys. Rev. Lett. 100 (9 2008), p. 093603. DOI: 10.1103/PhysRevLett.100.093603.

[36] F. Liu, A. J. Brash, J. O’Hara, L. M. Martins, C. L. Phillips, R. J. Coles, B. Royall,
E. Clarke, C. Bentham, N. Prtljaga, and et al. “High purcell factor generation of
indistinguishable on-chip single photons”. Nature Nanotechnology 13.9 (2018),
pp. 835–840. DOI: 10.1038/s41565-018-0188-x.

[37] D. Hallett, A. P. Foster, D. Whittaker, M. S. Skolnick, and L. R. Wilson. “Engineering
chiral light–matter interactions in a waveguide-coupled nanocavity”. ACS Photonics 9.2
(2022), pp. 706–713. DOI: 10.1021/acsphotonics.1c01806.

[38] S. J. Sheldon, A. J. Brash, M. S. Skolnick, A. M. Fox, and J. Iles-Smith. “Optical Spin
Initialisation and Readout with a Cavity-Coupled Quantum Dot in an In-Plane Magnetic
Field” (2022). arXiv: 2206.11008 [quant-ph].

[39] M. J. Mehrabad, A. P. Foster, N. J. Martin, R. Dost, E. Clarke, P. K. Patil, M. S. Skolnick,
and L. R. Wilson. “Chiral topological add-drop filter for integrated quantum photonic
circuits”. Optica 10.3 (2023), p. 415. DOI: 10.1364/optica.481684.

[40] H. Siampour, C. O’Rourke, A. J. Brash, M. N. Makhonin, R. Dost, D. J. Hallett,
E. Clarke, P. K. Patil, M. S. Skolnick, and A. M. Fox. “Observation of large
spontaneous emission rate enhancement of quantum dots in a broken-symmetry
slow-light waveguide”. npj Quantum Information 9.1 (2023). DOI:
10.1038/s41534-023-00686-9.

[41] N. J. Martin, M. J. Mehrabad, X. Chen, R. Dost, E. Nussbaum, D. Hallett, L. Hallacy,
A. Foster, E. Clarke, P. K. Patil, S. Hughes, M. Hafezi, A. M. Fox, M. S. Skolnick,
and L. R. Wilson. “Topological and conventional nano-photonic waveguides for chiral
integrated quantum optics” (2023). arXiv: 2305.11082 [physics.optics].

[42] C. L. Phillips, A. J. Brash, M. Godsland, N. J. Martin, A. Foster, A. Tomlinson, R.
Dost, N. Babazadeh, E. M. Sala, L. Wilson, J. Heffernan, M. S. Skolnick, and A. M.
Fox. “Purcell-enhanced single photons at telecom wavelengths from a quantum dot in
a photonic crystal cavity”. Scientific Reports 14.1 (2024). ISSN: 2045-2322. DOI: 10.
1038/s41598-024-55024-6.

[43] A. J. Ramsay, A. V. Gopal, E. M. Gauger, A. Nazir, B. W. Lovett, A. M. Fox, and M. S.
Skolnick. “Damping of exciton Rabi rotations by acoustic phonons in optically excited
InGaAs/GaAs quantum dots”. Physical Review Letters 104.1 (2010). DOI: 10.1103/
physrevlett.104.017402.

[44] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz,
P. M. Petroff, and R. J. Warburton. “A Coherent Single-Hole Spin in a
Semiconductor”. Science 325.5936 (2009), pp. 70–72. ISSN: 1095-9203. DOI:
10.1126/science.1173684.

https://doi.org/10.1103/PhysRevLett.100.093603
https://doi.org/10.1038/s41565-018-0188-x
https://doi.org/10.1021/acsphotonics.1c01806
https://arxiv.org/abs/2206.11008
https://doi.org/10.1364/optica.481684
https://doi.org/10.1038/s41534-023-00686-9
https://arxiv.org/abs/2305.11082
https://doi.org/10.1038/s41598-024-55024-6
https://doi.org/10.1038/s41598-024-55024-6
https://doi.org/10.1103/physrevlett.104.017402
https://doi.org/10.1103/physrevlett.104.017402
https://doi.org/10.1126/science.1173684


Bibliography 72

[45] X. Xu, W. Yao, B. Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham. “Opti-
cally controlled locking of the nuclear field via coherent dark-state spectroscopy”. Na-
ture 459.7250 (2009), pp. 1105–1109. ISSN: 1476-4687. DOI: 10.1038/nature08120.

[46] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn,
and B. J. Sussman. “Quantum memories: emerging applications and recent advances”.
Journal of Modern Optics 63.20 (2016), pp. 2005–2028. ISSN: 1362-3044. DOI: 10 .
1080/09500340.2016.1148212.

[47] E. V. Denning, D. A. Gangloff, M. Atatüre, J. Mørk, and C. Le Gall. “Collective
Quantum Memory Activated by a Driven Central Spin”. Phys. Rev. Lett. 123 (14
2019), p. 140502. DOI: 10.1103/PhysRevLett.123.140502.

[48] S. Adachi. “Energy-Band Structure: Effective Masses”. Properties of semiconductor
alloys: Group-IV, III-V and II-VI semiconductors. Wiley, 2009.

[49] Nobel Prize Outreach. Nobel Prize press release. URL: https://www.nobelprize.
org/prizes/chemistry/2023/press-release/ (visited on 23/10/2023).

[50] R. Rossetti and L. Brus. “Electron-hole recombination emission as a probe of surface
chemistry in aqueous cadmium sulfide colloids”. The Journal of Physical Chemistry
86.23 (1982), pp. 4470–4472. DOI: 10.1021/j100220a003.

[51] C. B.Murray, D. J. Norris, andM. G. Bawendi. “Synthesis and characterization of nearly
monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites”.
Journal of the American Chemical Society 115.19 (1993), pp. 8706–8715. DOI: 10 .
1021/ja00072a025.

[52] A. I. Ekimov and A. A. Onushchehko. “Quantum size effect in three-dimensional
microscopic semiconductor crystals”. JETP Lett. 34 (1981), p. 345.

[53] O. Gywat, J. Berezovsky, and H. J. Krenner. “Optically Active Quantum Dots: Single
and Coupled Structures”. Spins in optically active quantum dots concepts and methods.
Wiley-VCH, 2010, pp. IX & 15–37 & 105.

[54] T. Edvinsson. “Optical quantum confinement and photocatalytic properties in two-,
one- and zero-dimensional nanostructures”. Royal Society Open Science 5.9 (2018),
p. 180387. DOI: 10.1098/rsos.180387.

[55] K. G. Günther. “Aufdampfschichten aus halbleitenden III-V-verbindungen”. Die
Naturwissenschaften 45.17 (1958), pp. 415–416. DOI: 10.1007/bf00603228.

[56] J. E. Davey and T. Pankey. “Epitaxial GaAs films deposited by Vacuum Evaporation”.
Journal of Applied Physics 39.4 (1968), pp. 1941–1948. DOI: 10.1063/1.1656467.

[57] A. Cho and J. Arthur. “Molecular beam epitaxy”. Progress in Solid State Chemistry 10
(1975), pp. 157–191. DOI: 10.1016/0079-6786(75)90005-9.

https://doi.org/10.1038/nature08120
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1080/09500340.2016.1148212
https://doi.org/10.1103/PhysRevLett.123.140502
https://www.nobelprize.org/prizes/chemistry/2023/press-release/
https://www.nobelprize.org/prizes/chemistry/2023/press-release/
https://doi.org/10.1021/j100220a003
https://doi.org/10.1021/ja00072a025
https://doi.org/10.1021/ja00072a025
https://doi.org/10.1098/rsos.180387
https://doi.org/10.1007/bf00603228
https://doi.org/10.1063/1.1656467
https://doi.org/10.1016/0079-6786(75)90005-9


Bibliography 73

[58] I. Griffiths. “Nuclear magnetic resonance studies of spin and strain phenomena in
nanohole GaAs/AlGaAs Quantum Dots”. PhD thesis. University of Sheffield, 2021.
URL: https://etheses.whiterose.ac.uk/30763/.

[59] F. C. Frank and J. H. Van der Merwe. “One-dimensional dislocations. II. Misfitting
monolayers and oriented overgrowth”. Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences 198.1053 (1949), pp. 216–225. DOI:
10.1098/rspa.1949.0096.

[60] M. Volmer and Weber. “Keimbildung in übersättigten Gebilden”. Zeitschrift für
Physikalische Chemie 119U.1 (1926), pp. 277–301. DOI:
10.1515/zpch-1926-11927.

[61] I. N. Stranski and L. Krastanow. “Zur Theorie der Orientierten Ausscheidung von
Ionenkristallen Aufeinander”. Monatshefte für Chemie 71.1 (1937), pp. 351–364. DOI:
10.1007/bf01798103.

[62] S. Baker. 3. Quantum Dots, (3.1 Self-Assembled Quantum Dots). Lecture at the
University of Leicester. 2018.

[63] Q.Q.Wang, A.Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi,
A. H. MacDonald, and C. K. Shih. “Decoherence processes during optical manipulation
of excitonic qubits in semiconductor quantum dots”.Phys. Rev. B 72 (3 2005), p. 035306.
DOI: 10.1103/PhysRevB.72.035306.

[64] A. K. Rai, S. Gordon, A. Ludwig, A. D. Wieck, A. Zrenner, and D. Reuter. “Spatially
indirect transitions in electric field tunable quantum dot diodes”. physica status solidi
(b) 253.3 (2015), pp. 437–441. DOI: 10.1002/pssb.201552591.

[65] Z. M. Wang, B. L. Liang, K. A. Sablon, and G. J. Salamo. “Nanoholes fabricated by
self-assembled gallium nanodrill on GaAs(100)”. Applied Physics Letters 90.11 (2007).
DOI: 10.1063/1.2713745.

[66] C. Heyn, A. Stemmann, T. Köppen, C. Strelow, T. Kipp, M. Grave, S. Mendach, and
W. Hansen. “Highly uniform and strain-free GaAs quantum dots fabricated by filling
of self-assembled nanoholes”. Applied Physics Letters 94.18 (2009). DOI: 10.1063/1.
3133338.

[67] C. Heyn, A. Stemmann, T. Köppen, C. Strelow, T. Kipp, M. Grave, S. Mendach, and
W. Hansen. “Optical properties of GaAs quantum dots fabricated by filling of
self-assembled nanoholes”. Nanoscale Research Letters 5.3 (2009), pp. 576–580. DOI:
10.1007/s11671-009-9507-3.

[68] C. Heyn, A. Stemmann, and W. Hansen. “Nanohole formation on AlGaAs surfaces by
local droplet etching with gallium”. Journal of Crystal Growth 311.7 (2009), pp. 1839–
1842. DOI: 10.1016/j.jcrysgro.2008.11.001.

https://etheses.whiterose.ac.uk/30763/
https://doi.org/10.1098/rspa.1949.0096
https://doi.org/10.1515/zpch-1926-11927
https://doi.org/10.1007/bf01798103
https://doi.org/10.1103/PhysRevB.72.035306
https://doi.org/10.1002/pssb.201552591
https://doi.org/10.1063/1.2713745
https://doi.org/10.1063/1.3133338
https://doi.org/10.1063/1.3133338
https://doi.org/10.1007/s11671-009-9507-3
https://doi.org/10.1016/j.jcrysgro.2008.11.001


Bibliography 74

[69] J. D. Plumhof, V. Křápek, L. Wang, A. Schliwa, D. Bimberg, A. Rastelli, and O. G.
Schmidt. “Experimental investigation and modeling of the fine structure splitting of
neutral excitons in strain-free GaAs/AlxGa1−xAs quantum dots”. Phys. Rev. B 81 (12
2010). DOI: 10.1103/PhysRevB.81.121309.

[70] C. J. Sheppard. “Approximate calculation of the reflection coefficient from a stratified
medium”. Pure and Applied Optics: Journal of the European Optical Society Part A 4.5
(1995), pp. 665–669. DOI: 10.1088/0963-9659/4/5/018.

[71] R. E. Fern and A. Onton. “Refractive index of alas”. Journal of Applied Physics 42.9
(1971), pp. 3499–3500. DOI: 10.1063/1.1660760.

[72] G.-Q. Jiang, Q.-H. Zhang, J.-Y. Zhao, Y.-K. Qiao, Z.-X. Ge, R.-Z. Liu, T.-H. Chung,
C.-Y. Lu, and Y.-H. Huo. “Comprehensive measurement of the near-infrared refractive
index of GaAs at cryogenic temperatures”. Optics Letters 48.13 (2023), p. 3507. DOI:
10.1364/ol.491357.

[73] S. A. Lourenço, I. F. Dias, J. L. Duarte, E. Laureto, E. A. Meneses, J. R. Leite, and
I. Mazzaro. “Temperature dependence of optical transitions in AlGaAs”. Journal of
Applied Physics 89.11 (2001), pp. 6159–6164. DOI: 10.1063/1.1367875.

[74] S.-T. Hwang, S. Kim, H. Cheun, H. Lee, B. Lee, T. Hwang, S. Lee, W. Yoon, H.-M.
Lee, and B. Park. “Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly
efficient GaAs-based solar cells”. Solar Energy Materials and Solar Cells 155 (2016),
pp. 264–272. ISSN: 0927-0248. DOI: 10.1016/j.solmat.2016.06.009.

[75] J. S. Blakemore. “Semiconducting and other major properties of gallium arsenide”.
Journal of Applied Physics 53.10 (1982). DOI: 10.1063/1.331665.

[76] C Kittel. Introduction to solid state physics. 8th ed. Wiley, 2005, p. 190.

[77] C. Hartwigsen, S. Goedecker, and J. Hutter. “Relativistic separable dual-space Gaussian
pseudopotentials from H to Rn”. Phys. Rev. B 58 (7 1998), pp. 3641–3662. DOI: 10.
1103/PhysRevB.58.3641.

[78] M. I. Dyakonov. Spin Physics in Semiconductors. 2nd ed. Springer, 2008.

[79] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan. “Band parameters for III-V
compound semiconductors and their alloys”. Journal of Applied Physics 89.11 (2001),
pp. 5815–5875. DOI: 10.1063/1.1368156.

[80] P. Harrison. “Numerical Solutions”. Quantum Wells, Wires and Dots. John Wiley &
Sons, Ltd, 2005. Chap. 3, pp. 73–118. ISBN: 9780470010822. DOI:
https://doi.org/10.1002/0470010827.ch3.

[81] A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak. “Electronic structure and magneto-optics
of self-assembled quantum dots”. Phys. Rev. B 54 (8 1996), pp. 5604–5608. DOI: 10.
1103/PhysRevB.54.5604.

https://doi.org/10.1103/PhysRevB.81.121309
https://doi.org/10.1088/0963-9659/4/5/018
https://doi.org/10.1063/1.1660760
https://doi.org/10.1364/ol.491357
https://doi.org/10.1063/1.1367875
https://doi.org/10.1016/j.solmat.2016.06.009
https://doi.org/10.1063/1.331665
https://doi.org/10.1103/PhysRevB.58.3641
https://doi.org/10.1103/PhysRevB.58.3641
https://doi.org/10.1063/1.1368156
https://doi.org/https://doi.org/10.1002/0470010827.ch3
https://doi.org/10.1103/PhysRevB.54.5604
https://doi.org/10.1103/PhysRevB.54.5604


Bibliography 75

[82] A. H. Rodríguez, C. Trallero-Giner, S. E. Ulloa, and J. Marín-Antuña. “Electronic states
in a quantum lens”. Phys. Rev. B 63 (12 2001), p. 125319. DOI: 10.1103/PhysRevB.
63.125319.

[83] F. M. Peeters and V. A. Schweigert. “Two-electron quantum disks”. Phys. Rev. B 53 (3
1996), pp. 1468–1474. DOI: 10.1103/PhysRevB.53.1468.

[84] C. Pryor. “Eight-band calculations of strained InAs/GaAs quantum dots compared with
one-, four-, and six-band approximations”. Phys. Rev. B 57 (12 1998), pp. 7190–7195.
DOI: 10.1103/PhysRevB.57.7190.

[85] O. Stier, M. Grundmann, and D. Bimberg. “Electronic and optical properties of strained
quantum dots modeled by 8-band k·p theory”. Phys. Rev. B 59 (8 1999), pp. 5688–5701.
DOI: 10.1103/PhysRevB.59.5688.

[86] A. M. Waeber. PhD thesis. University of Sheffield, 2016. URL: https://etheses.
whiterose.ac.uk/13614/.

[87] D. Smirnov, S. Raymond, S. Studenikin, A. Babinski, J. Leotin, P. Frings,
M. Potemski, and A. Sachrajda. “Electronic structure of InAs/GaAs self-assembled
Quantum Dots studied by high-excitation luminescence in magnetic fields up to 73 T”.
Physica B: Condensed Matter 346–347 (2004), pp. 432–436. DOI:
10.1016/j.physb.2004.01.121.

[88] W. Wang. “On the band offsets of AlGaAs/GaAs and beyond”. Solid-State Electronics
29.2 (1986), pp. 133–139. DOI: 10.1016/0038-1101(86)90031-6.

[89] T. Sogabe, T. Kaizu, Y. Okada, and S. Tomić. “Theoretical analysis of GaAs/AlAaAs
Quantum Dots in quantum wire array for intermediate band Solar Cell”. Journal of
Renewable and Sustainable Energy 6.1 (2013). DOI: 10.1063/1.4828359.

[90] L. P. Kouwenhoven, D. G. Austing, and S Tarucha. “Few-electron quantum dots”.
Reports on Progress in Physics 64.6 (2001), pp. 701–736. DOI:
10.1088/0034-4885/64/6/201.

[91] R. J. Warburton. “Single spins in self-assembled quantum dots”. Nature Materials 12.6
(2013), pp. 483–493. DOI: 10.1038/nmat3585.

[92] P. Millington-Hotze, S. Manna, S. F. Covre da Silva, A. Rastelli, and E. A. Chekhovich.
“Nuclear spin diffusion in the Central Spin System of a GaAs/AlGaAs quantum dot”.
Nature Communications 14.1 (2023). DOI: 10.1038/s41467-023-38349-0.

[93] M. El Allali, C. B. Sørensen, E. Veje, and P. Tidemand-Petersson. “Experimental
determination of the GaAs and Ga1−xAlxAs band-gap energy dependence on
temperature and aluminum mole fraction in the direct band-gap region”. Physical
Review B 48.7 (1993), pp. 4398–4404. DOI: 10.1103/physrevb.48.4398.

https://doi.org/10.1103/PhysRevB.63.125319
https://doi.org/10.1103/PhysRevB.63.125319
https://doi.org/10.1103/PhysRevB.53.1468
https://doi.org/10.1103/PhysRevB.57.7190
https://doi.org/10.1103/PhysRevB.59.5688
https://etheses.whiterose.ac.uk/13614/
https://etheses.whiterose.ac.uk/13614/
https://doi.org/10.1016/j.physb.2004.01.121
https://doi.org/10.1016/0038-1101(86)90031-6
https://doi.org/10.1063/1.4828359
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1038/nmat3585
https://doi.org/10.1038/s41467-023-38349-0
https://doi.org/10.1103/physrevb.48.4398


Bibliography 76

[94] M. Bayer, S. N. Walck, T. L. Reinecke, and A. Forchel. “Exciton binding energies and
diamagnetic shifts in semiconductor quantum wires and quantum dots”. Phys. Rev. B 57
(11 1998), pp. 6584–6591. DOI: 10.1103/PhysRevB.57.6584.

[95] R. J. Warburton, B. T. Miller, C. S. Dürr, C. Bödefeld, K. Karrai, J. P. Kotthaus, G.
Medeiros-Ribeiro, P. M. Petroff, and S. Huant. “Coulomb interactions in small charge-
tunable quantum dots: A simple model”. Phys. Rev. B 58 (24 1998), pp. 16221–16231.
DOI: 10.1103/PhysRevB.58.16221.

[96] S. B. Nam, D. C. Reynolds, C. W. Litton, R. J. Almassy, T. C. Collins, and C. M. Wolfe.
“Free-exciton energy spectrum in GaAs”. Phys. Rev. B 13 (2 1976), pp. 761–767. DOI:
10.1103/PhysRevB.13.761.

[97] P. A. Dalgarno, J. M. Smith, J. McFarlane, B. D. Gerardot, K. Karrai, A. Badolato, P. M.
Petroff, and R. J. Warburton. “Coulomb interactions in single charged self-assembled
quantum dots: Radiative lifetime and recombination energy”. Phys. Rev. B 77 (24 2008),
p. 245311. DOI: 10.1103/PhysRevB.77.245311.

[98] E Dekel, D. Regelman, D Gershoni, E Ehrenfreund, W. Schoenfeld, and P. Petroff.
“Radiative lifetimes of single excitons in semiconductor quantum dots - manifestation
of the spatial coherence effect”. Solid State Communications 117.7 (2001),
pp. 395–400. DOI: 10.1016/s0038-1098(00)00483-x.

[99] E. Schöll, L. Hanschke, L. Schweickert, K. D. Zeuner, M. Reindl, S. F. Covre da Silva,
T. Lettner, R. Trotta, J. J. Finley, K. Müller, A. Rastelli, V. Zwiller, and K. D. Jöns.
“Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon
Indistinguishability”. Nano Letters 19.4 (2019). PMID: 30862165, pp. 2404–2410.
DOI: 10.1021/acs.nanolett.8b05132.

[100] L. D Landau and E. M Lifshitz. A shorter course of theoretical physics. Vol. 2. Oxford,
1974.

[101] E. Poem, Y. Kodriano, C. Tradonsky, N. H. Lindner, B. D. Gerardot, P.M. Petroff, and D.
Gershoni. “Accessing the dark exciton with light”.Nature Physics 6.12 (2010), pp. 993–
997. DOI: 10.1038/nphys1812.

[102] J. McFarlane, P. A. Dalgarno, B. D. Gerardot, R. H. Hadfield, R. J. Warburton,
K. Karrai, A. Badolato, and P. M. Petroff. “Gigahertz bandwidth electrical control over
a dark exciton-based memory bit in a single quantum dot”. Applied Physics Letters
94.9 (2009). DOI: 10.1063/1.3086461.

[103] M. Zieliński, Y. Don, and D. Gershoni. “Atomistic theory of dark excitons in
self-assembled quantum dots of reduced symmetry”. Phys. Rev. B 91 (8 2015),
p. 085403. DOI: 10.1103/PhysRevB.91.085403.

https://doi.org/10.1103/PhysRevB.57.6584
https://doi.org/10.1103/PhysRevB.58.16221
https://doi.org/10.1103/PhysRevB.13.761
https://doi.org/10.1103/PhysRevB.77.245311
https://doi.org/10.1016/s0038-1098(00)00483-x
https://doi.org/10.1021/acs.nanolett.8b05132
https://doi.org/10.1038/nphys1812
https://doi.org/10.1063/1.3086461
https://doi.org/10.1103/PhysRevB.91.085403


Bibliography 77

[104] E. A. Chekhovich, M. N. Makhonin, K. V. Kavokin, A. B. Krysa, M. S. Skolnick, and
A. I. Tartakovskii. “Pumping of Nuclear Spins by Optical Excitation of Spin-Forbidden
Transitions in a Quantum Dot”. Physical Review Letters 104.6 (2010). DOI: 10.1103/
physrevlett.104.066804.

[105] T. Belhadj, T. Amand, A. Kunold, C.-M. Simon, T. Kuroda, M. Abbarchi, T. Mano, K.
Sakoda, S. Kunz, X. Marie, and B. Urbaszek. “Impact of heavy hole-light hole coupling
on optical selection rules in GaAs Quantum Dots”. Applied Physics Letters 97.5 (2010).
DOI: 10.1063/1.3473824.

[106] X. Yuan, S. F. Covre da Silva, D. Csontosová, H. Huang, C. Schimpf, M. Reindl, J. Lu,
Z. Ni, A. Rastelli, and P. Klenovský. “GaAs quantum dots under quasiuniaxial stress:
Experiment and theory”. Physical Review B 107.23 (2023). ISSN: 2469-9969. DOI: 10.
1103/physrevb.107.235412.

[107] P. Millington-Hotze, H. E. Dyte, S. Manna, S. F. Covre da Silva, A. Rastelli, and E. A.
Chekhovich. “Approaching a fully-polarized state of nuclear spins in a solid”. Nature
Communications 15.1 (2024). ISSN: 2041-1723. DOI: 10.1038/s41467-024-45364-2.

[108] H. Mekni, A. Pankratov, S. Ben Radhia, K. Boujdaria, M. Chamarro, and C. Testelin.
“Fine structure of bright and dark excitons in asymmetric droplet epitaxy GaAs/AlGaAs
Quantum Dots”. Physical Review B 103.7 (2021). DOI: 10 . 1103 / physrevb . 103 .
075302.

[109] D. Fuster, Y. González, and L. González. “Fundamental role of arsenic flux in nanohole
formation byGa droplet etching onGaAs(001)”.Nanoscale Research Letters 9.1 (2014).
DOI: 10.1186/1556-276x-9-309.

[110] P. Michler. “Quantum Dot Single-Photon Sources”. Single Semiconductor Quantum
Dots (2009), pp. 185–225. DOI: 10.1007/978-3-540-87446-1_6.

[111] H. W. van Kesteren, E. C. Cosman, W. A. van der Poel, and C. T. Foxon. “Fine struc-
ture of excitons in type-II GaAs/AlAs quantum wells”. Physical Review B 41.8 (1990),
pp. 5283–5292. DOI: 10.1103/physrevb.41.5283.

[112] M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak,
S. Fafard, K. Hinzer, T. L. Reinecke, and et al. “Fine structure of neutral and charged
excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots”. Physical Review B 65.19
(2002). DOI: 10.1103/physrevb.65.195315.

[113] Y. H. Huo, V. Křápek, A. Rastelli, and O. G. Schmidt. “Volume dependence of excitonic
fine structure splitting in geometrically similar quantum dots”. Phys. Rev. B 90 (4 2014),
p. 041304. DOI: 10.1103/PhysRevB.90.041304.

https://doi.org/10.1103/physrevlett.104.066804
https://doi.org/10.1103/physrevlett.104.066804
https://doi.org/10.1063/1.3473824
https://doi.org/10.1103/physrevb.107.235412
https://doi.org/10.1103/physrevb.107.235412
https://doi.org/10.1038/s41467-024-45364-2
https://doi.org/10.1103/physrevb.103.075302
https://doi.org/10.1103/physrevb.103.075302
https://doi.org/10.1186/1556-276x-9-309
https://doi.org/10.1007/978-3-540-87446-1_6
https://doi.org/10.1103/physrevb.41.5283
https://doi.org/10.1103/physrevb.65.195315
https://doi.org/10.1103/PhysRevB.90.041304


Bibliography 78

[114] D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood,
and C. A. Burrus. “Electric field dependence of optical absorption near the band gap
of quantum-well structures”. Physical Review B 32.2 (1985), pp. 1043–1060. DOI: 10.
1103/physrevb.32.1043.

[115] M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and
O. G. Schmidt. “Influence of lateral electric fields on multiexcitonic transitions and
fine structure of Single Quantum Dots”. Applied Physics Letters 91.5 (2007),
p. 051904. DOI: 10.1063/1.2761522.

[116] R. B. Patel, A. J. Bennett, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields. “Two-
photon interference of the emission from electrically tunable remote quantum dots”.
Nature Photonics 4.9 (2010), pp. 632–635. DOI: 10.1038/nphoton.2010.161.

[117] A Laucht, F Hofbauer, N Hauke, J Angele, S Stobbe, M Kaniber, G Böhm, P Lodahl,
M.-C. Amann, and J. J. Finley. “Electrical control of spontaneous emission and strong
coupling for a single quantum dot”.New Journal of Physics 11.2 (2009), p. 023034. DOI:
10.1088/1367-2630/11/2/023034.

[118] A. M. Bonch-Bruevich and V. A. Khodovoĭ. “Current methods for the study of the Stark
Effect In atoms”. Soviet Physics Uspekhi 10.5 (1968), pp. 637–657. DOI: 10.1070/
pu1968v010n05abeh005850.

[119] A. Muller, W. Fang, J. Lawall, and G. S. Solomon. “Creating polarization-entangled
photon pairs from a semiconductor quantum dot using the optical stark effect”. Physical
Review Letters 103.21 (2009). DOI: 10.1103/physrevlett.103.217402.

[120] M. Fox. “Experimental observations of Rabi oscillations”. Quantum Optics: An
introduction. Oxford University Press, 2012, pp. 182–187.

[121] S. L. Portalupi and P. Michler. “Resonantly excited Quantum Dots: Superior
non-classical light sources for quantum information”. Quantum Dots for Quantum
Information Technologies (2017), pp. 77–121. DOI:
10.1007/978-3-319-56378-7_3.

[122] C. L. Phillips. “Solid state Quantum Optics with a quantum dot in a nano-photonic cav-
ity”. PhD thesis. 2021. URL: https://etheses.whiterose.ac.uk/28600/.

[123] E. Blackwood, M. J. Snelling, R. T. Harley, S. R. Andrews, and C. T. B. Foxon.
“Exchange interaction of excitons in GaAs heterostructures”. Physical Review B 50.19
(1994), pp. 14246–14254. DOI: 10.1103/physrevb.50.14246.

[124] A. Kuther, M. Bayer, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Schäfer, and J. P.
Reithmaier. “Zeeman splitting of excitons and biexcitons in single In0.60Ga0.40As/GaAs
self-assembled quantum dots”. Phys. Rev. B 58 (12 1998), R7508–R7511. DOI: 10 .
1103/PhysRevB.58.R7508.

https://doi.org/10.1103/physrevb.32.1043
https://doi.org/10.1103/physrevb.32.1043
https://doi.org/10.1063/1.2761522
https://doi.org/10.1038/nphoton.2010.161
https://doi.org/10.1088/1367-2630/11/2/023034
https://doi.org/10.1070/pu1968v010n05abeh005850
https://doi.org/10.1070/pu1968v010n05abeh005850
https://doi.org/10.1103/physrevlett.103.217402
https://doi.org/10.1007/978-3-319-56378-7_3
https://etheses.whiterose.ac.uk/28600/
https://doi.org/10.1103/physrevb.50.14246
https://doi.org/10.1103/PhysRevB.58.R7508
https://doi.org/10.1103/PhysRevB.58.R7508


Bibliography 79

[125] B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin, P. Maletinsky, A. Högele, and
A. Imamoglu. “Nuclear spin physics in quantum dots: An optical investigation”. Rev.
Mod. Phys. 85 (1 2013), pp. 79–133. DOI: 10.1103/RevModPhys.85.79.

[126] W. A. Coish and J. Baugh. “Nuclear spins in nanostructures”. physica status solidi (b)
246.10 (2009), pp. 2203–2215. DOI: https://doi.org/10.1002/pssb.200945229.

[127] A. Abragam. The principles of nuclear magnetism. Clarendon Press, 1961.

[128] M. Dyakonov and V. Perel. “Theory of optical spin orientation of electrons and nuclei
in semiconductors”. Optical Orientation (1984), pp. 11–71. DOI: 10.1016/b978-0-
444-86741-4.50007-x.

[129] D. Gammon, A. L. Efros, T. A. Kennedy, M. Rosen, D. S. Katzer, D. Park,
S. W. Brown, V. L. Korenev, and I. A. Merkulov. “Electron and Nuclear Spin
Interactions in the Optical Spectra of Single GaAs Quantum Dots”. Physical Review
Letters 86.22 (2001), pp. 5176–5179. DOI: 10.1103/physrevlett.86.5176.

[130] C. Latta, A. Srivastava, and A. Imamoğlu. “Hyperfine Interaction-Dominated Dynamics
of Nuclear Spins in Self-Assembled InGaAs Quantum Dots”. Phys. Rev. Lett. 107 (16
2011), p. 167401. DOI: 10.1103/PhysRevLett.107.167401.

[131] E. A. Chekhovich, A. Ulhaq, E. Zallo, F. Ding, O. G. Schmidt, and M. S. Skolnick.
“Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine
constants in GaAs/AlGaAs quantum dots”.NatureMaterials 16.10 (2017), pp. 982–986.
DOI: 10.1038/nmat4959.

[132] D. Joseph Klauser. “Hyperfine interaction and spin decoherence in quantum dots”. PhD
thesis. University of Basel, 2008. URL: https://edoc.unibas.ch/761/1/DissB_
8302.pdf.

[133] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, and P. Granger.
“NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts”.
Solid State Nuclear Magnetic Resonance 22.4 (2002), pp. 458–483. DOI: 10.1006/
snmr.2002.0063.

[134] A. Ulhaq, Q. Duan, E. Zallo, F. Ding, O. G. Schmidt, A. I. Tartakovskii,
M. S. Skolnick, and E. A. Chekhovich. “Vanishing electron g factor and long-lived
nuclear spin polarization in weakly strained nanohole-filled GaAs/AlGaAs quantum
dots”. Physical Review B 93.16 (2016). DOI: 10.1103/physrevb.93.165306.

[135] T. Flissikowski, I. A. Akimov, A. Hundt, and F. Henneberger. “Single-hole spin
relaxation in a quantum dot”. Physical Review B 68.16 (2003). DOI:
10.1103/physrevb.68.161309.

https://doi.org/10.1103/RevModPhys.85.79
https://doi.org/https://doi.org/10.1002/pssb.200945229
https://doi.org/10.1016/b978-0-444-86741-4.50007-x
https://doi.org/10.1016/b978-0-444-86741-4.50007-x
https://doi.org/10.1103/physrevlett.86.5176
https://doi.org/10.1103/PhysRevLett.107.167401
https://doi.org/10.1038/nmat4959
https://edoc.unibas.ch/761/1/DissB_8302.pdf
https://edoc.unibas.ch/761/1/DissB_8302.pdf
https://doi.org/10.1006/snmr.2002.0063
https://doi.org/10.1006/snmr.2002.0063
https://doi.org/10.1103/physrevb.93.165306
https://doi.org/10.1103/physrevb.68.161309


Bibliography 80

[136] D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and
D. Loss. “Observation of extremely slow hole spin relaxation in self-assembled quantum
dots”. Physical Review B 76.24 (2007). DOI: 10.1103/physrevb.76.241306.

[137] S. Laurent, B. Eble, O. Krebs, A. Lemaître, B. Urbaszek, X. Marie, T. Amand, and
P. Voisin. “Electrical Control of Hole Spin Relaxation in Charge Tunable InAs/GaAs
Quantum Dots”. Physical Review Letters 94.14 (2005). DOI: 10.1103/physrevlett.
94.147401.

[138] D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T.Wright, M. S. Skolnick,
and M. Hopkinson. “Individual neutral and charged InxGa1−xAs-GaAs quantum dots
with strong in-plane optical anisotropy”. Phys. Rev. B 72 (16 2005), p. 161312. DOI:
10.1103/PhysRevB.72.161312.

[139] T. Hughbanks. Electron Paramagnetic Resonance: Hyperfine Interactions. 2021. URL:
https : / / www . chem . tamu . edu / rgroup / hughbanks / courses / 634 /
lecturenotes/EPR_notes_1.pdf (visited on 17/11/2021).

[140] J. Fischer, W. A. Coish, D. V. Bulaev, and D. Loss. “Spin decoherence of a heavy hole
coupled to nuclear spins in a quantum dot”. Physical Review B 78.15 (2008). DOI: 10.
1103/physrevb.78.155329.

[141] B. Eble, C. Testelin, P. Desfonds, F. Bernardot, A. Balocchi, T. Amand, A. Miard, A.
Lemaître, X. Marie, and M. Chamarro. “Hole–Nuclear Spin Interaction in Quantum
Dots”. Phys. Rev. Lett. 102 (14 2009), p. 146601. DOI: 10.1103/PhysRevLett.102.
146601.

[142] J. W. Peng, C. A. Lepre, J. Fejzo, N. Abdul-Manan, and J. M. Moore. “Nuclear
Magnetic Resonance-Based Approaches for Lead Generation in Drug Discovery”.
Nuclear Magnetic Resonance of Biological Macromolecules Part A. Ed. by
T. L. James, V. Dötsch, and U. Schmitz. Vol. 338. Methods in Enzymology. Academic
Press, 2002, pp. 202–230. DOI: 10.1016/S0076-6879(02)38221-1.

[143] H. Dyson and A. Palmer. 1.9 Introduction to Solution State NMR Spectroscopy.
Comprehensive Biophysics, 2012, pp. 136–159.

[144] Z.-X. Gong, Z.-q. Yin, and L.-M. Duan. “Dynamics of the Overhauser field under
nuclear spin diffusion in a quantum dot”. New Journal of Physics 13.3 (2011),
p. 033036. DOI: 10.1088/1367-2630/13/3/033036.

[145] E. D. Commins. “Electric Dipole Moments of Elementary Particles, Nuclei, Atoms, and
Molecules”. Journal of the Physical Society of Japan 76.11 (2007), p. 111010. DOI: 10.
1143/JPSJ.76.111010.

[146] W. S. C. Williams. Springer series in nuclear and particle physics. Clarendon Press,
1991.

https://doi.org/10.1103/physrevb.76.241306
https://doi.org/10.1103/physrevlett.94.147401
https://doi.org/10.1103/physrevlett.94.147401
https://doi.org/10.1103/PhysRevB.72.161312
https://www.chem.tamu.edu/rgroup/hughbanks/courses/634/lecturenotes/EPR_notes_1.pdf
https://www.chem.tamu.edu/rgroup/hughbanks/courses/634/lecturenotes/EPR_notes_1.pdf
https://doi.org/10.1103/physrevb.78.155329
https://doi.org/10.1103/physrevb.78.155329
https://doi.org/10.1103/PhysRevLett.102.146601
https://doi.org/10.1103/PhysRevLett.102.146601
https://doi.org/10.1016/S0076-6879(02)38221-1
https://doi.org/10.1088/1367-2630/13/3/033036
https://doi.org/10.1143/JPSJ.76.111010
https://doi.org/10.1143/JPSJ.76.111010


Bibliography 81

[147] C. Bulutay. “Quadrupolar spectra of nuclear spins in strained InxGa1−xAs quantum
dots”. Physical Review B 85.11 (2012). DOI: 10.1103/physrevb.85.115313.

[148] C. Bulutay, E. A. Chekhovich, and A. I. Tartakovskii. “Nuclear magnetic resonance in-
verse spectra of InGaAs quantum dots: Atomistic level structural information”. Physi-
cal Review B 90.20 (2014). DOI: 10.1103/physrevb.90.205425.

[149] C. P. Slichter. Principles of magnetic resonance. 3rd ed. Springer, 1996.

[150] E. A. Chekhovich, M. N. Makhonin, A. I. Tartakovskii, A. Yacoby, H. Bluhm,
K. C. Nowack, and L. M. Vandersypen. “Nuclear spin effects in semiconductor
Quantum Dots”. Nature Materials 12.6 (2013), pp. 494–504. DOI:
10.1038/nmat3652.

[151] E. A. Chekhovich, K. V. Kavokin, J. Puebla, A. B. Krysa, M. Hopkinson, A. D. Andreev,
A. M. Sanchez, R. Beanland, M. S. Skolnick, and A. I. Tartakovskii. “Structural analysis
of strained quantum dots using nuclear magnetic resonance”. Nature Nanotechnology
7.10 (2012), pp. 646–650. DOI: 10.1038/nnano.2012.142.

[152] E. A. Chekhovich, M. N. Makhonin, J. Skiba-Szymanska, A. B. Krysa,
V. D. Kulakovskii, M. S. Skolnick, and A. I. Tartakovskii. “Dynamics of optically
induced nuclear spin polarization in individual InP/GaxIn1−xP quantum dots”.
Physical Review B 81.24 (2010). DOI: 10.1103/physrevb.81.245308.

[153] D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov. “Low field electron-nuclear spin
coupling in gallium arsenide under optical pumping conditions”. Physical Review B
15.12 (1977), pp. 5780–5796. DOI: 10.1103/physrevb.15.5780.

[154] J. Puebla, E. A. Chekhovich, M. Hopkinson, P. Senellart, A. Lemaitre, M. S. Skolnick,
and A. I. Tartakovskii. “Dynamic nuclear polarization in InGaAs/GaAs and
GaAs/AlGaAs Quantum Dots under nonresonant ultralow-power optical excitation”.
Physical Review B 88.4 (2013). DOI: 10.1103/physrevb.88.045306.

[155] A. V. Khaetskii, D. Loss, and L. Glazman. “Electron Spin Decoherence in Quantum
Dots due to Interaction with Nuclei”. Phys. Rev. Lett. 88 (18 2002), p. 186802. DOI:
10.1103/PhysRevLett.88.186802.

[156] C. Deng and X. Hu. “Electron-spin dephasing via hyperfine interaction in a quantum
dot: An equation-of-motion calculation of electron-spin correlation functions”. Phys.
Rev. B 78 (24 2008), p. 245301. DOI: 10.1103/PhysRevB.78.245301.

[157] G. Giedke, J. M. Taylor, D. D’Alessandro, M. D. Lukin, and A. Imamoğlu. “Quantum
measurement of a mesoscopic spin ensemble”. Phys. Rev. A 74 (3 2006), p. 032316. DOI:
10.1103/PhysRevA.74.032316.

[158] M. Kelly. MRI: Principles of Magnetic Resonance and Relaxation. Lecture at the Uni-
versity of Leicester. 2018.

https://doi.org/10.1103/physrevb.85.115313
https://doi.org/10.1103/physrevb.90.205425
https://doi.org/10.1038/nmat3652
https://doi.org/10.1038/nnano.2012.142
https://doi.org/10.1103/physrevb.81.245308
https://doi.org/10.1103/physrevb.15.5780
https://doi.org/10.1103/physrevb.88.045306
https://doi.org/10.1103/PhysRevLett.88.186802
https://doi.org/10.1103/PhysRevB.78.245301
https://doi.org/10.1103/PhysRevA.74.032316


Bibliography 82

[159] F. Bloch. “Nuclear Induction”. Physical Review 70.7-8 (1946), pp. 460–474. DOI: 10.
1103/physrev.70.460.

[160] G. Sallen, S. Kunz, T. Amand, L. Bouet, T. Kuroda, T. Mano, D. Paget, O. Krebs,
X. Marie, K. Sakoda, and B. Urbaszek. “Nuclear magnetization in gallium arsenide
quantum dots at zero magnetic field”. Nature Communications 5.1 (2014). DOI:
10.1038/ncomms4268.

[161] B. P Cowan. Nuclear magnetic resonance and relaxation. Cambridge University Press,
1997.

[162] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M.
Marcus, M. P. Hanson, and A. C. Gossard. “Coherent Manipulation of Coupled Electron
Spins in Semiconductor Quantum Dots”. Science 309.5744 (2005), pp. 2180–2184. DOI:
10.1126/science.1116955.

[163] A. M. Waeber, G. Gillard, G. Ragunathan, M. Hopkinson, P. Spencer, D. A. Ritchie,
M. S. Skolnick, and E. A. Chekhovich. “Pulse control protocols for preserving coherence
in dipolar-coupled nuclear spin baths”. Nature Communications 10.1 (2019). DOI: 10.
1038/s41467-019-11160-6.

[164] M. Holmes, S. Kako, K. Choi, P. Podemski, M. Arita, and Y. Arakawa. “Measurement
of an Exciton Rabi Rotation in a Single GaN/AlxGa1−xN Nanowire-Quantum Dot
Using Photoluminescence Spectroscopy: Evidence for Coherent Control”. Physical
Review Letters 111.5 (2013). DOI: 10.1103/physrevlett.111.057401.

[165] A. Franzen. ComponentLibrary. Accessed: 2022-11-25. Used under Creative Commons
Attribution-NonCommercial 3.0 Unported License. URL: https://www.gwoptics.
org/ComponentLibrary/.

[166] M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and A. Imamoglu.
“Quantum-Dot Spin-State Preparation with Near-Unity Fidelity”. Science 312.5773
(2006), pp. 551–553. DOI: 10.1126/science.1126074.

[167] G. Dresselhaus. “Spin-Orbit Coupling Effects in Zinc Blende Structures”. Physical Re-
view 100.2 (1955), pp. 580–586. DOI: 10.1103/physrev.100.580.

[168] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine. “New Perspectives
for Rashba Spin-Orbit Coupling”. Nature Materials 14.9 (2015), pp. 871–882. DOI: 10.
1038/nmat4360.

[169] A. V. Koudinov, I. A. Akimov, Y. G. Kusrayev, and F. Henneberger. “Optical and
magnetic anisotropies of the hole states in Stranski-Krastanov quantum dots”. Phys.
Rev. B 70 (24 2004), p. 241305. DOI: 10.1103/PhysRevB.70.241305.

https://doi.org/10.1103/physrev.70.460
https://doi.org/10.1103/physrev.70.460
https://doi.org/10.1038/ncomms4268
https://doi.org/10.1126/science.1116955
https://doi.org/10.1038/s41467-019-11160-6
https://doi.org/10.1038/s41467-019-11160-6
https://doi.org/10.1103/physrevlett.111.057401
https://www.gwoptics.org/ComponentLibrary/
https://www.gwoptics.org/ComponentLibrary/
https://doi.org/10.1126/science.1126074
https://doi.org/10.1103/physrev.100.580
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/nmat4360
https://doi.org/10.1103/PhysRevB.70.241305


Bibliography 83

[170] Y. Léger, L. Besombes, L. Maingault, and H. Mariette. “Valence-band mixing in
neutral, charged, and Mn-doped self-assembled quantum dots”. Phys. Rev. B 76 (4
2007), p. 045331. DOI: 10.1103/PhysRevB.76.045331.

[171] C. Heyn, C. Strelow, and W Hansen. “Excitonic lifetimes in single GaAs quantum dots
fabricated by local droplet etching”. New Journal of Physics 14.5 (2012), p. 053004.
ISSN: 1367-2630. DOI: 10.1088/1367-2630/14/5/053004.

[172] C. Schimpf, M. Reindl, P. Klenovský, T. Fromherz, S. F. Covre Da Silva, J. Hofer, C.
Schneider, S. Höfling, R. Trotta, and A. Rastelli. “Resolving the temporal evolution of
line broadening in single quantum emitters”. Optics Express 27.24 (2019), p. 35290.
ISSN: 1094-4087. DOI: 10.1364/oe.27.035290.

[173] A. I. Tartakovskii, T. Wright, A. Russell, V. I. Fal’ko, A. B. Van’kov,
J. Skiba-Szymanska, I. Drouzas, R. S. Kolodka, M. S. Skolnick, P. W. Fry, and et al.
“Nuclear spin switch in semiconductor Quantum Dots”. Physical Review Letters 98.2
(2007). DOI: 10.1103/physrevlett.98.026806.

[174] P. Maletinsky, C. W. Lai, A. Badolato, and A. Imamoglu. “Nonlinear Dynamics of
Quantum Dot Nuclear Spins”. Physical Review B 75.3 (2007). DOI:
10.1103/physrevb.75.035409.

[175] P.-F. Braun, B. Urbaszek, T. Amand, X. Marie, O. Krebs, B. Eble, A. Lemaitre, and
P. Voisin. “Bistability of the nuclear polarization created through optical pumping in
In1−xGax As quantum dots”. Physical Review B 74.24 (2006). DOI:
10.1103/physrevb.74.245306.

[176] G. Gillard. “Lifetime and Coherence of the Coupled Electron and Nuclear Spin
Systems in Semiconductor Quantum Dots”. PhD thesis. University of Sheffield, 2022.
URL: https://etheses.whiterose.ac.uk/30563/.

[177] H. E. Dyte, G. Gillard, S. Manna, S. F. C. da Silva, A. Rastelli, and E. A. Chekhovich.
“Quantum non-demolitionmeasurement of an electron spin qubit through its low-energy
many-body spin environment” (2023). DOI: 10.48550/ARXIV.2307.00308.

[178] A. Waeber, M. Hopkinson, I. Farrer, D. Ritchie, J. Nilsson, R. Stevenson, A. Bennett,
A. Shields, G. Burkard, A. Tartakovskii, and et al. “Few-second-long correlation times in
a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance
spectroscopy”. Nature Physics 12.7 (2016), pp. 688–693. DOI: 10.1038/nphys3686.

[179] D. M. Pozar. “Impedance Matching And Tuning”.Microwave engineering. John Wiley
& Sons, 2021, pp. 228–245.

[180] E. Chekhovich, M. Hopkinson, M. Skolnick, and A. Tartakovskii. “Suppression of nu-
clear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous
strain”. Nature Communications 6.1 (2015). DOI: 10.1038/ncomms7348.

https://doi.org/10.1103/PhysRevB.76.045331
https://doi.org/10.1088/1367-2630/14/5/053004
https://doi.org/10.1364/oe.27.035290
https://doi.org/10.1103/physrevlett.98.026806
https://doi.org/10.1103/physrevb.75.035409
https://doi.org/10.1103/physrevb.74.245306
https://etheses.whiterose.ac.uk/30563/
https://doi.org/10.48550/ARXIV.2307.00308
https://doi.org/10.1038/nphys3686
https://doi.org/10.1038/ncomms7348


Bibliography 84

[181] R. Stockill, C. Le Gall, C. Matthiesen, L. Huthmacher, E. Clarke, M. Hugues, and M.
Atatüre. “Quantum dot spin coherence governed by a strained nuclear environment”.
Nature Communications 7.1 (2016). DOI: 10.1038/ncomms12745.

[182] T. Lettner, S. Gyger, K. D. Zeuner, L. Schweickert, S. Steinhauer,
C. Reuterskiöld Hedlund, S. Stroj, A. Rastelli, M. Hammar, R. Trotta, and et al.
“Strain-controlled quantum dot fine structure for entangled photon generation at 1550
nm”. Nano Letters 21.24 (2021), pp. 10501–10506. DOI:
10.1021/acs.nanolett.1c04024.

[183] L. Zaporski, N. Shofer, J. H. Bodey, S. Manna, G. Gillard, M. H. Appel, C. Schimpf,
S. F. Covre da Silva, J. Jarman, G. Delamare, G. Park, U. Haeusler, E. A. Chekhovich,
A. Rastelli, D. A. Gangloff, M. Atatüre, and C. Le Gall. “Ideal refocusing of an
optically active spin qubit under strong hyperfine interactions”. Nature
Nanotechnology 18.3 (2023), pp. 257–263. DOI: 10.1038/s41565-022-01282-2.

[184] D. J. Reilly, J. M. Taylor, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard.
“Exchange Control of Nuclear Spin Diffusion in a Double Quantum Dot”. Phys. Rev.
Lett. 104 (23 2010), p. 236802. DOI: 10 . 1103 / PhysRevLett . 104 . 236802. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.104.236802.

[185] D. Klauser, W. A. Coish, and D. Loss. “Nuclear spin dynamics and Zeno effect in
quantum dots and defect centers”. Phys. Rev. B 78 (20 2008), p. 205301. DOI:
10 . 1103 / PhysRevB . 78 . 205301. URL:
https://link.aps.org/doi/10.1103/PhysRevB.78.205301.

[186] J. Lu, M. J. R. Hoch, P. L. Kuhns, W. G. Moulton, Z. Gan, and A. P. Reyes. “Nuclear
spin-lattice relaxation in n-type insulating andmetallic GaAs single crystals”.Phys. Rev.
B 74 (12 2006), p. 125208. DOI: 10.1103/PhysRevB.74.125208.

[187] C. Deng and X. Hu. “Nuclear spin diffusion in quantum dots: Effects of inhomogeneous
hyperfine interaction”. Phys. Rev. B 72 (16 2005), p. 165333. DOI: 10.1103/PhysRevB.
72.165333.

[188] C. W. Lai, P. Maletinsky, A. Badolato, and A. Imamoglu. “Knight-Field-Enabled
Nuclear Spin Polarization in Single Quantum Dots”. Phys. Rev. Lett. 96 (16 2006),
p. 167403. DOI: 10.1103/PhysRevLett.96.167403.

[189] C. Ramanathan. “Dynamic nuclear polarization and spin diffusion in nonconducting
solids”. Applied Magnetic Resonance 34.3–4 (2008). DOI: 10.1007/s00723- 008-
0123-7.

[190] G. Burkard, D. Loss, and D. P. DiVincenzo. “Coupled quantum dots as quantum gates”.
Phys. Rev. B 59 (3 1999), pp. 2070–2078. DOI: 10.1103/PhysRevB.59.2070.

https://doi.org/10.1038/ncomms12745
https://doi.org/10.1021/acs.nanolett.1c04024
https://doi.org/10.1038/s41565-022-01282-2
https://doi.org/10.1103/PhysRevLett.104.236802
https://link.aps.org/doi/10.1103/PhysRevLett.104.236802
https://doi.org/10.1103/PhysRevB.78.205301
https://link.aps.org/doi/10.1103/PhysRevB.78.205301
https://doi.org/10.1103/PhysRevB.74.125208
https://doi.org/10.1103/PhysRevB.72.165333
https://doi.org/10.1103/PhysRevB.72.165333
https://doi.org/10.1103/PhysRevLett.96.167403
https://doi.org/10.1007/s00723-008-0123-7
https://doi.org/10.1007/s00723-008-0123-7
https://doi.org/10.1103/PhysRevB.59.2070


Bibliography 85

[191] C. Kloeffel and D. Loss. “Prospects for Spin-Based Quantum Computing in Quantum
Dots”. Annual Review of Condensed Matter Physics 4.1 (2013), pp. 51–81. ISSN: 1947-
5462. DOI: 10.1146/annurev-conmatphys-030212-184248.

[192] A. Imamoḡlu, E. Knill, L. Tian, and P. Zoller. “Optical pumping of quantum-dot nuclear
spins”. Physical Review Letters 91.1 (2003). DOI: 10.1103/physrevlett.91.017402.

[193] H. Christ, J. I. Cirac, and G. Giedke. “Quantum description of nuclear spin cooling in a
quantum dot”. Physical Review B 75.15 (2007). DOI: 10.1103/physrevb.75.155324.

[194] H. Ribeiro and G. Burkard. “Nuclear state preparation via Landau-Zener-Stückelberg
transitions in double quantum dots”. Physical Review Letters 102.21 (2009). DOI: 10.
1103/physrevlett.102.216802.

[195] J. Hildmann, E. Kavousanaki, G. Burkard, and H. Ribeiro. “Quantum limit for nuclear
spin polarization in semiconductor quantum dots”.Phys. Rev. B 89 (20 2014), p. 205302.
DOI: 10.1103/PhysRevB.89.205302.

[196] T. A. Knuuttila, J. T. Tuoriniemi, K. Lefmann, K. I. Juntunen, F. B. Rasmussen, and
K. K. Nummila. Journal of Low Temperature Physics 123.1/2 (2001), pp. 65–102. DOI:
10.1023/a:1017545531677.

[197] A. M. Steane. “Efficient fault-tolerant quantum computing”. Nature 399.6732 (1999),
pp. 124–126. ISSN: 1476-4687. DOI: 10.1038/20127.

[198] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. “Long-distance quantum
communication with atomic ensembles and linear optics”. Nature 414.6862 (2001),
pp. 413–418. ISSN: 1476-4687. DOI: 10.1038/35106500.

[199] J. M. Taylor, C. M. Marcus, and M. D. Lukin. “Long-Lived Memory for Mesoscopic
Quantum Bits”. Physical Review Letters 90.20 (2003). ISSN: 1079-7114. DOI: 10.1103/
physrevlett.90.206803.

https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1103/physrevlett.91.017402
https://doi.org/10.1103/physrevb.75.155324
https://doi.org/10.1103/physrevlett.102.216802
https://doi.org/10.1103/physrevlett.102.216802
https://doi.org/10.1103/PhysRevB.89.205302
https://doi.org/10.1023/a:1017545531677
https://doi.org/10.1038/20127
https://doi.org/10.1038/35106500
https://doi.org/10.1103/physrevlett.90.206803
https://doi.org/10.1103/physrevlett.90.206803

	Introduction
	Background
	History of Confined Heterostructures
	States of Optically Active Quantum Dots
	Quantum Dot Growth
	Distributed Bragg Reflector

	Discretised Energy States within a Quantum Dot
	Charge Tuning

	Excitons and Optical Selection Rules
	Heavy Hole-Light Hole Mixing
	Charged Excitons
	Fine Structure for Excitons
	Excitons in an Electric Field
	Excitons in a Magnetic Field

	Quantum Dot Spin System
	Interactions with Nuclear Spins in Quantum Dots
	Hyperfine Interaction
	Nuclear Dipolar Interaction
	Nuclear Quadrupolar Interaction


	Manipulation of the Nuclear Spin Ensemble
	Initialising Nuclear Spin
	Measuring Nuclear Spin
	Nuclear Spin Relaxation
	Radiofrequency Induced Depolarisation


	Experimental Techniques
	Bath Cryostat
	Optical Spectroscopy
	Optical Breadboard
	Optical Spin Pumping
	Selecting a Suitable QD
	Measuring Hyperfine Shifts
	Optimising Dynamic Nuclear Polarisation
	Pump Laser
	Radiofrequency Excitation
	Half and Quarter-Wave Plates
	Probe Laser
	Bias
	Bistability of Nuclear Polarisation


	Nuclear Magnetic Resonance
	Generation of Radiofrequencies for Nuclear Magnetic Resonance
	Types of Nuclear Magnetic Resonance Spectroscopy
	Optically Detected Nuclear Magnetic Resonance
	Integral Saturation Nuclear Magnetic Resonance
	Inverse Nuclear Magnetic Resonance



	Strain and Disorder in AlGaAs
	Nuclear Spin Diffusion
	Approaching a Fully-Polarised Nuclear Spin State
	Summary and Conclusions
	Bibliography

