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Abstract

The purpose of this thesis is to develop and apply novel modelling and analytical tools
for human pluripotent stem cell (hPSC) populations. Two major types of observed het-
erogeneity across cells in culture are dealt with: (1) in the varied expression levels of
several key genetic markers both before and after differentiation, and (2) in specific ge-
netic mutations at the chromosomal level which confer advantages for the cells. The
aim of (1) is to enable the novel development of efficient and low-cost differentiation
protocols, while (2) seeks to improve quality control in stem cell research as unwanted
genetic mutations are challenging to automatically detect.

A novel spatial analysis is developed with the aim of understanding how continuous
single-cell Nanog expression levels are linked to the local cellular environment. Nanog
expression per cell is thus shown to be inversely proportional to the cell’s neighbour
count. These results drive the formulation of a new model for predicting continuous
single-cell gene expression, incorporating effects of both diffusive and juxtacrine (contact-
based) signalling. It is shown that cells expressing low Nanog levels are less responsive
to signalling cues from their environment.

Following this, cell fate selection upon differentiation is modelled through juxtacrine
signalling. A novel paradigm for modelling node symmetries of an undirected graph
is proposed, which is applied to hPSCs by modelling single cells as nodes, assigning
edges between cells that are physically contacting in culture. Importantly, nodes pos-
sess internal dynamics. To model cell differentiation, internal dynamics are given by
a novel dynamical model for the concentration levels of the differentiating morphogen
at each cell. Symmetric cells have symmetrical functions for their internal dynamics,
thereby sharing identical equilibria. Model equilibria qualitatively recapitulate experi-
mental fate patterning results, suggesting that geometric symmetries of hPSC cultures
may orchestrate fate selection.

Next, a local density analysis is applied to time-lapse images of wildtype and variant
hPSC cultures. This helps to uncover that decreasing wildtype cell membrane resilience,
thus lowering survival rates at high densities, is a crucial strategy in mechanical cell com-
petition. Lastly, a new ensemble model is developed as an automated tool for quickly and
accurately identifying variant cells in culture. Importantly, the model does not rely on
cell tagging, meaning that it may be applied to wildtype hPSC cultures without knowing
a priori if variant cells are present.
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Chapter 1

Introduction

1.1 Background

1.1.1 Human Stem Cells and Pluripotency

Stem cells are cells in the body that can self-renew indefinitely, and have more than one
option for which specialised cell type to become [1]. The former of these two properties
means that stem cells can continuously generate more of themselves, both within the
body and when kept in laboratory culture. To become a specialised cell type, stem cells
must undergo the process of differentiation, whereby each cell commits to a specific
fate. There are different types of stem cell, possessing different differentiation capabili-
ties. Multipotent stem cells can be found in the human brain, heart, liver, bone marrow,
blood, and skin [2, 3, 4]. However, the specialised fates of multipotent cells are limited
depending on the cells’ location and function. Conversely, pluripotent stem cells are able
to differentiate into all cell types in the body [5]. As human pluripotent stem cells (hP-
SCs) have indefinite self-renewal capabilities in vitro, they retain pluripotency in culture
[6]. Many researchers are therefore interested in hPSCs for their potential range and
impact of applications if they are properly understood.
Importantly, there are two types of hPSCs. Those derived from a human embryo at the
blastocyst stage are known as human embryonic stem cells (hESCs), which were first iso-
lated in vitro in 1998 [7]. Human somatic cells that have been artificially reprogrammed
to a state of pluripotency are known as induced pluripotent stem cells (iPSCs). The first
published discovery of iPSCs was in 2006 by Yamanaka and Takahashi [8]. However, in
parallel with this research, Yu et al. also derived iPSCs from somatic cells using slightly
different methodology [9]. Both hESCs and iPSCs have advantages and disadvantages.
An advantage of hESCs is that they provide a more accurate model for the events of
embryogenesis, whereas iPSCs can possess variable differentiation potential [10, 11, 12].
On the other hand, the ethics of hESCs is still questioned in some countries, whereas
iPSCs are widely accepted for medical use [11].
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Figure 1.1: Stem cell lineage tree.

1.1.2 Application of Stem Cells to Regenerative Medicine

Regenerative medicine is a field that uses human cells to treat disease [13]. Due to their
unique properties, hPSCs hold great promise for the future of regenerative medicine.
Specifically, hPSCs derived from a patient could treat diseases which are otherwise re-
garded as untreatable by other methods [14]. For example, hPSCs taken from a patient
suffering from Parkinson’s disease could be differentiated into dopaminergic neurons,
which are lost as a result of the illness [15, 16, 17]. Type I diabetes may even be able to
be reversed by differentiating hPSCs into cells that produce insulin, then transplanting
these cells into diabetic patients [18, 19]. Recovery from spinal cord injuries has been
shown to be improved in mice by implanting a polymer scaffold seeded with neural stem
cells into the cord, which researchers are working to apply to humans [20].
Importantly, therapeutic methods that utilise hPSCs derived from a patient provide fully
tailored therapies. This avoids problems associated with donor transplants, such as lim-
ited availability and the risk of tissue rejection [21, 22]. For regenerative therapies, iPSCs
are generally preferred, as these can be derived from patients’ own somatic cells. Al-
though hESCs cannot be taken from a patient, it is important to consider that research
into the safe use of iPSCs is very much in development. In particular, research into how
the naı̈ve state of pluripotency is regulated has been known to yield previously unex-
pected results [23], with more of such research needed. Moreover, as of 2023, protocols
for iPSC induction still need to be optimised to preserve long-term genomic integrity
of cells [24]. However, hESCs already naturally possess the full range of differentiation
potentials. Therefore, hESCs offer a more complete understanding of pluripotency than
iPSCs, providing an essential framework for effective modern medicine offering person-
alised regenerative therapies.
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(a) T12.5 and T25 flasks. (b) Olympus CKX41.

Figure 1.2: Images of equipment commonly used for hPSC culture: (a) flasks used for culture
growth and maintenance, and (b) a standard microscope.

1.1.3 Differentiation to Specialised Cell Types

As hPSCs differentiate, they lose pluripotency and become committed to a specialised
lineage. One of the earliest lineage decisions that hPSCs make is differentiation into one
of the three primary germ layers: ectoderm, mesoderm or endoderm. These germ layers
are the basis of all somatic cell types in the body [25]. Understanding this crucial choice
made by hPSCs attracts a great deal of research, as it is still not fully clear how this
happens at the single-cell level. A schematic lineage tree showing specialised cell types
yielded by each of the primary germ layers is given in Figure 1.1.

1.2 Fundamentals of Stem Cell Research

1.2.1 Maintenance of Stem Cells in Culture

Maintaining stocks of cell lines through laboratory culture is an essential aspect of stem
cell research. Culture flasks are used to grow hPSCs; generally, these are T12.5 flasks,
as shown in Figure 1.2(a). As cells are cultured to adhere only to a single 2D surface,
T12.5 flasks are named as such because the internal area of the surface designed for
cell adherence is 12.5cm2. Flasks need to be coated with a substrate to allow cells to
adhere. Traditionally, human stem cells have been cultured using substrate layers made
from mouse embryonic fibroblasts. However, modern culture methods have removed
the need for murine cells, reducing the risk of hPSC exposure to animal pathogens [26].
Two major substrates now used for hPSCs are Vitronectin (VTN) and Geltrex (GTX). A
standard microscope used for culture is shown in Figure 1.2(b).
When cells have successfully attached to the flask, culture media must be supplied reg-
ularly to provide hPSCs with necessary growth and survival factors. Popular media
supplements are Essential 8 (E8) and mTeSR; when using either of these, old media must
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be aspirated and new media supplied to the cells every 24h. More recently, Stable E8
(SE8) was formulated, which must be resupplied every 48h. Flasks of hSPCs cultured
with growth media are stored in incubators kept at 37◦C with 5% CO2 in the air, as de-
tailed in Appendix A.1.1.
As cells grow, it is a necessary part of culture maintenance to re-plate cells onto new
flasks, which must be done approximately 2-3 times per week for wildtype hESC lines.
This process is known as ‘passaging’. For this, an enzyme is administered to the flask
which gently detaches cell colonies. Using a wide stripette so as not to break up colonies,
cells are transferred to two or more newly prepared flasks at the desired splitting ratio.
For example, if cells are highly confluent, a splitting ratio of 1:4 may be used, where one
flask of cells is distributed between four new flasks. As cell survival is heavily reliant on
neighbours, it is important to retain colonies during passaging, and not choose a split-
ting ratio that yields very sparse new cultures. The passaging protocol used throughout
this thesis is given in Appendix A.1.2.

1.2.2 Stem Cell Surface Markers

Stem cell surface markers are specialised receptor proteins, called antigens, that can se-
lectively adhere to signalling molecules [27]. To our advantage, fluorescent molecules
called fluorophores can be attached to signalling molecules, making cell nuclei or mem-
branes highly visible under specific microscopes. Specifically, fluorophores emit light
when excited by short-wavelength light such as UV or lasers. This ‘cell staining’ method
works by using antibodies to detect the epitope of the corresponding antigen on the cell
surface. This is particularly useful as the result shows both the localisation and relative
expression levels of the antigen being detected, allowing single-cell comparisons across
the culture [28].
For the work conducted within this thesis, expression levels of the following genetic
markers are considered:

• Nanog (pluripotency marker),

• Octamer-binding transcription factor 4 (Oct4) (pluripotency marker),

• Sex-determining region Y-box 2 (Sox2) (pluripotency & endoderm marker),

• Sex-determining region Y-box 17 (Sox17) (endoderm maker),

• Brachyury (mesoderm marker),

• CDX2 (mesoderm marker),

• Sex-determining region Y-box 10 (Sox10) (neuro-ectoderm marker).

4



(a) 12-well and 96-well
Costar® plates.

(b) Wildtype hESC nuclei
stained with Cy5.

Figure 1.3: Images associated with the identification of cell surface markers: (a) plates com-
monly used for research consisting of different culture/experimental conditions per well, and (b)
a wildtype hESC culture that has been stained with Cy5 fluorophore to identify nuclear expres-
sion levels of Nanog.

Notably, the above are all transcription factors, and as such are produced within cell
nuclei.
To correctly fit within imaging devices, cells are grown in a plate prior to cell staining,
such as the 12-well or 96-well plates shown in Figure 1.3(a). Prior to cell staining, cells
must be fixed to immobilise target antigens and preserve cell morphology [29] (protocol
given in Appendix A.2.1). Then, after washing the cell culture, a primary antibody is used
to bind to the antigen being investigated. Also, to prevent non-specific anti-body bind-
ing, a ‘blocking’ step is conducted by applying a particular solution to the cell culture.
Cells are incubated in the dark for 1h at room temperature with the primary antigen ap-
plied. Then, the primary antigen is aspirated and a secondary antibody is administered
to bind to the primary; cells at this stage are kept at 4◦C in the dark. For this step, it is
often useful to gently rock the cell culture to facilitate homogeneous application of the
secondary antibody. Detailed protocols for cell staining procedures used in this thesis
are given in Appendix A.2.2.
Importantly, multiple stains can be made upon a single cell culture. However, limitations
arise for two reasons: (1) antibodies derived from different animal species may cross-
react, leading to a need for optimisation of staining protocols, and (2) ‘bleed-through’
may occur, whereby fluorescence bandwidths of two or more fluorophores overlap. For
cell nucleus identification and/or segmentation, the nuclear stain Hoechst (fluorophore
name DAPI) is most commonly used. For identifying other markers, commonly used flu-
orophores include Cy2, Cy5, FITC, and green fluorescent protein (GFP). The latter two
are often used interchangeably.
Administration of one or more fluorophores facilitates immunofluorescence imaging.
For imaging, an InCell Analyzer was used, which can emit light of the desired wave-
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(a) Brightfield. (b) GFP reporter.

Figure 1.4: Images of H9TVD3 hESCs, generated as part of a time-lapse microscopy experiment
using a BioStation. GFP shows nuclear Brachyury expression.

length to visualise the fluorophores used for staining. An example of a hESC culture
stained with Cy5 is given in Figure 1.3(b).

1.2.3 Time-Lapse Microscopy

Time-lapse images are most commonly used to generate a video of live cell cultures over
a specific time frame. As for immunofluorescence microscopy, cells are generally grown
in a plate. There are two major reasons why cells cannot be continuously videoed, but
rather must be time-lapse imaged at intervals: (1) lasers used for imaging are photo-toxic
to live hPSCs, and (2) limited equipment availability imposes constraints on individual
researchers within the same laboratory. The combination of these two factors forces
important decisions to be made regarding imaging frequency and exposure intensity
depending on the requirements of the experiment.
The BioStation is a piece of machinery used for time-lapse imaging. Brightfield and im-
munofluorescence images can be obtained from a BioStation, as shown in Figure 1.4.
As cells are live, traditional immuno-histochemistry cannot be used. Instead, a hPSC
nucleus may be ‘tagged’ with a fluorescent dye, which has expression directly propor-
tionally to that of a particular genetic marker. Cell lines that have been tagged in this
way are referred to as reporter lines. PhaseContrast is another imaging tool for time-
lapse microscopy, which differs to the BioStation by showing high contrast variations
across cell surfaces. This makes computational object segmentation highly challenging.
An example of a brightfield PhaseContrast image is given in Figure 1.5.
All time-lapse microscopy data independently generated for this thesis was obtained
using a BioStation; protocols for this are provided in Appendix A.3. There are multiple
parts of this thesis that deal with time-lapse data generated by other researchers, for
which the PhaseContrast imaging tool was used.
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Figure 1.5: Brightfield microscopy image of genetically variant hPSCs obtained using a PhaseC-
ontrast microscope. Image by Dr. C.J. Price, University of Sheffield.

Figure 1.6: Layout of the CYTOOchip™Arena micro-pattern, provided by CYTOO.

1.2.4 CYTOOchips for Micro-Patterned Cultures

In traditional cell culture, stem cell populations grown in flasks or plates are spatially
unconstrained, other than by the overall shape of the vessel they are grown in. As such,
cell colonies are extremely likely to form in irregular shapes and sizes.
An increasingly popular method in stem cell research is constraining cell cultures to
a particular geometric domain. Geometric constraints upon hPSC cultures have been
shown to yield repeatable patterns in cell fate upon differentiation. For this work and
in highly influential published work [30, 31], the CYTOOchip™Arena is used to grow
hPSCs on disc micro-patterns. CYTOOchip™Arena micro-patterns are provided as a
thin glass insert for cell culture vessels. The micro-pattern is square with sides of length
19.5mm; therefore, 6-well plates are the only type of culture plate that can fit the micro-
pattern into one of its wells. Discs features on the chip are of 80, 140, 225, 500, and
1000µm diameter. The layout of an individual CYTOOchip™Arena micro-pattern is
shown in Figure 1.6.
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1.3 Motivation and Objectives

1.3.1 Current Research Limitations within the Field

Before hPSCs can be commonly used in medicinal practice, the overarching question
that needs to be addressed is how exactly the cells acquire lineage - i.e. become spe-
cialised - and thus make fate decisions. This is challenging to answer, primarily because
colonies of hPSCs display heterogeneity in vitro which is not fully accounted for [32].
This means that, for cells within the same culture, the state of one cell at any given time
may be different to the state of another cell. A cell’s state is quantifiable by its gene ex-
pression levels. As a cell’s state influences its lineage trajectory, single-cell fates become
incredibly difficult to predict due to this heterogeneous patterning [33, 34]. There are
protocols for pushing hPSCs towards a specific cell type, but these are limited, expen-
sive, and may yield variable results [35, 36, 37].
An additional challenge in stem cell research is quality control. It is well known that
culturing hPSCs for a prolonged time leads to a substantial risk of some cells acquir-
ing unwanted genetic mutations [38]. These occur at the chromosomal level, and as
such are challenging to detect without disruptive and costly methods for genetically
screening the entire population [39, 40, 41, 42, 43]. In many cases, particular mutations
lead to ‘super-competition’ in vitro, whereby wildtype (normal) hPSCs are completely
out-competed by variants. Both of these cases may be greatly dangerous and/or costly,
threatening hPSC research quality. The mechanisms of stem cell super-competition are
poorly understood at present, but such understanding is needed to ensure the safety of
cell therapies.

1.3.2 ‘State of theArt’ forMathematical andComputationalMod-
elling in Stem Cell Biology

Mathematical and computational models of biological processes can help to optimise
the efficiency of laboratory protocols, and predict outcomes prior to conducting experi-
ments. This can reduce the high costs of laboratory work, providing indispensable sav-
ings to medical research facilities.
Several studies have been published that explicitly focus on mathematically modelling
hPSC fate. Nearly all of these models were inspired by a groundbreaking study in 2014,
which revealed that by confining the adherence of cells to a disc shaped micro-pattern,
hPSC fate no longer appears heterogeneous after inducing differentiation [31]. In 2018,
this resulted in the development of a reaction-diffusion model which accurately mim-
icked the evolution of two coupled chemical concentrations, one of which initiates hPSC
differentiation, whilst the other directly inhibits this chemical [30]. However, this model,
as with all traditional reaction-diffusion models, is highly sensitive to its initial condi-
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tions. Contrarily, the process of embryonic formation is extremely robust, as it is able to
overcome morphological changes and perturbations to chemical inputs [44].
A study on mouse ESCs in 2018 suggested that focusing on cell-to-cell interactions,
which can be controlled through culture geometry, is key to capturing the robustness of
embryonic formation [45]. However, whilst the local cellular neighbourhood was anal-
ysed, no model describing cell-to-cell interactions was offered. In more recent years,
the problem of robustness for hPSC models is addressed; much of the literature is now
tending towards models that describe how cells interact with neighbours to orchestrate
fate patterning.
In 2019, an extended Cellular Potts model was developed which reproduced hPSC fates
seen on disc micro-patterns [46]. Additional micro-patterned geometries were explored
in 2020 [47], with resultant hPSC fates explained through the mechanical tension that
cells were subject to at different micro-pattern locations. A reaction-contraction-diffusion
model proposed in 2021 hence incorporated mechanical tension into a traditional reaction-
diffusion system [48]; however, simulations were only given for cell cultures on disc do-
mains, so it is unclear whether the model is applicable to other geometries. Moreover,
the model does not account for edge-sensing mechanisms present for hPSC cultures
[49]. In early 2023, a highly interesting and multi-layered mathematical model for hPSC
fate patterning was published [50]. An agent-based model is given, where agents are
not explicitly cells, but rather one of several genes that are used as fate markers. Thus,
the model uses a feedback system to trigger gene regulatory networks (GRNs) (activa-
tory/inhibitory relationships are well known) and reaction-diffusion. Notably, the GRNs
used are very basic; dedicated GRN models from 2020 [51] and 2021 [52] thoroughly ex-
plore dynamical system properties, such as bifurcation points and switching behaviour.
Nevertheless, the multi-layer model produces patterns of gene expression which corre-
spond well to experimental cell fates [50]. Again however, edge-sensing is not accounted
for, and the model is only simulated for cells on a disc. There is yet to be proposed a pre-
dictive model for hPSC fate patterning that demonstrates generalisability to the various
micro-patterned geometries that have been explored experimentally.
Increasingly more research is being conducted into the mechanisms of cell competition.
This includes the development of machine learning algorithms for classifying variant
cells in co-culture with wildtypes using RNA-seq data [53]. However, there are currently
no automated tools for identifying genetically variant hPSCs from images. Outside of
stem cell biology, the success of variant MDCK cells has been linked to their increased
motility, allowing them to force wildtypes into areas of high density, resulting in apop-
tosis (death) of wildtype cells [54]. This information is very useful, but no such analyses
have yet been applied to stem cells. Moreover, this feature identification relies on time-
lapse data run over multiple days. Furthering this research, in 2021, a deep learning
model with a variational auto-encoder output local density as the single most important
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factor for predicting MDCK survival in co-culture with competing cells [55]. Whilst this
computational tool is of high interest, a custom microscope was built for the research, so
it may not feasible to implement the model using data obtained across different imaging
platforms. Additionally, a cell line tagged with fluorescent dye was developed, allowing
for easy recognition of the distinct cell populations. Detecting genetic mosaicism from
brightfield images is a much more challenging task, particularly as the exact mutation
may not be known a priori. An algorithm that classifies genetically variant hPSCs from
a minimal sample of images, obtained using standard machinery, would thus be a widely
beneficial tool.

1.3.3 Thesis Objectives and Overview

Observed heterogeneous gene expression in (undifferentiated) pluripotent cell popu-
lations is not fully understood. In particular, single-cell heterogeneous expression of
pluripotency markers has not been investigated for micro-patterned cell cultures, even
though substantial focus has been applied to cell fate after differentiation. Therefore,
the objective of Chapter 2 of this thesis is to develop a novel spatial analysis and spatial
models for single-cell Nanog expression, using data from hESCs grown on disc micro-
patterns as inputs. This is achieved using several key model features relating to positional
information and signalling across the cellular neighbourhood.
A major gap in understanding fate patterning of hPSCs that have undergone differenti-
ation is a mathematical model that is (1) robust, (2) biologically informed, and (3) shown
to recapitulate numerous fate patterns found in the literature [31, 45, 47]. One of the
objectives of this work is to provide such a model, which is proposed in Chapter 3.
For this, a novel theoretical paradigm is proposed for modelling node symmetries on a
network, and a novel dynamical system for concentration levels of the differentiating
morphogen at each node is given, where cell state equilibria preserve node symmetries.
Time-invariant system equilibria are assumed to correspond to cell fate acquisition. The
long term goal is to better understand hPSC signalling, which may inform optimal de-
sign of micro-patterned geometries to yield desired cell fates upon differentiation. If
achieved, the associated costs of manufacture would be significantly lower than that of
current differentiation protocols.
Chapter 4 of this thesis aims to add to knowledge about the mechanical strategies used
in hPSC super-competition. Specifically, a local density quantification is applied to time-
lapse images of variant and wildtype hPSCs in co-culture, which is compared to their
respective homeostatic culture densities. This novel application of local density analy-
sis facilitated advancements in understanding how super-fit variant hPSCs out-compete
their wildtype counterparts through an increased resilience to the mechanical stress of
highly compact culture.
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There currently lacks an automated tool for detecting genetically variant hPSCs at the
single-cell level, using images of untagged cells as input. This kind of tool has a range of
applications in stem cell super-competition, and also tissue therapies. Chapter 5 of this
thesis aims to resolve this gap by proposing an ensemble classifier that accurately labels
hPSCs as wildtype or variant from time-lapse images, taken over a short time frame of
3h. This methodology may be integrated into a laboratory workflow by using incubators
equipped with a microscope for cell culture, which are already available for use. Live
cell cultures should be imaged at regular intervals, particularly if the passage number of
a flask is high and therefore more likely to produce genetic mutations. This time-lapse
image data then serves as input for the model workflow. Cells labelled as variant by
the classifier may be manually removed from culture to prevent proliferation. The long-
term goal of this work is to improve the quality of stem cell research and therapies, by
reducing the risk of genetic mosaicism in cell cultures used in medicine.
Chapter 6 concludes the work undertaken in this thesis, including a discussion of the
results presented. Based on the implications and limitations of this work, suggestions
for future directions of research are offered.
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Chapter 2

Spatial Analysis and Modelling of
Nanog Expression in Human
Embryonic Stem Cells

2.1 Introduction

How neighbourhood cues orchestrate the onset of differentiation in hESCs remains un-
known. In particular, Nanog - a key genetic regulator of pluripotency - exhibits hetero-
geneous expression in hESC cultures, resulting in poor understanding of how Nanog is
down-regulated. In this chapter, Nanog expression levels of wildtype hESCs cultured
on disc micro-patterns are characterised using a novel neighbourhood analysis, show-
ing that a cell’s Nanog intensity is inversely related to its neighbour count. These pre-
liminary results form the basis for a novel empirical model that formulates the level of
static single-cell Nanog intensity as a function of diffusive and juxtacrine signalling. This
model, which predicts continuous Nanog signals, yields a reasonable distribution output
despite low correlation between actual and predicted Nanog intensities. Interestingly,
this model performs over twice as well for high-Nanog cells compared to low-Nanog
cells, with low-Nanog cells also displaying a lesser relationship between Nanog inten-
sity and neighbour count. These results suggest that as cells enter lineage specification,
they become less susceptible to signalling cues from their environment.

Structure of this Chapter

The remainder of this chapter will be structured as follows. Section 2.2 provides back-
ground and a literature review within the field. Section 2.3 describes the micro-patterning
experiments and data generated from these experiments, which are used in modelling.
In Section 2.4, single-cell Nanog intensities are analysed with respect to the local cellular
neighbourhood. Positional information of the cells is also considered, and it is demon-
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strated that the neighbourhood results are not confounded by global density patterns for
each image. Section 2.5 develops data-informed regression models of single-cell Nanog
expression levels in micro-patterned cell cultures, which incorporate the effects of neigh-
bourhood features. Section 2.6 introduces a novel model, combining the effects of both
diffusive and juxtacrine signalling, which is used to predict cellular Nanog expression
levels. Finally, Section 2.7 provides a discussion of the results and conclusions.

2.2 Background and Literature Review

Stem cells within the human embryo are kept in a pluripotent state by a select number of
genetic regulators. It is understood that the transcription factors (TFs) Sox2, Oct4, and
Nanog (SON) comprise the essential network for regulating and maintaining pluripo-
tency [56, 57, 58]. Of the target binding sites occupied by Oct4, 69.5% are also occupied
by Nanog [59]. Similarly, Sox2 shares 66.1% of its binding sites with Nanog [59], suggest-
ing that a large proportion of SON’s target genes are regulated by SON in conjunction.
Nanog is a downstream target of Sox2 and Oct4, and is the only TF expressed solely in
pluripotent cells [60]. Therefore, down-regulation of Nanog in a cell indicates the onset
of lineage specification.
By fusing ESCs with non-pluripotent stem cells, Nanog is sufficient to activate pluripo-
tent genes in non-pluripotent stem cells [61]. Specifically, neural stem cells were fused
with ESCs to form hybrid cells. These hybrids adopted a state of pluripotency as a result
of Nanog over-expressed in the ESCs, which was found to be a uni-directional process.
Interestingly, the activation of pluripotent genes by Nanog was able to reverse previous
genetic and epigenetic programming of neural stem cells in hybrids.

Dynamic Genotypic Substates Impact Lineage Decisions

Importantly, not all stem cells are equally susceptible to different lineages when pluripo-
tent. The notion of naı̈ve and primed pluripotent states was first proposed in 2009, such
that primed hPSCs have a differentiation propensity towards specific lineages, whilst all
possible cell fates are equally likely for naı̈ve hPCSs [62]. Embryonic stem cells may be
either naı̈ve or primed; derivation of hECSs from the blastocyst or epiblast yields naı̈ve
or primed cells, respectively [62].
Moreover, various lineages may be ‘tried out’ by hESCs prior to full commitment. A 2016
study provided evidence for this by showing that naı̈ve or primed pluripotent states in
hESCs are dynamic [63]. This means that the transition of hESCs from a naı̈ve to primed
state is not one-way, but rather a process in which cells can inter-convert between states.
Naı̈ve hECSs are less responsive to signalling pathways and thus less susceptible to sig-
nals that could interfere with their state of lineage-neutrality. As a result of this, the time
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between the signalling of morphogens that induce differentiation and hESCs acquiring
fate specifications (priming) may be delayed. The loss of naı̈ve pluripotency is there-
fore considered a gradual process. The authors conclude that lineage specification for
hESCs relies on mechanisms of pre-patterning depending on the spatial organisation of
the cells, although they do not state what they believe the impact of spatial organisation
may be.
Similarly to these findings, NTERA2 hPSCs were found to inter-convert between posi-
tive/negative expression of the SSEA3 protein [64], which is a marker for undifferenti-
ated hPSCs [65]. The authors developed a variational Bayesian expectation maximisation
algorithm for hidden Markov trees, where each node in the Markov tree represented an
SSEA3 expression state. This model was accurately fitted to time-lapse gene expression
data to predict SSEA3 expression at different time points. This use of modelling alleviates
the future need for a fluorescent reporter cell line which can be measured in real-time.
Although the authors did not capture the probability of a cell moving between SSEA3
positive/negative states, the success of the Markov model suggests that such transitions
are memoryless, i.e. dependent only on the previous state [66]. However, there is no
evidence that this applies to genes other than SSEA3. In particular, no correlation was
found between Nanog and SSEA1 (a pluripotency marker) [67], suggesting that multi-
ple heterogeneous pluripotent states may exist simultaneously with potentially varied
behaviour.
An important question arising from these discoveries is whether these primed cellular
substates are able to be mapped to specific lineage decisions. This question was ad-
dressed in [33], firstly investigating whether these substates correspond to functional
and self-renewing hESCs, then testing if these cells have a differentiation bias accord-
ing to their substate. The authors designed a reporter cell line for GATA6, which is a
marker for endodermal cell fate, by knocking a GFP reporter into the GATA6 locus. This
means that the cells did not need to be fixed and stained in order to quantify GFP lev-
els, corresponding to GATA6 expression, but rather GFP levels were able to be observed
dynamically through time-lapse imaging of live cells. This method is highly useful for
capturing the emergence of patterns in gene expression. Indeed, the cells were found
to be capable of transitioning between states of expressing and not expressing GATA6,
where cells in the GATA6 expressing substate had a higher differentiation propensity
for endoderm and also mesoderm. This demonstrates that while hESCs remain in an
undifferentiated state, they become primed for specific fates and are able to convert be-
tween these states freely. Lineage decisions may be inferred from these primed states,
supporting the consensus that quantification of a cell’s gene expression levels is an ac-
curate indicator of cell fate. Notably, GATA6 is able to be directly repressed by Nanog,
and low Nanog expression is able to be inferred from high GATA6 expression [67].
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Dynamic Nanog Substates Regulate Pluripotency and Lineage Priming

Several studies have identified fluctuations in Nanog expression among individual ESCs
as essential for regulating pluripotency and lineage priming. Considering mouse embry-
onic stem cells (mESCs), it was found in 2009 that cells’ expression of Nanog falls into
two distinct populations: low Nanog (LN) and high Nanog (HN) [68]. These popula-
tions were distinguished by two distinct peaks on the histogram displaying the number
of Nanog molecules per cell among a Nanog-GFP mESC reporter line. Typically, only
5-25% of cells were in the LN state. Interestingly, the authors showed that taking a cell
sample from either the LN or HN population resulted in the same qualitative Nanog dis-
tribution being generated over time. Hence, this behaviour is robust, and suggests to be
intrinsic to the development of mESC populations.
The authors proposed that pluripotency may be modelled as a noise-driven excitable sys-
tem. It is known that some level of stochastic transcriptional noise is key for producing
genotypic differences in cell populations as a means of selection [69, 70], providing the
rationale for the model. As Nanog and Oct4 are known to activate themselves and each
other [71], with high levels of Oct4 leading to Nanog repression [59, 72], the authors
propose the following ordinary differential equation (ODE) system:

dN

dt
= αn +

βnN
n

knn +Nn
− δ

Ap

kpx + Ap
N − γnN + ξ(t), (2.1)

dA

dt
= αa + βaAN − γaA, (2.2)

whereN andA represent Nanog and Oct4 respectively, and the α values represent basal
expression. Nanog self-activation is modelled by a Hill function with amplitude βn, half-
maximal activation constant kn, and Hill coefficient n. The authors assume that self-
activation of Oct4 is linear, with βa as the strength of modulation by Nanog. Repression
of Nanog by Oct4 is modelled as a Hill function with strength δ, half-maximal activation
constant kx, and Hill coefficient p. Both TFs have assumed linear degradation, with rates
represented by the γ values. The term ξ(t) represents Gaussian noise with 0 mean and
correlation [68].
By analysing the system’s equilibria, the authors determined that the LN state was un-
stable, i.e. sensitive to small perturbations about its equilibrium. This instability was
backed up through experimental findings, whereby cells in the LN state were much more
likely to differentiate than those in the HN state. An additional stochastic model pro-
vided further evidence that Nanog fluctuations were a result of transcriptional noise
which regulates the LN and HN dynamics. Taken together, these results may indicate
that fluctuations in Nanog expression are essential for heterogeneous lineage priming
of pluripotent stem cells.
As an advancement of this work, the impact of LN and HN states on mESCs’ lineage
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markers was explored by a different group of researchers in 2014 [73]. Interestingly, it
was found that Nanog fluctuations can occur over a period of hours, rather than days as
was previously thought [74]. Cells in the LN state had increased expression of lineage
markers, but this priming was not biased towards any specific lineage. This suggests that
Nanog fluctuations may be the mechanism which allows cells to explore lineages before
full commitment. Moreover, each mESC was found to spend some time with Nanog tran-
scriptionally inactive, measured through Nanog mRNA expression. Therefore, Nanog
heterogeneity in stem cell populations is regulated at the transcriptional level, which
further suggests that this is an intrinsic and key phenomenon. Another study in 2013
found that around 5% of mESCs do not display Nanog mRNA transcription [75], which
also supports the small LN population size reported in [68].

Cell State is Dependent on the Cellular Neighbourhood

Cells in culture do not exist in isolation; signals transferred by cell-to-cell contact (jux-
tacrine signalling) and diffusion play a pivotal role in cell behaviour [76, 77]. To describe
how cells react to the state of surrounding cells, the ‘neighbourhood watch’ model was
introduced in 2022, which proposes that positional information drives stem cell fate in
the chick embryo epiblast [78]. The authors are interested in how the primitive streak
(PS) - a developmental stage in embryogenesis - forms with respect to the positional in-
formation of cells expressing an activator/inhibitor of PS formation. Cellular intensity
of the Brachyury gene was used to infer the results, whereby increased Brachyury in-
tensity provides increased evidence for PS formation.
A cell pellet expressing a PS activator is able to form PS for chick stem cells in vitro [79].
However, the authors of [78] found that by designing two neighbouring cell pellets both
expressing a PS activator, the formation of PS was no stronger than for a single pellet.
Interestingly, by taking a cell pellet expressing a PS inhibitor, then symmetrically intro-
ducing four neighbouring cell pellets (two either side) expressing a PS activator, much
stronger PS formation was seen than when no PS inhibitor was present. The authors
thus supposed that cell fate is decided with respect to the difference in signal between a
cell and its neighbours.
Mathematically, the ‘neighbourhood watch’ model predicts that a PS will form next to
cell i if

Fi − Fnbhd

Fi

> β (2.3)

whereF represents a cell’s value of the SMAD protein complex, consisting of SMAD1/2/3/4/5/8.
The reason for modelling the SMAD complex is that the amount of the PS activator/inhibitor
received is able to be inferred through the levels of SMAD in a cell [80]. Here,

Fi =
aV Vi

1 + aV Vi + aBBi

, (2.4)
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where Vi and Bi represent the levels of SMAD complex inducer and inhibitor, respec-
tively. The parameters aV , aB are scalings of the protein concentration. The neighbour-
hood signal

Fnbhd =

∑
j Fj

2n
, (2.5)

with j ∈ [i − n, i + 1]\{i} where (2n + 1) is the full width of the neighbourhood. The
threshold β, along with the other parameters, were determined through Markov-Chain
Monte-Carlo (MCMC) Bayesian computation.
The authors found that this model - and notably not a model thresholding only the Fi

value without neighbourhood considerations - was able to reproduce experimental data.
Interestingly, the distance over which cells compared their relative signal to that of sur-
rounding cells was concluded to be farther than the direct neighbourhood. The mecha-
nism by which cells assess their relative signal levels is not explored within this work,
and as such, poses an interesting question on the matter. As for some of the authors’
experiments, the cell pellets for which dependent behaviour was observed were not in
direct contact with each other, there is reason to suppose that signal transduction oc-
curred through the diffusion of morphogens across the cell culture [81]. An exploration
of these signalling mechanisms may present a useful direction for future work.
Stem cells’ genetic state has been successfully modelled as directly regulated by neigh-
bours’ states [82]. The model does not describe a specific system; it is intended for some
mutually exclusive transcription factors. Thus, this model is compatible with the finding
that cell state is inversely related to neighbour state, as different genes exhibit different
activatory/inhibitory behaviour. The authors note its possible relevance for the inner
cell mass (ICM) of the mouse embryo, particularly with respect to the activation and
inhibition of Nanog and Notch. Importantly, the signal being modelled is binary, i.e.
each cell is treated only as positively or negatively expressing a particular gene. The
neighbourhood signal si for the ith cell in the system is modelled as

si =

(∑
j ̸=i

ujq
dij−1

)/(
max

k

∑
j ̸=k

qdkj−1

)
, q ∈ [0, 1], (2.6)

where uj is the signal of the jth cell, dij is the length of the shortest path between the ith
and jth cells, and q is a parameter representing the strength of signal dispersion across
the culture. This neighbourhood signal is incorporated into a larger ODE system which
predicts time-dependent differentiation patterns, with cells computationally represented
as either a tiling of regular hexagons or Voronoi objects. Neighbour-only signalling was
found to result in a checker-board patterning of cell state. Conversely, signalling across
the culture results in larger clusters of cell fate.
In 2023, this model was contextually applied to laboratory-generated data [83]. Data re-
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porting Nanog and GATA6 expression within the ICM of mouse blastocysts was obtained
via existing experimental studies, combined with novel data gathered by the authors. In-
terestingly, for early stage embryos, it was found that the percentage of Nanog positive
cells across the whole tissue was representative of the percentage of Nanog positive
neighbours a given cell was likely to have. Again, only a binary signal was considered.
The best model fit was obtained by incorporating the impact of cell-to-cell signalling
across the entire tissue, suggesting that cell-to-cell contact leads to a ‘trickle down’ jux-
tacrine signal of decreasing intensity as inter-cell distance increases. In agreement with
the ‘neighbourhood-watch’ model [78], this model predicts that the signalling environ-
ment is not limited to the cell’s direct neighbours.
Notably, the model described by Equation 2.6 does not account for cells that have no
direct neighbours, as the framework only accounts for contact-based signalling. How-
ever, as demonstrated by the ‘neighbourhood-watch’ model [78], cells are susceptible to
signalling cues - likely from diffusion - even when not in contact. Moreover, cell pellets
were used for these experiments, rather than single cells. For these reasons, determining
single-cell Nanog expression for isolated cells, comparing this to cells with neighbours,
and incorporating this into a combined model for juxtacrine and diffusive signalling
would be a unique and promising direction of research.
To uncover any effects of positional information on gene expression, it is useful to have
control over the organisation of the cellular environment. This is challenging in un-
constrained cell cultures, but can be achieved using micro-patterned culture inserts that
restrict cell growth to a particular geometry [84]. Edge-sensing mechanisms that have
been reported in stem cell cultures may also be more easily investigated using micro-
patterns to control the boundary of the culture [49].

2.3 Novel Data for Nanog Expression in hESCs onDisc
Micro-Patterns

For data generation, wildtype H7 S14 hESCs were first dissociated to single cells (Ap-
pendix A.1.3), then seeded at a density of 1×106 cells/mm2 on CYTOOChip Arena micro-
patterns (Appendix A.1.4). Each micro-pattern was a 500µm diameter disc, 33 of which
were used in total.
After 3 days from seeding, cells were fixed in place (Appendix A.2.1) and stained for
Nanog and Hoechst (Appendix A.2.2). Hoechst fluorescent dye stains DNA, thereby act-
ing as a nuclear counter-stain. This also allows for all cell nuclei to be identified. The
DAPI/Cy5 channel was used for imaging Hoechst/Nanog, respectively. As Nanog is a
nuclear expressed gene, cell membranes are not visible for the immunofluorescence im-
ages generated in this work. Each image was processed in ImageJ and subsequently
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(a) Immunofluorescence mi-
croscopy image showing Nanog.

(b) Scatter plot of cells coloured by Nanog expression,
quantified by pixel intensity.

Figure 2.1: Representative images of wildtype H7S14 hESC nuclei on a 500µm disc micro-pattern
(CYTOOchip Arena). The same disc is displayed in both images.

CellProfiler, which performed automatic segmentation on the cell nuclei. Information
for each cell was output by CellProfiler as a .csv file, containing 14765 total observations.
The programming language R was implemented for all further analysis. Both Hoechst
and Nanog pixel intensity values were standardised in the range [0, 1]. A representa-
tive immunofluorescence image showing nuclear Nanog expression, together with the
corresponding scatter plot showing cell nucleus centres, are given in Figure 2.1.
Cells in 15 of the 33 micro-patterns displayed some significant overgrowth of the disc
boundaries. For this reason, these 15 images were immediately removed from analysis,
retaining 18 images of clearly defined disc cultures. Histograms were plotted to visualise
the distribution of cells’ Nanog and Hoechst intensities, shown in Figure 2.2. As reported
in the literature [68], two distinct populations of Nanog intensities were observed. Cells
with Nanog intensity ≤ 0.175 were classed as low Nanog (LN), and the remaining cells as
high Nanog (HN). The LN population contained only 718 cells (4.85%), and the remaining
14048 cells were HN. Morphological analysis of the cell nuclei - performed automatically
in CellProfiler in conjunction with object segmentation - revealed that the LN popula-
tion exhibited significantly reduced nuclear area and perimeter than the HN population.
This is demonstrated in Figure 2.3. A Kolmogorov-Smirnov test was used to quantify the
statistical significance of both single-cell area and perimeter between LN and HN dis-
tributions [85]. While morphological nuclear differences are reported in the literature
[86], this is the first time such analysis has been carried out in respect to levels of Nanog
expression.
Hoechst intensity of an individual stem cell can be used to identify the cell cycle phase
[87, 88], with two of the four phases known to promote pluripotency [89]. Specifically,
the S and G2 phases positively regulate the pluripotent state, but only cells in the G1
phase are receptive to molecular signalling, while cells in the M phase are ‘at rest’. It has
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(a) Hoechst intensity distribution. (b) Nanog intensity distribution.

Figure 2.2: Histograms showing the intensity distributions of Hoechst and Nanog for wildtype
H7 S14 hESCs. Low Nanog (LN) and high Nanog (HN) populations were defined according to an
intensity threshold of 0.175.

Figure 2.3: Morphological features of cell nuclei within either the LN or HN population.

been shown that the differentiation propensity of stem cells is coupled to phases of the
cell cycle [90, 91, 92]. As Figure 2.2(a) does not correspond to a cell cycle profile (Ap-
pendix A.5), it is concluded that the cell cycle is unlikely to affect the results presented
here. In case of observing a distinct cell cycle profile using Hoechst staining, only cells
in the G1 phase - in which cells are receptive to their signalling environment - should
be considered.

2.4 Spatial Analysis of Nanog Expression Levels

2.4.1 Defining the Local Cellular Neighbourhood

To quantify each cell’s number of neighbours (i.e. how many surrounding cells share
membrane contact), Delaunay triangulation was performed on each cell nucleus (Ap-
pendix B) [83]. This was combined with a radial distance method (RDM) [45]. The RDM
computes the neighbour set Ni of cell xi as

Ni = {xj|d(xi, xj) ≤ T} (2.7)
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Figure 2.4: Representative scatter plot of cells coloured by number of neighbours, quantified
using Delaunay triangulation with a radial distance threshold of 16.25µm.

for a distance threshold T and Euclidean distance metric d().
The reason for combining these methods is that, for a cell of interest xi and surrounding
cells xj, xk ∈ Ni, the RDM alone cannot determine whether cell xk is ‘blocked’ by cell
xj , i.e. cells xi, xk are not actually in contact with one another. Delaunay triangulation
ensures that, in such cases, cells xi, xj will not share an edge. However, through De-
launay triangulation alone, a cell may be triangulated with other cell(s) outside its local
neighbourhood if there are no immediate cells in a particular direction. Therefore, com-
bining these methods is reasoned to give a novel and robust method for neighbourhood
evaluation.
The average hESC diameter is 12-13µm [93], so the upper bound of 13µm was assumed in
order to capture all neighbours. Then, assuming all cells are perfectly circular and have
a central nucleus, cell nuclei at 13µm apart or less would be likely to be in contact with
each other. However, hESC morphology in confluent cultures is rarely perfectly circular
[94], so a 25% increase was assumed to account for cell ellipticity/eccentricity. By this
calculation, T = 16.25µm. A representative spatial scatter plot of cell nuclei coloured by
their resultant neighbour count is given by Figure 2.4.
To quantitatively verify that the chosen value of T was reasonable for each nucleus
(node), the distance to another node forming part of the same Delaunay triangle was
recorded. Considering the previously discussed possibility of non-neighbouring cells
sharing an edge through Delaunay triangulation, only the distance between a node and
its single closest connected node was recorded for verification of T . Indeed, the mean
distance between a node and its nearest connected node was 12.46µm. This suggests that
the threshold T = 16.25µm is reasonable for capturing all cells in contact.
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Figure 2.5: Violin plot showing single-cell Nanog intensity against the cell’s number of neigh-
bours. Results are across 18 images of disc micro-patterns.

2.4.2 Nanog Intensity is Inversely Related to Neighbour Count

Across all 18 images, each cell’s Nanog intensity was investigated with respect to the
cell’s number of neighbours. The results are shown in Figure 2.5. Examining the me-
dian of each group, the plot shows an inverse relationship between a cell’s number of
neighbours and its Nanog expression. Computational results showed that this trend was
present for slightly increased/decreased threshold values for the neighbourhood radius,
which could account for varied cell ellipticity/eccentricity.
The behaviour of LN and HN cells with respect to number of neighbours was investi-
gated, to understand if this differs between the two populations. On average, the number
of neighbours for LN cells, 3.55, was reasonably similar to that for HN cells, 2.97. How-
ever, whilst the HN population displayed similar qualitative behaviour to that shown
in Figure 2.5, the LN population displayed no clear trend between Nanog expression
and neighbour count. As the LN population consisted of < 5% of the total cells, it was
possible that the Nanog/neighbour relationship emerges only for suitably large cell pop-
ulations. To test this, a random sample of the HN population was taken without replace-
ment (719 cells) to match the size of the LN population (718 cells). Groups defined by
neighbour count were uniformly sampled from. Interestingly, even for this small sample
of the HN population, the Nanog/neighbour relationship was generally prevalent with
some fluctuations; for cells with six or seven neighbours, the strictly decreasing trend in
median Nanog intensity was not present. To visualise these results, Nanog expression
for the LN and HN populations was plotted, as shown in Figure 2.6.
Considering the mechanisms of genetic regulation through the cellular neighbourhood,
it is important to understand whether a cell’s Nanog intensity is related to that of its
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Figure 2.6: Violin plot showing single-cell Nanog intensity against the cell’s number of neigh-
bours. The HN population random sample (719 cells) was generated to approximate the size of
the LN population (718 cells).

neighbours, or instead its neighbour count alone. For differentiating chick ESCs, cell fate
is partially controlled by the difference between a cell’s genetic signal and the average
signal of surrounding cells [78]. To test whether this is the case for signalling in hESCs
from direct neighbours only, the mean Nanog intensity across all neighbours of each
cell was computed. Cells with no neighbours were excluded from this analysis. Nanog
expression among the LN population displayed no relationship with the mean Nanog
intensity of the cell’s neighbours; the correlation coefficient between the two variables
was -0.021. Taken with the behaviour seen in Figure 2.6, LN cells - i.e. cells that may
have begun to acquire lineage - appear to behave independently of their local cellular
neighbourhood. In contrast, as the mean Nanog expression of HN cells’ neighbours
increased, so did the cell’s own Nanog expression, yielding a weak positive correlation
of 0.31. These results are shown in Figure 2.7. The latter result is particularly interesting
in conjunction with that of Figure 2.5; these findings suggest that hESCs express high
Nanog in the presence of few neighbours, with those neighbours themselves expressing
high levels of Nanog. However, as cells with no neighbours express the highest levels of
Nanog on average, a further cell signalling distance - rather than just nearest neighbours
- may control Nanog patterning [83].

2.4.3 Cells at Micro-Pattern Boundary Exhibit Increased Nanog
Expression

An advantage of using micro-patterned cell cultures is the ease of control over the mor-
phology of the culture boundary. As edge-sensing mechanisms have been previously
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Figure 2.7: Scatter plot showing single-cell Nanog intensity against the mean Nanog intensity
of the cell’s neighbours. The vertical line thresholds LN and HN populations.

(a) Representative scatter plot of cells at the
micro-pattern edge.

(b) Violin plot showing cells’ Nanog intensity - aver-
aged per image - vs. distance from the micro-pattern
boundary.

Figure 2.8: Plots displaying the spatial location of edge cells in one image, and the variation of
Nanog intensity averaged across images at the micro-pattern boundary. Edge cells were deter-
mined through computation of the concave hull, using cell nucleus centres as points.
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Figure 2.9: Heat map showing the percentage of cells with a given neighbour count for within
each discrete group representing distance from micro-pattern boundary.

reported as a regulator of self-organisation in the human embryo [49], it was investi-
gated whether such mechanisms appear to be present here.
The concave hull of the polygon enclosing all cell nuclei was computed for each image.
From this, cells that were part of the concave hull were taken to be those at the edge of
the micro-patterned culture. A representative example of this is given in Figure 2.8(a).
For cells not at the micro-pattern edge, distances to the boundary were discretised into 5
spatial groups. It was found that cells at the edge of the micro-pattern displayed signifi-
cantly higher Nanog intensity than non-edge cells. Interestingly, non-edge cells located
50µm or less from the boundary also showed increased Nanog intensity compared to
cells further towards the centre of the disc. Cells further than 50µm from the bound-
ary showed a reduced difference in distributions of Nanog intensities. These results are
shown in Figure 2.8(b). A Kolmogorov-Smirnov test was used to quantify the statistical
significance of Nanog intensities between distributions [85].
As cells at the edge of the culture are reasoned to generally have fewer neighbours than
those more embedded in the culture, the result that edge cells show higher Nanog in-
tensity is unsurprising in relation to the results of Section 2.4.2. However, the result that
cells close to - but not at - the edge also display increased Nanog intensity is interesting.
This may be further indicative of a cell signalling distance greater than direct neighbours,
but there is no reason from these results alone to suspect a signalling distance inclusive
of the entire culture.
To verify whether cells at the micro-pattern boundary had fewer neighbours than other
cells, a heat map was generated to display the percentage of cells with a given neighbour
count for within each discrete group representing distance from micro-pattern bound-
ary. This is given by Figure 2.9. Indeed, the majority of edge cells had only one or two
neighbours, whereas cells further from the boundary showed a wider range of neighbour
counts.
Some studies have linked patterns of gene expression among micro-patterned pluripo-
tent stem cell cultures with reproducible patterns of cell density [30, 45]. In particular,
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(a) Figure S3(a) in Tewary et al.
(2017): ‘Representative immunofluo-
rescent images of colonies stained for
DAPI, SOX2, and NANOG of geomet-
rically confined hPSC colonies cultured
in BMP4 supplemented N2B27. Scale
bars represent 200µm.’

(b) Standardised density map showing the
distribution of hESCs grown on disc micro-
patterns. Data across 18 images is aggregated,
with maximum 25 points per bin.

Figure 2.10: Density distributions of hPSCs grown on disc micro-patterns, where (a) shows an
immunofluorescence image in Tewary et al. (2017), and (b) shows an aggregated cell density map
for the 18 images analysed for this work.

when using disc micro-patterns, a 3D stack of cells has been reported to form in a radially
symmetric pattern [30]. An example of this is given in Figure 2.10(a), which shows the
spatial distribution of every cell nucleus on a disc using immunofluorescence staining.
To investigate whether the results for Nanog expression inversely relating to cellular
neighbour count (presented in Section 2.4.2) were confounded by this phenomenon, a
binned density map was generated for each of the 18 images individually. No patterns
of cell density were observed. The aggregated density map across all 18 images is given
in Figure 2.10(b).

2.5 Data-InformedModelling of Single-CellNanogEx-
pression Using Spatial Data Analysis

In this section, regression models are trained to predict the Nanog intensity vector for
single cells. The response variable is continuous and scaled in the range [0, 1]. The
data was split into training and testing sets with the aim of yielding unbiased models.
Model architectures used were linear regression and Gaussian process regression (GPR).
Linear regression has been successfully applied to stem cell gene expression data in [95],
demonstrating that linear models are applicable for these problems. GPR models are
non-parametric Bayesian regressors known to be powerful for fitting complex functions.
They also are able to take into account stochastic noise that may be present in the data
[96], which is extremely important in the case of single-cell gene expression [68, 73].
The desired train:test ratio was 8:2, which is well within acceptable ratios used [97].
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However, it was important not to split portions of the data pertaining to the same image;
doing so would lose spatial information with respect to surrounding cells. Therefore,
the combination of images that gave the closest approximation to the desired ratio were
selected. Thus, 15 images were used for training, and 3 used for testing. The actual
train:test ratio obtained was 0.794:0.206, where the training set consisted of 11724 data
observations, and 3041 for the testing set.
Based on the previously discussed results, a small set of spatial features were used for
model training:

1. Distance from micro-pattern boundary (µm),

2. Number of neighbours (Z ≥ 0),

3. Mean Nanog intensity of neighbouring cells (R ≥ 0).

2.5.1 Regression Model Architectures and Performance Metrics

Consider a data set withN observations and n features. Then, the input and output data
is

{xi, yi|i = 1, 2, ..., N}, xi ∈ Rd, yi ∈ R,

taken from an unknown distribution. The model architectures used in the remainder of
this section may then be defined as follows.

Linear Regression

Linear regression models take the form

ŷi = β0 + β1xi,1 + ...+ βnxi,n + ϵi, (i = 1, ..., N), (2.8)

where ŷ represents the fitted values, β0 is the y-intercept, the remaining β values are
the coefficients fitted for each feature, and ϵi is the error [98]. Coefficients are estimated
such that the error term is minimised.

Gaussian Process Regression

The GPR model can be defined as

h(x)Tβ + f(x), (2.9)

where f(x) is from a Gaussian process (GP) with zero mean and covariance function
k(x, x′), i.e. f(x) ∼ GP (0, k(x, x′)). The set of basis function h(x) transform the origi-
nal feature vector x ∈ Rd into a new feature vector h(x) ∈ Rp, and β is a p × 1 vector
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of basis function coefficients. The actual response variable y can be modelled as the
probability

P (yi|f(xi), xi) ∼ N(yi|h(xi)Tβ + f(xi), σ
2) (2.10)

with error variance σ. The remaining terms and concepts are defined as follows.
A GP is a set of random variables, such that any finite number of them have a joint
Gaussian distribution. If {f(x)|x ∈ Rd} is a GP, then givenN observations x1, x2, ..., xN ,
the joint distribution of the random variables f(x1), f(x2), ..., f(xN) is Gaussian. A
GP is defined by its mean function m(x) and covariance function k(x, x′). That is, if
{f(x)|x ∈ Rd} is a GP, then

E(f(x)) = m(x) and Cov([f(x), f(x′)]) = E[{f(x)−m(x)}{f(x′)−m(x′)}] = k(x, x′).

A GPR model explains the response by introducing latent variables, f(xi) (i = 1, 2, ..., N)

from a GP and explicit basis functions h. For every observation xi, a latent variable f(xi)
is introduced. The covariance function of the latent variables captures the smoothness
of the response and basis functions project the inputs x into a p-dimensional feature
space. The covariance function k(x, x′) is parameterised by θ, which is a set of kernel
parameters or hyperparameters [99].

Model Performance Metrics

To evaluate model performance, several metrics were used. These were the normalised
root mean squared error (NRMSE), mean percentage error (MPE), the correlation coef-
ficient, and the mean absolute difference between the Moran’s Index (MI) of predicted
and actual response variables. The first three of these are standard model evaluation
metrics for machine learning [100], and MI was successfully implemented to quantify
spatial relationships between Nanog expressing hESCs in [83]. These metrics are now
defined below.
The root mean squared error (RMSE) between the actual response y and predicted re-
sponse ŷ is

RMSE =

√√√√√√
N∑
i=1

(ŷi − yi)
2

N
. (2.11)

Then, the NRMSE can be defined as

NRMSE =
RMSE

(max(ŷ)−min(ŷ))
. (2.12)
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The MPE of ŷ is

MPE =
1

N

N∑
i=1

(∣∣∣∣ ŷi − yi
ŷi

∣∣∣∣ ×100

)
. (2.13)

The correlation coefficient r ∈ [−1, 1] between y and ŷ is

r =
N
∑

yŷ −
(∑

y
)(∑

ŷ
)

√
[N
∑

y2 −
(∑

y
)2
][N

∑
ŷ2 −

(∑
ŷ
)2 , (2.14)

where r = 0 represents no statistically significant correlation, r = −1 total negative
correlation, and r = 1 total positive correlation.
For a spatial variable y, the MI of spatial autocorrelation is defined as

MI(y) =
N

W

∑N
i=1

∑N
j=1wij(yi − ȳ)(yj − ȳ)∑N

i=1(yi − ȳ)2
, MI ∈ [−1, 1], (2.15)

where y hasN observations, ȳ is the mean of y,wij are the elements of a matrix of spatial
weights with zeroes on the diagonal, and W is the total sum of elements in w. So that
cells with no neighbours could be measured by MI , the matrix w was defined such that
the weight between a given pair of cells was the inverse of their Euclidean distance. A
value of MI = 0 indicates no statistically significant autocorrelation, MI = −1 total
negative autocorrelation, and MI = 1 total positive autocorrelation [101].
Then, the mean absolute difference between MI values for y, ŷ is

MI(y, ŷ) =
1

N

N∑
i=1

∣∣∣∣MI(ŷ)−MI(y)

∣∣∣∣ . (2.16)

2.5.2 Results of Linear Regression Modelling

For actual Nanog intensity y and fitted intensity ŷ, the linear regression model fitted to
the training set was as follows:

ŷ = 0.385− 0.000382a1 − 0.0158a2 + 10.4a3, (2.17)

where a1 = distance from boundary, a2 = number of neighbours, and a3 = mean Nanog
intensity of neighbours.
Based on this limited spatial feature set, when applied to the test set, the model yielded
an NRMSE of 0.405, an MPE of 20.7%, MI(y, ŷ) of 0.103, and correlation coefficient 0.449.
The inverse relationship found between cellular Nanog intensity and neighbour count is
represented by Figure 2.11, showing also a linear best fit for the data. This demonstrates
that the means of each group may be very well approximated by a linear model.
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Figure 2.11: Plot showing mean Nanog intensity per neighbour count. A line of best fit with the
formula y ∼ x is applied to the data, with confidence interval shown in grey.

Figure 2.12: Scatter plot showing predicted vs. actual mean Nanog intensity (grouped by number
of neighbours) for cells in the testing set. NRMSE = 0.0282, MPE = 0.309%, MI(y, ŷ) = 0.0117.

A linear regression model was fitted to the means of the variables a1, a2, a3, denoted ā1,
ā2, ā3. The resultant model is given by

ŷ = 0.501− 0.000956ā1 − 0.00929ā2 + 1.42ā3. (2.18)

This model yielded an NRMSE of 0.0282, an MPE of 0.309%, MI(y, ŷ) of 0.0117, and cor-
relation coefficient 0.988. These results are - as expected - markedly improved as a con-
sequence of predicting only the mean Nanog intensity per neighbour group. Results are
shown in Figure 2.12.
It was apparent that both linear regression models, given in Equations (2.17-2.18), pre-
dicted a reduced range of Nanog intensities compared to the actual data. To visualise this,
overlaying histograms of predicted and actual response variables were plotted, which
are shown in Figure 2.13. In terms of feature coefficients, distance from disc bound-
ary and number of neighbours contributed negatively to the predicted value. This is in
accordance with earlier results of this chapter shown in Figure 2.5. Conversely, the con-
tribution from neighbouring Nanog intensities is positive, suggesting that cells exhibit
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(a) Produced by Equation 2.17. (b) Produced by Equation 2.18.

Figure 2.13: Histograms showing distributions of the predicted and actual response variable
yielded by the models given in Equations (2.17-2.18), respectively.

(a) Scatter plot. (b) Histogram.

Figure 2.14: Plots for visualising GPR model performance when used to predict Nanog intensity
levels of cells in the testing set. NRMSE = 0.682, MPE = 20.0%, MI(y, ŷ) = 0.0194.

greater Nanog expression levels in the presence of increased average neighbourhood
Nanog expression. This fits with the results shown in Figure 2.7. When Equation 2.18
was used to predict mean Nanog intensity per number of neighbours, all model per-
formance metrics significantly improved from that yielded through Equation 2.17. This
may suggest that there is an intrinsic relationship between Nanog expression and spatial
features, which emerges for averaged populations, but may be confounded by stochastic
Nanog fluctuations which introduce significant noise [68, 73].

2.5.3 Results of Gaussian Process Regression Modelling

The radial basis function kernel, i.e. the Gaussian kernel, was used for GPR model train-
ing. When used to predict the Nanog intensity vector of the testing set, the resultant
GPR model had an NRMSE of 0.682, an MPE of 20.0%, a correlation coefficient of 0.443,
and an MI(y, ŷ) of 0.0194. These results are shown in Figure 2.14(a). Similarly to the lin-
ear regression models, the GPR model produced a far reduced range of prediction values
compared to actual Nanog intensity values. This is shown through overlayed intensity
histograms for predicted and actual responses, given in Figure 2.14(b).
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2.6 A Novel Spatial Model of Nanog Expression Com-
bining Diffusive and Juxtacrine Signalling

2.6.1 Mathematical Formulation of Nanog Expression Model

The cell population is represented as a network, where nodes are centres of cell nuclei.
There exists an edge between nodes if the corresponding cells are spatial neighbours (cal-
culated according to Section 2.4.1), i.e. likely to be in physical contact. Nanog expression
is then postulated as a linear combination of functions that relate to (1) positional in-
formation relative to the micro-pattern disc boundary, (2) cell-to-cell contact (juxtacrine
signalling) in the neighbourhood, and (3) diffusive signals conducted through culture
media (cells do not need to have neighbours to be subject to this).
The formulation of the cell network yields an undirected graph G(V,E) with vertices
V and edges E, where |V | = N (the total number of cells) and |E| ≤ |V |. Applying a
shortest path algorithm to G, each cell pair i, j has a topological step distance

sij = min(s(i, j)), (2.19)

where s() represents the number of steps involved in a possible path between i, j. As
cells with no direct neighbours have no edges assigned to them in G, neighbour-less
cells have no associated step distances. Cells are spatially non-uniform in culture, so the
inter-cellular Euclidean distance measure d() is also applied, such that

dij = (d(i, j)), (2.20)

i.e. the linear distance. These may be regarded as edge weights.
The contact-based step distance given in Equation 2.19 may be used for the quantification
of juxtacrine signalling. In conjunction with this, small molecules present in the culture
media, which freely diffuse across the cell membrane, act as signals for the cells [102].
The diffusion profile often takes the form of a Gaussian distribution or, similarly, a first-
order Bessel function [103]. Therefore, the Gaussian function

uij = exp
(
−(dij)

2

4D

)
, D ∈ [10−4.2, 10−2] (2.21)

is used to describe the diffusive signalling strength between cells i, j, whereD represents
the diffusion constant [103, 104]. Diffusion does not rely on contact-based signalling, but
is affected by Euclidean signalling distances. Examples of the diffusion profile with the
maximum and minimum diffusion coefficient are given in Figure 2.15.
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Figure 2.15: Diffusion profiles according to the Gaussian function exp(−(dij)
2/4D), where

dij is the Euclidean distance between the nuclei of cells i, j and D is the diffusion constant.
Maximum and minimum values for D are plotted.

The model for predicting the Nanog expression of cell i is thereby given as

xi =
c1

Ωk1
i

+ c2
∑
j ̸=i

xjuij −
c3

nk2
i

∑
j ̸=i

xjq
(sij−1) + ξ(i),

q, c1, c2, c3 ∈ [0, 1], k1, k2 ∈ [1, 2],

(2.22)

where Ωi is the distance in µm between cell i and the disc boundary, ni is the number
of neighbours for cell i, and q represents the contact-based signalling strength. Notably,
q = 0 results in signalling from only direct neighbours (those in contact), i.e. sij = 1, as
then 0(sij−1) = 1 for all direct neighbours and 0 otherwise. Additionally, q = 1 assumes
that culture-wide signals are maximally received, as 1a = 1 for all a ∈ Z [83]. As gene
expression is subject to intrinsic noise that has significant impact on the overall cell state
[105], the term ξ(i) represents stochastic Gaussian noise with zero mean in the range
[−0.1, 0.1] applied to cell i. The y-intercept of the function is given by c1/Ωk1

i , with the
remaining parameters c2, c3 representing the successfully received proportion of sig-
nalling. Parameters k1, k2 were permitted in the range [1, 2] to investigate increasing
non-linearity of the terms they are part of.

Model Optimisation

The goal of optimisation is to minimise a given cost function. For this work, the param-
eters D, q, c1, c2, c3, k1, k2 were optimised to best fit the actual Nanog intensity vector.
The basic minimisation problem is formulated as

min
x
f(x), h(x) = 0, g(x) ≤ 0. (2.23)
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The solution to the optimisation problem was obtained using an interior-point algorithm,
which solves a sequence of approximate minimisation problems. For each µ > 0, the
approximate problem is

min
x,b

fµ(x, b)f(x) = min
x,b

f(x)− µ
∑

ln(bi),

b ≥ 0, h(x) = 0, g(x) + b = 0,
(2.24)

where bi are slack variables that must remain positive to ensure that iterations are kept
in the interior of the feasible region. Notably,

lim
µ→0

fµ = min(f). (2.25)

The logarithmic term in Equation 2.24 is a barrier function, which is a continuous func-
tion that tends to infinity as the interior point tends to the boundary of the feasible
region [106].
As Equation 2.24 presents an equality problem, rather than the inequality problem posed
by Equation 2.23, it is now easier to solve. The interior-point algorithm uses two step
types at each iteration:

1. A direct step in (x,s), attempting to solve the Karush-Kuhn-Tucker (KKT) condi-
tions using a linear approximation,

2. A conjugate gradient (CG) step, using trust conditions,

which are presented in order of choice. The auxiliary Lagrangian function is defined as

L(x, λ) = f(x) +
∑

λg,igi(x) +
∑

λh,ihi(x), (2.26)

where the vector λ = [λg,i, λh,i] is the Lagrange multiplier, and g, h are the inequality
and equality restraint vectors, respectively. Then the KKT conditions are:

∇xL(x, λ) = 0, λg,igi(x) = 0 ∀i. (2.27)

Upon each iteration, the algorithm decreases a merit function:

fµ(x, b) + ν||(h(x), g(x) + b)||, (2.28)

where the parameter ν may increase at each iteration to force the solution into the feasi-
ble region. If a step does not decrease the merit function, the step is rejected, with a new
step implemented instead. Similarly, a new step is implemented if the function returns
non-permitted values, e.g. a complex or non-numeric value.
The ‘direct step’ uses the following variables:
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1. The Hessian of the Lagrangian of fµ:

H = ∇2f(x) +
∑
i

λi∇2gi(x) +
∑
j

yj∇2hj(x).

2. The Jacobian of the constraint function g: Jg.

3. The Jacobian of the constraint function h: Jh.

4. B = diag(b).

5. The Lagrange multiplier vector associated with constraints g: λ.

6. Λ = diagλ.

7. The Lagrange multiplier vector associated with h: y.

8. The vector of ones the same size as g: e.

Then, using a linearised Lagrangian, the direct step (∆x,∆b) is as follows:
H 0 JT

h JT
g

0 Λ 0 B

Jh 0 0 0

Jg I 0 0



∆x

∆b

∆y

∆λ

 = −


∇f(x) + JT

h y + JT
g λ

Bλ− µe

h

g + b

 . (2.29)

For the ‘conjugate gradient step’, both x are b are altered, with b > 0. The approximate
problem may be estimated by a quadratic expression in a trust region, subject to lin-
earised constraints.
Introducing the parameter R, which is the radius of the trust region, the Lagrange mul-
tipliers

∇xL = ∇xf(x) +
∑
i

λi∇gi(x) +
∑
j

yj∇hj(x), λ > 0, (2.30)

are obtained by approximately solving the KKT equations using a least-squares method.
Then a step (∆x,∆b) is sufficient to approximately solve

min
∆x,∆b

∇fT∆x+
1

2
∆xT∇2

xxL∆x+ µeTB−1∆b+
1

2
∆bTB−1Λ∆b, (2.31)

subject to the linearised constraints

g(x) + Jg∆x+∆b = 0, h(x) + Jh∆x = 0. (2.32)

To solve Equation 2.32, the norm of the linearised constraints is computed and minimised
by the algorithm within a region with radius scaled by R. By solving this equation to
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generate its residuals, Equation 2.31 is able to be resolved by matching its constraints
with the residuals, remaining within R.
The barrier parameter µ, used in Equation 2.24, must be updated such that µ → 0 as
iterations increase. To do so, the algorithm decreases µ by a factor of 1/100 or 1/5 when
the approximate problem is solved with sufficient accuracy. The former fraction is used
when the algorithm takes either 1 or 2 iterations to achieve sufficient accuracy, with the
latter fraction used otherwise. The measure of accuracy is as follows:

max
(
||∇f(x) + JT

h y + JT
g λ||, ||Bλ− µe||, ||h||, ||g(x) + b||

)
< µ. (2.33)

This algorithm is taken from [107], which is implemented by MATLAB’s ‘fmincon’ op-
timisation function.

2.6.2 Modelling Results

To optimise parameters, four different cost functions (corresponding to the four model
performance metrics used for regression modelling) were implemented:

1. NRMSE between predicted and actual Nanog intensity levels,

2. MPE between predicted and actual Nanog intensity levels,

3. Correlation coefficient between predicted and actual Nanog intensity levels,

4. Absolute value of the difference between the MI of predicted and actual Nanog
intensity levels.

All optimisation was performed per image due to the construction of the optimisation
function. Stopping criteria was defined such that optimisation outputs were within a 20%
error tolerance for each cost function. For the first stage of parameter optimisation, cells
that were assumed to respond only to diffusive signalling - i.e. those without neighbours
- were selected from the image data. Then, the parameters D, c1, c2, k1 were fitted on
this subset. Next, using these results for the diffusive signalling portion of the model,
the remaining parameters q, c3, c4, k2 were fit on the cells that were assumed to respond
to both diffusive and juxtacrine signalling, i.e. those with at least one neighbour.
When fitting parameters for cells assumed to respond only to diffusive signalling, results
from using each of the cost functions were compared. The mean of each parameter value
per image was computed and used as the fitted parameters. As there was little variation
in each parameter across the images, this approach was deemed reasonable. Using these
results, parameters were optimised for cells that have at least one neighbour, i.e. assumed
to respond to both diffusive and juxtacrine signalling. After this was done for each image,
the mean value of every parameter that had not yet been fitted was calculated, as again
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(a) Cost function: NRMSE. (b) Cost function: MPE.

(c) Cost function: correlation coefficient. (d) Cost function: Moran’s Index.

Figure 2.16: Histograms showing the distribution of actual and predicted Nanog intensity levels,
generated by Equation 2.22, using the given cost function for model optimisation.

Table 2.1: Fitted parameter values for the Nanog expression model.

c1 c2 c3 D q k1 k2
0.415 0.0469 4.55e-08 0.00552 0.213 1.25 1.37

there was little variation in these parameters across images.
Histograms for results generated using each of the four cost functions are shown in
Figure 2.16. As this figure shows, the best fitting histogram is that which uses NRMSE
as the cost function. Hence, this was taken to be the final model - fitted parameters for
this model are given in Table 2.1. The model gave an NRMSE of 0.142, an MPE of 78.4%,
a correlation coefficient of 0.0441, and an MI(y, ŷ) of 0.0420.

2.7 Summary and Discussion

In this chapter, a novel spatial analysis and novel spatial models of Nanog expression
have been presented. The goal was to progress understanding of how Nanog expression
in pluripotent stem cells is affected by signalling cues from the cellular environment. A
new method for quantifying a cell’s number of neighbours was introduced, which com-
bines Delaunay triangulation and a radial distance threshold, thereby removing the need
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for cell membrane staining during cell culture. Informed by results of neighbourhood
analysis, a novel predictive model is developed for the static and continuous Nanog ex-
pression of single cells. The model is the first to combine the effects of both diffusive and
juxtacrine signalling in pluripotent cell populations.
Investigation of the Nanog distribution across all cells revealed a large HN population,
with a much smaller LN population (∼5%) [68]. LN cells displayed significant differences
in nuclear morphology, showing a reduction in nuclear area and perimeter compared to
HN cells. From existing literature [86], this provides support that the LN cells were in a
state of low pluripotency and more prone to differentiation.
Spatial analysis carried out using the new methodology for neighbour computation re-
vealed that Nanog intensity was inversely related to neighbour count. Interestingly,
while apparent for the total cell population, the LN cells alone did not display this rela-
tionship. Taking a random sample of HN cells that matched the size of the LN population
generally preserved the relationship between Nanog and neighbour count, suggesting
that LN cells are intrinsically less susceptible to juxtacrine signalling cues from their
neighbours. As these cells are likely more prone to differentiation, these results may
suggest that, while cells are pluripotent, the gene expression dynamics of pluripotency
regulators in the local cellular neighbourhood plays an important role in regulating cell
state. However, cells that have begun to lose pluripotency may become less dependent
on the pluripotency state of their neighbours as a decision-making mechanism.
Further analysis was performed to investigate the relationship between a cell’s Nanog
intensity and the mean continuous intensity of its neighbours. This revealed that LN
cells generally showed no relationship between these two variables, whereas the Nanog
intensity of HN cells generally increased as the mean intensity of their neighbours in-
creased.
Previous reports have been made regarding the edge-sensing mechanisms of stem cells
[49]. As expected, cells at the edge of the disc micro-patterns exhibited fewer neigh-
bours and higher Nanog intensities. Interestingly, cells that were close to - but not at
- the boundary also had slightly increased Nanog intensities compared to cells more
embedded in the cultures, despite having more neighbours. This may be due to diffu-
sive signalling cues which travel across a wider signalling environment than neighbours
only [78]. To determine whether the inverse relationship observed between Nanog ex-
pression and neighbour count was a result global cell density as has previously been
reported [45, 30], a density map was produced across all images, showing a fairly uni-
form distribution of cells across each disc. Therefore, the spatial results were unlikely to
be confounded by global density phenomena.
Linear regression models were trained on each image to predict continuous single-cell
Nanog intensity using only three variables: (1) distance between the cell and disc bound-
ary (µm), (2) the cell’s number of neighbours (Z ≥ 0), and (3) the mean Nanog expres-
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sion level of directly neighbouring cells (R ≥ 0). Across all images, the model yielded
an NRMSE of 0.405, MPE of 20.7%, correlation coefficient of 0.449, and MI(ŷ, y) of 0.103
between predicted and actual Nanog expression levels.
A data-informed spatial model of Nanog expression levels that accounts for (1) posi-
tional information relative to the micro-pattern disc boundary, (2) cell-to-cell contact
(juxtacrine signalling) in the neighbourhood, and (3) diffusive signals conducted through
culture media was developed. The model achieved an NRMSE of 0.142, MPE of 78.4%,
correlation coefficient of 0.0441, and MI(ŷ, y) of 0.0420. Unlike the linear regressor, this
model also incorporates stochastic Gaussian noise to represent the intrinsic boisy fluc-
tuations in cellular Nanog expression, which may negatively impact the predictive ac-
curacy of the model.
Interestingly, for the HN population only, the model achieved a good NRMSE of 0.135,
(less than that of the model overall), while the NRMSE for the LN population was 0.389,
which is almost thrice that of the HN population. Thus, this chapter has shown that LN
cells are less influenced by their cellular environment, which is supported through LN
cell state less able to be accurately modelled by signalling cues from surrounding cells
compared to the HN population.
The modelling presented in this chapter has limited application potential due to the low
accuracies produced. Due to the extreme complexity of embryogenesis, a model that
relies on a single genetic marker may not be sufficient. Moreover, stem cell state is con-
stantly changing prior to fate acquisition [68, 108, 109]. It may be the case that predict-
ing the static expression levels of a gene expressed during pluripotency - which captures
only a snapshot of the noisy and dynamic cell state - based on spatial features alone may
utilise too little information about the cells to give highly accurate results. However,
it offers a much more cost and time effective approach to obtaining time-series gene
expression data. Despite low correlation between actual and predicted intensities, the
histograms of the two distributions matched reasonably well. Therefore, it may be con-
cluded that, if seeking a population-wide estimate of a gene intensity distribution, the
model proposed in this chapter could provide a useful tool - particularly to gain insight
into neighbourhood signalling. Modelling the dynamic evolution of cell state during
cell culture expansion requires dynamic models with temporal evolution, which may be
more appropriate [82, 83].
Induced differentiation of PSCs towards one specific fate for the entire cell popula-
tion minimises genetic heterogeneity of fate markers. Appendix C presents a detailed
methodology for classifying single-cell binary Sox10 expression in H9TVD3 hESCs using
information about the local neighbourhood; this model achieved an excellent accuracy
of 92.7%.
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Chapter 3

A Novel Symmetry-Based Dynamical
Modelling Paradigm for Stem Cell
Fate Patterning

3.1 Introduction

There are many factors known to influence lineage commitment of stem cells. A key
factor uncovered over the past decade is the shape of the culture domain, which can
be controlled through micro-patterned plate inserts which lead to selective cell adher-
ence on the micro-pattern surface. At present, mechanisms by which culture geometry
regulates hPSC fate patterning are not fully understood. In this chapter, this problem
is addressed. Stem cell cultures are represented as a network, where nodes correspond
to cells, and edges exist between cells in direct contact in culture. A novel method for
defining symmetries of an undirected graph is then proposed. For this, an iterative pro-
cedure is developed to partition the graph’s cells and edges into equivalence classes,
where cell equivalence relations correspond to cell symmetries. This leverages existing
methods by evaluating the graph in full, rather than each cell’s local neighbourhood
alone. Importantly, each cell has internal dynamics which take into account its spatial
relation to all other cells. For this, novel dynamical model system is proposed, describ-
ing the spread of a differentiating morphogen across the cell culture. Thus, a dynamical
vertex model of differentiating cells in culture is developed. Equilibria of the dynamical
system are modelled as final cell fates, as morphogen concentration is temporally invari-
ant at system equilibrium. Patterning of cell equilibria qualitatively recapitulates spatial
fate patterning found in numerous published experiments. Moreover, the model is topo-
logically flexible and can record single-cell gene expression evolution for growing cell
populations. Thus, the novel model presented offers a promising and useful paradigm
that may help to understand how cell fate patterning is impacted by culture geometry.
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Structure of this Chapter

The remainder of this chapter is set out as follows. Section 3.2 provides background and
a literature review within the field. In Section 3.3, the reaction-diffusion model given in
[30] for morphogen concentration is re-created, and sensitivity of the results to sensible
alterations to the initial Noggin profile is investigated. Section 3.4 models cell-to-cell
interactions using the coupled map lattice architecture, and it is shown that this archi-
tecture lacks ability to accurately produce hPSC fate patterning for micro-patterned cul-
tures. Section 3.5 formalises a novel methodology for assigning symmetry relations to
nodes of an undirected graph. Section 3.6 introduces a novel dynamical system for mor-
phogen concentration, which is modelled as internal dynamics for nodes of the graph.
Simulated results are given in Section 3.7, representing a range of micro-patterned cul-
ture domains. Section 3.8 applies this model to a novel growing cell network for in-
creased biological relevance, simulating the growth of a hPSC population from a single
cell. Finally, Section 3.9 presents a conclusion of this chapter and a discussion of the
results.

3.2 Background and Literature Review

One of the earliest lineage decisions that hPSCs make is differentiation into one of the
three primary germ layers: ectoderm, mesoderm or endoderm. These germ layers are
the basis of all somatic cell types in the body [25]. In unconstrained hPSC cultures,
heterogeneous differentiation of cells into each of the germ layers can be observed, but
there remains no clear link between cell fate and the spatial organisation of the cells
[34].

Cell Fate Patterning is Dependent on Culture Geometry

To investigate whether the heterogeneous patterning of cell fate for unconstrained cul-
tures is due to the colonies’ irregular geometry, hPSCs can be grown on micro-patterns
to control the size and shape of colonies. A groundbreaking study imposing radial sym-
metry on cultures of hESCs was conducted in 2014, where cells were grown on micro-
patterned discs of 250, 500, and 1000 µm in diameter [31]. The micro-patterns used were
CYTOOchips™, which have an activated adhesive surface that is able to be coated as
normal in stem cell culture.
To induce differentiation of hESCs, bone morphogenetic protein 4 (BMP4) ligand was
administered to cell cultures at a homogeneous concentration of 50ng/ml. BMP4 is cru-
cial during early embryogenesis; performing a knockout of BMP4 leads to embryonic
death, and BMP4 deficient mice do not develop mesodermal cells [110]. BMP4 has been
found to induce differentiation into trophectoderm and also a combination of embryonic
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Figure 3.1: Immunofluorescence staining image from Tewary et al. (2017), showing rings of gene
expression patterning in differentiated hESCs on a disc. Blue, green, and red staining shows Sox2,
Brachyury, and CDX2 positive cells, respectively. Scale bar: 50µm.

and extra-embryonic mesoderm [111]. Trophectoderm refers to the outer layer of the
blastocyst, also called trophoblast [112]. After administering BMP4, the cells were ob-
served to have differentiated after 24 hours. After 42 hours, the cells were fixed with 4%
paraformaldehyde, and subsequently stained for the genes Oct4, Nanog, Sox2, CDX2,
Brachyury, Sox17, and Eomes. Pluripotent cells express the first three of these genes,
but Sox2 is also maintained when cells differentiate to ectoderm and is down-regulated
when cells differentiate to mesendoderm. Conversely, Oct4 and Nanog regulation be-
haves vice-versa. The remaining genes CDX2, Brachyury, Sox17, and Eomes are not
associated with pluripotency, and are only expressed when cells begin to differentiate;
CDX2 and Brachyury both mark differentiation to mesoderm, whilst Sox17 marks en-
doderm and Eomes marks mesendoderm.
On discs of 1000 µm diameter, it was found that gene expression among the cells fol-
lowed a reproducible, radially symmetric pattern. Cell fate was subsequently inferred
from the co-expression of genes. Starting at the centre of the colonies and moving out-
wards, rings of ectoderm, mesoderm, endoderm and trophectoderm were observed. The
corresponding immunofluorescence microscopy image is given by Figure 3.1. Crucially,
this result demonstrates how imposing a simple spatial constraint on hESC cultures can
overcome the heterogeneous patterning that occurs in unconstrained cultures.
Furthermore, this phenomena was found to differ when the colony radius was decreased;
the same gene expression was observed at the colony edges, but the Sox2 positive re-
gions towards the colony centres were lost in favour of Nanog positive cells. In colonies
of 250 µm diameter, Sox2 expression was lost entirely. This may indicate that patterning
is controlled from the colony edge, possibly because a diffusible inhibitor with a high
central concentration is lost at the colony edge. To test this, a gene knockdown exper-
iment was conducted on the BMP inhibitors Chordin and Noggin, resulting in a higher
expression of mesodermal markers in the centre of the colony, as was expected.
The protein Noggin, which is directly induced by BMP4 exclusively in hPSCs, has been
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found to be responsible for signalling asymmetries among cultures of hPSCs on disc
micro-patterns [49]. Deleting Noggin was found to produce a spatially homogeneous
profile of the gene pSMAD1, which was otherwise localised at the colony border af-
ter BMP4 treatment. Edge-sensing mechanisms were concluded to control fate pattern-
ing through the spatial organisation of TGF-β receptors on hPSCs. Specifically, at high
cell density, hPSC TGF-β receptors are lateralised to face the centre of the cell colony,
whereas cells at the colony edge - subject to reduced cell density - remain to have TGF-β
receptors located at their apex. As BMP4 is part of the TGF-β family, this provides an
explanation of the observed cell fate patterning.
The literature discussed above reflects the initial sole focus on disc micro-patterns as
spatial control for hPSC fate. In more recent years, additional geometries have been ex-
ploited as micro-patterns for cell culture.
In 2020, the effects of differentiating hESCs with BMP4 with respect to mesodermal fate
patterning was investigated using various micro-pattern geometries [47]. The purpose of
using different geometries was to explore the link between mechanical tension in the cell
culture and the resultant cell fate. As Brachyury is a mesodermal marker, immunoflu-
orescence imaging was used to quantify Brachyury expression levels per cell. Particu-
lar attention was paid to an equilateral triangle micro-pattern, and a related trapezium
which was obtained by removing the triangle’s upper section. In the case of the equilat-
eral triangle, Brachyury was found to localise at the three vertices 30 hours after BMP4
differentiation. At around 36 hours, hESCs began to express Brachyury around the entire
perimeter of the micro-pattern in addition to the vertices. Upon measuring the traction
stresses across the micro-pattern, the authors found that, at 30 hours, these corresponded
to the triangle vertices. Therefore, high traction stress may induce mesodermal cell fate.
As further investigation, a trapezium micro-pattern was created by removing the up-
per portion of the equilateral triangle. The result of this was decreased traction stress
where the micro-pattern was cut, whilst retaining high traction stress at the lower two
vertices. As the authors expected, Brachyury localisation was lost at the upper part of
the trapezium, but remained localised at the lower vertices. It has since been found that
the protein actomyosin regulates mechanical tension in the embryo of Drosophila [113],
which may also apply to mammalian systems.

Mathematical Models for hPSC Lineage Decisions

Interpretations and inferences are often drawn from experimental results through quan-
titative analysis. In particular, how hPSCs arrive at a specific cell fate may be modelled
mathematically, such as by considering the changing gene expression profile of each cell
as the cell acquires lineage. An influential model of this kind was proposed in 2005 [114],
inspired by Waddington’s epigenetic landscape [115]. The concept is that every cell can
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be represented as a point in high dimensional state space, where the entire state space
is akin to Waddington’s landscape. Each axis corresponds to the cell’s expression level
of a particular gene; this is why the dimensionality of the system is high, as hPSCs may
express some level of thousands of genes. Mathematically, for a system of N genes, this
is represented by the following:

S(t) = [x1(t), x2(t), ..., xN(t)],

where S(t) is the state of the cell at time t, and [x1(t), x2(t), ..., xN(t)] is a state vector,
with xi(t) (for i = 1, ..., N ) having some effect on each other due to activatory/inhibitory
gene responses. The authors use the term ‘attractor state’ to describe the steady states of
the system, corresponding to cell fates. These attractor states may be thought of as sinks,
as proposed by Waddington, in which cells that are close enough get drawn into. The
goal of this research was to determine the most efficient way of pushing cells towards
a specific lineage; if the state vector of a cell is known, together with the state vector
of the desired fate (attractor state), the shortest path between these two vectors can be
calculated. Moreover, a cell’s trajectory need only enter the region of the state space
that would pull it towards the desired attractor state, known as the basin of attraction.
Knowing the minimal conditions required to achieve this could allow the design of effi-
cient protocols for altering cell fate.
The research on this topic was continued in a paper published in 2007 [116]. To inves-
tigate the sort of behaviour that might be expected from the system, the authors con-
sidered a simple auto-regulatory network that takes the form of conventional gene reg-
ulatory network [117]. This models two transcription factors that are well understood:
GATA1 and PU.1. These two proteins are known to govern the lineage of multipotent
progenitor cells. Whilst progenitors are not hPSCs, they are closely related, and may of-
fer useful insights into lineage acquisition using a far less complex system. Considering
the cell state S, we have that S(t) =[GATA1, PU.1] at time t. Denoting GATA1 and PU.1
as x1 and x2 respectively, the authors derived the following system of ODEs:

dx1
dt

= a1
xn1

θna1 + xn1
+ b1

θnb1
θnb1 + xn2

− k1x1,

dx2
dt

= a2
xn2

θna2 + xn2
+ b2

θnb2
θnb2 + xn1

− k2x2,

where a1, a2, b1, b2, k1, k2, and all of the θs are non-negative parameters. The first, sec-
ond and third terms in each equation represent auto-stimulation, cross-inhibition and
unregulated decay, respectively. The aim of this system was to analyse the qualitative
behaviour exhibited by varying the parameters - rather than imposing restrictions by
fitting the model to experimental data - to gain information about the general mecha-
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nisms surrounding cell fate.
Analysis of the system’s time-invariant solutions revealed two stable and one unstable
steady states, the latter taking the form of a saddle point around the basin of attraction
of the two stable steady states. Biologically, the stable steady states correspond to spe-
cific cell fates (erythroid and myeloid respectively), whilst the third represents a bipotent
progenitor state, able to acquire either fate. This simplistic model serves the purpose of
showing that formalising cell state in this way indeed allows the differentiation potential
of a cell to be quantified, and the stability of possible fates to be analysed mathemati-
cally.
For reasons explained by Huang in a solo-authored paper on the topic, published in
2010, a model of this type would need to be stochastic in order to be biologically accu-
rate [118]. Upon introducing the state space model, the assumption was made that each
cell may be regarded as a deterministic point. However, Huang concluded that the cell
must be regarded as a cloud of points, as the inevitable gene expression noise of a cell
will cause random fluctuations to the cell’s state [73]. Consequently, any trajectory that
the cell follows will also be stochastic, taking the form of a random walk. This further
complicates the model beyond the already challenging high dimensional state space and
difficulty obtaining the relevant single-cell data with which to validate the model, and
no additional research has been published explicitly on the topic of modelling hPSC fate
using these methods. This suggests that capturing the breadth of hPSC dynamics in such
a model may be too difficult to achieve at present. Although inferring lineage trajecto-
ries from this type of model may not be currently achievable, it provided a mathematical
framework for modelling hPSCs that many other researchers have built upon.
Alternative models may focus not on distances between gene expression states, but on
how gene expression patterns change in response to varied differentiation signals. The
formation of vertebrate embryos entails distinctions between the anterior-posterior and
the dorsal-ventral axes [119]. Using a 3D model, the formation of human axes was inves-
tigated in vitro with hESCs [120]. BMP4 was administered to colonies of hESCs, showing
that axial symmetry breaks despite the dose of BMP4 being homogeneously distributed.
This followed a similar study conducted by the same authors in 2018 [121]. In accor-
dance with previous studies [122], it was found that altering the concentration of BMP4
administered to the cultures was sufficient to produce differences in patterning. This
may be a result of the increased probability of BMP4 at high concentrations coming into
contact with the BMP4 binding site on hESCs.
Some useful mathematical tools are introduced in this paper to quantify symmetry break-
ing. The first is a vector, denoted by µ⃗, which measures the spatial segregation between
the Brachyury positive and Sox2 positive domains of the cultures. The magnitude of
µ⃗ increases/decreases as the degree of symmetry breaking increases/decreases. Using
this metric, it was found that µ⃗ is largely unaffected by the size of colonies. The second
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metric used is a cell mixing parameter σ, quantifying the compactness of the regions
of Brachyury positive cells and Sox2 positive cells. A high σ corresponds to complete
mixing, i.e. salt-and-pepper mixing. It was found that the regions were not well mixed
irrespective of colony radius. However, regions of Brachyury positive cells had consis-
tently higher density than regions of Sox2 positive cells. These results raise interesting
questions about the link between culture morphology and signalling within the cul-
ture. In particular, the results may indicate a relationship between cell density and gene
expression, though this is unexplored by the authors. Importantly, blocking specific sig-
nalling pathways led to symmetry breaking despite the cultures not morphologically
resembling the embryo. This may suggest that the local cellular neighbourhood has a
greater impact on cell behaviour than culture-wide features.
To explain the radially symmetric fate patterning yielded by differentiating hESCs on
a disc micro-pattern [31], a novel reaction-diffusion system was proposed in 2017, con-
sisting of two coupled partial differential equations (PDEs) [30]. The system describes
the dynamics of BMP4/Noggin interaction in cultures of hESCs; recall that Noggin is an
exogenous inhibitor of BMP4. This work followed from the experimental results, along
with the simple reaction-diffusion model, earlier discussed. The goal was that by observ-
ing the patterns of BMP4/Noggin concentration predicted by the model, some degree of
the heterogeneity in cell fate may be explained.
The non-dimensionalised reaction-diffusion system is as follows:

∂bmp∗

∂t
= aBMP bmp

∗ + bBMPnog
∗ + c∗BMP − dBMP bmp

∗ +DBMP∇2bmp∗, (3.1)
∂nog∗

∂t
= aNOGbmp

∗ + bNOGnog
∗ + c∗NOG − dNOGnog

∗ +DNOG∇2nog∗, (3.2)

with initial conditions

bmp∗(t = 0) = BMPi, (3.3)

nog∗(t = 0) = {0 ≤ 1−
( x
R

)2
−
( y
R

)2
}, (3.4)

and boundary conditions

bmp∗(Ω) = BMPi, (3.5)
d(nog∗(Ω))

dΩ
= 0, (3.6)

whereR represents the colony radius and Ω represents the boundary. Thus, Equation 3.6
is the Neumann boundary condition describing no-flux. The value BMPi is the initial
concentration of free bmp∗ in the system. Parameter values are given in Table 3.1.
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Table 3.1: Parameter values given by Tewary et. al (2017) for their reaction-diffusion model
describing the concentrations of BMP4 and its inhibitor Noggin.

Parameter Value
α 0.005

bBMP 0.01
c∗BMP 0.003
dBMP 0.003
DBMP 11
bNOG 0
c∗NOG -0.015
dNOG 0.009
DNOG 55
γBMP -
γNOG 0.0025
aBMP α(1 +BMPi× γBMP )
aNOG α(1 +BMPi× γNOG)

To simulate the results of the model computationally, the authors used finite element
method to discretise the equations using the software COMSOL. As part of this process,
a circular domain, representing the 2D colony, was partitioned by a triangular mesh.
Videos were generated by running the simulation over an arbitrary number of discrete
time steps. The model was able to produce results which closely resemble the authors’
experimental data. The only values being varied each time were the initial concentration
of BMP4 (0, 50, or 200ng/ml) and the colony diameter (1000 or 3000 µm).
However, whilst this model does produce results that closely match what is observed
biologically, deterministic reaction-diffusion models are often highly sensitive to their
initial conditions [123]. This raises questions regarding how reliable the model is, as it
is unlikely that precisely the same biological conditions are present during the develop-
ment of each human embryo, particularly with respect to the initial profile of Noggin
as a radially symmetric parabolic ellipsoid. Moreover, it has been shown that human
embryos can be artificially split into its four blastomeres, with each blastomere going on
to develop normally into an embryo [44]. This strongly implies that the mechanisms of
early embryonic development are not contingent on the exact maintenance of specific
conditions, but rather are able to overcome significant system perturbations. Thus, de-
spite the accuracy of the model when simulated under chosen conditions, it may not be
sufficient to capture the true robustness of molecular systems during early embryogen-
esis.
A contraction-reaction-diffusion model for hESC fate patterning was proposed in 2021
as a direct response to the issues discussed above [48]. The authors note that tradi-
tional reaction-diffusion systems are not capable of generating concentric ring patterns.
In agreement with experimental results linking hPSC fate patterning to traction stress
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[47, 113], this paper incorporates results from traditional reaction-diffusion with the ef-
fect of contraction leading to either flux-driven diffusion or the activation of signalling
molecules. The paper is entirely theoretical, consisting of PDE systems and their cor-
responding computational simulations in COMSOL. The goal was to find conditions on
parameters to best capture the rings of hPSC fate following BMP4 differentiation first
demonstrated in 2014 [31].
This model is highly successful at producing robust ring patterning, as the initial condi-
tion can be randomised at the single-cell level whilst yielding the desired result. The
wavenumber-related parameter is defined at the point of fastest growing instability
within the system. The authors found that this parameter was crucial for controlling the
activity of the two signalling molecules being modelled, such that a high wavenumber-
related parameter corresponded to increased waves in the activity of the molecules. Im-
portantly, this parameter dictates the symmetry of the resultant pattern.
The ring pattern is not an equilibrium of the contraction-RD model, as it is not a time-
invariant state; simulations continue to show changing patterns of morphogen con-
centration if run further. This result opposes the popular reasoning originating from
Waddington’s epigenetic landscape [115]: a framework in which cell fates are points
acting as ‘attractor sites’ which would take significant energy to push from their state.

Application of Vertex-Based Models to Stem Cell Biology

A modelling approach to self-organised hPSC fate patterning, focusing on how colonies
form, was proposed in 2019 [46]. A gene knockdown of CDH1 and ROCK1 was per-
formed on iPSCs, as these are known to affect stem cell colony organisation. Specifically,
CDH1 modulation facilitates changes in how neighbouring cells adhere to one another.
A multi-scale Cellular Potts model - a simple yet effective modelling paradigm where
each cell occupies some number of squares which reflect their spatial organisation - was
used in conjunction with parameter optimisation to produce desired fate patterns. The
dynamics of a differentiating morphogen across the cell culture was able to be accurately
modelled in this way. Interestingly, the authors point out that former reports of stem cell
fate patterning, such as through the use of disc micro-patterns, loses key information by
only investigating a static result. In other words, as cells are fixed in place before being
antibody stained for immunofluorescence imaging, the process leading to the cells’ final
gene expression states are not seen.
Cell division was modelled as asynchronous, mimicking population growth kinetics. The
direction in which cells moved was crucially influenced by the relative cell adhesion
strength of neighbouring cells. After segmenting and tracking single cells in vitro, a
basic grid search was used to fit the model parameters to the experimental cell veloc-
ity measurements. This model - in addition to an agent-based machine learning model
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that was able to grow from a small number of cells to reproduce iPSC gene expression
patterning given a target image - were both accurate in recreating experimental fate pat-
terning.
Potentially the most interesting features of this paper are (1) developing a growing model
rather than static, and (2) not using micro-patterns to control culture boundary condi-
tions. For point (1), as was later mentioned in other works [48], examination of a cell
culture’s static gene expression profile at an arbitrary time after differentiating the cells
does not elucidate how cells arrive at that point. Rules for these patterning outcomes are
still not understood, as no solid explanation is offered for how the model’s results reflect
biological processes. Interestingly, it was reported that observing cells 48 hours after
inducing differentiation with BMP4 was not sufficient to accurately capture Brachyury
patterning, which exhibited transient expression. This may have implications on static
patterning studies, particularly with respect to the mathematical equilibria of gene ex-
pression states.
Embryogenesis is a highly complex process; combining various modelling architectures
at different scales to recapitulate stem cell fate patterning may be necessary to capture
this complexity. A combination of agent-based, RD, and gene regulatory models have
been used for this purpose [50]. Interestingly, agents are not defined as cells, but rather
genes: CDX2, Oct4, Sox2, Sox17, and TBXT. Gene activity was linked to three discrete
states of morphogen concentration: high, low, or off. Depending on the combined lev-
els of morphogens BMP4, Wnt3, Noggin, and DKK, together with activatory/inhibitory
relations between genes, each gene expression state was also discretised into categories
high, low, or off.
A state-flow style model architecture was used to simulate the system, whereby blocks
of code would be run until the simulated micro-pattern was confluent. Actions that
could be taken by agents were proliferation or differentiation. Initially, RD was set as
inactive (as there is no morphogen signalling), and the agent-based gene model took a
sparse pattern: Oct4 not expressed, Sox2 highly expressed, and the remaining genes ran-
domly initialised. The subsequent onset of signalling from the gene regulatory network
triggered the activation of RD, producing signalling gradients. In response to these gra-
dients, the agent-based further drives gene regulation, leading to a feedback system.
This model does not incorporate an edge-sensing mechanism, yet experimental fate pat-
terning results on a disc are reproduced. However, the model has only been simulated
on a disc, so it is unknown whether it can be generalised across other cell culture ge-
ometries. The idea to model agents as genes, rather than cells, tackles the complication
of cells’ ability to express hundreds of genes. However, the relationship between the
model’s output and biological cells is not straightforward. There is a gap, therefore, be-
tween the theoretical research and its physical implementation.
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Radial Asymmetry of Stem Cell Cultures Impacts Fate Patterning

When considering models where cell behaviour is assumed to rely solely upon the rela-
tionships between cells, without representing the cells on a rigid spatial structure, it is
natural to think about how the topology and interactions of the network change as cells
are added or removed.
The impact of culture geometry on cellular Brachyury expression among mouse em-
bryonic stem cells (mESCs) was investigated in 2018 [45]. This research is rare in its
approach to the spatial confinement of stem cell colonies: whilst much of the literature
solely with disc micro-patterns, this paper addresses how breaking the radial symmetry
gives rise to ordered asymmetric cell patterning. In doing this, the researchers show
that such patterning is not merely due to diffusive signals and is heavily dependent on
the local cellular neighbourhood, contrary to the assumptions of the reaction-diffusion
model in other works [124], and in accordance with the theory of vertex models.
As their initial experiment, the authors plate mESCs onto both disc and ellipse micro-
patterns, each with an area of 30 000 µm2. Similarly to what was observed in [31], follow-
ing from a differentiation procedure, Brachyury positive cells were located mainly to-
wards the border of the discs. However, this pattern did not occur for ellipses; Brachyury
positive cells were primarily located at the two tips of the ellipses, rather than across the
whole border. Interestingly, the Brachyury positive cells localised at both tips of the
ellipses only 35% of the time, and at just one tip 40% of the time. The authors postu-
lated that the global density of cells during the pre-culturing stage, before plating onto
the micro-patterns, may cause this variability. Cells were therefore subsequently grown
at either high, medium or low densities in the pre-culture stage, and their Brachyury
expression measured after 48 hours as before. Strikingly, although the percentage of
Brachyury positive cells was found to be negatively correlated with global density, the
number of Brachyury positive cells was unable to be normalised through controlling the
shape and size of cultures. This suggests that while global density affects the number of
Brachyury positive cells, it has no effect on their patterning. This led the authors to look
instead at the impact of local cell density on Brachyury expression.
For each cell, the number of neighbouring cells was computed, using a manually speci-
fied radial distance threshold of 75 µm. The authors found that Brachyury positive cells
consistently localised in regions of lower local density than Brachyury negative cells on
micro-patterns, although this phenomena was not seen for unconstrained cultures. Us-
ing a manual distance threshold to quantify each cell’s number of neighbours provides
flexibility; the threshold can be varied to examine the effect, if any, such variation has on
the results. In this case, increasing the neighbourhood radius increased the difference in
neighbour count between Brachyury positive and negative cells. This is unsurprising as
the difference is presented as a raw difference in neighbour count, which may be mis-
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leading. Representing this information as a percentage difference is likely to be more
a appropriate metric. Moreover, specifying a distance threshold in this way ultimately
involves subjective judgment. There is no clear indicator that 75 µm is the most appro-
priate value to use for primary analysis, and so it may be useful to repeat the analysis
using Delaunay triangulation to determine nearest-neighbour relationships.
The authors then considered whether a low concentration of Brachyury inhibitors at the
ellipse tips was responsible for the localisation of Brachyury positive cells there. Micro-
patterns in the shape of four-pointed flowers were developed, where each flower petal is
an ellipse 25 µm apart from each other arranged in a cross shape. This distance between
ellipses was as close as possible without the ellipses making contact. To test diffusive
signalling between micro-patterns, each complete flower pattern was positioned 600 µm
apart from the next. Plating cells on these micro-patterns led the authors to pivotal re-
sults regarding the decoupling of patterning with the effects of diffusive signalling. If
cells were to secrete Brachyury inhibitors at a constant rate, it would be expected that
there would be a higher concentration of inhibitors at the centre of the flower rather
than the periphery, as the cells are closest to each other at the centre. Also, as a result of
this, it would be expected that a low number of Brachyury positive cells would be ob-
served at the centre. However, this was not the case. The patterning of Brachyury posi-
tive cells was unaffected compared to regular ellipse micro-patterns. Therefore, diffusive
signalling does not occur between micro-patterns 600 µm apart, although it is possible
that signalling occurs on a much smaller scale, or across all of the micro-patterns such
that it is near homogeneous.
These results argue against what much other research assumes, which is a gradient of
inhibitors emerging over time across the whole colony, which in turn is responsible
for patterning. Rejecting culture-wide reaction-diffusion of chemical concentrations as
the primary mechanism of stem cell patterning has vast implications, but does not mean
that a cellular interaction model is incompatible with a reaction-diffusion model. Rather,
some combination of the two may be necessary to mimic the events of early embryoge-
nesis. For a vertex model where nodes each possess an internal dynamical system, such
as proposed in other works [125], the assumption that these dynamics are able to be in-
fluenced by neighbouring cell dynamics means that the diffusive behaviour of chemical
concentrations may be captured.
Notably, the authors do not present any mathematical model(s) in their paper to capture
their results. In particular, there appears to be a strong focus on how local cell density
affects patterning whilst straying from discussion of the geometry and symmetry of the
cultures, despite the title and abstract of the paper stressing a focus on this. The develop-
ment of a cell-to-cell interaction model for cells plated on the micro-patterns is likely to
help elucidate the mechanisms of patterning beyond reaction-diffusion. Furthermore, as
the researchers use mESCs, a repeat of their experiments using hESCs is necessary to test
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if the results differ. Although the same signalling pathways are present during gastrula-
tion in mice and humans, the response to these pathways can differ vastly [126, 127].
Useful further work may be to determine whether cells arrange themselves prior to fix-
ing and staining, such that gene expression patterning comes before spatial organisation,
or whether the cells’ position in the colony dictates their gene expression levels. Cells
are known to move around during the early stages of lineage specification, so time-
lapse imaging of the cells to observe the emergence of Brachyury expression is needed
to determine a cause and effect relationship between patterning and position within the
culture [128].

Mathematically Capturing the Symmetry of Cell Networks

The behaviour of a group of conceptual cells, where each cell represents a dynamical
system, is explored with respect to the symmetry of the cell network [125]. Cells that
are coupled share an edge, and so the authors define a symmetry of the network as “a
permutation of the cells that preserves all internal dynamics and all couplings”. The
dynamical systems represented by each cell are ODEs, which take into consideration
the effects upon a cell that might be induced by its coupled cell(s). The whole system is
referred to as a ‘coupled cell network’.
Patterns of synchrony may arise in a coupled cell network, where synchrony can be
thought of as the action of a function. Let x1 and x2 be time-dependent variables with
coupled dynamics. Then a synchronisation function f is such that, for the steady states
x̄1 and x̄2, f(x̄1) = x̄2, f is continuous at x̄1, and f is consistent with the local dynamics
of x1 and x2 [129]. This means that close to the steady state (x̄1, x̄2), f describes the
predictability of the dynamics of x2 from x1. If such a function exists for x1 and x2 at
time t, then x1 and x2 are said to be synchronous at t.
For a coupled cell networkG, whereC denotes the set of all cells inG, the authors define
the symmetry groupoid of G as

βG =
⋃

c,d∈C

B(c, d).

Through this definition, more information can be included than through the symmetry
group; now, the input cell of each cell is captured, where the input set of a cell consists
of itself and all connected cells. By analysing βG, it can be determined whether two cells
c and d exhibit patterns of synchrony. Solutions to synchronous cell dynamics may arise
through Hopf bifurcations, indicating bistability [129].
The work discussed was not intended for a specific application, but it is easy to imagine
how the concepts discussed by the authors may be applied to cultures of stem cells.
Each cell may be represented as a node, and if two cells are neighbours, then the two
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cells share an edge. The time-dependent internal dynamics of each cell describe the
cell’s state, which may be presented as a gene regulatory network. However, unlike
conventional gene regulatory networks, these equations also include a term to account
for how a cell’s dynamics are influenced by signalling from neighbouring cells. Cells
with the same internal system of ODEs share a symmetry relation; note that for this to
happen, it is required that the cells are neighbours.
A vertex mesh model has been applied to epithelial cell biology to accurately represent
cell morphology [130]. Authors use the Linux software Chaste to subject cell vertices
to forces, resulting in movement of the cells. This modelling architecture presents a
flexible approach to cell culture which reflects true biophysical conditions. Graph theory
has also been applied successfully to cell biology [131], though graph models for such
applications are sparse in the literature.

Finite GroupTheory

A groupG is a set of objects together with a binary operation that associates any ordered
pair of element g, h inG and also gh, the result of the binary operation. G is also subject
to the following conditions:

1. Identity. There exists a unique identity element e in G such that eg = ge = g for
all g in G.

2. Inverse. For each g in G, there exists some inverse element g−1 in G such that
gg−1 = g−1g = e.

3. Associativity. For all g, h, k in G, (gh)k = g(hk).

G is known as a finite group if the order of G is finite [132]. For a subset of G denoted
by H , H is a subgroup of G if and only if the above three criteria are still satisfied.
In 1927, Brandt introduced ‘groupoids’; a mathematical concept which has been heavily
developed since [133, 134]. Unlike for groups, the identity element of a groupoidH need
not be unique. It is only required that each element h in H has an identity element eh
such that ehh = heh = h.
The full symmetry group SX of a set X is defined as the set of all of permutations σ of
X such that σ(x) = σ(y) if and only if x = y, and for every z in X , there exists an x
in X such that σ(x) = z [132]. It can be shown that SX fulfills the group criteria, and
represents the transformations for which the set X is invariant.
A partition of a set S is a collection of disjoint nonempty subsets of S that have S as
their union. Letting I be an index set, the collection of subsets Ai for i ∈ I forms a
partition of S if and only if:

1. Ai ̸= ∅ for i ∈ I .
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(a) 2D. (b) 3D.

Figure 3.2: Initial Noggin concentration profile (t = 0), re-created from the reaction-diffusion
model given by Tewary et al. (2017).

2. Ai ∩ Aj ̸= ∅ when i ̸= j for i, j,∈ I .

3.
⋃
i∈I
Ai = S.

A relation R on a set S is an equivalence relation if it is reflexive, symmetric, and transi-
tive:

1. R is reflexive ⇐⇒ ∀α ∈ S, αRα.

2. R is symmetric ⇐⇒ ∀α, β ∈ S, if αRβ then βRα.

3. R is transitive ⇐⇒ ∀α, β, γ ∈ S, if αRβ and βRγ then αRγ.

3.3 RecreatingTewary et al.’s Reaction-DiffusionModel
of BMP4 and Noggin

For a complete understanding of the behaviour Tewary et al.’s reaction-diffusion model
[30], the PDE system was simulated in MATLAB. In particular, as well as seeking to
recreate the published results, this work aims to investigate the sensitivity to the model’s
initial conditions.
As shown in Table 3.1, the parameter γBMP , used to calculate aBMP in the reaction-
diffusion model given by Tewary et al. is not specified. For this work, the value γBMP =

γNOG = 0.0025 was assumed. The initial concentration profile for Noggin is a parabolic
ellipsoid, corresponding to Equation 3.4. The Noggin profile simulated for this work is
shown in Figure 3.2.
The reaction-diffusion model was simulated in COMSOL, which used finite element anal-
ysis to solve the PDE system on a non-uniform 2D triangular mesh. However, a different
approach may be taken to represent the system on a 2D square lattice. The advantage of
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this is that the results are easier to compare with those of well-documented lattice mod-
els that update the system state based on coupled cell-cell interactions. Such models will
be explored in Section 3.4.
To discretise the continuous PDE system, finite difference approximations of first and
second order differential equations were computed for this work. Finite difference ap-
proximations are numerical approximations of an equation, derived from the Taylor ex-
pansion [135]. For differential equations of greater than one order, approximations are
computed either forward, centred, or backward. For this work, the centred finite differ-
ence was used, as this yields the most accurate approximation, i.e. that with the lowest
error [136].
The finite difference approximation of the first order time derivative of a PDE is

∂u

∂t
≈ 1

∆t
(u(t+∆t)− u(t)). (3.7)

For a second order PDE on a 2D lattice with rows i and columns j, the centred finite
difference approximation is

∂2u

∂x∂y
≈ 1

(∆x)2
(ui−1,j − 2ui,j + ui+1,j) +

1

(∆y)2
(ui,j−1 − 2ui,j + ui,j+1) (3.8)

Letting u = bmp∗, v = nog∗, and (i, j) represent the spatial lattice sites corresponding
to the reaction-diffusion model’s (x, y) coordinates, then the centred finite difference
approximation of Equations (3.1-3.2) are

u(t+∆t) = ui,j(t) + ∆t((aBMP − dBMP )ui,j(t) + bBMPvi,j(t) + c∗BMP

+DBMP

(
1

(∆x)2
(ui−1,j(t)− 2ui,j(t) + ui+1,j(t))

)
+DBMP

(
1

(∆y)2
(ui,j−1(t)− 2ui,j(t) + ui,j+1(t))

)
, (3.9)

v(t+∆t) = vi,j(t) + ∆t((bNOG − dNOG)vi,j(t) + aNOGui,j(t) + c∗NOG

+DNOG

(
1

(∆x)2
(vi−1,j(t)− 2vi,j(t) + vi+1,j(t))

)
+DNOG

(
1

(∆y)2
(vi,j−1(t)− 2vi,j(t) + vi,j+1(t))

)
. (3.10)

A value of ∆t = 0.25 and an initial concentration of u = 0 were used for simulations of
this system with maximal time T , which are shown in Figure 3.3.
These results accurately reflect the published results from Tewary et al. when the BMP4
concentration is homogeneously initialised as 0.
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(a) t = T/3. (b) t = 2T/3. (c) t = T.

Figure 3.3: Simulated concentrations of BMP4 at discrete time points t (t = 0, ..., T ). The initial
concentration of BMP4 = 0, and the disc diameter = 1000 µm. A centred finite difference scheme
was implemented to approximate solutions to the reaction-diffusion system for BMP4 and Nog-
gin. Parameters are given in Table 3.1, with γBMP = 0.0025.

3.3.1 Altering the Initial Noggin Concentration Profile

Consider instead that the initial Noggin profile is diffusive, rather than a parabolic ellip-
soid. The 2D parabolic diffusion equation is defined as

∂u

∂t
= D∇2u, (3.11)

which is used as the diffusive component in Equations(3.1-3.2). The parameterDNOG, i.e.
the diffusivity constant of Noggin, is given in Table 3.1. The parabolic diffusion equation
was simulated using MATLAB code from Shankar [137]. A total of 20 discrete time steps
were used when simulating 2D diffusion to yield the initial Noggin profile. This choice
was arbitrary, as there is a lack of experimental data to indicate a suitable choice. As
this serves to illustrate the difference in results when initialising Noggin with a diffusive
profile compared to a parabolic ellipsoid, the exact diffusive profile used is not of high
importance.
Figure 3.4 shows the related initial profile of Noggin, and the resultant final BMP4 con-
centration when the reaction-diffusion system was simulated with this initialisation. It
is clear that changing the initial Noggin profile assumed by Tewary et al. - which lacks
experimental evidence - to a diffusion profile which may also be biologically suitable
affects the final BMP4 concentration profile. The symmetric concentric ring patterning
is no longer seen, as the Noggin profile deviates from a ring as it reaches the disc bound-
ary. demonstrates the sensitivity of the reaction-diffusion system to its initial conditions.
Note that an entirely different initial Noggin profile may actually be present, which may
disrupt the results to an even higher degree.
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(a) 3D initial diffusive Noggin concentra-
tion profile (t = 0).

(b) 2D final BMP4 concentration
profile (t = T ).

Figure 3.4: Simulations of Noggin and BMP4 concentrations, where Noggin is initialised with
a diffusive profile. Parameters for simulating the reaction-diffusion system leading to the final
BMP4 profile are given in Table 3.1, with γBMP = 0.0025.

3.4 Development and Simulation of CoupledMap Lat-
tice Models for Local Cell-Cell Interactions

A model architecture that uses cell-cell interactions to drive system behaviour is the
coupled map lattice (CML) model. The CML model was introduced by Kaneko [138] and
others [139, 140] in the 1980s, but was most famously disseminated in a book written by
Kaneko in 1991 [141]. Such models are designed to reflect non-linear system behaviour
such as reaction-diffusion using discrete methods. Whilst traditional reaction-diffusion
models operate in continuous time, the time component of CML models is discretised,
and they are modelled on a discretised spatial domain (lattice) akin to cellular automata
models [142]. They are particularly known for their ability to capture deterministic
spatio-temporal chaos. To arrive at the CML model architecture, finite difference ap-
proximations of first and second order differential equations are computed. Currently,
there are no published applications of CML models to explain hPSC fate patterning on
micro-patterned cultures.
Letting xi(t) be a state variable for discrete time t = 0, 1, 2, ... over a 1D lattice with sites
i = 1, 2, ..., N, the CML model is given as:

xi(t+ 1) = (1− ϵ)f(xi(t)) +
ϵ

2
(f(xi+1(t)) + f(xi−1(t))), (3.12)

which combines the discrete Laplacian operator for diffusion with a function f(x) that
is chosen to mimic the spatio-temporal dynamics of the system being modelled [141].
Considering instead a 2D lattice with sites i, j = 1, 2, ..., N , the CML model is given as

xi,j(t+ 1) =

(1− ϵ)f(xi,j(t)) +
ϵ

4
(f(xi+1,j(t)) + f(xi−1,j(t) + f(xi,j−1(t) + f(xi,j+1(t))). (3.13)
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(a) Initial BMP4 concen-
tration homogeneously
defined as 0 (t = 0).

(b) Initial Noggin concen-
tration as a parabolic ellip-
soid (t = 0).

(c) Resultant BMP4 con-
centration after simulat-
ing the reaction-diffusion
CML model (t = 1).

Figure 3.5: Initial and resultant concentration profiles when simulating the reaction-diffusion
CML model with initial conditions given by Tewary et al. (2017). Parameters for reaction-
diffusion are given in Table 3.1, additionally with ϵ = 0.1.

How far each lattice site can ‘see’ surrounding sites, i.e. the distance at which any site
is influenced by others, is controlled by the parameter ϵ. In particular, a value of ϵ = 0

corresponds to a completely isolated site that is not impacted by any of its neighbours
[143]. To investigate local dynamics, ϵ must remain sufficiently small, though what this
means in a quantitative sense can vary per system.

3.4.1 Coupled Map Lattice Models for Reaction-Diffusion

Now, the reaction-diffusion system from Tewary et al. is revisited [30].
Letting u = bmp∗, v = nog∗, applying the finite difference discretisation and CML model
architecture [143] to Equations (3.1-3.2) yields the coupled maps

f(u) = (1 + aBMP − dBMP )u+ bBMPv + c∗BMP , (3.14)

f(v) = aNOGu+ (1 + bNOG − dNOG)v + c∗NOG. (3.15)

Taking these as the coupled maps corresponding to Equation 3.13, the reaction-diffusion
system is simulated as a CML model.
For a homogeneous initial BMP4 concentration u(0) = 0, and the initial Noggin con-
centration v(0) as the parabolic ellipsoid, ring patterning emerges for the BMP4 concen-
tration after simulating the CML model for only one discrete time step. This is shown in
Figure 3.5.
Clearly, this is not biologically representative, as gene expression profiles in hPSCs dif-
ferentiated on a disc emerge transiently, moving through various states before reaching
the final concentric ring patterning, rather than this being reached immediately.
To further a point made in Section 3.3, the initial Noggin profile may not display any
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(a) Random initial BMP4
concentration (t = 0).

(b) Random initial Noggin
concentration (t = 0).

(c) Resultant BMP4 con-
centration after simulat-
ing the reaction-diffusion
CML model (t = T ).

Figure 3.6: Initial and resultant concentration profiles when simulating the reaction-diffusion
CML model with random initial conditions. Parameters for reaction-diffusion are given in Table
3.1, additionally with ϵ = 0.1.

symmetries - previous simulations initialised Noggin as either a parabolic ellipsoid or a
diffusion profile, which each possess symmetries. Considering a fully randomised dis-
tribution for BMP4 and Noggin, where random numbers are generated from a Gaussian
distribution in the range (0, 1), a highly robust model would be able to generate ring
patterning. However, when such a system is simulated, a traditional reaction-diffusion
profile is output, rather than a symmetric gradient. In other words, destroying sym-
metries of the model’s initial conditions also destroys symmetries of the output. These
results are shown in Figure 3.6.
As has been widely discussed, the reaction-diffusion model proposed by Tewary et al.

presents initial conditions that are challenging to biologically justify. Patterns produced
by CML models, like traditional reaction-diffusion, are highly sensitive to parameter
values. Thus, despite robust cell-cell interaction-driven behaviour, CML models lack
robustness in their parameter sensitivity. Ideally, a model should be able to generate the
symmetric patterning seen in vitro without relying on these symmetries being present
in the model’s initial conditions.

3.5 A Novel Coupled Graph Formulation for Describ-
ing Cell Symmetry at Single-Cell Level

Whilst CML models show success in simulating reaction-diffusion processes, with ‘sens-
ing’ distances for all lattice sites able to be controlled through model parameters, cells
are necessarily confined to the rigid structure of the lattice. Vertex models allow more
spatial flexibility than models relying on a defined grid, although they may also be sim-
ulated on a grid [130].
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3.5.1 Defining the Coupled Graph

The following two definitions are borrowed from [125]. For an undirected graph, the
coupled graph G = (C,E,∽C ,∽E) consists of:

1. A finite set C = {1, ..., N} of nodes or cells.

2. A finite set of pairs E ⊆ C × C of edges. As G is undirected, if ∃ an edge (c, d)

between cells c and d, then (c, d) = (d, c).

3. An equivalence relation ∽C on cells in C . The type of cell c is the ∽C-equivalence
class [c]C of c.

4. An equivalence relation∽E on edges inE. The type of edge e is the∽E-equivalence
class [e]E of e.

Define also the input set for cell c as

I(c) = {i ∈ C|(i, c) ∈ E}. (3.16)

Then I(c) is the set of cells connected to c by an edge. It is assumed that there exists
an internal edge for all cells c ∈ C to themselves, such that (c, c) ∈ E. Then cell c is
included in its own input set, i.e. c ∈ I(c).
Now, these ideas from [125] are developed in this work, described as follows. The equiv-
alence classes [c]C and [e]E are determined through an iterative procedure; transient
equivalence relations on cells and edges will be assigned during this process. Transient
cell/edge relations are defined by the following:

1. Let ∽C∗ be the transient equivalence relation on cells in C . The transient type of
cell c is the ∽C∗-equivalence class [c]C∗ of c.

2. Let ∽E∗ be the transient equivalence relation on edges in E. The transient type of
edge e is the ∽E∗-equivalence class [e]E∗ of e.

Determining Equivalence Relations Between Cells and Edges

The iterative procedure to find [c]C and [e]E is as follows:

Step 1: For each cell c ∈ C , assign transient cell type [c]C∗ = |I(c)|. These transient cell
types form the ∽C∗-equivalence classes.

Step 2: For edges (i, c), (j, d) ∈ E, (i, c) ∽E∗ (j, d) ⇐⇒ i, c can be ordered1such that
i ∽C∗ j and c ∽C∗ d. These transient edge types form the∽E∗-equivalence classes.
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Figure 3.7: An example undirected 7-cell network.

(a) Cells are coloured by their transient cell
type.

(b) Edges are marked by their transient edge
type.

Figure 3.8: An example undirected 7-cell network. The transient cell type is given by the degree
of each cell, and the transient edge type is given by the transient cell types joined by each edge.

Step 3: Cells c, d ∈ C are assigned to the same ∽C-equivalence class ⇐⇒ ∃ a base-cell
preserving bijection β : I(c) → I(d) (meaning that β(c) = d) such that ∀ i ∈
I(c), (i, c) ∽E∗ (β(i), d).

Step 4: If ∽C=∽C∗ (up to reordering), then also assign ∽E=∽E∗ and stop. If not, then
assign ∽C∗=∽C and return to Step 2.

Example for Equivalence Class Computation

Consider the example undirected 7-cell network shown in Figure 3.7. A demonstration
of how to use the iterative procedure described to determine the equivalence relations
∽C and ∽E is presented below.

Step 1: First, assign the transient cell equivalence ∽C∗ as the degree of each cell. Cells
1, 4, 5, 7 have degree 1, cells 2, 6 have degree 2, and cell 3 has degree 4. This means
that the ∽C∗-equivalence classes are

{1, 4, 5, 7}, {2, 6}, {3}.

This partitioning of the cells into∽C∗-equivalence classes is shown in Figure 3.8(a).
1Note that in Step 2 of the iterative process, choosing the order of i, c when determining transient edge

equivalence arises from the fact that G is undirected, so the edge (i, c) = (c, i). This means that i and c
are interchangeable, but choosing the order of i, c may impact whether i ∽C∗ j and c ∽C∗ d.
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Figure 3.9: An example undirected 7-cell network. Cells are coloured according to their cell type
and edges are marked according to their edge type.

Step 2: Assign the transient edge equivalence ∽E∗ . Edges share transient equivalence if
the edges connect the same transient type of cells. By examining Figure 3.8(a), we
see that there are 3 transient edge types in the network: (pink, blue), (blue, orange),
and (pink, orange). Recall that as the network is undirected, the ordering of cells
- and therefore of (transient) cell types - within each edge pair is interchangeable.
Then the ∽E∗-equivalence classes are

{(1, 2), (6, 7)}, {(2, 3), (3, 6)}, {(3, 4), (3, 5)}.

These ∽E∗-equivalence classes are shown in Figure 3.8(b).

Step 3: The next step is to assign ∽C-equivalence. For cells c, d ∈ C to be ∽C-equivalent,
there must exist a base-cell preserving bijection β : I(c) → I(d) (meaning that
β(c) = d) such that ∀ i ∈ I(c), (i, c) ∽E∗ (β(i), d). Consider cells 1, 5 in Figure
3.8. Both cells are coloured pink, representing that 1 ∽C∗ 5. This means that
|I(c)| = |I(d)|, so a β may be sought which maps the input set of cell 1 to the
input set of cell 5, with β(1) = 5. Now, I(1) = {1, 2}, and I(5) = {5, 3}. Thus,
the only base-cell preserving bijection existing between these two sets is such that
β(1) = 5, β(2) = 3. However, it is required that ∀ i ∈ I(c), (i, c) ∽E∗ (β(i), d).
By looking at Figure 3.8(b), clearly the edge (1, 2) has transient edge type solid,
i.e. the edge is represented by a solid line. The edge (3, 5) has transient edge type
dotted ̸=solid, so (1, 2) is not ∽E∗-equivalent to (3, 5). Therefore, cell 1 is not ∽C-
equivalent to cell 5. By repeating this process for all cells, the ∽C-equivalence
classes are determined to be

{1, 7}, {2, 6}, {3}, {4, 5}.

This assignment of cell type is shown in Figure 3.9.

Step 4: Compare the cell equivalence relation ∽C to the transient cell equivalence rela-
tion ∽C∗ . It is found that ∽C ̸=∽C∗ , as the cells within the network are partitioned
differently as a result of Step 1 and Step 3 respectively. This means that ∽C∗=∽C
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Figure 3.10: Example of symmetric dynamical functions for symmetric cells in a network. Here,
the network is symmetric with respect to the permutation β(1, 2, 3) = (3, 2, 1).

must be assigned and return to Step 2. In doing this, the edge equivalence rela-
tion ∽E∗ is seen to be unchanged from its former definition - this means that the
edges within the network are partitioned into the same ∽E∗-equivalence classes in
the second iteration of Step 2 as they were in the first iteration 2. Moreover, after
re-iterating Step 3, that the cell equivalence relation ∽C=∽C∗ is found. There-
fore, assign ∽E=∽E∗ and stop the process. The equivalence classes [c]C and [e]E

have now been found. Note that the diagram of the cell network continues to be
represented by Figure 3.9.

3.6 A New Dynamical Model of Morphogen Concen-
tration

For a stem cell population, each cell may be represented as a node, and an edge may be
assigned between neighbouring cells, i.e. cells physically contacting in culture. Thus, for
this work, hPSC cultures are modelled as a cell networkG(V,E). Notably, this approach
is also taken in Section 2.6.
In this section, a mathematical model was sought to describe the dynamics of morphogen
concentration at each node (cell) of G. Crucially, symmetric cells (as determined in Sec-
tion 3.5) share symmetric internal dynamical functions. This means that, for symmetric
cells i, j, the dynamical functions ẋi, ẋj are symmetric with respect to a permutation β.
Necessarily, β must map cell i to cell j, i.e. β(i) = j, and similarly all symmetry relations
between other cells must be preserved. An example using a simple three-cell network is
given in Figure 3.10.
The novel dynamical model is given by a set of ordinary differential equations (ODEs),
with one ODE per node describing the morphogen concentration at that cell. This may
be referred to as ‘cell state’. Concentration at cell i is denoted xi, with dynamics given

2This finding is not accidental, but rather a necessary part of concluding the iterative process - if the
correct ∽C and ∽E are determined (but not confirmed) by completing iterative round (n − 1), then the
procedure will stop after completion of round n, and ∽E∗ at (n− 1) will be equal to ∽E∗ at n. While this
fact is useful to note, it is a superfluous condition to check when determining equivalence relations.
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Figure 3.11: Example Hill functions with half-maximal saturation of binding constant k = 0.5
and Hill coefficient n = 1, ..., 6.

by

dxi(t)

dt
=

αxni (t)

kn + xni (t)
(1− ϵ(Nt))−

αxi(t)

(kn + 1)
+ αϵ(Nt)

∑
j ̸=i

xnj (t)

kn + xnj (t)
,

subject to 1 ≤ n ≤ 6, k ∈ [0, 1], α ∈ (0, 1), (3.17)

where

ϵ(Nt) =


0 if Nt = 1,

1
Nt

∑
j ̸=i

q(si,j−1), with q ∈ (0, 1), otherwise. (3.18)

Here, Nt is number of cells in the system at time t. The first term represents morphogen
self-activation [144], which is assumed to take the form of a Hill function, which has
Hill coefficient n, amplitude α, and half-maximal saturation constant k. Note that there
is assumed zero basal concentration of the morphogen, as differentiating morphogens
such as BMP4 must be externally administered to hPSC cultures. The coupling strength
between cells i, j is ϵ(Nt), which incorporates the step distance si,j , i.e. the length of
the shortest path between cells i, j. The parameter q represents signalling strength (as
also defined for Equation 2.22) [83]. Coupling strengths are symmetric as si,j = sj,i. Im-
portantly, Equation 3.17 yields identical equilibria for cells within the same equivalence
class.
Examples of Hill function profiles obtained by varying the Hill coefficient are given in
Figure 3.11.
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3.6.1 Characterising System Equilibria with Respect to Parame-
ters

An equilibrium point of the ODE dy/dt = f(y(t)) is a solution y∗(t) such that dy∗/dt =
0.Thus, at equilibrium, the system state is invariant with respect to time. An equilibrium
point is locally stable if, when subject to small perturbations, the system returns to the
equilibrium rather than diverges from it. The local stability of a non-linear dynamical
system equilibria can be determined through analysis of the Jacobian matrix [145]. The
Jacobian matrix is defined as

J =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn... ... . . . ...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 .

Thus, for the model given by Equations (3.17-3.18) with N cells, the Jacobian matrix
becomes

JNt =



α
(

(1−ϵ(Nt))nknx
n−1
1

(kn+xn
1 )

2 − 1
(kn+1)

)
· · · αϵ(Nt)nknx

n−1
Nt

(kn+xn
Nt

)2

αϵ(Nt)nknx
n−1
1

(kn+xn
1 )

2 · · · αϵ(Nt)nknx
n−1
Nt

(kn+xn
Nt

)2

... . . . ...
αϵ(Nt)nknx

n−1
1

(kn+xn
1 )

2 · · · α

(
(1−ϵ(Nt))nknx

n−1
Nt

(kn+xn
Nt

)2
− 1

(kn+1)

)


.

Equilibria of the Single-Cell System

First considering a single-cell system (Nt=1), the model is given by the ODE

f1 =
dx1
dt

=
αxn1 (t)

kn + xn1 (t)
− αx1(t)

(kn + 1)
. (3.19)

The single-cell Jacobian matrix is then

J1 =
[
∂f1
∂x1

]
=
[
α
(

nknxn−1
1

(kn+xn
1 )

2 − 1
(kn+1)

)]
.

Let x∗1 denote an equilibrium of Equation 3.19. Then the equilibria of this model are
found by solving dx∗/dt = 0, yielding the solutions:

1. x∗1 = 0 for 1 ≤ n ≤ 6,

2. x∗1 = 1 for 1 ≤ n ≤ 6,

3. x∗1 = k2 for n = 2, k > 0 only,
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4. x∗1 = 1
2

(
k3 ±

√
(k3(k3 + 4))

)
for n = 3 only.

By substituting x∗1 = x1 into J1, the Jacobian J1∗ is computed. Then, the equilibria of
Equation 3.19 are asymptotically stable if J1∗ < 0, and unstable if J1∗ > 0 [146]. In
case J1∗ = 0, then Equation 3.19 is stable if the function changes sign from positive to
negative at the equilibrium [146]. Thus, for the four computed equilibria, it is found that

1. x∗1 = 0 is stable for 1 ≤ n ≤ 6,

2. x∗1 = 1 is stable for n = 1, unstable for 2 ≤ n ≤ 6,

3. x∗1 = k2 is always stable for n = 2, 0 < k < 1, and stable for n = 2, k = 1 only if
Equation 3.19 changes sign at x∗1 = 1.

4. x∗1 = 1
2

(
k3 ±

√
(k3(k3 + 4))

)
is stable for n = 3 only.

Equilibria of the Coupled Two-Cell System

Now considering a coupled two-cell system (Nt=2), the state model is

dx1
dt

=
1

2

αxn1 (t)

kn + xn1 (t)
− αx1(t)

(kn + 1)
+

1

2

αxn2 (t)

kn + xn2 (t)
, (3.20)

dx2
dt

=
1

2

αxn2 (t)

kn + xn2 (t)
− αx2(t)

(kn + 1)
+

1

2

αxn1 (t)

kn + xn1 (t)
. (3.21)

Note that as s1,2 = s2,1 = 1, then ϵ(2) = 1/2 regardless of the value of q. The corre-
sponding Jacobian matrix is therefore

J2 =

α
(

nknxn−1
1

2(kn+xn
1 )

2 − 1
(kn+1)

)
αnknxn−1

2

2(kn+xn
2 )

2

αnknxn−1
2

2(kn+xn
2 )

2 α
(

nknxn−1
1

2(kn+xn
1 )

2 − 1
(kn+1)

)
 .

Let x∗1, x∗2 denote the equilibrium values of x1, x2. As the ODE system preserves cell
symmetry relations, symmetric cells share the same equilibrium value(s). Thus, x∗1 =

x∗2 = x∗.

By solving dx∗/dt = 0, three equilibria are found:

1. x∗ = 0 for 2 ≤ n ≤ 6,

2. x∗ = 1 for 1 ≤ n ≤ 6, n ̸= 2,

3. x∗ = k2 for n = 2 only.

At equilibrium, the Jacobian matrix for the two-cell system is

J∗
2 =

α
(

nknx∗(n−1)

2(kn+x∗n)2
− 1

(kn+1)

)
αnknx∗(n−1)

2(kn+x∗n)2

αnknx∗(n−1)

2(kn+x∗n)2
α
(

nknx∗(n−1)

2(kn+x∗n)2
− 1

(kn+1)

)
 .
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Figure 3.12: Poincarè diagram for classifying equilibria in the trace-determinant plane.

Analysis of the trace and determinant of the Jacobian matrix at equilibrium reveals the
stability of the system equilibria [147, 148]. In particular, stability is achieved if and only
if tr(J) < 0 and det(J) > 0. The parabolic equation

∆ = (tr(J))2 − 4det(J) (3.22)

represents a separatrix in the trace-determinant plane such that equilibria can be char-
acterised by where they are positioned with respect to the regions generated by ∆. The
Poincarè diagram [149] shown in Figure 3.12 gives a visual representation of the trace-
determinant plane, with the associated equilibrium classifications for values within dif-
ferent regions. In this case, using MATLAB’s Symbolic Toolbox, the stability of equilibria
was found to be as follows:

1. x∗ = 0: stable degenerate node,

2. x∗ = 1: stable node for nkn

(kn+1)
> 2, saddle point otherwise. This condition is

met for all values k ∈ (0, 1), 1 ≤ n ≤ 4. The condition is also met for n = 5,
k ≤ 0.9219, and n = 6, k ≤ 0.8909.

3. x∗ = k2: may take the form of a saddle point, stable (degenerate) node, or stable
spiral depending on the choice of k for 1 ≤ n ≤ 6, n ̸= 2. For n = 2, this
equilibrium is always a saddle point.

Note that saddle points are necessarily unstable. For this system, Figure 3.13 provides a
demonstration of how two random initalisations of x1, x2 yield an equilibrium at either
1 or 0.
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(a) Equilibrium at 1. (b) Equilibrium at 0.

Figure 3.13: Time-dependent solutions of the ODE system for two cells. Random initialisation,
constrained to sum to 1, results in the system settling at one of three equilibrium points (addi-
tional equilibrium at k2). The equilibrium at 1 was found to be a stable node, and the equilibrium
at 0 a stable degenerate node.

(a) |E(G)| = 2: s2,1 = s2,3 = 1, s1,3 = 2. (b) |E(G)| = 3: s1,2 = s1,3 = s2,3 = 1.

Figure 3.14: Two possible topologies for G in a three-cell system. The number of edges in
each case are not equal, demonstrating that the topology of G has more than one possibility for
systems with greater than two cells.

Numerically Dependent Equilibria of the General System

For values Nt > 2, equilibria are challenging to compute for all possible parameter val-
ues. This is due to the potential differences in the topological structure of graph G for
any fixed value of Nt.
To illustrate this point with the simplest possible system, considerNt = 3. Then |V (G)| =
3, but there are two possible values for |E(G)|: 2 or 3. This difference arises in the pos-
sibility that:

1. (|E(G)| = 2) : One cell has two neighbours - namely the other two cells in the
system - which themselves each have only one neighbour.

2. (|E(G)| = 3) : All three cells are neighbours of every other cell in the system.

A visual representation of these two possible topologies for G when Nt = 3 is given by
Figure 3.14.
In the first of these cases, step distances s2,1 = s2,3 = 1 and s1,3 = 2. However, in the
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(a) Nt = 1003: simulated cells on a disc. (b) Mean ϵ as q is varied for cells shown in
(a).

Figure 3.15: (a) A demonstration of an arbitrary number of simulated hexagonal cells arranged to
mimic a disc micro-pattern, (b) From Equation 3.18: plot showing the mean cell-to-cell coupling
strength ϵ in the simulated culture given by (a) as the parameter controlling signalling strength
q ∈ (0, 1) is varied.

second of these cases, s1,2 = s1,3 = s2,3 = 1. Therefore, the cell-to-cell coupling strength
ϵ, given in Equation 3.18, is heavily dependent on the topology of G.
Coupling between cells is defined by Equation 3.18, which is heavily regulated by the
parameter q ∈ (0, 1). To investigate how the inter-cellular coupling term ϵ(Nt) scales
with the value of q, a system of size Nt = 1003 was simulated on a disc pattern. The
topology of this simulated graph can be seen in Figure 3.15(a). Using the step distances
between each cell pair, values of ϵ were computed while the parameter q was varied
in the range (0, 1). The mean value of ϵ for each q was then computed and plotted, as
shown in Figure 3.15(b).
The figure reveals an ‘elbow’ in the curve relating ϵ and q. The elbow occurs at q ≈
0.85 = q∗, such that ϵ remains low (< 0.2) for q ≤ q∗, then rapidly increases for q > q∗,
maximising at ϵ = 1.
Note that as every xi represents a biological quantity, negative and/or complex solutions
are not feasible.

3.7 Numerical Simulations of Cell Fate Selection on
Micro-Patterns

Dependency of the dynamical state of cells on the topology of the underpinning contact
network was evaluated by simulating micro-patterned cell cultures in line with experi-
mental literature [30, 31, 45, 47]. Custom computational grids were created to simulate
cells on triangular, square, and hexagonal micro-pattern geometries. All grids contained
sites defined as regular shapes with equal area and perimeter. Each cell may be initialised
with any value in the range (0, 1)without altering the qualitative results. For our simula-
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tions, a homogeneous initial concentration of 1/N at each cell was applied. To compute
equilibria, a custom MATLAB function was developed to automatically define the ODE
system based on the structure of the cell network input, and integrated using the ode45

routine.
It was assumed that half-maximal saturation of morphogen concentration occurs at the
midpoint of minimum and maximum concentration. Hence, the half-maximal satura-
tion constant k = 0.5 was used for simulations. When simulating large systems, the
computational cost is increased, so the model was simulated with parameter values that
would not change the qualitative output, but imposed sharp gradients on the associated
functions to force fast convergence to the equilibrium. Therefore, a Hill coefficient of
n = 6 and a signalling strength of q = 0.9 were used for simulations. The amplitude
α = 1 of the Hill function was selected for simplicity. It is worth bearing in mind that the
final patterning results output by the model are highly qualitatively similar for sensible
parameter choices; the case of q = 1 yields a homogeneous equilibrium.

3.7.1 Model Equilibria Recapitulate Published Experimental Re-
sults

The novel dynamical model was applied to simulated cells on a disc - generated using
a hexagonal grid - to see whether the model was able to recapitulate experimental ring
patterning. The equilibrium result is shown in Figure 3.16(a), with the corresponding im-
munofluorescence microscopy image from Tewary et al. (2017) in Figure 3.16(b). From
this, it is seen that the model output matches very closely the experimental patterning
result.
As the Brachyury gene in hPSCs has been found to localise at the tips of an equilateral
triangle micro-pattern, an equilateral triangle was simulated, using a regular triangu-
lar lattice. Simulated cells were regarded as neighbours if any point of their respective
perimeters were in contact - this includes cell contacts occurring only at the vertex of
a triangle. The equilibrium result of this simulation is shown in Figure 3.16(c), with
Figure 3.16(d) showing the immunofluorescence microscopy image from Muncie et al.

(2020). Again, the model output is well-aligned with the associated microscopy image.
In addition to the equilateral triangle, Muncie et al. found that differentiating hPSCs
on a trapezium micro-pattern - by removing the upper part of an equilateral triangle -
de-localises Brachyury at the trapezium’s apex. Figure 3.16(e) shows the simulated equi-
libria on a trapezium, which is in accordance with the behaviour of Brachyury described.
For differentiated mESCs, Brachyury has been shown to localise at micro-patterned el-
lipse tips. The model equilibria on a simulated ellipse, together with a hexagonally
binned density map showing Brachyury localisation from Blin et al. (2018), are given
in Figures 3.16(f)-(g), showing the model’s success in recapitulating this result.
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(a) (b) (c) (d) (e)

(f) (g)

Figure 3.16: (a) Equilibrium simulation on a disc; (b) Figure 1(a) from Tewary et al. (2017): ‘Rep-
resentative immunofluorescence images of fate patterning of SOX2, BRA and CDX2 in BMP4-
supplemented CM. Scale bars: 50µm’; (c) Equilibrium simulation on an equilateral triangle;
(d) Figure 3(d) from Muncie et al. (2020): ‘Representative brightfield […] images of T-
mNeonGreen expression for triangle hESC colonies on compliant gels following BMP4 addition.
All scale bars, 250µm’; (e) Equilibrium simulation on a trapezium; (f) Equilibrium simulation on
an ellipse; (g) Figure 2(a) from Blin et al. (2018): ‘BDMs of the T- or T+ populations’, aggregated
across 4125 cells and 65 colonies. All simulations show equilibria of the model given by Equa-
tions (3.17-3.18) with parameters k = 0.5, n = 6, α = 1, q = 0.9 on lattices.

3.7.2 Could FractalMicro-Patterns Yield Self-SimilarCell Fate Pat-
terning?

A natural development of reasoning when dealing with symmetric systems is how to
produce self-similar patterns. One way of recursively producing self-similar shapes is to
develop fractal micro-patterned surfaces.
To investigate whether simulating cells on a fractal micro-pattern would yield self-similar
cell fates, a Sierpinski triangle pattern was created. The Sierpinski triangle was mathe-
matically formalised in 1915, having zero area and infinite boundary [150]. Here, cells are
simulated on this geometry, again assigning neighbour relationships between triangles
that come into contact at any point on their respective perimeters, including meetings
occurring only at any of the three triangle vertices. The equilibrium results of these
simulations are given in Figure 3.17.

3.7.3 Representing Cells in the Network as Voronoi Objects

The previous subsections modelled the dynamical system given by Equations (3.17-3.18)
at node sites given as regular, homogeneous shapes. For the following model simu-
lations, the Voronoi tessellation was used for representing each cell as an object with
non-homogeneous morphology [151, 152]. This approach more closely mimics the ir-
regularity of hPSC morphology in culture. The Voronoi tessellation of a plane, which is
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(a) Sierpinski triangle
(Nt = 225).

(b) Inverted Sierpinski
triangle (Nt = 925).

Figure 3.17: Equilibrium simulations of the model given by Equations (3.17-3.18) on Sierpinski
triangles, with model parameters: k = 0.5, n = 6, α = 1, q = 0.9.

composed of individual Voronoi objects, is computed in the following manner [153].
Let a metric space X with distance function d. Let K be a set of indices and let (Pk)k∈K

be a tuple - i.e. an indexed collection - of non-empty subsets in X . Then the Voronoi
object Rk associated with the site Pk is the set

{Pi ∈ X|d(Pi, Pk) ≤ d(Pi, Pj) for any i, j ̸= k}.

Then the Voronoi tessellation is the tuple of objects (Rk)k∈K . For this work, X is the
(x, y) plane, and d is the Euclidean distance.
Bounded Voronoi tessellations were generated using a computational algorithm by Siev-
ers [154]. Boundaries for the tessellation were defined as either a disc or an equilateral
triangle. Equilibrium simulations of these geometries are shown in Figures 3.18(a)-(b).
From these figures, it is clear that the fate patterning demonstrated using lattices is pre-
served in the Voronoi model.
An interesting experimental finding was that ring fate patterning on discs was disrupted
when disc diameter was reduced [30]. The most distinct patterning arose using discs of
1000 µm diameter, but for discs of smaller diameter - and therefore smaller cell popula-
tions - some cell fates were not clearly emergent. This was particularly seen for discs of
500 µm diameter or less, for which low expression levels of the pSMAD1 gene were not
obtained.
To test whether the model given by Equations (3.17-3.18) reflects this phenomenon, the
number of simulated cells was proportionally reduced such that the diameter of the disc
was halved. As the population simulated in Figure 3.18(a) consisted of 1000 cells, the
disc area was recorded as 1000 arbitrary square units. The corresponding disc radius r,
and the number of cells Ni with which to initialise the reduced-sized disc simulation,
were thus computed by the following:

1000 = πr2 =⇒ r =

√
1000

π
=⇒ Ni = π

(r
2

)2
= π

(√
1000

π

/
2

)2

= 250. (3.23)
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(a) (b) (c) (d)

Figure 3.18: (a) Equilibrium simulation on a densely populated disc (N = 1000); (b) Equilibrium
simulation on a densely populated triangle (N = 930); (c) Equilibrium simulation on a sparsely
populated disc (N = 207); (d) Equilibrium simulation on a sparsely populated triangle (N = 50).
All simulations show equilibria of the model given by Equations (3.17-3.18) with parameters
k = 0.5, n = 6, α = 1, q = 0.9, using Voronoi objects to represent cells.

To model this, 250 simulated points were initially distributed in a square domain. Ap-
plying the Voronoi tessellation algorithm - which involves trimming the square domain
to the desired shape (here, a disc) - reduced the cell count to 207. The system equilibrium
for simulated cells on this reduced-size disc is shown in Figure 3.18(c). As can be seen,
the clear ring patterning demonstrated in Figure 3.18(a) is not emergent. Additionally,
Figure 3.18(d) demonstrates a lack of distinct localisation of morphogen to the triangle
tips for a simulation on a reduced-size triangular domain.

3.8 Applying the Dynamical Model to a Novel Grow-
ing Cell Network

Notably, fixed sized systems don’t account for cell division and apoptosis. Such phenom-
ena are beneficial to model for increased biophysical relevance. Moreover, any form of
static model cannot capture the gene expression trajectory of single cells over time. Due
to a combination of cell age and epigenetic memory, former and current stem cell states
are highly related, which has been mathematically reflected [155]. In dynamical systems,
bistability forms the basis for encoding memory into an agent (cell), thus driving pattern
formation [156]. Therefore, the development of a model which combines the flexibility
of a vertex model with the time-series nature of a growing model would be highly rele-
vant for hPSC fate pattern formation.
This section aims to apply the model given by Equations (3.17-3.18) to describe emergent
fate patterning for growing hPSC cultures. Previous mathematical models of hPSC fate
link gene expression levels to the concentration of the differentiating morphogen at a
spatiotemporal point [30]. In the growing model, therefore, cell state may be regarded
as cellular expression of a particular genetic marker.

73



3.8.1 Novel Growing Model Formulation

The growing vertex model is initialised with one cell. At each discrete timestep t ∈ [0, T ],
Nt represents the number of populated cells in the system. For cell i, cell state xi(t) is
subject to stochastic fluctuations while remaining bounded in the interval (0, 1), i.e.

xi(t) = xi(t− 1) + ξ(i)t, t ≥ 1, xi(t) ∈ (0, 1) (3.24)

for stochastic noise ξ(i)t taken from a Gaussian distribution with zero mean.
A populated cell has a probability of division

pdiv = στ, (3.25)

where σ is a rate constant governing how quickly cells divide when they are in the
proliferation phase, and τ is a fraction representing the duration of time in which cells
proliferate over the total cell cycle time. The fraction τ = 1/15.75 was used, as hESCs
spend 1h in the S phase of the cell cycle - during which they proliferate - and 14.75h as
an average total in all other phases [157]. For cell i to divide, a randomly selected empty
neighbour of cell imust be populated. Thus, if cell i has no empty neighbours, i.e. all cells
in direct contact with cell i are populated, then cell i cannot divide. For biological cell
cultures, neighbour-less cells are generally able to divide, as existing neighbours of the
dividing cell are subject to mechanical forces and are displaced, allowing the daughter
cell to form. However, it is a reasonable simplification to ignore this phenomena within
the model, as the role of cell movement is incorporated through cellular Brownian mo-
tion.
If cell i divides at time tk, then daughter cell j initially inherits the state value of its
parent upon time of division, i.e.

xj(tk) = xi(tk). (3.26)

Each populated cell also has an associated probability of apoptosis. For cell i, this is
given by

papopi =

(
1

γ

)(
1− 1

|I(i)|

)
(3.27)

where |I(i)| is the cardinality of the input set of cell i (as in Equation 3.16), and γ is a
rate constant such that larger values of γ correspond to less frequent cell deaths. The
reasoning for Equation 3.27 was that cells would be more likely to undergo apoptosis at
high local density due to reduced availability of nutrients in the culture media. This is
reflected in the equation by accounting for how many direct neighbours a cell has.
At each timestep t, all Voronoi cell vertices are subject to Brownian motion in the (x, y)
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plane. Modelling the motility of hPSCs with Brownian motion has shown to be success-
ful in capturing biological phenomena [158]. Brownian motion was modelled such that
the updated (x,y) coordinate vector pair, denoted (xnew,ynew), are given by

(xnew,ynew) = min(0,max(0, (x,y) + λbrown(νx,y − σ))), (3.28)

where ν is a random vector of length Nt with elements from the Gaussian distribution
in the range (0, 1), and λbrown is the Brownian motility constant.
Values σ = 10, γ = 4, and λbrown = 0.2 were applied. The selection of λbrown = 0.2

was reasoned by measured diffusion coefficients for wildtype hESCs, which are around
0.2 [158], and small-scale Brownian motion of many particles yields diffusive processes
[159]. Populations of hESCs are known to typically exhibit high rates of spontaneous
proliferation and apoptosis [160], so the parameter values σ = 10, γ = 4 were selected
to reflect this.
When the micro-pattern is fully populated, administration of the differentiating mor-
phogen to the culture is simulated. This is modelled by applying the dynamical system
given by Equations (3.17-3.18), using the random cell state vector as initial conditions.
Cells at this stage are assumed to remain in Brownian motion without cell division or
apoptosis to preserve the network topology. As before, the simulation ends when the
system equilibrium is achieved.

3.9 Summary and Discussion

In this chapter, a novel vertex model with internal node dynamics was presented. This
was applied to modelling hPSC fate at the single cell level, although it may be adapted for
application to other systems. Accurate results were obtained when simulated on geome-
tries mimicking micro-patterned hPSC cultures in the literature [45, 47, 31]. Neighbour-
hood interactions are accounted for through an ordinary differential equation (ODE)
system describing nodular dynamics. In this case, nodular dynamics may represent the
concentration of a differentiating morphogen such as BMP4 bound to cell surface re-
ceptors, or cellular expression level of a genetic marker. Akin to the reasoning behind
Waddington’s epigenetic landscape, the system state corresponding to fully acquired cell
fate is a time-invariant equilibrium of the system [115].
Unlike many other models for hPSC fate patterning in the literature [50, 46, 30], the
model presented here is simultaneously applicable to any 2D Euclidean space, able to
reflect biological cell morphology, and incorporates established edge-sens-ing mecha-
nisms of hPSC cultures [49]. The key tools implemented - such as defining the coupled
graph, calculating inter-cellular distances, simulating time-depen-dent dynamics, gen-
erating Voronoi tessellations, and subjecting cells to Brownian motion - are all general-
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isable to 3D systems. Therefore, it is very possible that the model presented is able to be
generalised to 3D cell models in vitro, but further work would need to be conducted to
verify this.
Traditional models such as the coupled map lattice (CML) model and reaction-diffusion
are unable to naturally generate ring patterning as is seen among differentiated hPSC
cultures on disc micro-patterns. For these models, ring patterning is exclusively able
to be output by defining the initial model condition as a radially symmetric gradient,
i.e. the ring pattern is input rather than emergent. Conversely, the model given in this
chapter is able to be initialised with any value in the range (0, 1) whilst giving rise to
not only ring patterning, but also patterning that matches experimental results involv-
ing micro-patterning of an equilateral triangle, trapezium, and ellipse [45, 47]. This is
very promising; since the introduction of Wolpert’s ‘French flag’ model in the 1960s, it
has been well-known in mathematical biology that the spread of a morphogen is heavily
linked with the positional information of cells that it acts upon [161]. However, existing
models that accurately reproduce fate patterning do not do so with any kind of bound-
ary control [46, 50]. The contraction-reaction-diffusion model for fate patterning in the
literature is successful at generating target patterns, but is of high complexity due to the
inclusion of mechanical tension [48]. The model presented in this chapter, on the other
hand, is able to reproduce a range of experimentally observed patterns with a compara-
tively simple architecture.
Whilst the model offers a novel and useful paradigm for cell state modelling, it must be
stressed that for the majority of cell populations simulated, the focus is on the qualitative
- rather than quantitative - system equilibria. As further research, the growing vertex
model would ideally be simulated with biologically informed gene expression data before
initiating the simulation of morphogen administration. Then, using tracking constructs
already present in the model code, the true single-cell evolution of gene expression could
be recorded. In fact, this is exactly what has been initiated for the process described in
Appendix A.1.5.
Continuing the above, as the model records changes in spatial organisation, including
neighbour and parent/daughter relationships, together with cellular gene expression at
each discrete time step, an information-rich output for performing analysis is provided.
In particular, identifying the causal relationship between gene expression patterning
and spatial position is of high interest. It has also been shown that rapidly altering mor-
phogen concentration produces variations in hESC patterning [122]. This phenomenon
could be investigated with reasonable ease through the proposed model.
Ultimately, the spatio-temporal distribution of a morphogen is highly likely to deter-
mined by a combination of (1) diffusion occurring across culture media, and (2) binding
to cell surface TGF-β receptors [30, 49]. Although the model presented here does not
explicitly incorporate diffusion, a great benefit of formulating the problem using a graph
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is that the diffusion equation may be easily applied [162]. Moreover, the application of
spectral graph theory may facilitate quantification of structural similarity between dif-
ferent cell networks [163], which could be investigated with respect to differences in cell
fate patterning. Finally, analysis of a cell network’s adjacency matrix at each time step
may reveal important diffusive behaviour across network edges [164].
It seems that overall, the model framework given in this chapter has proven to be accu-
rate in qualitatively recapitulating several experimental results, thus providing a highly
fruitful basis for time-dependent analysis of growing cell populations both prior to and
during fate specification. There is a need to increase the biophysical relevance of the
quantitative model inputs/outputs, for which further experimental and modelling work
should be combined. Understanding how culture geometry guides hPSC fate pattern-
ing could lead to the optimal production of micro-patterns for yielding a particular fate,
such as through self-similar designs. The long-term goal is to control a wider range
of cell fates using micro-patterned cultures, optimising the results using mathematical
modelling rather than experimental trial-and-error, as this would significantly reduce
the associated labour and financial costs of laboratory protocols for controlling cell fate
compared to the current state-of-the-art methods [165, 166]. Custom designs of micro-
patterned chips for cell culture, intended to be manufactured for this purpose, are given
in Appendix D. These designs were developed for this research, but due to the covid-19
pandemic followed by a lack of laboratory funds, the original experimental plan could
not be completed.
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Chapter 4

A NewQuantification of Local
Density in hPSC Cultures to Identify
its Role in Mechanical Competition

4.1 Introduction

Unwanted genetic changes in hPSCs pose a threat to stem cell research. To advance
regenerative medicine, a better understanding is needed for how genetically variant hP-
SCs take over wildtype cultures. In this chapter, local density analysis of wildtype and
variant hPSCs is presented. Delaunay triangulation quantifies the spatial spread of cell
nuclei in culture, which is translated into a local density measure. It was found that
wildtype hPSCs grow at a significantly lower local density than variant cells in separate
culture. Moreover, wildtype cells co-cultured with variants are forced into high density
regions which they cannot survive due to a shift in localisation of yes-associated protein
1 (YAP) from nuclear to cytoplasmic. This culminates in wildtype cell apoptosis through
mechanical competition.

Contributions of Work inThis Chapter

The results of this chapter formed part of a journal article as detailed below. I.B., T.A.R.,
C.J.P., and D.S. conceived and designed the experiments. C.J.P., I.B., D.S., B.A.S., and J.L.
performed the experiments. C.J.P., D.S., P.J.G., I.B., S.S., and B.A.S. analyzed the data. I.B.,
C.J.P., P.J.G., D.S., and T.A.R. wrote the paper. Contributions from authors are accredited
in text where applicable.

Publications

Christopher J. Price, Dylan Stavish, Paul J. Gokhale, Ben A. Stevenson, Samantha Sargeant,
Joanne Lacey, Tristan A. Rodriguez, Ivana Barbaric. Genetically variant human pluripo-
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tent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell
competition. Developmental Cell, 56(17):2455-2470, September 2021.

Structure of this Chapter

The remainder of this chapter is organised as follows. Section 4.2 provides background
and a literature review within the field. Section 4.3 gives an overview of the hPSCs grown
in separate/co-culture. Quantification and applications of local cell density analysis for
wildtype and variant hPSCs within each culture condition are given in Section 4.4. Re-
sults of this analysis are presented in Section 4.5, with implications of these findings.
Section 4.6 presents a discussion and conclusions for this chapter.

4.2 Background and Literature Review

Genetic Mutations in Pluripotent Stem Cells

Pluripotent stem cells in culture have the capacity to acquire genetic mutations over
time, posing a significant risk to the quality of stem cell research [38, 167]. A major
form of genetic abnormality in cells is changes to chromosomes. On a small scale, this
may include a point mutation, i.e. the substitution of a single nucleotide for another.
On a larger scale, more copy number changes may be present, which can include full
aneuploidy, i.e. a full copy of the chromosome [168].
Whilst some level of genetic mosaicism is normal in mammalian cell populations for
maintaining homeostasis [169], cells with particular mutations possess significant ad-
vantages, resulting in wildtype cell elimination. The most prevalent of such in hPSCs
entail gains of chromosomes 1, 12, 17, 20, and X [170, 171, 172, 173]. Copy number
variant (CNV) hPSCs with these genetic mutations can display growth advantages that
display similarities to carcinogenesis [174, 175].
Concerningly, dopaminergic neurons derived from hESCs resulted in tumour formation
when transplanted into the brains of primates with Parkinson’s disease [176]. Although
this has not been seen in humans for hPSC derived cells, human fetal neural stem cells
that were used to treat a child with ataxia telangiectasia in 2009 resulted in a brain tu-
mour [177]. Considering mutations in hPSCs, researchers at the RIKEN institute in Japan
halted the first trial involving iPSCs in 2015 after finding both single nucleotide variants
(SNVs) and CNVs in transplanted cells; fortunately, no adverse effects in patients were
observed [178]. Advancements have since been made: earlier this year, dopaminergic
neurons were efficiently obtained from iPSCs by inhibiting Notch signalling in vitro

[179], demonstrating the potential of hPSCs in cell regeneration. However, the possi-
bility of transplanting stem cells harbouring mutations remains topical [43].
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Cellular Neighbourhood Interactions Mediate Super-Competition in Culture

The process by which advantageous cells (‘winners’) dominate cells less fit for the envi-
ronmental conditions (‘losers’) through cell-cell interactions is referred to as cell com-
petition [180]. Thus, ‘winner’ hPSCs out-compete ‘loser’ hPSCs by inducing apoptosis,
senescence, or differentiation. As wildtype hPSCs are otherwise healthy - rather than
unfit - yet lose in competition with variants, this is a subset of cell competition known
as super-competition [181].
Various mechanisms have been found to contribute to cell competition. A technology
for analysing individual cell behaviours promoting viability in co-culture was published
in 2017 [54]. The cells used were wildtype MDCK (MDCKWT) cells and scribblekd cells,
the former of which competitively wins when co-cultured with the latter. Time-lapse
microscopy images were used as inputs, where each cell was then tracked computation-
ally using a Bayesian tracking algorithm with Brownian motion.
Whilst not applying to stem cells, the findings support that the immediate neighbour-
hood of a cell has a high impact on determining cell fate. The authors found that both
local cell density and the state of a cell’s neighbours can be used to identify which phase
the cell is in (interphase, prophase/prometaphase, metaphase, anaphase/telophase, apop-
tosis). Delaunay triangulation was used to quantify cell spread, using cell nuclei as ver-
tices for the triangulation. The local density for each cell was then taken as the inverse
sum of the area of Delaunay triangles sharing a vertex with the cell of interest.
Moreover, the homeostatic density of scribblekd cells was 1.4-fold higher than the den-
sity the cells reached after 80 hours in competition with MDCKWT cells. Conversely,
MDCKWT cells had a similar density when cultured alone and when co-cultured with
scribblekd cells. This suggests that there are some mechanical features of MDCKWT cells
that allow them to out-compete scribblekd cells by forcing them into high density re-
gions. This could be due to a number of features such as increased motility, a higher
diffusivity rate, and/or increased cell cycle time.
Furthering the role of the cellular neighbourhood, long non-coding RNA in cancer cells
induces epigenetic changes to neighbours which yield fitness-decreasing mutations [182,
183]. As these epigenetic changes inhibit stem cell properties of cancer cells, their ten-
dency to chemoresistance is decreased, resulting in better prognosis for the patient.

YAP as a Density-Dependent Regulator of Healthy Stem Cell Function

Yes-associated protein 1 (YAP) is key for coordinating stem cell self-renewal, prolifer-
ation, differentiation, and apoptosis [184], whilst also being positively linked to cyto-
plasmic rigidity [185, 186]. YAP and WW-domain-containing transcription regulator 1
(TAZ) are popular targets in cancer and regenerative medicine, as their activation pro-
motes stem cell properties of cancer cells [187]. YAP/TAZ are part of the Hippo pathway,
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Figure 4.1: Figure (1C) from Price et al. (2021) showing H7 hPSCs in culture. The top row shows
wildtype-RFP cells in separate culture. The bottom row shows wildtype-RFP and variant-GFP
cells in co-culture. The scale bar represents 50 µm.

which is regulated by cell density in vitro [188]. In particular, high cell density was found
to promote YAP phosphorylation in hPSCs, which also correlated with cytoplasmic lo-
calisation of YAP. These findings suggest that a forced increase in local cell density could
result in adverse outcomes for hPSCs through YAP inactivation.

4.3 Data and Project Overview

The wildtype cells used for this work were diploid H7 hPSCs, which were either un-
labelled or tagged with RFP (wildtype-RFP). These two conditions for wildtype cells
had no impact on their behaviour, and acted merely as identification tools. The vari-
ant cells were aneuploid H7 CNV hPSCs tagged with GFP (variant-GFP). Variants had a
gain on chromosomes 1, 12, 17q, and 20q. The wildtype and variant cells were grown in
separate/co-culture, thereby yielding three distinct culture conditions. Time-lapse mi-
croscopy images of the cells were obtained using a BioStation, which is a non-invasive
imaging platform, over a 96 hour period. Representative images at 24 hour intervals are
shown in Figure 4.1 [189].
All time-lapse imaging data was generated and processed in CellProfiler prior to the
work undertaken in this chapter. Resultantly, the data analysed was in the format of a
.csv file, where each row corresponded to a single cell. The columns represented cel-
lular features, including the (x,y) coordinates of cell nuclei centres. The programming
language R was implemented for analysis.
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4.4 Methods for the Quantification of Cell Compact-
ness

In order to quantify the spatial distribution of cells in each image, Delaunay triangulation
was performed according to the process given in Appendix B. Cell nuclei centres were
used as vertices for the triangulation.
Next, using a method from the literature [54], the local cell density ρ for each cell was
computed as

ρ =
N∑
i=1

1

A(i)
, (4.1)

where N is the number of Delaunay triangles sharing a common vertex with the cell,
and A(i) is the area of triangle i (i = 1, ..., N). The smaller a cell’s sum of Delaunay
triangle areas, the more compact the cell is. Thus, taking the inverse of this sum results
in a measure of the cell’s local density.

4.5 Results

4.5.1 Local Density of Wildtype and Variant hPSCs

Equation 4.1 was applied to the wildtype and variant cells in separate culture, and then
also in co-culture. Figure 4.2 shows the results of this analysis. Outliers were removed
from the plot if they satisfied one of the following conditions:

x < Q1− 1.5× IQR, (4.2)

x > Q3 + 1.5× IQR, (4.3)

where x is a data observation, Q1, Q3 are respectively the first and third quartiles of the
data, and the inter-quartile range IQR = Q3 − Q1. The relevant quartiles for ordered
observations are given by

Q1 =

(xn∗ + xn∗+1)/2 if n∗ ∈ Z,

x⌈(n∗)⌉ otherwise,
(4.4)

Q3 =

(x3n∗ + x3n∗+1)/2 if 3n∗ ∈ Z,

x⌈(3n∗)⌉ otherwise,
(4.5)

where n is the number of observations in the data, n∗ is the index n/4, and ⌈y⌉ is the
ceiling function applied to y.
A statistically significant difference (p < 0.01) was observed between the wildtype cells
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Figure 4.2: Violin plot showing local cell density against cell type. The local cell density for each
cell is given by ρ =

∑N
i=1

1
A(i) , where n is the number of Delaunay triangles sharing a common

vertex with the cell, and A(i) is the area of triangle i (i = 1, ..., N).

in separate culture and the remaining three culture conditions by performing a two-way
student’s t-test. This tests the hypothesis that a sample of size n, with mean and standard
deviation x̄ and s respectively, are randomly selected from a population with mean µ and
unknown standard deviation. This information is combined in the t-statistic, which is
given by

t =
x̄− µ

s/
√
n
. (4.6)

4.5.2 Implication for Mechanical Competition

Using immunofluorescence staining, the expression of YAP was inspected for wildtype
and variant hPSCs in separate culture. It was observed that both cell types expressed
YAP predominantly in their nuclei. However, when YAP expression was inspected for
wildtype and variant hPSCs in co-culture, a different result was seen: variant cells re-
tained their nuclear expression of YAP, whereas wildtype cells displayed a shift in YAP
localisation from nuclear to cytoplasmic. This consequently inactivated YAP in wildtype
cells.
For further investigation, YAP was artificially over-expressed in wildtype hPSCs. Doing
so was found to increase the cells’ growth rate and increase their density in separate
culture. Moreover, wildtypes that over-expressed YAP had increased resistance to the
compactness forced upon them in co-culture with variants. Finally, variants that were
subjected to the knockdown of YAP were less successful at dominating wildtype cul-
tures.
As a result of these findings, a protocol was conducted to promote the nuclear localisa-
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tion of YAP in wildtype cells at high density. No cell competition between variant and
wildtype cells was observed at low density, but as cells are forced into higher density
regions, wildtype senescence and apoptosis begin. However, wildtypes that retained
nuclear YAP expression were more resistant to mechanical competition, and higher pro-
portions of these cells survived in co-culture. The combination of findings provides sub-
stantial support that YAP mediates the mechanical competition of hPSCs.

4.6 Summary and Discussion

The pivotal novel finding of this work was that genetically variant hPSCs employ high
density growth as a super-competition tool against wildtypes in co-culture through the
inactivation of YAP - a protein linked to hPSC proliferation and survival - in wildtypes.
To achieve this result, a quantification of local cell density was applied in this chapter
for the first time to hPSCs. This revealed that genetically variant H7 cells force their
wildtype counterparts into significantly higher density regions than their homeostatic
density, during which the wildtype cells are eliminated. Investigating this further, a mi-
gration from nuclear to cytoplasmic YAP localisation in wildtype cells co-cultured with
variants was observed. This localisation shift consequently inactivates YAP, resulting in
wildtype cells being unable to withstand the mechanical stress of highly compact cul-
ture.
The observation that hPSCs fare poorly in co-culture with those more genetically suited
to the environment is in alignment with previous findings [190]. The results are also
fitting with links between the nuclear localisation of YAP and cytoplasmic rigidity [185,
186]. A previously proposed quantification method for local cell density was imple-
mented [54], which helps to fill a gap in existing knowledge linking YAP activation with
local cell density [188].
Expectantly, the outcome of this work is to advance the use of the culture conditions pro-
posed which increase the survival likelihood of wildtype hPSCs among variants. Specifi-
cally, growing cells at low density and/or promoting nuclear localisation of YAP in wild-
type hPSCs could prevent cellular super-competition in culture.
In conjunction with this, it would be useful to implement an efficient method for identi-
fying genetic variants in culture. This could lead to the removal of variants before wild-
type cells are compromised, providing additional security. In developing such a method,
cellular morphological and motility features may be useful for predicting how the cells
fare in competition [191]. Moreover, many types of cancerous tumours are maintained
by their own stem cells. These are similar to hPSCs in their self-renewal capabilities,
but have advantageous mutations which allow them to out-compete normal cells [192].
Therefore, a technology that could extract the key features of ‘winner’ cells that differ
from ‘loser’ cells could be of great medical benefit.
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Chapter 5

A Novel Approach to Automatic
Detection of Genetically Variant Stem
Cells from Time-Lapse Microscopy
Images Using Ensemble Learning

5.1 Introduction

Automatic detection of variant hPSCs is an important but challenging task to ensure the
safety of stem cell replacement therapies. In this chapter, classification models are pre-
sented to distinguish genetically wildtype and variant hPSCs in culture, generated by
a cell segmentation and tracking software from time-lapse microscopy images. Specifi-
cally, a collection of base machine learning models are trained using a reduced number
of features determined by forward selection. Next, these base models are combined into
a novel ensemble superlearner, where a weighted voting method is introduced for fea-
ture selection. For weighted voting, the vote from each model is weighted according
to its relative accuracy, compared to other models, when previously implemented on a
non-overlapping subset of the data. Boosting was used for the ensemble model, which
improves predictive power and combats over-fitting. The resultant model developed -
using training data derived from only 3 hours of time-lapse images - has an accuracy of
73.9% and an F1-score of 0.82.

Structure of this Chapter

The remainder of this chapter is organised as follows. Section 5.2 provides background
and a literature review within the field. Section 5.3 gives an overview of the data analysed
in this chapter, together with the individual classifiers used. Next, Section 5.4 describes
how the data is prepared for analysis, including computational cell tracking and the

85



calculation of cellular features. Full descriptions of individual classification architectures
are given in Section 5.5 with feature selection in Section 5.6, then the analogous process
for ensemble classifiers is given in Section 5.7. Section 5.8 provides the results from the
previous two sections, including documentation for how the final ensemble model is
produced. A summary and discussion of the work are presented in Section 5.9.

5.2 Background and Literature Review

Machine Learning Approaches are Needed for Cell Biology Applications

Traditional biological methods for detecting genetic heterogeneity across cell cultures -
such as karyotyping, polymerase chain reaction (PCR), and quantitative PCR - are slow
and have an inadequate level of sensitivity [170]. However, there is a need for fast detec-
tion, as many variant hPSCs grow faster than wildtypes, enabling them to rapidly domi-
nate cultures [189]. Within the last four years, faster PCR and deep sequencing methods
for genetically screening stem cell populations have been developed [39, 40, 41, 42, 43],
but these fall into one or more undesirable categories: (1) they remain lengthy (over 24
hours), (2) they require disruptive manual processes to the cells, (3) they are costly.
Machine learning approaches for cell biology can drastically improve the speed and ac-
curacy of high-throughput research [193]. For classification, supervised models rely on
the class of the training data being known prior to model training, whereas unsupervised
classifiers work on label-free data [194]. The advantage of unsupervised classification
is this lack of need for a priori class knowledge. However, supervised classifiers gener-
ally yield substantially higher classification accuracies [195, 196]. Supervised models are
hence are preferable if the class labels are known.

Appropriate Classification Models Within Cell Biology Yield Accurate Results

One of the most popular supervised classification architectures is the support vector ma-
chine (SVM) introduced in the early 1990s [197]. A novel algorithm that incorporates
the linear SVM was developed in 2012, which was shown to improve binary classifica-
tion in the case of having many more features than data samples [198]. For the first
step of this algorithm, a student’s t-test is performed per feature split by class, leading
to the removal of features which have a statistically insignificant (p > 0.05) inter-class
difference. This passes a reduced feature set to the SVM, reducing computational cost.
Recursive feature elimination (RFE) is then used to select the optimal feature set. RFE is
an iterative procedure where the feature with the lowest model contribution is removed
per iteration, and is often used in conjunction with SVM models [199, 200]. The authors
applied their algorithm to classify cancerous endometrial cells, yielding an accuracy of
88.5%.
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As the study considered initially 1428 features, removing statistically insignificant fea-
tures led to a significant reduction in computational effort [198]. However, as the stu-
dent’s t-test takes the form of a filter method, i.e. eliminating features without any
knowledge of the classifier to be used, this may result in poorer model accuracy than
if a wrapper method were used, i.e. feature selection that is embedded within an itera-
tive classification algorithm [201]. Filter selection may be primarily advantageous when
dealing with a sufficiently large feature set, due to the associated reduction in com-
putational cost compared to wrapper selection methods. Thus, the trade-off between
classification accuracy and computational cost should be considered.
Logistic regression (LR) is another important and popular classification tool, which un-
like SVM models, must assume a linear boundary between data classes [202, 203]. For
binary classes, LR algorithms have a similar form to linear regression, but the logistic
function is used as the response in order to appropriately bound the output. As the out-
put falls in the range [0, 1], this is treated as the probability that the data belongs to one
of the two classes. Thus, a binary class prediction is yielded by rounding the output to
the nearest integer. Although developed for binary-class data, LR can be fairly easily
extended to apply to multi-class problems [204]. In some cases, LR has been shown to
out-perform SVM models [205].
Following also from linear regression, applying non-parametric smoothing to the regres-
sion function yields a Gaussian process model [206, 207]. Gaussian process models are
flexible in their theoretical range of applications, but the requirement for the mean and
covariance of the function to be specified a priori can be challenging to implement for
real-life applications [99].
Another widely popular linear classifier is linear discriminant analysis (LDA), introduced
in 1936 [208]. It has been demonstrated that both LDA and LR are appropriate for linear
classification problems, with little difference in error between them [209]. However, LDA
makes more assumptions about the data - in particular, that it is normally distributed -
which LR does not [209, 210].
In further support of LR, it has been found to out-perform other classifiers when used
in conjunction with iterative forward feature selection [211]. Forward selection (FS) al-
gorithms use a chosen metric to select one feature, then iteratively build up the feature
set. Often, a stopping criteria is imposed to halt the FS process at some event, such as
when the classification accuracy no longer increases as features are introduced to the
model. The authors use forward selection based on the likelihood ratio test, which is a
FS method implemented prior to classification. By combining multi-class LR with FS, the
authors most successfully predict radiation-induced esophagitis in lung cancer patients
undergoing proton radiotherapy. Similarly to the student’s t-test, however, the imple-
mentation of the likelihood ratio test prior to training classifiers may be beneficial for
improving computational speed, but runs the risk of having a sub-optimal impact on the
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classification accuracy.
Logic-based algorithms are a particular form of classifier which differ from those dis-
cussed above. The most popular of these are decision trees, whereby the feature that
best partitions the training data into its classes is taken as the node of a tree [212]. This
procedure is iterated to produce sub-trees, stopping when all subsets of the training data
are of the same size. However, decision trees are more appropriate for discrete and/or
categorical features, rather than continuous [212]. Moreover, decision trees are often less
stable than other classifiers, meaning that small changes in the input training data may
yield very large changes in the model output [213]. Therefore, logic-based algorithms
are not considered for this work.

Current Machine Learning Models Applied to Stem Cells andTheir Limitations

Machine learning methods have been directly applied to stem cells to accurately detect
certain properties from images, including mitosis [214], specific developmental stages
[215], speed of replication [216], and whether the cells are dense, spread, differentiated,
or debris [217]. Additionally, Gabor texture features, introduced in 1946 [218], have
shown to be highly useful in hPSC classification. Gabor texture features can accurately
distinguish between four behaviours of stem cells in culture when fed into a SVM classi-
fier [219]. When combined with principal component analysis (PCA) for dimensionality
reduction, Gabor texture features can also distinguish between images of hPSCs differ-
entiating [220].
Single-cell entropy (SCENT) is an algorithm for classifying normal and variant cancer
stem cells based on their signalling entropy [?]. The model was inspired by Wadding-
ton’s epigenetic landscape, which is a conceptual construct whereby the state of a stem
cell may be spatially represented on a smooth 3D surface [221]. The highest elevated
states correspond to the highest differentiation potential and lowest stability, and are of-
ten associated with pluripotency. The low points, or sinks, of the landscape correspond
to cell fates. Thus, lineage trajectories may be represented by a curve that tracks a cell
from a point of high elevation on the landscape to a sink.
The main assumption of SCENT is that pluripotency can be characterised by a state of
high uncertainty, or entropy, resulting from all fate choices being equally likely. Con-
versely, cells that have committed to a lineage to some degree lose this high entropy.
This assumption seems reasonable, as the authors account for previous findings show-
ing that some cells are primed for differentiation and hence have lower entropy than
naı̈ve pluripotent cells [63]. Another key assumption is that two genes are more likely
to interact with each other if they are both highly expressed. Using a random walk to
model probabilistic signalling between genes, the SCENT algorithm was developed to
predict a cell’s differentiation potential based on this assumption. Next, the global sig-
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nalling entropy was calculated as the entropy rate of the probabilistic signalling. The
entropy rate was given as a weighted average of the local signalling entropy across all
genes and proteins within the network.
SCENT performed clustering from scRNA-Seq profiles to infer cell clusters that co-
express genes. Cells were then assigned to (1) a co-expression cluster, and (2) a differenti-
ation potency state. Lineage trajectory network diagrams were subsequently generated
by correlating these features with those of a particular landmark - representing cell state
- akin to points on the surface of Waddington’s epigenetic landscape. The algorithm had
high accuracy in estimation of true lineage trajectories, suggesting that the signalling
entropy of a cell is a beneficial feature to measure for the classification of normal and
mutant cells.
Despite this progress, the challenge remains to detect variations in stem cell genetics di-
rectly from images. A major challenge faced when developing a tool for classifying wild-
type and variant hPSCs from time-lapse microscopy data is that genetic heterogeneity is
visually subtle. The hPSC events that were successfully classified from images, however,
were heavily characterised by morphological changes, and so posed less challenging to
accurately detect than genetic mosaicism. For more sensitive tasks, achieving an accept-
able classification accuracy is difficult. This is demonstrated when assessing the quality
of hPSC colonies from images, resulting in a best accuracy of only 62.4% [222].

Tools for Cell FeatureQuantification from Microscopy Images

StemCellQC is an automated toolkit which uses phase-contrast time-lapse microscopy
imaging to output hPSCs features relating to motility, morphology, and pixel intensity
[223]. The accuracy of this tool when classifying cells as healthy or dying was 96%,
which indicates an excellent model. It is worth noting, however, that the onset of stem
cell apoptosis is another easily visually apparent event, and the results relied on 48 hours
of time-lapse data as input which may not always be available. Nevertheless, the results
suggest that the features calculated by StemCellQC are pivotal for capturing useful prop-
erties of stem cells.
A more complete set of morphological, statistical, and pixel intensity features is output
by the software ilastik, which enables a workflow for semi-automatic cell segmentation,
tracking, and feature extraction [224]. The outputs are listed under the following cate-
gories: standard object features, convex hull features, and skeleton features. The former
incorporates features relating to pixel intensity and basic measures of shape. The latter
two incorporate more specialised morphological and statistical features. Although ilastik

does not explicitly calculate motility features, its tracking output contains all required
information for their easy computation.
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Ensemble Models as a Balanced and Fast Approach to Stem Cell Classification

Classification tools must ideally be fast to deploy. A poignant question in hPSC research
is when are variant cells - capable of super-competition - likely to be present in culture?
A review of the predisposition of hESCs to acquire genetic changes showed that cultur-
ing hESCs with feeders prolonged their karyotypic stability up to 185 passages [225]. In
feeder-free culture conditions, however, hESC lines can exhibit karyotypic abnormalities
as early as 10 passages. For many applications in hPSC research, feeder-free conditions
are preferred as the probability of transferring viruses to the cells is substantially re-
duced. Last year, the Bionano Genomics Saphyr optical mapping platform was used to
detect copy number changes in iPSCs to subchromosomal level [226]. A gain of chro-
mosome 12 - responsible for stem cell super-competition - was observed in the majority
of cells after just 32 passages. This highlights the need for non-disruptive and accurate
single-cell classification of hPSC variants from images.
A promising approach to improving predictions based on subtle data changes is ensem-
ble classification. Ensemble classifiers can successfully comprise different base algo-
rithms, or repeats of the same base algorithm trained on randomly sampled subsets of
the training data, in order to improve the model’s classification power [227]. Specifi-
cally, a linear combination of base algorithms are fitted to the training data, which is
computed by re-weighting the original data to obtain different estimates, then taking
the linear sum of these estimates [228].
Two popular methods for further improving the predictive power of ensemble models
are ‘bagging’ (short for ‘boostrap aggregating’) [229], and ‘boosting’ [230, 231]. Bagging
is advantageous for reducing the variance of the model output, with each sample fitting
performed in parallel. Conversely, boosting algorithms fit models sequentially, with the
feature weights at each iteration dependent on those at the previous iteration.
Studies have applied ensemble classifiers to cell biology to yield accurate classification
outputs [232, 233]. For stem cell applications, in recent years, single-cell variations in
hPSC gene expression were successfully identified through ensemble modelling [234].
Although the model uses RNA sequencing data rather than images of cells, this is a posi-
tive advancement, further supporting the applicability of ensemble classification in stem
cell research.

5.3 Data and Project Overview

The timelapse imaging data for this work was generated using Phase Focus, which is a
non-destructive imaging tool. Imaging of hPSCs took place over a period of 12 hours.
Images were taken as 15 minute intervals, thus yielding 48 frames per video. A total of
24 videos were generated: 17 of variant hPSC lines, and 7 of wildtype hPSC lines. A total

90



Table 5.1: Summary of the time-lapse imaging experiments (24 video recordings).

Well Class Cell line Cell count % of Total
A1-A3, D5-D6 Wildtype H7S14 12785 26.38

A4-A6 Variant H7 v17q 6554 13.52
B1-B2 Variant H7 v20q 4286 8.84
B3-B4 Variant H7 v1q 1930 3.98
B5-B6 Variant H7 v1,17q 4815 9.93
C1-C2 Variant H7 v12,17q 3354 6.92
C3-C4 Variant H7 S6-GFP v1,12,17,20q 4014 8.28
C5-C6 Wildtype H9 2713 5.60
D1-D2 Variant H9 v1q 4239 8.75
D3-D4 Variant H9 v17q 3781 7.80

of 10 different cell lines were imaged. A breakdown of this data can be found in Table
5.1.
The model architectures used to classify variant and wildtype hPSCs from the images
were:

1. Support vector machine with a linear kernel (SVML),

2. Support vector machine with a Gaussian kernel (SVMG),

3. Linear discriminant analysis (LDA),

4. Logistic regression (LR).

Recursive feature elimination (RFE) and forward selection (FS) were respectively imple-
mented for each model to determine the top feature set.

5.4 Data Preparation

5.4.1 Computational Cell Tracking

Prior to to this work, each image frame had been processed and normalised using the
software Fiji, including automatic cell segmentation. As a result, there was minimal vari-
ation in colour properties - such as brightness and contrast - between the frames that
were used in this work.
The open source software ilastik was used for semi-automated cell tracking. Initially,
ilastik’s Pixel Classification app was trained on the first frame of the first video. Using
several manual brushstrokes for training, the foreground and background were identi-
fied by ilastik. Then, 6 features were used to fine-tune the segmentation of cells:

1. Gaussian smoothing for colour/intensity,
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2. Laplacian of Gaussian for edges,

3. Gaussian gradient magnitude for edges,

4. Difference of Gaussians for edges,

5. Structure tensor eigenvalues for texture,

6. Hessian of Gaussian eigenvalues for texture,

using a standard deviation value of σ = 1. Detailed explanation of this process can be
found in [224]. Results for all frames were batch processed according to training of this
initial frame, and quality checked manually, which involved comparing by eye the pixel
classification to the brightfield microscopy images.
Next, each video was individually imported into ilastik’s Tracking with Raw Data and
Pixel Prediction Map app. Pixel intensity is in the range [0, 1], where higher intensi-
ties were more likely to correspond to a cell, and lower intensities to the background.
Using the pixel classification results, binary cell segmentation was performed on every
frame according to a pixel intensity threshold of 0.6 ± ϵ, where ϵ is a small parameter,
kept constant across all frames per video, to compensate for marginally different overall
brightness for some videos.
Manual training was performed on several cells to train ilastik to recognise cells that
were dividing, and how many cells were contained within a segmented object (in the case
of undersegmentation). For the former of these tasks, any cell in frame i that became two
cells in frame i + 1 was marked at frame i, with the cell and its daughter then marked
at frame i + 1. After sufficient manual training, visual inspection verified that ilastik
could then automatically recognise dividing cells. For the latter of these tasks, a sample
of undersegmented cell clusters were marked at frame i, together with inputting an inte-
ger value representing how many cells were within the cluster, determined by eye from
microscopy images. Then, with specified weights for a cell dividing/transitioning, costs
for cell appearance/disappearance, and a maximum transition neighbourhood, ilastik
tracked the cells semi-automatically. It was found that a high penalty associated with
assigning cell division/transitioning and appearance/disappearance, combined with a
high distance permitted for neighbourhood transition, yielded by eye the most accurate
cell tracks. This may be due to the fact that images were obtained across 15 minute inter-
vals, so a given cell may have travelled far between consecutive frames. If these bounds
were instead reversed, it was found that ilastik performed poorly at assigning the correct
track to each cell, instead assigning many new cell IDs per frame rather than recognising
a cell as existing at the previous frame. A representative image of cell sample in ilastik

is given in Figure 5.1.
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(a) Brightfield microscopy
image of cells in culture.

(b) Binarised image in
ilastik.

(c) Cells after semi-
automatic tracking in
ilastik.

Figure 5.1: Representative image of hPSCs imported to and processed by the tracking software
ilastik. The imaged cells are H7 v20q variant. Sub-figure (b) shows two small non-cell objects
detected by ilastik in the binarisation stage, which were later filtered from the tracking stage (c).

Retaining Single-Cell Data

Following from cell tracking, overall quality checks were manually carried out to ensure
that cells had been well segmented and their trajectories accurately mapped. Although
the former checks that had been carried out resulted in a good match between ilastik’s
output and what was seen by eye, a loss of segmentation and tracking accuracy was
observed over a prolonged timescale as cells began to group together. It was found that
wildtype cells became less accurately identified after around 24 frames (6h), and variant
around 12 frames (3h). This was unsurprising, given the result that wildtype cells grow
at a significantly lower local density than variant cells in separate culture, as presented
in Chapter 4. A representative image of this behaviour is shown in Figure 5.2.
To overcome this issue, the 48 frames per video were trimmed to just the first 12 frames.
Doing so ensured that the data analysed was of single cells, rather than clumps. Although
videos of wildtype cells could retain up to 24 frames, reducing the number of hours for
which cells must be imaged in order to apply the classification model being developed
is beneficial.

5.4.2 Single Cell Features Output by ilastik

The output from cell tracking was 39 features for each cell per frame, quantifying stan-
dard object features, convex hull features, and skeleton features. These are as follows:

Standard Object Features

1. Bounding box maximum (x-axis),

2. Bounding box maximum (y-axis),

3. Bounding box minimum (x-axis),
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(a) Brightfield microscopy
image of cells in culture.

(b) Cells after semi-
automatic tracking in
ilastik.

Figure 5.2: H7 v17q variant hPSCs imaged after 10 hours. Cell boundaries are poorly segmented
by ilastik when cells clump together.

4. Bounding box minimum (y-axis),

5. Size in pixels,

6. Kurtosis of intensity,

7. Maximum intensity,

8. Mean intensity,

9. Minimum intensity,

10. Skewness of intensity,

11. Total intensity,

12. Variance of intensity,

13. First principal component of the object,

14. Second principal component of the object,

15. Third principal component of the object,

16. Fourth principal component of the object,

17. Radii of the object (x-axis),

18. Radii of the object (y-axis).

Convex Hull Features

19. Convexity,

20. Number of defects,

21. Mean defect displacement,

22. Mean defect area,
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23. Variance of defect area,

24. Convex hull centre (x-axis),

25. Convex hull centre (y-axis),

26. Object centre (x-axis),

27. Object centre (y-axis),

28. Object area.

Skeleton Features

29. Average branch length,

30. Number of branches,

31. Diameter,

32. Euclidean diameter,

33. Centre of the skeleton (x-axis),

34. Centre of the skeleton (y-axis),

35. Terminal 1 of the skeleton (x-axis),

36. Terminal 1 of the skeleton (y-axis),

37. Terminal 2 of the skeleton (x-axis),

38. Terminal 2 of the skeleton (y-axis),

39. Length of the skeleton.

For detailed descriptions of these features, please refer to the ilastik documentation [224].

Removing the Coordinate Dependency of Features

Features (1-4), (24-27), and (33-38) are all given as either an x or y coordinate value,
representing their position in the image of hPSCs. However, the exact location of each
cell is not of interest; for example, each image could be rotated - thus changing the
cell coordinates - but the behaviour of cells would not differ. Therefore, the coordinate
dependency of these 14 features was removed according to the following:

1. Convex hull/object centre distance (x-axis) = | Convex hull centre (x-axis) - Object
centre (x-axis) |,

2. Convex hull/object centre distance (y-axis) = | Convex hull centre (y-axis) - Object
centre (y-axis) |,
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3. Skeleton/object centre distance (x-axis) = | Centre of the skeleton (x-axis) - Object
centre (x-axis) |,

4. Skeleton/object centre distance (y-axis) = | Centre of the skeleton (y-axis) - Object
centre (y-axis) |,

5. Bounding box length (x-axis) = | Bounding box maximum (x-axis) - Bounding box
minimum (x-axis) |,

6. Bounding box length (y-axis) = | Bounding box maximum (y-axis) - Bounding box
minimum (y-axis) |,

7. Terminal 1/object centre distance (x-axis) = | Terminal 1 of the skeleton (x-axis) -
Object centre (x-axis) |,

8. Terminal 1/object centre distance (y-axis) = | Terminal 1 of the skeleton (y-axis) -
Object centre (y-axis) |,

9. Terminal 2/object centre distance (x-axis) = | Terminal 2 of the skeleton (x-axis) -
Object centre (x-axis) |,

10. Terminal 2/object centre distance (y-axis) = | Terminal 2 of the skeleton (y-axis) -
Object centre (y-axis) |,

where | x | denotes the absolute value of x. These 10 features were added to the feature
set, while the 14 features used in their calculations were removed.

5.4.3 Motility, Local Cell Density, and Gabor Texture Features

Motility

The movement of wildtype and variant cells has been shown to have different char-
acteristics in vitro - thus, cellular motility features were included as predictors for the
classifier. To compliment the features output by ilastik, the following five motility fea-
tures were computed on a cellular/cell population level.
At the single-cell level, across all video frames, the maximum distance travelled is given
by

dmax = maxi(d(pi, pi+1)). (5.1)

The total distance travelled is given by

dtot =
F−1∑
i=1

d(pi, pi+1). (5.2)
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The net distance travelled is given by

dnet = d(pi, pF ), (5.3)

where F is the total number of frames in the video of interest, pi is the position of the
centre of a cell in frame i, and d() is the Euclidean distance.
To measure the linearity of cell motility, the confinement ratio (also known as the chemo-
tactic/straightness index) is given by

rcon =
dnet
dtot

, (5.4)

which takes a value between 0 and 1 (0 corresponding to no net movement, 1 corre-
sponding to an exactly linear trajectory).
The final motility feature computed was the mean squared displacement (MSD) [235],
which is evaluated across a population of cells rather than at single-cell level. MSD was
computed for each cell line, and is defined as

MSD(t) =
1

N

N∑
n=1

(pn(t)− pn(0))
2, (5.5)

where N is the total number of cells per cell line, and pn(t) is the position of the centre
of a cell at time t. As the time is discretised by frame, t =0,1,…,F.

Local Cell Density

As detailed in Chapter 4, an important difference between wildtype and variant embry-
onic stem cells is the local cell density measure, as given by equation 4.1.
For cells close to the border of an image, a pixel threshold of 125 was set such that cells
within this distance from the image edge had their local cellular density value doubled,
i.e. assuming a mirrored distribution of cells.

Gabor Texture Features

The Gabor filter is a linear filter used for image processing, such as edge detection, tex-
ture analysis, and feature extraction. Gabor filters are regarded as the closest existing
filter to approximating the mammalian visual cortex. A Gabor filter is given by the fol-
lowing equation:

g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ+ ψ

)
, (5.6)
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where x′ = xcos(θ) + ysin(θ), y′ = −xsin(θ) + ycos(θ), λ is the sinusoidal wave-
length, θ is the orientation of the normal to the stripes of the Gabor function, ψ is the
sinusoid’s phase offset, σ is the standard deviation of the Gaussian envelope, and γ is
the ellipticity of the Gabor function (spatial aspect ratio). In particular, the parameter
θ = {0, 45, 90, 135} is often selected to capture multiple stripe directions. The resultant
set of Gabor texture features correspond to applying the set of Gabor filters to an image
of an individual cell.
For this work, classification models trained on Gabor texture features produced poor
results (< 40% accuracy). This may be due to the imaging platform used, as PhaseFocus
creates highly pronounced contrasts across individual objects. The aim of this chapter
was to create a model which can be accurately applied to data obtained across a range of
imaging platforms; conversely, texture features are likely to vary significantly according
to the imaging equipment used.

5.4.4 Time-Series Classification: Data Compression Methods

To remove the frame-dependency for each video, the following values were computed
for each feature of a cell across all frames:

1. mean: x̄ = 1
n
(Σn

i=1xi) for a population with n observations,

2. variance: σ2 = 1
n
(Σn

i=1(xi − µ)2) for a population with n observations where µ is
the population mean,

3. kurtosis: k = 1
σ4E(x − µ)4 for x = (x1, x2, ..., xn) describing a population with

n observations. Here, µ is the population mean, σ is the standard deviation of x,
and E(t) represents the expected value of the quantity t,

4. skew: s = 1
σ3E(x−µ)3, with the same variable and parameter definitions as above.

This increased the feature set by 4 times, whilst reducing the data observations.

5.4.5 Synthetic Minority Oversampling Technique for Handling
Class Imbalance

For this data, the training set would contain significantly more variant than wildtype
cells as approximately 77% of the cells were variant. Therefore, fitting a classification
model to this data would likely not yield reliable results, as the model could achieve
approximately 77% accuracy by always predicting that a cell is variant.
To overcome this problem, synthetic minority oversampling technique (SMOTE) was
implemented [236]. SMOTE creates a synthetic sample of the under-represented class
by perturbing an actual under-represented class sample by a small number which moves
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each point in the sample closer to its nearest neighbour. SMOTE is performed on a
feature matrix X using the following algorithm:

1. Randomly select N data observations from the under-represented class in X. The
value of N was chosen such that the resultant number of observations belonging
to each class was equal, i.e. N = N1−N0, whereN1 is the number of observations
in the over-represented class, and N0 is the number of observations in the under-
represented class.

2. From the above sample, select each data point’s k-nearest neighbours within the
sample. The nearest neighbour for data observation x1 is the data observation
x2 for which the Euclidean distance vector v = d(x1, x2) is minimised in n-
dimensional space, where n is the number of columns (features) in X. For this
work, k = 4.

3. Define t ∈ (0, 1). Generate a synthetic data point xnew = (1− t)x1 + tx2 for each
nearest neighbour x2 of x1 found in step (2). For this work, t = 0.3.

4. Append the synthetic data to X, and append the corresponding number of under-
represented class values to the class vector.

5.4.6 K-Fold Cross-Validation of Feature Data

Cross-validation is an important tool for avoiding overfitting a model to data [237]. By
this method, data is split into training and testing (with or without validation) sets, where
the classifier is trained on the training set, yielding an associated accuracy when used to
predict the class of the test set. A validation set is normally used if there is an iterative
process of feature selection within each of the K folds [238]. If a validation set is used,
models will be tested primarily on the validation set at each iteration of feature selec-
tion. This will inform which is the best model, which will finally be applied to the test
set to generate an overall accuracy. This entire process is performed K times, where K is
chosen based on the architecture of the data set. Importantly, data observations cannot
be used in the test or validation sets multiple times.
For this project, 10-fold cross-validation was implemented. Thus, the data was randomly
split into 10 training, validation, and testing sets. However, a constraint was imple-
mented such that each of the 24 videos must be sampled from in equal proportions, each
each of the sets should contain a representative sample of the total data [239]. For the
individual classifiers, definitions of each generated set per fold are as follows:

• T : training set at each fold,

• V1: validation set at each fold,
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• T1: testing set, used only once (after cross-validation is complete).

Then, informed by the results of this process, the top feature set is selected, where this
process is given in Subsection 5.6.3. This reduced feature set is used to train a collection
of ensemble learners. For cross-validation performed on the ensemble models, generated
sets per fold are as follows:

• T : training set at each fold (invariant to that of individual models),

• V2: validation set at each fold,

• T2: testing set, used only once (after cross-validation is complete).

The T :V1:T1:T2 splitting ratio was 7:1:1:1. To generate V2, 13.3% of data was randomly
selected from T to reflect the size of V1.
Due to implementing cross-validation, SMOTE was performed once at each fold, i.e. for
each training set after removing the test set from the model feature data. This is because
the test set must be wholly separate from the training set; performing SMOTE on the
full data would mean that relationships between features in the test set would be used
to generate synthetic data for the training set, known as the malpractice of ‘double-
dipping’.
Before model fitting, the training data was standardised using the equation

x− mean(x)
standard deviation(x) , (5.7)

with these mean and standard deviation values used to standardise the test data, again
avoiding the problem of ‘double-dipping’.

5.5 Machine Learning Classification Models

5.5.1 Classification Model Architectures

For all models described in this section, the actual class vector is denoted by y and the
predicted class vector by ypred. The total number of observations in the data is denoted
by n.

Support Vector Machine

The SVM architecture is a non-parametric classification technique which involves draw-
ing a decision boundary between two target classes with a (N − 1)-dimensional hyper-
plane (N=number of features). The final hyperplane is chosen to maximise the margin
between the two classes.
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A cost function is used for margin maximisation which relies on the hinge loss. Consid-
ering hinge loss only, the cost function is defined as

c(x, ypred, f(x)) = max(0, 1− f(x)× ypred), (5.8)

where

f(x) =

1 if ypredi = yi,

−1 otherwise.
(5.9)

A regularisation parameter λ is also incorporated into the cost function to balance the
hinge loss and the maximisation of the margin. Thus, the cost function becomes

c(x, ypred, f(x)) = minwλ||w||2 +
n∑

i=1

(1− ypredi⟨xi, w⟩), (5.10)

where w contains the weights associated with each feature.
The weights are updated according to two cases:

w =

w − α(2λw) if there is no misclassification,

w + α(ypredi × xi − 2λw) otherwise.
(5.11)

SVM models can incorporate linear or non-linear kernels to transform input data into
the required form. This work used a linear kernel, which is defined as

k(x, y) = xy, (5.12)

and a non-linear Gaussian kernel, which is defined as

k(x, y) = exp
(
−||x− y||2

2σ2

)
(5.13)

where ||x|| is the l1-norm of x, and σ2 = variance.

Linear Discriminant Analysis

Consider a feature matrix X such that each column vector xi is the ith feature of X
(i = 1, ..., N), and an associated binary target class y. Then the linear discriminant
equation takes the form

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + logπk, (5.14)
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where πk is the proportion of rows in X belonging to the kth class, µk is the mean of
the kth class, and Σ is the covariance matrix of X.
LDA makes four main assumptions:

1. Multivariate normality: the conditional probability density functions p(x|y = 0)

and p(x|y = 1) are both the normal distribution, with mean (µ0,Σ0) and covari-
ance (µ1,Σ1),

2. Homoscedasticity: both target classes have identical covariance (Σ0 = Σ1 = Σ),

3. Multicolinearity: increased correlations between features decreases prediction ac-
curacy.

4. Independence: the value of a feature per observation is independent of other ob-
servations.

The high-dimensional feature vector x is projected onto a lower-dimensional vector w.
The output class is determined by which side of a hyperplane, perpendicular to w, the
data point (corresponding to x) is on.

Logistic Regression

Regression analysis models the probability of one event occurring from a choice of two
event possibilities. Thus, the output y is bounded between 0 and 1. The logistic function
is given by

p(x) =
1

1 + e−(x−µ)/s
, (5.15)

where µ is a location parameter such that p(µ) = 1/2, and s is a scale parameter.
Linear classification tasks can utilise a logistic learner to give binary output values. This
is done by choosing a probability cut-off value (embedded in the learning algorithm), and
labelling the outputs as either 0 or 1 depending on their closeness to the cut-off value.

5.6 Feature Selection

5.6.1 Recursive Feature Elimination

For feature selection, RFE was implemented, which removes the feature used in model
training which is of the least importance for the model’s performance.
For an SVM classifier, the linear score function is

f(x) = x′β + b, (5.16)
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where x is a data observation in the feature matrix X, β contains model coefficients
defining an orthogonal vector to the hyperplane (as discussed in Section 5.5.1), and b is
the bias term for the model. The least important feature is that which corresponds to

β∗ = min(| β2 |), (5.17)

which is then removed from the feature set prior to model re-training.
For an LDA classifier and a standardised feature matrix X with N features,

D = diag(XT ∗X). (5.18)

The regularised covariance matrix

Σ̃ = (1− γ)Σ + γD, (5.19)

where γ is defined such that Σ̃ is non-singular whenever γ ≥ min(γ).
Let µk be the mean of the kth class in X, and µ0 be the global mean vector. Let also C
be the correlation matrix of X. Then the regularised correlation matrix

C̃ = (1− γ)C + γI, (5.20)

where I is the identity matrix.
For the threshold δ as described in Section 5.5.1, there exists a δpred(i) (i = 1, ..., N) such
that if δpred(i) ≤ δ, then

δ ≤ | C̃−1D−1/2(µk − µ0) | . (5.21)

If this condition is met, then the LDA classifier does not use feature i for predictions.
Thus, the least important feature is that which corresponds to

δ∗pred = min(| δ2pred |), (5.22)

which is then removed from the feature set prior to model re-training.
For both the SVM and LDA model architectures, RFE was iterated such that the top 10
most important features were selected.
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5.6.2 Forward Selection

To select features, the FS algorithm considers a feature matrix

X = [x1,x2, ...,xn] =


x1(1) x2(1) ... xn(1)

x1(2) x2(2) ... xn(2)
... ... . . . ...

x1(n) x2(n) ... xn(n)

 , (5.23)

where all xi are column vectors representing a feature. The output feature matrix begins
empty and is ‘built up’, i.e. features are selected one at a time. This contrasts with RFE,
where features are instead removed one at a time.
The output from FS is a feature matrixF containing the ordered selected features f1, f2, ..., fn∗ ,
where n∗ ≤ n is the maximum number of features to be selected. For this work, n∗ = 10.
The FS algorithm is as follows:

1. Train a classification model on each individual feature xi in X.

2. For the feature xk achieving the maximum classification accuracy, let f1 = xk.

3. For each remaining feature xi ̸= f1, consider xi as the next candidate feature to
enter matrix F.

4. Train a classification model on F.

5. Retain in F the feature xk achieving the maximum classification accuracy in Step
(4).

6. Repeat Steps (3)-(5) until the maximum number of features, n∗, are selected.

Orthogonal forward selection (OFS) was also considered as a feature selection technique.
However, after preliminary results, OFS was not taken forward for two reasons: 1) poorer
performance than FS, and 2) the columns of X were not linearly independent, although
linear independence is an assumption of the Gram-Schmidt procedure which is used to
generate an orthogonal decomposition of the feature matrix.

5.6.3 Selecting the Top Feature Set Using Novel Weighted Voting
Technique

After performing K-fold cross-validation, the feature set obtaining the maximum clas-
sification accuracy may differ at each fold. However, a single feature set was sought to
generate a final model.
Consider models trained on a data set such that each model is constrained to a max-
imum of N features (the total features in the data set may be larger than N ). Then a
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voting system was used to select the top feature set [240]. Unlike majority voting meth-
ods, a weighted voting method is used, such that the vote of each model architecture
is weighted by its relative accuracy when implemented on the individual models [241].
This was done according to the following procedure:

Size of the Top Feature Set

1. For each model i (i = 1, ..., n) and cross-validation fold k (k = 1, ..., K), deter-
mine the size of the feature set yielding the highest accuracy for model i, fold k.
For a matrix ρ, assign ρi,k as the resultant value.

2. For a vector a, assign ai = (1/K)
∑K

k=1 ρi,k.

3. The size of the output top feature set is the mean of ai, denoted n∗.

Top Features

4. Compute the mean accuracy mi for each model i (i = 1, ..., n) over all cross-
validation folds k (k = 1, ..., K).

5. Assign a probability pi to each model i, representing the likelihood that model i is
the most accurate. Thus pi =Mi/

∑n
j=1mj .

6. For each model, assign a score to each feature si,j (j = 1, ..., N). This score is
such that for RFE (or FS), the first feature to be eliminated (or the last feature
to be chosen) receives a score of 1, and the final feature to be eliminated (or the
first feature to be chosen) receives a score of N . Features that are not chosen are
assigned a score of 0.

7. Remove features that have a score of 0 for any model. The resultant set of scores
is denoted si,j∗ .

8. Weight each score si,j∗ by multiplying it to probability pi. Then the final score for
each feature is fj∗ =

∑n
i=1 si,j∗pi.

9. Sort the features according to their weighted score (highest to lowest).

10. The first n∗ features constitute the ranked top feature set.

The output was then used to train ensemble classifiers.
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5.7 Ensemble Classification Models

Ensemble classification models combine individual learners to generate a single model
output. The goals of this are to improve predictive power whilst also preventing over-
fitting the model to the data. Thus, a combination of several ‘weak’ learners - in this case,
SVML, SVMG, LDA, and LR - can form into one ‘strong’ learner. The ensemble models
trained in this chapter use a MATLAB toolbox written by Victor Henrique Alves Ribeiro
[242].
‘Bagging’ and ‘boosting’ are implemented with the aim of improving upon the basic
ensemble model architecture. These methods rely on combining base models - confined
to the model architectures given by the individual learners - to generate results. For this
work, the number of base models trained by the bagged and boosted ensemble models
ranged from 1 to 10. The performance of these models is discussed in Section 5.8.2.
For data pairs (Xi, Yi), (i = 1, ..., n) for d-dimensional feature vector Xi ∈ Rd and
binary class response Yi ∈ {0, 1}, the target function for classification is P[Y = j|X =

x], (j = 0, 1) [228]. The function estimator from a base algorithm is

ĝ(·) = hn((X1, Y1), ..., (Xn, Yn))(·) : Rd −→ R, (5.24)

where hn(·) is a function that defines the estimator as a function of the data [228].

5.7.1 Bagging Method for Ensemble Models

Bagging - otherwise known as bootstrap aggregating - algorithms aim to decrease the
variance in the prediction output by the ensemble model by taking a random sample
of the original data with replacement, combining the observations within this sample
[229]. The number of observations in the data set produced by bagging is thus equal
to that of the original data set, i.e. by repeating observations within the sample. The
ensemble classifier then uses the bagged data as its training input.
The bagging algorithm, as described in [228], is as follows:

1. Construct a bootstrap sample (X∗
1 , Y

∗
1 ), ..., (X

∗
n, Y

∗
n ) by randomly selectingn times

with replacement from the data (X1, Y1), ..., (Xn, Yn).

2. Compute the bootstrapped estimator ĝ∗(·) by the equation

ĝ∗(·) = hn((X
∗
1 , Y

∗
1 ), ..., (X

∗
n, Y

∗
n ))(·).

3. Repeat Step (1) and Step (2) M times, where M is user-specified (often 50 or 100),
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thereby giving ĝ∗k, (k = 1, ...,M). The bagged estimator is

ĝbag(·) =M−1

M∑
k=1

ĝ∗k.

4. Compute the mean of the bootstrapped probabilities

ĝ∗kj (·) = P̂∗[Y ∗k = j|X∗k = ·], (j = 0, 1),

giving an estimator for P[Y = j|X = x].

Instead of a fixed quantity n, the amount of data to be sampled can be given as a pro-
portion p in the range 0 < p ≤ 1. For this work, a bagging proportion of p = 0.5

was selected. The models trained during the process of bagging are independent of each
other, as the models are trained in parallel.

5.7.2 Boosting Method for Ensemble Models

Boosting algorithms iteratively update the weight of each feature ck based on the pre-
vious iteration’s fitted functions ĝ1, ..., ĝk−1 [230, 231]. Thus, the models trained during
boosting, unlike bagging, are dependent on one another.
Boosting as a functional gradient descent algorithm, as described in [228], aims to esti-
mate a function g : Rd −→ R, minimising expected loss

E[ρ(Y, g(X))], ρ(·, ·) : R× R −→ R+ (5.25)

with loss function ρ.
The gradient descent boosting algorithm is as follows:

1. Given data {(Xi, Yi)|i = 1, ..., n}, apply the base algorithm giving the function
estimate

F̂1(·) = ĝ(·),

where ĝ = ĝX,Y = hn((X1, Y1), ..., (Xn, Yn)) is a function of the original data. Set
m = 1.

2. Compute negative gradient vector

Ui = −∂ρ(Yi, g)
∂g

|g=F̂m(Xi)
, (i = 1, ..., n),

evaluated at the current F̂m(·).
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3. Apply the base algorithm to the gradient vector

ĝm+1(·),

where ĝm+1 = ĝX,U = hn((X1, U1), ..., (Xn, Un)) is a function of the original
predictor variables and the current negative gradient vector as a pseudo-response.

4. Perform a one-dimensional numeric search for the best step size

ŝm+1 = argmins

n∑
i=1

ρ(Yi, F̂m(Xi) = sĝm+1(Xi)).

Then, update
F̂m+1(·) = F̂m(·) + ŝm+1ĝm+1(·).

5. Setm = m+1 and repeats Steps (2) and (3) until a stopping criterionM is achieved.

For this work, M represents the number of base models to be used for boosting, which
will be varied to seek the best fit.

5.8 Results

5.8.1 Quantification of SMOTEOutputs at Each Fold forHandling
Class Imbalance

As discussed in the Section 5.4, SMOTE was used to handle class imbalance by synthet-
ically generating new samples for the minority class, which in this case was wildtype
cells. SMOTE was applied 10 times to the data, i.e. when a new training set was defined
upon each fold. A table showing the results of SMOTE on the training set per fold is
given by Table 5.2.

5.8.2 ClassificationPerformance of Individual andEnsembleMod-
els

Performance of Individual Models

For each of the 10 cross-validation folds, each of the 161 features were either sequentially
knocked out of (RFE), or added to (FS), the final feature set. The number of features used
for model training was limited to a maximum of 10. As the RFE and FS algorithms used
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Table 5.2: Results of using SMOTE on the training set at each of the 10 cross-validation folds.
Values are given as before/after performing SMOTE on the data.
Key: WT = ‘wildtype cells’, V = ‘variant cells’, # = ‘number’, % = ‘percentage’.

Test fold WT
before
(#)

V
before
(#)

WT
after
(#)

V
after
(#)

WT
before
(%)

V
before
(%)

WT
after
(%)

V
after
(%)

1 11 33 33 33 25.0 75.0 50 50
2 14 30 30 30 31.8 68.2 50 50
3 17 27 27 27 38.6 61.4 50 50
4 9 35 35 35 20.5 79.5 50 50
5 17 27 27 27 38.6 61.4 50 50
6 12 32 32 32 27.3 72.7 50 50
7 18 26 26 26 40.9 59.1 50 50
8 12 32 32 32 27.3 72.7 50 50
9 19 25 25 25 43.2 56.8 50 50
10 11 33 33 33 25.0 75.0 50 50

Mean 13.6 29.8 29.8 29.8 30.9 67.8 50 50

for this work were wrapper methods, classification models were trained in order to de-
termine which feature should be removed from/added to the final feature set each time.
Therefore, several classification accuracies were generated at each fold, as each model
was tested on the validation set V1 and compared to V1’s target class. To output a single
accuracy per model architecture, the model which generated the maximum accuracy per
fold was selected. This model was then used to predict the class of the test set T1. The
resultant accuracies for RFE and FS are presented in Table 5.3. If more than one model
achieved the maximum accuracy, that which used the fewest features was selected.
As a consequence of these results, RFE was discontinued due to poor performance in
comparison to FS. Moreover, the RFE algorithm does not accommodate non-linear clas-
sification models, so the results yielded by this method cannot incorporate SVMG or
LR.

Feature Set Selection for Ensemble Modelling

Prior to identifying the top features, the best number of features at each of the 10 cross-
validation folds was examined. These were taken according to the following process:

1. The model must yield a higher accuracy when predicted on the training set than
when predicted on the validation set.

2. The model(s) which achieve maximal accuracy whilst adhering to (1) are selected.
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Table 5.3: Classification model accuracy results for individual learners at each of the 10 cross-
validation folds. Either RFE or FS was used for feature selection, and the best model per fold
was tested on the set T1. Accuracy results are given as a percentage of correct predictions. The
number of features used to train the corresponding model is given in brackets.

Test fold SVML

(RFE)
LDA
(RFE)

SVML

(FS)
LDA
(FS)

SVMG

(FS)
LR
(FS)

1 50.0 (10) 60.0 (10) 63.6 (7) 54.5 (6) 72.7 (3) 45.5 (7)
2 50.0 (10) 50.0 (10) 54.5 (5) 63.6 (7) 90.9 (4) 81.8 (6)
3 30.0 (10) 40.0 (7) 81.8 (6) 18.2 (5) 90.9 (2) 54.5 (4)
4 80.0 (10) 70.0 (10) 90.0 (10) 80.0 (10) 80.0 (3) 80.0 (8)
5 50.0 (10) 70.0 (10) 70.0 (7) 70.0 (1) 60.0 (4) 60.0 (1)
6 40.0 (10) 40.0 (10) 70.0 (1) 70.0 (1) 90.0 (5) 70.0 (9)
7 44.4 (10) 77.8 (10) 70.0 (5) 90.0 (5) 90.0 (4) 70.0 (5)
8 33.3 (10) 55.6 (10) 80.0 (3) 70.0 (1) 90.0 (1) 40.0 (9)
9 88.9 (10) 22.2 (10) 60.0 (8) 80.0 (8) 60.0 (6) 60.0 (6)
10 77.8 (10) 55.6 (10) 60.0 (6) 80.0 (2) 90.0 (3) 60.0 (10)

Mean 54.4 (10) 54.1 (10) 69.2 (6) 63.1 (5) 80.5 (4) 60.8 (7)

Figure 5.3: Representative plot showing the accuracy of an SVMG classification model with
respect to the number of features used for model training. The best result is marked by a dot,
and corresponds to the lowest number of features which maximise validation accuracy, whilst
retaining a higher training accuracy. FS was used for feature selection.

3. The model from (2) which uses the least number of features is the best model, with
an associated best number of features.

A representative plot displaying this process is presented in Figure 5.3.
When the best number of features at each cross-validation fold were found, the top
feature set was generated using the algorithm given in Section 5.6.3 (using FS to inform
the process). The best number of model features output by the algorithm was 6, which
were as follows:

1. Variance of the first principal component of the object,

2. Kurtosis of the skewness of intensity,

3. Variance of the second principal component of the object,
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Table 5.4: Classification accuracy results for individual and ensemble models using the top fea-
ture set. The number of base models used for training the boosted and bagged models was 3,
which reflects the highest accuracy results. Each table column corresponding to a model archi-
tecture shows the accuracy of that model, given as a percentage of correct predictions. The final
model is selected based on the highest validation accuracy such that the training accuracy is
higher, as shown in bold.

Set SVML LDA SVMG LR Classic
Ens.

Boosted
Ens.

Bagged
Ens.

Training 61.0 60.3 78.2 61.3 67.1 83.3 63.6
Validation - - - - 64.9 66.0 61.9

Testing 56.5 58.7 65.2 56.5 64.1 65.2 62.0

4. Mean of the maximum intensity,

5. Mean of the distance of an object between two consecutive frames,

6. Mean of the mean intensity.

Notably, the total number of features output by the algorithm was 15, which gave poorer
performed when used together than the 6 selected features above.

Performance of Ensemble Models

Using the above feature set, ensemble classification models were trained which combine
SVML, LDA, SVMG, and LR with/without bagging or boosting methods to increase pre-
dictive power. The validation set used was V2, the test set T2, with the training set being
the full data without V2, T2.
For ensemble models that used either boosting or bagging methods, a number of base
models ranging from 1 to 10 were used for training. The number of base models which
maximised the overall classification accuracies across all of the three ensemble models
was 5. These classification accuracies are presented in Table 5.4.

5.8.3 Implementing K-Fold Cross-Validation for Ensemble Clas-
sifiers

Considering Table 5.4, the boosted ensemble model was selected due to it obtaining the
best accuracy when predicted on the validation set. However, the accuracy of this model
when predicted on the validation and test sets was not as high as sought (<70%). More-
over, some of the features have poor interpretability. To investigate whether these results
could be improved upon, K-fold cross-validation was applied directly to the ensemble
models. FS was used as the feature selection technique. For the boosted and bagged
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Table 5.5: Classification model accuracy results for ensemble learners for each of the 10 base
models. FS was used for feature selection, and the best model per fold was tested on the set T1.
Accuracy results are given as a percentage of correct predictions. The number of features used to
train the corresponding model is given in brackets. The row which maximises accuracy is shown
in bold.

Base models Classic
Ens.

Boosted
Ens.

Bagged
Ens.

1 54.3 (5) 46.9 (5) 45.3 (4)
2 - 61.3 (8) 45.7 (2)
3 - 63.4 (5) 57.6 (10)
4 - 56.4 (8) 54.1 (4)
5 - 54.1 (7) 49.7 (4)
6 - 58.3 (7) 50.8 (5)
7 - 58.4 (8) 59.9 (3)
8 - 54.6 (10) 53.6 (5)
9 - 51.2 (9) 52.1 (5)
10 - 52.0 (4) 56.6 (2)

Mean 54.3 (5) 55.5 (7) 51.8 (4)

ensemble models, the setB containing the number of base models used for training was
unchanged. The results are shown in Table 5.5.

From these results, using 3 base models was seen to maximise the total model accuracy.
Therefore, for the boosted and bagged ensembles, only theK-fold cross-validation results
using 3 base models were further considered. Results from the classic ensemble with its
maximum of 1 base model were also considered for increased feature insight. As before,
the algorithm given in Section 5.6.3 was implemented for selecting the top feature set,
with resultant size = 6. The feature ranked in 4th place was the mean of the variance
of intensity. However, with the aim of improving the model’s generalisability across
different imaging platforms, this feature was disregarded. The resultant top feature set
was:

1. Mean of the Euclidean diameter,

2. Skewness of the size in pixels,

3. Kurtosis of the distance between the terminal 2/object centre (y-axis),

4. Mean squared displacement (MSD),

5. Mean of the distance between the convex hull/object centre (y-axis),

6. Kurtosis of the distance between the convex hull/object centre (x-axis).
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5.8.4 The Final Boosted Ensemble Classification Model

As before, SMOTE was used to handle class imbalance. A final boosted ensemble model
was trained using 3 base models and the above 6 features. The accuracy was 73.9% when
the model was used for class prediction on the final test set T2. Additional prediction
accuracies were 94.4% for the training set, and 70.6% for the validation set.
The performance of a classification model can be further evaluated through its precision
and recall, where

prec =
TP

TP + FP
(0 ≤ prec ≤ 1), (5.26)

and
recall =

TP

TP + FN
(0 ≤ recall ≤ 1). (5.27)

Combining these results givess the F1-score, which is often referred to as the ‘harmonic
mean’ of the precision and recall:

F1 = 2× prec× recall

prec+ recall
. (5.28)

The acronyms TP = true positive, TN = true negative, FP = false positive, and FN =
false negative. These report the number of times that the model is correct/incorrect for
predicting each class label.
These definitions are rooted in diagnostic models to predict whether a patient is unwell
with a given illness. Therefore, the recall can be interpreted as the probability of a pos-
itive diagnosis if the patient is unwell, and the precision as the probability that when a
positive diagnosis is made, it is done so correctly.
For this model, positive/negative classes were assigned as variant/wildtype, respectively.
As the precision and recall represent the probability of the model making correct pre-
dictions, a value of 1 corresponds to the ideal for that parameter. The ensemble model
precision = 0.85, and the recall = 0.78. The F1-score = 0.82. The associated confusion
matrix is given in Figure 5.4.

5.9 Summary and Discussion

This chapter has presented a novel methodology for feature selection based on weighted
voting of each ensemble model. This leverages majority voting methods, as previously
described [240], as weighted voting can yield a conclusive output for an even split of
votes, and accounts for the relative accuracy of each model that is voting [241]. Using
the feature set generated by weighted voting, a boosted ensemble classification model
is constructed for the accurate detection of wildtype and variant hPSCs in culture. Four
classification architectures were individually trained before being combined into ensem-
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Figure 5.4: Confusion matrix for the final ensemble classification model. The number of mem-
bers and percentage of overall data are given for each category. Accuracy = 73.9%, precision =
0.85, recall = 0.78, F1-score = 0.82.

ble learners. These were: (1&2) linear and Gaussian kernel support vector machines, (3)
linear discriminant analysis, and (4) logistic regression. Individual learners were trained
with 10-fold cross-validation, during which both recursive feature elimination (RFE) and
forward selection (FS) were respectively implemented to determine the best feature set,
favouring FS. These 6 features were used to train the ensemble classifier. The resultant
accuracy achieved was 73.9%, with a precision of 0.85, a recall of 0.78, and F1-score 0.82.
This result is promising, as it is markedly better than a model which assigns a random
output class (expected accuracy 50%), whilst seemingly avoiding the problem of over-
fitting (expected accuracy > 90%). Notably, the model’s recall represents the probability
that a variant cell is identified as such by the classifier. This is arguably of the high-
est importance when considering the context; undetected variant cells may proliferate
and initiate cell competition. The model’s precision corresponds to the probability that,
given that a cell is classified as variant, this classification is correct. Thus, if precision is
low, time may be wasted erroneously extracting wildtype cells from the population.
It was shown that FS out-performs RFE. A reason for this may be that, per iteration,
FS evaluates model performance for every candidate feature added to the training set,
then the feature with the best result is selected. However, RFE uses a single result of the
previous iteration’s model performance to eliminate a feature at the current iteration.
This means that fewer possible outcomes are evaluated by RFE than FS. Evaluating the
results from 10-fold cross-validation using FS, LDA giving the poorest mean accuracy
may be a consequence of its modelling assumptions. Specifically, LDA models assume
that, given any feature, the value at each observation is unaffected by the value at any
other observation. However, it is known that neighbouring cells do affect each other;
interactions between neighbouring cells impact cellular genetics and lineage [243, 244].
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Although no direct links between cellular neighbourhood and the selected features have
been made (while cells are still single), it would not be unreasonable to suppose that
interactions between cells are present. It is hence good that the SVM models take prece-
dent in training the ensemble learner.
Notably, no local density measures (mean, variance, skewness, kurtosis) were selected
as top features, as there was no significant difference in these features between wildtype
and variant cells. However, this is not in opposition with results in Chapter 4; rather, it
is an expected consequence of trimming the video frames to those showing single cells
(retaining frames over 3 hours). This meant that, for this work, the cells were not given
the opportunity to clump together and thereby display preferential differences in local
density. The model given in this chapter is not intended to address mechanisms of cell
competition, but instead to identify variant cells as quickly as possible. Cell clumping
would therefore be undesirable to observe for this purpose.
To verify that density findings in this chapter are consistent with those in Chapter 4, lo-
cal density analysis was performed on the full 48 frames per video (12 hours of imaging).
On average, the local density of variant cells between consecutive frame increased by
0.11x10−6µm−2, whereas that of wildtype cells increased by only 0.052x10−6µm−2. This
shows that, on average, variant cells increased their local density by over twice as much
as wildtype cells over a sufficient time period.
Fewer than 4% of the total feature set was used to train the ensemble model, which
is beneficial for two main reasons: 1) the computational cost of the model is reduced,
and 2) few measurements need to be taken for the model to operate, allowing greater
generalisability. Furthering the latter point, the selected features are predominantly sta-
tistical/morphological, with one motility feature. These are likely to be standard across
different imaging platforms; hence, the model may be generalised to images obtained
via platforms other than Phase Focus (on which the data was obtained). Such an ease of
use was a goal of the work, so it would be useful to verify this hypothesis in the future.
For maximal impact, the model should also be tested on videos of wildtype and variant
cells in co-culture, as this is representative of how variants would appear in laboratory
applications.
The model’s hypothesised generalisability could offer great use to researchers working
with hPSCs. Cell culture - particularly on a large scale - may be performed in conjunc-
tion with imaging, e.g. using a microscope within the incubator. The pipeline developed
in this chapter for 1) cell tracking using ilastik, 2) pre-processing the data, and 3) apply-
ing the ensemble model may be integrated with reasonable ease into such a laboratory
set-up. Currently, there are drawbacks in the requirement of both manual training of
ilastik, and the associated offline pre-processing. The monetary and temporal impact of
these requirements are low; the time taken to train some instances of cell behaviour in
ilastik is estimated at 1h, when using the pipeline developed in this chapter. This is less
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time spent than that for a qPCR experiment, which also has additional steps that can
introduce error, such as fixation of the sample, transportation, and storage [245]. Ideally
however, the cell segmentation and tracking would be incorporated within the MATLAB
framework to improve the workflow, which may be useful future work.

The ensemble model results show that just 3 hours of imaging is sufficient to clas-
sify the cells, which improves significantly upon existing automated tools for stem cell
classification, which can require 48h of data [223]. An ensemble model developed for
multi-class labelling of HEp-2 cells achieved an accuracy of 80.25%, which is slightly
higher than the accuracy of the classifier presented in this chapter. This is a good bench-
mark for which to evaluate the model, though a direct comparison of these results is
not recommended, as the differences in morphology between HEp-2 cells and hPSCs are
significant. In particular, HEp-2 cells generally show high ellipticity, leading to simpler
computational segmentation of the cells from microscopy images. Moreover, the result
in the literature uses immunofluorescence microscopy images, which greatly aids com-
putational segmentation and tracking.
To conclude, the ensemble model presented here is the first model to classify wildtype
and variant hPSCs without a need to screen the genotype of cells, yielding a very good
accuracy of 73.9%. Using subtle cell features such as morphology for classification im-
plies that the model may be implemented using data obtained across different imaging
platforms, as variations such as pixel intensities are unlikely to affect the model’s out-
put. The workflow developed requires low associated labour, though improvements may
be made by developing/incorporating a pipeline for cell segmentation and tracking di-
rectly within MATLAB. For a laboratory to use this workflow, it is recommended to use
incubators fitted with time-lapse cameras for cell culture (3h); the data stream may then
be directly input to ilastik (1h), the output of which then feeds to MATLAB (30m), giv-
ing a total estimated run time of 4.5h. The potential impact of this model is to reduce
confounding results in hPSC research that are attributable to cells acquiring unwanted
mutations in culture.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Within the field of mathematical approaches to developmental biology, there is currently
an important opportunity to take advantage of modern experimental research. In partic-
ular, there is an increasing number of studies into the differentiation of hPSCs cultured
on micro-patterned geometries. The data generated by these studies may be used for
modelling cell fate patterning. These models provide a basis for understanding stem
cell fate decision-making, with the objective to better understand hPSC signalling be-
haviour. Additionally, if regenerative medicine is to be safely progressed, a detection
and intervention methodology must be established to eliminate unwanted genetic vari-
ants in hPSC cultures. The work presented in this thesis aims to develop new modelling
and analysis approaches that exploit the wealth of data available at singe-cell level. In
this section, it is demonstrated how these objectives were met.
To this end, Chapter 2 introduced a novel spatial analysis and data-driven modelling of
single-cell expression levels of Nanog (a key pluripotency regulator) for hESCs on disc
micro-patterns. Nanog patterning was seen to be heterogeneous at population level, but
single-cell expression was impacted by local spatial features. Specifically, a negative sta-
tistical trend was found between a cell’s number of direct neighbours (cells in physical
contact) and Nanog expression level. This was particularly prevalent for cells in the high
Nanog (HN) population, whereas low Nanog (LN) cells displayed no significant relation-
ship between neighbour count and Nanog expression. This suggests that hESCs are less
responsive to signalling cues from their local environment when in an LN state.
This conclusion is further backed up by results of the novel model for single-cell Nanog
expression levels, which models effects of both diffusive and juxtacrine (contact-based)
signalling, informed by results of the spatial analysis prior conducted. This model yielded
an NRMSE of 0.135 for HN cells, and 0.389 for LN cells. In other words, modelling single-
cell levels of Nanog expression for LN cells using spatial features output almost thrice as
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much error on average than for HN cells, showing that LN cells have a reduced response
to environmental signalling compared to cells in the HN population.
Chapter 3 proposed a novel dynamical network model for predicting fate patterning of
hPSC populations differentiated on micro-patterns. Successful recapitulation of qualita-
tive fate patterning reported in previous studies on various micro-patterned geometries
was achieved. Notably, cell fate selection was modelled as a function of juxtacrine sig-
nalling only. This was computed based on the shortest topological path between physi-
cally contacting cells in culture. Therefore, the results may suggest that hPSCs primarily
localise their cell-surface receptors which bind to the differentiating morphogen in re-
sponse to signals passed through cell-to-cell contact, which is of greater importance than
diffusive signals travelling through the culture medium.
Within existing literature, there is a wide range of experiments dealing with differen-
tiating hPSCs on micro-patterns. The approach taken for this thesis was to model the
spatio-temporal dynamics of a differentiating morphogen across the cell culture, which
aligns with the findings of previous studies. The most well-known of these studies con-
cerns disc micro-patterns, reporting cellular expression of several genes to determine
fate. Additional studies into ellipse, triangular, and trapezoid micro-patterns only report
patterning of Brachyury (a mesodermal fate marker) after differentiation.
A novel mathematical vertex model was developed for defining node symmetries on an
undirected graph, where the graph is given byG(V,E)with nodes V and edgesE. Topo-
logical positional information was then used to assign equivalence classes (symmetries)
to nodes. Specifically, equivalence was assigned to nodes i, j if the topological structure
of the remainder of the network connected to i, j was identical. In this way, stem cell
cultures were represented as cell networks, where nodes correspond to cells. Edges exist
between neighbouring cells, i.e. physically contacting cells in culture.
Every cell was regarded as having internal dynamics, representing concentration lev-
els of the differentiating morphogen at the cell. This was modelled using an ordinary
differential equation system. Importantly, this dynamical system relates to the graph
symmetry definition, as symmetric cells were modelled as having symmetric internal
dynamical functions (variant only with respect to some cell permutations). Thus, time-
invariant dynamical system equilibria were identical for symmetric cells. Equilibria of
the system were assumed to correspond to final cell fates, with the reasoning that, at
system equilibrium, morphogen concentration is unchanging and hence cells have se-
lected fate.
In Chapter 4, a novel application of local density analysis for hPSC populations was im-
plemented. This aims to improve understanding of super-competition mec-hanisms used
by genetically variant hPSCs to out-compete wildtypes in culture. An automated tool
for quantifying local cell density was applied to time-lapse images of separate cultures
of wildtype and variant hPSCs, then the same method was applied to time-lapse images
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of wildtypes and variants in salt-and-pepper mixed co-culture. Comparisons between
resultant distributions of single-cell local densities were made across each culture con-
dition.
It was revealed that, whilst variant cells showed no significant difference in local density
between separate and co-cultures, wildtypes grew at a significantly lower local density
in separate culture compared to in co-culture with variants. This suggests that forcing
wildtypes to grow far more compactly than their homeostatic density is a key mecha-
nism in mechanical hPSC competition. Facilitated by these results, it was found that, in
the presence of variants, wildtype hPSCs undergo re-localisation of YAP protein from
the nucleus to cell membrane. As YAP regulates cytoskeletal rigidity, wildtypes are re-
sultantly unable to withstand the mechanical stress of high density culture, leading to
apoptosis. This is a key result in stem cell research.
Chapter 5 develops a novel tool for identifying genetically variant hPSCs from time-lapse
images, which forms an automated framework that may be integrated into a laboratory
workflow. The methodology comprises a novel ensemble classification model exploiting
the ‘boosting’ method for improving predictive power, weighting constituent models by
their performance. A very good classification accuracy of 73.9% and F1-score of 0.82 was
achieved.
No other such models of this kind exist at present, which is likely due to the highly chal-
lenging nature of classifying variant hPSCs based solely on visual characteristics. This
is because mutations at the chromosomal level incur extremely subtle phenotypic vari-
ations to the cell. Thus, the ensemble model substantially leverages existing methods
for detecting genetically variant stem cells, as other methods tend to be costly and/or
disruptive to cells, requiring the manual use of specialised machinery for population
screening. These novel results are therefore very promising.
Data for several wildtype and genetic hPSC lines was used for model training, and the
ensemble classifier was trained on only 3 hours of time-lapse image data. Four base
model architectures were combined within the ensemble model: a support vector ma-
chine (SVM) with a linear kernel, linear discriminant analysis, binary logistic regression,
and an SVM with a Gaussian kernel. It was found that the SVM using a Gaussian kernel
was able to yield the most accurate results of the four models, which may be indicative
of non-linear relationships between input features. Initially, 110 features describing cell
morphology and motility were used as inputs to the four model architectures. Then, the
feature set was reduced using forward feature selection on the individual and ensemble
models, the latter of which employed a weighted voting algorithm for determining class
labels. The final feature set consisted of only six features: (1) mean Euclidean diameter of
the cell, (2) skewness of cell size in pixels, (3) kurtosis of distance between the terminal
2/object centre of the cell on the y-axis, (4) mean squared displacement (MSD) of the cell
line, (5) mean distance between the convex hull/object centre of the cell on the y-axis,
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and (6) kurtosis of distance between the convex hull/object centre of the cell on the x-
axis. Thus, only one motility feature at population level - the MSD - and five single-cell
morphological features were selected.
A range of applications may be associated with this work; particularly, within the field
of cell-based therapies for regenerative medicine, and for preventing stem cell compe-
tition, both of which require interventions to eliminate genetically variant hPSCs in
culture. Ideally, hPSC populations to be used for cell therapies must not reach the stage
of super-competition if genetic mutations occur in culture. In case of this, a great loss
of cells would be incurred - this would not only result in a large financial loss, but also
a lack of quality surrounding stem cell research. The framework presented in this thesis
may be integrated into a laboratory workflow with substantial ease by fitting incubators
with microscopes capable of imaging cells; these machines are currently available.
This thesis is therefore shown to positively impact (1) understanding hPSC signalling
regulating gene expression, and (2) detection of genetically variant hPSCs. This is achieved
by providing automated tools that deal with heterogeneity in hPSC populations through
single-cell mathematical modelling.

6.2 Recommendations for Future Research

Future work is identified in two areas: (1) experimental, and (2) data-driven modelling
and analysis. These are discussed below, as per the contribution chapter the work relates
to.

Chapter 3

Experimental work:

1. Differentiating hPSCs on novel micro-patterned culture chips (such as those pre-
sented in Appendix D). Investigation of self-similar cell fate patterning may be
facilitated through conducting these experiments, which could result from hPSC
differentiation on fractal geometries. From correspondence, companies such as
CYTOO™ are able to produce custom micro-patterns using computer-aided de-
sign (CAD). These designs were created as part of an experimental framework
after restrictions arising from the covid-19 pandemic were alleviated. Hence, it
was expected that this lab work may proceed. However, a lack of laboratory funds
suddenly prevented the continuation of this work.

2. Continuing the experimental research described in Appendix A.1.5 and Appendix
A.3. This entails transfecting H9TVD3 hPSCs with nuclear RFP, such that cell nu-
clei exhibit constant fluorescence. As the H9TVD3 cell line expresses GFP in corre-
lation with Brachyury, the temporal evolution of single-cell Brachyury expression
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may be tracked using time-lapse imaging, which would provide a far more com-
plete picture of how cells acquire lineage compared to a static image. For this,
cell nuclei could be identified and computationally segmented using RFP signals,
then each cell’s Brachyury expression quantified through the GFP intensity of pix-
els overlapping the segmented nuclei. This method is effective as Brachyury is a
transcription factor, meaning that it is also localised within the cell nucleus. A
novel cell line was successfully established by using electroporation to transfect
the H9TVD3 cell line with RFP using the pCAG-H2B-RFP-IRES-PURO plasmid.
This line was carefully grown and monitored, and cell samples were sent for kary-
otyping prior to their use in experiments. Unfortunately, the onset of the covid-19
pandemic and a lack of laboratory funds thereafter prevented the continuation of
this work.

Modelling and analysis:

1. Using experimental data from point (1) above, predictions made by the novel dy-
namical model proposed in Chapter 3 could be validated. Moreover, this would
provide quantitative - rather than solely qualitative - single-cell data, which is
crucial for refining the model to reflect biophysical processes.

2. Time-lapse data generated by point (2) above may be used as input for the growing
cell network model. Currently within the literature, gene expression patterning
is reported at a static time point with a static image, representing final cell fates.
Epigenetic memory - known to be an influential factor for final cell fate - is thus lost
in such data. The growing model is handily set up to produce tracking constructs
for time-series single-cell data as the model iterates. The intention behind this
was to calibrate the growing model - which is initialised with a single cell that
undergoes stochastic division and apoptosis - using time-lapse data of transfected
H9TVD3 cells plated as single cells (protocol in Appendix A.1.3). Model outputs
would include (1) the adjacency matrix of cells, (2) parent/daughter cell relations,
and (3) gene expression levels per cell, each given for every discrete time point.
Spectral analysis may be used to mathematically understand how cellular memory
impacts fate. Moreover, algorithms for simulating diffusion on a graph may be
implemented to incorporate the effect of diffusive signals within the model (which
currently considers juxtacrine signalling only).

Chapter 5

Experimental work:

1. Generating time-lapse data of wildtype and variant hPSCs in salt-and-pepper mixed
co-culture. PhaseFocus should be used to image cells at 15 minute intervals for a
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total duration of 3 hours, as these were the imaging conditions used in Chapter
5. Additionally, it would be ideal to generate the same data as just described, but
imaged using a BioStation rather than a PhaseFocus microscope.

Modelling and analysis:

1. Time-lapse data imaged using PhaseFocus may be used to validate the ensemble
model presented in Chapter 5. The reason for this is that the model was trained on a
data set containing time-lapse images of 7 wildtype and 17 variant cell lines in sep-
arate culture. For real-life applications of the classifier, variants would be present
among majority wildtype cells, so model accuracy in such scenarios should be de-
termined. However, there is no reason to suspect that the model would perform
any better or worse in this case, as all classification was performed at single-cell
level with the same imaging settings used for each video. Additionally, if simi-
lar time-lapse data was obtained using a BioStation, it may be useful to apply the
model to this data. This is because the BioStation is a more standard imaging plat-
form compared to PhaseFocus. If the classifier remains accurate in this task, there
is a high likelihood that it may benefit a large number of stem cell research labora-
tories. A possible obstacle may be that the computational framework is unable to
accurately segment cells when contrasts are altered. In this case, parameters may
be altered in ilastik (software used for cell segmentation and tracking) to improve
results.

Appendix C

Experimental work:

1. Equivalent to point (2) made for the future work for Chapter 3; continuing the
experimental research described in Appendix A.1.5 and Appendix A.3, yielding
time-lapse data.

Modelling and analysis:

1. A major question in stem cell biology may be addressed using this data: which
comes first, single-cell gene expression patterning or positional information? Al-
though such analysis was attempted for H9TVD3 cells in Appendix C, the lack of
constant nuclear fluorescence made object segmentation extremely challenging.
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Appendix A

Methods for Cell Biology

A.1 Culture of Human Pluripotent Stem Cells

A.1.1 Maintaining Human Pluripotent Stem Cells in Culture

Human pluripotent stem cells were fed either daily with Essential 8 (E8) or mTesR cell
culture media, or every other day with Stable Essential 8 (S8) cell culture media. Prior
to cell feeding, cell culture media was warmed to 37◦C in a water bath. Between 2-5ml
of media was added to cell cultures depending on confluency. Old media was aspirated
using a glass stripette prior to adding new media. Flasks of cells were kept at 37◦C with
5% CO2 in the air (mimicking conditions within the human body) using an incubator.

A.1.2 Passaging of Human Pluripotent Stem Cells

Culture media was aspirated from flasks of hPSCs, then 0.5ml ReLeSR (STEMCELL Tech-
nologies, 05873) was added for 30 seconds. After aspirating excess ReLeSR, hPSC flasks
were left at room temperature for 4 minutes. Then, warm cell culture media (S8 or
mTeSR) was added to the flasks of hPSCs. Flasks were tapped until cells began to detach
from the surface, then the cell solution was taken up and down in a 10ml stripette to
mix the cells evenly throughout the media. Care was taken to ensure colonies were not
broken apart. The cell solution was then split between flasks that had been pre-coated
with Vitronectin (VTN) recombinant human protein (ThermoFisher Scientific A14700) at
desired split ratios. Flasks were kept horizontal and shaken both up/down and left/right
to improve cell distribution.

A.1.3 Dissociating Human Pluripotent Stem Cells to Single Cells

Culture media was aspirated from flasks of hPSCs, then cells were washed with Phos-
phate Buffer Saline (PBS). 1ml of Accutase was then added to the hPSC flasks which
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were incubated at 37◦C for 4-5 minutes depending on cell confluency. The flask was
kept upright to facilitate cell detachment. Cells were removed from the incubator and
4-5ml warm DMEM-F12 was added to the flask. Flask contents were transferred to a
15ml falcon tube. A 10µm sample was extracted from the cell solution and a cell count
was taken using a haemocytometer. The remaining cells were spun in a balanced cen-
trifuge at 800rpm for 3 minutes. After this, the tube containing cells was returned to the
hood and the supernatent was aspirated. The remaining cell pellet was gently agitated
to break up any clumps of cells. 1ml warm DMEM-F12 was added to the tube.

A.1.4 Seeding Human Pluripotent Stem Cells

Culture vessels were coated with 1% Geltrex in DMEM-F12, then left at room temper-
ature for a minimum of 1 hour. Informed by the cell count, media supplemented with
10% Y-27632 was added to the tube to yield the desired cell concentration. Cells were
then were incubated at 37◦C with 5% CO2 for 24h. After 24h, cells were fed with culture
media.

A.1.5 Transfecting Human Pluripotent Stem Cells

hPSCs were transfected with the pCAG-H2B-RFP-IRES-PURO plasmid at a concentra-
tion of 2.27 µg/µL using electroporation. A total of 2.5 ×106 cells were used. Prior to
electroporation, 3 wells of a 6-well plate were coated with Geltrex. Transfections were
performed using the Neon Transfection system (Thermo Fisher Scientific, MPK10025).
First, 3mL of E2 buffer was added to the neon tube and placed in the electroporation
device. The cells were then dissociated to single cells (Appendix A.1.3) (Thermo Fisher
Scientific, 12504013), and a cell count was taken using a haemocytometer. The cells were
centrifuged for 3 minutes at 1100RPM and the cell pellet resuspended to a concentration
of 2.5 ×106 cells/120 µL of resuspension buffer. Next, 120 µL of cell suspension was
mixed with up to 5 µg of plasmid, keeping the volume of the plasmid to less than 5 µL.
Pre-warmed mTeSR media (STEMCELL Technologies, 85850) supplemented with 10 µm
Y-27632 was added to the 3 coated wells of the 6-well plate in preparation of cell seeding.
To perform the electroporation, 100 µL of the plasmid/cell solution was taken using a
Neon 100 µL tip. The neon tip was placed into the E2 buffer and electroporated using
the following conditions: 1600V, 20msec, 1 pulse. Cells were then resuspended in the
pre-warmed cell culture media and returned to 37◦C incubation.
Nuclear transfection was performed on H9TVD3 hESCs, passage number P29+4+ 4+4+3+3
at a 1:10 ratio. The purpose of this was to enable cell nuclei to be easily seen at all times
using the RFP fluorophore. Then, computational cell segmentation would be straight-
forward. The antibiotic puromycin (InvivoGen ant-pr-1) was used for cell selection at
10mg/ml. For cloning the transfected cell line, 1:10 CloneR (STEMCELL Technologies,
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05888) was used in mTeSR media, plus gentamicin (Thermo Fisher Scientific, 15710064)
at 1:1000. Transfected cells were fed with mTeSR media for 2 weeks, then transitioned
to S8 media gradually. Quantitative polymerase chain reaction (qPCR) analysis revealed
no abnormalities in the transfected cell DNA. For more sensitive chromosomal analysis,
P+5 cells were sampled and sent for karyotyping at the Sheffield Teaching Hospital on
12/03/20. Unfortunately, the onset of the first covid-19 pandemic lockdown shortly after
this date meant that karyotyping results were not returned.

A.2 Immuno-Histochemistry

A.2.1 Fixing Cells with Paraformaldehyde

Prior to fixing, media was aspirated from the culture flask and washed 5 times with 1-2ml
of PBS depending on flask size. Paraformaldehyde (PFA) was used as the fixative for cell
cultures. 1ml of 4% PFA in PBS was added to the culture flask, which was applied to cells
for 10-15 minutes and then aspirated. The culture flask was again washed 5 times with
with 1-2ml of PBS. 1ml PBS was added and left in the cell culture to prevent dehydration.

A.2.2 Cell Staining for Surface Antigens

Cells were blocked for 1h by adding wash buffer, consisting of PBS supplemented with
10% fetal calf serum (FCS). If permeabilisation of cells was needed, 0.3% of Triton was also
added to the wash buffer. Wash buffer was stored at 4◦C. After this, the desired primary
antibody (AB) was added to the cell culture at the necessary ratio with the wash buffer.
This was kept overnight at 4◦C. The next day, the primary AB was aspirated, and the
culture was washed 4 times with wash buffer. The corresponding secondary AB was
added to the cell culture at the necessary ratio with the wash buffer, plus Hoechst at the
ratio 1:5000 with the wash buffer. Cells were incubated at 4◦C in the dark for at least 2h.
The cell culture was gently rocked by a rocker to homogeneously distribute the antibody.
Upon aspiration of the secondary antibody, cells were washed 4 times with wash buffer
in the dark. 1ml wash buffer was added and left in the cell culture to prevent dehydration.
For fluorophore wavelength λ, the following primary/secondary AB combinations were
used for cell staining, with given ratios of the AB:wash buffer solution:

• Hoechst: 1st N/A, 2nd N/A, λ = 452 (DAPI),

• Brachyury: 1st N/A, 2nd N/A, λ = 507 (FITC),

• Nanog: 1st rabbit (1:200), 2nd goat anti-rabbit (1:200), λ = 647 (Cy5),

• Sox2: 1st mouse (1:500), 2nd goat anti-mouse (1:200), λ = 594 (Cy3),
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(a) 4h after seeding. (b) 20h after seeding.

Figure A.1: Brightfield images of H9TVD3 hESCs time-lapsed using a BioStation.

• Sox17: 1st goat (1:500), 2nd donkey anti-goat (1:200), λ = 594 (Cy3).

Note that Brachyury staining was not necessary for the H9TVD3 reporter line.

A.3 Time-Lapse Imaging of Live Cells

Time-lapse imaging was performed using a BioStation (Nikon). Protocols were op-
timised for computational object segmentation and tracking for single cells. Photo-
toxicity of imaging lasers was accounted for. Cell cultures were imaged every 4 minutes
at 20x magnification. For Cy3 and Cy5 immunofluorescence images, 30 exposure was
used. For FITC, 60 exposure was used. Media was supplemented with 10% Y-27632. If
fluorescence imaging was needed from the start of the experiment, cells were imaged
for only 24h due to photo-toxicity of imaging lasers. Otherwise, cells were time-lapse
imaged for 48h.
To determine single-cell evolution of Brachyury expression, the H9TVD3 hESC line was
used, as Brachyury expression is reported via nuclear GFP. Dissociated cells were seeded
in S8 media supplemented with 10% Y-27632 and grown for 20h. A BioStation was used
for brightfield time-lapse imaging at 20x magnification. Then, media was swapped to
S8 supplemented with CHIR99021 (CHIR) (STEMCELL Technologies, 72054) at the ratio
1:2000. CHIR is a Wnt pathway inhibitor that forces mesodermal differentiation; thus,
cells were expected to express Brachyury. Cells were imaged for a further 48h with 10
exposure for the GFP channel. Figure A.1 shows frames of H9TVD3 cells at different
intervals after seeding. After cells were differentiated with CHIR, Brachyury expression
was investigated via GFP expression, as shown in Figure A.2.
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(a) 24h after differentiation (44h
after seeding).

(b) 48h after differentiation (68h
after seeding).

Figure A.2: Fluorescence images of H9TVD3 hESCs time-lapsed using a BioStation. GFP shows
nuclear Brachyury expression.

A.4 Differentiation of Human Pluripotent Stem Cells

A.4.1 Preparation of BMP4

Recombinant human bone morphogenetic protein 4 (BMP4) (ThermoFisher Scientific
PHC9534) was centrifuged to bring contents to the bottom of the vessel. Next, BMP4 was
reconstituted in 4mM hydrochloric acid (HCl) with 0.1% bovine serum albumin (BSA),
adding BSA prior to adding HCl. The resultant solution was split into 200ul aliquots and
stored at -18◦C.

A.4.2 BMP4 Supplementation in E8, S8, and mTeSR Media

BMP4 stock was removed from the freezer and thawed at room temperature. Four dif-
ferent BMP4 concentrations were used for this work: 50, 100, 150, and 200ng/ml. If the
cell culture was being seeded, or was being fed up to 48h after seeding, then media was
supplemented with 10% Y-27632.

A.5 Hoechst Histogram for the Cell Cycle

Hoechst intensity of an individual stem cell can be used to identify the cell cycle phase
[87, 88], with two of the four phases known to promote pluripotency [89]. Specifically,
the S and G2 phases positively regulate the pluripotent state, but only cells in the G1
phase are receptive to molecular signalling, while cells in the M phase are ‘at rest’. It has
been shown that the differentiation propensity of stem cells is coupled to phases of the
cell cycle [90, 91, 92].
A histogram showing Hoechst (DAPI) intensity across the cell cycle is given in Figure
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Figure A.3: Figure 4(b) from Warnes (2019): Cell line H357 were fixed and processed according
to the DAPI labelling protocol listed on this webpage. Single cells were gated via DAPI Width
and Area Signals. Courtesy of Luke Gammon, Centre for Cutaneous Research, ICMS, Barts &
The Royal London, London University, 4 Newark Street, London E1 2AT.

A.3, which is taken from the literature [246]. Note that phases G2 and M are combined
into G2m, as cells at rest in M phase show a ‘flat’ Hoechst profile.
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Appendix B

Delaunay Triangulation of Cell
Nuclei in 2D

For a set of points P in 2-dimensional Euclidean space, a Delaunay triangulationDT (P)

is a triangulation such that no point in P lies within the circumcircle of any triangle in
DT (P). A Delaunay triangulation is not necessarily unique.
For this work, the algorithm for finding a Delaunay triangulation was the s-hull algo-
rithm [247]. This leverages previous methods by using a radially propagating sweep-hull,
along with triangle ‘flipping’ as the final step. For a set of unique points xi in R2, the
algorithm is as follows:

1. From xi, select a seed point x0.

2. Order the vector of points according to | xi − x0 |2 .

3. Find the point xj which minimises the distance between xi and xj .

4. Find the point xk that minimises the area of the circumcircle with x0 and xj , i.e. the
unique circle which passes through the points x0, xj, xk. Assign C as the centre
of this circumcircle.

5. Order the points x0, xj , xk to give a right-handed system. This is the initial seed
convex hull.

6. Re-order the complete vector of points according to | xi − C |2. The output is the
points si.

7. Sequentially add the points si to the propagating 2-dimensional convex hull that is
seeded with the triangle formed by x0, xj, xk. Each time a new point is added, the
facets of the 2-dimensional hull that are visible to the point form new triangles.

8. A non-overlapping triangulation of the set of points xi is now created.
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(a) Scatter plot of 2-dimensional
points.

(b) The same scatter plot as in (a),
with additional Delaunay tiles gen-
erated through s-hull Delaunay tri-
angulation.

Figure B.1: A randomly generated set of 100 points with (x, y) coordinates in the range (0,1).
The purpose of this figure is to show the application of Delaunay triangulation to 2-dimensional
spatial data, giving a Delaunay tiling of the plane.

9. Adjacent pairs of triangles must be ‘flipped’ to generate a Delaunay triangulation
from the triangulation created in the previous step.

The triangle ‘flipping’ step can be described by considering two triangles ABC and BCD.
Let these triangles share a common edge BD. Then the common edge must be ‘flipped’
such that it is instead the edge AC. The reason for this is that, continuing the example, the
sum of the angles DAB and DCB must be less than or equal to 180◦ to meet Delaunay
conditions. Additionally, a point must not lie within the interior of the circumcircle
of ABC or BCD to meet Delaunay conditions. The s-hull algorithm first generates a
triangulation which does not meet these conditions, but finally ensures that they are
met by ‘flipping’ the common edge of triangles.
The centre of each cell’s nucleus, represented as (x,y) coordinates, were used as vertices
for Delaunay triangulation. An illustration of how Delaunay triangulation can be applied
to tile spatial data in 2-dimensions - representative of cell nuclei in culture - is given by
Figure B.1.
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Appendix C

Predicting Binary Sox10 Expression
via the Local Cellular Neighbourhood

Approaches to single-cell classification generally rely on auto-cellular features such as
motility and morphology. In this chapter, an SVM classifier is trained to predict binary
single-cell expression of the Sox10 gene in differentiated hESCs using only three neigh-
bourhood features: (1) the cell’s number of neighbours, (2) local cellular density, and (3)
the linearly weighted sum of Sox10 expression from directly neighbouring cells. Using
this small feature set, an excellent model accuracy of 92.7% is achieved. These results
suggest that the local cellular environment should not be neglected when modelling
gene expression, as single-cell fate behaviour cannot be decoupled from neighbourhood
states. In particular, the impact of neighbouring cells appears based simply on linear
distance.

C.1 Neural Crest Differentiation of H9TVD3 Cells in
PRIMO Media

C.1.1 Data Overview

H9TVD3 hESCs were cultured in PRIMO Media (formulated by D. Stavish et. al) which
promotes and ‘traps’ cells in a state primed for mesodermal fate [248]. PRIMO media
consists of E8 basal medium plus 0.1% bovine serum albumin, 2µM cholesterol, 3µM
CHIR, 1µMWnt pathway inhibitor IWP-2, and 0.48µM lysophophatidic acid, the latter of
which promotes pluripotency. Cells were then differentiated by I.M. Saldaña-Guerrero
to yield neural crest. Subsequently, the cells were fixed (Appendix A.2.1) and stained
(Appendix A.2.2) to investigate expression of Sox10 and Brachyury (T). Sox10 is a marker
of neuro-ectoderm, whilst T marks mesodermal fate.
Four experimental conditions were used, varying whether Rock inhibitor (Y-27632) and
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Figure C.1: Bar chart showing percentages of Sox10 and T positive cells per experimental con-
dition, given by each well.

IWP-2 were supplemented in PRIMO Media. Each condition corresponded to a plate
well:

1. Well A1: with Y-27632 for 2 days and without IWP-2,

2. Well A4: without Y-27632 and without IWP-2,

3. Well B1: with Y-27632 and with IWP-2, both for 2 days,

4. Well B4: without Y-27632 and with IWP-2 for 2 days.

Cells were imaged using InCell technology, processed in ImageJ, then passed to Cell-
Profiler for object segmentation and quantifying basic cell statistics. The output .csv
file contained 86441 rows, each corresponding to a single cell. Counts of Sox10 and T
positive cells per experimental condition are given in Figure C.1.

C.2 Feature Extraction from Raw Data

To calculate the number of neighbours, a radial distance measure was used. The distance
threshold was taken as d = 16.25 µm, as detailed in Chapter 2, Section 2.4.1. Importantly,
if the central coordinates of cell’s nucleus were within distance d of the image boundary,
the cell was removed. This was done to reduce the possibility that neighbouring cells
outside the image boundaries could confound results.
Using this method, the respective total sums of neighbours’ Sox10 and T expression were
calculated for each cell. Bar charts with means showing the relationship between nor-
malised Sox10/T expression and number of neighbours are shown in Figure C.2. Inten-
sity outliers were removed using the method given in Equations(4.2-4.4). This omission
combined with removal of cells at image borders preserved 91.7% of the original data.
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(a) Sox10. (b) T.

Figure C.2: Boxplots showing Sox10 and T expression at the single-cell level vs. the cells’ num-
ber of neighbours. Plots show results across all experimental conditions. Mean values are shown
in red. Outliers were removed.

Local density was calculated per image according to the triangulation methodology
given in Appendix B combined with Equation 4.1.
Next, four different weighting functions were calculated for the contribution of neigh-
bouring cells’ gene expression. Functions were defined such that weights were propor-
tional to the distance from the cell of interest to its neighbour. Weights were calculated
as following:

1. Weights all equal to 1 (unweighted),

2. Linear decay as distance increases,

3. Gaussian decay as distance increases,

4. Exponential decay as distance increases.

Weighting condition (1) corresponds to the single-cell sums of neighbours’ Sox10 ex-
pression described above.
For calculating the weights corresponding to model weighting condition (2), i.e. linear
decay with inter-cellular distance, a line with equation

y(x) = 1−
(

1

d+ ϵ

)
x, x = 0, ..., (d+ ϵ) (C.1)

was defined, taking ϵ = 0.0001. The parameter ϵ was incorporated to ensure that
y(d) ̸= 0, but rather y(d + ϵ) = 0, as neighbours that have distance less than or equal
to d of the cell of interest should not have zero weight. Importantly, this does not allow
cells with greater distance than d from the cell to have non-zero weight.
For model weighting condition (3), i.e. Gaussian decay, the right plane of a normal dis-
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Figure C.3: Graphs of the linear, Gaussian, and exponential decay weighting functions used for
weighting each cell’s sum of Sox10 intensity from directly neighbouring cells.

tribution given by

y(x) =
1

σ
√
2π
e−

1
2
(x−µ

σ
)2 , x = 0, ..., (d+ ϵ) (C.2)

was used, with mean µ = 0 and standard deviation σ = d/3. This distribution was then
normalised in the range [0, 1].
Exponential decay with equation

y(x) = Ae−αx, x = 0, ..., (d+ ϵ) (C.3)

was used for model weighting condition (4), taking A = 1 and α = (−4 ln(0.25))/d.
This value of αwas chosen such that (1/4)max(x) = (1/4)max(y). In other words, the
x-axis and y-axis achieve one quarter of their maximums at the same value.
See Figure C.3 for graphs of the linear, Gaussian, and exponential decay weighting func-
tions used for this work.

C.2.1 Data Pre-Processing

From Figure C.2, it can be seen that there is very little variation in T expression with re-
spect to the cell’s number of neighbours. However, Sox10 expression increases on aver-
age proportionally to neighbour count. This is the inverse of the phenomena discovered
for Nanog expression in hESCs described in Chapter 2. Interestingly, this relationship
is seen across all data, i.e. across all experimental conditions. The Sox10/neighbours
relationship was particularly prevalent for cells in Well A1, which were cultured with
Y-27632 and without IWP-2. For this reason, the classification model solely focused on
predicting Sox10 expression for cells in Well A1.
Cells with no neighbours were filtered from the data (as the models depend on non-
empty information about each cell’s local neighbourhood), thus preserving 68.5% of data
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(a) Sox10. (b) T.

Figure C.4: Histogram of intensities in the range [0, 1] for H9TVD3 hESCs differentiated to
neural crest. Outliers and cells with 0 neighbours were removed.

for Well A1. Intensities for Sox10 and T were re-scaled in the range [0, 1], with the cor-
responding histograms given by Figure C.4.

C.3 Results of Sox10 Classification Modelling

C.3.1 Feature Selection by Preliminary Model Training

Features that were considered for model training were:

1. Number of neighbours (Z ≥ 0),

2. Local density (R ≥ 0),

3. Unweighted sum of neighbours’ Sox10 intensities (R ≥ 0),

4. Linear weighted sum of neighbours’ Sox10 intensities (R ≥ 0),

5. Gaussian weighted sum of neighbours’ Sox10 intensities (R ≥ 0),

6. Exponential weighted sum of neighbours’ Sox10 intensities (R ≥ 0),

7. Unweighted sum of neighbours’ T intensities (R ≥ 0),

8. Linear weighted sum of neighbours’ T intensities (R ≥ 0),

9. Gaussian weighted sum of neighbours’ T intensities (R ≥ 0),

10. Exponential weighted sum of neighbours’ T intensities (R ≥ 0).

The binary response variable for the classification model was whether a cell is Sox10
positive or negative. MATLAB was used to fit fine, medium, and coarse tree models and
k-nearest neighbour (KNN) models to the data. These models had the advantage of fast

160



Features Best Model Accuracy (%)
All Coarse KNN 93.1

(1),(2) Medium Tree 69.2
(1),(2),(3) Coarse KNN 93.2
(1),(2),(4) Medium Tree 90.3
(1),(2),(5) Coarse KNN 90.9
(1),(2),(6) Coarse KNN 92.2
(1),(2),(7) Coarse KNN 70.7
(1),(2),(8) Coarse KNN 69.2
(1),(2),(9) Coarse KNN 69.1
(1),(2),(10) Medium Tree 69.2

Table C.1: Table displaying % accuracy of the best performing classification models. The model
with maximal accuracy is shown in bold.

computing times, making it possible to run many different model set-ups. To reduce the
problem of over-fitting, randomised 10-fold cross-validation was used for each model.
The training set consisted of a randomly sampled 80% of the data, thus leaving 20% for
testing.
For all but one combination of predictors, the best performing model was the coarse
KNN. Using the number of neighbours and local density alone as training features re-
sulted in a much lower percentage accuracy than for models incorporating neighbours’
Sox10 expression. Models trained using neighbourhood T expression also fared compar-
atively poorly, but still produced reasonable accuracies with the limited model architec-
tures used. See Table C.1 for the accuracy of all best performing models. Overall, the
model with the highest accuracy was the model that used the cell’s number of neigh-
bours, local density, and the unweighted sum of neighbours’ Sox10 expression to predict
the response.

C.3.2 A Gaussian Kernel Support Vector Machine Model for Ac-
curate Classification of Sox10 Expression

Informed by the above results, a Gaussian (non-linear) kernel support vector machine
(SVM) was trained using features (1)-(3). An SVM model was selected as these are gen-
erally powerful for classification tasks, demonstrated in Chapter 5. As before, 10-fold
cross-validation was implemented. At each fold split, 80% of the data was used for model
training, and 10% for validating the model at that fold. Table C.2 shows these results,
including the mean accuracy of 93.2% across all folds. Finally, after cross-validation was
completed, the model was trained on 80% of the full dataset, and tested on the remain-
ing 10% of data that had not been used at any point during cross-validation. The overall
model accuracy achieved was 92.7%, with precision 0.89, recall 0.88, and F1-score 0.88.
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Training Fold Accuracy (%)
1 93.3
2 94.3
3 90.6
4 92.6
5 93.3
6 95.0
7 94.0
8 91.3
9 94.0
10 93.3

Mean 93.2

Table C.2: Sox10 classification results using an SVM model with Gaussian kernel. Cross-
validation was implemented with 10 training folds. Accuracies are reported for the validation
set at each fold.

Figure C.5: Confusion matrix for the Gaussian kernel SVM classifier trained to predict whether
hESCs are Sox10 positive/negative. Model accuracy = 92.7%, F1-score = 0.88.

Figure C.5 gives the confusion matrix for SVM model. To test significance of the model
accuracy, the response variable was randomly shuffled, and the same SVM model was
applied, using the shuffled response variable as the target. This process was repeated
5 times. The output models had a mean accuracy of 56.5%, suggesting that the original
model accuracy of 92.7% is indeed meaningful.

C.4 Summary and Conclusions

In this appendix, a support vector machine (SVM) using a Gaussian kernel was trained
to classify differentiated hESCs as either positive or negative for the expression of the
Sox10 gene. Spatial features regarding the cellular neighbourhood were used for model
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training. Specifically, the following three features were used: (1) the cell’s number of
neighbours, (2) local cellular density, and (3) the linearly weighted sum of Sox10 expres-
sion from directly neighbouring cells. The classifier achieved an excellent accuracy of
92.7%.
These results show that expression of Sox10 in differentiated hESC cultures is heavily
regulated by the local cellular environment. In particular, several weighting functions
representing the contribution of neighbouring cells’ Sox10 expression were calculated,
which were used for model training prior to obtaining the final SVM. Both Gaussian and
exponential decay functions (with respect to inter-cellular distance) performed worse for
predicting Sox10 expression labels, as the resultant models yielded a lower accuracy than
that of the final model. Additionally, using an unweighted sum of neighbours’ Sox10 in-
tensity for model training yielded poorer results than using the linear decay weighting
function. Therefore, this may suggest that cell signalling responsible for orchestrating
gene expression patterning in differentiating hESC populations occurs across linear dis-
tances between cells. This could be explained by both juxtacrine and diffusive signalling;
it is likely that both of these signalling mechanisms are influential in single-cell gene
regulation.
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Appendix D

Custom Micro-Patterned Chip
Designs for Cell Culture

To validate predictions for cell fate patterning output by the model presented in Chapter
3, three custom micro-patterned chips were designed. These were intended to be pro-
duced by the company CYTOO, who manufacture the commonly used CYTOOchip™Arena.
During design, a good balance of geometries previously employed by experimental re-
searchers and novel geometries was proposed. In particular, it was of interest to explore
hollow shapes, fractals, and symmetric shapes that would force very simplistic neigh-
bour relations between cells, such as the cross in Figure D.1. Additionally, varying the
size of micro-patterned cultures, without altering the shape, has been demonstrated to
impact resultant fate patterning. Therefore, various sizes of the same shape were incor-
porated into the designs to test this phenomenon.
Future work remains of interest to manufacture these micro-patterns, which are shown
over the next three pages, and use them for hPSC differentiation experiments.
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Figure D.1: Custom micro-patterned chip design 1.
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Figure D.2: Custom micro-patterned chip design 2.
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Figure D.3: Custom micro-patterned chip design 3.
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