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Abstract

Metal-organic frameworks (MOFs) have become a widely studied class of porous materials
over the last 30 years. They have been, and continue to be, extensively researched for
applications requiring porous and adsorptive properties of materials. This thesis focuses
on three main topics which sit at the forefront of MOF research: reliable topological
characterisation of crystalline materials, machine learning and data driven manufacturing,
and the development of new computational tools.

Firstly, we investigate topological characterisation of these crystalline materials, de-
scribing the methods and algorithms by which they can be categorised through the
medium of a perspective review, followed by the integration of a newly developed open-
source software with the Cambridge Crystallographic Data Centre’s (CCDC) existing
crystallographic data suite and Python API.

This is succeeded by the introduction of state-of-the-art machine learning (ML) and
digital manufacturing techniques with the view that they can be applied to the future
of the field. In this work we discuss the use of ML in solid state materials development
which is followed up by work in which we developed a new method of abstracting existing
synthesis information published in thousands of previous MOF studies.

Lastly, we apply new augmented reality techniques to visualise the results of topo-
logical deconstruction and adsorption studies of MOFs. The result of this work over the
last 4 years has enabled researchers to use the Cambridge Structural Database (CSD) to
maximum effectiveness when searching for synthesis conditions, precursors, linker types,
topologies, and more whilst also integrating ML techniques such as Natural Language
Processing (NLP) for data mining and introducing new ways of visualising the results.
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Chapter 1

Introduction

Metal-organic frameworks (MOFs) have emerged as a widely studied class of porous ma-
terials over the last 30 years. They have been, and continue to be, extensively researched
for applications requiring porous and adsorptive properties [1, 2, 3, 4]. Due to their poros-
ity and large surface area, MOFs have been effectively deployed for adsorption of gases
such as CO2, H2O, and H2 [5, 6, 7]. This, coupled with the customisability of MOFs
has attracted exponentially growing interest in this realm of materials science, and recent
investigations have shifted from gas storage and separation to resistive sensing, electro-
catalysis, and energy storage [8, 9]. Materials combining structural tunability, accessible
porosity, and high surface area are highly desirable from an application point of view,
however this combination of properties can be difficult to find especially when additional
criteria such as conductivity, or water stability are considered [10].

Over the past several years there has been a big increase in the number of compu-
tationally theorised structures available to researchers [11], this rapid development has
also led to concerns over chemical diversity and the need for screening a large number of
chemically similar materials arises [12]. This has been in part due to the development
of computing capabilities, but also the increasing influence of machine learning on the
community [13].

This thesis focuses on three main topics which sit at the forefront of MOF research:
reliable topological characterisation of crystalline materials, machine learning and data
driven manufacturing, and the development of new computational tools. This intro-
duction discusses the basics of metal-organic frameworks and some important literature,
followed by an overview of the work which has been completed by the Cambridge Crys-
tallographic Data Centre (CCDC) and collaborators resulting in the creation of the Cam-
bridge Structural Database (CSD) MOF subset. Then, the aims and objectives of this
PhD project are outlined with some contextual literature review surrounding the key
areas discussed in each subsequent section.

1.1 Metal-Organic Frameworks

MOFs are crystalline materials that consist of metal clusters (Secondary Building Units,
SBUs) connected by organic linkers which combine structurally to form well defined porous
frameworks. Typically formed into networks of 1D-chains, 2D-sheets, or 3-D nets, MOF
building units can be connected in an almost limitless number of ways [14]. When con-
sidering their formation, they can consist of almost any metal combined with a broad

1
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catalogue of organic molecules. These materials often exhibit strong mechanical stabil-
ity in conjunction with porosity, and the modular nature of structure formation enables
versatile material development to tune desirable properties for a range of applications.

The origins of MOFs lie in the mid 1990s with notable contributions from Omar M.
Yahgi and colleagues upon their exploration of the molecular building block approach of
synthesising crystal structures [15, 16]. However, several materials that could be consid-
ered MOFs had been synthesised before this point, one example of which was the copper
based Cu[C(C6H4.CN4)]BF4 reported by Hoskins and Robson in 1989 [17]. Since then
however, the MOF field has been subject to rapid investment resulting in a significant
growth in research volume, exploring various strategies used to create a vast library of
MOF structures. This is in part due to the versatility of MOFs, allowing for precise
control over properties, but also due to advancements in synthesis methods such as hy-
drothermal, solvothermal, microwave assisted, and mechano-chemical synthesis playing a
vital role in accelerated development.

One key property of all crystal structures, and the focus of this thesis, is topology -
explained simply as the way that a crystal has been formed in space - and it is represented
by the underlying connectivity of constituent building units [18]. It holds significant im-
portance as the underlying atomic configuration directly influences the properties and
performance of the material. Understanding topology, and the ability to control specific
formations, is crucial for tailoring pore structure, surface area, and mechanical stability
to meet predetermined requirements. This interest in pore shape and size has been exten-
sively studied, particularly to consider the upper bounds (or the limit) of these materials,
as well as the pore shape restrictions that may be imposed [19, 20]. Achieving desired
topologies can be challenging due to several factors including linker geometry, metal co-
ordination preferences, and a variety of synthesis conditions and methods which have
stimulated the development of modulator-assisted methods, ligand design strategies, and
post-synthesis modifications in an attempt to control the resultant topologies.

A further geometric descriptor of MOFs and other crystalline structures are tilings,
which refer to divisions of space in which repeating polyhedral structures describe 3D
arrangements of MOF networks, typically used to represent the regions which are enclosed
by the metal nodes and linkers. These tiles, often regular or semi-regular polyhedra, such
as tetrahedra, octahedra, or more complex polyhedra, give a clearer picture of the pores or
cavities present in the structure, crucial for understanding guest-accessibility, gas storage
potential, or catalytic behaviour. A common MOF, MOF-5, consists of metal-oxo clusters
that form cubic cages, and the organic linkers span between the nodes, such that the entire
structure can be described as a tiling of cubic units.

A wide range of topological diversity can be found in the broader MOF space, typically
described by mathematical nets found in the Reticular Chemistry Structure Resource
(RCSR) [21], one example, MOF-5 and its underlying topology, is shown in Figure 1.1.
This example, amongst thousands of others, can be found in the Cambridge Structural
Database (CSD).
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Figure 1.1: A representation of one of the most renowned MOFs (MOF-5),
with pcu topology overlaid onto the structure in CSD Mercury.

1.2 Cambridge Structural Database and MOF Subset

The Cambridge Structural Database (CSD) is a comprehensive and curated repository for
the experimental structural data of molecules (typically crystalline in nature) which make
up organic, metal-organic, and inorganic compounds. One of the most extensive chemical
databases to exist, it currently contains approximately 1.2 million entries and counting,
all of which generally contain at least carbon and hydrogen (with some exceptions). The
CSD serves as a valuable resource for chemists, crystallographers, and materials scientists
and contains detailed structural information such as atomic coordinates, bond lengths,
angles, and space groups obtained from x-ray (XRD), electron or neutron diffraction
experiments.

The CSD is a widely used repository for small-molecule and metal-organic structures,
all of which are typically made available for download and use at the point of publication.
Researchers are able to access the CSD to analyse molecular conformations, study inter-
molecular interactions, and run experiments to determine structure-property relations.
Targeted subsets, such as the CSD MOF subset or the COVID-19 subset, are also available
to support researchers with specific focuses.

The CSD MOF subset is a specialised partition of the whole CSD, created in 2017
by Moghadam et al. [22] and it has been extensively used by almost all MOF focused
research groups as a resource containing almost all experimentally produced MOFs. By
focusing on a curated collection of data that is specific to a certain class of materials, it
allows streamlined research into synthesis, stability, and design of MOFs. Whilst many
CSD derived and/or hypothetical MOF databases exist, they are limited by their lack of
periodic updates and high-level manual curation that the CCDC provides, this includes
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manual verification of deposits from a variety of sources including checks for errors and
inconsistencies followed by the use of periodic quality and consistency checks.

Figure 1.2 shows the seven criteria used to created the original CSD MOF subset that
are still used to filter newly deposited structures into the CSD MOF database following
each update.

Figure 1.2: Summary of the seven criteria designed to build the CSD MOF
subset, where QA = O, N, P, C, B, S. QB = N, P, B, S, C and superscripts
“c” and “a” impose the corresponding atoms to be “cyclic” or “acyclic”, re-
spectively. Me denotes methyl groups. The dotted line refers to any of the
bond types stored in the CSD (single, double, triple, quadruple, aromatic, poly-
meric, delocalised, and pi). The dotted line with the two lines through indicates
a variable bond type (i.e., two or more of the options above). In these cases,
the variable type is single, double, or delocalised. [22]

The CSD MOF subset has been used extensively throughout the work contained within
this thesis as the go-to database for experimental MOF data. Whilst other MOF databases
do exist, and some of them are discussed in later chapters, they are all hindered by a lack
of curation that solidifies the CSD as a leading, up-to-date, and trustworthy source of
information.

1.3 Thesis Outline

1.3.1 Chapter 2 - Topological Characterisation of Metal-Organic Frame-
works

In chapter 2 we introduce the significance of topological analysis and how it can be used
to understand metal-organic frameworks (MOFs) and their growing importance in mate-
rials science. With over 120,000 MOF-like structures deposited into the CSD database,
the complexity of these structures presents challenges in characterisation. Topological
analysis simplifies MOF structures by identifying their basic connectivity, which can aid
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in design and synthesis. Software tools like ToposPro, MOFid, and CrystalNets assist in
assigning topology descriptors to MOFs, though each has its strengths and limitations.
This perspective highlights the importance of topology in MOFs, discusses available soft-
ware, their algorithmic approaches and methods, limitations, and uptake within the MOF
community.

In the conclusion, we emphasise that topological characterisation extends beyond
MOFs to other crystalline materials like COFs and Zeolites. The choice of software
depends on study requirements; CrystalNets offers speed but limited chemical insights
compared to MOFid or ToposPro. A notable limitation is discrepancies in topology allo-
cation, which should be addressed following IUPAC guidelines. The lack of a complete,
freely available database of MOFs with verified topology information is highlighted, abd
although initiatives like the QMOF database show promise for some significant applica-
tions more work is required. Suggestions are made to integrate topological information
into established databases like the CSD, enhancing accessibility and facilitating research
in MOF characterisation.

1.3.2 Chapter 3 - Integrating CrystalNets.jl and Bench-marking Per-
formance on the Cambridge Structural Database

In this chapter we aimed to address the challenges in topological assignment of com-
plex MOF structures by comparing two high-throughput topological assignment pack-
ages, MOFid and CrystalNets, supplemented by a custom Python workflow utilizing the
CSD Python API. By analysing a large set of CSD 2D and 3D MOFs (54,473 experimen-
tal structures), the study aimed to assess the agreement between these approaches and
identify the most effective method for topological assignment. This comparative analysis,
believed to be the first of its kind using the CSD MOF subset, led to the development
of a new Python-based approach integrated within CSD Mercury, facilitating topological
assignment with a single click. The investigation aimed to determine the most suitable,
presently available, workflow for high-throughput topological characterisation of MOFs.

We concluded that our results indicated that combining CrystalNets with the reten-
tion of CSD bonding information yielded the highest recall and precision rates, with
minimal computational cost compared to the MOFid approach. The automated workflow
achieved success rates of 75.9% for 2D MOFs and 51.25% for 3D MOFs, though room for
improvement remains, particularly regarding disorder in structures and modifications due
to solvents within CIFs. Additionally, the study emphasized the simplicity of integrating
new tools within the CSD, providing the developed workflow publicly through CCDC’s
open-source GitHub repository, enhancing accessibility for researchers seeking efficient
topological assignment methods.

1.3.3 Chapter 4 - Machine Learning and Digital Manufacturing Ap-
proaches for Solid-state Materials Development

Chapter 4 serves as an introduction to the integration of machine learning (ML) into
the realm of material discovery and chemical manufacturing, which whilst relatively re-
cent shows promising progress, particularly in solid-state nanomaterials. ML has been
successfully applied to predict novel synthesis conditions, enhancing sustainability and
economic efficiency. However, challenges such as inconsistent reporting and the lack of
data on unsuccessful experiments hinder the accuracy of predictions. We discuss the
shift towards open-source data repositories and collaborative efforts within the scientific
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community which aim to address these challenges, making research more accessible, af-
fordable, and environmentally conscious. With the availability of resources like journal
publications, GitHub repositories, and physical experimental documentation, the use of
ML in chemical space is expected to accelerate.

In this chapter we concluded that advancements such as knowledge graphs, graph-
based reaction optimisation, and digital twins are facilitating the discovery of new path-
ways to stimulate the automation of laboratory processes. In the context of large-scale
integration of ML and digitisation for synthesis of metal-organic frameworks (MOFs),
high-quality algorithm outputs are crucial for continuous manufacturing and commer-
cialisation. Predicted synthesis conditions will allow manufacturers to optimise resource
usage and production processes, thereby reducing costs and environmental impact. How-
ever, challenges such as the complexity of certain MOF structures and the scarcity of
certain materials pose limitations on large-scale synthesis. Events like the COVID-19
pandemic have underscored the importance of assessing the resilience of manufacturing
pathways to disruptions in supply chains, highlighting the need for digitisation to increase
efficiency and resilience. Nonetheless, the full potential of digitisation relies on access to
sufficient, high-quality data, which remains a critical aspect for further progress.

1.3.4 Chapter 5 - DigiMOF: A Database of Metal-Organic Framework
Synthesis Information Generated via Text Mining

The work in chapter 5 outlines the development of the DigiMOF database, an open-source
resource generated through the adaptation of the ChemDataExtractor (CDE) tool to ex-
tract synthetic properties from over 43,000 MOF publications. A continuation from the
adoption of ML within the chemical space, this database encompasses various parameters
such as synthesis method, solvent, linker type, metal precursor, and topology, providing
a centralised repository of valuable information for MOF researchers. Additionally, an
alternative data extraction technique was employed to identify linker types and their as-
sociated costs, further enriching the database. DigiMOF offers a comprehensive resource
for researchers to rapidly search for MOFs with specific properties, aiding both compu-
tational screening and experimental evaluation of MOF properties. The database and
associated software are openly available, allowing for updates and modifications to ensure
the continuous identification of new MOF-property relationships.

In the conclusion, the significance of DigiMOF in advancing the field of MOF re-
search is reiterated, as one of the first automatically generated database of MOF syn-
thesis properties, it offers a valuable resource for researchers seeking to enhance MOF
production pathways and identify commercially viable synthesis routes. By providing
over 15,000 unique MOF records with detailed synthetic data, DigiMOF now facilitates
techno-economic assessments, life-cycle assessments, and experimental validation work.
The database is poised to reduce the reliance on unsustainable synthesis routes within
the MOF community to help stimulate the application of MOFs in decarbonisation tech-
nologies. With its extensive dataset and potential, subject to further work, for continual
updates, DigiMOF now serves as a foundational tool for advancing the digital manufac-
turing of MOFs and driving innovation in materials science.
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1.3.5 Chapter 6 - Augmented Reality for Enhanced Visualization of
MOF Adsorbents

Finally, chapter 6 explores the innovative use of augmented reality (AR) technology to
enhance the visualisation and understanding of complex 3D materials, particularly metal-
organic frameworks (MOFs). The paper demonstrates a workflow for AR modeling that
allows for the visualisation of MOF crystal structures, topologies, and gas adsorption
sites directly on Android or iOS smartphones without the need for additional apps. The
technique is not only beneficial for computational and experimental scientists in research
but also serves educational purposes, offering an engaging and interactive experience for
students and researchers alike.

The paper showcases the practical applications of AR modeling for MOFs and by pro-
viding freely available, no-cost methods, distributed via QR codes, this technique enables
the creation and sharing of AR models globally and instantly. The ability to modify the
size of AR representations adds to its versatility, allowing for educational use in various
settings, such as conferences, workshops, and classroom presentations. Additionally, the
paper explores potential applications of AR in other areas of materials science, includ-
ing catalysis, crystal engineering, and collaboration between research groups, as well as
artistic experiences of crystal structure representations. Overall, this research paper high-
lights the potential of AR technology to revolutionise the way we visualise, teach, and
understand the field of materials science.

1.4 Aims, Objectives and Scientific Contribution

Before this project commenced, the CSD consisted of approximately 88,000 MOFs, a
figure which has risen over the past 4 years to an incredible 120,000+. The goal of this
project was to conduct systematic computational study into the network topology of
MOFs and to implement data-driven design approaches to explore the library of MOFs
within the CSD.

With unparalleled potential to investigate thousands of structures in a short time,
computational high-throughput screening is extremely well suited to unravelling trends in
key MOF properties, establish structure-property relationships, and guide future synthesis
efforts. Whilst in the last few years CCDC’s computational analysis has been primarily
focused on geometric characterisation (e.g largest pore size, pore volume, surface area,
and gas adsorption properties) we further these investigations using a variety of new
approaches. Previous computational investigations have delivered important insights but
are still yet to answer key questions about useful MOF properties such as performing
reliable topological characterisation of the CSD MOF subset, and identifying constituent
metals and organic linkers. To address these, we proposed this project which is the result
of a combination of efforts including the expertise of CCDC’s scientists in crystallography
and materials science in conjunction with researchers here at the University of Sheffield
and at University College London.

1.4.1 Topological Characterisation

Our initial objective was to perform topological characterisation of all MOFs within the
CSD MOF subset, including investigating the methods and algorithms through which
they can be categorised. We first planned to develop a new standalone software to handle
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this problem that could be integrated within the CSD, however upon release of the open
source CrystalNets package, only minor modifications to the run process were required to
significantly increase the reliability of the current state of the art tools. This was achieved
through a combination of the work detailed in Chapter 2, Chapter 3, and Chapter 5.

1.4.2 Machine Learning and Augmented Reality

Next, quantitative structure/property relationship (QSPR) analysis was used to system-
atically correlate certain topological descriptors to functional properties in quantitative
terms. Before the commencement of this project, only a handful of QSPR studies had been
reported for porous materials, and we developed new models using established methods
including the use of machine learning in the form of natural language processing (NLP).
We developed several publicly available resources for analysis of information related to all
materials. Our state-of-the-art machine learning (ML) and digital manufacturing tech-
niques were discussed in Chapter 4 and Chapter 5 with the view that they can be applied
to the future of the field. Our focus began with the use of ML in solid state materi-
als development, followed the developed a new method of abstracting existing synthesis
information published in thousands of previous MOF studies.

1.4.3 Development of New Computational Tools

Finally, we proposed the integration of a newly developed open-source software with
the Cambridge Crystallographic Data Centre’s (CCDC) existing crystallographic data
suite and Python API, and we applied new augmented reality techniques to visualise the
results of topological deconstruction and adsorption studies of MOFs. These goals were
met through a combination of the work detailed in Chapter 3 and Chapter 6.

1.5 Summary

The result of this work has enabled researchers to use the Cambridge Structural Database
to maximum effectiveness when searching for synthesis conditions, precursors, linker
types, topologies, and more whilst also integrating ML techniques such as Natural Lan-
guage Processing (NLP) for data mining and introducing new ways of visualising the
results.
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Chapter 2

Topological Characterisation of
Metal-Organic Frameworks: A
Perspective

2.1 Publication Information and Paper Contributions

This paper has been submitted to the American Chemical Society’s journal Chemistry of
Materials for publication as a perspective and is currently under review.

In this publication, I, the candidate wrote the manuscript with supervision from Pro-
fessor Joan L. Cordiner, Dr Jason C. Cole, and Dr Peyman Z. Moghadam.

2.2 Abstract

Metal-organic frameworks (MOFs) began to emerge over two decades ago, resulting in the
deposition of 120,000 MOF-like structures (and counting) into the Cambridge Structural
Database (CSD). Topological analysis is a critical step towards understanding periodic
MOF materials, offering insight into the design and synthesis of these crystals via simpli-
fication of connectivity imposed on the complete chemical structure. Whilst some of the
most prevalent topologies such as face-centred cubic (fcu), square lattice (sql), and dia-
mond (dia) are simple and can be easily assigned to structures, MOFs that are built from
complex building blocks, with multiple nodes of different symmetry, result in difficult to
characterise topological configurations. In these complex structures representations can
easily diverge where the definition of nodes and linkers are blurred, especially for cases
where they are not immediately obvious in chemical terms. Currently, researchers have
the option to use software such as ToposPro, MOFid, and CrystalNets to aid in the as-
signment of topology descriptors to new and existing MOFs. These software packages
are readily available and are frequently used to simplify original MOF structures into
their basic connectivity representations, before algorithmically matching these condensed
representations to a database of underlying mathematical nets. These approaches of-
ten require the use of in-built bond assignment algorithms alongside the simplification
and matching rules. In this perspective, we discuss the importance of topology within
the field of MOFs, the methods and techniques implemented by these software packages,
their availability and limitations, and review their uptake within the MOF community.

12
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2.2.1 Keywords

Perspective, Topology, Metal-organic Frameworks, Structure Characterisation

2.3 Introduction

Metal-organic frameworks (MOFs) are an emerging class of porous materials, formed by
chemical bonds between metal clusters and organic building blocks [1, 2]. MOFs are a
diverse set of chemical structures often characterised by their porosity and customisability:
the commercial uptake of MOFs are particularly focused towards gas adsorption [3, 4],
separation [5, 6, 7], sensing [8, 9], alongside catalysis [10, 11] and quantum applications
[12, 13, 14, 15]. The MOF materials space consists of many combinations of building
units typically configured in a symmetrical pattern. Over time, increased importance has
been placed on topology as a predictor of properties: recently investigations have been
published that compare topology with porosity and mechanical stability [16, 17], but there
are still areas in which potential correlations between topology and other properties have
not been determined, such as electronic properties, solvent compatibility, and thermal
stability [18].

The CSD MOF subset contains a staggering ca. 120,000 experimental crystal struc-
tures of MOFs (CSD release April 2023), representative of the input of the worldwide
research community, with updates to the total number of synthesised structures being
made quarterly [19, 20, 21]. Figure 2.1 shows the distribution of MOFs within the CSD
from 1981 to present day, including a breakdown of their structural dimensionalities.
Whilst there appears to have been a clear preference towards the synthesis of 1D MOF-
like structures from the inception of the CSD until 2011, there has been a recent increase
in the popularity of 3D structures compared to the initial high proportion of 1D deposits.
The initial prevalence of 1D MOFs could be explained by the cost-effective formation
of simple structures consisting of basic pyridyl and chelate ligands, typically synthe-
sised with the intention to study these ligands and their interactions with metal centres.
These 1D chains have interesting applications in magnetism, proton conductivity, and
ferroelectricity and can often form larger crystals than equivalent 2D and 3D structures
under ambient conditions. We note that, despite their dimensionality, these structures
can exhibit porosity when linked by hydrogen bonds or other interactions, when woven
together/interpenetrating (1D+1D), or they could potentially exhibit porosity on desol-
vation [22]. 3D MOFs are typically considered to be the ideal candidates for adsorption
applications and the increasing focus on 3D MOFs can be seen in the cumulative 3D
structure deposits (red line in Figure 2.1) where they begin to overtake 2D submissions
in 2015. The number of 3D MOF submissions to the CSD has consistently exceeded 1000
accepted annual deposits for the last 15 years.
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Figure 2.1: The distribution of MOFs within the CSD, including dimension-
ality breakdowns of 1D, 2D, and 3D structures. The left axis indicates the
number of structures deposited per year per dimensionality, whilst the right
axis keeps a cumulative total across the timeline. (Data correct to CSD 5.45
Nov 2023).

Following the International Union for Pure and Applied Chemistry (IUPAC) recom-
mendations, published in 2013, suggesting that all MOF structures are assigned topolog-
ical representations, a significant number of these materials should now be published and
deposited with accurate topological information [23]. Ohrstrom et al. [24] released an
informative review in 2015 following the publication of these IUPAC recommendations,
where they offered guidance to researchers working in the field of MOFs surrounding iden-
tification of nets and network topologies. At present, the CSD does not report network
topologies of its deposited structures, although for many materials submitted since 2013,
this information may be available within the corresponding manuscripts as evidenced by
our previous study which included the text-mining of MOF topologies [25]. The suggested
procedure for reporting MOF network topologies is using a unique three letter code taken
from the Reticular Chemistry Structure Resource (RCSR), printed in bold lowercase let-
ters [2]. The RCSR is an open source, online database consisting of 2,929 3-periodic,
and 200 2-periodic network representations. It is self-described as a collection of spatial
information, and corresponding diagrams, which can be used to map networks that are
built using straight, non-intersecting linkers.

Additional alternative databases for topological descriptions do exist, these primarily
include the Topological Types Database (TTD) [26] and Euclidean Patterns In Non-
Euclidean Tilings (EPINET) [27] theoretical database. Whilst there is often some overlap
between these collections, it is very common to see newly reported structures represented
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in literature by their corresponding RCSR identifiers. Where the RCSR representation
is not present and if the topology has been determined by the authors, the alternative
EPINET or TTD terminology may be seen. Typically, topological identification software
packages refer to the RCSR labels with a preference over other representations wherever
it is possible to do so, although RCSR and EPINET topologies are sometimes reported
together. It is worth noting that RCSR topologies appear in the EPINET database with a
different unique reference, for example the RCSR pcu is also represented by the EPINET
s-net name sqc1, and likewise bcu can be reported as sqc3.

As the CSD does not contain topological information, and there is at present no
publicly available complete MOF topology database, to obtain the topology for a given
MOF structure one would need to search for the corresponding topology in the respective
publication, or if this was not available, determine the topology for the structure by
using one of the existing software packages. This article discusses the use of three readily
available MOF topology identification programmes: Topos Pro [26], hosted by Blatov and
colleagues from the Samara Topological Data Centre, MOFid [28] published by the Snurr
Group at Northwestern University, and finally CrystalNets [29] a Julia based software
from Chimie ParisTech published by the Coudert lab. Each of these approaches differ,
sometimes subtly, in the structure connectivity, deconstruction, and identification stages.
We also explain the important challenge of bond assignment and different approaches
to topological identification, and compare different software features that are currently
available. We also discuss the techniques used to obtain deconstructed or underlying nets,
and current examples of datasets created using these packages.

2.4 What is topology?

A long-recognised feature of crystal chemistry is that the connectivity between atoms can
be represented as a simple periodic graph with linkers being considered as edges, and met-
als or metallic clusters being treated as nodes, famously summarised by A.F Wells in his
1977 book on Three-dimensional Nets and Polyhedra [30]. Topological analysis provides
deeper understanding of the synthesised materials and their properties, enabling compar-
isons of new materials with existing literature, and effectively communicating the networks
of new materials. Topology holds significance beyond the simplest natural structures such
as diamonds, zeolites, and quartz to describe and understand the variety of crystalline
materials. Even in these simple one atom type configurations, the structural connectivity
at atomic scale can affect the properties of the macrostructure. If we consider only car-
bon, whilst diamond, with its instantly recognisable cubic lattice construction registers at
the peak of the hardness scale, lonsdaleite is built using a hexagonal lattice configuration
and is potentially up to 58% harder than its cubic counterpart when measured across the
<100> face [31].

In 2019, Moghadam et al. [19] reported the correlation between structure-mechanical
stability and topology for 3,385 MOFs and 41 distinct topologies. In this context, they
identified the top robust network topologies and emphasised the importance of building
blocks, coordination numbers, and linker lengths. Later, in 2022, Li et al. [32] exper-
imented with different synthesis conditions and concluded that it is possible to control
the formation of specific topologies for a set of identical building blocks which can be
useful to consider if a certain pore shape, size, or stability is desirable. The formation of
distinct MOF nets from the same building blocks is an important insight to consider as it
demonstrates the remarkable structural diversity and flexibility of MOFs and underlines
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the importance of the principles of MOF formation.

In 2018, Bonneau et al. [33] published terminology guidelines to aid in the deconstruc-
tion of crystalline networks into their underlying nets. Their estimation suggested that
40,000 MOFs would be synthesised and published by 2025, a result that seems almost
achievable given the 28,729 3D MOFs offered in the CSD release of April 2023, or one that
already has been achieved if we include 2D MOFs within the prediction. One important
focus of these guidelines was to address the ambiguity of node assignment. The method
through which the nodes are chosen can have a significant impact on the outcome of topo-
logical assignment, depending on the constituent building blocks. If, for example, large
linkers with porphyrin rings are present, the style of deconstruction approach can offer
different outcomes to the most basic structure form. The general goal is to represent the
connectivity of a structure using an underlying net which is mathematically defined as a
simple periodic graph, consisting of vertices and edges. A simple graph is made suitable
for modelling topological representations of MOFs by four important criteria:

1. Edges are non-directional, only a Boolean result when questioning connectivity be-
tween two nodes is required.

2. Nodes cannot exist which have only 1-connection, they must be considered ‘loose
ends’ and removed. Elements such as hydrogen cannot become nodes.

3. A node cannot be connected to itself, there are no loops, and although this is not
expected when approaching MOFs, it must be considered.

4. Each node connects only once to another node, additional connections between two
of the same nodes are discarded. In some instances, where for example a MOF has
a double linker between two nodes[34], these must be simplified into a single edge.

A net must be connected, periodic, and simple; this is the minimum information
required to construct a good topological representation. Topology can be represented for
any periodic crystal structure in both 2D and 3D planes, and for both cases the same
rules apply. Structures that are 3D but only ‘grow’ into two planes (2-periodic) are
known as disjoint, and do not have a true topological representation when considering
RCSR criteria, although some representations for these types of crystal can be found in
the TTD. Figure 2.2a. demonstrates the 3-periodic bcu topology CSD OFAWAV (DUT-
53(Hf)) structure expanding polymerically from its 8-connected SBU in all 3 planes of
space, yet Figure 2.2b. shows the existence of ‘stunted’ nodes on CSD OFAWID (DUT-
84(Zr)), a derivative of the bcu based structure, where we see expansion in only two
of the possible three planes originating from the now 6-connected SBU [35]. Here, two
atomic scale sheets have been layered and are bonded by a linker, but in this case, there
is no potential for expansion via further bonded sheets in the c plane for this structure,
and therefore any subsequent layers would be treated as separate structures, like stacking
sheets of corrugated cardboard. For this structure, the disjoint configuration is due to
the deliberate replacement of linker molecules on the 8-connected SBU metal clusters
with acetic acid molecules, resulting in a 6-connected SBU leading to a restricted 2D
structure consisting of double layers. Interestingly, the pore limiting diameter (PLD),
and the maximum pore diameter are not drastically changed between each configuration,
and when shifting from bcu to the disjoint structure we see them reducing from 8.5 Å to
7.6 Å, and 11.2 Å to 11.1 Å, respectively [35]. As a result, we might expect to find several
deliberately disjointed structures within the CSD’s 2D MOF subset that demonstrate a
comparable level of porosity to 3D structures.
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Figure 2.2: An example of two similarly connected crystal structures expanded
1×, 2×, and 3× from their unit cells where a. CSD OFAWAV (DUT-53(Hf))
consists of 8-connected SBUs, and b. CSD OFAWID (DUT-84(Zr)) consists
of 6-connected SBUs, visualised using CCDC’s Mercury [35, 36]. The latter
entry is considered disjoint due to the lack of polymeric expansion sites parallel
to the c-axis; however, it expands polymerically in both other dimensions. Hf
(bright blue), Zr (cyan), O (red), H (white), and C (grey).

Clearly, there is a requirement for a rigorous and well-defined way to describe the sym-
metry demonstrated in MOFs, which could be extended to other crystal structures that
consist of repeating units. This is generally accepted to be best represented by repeating
the structure according to one of the 230 space groups found in the International Table for
Crystallography Volume A [37]. After the space group of a structure has been determined,
it is typically followed by the allocation of coordinates for each unique metal node in a
unit cell, designed to create an infinitely expandable 2D or 3D network representation of
a structure where there is little room for ambiguity.

The next, and truly key, step in the topology identification process is defining the
positions of atoms that make up the nodes and linkers of the structure. Once coordinates
are assigned to a vertex it is then designated as a node and the same applies to edges
and their distinction as linkers. Although coordinates may be assigned by a variety of
methods, the topology can be identical for structures that have different geometry. The
creation of several nets may lead to a group of isomorphic representations, although it is
often recommended that the network with the highest symmetry should (in these cases)
be chosen as the universal net. This is somewhat subjective as it is often the whim
of the crystallographer that decides the outcome as there are currently no set rules or
absolutes for topological assignment, and it appears likely that will remain the case for
the foreseeable future. There are several valuable discussions available for further reading
that focus on the assignment of topology based on metal-organic polyhedra, such as the
contributions from Goesten et al. in 2013 [38] followed by Kim et al. in 2015 [39].

Additionally, our discussion here must mention the existence of interpenetrating struc-
tures in which the empty space between nodes may accommodate one or more additional
networks. Whilst the description and relationship between two 3D nets is quite straightfor-
ward, the complexity of possible relations between 2D sheets, or 1D chains, is significantly
increased [40, 41, 42]. Interpenetrating MOFs, often referred to as IMOFs, can display
some fascinating topologies and architectures and they often exhibit improved functions
for certain applications. The existence of homo- and hetero- IMOFs can make for interest-
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ing discussion surrounding the topology of these structures and the representations that
are allocated to them, particularly those created using two or more underlying structures
that results in a change of dimensionality for the macroscale material. Typically, each
separate structure is considered during topological assignment rather than considering the
interpenetrating nets as a single material, IMOFs do not contain bonds between the nets
that are interpenetrated as they typically form independent structures inside the pores
of each other. As an example, some MOFs can consist of many layers of the same 2D
sheets interpenetrated throughout the entire structure to give an infinite number of 2D
sheets where only one topological assignment needs to be made. An identical procedure
is followed where these simplified nets are then matched to pre-existing representations
found within the RCSR. We note that the interpretability of topology can also create bar-
riers towards having exact solutions for each structure where additional representations
are arguably equally suitable for an underlying representation.

2.5 Popular Topologies and Resources

2.5.1 The Reticular Chemistry Structure Resource (RSCR)

The RCSR was developed as a database to aid in both the design of new structures and the
analysis of existing structures [2]. The latter being particularly useful as a considerable
number of materials in the CSD were deposited before the popularity of MOFs began to
boom, and in fact before the distinction of these structures was made in the early 2000s.

The RCSR consists of four sections, 0-, 1-, 2-, and 3-periodic nets. These are also split
into two subsections of default or woven nets. Woven nets contain tangled polyhedra,
chains, interlocked components, weaving and interpenetrating nets, and multi-component
structures. For the default setting, the 0- periodic set contains structures consisting
of convex polyhedra, including cages with 2-coordinated vertices. The 1-periodic list
consists of cylindrical tilings and unsurprisingly, the 2-periodic set consists of plane tilings.
Finally, the bulk of the RCSR, and the most interesting collection for those with an
interest in gas adsorption, separation, and other porous applications of MOFs, is the 3-
periodic set containing embeddings of periodic graphs. These structure definitions have
been collected over a period from 2003 to present day in a series of important works
[43, 44, 45, 46, 47, 48, 49, 50, 51].

In the RCSR, each topology is given a unique 3-letter identifier, typically reported
in bold. These are sometimes presented with a simple suffix providing additional in-
formation. Each entry contains information regarding the vertices and their symmetry,
coordinates, coordination, and order, with the same provided for edges, besides coordina-
tion. It is this data which is necessary to match these representations to simplified MOF
structures, and these representations that are often reported in catalogues of MOF data.
Figure 2.3 shows a collection of 10 of the most commonly occurring 3-periodic RCSR nets
found in the CSD 3D MOF subset [25].
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Figure 2.3: Example RCSR topological nets created and visualised using
ToposPro [26]. Red atoms represent metal nodes, whereas green atoms rep-
resent organic nodes.
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In this section, it is also worth mentioning the existence of the TTD, and the EPINET
resource as other examples of topological collections that are notably relevant to the un-
derlying connectivity of MOF structures. However, due to the limited availability of the
TTD database without a licence, we focus our discussion on the RCSR collection. This is
solely to ensure that fair comparison can be made between the topology assignment soft-
ware packages detailed in Section 2.8 For completeness, all the structure representations
in Figure 2.3 can also be found in the EPINET collection by searching the related RCSR
names to find the corresponding sqc’xxx’ style reference codes.

Here, we point out the existence of zeolite framework type descriptors that are also
represented by 3 letter reference codes [52]. These are an older resource than MOF
topologies with rules on nomenclature dating back to 1979 [53], and are unrelated to the
RCSR. The 3-letter codes are typically derived from the material or institution origins,
for example faujasite becomes FAU, and a complete list can be viewed here https://

europe.iza-structure.org/IZA-SC/Zeolite_names.html. However, this is not to say
that RCSR topologies could not be assigned to zeolites, and the use of capitalisation
should set them clearly apart from lowercase RCSR references.

2.5.2 Edge-Transitive Nets

Whilst edge-transitive nets are often reported for many MOF structures, they may not
necessarily be considered as the underlying topology of a structure. Edge-transitive nets
are typically used to describe the structural symmetry, as opposed to the connectivity of
the nodes and linkers. By selecting any edge in an edge-transitive net it is possible to
rotate or reflect the structure around that edge and observe the arrangement of linkers
and nodes remains unchanged. The nets represent a particular structure symmetry and
can be used to design and synthesise MOFs with specific properties.

On the contrary, underlying nets are not restricted by the specific arrangement of link-
ers and represent only the spatial arrangements of nodes and connections. Edge-transitive
nets are typically derived from the underlying nets, for example the underlying basic nts
net can be obtained from simplifying further a derived net ntt structure. The deriva-
tions often consist of assigning geometric polyhedra to the nodes, and across some linkers,
to have further influence on the exact shapes that can be obtained from a certain net.
Chen et al. [54, 55] have worked on reviewing minimal edge-transitive nets specifically for
the design and development of MOFs, and Hoffmann’s Introduction to Crystallography
[56] discusses details surrounding the basic and derived nets found in the RCSR, supple-
mented by an online resource [57]. A recent contribution from Delgado-Friedrichs et al.
[58] discusses some new results and contains a concise review on 3D tilings and surfaces.

2.6 Deconstruction Techniques

Embedded within the topological identification software packages are several algorithms
that are typically applied to a basic (i.e. containing no additional information such as
atomic bonding) CIF to determine the simple underlying connectivity of the structure
provided. Each algorithm takes a slightly different approach to simplification, and as
metal nodes can be assigned subjectively, it is important to understand the differences
between the techniques and how they operate. All methods first define which groups
of atoms should be considered as nodes, and subsequently which connecting branches
become the linkers. It is worth noting that some linkers may contain metals which are

https://europe.iza-structure.org/IZA-SC/Zeolite_names.html
https://europe.iza-structure.org/IZA-SC/Zeolite_names.html
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not necessarily assigned as nodes, for example in a metallic porphyrin ring (CSD BEDYEQ
[59]), and conversely a linker may contain an organic ring which is best represented by a
node, albeit an organic one (CSD JOZWIG [60]). It must also be considered that, for a
topological representation, there is no difference between the types of nodes which exist
in a simple periodic graph as there is no absolute distinction between metals and organics
in these underlying representations.

The typical algorithms employed in MOF deconstruction include, all node [61, 62,
63], single node, standard representation [26], and metal-oxo [28]. An additional cluster
representation method is a partial but chemically reasonable deconstruction technique
that requires the division of all bonds into inter-cluster and intra-cluster criteria. In what
follows, we outline the steps performed by each of these algorithms and include schematic
diagrams to aid understanding via visual representation of these stages.

2.6.1 All Node and Single Node Deconstruction

The most recent publication describing the all node algorithm was from the work of
Li et al. in 2014 [61]. However, earlier examples have been published as far back as
2006 [62, 63]. This algorithm works by considering inorganic nodes and organic linkers
as abstract shapes (polygons and polyhedra) connected in a simplified net. Connected
carboxylates and heteroaromatic rings are considered to constitute part of the node. After
the nodes and linkers have been assigned, these clusters are simplified via replacement
with pseudo-atoms at geometric centres. Any isolated pseudo-atoms are considered free
solvents and are removed from this simplified net. Figure 2.4a demonstrates the steps
undertaken to assign an all node net for an atomic level crystal structure. Here, the metal
clusters, formed of polygons, are treated as a single polyhedron and simplified to a single
inorganic node. Similarly, the porphyrin ring is considered also to have been built with
polygons, which are used to create a single polyhedron with four pseudo-atom connecting
points on the vertices.
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Figure 2.4: Schematic demonstrating crystal deconstruction techniques ap-
plied to CSD JOZWIG [59]. The distinct path taken by each algorithm for
large heteroaromatic rings results in a. the all node approach matching the
xxv topology, and b. the single node approach matching with the ftw topology.
Wireframe structures show C(grey), O (red), N (blue), Zr (light blue), which
are simplified to metal nodes (red), and organic nodes (green) connected by
straight edges representative of linkers (blue).

This approach specifically identifies branching points within the linkers of a MOF to
provide additional information about the underlying structure, but this allows for the
creation of ambiguous branching nodes. Typically, the all node algorithm creates a more
complex structure which can be matched to non-parent nets in the RCSR. For example,
for the structure shown in Figure 2.5, the xxv net can be considered a derivative of
the ftw net. O’Keefe et al. [64] explains there are many situations in which retained
information takes precedence over reporting only the most simplified parent net. Using
these non-parent nets can often be useful for comparing similar structures because of
the retention of this important higher-level connectivity information and it makes the
discovery of closely geometrically related structures much easier.

The single node approach is very similar to that of the all node approach, however
pseudo-atoms with only one neighbour are dealt with based on their identity. Either metal
containing linker molecules show up as pseudo-atoms with non-redundant connections to
a linker and therefore are merged, or linkers with a single connection, except for single
non-oxygen atoms such as halogens, are removed as unnecessary bound solvent molecules.
This approach is demonstrated in Figure 2.4b where the difference between the all node
algorithm above can be noted for the simplification of the large aromatic ring structure.
Here, the metal clusters are treated the same way as above, but the porphyrin ring is
instead considered to be a single point, rather than a polyhedron with separate vertices
and edges.
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The single node approach is often considered the preferred technique to determine the
most basic nets in MOF chemistry as it typically reports the parent net of structures that
may also have alternative complex representations. It is anticipated that most reported
topologies are obtained using the single node approach, and this allows for easier cate-
gorisation of structures into broader topology groups. The allocation of xxv and ftw
topologies to this same structure can both be considered correct; we must remember that
one is only a more complex net that has been derived from the other. As the simplifica-
tions to the structure are only being conducted differently due to the choice of algorithm
used, either representation is permitted.

Overall, the single node method describes the most basic form, whereas the all node
algorithm retains complexity. It is essentially down to the preference of the researcher
to determine which outcome they consider more favourable, although it is worth noting
that for many materials both algorithms will report the same result as they have only one
valid representation. The IUPAC recommends that researchers should report multiple
topologies if appropriate, in this case when reporting the all node result, we would expect
to see a statement like “the ftw-derived net xxv” which should be stated alongside the
ftw single node outcome [23].

2.6.2 Alternative Deconstruction Methods

Standard Representation (Standard Simplification)

This is perhaps the simplest of all the algorithms mentioned in this list, it is concerned
with disconnecting any bonds to metal atoms and leaving the remaining molecular graph
intact [65]. Metal atoms and organic ligands are the only structural units, and all atoms
of each ligand are substituted by a pseudo-atom. More generally, anything classed as non-
metal will be contracted to a single atom at the centre of mass including but not limited
to single non-metal atoms such as oxygen, halogens, or multi-atomic non-coordinated
species.

For the case demonstrated in Figure 2.5a where this simple technique is applied to
MOF-5 (SAHYIK) from the CSD 3D MOF subset, we can see that a significant number
of bonds are retained. This method is shown in parallel to the previously described all
or single node approaches shown in Figure 2.5b, proving a distinct difference in outcome.
Where standard representation here assigns a more complex fff topology consisting of
significantly more pseudo-atoms, the all or single node approach selects only the metal
nodes in a more extreme simplification represented by the pcu topology that could be
considered a loss of key information.
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Figure 2.5: Schematic demonstrating crystal deconstruction techniques ap-
plied to CSD SAHYIK [66]. The approach a., standard simplification, with
initial disconnection between metal atoms and the organic structural units, re-
sults in a match with fff topology and b. all/single node matches with pcu.
Wireframe structures show C (grey), O (red), Zn (blue), which are simplified
to metal nodes (red), and organic nodes (green) connected by straight edges
representative of linkers (blue).

In addition to this approach, there is a second method detailed by Barthel et al. [65]
called cluster simplification which recognises clusters of atoms with high connectivity.
This technique draws many similarities to the all node and single node algorithms, and
has been used to determine if two separately deposited structures are the same. For
example, rotating a linker of a specific MOF may not change the material, but it could
have an impact on the space group which in some circumstances would allow the structure
to be redeposited into the same database. In this technique, the smallest ring of bonds is
found for each bond. Next, the ring sizes, a, are sorted by increasing value from a1 to aN ,
where N is the number of bonds in the structure, in the sequence a1 ≤ a2 ≤ . . . aN . If the
sequence contains a pair aj , aj+1 such that aj − aj+1 > 2, the bonds where the smallest
rings are formed by less than i+ 1 bonds belong to a cluster, and the others connect two
clusters together. Each cluster is substituted by a pseudo-atom to obtain i and the bonds
are preserved between clusters.

Metal-Oxo

The metal-oxo algorithm is a more recently developed technique, created by the Snurr
Group to describe MOF chemistry by dividing structures into distinct organic and in-
organic building blocks - retaining organic linkers as discrete building blocks (including
carboxylate groups) [28]. Compared to the more topologically inclined single and all node
algorithms, the metal-oxo approach is a more chemistry focused approach to describe the
targeted structure, although it draws some comparisons with the single node approach.
The result is achieved by keeping organic linkers intact and therefore it provides alterna-
tive information to the other methods. MOF structures are divided into distinct inorganic
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and organic building blocks via a bond adjacency matrix using a distance cut-off method
that adopts the InChI convention of classifying metals and non-metals. Typically, the
inorganic blocks consist of metal-oxo clusters including oxides and bound hydroxide, per-
oxide and water species with the remaining fragments considered organic building blocks
and described as larger non-metal clusters. These building blocks, represented as SBUs,
are characterised by their points of extension, through which they connect to other build-
ing blocks in the underlying net [67]. This distinction between the metal-oxo algorithm,
and the single and all node algorithms which consider carboxylates part of the node, can
be an important distinction in cases where, for example, five discrete metal atoms are
instead represented by a pentametallic SBU [68]. The metal-oxo approach is shown as a
schematic in Figure 2.6, where it is used to simplify the structure into a complex, metal
independent form.

Figure 2.6: A metal-oxo deconstruction, shown as a schematic diagram, per-
formed on CSD SAHYIK [66].In the original structure (left), C (grey), O (red),
and Zn (violet). This technique draws many similarities to the single and all
node approaches, but with a focus on structure chemistry showing the resultant
(middle) Zn metals (red) and 1,3-benzenedicarboxylate linkers (green).

Whilst the metal-oxo method is not typically employed to determine the topology of
a structure, due to being primarily developed to offer insight into the constituent metals
and linkers of a crystal structure, it is both important and interesting nonetheless to
consider alternative approaches to structure simplification.

2.7 MOF Databases and Design Principles

Over the past decade, significant research has been conducted via large-scale high through-
put computational screening of structures from various databases containing key informa-
tion regarding thousands of lab synthesised MOFs or hypothetical materials. Continuous
improvement in MOF synthesis practices have led to a greater ability to control key prop-
erties of newly created structures, including topology. Over the past 10 years, several
databases containing hypothetical and experimental structures have emerged. Figure 2.7
shows a timeline noting the release date of a handful of key MOF datasets.
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Figure 2.7: A timeline to show the emergence of selected experimental MOF
datasets following the release of the first hypothetical MOF database (hMOF)
[69] in 2012. Circle size varies to represent the relative size of the database,
colour is representative of the study/research that produced the resource.

The first categorisation of large sets of experimental MOF structures began with the
creation of the UM MOF database in 2013 [70], this study was focused on the iden-
tification of porous MOFs from the CSD, selected to calculate theoretical limits of H2
storage, a study that was completed for 4000 MOF compounds out of around 22,000
‘computationally ready’ candidates. This was closely followed by the development of the
Computationally Ready Experimental (CoRE) MOF database in 2014, as part of the Ma-
terials Genome Initiative [71]. Consisting of modified CSD entries, it had been specifically
created for use in molecular simulations. Only 3D structures with pore sizes exceeding 2.4
Å were considered, and over 4,700 porous materials were collected in a computationally
ready database. Later, in 2019, the CoRE MOF database saw the completion of an up-
date, increasing the total of porous 3D MOF structures, reported in published literature
sources, to 14,000. This new update also added further value to the data set by offering
new pore analytics and physical property data alongside the correction and reconstruction
of many disordered structures [72].

In 2017, Moghadam et al. [19] developed the CSD MOF subset, a searchable database
of MOFs that is continually and automatically updated, with additions to the collection
every quarter, as new materials are deposited and accepted as part of the CSD. This work
created the largest collection of experimentally synthesised MOF-like structures to date
(now numbering ca. 120,000 as of April 2023) but was done so using loose definitions
to avoid omitting potentially useful or interesting structures, and to allow for an all-
encompassing data set that can be further scrutinised by the user depending on their
interests. Containing an initial ca. 70,000 1D, 2D, and 3D structures combined, the size
of the CSD MOF subset has almost doubled in just seven years. Additional developments
to the CSD MOF subset reported in 2020, resulted in the creation of 1D, 2D, and 3D MOF
subsets20. Whilst at present there is no option available when browsing CSD structures
to easily identify a material’s topology, we are developing methods to perform reliable
high-throughput topological allocation on these new sub-categories of structures to be
included within the CCDC’s database. The CSD 3D MOF subset is an ideal candidate
for development into a resource where the inclusion of topological characterisations would
become most readily available.
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Further to this, we note that the distinction between a set containing all structures
and those without disorder is significant in this field where the exact connectivity of atoms
is of upmost importance for producing reliable high-throughput topological analysis. It
is imperative then, that the first step towards topological identification of any structure
found in the CSD MOF subset using these approaches is to determine whether the struc-
ture is crystalline, and what level of periodicity it demonstrates. 1D structures, known in
the CSD as 1D chains, are not expected to be assigned topology using the techniques out-
lined in this article. 2D structures, known as 2D sheets, are restricted in their allocation
to a limited set of 200 configurations as specified in the RCSR, and due to the limited
range and complexity, we expect a significant proportion of these should be identifiable,
via the use of software. This distinction into periodic categories enables even the novice
crystallographer to quickly determine, by knowing its dimensionality, as to whether an
incorrect topological net has been allocated to their structure.

One reason for mismatched topological assignment between dimensionalities could oc-
cur due to incorrect bonding determination, for example a 3D structure may be assigned
a 2D topology if atom connectivity between 2D layers had not been correctly interpreted
– a possible outcome when using automatic bonding assignment software, and one that is
particularly prevalent for structures that contain metal-metal bonds. Bond assignments
are typically entered by the CSD editorial team with a view to represent the original ex-
perimental publication as closely as possible, this is to ensure that the process of assigning
bonds is not done entirely on distance - particularly for bridging O or H.

Figure 2.8 compares the distribution of a variety of metallic (X) X-X bonds and
non-bonded interactions within the CSD. In Figure 2.8a bonded (blue) and non-bonded
interactions (orange) for Ag-Ag fall within a range primarily between 2.7 – 3.5 Å (rep-
resented within the dashed red box). Figures 2.8b—d show more examples of metals
that either have potential atom-atom bond misalignments or metals where this may be of
no concern. Hg-Hg shows a similar pattern to Ag where ambiguity may lie (also within
the red dashed box) for structures such as the bonded CSD GIZPIP [73] for interactions
between 3.5 – 4 Å. An apparent lack of data surrounding Cd-Cd bonds here suggests a
lack of Cd-Cd based SBUs (highly likely given the bond order calculations for creating
Cd-Cd bonds [74]) with only 6 non-disordered MOFs containing a Cd-Cd bond, and lastly
the Sn-Sn data shows an example of clear delineation at approximately 3.75 Å between
bonded and non-bonded contacts. In the dashed red regions, we expect to see examples
of both bonded and non-bonded layers in 3D Ag and Hg containing structures, a highly
important detail when we consider the use of auto-bonding software in the topological
assignment process, but conversely structures such as Sn-Sn would be ideal candidates
for investigation where the use of automatic-bond assignment software could be consid-
ered less troublesome. Subsequently, the 6 Cd-Cd bonded structures identified here were
investigated and manually corrected as a result of this study. Whilst we have mentioned
only a select few examples here, metallic bonding data is available for all structures in
the CSD.
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Figure 2.8: Distribution of selected atom-atom bonded (blue) and non-bonded
(orange) contacts (out to VdW+0.0) in the CSD. a. Ag, b. Hg, c. Cd, and d.
Sn. Dashed red boxes suggest contentious atom-atom bonding ranges.

To highlight the importance of bond assignment in determining structure dimensional-
ity, let us investigate an example. Figure 2.9, CSD ZEHMOQ [75] is a 2D MOF containing
some Ag-Ag bonding at 3.32 Å, however, extending the bonding limit just slightly to 3.35
Å (which could be considered a possible bonded or non-bonded distance) transforms the
2D sheets into a single 3D crystal structure. Therefore, taking atom connectivity data
directly from the CSD before modification offers a more chemically aware insight into the
structure of a crystal, as determined by the experimentalists themselves when depositing
structure information, rather than risking miscalculation by automatic bond assignment
software with algorithms deciding bonding based on atomic distance.

Figure 2.9: Atomic level representations of CSD ZEHMOQ showing a. the
original structure set at a 3.32 Å Ag-Ag bond distance limit and b. an auto-
modified version with a 3.35 Å Ag-Ag bond distance limit, where the connec-
tivity has been calculated using automatic bond assignment tools within CSD
Mercury.

We would recommend that when attempting to assign topology to a structure that
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the original chemical bonding is considered (wherever possible), as opposed to remov-
ing/omitting the existing bonding data and attempting to reassign it using additional
software such as OpenBabel [76]. Therefore, whilst most topological characterisation
software is packaged with some form of bonding assignment tool to calculate atomic
bonding for imported CIFs, we recommend inclusion of the CSD’s atomic bonding data
in all generated CIFs. Although this is available for structures obtained through the
CSD’s Python API, typical CIFs do not contain atom-atom bonding information. Fur-
ther to this, even if the bonding data is present, it is not always possible to upload a
CIF to these software packages and retain the relevant CSD bonding data as the only
option available may be to re-calculate bond types and distances, and whilst these may
be manually edited later, structures requiring manual bond modification may restrict the
capability for high-throughput calculations.

2.8 Topological Characterisation Software

2.8.1 Introduction

At present, a handful of topological identification tools exist, aside from the painstakingly
slow and perhaps unreliable method of performing manual structure-net matching. The
most well established and frequently cited package is ToposPro [26]. The developers
at Samara continue to maintain this software, have published many video guides for
inexperienced users, and even offer a topological identification service for a fee. A more
recent development, which has seen some updates this year for use in high-throughput
topological assignment approaches is MOFid [28]. MOFid has been used as a topological
identification software for the CoRE MOF database so that topology can be searched
for within the data set, but its primary use is focused on obtaining unique identifiers for
MOF linkers. Finally, and most recently published is the CrystalNets package [29], and
although this software has been published and is available, not enough opportunity has
been given since its release to judge the uptake of this approach within the community,
aside from a small number of interesting citations. These software packages have all been
built using different programming languages and offer the user multiple approaches to
verify the output of their structure’s topological identification.

2.8.2 ToposPro and TopCryst

ToposPro is a licenced downloadable programme that it is frequently maintained and
updated, with the latest version 5.5.2.2 available at https://topospro.com/, that can
be activated using a free licence provided for academic users. An entirely automated
version can be implemented for single structure analysis without requiring any installation
by uploading a CIF online at https://www.topcryst.com. The topology of a single
structure can also be quickly obtained by searching the TTD database. An added, and
useful, feature of this online tool allows a user to search for any 3-letter RCSR topological
representation and view this in a JSmol window at various dimensions of unit cell, with
several example structures from the CSD also shown in a table below the topological
search. This is not a complete open-source online database of structures as the free
version does not allow the user to download the CSD refcodes of any specific topology, but
instead offers five random examples of structures which meet the criteria of the searched
topology and notes the technique through which they were obtained. An example is
shown in Figure 2.10 below using CSD SAHYIK, more commonly known as MOF-5, with
the TopCryst online interface after uploading a CIF file where the unbound solvents have

https://topospro.com/
https://www.topcryst.com


CHAPTER 2. TOPOLOGICAL CHARACTERISATION OF MOFS 30

been removed. Here we can see the allocation of three distinct RCSR topologies, mof,
fff, and pcu, with a clear indication of the methods used to obtain each underlying net.

Figure 2.10: A snapshot of the online interface of the TopCryst web topology
service used for the automatic deconstruction of CSD SAHYIK. The original
CIF was modified with the use of CSD’s Python API solvent removal script.

With regards to the software itself, ToposPro is a program package for comprehensive
analysis of geometric and topological properties of periodic structures such as, but not
limited to, MOFs. The techniques contained within can be applied to almost any struc-
ture of a chemical nature. It has been developed to process large crystallographic data
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samples and correlate structure property parameters. The principles behind this software
package aim to achieve a human independent crystallographic data processing tool which
approaches materials that have a variety of complexity levels with universal algorithms
in contrast to traditional crystallochemical visual analysis. The aim of separating struc-
tures using universal algorithms is an effort to avoid the difficult nature of topological
assignment and offer consistent topological representation of structures by minimising
any errors. This method is known as the Domains algorithm which uses atomic Voronoi
polyhedra as geometrical parameters of atoms and bonds [26].

All methods contained within ToposPro can be divided into geometric or topological
groups, respectively. The first group is concerned with routine geometric calculations
and crystal structure visualisation, and the second contains the procedures required for
studying connectivity of the whole crystal environment. A database is created upon the
importation of a CIF, and bonding must be assigned to structures added to the database
before topological assignment can occur. This is performed using the AutoCN programme,
the details of which can be found in the ToposPro manual. It has been tested on thou-
sands of structures from the CSD and has showed good agreement with chemical models
[64, 77]. For structure deconstruction, the use of cluster representation is possible in three
different ways, using the chemistry mapping single node, the geometry mapping all node,
and the tertiary building unit (TBU) cluster mode. There is the additional possibility,
which is applicable to all structures, called the ToposPro standard, or standard represen-
tation, mode. It should be noted that this is not always the most descriptive method, and
typically more information can be obtained using other approaches. Additional features
of ToposPro include the ability to detect duplication of structures, investigate entangle-
ments and interpenetration, and the modification of structure bonding following the use
of AutoCN. The software is noted for its high accuracy when implemented on suitable
structures following the AutoCN stage.

The limitations of the software include the application of the program on large datasets,
and whilst it is possible to run continuous calculations on tens of structures at once, the na-
ture of the programme restricts the use of true high throughput operation. The ToposPro
package is best suited to investigating individual structures on a case-by-case basis, and
when using this approach it is a powerful tool for topological assignment, particularly
when focused on rod-like MOFs as other packages struggle to handle these difficult to
interpret materials.

2.8.3 MOFid and web-mofid

MOFid [28] is a freeware Github hosted identification software available at https://

github.com/snurr-group/mofid. The primary MOFid package can be downloaded and
installed using a make file directly into a virtual environment. Any CIF located in an ac-
cessible directory can be parsed using the cif2mofid function of the MOFid programme for
topological analysis directly from the command window within a python environment. It
is perhaps worth noting that the software package has had a larger focus on the identifica-
tion of linkers than topology and is primarily designed to offer insights into MOF building
blocks by assigning the linkers with unique identities to improve the cross referencing of
linkers between MOF structures that share some of the same building blocks.

Similarly to TopCryst there is a single structure web based analysis feature into which
CIF files can be uploaded for topological analysis as well as deconstruction into individ-
ual building blocks followed by the allocation of identifiers, this can be found at https:

https://github.com/snurr-group/mofid
https://github.com/snurr-group/mofid
https://snurr-group.github.io/web-mofid/
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//snurr-group.github.io/web-mofid/. Not only does MOFid return a topology pa-
rameter, but it also returns a MOFid or MOFkey string. A MOFid is based upon SMILES
strings and takes the form of inorganic building block, organic building block, format,
topology code, catenation, comment. A typical example of a MOFid for Cu-BTC would
be: [Cu][Cu].[O-]C(=o)c1cc(cc(c1)C(=O)[O-])C(=O)[O-] MOFid.tbo.cat0;Cu-BTC. This
can be pasted into any software package that recognises SMILES, such as ChemDraw, and
it should render for visualisation. The alternative output is the MOFkey which takes a
similar form as above except with the catenation and comments no longer present, and the
organic building blocks now represented by a unique alphabetised code.. The same Cu-
BTC structure as above has the MOFkey as follows: Cu.QMKYBPDZANOJGF.MOFkey-
v1.tbo. Figure 2.11 shows the output of CSD SAHYIK uploaded in CIF format to the
web interface of MOFid, displaying the options for algorithm visualisation in a drop-down
box, and the corresponding MOFid text-string below.

A final web-based feature is the CoRE MOF database search tool [28] which allows
a user to search over 15,000 MOFs by SMILES/SMARTS, topology, or catenation. A
simple text-based search in this dataset for pcu reveals 749 MOFs and their SMILES
string, catenation, and where applicable their CSD refcode. If a user’s chosen refcode
matches a structure in CoRE MOF, there is no requirement for the user to re-run any
structures found in the database to obtain these parameters.

Figure 2.11: A snapshot of the online interface of MOFid’s web structure
identification and topology tool performing a structure simplification on CSD
SAHYIK by uploading the raw CIF.

The MOFid Github package also contains shell scripts to run a directory of CIFs on
a high-performance computing cluster, and it is possible to process a folder containing

https://snurr-group.github.io/web-mofid/
https://snurr-group.github.io/web-mofid/
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thousands of MOFs, provided that the input files are suitable for the software. Bonding
is assigned using the open source OpenBabel chemical toolbox that was designed for use
with molecular modelling, chemistry, solid-state materials, or related applications [76].
OpenBabel can implement a wide range of cheminformatics algorithms including bond
order perception, once the unit cell information is extracted from a CIF file.

Simplification is performed by the metal-oxo, single node, and all node algorithms
with the output of each technique available to visualise via the dropdown box. This
feature is particularly useful to compare the different methods, although the output string
containing the topology reports only one underlying net even if several have been detected.

The simplified net is exported to Java based net matching programme Systre [51],
where the RCSR nets are pre-loaded, and the new simplified net is matched to one of the
existing configurations within this data set. The use of this programme within MOFid
is key to the topological identification stage and the speed at which this matching is
performed can be a limiting factor in the high-throughput use of this software when
compared with CrystalNets which does not require the use of Systre.

It is possible when using the MOFid python package to modify the output desired by
the user by editing a few simple lines of Python code. By performing this modification,
a user can report topology based on whatever criteria they so choose, and for example
might only be interested in structures where the topology obtained via the single and
all node algorithms are the same. It would be equally as simple to report topology for
only structures where the output between the two techniques is different, or for all three
methods contained within this software.

2.8.4 CrystalNets.jl and CrystalNets

CrystalNets.jl [29] is an open-source Julia based software package hosted in Github, that
can be obtained from https://github.com/coudertlab/CrystalNets.jl. The instal-
lation can be performed quickly and easily after opening Julia, by entering the package
manager and adding CrystalNets, and the integration of the programme within a Python
environment can be enabled with relative ease. It is possible to install the package as
an executable for a handful of structures, but for high-throughput approaches the use
of CrystalNets as a Julia module is recommended. This software is specifically designed
for the automatic detection and identification of underlying topological nets of crystalline
materials, and the input format can follow any file type that is recognised by chemfiles
[78].

Upon installation, there are a variety of settings available to the user, the most basic
of these includes the ability to select the deconstruction algorithm used, whether to use
the bonds that are input in the file or to guess them, and the type of structure that is
being investigated. In this package the standard, all node, and single node approaches
are available, so for example, it is possible to select MOFs, deconstructed using the all
node algorithm, with the guess function enabled for bonding if they were not included
in the original input file, or auto if some files contain bonds and others do not. This
feature is particularly useful for defining the topology of MOFs where there are bonding
parameters contained within the input file should the CIF have been taken directly from
the CSD with care taken to ensure that the bond lengths have been retained. There is
also the availability of a MOF option which modifies the approach to enable the detection
of organic and inorganic clusters, allowing them to be subdivided using either all node or

https://github.com/coudertlab/CrystalNets.jl
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single node algorithms to identify the underlying nets. Other choices for this parameter
also include Zeolite, Cluster, Auto, and Guess. The CrystalNets manual is a good ac-
companying resource that contains all the available options for each function and further
explanations surrounding exactly what each of the changes to these input parameters
makes to the process.

The use of a Julia module allows for some extremely fast structure deconstruction
compared to the other methods available, and this is amplified by the availability of a
multi-threaded implementation for a large set of structures. The CrystalNets programme
is orders of magnitude faster on a typical laptop running a few threads compared to the
automated and high throughput MOFid approach even when it is performed on several
nodes of a high-performance computing cluster, and of course quicker still than the more
user dependent ToposPro approach that requires much more user interaction than the
other techniques. CrystalNets has the power to perform topological identification on tens
of thousands of MOF and MOF-like structures with notable reliability, in a recent study
by Burner et al. [79] this software was used to identify the topology of 72,257 MOFs, for
a new database ARC-MOF, with a match to file name 93% of the time and at a rate that
can outperform a competent and experienced researcher investigating a single structure in
ToposPro. The entire database of ARC-MOF could be assessed within a single afternoon
on a regular computer using a multi-threading approach [79].

In addition to the Julia module there is also an online web interface which allows for
the upload of CIF files, with a more user-friendly process for topological identification of
individual structures than running them in the Julia interface. The available options using
the newly released online version of the CrystalNets software can be seen in Figure 2.12.
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Figure 2.12: A snapshot of the online interface of MOFid’s web structure
identification and topology tool, showing the options available for each uploaded
CIF file.

The online version of CrystalNets is not dissimilar to the online interfaces of MOFid or
TopCryst, boasting a visualisation tool that shows a simplified net overlaid on the original
structure. One major difference is the ability to select the structure style and bonding
settings before the structure is uploaded. This is useful for a user who may know specif-
ically which algorithm to select, whereas the reporting of all potential nets by TopCryst
via each technique is perhaps more suited to a more inexperienced crystallographer.

2.8.5 Guidance and Limitations

One major limitation of these high-throughput automated approaches for topological
assignment of crystalline materials via the medium of CIFs is the lack of verifiability of
results returned using these software packages given the subjective nature of topology
assignment, something which is only addressed using a manual topological assignment
tool. However, the possibility to analyse a prospective structure within several different
programmes allows for more certainty surrounding the identification process than using a
single approach, particularly when considering the similarity in deconstruction algorithms
used across these platforms. We recommend that topological analysis is performed using
at least two software packages, running the same algorithm, to verify the results. Should
the case arise that the two results disagree then further, more detailed investigation must
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take place.

We must consider that some key differences between these software packages exist,
the most notable being the technique used to assigned bonds between atoms in non-
bonded CIFs. These bonding approaches, despite their apparent similarity contain subtle
differences in their approach and it is these subtle differences that can create major
changes in the outcome of topological assignment software. To check that topology for a
large set of structures has not been incorrectly assigned, it is possible to cross reference
structure refcodes with the CSD’s 1D, 2D, and 3D structure subset, and the resultant
topology with the RCSR’s 1-periodic, 2-periodic, and 3-periodic net database, however
some errors may persist.

2.9 Recent Developments

In recent years, many groups around the world have employed ToposPro to identify the
topology of individual structures, or larger sets of crystal data, and used this information
alongside other properties to create data sets for MOF and MOF like materials. In a recent
study by Cheng et al. [80], Topos software was used for the topological classification of
coordination polymers which were generated in the exploration of H2pdba, an adaptable
linker. It was used to assemble a diversity of new Mn, Co, Ni, and Cu coordination
polymers into 2D metal–organic layers and 3D MOFs which disclosed several types of
topologies including sql, hcb, and tfk. There are many examples of the implementation
of Topos for structure analysis within the community and these can be found within the
2000+ citations of the ToposPro software package, although not all of these publications
are exclusively MOF related. It is imperative in this review that we should include the
introduction of the TopCryst online package [81] which was made available for use only
in March 2022, followed very quickly by that of the CrystalNets web interface that came
online just six months later in October 2022. The TopCryst service has already been cited
several times in significant journal publications within the first six months of its release.

There have also been several examples of recent implementations of MOFid to explore
the importance of structure topology. One primary example is the recent publication of
the Automated Reticular Framework (RF) Discovery platform by Pollice et al. [82] in
2021 where they implement data obtained using the tools published in MOFid for a data-
driven strategy focused on accelerated materials design. Knowing the physically feasible
topologies for structures based on chosen linkers has also been useful for bottom-up MOF
building approaches where the topologies and linkers of previously synthesised MOFs had
been extracted from the CoRE MOF database using MOFid [45, 28].

In another study, MOFid was used to identify Cu paddlewheel MOFs from a set of
1172 non-disordered MOFs to investigate structural collapse during activation [83]. Once
these structures were gathered it was possible to perform high-throughput computational
analysis to investigate the effect of various mechanical properties.

Lastly, the CrystalNets publication, despite its recent publication, has already received
several citations from studies focused on the topological identification of MOF structures.
It was first used in print to characterise the topology of 100 Zr-oxide MOFs, before it
was then applied to much larger sets of data by Burner et al. on a group of approximately
72,000 MOFs that included previously known topologies [84, 79]. Later, Glasby et al. ran
CrystalNets on ca. 28,000 experimental MOFs from the CSD 3D MOF subset for the first
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time during the development of the DigiMOF database [25]. Mourino et al. also used
CrystalNets to characterise the topology of over 300 COFs as prospective candidates for
photocatalysis, showing that the use of this software is not limited to MOFs alone [85].

2.10 Conclusions and Perspective

The availability of these software packages shows that topological characterisation of crys-
tal structures is important, not only to MOF researchers but also to those interested in
COFs, Zeolites, and other crystals that form periodic networks in their atomic structure.
MOF synthesis can play a major role in topological determination as different conditions
lead to the formation of topologically different structures, influencing not only the resul-
tant mechanical stability but also the pore shape and sizes of a crystal depending on the
SBUs and linker types that have been selected for their synthesis.

The choice of topological assignment software is highly likely to depend on the require-
ments of the individual study, as each different tool has its own strengths and limitations.
CrystalNets is more notable for its speed and its ability to read in atom bonding infor-
mation, but it does not offer the same chemical structure insights as MOFid for example,
and its choice of topological representations is limited compared with ToposPro. However,
ToposPro has an advantage in that any structure can be manually modified during the
deconstruction process increasing accuracy when used by experienced crystallographers
compared to fully automated methods.

A notable limitation of all software approaches is when comparison between single
node and all node topology allocation differ from each other. Following IUPAC guidelines
as outlined in this article, any cases where a different net is reported the result should be
designated as “the xxx-derived net yyy”, something we note is seldom seen. A simple
change in the software output to reflect this might help researchers to ensure they are
reporting in line with the guidelines.

Lastly, we reiterate that to date there is not yet a complete, freely available database
of MOFs that contains the relevant RCSR or other topology type for all structures that
has been proven and adequately verified. The introduction of resources such as the QMOF
database [86], which contains over 20,000 MOFs and their quantum-chemical properties
serves as an example of the importance of publishing key data to limit the need to repeat
computational calculations between research groups. Once a database of MOF topologies
has been properly curated and confirmed it can prevent the need for repetition. Whilst
the topologies reported in the CoRE MOF database has been a good start, there are still
improvements to be made.

The CSD is an ideal target for a database that could include topological information
published during deposition given its manual curation, continuous quarterly updates, and
extensive searching tools. Whilst we note here that the CSD system itself is not freely
available, individual structures are through the CCDC’s access structures service, and
should the relevant topology be contained within a deposited CIF then that information
would become freely available, as the individual deposited CIFs can be downloaded from
the respective entries.
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Chapter 3

Integrating CrystalNets.jl and
Bench-marking Performance on
the Cambridge Structural
Database

3.1 Publication Information and Paper Contributions

This paper has been prepared for publication as short article and is currently under
review.

In this publication I, the candidate, wrote the manuscript under the supervision of
Professor Joan L. Cordiner, Dr Jason C. Cole, and Dr Peyman Z. Moghadam.

3.2 Abstract

Obtaining and verifying the results of topological assignment is not an easy task for the
many complex and confusing MOF structures that exist in materials space, and even
manually attempting to visualise the assigned underlying nets can be a challenge. We ini-
tially compared the use of two high throughput topological assignment packages, MOFid
and CrystalNets on a large set of CSD 2D and 3D MOFs to gauge the agreement between
approaches and then ran these same structures after implementing a custom CSD Python
API workflow that prepared CSD structures prior to the use of CrystalNets for topologi-
cal assignment. A total of 54,473 experimental structures, consisting of 28,962 3D MOFs
supplemented by an additional 25,511 2D MOFs, were topologically analysed using the
three approaches. We believe this is the first comparison of topological assignment tools
using the CSD MOF subset. Additionally, we developed a new Python based approach
that allows a user to perform topological assignment in CSD Mercury using the CSD
Python API at the click of a button.

3.2.1 Keywords

Metal-organic frameworks, Topology, Crystallography, Software Analysis
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3.3 Introduction

Metal-organic frameworks (MOFs) are an intensely studied area of crystal chemistry.
Known for their porosity, MOFs are primarily considered for applications in areas such
as gas sensing [1, 2, 3], storage [4, 5, 6], and separation [7, 8, 9], as well as catalysis
[10, 11], and drug-delivery [12, 13]. Consisting primarily of metal primary building units
(PBUs) joined by branches of organic molecules, MOFs can form some beautiful and
unique crystallographic configurations with almost limitless possibilities. The underlying
connectivity representations of these materials form the basis of their topology, and to
identify these configurations it is often necessary to analyse their unit cells using a powerful
computational tool such as ToposPro [14], Systre [15], MOFid [16], or CrystalNets [17].
Once complex linkers have been broken down into more simplistic branches, the most basic
representations can be matched to an underlying mathematically described net obtained
from a database such as the Reticular Chemistry Structural Resource (RCSR) [18], the
Topological Types Database (TTD) [19, 20], or the Euclidean Patterns In Non-Euclidean
Tilings (EPINET) collection [21].

The topology of the structure, once determined, is typically reported within the orig-
inal experimental manuscript alongside other details surrounding the synthesis of the
material [22]. Structures that have been assigned the same RCSR descriptors can be
considered to belong to a subset of structures that have the same underlying connectivity,
and as a result are likely to share some properties through structure-property relation-
ships. Structures that are considered constituents of the same family, such as ZrO based
MOFs, can often demonstrate different physical properties but their topology can be used
to help categorise physically similar structures into groups that might show higher me-
chanical stability, have larger pores, or demonstrate more interesting pore shapes than
those that only share a constituent metal type [23, 24]. This is particularly true in cases
where the connectivity of the SBUs can vary between 2 to 12 carboxylates.

Furthermore, topological insights are often used to develop hypothetical structures
using a bottom-up approach to their synthesis by creating physically different materi-
als using the same building blocks, or creating similar crystal structures using alternate
building blocks, and there are several services available that can perform this task such as
ToBaCCo [25] or AuToGraFS [26]. There are also many examples of hypothetical MOF
databases such as Majumdar et al.’s set of ∼20,000 hMOFs [27], and a more recent ML-
focused ultra-stable MOF database developed by Nandy et al. of ∼50,000 MOFs [28], for
which the majority report structure topology.

Whilst there are a considerable number of experimentally synthesised structures avail-
able from the CSD MOF subset (∼120,000) [29], the CoRE MOF database (∼14,000)
[30, 31, 32], and the QMOF database (∼20,000) [33] (the last of which also contains some
hypothetical materials), none of these collections contain a complete data set of topolog-
ical identities for each structure. Whilst the CoRE MOF database [30] can be accessed
through the MOFid web service [16], and it is possible to search through these structures
using keywords to obtain a set of topologies, we note that searching for NA, ERROR,
UNKNOWN, TIMEOUT, or MISMATCH, also returns a long list of constituent MOFs
for which there are no results. It is clear then, that there is the need for an improved,
accessible database of MOF topologies.

Given the nature of topological assignment software, as discussed in our recent per-
spective publication [34], we would expect that new and successful results should be able
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to be obtained from a proportion of structures labelled as ERROR or MISSING LINK-
ERS by using alternative approaches to assigning topology for these materials. However,
at present there is no method to ensure the verifiability for the software approaches used
in assignment besides individual interpretation of the results by the investigating scientist
performing the runs, and we note further that some of the assigned results in the CoRE
MOF database may not agree with the results obtained using an alternative approach.

We might anticipate that a small percentage of structures are constructed using unique
or non-verifiable connectivity, but we should in general expect that the majority of 2D
and 3D nets (not including those which may be considered disjoint) should be assigned
an RCSR [35] topology (or acceptable alternative). Whilst we note that both the MOFid
[16] and CrystalNets [17] packages have been used to identify topologies for all MOFs in
the CoreMOF [30] database there has yet to have been, to our knowledge, a publication
comparing software outputs between all topological types in the CSD MOF subset, besides
some comparisons made between text-mined topologies and CrystalNets outputs in the
creation of the DigiMOF database [36].

Following the work of Zoubritsky and Coudert (2023) [17], where they compared the
use of MOFid and CrystalNets on the CoreMOF database, resulting in a 25% increase
in identified structures from an original 36% assignment rate using MOFid to 61% using
CrystalNets, we conducted a similar investigation performing high throughput topological
identification using both MOFid and CrystalNets on 28,962 MOFs in the 3D MOF subset
followed by an additional run on the 25,511 structures of the 2D MOF subset. We
employed the single node approach to topological assignment to ensure that the analysis
obtained the simplest representations of the crystal structures in question, but we also
compared the effect of using a custom CSD API approach, involving the inclusion of
bond data, as a step towards preparing structures specifically for topological evaluation
in conjunction with the CrystalNets software.

3.4 Workflow and Method

3.4.1 Structure and Software Preparation

To evaluate the outputs of two programs, MOFid and CrystalNets, we downloaded the
2D and 3D MOF subsets (Version 5.43 Apr 2023) using the subset search tool in CSD
ConQuest, saving the database files in CIF format and ensuring that the “ geom bond ”
parameters were retained within the files. We also obtained the latest versions of both
software suites (as of June 2023), from their respective Github pages.

3.4.2 Software Runs

We initially ran two separate directories of CIFs (2D MOFs and 3D MOFs) on the Crys-
talNets platform, specifying the structure type as MOF, the clustering as SingleNode, and
selecting additional settings so that the software would auto-assign bonding information
by using the Guess input parameter. We made no other initial preparation of these struc-
tures. Each run took sub-30 minutes using a single thread on a Dell XPS 8940 desktop
computer, but it would be possible to use multi-threading with relative ease to further
reduce the overall time taken to assess the structures.

Next, we performed a similar investigation but instead used the retained atom bond-
ing information obtained from the CSD. To execute this, we simply altered the input
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parameter for bonding, changing it from Guess to Input and performed the structure
analysis again.

Lastly, to compare the results of CrystalNets against another approach we submitted
these directories of structures to MOFid. The Python based tool takes considerably longer
than Julia based CrystalNets and necessitated the use of high-performance computing
(HPC) resources. The directories were split into 20 sub-folders containing approximately
1000-1500 structures and submitted as batch jobs to the CSD3 HPC resource. Each folder
had an average compute time between 90 and 120 minutes, with an upper bound of almost
4 hours. The overall compute time for all structures in MOFid sat in the region of 50 hours,
a significant increase on the 1 hour required to run CrystalNets on an identical set of
structures. One minor difference to this approach was that we retained the original setup
of MOFid such that if the Single Node algorithm output was not available, the All Node
output was printed, rather than printing an UNKNOWN or ERROR output. MOFid uses
the open-source chemical toolbox Open Babel [37] to assign bonding information and at
present does not take bonding data as an input, so only one analysis run was performed
with this approach.

We note that selecting CIFs as an input file could be considered a flawed approach,
typically a potentially significant quantity of interesting information is lost when default
CIFs are written out from various visualisation programmes. CIFs are not required to
contain bonding information by default, merely the positions of the atoms within the
crystal’s unit cell, but a key feature of obtaining them from the CSD is the ability to
retain this key information.

3.4.3 Software Outputs

The data was gathered from each software output and collated into a single TSV file for
each dimensionality (2D and 3D). From these collated spreadsheets we were easily able
to perform matching and analysis of structures and results, which have been detailed in
the results and analysis section of this paper.

The general results of these three runs can be found in Table 3.1. Initially we consid-
ered “result” for 2D MOFs to be any output that matched with references from the RCSR
database. However, after some initial investigations, the criteria for “result” were modi-
fied to consider that many EPINET codes, such as sqc2075, were likely to be found in the
3D subset for results that were obtained from CrystalNets analysis due to the inclusion of
the EPINET database in this software. A list was taken from the respective resources (as
of June 2023) to allow for matching to be considered. We note later in the analysis sec-
tion that some of these assumptions did include errors, so the total of ”successful results”
is slightly lower, however we do note there is benefit to keeping additional data in the
preliminary stages to discard later as opposed to discarding potnetially interesting/useful
results in the initial analysis stage.
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Table 3.1: A general overview of the output of each approach on 2D and 3D
structures before detailed analysis was carried out.

Condition (2D) CrystalNets (Guess) CrystalNets (Input) MOFid

“Result” 19063 19363 7177

UNKNOWN 4493 4170 3142

ERROR/unstable 1919 1956 12052

Other 36 21 3140

Total 25511 25511 25511

Unique Outputs 112 65 66

Condition (3D) CrystalNets (Guess) CrystalNets (Input) MOFid

“Result” 15441 15919 6911

UNKNOWN 12970 12626 6258

ERROR/unstable 453 405 13722

Other 98 12 2071

Total 28962 28962 28962

Unique Outputs 490 497 301

From the preliminary results we can see a significant increase in the number of “results”
from MOFid to both runs in CrystalNets, as well as some fluctuations in the number of
unique outputs from the software when we switch from the built in Guess algorithm to
opting to include CSD bonding information in the Input category.

3.5 Results and Analysis

3.5.1 Results and Data Cleaning

The data was compiled after each software run in an XLS workbook for cleaning and
analysis. These initial output workbooks were cleaned using a custom Python script to
extract the relevant CSD refcodes, topology information, and degree of interpenetration.
The outputs were sorted into columns based on the software used and a list of RCSR
topologies was used to determine which results were 2D nets and which were 3D nets.
The entire results workbook is available as Supporting Information.

3.5.2 Analysis

First, we investigated the results of running each approach on 2D MOFs. The implemen-
tation of MOFid saw a result assigned to 7,177 2D MOFs, and following our analysis it
was determined that infact 43 of those results were incorrectly assigned 3D topologies giv-
ing a final success rate of 27.96% from a possible 25,511 total structures. Similar analysis
was performed for CrystalNets (Guess) which uncovered 150 3D assignments, lowering the
successful results to 18,898 and giving us an assignment success rate of 74.08%. Lastly,
within the 2D category, CrystalNets (Input) contained only two 3D assignments, dropping
the success total to 19,361 and 75.89%. Here, we can show that the retention of bond
information has not only increased the number of successful assignments from 18,898
to 19,361 it has also reduced the number of misaligned dimensionalities from 0.01% of
assignments to 0.0001%. This is better visualised in Table 3.2.



CHAPTER 3. INTEGRATING CRYSTALNETS.JL 51

Table 3.2: A review of the output of 2D structure analysis.

Condition (2D) CrystalNets (Guess) CrystalNets (Input) MOFid

Initial 2D Results 19048 19363 7167

Identified 3D Results 150 2 43

Final 2D Results 18898 19361 7134

Success Rate 74.08% 75.89% 27.96%

More investigations led to identification of the frequency of topological types. A
histogram, shown inFigure 3.1, noted the top 10 most prevalent 2D MOF topologies
identified in our study by the CrystalNets Input approach compare besides the same
results from our other two studies. This figure provides a visual representation of the
diversity and prevalence of 2D MOF topologies as histogram illustrates the frequency
of occurrence of each topology within the dataset. Each bar corresponds to a specific
topology, with the height of the bar indicating the number of occurrences observed.

Figure 3.1: A histogram depicting the most commonly obtained 2D topologies,
based off the CrystalNets Input results (blue), but also showing the occurrences
for CrystalNets Guess (orange), and MOFid (grey).

From this histogram we can see that sql style structures make up a significant pro-
portion of the total number of 2D MOFs, with a return of 45.5% in the 2D MOF subset.
Additionally, hcb also make up a significant proportion at almost 15% meaning there is
a 3 in 5 chance that any given 2D MOF is configured in one of these two ways.

Next, we performed a similar analysis on the 3D set of structures. Beginning again
with MOFid, we saw a result assigned to 6,911 structures and following analysis it was
determined that 2,078 of these were assigned 2D topologies, leaving a total of 4,833
successful assignments at a rate of 16.69%. Moving on to CrystalNets (Guess) we went
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from an initial 15,441 results to 15,346 after 95 2D assignments were removed giving a
rate of 50.07%. The final analysis conducted at this stage saw the CrystalNets (Input)
total shift from 15,919 to 15,798 resulting in a 3D assignment rate of 51.25% and 121
2D assigned nets. Interesting, the influence of retained bonding information appears to
have had less of an effect on 3D MOFs than the initial 2D analysis. This can be seen in
Table 3.3 where we also include the EPINET results, however these were not analysed in
signficant detail due to an inability to make comparisons across the board and so they
have all been considered successful results in this instance.

Table 3.3: A review of the output of 3D structure analysis.

Condition (3D) CrystalNets (Guess) CrystalNets (Input) MOFid

Initial 3D Results 14956 14963 6911

Identified 2D Results 95 121 2078

Final 3D Results 14501 14842 4833

EPINET Results 845 956 NA

Success Rate 50.07% 51.25% 16.69%

A deeper investigation into the most commonly occurring topologies within the 3D
subset was also conducted, and the results of the top 10 topologies from the CrystalNets
Input set are shown in Figure 3.2, a histogram depicting the distribution of the top 10
most prevalent 3D MOF topologies, with comparisons made to the occurrences from the
additional sets. The histogram illustrates the frequency of occurrence of each topology,
providing insights into the relative abundance and diversity of 3D MOF structures. This
visualisation offers a concise overview of the dominant 3D MOF topologies, offering new
insight into the structural landscape of these materials.
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Figure 3.2: A histogram depicting the most commonly obtained 3D topologies,
based off the CrystalNets Input results (blue), but also showing the occurrences
for CrystalNets Guess (orange), and MOFid (grey).

We found that the most common structure representations are pcu, dia, pts,rtl,
and cds, however it is noted that this order is not necessarily true of the MOFid results
which shows some mildly significant discrepancies - particularly for the pts and cds
topologies. In contrast to the 2D subset which shows relatively low topological diversity,
pcu is the most prevalent topology at approximately 9%, with the top 10 structures
combined making up 27% of the 3D MOF subset. This result confirms that a much
greater topological diversity exists within the 3D MOF space, as expected of a more
complex space with an additional dimension in which the crystals can occupy.

These differences in assignment we see here have been attributed to the atomic bonding
approaches that are taken in each respective run. We allow MOFid to assign bonds
using OpenBabel, we also allow CrystalNets to assign bonds using its inbuilt CrystalNN
approach, and then we finally use the CSD to provide the bonding information as CIFs are
entered into the CrystalNets programme. Whilst this could clearly explain the differences
between using Input and Guess, it does not offer conclusive evidence that bonding is the
sole reason for discrepancy between MOFid and CrystalNets, likely the subtle differences
between algorithms within the software are also a contributing factor. OpenBabel uses
chemical rules and heuristics to infer bonding, relying on predefined chemical knowledge,
whereas CrystalNets can be tailored to focus on topology and connectivity and may
disregard bond orders or chemical valence rules, as a result the former may struggle with
unconventional bonding scenarios that are not well represented in its database whereas
the latter is designed for use in creating a simplified network representation to be used for
topological characterisation. An example of a structure that is given different topologies
is CSD BUSSOZ which was assigned tfi using MOFid and fes using CrystalNets.
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RCSR Topologies and Diversity

In total, the RCSR contains 3,132 unique nets (excluding 0-D and 1-D nets), of which 200
are 2D with the remainder being assigned to 3D structures, as of May 2024. Additionally,
it partially overlaps with the 14,532 3D nets of the EPINET database. We analysed the
results for the number of unique RCSR topologies found within the dataset.

For 2D MOFs, MOFid identified 49 unique nets, CrystalNets (Guess) identified 63
unique nets, and CrystalNets (Input) identified 59. These figures differ from the unique
outputs stated in Table 3.1 due to the inclusion of only RCSR outputs and not just unique
outputs. Similarly, for 3D MOFs, MOFid identified 257 unique nets, CrystalNets (Guess)
identified 385, and CrystalNets (Input) identified 388. These figures do not include the
misidentified dimensionality nets as stated in the section above.

Further, in terms of the mismatched nets, in the 2D run, MOFid identified 12 3D
nets, CrystalNets (Guess) identified 41 3D nets, and CrystalNets (Input) identified 2 3D
nets in keeping with the 2 misidentified structures. Similarly, for mismatched nets in the
3D space, MOFid identified 38 unique nets that were 2D in nature, CrystalNets (Guess)
identified 8 2D nets, and CrystalNets (Input) identified a total of 9 unique 2D nets within
the set. Perhaps also interestingly, for MOFid 76 nets appeared only once, whereas for
CrystalNets (Guess) we saw 97 nets just once, and 100 unique nets occurred only once
for CrystalNets (Input).

Whilst there is the potential for further discussion of these occurrences to take place,
we do not feel they would add anything of significant value to the discussion other than be-
coming an interesting anecdote to the more pressing research questions we try to address,
i.e why are these discrepancies occurring, and how can they be solved?

Fingerprints

It is worth also mentioning a unique feature of CrystalNets, which is that when analysis
of an unidentifiable topology is performed, the software produces a ’fingerprint’ consisting
of a string of numbers that represents the topological configuration of the structure due
to failure to match it to the database. These fingerprints can be used to match topologi-
cally similar structures that do not currently have entries in any nets database for their
configurations. Analysis of these fingerprints was not performed in this study, however
future work could include further analysis to be performed on this information to discover
new unique nets, or match several unknown structures together for further investigation.
One of the main reasons behind this is their current lack of recognition by the IUPAC
committee, they are not a recommended format through which to report structures, and
we have seldom, if at all, seen any new structures being reported with topology finger-
prints thus far. This is not to say that it would not be a recognised and adopted feature
in the future but at present it is not common practice.

3.6 Implementation of CrystalNets within CSD Mercury

As a notable part of this study we demonstrated that there is a preference towards the
implementation of a CrystalNets tool within CSD Mercury over MOFid, both in part
due to the computational advantage of using a Julia package when compared to Python,
but also due to the increased reliability of results for experimental structures analysed
from their respective CIFs. As a result of this study we developed a Python script that
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enables a user to call CrystalNets.jl whilst working within both CSD Mercury, or in the
CSD Python API. This script began as a standalone topology analyser but we decided to
import some additional functionality from other existing Python API scripts to avoid the
need to duplicate existing workflows, but also to prevent users interested in additional
structure properties from having to duplicate analysis using two or more different scripts
on the same materials.

The ease of implementing the CrystalNets package compared with other available
software such as ToposPro, or Systre, was a significant factor in its selection. We initially
attempted to output files in a format that would be suitable to implement Systre in
the analysis (or net-matching) stage, however as a result of the investigations conducted
in this article we instead decided to select CrystalNets due to its significant increase in
analysis speed and its ease of use. The CSD’s Python API can easily be modified to
call a Julia package with just a few lines of additional code, and this also makes it easily
transferable for use within CSD Mercury where the .py file only needs to be placed within
a relevant directory, selected within the software settings, to enable it to produce HTML
structure analysis files. Figure 3.3 demonstrates the recommended procedure for using
this new structure analysis tool within Mercury, highlighting its ease of use with any
selected structure.

To add a script location, simply select CSD Python API in the navigation bar, select
Options... and in this menu it is possible to add a directory to a list of locations Mercury
can search for python scripts. Here it is also possible to select a new output directory if
desired, or change your installed python version. Once set-up in Mercury simply go to
your desired structure, then find the CSD Python API tab in the navigation bar again
and select mof crystal structure report v2.py to run the analysis.
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Figure 3.3: A screenshot demonstrating the implemented CrystalNets process
within CSD Mercury

Whilst implementing the CrystalNets approach to CSD structures we also decided
it was necessary to modify the output script to include some other potentially desirable
parameters that can be obtained from the CSD, specifically for researchers who are in-
terested in structural features of MOFs or other materials. An example of the HTML
output can be seen in Figure 3.4.

This script is a great tool for those with an interest in adsorption applications as a
recent update to the CCDC software suite included the PoreBlazer tools [38] an open-
source, and open access Fortran 90 code used to determine the pore properties of MOFs,
including the calculated void percentage and void volume. Here, the void calculations
were performed using a probe radius of 1.2 Å, and a grid spacing of 0.7 Å, but these can
be easily changed within the python script to custom values. We decided to package this in
the same output with other results such as the space group, cell dimensions, experimental
volume, and of course the topology. This is also supplemented by a diagram to show the
atomic configuration, as well as the refcode and chemical formula. This workflow, when
implemented, should eliminate the need for users to download CIFs from the CSD to
determine pore volumes and topological configurations.
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Figure 3.4: An output file showing the result of crystal structure analysis,
including the CrystalNets process, on SAHYIK launched within CSD Mercury,
determining the structure has the pcu topology.
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3.7 Conclusion

This study investigated and compared the use of different approaches when considering
high-throughput topological characterisation of 2D and 3D MOFs in the CSD MOF sub-
set. We tested three approaches to determine the highest recall, and highest precision
method so as to select one as the most appropriate workflow for integration within our
new Python approach to topological assignment of CSD materials. We determined that
the retention of bonding information, and the use of CrystalNets combined to provide the
highest return rate, whilst also not compromising on computation expense (the computa-
tional cost of analysis in this case was almost negligible when compared with the MOFid
approach). With a success rate of 75.9% on 2D MOFs, and 51.25% on 3D MOFs using
an entirely automated workflow there is certainly some scope for improvement. Lastly,
we note that this analysis has not considered the presence of disorder in structures or the
methods through which modifications were made due to the presence of solvents within
the CSD’s MOF subset CIFs.

We showed in this article that it is a simple process to integrate new tools within the
CSD by a user for their own use, and we make this workflow publicly available hosted in the
CCDC’s open source GitHub folder at github.com/ccdc-opensource. The modification
of the CrystalNets output script includes additional parameters catering to researchers
interested in structural features of MOFs or other materials, such as pore properties
determined using the PoreBlazer tools, space group, cell dimensions, experimental volume,
topology, and chemical formula, thereby eliminating the need for users to download CIFs
from the CSD for pore volume and topology determination.

github.com/ccdc-opensource
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Chapter 4

Machine Learning and Digital
Manufacturing Approaches for
Solid-state Materials Development

4.1 Publication Information and Paper Contributions

This work has been published as Chapter 14 of the book AI-Guided Design and Property
Prediction for Zeolites and Nanoporous Materials published by John Wiley & Sons Ltd,
and edited by German Sastre and Frits Daeyaert.

In this publication I, the candidate, wrote the chapter with contributions from Emily
H. Whaites under the supervision of Dr Peyman Z. Moghadam.

4.2 Abstract

Novel solid materials are urgently needed for energy applications including carbon cap-
ture and energy storage. The increasing breadth and availability of large and complex
databases of such materials have made their design space too vast, and clearly, relying
on trial-and error and serendipity to accelerate their discovery is costly, slow, and un-
reliable. The synthesis of solid materials has been largely a manual process and, due
to the intrinsically high dimensionality of the experiments, such processes are inefficient
in the exploration of realisable materials. To tackle these pressing challenges, there is a
clear need for the deployment of new technologies to speed up the way solid materials are
developed in a repeatable, reproducible, and traceable manner.

The emerging introduction of state-of-the-art data science and digital technologies will
help chemists to work more efficiently and advance materials discovery. A key challenge in
the adoption of such technologies is to overcome numerous “data-poor” situations. Fur-
thermore, the integration between pre-existing physico-chemical knowledge and synthesis
is recognised as critical to success given the complex chemistry that characterises many
classes of solid materials. The concept of digital manufacturing itself is developing as a
highly sought after technique in both academia and industry, from the initial stages of
materials discovery to the final stages of material synthesis and performance analysis.

This chapter focuses on the challenges faced by researchers in novel materials discovery
with a particular focus on the collection and the use of data to drive digital synthesis. We
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specifically discuss databases of nanoporous materials synthesis data and how they can be
explored via text mining, machine learning and artificial intelligence, as well as robotics to
develop self-adaptive systems to automate and control the chemistry of solid structures.
We also investigate the topic of natural language processing within text mining, and a
variety of machine learning models are discussed with a look at some of the most recent
models that have been used to enable the prediction of synthesis conditions.

Finally, we discuss digitisation of production and the recent developments that aim
to shift the current practices within synthesis systems. Advances have been made in the
conversion of material synthesis to flow chemistry, enabling the application of robotic sys-
tems for continual improvement. After a thorough dig into the work currently published
in digital MOF synthesis and adjacent fields, the importance of sufficient, high quality,
unbiased data is highlighted as a key factor for the next stages of development, forming
the basis for future work regarding synthesis and digitisation of MOFs.

4.2.1 Keywords

Solid State Materials, Data Science, Digital Technologies, Materials Discovery, Synthesis

4.3 Introduction

Solid state chemistry, often referred to as materials chemistry, is a field of chemistry con-
cerned with studying the synthesis, structure, and properties of materials in the solid
phase. These solids are often classified as crystalline, amorphous, organic, inorganic, or
nano-materials depending on the type, and the arrangements of their constituent atoms.
Some notable examples include zeolites, covalent organic frameworks (COFs), metal or-
ganic cages (MOCs), and metal organic nano-sheets (MONs).

One intensely studied class of solid state materials, and the primary example used
throughout this chapter, are metal-organic frameworks (MOFs), crystalline structures
synthesised from organic and inorganic building blocks to form an extended framework
material. The building-block approach creates the opportunity for the synthesis of tens
of thousands of combinations where they can be tailored to achieve particular properties
for a multitude of applications, and since the start of the 1990s, thousands of MOF
materials have been synthesized at laboratory scales [1, 2, 3, 4, 5, 6]. However, despite
their great promise for a wide range of applications, only a handful have been successfully
commercialised [7].

In general, the production of MOFs is largely a manual process and because of the
complex multi-dimensional nature of their synthesis, the development process can be
time-consuming and inefficient when exploring the entire MOF synthesis space. To tackle
these challenges, there is a clear need for the adoption of technologies that can expedite
the way MOF materials are designed and developed with optimum properties. One way
to address these challenges involves the deployment of state-of-the-art computer simula-
tions and digital technologies. This approach includes a wide range of techniques from
database generation, to high-throughput screening, machine learning (ML), and the use of
novel digitalisation tools to overcome “data-poor” processes that characterise the complex
chemistry of MOFs. Figure 4.1 demonstrates gas adsorption applications in MOFs.
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Figure 4.1: Schematic showing the applications of gas separation where CO2

is captured and methane is separated (left), and the storage of gaseous methane
(right) in MOFs. The structures here are represented in a general form where
a typical metal-oxo cluster is seen as a metal node, and the organic linkers are
drawn as straight connecting bars.

To fully understand the current size of the MOF space, Moghadam et al. (2017) re-
ported nearly 70,000 experimentally synthesised MOF structures in the Cambridge Struc-
tural Database (CSD) upon the creation of the CSD MOF subset [8]. Moving forward to
the present day, based on data published in the latest CSD release (version 5.3, 2021),
there are now 114,373 experimentally synthesised MOFs. There has been a rapid increase
in the quantity of submitted MOF structures within the CSD with an estimated 10% of
all deposited structures meeting the criteria of a MOF, and an incredible 15,998 exper-
imentally synthesised materials were deposited and approved last quarter (June 2022).
This large, rapidly expanding chemical space continually adds to the difficulty faced by
chemists in identifying useful MOFs for their chosen applications. Many research groups
within the materials field have begun to quickly adopt ML techniques in the quest to en-
able rapid and reliable materials discovery and synthesis. The development of ML tools
should be seen as a means to ease the process at every stage, from the identification of
useful MOFs, to reducing the cost of synthesis for novel structures.

To maximise the potential for MOF discovery, it is essential to develop robust data
collection techniques to obtain crucial information from the large volume of published
work on MOFs and their properties. Moghadam et al. (2017) used keyword searching to
produce the CSD MOF subset, an automatically updating database, with specific criteria
for material selection from the Cambridge Crystallographic Data Centre’s 1,000,000+
structures [8]. This database, alongside the Computation-Ready Experimental (CoRE)
MOF database, developed by Chung et al. (2014) [9], are two of the largest and highly
curated collections of experimental MOF materials, and both allow for high-throughput
computational screening of MOFs for a wide range of applications. Due to the nature
of these porous structures, particularly those that are constructed in 3D, there are many
applications for in gas storage and separation but many other studies have focused on
sensing, catalysis, drug delivery and chemical removal [10, 11, 12, 13, 14, 15].
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Often, large-scale high-throughput screening is not thorough enough to filter large
databases into small subsets of interesting structures without significant input from more
computationally expensive studies. The development of ML tools for property prediction
has commonly been touted as the next step towards a rapid and inexpensive computa-
tional approach. ML usage has seen a significant increase in all fields of scientific discovery
and data development over recent years, in part due to the popularity of user-friendly tool
kits such as RDKit [16]. ML models can be created and developed to make highly accu-
rate predictions, although the success of such models is dependent on a sufficiently large
amount of data taken from materials databases for use as training sets.

Structure-property data is often used as a foundation for investigating the synthesis
requirements of novel structures. One of the most promising applications of new ML
approaches is to predict optimal reaction synthesis conditions for stable structures with
sufficient crystallinity. This approach however is not limited to MOFs and can, and has
been applied to a range of different materials, examples of which are discussed in this
chapter.

Typically, the time required to obtain optimal MOF synthesis is long and expensive
due to the highly diverse synthesis conditions required in the creation of these materials.
This diversity means there is a lack of general synthesis recipes, and for many cases
predicted synthesis conditions are non-transferable. Key parameters for synthesis include
solvents, reaction temperature and time [17]. Due to the novelty of using ML for synthesis
of MOFs, only a handful of studies have been reported to date. The use of Natural
Language Processing (NLP), a sub field of ML and artificial intelligence (AI), has been
investigated to augment chemists’ expertise when approaching experimental design. Luo
et al. (2022) [18] and Zhang et al. (2020) [19] have utilised NLP to study the MOF
databases, CoRE MOF and CSD MOF subset, respectively in an effort to train models
that are able to predict the optimal synthesis conditions for new MOF structures.

If we consider the use of a digital manufacturing approach when investigating MOF
synthesis, a considerable bottleneck in synthesis improvement is the availability of syn-
thesis data. Digital manufacturing techniques, such as digital twins, rely on the constant
availability of high quality data to feedback to the synthesis process. A digital twin is
a virtual representation of a physical object or process, in this case a synthesis process,
used for the continual improvement of engineering activities. When developing an initial
synthesis path to create for example, a MOF in a laboratory, a similar ML approach
can be used despite the requirement for greater flexibility in experimental design. By
implementing ML models for small quantity experiments to predict synthesis conditions,
the number of real experimental tests can be reduced as only the most viable reactions
are chosen for experimental trial, and although this process is perhaps more suited to the
improvement of larger scale materials synthesis, it is still applicable at lab scale.

A shift from batch production to a closed loop process is a significant driver towards the
introduction of digital manufacturing. This approach, when combined with ML prediction
techniques described previously, can be used to redevelop existing larger scale synthesis
techniques. By increasing the available information about the synthesis of a particular
material, including accurate ML predicted data such as approximate cost, reaction time,
and required reagents, the implementation of a digital twin becomes easier. Considering
the savings made due to the reduction in labour and time when attempting to optimise
the synthesis process, focus can be directed towards the development of other structures
and their use in desired applications. The use of ML should be seen as a means to achieve
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the goal of automated synthesis, and as a tool to drive continuous improvement.

Improving the manufacturing pathway of novel or complex materials is often seen as
a large hurdle for many chemists. Accessing the relevant data and hosting the technology
for synthesis development can be expensive and time consuming. Digital manufacturing
opens the doors for significant changes in the development of material production. With
digital infrastructure such as synthesis servers and synthesis databases, high cost equip-
ment can be accessed remotely, making the research process much less cost intensive,
expanding the research field further to groups without a wide array of computational or
experimental resources. New tools and databases designed for digitisation can increase col-
laboration of computational researchers and experimentalists to aid in their development
of novel material manufacturing techniques for new and existing solid state materials.

4.4 The Development of MOF Databases

The progress of ML would begin to stagnate without the access to sufficient training data.
However, the field of solid state chemistry sees thousands of materials synthesised each
year, with tens of thousands published in the past decade. However, due to the substantial
amount of text accompanying the interesting data in each subsequent publication, obtain-
ing large and reliable databases of ML training material has the potential to become a
significant bottleneck to development without continuous addition of new information.
The number of MOFs in the CSD MOF subset alone has increased by 30,000 structures
since 2017, and additional publications with information about synthesis of new struc-
tures are published regularly [8]. The latest CSD update contained over 16,000 additions
to the database with an estimated 10% of structures being MOF or MOF like. To allow
for chemists to efficiently process information, data must be presented and submitted in
a fashion that is accurate, organised, and machine readable.

In 2014, Chung et al., as part of the Materials Genome Initiative, developed the first
MOF database CoRE MOF, containing 4,700 porous structures [9]. The data originated
from the CSD, and included some additional properties to ensure these entries were suit-
able for molecular simulations. The conditions for entry into the database included only
3D structures with pore sizes larger than 2.4 Å. These criteria were chosen specifically to
allow for the screening of MOF structures for use in gas storage, separation, and catalysis.
In 2019, the CoRE MOF database was manually updated to include over 14,000 porous
3D structures that have been reported in published literature [20]. Value was also added
to the database with the introduction of reconstructed disordered structures, and new
pore analytics and physical property data.

Following the release of the CoRE MOF database, the CSD MOF subset was developed
in 2017. Moghadam et al. expanded the criteria used to identify MOFs by allowing for the
inclusion of materials of other dimensionalities and pore sizes [8]. One notable advantage
of the CSD MOF subset over the CoRE MOF database is that the CSD MOF subset has
been designed to be automatically updated, adding new materials quarterly to ensure all
structural data is current. The CSD MOF subset includes 1D, 2D and 3D structures, and
can be organised into these specific categories at the click of a button. The CSD MOF
subset is primarily accessed as part of the CCDC’s software suite and is compatible with
their structure search tool ConQuest, and the CSD PythonAPI.

The CSD MOF subset has been used in a significant number of studies, and has
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formed the primary data source for the development of DigiMOF, a text-mined structure
information database created by Glasby et al. (2023) [21]. The aim of the DigiMOF
database is to provide MOF synthesis data alongside other key properties which are
lacking within previous databases. Synthesis data, when collated within a database, will
allow for synthesis routes to be compared and assessed, leading to the minimisation of
failed or inefficient experiments, and increased likelihood of scalability and profitability
when compared with current trial and error synthesis development. Due to the diverse
range of applications for MOF structures, several other significant contributions have been
developed and published which focus on specific applications due to certain properties.
Notable examples include the CoRE MOF 2014-DDEC database by Nazarian et al. (2016)
[22] in which DFT-derived partial atomic charges were determined, and the quantum
(QMOF) database by Rosen et al. (2022) [23]. The QMOF database enables the searching
of structures based on properties such as charges, bond orders, or band gaps for use in
photo-catalysis, and other similar applications. As part of their works carried out with
the use of ML for MOF synthesis, Luo et al. (2022) [18] and Nandy et al. (2022) [24] have
also created small publicly accessible databases to investigate synthesis conditions of MOF
structures and solvent extraction data, respectively. Aside from databases containing
‘already-synthesized’ structures, there are several examples of collections of hypothetical
structures such as the hMOF database by Wilmer et al. (2012) [25] containing 137,953
hypothetical MOFs, the 13,512 MOF structures created in specific topologies using a
material generation algorithm called ToBaCCo by Colón et al. (2017) [26], and more
recently by Majumdar et al. (2021) [27] with ca. 20,000 hypothetical MOFs designed
specifically for a diverse chemical design space. The use of ML in synthesis prediction
is a step towards finding feasible pathways for the eventual creation of many of these
hypothesised materials without the need for expensive trial and error experimentation.

4.5 Natural Language Processing

One of the biggest limitations of ML is the requirement for data availability, accurate
deep generative models typically require training data sets with a size of the order of 106

[28]. In terms of MOF structures, properties, and applications, an abundance of data
is collated within currently available databases, however they rarely contain information
regarding the synthesis conditions and parameters required to prepare them. Alternatives
to creating new or real-time data, include NLP algorithms that are frequently being used
to extract synthesis data from published scientific literature. NLP can be structured
into a series of four steps: article retrieval, conversion and paragraph classification, word
tokenisation and, extraction and manual verification.

Datasets for ML training can be generated through NLP of new experimentation or
by accessing existing data held within experimental logbooks. One example where NLP
would have been useful is Xie et al. (2020) [29], who collected the synthesis parame-
ters of 486 reactions from archived experimental notebooks of both successful and failed
experiments. This data was used to train models for synthesis condition prediction of
metal-organic nanocapsules (MONCs). An eXtreme gradient boost (XGBoost) algorithm
topped the table of prediction accuracy, using 17 descriptors, at 91% with solvents, mod-
ulators (molar mass and mole), and cations emerging as the dominant factors in the
formation of single-crystal MONCs.

Additionally, it is worth noting here that a recent perspective contribution by Jablonka
et al. (2022) [30] has sought to address the issue of inaccessible, non-digital, and non-
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reported experimental practices. As paper based lab records are often still the norm in
many institutions, the authors suggested that the development of a modular open science
platform would benefit not only the data mining studies highlighted in this chapter, but
also beyond that. In recent years the introduction of electronic lab notebooks (ELNs)
aimed to address these concerns surrounding data management, and increase the reusabil-
ity of experimentally gathered data. However, although the argument that the technology
is already available to begin the collection of this work, the adoption of these ELNs must
be suitable for the synthetic work performed by chemists and materials scientists, and de-
veloped as an easily accessible and open source resource that demonstrates fair principles
and practices. Only, once an acceptable and agreed format is chosen, would such a tool
become useful for the gathering of data for the application of ML.

The use of NLP can be found throughout the field, with a heavy focus on using
ML for the prediction of synthesis parameters. Kim et al. (2017) [31] used a cross-
reference application programming interface (API) to retrieve a list of articles focused on
the synthesis of titanium nanotubes. From approximately 100 different journal articles,
several hundred paragraphs were manually labelled as either synthesis paragraphs, or
other, before being fed into a logistic regression classifier. Paragraphs underwent a word
embedding approach such that they could be represented as real-value vectors, followed
by binary labels, with 1 indicating synthesis information present, and 0 as unrelated. The
post logistic regression data had an overall accuracy of 95% on unseen test data.

The next stage saw relevant synthesis paragraphs undergo transformation into depen-
dency parse trees using ChemDataExtractor and SpaCy parsers [32]. Word tokenisation
and speech tagging are performed to split sentences into constituent words, and gram-
matical labels are added to each word token. Synthesis verbs of interest are detected
by a neural network (NN) approach upon the traversal of these dependency parse trees,
these are then iterated along to find operating parameters. Nouns are then scanned and
matched against the PubChem database and validated against the ChemDataExtractor
model to confirm meaningfulness [33]. Trained on 5000 human annotated words, this NN
approach yielded an overall accuracy of 86% as measured against a set of 100 human-
annotated synthesis articles.

In recent years, NLP has seen increasing use in the field of MOF synthesis data ex-
traction. Luo et al. (2022) [18] used NLP to extract data for use in predicting MOF
synthesis conditions; with the structure selection based on those found exclusively in the
CoRE MOF database. The NLP successfully extracted synthesis conditions for 983 MOF
structures. The parameters have been collected and made available within an open source
synthesis database, however due to the lack of standardisation when reporting reaction
conditions, some key parameters are missed due to ambiguity. Therefore, accurate and
reliable NLP currently requires parallel manual extraction. A total of six relevant param-
eters were extracted from the CoRE MOF into the new automatically created SynMOF-
A database, alongside metal and linker information taken directly from the associated
crystallographic information files (CIFs) of each material. Additional manual versions,
SynMOF-M and SynMOF-ME were also created to ensure accurate data sources before
being used to train ML models to discover similarity patterns in the synthesis conditions.

Park et al. (2022) [34] extracted data for 46,071 MOF synthesis reactions from 28,565
papers using a newly developed data extraction code. This study categorised paragraphs
in papers much in the same way as Kim et al. (2017) [31] with a binary approach
to synthesis information, but with a notably larger test set of 180 papers. However,
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this study extracted synthesis conditions from solid state materials found only within
the CSD MOF subset database. The NLP method here used named entity recognition
(NER) to extract chemical names and then categorised them using neural networks, a
100-dimensional bi-directional-LSTM which is able to consider the forward and backwards
context, alongside a conditional random field (CRF) layer used to predict each label of
sequence data. Here the NLP was used to extract MOF names, precursor, and solvents,
with a high precision ( 98%) but significantly varying recall. The data collected by Park
et al. (2022) [34] focused on single-step reactions as their NLP algorithm was unable to
differentiate between multiple steps within MOF synthesis.

After a review of current text-mining and MOF synthesis literature, Glasby et al.
(2023) [21] chose to develop parsers that would extract the information on the solvents
used, the inorganic and organic precursors, and their synthesis methods. The parser
training technique used in this study has been visualised in Figure 4.2.

Figure 4.2: A flow diagram which shows the process of developing suitably
precise parsers for data extraction by text mining [21], licenced under CC BY
NC 4.0.

DigiMOF database is the first within the MOF field to utilise the tool ChemDataEx-
tractor, in conjunction with the CSD PythonAPI, to produce a property database using
text mining software. MOF topologies were also extracted for further synthesis route
analysis, and compared with the building blocks to investigate potential trends. An ex-
clusion list was employed to filter frequently found misidentifications within the published
text. The DigiMOF project is made open source to encourage collaboration for further
improvements in the gathering of useful synthesis information. The current version of the
DigiMOF database consists of 43,281 unique MOF properties with a precision of 77%.
This work, amongst other attempts such as that of Luo et al. (2022) [18] are the founda-
tions of the future of digital manufacturing, hoping to provide a searchable database for
key MOF properties that can allow for assessment of viable reactions.

Despite these promising studies into the utilisation of NLP to create useful synthesis
data sets, a bottleneck associated with extracting data from published journals is the bias
towards successful reactions. Without proper weighting or failed reaction data, training
sets for ML models will include bias. However, the data extracted in these studies still has
multiple uses, from collation into a searchable database for material evaluation, to use as
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training data for further development of ML models. The availability of more and more
extracted data helps to shift ML development towards overcoming frustrating “data-poor”
situations that have previously been a hindrance for the development of digital synthesis.

4.6 An Overview of Machine Learning Models

ML models are typically chosen based on the available data and the desired result. Certain
models are able to handle higher levels of complexity and often have variable levels of
interpretability. ML tools have become increasingly accessible to the general researcher
in most scientific fields, with the emergence of downloadable software packages including
Scikit-learn [35] and TensorFlow [36], combined with an abundance of online help, ML
training courses, and video guides. These packages provide access to a multitude of models
from the simplest to increasingly intricate.

Arguably the simplest model is linear regression, a linear approach used to model the
relationship between a scalar response and one variable. Conroy et al. (2022) [37] used
linear regression as part of their work to identify key property descriptors required to
predict synthesis routes for zeolite LTA synthesis, and predict the quantitative output of
synthesis routes. Linear regression works on the basis that the output is linearly relative
to the feature inputs, and the predicted outcome is a sum of the weighted features [38].
The assumption of linearity limits both the potential uses and results obtained from this
method, although due to the simplicity of the model, the results are often transparent
and can be easily interpreted.

Non-linear models include random forest regression, a supervised learning algorithm
based on selecting decision trees after being trained on a dataset, and averaging the
results. This technique makes predictions based on the outputs of merging multiple
decision trees, combining multiple predictions to make a more accurate prediction than
a single model. The results of this model are typically easily interpreted, with easy to
visualise results due to the simple nature and easy visualisation of a decision tree; a tree
with a depth of five, for example, would be easy for most people to follow after a brief
explanation. Limitations however, include overfitting and slow prediction speed when
using a large number of trees, and the combination with random forest regression reduces
the interpretability, particularly as the maximum number of trees can begins to exceed
several hundreds.

Jensen et al. (2019) [39] used random forest regression to predict the densities of
zeolite based on their synthesis conditions, following the use of NLP and text markup
parsing tools to automatically extract information from 70,000 zeolite journal articles.
They trained a random forest regression model using sci-kit learn, across 100 decision
trees with splits determined by mean squared error. The model was cross validated on
syntheses that resulted in a pure phase zeolite, including 898 synthesis routes. Support
vector regression, simple neural network, and Gaussian process regression models were
also used and compared to random forest, with the random forest model exhibiting the
highest accuracy with the added benefit of human interpretability.

Support vector machines (SVM) are a popular example of kernel models, a class of
algorithms used for pattern analysis. The general task of kernel models is to compare
new data with the data found in training datasets to make predictions. An SVM training
algorithm builds a model that assigns examples to one category or another in a non-
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probabilistic binary classification. The SVM maps training examples to points in space,
creating a gap between two categories, then new examples are mapped into the same
space and predicted to belong to either side, depending on which side of the gap they fall.

Raccuglia et al. (2016) [40] employed SVM when exploring chemical space, focus-
ing particularly on inorganic-organic hybrid materials, based on failed experimental data
found in archived lab notebooks. The vast majority of unreported failed reactions are
archived in notebooks that are typically inaccessible, to guide future efforts towards suc-
cessful synthesis a web-accessible public database was created to enable initial data entry
from existing notebooks and current experimental data. The dataset, 3955 unique and
complete reactions, was split into groups, 1/3 as test and 2/3 as training. A single SVM
model was used to predict the likelihood of crystallisation based on synthesis parameters,
it had an accuracy of 78% in describing all reaction types, and 79% when considering
only vanadium-selenite reactions.

When dealing with larger data sets, it is more common to see neural networks being
used as the primary ML models. Neural networks are designed to mimic the process
through which the human brain operates, with a combination of hidden layers with input
and output layers. The node connection between each layer forms a network where each
node has an associated weight. The capability of a neural network is highly dependent
on the quality and size of the dataset used, but these models can adapt to a changing
input so that the network can generate the best possible result without requiring any
redefinition of the output criteria.

Park et al. (2022) [34] trained their artificial neural network (ANN) model using a
positive-unlabelled learning (PU learning) algorithm. This model was trained to predict
the synthesisability of MOFs based on given input synthesis parameters, and was able to
differentiate between amorphous and crystalline forms of the same MOF material. This
research has been some of the first in the field of MOFs to use ‘big data’ to achieve
meaningful insights into ideal synthesis conditions.

XGBoost is an open source software library composed of gradient boosting ML al-
gorithms. The aim of gradient boosting is to find patterns within the data and make
predictions based on these relationships. It gives a prediction model in the form of en-
semble learning, where multiple learning algorithms are used to obtain better predictive
performance, typically a fixed set of alternative models which allows some flexibility. The
gradient boosting prediction model most often consists of decision trees, and where a deci-
sion tree is the weak learner, the result is a gradient-boosted trees algorithm which usually
outperforms random forest. Whilst this boosting can increase the accuracy of linear re-
gression or a decision tree, it may sacrifice intelligibility and interpretability. To recover
performance and interpretability, some model compression techniques exist which allow
for the transformation of an XGBoost into a single decision tree that can approximate
the original decision function [41].

For prediction of the likelihood of crystallisation of MONCs, Xie et al. (2020) [29]
utilised a multi-model method to allow for cross validation and comparison of results. The
models included linear regression, Gaussian Näıve Bayes (GNB), k-nearest neighbours
(KNN), SVM, decision tree, random forest, XGBoost, and multilayer perceptron (MLP).
All of the tested models achieved an accuracy of 82% or higher, and an F1 score which
exceeds 81%. The result of training and evaluation of these nine ML models found
XGBoost to have the highest accuracy.



CHAPTER 4. MACHINE LEARNING AND DIGITAL MANUFACTURING 73

It is important to note that all ML models offer individual advantages and limitations,
and when choosing a ML model, it is essential to consider the importance of high accuracy
and interpretability as well as ease of operation. When choosing a model that best fits the
input dataset, the following factors must be taken into consideration. Firstly, the runtime
of models such as random tree will become progressively longer as the number of trees
increases, and the output will be achieved much more slowly. This can be impractical
when using large, and complex datasets. Some models also lack interpretability, making
it difficult to know exactly what the results of the study are, and the user may be unable
to interpret the factors that have caused the predicted output. In a synthesis context,
the relationships within the data provide the essential information required to aid pro-
cess and material development. Without interpretability of the data’s relationships, it
becomes progressively difficult, as models increase in complexity, to further understand
low accuracies and slow runtimes.

Evaluation is a key stage in ensuring the return of accurate ML model results, and
evaluation metrics allow chemists to quantify the performance of models on data that
has yet to be seen. Accuracy, the ratio between correct predictions and total predictions,
is most useful with balanced data. For data with imbalances, F1 scores are used to
evaluate the outcome, combining the precision of the results with recall. Additionally, R²
represents the proportion of variance from the original data set, and is best used with
regression models such as the random forest regression.

Another approach, Bayesian optimisation is becoming increasingly popular in the
development of synthesis digitisation [42, 43, 44]. This algorithm allows for continued
optimisation of a closed loop process when used in conjunction with automated physical
systems, helping to optimise products and synthesis conditions, and increase the feasi-
bility of reactions. Using input data to take an initial guess about a chosen function, it
continues to refine this first prediction as data is added with each iteration, and builds
a probable model of the objective function that is being explored. It is composed of two
models; a surrogate model and an acquisition function. The surrogate model defines the
probability distributions over the chosen function, built using the sample data provided.
The acquisition function selects the next samples from the search space and these new
sample points are used to update the surrogate model, increasing the accuracy. The cycle
of update and optimise continues to produce an accurate model of the chosen objective
function. The surrogate model most used in Bayesian optimisation is the Gaussian pro-
cess, due to its flexibility to fit wide ranges of data, and the construction of a Gaussian
distribution. Other models for the surrogate include the tree-structured parzen estimator
(TPE), a sequential model based optimisation approach which constructs models to ap-
proximate the performance of parameters based on historical measurements, and chooses
new parameters to test based on this model.

A simple, flow-style overview of the different approaches to ML models that have been
discussed in this section can be seen in Figure 4.3.
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Figure 4.3: A flow diagram demonstrating the classification of some basic,
and some more complex, machine learning model types.

4.7 Machine Learning for Synthesis and Investigation of
Solid State Materials

The application of ML in the realm of solid state chemistry is becoming commonplace
for predicting realisable structures as well as their synthesis and intrinsic properties.
In addition to benefiting from lower research and production costs as the sector moves
away from trial-and-error experimentation, improvements to the field include: smaller
starting material requirements, fewer failed structures, and less reliance on the intuition
of chemists.

The availability of pre-generated data that can currently be found in journals and
databases has made it easier to train models for property predictions. This, combined with
user-friendly models that can be used by chemists with limited coding experience means
that new developments in ML for material synthesis are being made every day. The year
2022 has so far seen a significant increase in publications which employ ML for material
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synthesis predictions, with an expectation that this trend will continue throughout the
decade. The Thomson Reuters’ Web of Science offers researchers the ability to search for
key words and subjects, a useful trend analysis tools which can be used to confirm the
increase in popularity of certain topics, (found here: https://www.webofscience.com/

wos/woscc/basic-search), the tool was used to confirm the increasing trend in ML for
MOF synthesis, and the results can be seen in Figure 4.4.

Figure 4.4: A Web of Science search for trends in publications using the key
words ‘metal-organic framework’, ‘synthesis’, and ‘machine learning’ as of July
2022. (https: // www. webofscience. com/ wos/ woscc/ citation-report/
c0f28728-bd2b-4392-834e-7bc24ac6334b-474cb7be )

ML tools began with property prediction, enhancement, and analysis of the structure-
property relationships. Kennicutt et al. (2016) [45] used SVM, a supervised machine
learning algorithm, to predict the adsorption rate of activated carbon, specifically choosing
SVM to reduce the risk of overfitting and for ease of use. The model was trained on 95
compounds with 23 structure descriptors, and reached a final training dataset R2 accuracy
of 0.932. Although there is a high R2 value, it may not necessarily be a suitable predictive
model for compounds outside of the training domain. Efforts were focused on data for
Calgon Filtrasorb 400 (F400), a well-studied, microporous, coal based adsorbent and so
descriptors for carbon surface chemistry and pore properties were not considered.

More recently, Dico et al. (2021) [46] used several independent ML models to assess
natural nano-porous clays for their use in adsorption and catalysis. An extremely ran-
domised trees (Extra Trees) regression algorithm was used to characterise the raw clay
characteristics, additive characteristics, and processing conditions assessed against simple
decision tree, random forest, and MLP models. The final R2 for the extra tree regressor
of 0.77 is reasonable for a data set of this size, based on 41 feature representations, with
a variation in R2 values when reduced to 20 descriptors. The data has sufficient accu-
racy for its predictive ability of most parameters, which will enable its use as a tool for
further assessment of the viability for parameters required in the processing of natural
porous materials, particularly porous clays. The analysis of the models sheds light onto
the features of raw minerals which significantly affect the internal and external surface
area, and pore volume.

https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/citation-report/c0f28728-bd2b-4392-834e-7bc24ac6334b-474cb7be
https://www.webofscience.com/wos/woscc/citation-report/c0f28728-bd2b-4392-834e-7bc24ac6334b-474cb7be
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Following the rise in models aimed at finding the relationships between property and
structure, chemists began to develop models that would look to find and confirm synthesis-
structure relationships. These models work to extract significant synthesis descriptors
from substantial amounts of data and realise patterns unable to be seen by humans.
For example, Jensen et al. (2019) [39] used ML models to investigate less intuitive re-
lationships between zeolite synthesis parameters and the final structure. They trained
a single decision tree regression model on 898 pure phase zeolite systems specifically to
demonstrate ML synthesis intuition, rather than predictive ability. This model was able
to reproduce the framework density of training data with an impressive R2 value of 0.97.

Raccuglia et al. (2016) [40] developed an algorithm focused on exploring the chemical
space to predict a range of reaction conditions that will result in crystallisation of template
vanadium-selenites. Information gathered from ‘dark’ reactions – failed or unsuccessful
hydrothermal syntheses, trained an ML model to predict reaction success. The model
successfully predicted conditions for new products with a final success rate of 89%. The
authors concluded that the model may be used to reveal further relationships between
reaction conditions and product formation.

Muraoka et al. (2019) [47] also investigated the relationships between reaction condi-
tions and products using ML synthesis prediction techniques. The data set was formed
using NLP from zeolite synthesis records, alongside a similarity network of the crys-
tal structure and synthesis descriptors, producing a dataset of 686 synthesis conditions.
Multiple ML models including random forest and XGBoost were used to predict the syn-
thesis results from these custom descriptors. The XGBoost was found to have the highest
accuracy at 75-80%, and while not within the scope of the work, they envisioned that the
XGBoost model could be used to provide further informatics into the likelihood of forma-
tion of specific zeolites. The combination of similarity networks with synthesis prediction
allowed for unexplored areas of the chemical space to be found and populated, increasing
the diversity of the products formed, a major challenge with zeolites and MOFs alike.

XGBoost is a popular ML model used for predicting synthesis conditions for reactions.
Xie et al. (2020) [29] used 9 models to predict the synthesis conditions of MONCs and
successfully synthesise a new set of crystalline MONCs. The data originated from archived
lab notebooks, similar to Raccuglia et al (2016) [40], and provided a dataset of 486
reactions. The XGBoost was found to have the highest prediction accuracy at 91% and
was able to quantify “chemical intuition”. By providing quantified importance values,
reaction parameters were ranked for future reactions. These results also compared the
model’s synthesis prediction against a chemist, achieving a prediction accuracy 5% higher
than the chemist, at 80%.

The continuous development of ML models lays the foundation of new techniques
that can enable accurate and inexpensive synthesis paths for solid state materials. The
reaction data gathered for synthesis processes will provide a starting point for further
analysis by chemists and data scientists. Combining new data produced via ML models,
with improvements in technique for design of faster, more sustainable, and more economic
synthesis pathways will see the field shift more quickly to full digitisation for a wide range
of material requirements.
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4.8 Machine Learning in Design and Discovery of MOFs

Developments in the field of ML for structurally similar materials, such as zeolites and or-
ganic porous structures, have also inspired MOF scientists to perform synthesis prediction
studies. Due to the large volumes of data produced, ML is quickly becoming a necessity
for efficient exploration of the MOF material space. For the large library of existing MOF
structures and considering its’ continued growth, high throughput screening techniques
on their own are no longer fast enough to identify promising materials for synthesis. It is
very difficult to computationally screen the vast material space for a single application,
restricting the likelihood of the most effective structure being identified. The ML mod-
els which are discussed in this section have contributed to recent advances in the shift
towards a new data-driven and digitalised paradigm to design and discover new MOFs.

Inverse design is a tool that is seeing a growth in popularity for chemists with advanced
ML tools, particularly deep learning, being developed to aid this process. Zhang et al.
(2020) [19] developed an inverse design algorithm to directly create novel MOFs for use in
carbon capture. In this contribution, the authors combined Monte Carlo tree search with
recurrent neural networks (RNN) based on input from 10 different combinations of metal
nodes and topologies from previously reported experimental MOFs, these can be seen
in Figure 4.5. Using the criteria obtained by the ML study, the algorithm hypothesised
a novel MOF based on IRMOF-15, which was expected to perform in carbon capture
applications with a CO2 adsorption capacity up to 543% higher than the input structure.
Other examples include a 165% increase on the current capability of MOF-118, and 11%
increase for MOF-119. A small increase in CO2 adsorption of MOF-119 is expected
considering the already high loading capacity of 8.18 mmol/g, particularly compared
with the increase in loading from 1.29 to 8.30 mmol/g hypothesised for IRMOF-15.

This large increase in CO2 uptake can be attributed to The interaction between CO2

molecules and the MOF itself, which are governed by Van der Waal forces as well as
electrostatic and dispersion interactions. Adjusting linker design provides more degrees
of freedom for adsorption which the algorithm designed in this paper explores. It is known
that there is a trade-off between density of adsorption sites and density of material, too
large pore spaces often lead to a low density of adsorption sites, short linkers with side
function groups were theorised to increase adsorption site density. Further, linkers which
contain more non-carbon atoms (such as S and N) provide strong adsorption sites due to
their negative atomic charges.
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Figure 4.5: Input topologies of novel experimental MOFs for use in an inverse
design algorithm targeting structures for top performance in carbon capture
applications. Reprinted with permission from [19]. Copyright 2020 American
Chemical Society.

Hardian et al. (2020) [48] developed a new ML module that combines a design of
experiments (DoE), a SVM, an evolutionary algorithm, and a desirability function to
predict the optimal conditions for sustainable ZIF-8 synthesis. DoE is an alternative
systematic approach to achieve good balance between a reduced number of experiments
and efficiency, allowing different factors to be varied and investigated simultaneously, in
the hopes of accelerating the process of discovery and optimisation.

The data was first obtained by experimental face centred central composite design,
completing 27 runs. The structures’ crystallinity was analysed using x-ray diffraction
(XRD), and after confirmation of sharp XRD peaks which well matched the calculated
XRD pattern, AI 1 was used with the experimental data output from the DoE as input
for the SVM algorithm, followed by a grid search to generate 456,976 virtual data points.
The results found that highest product quality was achieved at high voltage, long reaction
time, low electrolyte concentration, and high linker concentration. AI 2 followed a similar
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method to AI 1, followed by 50 random virtual data generations as the initial population
for the evolutionary algorithm, followed by the implementation of a desirability function
for the last optimisation step. Two optimisation steps were considered, firstly to maximise
the product quality, and secondly to maximise product quality and process sustainability.

DoE results were insufficient to identify optimal conditions, AI 1 created an unneces-
sarily large data set which increased the computational cost, and AI 2 with the incorpo-
ration of the evolutionary algorithm made it possible to screen only the best data. These
predicted conditions were used to synthesise ZIF-8, and the resulting structure had 100%
purity, 88% yield with 86% crystallinity. A major argument towards using ML for mate-
rial synthesis is to improve the sustainability of the process, with in-silico design allowing
for a reduction in reagents and energy. The assessed environmental sustainability and
provided a final E-factor for the synthesis reaction of ZIF-8 at 11 kg/kg, and a carbon
footprint of 27 kg/kg using 7 kWh/kg.

As expected, most current synthesis approaches have a heavy reliance on the chemical
intuition of a chemist with experience of previous synthesis routes. This chemical intuition
is lacking in ML tools, and can often be found to be slowing progress. Chemists have
been looking to develop this chemical intuition in their algorithms by evaluating the
effects of synthesis conditions and their relationship with the final structure. Kitamura
et al. (2021) [49] used cluster analysis to classify powder XRD patterns of products and
determine experimental success, and decision tree analysis to visualise the experimental
results to determine dominant synthesis factors for the production of KGF-3, building
unit used in the synthesis of MOFs containing lanthanides. Lanthanide based MOFs
are particularly difficult to synthesise and predict, due to a high sensitivity to condition
changes, leading to overall poor reproducibility. Data collected from 108 experiments,
focusing on lanthanide ions, concentration of metal ion and/or ligand solution, reaction
temperature and time, cooling time, and type of reaction vessel found that the synthesis
results are highly affected by the lanthanide ion. After difficulty in isolating KGF-3
from initial screening experiments, dominant factors were extracted by evaluating both
successful and failed procedures using ML. With this information, the experimentalists
successfully synthesised a series of novel pillar-layered lanthanide MOFs containing the
double-layer-based building units KGF-3.

Huelsenbeck et al. (2021) [50] developed an active learning algorithm to aid in the
synthesis of HKUST-1 thin film. Some MOFs can be grown on multiple substrates using
a roll-to-roll process, however this process often lacked full coverage. Other techniques
include layer-by-layer growth, solvothermal growth, and gel-layer growth, with a greater
success rate for full coverage. Drawbacks for these techniques include slow crystallisation,
lack of orientation, and poor thickness control. HKUST-1 thin film is used in transistors
and sensors, and after preparation the final product must have a full coverage of the
substrate with no void spaces. When manufacturing thin films, the synthesis process
must also take coating speed, substrate temperature and the number of coating passes
into account. A pool-based active learning (PAL) and regression method was used to
efficiently guide the solution-shearing synthesis. Each iteration chose 18 diverse and
representative solution-shearing process parameters for validation and feedback, these
were composed of samples created using parameters determined by a generalised subset
design (GSD). Each sample was replicated three times and characterised using optical
microscopy to label the samples as “fully covered” or “not fully covered”, where the
substrate is visible between HKUST-1 particles. The results showed 22% of the 18 initial
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experimentally synthesised samples were fully covered. An ensemble SVM model was
trained to classify the coverage into the same two tiers, which was then used to predict
coverage for over 11 million parameter combinations in the unexplored data set. A second
set of experiments were performed to obtain thin films based on the 18 parameter sets,
with optical micrographs showing 67% of conditions having full coverage. These were used
to retrain the SVM ensemble, resulting in a final virtual parameter space predicting 13%
of parameter combinations to have full coverage. The use of active learning combined
with a solution-shearing process resulted in a final product with a large full coverage
and a minimum thickness of 2.2 µm. This work not only uses ML to predict synthesis
conditions, but also the results from each experimental stage to optimise performance,
allowing for an increased pace of material development; a key step for automating and
digitising manufacturing.

Luo et al. (2022) [18] collected data based on the CoRE MOF database, with a train-
ing data set composed of MOFs extracted from published and predominantly successful
experimental synthesis data, focusing on six relevant parameters. Random forest and
neural network were the best performers used to predict the synthesis time and tempera-
ture of MOF structures. The results were compared, showing the random forest approach
had the higher accuracy across all predicted parameters, however, the neural network
predictions will become more accurate as datasets grow, and additionally may be able to
exploit correlations between different synthesis parameters. Therefore, the neural network
has greater potential as the field develops where more complex models are expected to
outperform random forest in the not so distant future. A comparison between the expert
trial and error approach, and a ML model implementation is visualised in Figure 4.6.

Prediction of MOF synthesis conditions is a difficult task as for many cases there is
not one true solution, a whole range of conditions can lead to a successful synthesis. Some
reactions may be optimised for yield; others may be chosen for environmental or financial
cost. Despite what can be described as low R2 values for reaction temperature prediction
at 0.286, and predicted reaction time at 0.076, comparisons between the predictions of 11
human MOF synthesis experts revealed that the ML model out predicted all experts who
had an R2 value much closer to zero, even after averaging across all human estimates.
Even small correlations learned and exploited by ML modelling can help to better estimate
synthesis conditions without the availability of big data.
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Figure 4.6: A comparison of the trial and error approach versus training
machine learning models to predict synthesis conditions [18], licenced under
CC BY 4.0.

Park et al. (2022) [34] created a database of 46,701 structures from 28,565 published
papers found in the CSD MOF subset, and a PU learning algorithm was chosen to reduce
the positive bias found in the dataset. PU learning algorithms are typically used in cases
where the proportion of positive to negative data is heavily skewed, and this approach
has been used previously to predict synthesis information in inorganic materials [51].
Extracted synthesis conditions were used as positive data, and to be regarded as positive
data the entry must include composition or temperature, plus one other parameter, this
is shown in Figure 4.7. In total 3,748 pieces of extracted MOF synthesis information were
considered as the positive data, with 2,998 positive data points used in in the training
set and 750 in the test set. In-silico data generated by randomly sampling parameters
for the extracted data, was classified as unlabelled data. Randomly generated unlabelled
data totalled 1,000,000 pieces, with 900,000 used in the training set and 100,000 used in
the test set. Often, ML methods such as decision tree or SVM are used as the binary
classifier for PU learning, but in this case that approach was not appropriate and a neural
network with simple dense layers was used instead. At each iteration the binary classifier
is trained, with positive and unlabelled data in a ratio of 1:10, using the Adam optimiser
implemented using Tensorflow [52].

The model used the input synthesis conditions to predict the output crystallinity of
a structure. Final output crystallinity scores, with 1 representing conditions for high
crystalline structure and 0 indicating conditions for low crystalline structures, were de-
termined by averaging the prediction scores of the binary classifier over the total number
of iterations. The final score is denoted as ‘crystal score’ and crystallinity is classified
based on the output of the PU learning algorithm exceeding 0.5. A positive-negative
(PN learning) learning model was implemented as an alternative method to evaluate the
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performance of the PU learning model. For the test set, the recalled scores were: PU
learning at 83.1% and PN learning at 50.3%. False negatives are also low for PU learning,
but higher for PN learning.

Figure 4.7: A schematic showing the criteria used to differentiate the positive
(P) and unlabelled (U) data. Reprinted (adapted) with permission from [34].
Copyright 2022 American Chemical Society.

ML models are used in conjunction with MOF synthesis for all stages of material
design, discovery, and manufacture. These approaches highlighted in this section are
concerned with not only discovering new materials, but with discovering new synthesis
techniques for existing materials, and the outcomes of new techniques such that the yield
and crystallinity can be determined before experimental synthesis even begins to take
place. However, despite the ongoing adoption of ML there are still many limitations to
the process of applying ML to MOFs at every stage.

4.9 Current Limitations of Machine Learning for MOFs

A major factor in the chance of success for all ML is meeting sufficient data requirements.
NLP has been used to access thousands of documents within the published space but at
present, due to the lack of systematic labelling when reporting experimental synthesis,
NLP often misses critical information. With all ML algorithms, poor quality data cannot
be used to train the models, and the processed can often be referred to as “rubbish
in equals rubbish out”. Where data is omitted or incorrectly parsed, it might require
chemists to find the missing values within the literature, taking up valuable time and
resources to correct a data set so that it is suitable for use.

Mehr et al. (2020) [53] have proposed a solution to the lack of systematic reporting
of synthesis conditions. They developed a software platform that uses NLP to translate
organic chemistry literature directly into an editable code which may be used to drive
automated synthesis within a laboratory setting. Automatic literature reading has the
ability to create a universal autonomous workflow, this is demonstrated in Figure 4.8.
There is currently a plethora of robotic solutions, but they lack a common standard
architecture, and often struggle to adapt to new synthetic methods. The standard of
recording and reporting of new chemical compound synthesis varies greatly and procedures
are typically explained in ambiguous and incomplete passages of text, relying on expert
chemical intuition to bridge the gaps. The quality of reaction database data therefore
can be sporadic, and this presents many problems in terms of reproducibility and for the
development of reliable digital methods that aim to predict synthesis properties for new
materials and functionalisation.
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Figure 4.8: A universal system for the automatic execution of chemical syn-
thesis from literature. Extraction of the procedure is followed by an algorithmic
process for producing the code that conforms to a standard hardware and soft-
ware architecture. Manual error correction and simulated execution ensure
reliability and safety [53].

This leads the discussion to the importance of ensuring that there is an availability
of high quality training data to give a ML model the best chance of making reliable
and accurate predictions. Most published work reports only successful experiment and
synthesis data, particularly in the field of MOFs, however zeolite studies are noted as
being particularly good for reporting both successful and failed experiments [39]. In
cases where most failed procedures are confined to personal notes and lab books, the use
of purely successful data found in published literature and databases may lead to bias
within training sets.

Moosavi et al. (2019) investigated a robotic synthesis approach guided by ML for
HKUST-1 synthesis optimisation [54]. This approach enabled the variation of multiple
synthesis conditions such as solvent composition, temperature, and method (e.g. conven-
tional heating, microwave, electrochemistry) and enabled the recording of both successful
and failed data. This regenerated experimental data was used to optimise the ML mod-
els with consideration towards the removal of potential bias. Xie et al. (2020) [29] and
Raccuglia et al. (2016) [40], took advantage of archived lab notebooks holding all ex-
perimental results in an attempt to overcome bias, however this approach used real time
failed experimental output data. These techniques worked well on a small scale, but for
larger datasets, alternatives must be proposed. Park et al. (2022) [34] worked to overcome
the lack of negative data available, with regards to the crystallinity of MOFs, by using
PU learning algorithms. Although these are intuitive solutions to maximise ML poten-
tial, new publications should endeavour to ensure the suitability of data for digitisation
and chemists should begin to realise the importance of all experimental data and begin to
publish all results, including those of failed synthesis. Moosavi et al. (2019) [54] produced
a public webpage on the MaterialsCloud as part of the work on HKUST-1. The aim of
this web application is to involve a large number of groups involved in MOF synthesis
to collective report failed or partially successful experiments, offering the potential to
change the way the community approaches synthetic chemistry. Chemists can document
all synthesis reactions, with public access to all reaction data, increasing the amount of
negative data available for training.

Lastly, the development of automated systems that may run reactions and create
molecules are often hindered because of a lack of a machine readable standard within
experimental publications. Glasby et al. (2023) [21] also suggested that publications
introduce new standardised submission templates for material synthesis articles so that
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the data is presented in a suitable manner for reliable and accurate text mining and
parsing tools. Taking this approach would significantly simplify the parsing techniques
for all NLP approaches, and simple methods can be used to extract key parameters from
tables of well presented data without the need for continuous re-configuration of parsers
or the current requirement for blacklists.

4.10 Automated Synthesis and Digital Manufacturing

Digital manufacturing aims to use previously collected data to streamline synthesis, re-
duce risk, and locate the most viable reaction pathways and cost-effective materials for
a given material. This involves the use of a database in conjunction with the material
property data, NLP for accessing published reactions, and ML for property and synthesis
prediction. King et al. (2009) [55] was one of the first publications to acknowledge the
influence of computation in the scientific process, and their development of Robot Scien-
tist “Adam” was used to generate genomic hypotheses about yeast, which were confirmed
with manual experiment. In the years following, there has been a significant influx in
the number of publications focused on automated synthesis, these include: Burger et al.
(2020) [56], who created a mobile robot that ran autonomously for eight days, driven
by a Bayesian search algorithm to search for improved photocatalysis for hydrogen pro-
duction from water, Sun et al. (2021) [57], who developed a meta-learning model to
predict the adsorption loading of materials over a range of temperatures and pressures,
and Domingues et al. (2022) [58], who chose genetic algorithms to obtain conditions that
provide excellent crystallinity and yield for the microwave based high-throughput robotic
synthesis of Al-PMOF.

Pyzer-Knapp et al. (2021) [59] used Bayesian optimisation, a branch of ML, in com-
bination with an energy structure function map (ESF) to aid in the discovery of porous
crystals for methane capture. The molecules T2, P2, and T2E, as seen in Figure 4.9
were chosen and screened for methane deliverable capacity, as they have been predicted
to have stable crystal structures. ESF maps are very computationally expensive for this
particular application due to the large energy range of predicted crystal structures, plus
the effect of solvent stabilisation and methane adsorption calculations. It took around
800,000 CPU hours to compute an ESF map for a single molecule (T2E) in this study.

Bayesian optimisation was used to selectively acquire energy and property data to gen-
erate the same levels of insight as ESF at a fraction of the computational cost. Without
Bayesian optimization, the generation of the energy structure maps are highly computa-
tionally expensive and computational cost increases with complexity, a particular draw-
back for porous materials where the energy range across the crystal structure is extended
by solvent templating. Bayesian optimisation techniques including Thompson sampling
for parallel optimisation, and greedy sampling, were compared across the three systems,
with a clear preference for the Bayesian approach in the T2E and T2 systems. Using
this technique, an enormous 544,955 hours of computational time were saved. In cases
where density functional theory (DFT) calculations would be required for lattice energy
rankings, then the savings would become even greater. During this time saved, many
more candidate molecules can be screened, increasing the likelihood of finding better can-
didates for methane uptake in the same duration, although it is important to remember
that as with all computational accelerations using an ML approach, there may not be
the same completeness to the study compared with using the ESF mapping approach as
some parameters may not have been calculated by ML models.
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Figure 4.9: Skeletal structures of T2, P2, T2E. These specific structures are
used by Pyzer-Knapp et al. [59] as example materials in their study to acceler-
ate the computational discovery of porous solids through improved navigation
of ESF maps, licenced under CC BY 4.0.

The application of ML in synthesis and digitisation of materials production are rel-
atively new and exciting fields of research. One particular area of interest is focused on
automated synthesis improvement, also referred to as flow chemistry, where the design
of synthesis systems is continually improved using synthesis steps extracted from liter-
ature as inputs, and an ML approach repeatedly alters the inputs based on the output
data. This continual improvement approach centred around ML data allows for minimal
physical input from chemists during reactions, and it is hoped that this technique can
outperform the reaction modifications made by chemists from their intuition alone. This
powerful new approach has the added bonus of freeing up time for chemists to continue
research, instead of being required to complete laborious and repetitive experiments.

Granda et al. (2018) [60] noticed the progress in automated chemistry, online ana-
lytics, and real-time optimisation, suggesting it was possible to construct robots which
can autonomously explore chemical reactivity. They designed, built, and programmed an
organic synthesis robot to autonomously perform reactions based on the Suzuki-Miyaura
reaction, comprising of inline spectroscopy, real-time data analysis, and feedback mecha-
nisms. In this experimental setup, the robot was configured to perform up to six experi-
ments in parallel, producing up to 36 sets of successful and failed experimental data each
day for use with ML. A schematic of the feedback loop which was used in conjunction
with the experimental setup can be seen in Figure 4.10, showing the use of ML to aid in
the process of continual reaction improvement. For almost all experimental techniques
investigating chemical reactivity, generating data is time-consuming and cost intensive,
employing ML to make more educated guesses at each iteration is a significant step to
better discovering new pathways.
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Figure 4.10: Schematic of the feedback loop for data generation for the
Suzuki-Miyaura reaction [60], licenced under CC BY 4.0.

Moosavi et al. (2019) [54] created a ML methodology focused on capturing chemi-
cal intuition from a set of partially failed MOF synthesis attempts, to find the optimal
synthesis conditions for yielding the highest surface area HKUST-1 product. Synthesis
data was gathered using a genetic algorithm (GA), a robust global optimisation algorithm
for searching complex space, and the optimal conditions were synthesised, including the
largest BET area HKUST-1 to date. After 120 failed and partly successful experiments
which did not achieve the largest BET area, a random decision forest was used to assess
the relative importance of synthesis variables to determine their impact on crystallinity
and phase purity. The results found that temperature change had up to three times the
impact when compared to adjusting the reactant ratio, this is considered to be ‘chemical
intuition’ and ML allows for the transfer of this knowledge into subsequent experiments.

Weighting of the 9 model parameters using the previously determined chemical knowl-
edge shrinks the chemical space of HKUST-1, and can be transferred to a new synthesis.
Conditions for synthesis of Zn-HKUST-1 were predicted across a weighed set of 20 diverse
conditions, and 2 methods of synthesis for Zn-HKUST-1 that resulted in crystals were
revealed. These 20 intuition based samples would need to be replaced by an estimated
5,000 random samples to maintain the same sampling accuracy. While the work was
limited to a small subset of MOFs (HKUST-1), the quantification of synthesis variables
can be applied to other future synthesis, particularly in the case where the chemistry is
too specific for exact conditions be transferable.

Perhaps sensibly, Wilbraham et al. (2020) [61] suggest that the digitisation of chem-
istry is not simply about implementing ML or AI to process chemical data, nor is it
about the development of increasingly capable automation hardware, but that it should
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be focused on unambiguous development of a chemical state machine that uses ontology
to connect precise instruction sets with hardware performing chemical transformations.
Setting a universal standard should result in an increase in collaboration, reproducibility,
and safety while decreasing the labour required to make new compounds and broaden
chemical space. Similar to the proposal by Mehr et al. (2020) [53], the authors seek to
create a universal programming language that is machine readable, with the ability to
be exported and executed on robotic platforms, and it should facilitate the unambiguous
dissemination of these procedures. A shift from fixed-configuration synthesis machines to
a robotic platform is required to enable the processing of reactions whilst collecting real
time data. In fact, the most recent developments within automation have even reached
beyond flow chemistry with a focus on bespoke workflows no longer exclusive to synthe-
sis procedures. As technology in this field develops, digital chemical robot systems will
require feedback from simple sensors as well real time online analytics to navigate pro-
cess space autonomously and enable efficient synthesis optimisation and novel reaction
discovery.

Mehr et al. (2020) [53] also investigated a system for autonomous workflow combined
with NLP. To use batch synthesis for digitisation of chemistry, the robot’s hardware must
be connected to practical synthesis by an executable hardware-independent programming
language, this allows for the execution of laboratory synthetic procedures without man-
ual adaptation or modification. The developed system was designed to be accessible to
all, with the goal that instructions should be able to be translated between chemistry
and robot without loss of information. This is achieved by allowing users to directly
execute procedures imported from literature on an automated synthesis platform such as
the Chemputer, a potentially crucial step for large scale digitisation of solid state mate-
rial production. The authors devised a new chemical programming language, Chemical
Description Language (XDL), allowing users to encode procedures without ambiguity,
and which represents syntheses as sequences of processes. The system includes a chem-
ical integrated development environment (ChemIDE) which enables the importation of
procedures from literature using a NLP called SynthReader, and although this is useful
for mining vast literature datasets, a machine-readable representation of procedures with
unambiguous details is required, including strict tagging of chemical entities, locations
of reagents, implicit process details, and an environment in which the user can manually
edit the output. Currently, this system is constrained by the capability of SynthReader,
however it has successfully tagged relevant text entries, converted them to a list of ac-
tions, added process information in an XDL format and synthesised target modules upon
execution of the aforementioned XDL file on an automated platform.

The Crystputer, in a similar vein of digitisation to the Chemputer, is a cyber-physical
system developed by Zhao et al. (2021) [62] which has been developed to enable the
digital manufacture of nanocrystals via convergence between digital and physical systems.
The synthesis process explored in this work is the creation of colloidal Au nanocrystals.
The system combines the physical modular set up containing pipette modules and a
6-axis robotic arm, with an ultra-sensitive camera, performing over 2,300 experiments
autonomously to develop an Au nanocrystals genome. The process begins with NLP, and
a python-based algorithm scans literature to design the experiments based on reported
parameters and conditions, these are then exported to the robotic arm and the parsed
experiments are conducted on the autonomous physical system. Data is collected and used
to train a ML model to pinpoint the relationships between the original synthesis conditions
and the product’s properties, which can then be used to aid in the retrosynthesis and
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scale up of targeted Au nanorods. The Crystputer is yet another development which
contributes further to the advancement into automation of production, facilitating the
shift of data-driven materials innovation to intelligent manufacturing.

Salley et al. (2020) [63] developed an automated robotic platform for the synthesis of
gold nanoparticles based on a Darwinian approach. Genetically inspired optimisation has
been used in a range of applications already such as catalysis and in light emitting ma-
terials, although not for autonomous synthesis. Here, a genetic algorithm approach was
used to mimic natural material evolution for a robotic platform in an attempt to optimise
the production of gold nanoparticles over many cycles by discovering new synthesis condi-
tions for known nanoparticle shapes. Over three independent cycles of material evolution
the system produced spherical nanoparticles, rods, and octahedral nanoparticles by using
optimised rods as seeds.

The system begins with an established spectral target for spherical nanoparticles.
Synthesis conditions are extracted from published literature, and these spherical particles
are synthesised to obtain a target for the automated system. These spheres were analysed
using in-line UV spectroscopy and the platform was given the next set of reagents (which
are estimated and optimised by the genetic algorithm) to synthesise nanorods, alongside
a new spectral target. These materials can be used as seeds for further cycles, in this
study the authors set their own targets for this stage rather than choosing a literature
value. This automated closed loop approach has created reliable known materials without
bias, and can be used to discover complex nano-constructs using desired spectroscopic
responses. This methodology offers many benefits compared with a manual approach
including automation, speed, safety, and reproducibility (via the use of a digital code in
an automatic platform) in addition to providing researchers with a new tool to aid in
the understanding of nanoparticle formation and in the development of new application
areas.

Epps et al. (2020) [64] integrated ML with flow chemistry to automate the synthesis
of inorganic perovskite quantum dots (QDs). By digitising the process, the self-driving
Artificial Chemist is able to create made to measure inorganic QDs from eleven preci-
sion tailored QD synthesis compositions that were obtained without prior knowledge,
within 30 hours, and using less than 210 mL of QD starting solution. Artificial Chemist
was pre-trained to use new precursors to further accelerate the synthetic discovery of
QD compositions without user selection of experiments, and further enhance the opto-
electronic properties of the in-flow synthesised QDs. This fully autonomous closed loop
experiment selection method expedited the tedious process of synthetic path discovery
at a fraction of time and material cost when compared with user dependent experiment
selection, the full process is shown in Figure 4.11.

The Artificial Chemist uses plug-and-play fluidic micro-reactors, which are capable
of autonomous synthesis across multiple target parameters simultaneously, to explore
the chemical space of colloidal QDs, learn synthesis pathways, identify composition and
relevant routes, transfer knowledge to experiments, and continually synthesise rapidly
optimised QDs on demand. This QD technology utilises UV absorption and photolu-
minescence monitoring alongside a real-time ML based Bayesian optimisation approach.
Artificial Chemist studied over 1400 reactions with eleven target values across eight dif-
ferent optimisation algorithms. The final technique comprises of a central control system
which responds to a constantly updated ensemble neural network-based Bayesian optimi-
sation algorithm with intelligent decision making.
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Figure 4.11: Process flow diagram for the automatic synthesis of quantum
dots from initial random experimentation, using flow synthesis and real-time
data processing, to new experimental selection [64].

Abdel-Latif et al. (2021) [65] continued the focus on digital and autonomous manufac-
turing, with experimentation into nanocrystal lead halide perovskite (LHP) QD synthesis.
They identified the optimal formulation of emerging inorganic LHP QDs, which with their
vast colloidal synthesis universe and multiple synthesis/post synthesis processing param-
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eters, was previously a challenging undertaking for material- and time-intensive batch
synthesis strategies. A modular microfluidic synthesis strategy, integrated with an AI-
guided decision-making agent for intelligent navigation through the complex synthesis
universe of LHP QDs with 10 individually controlled synthesis parameters and an acces-
sible parameter space exceeding 2 × 107, was introduced. The developed autonomous
microfluidic experimentation strategy rapidly identified the optimal formulation of LHP
QDs through a two-step colloidal synthesis and post synthesis halide exchange reaction.
In this study, the use of two in-series microfluidic reactors enabled continuous bandgap en-
gineering of LHP QDs via in-line halide exchange reactions, and using an inert gas within
a three-phase flow format resulted in accelerated closed-loop formulation optimisation
and end-to-end continuous manufacturing of LHP QDs. These QD crystals have similar
applications to certain MOFs, with fields including optoelectronics and photovoltaic de-
vices, as a result of their high photoluminescence yield. An example of the reactor design
used to produce these LHP QDs in closed loop formulation is shown in Figure 4.12.

This project improved yield by varying the starting concentration, volumetric injec-
tion ratio, halide salt concentrations, and compositions to improve peak emission energy.
Current production of the crystals is achieved via a batch flask colloidal synthesis process
which can lead to slow production as well as a lack of consistency within final products.
Large scale production of nanocrystals requires large reactor designs, synthesis modifi-
cations, and oversight for prevention of defects at nanoscale. By integrating AI with
modular microfluidic reactors for synthesis of the crystals, including 3 precursor models,
2 in-series microfluidic reactors, and an online spectral characterisation model, the system
was designed to have an autonomous run time of 24 hours. To allow for the closed loop
manufacturing, optical properties were monitored in real time, and fed forward to an en-
semble neural network. After multiple runs were conducted, ten optimised products were
identified within a total of 250 experiments, demonstrating end to end manufacturing.

Figure 4.12: Schematic of the reactor design for the continuous synthesis of
lead halide perovskite quantum dots [65], licenced under CC BY 4.0.

Chang et al. (2020) [66] also understood the necessity of closed loop systems for digi-
tisation, and they developed a method using a system called the autonomous research
system (ARES) in combination with Bayesian optimization to improve the growth rate
of carbon nanotubes (CNT). Two comparable Bayesian optimization models, to allow for
full evaluation, were used to validate the use of ML in CNT growth rates. In the initial
stage, seed experiments were manually conducted and analysed, these consisted of a series
of input and output variables: total system pressure, flow rate of ethylene, flow rate of
hydrogen, total water vapour, and growth temperature. Following this stage, more mean-
ingful variables were calculated for the algorithm including partial pressures of ethylene
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and partial pressures of hydrogen, followed by a final critical output of maximum growth
rate. Model BO-1 was seeded using 25 experiments which were manually selected and had
been confirmed to produce successful growth. In comparison, model BO-2 was randomly
seeded from a random selection of 48 unbiased growth conditions. After receiving seed
data, the ARES conducted the experiment and the BO-1 and BO-2 models then suggested
new growth conditions. ARES executed the new experiment and updated the data set,
performing autonomous improvement in a closed-loop fashion. Overall, BO-1 and BO-2
met the goal of improved growth with both converging within 100 experiments, with a
growth rate increase of up to a factor of eight.

Moving on from the conversion of synthesis processes from batch approaches to contin-
uous manufacturing, it must be noted that modular systems allow for the easy conversion
to adaptable industrial and commercial scale production. However, scaling up a process,
if ill-designed, may lead to inefficient production and a larger than desirable proportion
of defective materials. Published literature contains thousands of synthesis processes for
ZnO, although very few are able to be scaled up to industrial scale without high costs or
a compromise in quality. These two key parameters; cost and performance are a necessity
when looking at the feasibility of manufacturing materials.

Jose et al. (2021) [67] considered cost and performance when designing their annular
micro reactor synthesis (AMS) system for the large scale (kilograms per day) produc-
tion of ZnO. The Thompson sampling efficient multi-objective (TSEMO) algorithm was
used to increase the quality of the product and process using a simultaneous optimisation
approach with limited experimental evaluations. Mechanistic insights were determined
following the characterisation of post-optimisation materials, which was assessed by com-
paring development time, safety, complexity, and scalability to known continuous and
batch processes. This algorithm used the data obtained from 25 papers, which were
surveyed for wet-chemical precipitation methods compatible with the AMS approach, to
determine the synthesis variables. These variables were screened to reduce the number
of redundant variables and establish conditions for optimisation, producing a total of 26
different conditions for synthesis. Three iterations of TSEMO were performed and 20
experimental conditions were generated. TSEMO then fitted a Gaussian surrogate model
for each objective and the next set of experimental conditions were computed to maximise
the objective, these conditions were repeated until the maximum number of iterations had
been reached. If optimal conditions had not been reached, then the previous steps must
be repeated. TSEMO required six experimental steps per iteration, a total of 18 experi-
mental conditions. The molar concentration reached an optimal condition after only one
iteration, this indicated that high concentration can produce high performance and yield,
a fact not previously realised in the literature.

It is clear that the trend of combining real-time data analysis, ML, and AI into syn-
thesis processes has spread through many areas of materials science. Chemists in all
fields from QD manufacture to MOFs are utilising the power of closed-loop processes and
implementing systems of continual improvement combined with product feedback data.

4.11 Digital Manufacturing of MOFs

The previous studies worked to improve the real-time data collection for a variety of
different materials, this can be seen to have provided a foundation for progression in
the digitisation of MOF production. For many chemists looking to produce MOFs au-
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tonomously, the first step is often a conversion from the batch process to a continuous one
for use in flow chemistry. Batch processing may be difficult to scale up, due to problems
with hazards and increased costs and further possibilities of batch to batch error and low
reproducibility.

In a contribution focused on the scalability of MOF nanosheets, Jose et al. (2020) [68]
suggested that for MOF synthesis to be scalable, while maintaining sufficient precision,
improvements to continuous reactors must be made. Current techniques are not scalable
nor precise enough to use at industry scale and the characterisation of 2D MOF nanos-
tructures is problematic due to post-processing methods. In this work, copper benzene
dicarboxylic acid (CuBDC) nanosheets were synthesised using an annular flow micro reac-
tor with accelerated precipitation kinetics. Previous methods use liquid-phase, hydrother-
mal conditions in batch reactors requiring long reaction times and elevated temperatures,
this method is often hazardous, expensive, and imprecise above kilogram scales. Efficient
synthesis is challenging due to difficulty in mixing, the fast kinetics of particle growth,
and anisotropic growth. Micro reactors can control mixing conditions tightly and pro-
vide fast and continuous mixing, although at high saturation reactor clogging can become
a problem. This study overcame the challenges of ton scale MOF nanosheet synthesis
and developed a more scalable technique for CuBDC, using trimethylamine at ambient
temperature and pressure, by utilising a continuous approach in recently developed AMS
which enabled rapid mixing and uniform shear. The synthesised monodispersed CuBDC
nanosheets were analysed using XRD and infrared spectroscopy to determine particle size
distributions. The final process showed an improved efficiency of up to 105 times the
previous batch production techniques.

In another MOF synthesis contribution, Shukre et al. (2022) [69] studied the crys-
tallinity, yield, and precipitation of 45 sample variations of HKUST-1 with the aim to
convert the synthesis method from a batch process to a continuous one. The batch pro-
cess was initially used to pinpoint the conditions for optimal synthesis of HKUST-1, and
an optimised reaction was found which could be used in flow conditions with a milliflu-
idic droplet based reactor. Based on a detailed comparison of samples using both batch
and flow techniques, the primary conditions identified for optimisation were the residence
time, temperature, and the diameter of the inner tubing. The flow process was able to
continuously synthesise HKUST-1, with high quality crystals that were comparable to
the output of a traditional batch synthesis process. The novel configuration, a variation
on the millifluidic droplet reactor, was able to synthesise HKUST-1 within a few minutes
of residence time, and has shown there is great potential in the scale-up synthesis of this
MOF alongside the opportunity to investigate the process of other MOFs in a similar
reactor setup. Figure 4.13 shows the experimental setup of the millifluidic reactor and
the additional equipment required to set up the new synthesis technique for HKUST-1.
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Figure 4.13: Setup for continuous synthesis of HKUST-1 using the milliflu-
idic reactor. The equipment as shown above: 1. Syringe pump, 2. Silicone oil
in continuous phase, 3. Reactant solution in dispersed phase, 4. ETFE Tee,
5. 3D printed anchor, 6. Grooved aluminium block, 7. Hot plate, 8. Product
collection vial [69], licenced under CC BY NC ND 4.0.

Although the previous studies are not strictly focused on the digitisation of the MOF
synthesis process, the conversion from batch to flow chemistry opens the door for future
studies to implement a digital approach more easily. To shift MOF synthesis towards
digitisation of production, availability of data is paramount. A review of MOF sustain-
ability by Julien et al. (2017) [70] praised the work completed by various chemists on
their adaptation of ML for data prediction, particularly using the predictive power when
approaching the development of sustainable manufacturing procedures that are conscious
of environmental impact. Whilst MOFs may often be seen as the key to a sustainable
future, particularly in the field of carbon capture, the synthesis of these structures is not
free from environmental issue. As the demand for MOFs for use in “green” applications
increases, these environmental factors will become amplified as there are several stages
of synthesis that have the potential to cause difficulty in scale-up for commercialisation.
High energy inputs, use of water as a reaction media, unsafe building blocks, cost of raw
materials, and a requirement for bulk petrochemically-derived solvents all have the poten-
tial to dismount any MOF scale-up process. The ongoing desire to commercialise MOFs
requires an urgent address of these challenges, introduction of ML and the digitisation
of processes for non-MOF materials has already proved that a synthesis pathway can be
monitored for product yield alongside developing sustainable synthesis properties, and
this should be extended to MOFs.

In one of currently very few explicit MOF digitisation approaches, Xie et al. (2021)
[71] combined robotic synthesis with a Bayesian optimisation algorithm to accelerate the
synthesis of ZIF-67 using direct laser writing apparatus, precursor injecting, and Joule-
heating components. The MOF synthesis reaction was automated upon the feeding of
Bayesian recommended reaction parameters without prior knowledge, and the platform
continually improved the crystallinity of ZIF-67 within limited iterations. Figure 4.14
shows the approach pathway of semi-automated robotic synthesis within this study. The
dependencies showed molar ratio, precursor volume, and DC voltage were much more
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significant factors in improving crystallinity than the duration of reaction. This study
resulted in the creation of a robotic platform that enabled semi-autonomous synthesis,
with lower reagent consumption and time, and involved minimal human intervention dur-
ing production. The process was not completely autonomous due to manual composition
measurement although this could be overcome through the development of autonomous
X-ray analysis and real time feedback sensors throughout the platform. Other limitations
of this approach included the batch-to-batch manufacturing technique, and a non-closed
loop optimisation which restricts the development of the robotic platform. To transfer
these techniques to the future of automation requires the incorporation of a roll-to-roll
approach, accompanied by in situ characterisation, automatic data analysis, and self-
optimisation.

Figure 4.14: Process flow diagram for the automated synthesis of ZIF-67,
showing the use of Bayesian optimisation (BO) to make continual variation
to the chosen variables after the output analysis is performed. Reprinted
(adapted) with permission from [71]. Copyright 2021 American Chemical So-
ciety.

In another MOF based study, a variation of ZIF-8, after mineralisation with poly(ethylene
glycol) (PEG) in the presence of bio-macromolecules, was synthesised through an au-
tonomous computer controlled system by Wu et al. (2022) [72]. An automatic synthesis
system prepared PEG mineralised ZIF-8 composite particles based on flow chemistry with
microfluidic chips produced using femtosecond laser micromachining. Ideally designed for
use by non-specialists, who will be able to obtain target ZIF composites by selecting an
input parameter, as the process is able to monitor and regulate itself. After inputting
the target size, the system calculates required concentration of reagents, and pumps are
instructed to mix the set reactants. The synthesis reaction is monitored automatically by
an in situ UV- visual spectrometer to check the size of synthesised ZIF-8 particles and
when the calculated results are equal to the experimental results, the reaction is ended and
the crystals can be harvested as final product. The authors also assessed the possibility
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of remote control of the system, with successful control from a building 20 km away. Re-
mote control of manufacturing is an advantage of production digitisation, opening up the
possibility of manufacturing server rooms that would allow small, lower budget research
groups without access to expensive equipment to take advantage of digital manufacturing
in their research.

4.12 The Future of Digital Manufacturing

Although ML is now a well-established field in most areas of data science and computing
—with many commercial uses that people around the world benefit from every day—
its use within the realm of material discovery and chemicals manufacturing is relatively
new. Integration of ML within the solid state nanomaterials field has seen some signifi-
cant progress, particularly since the beginning of the decade with multiple articles in high
impact publications reporting the successful prediction of novel, sustainable, or economi-
cally improved synthesis conditions. To see continued advancement of these increasingly
valuable synthesis predictions, future work must focus on overcoming certain limitations.
For example, the lack of consistency in the reporting of results and synthesis conditions,
alongside the lack of data for unsuccessful experiments, poses one of the most significant
challenges. Without an easily accessible and abundant high-quality data source, the ac-
curacy of predictions is hampered and the ML discovery process slows down. The shift
towards open-source data repositories within the scientific community has seen the idea
of collaboration begin to take off and boost the progress of computational investigation,
making this area of research much more accessible, affordable, and environmentally con-
scious. With websites, GitHub resources, video guides, and helpful documentation all
developed to increase the access to data, algorithms, and prediction tools, the use of ML
within chemical space is set to accelerate.

Additionally, the introduction of knowledge graphs, graph-based reaction optimisa-
tion, and digital twins are a good step forward in producing the knowledge required
to discover new or missing knowledge, enable rapid pathway predictions, and evolve the
automation of the laboratory [73, 74, 75]. For the large scale integration of ML and digiti-
sation for synthesis of MOFs, ML algorithms should begin to provide high quality outputs
for the next stage of production. These high quality and reliable algorithm outputs are
key to provide sufficient data for continuous manufacturing and commercialisation of oth-
erwise inaccessible materials, offering essential information to maximise the potential of
the input resources, synthesis process, and final product. The predicted synthesis condi-
tions will allow manufacturers to compare the resources required for each structure from
input to output, helping to ease the monetary and environmental cost of production.
Automated analysis of structure properties, crystallinity, cost, and environmental effects
will play a key role in the sustainable manufacturing of these highly functional materials.

Many of the concepts in this chapter can be combined to achieve processes that in-
corporate real-time adaptability to enable dynamic responses to experimental data and
variation in manufacturing conditions. This approach is essential to optimise future syn-
thesis pathways and ensure reproducibility. Flow chemistry systems with automated
feedback loops, monitored by artificial intelligence, allow for data-driven optimisation by
implementing changes in rates, concentrations, and reaction times instantaneously. The
ML models can predict outcomes of a synthesis step given the feedback loops and suggest
these adjustments before failures are likely to occur, as can the virtual replication using a
digital twin to allow pre-emptive adjustments to avoid suboptimal production. Real-time
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adaptability in MOF manufacturing can transform the field by combining the precision
of automation with the flexibility of dynamic decision-making, driving more efficient and
more scalable production of advanced materials such as MOFs.

It should be noted that as novel manufacturing techniques are explored with an in-
creased use of digital processes, not all MOFs will find suitable pathways for large scale
synthesis. Due to the complexity of the nanocrystal structures of a subsection of MOFs,
large scale synthesis is unfeasible and unnecessary. Additionally, the rarity of certain
transition metals on Earth limits the scale at which certain materials could be produced,
these MOFs experience significant costs for materials alone even at kilogramme levels with
certain physical constraints limiting the potential of more complex combinations. Recent
world events have highlighted many problems regarding the adaptability of production
processes when facing fluctuations in demand and unreliable supply chains, it is impera-
tive to assess the vulnerability of the manufacturing pathway such that essential materials
are not restricted so that when digitising the synthesis processes it is possible to increase
resilience and efficiency. However, the full potential of digitisation cannot be reached
until sufficient, high-quality data is accessible, although large-scale global events, such as
COVID-19 and the subsequent disruption to global supply lines cannot be predicted.
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Chapter 5

DigiMOF: A Database of
Metal-Organic Framework
Synthesis Information Generated
via Text Mining

5.1 Publication Information and Paper Contributions

This paper has been published as an article in the American Chemical Society’s journal
Chemistry of Materials.

In this publication I, the candidate, wrote the manuscript with equal contributions
from Kristian Gubsch, Rosalee Bence and contributions from Rama Oktavian, Kesler
Isoko, and Seyed Mohamad Moosavi, under the supervision of Professor Joan L. Cordiner,
Dr Jason C. Cole, and Dr Peyman Z. Moghadam.

5.2 Abstract

The vastness of materials space, particularly that which is concerned with metal-organic
frameworks (MOFs), creates the critical problem of performing efficient identification
of promising materials for specific applications. Although high-throughput computa-
tional approaches, including the use of machine learning (ML), have been useful in rapid
screening and rational design of MOFs, they tend to neglect descriptors related to their
synthesis. One way to improve the efficiency of MOF discovery is to data mine pub-
lished MOF papers to extract the materials informatics knowledge contained within jour-
nal articles. Here, by adapting the chemistry-aware natural language processing tool,
ChemDataExtractor (CDE), we generated an open-source database of MOFs focused on
their synthetic properties: the DigiMOF database. Using the CDE web scraping pack-
age alongside the Cambridge Structural Database (CSD) MOF subset, we automatically
downloaded 43,281 unique MOF journal articles, extracted 15,501 unique MOF materials
and text mined over 52,680 associated properties including synthesis method, solvent,
organic linker, metal precursor, and topology. Additionally, we developed an alternative
data extraction technique to obtain and transform the chemical names assigned to each
CSD structure in order to determine linker types for each structure in the CSD MOF
subset. This data enabled us to match MOFs to a list of known linkers provided by
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Tokyo Chemical Industry UK Ltd. (TCI) and analyse the cost of these important chem-
icals. This centralised, structured database reveals the MOF synthetic data embedded
within thousands of MOF publications and contains further topology, metal type, acces-
sible surface area (ASA), largest cavity diameter (LCD), pore limiting diameter (PLD),
open metal sites (OMS), and density calculations for all 3D MOFs in the CSD MOF
subset. The DigiMOF database and associated software are publicly available for other
researchers to rapidly search for MOFs with specific properties, conduct further analysis
of alternative MOF production pathways and create additional parsers to search for other
desirable properties.

5.2.1 Keywords

Biological databases, Chemical synthesis, Mathematical methods, Metal-organic frame-
works, Metals

5.3 Introduction

Metal–organic frameworks (MOFs) are a class of crystalline materials consisting of a
lattice of metal ions co-ordinately bonded by organic linkers. MOFs are well known for
their high surface areas and exceptionally tunable properties, which enable their potential
application in areas including gas storage [1, 2, 3, 4, 5, 6], sensing [7, 8, 9, 10], separations
[11, 12, 13, 14, 15], drug delivery [16, 17, 18], and catalysis [19, 20, 21, 22, 23]. Since
the first MOFs were synthesized in the 1990s, thousands of MOFs have been produced at
a laboratory scale. As of 2023, more than 100,000 MOF structures have been reported
in the Cambridge Structural Database (CSD) [24, 25]. The sheer volume of distinct real
MOF materials poses significant challenges for screening and isolating the best candidates
for a given application: a typical problem of finding a needle in a haystack. To some
extent, this has been counteracted by the use of high-throughput computational screening
and machine learning (ML) for the elucidation of structure–property relationships, in
particular for gas adsorption and separation properties of MOFs [26, 27, 28, 29, 30, 31, 32].
Given that these screening methods tend to neglect synthesis data, the identification of
economical and sustainable synthesis routes has remained largely a manual process, and
clearly, relying on experimental trial-and-error and serendipity to develop MOFs is costly,
slow, and unreliable. While ML has so far been successfully applied to MOF synthesis
using failed experimental data [33], to address these challenges, we propose the use of high-
throughput text mining to collect MOF synthesis data in a single resource and to aid the
design and discovery of more practical MOFs by valorizing their synthesis information.

Most chemistry literature is published as unstructured text, which makes manual
database creation cumbersome, time-consuming, and error prone. To address this prob-
lem, Swain and Cole developed ChemDataExtractor (CDE) to automate the extraction
of chemical data from research articles and patents via text mining [34]. To date, CDE
has been deployed to automatically assemble databases of magnetic materials [35, 36],
battery materials [37], UV/vis absorption spectra [38], hydrogen storage and synthesis
applications [39], and nanomaterial synthesis [40, 41, 42]. While CDE has been used to
text mine both organic and inorganic chemistry literatures, it has yet to be applied to
MOFs, possibly due to challenges presented by the diverse nature of their building blocks
and complex synthesis techniques. To the best of our knowledge, Park et al.’s text mining
software was the first work which enlisted text mining to scrape MOF-related data such as
pore volume and surface area [43]. More recently, Luo et al. [44] developed an automatic
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data mining tool using the CoRE MOF database [45], alongside the web-scraping tool
Puppeteer (https://pptr.dev) to text mine 6099 journal articles. These were then an-
alyzed using ChemicalTagger software [46] to extract metal sources, linker(s), solvent(s),
additives, synthesis time, and temperature. A further recent submission from Park et
al. data mined 46,701 MOFs to extract synthesis information from 28,565 papers using a
joint ML/rule-based algorithm [47].

The CSD MOF subset contains comprehensive structural information about MOFs;
however, the data related to their synthesis is scarce and inconsistent. Here, we text-mined
the CSD MOF subset and developed rule-based MOF compound name and property
parsers within CDE to automatically generate a database of MOF synthesis data, i.e.,
the DigiMOF database, to facilitate digital transformation of MOFs’ synthesis protocols.
We envisage that DigiMOF will allow next-generation high-throughput screening and
ML approaches to take more circumspective consideration of the synthesis information.
These new features will allow MOF scientists to rapidly search for MOFs associated with
specific precursors, topologies, organic linkers, and synthesis routes, offering a platform
which facilitates screening and identification of sustainable and scalable materials. For
each MOF compound, its corresponding DOI is also included in the database so users can
access the publication where it was first reported. We highly encourage users of DigiMOF
to build upon this foundational work and integrate additional MOF property extraction
capabilities into the adapted CDE to expand or tailor the database according to their
own research requirements.

5.4 Property Identification and Parsing

The principal challenge in developing text mining parsers is to identify key MOF prop-
erties for data extraction. Initially, we conducted an extensive review of the existing
literature to select properties that are most indicative of MOF scalability and ease of syn-
thesis. Given the widespread interest in MOF chemistry, it is somewhat surprising that
only a few MOF technoeconomic assessments (TEA), with a focus on production, have
been carried out. For example, DeSantis et al. [48] demonstrated that switching from
traditional solvothermal synthesis techniques to more novel, less solvent-intensive path-
ways such as aqueous or mechanochemical routes could reduce MOF production costs by
34–83%. Increasing the MOF yield by a factor of 30% had a negligible impact on pro-
duction costs in comparison to using a less solvent-intensive pathway. In another study,
Luo et al. [49] compared traditional solvothermal synthesis with an aqueous pathway to
produce UiO-66-NH2 and found that omitting solvents from the synthesis of this MOF
resulted in an 84% reduction in production cost. The key properties that influenced the
production cost were solvents, organic linkers, and inorganic MOF precursors.

Following these findings, we focused on constructing parsers to extract information
on four key MOF synthesis properties: solvents, inorganic and organic precursors, and
synthesis methods. We also constructed a parser to extract MOF topologies, as the
description of topology aids mechanical stability predictions, critical for the pelletization
and industrial application of MOFs [50]. Finally, integration with the CSD Python API
also allowed information such as the tested temperature, article DOI, and publication
year to be merged with the parser-extracted records. The CSD Python API was also
used to extract the chemical names that corresponded to each MOF refcode in the 3D
MOF subset for linker matching.

https://pptr.dev
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5.5 Methods: Automatic Generation of the DigiMOF Database

The key motivation for adapting the CDE tool to text mine MOF literature was to better
integrate MOF synthesis protocols, TEA considerations, and computational screening
approaches into a tight feedback loop to enable more efficient MOF materials development.
Figure 5.1 demonstrates how the DigiMOF database and the adapted CDE parsers can
be integrated into a data-driven pipeline for MOF design and discovery.

Figure 5.1: Flow diagram to visualize the integration of CDE into a data-
driven MOF synthesis plan: from article retrieval to text mining, computa-
tional screening, and materials discovery.

We also developed a MOF-specific approach in conjunction with the CDE web scraper:
DOIs associated with the CSD MOF subset were extracted using the CSD API and used
to automatically download the associated articles in HTML format using the CDE web
scraping script for the corresponding journal. After download, text-mined MOF synthe-
sis data was automatically extracted from each HTML file and stored in our database
in JSON format. This data can then be used for further TEA studies and integrated
with other physicochemical properties obtained from either simulations or experiments to
generate rich data sets for further processing.

Note that a user can create new and personalized databases for text mining by modi-
fying the provided CDE web scraping script to obtain any collection of online files saved
into HTML format, i.e., patents, webpages, and journal articles, from other sources.

5.5.1 Natural Language Processing

To identify specific MOF properties using CDE-based classes and variables, we created
customized parsers which use part-of-speech (POS) taggers and chemical entity recog-
nizers. These parsers contain specific regular expressions for the identification of MOF
compound names. The natural language processing (NLP) pipeline in CDE first iden-
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tifies a sentence, which is then tokenized into individual words and punctuation known
as tokens [34]. These tokens are marked up by POS tagging to reflect their syntactical
functions, such as a noun, a verb, a chemical mention, and an adjective [34]. Entity recog-
nition of the chemical species allows relationships to be extracted and merged with their
corresponding compounds by interdependency resolution [34]. Our rule-based parsers
used Python regular expressions as well as CDE parsing elements and were tailored to
extract specific properties. We generated parsing rules to identify MOF names, synthesis
methods, inorganic precursors, linker names, and MOF topology abbreviations, as well
as created exclusion lists to exclude words which were frequently misidentified as these
variables. The use of regular expressions and parsing elements, as shown in Table A.1,
was crucial to improving performance.

The process of building and refining the parsers is shown in Figure 5.2 following
a similar process used by Huang and Cole [51]. First, basic parser functionality was
achieved on individual sentences by successfully extracting the MOF compound name
and corresponding property. The parsers were then tested on a series of sets containing
10 random papers and continuously refined until they achieved a precision above 80% on
one test set. The last step of the process was evaluating parser performance on a final set
of 50 randomly selected papers from the CSD.

Figure 5.2: Flow diagram to visualize the integration of CDE into a data-
driven MOF synthesis plan: from article retrieval to text mining, computa-
tional screening, and materials discovery.

5.5.2 Technical Validation

This text mining software was evaluated for reproducibility on a randomly selected array
of “unseen” text, distinct from the training set used to refine the NLP parsers, to ensure
the parser performance achieved on a limited training set can be consistently replicated
for high-throughput application. The three performance metrics used in evaluation are
precision, recall, and F-score, which can be calculated using Eqs. 5.1–5.3, respectively.
True positives (TP) correspond to data extracted and identified correctly. False positives
(FP) correspond to data which are incorrectly identified as a match. False negatives (FN)
are relevant data which should be extracted but have not been identified.
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Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

F − score = 2 × Precision×Recall

Precision+Recall
(5.3)

Precision is the fraction of correctly extracted data, recall is the fraction of available
data extracted, and F-score represents the harmonic mean of recall and precision. For
the estimation of precision and recall, 50 MOF articles were randomly selected as the
test set from a collection of over 700 articles retrieved by the web scraper from the CSD:
the selected articles can be found in the Supporting Information. For each extracted
record, a value of 1 was assigned if both the MOF compound name and the corresponding
property (e.g., synthesis method, linker, etc.) were correctly matched, or a value of 0 if
the compound name or the property were incorrectly matched. The number of total
relationships was manually extracted from the same 50 journal articles and compared
with the records in the auto-generated database to calculate recall and precision.

In practice, there is often a trade-off between the precision and recall of a text mining
algorithm. The development and implementation of rule-based parsers prioritize high
precision, which reduces the overall recall as the parser is less capable of extracting values
from many variations in sentence structure. More lenient parsing rules increase the overall
number of records extracted and therefore improve recall, but they also show a reduction in
specificity, which reduces precision. Generally, high precision should be given precedence
over recall; low recall is acceptable provided that a large enough data set is used to
compensate for a lower proportion of the available data being extracted. Examples of
the compound records from this work and previous projects using CDE are shown in
Table A.2. We found it extremely challenging to accommodate the considerable diversity
of sentence structures observed in MOF literature without compromising the precision of
the parsers. When maximizing precision, extracting common and unambiguous sentences
observed in MOF literature was prioritized, although it was expected that lower recall
would be obtained compared to previous iterations of CDE. Figure A.1 summarizes the
overall performance of our parsers compared to previous CDE projects and the MOF text
mining tool from Park et al. [47] The overall precision for our parsers was 77%, which
we deemed satisfactory, as values approaching 80% are generally considered sufficient for
data-driven materials discovery via current text mining techniques [51]. A breakdown of
individual parser results for the synthesis route, topology, linkers, and metal precursors
can be found in Table A.3.

5.5.3 Parser Training

During parser training, precision was substantially improved by employing exclusion lists
to filter out frequently observed misidentifications. The addition of common abbrevia-
tions, names, and exclusion list items for metal precursors, linkers, MOFs, and topologies
to the regular expressions helped to improve both precision and recall. As MOF ter-
minology and literature are dynamic and rapidly evolving, it is crucial that continued
adaptations be made to this tool to improve its performance. With this idea in mind,
we have made the software open source with the aim of using open collaboration to add
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abbreviations or names to the exclusion lists and compound regular expressions, which
will allow the tool to evolve and improve over time.

Figure 5.3 shows the process for the selection of regular expressions that can be incor-
porated into CDE. Here, we demonstrate how regular expressions (regex) may be devel-
oped iteratively to achieve more TPs and eliminate FPs and negatives. Table A.4 contains
examples of simplified regex used in the creation of the DigiMOF database. The actual
regex which have been integrated into the MOF version of CDE are available on the associ-
ated GitHub (https://github.com/peymanzmoghadam/DigiMOF-database-master-main.
git) in the chemical entity mention (CEM) and precursor parser files.

Figure 5.3: Flow chart displaying possible outcomes when fed an input string
for high-throughput MOF name parsing.

It is often preferable to use multiple regular expressions to accommodate different
formats of the same variable. Attempting to accommodate too many types of matches into
a single expression can increase the number of FPs, as demonstrated by expression number
4 in Table A.4 which is the lenient regular expression for common linker abbreviations.
To accommodate a wider variety of sentence structures to help recognize MOF names,
an exclusion list was integrated into the regular expression rules to exclude FPs, as with
expression 9 in Table A.4. Regular expressions within the context of exclusion listing are
further detailed in the Supporting Information in Table A.5.

5.5.4 Obtaining Metal, Topology, and Linker Data

After parsing was complete, to obtain further, more detailed information surrounding
the metal elements contained with each MOF, we used a high-throughput approach that
involved obtaining the relevant crystallographic information files (CIFs) for use in the
MOFid software suite [52]. Each CIF was entered into the program where it was then
deconstructed, and the metals present in the MOF were extracted. For topological rep-
resentations of these structures, we used the Julia-based CrystalNets [53] program to

https://github.com/peymanzmoghadam/DigiMOF-database-master-main.git
https://github.com/peymanzmoghadam/DigiMOF-database-master-main.git
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automatically assign network topologies to all CIFs. This enabled the comparison of al-
gorithmically assigned values from these software packages with the text-mined data for
verification purposes.

Obtaining linker information proved to be more challenging. We created “rules” in the
CSD Python API to extract linker names which enabled the simplification of CSD’s long
text-based chemical names into distinct repeating units. For example, the chemical name
for SAHYIK within the CSD is “catena-(tris(4-1,4-Benzenedicarboxylato)-(4-oxo)-tetra-
zinc octakis(dimethylformamide) chlorobenzene clathrate)”. These names were initially
treated by extracting the metal names, in this case zinc, and adding them to the list of
metals for each structure. Then, the remaining text is split based upon the names which
succeed , indicating that there are repeating units; the remaining non-chemical items
such as “catena-” and “tris” are also discarded here. These repeating units are then
transformed to match the chemical names found in the list provided by TCI Chemicals [54]
for common MOF linkers. For this first entry, e.g., “1,4-benzenedicarboxylato” is modified
to “1,4-benzenedicarboxylate”, which can also be represented by its alias terephthalic
acid and is then matched to the TCI Chemicals list. The second corresponds to the
string “oxo”, which is discarded as it refers to the repeating oxygen molecules in the zinc
oxide node. Anything that succeeds the metal in the chemical name and is separated
by a space is removed and retained for further processing as possible solvents used in
the synthesis. Figure 5.4 shows the outcome of this process for the 30 most frequently
extracted records taken from a list of 149 unique chemical names and matched after both
a manual and an automatic transformation process were performed. The matching list,
which includes linker synonyms and chemical prices, can be found in the Supporting
Information TCI Chemicals (XLS) document.
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Figure 5.4: Collection of the top 30 organic linkers obtained via text-mining
the CSD MOF subset chemical names. Hit counts (C) and CAS numbers are
included for each linker.

5.5.5 Geometric Properties

By analyzing the text-mined data, correlations between different MOF topologies and
structural properties were unveiled by determining a complete set of geometric properties
and investigating the patterns which emerged from known and unknown relationships.
The largest cavity diameter (LCD), pore limiting diameter (PLD), accessible surface area
(ASA), frameworks density, the presence of open metal sites, and void fraction of all
3D MOFs in the subset were calculated using Zeo++ software [55] to quantitatively
characterize their structural properties. A probe radius of 1.86 Å, corresponding to the
kinetic radius of N2, was applied for ASA calculations. The results of these calculations
can be found in the DigiMOF3DSubset (CSV) document of the Supporting Information.
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5.6 Results and Discussion

We note that for a MOF compound name and the corresponding property relationship
to be entered into the DigiMOF database, both the MOF compound name and property
had to be recognized by the parsers. Overall, 15,501 MOF compound name and property
relationships with over 52,680 associated properties were extracted from the CSD MOF
subset which contains 43,281 unique MOF publications and over 100,000 MOFs. Table 5.1
displays the total number of each type of synthesis property associated with MOFs, in
addition to the total number of unique properties of each type. The full list of MOF
names and their relevant properties can be found in the Supporting Information.

Table 5.1: Total Number of Extracted Properties and the Number of Unique
Properties for Each MOF Property in the DigiMOF Database

property total extracted total unique properties extracted

MOF compound names 15,501
synthesis route 9705 8

solvents 1211 81
topologies 6680 154

linkers 24,166 10,690
metals including ions 10,968 1803

metals excluding ions and element names 5163 1476

The DigiMOF database contains a MOF compound name and corresponding topology,
organic linkers, metal precursors, synthesis methods, or solvent for approximately 15%
of structures within the CSD MOF subset. One important factor to consider is that not
every publication discusses all of these properties. If a compound is labeled as “1” or
“2” without a specifier such as “compound”, “complex”, or “MOF”, then the parsers will
not associate the label with anything and so cannot extract a property relationship. We
must also note that full access to every article within the CSD was not possible, either
due to the location in which the article was published or that the corresponding papers
were written in languages other than English. An extended discussion on how the parsers
function is located in the Database Overview and Performance section of the Supporting
Information. In the following sections, we summarize our key findings after text mining
the CSD MOF subset.

To enrich the database of 10,696 3D structures extracted with CDE, we also gathered
additional information using alternative computational methods as detailed in Section
5.5.4. Table 5.2 shows a breakdown of the parameters we extracted and calculated to
supplement the text-mined data set. A total of 24,784 3D MOFs were admitted to the
calculation stages, where the constituent metal was identified for 23,832 structures, and
either an RCSR or EPINET topology was assigned for 13,816 3D structures.
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Table 5.2: Total Number of Extracted Properties and Number of Unique
Properties for Structures in the 3D MOF Subset

property total extracted total unique properties extracted

MOF compound names 24,784
topologies 13,816 460

linkers 15,901 129
elemental metals 23,832 716
LCD and PLD 22,104

density 24,587
open metal sites 763

geometric properties >6474

Here, we note that despite obtaining 10,690 unique linker names in the text mining
stage for journal articles, once we take the more uniform CSD chemical names and match
synonymous chemicals together, we collected information for at least one linker type
for 40% of materials that have suitable chemical names for the matching process. The
complete data for linker names, metals, and topologies can be found in the Supporting
Information DigiMOF3D subset (CSV).

5.7 Data Analysis

5.7.1 Synthesis Methods

When analyzing the data for synthesis methods, we first investigated how synthesis meth-
ods have changed over time. A total of 9705 synthesis route records were extracted from
43,281 papers. Figure 5.5 shows the cumulative sum of records extracted for various types
of synthesis routes from 1995 to 2020. Solvothermal synthesis in the context of MOFs
generally refers to the use of one or more organic solvents such as DMF and methanol
at high temperatures. Hydro(solvo)thermal synthesis generally refers to reactions where
water is employed as a part of a solvent mixture. Hydrothermal synthesis refers to reac-
tions where water is the primary solvent and is itself a type of solvothermal synthesis. A
significant result was the extraction of more hydrothermal (5,677) synthesis methods than
solvothermal (3,672). This is surprising as the most common laboratory-scale MOF syn-
thesis routes are solvothermal; however, many papers do not explicitly name this as their
synthesis route but instead imply it by mentioning the use of solvents and high tempera-
tures in the methods section. These implicit synthesis routes could be easily deduced by a
reader but are challenging to extract using rule-based NLP algorithms which are looking
for a specifier word such as “solvothermal”. Figure A.7a also shows that hydrothermal
synthesis was the most common alternative/low-solvent synthesis route extracted by the
parsers.
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Figure 5.5: (a) Cumulative sum of the two main MOF synthesis methods
from 1995 to 2020. (b) Cumulative sum of alternative and emerging synthesis
methods showing periods where these techniques were first introduced for MOF
synthesis.

We also note that the majority of synthesis route records are from articles published in
the last 10 years; this reflects the rapidly increasing interest and investment in MOF com-
pounds and in alternatives to the solvothermal synthesis method. In fact, 6033 (62.2%) of
the total synthesis route records may be classified as alternatives to solvothermal synthe-
sis, which reflects greater interest in developing alternative synthesis routes, particularly
when considering that high solvent-use is inhibiting MOF scalability. Rapid increases can
be observed for more novel synthesis routes, with an overwhelming majority of solvent-
free synthesis papers published after 2010 (76% microwave-assisted, 95% sonochemical,
86% mechanochemical, and 88% liquid-assisted grinding). There is also likely to be some
cross-over between these methods, as liquid-assisted grinding and sonochemical methods
are themselves subsets of mechanochemical methods and may be used in various com-
binations for MOF synthesis. This trend of utilizing greener synthesis methods is also
reflected in innovative MOF commercialization efforts such as the ton-scale water-based
processes that BASF has developed [56] and the mechanochemical process from MOF
Technologies [57].

The DigiMOF database allows users to search for potentially scalable MOFs via the
synthesis method to discover MOFs that can be more easily synthesized and tested with
the equipment and resources available to them. In the future, an alternative web search
query method of database assembly could be used in place of the CSD reference code
method to assemble a corpus using queries such as “solvent-free MOF synthesis” or
“mechanochemical MOF synthesis”, expanding the database to include more MOFs that
can be produced using alternative synthesis methods and novel synthesis techniques for
MOFs already logged in the database with more conventional synthesis routes. The syn-
thesis method parser should be continually updated to allow it to parse novel synthesis
methods and procedures, as and when they become more prominent in MOF literature
and may be extended to parse for post-synthetic methods such as linker substitution.

5.7.2 Topology

Topological characterization of MOFs is important as it can constrain key structural
properties such as pore shape, size, and chemistry, and it is directly related to mechanical
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stability [50]. Figure 5.6a. shows the distribution of topologies identified in the CSD
MOF subset: we extracted 112 unique topologies across a total of 6680 results. The most
frequently occurring topology was pcu with 946 hits, followed by sql and dia with 822 and
482 counts, respectively. In some publications, the parsers picked up variations of certain
topologies, e.g., sql, 44-sql, (4,4)-sql, and (44)-sql as separate entries. From the top
ten topologies shown in Figure 5.6a, sql, hcb, and kgd are 2-periodic, and the remaining
seven exhibit 3-periodic frameworks. The Supporting Information provides a full list of
MOF names and topologies identified. We also performed topological characterization
of the 3D MOF subset using CrystalNets [53] and achieved a return of 55.8% across
460 unique topologies. We note here that the CrystalNets calculations allowed for the
extraction of topological types that matched the EPINET [58] database, whereas our
text-mining approach was specifically developed to seek out RCSR-type topologies [59].
Figure 5.6b shows the occurrence of the top ten topological nets with pcu as the most
frequently occurring topology, followed solely by 3D representations in dia, pts, rtl, and
cds rounding out the top five. Figure 5.6c shows examples of commonly occurring 3D
underlying nets. An additional outcome of this study was that 2375 structures in the 3D
MOF subset were built from two or more interpenetrating nets. We anticipate that this
topological characterization of MOFs will also guide future efforts to identify mechanically
stable MOFs.

Figure 5.6: Histograms of topological types extracted from the CSD MOF
subset using (a) ChemDataExtractor (CDE) (b) CrystalNets in 3D structures.
(c) Top five most common 3D topologies: pcu, dia, pts, rtl, and cds.

We used the topological data to investigate the topology–structure relationships for
certain geometric properties. Figure 5.7 shows the different regions that are occupied
by a selection of five topological types. For some representations, there does not appear
to be any restriction on the types of pores that can be formed with a wide variety of
void fractions seen for pcu and dia. Both representations span a range of void fractions
between 0 and 0.85 across and the LCD range of 3.7–15 Å. On the contrary, there are
some slightly more distinct linear patterns between the LCD and the void fraction for
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other representations, which are particularly noticeable for stp and rob. The former
shows a distinct linear pattern within the region of 5 to 10 Å and 0.2 to 0.35 void fraction
and displays a similar linearity into the 15 to 20 Å range.

Figure 5.7: Comparison of different topologies in the structure space for
LCD as a function of void fraction for ca. 2200 porous MOFs. There are 241
structures with pcu topology (green); 170 dia (purple), 41 stp (red), 33 rob
(yellow), and 32 fsc (orange) structures. All other structures are shown in
pale blue.

5.7.3 Solvent

Dimethylformamide (DMF) is the most frequently extracted solvent, representing 469 of
the 1211 extracted solvents. Water is the second most frequently extracted solvent with
186 counts for which 127 were paired with hydrothermal synthesis routes. The remainder
of the water solvent records were merged with solvothermal or hydro(solvo)thermal syn-
thesis routes, which could reflect the common use of solvent mixtures containing multiple
reagents such as DMF, water, and ethanol. The parser does not have the capability to
extract lists or mixtures of solvents unless they appear consecutively in a string without
whitespace, e.g., “DMF/H2O”. The additional top hits for solvent extraction can be seen
in Figure A.7c.

The presence of organic solvents such as DMF, DMA, ethanol, and acetonitrile demon-
strates that despite increased research into alternative synthetic pathways, many existing
synthetic procedures are still reliant on organic solvents and failure to eliminate large
volumes of such solvents in MOF synthesis is one of the largest barriers to MOF com-
mercialization. It should be noted that while the CSD includes solvent information, most
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of these records are missing from the database. These parsers offer the ability to search
for MOF synthesis routes associated with a given solvent, thereby allowing researchers
to limit screening to hydrothermal synthesis or to solvothermal synthesis techniques with
cheaper, less toxic, or more readily recoverable solvents.

5.7.4 Organic Linkers

Histograms in Figure A.7d show that carboxylate-type linkers were the most frequently
extracted type of organic linkers, with over 432 associated records. Specific carboxy-
late linkers, e.g., benzene dicarboxylate acid (BDC), were not extracted more frequently
because these linkers are more generically referred to as carboxylate or dicarboxylate
without specification of the exact structure. Other challenges with NLP parsing of MOF
linkers in the literature were inconsistencies in linker abbreviations and naming conven-
tions. For example, “bpy” and “bipy” are used to denote specific bipyridine-type linkers
such as 2,2-bipyridine and 4,4-bipyridine [60, 61]. While researchers may be referring to
specific linkers when using these abbreviations, these labels are not consistently used to
refer to any one distinct structure. Records for “bpy” and “bipy” were merged as “bipy”
to denote generic bipyridine-type linkers. Following data transformation where instances
of “4,4-bipyridine”, “4,4-bipy”, and “4,4-bpy” were merged as “4,4-bipy”; 273 records
were associated with “4,4-bipy” and 267 with “bipy” representing the 2nd and 3rd most
extracted linkers, respectively. Similar transformations were conducted for 2,2-byripidine
linkers with 109 records. Carboxylate (H3BTC, BDC, carboxylate, dicarboxylate) and
pyridyl-type linkers (4,4-bipy, 2,2-bipy, bipy, bpe, and bpp) were the most dominant linker
types extracted by the parsers. Other notable linkers included imidazole-type bridging
ligands such as “bimb” (phenylenebis(methylene)bis(1H-imidazole)). “H2L” was the 4th
most extracted linker with 251 associated records. This does not refer to a specific chem-
ical structure; instead, it is a generic label used within the MOF literature to refer to
a number of organic linkers [62]. This means that the linker chemical formulae may be
explicitly named in one part of the text and then simply be referred to as “L”, posing
considerable challenges for NLP parsing. In some instances, researchers do not elaborate
on the chemical formula of the linker within any part of the text and use a generic L-type
notation or refer to the general structure (e.g., carboxylate). The usage of generic labels
and general compound class names may reflect increased trends toward more complex and
functionalized linkers in MOF synthesis, which may make consistent identification and
naming of these structures more challenging [63]. The chemical diversity of MOF linkers
is an important factor, particularly when considering the application of ML on these data
sets [64].

To combat this ambiguity, we developed a new approach to text extracting MOF linker
names using the chemical names found in the CSD, as these are available for over 99% of
all deposited structures. The result of this text mining required some manual intervention
as CSD chemicals can have different naming protocols; for example, one might find 1,3,5-
benzenetricarboxylate or the synonymous benzene-1,3,5-tricarboxylate both used within
this data set. There are in fact tens of examples of similar synonymous chemical names
being used across the 149 linker names we used as our match list. Overall, this new
method had a significantly higher accuracy given the strict designations for similar linker
molecules. For example, the distinction between 4,4-bipyridine and 2,2-bipyridine, when
compared to the CDE text mining results, avoids the need to note “generic bipyridine-type
linkers” and enables deeper analysis of similarly named but chirally different molecules.
Figure 5.8a shows the frequency at which a linker type was reported for structures that
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contained reference to only a single linker but also had a non-zero cavity diameter. This
data was then used to separate linkers depending on their length, which was determined by
the number of consecutive blocks, e.g., number of benzene or pyridyl rings, into categories
of 1 or 2+ blocks. The difference between the linker length and their respective MOF
LCD ranges is shown in Figure 5.8b. We note here that the longer 2+ block linkers
have a larger LCD range from 1.3 to 12.3 Å, whereas shorter one-block linkers span a
slightly smaller range of LCD values from just above 0 to 8.5 Å. Interestingly, despite
the mean LCD following the pattern of increasing with linker length, there are several
one-length linker structures that far exceed the average LCD of MOFs built with two or
greater length linkers. Once the linkers had been categorized with respect to their length,
it was possible to investigate the pore morphology, as shown in Figure 5.8c, a box and
whisker plot of linker length against the LCD/PLD ratio. The results here suggest that
shorter linkers with one block can generate structures with a wide range of LCD/PLD
ratios, whereas longer linkers containing 2+ blocks generate structures on lower ranges
of LCD/PLD ratios of <2.5: a finding which is dominantly due to larger PLD values in
these structures.

Figure 5.8: (a) Histogram showing the most commonly occurring single link-
ers found in the 3D MOF subset for non-zero LCD values. (b) Box and whisker
plot of linker length versus the LCD/PLD ratio across a sample of ca. 8000
MOFs. (c) Box and whisker plot of linker types against LCD for a sample of
linkers with one (orange) and two or more (blue) blocks.

5.7.5 Metal Precursor

The choice of metal precursors is also important for MOF synthesis; certain metal clus-
ters such as metal oxides can provide cost-effective and flexible MOF production routes
as well as control over structural topology and shape. Our parser extracted many metal
precursors in the form of a metal element, ion name, or symbol: this is shown in Fig-
ure A.7e. Zinc-based precursors were most frequently extracted, with “Zn(NO3)2·6H2O”
representing 365 of the merged records. Zinc salts represented three of the most ex-
tracted metal precursors, accounting for 36% of the 1481 records. This is unsurprising
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given the prevalence and popularity of zinc-based MOFs; however, the absence of zirco-
nium salts from the top 10 metal precursors is unexpected. One reason for the lack of
zirconium salts is that papers discuss zirconium precursors as “Zr”, as can be seen by
212 hits in the database for “Zr”, shown in Figure A.3. Additionally, compared to zinc
and copper-based MOFs, Zr-based MOFs were not widely produced until after 2012 [65].
The second most frequently extracted metal salt was “Cd(NO3)2·4H2O” with 177 merged
records, followed by nitrate salts of Zn, Co, and Cu. The ability to cross-reference MOF
structures with their metal precursors from proven synthesis procedures will allow MOF
scientists to rapidly screen structures for criteria such as metal nodes or precursors asso-
ciated with desirable properties, greater material abundances, and lower costs. Searching
by metal precursors will also provide valuable insight into MOF building blocks in cases
where records include MOF names which are not directly based on the MOF structure or
formula.

Figure 5.9a shows the most frequently occurring single metal types in the MOF subset
as identified using MOFid [52]. Figure 5.9b shows the relationship between metal types
and the typical LCD values expected for each MOF containing that metal. The most
common metal, Zn, contains over 1200 entries in the database, for which 752 or 60%
can be considered porous such that they have an LCD which exceeds the probe diameter
of 3.7 Å. For Co and Cd, this ratio decreases to 51 and 41%, respectively. The lowest
proportion of porous MOFs from the metals can be found for structures containing Na,
where only 34% of entries have LCDs greater than 3.7 Å. Na-containing MOFs have the
lowest mean LCD of all metals at 1.5 Å, whereas Cu-MOFs have the highest at 4.6 Å,
with the average LCD across all metals sitting at 3.5 Å.

Figure 5.9: (a) Histogram of the most frequently occurring single metals found
in the 3D MOF subset. (b) Comparison of the constituent metals against the
LCD of structures.

5.7.6 Temperature

The CSD database contains temperature entries for almost all deposited structures when
DOI records were extracted from the CSD Python API, it was also possible to extract
corresponding temperature records without error. The results of these extractions, which
have been rounded to the nearest whole degree Kelvin, can be seen in Figure A.7f it is im-
portant to note that these values are not the synthesis temperatures of the materials but
are of the variable-temperature crystallographic studies. These are the temperatures used
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in post-synthesis investigations at which the results of certain experimental procedures in
each manuscript have been reported, specific to each material. This data does not guar-
antee the stability of MOFs at these temperatures. Typically, an experimental structure
is tested and reported at or around room temperature, explaining the spike in records at
293 K. It is also common that a Cryostream or other device is used to cool a sample for
low-temperature crystallographic testing. We would recommend the introduction of more
useful temperature data fields, such as activation temperature, destabilization temper-
ature, or solvent/synthesis/reaction temperature, alongside the existing crystallographic
study temperatures.

5.7.7 Building Blocks and Topology

The underlying networks of the extracted MOF structures can be investigated using
insight gained from the data presented in Figure A.4. There are 4972 linker hits for
which there was a corresponding topology and a further 1424 results for metal clusters.
Taking into consideration the top five most frequently parsed linkers and metal precursors
from Figure A.7d,e respectively, we can deduce the top five topologies for each MOF
building block. These results are represented in a clustered column graph, Figure A.4.
Furthermore, additional data obtained via CrystalNets [53] has offered insight into the
topological configuration of 3D MOFs in the DigiMOF database, with a return rate of
55%. A filter can be applied to this data set to select all matched linker types for a given
topology.

The top linker type extracted using CDE, [“carboxylate”] corresponded to a total of
100 topologies, the most frequent being sql (12), and pcu (12). These two topological
types emerged as the most frequent for almost all investigated linkers and metal clusters,
an unsurprising result considering the high frequency of these two representations across
the whole study. These are two of the simplest underlying structure representations, which
may explain their abundance; more complex structures are less likely to have topology
reports due to potential errors, and additionally, it is common to report the most simplified
underlying net even where a more complex representation exists. For the 3D data set, the
highest linker type [“oxalic acid”] corresponded to a total of 66 unique topologies, with
the most frequent being dia (84), followed by pcu (50).

In 2014, a study by Cai et al. investigated the crystal structures of derivatives of
HKUST-1, which notes that for H-BTC (the 5th most common linker type), the predicted
topological type is tbo; however, variations in the functionalization of this same linker
can give rise to a preference for fmj connectivity using the same building blocks [66].

Perhaps more interesting than the results for linkers is that of metal clusters; typically,
linkers are connected only at each edge, although in some less common cases (e.g., where
linkers consist of porphyrins and derivatives), there can be a higher number of connections.
Depending on the coordination of certain metal clusters, it can be impossible to achieve
some topological types, making the choice of the metal cluster more restrictive than
the choice of the linker; a significant influence on the potential underlying network of a
crystal structure. From these metal cluster results, we can deduce that transition-metal
nitrate structures form some of the simplest underlying nets with sql, pcu, dia, and
kgd being frequently reported in synthesis papers. This variety of 2 and 3 dimensional,
and 4-connected, 6-connected, and 6 plus 3-connected clusters suggests flexibility in the
coordination number of these transition-metal building blocks.
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Further to this point, it is worth noting the influence of temperature on the dimen-
sionality of MOF structures. Reaction temperature has been found to have a remarkable
influence on the formation and structure of MOFs, especially toward the control of topol-
ogy [67]. Increasing the hydro/solvothermal reaction temperature has the potential to
increase the coordination number of the central metal ion [68]. Anderson et al. suggested
that a temperature-dependent quantity such as free energy, which would have a notable
influence toward the topological selectivity of MOF synthesis, should be considered in
MOF synthetic accessibility predictions [69].

5.7.8 Cost Analysis

As a result of improving the accuracy in linker designation from Section 5.4, and from
the use of a matching list modified from the publicly available TCI Chemical list, it was
possible to add an approximate linker cost analysis to our data set, given the availability
of pricing data for these chemicals [54]. We took the TCI Chemicals list and added
several other commonly used organic materials, followed by the inclusion of live online
prices, these costs are typically for quantities of 99%+ purity precursor chemicals. Due
to the inclusion of additional listings, it was necessary to obtain some missing cost values
from Sigma-Aldrich to get a complete list of approximate linker “raw chemical” costs
[70]. The available quantities varied between all linker types, and so the prices in this
list were determined by taking into consideration all of the possible prices and finding
the mean cost per gram. Figure 5.10 shows the results of the linker cost analysis on
some of the most prevalent linkers detailed in Section 5.5.4. As the structures obtained
from the CSD MOF subset are experimental, we expected to see most of the structures
containing lower cost linkers for the simple reason that they would be more economical
to produce. While the range of linker costs across the chemical list spans £0.05 to £830
per gram, out of the top 45 linkers, 40 of them had a cost per gram under £10, as can
be seen in Figure 5.10a. This sample of linkers in the “low-cost” range spans a total of
6643 structures. Figure 5.10b also shows a total of 33 linkers that exceed a cost of £10
per gram, although they make up a much smaller proportion of the total structures that
have been identified as linkers in this study.

Figure 5.10: Bar charts showing the cost per gram of organic linkers as deter-
mined by averaging the available quantities. A selection of the most prevalent
linker types was chosen from the DigiMOF database for (a) low-cost and (b)
high-cost linkers. Prices obtained from TCI Chemicals [54].
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The results of this cost analysis can be used to select specific linker types for techno-
economic assessment in conjunction with limiting solvent quantities, finding optimal re-
action temperatures, selecting suitable catalysts, and selecting low-cost metals. The cost
per mole of each linker type can also be found in the Supporting Information document,
TCI Chemicals (XLS).

5.8 Conclusions and Future Directions

To the best of our knowledge, the DigiMOF database is the first automatically generated
database of MOF synthesis properties using ChemDataExtractor to text-mine 43,281
MOF publications. After an iterative training process, the parsers yielded an overall
precision of 77% to extract 52,680 associated MOF synthesis properties. This initial text-
mined data was supplemented with additional data mined from the CSD MOF subset,
which enabled the identification of linker types and their corresponding costs. DigiMOF
will allow researchers to search for key properties related to implementing large-scale
MOF production, e.g., synthesis routes and solvents, organic linkers, metal precursors,
structure topology, constituent metals, and linker cost. We envisage DigiMOF as an in-
valuable tool to both MOF scientists conducting high-throughput computational screen-
ing and experimentalists evaluating MOF properties empirically. The software and the
parsers developed here are open-source to allow researchers to update our regular expres-
sions as new compounds emerge, ensuring these algorithms can continue to identify new
MOF-property relationships. With minimal additional effort, researchers can employ the
modified CDE scripts to generate their own database; with more focused search queries
to study alternative MOF production pathways by making very basic alterations to the
parsers. The ability to cross-reference and merge data using DOIs allows researchers
to readily merge or expand this database to include other properties, which pique their
interest.

DigiMOF is primarily focused on the production of MOF compounds but also includes
basic geometric properties to offer an additional level of insight. Additional parsers can be
developed to extract properties related to scalability and synthesis, such as the reaction
temperature, space-time yield, heat of adsorption, reaction time, and regeneration timeall
essential parameters for enhancing MOF synthesis pathways. We also recommend that
future MOF synthesis publications contain specifically formatted tables of key information
as an appendix to the article, presented in a way that is friendly to text mining algorithms
to enable the scraping of data using a high-throughput screening approach, improving
both the precision and recall of any chemical journal parser. By improving the precision
and recall of structure property parsing beyond the levels we see today, there is the
potential to enable an accurate and reliable database of synthesis data to be created in the
public domain that can be continually and accurately updated following new publications.

We envisage that this work will lay the foundation for enabling digital manufacturing of
MOFs and facilitate the identification of commercially viable MOF production pathways.
With over 15,000 unique MOF records, this data can be used to further assess the viability
of alternative MOF synthesis routes and to drive further techno-economic assessment,
life-cycle assessment, and experimental validation work. DigiMOF could therefore help
to reduce the overdependence within the MOF community on unsustainable synthesis
routes, which currently precludes the application of these structures in decarbonization
technologies that motivate many contemporary MOF research proposals. With thousands
of entries for each parameter parsed in this study, DigiMOF augments MOF scientists’
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expertise, allowing them to design more efficient MOF discovery pathways and advance
the synthesis of these fascinating materials.
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[2] Omar K. Farha, A. Özgür Yazaydın, Ibrahim Eryazici, Christos D. Malliakas,
Brad G. Hauser, Mercouri G. Kanatzidis, SonBinh T. Nguyen, Randall Q. Snurr,
and Joseph T. Hupp. De novo synthesis of a metal-organic framework material fea-
turing ultrahigh surface area and gas storage capacities. Nat Chem, 2(11):944–948,
November 2010.

[3] Shengqian Ma and Hong-Cai Zhou. Gas storage in porous metal–organic frame-
works for clean energy applications. Chem. Commun., 46(1):44–53, January 2010.
Publisher: The Royal Society of Chemistry.

[4] Jarad A. Mason, Mike Veenstra, and Jeffrey R. Long. Evaluating metal–organic
frameworks for natural gas storage. Chem. Sci., 5(1):32–51, November 2013. Pub-
lisher: The Royal Society of Chemistry.

[5] Eyas Mahmoud, Labeeb Ali, Asmaa El Sayah, Sara Awni Alkhatib, Hend Ab-
dulsalam, Mouza Juma, and Ala’a H. Al-Muhtaseb. Implementing Metal-Organic
Frameworks for Natural Gas Storage. Crystals, 9(8):406, August 2019. Number: 8
Publisher: Multidisciplinary Digital Publishing Institute.

[6] Lerato Y. Molefe, Nicholas M. Musyoka, Jianwei Ren, Henrietta W. Langmi, Mkhulu
Mathe, and Patrick G. Ndungu. Effect of Inclusion of MOF-Polymer Composite
onto a Carbon Foam Material for Hydrogen Storage Application. J Inorg Organomet
Polym, 31(1):80–88, January 2021.

[7] Sophie E. Miller, Michelle H. Teplensky, Peyman Z. Moghadam, and David Fairen-
Jimenez. Metal-organic frameworks as biosensors for luminescence-based detection
and imaging. Interface Focus, 6(4):20160027, August 2016. Publisher: Royal Society.

[8] Lauren E. Kreno, Kirsty Leong, Omar K. Farha, Mark Allendorf, Richard P.
Van Duyne, and Joseph T. Hupp. Metal–Organic Framework Materials as Chem-
ical Sensors. Chem. Rev., 112(2):1105–1125, February 2012. Publisher: American
Chemical Society.

[9] Jack Gonzalez, Krishnendu Mukherjee, and Yamil J. Colón. Understanding Struc-
ture–Property Relationships of MOFs for Gas Sensing through Henry’s Constants.
J. Chem. Eng. Data, 68(1):291–302, January 2023. Publisher: American Chemical
Society.

[10] Mehdi Ghommem, Vladimir Puzyrev, Rana Sabouni, and Fehmi Najar. Deep learn-
ing for gas sensing using MOFs coated weakly-coupled microbeams. Applied Mathe-
matical Modelling, 105:711–728, May 2022.

[11] Jian-Rong Li, Julian Sculley, and Hong-Cai Zhou. Metal–Organic Frameworks for
Separations. Chem. Rev., 112(2):869–932, February 2012. Publisher: American
Chemical Society.



REFERENCES 127

[12] Shotaro Hiraide, Yuta Sakanaka, Hiroshi Kajiro, Shogo Kawaguchi, Minoru T. Miya-
hara, and Hideki Tanaka. High-throughput gas separation by flexible metal–organic
frameworks with fast gating and thermal management capabilities. Nat Commun,
11(1):3867, August 2020. Number: 1 Publisher: Nature Publishing Group.

[13] Mickaele Bonneau, Christophe Lavenn, Patrick Ginet, Ken-ichi Otake, and Susumu
Kitagawa. Upscale synthesis of a binary pillared layered MOF for hydrocarbon gas
storage and separation. Green Chem., 22(3):718–724, February 2020. Publisher: The
Royal Society of Chemistry.

[14] Weidong Fan, Xiurong Zhang, Zixi Kang, Xiuping Liu, and Daofeng Sun. Isoreticular
chemistry within metal–organic frameworks for gas storage and separation. Coordi-
nation Chemistry Reviews, 443:213968, September 2021.

[15] Rama Oktavian, Raymond Schireman, Lawson T. Glasby, Guanming Huang, Feder-
ica Zanca, David Fairen-Jimenez, Michael T. Ruggiero, and Peyman Z. Moghadam.
Computational Characterization of Zr-Oxide MOFs for Adsorption Applications.
ACS Appl. Mater. Interfaces, 14(51):56938–56947, December 2022. Publisher: Amer-
ican Chemical Society.

[16] Michelle H. Teplensky, Marcus Fantham, Peng Li, Timothy C. Wang, Joshua P.
Mehta, Laurence J. Young, Peyman Z. Moghadam, Joseph T. Hupp, Omar K. Farha,
Clemens F. Kaminski, and David Fairen-Jimenez. Temperature Treatment of Highly
Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery
Release. J. Am. Chem. Soc., 139(22):7522–7532, June 2017. Publisher: American
Chemical Society.

[17] Isabel Abánades Lázaro, Salame Haddad, Sabrina Sacca, Claudia Orellana-Tavra,
David Fairen-Jimenez, and Ross S. Forgan. Selective Surface PEGylation of UiO-66
Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Deliv-
ery. Chem, 2(4):561–578, April 2017.

[18] Harrison D. Lawson, S. Patrick Walton, and Christina Chan. Metal–Organic Frame-
works for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces,
13(6):7004–7020, February 2021. Publisher: American Chemical Society.

[19] Minyoung Yoon, Renganathan Srirambalaji, and Kimoon Kim. Homochiral
Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev.,
112(2):1196–1231, February 2012. Publisher: American Chemical Society.
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Chapter 6

Augmented Reality for Enhanced
Visualization of MOF Adsorbents

6.1 Publication Information and Paper Contributions

This paper has been published as an application note in American Chemical Society’s
Journal of Chemical Information and Modeling.

In this publication I, the candidate, wrote the application note with contributions from
Rama Oktavian and Kewei Zhu, under the supervision of Professor Joan L. Cordiner, Dr
Jason C. Cole, and Dr Peyman Z. Moghadam.

6.2 Abstract

Augmented reality (AR) is an emerging technique used to improve visualisation and
comprehension of complex 3D materials. This approach has been applied not only in the
field of chemistry but also in real estate, physics, mechanical engineering, and many other
areas. Here, we demonstrate the workflow for an app-free AR technique for visualisation of
metal–organic frameworks (MOFs) and other porous materials to investigate their crystal
structures, topology, and gas adsorption sites. We think this workflow will serve as an
additional tool for computational and experimental scientists working in the field for both
research and educational purposes.

6.2.1 Keywords

Adsorption, Crystal structure, Metal-organic frameworks, Molecular structure, Surface
chemistry

6.3 Introduction

Porous materials such as metal–organic frameworks (MOFs), covalent organic frameworks
(COFs), zeolites, silicates, polymers, and aerogels are characterized by their pore space
and functionality. These properties make them desirable for a broad range of applica-
tions within the fields of chemistry, materials science, and engineering. One particularly
popular subclass, MOFs, are highly ordered porous materials comprised of metal ions or
clusters connected by organic ligands. MOFs have received considerable interest over the
past 25 years due to their structural diversity, high surface area, and tunable properties
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making them suitable materials for a broad range of adsorption applications including
gas storage [1, 2, 3], separation [4, 5, 6], sensing [7, 8], and catalysis [9, 10]. As of April
2023, the Cambridge Structural Database (CSD) has seen the addition of over 27,000
3D experimentally synthesized MOFs and, due to the porous nature of these structures,
many are studied as potential candidates for gas adsorption and separation applications
[11].

Details regarding MOFs’ structural network, pores, surface chemistry, and adsorption
sites are critical pieces of information when investigating the adsorption properties of
these structurally complex materials, and this information is often used in conjunction
with simulation software to predict gas adsorption properties [12, 13, 14]. Adsorption
simulation snapshots can be used to analyze energetically favorable adsorption sites in
porous materials, and AR can create aesthetic representations of pores along with the
adsorbed molecules. AR enhances spatial understanding by enabling visualization and
manipulation of complex structures under specific conditions in 3D, offering additional
insights when studying structure–property relationships and guest–host interactions. The
use of AR has been previously reported for molecular structures using an app [15], for
polymers using an app-free technique [16], as well as published workflows that build VR
models which can also be viewed in AR [17]: these are typically used for educational
purposes as a teaching medium [18, 19, 20]. Here, following the work of Roshandel et
al. [16], we developed a protocol for app-free AR models that can be used to display
MOFs under adsorption conditions or represent crystal structures in conjunction with
their topology which can be viewed using a smartphone running Android or iOS.

Before we discuss the workflow for creating AR models of MOFs, let us demonstrate
an example for AR gas adsorption visualization in an educational setting. Figure 6.1
shows the application of AR for water adsorption visualization in a prototypical MOF
called Cu-BTC (Cu and benzene-1,3,5-tricarboxylate (BTC)), from the point of scanning
the QR code to scaling the structure to fill the room. The modeling software enables the
user to view the crystal structure online in 3D, or to project AR into the room either
using small dimensions as shown on a desk or using large dimensions such that a person
can easily fit inside the pores. Another great immersive feature is the shadowing and
depth perception capabilities within the AR platform that make it an ideal tool for use
in education, enabling the demonstration of complex structures in a classroom or lecture
setting.
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Figure 6.1: After scanning the QR code using a smart phone, Cu-BTC is pro-
jected in augmented reality (AR), demonstrated on the table (20 cm diameter)
and in much larger scale in an office with a student standing inside the pores
(2 m diameter). Here, the pores contain water molecules where the structure
was simulated for water adsorption.

6.4 Modeling MOFs for use in AR

This paper explains how to create simple but aesthetic AR representations of MOFs
and other crystalline materials, without the need for any significant coding knowledge.
Most of the tools we use are freely available, and where licensed software packages are
used, freeware alternatives can be obtained. While the workflow in this project consisted
primarily of obtaining CIF or PDB files from the CSD 3D MOF subset [21], it is possible
to create these AR models using any CIF or PDB file from other sources. A detailed guide
showing step-by-step instructions on how to obtain and process these files can be found
in the Supporting Information, followed by further explanations regarding the conversion
from these chemical data files into file formats that can be used for the visualization
stages, the generation of quick response (QR) codes, and the subsequent hosting of the
AR maps. From the initial stage of obtaining the desired structure from the CSD, to
distribution of a QR code directing your audience to the online AR resource, creating
these representations can take less than 1 h per structure.

6.4.1 Crystal Structure Modifications

The initial stage of AR visualization begins by selecting a MOF, opening the correspond-
ing CIF/PDB file, and expanding the representation to its unit cell or supercell. In this
process, we select structures from CSD ConQuest and use Mercury [22] as a key tool
to implement corrections on the crystal structures (e.g., addition of missing hydrogens
or removal of bound/unbound solvents, if required), followed by the repair of broken or
unusual chemical bonds. Often, PDB outputs have certain configured bonding patterns,
and the CSD software suite is ideal for fast and easy corrections to these abnormalities.
It is essential that all models are corrected in this preliminary stage so that errors are not
carried forward into the AR representations, and it is recommended to manually check all
atoms in the structure even after autocorrection to ensure there are no “floating” atoms
remaining or undesired solvents still present in the pores. It is also possible to “snip-off”
any over branching linkers that exceed the dimensions of the unit cell at this stage to
ensure uniformity of the crystal structure.
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6.4.2 Conversion Processes from CIF/PDB to FBX

Once all bonding information has been determined and corrected, and the structure rep-
resentation has been chosen (e.g., ball and stick, ellipsoidal, wireframe, etc.) it is possible
to export the file as either a PDB or CIF. Once the file is saved as a PDB or CIF file,
it can be opened in Jmol [23], an open-source file conversion and visualization software.
From Jmol, detailed instructions in the SI explain how to save and export this file as an
object (OBJ) file, but note that after this point, it becomes much more difficult to make
any chemical modifications to the structure: bonding can still be corrected in Jmol as
detailed in the software documentation. The OBJ file can then be imported into the 3D
modeling freeware, Blender [24]. (An alternative method which, requires the installation
of the Atomic Blender plugin, can skip the Jmol step as it is possible to directly import
PDB files into Blender: through various trials we determined that the OBJ technique
produces equally, if not better, representations in the final stages.) Once the OBJ file
is added to Blender, the remaining stages involve the removal of the light and camera
layers, followed by a check of structure face count. If the face count exceeds 750,000,
the image will not render correctly into AR so the “decimate” function can be used to
reduce the number of faces. For best results, keeping the number of faces as close as
possible to 750,000 is recommended. The reduced file can then be manipulated so that
the orientation is presented as desired, before it is exported as an FBX file.

6.4.3 Publication on p3d.in and QR Code Generation

The publication stage is very simple but requires a free (or paid) subscription to p3d.in,
an online 3D model hosting platform with built-in AR functionality [25]. The FBX
file can be uploaded, and the structure’s final orientation and color scheme can be se-
lected. It is also possible to customize the online viewer to display the structure with
different background colors, select mouse/keyboard configurations for controllability, and
determine the scale of AR representation. Each file is then given a unique URL which
can be assigned a static QR code using any, freely available QR code generator (we
used https://www.the-qrcode-generator.com/) to create a QR link to the AR en-
abled structure. Figure 6.2 shows a graphical summary of the workflow we developed to
create complex AR representations of MOFs and their gas adsorption snapshots using the
molecular simulations software package, RASPA [26].

www.blender.org
www.p3d.in
https://www.the-qrcode-generator.com/
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Figure 6.2: Graphical representation of the AR visualization workflow for
MOF adsorbents. We begin from initial structure selection in CSD ConQuest
followed by exportation of the unit cell for use in RASPA via Mercury, struc-
ture cleanup, file format conversions in Jmol, modeling and export in Blender,
and finally upload to the p3d.in platform and generation of a custom QR code.

6.5 Applications of AR in Representing MOFs

AR has seen increasing use in the field of 3D chemical and molecular structure modeling
in recent years, originating from a very limited number of publications to an increasingly
popular and more widespread audience [20]. We previously introduced a step-by-step
guide to use AR in the field of MOFs in 2022 [27]; however, this process was tedious
and complex requiring the development and publication of an app. The current approach
follows an easier, app-free, workflow. Although it would be straightforward to produce
AR representations for basic MOF structures, it is possible to make these tools more
useful. For example, the representation of molecular interactions between gases adsorbed
in MOFs are mostly represented in 2D which can make it difficult to fully appreciate the
complex interplay between structural network, pore shapes and sizes, surface chemistry,
and preferential adsorption sites. Clearly, a 3D AR technology to assist in the detection
of adsorption sites or topological features of MOFs provides better understanding of the
adsorption phenomena and the pore environment.

6.5.1 Crystal Representation

For this article, we created several interesting and diverse AR representations of MOFs
under various conditions to demonstrate the relevance and reach of AR in the field, from
basic MOF visualizations to more complex representations of their topologies and gas
adsorption. Table 6.1 contains a selection of materials created using a combination of
structure preparation approaches, demonstrating the range of uses for AR visualization.
The initial representations are taken directly from the CSD 3D MOF subset with only
minor modifications. Rows 1-3 in Table 6.1 show how AR can be used to visualize
MOF crystal structures (e.g. ZIF-8, MIL-54, and CPO-27) without the need for complex
modifications to CIF files from the CSD. The choice of crystal structures represented
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here took several factors into consideration. For better aesthetics and clarity, we avoided
materials with large unit cells because of computational expense when converting large
unit cell structures to OBJ files, the file size can exceed several hundred MBs which makes
rendering more difficult. The structures shown in Table 6.1 are illustrative examples, we
mainly picked materials that are well-known in the MOF community for gas adsorption
applications with CIFs that are easily accessible.

Table 6.1: Selection of MOFs Visualized in AR under Different Conditions
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6.5.2 Topology Representation

Another interesting use of AR is for the comparison between the complex crystal structure
of MOFs and their underlying topologies. The creation of “MOF plus topology” AR
representations involves the use of software such as ToposPro [28] or CrystalNets [29] to
generate the underlying net for a given CIF. It is essential that topological nets correctly
match the dimensions of the CIF so they can be overlaid together for AR representation.
Once the topology is determined, the next stage is to convert both the CIF and its
corresponding net into separate OBJ files where they can then be layered together in
Blender for export into a single FBX file. Topology nets are typically created as CGD or
MOL2 files that can be imported into CSD Mercury, before being exported as PDB files
for use in Jmol. One disadvantage of this method is that the underlying net representation
cannot later be switched on/off in the free version of p3d.in, but it remains an interesting
tool for demonstrating the underlying connectivity of MOFs. Table 6.1, rows 4 and 5, show
IRMOF-1 and UiO-67 as illustrative examples of MOFs with their overlaid topologies.

6.5.3 Gas Adsorption Representation

To obtain more information from AR modeling, one can run adsorption simulations and
generate “snapshots” of gas adsorption sites for visualization in AR at desirable operating
temperatures and pressures. Here, we use RASPA [26] for running Monte Carlo simula-
tions of adsorption in MOFs. Once the simulation at a specific temperature and pressure
in the isotherm is equilibrated, RASPA provides CIF and PDB output files for the frame-
work and the adsorbate molecules, and to visualize gas adsorption snapshots, these two
files should be merged into a single file followed by the AR development process, as ex-
plained in Section 6.4. Figure 6.3 demonstrates CO2 adsorption isotherm simulated in
UiO-67 at room temperature. As can be seen, we can use AR to visualize gas adsorption
snapshots as pressure is increased from 0.15 to 20 bar. These snapshots are all produced
in RASPA forming the basis of AR model creation for gas adsorption visualization.
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Figure 6.3: CO2 adsorption isotherm simulated in UiO-67 at 298 K. Ad-
sorption snapshots are highlighted at 0.15, 5.5, and 20 bar. QR codes for AR
visualization are located adjacent to each snapshot.

In Table 6.1, rows 6–10, we demonstrate AR representation of CO2 and H2O ad-
sorption in selected MOFs. By simply scanning the relevant QR code, one can create
an immersive experience, investigating how the pore environment and surface chemistry
affect the adsorption of CO2 or water in MOF-812, CALF-20, UiO-66, HKUST-1, and
KAUST-7. In contrast to typical 2D visualization of simulation snapshots, AR can thor-
oughly capture the clustering of water molecules and the formation of hydrogen bonds,
typically seen in hydrophilic MOFs such as in Cu-BTC. In CALF-20, it can be seen that
CO2 molecules sit tightly within the channels of the oxalic acid linkers where they strongly
interact with the metal nodes. In UiO-66, we can use this experience to easily visualize
that CO2 molecules occupy the tetrahedral cages first at low pressure conditions.

6.5.4 Reception

We demonstrated some of the MOF AR visualizations via QR codes at the first Mediter-
ranean Porous Materials Conference in May 2023 in Crete, Greece, and again at the sixth
Annual UK Porous Materials Conference in June 2023 in Sheffield, United Kingdom,
receiving approximately 350 views combined. We received many positive comments re-
garding the quality and clarity of the modeling, and we shared a number of additional QR
codes to demonstrate the flexibility of these methods with various structures and gases.
We also received constructive feedback for AR demonstration of, e.g., bond vibrations,
structural flexibility, and increasing interactivity by implementing measuring tools.
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6.6 Conclusion

This article showcases the capability of AR modeling for visualization of MOFs and
other porous materials for a variety of applications. We used AR for representing MOFs
crystalline structure, their underlying topologies and favorable gas adsorption regions
without the need for additional downloads, as the models can be viewed on an Android or
iOS smartphone app-free. The technique outlined in this paper and the SI allows anyone to
create attractive AR models that can be shared globally by simply distributing a QR code.
This freely available, no-cost method is ideal for augmenting MOF posters at conferences,
adsorption workshops, and crystal structure presentations as an engaging and interactive
experience. Furthermore, the ability to modify the size of AR representations to over 5 m
in diameter once placed in a room, establishes the use of AR as an educational tool in the
field for furthering understanding of gas adsorption and topological complexities of these
intriguing materials. Additional applications of AR include use in research and design for
visualization of reactants, intermediates and products in catalysis, crystal engineering and
visualization of defects, solvents and irregularities, as well as facilitating collaboration and
communication between research groups via the Internet, and even artistic experiences of
crystal structure representations.

Data Availability

All of the structures featured here can be downloaded directly from the Cambridge
Structural Database (CSD), which can be obtained from https://www.ccdc.cam.ac.

uk/support-and-resources/download-the-csd. RASPA can be freely obtained from
https://iraspa.org/raspa/. Blender is available for free at https://www.blender.

org/download/. The Jmol freeware can be found at http://jmol.sourceforge.net/

download/. Online 3D model hosting platform at https://p3d.in/. These links to the
various software packages used are also presented in the SI. We also include a ZIP file of
gas adsorption files from the RASPA outputs (where applicable), as well as the FBX files
used to create these AR representations.

https://www.ccdc.cam.ac.uk/support-and-resources/download-the-csd
https://www.ccdc.cam.ac.uk/support-and-resources/download-the-csd
https://iraspa.org/raspa/
https://www.blender.org/download/
https://www.blender.org/download/
http://jmol.sourceforge.net/download/
http://jmol.sourceforge.net/download/
https://p3d.in/
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[1] Omar K. Farha, A. Özgür Yazaydın, Ibrahim Eryazici, Christos D. Malliakas,
Brad G. Hauser, Mercouri G. Kanatzidis, SonBinh T. Nguyen, Randall Q. Snurr,
and Joseph T. Hupp. De novo synthesis of a metal-organic framework material fea-
turing ultrahigh surface area and gas storage capacities. Nat Chem, 2(11):944–948,
November 2010.

[2] Shengqian Ma and Hong-Cai Zhou. Gas storage in porous metal–organic frame-
works for clean energy applications. Chem. Commun., 46(1):44–53, January 2010.
Publisher: The Royal Society of Chemistry.

[3] Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, and Banglin Chen. Porous Metal-
Organic Frameworks: Promising Materials for Methane Storage. Chem, 1(4):557–
580, October 2016.

[4] Jian-Rong Li, Julian Sculley, and Hong-Cai Zhou. Metal–Organic Frameworks for
Separations. Chem. Rev., 112(2):869–932, February 2012. Publisher: American
Chemical Society.

[5] Qihui Qian, Patrick A. Asinger, Moon Joo Lee, Gang Han, Katherine Mizrahi Ro-
driguez, Sharon Lin, Francesco M. Benedetti, Albert X. Wu, Won Seok Chi, and
Zachary P. Smith. MOF-Based Membranes for Gas Separations. Chem. Rev.,
120(16):8161–8266, August 2020. Publisher: American Chemical Society.

[6] Rui-Biao Lin, Shengchang Xiang, Wei Zhou, and Banglin Chen. Microporous Metal-
Organic Framework Materials for Gas Separation. Chem, 6(2):337–363, February
2020.

[7] Sophie E. Miller, Michelle H. Teplensky, Peyman Z. Moghadam, and David Fairen-
Jimenez. Metal-organic frameworks as biosensors for luminescence-based detection
and imaging. Interface Focus, 6(4):20160027, August 2016. Publisher: Royal Society.

[8] Jack Gonzalez, Krishnendu Mukherjee, and Yamil J. Colón. Understanding Struc-
ture–Property Relationships of MOFs for Gas Sensing through Henry’s Constants.
J. Chem. Eng. Data, 68(1):291–302, January 2023. Publisher: American Chemical
Society.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

This project, and the work conducted within it, has resulted in the creation of the publica-
tions within this document in addition to the stimulation of further ongoing works within
this research group and beyond. In this thesis, we began with a goal of improving the
topological characterisation of MOFs and MOF-like structures within the CSD, as well as
creating new computational tools to aid in this process with the potential to implement
some forms of machine learning to achieve this outcome. Computational studies such
as this are playing an increasingly important role in today’s digital society by driving
research into a more efficient and streamlined process for design and discovery of new
functional materials.

Efficient and accurate topological characterisation is one area which still has scope
for improvement. MOF topology is crucial for understanding structure-property rela-
tionships that can have significant performance impacts on materials depending on their
chosen applications. By conducting this analysis of connectivity between the linkers and
nodes it is possible to predict porosity, surface area, stability, and other key properties
without the need for experimental synthesis to take place - this can also aid in MOF
design with the ability to tailor functionality for a range of applications including gas
storage, separation, catalysis, and sensing. Lastly, topological analysis enables classifica-
tion and comparison between different MOFs based solely on their structure allowing for
grouping in terms of common structural motifs whilst helping to guide rational design of
hypothetical materials.

In Chapter 2 we investigated exactly what topology means in the context of crys-
talline materials with a deep perspective look into the requirements for accurate topolog-
ical assignment and the tools that are currently available in the MOF domain. We also
considered several datasets to find an ideal target database for the inclusion of topologi-
cal information. This chapter had a specific focus on ensuring that the form of periodic
networks were understood, and we talked about the knowledge required to select the best
assignment software for the problems a researcher might be facing and where to find fur-
ther information when investigating complex crystal structure analysis. We also touched
on the IUPAC guidelines and what we expect to see in publications that report MOF
topology, and suggested that the creation of a freely available MOF topology database
would be of benefit to the community.

In Chapter 3 we introduced a new Python based tool for use in conjunction with the
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CCDC software suite that can be used at the click of a button. The crystal structure char-
acterisation report gives the user insight into the spacegroup, cell volume, void fractions,
packing, and topology (if applicable) to any molecule or MOF that has been deposited
into the CSD.

Chapter 4 introduced the concept of machine learning and digital manufacturing for
solid-state materials development. ML is revolutionising digital manufacturing by offering
unprecedented opportunity for efficiency, optimisation, and innovation across a number
of industrial sectors. By learning from experience, recognising patterns, and making
decisions without needing explicit programming ML plays a pivotal role in transforming
traditional processes into smart, data-driven systems. Novel solid state materials are
urgently required for energy applications that include carbon capture and storage, and
the synthesis of these candidates has typically been a manual process that is inefficient
for exploration of new materials. These emerging data science and digital technologies
are developing as highly sought after techniques in academia and industry.

Following on from the previous introduction, in Chapter 5 we developed a text-mining
approach using a modified version of ChemDataExtractor to parse 43,281 MOF publi-
cations and extract 52,680 associated MOF properties, such as synthesis route, metal
precursor, solvent, and organic linker with an overall precision of 77%. Then, to sup-
plement this data we calculated pore limiting diameters, largest cavity diameters, and
independently assessed topology for all 3D MOFs in the CSD MOF subset. Further, we
mined the organic linker names from the CSD for each of the corresponding structures,
normalised them, and performed cost analysis. This study resulted in the creation of
the DigiMOF database which contains a wealth of information, publicly available to re-
searchers for use in training ML models, or to aid them in searching for specific structure
properties.

Chapter 6 is a showcase of an additional new feature, augmented reality modeling
for enhanced visualisation. As previously discussed, MOFs are ideal candidates for gas
storage and adsorption applications, and further their topology is a key feature. The
use of AR for visualisations allows researchers to bring atomic scale representations of
MOFs into the room enabling them to gain insight into the adsorption sites at various
conditions, or further understand the complex underlying connectivity of novel structures.
These models are a great tool for understanding and educating with an almost limitless
combination of available representations - if it can be rendered on a computer then it
likely can be rendered in AR.

7.2 Future Work

Whilst this study has provided some valuable insight into topological analysis of MOFs,
the use of natural language processing and data mining for synthesis information gath-
ering, and the introduction of some new computational tools, several avenues for future
research have emerged that warrant exploration. In this short section, I highlight a few
key areas where additional investigation could improve our understanding and contribute
to the advancement of the MOF and crystal chemistry field.

Firstly, large language models such as ChatGPT, are a hot topic at present. These
models are trained on vast amounts of text data and excel in natural language understand-
ing and generation, and in fact we have already seen the adoption of these tools begin
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within the field in recent publications. In the context of MOFs, language models have
several potential uses including data analysis, materials design, data curation, knowledge
synthesis, and they could even be used for hypothesis generation.

Language models can analyse research papers and patents to identify trends, sum-
marise findings, and parse important parameters as demonstrated by DigiMOF. The
continual development of these tools increases their abilities and can lead to further MOF
synthesis property extraction. By obtaining this information it allows researchers to
gain more comprehensive understanding of MOFs to guide further research and innova-
tion. Knowing these patters and correlations in data can also prompt the next steps for
experimental or computational study - possibly through suggestions of optimal design
parameters to tailor-make materials for specific applications. Lastly, this curated data
can serve as a valuable resource for future analysis and modelling studies and form a basis
for machine learning training for further development.

Future work should also include the continual development and refinement of the
CCDC’s powerful software suite. In recent times we have seen the inclusion of PoreBlazer
within CSD Mercury as a welcome addition to crystal structure analysis, and in this thesis
we also developed a processes through which CrystalNets can be used to assign topology
to any structure within the database. I would recommend the inclusion of new tools and
the refinement of existing tools should continue as is evidenced by the quarterly updates
released by the CCDC and their support of researcher-created Python tools hosted on
their GitHub. The 2024.1 update has strengthened the hydrogen addition capabilities,
and also the packing similarity functionality for structures with internal symmetries.
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Appendix A

Supporting Information for
DigiMOF

A.1 Article Retrieval

Article retrieval is achieved by using DOIs to automatically download articles from journal
websites. Two methods may be used to retrieve article DOIs when assembling a corpus
of MOF articles using CDE. For the first method, a web scraping script developed in
the most recent version of CDE can be used to send a search query to Elsevier and the
Royal Society of Chemistry to extract the DOIs which are then used to download the
article in the form of a HTML file. We also developed a second method which involves
retrieving MOF reference codes and their associated DOIs from the Cambridge Structural
Database (CSD) using the CSD Python API. Both methods produce a CSV file which
stores the DOIs of the articles to be downloaded. Here, we used the CSD Python API
as utilising search queries was found to significantly increase the time required for web
scraping. We wrote a Python script which calls the Selenium webdriver to navigate to
the article webpage and the PyAutoGui library to save the articles as HTML files. After
running the web scraping script, to get access to the publications, a window appears where
the user must sign into their DOI account via their institution’s website. The scraper
will then automatically copy and paste article DOIs from the CSV file where they are
stored, prior to downloading them. The web scraping script can download approximately
three articles per minute. We recommend researchers use high-performance computing
clusters to assemble corpuses that contain thousands of articles to avoid a bottleneck in
the pipeline.

A.2 Database Overview and Performance

As the data mined for the DigiMOF database consisted of text-text relationships, in
contrast to the text-numerical records from previously conducted text mining studies,
there were considerably more linguistic and syntactical variations in the reporting of the
properties of interest compared to previous projects.
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Table A.1: Parsing elements used to create the rule-based grammars to iden-
tify MOF names and corresponding topology, solvent, synthesis route, organic
linker, and/or metal precursor [1].

Element Description Element Description

R(regex) Match text with regular
expression

T(tag) Match tags

W(word) Match case-insensitive to-
ken text

I(iword) Match case-insensitive to-
ken text

Any Match any single token H(hide) Ignore the matched tokens
Not Match only if not followed

by some text
Followed
By

Match only if followed by
some text

ZeroOrMore Match zero or more of the
expressions

OneOrMore Match one or more of the
expressions

Optional Match if it exists SkipTo Skips to the next occur-
rence of text

Table A.2 contains examples of compound records which were extracted in this project
and in previous chemistry text mining projects. Previous projects enlisting CDE mined
text-numerical data, whereas this project mined qualitative text-text relationships. Note
that for the example for this database a real record was used and in this instance no
topology or solvent was associated with the MOF compound by the parser. This is
typical as it is rare for all 5 properties to be found in one compound record. It has been
attempted to represent records from previous projects as faithfully as possible but the
exact format of the scraped records is not always available in the source material.

Table A.2: Examples of compound records from previous versions of CDE,
the previous attempt to text mine MOF data and this work.
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Figure A.1: MOF CDE parser performance compared with previous versions
of CDE [1, 2] and the work from Park et al. [3] MOF text mining tool. Perfor-
mance of individual parsers and detailed methodology for calculation of these
metrics is available in the supporting information, Table A.3.

The machine-learning assisted version of CDE enlisted in the Neel and Curie Temper-
ature database achieved a precision of 82% on its test-set, but this is expected to converge
to 66% over time as the algorithm is trained on broader datasets [2]. Park et al.[3] reported
their accuracy to be 79% but recall and F-score were not reported in their work. Luo et al.
[4] also had an accuracy report of 78.9% which was referred to as consistency, this value
was obtained by matching the manually extracted records in the SynMOF-M database
with the automatically extracted records in the SynMOF-A database. It’s also important
to note that when sentences contained multiple compound names associated with other
properties, our parsers could only identify the properties correctly if the MOF compound
name was preceded or followed by a property without another MOF compound name
separating the two. Some sentences however have multiple MOF names listed first with
their corresponding properties listed second and this resulted in the erroneous association
of the last MOF compound name with the first property name. Finally, a filter for MOF
names was created using a regular expression to ensure that only MOF compound names
were extracted into the database which further limited the entries, increasing precision.

The performance of each individual parser was also manually assessed on 50 random
journal articles. For each property (synthesis routes, topologies, solvents, linkers, and
metal precursors) in the database, both the precision and recall was calculated as shown
in Table A.3 below.
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Table A.3: Summary of the performance of each individual parser.

Property Precision Recall F-score

Synthesis Route 100% 37.7% 54.7%
Topologies 70% 40% 50.9%

Linkers 62.9% 35.9% 45.7%
Metal Precursors 89.4% 40.3% 55.6%

For each property, the precision was calculated by manually extracting each property
from all 50 papers. Following this, the values extracted by the parsers were given the
value of “1” if the match was correct and a value of “0” if the match was incorrect. The
total of correct extractions was then divided by the total number of identified properties
(incorrect are false positives) to obtain the precision. To calculate the recall, the total of
correct values was divided by the all the correct possible values (false negatives) that the
parsers could have extracted from the papers.

Table A.4 contains a list of regular expression samples which were used to parse the
respective properties. These expressions were modified and refined to improve on the
aforementioned recall and precision metrics of the parser techniques for the DigiMOF
database.
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Table A.4: Simplified MOF CDE Regular Expression (Regex) examples.

Table A.5 below demonstrates the development of regular expressions to eliminate
compounds which were frequently misidentified as linkers in exclusion lists. This is not
shown for metal precursors and MOF names as the principle was similar and misiden-
tifications were much less common for these variables as their definitions included less
ambiguous regular expressions. As with the regular expressions for the variable defini-
tions, strings may be added to the exclusion list if they have false negatives but should
be avoided if they have false positives as this will prevent the identification of compounds
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such as linkers (which is why expression 5 may be preferred to expression 2). For abbre-
viations or compound names which convey ambiguity or overlap between variable types,
it can be advisable to use more tailored and/or case-sensitive regular expression which
corresponds to a limited number of strings or to a unique string of characters (as with
10 expressions 5 and 6), rather than attempting to accommodate or exclusion list many
strings using more general rules. These examples are simplified and the actual exclusion
list regular expressions can be found in the MOF CDE on GitHub.
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Table A.5: Simplified examples of organic linker exclusion list item regular
expression development. Note that compound types (such as MOF names and
metal precursors) were also added to this exclusion list.

A.3 Synthesis Proportionality

Figure A.2 is a pie chart representation of the proportionality of synthesis techniques
extracted over the previous 25 years of MOF synthesis, spanning the period of 1995 to
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2020. The results show a significant preference for hydrothermal techniques over the
next leading method. The third most commonly reported technique has a share of only
1.44% of all reported techniques, although we must note that it is anticipated this is an
even smaller proportion due to the non–specific reporting of the most common techniques
which is noted in many MOF synthesis papers. Despite the increasing prevalence of novel
techniques, they at present likely make up significantly less than 4% of all MOF synthesis
pathways.

Figure A.2: Proportion of synthesis methods present in the MOF Database.

A.4 Data Transformation and Visualization

Following the data extraction process, the data was converted from a JSON format to a
Microsoft Excel (.csv) file. While the filter was able to exclude many non-MOF names,
it did miss some such as “[Co2]”, “Cd-“, and “Cu()” which were therefore removed using
Excel’s find and replace function. Additionally, the transfer of the data to Excel format
led to the addition of special characters such as “Â”, “â€, and “âˆž” and these were
also removed. Furthermore, data that were obviously not linkers or metal precursors
such as “KOH” and “NbO” were also deleted from the database with notes made of
frequent misidentifications to be added to exclusion lists. During this transformation
process, synonyms were also combined such as “DMF”, “N,N-dimethylformamide”, and
“dimethylformamide” to ensure that data entries were only counted once. After the
data was transformed, it was combined with the data extracted from the CSD using
Excel’s Power Query which combined the data based on the article download number
which corresponded to the row number in the CSD thus matching the two separate data
records. Figure A.3 shows the most extracted metal precursor results which were deemed
not suitable to reported in the metal precursor histogram. This chart can be compared
with Figure 5.4 e) within the main manuscript to reflect on the impact of conducting data
transformation and augmentation following extraction.
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Figure A.3: A histogram displaying the 25 most extracted strings marked up
as metal precursors.

A.5 Building Blocks and Topology

Further analysis was performed to compare the most common MOF building blocks and
available topologies. The structures which most commonly reported topology and metal
cluster in the experimental manuscripts were all metal nitrates, and primarily hydrated
nitrates of transition metals. As for the linker types, these are primarily organic com-
pounds which bond to metal clusters at each end of a straight chain. In Figure A.4, ‘bipy’
refers exclusively to 2,2’-bipyridine.

Figure A.4: Clustered columns reflecting the top five topological allocations
to a. the top five linker types, and b. the top five metal clusters.

We also investigated the ratio of LCD/PLD of the building blocks with respect to the
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topology. Figure A.5 shows the top 20 topologies for porous MOFs in the 3D MOF subset
against the LCD/PLD ratio across the whole range of linker types. Here we note that
the diversity of the LCD/PLD ratio suggests different pore accessibility, noting that the
median ratio for each topology is different. For LCD/PLD ratio close to 1, we expect to
see channel type pores, whereas for larger ratios we expect larger pores and small PLD
values.

Figure A.5: Top 20 topologies versus the LCD/PLD ratio in descending order
of frequency for structures with PLD > 0.55 Å.

Lastly, Figure A.6. shows a comparison of the linker length against the LCD/PLD
ratio for the pcu topology. At shorter lengths, the ratio can be seen to reach a higher
maximum value of 5.5, as well as a higher median value. This pattern of ratio decrease
continues as the linker length increases. Given that the topology is the same across all
of these structures, it would be unlikely that this change in ratio could be attributed to
a structure being restricted to a single pore shape as opposed to a variety of mesopores
and micropores. Whilst the pore sizes may vary, we would expect to see more uniform
pore shapes for matching topologies, however given that pcu is one of the most basic nets,
and that the topological assignment was performed using the Single Node algorithm, it is
possible that these structures do form different structures and therefore do display some
variety in micro and mesopores.
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Figure A.6: A box and whisker plot of linker length, as categorised by the
number of aromatic rings, against LCD/PLD ratio for all porous MOFs which
were assigned pcu topology.

A.6 Text Mining Overview

An overview of the outcome of text mining can be found in Figure A.7 where the five
main parameters are listed with their properties listed in order of recurrence frequency,
alongside the CSD temperature values. All data presented here were obtained using the
modified ChemDataExtractor found in the associated GitHub.
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Figure A.7: Histograms showing the most common MOF properties extracted
in the DigiMOF database. a. synthesis methods, b. topologies, c. solvents, d.
organic linkers, e. metal precursors, and f. temperature.
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A.7 Parsed Articles

The test set of 50 journal articles can be found below.

(1) Hu, X.-L.; Qin, C.; Wang, X.-L.; Shao, K.-Z.; Su, Z.-M. A Luminescent Dye@MOF
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https://doi.org/10.1039/C5TA05481H.

(3) Yi, F.-Y.; Jiang, H.-L.; Sun, Z.-M. Linearly Bridging CO2 in a Metal–Organic
Framework. Chem. Commun. 2015, 51 (40), 8446–8449.
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(4) Ahrenholtz, S. R.; Landaverde-Alvarado, C.; Whiting, M.; Lin, S.; Slebodnick,
C.; Marand, E.; Morris, A. J. Thermodynamic Study of CO2 Sorption by Polymorphic
Microporous MOFs with Open Zn(II) Coordination Sites. Inorg Chem 2015, 54 (9),
4328–4336. https://doi.org/10.1021/ic503047y.

(5) Zhang, S.-Y.; Zhang, X.; Li, H.; Niu, Z.; Shi, W.; Cheng, P. Dual-Functionalized
MetalOrganic Frameworks Constructed from Hexatopic Ligand for Selective CO2 Adsorp-
tion. Inorg Chem 2015, 54 (5), 2310–2314. https://doi.org/10.1021/ic502921j.

(6) Hu, Z.; Huang, G.; Lustig, W. P.; Wang, F.; Wang, H.; Teat, S. J.; Banerjee,
D.; Zhang, D.; Li, J. Achieving Exceptionally High Luminescence Quantum Efficiency by
Immobilizing an AIE Molecular Chromophore into a Metal–Organic Framework. Chem.
Commun. 2015, 51 (15), 3045–3048. https://doi.org/10.1039/C4CC07642G.

(7) Paraschiv, C.; Cucos, A.; Shova, S.; Madalan, A.; Maxim, C.; Visinescu, D.; Co-
jocaru, B.; Parvulescu, V.; Andruh, M. New Zn(II) Coordination Polymers Constructed
from AminoAlcohols and Aromatic Dicarboxylic Acids: Synthesis, Structure, Photocat-
alytic Properties, and Solid-State Conversion to ZnO. Crystal Growth & Design 2015, 15,
799–811. https://doi.org/10.1021/cg501604c.

(8) Yang, F.; Zheng, Q.; Chen, Z.; Ling, Y.; Liu, X.; Weng, L.; Zhou, Y. A Three-
Dimensional Structure Built of Paddle-Wheel and Triazolate-Dinuclear Metal Clusters:
Synthesis, Deformation and Reformation of Paddle-Wheel Unit in the Single-Crystal-to-
Single-Crystal Transformation. CrystEngComm 2013, 15 (35), 7031–7037.
https://doi.org/10.1039/C3CE40855H.

(9) Yang, Y.-Y.; Lin, Z.-J.; Liu, T.-T.; Liang, J.; Cao, R. Synthesis, Structures and
Physical Properties of Mixed-Ligand Coordination Polymers Based on a V-Shaped Dicar-
boxylic Ligand. CrystEngComm 2015, 17 (6), 1381–1388.
https://doi.org/10.1039/C4CE02163K.

(10) Tu, B.; Pang, Q.; Wu, D.; Song, Y.; Weng, L.-H.; Li, Q. Ordered Vacancies
and Their Chemistry in Metal Organic Frameworks. Journal of the American Chemical
Society 2014, 136. https://doi.org/10.1021/ja5063423.

(11) Kapelewski, M. T.; Geier, S. J.; Hudson, M. R.; Stück, D.; Mason, J. A.; Nelson,
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J. N.; Xiao, D. J.; Hulvey, Z.; Gilmour, E.; FitzGerald, S. A.; Head-Gordon, M.; Brown,
C. M.; Long, J.R. M2(m-Dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal-Organic Frameworks
Exhibiting Increased Charge Density and Enhanced H2 Binding at the Open Metal Sites.
J Am Chem Soc 2014, 136 (34), 12119–12129. https://doi.org/10.1021/ja506230r.

(12) Zhao, N.; Sun, F. X.; He, H.; Jia, J.; Zhu, G. Solvent-Induced Single Crys-
tal To Single Crystal Transformation and Complete Metal Exchange of a Pyrene-Based
Metal–Organic Framework. Crystal Growth & Design 2014, 14, 1738–1743.
https://doi.org/10.1021/cg401887b.

(13) Patel, D. G. (Dan); Walton, I. M.; Cox, J. M.; Gleason, C. J.; Butzer, D. R.; Bene-
dict, J. B. Photoresponsive Porous Materials: The Design and Synthesis of Photochromic
DiaryletheneBased Linkers and a Metal–Organic Framework. Chem. Commun. 2014, 50
(20), 2653–2656. https://doi.org/10.1039/C3CC49666J.

(14) Crane, A. K.; Wong, E. Y. L.; MacLachlan, M. J. Metal–Organic Frameworks
from Novel Flexible Triptycene- and Pentiptycene-Based Ligands. CrystEngComm 2013,
15 (45), 9811–9819. https://doi.org/10.1039/C3CE41459K.

(15) Makal, T. A.; Zhuang, W.; Zhou, H.-C. Realization of Both High Hydrogen
Selectivity and Capacity in a Guest Responsive Metal–Organic Framework. J. Mater.
Chem. A 2013, 1 (43), 13502–13509. https://doi.org/10.1039/C3TA12761C.

(16) Schoedel, A.; Boyette, W.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. A Fam-
ily of Porous Lonsdaleite-e Networks Obtained through Pillaring of Decorated Kagomé
Lattice Sheets. J Am Chem Soc 2013, 135 (38), 14016–14019.
https://doi.org/10.1021/ja406030p.

(17) Han, L.; Xu, L.-P.; Qin, L.; Zhao, W.-N.; Yan, X.-Z.; Yu, L. Syntheses, Crystal
Structures, and Physical Properties of Two Noninterpenetrated Pillar-Layered Metal Or-
ganic Frameworks Based on N,N-Di(4-Pyridyl)-1,4,5,8-Naphthalenetetracarboxydiimide
Pillar. Crystal Growth & Design 2013, 13, 4260–4267. https://doi.org/10.1021/cg400454c.

(18) Li, J.-R.; Yu, J.; Lu, W.; Sun, L.-B.; Sculley, J.; Balbuena, P. B.; Zhou, H.-C.
Porous Materials with Pre-Designed Single-Molecule Traps for CO2 Selective Adsorption.
Nat Commun 2013, 4 (1), 1538. https://doi.org/10.1038/ncomms2552.

(19) Dau, P. V.; Polanco, L. R.; Cohen, S. M. Dioxole Functionalized Metal–Organic
Frameworks. Dalton Trans. 2013, 42 (11), 4013–4018.
https://doi.org/10.1039/C3DT32588A.

(20) Qin, Y.; Feng, X.; Luo, F.; Sun, G.; Song, Y.; Tian, X.; Huang, H.; Zhu,
Y.; Yuan, Z.; Luo, M.; Liu, S.; Xu, W. A Microporous Metal–Organic Framework
Containing an Exceptional FourConnecting 4264 Topology and a Combined Effect for
Highly Selective Adsorption of CO2 over N2. Dalton Trans. 2012, 42 (1), 50–53.
https://doi.org/10.1039/C2DT31905E.

(21) Zhang, J.-P.; Zhu, A.-X.; Chen, X.-M. Single-Crystal X-Ray Diffraction and
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Zeolites. Chem. Commun. 2012, 48 (93), 11395–11397.
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X.; Zhang, Z.; Liang, F. Synthesis, Structure, and Properties of a Chiral Zinc(II) Metal-
Organic Framework Featuring Linear Trinuclear Secondary Building Blocks. Aust. J.
Chem. 2012, 65 (12), 1662–1666. https://doi.org/10.1071/CH12270.

(23) Hou, C.; Liu, Q.; Fan, J.; Zhao, Y.; Wang, P.; Sun, W.-Y. Novel (3,4,6)-Connected
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Appendix B

Supporting Information for
Augmented Reality

B.1 Visualising MOFs with Augmented Reality (AR)

A step-by-step guide to create AR models of MOFs hosted by p3d.in from the Cambridge
Structural Database (CSD), with further instructions on how to manipulate RASPA movie
files, or topology output files.

B.1.1 Requirements:

CSD Mercury - https://www.ccdc.cam.ac.uk/support-and-resources/download-the-csd/

Jmol - http://jmol.sourceforge.net/download/

Blender - https://www.blender.org/download/

An active p3d.in account - https://p3d.in

(Optional but required for gas adsorption representations)

RASPA - https://iraspa.org/raspa/

(Optional but required for topology representations - choice of either)

CrystalNets - https://github.com/coudertlab/CrystalNets.jl

ToposPro - https://topospro.com/software/topospro/download/

B.2 AR File Creation Method

B.2.1 Part A – Selecting and Modifying Files:

1. Install and licence CSD Mercury and ensure the database is the latest version.

167

p3d.in
https://www.ccdc.cam.ac.uk/support-and-resources/download-the-csd/
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https://www.blender.org/download/
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https://topospro.com/software/topospro/download/
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2. Select a CSD refcode that you would like to develop an AR interaction for (or have
a file available for the structure you are interested in, in PDB, MOL2, or CIF format
from any other resource, including RASPA Movie outputs)

3. Open the structure in CSD Mercury by either searching for it by refcode or dragging
the file to the viewing window (here we search for BEDYEQ). Ensure that Packing
(bottom left) is selected to display the unit cell. This is important as what we see
– is what we get.

4. Once the file is loaded, make any changes to the structure that you see fit (e.g
remove unbound solvents, trim the edges of the unit cell to make it more uniform
etc.) You can do this by going to Edit -> Edit Structure. Find Remove at the
bottom and click Atoms & Bonds, then click any atom or bond to remove it.

Note: If you are loading a PDB file, the bonding information may be corrupted. To
solve this, go to Edit -> Edit Bond Distance Limit and click Apply. This should reset
the bonding, but it is important at this stage to check your structure and manually
verify that the bonding is correct. If you find any abnormalities, then they can be
corrected using the Edit Structure window as above to remove or change the bond
types.

5. When you are content with the structure representation, you should save it as a new
PDB file (eg. refcode new.pdb). Ensure you have made all final structure changes
before this step. It is also possible to save the file as a CIF at this stage, it should
not make a difference.

6. You can now close CSD Mercury.
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B.2.2 Part B - Jmol:

1. Open your new PDB file in Jmol.

2. Right Click and go to Style -> Scheme -> Ball and Stick. Make sure the that the
representation is in this format as once the file has been saved, it will stay in this
representation. (Although you are free to choose whichever format you prefer.)
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3. Go to File -> Console. . . This should open the console, where it will load the file
name, e.g CSD ENTRY BEDYEQ. Next to the pink $ enter: write new file name.obj
and press enter. This will print an object (OBJ) file into the default Jmol output
folder with the name you have assigned it. If the command is incorrect, the text
will turn red.

4. Wait for the console to give the OK, and the file path of your new file will be shown
on screen.
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5. You can now close Jmol.

B.2.3 Part C - Blender:

1. Open Blender. Select a new general starting platform. Delete the default grey cube
by selecting it and pressing delete. In the top right-hand corner, also delete the
camera, and light layers by clicking on them and pressing delete. (This is required
to keep file sizes low, so that the detail of the AR figure is kept at a maximum).

2. Go to File -> Import -> Wavefront (.obj) and import your object file from the
output folder of Jmol. (You may need to wait for it to render, these files can be
>250MB and may take some time to load.)

3. Select the object using left click and find the Spanner (Wrench) icon in the right-
hand side panel. Here it will ask you to “Add Modifier”.
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4. Select Add Modifier -> Decimate (in the Generate column). Check the Face Count
(FC) of your object – for AR this must be <750,000, if it is higher, calculate the
required ratio adjustment to bring it down to an acceptable level.

5. In this case, the FC is 3.57 times larger than acceptable. Here we have adjusted the
ratio to 0.25 to bring it within an acceptable limit – try to get the FC to as close
to 750,000 as possible as to not compromise on the quality of the representation.
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6. Now we need to export the file into a 3D rendering format. Go to File -> Export
-> FBX (.fbx) and save the file as something appropriate, e.g refcode AR.fbx.

7. You can now close Blender.

B.2.4 Part D - p3d.in:

1. Go to p3d.in and sign up as a Free User. Once you have logged in, you should see
the dashboard.

2. From here, select “Create new model” in the top left. Drag your FBX file into the
box and wait for it to render. Alternatively, you can upload the file from the file
explorer.

Note: When using the free version your FBX file must be smaller than 50 MB.
If you use the decimate tool, then it typically will condense the file to somewhere
between 7-20 MB.

p3d.in
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3. Once the model has rendered you can make changes to the colours of the object,
and the background by following the settings available to you via the modification
pane on the left-hand side of the website.

4. In Mesh and Materials, you will find a list of atoms – the colour of all C atoms will
be modified by changing the colour of this entry in the list.

We feel that changing the atom colours to “Classic” is a better representation than
the default “Realistic PBR”. These atoms colours can easily be swapped in a drop-
down menu.

5. Background settings can be changed in Viewer Customisation. Find Viewer Back-
ground and set the background colour to white. Ensure in this section that Aug-
mented Reality is set to “Enable”. (This is per your preference but we find either
black or white works best, although there are also options to select an environment
such as hotel room.)

6. Save changes to exit and publish the structure.
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7. Copy the new unique URL from the published structure. You can choose to keep the
structure private such that it can only be accessed via that URL (and corresponding
QR) or you can publish it publicly, or hide it completely.

B.2.5 Part E - QR Code:

1. Take the unique URL published from the structure, in the format of p3d.in/xxxxx
and visit the-qrcode-generator.com/. Select static QR generator, choose URL
and paste the link in the Enter URL box. You can then customise the adjacent QR
code.

2. Download the 1000px version of the QR code that is unique to your new structure
and keep it safe.

the-qrcode-generator.com/


APPENDIX B. SUPPORTING INFORMATION FOR AUGMENTED REALITY 176

3. Post your QR on research posters, websites, journal articles, and more!

4. If at any time you would like to modify your structure, you can edit the file cor-
responding to this QR code. Log back in to p3d.in and edit the relevant link,
here you can upload new FBX files entirely and retain the same URL, you can also
modify any of the settings at any time and they will be applied as soon as you save
the entry again.

5.

B.3 RASPA AR file generation for gas adsorption visuali-
sation

1. Download RASPA. (If you are not familiar with RASPA there are several online
guides and workshops available on the iRASPA website linked at the beginning of
this document).

2. Submit a CIF to RASPA and define your input parameters. Ensure that the “Movie”
parameter is set to “yes” and specify the number of iterations between snapshots.

p3d.in
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3. Run RASPA. Once the simulations are completed, a Movie output folder will have
been created containing the snapshots at each point of the isotherm. Select the one
you would like to represent in AR and copy either the CIF or PDB file to a new
folder where you will begin to create the AR representations.

4. Follow the steps in this guide from Part A.

B.4 CrystalNets AR file generation to visualise topology

B.4.1 Part I: Obtaining OBJ format topological nets.

1. Download the relevant CIF file for your chosen structure.

2. Visit https://progs.coudert.name/topology and upload the CIF, cycle through
the main options and select settings that are relevant to the chosen crystal. For a
MOF, we selected the following settings: Structure Type: MOF, Bonding: Auto,
Clusterings: SingleNodes, Exports: Trimmed, Subnets, Clusters.

https://progs.coudert.name/topology
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3. The output file will be obtained in a VTF format and can be downloaded from the
subnets section. Note: To view these nets in Mercury, it is then necessary to convert
the output VTF file into a MOL2 format. VTF files cannot be opened in Merucry
or Jmol, however MOL2 can be opened in Jmol and converted into an OBJ file, as
in Part B of this guide.

4. Open your newly created MOL2 file in Jmol and follow the steps in Part B using
the instructions for the console in Jmol to obtain an OBJ file from the MOL2 input.
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B.4.2 Part II: Combining OBJ nets and OBJ crystals in Blender.

1. Once the OBJ file of the net has been created, it is necessary to create the OBJ of
the crystal structure itself, although these stages can be completed in either order.
For the AR representation of the original crystal, follow Parts A and B of this guide
and return here to combine the two files.

2. Begin by importing the crystal OBJ file. Go to File -> Import -> Wavefront (.obj)
and import your crystal object file from the output folder of Jmol. (You may need
to wait for it to render, these files can be >250MB and may take some time to load.)

3. Now the OBJ files can be combined in Blender if the same original CIF was used
to create both files. Some modification may be required in Blender to ensure the
underlying net is configured in the correct position, although if the exact same
CIFs are used this is unlikely. Import the nets OBJ file. Go to File -> Import ->
Wavefront (.obj) and import your topology net object file.
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Note: These stages draw many similarities with Part C, with a few additional
steps. If the net requires some adjustment, it can easily be moved around and
re-scaled in Blender.

4. Once the initial structures have been imported, to ensure that the combined files
will render in Augmented Reality we need to add the total face counts for both
OBJ files together and decimate them both so that the sum of faces does not exceed
750,000. Select the object using left click and find the Spanner (Wrench) icon in the
right-hand side panel. Here it will ask you to “Add Modifier”. Select Add Modifier
-> Decimate (in the Generate column). Calculate the required ratio adjustment to
bring it down to an acceptable level.

Note: We would recommend decimating the underlying net more than the crystal
structure as the quality of the render for the net is less significant.

Ensure that the SUM of face counts does not exceed 750,000!

5. Once the face count is at an acceptable level, the combined structures can be ex-
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ported as an FBX file. Go to File -> Export -> FBX (.fbx) and save the file as
something appropriate, e.g refcode topology AR.fbx.

6. Close Blender and follow Part E to complete the upload to p3d for AR visualisation.
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