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A B S T R A C T

Driven by the ambition and the fundamental need to reconcile quan-
tum theory with general relativity, research in quantum gravity has
grown steadily over the decades, with several candidates attacking
the problem from different angles.

This thesis explores key aspects of the group field theory (GFT)
approach to quantum gravity, a non-perturbative framework centred
around background independence and discreteness which considers
the familiar spacetime of general relativity as emerging from fun-
damental quantum geometric elements. After reviewing motivations
and foundations of GFT, the thesis focusses on new research that
spans three major themes: anisotropic cosmology, semiclassical states,
and relational dynamics.

First, the thesis introduces anisotropic GFT cosmological models,
broadening the current understanding beyond isotropic settings by in-
corporating new anisotropy degrees of freedom from quantum grav-
ity considerations. These results enhance the applicability of GFT to
more complex scenarios, which can lead to a variety of new phe-
nomenological applications.

Next, a comprehensive semiclassical investigation provides a uni-
fied framework of Gaussian states for GFT cosmology, which gener-
alises all previously studied quantum states and properties. Quantum
fluctuations are shown to be under control, ensuring that models de-
rived from GFT exhibit a semiclassical behaviour, crucial for bridging
quantum gravity with large-scale cosmology.

Finally, the thesis addresses a critical conceptual challenge in quan-
tum gravity: relational dynamics as a solution to the problem of time.
By means of quantum clocks, the Page–Wootters formalism (here ap-
plied for the first time in non-perturbative quantum gravity) yields a
covariant formulation of quantum dynamics in GFT. This allows for a
coherent framework that relates to established canonical quantisation
methods, strengthened by a conditional interpretation.

All such findings help address significant questions in GFT by offer-
ing novel phenomenological perspectives for cosmology, an exhaus-
tive semiclassical analysis, and clear insights on the notion of (quan-
tum) covariance. They also suggest many avenues for future research.
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1
I N T R O D U C T I O N

The problem of quantum gravity generically refers to the task of recon-
ciling the geometrical description of general relativity (GR) with the
principles of quantum mechanics – its pinnacle being quantum field
theory (QFT) – which underpins all other fundamental interactions.
While these frameworks describe their respective realm of physical
phenomena to an impressive level of accuracy [1, 8, 150], their under-
lying principles appear to contradict one another [244, 340]. We do
not observe any contradiction in experiments since gravity and quan-
tum field theory operate at different scales; as we explain below, their
effects become comparable at energies that are beyond our technolog-
ical capabilities.

After nearly a century of research,1 we still lack a complete theory
for phenomena which are both quantum and gravitational: a theory
capable of describing the quantum properties of spacetime geometry
itself at very short distances, depicting the microstructure of space-
time and matter at the fundamental Planck scale. The Planck scale
represents the energy level at which the effects of both quantum me-
chanics and general relativity become equally important, and it is
defined by fundamental constants: the speed of light c, Planck’s con-
stant h̄, and the gravitational (or Newton’s) constant G. While it was
Planck [322] who defined the celebrated fundamental units (length,
time and mass) In electronvolts, the

Planck scale is
usually expressed as
mPc2 ∼ 1019 GeV.lP :=

√
h̄G
c3 ,

tP :=
lP
c
=

√
h̄G
c5 ,

mP :=
h̄

lPc
=

√
h̄c
G

;

(1)

Bronstein was the one who noticed that they provide the scale for
quantum gravity, imposing fundamental bounds on physical quan-
tities [89, 90]. In particular, he realised that beyond this scale the

1 Arguably, research on quantum gravity started in 1930 with the papers by Rosenfeld
[334, 335], followed by the work of Bronstein [89], and by Fierz and Pauli [156, 157]
in the late thirties.
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2 introduction

notion of length loses its meaning and the quantum uncertainty of
spacetime becomes important [198, 344]. Such early investigations in
some way still resonate in modern research programmes, where us-
ing novel strategies and ideas (such as the notions of higher dimen-
sions or fundamental discreteness) the quantum gravity community
still strives to develop a theory valid at scales defined by (1) (see, e.g.,
[76] for a recent overview of achievements and issues in a number of
quantum gravity approaches).

In this chapter we briefly introduce various aspects related to the
problem of quantum gravity, discuss what progress has been made
in some candidate theories, and ultimately motivate the original re-
search results that will be presented in Part II. In a sense, the whole of
Part I delves into the technical details that are only mentioned here,
by properly introducing the group field theory approach to quantum
gravity, its cosmological applications and open questions.

diffeomorphisms and the problem of time . One of the
reasons why the quantisation of gravity is particularly challenging
is given by the absence of absolute structures. Indeed, a key con-
cept in general relativity is that of spacetime diffeomorphisms (i.e.,
coordinate transformations), which highlights the lack of an fixed
background geometry, as we will see in Chapter 2. It follows that
the spacetime manifold – central object in Einstein’s GR – does not
have a physical meaning. This idea was already troubling Einstein,
who came up with what is known as “hole argument” when trying
to understand that this was not a problem of his formulation of GR,
rather a feature of gravity [149, 355]. Note that diffeomorphism in-
variance can be obtained artificially by parametrising a theory with ad
hoc coordinates (we will explicitly make use of this strategy in Chap-
ter 6). In this way one can obtain a covariant framework, though it is
always possible to deparametrise the theory to find the original non-
covariant setting. In GR, spacetime is already a space of unphysical
parameters, and one cannot reformulate it in a non-covariant way. In
this sense, diffeomorphism invariance means that space and time are
nothing but coordinates parametrising a covariant theory of geometry.
As we will explain in Chapter 2, what is physical is the equivalence
class of metric fields, where any two of them are called equivalent if
they can be transformed into each other by a diffeomorphism.

Related to this is the fact that general relativity does not possess
a conventional time evolution. Even though the Einstein field equa-
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tions can be recast in Hamiltonian form, we will see in Chapter 2 that
the canonical Hamiltonian of GR takes the form of a pure constraint,
meaning that it generates the orbits of gauge symmetries and hence
implements diffeomorphism invariance. This leads to the problem of
time [233, 257, 340], which in the quantum theory is particularly wor-
rying since one deals with quantum states that appear to be “frozen”.
As we will see, one then needs to use relational strategies to be able
to describe dynamics; in simple terms, this means studying the evo-
lution of some degrees of freedom with respect to the changes in
another degree of freedom of the theory (normally required to be
a monotonic quantity). These themes play an important role in the
present thesis; we will provide a general introduction on background-
independent quantum gravity approaches in Chapter 2 (see [195] for
the link between background independence and diffeomorphism in-
variance), and emphasise in Chapter 3 their relevance for the group
field theory formalism, explicitly expanding on the idea of relational
dynamics. Furthermore, we will present in Chapter 6 new research
results in the context of group field theory that are motivated by the
general covariance of gravity.

quantum gravity candidates . As we mentioned, standard
approaches to quantisation, which have been effective for the elec-
tromagnetic, weak, and strong forces, fail for gravity; this is due to
Einstein’s theory being perturbatively non-renormalisable [199, 372].
In particular, we will see in Chapter 2 that canonical quantisation as
well as covariant (i.e., path integral) quantisation are not suited for
GR, at least in their standard implementations. As a result, a wide
range of alternative approaches has emerged (see [340] for a detailed
historical discussion on quantum gravity ideas), each possessing dis-
tinct strengths and limitations [76]. Despite the variety of approaches,
a consistent solution to the problem of quantum gravity is still not
available as all frameworks face formal and conceptual issues, and
notably, researchers continue to hold differing views (see [15] for a re-
cent collection of insightful interviews with leading experts in quan-
tum gravity). Here we simply classify the main approaches into two
categories: unified theories and background-independent theories.

Unified approaches, like string theory (and its modern formulation
known as M-theory), attempt to describe all interactions – including
gravity – in terms of more fundamental objects such as strings and
“branes”, existing in higher-dimensional spacetimes [60]. M-theory
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is a framework for an interacting quantum theory that encompasses
five known superstring theories, which are related to each other by
dualities, and links their low energy regime to eleven-dimensional su-
pergravity theories. While it offers an intriguing path towards unifica-
tion, it is only known in certain limits, and its complete formulation
is still under development.

Background-independent approaches – such as loop quantum grav-
ity (LQG) [340, 367] and group field theory (GFT) [160, 295] – focus onIn Chapter 2 we will

provide a detailed
overview of the main
approaches that lead

to the general
framework of group

field theory.

a key feature of GR, namely the lack of a fixed spacetime background
(see [195, 354] for details on background independence). By insisting
on this property at the quantum level, these approaches lead to a
discrete notion of (quantum) geometry, which in turn has promising
cosmological applications (especially in resolving the Big Bang singu-
larity by predicting a bounce scenario, as we emphasise in the follow-
ing). Especially relevant for this thesis will be the GFT framework,
which extends LQG (and other approaches) by providing a QFT-like
formalism in which geometry is made of fundamental quanta. More
precisely, the GFT partition function defines a non-perturbative sum
over simplicial geometries and topologies, which provides a combi-
natorial description of spacetime at the quantum level. As we will de-
scribe below (and expound in detail in Chapter 2 and Chapter 3), this
will allow to interpret spacetime (and cosmology) as emerging from
the collective behaviour of GFT quanta (“particles of geometry”).

probing quantum gravity with cosmology. The difficulty
of experimentally probing quantum gravity effects significantly hin-
ders progress in the field (see [3] for recent developments and ideas).
As mentioned, unlike the other fundamental forces which can be
tested through high-energy particle experiments, the effects of quan-
tum gravity are expected to become significant only at energy scales
of the order of 1019 GeV (cf. (1)). These energy levels are far beyond
the reach of current experimental capabilities, making direct observa-
tions of quantum gravity unattainable in our laboratories. In spite of
this, one can still try to bridge the gap between the theoretical facets
of quantum gravity and its phenomenological applications by identi-
fying appropriate regimes where one expects quantum gravity effects
to play a role. In this respect, the field of cosmology presents a unique
and promising arena for testing quantum gravity: the early Universe,
especially near the Big Bang, involves energy scales where quantum
gravity effects are expected to dominate, offering a potential observa-
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tional window into the theory [6, 7, 246, 247]. Moreover, from a the-
oretical point of view, quantum gravity might be able to resolve the
puzzles of cosmology. It could provide motivations for – or alterna-
tives to – the standard inflationary scenario; some examples are given
by bouncing models [38, 88, 377], ekpyrotic and cyclic models [243,
259] or string gas cosmology models [57, 87]. Even more importantly,
quantum gravity is expected to resolve the initial Big Bang singularity
(see, e.g., [95–97, 168, 242] for string cosmology results and [35–37, 46,
78, 305, 306] for discrete and background-independent approaches).
In particular, the singularity avoidance in group field theory cosmol-
ogy (a very robust result, see, e.g., [5, 184, 186, 272, 379]) represents
an important motivation for the work of this thesis; as such, we will
provide a detailed review in Chapter 3.

In general, therefore, (quantum) cosmology has the potential to
shed some light on the problem of quantum gravity. Note that in
order to make contact with observations, which show no quantum
features (such as geometry superpositions or uncertainties), identify-
ing a semiclassical spacetime description is crucial for any quantum
gravity and quantum cosmology model. Indeed, semiclassicality is
an important aspect in traditional quantum cosmology [214, 245, 271]
and in loop quantum cosmology [29, 359] (see also [98, 164, 362, 364]
for kinematical states in the context of full LQG). As we will see, these
considerations should also apply to group field theory, and motivate
the work of Chapter 5, where we present original results regarding
semiclassical states for GFT cosmology.

cosmology from group field theory. As we will thoroughly
explain in Part I, group field theory is a background-independent and
non-perturbative approach to quantum gravity that lies at the inter-
section of several quantum gravity frameworks. It generalises matrix
and tensor models [86, 209, 293] by combining their discrete and com-
binatorial nature with group theoretic degrees of freedom typical of
loop quantum gravity [299, 340]. Importantly, we will show in Chap-
ter 2 that GFT provides a formal way to complete spin foam models
[313] and make sense of a sum over triangulations of spacetime in
terms of a path integral [160, 295]. In its canonical formulation [298],
GFT describes quantum geometry as a many-body system, where
the fundamental components are discrete building blocks of geome-
try akin to the quantum states of LQG. In this setting, as explained
in Chapter 3, one can make use of some simplifying assumptions
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(meant to correspond to symmetry reduction) and obtain dynamical
equations which allow to discuss simple phenomenological applica-
tions.

More precisely, while it is not generally easy to recover an effec-
tive continuum interpretation from GFT (or LQG) – which are char-
acterised by discrete geometrical degrees of freedom – one can define
relational dynamics for global observables such as the total (spatial)
volume of a certain geometry, which can then be contrasted with glob-
ally homogeneous cosmological models. In such contexts, the idea of
relational dynamics refers to the evolution of a geometrical observ-In cosmology,

relational dynamics
means asking how

the volume changes
as a function of (or,

relatively to) the
scalar field. See

Appendix A and
Chapter 3 for the

implementation of
these ideas (at the

classical and
quantum level).

able (e.g., the volume of the Universe) with respect to the values
taken by some other (physical) degree of freedom, such as a mass-
less scalar field. In this picture, and in line with background inde-
pendence, a cosmological spacetime is not a fundamental entity but
emerges from the dynamics of the fundamental GFT degrees of free-
dom [297]. In other words, starting from the microscopic GFT quan-
tum description, one can derive cosmology as the resulting macro-
scopic, coarse-grained theory, namely as “hydrodynamics of quan-
tum gravity” [187, 300, 301]. As we will explicitly show in Chapter 3,
the most striking result in this sector was the recovery of the classi-
cal Friedmann–Lemaître–Robertson–Walker (FLRW) dynamics with
quantum corrections at high energies that replace the Big Bang sin-
gularity with a “Big Bounce” [305, 306]. From a phenomenological
point of view, this immediately raises the question of whether GFT
can reproduce the dynamics of more involved cosmological models.
Also in light of the results obtained in loop quantum cosmology [39,
83], the next natural arena to explore would be the case of anisotropic
cosmologies (in GR given by the classical Bianchi models as reviewed
in Appendix A); we discuss new results in this direction in Chapter 4.

aim and outline of the thesis . This thesis will mainly ad-
dress three questions in the context of group field theory and its cos-
mological sector, regarding phenomenology, semiclassicality, and re-
lational dynamics. The work presented here extends the field of GFT
in new directions, specifically aiming to: resolve ambiguities, clar-
ify techniques and interpretations, and provide definitive insights,
thereby offering a more coherent and structured understanding of
the complex aspects appearing in the literature. While the study of
Chapter 4 on anisotropic models seeks to extend the number of cos-
mological applications for GFT as a quantum gravity candidate, the
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Gaussian-states analysis of Chapter 5 and the rigorous definition of
quantum relational dynamics of Chapter 6 truly aim to incorporate
various traits of the field into a consistent framework.

This thesis is comprised of three parts. Part I introduces various ap-
proaches to quantum gravity: in Chapter 2 we sketch the traditional
attempts at quantising GR and explain in some detail the main path
integral formalisms that adopt a discrete perspective; this leads to the
definition of group field theory which is then rephrased in its canon-
ical formulation in Chapter 3, where it is also applied to cosmology.
Part II presents the main research results: these are new findings that
generalise and expand the existing literature reviewed in Part I, and
are based on [99–101]. Specifically, in Chapter 4 we define and anal-
yse new models for GFT cosmology that go beyond the state of the art
by introducing the notion of anisotropies, so as to characterise global
anisotropic spacetimes emerging from quantum gravity; we hence ex-
tend the range of phenomenological applications of GFT. In Chapter 5

we tackle another critical issue of GFT cosmological models, that of
semiclassical properties of quantum states. More precisely, we pro-
vide a unified framework that encompasses all previously studied
semiclassical states (in all approaches); this is provided by the rich
family of Gaussian states, for which quantum fluctuations are shown
to be under control. Lastly, in Chapter 6 we clarify a pressing founda-
tional aspect of group field theory, concerning a proper and formal
definition of (quantum) relational dynamics. By applying the Page–
Wootters formalism to non-perturbative quantum gravity for the first
time, with this work we shed some light on the relational evolution
of GFT geometric observables with respect to a “quantum clock” and
obtain a manifestly covariant formulation of quantum dynamics, con-
sistent with a Dirac quantisation. Part II concludes with an overall
summary of the thesis in Chapter 7, which emphasises the main re-
sults and possible new research directions. Finally, Part III contains
two appendices: Appendix A discusses the notion of relational dy-
namics in cosmology and Appendix B shows analytical expressions
and computational tools used for Gaussian-states calculations.





Part I

T H E R O A D T O G R O U P F I E L D T H E O RY
C O S M O L O G Y

This part of the thesis provides an introduction to the gen-
eral field of research. In particular, Chapter 2 explores the
motivations behind the group field theory (GFT) approach
to quantum gravity, and culminates with the definition
of its path integral formulation. Chapter 3 introduces the
canonical perspective for group field theories and outlines
the framework of GFT cosmology, detailing the models
used as starting points for the research described in Part II.





2
A P P R O A C H E S T O Q U A N T U M G R AV I T Y

In this chapter we review the approaches to quantum gravity that
have led to the formulation of group field theory (GFT), which will be
the underlying framework for the results of this thesis, discussed in
Part II. In particular, we mainly focus on non-perturbative approaches
that aim to incorporate the notions of discreteness and background
independence.

First, we will give a brief (and somewhat historical) summary of
the main ideas behind the canonical quantisation of general relativity
(GR), leading to the so-called geometrodynamics perspective. Then,
we will discuss formulations based on the path integral quantisation,
highlighting difficulties in the continuum and delving into possible
avenues to overcome such limitations in discrete settings. We will see
that the key aspect of these theories is that the perturbative expansion
of their path integral generates a sum over discrete geometries, show-
ing that they can provide well-defined formulations for solving the
problem of quantum gravity. Specifically, we will explore in some de-
tail simplicial quantum gravity theories rooted in Regge calculus, ma-
trix and tensor models, the covariant spin foam approach stemming
from loop quantum gravity, and finally group field theory, which can
be seen as a “larger embedding framework” that encompasses and
generalises the previous ones.

2.1 canonical quantum gravity

The canonical quantisation paradigm is a procedure for quantising
a classical theory while trying to preserve its formal structures. To
perform a canonical quantisation one starts from the Hamiltonian for-
mulation of a classical theory, where the dynamics are described in
terms of Poisson brackets, and promotes the phase space variables to
quantum operators on a Hilbert space. The Poisson brackets between
phase space variables are replaced by the canonical commutation re-
lations as [133]

{·, ·} → 1
ih̄
[·, ·] , (2)

11



12 approaches to quantum gravity

and the quantum theory is described in terms of a wave function of
the configuration variables (or, in field theories, by a wave functional
of the fields [222]). The dynamics are then described by the quantum
Hamiltonian operator Ĥ, which governs the Schrödinger equation.

The canonical quantisation of gravity was firstly developed in [128]
after the preliminary work of [16, 134]. It is based on the Hamiltonian
formulation of GR which shows that it is a fully constrained theory,
meaning that the total Hamiltonian can be expressed as a combina-
tion of constraints. More precisely, by assuming a 3 + 1 foliation of
spacetime, the familiar Einstein–Hilbert action1 (using units in whichThe 3 + 1 splitting

requires the
spacetime to be

globally hyperbolic,
so that it can be

foliated into Cauchy
hypersurfaces.

the speed of light c = 1)

SEH =
1

16πG

∫
d4x

√
−g R , (3)

where G is Newton’s constant of gravitation, g = det(gµν), gµν is the
metric tensor and R denotes the Ricci scalar, can be cast as

SADM =
1

16πG

∫
dt
∫

d3x
(

πabq̇ab − NaCa − NC
)

, (4)

which is known as Arnowitt–Deser–Misner (ADM) action. In addition
to the metric tensor of three-dimensional spatial slices qab (the dot in
q̇ab denotes a derivative with respect to t) and its conjugate momen-
tum πab, there are four Lagrange multipliers: the lapse function N
and the shift vector field Na. They multiply the (spatial-)diffeomorphism
and Hamiltonian constraints, defined as

Ca = −2Dbπb
a ,

C =
16πG
√

q

(
πabπab − 1

2
(πa

a)
2
)
−

√
q

16πG
R(3) ,

(5)

where q = det(qab), R(3) is the Ricci scalar of qab, Da is the spatial
covariant derivative compatible with qab and indices are raised and
lowered with qab. Varying (4) with respect to the Lagrange multipliers
implies that the constraint equations Ca = 0 and C = 0 must be
satisfied for physical configurations. These define what is known as
the (physical) constraint hypersurface in the phase space of GR. As
mentioned, the total Hamiltonian HGR = 1

16πG

∫
d3xNµCµ vanishes

for physical configurations, meaning that there are no dynamics with

1 If the spacetime manifold M has a boundary ∂M, one includes the Gibbons–
Hawking–York (GHY) boundary term SGHY = 1

8πG
∫

∂M d3x
√

h K, where h is the
determinant of the induced metric on the boundary and K is the trace of the associ-
ated extrinsic curvature [172, 382].
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respect to the time parameter t. This is what leads to the problem of
time in classical relativity (and quantum gravity) [233, 257, 340].

In essence, while the constraints Ca = 0 generate usual diffeomor- In a generally
covariant theory,
time evolution is
just like a gauge
symmetry as time
translations are
coordinate
transformations.

phisms on the three-dimensional spatial “slices”, the Hamiltonian
constraint C = 0 generates evolution of such 3-manifolds so as to
construct solutions (i.e., spacetimes) of the Einstein equations. Such
solutions can be seen as trajectories on the constraint hypersurface
of GR, akin to gauge orbits, since gauge transformations generated
by the constraints (5) preserve the hypersurface. These themes will
be important for the work presented in Chapter 6, where inspired by
GR we will deal with similar types of systems working within the
group field theory approach to quantum gravity.

geometrodynamics . As we have mentioned, the fact that gen-
eral relativity is a totally constrained theory (i.e., HGR = 0) implies
that if the constraint equations are satisfied, then the Einstein field
equations are satisfied. In other words, the whole dynamical content
of GR is encoded in the constraints (5); hence one needs a canonical
quantisation scheme for fully constrained theories. This is provided
by the approach to quantisation proposed by Dirac, sometimes de-
noted constraint quantisation (or simply Dirac quantisation), where
the physical states of the quantum theory are annihilated by the con-
straints [133, 224]. The strategy for a canonical quantisation of gravity
(as described in the seminal work [128]) would be to find a repre-
sentation of the phase space variables (qab, πab) as operators on a
kinematical Hilbert space Hkin that satisfy the standard commutation
relations (2). By promoting the constraints (5) to operators Ĉ and Ĉa

on Hkin, one would then define the space of physical solutions Hphys

by means of the quantum constraint equations

ĈaΨ[q] = 0 , (6)

and

ĈΨ[q] = 0 . (7)

This procedure encounters a number of problems and is to be un-
derstood as a formal application of standard quantisation techniques
to GR. Naively, one could work in the Schrödinger representation
with q̂ab = qab and π̂ab = −ih̄ δ

δqab
acting on the wave functionals

Ψ[qab(x)] of the three-metrics. The first issue one encounters is the def-
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inition of an inner product for the kinematical Hilbert space, which
would require explicit knowledge of a measure on the space of met-
rics [194, 196]. Assuming one can impose the spatial-diffeomorphism
constraint (6) and define an intermediate Hilbert space for spatially
diffeomorphic metrics Hdiff (ignoring that this would also lack a proper
measure), one would still face the problem of the Hamiltonian con-
straint (7), which should define the space of physical solutions Hphys

and is called Wheeler–DeWitt equation [128]. This is more compli-
cated since, in addition to the absence of a suitable inner product on
Hphys, Ĉ requires the definition of products of operators at the same
point (cf. (5)), which are notoriously divergent objects.

This line of research was pursued in simplified scenarios where the
space of metrics (called superspace) is reduced by considering space-
times that are highly symmetric. This leads to the minisuperspace mod-
els of quantum cosmology, where one applies the canonical quantisa-
tion procedure to a symmetry-reduced version of the classical the-
ory (e.g., considering homogeneous and/or isotropic metrics). In this
manner, one can obtain quantum systems for which the Wheeler–
DeWitt equation (7) can be studied explicitly (see, e.g., [179, 215, 244,
248, 380] for reviews on quantum cosmology).

loop quantum gravity. The task of canonically quantising GR
was pushed further in the context of loop quantum gravity (LQG) [25,
340, 344]. This framework does not alter either the gravitational the-
ory or the Dirac quantisation scheme, but rather focusses on differ-
ent variables for gravity. In particular, in LQG one uses the so-called
Ashtekar variables [21] to write GR as a theory similar to Yang–Mills
gauge theories. The advantage of such a reformulation is that it sim-
plifies the implementation of Dirac quantisation: one can explicitly
define the kinematical Hilbert space of LQG, which is interpreted as
the space of quantum geometry states (known as spin networks2) sat-
isfying the spatial-diffeomorphism constraint.

Among the key results of LQG lies the fundamental discreteness of
spatial geometry at the Planck scale. Indeed, by showing that geomet-
ric operators (such as area and volume) have discrete spectra [31, 32,
343], LQG describes geometry as a superposition of quantum states
(depicted as graphs) where geometric quantities have minimal excita-
tions proportional to powers of the Planck length (cf. (1)). It is due to
this discreteness that the theory is expected to resolve the problem of

2 We will provide a more detailed exposition of spin network states in Section 2.2.4.
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the classical singularities of GR, e.g., in cosmology [24, 116] and black
holes [84, 287].

While one can impose the spatial-diffeomorphism constraint within
the framework of LQG (leading to a proper definition of Hdiff), the dy- Hdiff is the space of

spin network states
that are defined on
equivalence classes
of graphs under
diffeomorphisms,
and it is dubbed the
space of “knotted”
spin networks.

namics of the theory are still not fully understood and implementing
the Hamiltonian constraint remains a challenge. More precisely, de-
spite having a well-defined Hamiltonian operator with finite action
on spin networks [360, 361, 367] (which shows great improvements
with respect to the traditional Hamiltonian constraint of geometrody-
namics), the complete spectrum of the Hamiltonian operator and the
specification of the physical Hilbert space Hphys are still unknown.
Moreover, the Hamiltonian operator is subject to ambiguities and it is
not unique; one could explore different prescriptions such as different
regularisation schemes or different operator orderings [33].

The difficulties in obtaining the quantum dynamics of canonical
LQG have prompted the formulation of the “master constraint pro-
gramme” [365, 367], which seeks to implement the diffeomorphism
and the scalar constraints simultaneously, and of the spin foam formal-
ism, which offers a (somewhat covariant) path integral quantisation
for loop quantum gravity [312, 313, 344]. We will give a brief overview
of the spin foam formalism in Section 2.2.4, as this represents a natu-
ral arena to understand the foundations of group field theories, which
will be presented in Section 2.3.

2.2 path integral quantisation

We now turn our attention to covariant methods of quantisation based
on path integrals. In this formulation, firstly introduced by Feynman
[154], one is concerned with transition amplitudes which describe the
probability of having a quantum system in some final state, given its
initial state. In quantum gravity, such an amplitude is expected to be
interpreted as the transition between states of (quantum) geometry.

Rather than starting from classical dynamics as in (2), the connec-
tion of the path integral approach with the classical theory is some-
what subtle: the transition amplitude is calculated by taking an aver-
age over all intermediate states, weighted by the exponential of the
action functional multiplied by the imaginary unit and divided by h̄.
This is consistent with the classical theory since in the limit h̄ → 0
only classical solutions contribute to the path integral. For instance,
in the simplest textbook example of a quantum particle going from
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an initial position qi at the time ti to a final position q f at the time t f ,
one takes the weighted average over all possible paths connecting theIn the limit h̄ → 0

the integral is
dominated by the

classical extrema of
the action and hence

leads to
configurations that
satisfy the classical

equations of motion.

initial and final points as [155]

⟨q f , t f |qi, ti⟩ =
∫ q(t f )=q f

q(ti)=qi

Dq e
i
h̄ S[q(t)] , (8)

where Dq represents such an integration over all possible trajectories.
The path integral formalism provides a powerful and versatile frame-

work that extends naturally to quantum field theory (QFT), where in-
stead of summing over all possible trajectories of a particle, one sums
over all possible field configurations. For a scalar field theory, one can
write the general path integral [318]

Z =
∫

Dϕ e
i
h̄ S[ϕ(x)] , (9)

where Dϕ denotes integration over all possible field configurations
and Z is sometimes called partition function. This nomenclature is
used since, applying a Wick rotation and thus working with the Eu-
clidean version of the field theory (i.e., sending iS → −SE), the expo-
nential in (9) is just like a statistical weight for the fluctuations in ϕ,
and Z describes precisely the partition function of statistical mechan-
ics [318].

In the following we will see that, while these ideas are not easy
to implement in the case of gravity, one can tweak the path integral
by considering discrete formulations (and hence discrete geometries)
and obtain well-defined expressions for the partition function. This
will naturally lead to the definition of group field theory at the end
of the chapter, where we will show that a path integral much like (9)
can be interpreted as a sum over “histories of quantum geometries”
and thus provide a well-defined candidate to the problem of quantum
gravity.

2.2.1 From continuous to discrete path integrals

The first prototype of background-independent covariant quantisa-
tion of gravity was formulated by Misner in [285], where a direct
application of path integral techniques to general relativity was used
to formally introduce the partition functionFrom now on we use

conventions in
which h̄ = 1. Z =

∫
Dg eiSGR[g] . (10)
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Here SGR[g] is the action of general relativity (the Einstein–Hilbert
action (3) plus possible boundary terms, see footnote 1) and the nota-
tion Dg formally represents an integration over all possible spacetime
metrics g. Unfortunately, it is very difficult to make precise sense
of the expression in (10) for a number of reasons. The most impor-
tant issue one encounters in this setting is the definition of the su-
perspace. In particular, the technical difficulty in defining a measure
on an infinite-dimensional space of metrics is worsened by the fact
that one here actually integrates over equivalence classes of metrics,
which are related by diffeomorphisms.

Usually, path integrals are better behaved when defined in their
Euclidean formulation, obtained by means of a Wick rotation from
real to imaginary time. However, even performing a Wick rotation
such that iSGR → −SE

GR, one is faced with the obstacle that the Eu-
clidean action SE

GR is not bounded from below, and therefore it leads
to a divergent path integral [173, 283]. Nonetheless, Euclidean path
integrals for gravity have been adopted in simplified scenarios by
means of semiclassical approximations (where the partition function
is approximated by the exponential of the negative Euclidean action
evaluated at a stationary-phase point), and have led to important de-
velopments such as the recovery of black hole thermodynamics [172],
or the no boundary proposal in quantum cosmology [221, 223].

One last concern is related to the fact that (10) does not implement
a sum over topologies, and changes in topology3 are heuristically ex-
pected (or at least conceivable) in a regime where spacetime is subject
to strong quantum fluctuations [115, 175, 356].

Progress in the continuous path integral approach was mainly made
thanks to perturbation theory. Indeed, expressing the metric as

gµν = ḡµν + hµν , (11)

where ḡµν is a fixed classical background (for example the Minkowski
flat metric ηµν) and hµν represents small perturbations, one can lin-
earise the action (in particular choosing the de Donder gauge [286]) The de Donder (or

harmonic) gauge is
∂µhµν − 1

2 ∂νh = 0,
where h = hµ

µ is
the trace of hµν.

and obtain a quadratic kinetic term for the dynamical field hµν. The
advantage of this setting is that one can then employ the machinery of
quantum field theories, and in particular use the background metric
ḡµν to define the Wick rotation. The (low energy) quanta of the gravi-

3 Topology change is also not allowed by the canonical approach of Section 2.1, since
the ADM formalism fixes a hyperbolic spacetime once and for all. We will return to
this issue in later sections.
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tational field associated to the metric perturbation hµν are interpreted
as massless particles with spin 2, and are denoted gravitons.

Amongst the results of this paradigm is the modification to the
Newtonian potential caused by quantum corrections [146], which pro-
vides a compelling model-independent quantum gravity prediction.
However, such a perturbative and background-dependent approach
only makes sense as an effective theory for a low energy descrip-
tion [145], and would be inconsistent if taken seriously at all energy
scales. Indeed, we are assuming that the field hµν can be quantised
on a fixed background as for any other field theory, but the backre-
action of the perturbation will increase as the energy scale increases,
so that it would be contradictory to treat the background as fixed
and unperturbed. More precisely, the perturbative quantisation of
general relativity fails because of non-renormalisable ultraviolet di-
vergences (see, e.g., [199, 372]). These considerations point towards
the idea that one might need to employ non-perturbative techniques,
and that gravitons might not be satisfactory degrees of freedom to
describe quantum gravity at high energies, and in particular at the
Planck scale.

Another approach aiming to quantise gravity in the continuum for-
mulation, in particular going beyond perturbative methods by using
the functional renormalization group, is given by the asymptotic safety
programme [114, 261, 291], initiated by Weinberg [375, 376]. This as-
sumes the existence of a nontrivial fixed point of the renormalisation
group flow, which controls the behaviour of the coupling constants
in the ultraviolet regime and renders physical quantities safe from di-
vergences. However, the asymptotic safety programme also employs
an auxiliary background metric, and restoring background indepen-
dence at the level of physical observables is a challenging task [148].

discreteness . Given the difficulties with the continuous path in-
tegral (10), and inspired by one of the core properties of quantum the-
ory, some attention has been dedicated to the development of discrete
formulations of covariant quantum gravity. By replacing the integra-
tion over geometries with a sum over discretisations, possibly adaptedIn the context of

simplicial gravity, a
discretisation is

called triangulation.

to also encode a sum over topologies, one can hope to avoid ultravi-
olet divergences, and recover general relativity by specifying a way
of taking the continuum limit. There are several approaches that take
these ideas seriously and we devote the rest of the chapter to explain
some of them in detail.
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2.2.2 Regge calculus and the Ponzano–Regge model

An ad hoc discretisation of GR leads to what is known as Regge cal-
culus [326]. We will focus only on simplicial gravity in what follows,
which is based on triangulations of (generically d-dimensional) man-
ifolds with dynamics given by a discretised version of the Euclidean
Einstein–Hilbert action (also simply called Regge action).

Instead of the familiar continuous spacetime manifold, the base
structure in “Regge gravity” is a piece-wise flat manifold to be thought
as a collection of d-dimensional simplices glued together along their
(d − 1)-dimensional boundaries. An example of a triangulation of a
smooth manifold in two dimensions can be seen in Figure 1.

Figure 1: The surface of a sphere can be triangulated with 2-simplices, i.e.,
triangles.

A d-dimensional simplex (d-simplex in short) is an object with d + For example: a
0-simplex is a point,
a 1-simplex is an
edge, a 2-simplex is
a triangle, and a
3-simplex is a
tetrahedron.

1 vertices and d(d + 1)/2 edges connecting them, and its shape is
fully specified by its edge lengths. A simplicial complex is defined as
a set of simplices glued together along their boundaries, and hence
a simplicial manifold is a simplicial complex where the boundary
of the neighbourhood of any vertex is homeomorphic to a (d − 1)-
dimensional sphere4 (see [216] for details).

The geometry of a simplex is completely specified by the lengths
of its edges, so that the line element connecting neighbouring sites i
and j is given by

l2
ij = ηµν(xi − xj)

µ(xi − xj)
ν , (12)

where ηµν is the flat metric and xµ
i (with µ = 1, . . . , d) denotes the

µ-th coordinate of the i-th lattice site. In order to connect this de-

4 For example, the right panel of Figure 1 shows a triangulation of a 2-manifold in
terms of 2-simplices, which have 3 edges and 3 vertices each. The neighbourhood of
any such vertex has a boundary that is homeomorphic to a 1-sphere, namely a circle.
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scription with (Euclidean) GR, we also need the notion of curvature
for Regge gravity. Given that the manifold is piece-wise flat, curva-
ture is described by going around loops which are dual to a (d − 2)-
dimensional subspace, also called a hinge h. Indeed, from the dihe-
dral angles θ(s, h) associated with the faces of the simplices s meeting
at a given hinge h, one can compute the deficit angle

δ(h) = 2π − ∑
s⊃h

θ(s, h) , (13)

which measures the curvature at h (see Figure 2).

δ(h)

Figure 2: Illustration of the deficit angle in two dimensions, where several
flat triangles share a vertex (hinge).

Then, one can show that by discretising the d-dimensional Einstein–
Hilbert action (3) (here in its Euclidean form and with a cosmological
constant Λ),

SE
EH = − 1

16πG

∫
ddx

√
g(R − 2Λ) , (14)

one obtains the Regge action5 [216]

SRegge = − 1
8πG ∑

h
δ(h)V(h)(d−2) +

Λ
8πG ∑

s
V(s)(d) . (15)

Here V(h)(d−2) is the volume of a hinge (e.g., an area in four dimen-
sions) and V(s)(d) is the volume of a d-simplex. Importantly, all the
ingredients in (15) are independent of coordinates [326]. By varying
the Regge action SRegge with respect to the edge lengths, one obtains
the simplicial analogue of Einstein’s field equations. As the triangu-
lation is refined, the Regge geometry transitions to a Riemannian ge-

5 One can also include the GHY boundary term (cf. footnote 1) in the Regge action as
1

8πG ∑h′ ψ(h′)V(h′)(d−2), where ψ(h′) = π − ∑s⊃h′ θ(s, h′) is the extrinsic curvature
angle for the hinges h′ on the boundary (just like in (13), but with the flat angle of
the half-plane given by π) [138, 326].
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ometry, and SRegge converges to the Euclidean Einstein–Hilbert action
[108, 109].

At this stage, one can in principle define a path integral from the
action (15), integrating over all discrete metrics (i.e., over all assign-
ments of edge lengths in the bulk) and obtaining what is called “quan-
tum Regge calculus” [333]. However, we will not review this general
approach here. Rather, we now present the first application of Regge
calculus to quantum gravity by reviewing the Ponzano–Regge model
[56, 324]. This represents a simple illustrative example that naturally
relates to quantum Regge calculus and, more importantly, leads to
spin foam models and ultimately to group field theories, as we will
explain in Section 2.2.4 and Section 2.3.

the ponzano–regge model . The Ponzano–Regge model is a
state-sum model that provides a discrete version of the path integral
for three-dimensional Euclidean quantum gravity [56, 324]. Starting
from a triangulation of a 3-manifold, the model relies on the assump-
tion that lengths are heuristically quantised. Specifically, it assigns a
discrete value j + 1

2 to each edge of the triangulation, where the non-
negative half-integer j = 0, 1

2 , 1, 3
2 , . . . is traditionally called spin and

labels irreducible representations of the group SU(2). Then, the ge-
ometry of each 3-simplex (or tetrahedron) is determined by its six
edge lengths, and a weight given by a 6j-symbol6 is assigned to each We denote Wigner

6j-symbols as {6j}
in the following.

tetrahedron in a precise way as is illustrated in Figure 3.

{
j1 j2 j3
j4 j5 j6

}
⇔ j6

j1

j2

j5

j4

j3

Figure 3: The spins of a 6j-symbol can be thought as labelling the edges
of a tetrahedron. Indeed, a 6j-symbol vanishes unless the three
spins defining each face satisfy the Clebsch–Gordan conditions
(and heuristically, a tetrahedron is only defined if the sides of the
triangles satisfy triangular inequalities).

6 This is a standard object from SU(2) recoupling theory, constructed as a sum over
products of four Clebsch–Gordan coefficients (or 3j-symbols); see, e.g., [371].
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The partition function is then defined by a sum over the quantum
amplitudes associated with every possible spin on every edge, and
reads [56]

ZPR = ∑
{je}

∏
e
(−1)2je(2je + 1)∏

T
{6j}T , (16)

where the labels e and T stand for edges and tetrahedra respectively,
and ∑{je} means we are summing over all the spins associated with
the interior of the manifold. Since the spins je define a quantisation
of edge lengths in the triangulation, the Ponzano–Regge path inte-
gral (16) has a compelling interpretation in terms of quantum geom-
etry where the probability amplitude of four triangles being glued
together into a tetrahedron is given by the 6j-symbol.

This interpretation is strengthened by the study of the semiclassical
limit, namely by looking at the large spin asymptotic behaviour of a
6j-symbol [331, 349]The recent analysis

of [236] examines 3d
amplitudes that
asymptotically

behave as a single
oscillating Regge

exponential, tackling
the “cosine problem”

(see [111]).

 j1 j2 j3

j4 j5 j6

 ∼ 1√
12πV

cos

(
6

∑
k=1

jkθk +
π

4

)
, (17)

where V is the volume of the tetrahedron and θk is defined as the
external dihedral angles between the triangles sharing the k-th edge.
The expression ∑6

k=1 jkθk is a discretised analogue of a surface integral
of the extrinsic curvature on the boundary of the tetrahedron. In other
words, it is nothing but the Regge action S(3d)

Regge for the tetrahedron
(see (15), here without cosmological constant), so that the Ponzano–
Regge model (16) provides an application of a variation of quantum
Regge calculus (where lengths are quantised using SU(2) representa-
tions) for discrete general relativity in three dimensions.

While in general the partition function (16) diverges, replacing the
group SU(2) of the Ponzano–Regge model with the quantum group
SUq(2) leads to the Turaev–Viro model [368], which provides a finite
path integral by introducing a nonvanishing cosmological constant.
More precisely, when the deformation parameter q of the Turaev–
Viro model is given by a root of unity, the representation theory of
SUq(2) is truncated to a finite range of spins. Then, the path integral
amplitude is formulated in terms of q-deformed 6j-symbols [263] and
their large spin asymptotics effectively mirror the cosmological con-
stant term in the action. Heuristically, the presence of the cosmologi-
cal constant introduces a physical infrared cut-off [71, 270, 353].
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As we will see, the Ponzano–Regge model (or the regularised Turaev–
Viro model) can be seen as the first realisation of the spin foam ap-
proach to quantum gravity, that we review in Section 2.2.4.

2.2.3 Matrix and tensor models

Other non-perturbative quantum gravity approaches based on the
principles of discrete path integrals are given by matrix and tensor
models [121, 129, 209]. In a nutshell, these models generate random
discrete geometries as Feynman diagrams of theories where the fun-
damental object is a tensor (of rank 2 and 3 in two and three dimen-
sions respectively), and can directly relate to discrete formulations of
general relativity. We will only review matrix models for simplicity,
and mention important aspects of the more general tensor models.

Before showing an example of a matrix model for two-dimensional
quantum gravity, let us rewrite the Euclidean Einstein–Hilbert action
as

SE
EH =

1
16πG

∫
Σ

d2x
√

g (2Λ − R)

=
Λ

8πG
A(Σ)− 1

4G
χ(Σ) ,

(18)

where A(Σ) =
∫

Σ d2x
√

g is the total area of the 2d manifold Σ and
χ(Σ) = 1

4π

∫
Σ d2x

√
g R is the Euler characteristic (due to the Gauss–

Bonnet theorem). Importantly, for two-dimensional manifolds the Eu-
ler characteristic is related to the genus as χ = 2 − 2g. By discretising We denote with g the

genus of closed and
orientable surfaces.

the surface Σ in terms of equilateral triangles with area a (let us de-
note such a triangulation with the label △), (18) can be cast as a
Regge-like action (cf. (15))

S(2d)
Regge =

Λ
8πG

aF△ − 1
4G

χ△ , (19)

where the Euler characteristic relates to the number of vertices V△,
edges E△ and faces F△ of the triangulation △ as

χ△ = V△ − E△ + F△ . (20)

The discrete analogue of the usual gravitational path integral for the
Regge action (19) reads

Z(2d)
Regge = ∑

△

1
C△

e
1

4G χ△− Λ
8πG aF△ , (21)
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where C△ denotes the order of the automorphism group which leaves
the triangulation invariant. Z(2d)

Regge is a discrete Feynman expansion
for 2d quantum gravity where the sum over triangulations △ captures
both different geometries and topologies.

Let us now consider a nontrivial matrix model that can reproduce
(21). The fundamental object of the theory is an N × N Hermitian
matrix M, and we start from an action given by

SMM = N
(

1
2

tr(M2) + λ tr(M3)

)
= N

(
1
2

Mij Mji + λ Mij Mjk Mki

)
,

(22)

where λ is a coupling constant. In (22), the quadratic term provides
(the inverse of) the propagator and is graphically represented by a
two-stranded line (also called a ribbon, where each strand represents
one index of the matrix). The cubic term describes an interaction
between three matrices, and represents a three-valent vertex, as de-
picted in Figure 4.

i

j

Mij Mji
k j

i
Mki Mij

Mjk

Figure 4: Propagator (left) and cubic interaction vertex (right). The blue
dashed lines graphically represent matrix indices and show their
contractions. The black solid lines define matrix elements in the
dual picture, where in particular one can see that the cubic inter-
action generates a triangle.

One can then define the partition function of the model as [129]With the
interpretation of
Figure 4, ribbon

graphs are dual to a
simplicial

decomposition in
terms of

triangulated
surfaces.

ZMM =
∫

dM e−SMM , (23)

whose Feynman diagrams Γ are ribbon graphs (i.e., a set of vertices
joined by two-stranded lines). By considering ln ZMM we obtain the
generating function of connected diagrams only, so that the free en-
ergy of the matrix model will correspond to the partition function of
2d gravity.
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Closed loops in the ribbon graph (dual to vertices of triangles),
propagators (dual to edges) and interactions (dual to triangles) con-
tribute factors of N, N−1 and N respectively; then, one has that each
diagram in (23) comes with an overall factor (cf. (20))

NVΓ−EΓ+FΓ = NχΓ = N2−2g , (24)

where VΓ, EΓ and FΓ represent the number of vertices, edges and faces
in the Feynman graph Γ, and χΓ is its Euler characteristic. Then, given
that every interaction vertex also brings a factor of λ (cf. (22)), the free
energy can be written as

ln ZMM = ∑
Γ

1
symΓ

λVΓ NχΓ , (25)

where symΓ is a symmetry factor. Crucially, denoting Zg := ∑Γ
λVΓ

symΓ
,

where the sum is over graphs with fixed g, one can write the free
energy as an expansion in powers of N where the contributions of
the various genera are neatly separated,

ln ZMM = ∑
g

N2−2gZg . (26)

Finally, by recognising Γ as the dual graph to the triangulation △
introduced in (19), one may identify λ with e−

Λ
8πG a and N with e

1
4G

and observe that

ln ZMM = Z(2d)
Regge . (27)

(27) relates the path integral for simplicial gravity with that obtained
from the matrix model with action (22), and makes it clear that Feyn-
man amplitudes are in correspondence with 2d simplicial complexes.

By studying the continuum limit of matrix models, which is called
double scaling limit and is achieved by simultaneously sending N →
∞ and setting the coupling constant λ to a critical value, one finds
that the free energy provides a sum over all possible 2d simplicial
complexes of all topologies. Intuitively, the large N limit restores the
infinite degrees of freedom of continuous gravity and the tuning of
the coupling λ corresponds to a phase transition where the matrix
models describe infinitely refined triangulations.

tensor models . Inspired by matrix models for 2d gravity, ten-
sors of rank d ≥ 3 were considered to develop models suitable to
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describe higher-dimensional random geometries and relate them to
simplicial gravity [14, 203]. However, the naive implementation of the
same idea (with tensors graphically represented by (d − 1)-simplices
and with interactions dictating their gluing to form a d-simplex) leads
to some obstacles already for d = 3. In particular, Feynman diagrams
generated by such tensor models can correspond to general topolog-
ical spaces, including manifolds, pseudomanifolds and other more
singular topologies [124, 204]. As a consequence, the partition func-
tion of tensor models cannot be expanded in terms of powers of N
as for matrix models, and there is no way to reorganise the sum in
terms of topological invariants (as in (26)).

To address these issues, coloured tensor models were introduced
[205, 206, 211]. These models include additional combinatorial struc-
tures that ensure Feynman graphs are truly dual to simplicial com-
plexes, excluding pathological configurations. Most importantly, coloured
tensor models allow for a reorganisation of the perturbation series in
terms of a 1/N-expansion [207, 208, 210].

We will not review tensor models here and we refer to [209] for
a recent overview. It is interesting to note that the shortcomings of
the traditional tensor models gave birth to the group field theory
programme, which started with the renowned Boulatov and Ooguri
models [86, 293]. As we will see at the end of this chapter, GFTs are
essentially tensor models enriched with additional data that encode
metric degrees of freedom.

2.2.4 Spin foam models

With the aim of curing the pathologies of the traditional gravita-
tional partition function (10), but without giving up the core ideas
of a path integral, spin foam models were defined as a background-
independent and non-perturbative framework for discrete quantum
gravity [312, 313, 344] (for recent overviews, see [153, 265]). These
models can relate to (and generalise) some of the approaches re-
viewed in the previous sections, and will serve as a stepping stone
to introduce group field theories in Section 2.3. In short, spin foams
describe spacetime histories and transition amplitudes for quantum
states of geometry as defined in loop quantum gravity [329, 344], and
provide a way of interpreting the Feynman path integral as a sum
over “quantum spacetime geometries” in a precise way.
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spin networks . In loop quantum gravity, spatial geometry at
the Planck scale is defined in terms of quantum operators with dis-
crete spectra representing areas, volumes and other geometrical quan-
tities [31, 32, 343]. Quantum states of spatial geometry, called spin net-
works, are eigenstates of such operators and are defined on graphs
embedded in 3d space where every link is associated with an ele-
ment of the group SU(2). Heuristically, the evolution of those states
then weaves the fabric of the quantum 4d spacetime and defines spin
foams.

More precisely, considering a closed graph Γ made of nodes con-
nected by links, spin network states provide a basis for the Hilbert
space of quantum geometry on that graph, HΓ. This, equipped with
the SU(2) Haar measure dµHaar, is the space of square-integrable
wavefunctions that are invariant under SU(2) transformation at each
node on the graph.7 Then, spin network states |Γ, jl , ın⟩ are labelled
by a spin jl for every link l and an intertwiner ın for every node n of
the graph Γ, as explained below.

Just as in the quantum theory of angular momentum, the spin j
refers to the irreducible representations of SU(2) and the dimension
of the associated Hilbert space Hj is

dj = 2j + 1 . (28)

Denoting the generators of the su(2) Lie algebra as J⃗ = (J1, J2, J3), one
can use the familiar basis of Hj which diagonalises both the Casimir
J⃗2 and the third generator J3,

J⃗2|j, m⟩ = j(j + 1)|j, m⟩ ,

J3|j, m⟩ = m|j, m⟩ ,
(29)

where the magnetic index m ∈ [−j, j]. An intertwiner ın is an invariant
tensor of SU(2), which can be understood as a map from the tensor
product of all the spins living on the links attached to n to the trivial
representation. In general, the Hilbert space of an N-valent node (i.e.,
attached to N links with spins j1, . . . , jN) is defined as

HN := Inv
[
Hj1 ⊗ · · · ⊗HjN

]
, (30)

7 Since an element of SU(2) represents the transport between the nodes of the graph
(which are interpreted as space points), the invariance under SU(2) transformations
at the nodes represents the gauge invariance of the states under local change of
reference frame at each point of space.
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namely, as the subspace of the tensor product Hj1 ⊗ · · · ⊗ HjN that
is invariant under SU(2) transformations. Intertwiners are elements
of the space (30). Basic examples are given by the case of the trivial
bivalent intertwiner between two spins j1 and j2, which only exists
if the two spins are equal; and by the unique trivalent intertwiner
between three spins ıj1 j2 j3 , which exists if and only if the spins satisfyNote that in the

notation ıj1 j2 j3 the
dependence on the

magnetic indices is
implicit; we will

make this
dependence explicit

as ıj1 j2 j3
m1m2m3 only

when necessary.

|j1 − j2| ≤ j3 ≤ (j1 + j2) , (31)

and is given by the 3j-symbol

ıj1 j2 j3 ≡

 j1 j2 j3

m1 m2 m3

 =
(−1)j1−j2−m3√

2j3 + 1
Cj3,−m3

j1m1 j2m2
, (32)

where Cj3,−m3
j1m1 j2m2

= ⟨j1, m1; j2, m2|j3,−m3⟩ are Clebsch–Gordan coeffi-
cients [371]. For nodes with higher valency, the intertwiner space
grows in dimension (and elements of HN>3 are usually indexed with
an extra label κ). Note that N-intertwiners in (30) are interpreted as
quantum N-simplices (e.g., states living on the space H4 can be un-
derstood as quantum tetrahedra, as firstly pointed out in [43, 51]).

Equipped with these ingredients, and thanks to the Peter–Weyl
theorem,8 a spin network wavefunction on a graph Γ can then be
seen schematically as tensor products of representation matrices con-
tracted with intertwiners

ψ
{jl ,ın}
Γ ({gl}) =

⊗
n

ın
⊗

l

D(jl)(gl) , (33)

where D(jl)(gl) is the Wigner D-matrix representing the group ele-
ment gl ∈ SU(2) in the spin jl along the link l.9 As mentioned, the
geometrical interpretation of spin networks in loop quantum gravity
comes from the quantisation of geometric observables: intertwiners
represent excitations of the spatial volume that are “glued together”
by the spins, which in turn are related to the quanta of area of the

8 The Peter–Weyl theorem states that a basis on the space L2(SU(2), dµHaar) is given
by the matrix elements of the unitary irreducible representations of SU(2), known
as Wigner D-matrices [319].

9 Explicitly, using the basis |j, m⟩ as in (29), one writes the matrix elements as

D(j)
mn(g) = ⟨j, m|g|j, n⟩.
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faces between neighbouring “chunks” of volume. More precisely, the
spin jl is related to the area of the surface dual to the link l as

Al = l2
0

√
jl(jl + 1) , (34)

where l0 is a fundamental length scale parameter related to the Planck
length (cf. (1)). Similarly, the volume operator is well-defined and its
eigenvalues can be found [32, 125, 342], but it is not as easy to diago-
nalise [68, 69, 94] (we will give more details on the volume operator
in Chapter 4, see in particular Section 4.2.1).

Finally, also in light of the interpretation of intertwiners as quan-
tised convex polyhedra [67, 163, 262], spin networks provide a com-
pelling description for quantised discrete 3d geometries.

spin foams . The evolution of spin networks is described in terms
of spin foams. As exemplified in Figure 5 for the three-dimensional
case, the nodes and links of a graph evolve along spin foam edges
(akin to worldlines) and spin foam faces (akin to worldsheets) re-
spectively, carrying intertwiner and spin labels. Spin foam edges and
faces can meet at spin foam vertices where the graph changes; these
vertices are interpreted as events where the geometry changes, and
thus as spacetime points.

ı2

ı3

ı4

ı1

vspin foam
vertex

j2
j1

j3

j1

j2

j3

j6

j5
j4

Triangulation Dual graph

tetrahedron vertex
triangle edge
segment face

Figure 5: A 2-complex with one vertex in three dimensions and the corre-
sponding spin foam terminology. The figure represents the transi-
tion between 2d boundary graphs, showing the skeleton dual to
the triangulation of 3d spacetime in the bulk. As we will see with
the Ponzano–Regge model, the red vertex is dual to a tetrahedron.
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Intuitively, a spin foam vertex plays the role that an interaction
vertex plays in traditional field theories [42, 47, 48]. As we will see
in more detail in Section 2.3, one can actually show that spin foams
can be understood as Feynman diagrams of quantum field theories
known as group field theories [86, 123, 160, 330]. The key point to
stress here is that spin foams describe transition amplitudes associ-
ated with spin network histories. Formally, working with the group
SU(2), one defines the so-called local spin foam model by:

1. a 2-complex C, i.e., a set of faces f , edges e and vertices v;

2. a set of representation labels j f associated with the faces f ∈ C;

3. a set of intertwiners ıe associated with the edges e ∈ C.

Then, a spin foam model is defined as a sum over j f and ıe of transi-Note that j f and ıe
are fixed for a given
ASF, but the model
is defined as a sum
over all such labels,
as explained below.

tion amplitudes

ASF[C] = ∏
f
A f (j f )∏

e
Ae(j f∋e, ıe)∏

v
Av(j f∋v, Ie∋v) , (35)

that are factorised in terms of face, edge and vertex amplitudes. The
face and edge amplitudes A f and Ae can be considered as the ana-
logue of the path integral measure, defining the weights of spins and
intertwiners. For the models of interest, the face amplitude is usu-
ally chosen to be A f (j f ) = dj f = 2j f + 1. On the other hand, the
vertex amplitude Av contains the nontrivial dynamical information
that encodes the evolution of spin networks (we will derive an ex-
plicit example later). While we use SU(2) here, so as to connect spin
foams with spin networks of canonical loop quantum gravity, the spin
foam paradigm can be applied to (semi-simple) Lie groups and finite
groups [137]. For example, the more general Barrett–Crane (BC) andWe will show some

details of the
Barrett–Crane (BC)

model in later
sections.

Engle–Pereira–Rovelli–Livine (EPRL) models can be based on SO(4)
or SL(2, C) (for the Euclidean and Lorentzian version of the theory,
respectively). To embed spin networks in SL(2, C)-based spin foam
models, one requires a special map between SU(2) spins and SL(2, C)

representations [132, 147, 344]).
Somewhat as in a traditional path integral, one computes a transi-

tion amplitude for a given boundary state (in terms of spin networks
with fixed spins and intertwiners), by summing over all possible spin
and intertwiner labels in the bulk. Note, however, that while sum-
ming over all labelling of the 2-complex C encodes a sum over mul-
tiple geometries, it does not mean one is considering all possible ge-
ometries since C is fixed. Indeed, an expansion that more faithfully
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resembles a gravitational discrete path integral (similar in spirit to
(10)) is given by

ZSF = ∑
C

ω[C] ∑
j f ,ıe

ASF[C] , (36)

where ω[C] is a weight factor depending on the 2-complex. As we
will see, (36) is exactly the type of expansion that one finds in the
group field theory formalism. We stress that the spin foam paradigm
usually tries to explicitly calculate a single contribution in the sum
over 2-complexes in (36); in other words, it mostly focusses on a fixed
triangulation.

the ponzano–regge model again. Before mentioning aspects
of the more general 4d spin foam models, we highlight here the con-
nection between spin foams and the Ponzano–Regge model for 3d
Euclidean quantum gravity introduced earlier in Section 2.2.2. To this
aim, we will first cast general relativity as a BF theory,10 namely a
topological field theory which has no local degrees of freedom. Hence,
we will derive a spin foam model by requiring topological invariance
of the BF path integral, so that that the spin foam will not depend
on the local details of the simplicial complex but only on its global
topology and boundary. The paradigmatic case of 3d Euclidean GR
enables to derive the vertex amplitude Av of (35) explicitly, which
will turn out to match with the one of the state-sum model proposed
by Ponzano and Regge [324].

The BF theory for 3d gravity (here using the group SU(2) for the
Euclidean version, but see [159] for the Lorentzian version based on
SU(1, 1)) requires the introduction of Cartan fields. These are su(2)-
valued 1-forms known as the triad e = ea Ja and the connection ω =

ωa Ja, with Ja denoting the usual basis of the algebra su(2) such that
[Ja, Jb] = iϵabc Jc. Importantly, the metric is easily reconstructed from
the triad as

gµν = ηabea
µeb

ν , (37)

where the internal indices a, b, . . . are raised and lowered with the flat
metric ηab = δab (i.e., the Killing form of the Lie algebra su(2)). Then,

10 Even if general relativity is precisely a BF theory only in three dimensions, the Ple-
bański formulation [323] of 4d gravity can be written as a BF theory subject to con-
straints [312, 313]. In practice, all spin foam amplitudes are generally derived by the
quantisation of BF theories [42, 104]; we will give an example later.
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one can show that Euclidean GR in three dimensions (with Λ = 0 for
simplicity) can be described by means of the action11In the language of

differential forms, ∧
denotes the wedge

product, tr denotes
the Killing form of
su(2) and d is the
exterior derivative.

S(3d)
EH [e, ω] =

∫
ea ∧ Fa[ω] =

∫
tr(e ∧ F[ω]) , (38)

where F = dω + ω ∧ ω is the curvature 2-form of the connection ω.
Varying (38) with respect to the fields yields the equations of motion

F[ω] = 0 ,

dωe = de + ω ∧ e = 0 ,
(39)

where dω denotes the exterior covariant derivative and dωe is the def-
inition of the torsion 2-form. Together, (39) are nothing but Einstein’s
field equations in vacuum, respectively indicating that the connection
is flat and that it is the unique torsion-free connection associated with
the triad e. In particular, the first equation in (39) is the analogue of
R = 0, where R is the Ricci scalar familiar from GR. In a sense, the
triad field plays the role of a Lagrange multiplier enforcing the van-
ishing of the curvature. Then, as anticipated, the theory described by
(38) is topological in the sense that are no local degrees of freedom.

In the spin foam framework one considers the formal path integral
of the BF theory (38),

ZBF =
∫

DωDe ei
∫

e∧F[ω] =
∫

Dωδ(F[ω]) , (40)

and makes it well-defined by performing a discretisation on a 2-
complex. More precisely, one now introduces a simplicial triangula-
tion ∆ of the manifold and its dual 2-complex C. Then, one discretisesIn three dimensions,

∆ represents a
discretisation in

terms of 3-simplices
or tetrahedra.

the Cartan fields e and ω following lattice gauge theory approaches
[327]. Crucially, because the theory is topological, discretisation does
not imply any loss of information so that the discrete version of the
path integral will yield an exact quantisation of the theory. Indeed,
topological invariance is what guarantees that the resulting spin foam
amplitude is independent of the triangulation ∆ (in other words, the
triangulated version of the theory has the same number of degrees of
freedom of the full field theory).

The 1-form ω gets discretised in terms of SU(2) elements ge as-
sociated to the edges e of C. Then, curvature is represented as the
transport along a closed loop going around the spin foam faces f ,

11 In the d-dimensional case, the triad is replaced by a (d − 2)-form usually denoted B,
so that the action (38) manifestly shows the origin of the name “BF theory”.



2.2 path integral quantisation 33

U f := ∏e∈∂ f ge. Using this, the discretised version of (40) takes the
form [340]

Zdiscrete
BF [C] =

∫
∏
e∈C

dge ∏
f∈C

δ(U f ) , (41)

and describes a theory of flat (discrete) connections, reminiscent of
the lattice gauge theory formulation of path integrals [327]. In order
to finally obtain spin foam amplitudes, one can now make use of
the Peter–Weyl theorem to expand the Dirac δ-distribution over the
group manifold appearing in (41) as

δ(g) = ∑
j

dj tr D(j)(g) , (42)

where dj is given in (28), the sum is over the unitary irreducible rep-
resentations of SU(2), and D(j)(g) denotes Wigner D-matrices (cf.
(33)). Since every spin foam edge is shared by three faces (cf. Fig-
ure 5), by using (42) in (41) one obtains integrals of three Wigner
D-matrices, which are nothing but projectors onto the invariant sub-
space of the tensor product of three irreducible representations, H3 =

Inv
[
Hj1 ⊗Hj2 ⊗Hj3

]
. As this is the space of intertwiners (cf. (30)),

one can write such integrals as∫
dgDj1

m1n1(g)Dj2
m2n2(g)Dj3

m3n3(g) = |ıj1 j2 j3⟩⟨ıj1 j2 j3 | , (43)

where |ıj1 j2 j3⟩ represents the (unique) three-valent intertwiner state
in H3 (i.e., the 3j-symbol (32)).12 Finally, since four edges meet at the
vertex v, one ends up with the contraction of four 3j-symbols yielding Figure 5 illustrates

precisely this 3d
model, where the
6j-symbol represents
the tetrahedron
(dual to the vertex),
obtained by gluing
four triangles (dual
to the edges).

precisely the definition of a 6j-symbol [371], so that (41) becomes

Zdiscrete
BF [C] = ∑

j f

∏
f
(−1)2j f dj f ∏

v
{6j}v . (45)

This is exactly the partition function of the Ponzano–Regge model
introduced in Section 2.2.2 (cf. (16)). The partition function (45) pro-
vides the first (and simplest) spin foam model in that it can be seen
as a special case of (35), where Av = {6j}v (and there is only one
intertwiner available).

12 Note that in general one has

∫
dg

N

∏
i=1

D(ji)(g) = ∑
κ
|ıj1 ...jN

κ ⟩⟨ıj1 ...jN
κ | , (44)

where the intertwiner basis on HN for N ≥ 4 is labelled by the index κ.
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Spin foams in four dimensions

The Ponzano–Regge (toy) model served as an illustrative example for
the development of four-dimensional spin foam models. The most
promising spin foam candidates for 4d quantum gravity (famously
the BC model [53] and the EPRL model [151]) are derived in a similar
way, starting from the Plebański formulation of four-dimensional GR.
The important difference with the 3d case is that the Plebański action
is here made of two contributions: a BF term (based on SO(4) for
the Euclidean theory and SL(2, C) for the Lorentzian theory) plus a
“potential” for the B field, which crucially leads to local fluctuations
of the curvature so that the theory is not topological (i.e., it allows to
recover GR) [252].

For concreteness, let us consider the Euclidean Barrett–Crane model.
We start from the Plebański action

S[B, ω, µ] =
∫ (

BI J ∧ FI J [ω]− 1
2

µI JKLBKL ∧ BI J
)

, (46)

where the field B and the connection ω are respectively a so(4)-valued
2-form and 1-form, F[ω] is the curvature 2-form of ω, and the La-
grange multipliers µI JKL obey the symmetries ϵI JKLµI JKL = 0 and
µI JKL = µKLI J = −µJ IKL = −µI JLK. Varying with respect to these
forces the B field to be13

BI J = ϵI J
KLeK ∧ eL , (47)

where the tetrad eI field, typical of the Cartan formulation, gener-
alises the triad ea of the previous section. Specifically, thanks to the
relation gµν = ηI JeI

µeJ
ν (cf. (37)), the form of B in (47) allows to obtain

precisely the (Palatini) action of GR from BF theory. In other words,
while the B ∧ F part of the action (46) is equivalent to the 3d case (cf.
(39)), the potential reintroduces local (propagating) degrees of free-
dom into the theory by constraining B to be of the form (47) (the
potential is said to impose simplicity constraints).

Following the strategy adopted with the Ponzano–Regge model,
one first quantises the BF part of the Plebański action, hence defining
a spin foam path integral for a 4d BF theory, and then imposes the
simplicity constraints coming from the potential term at the quantum

13 Strictly speaking, the SO(4) Plebański model consists of four different sectors (see
[122] and references therein for details). For simplicity we focus here on the sector
that allows to recover tetrad gravity, where B takes the form (47).
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level. The quantisation of the BF term leads to a higher-dimensional
analogue of (45): a topological (discrete) model on a 2-complex, which
is now dressed with SO(4) representations (we use boldface symbols
j to distinguish from the SU(2) case). Being in four dimensions, this
is interpreted as the gluing of five tetrahedra (here dual to spin foam
edges) into a 4-simplex (here dual to the spin foam vertex). The parti-
tion function takes the form [122, 312, 313, 340]14 We do not specify

the face amplitude
A f for now, and
focus on the vertex
amplitude.

Z(4d)
BF [C] = ∑

j f ,ıe

∏
f
A f ∏

v
{15j}v , (48)

where {15j} is a 15j-symbol [371], which generalises a 6j-symbol by
reproducing the structure of a 4-simplex. More precisely, just like {6j}
is defined as the contraction of four 3j-symbols (heuristically repre-
senting a tetrahedron as the gluing of four triangles, cf. Figure 3), a
15j-symbol is defined as the trace of the product of five “4-valent in-
tertwiners” (elements of H4, see (30)). In four dimensions, a 4-simplex
is dual to a spin foam vertex which bounds ten faces (equipped with
representations j1, . . . , j10) and five intertwiners on the edges, which
can be labelled with representations of internal virtual links ı1, . . . , ı5.
The vertex amplitude in (48) is then a function of fifteen representa-
tion labels, graphically represented in Figure 6 (where we stick to the
traditional notation for SU(2) representations, which is how all the
Wigner nj-symbols were originally defined [371]). Another reason for

adopting the usual
spin notation
(j1, . . . , j10) in
Figure 6 will become
clear shortly, since
in the Barrett–Crane
model the spin foam
faces are indeed
labelled with SU(2)
representations.

j5

j4

j3

j2

j1

j9 j6

j8

j10

j7

ı1

ı2

ı3 ı4

ı5
Triangulation Dual graph

4-simplex vertex
tetrahedron edge
triangle face

Figure 6: The pentagon diagram illustrates the skeleton of a 4-simplex, the
simplest spin foam vertex in four dimensions. The five corners and
the ten lines represent respectively the spin foam edges and faces
(with such edges in their boundary) meeting at the vertex.

14 As it is, the state-sum (48) is generically divergent (just as the Ponzano–Regge model
stemming from 3d BF theory); a regularised version defined in terms of the quantum
group SUq(2)× SUq(2) was introduced in [118, 119].
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the barrett–crane spin foam model . As in three dimen-
sions, the model (48) stemming from a 4d BF theory is topologically
invariant, the spin foam path integral is discretisation-independent
and does not correspond to GR (where a choice of discretisation
would reduce the number of degrees of freedom) [122, 312, 313, 340].
Indeed, the next step in the strategy laid out above is to obtain gravity
by means of the simplicity constraints (cf. (46) and (47)). Imposing the
quantum analogue of the simplicity constraints is what defines the BC
model for quantum gravity. It turns out that this amounts to a restric-
tion to a particular set of representations j of SO(4) ≈ SU(2)× SU(2),
generically labelled by two spins (j+, j−), where the spins of the two
factors are equal, j+ = j− ≡ j.15 This leads to the so-called simple (or
balanced) representations (j, j) which are labelled by a single spin
j. Restricting the sum over representation in (48) to simple represen-
tations leads to the state-sum models first proposed by Barrett and
Crane [53]. More precisely, to make the state-sum model indepen-
dent of the labels ı1, . . . , ı5 associated with the spin foam edges (the
corners of Figure 6), one includes a sum over such labels and con-
sider special intertwiners (often called BC intertwiners [52, 328]) such
that the vertex amplitude becomes a 10j-symbol. As the name sug-Thanks to the BC

intertwiners and the
restriction to simple

representations,
{10j} can be written

as the product of
{15j+} and {15j−}

summed over the
labels ı1, . . . , ı5.

gest, {10j} is a function that only depends on the ten representations
of the spin foam faces of a 4-simplex (the lines of Figure 6). The BC
partition function then reads

ZBC[C] = ∑
j f ,ıe

∏
f
A f ∏

e
Ae ∏

v
{10j}v , (49)

where we left A f and Ae generic. Different versions of the BC model
[312, 313] can prescribe different choices of the face and edge ampli-
tudes A f and Ae. For instance, given that the simple representations
are given by (j, j) where j is an SU(2) spin, the choice A f = (2j + 1)2

is often considered. There is also a variant of the BC model which
takes

Ae =
dim

(
Inv[Hj1 ⊗ · · · ⊗Hj4 ]

)
dim

(
Hj1 ⊗ · · · ⊗Hj4

) , (50)

where Inv[Hj1 ⊗ · · · ⊗ Hj4 ] is the intertwiner space (30), instead of
Ae = 1 as in (48). This particular choice of edge amplitude naturally

15 To see this, one first notices that (47) implies the vanishing of the so-called pseudo-
scalar Casimir, ϵI JKLBI J BKL = 0. In the spin representation (j+, j−), this becomes
j+(j+ + 1)− j−(j− + 1) which vanishes for j+ = j− [312, 313, 340].
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emerges in the group field theory formalism, see [312, 313, 340] for
more details.

While we focussed on the Euclidean Barrett–Crane model because
it is one of the most extensively studied spin foam models for 4d
quantum gravity, the above construction can be generalised to the
case of the Lorentzian theory, where the base group is chosen to be
SL(2, C) [53, 312, 313, 317] (see also [49, 234, 235, 238] for more recent
developments on the BC model). Moreover, the same strategy can be
applied to the EPRL model [151, 152], which was introduced to over-
come some limitations of the BC model (see, e.g., [12, 131, 162, 267])
and has thus attracted particular interest in recent years. We will not
review the details of these aspects here as they will not be important
for the group field theory models used in this thesis (especially for
the original work presented in Part II).

Regarding the semiclassical regime of spin foams, it is important to
mention that studies on the large spin structure of vertex amplitudes
show that the Regge action for (discrete) general relativity is recov-
ered asymptotically (somewhat as for the Ponzano–Regge model (17))
[54, 55]. More recent developments have focused on effective spin
foam models [19, 20, 139] investigating the field theory content of
the semiclassical limit, on the saddle point analysis of the Lorentzian
path integral [219], and on the case of more refined triangulations
(corresponding to large spins and many vertices) [18, 143, 217].

To conclude, we simply stress that 4d spin foam models based on
the Plebański formulation of GR can constrain the space of histories
of the BF theory path integral to that of gravity (specifically, by im-
plementing a suitable restriction on representation labels). Therefore,
especially in light of the recent studies on their semiclassical limit
mentioned above, spin foams provide a promising arena for 4d quan-
tum gravity as they effectively realise a path integral over discretised
metrics for general relativity.

2.3 group field theories

With group field theories (GFTs) we refer to a class of quantum field
theories defined by fields that live on group manifolds (e.g., the lo-
cal gauge group of gravity), and that aim to describe spacetime in a
combinatorial and algebraic way.

As mentioned in Section 2.2.3, GFTs were firstly developed to gen-
eralise matrix models to dimensions d ≥ 2 by resolving the issues en-
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countered in traditional definitions of tensor models [86, 293]. It was
then realised that GFTs naturally emerge also in the context of spin
foam models for quantum gravity, specifically as a tool to overcome
the limitations of working with fixed spacetime triangulations [123,
160, 330]. Indeed, the perturbative expansion of a GFT path integral is
labelled by Feynman diagrams which are dual to cellular complexes,
as we will clarify in the following. As a result, GFTs bring together
elements of matrix and tensor models, such as the combinatorial de-
tails of Feynman graphs, with the group theoretic data of spin foams,
which encode geometric information corresponding to the elemen-
tary variables of LQG [340, 367]. As mentioned in Section 2.2.4, we
will see that GFTs can provide exactly the sum over 2-complexes we
have seen in (36), which is interpreted as a discrete definition of the
covariant path integral for 4d quantum gravity. It is in this sense that
GFTs can be seen as a formal completion of spin foam models [330,
344], providing a manifestly background-independent field theoretic
framework for quantum gravity.

After briefly reviewing the classical theory and the connection to
spin foams in Section 2.3.1 and Section 2.3.2, we will describe a more
recent perspective which relies on a canonical quantisation of GFT in
the next chapter. This connects in spirit with ideas from Section 2.1,
and will be the framework mostly adopted in the rest of the thesis.

2.3.1 Classical theory

A classical GFT is the theory of a scalar field φ defined on d copies of
a Lie group G asNaively, what used

to be discrete indices
i, j, . . . of matrices

and tensors (see
Section 2.2.3) are

now continuous
labels represented by

group elements
g1, . . . , gd.

φ : Gd → K ,

gI 7→ φ(gI) ≡ φ(g1, . . . , gd) ,
(51)

where K can be R or C and gI is a shorthand notation for all the
group elements. Here we focus on theories that mimic the simplicial
construction of the spin foam models of Section 2.2.4; thus, we con-
sider GFTs that reproduce the combinatorics of a d-simplex by gluing
(d − 1)-simplices, just like in tensor models. Note that in general one
can go beyond the choice of simplicial gravity in spin foams [237] and
equivalently in GFTs [304] by considering models compatible with
the canonical theory of LQG, where graphs have nodes of arbitrary
valency (and hence represent general polyhedra, not just simplices).
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In the specific case of GFTs applied to four-dimensional simplicial
quantum gravity, d = 4 and one usually takes G to be the local gauge
group of general relativity: G is typically SO(3, 1) or SL(2, C) in the
Lorentzian case, SO(4) or Spin(4) in the Euclidean case, or their ro-
tation subgroup SU(2) which is the gauge group of loop gravity (i.e.,
the Ashtekar–Barbero formulation of classical general relativity [50]).
To implement a notion of discrete gauge invariance in the resulting
simplicial gravity description, one usually requires invariance of the
field under the right diagonal group action, One can

equivalently require
invariance under the
left action; this
choice is purely
conventional.

φ(gI) ≡ φ(g1, . . . , gd) = φ(g1h, . . . , gdh) , ∀h ∈ G . (52)

This invariance is a way to ensure that the parallel transports gI only
encode gauge invariant data. Heuristically, interpreting φ(gI) as a
(d − 1)-simplex, the group elements are associated with its d bound-
ary “faces” (of dimension d − 2), and define a connection whose cur-
vature is concentrated on the (d − 2)-simplices as in Regge calculus.

A GFT is then specified by an action, which has the general form

S[φ, φ̄] =
∫

ddg ddg′ φ̄(gI)K(gI , g′I)φ(g′I) + V[φ, φ̄] , (53)

where for a real field φ̄ = φ. Here
∫

ddg stands for an integration
over d copies of the group (i.e., over all the group elements gI), using
the Haar measure normalised to unity (we will only be interested in
compact groups in this thesis).16 The action is therefore split into a
quadratic part and an interaction part V[φ, φ̄], which is in general a
non-linear potential term. From the action (53) one can write down
the classical equations of motion

δS[φ, φ̄]

δφ(gI)
= 0 ,

δS[φ, φ̄]

δφ̄(gI)
= 0 ;

(54)

then, specific choices for K and V in S[φ, φ̄] will yield different GFTs
and hence different classical equations. Following tensor models, one
could choose the simplest quadratic kernel, i.e., the identity kernel17

K(gI , g′I) = I(gI , g′I), so that the trivial kinetic term ∼
∫

ddg φ̄(gI)φ(gI)

16 The Haar measure can also be defined for locally compact groups such as SL(2, C).
However, extra care is required since, while both left and right invariant, and unique
up to scaling, the measure is not finite (see [346] for details); GFT models based on a
non-compact group then need to be regularised in some way, as discussed in [183].

17 With identity kernel we mean I(gI , g′I) such that
∫

ddg I(gI , g′I) f (g′I) = f (gI).
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ensures an identification of the group elements associated to the bound-
ary (d − 2)-simplices. However, GFT renormalisation studies [63, 64,
103] suggest that radiative corrections generate a Laplacian term which
should be included in K(gI , g′I) as

K(gI , g′I) = (m2 + M2∆)I(gI , g′I) , (55)

where m2 and M2 are coupling constants and the Laplace–Beltrami
operator ∆ on Gd is given by

∆ =
d

∑
I=1

∆gI . (56)

The interaction term V[φ, φ̄] in (53) is responsible for gluing the
(d − 1)-simplices described by the field φ to form a d-simplex, just
as in tensor models. This means that an appropriate interaction term
consists of products of fields that are paired according to a pattern
which encodes the combinatorics of a d-simplex. For example, the
potential of the prototype GFT for quantum gravity,18 which deals
with a real field φ in four dimensions (i.e., I = 1, . . . , 4), readsHere, d20g stands

for an integration
over 5 · 4 = 20
group elements

(recall that gI is a
shorthand notation
for g1, . . . , g4 (52)).

V[φ] =
λ

5!

∫
d20g V(g1

I , ..., g5
I )

5

∏
a=1

φ(ga
I ) , (57)

where λ is a coupling constant and V(g1
I , ..., g5

I ) is a product of ten
Dirac delta distributions on the group, imposing appropriate match-
ing between group elements appearing as arguments of the fields
φ(gi

I), in order to encode the pattern of gluings needed to form a 4-
simplex out of five tetrahedra. Such an interaction should allow the
structure of four-dimensional spacetime to emerge from the dynam-
ics of the theory, as we will explicitly see in Section 2.3.2.

Except for where clearly stated, we will mostly focus on GFTs for
simplicial gravity in four dimensions, and we will fix Gd = SU(2)4

(this will be the main setup in Part II where the original results are
presented). Then, the geometrical interpretation of GFT obtained by
associating a 3-simplex (i.e., a tetrahedron) with the field φ(gI), is cor-
roborated by the spin networks of canonical LQG (see Section 2.2.4).
Indeed, in a dual picture, one can think equivalently of φ(gI) as an
abstract node with four links labelled by SU(2) arguments, which is

18 The first four-dimensional GFT was given by Ooguri in [293]; as we will show in
Section 2.3.2 this corresponds to the BF theory (48), and can be used to define the
proper GFT analogue of the Barrett–Crane spin foam model of Section 2.2.4.
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equivalent to the way in which four-valent spin network nodes repre-
sent geometric tetrahedra in LQG. This is clarified by the Peter–Weyl
theorem, which allows to deal with spin labels rather than group ar-
guments (see Figure 7).

ı j2

j3

j4

j1

Figure 7: An excitation of the field φ can be interpreted as an open spin
network vertex or a tetrahedron. This interpretation will play a
central role in the canonical framework of Chapter 3.

peter–weyl decomposition. As mentioned in Section 2.2.4,
the group SU(2) is compact and its irreducible unitary representa-
tions are finite-dimensional (cf. (28)) and labelled by half-integers
j called spins. Then, it follows from the Peter–Weyl theorem19 that
φ(gI) can be expanded in field modes for a suitable choice of basis The mode expansion

(58) is the analogue
of the Fourier
decomposition for
standard field
theories, and the

“spin representation”
can be interpreted as
the momentum
space for GFTs.

elements on L2(SU(2), dµHaar) as [319]

φ(gI) = ∑
J

φJ DJ(gI) ,

DJ(gI) = ∑
nI

ıjI ,κ
nI

4

∏
a=1

√
2ja + 1D(ja)

mana(ga) .
(58)

Here φJ are complex functions (possibly subject to reality conditions20)
and the compact notation for the modes

±J = (jI ,±mI , κ) (59)

encodes representation (or spin) labels jI ∈ N0/2, magnetic indices
mI , nI ∈ [−jI , jI ] and intertwiner labels κ. In the convolution DJ(gI),
ıjI ,κ
nI ∈ H4 (cf. (30)) are intertwiners for the spins jI (appearing in (58)

because of property (52) and (44)), and D(j)
mn(g) are Wigner D-matrices

for the irreducible unitary representations of SU(2). One can picture

19 Recall that the Peter–Weyl theorem provides an orthonormal basis for
L2(SU(2), dµHaar), specifically given by the Wigner D-matrices (cf. footnote 8).

20 If the field is real, the complex Peter–Weyl coefficients satisfy the reality condition
[186, 293] φ̄J = (−1)∑I (jI−mI )φ−J .
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the four spins jI (and their corresponding magnetic indices) as living
on the links emerging from the four-valent node, while ı lives on the
node itself (cf. Figure 7).

The mode decomposition (58) shifts the focus from group variables
to the more convenient spin labels, so that for example by denoting
KJ J′ =

∫
ddg ddg′ D J(gI)K(gI , g′I)DJ′(g′I), the GFT action (53) can be

written in a compact way as

S[φ, φ̄] = ∑
J J′

φ̄JKJ J′ φJ′ + V[φ, φ̄] . (60)

For later convenience, we note that one can insert the expression (55)
for K(gI , g′I) in KJ J′ and explicitly find (restricting to the free part of
the action for simplicity)

Sfree[φ, φ̄] = ∑
J

φ̄JKJ φJ = ∑
J

φ̄J

(
m2 − M2

d

∑
I=1

jI(jI + 1)

)
φJ , (61)

where we used the orthonormality of the basis elements in (58), namely∫
ddg D J(gI)DJ(gI) = 1, and the fact that the SU(2) Laplace–Beltrami

operator acts as a Casimir on Wigner matrices, ∆gD(j)
mn(g) = −j(j +

1)D(j)
mn(g). The equations of motion obtained from the free action (61),

KJ φJ = KJ φ̄J = 0 (cf. (54)), will be useful in later chapters.

2.3.2 Path integral quantisation

Traditionally, the quantum dynamics for group field theories are de-
fined by means of their partition function ZGFT. Considering a general
interaction term as V = ∑ λiVi for some coupling constants λi, one
can write the path integral for GFT as

ZGFT =
∫

DφD φ̄ e−S[φ,φ̄] = ∑
Γ

∏i λ
ni(Γ)
i

sym(Γ)
AΓ , (62)

where in the case of a real-valued field (usually adopted to match
with spin foam models) one drops the integration over φ̄. Here, Γ
denotes Feynman diagrams, ni(Γ) is the number of vertices of the
interaction type i, AΓ is the Feynman amplitude associated to Γ and
the factor sym(Γ) is the order of the symmetry group that leaves the
graph Γ invariant.

The path integral for GFT (62) is conventionally defined in the lit-
erature (see, e.g., [295, 296]) as mimicking the statistical structure of
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matrix models (cf. (23)); however, one could also use iS[φ, φ̄] at the
exponent to define a proper quantum theory which is about transi-
tion amplitudes (and not mere probabilities). This choice is not ex-
pected to alter the formal perturbative expansion in a significant way
(the amplitudes AΓ would be unchanged), and aligns better with the
canonical framework we introduce in Chapter 3. In this respect, note
that the dichotomy between −S[φ, φ̄] and iS[φ, φ̄] has little to do with
an actual Wick rotation as there is no background time in this formal-
ism, and the Lorentzian quantum gravity theory stemming out of
GFT is obtained via the choice of the underlying group (e.g., SL(2, C)

rather than SO(4), as mentioned in previous sections).

gfts and spin foams . Remarkably, the sum (62) is over graphs
that for suitable choices of V can be seen as discrete “histories of ge-
ometry”, and whose Feynman amplitudes AΓ are in correspondence
with spin foam amplitudes defined in (35) [123, 330]. In this sense,
the Feynman amplitudes of a group field theory can be associated
with a discrete quantum gravity path integral, and the expansion (62)
generates a sum over 2-complexes (or discrete spacetime histories), More precisely, the

Feynman diagrams
Γ are dual graphs to
the cellular
complexes C.

weighted by the couplings λi of the interaction terms. The equiva-
lence between spin foam models and GFTs goes both ways. On the
one hand, each Feynman graph of a group field theory is given by
a spin foam, namely a 2-complex with faces dressed by representa-
tion labels (see Section 2.2.4). On the other hand, any local spin foam
model (35) can be obtained from a GFT expansion [160, 330]. This im-
plies that the GFT approach can be seen as a “larger framework” in
which spin foam models are embedded, since a field theory contains
more information and structure than its perturbative expansion [295].

It is important to note that (62) implicitly involves multiple types
of (informal) summation. We are summing over geometric data (i.e.,
group elements or representations, just like in spin foams) as well
as over different Feynman graphs; in this sense, GFT automatically
realises the sum we anticipated in (36). Crucially, we are not only
summing over all triangulations for a given topology, but also over
all topologies. This is guaranteed as any simplicial complex of arbi-
trary topology can be obtained by an appropriate (local) gluing of
fundamental simplicial building blocks. In this sense, GFT provides a
fully background-independent theory of (spacetime) geometry, gener-
alising and unifying the ideas of all the models described in previous
sections.
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ooguri model . As a first instructive example, let us consider the
case of a 4d BF theory and its corresponding GFT formulation, firstly
introduced by Ooguri [293].21 To link with the BC model, we here
consider a variation of the Ooguri model where the real-valued field
φ (51) is defined over the group manifold SO(4)4 instead of SU(2)4.
Choosing the trivial kinetic term, the action (53) for the Ooguri model
is given by

S[φ] =
1
2

∫
d4g φ2(g1, g2, g3, g4) + V[φ] , (63)

where the interaction term V[φ] pairs the arguments of five copies of
the field in such a way as to form a 4-simplex, namely

V[φ] =
λ

5!

∫
d10g φ(g1, g2, g3, g4)φ(g4, g5, g6, g7)×

φ(g7, g3, g8, g9)φ(g9, g6, g2, g10)φ(g10, g8, g5, g1) .
(64)

This is an explicit expression for the potential in (57). Such a fifth-
order interaction term has indeed the structure of a 4-simplex: if we
represent each of the five field in the product as four strands (cor-
responding to g1, . . . , g4) and connect strands corresponding to the
same group elements, we obtain Figure 8. This generalises the matrix
model scenario depicted in Figure 4, where the propagator and the
interaction vertex are visualised with multi-stranded lines (for sim-
plicity we are only representing the ribbon graph and not the dual
picture).

As anticipated in (62), since each of the four strands carries a repre-
sentation of the group in momentum space (cf. (58)), the field theory
defined by (63) is such that the Feynman expansion of the partition
function is given by

ZOoguri =
∫

Dφ e−S[φ] = ∑
Γ

λn(Γ)

sym(Γ) ∑
j f ,ıe

∏
f∈Γ

dim(j f ) ∏
v∈Γ

{15j}v , (65)

meaning that for every given 2-complex Γ, the Feynman sum over
momenta is precisely the spin foam model (48) defined on that 2-
complex.

While the Ooguri mode clearly shows the relation between GFTs
and spin foams, it still describes a topological BF theory, which can-

21 An even simpler model, called Boulatov model, considers a 3d BF theory. In [86],
Boulatov points out for the first time the duality between spin foams and “quantum
field theory on groups”, later dubbed GFTs. Specifically, the Boulatov model clearly
recasts the 3d Ponzano–Regge model (see previous sections) as a GFT over SU(2)3.
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ϕ
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ϕ

Figure 8: Left: the kinetic term dictates how a 3-simplex (tetrahedron) prop-
agates and is represented by a collection of four strands. Right:
Graph of five vertices, representing the skeleton of a 4-simplex as
gluing of five tetrahedra (shared strands correspond to matching
group arguments).

not correspond to a quantisation of general relativity. As explained
in Section 2.2.4, one needs to reintroduce local degrees of freedom by
implementing the simplicity constraints, which reduce the topologi-
cal theory to gravity.

barrett–crane model in gft. In the BC spin foam model, the
simplicity constraints are imposed by restricting the state-sum corre-
sponding to the 4d BF theory to simple representations of SO(4). The
analogue of this restriction can be formulated in the GFT language
by considering the quotient group SO(4)/SO(3), as explained below.
Let us first consider the subgroup SO(3) of SO(4) and use the fact
that a field ψ(g) in SO(4) is invariant under the action of SO(3),

ψ(g) = ψ(gh) , ∀h ∈ SO(3) , (66)

if and only if its mode expansion (cf. (58)) contains only simple irre-
ducible representations [123, 340]. Then, adopting the compact nota-
tion for the (real-valued) field φ(ga, gb, gc, gd) = φabcd, we consider a
GFT based on SO(4)4 without requiring the property (52) and with
action [123]

S[φ] =
1
2

∫
d4g PgPh φ1234 PgPh φ1234 +

λ

5!

∫
d10g V [φ] , (67)
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where

V [φ] = PgPh φ1234 PgPh φ4567 PgPh φ7389 PgPh φ96210 PgPh φ10851 . (68)

The projectors Ph and Pg in (67) and (68) are defined asNote that these
projectors do not

commute, and
different orderings

correspond to
different variations

of the BC model [49].

Ph φ(gI) :=
∫

SO(3)
d4h φ(gIhI) , (69)

and

Pg φ(gI) :=
∫

SO(4)
dg φ(gI g) . (70)

While Ph projects from the group SO(4) to the quotient space given by
SO(4)/SO(3) (thus imposing the wanted constraints on the represen-
tations in momentum space thanks to the property (66)), Pg ensures
that gauge invariance is maintained. Note that if Ph is removed one
obtains the action (63) of the Ooguri model, with the field satisfying
(52) thanks to Pg.

As mentioned in Section 2.2.4, different variations of the BC model
exist; in GFT, they can be constructed by inserting the projectors (69)
and (70) in different combinations in the action [315, 340]. Their Feyn-
man expansion has the general structure

ZBC
GFT = ∑

Γ

λn(Γ)

sym(Γ) ∑
j f ,ıe

∏
f∈Γ

A f ∏
e∈Γ

Ae ∏
v∈Γ

{10j}v , (71)

again showing that starting from a field theory over groups one can
obtain a sum over 2-complexes of Feynman amplitudes correspond-
ing to the spin foam models (49). A f turns out to be exactly (2j + 1)2

using the projectors Pg and Ph as in (67) and (68), while the variant
with Ae given in (50) is obtained by inserting only Pg in the kinetic
term and keeping the potential as in (68). Importantly, this variation
of the BC model has finite Feynman amplitudes [311, 316].

Let us summarise the key points of the models presented here and
their importance in the context of 4d quantum gravity. The sum over
Feynman graphs of the Ooguri model (65), corresponding to the topo-
logical BF theory in four dimensions, is trivial and unnecessary. This
is because of triangulation invariance (implying all terms in the sum
are equal), and because all the degrees of freedom of a topological the-
ory are already captured by a single triangulation. On the other hand,
in the case of BC models (49), fixing a 2-complex reduces the number
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of degrees of freedom of the theory. Thus, a sum over 2-complexes
(71), where each term contributes in a different way, is necessary to
obtain a quantum theory of gravity that is related to general relativ-
ity. It is in this sense that the expansion of the GFT partition func-
tion provides a completion of the spin foam programme for quantum
gravity models, since there is no need to fix a triangulation (or its
dual 2-complex) and there is no cut-off on the number of degrees of
freedom.

From a computational point of view, GFT models for a full theory
of quantum gravity still remain formal as it is not clear how to practi-
cally calculate expansions like (62). In fact, it is already very difficult
to compute the individual transition amplitudes AΓ between quan-
tum geometries on a fixed 2-complex (this is done numerically, and
optimising codes performing such evaluations is a current focus of
research [13, 17, 142–144, 200, 218]). For this reason, using to good
advantage the versatility of the field theoretic framework provided
by GFTs, a lot of recent work has focused on a canonical quantisation
of group field theories, which we introduce in Chapter 3.

Finally, let us stress again that the correspondence between spin
foams and GFTs is a generic feature. Any local spin foam model of the
form (35) can be interpreted as a Feynman graph of a group field the-
ory [160, 330]. This includes the Lorentzian analogues of the models
discussed above [53, 234], as well as the more involved EPRL model
[65, 251].





3
C A N O N I C A L F O R M U L AT I O N O F G R O U P F I E L D
T H E O RY A N D C O S M O L O G Y

This chapter presents the main formalism underlying the research re-
sults of Part II: a canonical framework for GFT and its cosmological
sector. As we discussed at the end of Chapter 2, the traditional way of
thinking of quantum GFT is through the path integral as given in (62)
and its expansion into Feynman graphs and amplitudes. This path
integral directly connects to the covariant (spin foam) setting of LQG,
and it generalises simplicial quantum gravity approaches such as ma-
trix and tensor models and Regge-like gravity. More recently however,
a lot of work has focused on the canonical quantisation of GFT, with
the main goals of connecting to the canonical setting for LQG and –
most importantly for us here – extracting effective cosmological dy-
namics (which are more easily defined in a canonical setting). As we
will see, this shift in perspective allows to use “second quantisation”
techniques that reinterpret the graph nodes of LQG as quanta of an
underlying QFT of quantum gravity. This picture makes it possible to
extract relatively simple dynamical equations, which can then be ap-
plied to symmetry-reduced settings to describe effective cosmology
from a full quantum gravity perspective.

After reviewing how to couple matter degrees of freedom to serve
as relational frames in GFT (a strategy that is fairly common in background-
independent approaches to quantum gravity), we give an overview of
the two main frameworks that have been established in the GFT lit-
erature, based on an algebraic quantisation and on a deparametrised
quantisation. We will first explain how to extract dynamics from these
approaches, and then discuss the emergence of effective cosmolog-
ical equations in some detail. In particular, we will show how one
can obtain a relational Friedmann-like equation from GFT, emphasis-
ing that this reproduces the correct dynamics of a flat Friedmann–
Lamaître–Robertson–Walker (FLRW) Universe in a suitable semiclas-
sical regime, while resolving the Big Bang singularity thanks to purely
quantum corrections.

49
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3.1 coupling to matter

Canonical quantisation techniques were initially applied to GFT [298,
299] without considering any matter coupling. These ideas were im-
mediately adopted in simplified settings (corresponding to the cos-
mological sector of GFT) with the goal of obtaining effective dynam-
ical equations for global observables [183, 187]. Using tools typically
belonging to “second quantised frameworks” (e.g., condensate-like
states in a Fock space formulation of GFT, as we will describe later),
the idea was to contrast the effective dynamics of observables such as
the total (spatial) volume of a given geometry with globally homoge-
neous cosmological (vacuum) models of GR.1

A breakthrough in this line of research came thanks to the insight
of relational dynamics, when it was realised that one could couple
matter degrees of freedom to GFT and use them as relational frames
(specifically clocks). In particular, by coupling a massless scalar field
to serve as internal time, a relational volume observable (correspond-
ing to the volume of space for a given value of the scalar field) was
shown to satisfy the Friedmann dynamics of general relativity at low
energies while also replacing the classical Big Bang singularity by a
bounce [305, 306]. As we will explicitly see in Section 3.3, this is a very
robust result of GFT, and similar findings have been obtained using
different methods and from different starting points [5, 184, 186, 272,
379].

In approaches to quantum gravity where the continuum manifold
is replaced by discrete structures (such as simplices and simplicial
complexes), coupling to matter is usually achieved by enriching the
nodes of the underlying graph (or their dual spatial building blocks,
cf. Figure 7) with a label for the matter degrees of freedom. Then,
one interprets the matter degrees of freedom as taking the values
specified by such labels in the corresponding (discrete analogues of)
space points. The idea of using matter fields as a reference frame
was already adopted in other quantum gravity frameworks (see, e.g.,
[140, 189, 191, 231] for LQG references and [44, 167, 174, 278] for other
approaches), and ultimately stems from models in classical GR and
canonical quantum gravity [127], famously the Brown–Kuchař dust

1 Whether one can perform a canonical quantisation for pure gravity in GFT (i.e., with-
out any coupling to matter) still remains an open question. We will return to these
aspects in Chapter 4, where we introduce a new effective observable (corresponding
to a cosmological anisotropy parameter) that might allow for GFT models that do
not require extra matter fields to be used as relational clocks.
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model of [91]. In the case of cosmological settings, it is common to
add a massless scalar field to be used as relational time; in GFT, this
is achieved by simply adding an extra argument to the field φ, as we
detail below.

massless scalar field as relational clock . In this thesis
we will focus on the simple scenario where the matter content is only
given by a massless scalar field. A group field φ coupled to a massless From now on, we

will refer to φ as the
“group field” to
distinguish it from
the (matter) scalar
field χ.

scalar field χ is defined by generalising (51) as2

φ : Gd × R → K ,

φ(gI , χ) = φ(gIh, χ) , ∀h ∈ G ,
(72)

where φ can be complex-valued or real-valued by choosing K = C

or K = R respectively, and the second line in (72) imposes the usual
gauge invariance as in (52). Everything we defined in Section 2.3.1
is generalised here in a straightforward manner to accommodate the
scalar field χ in the domain of the group field φ. Importantly, the
action (53) becomes

S[φ, φ̄] =
∫

dg dg′ dχ φ̄(gI , χ)K(gI , g′I)φ(g′I , χ) + V[φ, φ̄] , (73)

with a potential that generalise (57) as As usual, one can
choose the functions
V(g1

I , ..., g5
I ) and

V(g1
I , ..., g5

I ) in (74)
that reproduce the
preferred spin foam
model, e.g., the
EPRL model or the
BC model described
in Section 2.3.2.

V[φ, φ̄] =
λ

5!

∫
d20g dχ V(g1

I , ..., g5
I )

5

∏
a=1

φ(ga
I , χ)

+
λ

5!

∫
d20g dχ V(g1

I , ..., g5
I )

5

∏
a=1

φ̄(ga
I , χ) ,

(74)

for a complex φ.
As mentioned, the scalar field χ takes values on the nodes of the

underlying four-dimensional discrete structure. Then, just like in stan-
dard QFT, it is natural to assume that the potential V[φ, φ̄] describes
a local interaction in χ (unlike in the geometric SU(2) degrees of free-
dom) by gluing five tetrahedra associated with the same scalar field
label, so that there is a single value of χ associated with any 4-simplex.
On the other hand, the “gradients” of the scalar field are associated
with the shared boundaries of neighbouring 4-simplices on the lat-
tice. This means that the scalar field χ “propagates” along the links

2 One easily extends the formalism to multiple scalar fields by adding more arguments
to the group field [185]. For instance, to couple four scalar fields one can define
φ : Gd × R4 → K to obtain relational coordinates for time and space [177].
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between adjacent building blocks of geometry, and gradients of the
scalar field must then be encoded in the GFT kinetic term K(gI , g′I).

With this interpretation in mind, the GFT action is assumed to re-
spect the symmetries of the Lagrangian density associated to a non-
interacting, minimally coupled massless scalar field on a background
with metric gµν,The signature of the

metric is (–, +, +, +).

Lscalar = −1
2
√
−g gµν ∂µχ∂νχ , (75)

namely shift and sign reversal symmetries,

χ → χ + c ,

χ → −χ ,
(76)

with c ∈ R. It immediately follows that K(gI , g′I) and V(g1
I , ..., g5

I )

(together with its complex conjugate V(g1
I , ..., g5

I )) cannot explicitly
depend on the field values χ, as this would break the shift symmetry.
However, given that the scalar field changes across neighbouring 4-
simplices, one should generically consider K(gI , g′I) as a differential
operator in χ, without derivatives of odd powers (so as to respect
the sign reversal symmetry) [260, 305, 306]. The simplest choice is
therefore to assume the minimal form

K(gI , g′I) = K(0)(gI , g′I) + K(2)(gI , g′I)∂
2
χ , (77)

which is commonly adopted in the literature, both when studying cos-
mological models (see, e.g., [186, 379]) and phase transitions in GFT
[275, 276]. The form (77) mirrors the structure of the kinetic term (55),
with a constant “mass term” suggested by the relation to spin foams
[330] and a Laplacian term, but here with respect to χ.3 Indeed, as
seen in Section 2.3.1, quantum corrections coming from renormalisa-
tion [63] can dictate the specific forms of K(0) and K(2), which must
include a Laplacian term in the group arguments. Then, for GFT mod-
els coupled to a matter scalar field, one is led to consider a symmet-
rical expression which consistently contains second derivatives with

3 Within a broader class of (non-local) models one can in principle have higher deriva-
tives with respect to χ [260, 305, 306] and choose K(gI , g′I) of the following form

K(gI , g′I) =
∞

∑
n=0

K(2n)(gI , g′I)
∂2n

∂χ2n .

In this perspective, (77) would be seen as an approximation in which the field φ is
assumed to vary slowly and the contribution of the higher-derivative terms is small,
i.e., |K(2n)/K(0)| ≪ |K(2)/K(0)|n for n > 1.
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respect to all arguments. For concreteness, one usually generalises
(55) by taking K(gI , g′I) of the form (see, e.g., [176, 183, 275, 276])

K(gI , g′I) =

(
m2 − ∂2

χ + M2
d

∑
I=1

∆gI

)
I(gI , g′I) , (78)

which clearly corresponds to K(0)(gI , g′I) = (m2 + M2 ∑I ∆gI )I(gI , g′I)
and K(2)(gI , g′I) = −I(gI , g′I) in (77).

An important point to stress here is that by coupling to a massless
scalar field we obtained a GFT action that has the same form of a
traditional field theory (with base manifold SU(2)4 × R instead of
the familiar R4 of spacetime), where χ now plays the role of the stan-
dard time coordinate. This will allow to define relational observables
which evolve with respect to the values of the relational clock time χ.

spin representation. As explained in Section 2.3.1, for com-
pact groups one can obtain a mode expansion of the field φ thanks
to the Peter–Weyl theorem. Using the field defined in (72) yields the
same expression as in (58), with the difference that now the mode
functions φJ(χ) depend on the matter field. Fixing Gd = SU(2)4, the The choices d = 4

and G = SU(2)
define simplicial
models of gravity
which connect with
the spin network
formalism of LQG,
and will be the ones
used in the chapters
of Part II.

interpretation of the field φJ(χ) as a four-valent spin network node
remains as in Figure 7, but the corresponding tetrahedron is enriched
with an extra label representing the matter field χ which “sits” on the
node (representing the discrete analogue of a space point).

As emphasised in Section 2.3.1, the Peter–Weyl decomposition al-
lows us to get rid of group elements and simplify some expressions
by means of the spin representation provided by (58). In particular,
for future convenience, we note that (77) can be written as4

KJ = K(0)
J + K(2)

J ∂2
χ , (79)

and the specific form (78) becomes

KJ = m2 − ∂2
χ − M2 ∑

I
jI(jI + 1) . (80)

These expressions are nothing but generalisations of the kinetic terms
appearing in (61) to the case in which a scalar field is coupled to GFT,
and will play a crucial role in later sections.

4 The kinetic term K(gI , g′I) is in general proportional to the identity kernel I(gI , g′I),
even if one does not select the specific form of K(0)(gI , g′I) and K(2)(gI , g′I) as in (78).
Then, as mentioned around (60) and (61), one can use the property in footnote 17

and the fact that
∫

ddg D J(gI)DJ(gI) = 1 to write (79) (and hence (80)).
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3.2 canonical quantisation of group field theories

We now turn to the task of defining a canonical quantisation scheme
for GFT, which can be seen as a complementary formulation to that ofTo be rigorous, such

a quantisation
would represent the

counterpart of a
GFT path integral
defined with iS at
the exponent, see

remarks below (62).

path integrals (cf. Section 2.3.2), just like for traditional field theories.
As mentioned, this Hilbert space quantisation of GFT is motivated by
similarities with the canonical setting of LQG and, more practically,
is used to extract effective cosmological dynamics [183, 187].

Two main approaches to canonical quantisation have been estab-
lished in the GFT literature: one based on a kinematical Fock space
of nondynamical spin network-like states on which dynamical equa-
tions are imposed in a suitable (usually mean-field) approximation
[298, 299], and one where a time variable is selected before quantisa-
tion and used to directly obtain a physical Fock space and a physi-
cal (relational) Hamiltonian [186, 379].5 We denote these quantisation
schemes algebraic approach and deparametrised approach, respectively,
and we devote the rest of this section to delve into their details. Then,
we will describe in Section 3.3 how they lead to similar effective cos-
mological dynamics, setting the stage for Part II, where we present
our main results.

3.2.1 Algebraic approach

Guided by the analogy between GFT and the spin network states of
LQG (cf. Figure 7), one can construct a “second quantised framework”
for group field theories that is based on a Fock space, just as for non-
relativistic field theories. This was firstly proposed in [298, 299], and
leads to reinterpreting spin network vertices as GFT quanta, whichThis formulation led

to the suggestive
statement: “GFTs

are QFTs of
spacetime, not on
spacetime” [295].

are created and annihilated by operators and suggest a Hilbert space
formulation of GFT. This approach is dubbed “algebraic” because
it is based on the construction of a kinematical Hilbert space of ab-
stract states, among which physical states are selected by demanding
a posteriori that they satisfy a constraint coming from the underlying
theory.

The algebraic approach requires a complex-valued group field (72),
with domain given by SU(2)4 × R. Starting from the Peter–Weyl de-

5 While in GFT there is no Hamiltonian constraint associated with diffeomorphisms
in time (but see Chapter 6 for a novel proposal related to this), these two approaches
share some similarities with the LQG strategies of either imposing dynamical equa-
tions on an abstract Hilbert space [9–11, 120, 188], or directly defining a physical
Hilbert space by choosing a matter (usually “dust”) clock [140, 189, 191, 231].
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composition (58) and its complex conjugate, one defines the quantum
theory by promoting the field modes to operators φ̂J(χ) and φ̂†

J (χ)

and postulating their commutation relations according to bosonic
statistics,[

φ̂J(χ), φ̂†
J′(χ

′)
]
= δJ J′δ(χ − χ′) . (81)

One can then construct an abstract (unphysical) Fock space in the
usual way, starting from a vacuum |∅⟩ (interpreted as “no geometry” The Fock vacuum

|∅⟩ is a state with
no topological nor
geometrical meaning
and information.

state) satisfying

φ̂J(χ)|∅⟩ = 0 , (82)

for all J and χ. The Fock space contains fundamental quanta (picto-
rially “atoms of space" [300]) created and annihilated by field oper-
ators, which are interpreted as equivalent to LQG (four-valent) spin
network vertices. In particular, the one-quantum Hilbert space has
states defined as excitations over the Fock vacuum∣∣∣∣ 〉

= |J, χ⟩ = φ̂†
J (χ)|∅⟩ , (83)

representing (open) spin network vertices decorated with four Peter–
Weyl labels (or group elements) and a scalar χ. From the one-quantum
Hilbert space H1 = L2(SU(2)4/SU(2)× R),6 one can construct the
GFT Fock space as

F =
∞⊕

N=0

sym

(
N⊗

i=1

Hi

)
, (84)

where sym denotes symmetrisation, accounting for the choice of bosonic
statistics of the field operators. One can also construct more compli-
cated spin network states from (not uniquely defined) many-particle
states; and hence, these Fock states can be related to kinematical states
in loop quantum gravity [298, 299].

Let us stress that as in the kinematical Hilbert space of LQG, there
is no notion of dynamics so far: this will only be implemented later by
means of constraints, typically thanks to some approximations (e.g.,
in a mean-field regime [183, 187, 305], similarly to what happens in
condensed matter physics). Indeed, the operators φ̂J(χ) and φ̂†

J (χ)

6 Forgetting about the R factor encoding the χ label, we point out that

L2(SU(2)4/SU(2)) = Inv
[⊗4

I HjI

]
is precisely the space of quantum tetrahedra

(30), where the quotient is due to property (52).
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are not thought of as evolving in time, but as separate independent
operators for each value of χ; furthermore, the states (83) should be
interpreted as unphysical quantum tetrahedra (or spin network-like
states), on which dynamical equations are yet to be imposed.

In this “second quantised” setup, one usually defines general one-
body operators on the kinematical Hilbert space

Ô(χ) = ∑
J
O J φ̂†

J (χ)φ̂J(χ) , (85)

where O J is the matrix element of the desired “first quantised” opera-
tor (usually imported from LQG) evaluated on a single spin network
node. For example, the number operator is given by

N̂(χ) = ∑
J

φ̂†
J (χ)φ̂J(χ) , (86)

and describes the number of “particles of geometry” (cf. (83)) relation-
ally, in the sense that it is given as a function of the matter field χ

associated to the creation and annihilation operators. Again: at this
kinematical level, χ dependence does not represent time evolution
yet (and the various N̂(χ) defined for different χ are independent).
Another important relational operator that encodes geometric infor-
mation is the GFT volume operator,

V̂(χ) = ∑
J

vJ φ̂†
J (χ)φ̂J(χ) , (87)

where the vJ’s correspond to the volumes of quanta created by φ†
J (χ).

These volume values can be formally obtained from a geometrical
quantisation of tetrahedra in terms of SU(2) recoupling theory [43,
51, 67], and have been thoroughly described in the LQG literature
(see, e.g., [32, 125, 342] and [68, 69] for more recent methods).7 The
operator (87) heuristically describes a global notion of spatial volume
seen as the sum of many discrete building blocks carrying their own
(quantum) volume.

While the relational operators (86) and (87) describe the number
and the volume at given values of the matter field χ, one can define
the total number operator as

N̂ = ∑
J

∫
dχ φ̂†

J (χ)φ̂J(χ) , (88)

7 In Chapter 4 we will provide more details on the spectrum and eigenstates of the
LQG volume operator, reviewing how it acts on four-valent spin network nodes.
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and similarly the total volume operator as V̂ = ∑J
∫

dχ vJ φ̂†
J (χ)φ̂J(χ).

Albeit χ-independent (and hence not relational in the sense explained
above), these “fully integrated” operators are not distributional in na-
ture as opposed to (86) and (87). Indeed, while expectation values of
(86) and (87) in mean-field coherent states appear well-behaved (and
provide excellent agreement with usual cosmology [305, 306], as we
will review in Section 3.3), their distributional nature becomes clear
when studying higher powers as divergences appear in the computa-
tion of several physically relevant quantities [40, 41].8 In light of these
issues, operators of the form (88) play an important role in a novel
strategy adopted within the algebraic approach, where relational dy-
namics is introduced by considering the special class of coherent peaked
states [272, 273]. Such states provide a proposal for dealing with di-
vergences and define relational dynamics in an alternative way, as we
review at the end of Section 3.3.1.

Moreover, one can define the scalar field operator [272, 305, 306]

X̂ = ∑
J

∫
dχ χ φ̂†

J (χ) φ̂J(χ) , (89)

and its momentum operator,

Π̂ = −i ∑
J

∫
dχ

(
φ̂†

J (χ)∂χ φ̂J(χ)
)

. (90)

These satisfy

[X̂, Π̂] = iN̂ , (91)

with N̂ given in (88), meaning that they are not canonically conjugate.
One can indeed make the observation that both operators are “ex-
tensive” whereas one would expect one intensive and one extensive
quantity to form a canonical pair (see [181] for a related discussion).
As we will see, these considerations (and in particular the commuta-
tor (91)) will lead to an intensive effective definition of the scalar field
operator in the framework of coherent peaked states [272, 273].

dynamics . Since GFTs are defined through an action functional
(cf. (73)), second quantisation tools of quantum many-body systems
suggest that the quantum dynamics be governed by operator equa-
tions obtained from the classical theory. Given the absence of a Hamil-

8 We will return to these points in Chapter 5, where we will see that for less simple
states even the expectation values of N̂(χ) and V̂(χ) are divergent [100].
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tonian formulation for GFT, one here directly promotes the Euler–
Lagrange equations (54) to operators and views them as quantum
constraints. Then, the equations of motion are implemented at the
quantum level by requiring that physical states |Ψ⟩ satisfy [183, 187,As we will see, for a

simple choice of
action one can find

exact solutions to
this constraint

equation [100] (see
also [183] for an

exact solution of an
interacting theory).

305, 306]

δS[φ̂, φ̂†]

δφ̂†
J (χ)

|Ψ⟩ = 0 , (92)

and a second equation obtained from the variation with respect to
φ̂J(χ). Formally, one should define physical states as annihilated by
both such constraints; however, since these are Hermitian conjugates,
they are in general expected to be second-class constraints with no
joint solution. In other words, the constraint in (92) and its Hermitian
conjugate do not commute, and hence there is generically no com-
mon state that is annihilated by both. We point out that this issue
is essentially ignored in the literature and physical states are usually
defined as those who satisfy (92); we will do the same here, noting
that this concern goes away in most applications where one considers
expectation values, as explained below.9

(92) looks similar to the type of equation used in a Dirac quanti-
sation of constrained systems. However, unlike in a Dirac quantisa-
tion, one here assumes that physical states are elements of the origi-
nal Hilbert space.10 This assumption is strictly speaking inconsistent
since such states have infinite norm in the original inner product. This
type of divergence is different from the one rising due to distribu-
tional operators encountered earlier; we postpone a proper account
of such technical issues to Chapter 5, where we will provide all the
details and extend the discussion beyond the literature. Note that in
a theory with constraints such as (92), not every Hermitian operator
automatically classifies as an observable; indeed, observables should
preserve the physical state space. However, as we will see, these con-
cerns are not taken into account when discussing cosmological mod-
els where operators such as the volume (87) or the matter scalar field
(89) are simply assumed to be observables. We will construct a new
way of imposing dynamics for constrained GFT models in Chapter 6,

9 Moreover, in a system with second-class constraints, say ĉ and ĉ†, one could tweak
the quantisation scheme and define physical states as those annihilated by the com-
bination ĉ† ĉ|Ψ⟩ = 0. In our case, this would correspond to imposing the modulus
squared of the quantum equation of motion.

10 For a more standard Dirac quantisation of (free) GFT that uses group averaging to
define a physical Hilbert space, see [178].
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where one can explicitly show that observables commute with the
constraints of the theory.

Interestingly, working in a perturbative regime, one can bridge the Working
perturbatively
means implicitly
assuming that the
GFT interaction is
small. This is the
regime in which
cosmological
dynamics can be
extracted, as we will
see later.

operator formalism of this chapter with the path integral formulation
of Section 2.3.2. In a path integral framework, the quantum dynamics
can be given in terms of the Schwinger–Dyson equations for correla-
tion functions [182, 183],

0 =
∫

DφD φ̄
δ

δφ̄

(
O e−S[φ,φ̄]

)
=

〈
δO
δφ̄

−O δS[φ, φ̄]

δφ̄

〉
, (93)

where O = O[φ, φ̄] is any polynomial functional of the field and
its complex conjugate (a similar equation is obtained by taking func-
tional derivatives with respect to φ̄). These are a formal way of en-
coding the quantum dynamics as they give an infinite number of
relations, obtained by specifying O [289]. Since states that are solu-
tions of the quantum theory must satisfy (93), the Schwinger–Dyson
equations can be seen as an alternative way (other than (92)) of iden-
tifying physical states among the kinematical ones. In practice, one One can convert

(93) into an operator
equation formally
replacing the fields
with φ̂ and φ̂† (and
choosing some
operator ordering).

truncates this infinite tower of equations by considering a few very
simple choices for O, the most common being the identity. Indeed
setting O = 1 in (93) amounts to requiring that the operator version
of the Euler–Lagrange equations hold on average,〈

Ψ
∣∣∣∣δS[φ̂, φ̂†]

δφ̂†

∣∣∣∣Ψ
〉

= 0 , (94)

which can be seen as an approximation (i.e., a weaker version) of
(92).11 As we will see, (94) allows to easily extract effective dynamical
equations (in particular for cosmological settings), usually achieved
thanks to suitable coherent states.

Let us stress that compared to requiring some expectation value to
vanish, (92) provides a stronger condition for defining exactly physical
states. We shall see in Chapter 5 that to be a solution of the constraint
(92) (and hence physical) a generic state |Ψ⟩ must satisfy strict con-
ditions. We will refer to the states that satisfy one of the Schwinger–
Dyson equations (93) (in particular the simplest one given by (94)) as
approximately physical states.

11 Since (94) only requires expectation values to vanish, one can generically impose also
the second equation with the Hermitian conjugate operator (i.e., where the derivative
is taken with respect to φ̂J(χ)), even if the constraints do not commute.
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To give explicit examples that will be relevant for later applications,
let us consider the GFT action (in the spin representation) with kinetic
term (79). The first Schwinger–Dyson equation (94) then reads〈

Ψ

∣∣∣∣∣(K(0)
J + K(2)

J ∂2
χ

)
φ̂J(χ) +

δV[φ̂, φ̂†]

δφ̂†
J (χ)

∣∣∣∣∣Ψ

〉
= 0 . (95)

In the case of weak interactions, such a non-linear equation can be
dealt with by using mean-field theory techniques, typical of Bose–Einstein
condensates. More precisely, one proceeds by approximating the op-
erators by classical fields,

φ̂J(χ) = φJ(χ) I + δφ̂J(χ) ,

φ̂†
J (χ) = φ̄J(χ) I + δφ̂†

J (χ) ,
(96)

where I is the identity operator, and one assumes that the expecta-
tion values of the fluctuations δφ̂J(χ) and δφ̂†

J (χ) over the mean field
are small. After normal ordering, in such an approximation (95) re-
duces to the classical field equation (and corresponds to the GFT ana-
logue of the Gross–Pitaevskii equation of condensed matter physics
[320]). With the aim of extracting semiclassical dynamics (as we will
see in Section 3.3 for the cosmological case), one usually justifies the
mean-field approximation in a precise sense by adopting Fock co-
herent states, which effectively allow to replace the operators with
their classical counterpart. Moreover, since the Gross–Pitaevskii ap-
proximation requires the interaction V[φ̂, φ̂†] to be subdominant, one
often neglects the potential and ends up with a simple equation of
the form

(∂2
χ − ω2

J )⟨Ψ|φ̂J(χ)|Ψ⟩ = 0 , (97)

where we defined the coupling

ω2
J = −K(0)

J
/

K(2)
J . (98)

As we will see in Section 3.3, (97) will provide the setup for obtaining
effective cosmological dynamics. In general, the task in this approach
is to find equations for the functions defining |Ψ⟩, namely conditions
that ensure the states are (either exact or approximate) solutions of
the quantum dynamics. Thanks to the use of coherent (condensate-
like) states typical of matter physics, the approximations sketched
here will be associated with the interpretation that quantum cosmol-
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ogy emerges as “hydrodynamics of quantum gravity” [187, 300] (see
also [301] for recent developments of such ideas).

To conclude this section, we note that for the specific choice of
kinetic term given by (80) (see also (78)), the coupling (98) can be
given explicitly as

ωJ = −
√

m2 − M2 ∑
I

jI(jI + 1) , (99)

where the argument of the root must be positive in order to have a
real coupling. This will be important for the anisotropic cosmological
model studied in Chapter 4. It is worth pointing out that amongst all
modes that contribute to the number and volume operator defined
in (86) and (87), we will see that the dominant contribution is asymp-
totically given by the modes J for which |ωJ | takes a maximum, as
proven in [176] for generic initial conditions. As can be seen from (99),
these are the modes of lowest spins jI . This is the reason why cosmo-
logical dynamics can be extracted from GFT by restricting to a single
mode, as we will explain in Section 3.3.

3.2.2 Deparametrised approach

Given a classical GFT action, a canonical quantisation can be obtained
by choosing a degree of freedom to parametrise the others before quan-
tisation; here, the obvious candidate is the matter clock χ. In contrast
to the algebraic approach, this “deparametrised” framework allows
to write down a relational Hamiltonian, and hence perform a stan-
dard canonical quantisation (using the map (2) starting from a classi-
cal phase space structure). This approach was first developed in [186,
379], based on a real-valued GFT field whose Peter–Weyl modes sat-
isfy φ̄J(χ) = (−1)∑I(jI−mI)φ−J(χ), with −J denoting sign reversal of
magnetic indices (cf. footnote 20 and (59)).

Working in the spin representation and with a conventional 1/2
factor as customary for real fields, the action (73) can be written as

S[φ] =
1
2

∫
dχ ∑

J
φ−J(χ)

(
K(0)

J + K(2)
J ∂2

χ

)
φJ(χ) + V[φ] , (100)

where we used the kinetic term (79). Note that K(0)
J and K(2)

J can in
general be positive or negative. Without loss of generality, we take
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the kinetic term to be symmetric under J ↔ −J, i.e., K(0)
J = K(0)

−J and

K(2)
J = K(2)

−J in the following. After integration by parts, one has

S[φ] =
1
2

∫
dχ ∑

J

(
K(0)

J φ−J(χ)φJ(χ)− K(2)
J ∂χ φ−J(χ)∂χ φJ(χ)

)
+V[φ] ,

(101)

which is now just a function of field modes and their “time” deriva-
tives, so that the Legendre transform to a relational Hamiltonian is
straightforward. Indeed, one now introduces the conjugate momen-
tum πJ(χ) to the group field φJ(χ) as

πJ(χ) = −K(2)
J ∂χ φ−J(χ) , (102)

and then performs the Legendre transform of the Lagrangian with
respect to χ, which gives a relational Hamiltonian

H = −1
2 ∑

J

πJ(χ)π−J(χ)

K(2)
J

+ K(0)
J φJ(χ)φ−J(χ)

− V[φ] . (103)

The GFT Hamiltonian (103) determines the dynamics of any observ-
able O through Poisson brackets dO/dχ = {O, H}, and indeed χ

appears on the same footing as a background time parameter.

quantum theory. Only at this stage, the group field and its mo-
mentum are promoted to operators with the canonical equal-time com-
mutation relation

[
φ̂J(χ), π̂J′(χ)

]
= iδJ J′ . (104)

The key difference with the previous approach is that these opera-
tors already satisfy dynamical equations, implemented through the
Heisenberg equations of motionWe will be mainly

working in the
Heisenberg picture.

i
dÔ
dχ

= [Ô, Ĥ] , (105)

where Ô is any operator and Ĥ is the quantum version of (103). This
has a cost: we needed to specify our time variable once and for all
from the very beginning to define the conjugate momentum of the
field and the relational Hamiltonian.
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One can now define creation and annihilation operators â†
J and âJ

as in any bosonic field theory (denoting φ̂J = φ̂J(0) and π̂J = π̂J(0)) Being only defined
in reference to φ̂J(0)
and π̂J(0), the
ladder operators are
χ-independent. In a
sense, we are
choosing χ = 0 as
the time when the
Heisenberg (H) and
the Schrödinger (S)
pictures coincide,
âH(0) = âS = â.

âJ =
1√
2ΩJ

(ΩJ φ̂J + iϵJπ̂−J) ,

â†
J =

1√
2ΩJ

(ϵJΩJ φ̂−J − iπ̂J) ,
(106)

with ΩJ =
√∣∣K(0)

J K(2)
J

∣∣ and ϵJ = (−1)∑I(jI−mI). By construction these
operators satisfy their own commutation relations,[

âJ , â†
J′

]
= δJ J′ . (107)

Such ladder operators should not be confused with φ̂J(χ) and φ̂†
J (χ)

of Section 3.2.1 (see in particular (81)). Indeed, using âJ and â†
J , one

can construct a Fock space that is different from that introduced in the
algebraic approach (84) since the states here are already interpreted as
physical states, not subject to any constraints. Specifically, one again
starts from a ground state |0⟩ (interpreted as “no geometry state”)
such that

âJ |0⟩ = 0 , (108)

for all J values, and excitations created by the ladder operators are
interpreted as quanta of geometry. A one-particle state |1⟩ = â†

J |0⟩
represents a quantum tetrahedron (or four-valent node) with group-
theoretic information J. The interpretation of quanta of geometry is
on par with that of (83), but with the important difference that here
the states are already physical.

The deparametrised approach allows to straightforwardly define
relational observables analogous to (85). Indeed, working in the Heisen-
berg picture (cf. (105)), the χ-evolution of any operator Ô is given by

Ô(χ) = Û†(χ) Ô(0) Û(χ) , (109)

where

Û(χ) = e−iĤχ (110)

is the evolution operator and Ĥ is the Hamiltonian appearing in (105)
(we will analyse the Hamiltonian in terms of ladder operators below).
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In particular, a time-dependent number operator is defined asTo be rigorous,
âJ(χ) := Û† âJÛ and

â†
J (χ) := Û† â†

J Û
should carry a label

“H” (for Heisenberg),
so as to distinguish

them from the
χ-independent

ladder operators
defining the Fock

space; we omit this
label for simplicity.

N̂(χ) = ∑
J

â†
J (χ)âJ(χ); (111)

similarly, the volume operator reads

V̂(χ) = ∑
J

vJ â†
J (χ)âJ(χ) . (112)

One could also simply define N̂(0) := ∑J â†
J âJ and V̂(0) := ∑J vJ â†

J âJ

and use (109); we write the equivalent expressions (111) and (112) to
make the resemblance to (86) and (87) more explicit.

While this quantisation is straightforward to obtain and interpret
and the connection to the classical theory is clear throughout, one
might raise the concern that χ appears only as a “classical” parame-
ter with no quantum operators or fluctuations associated to it. This is
a common concern with deparametrised approaches, as the expected
covariance of the GFT formalism – the freedom to choose an arbitrary
time parameter to express dynamics – might be broken by making a
classical clock choice before quantisation (see, e.g., the general crit-
icism of “tempus ante quantum” in [233, 257] and a more specific
discussion for GFT in [272]). As we will see, the work presented in
Chapter 6 resolves these concerns by embedding the deparametrised
approach into a more covariant setting which allows for an arbitrary
choice of evolution parameter.

relational hamiltonian. The quantum operator correspond-
ing to the Hamiltonian (103),

Ĥ = −1
2 ∑

J

 π̂J(χ)π̂−J(χ)

K(2)
J

+ K(0)
J φ̂J(χ)φ̂−J(χ)

− V[φ] , (113)

is comprised of a sum-over-mode part (corresponding to the Hamil-
tonian of a free GFT) and an interaction potential. In this section we
leave the potential V[φ] generic, and we focus on the form that the
first part in (113) can take in terms of the ladder operators (106) de-
pending on the kinetic term KJ (cf. (79)) of the GFT action. In par-
ticular, we now show that it can be written as a sum of single-mode
contributions.

We begin by noting that the first part in (113) is the sum of two-
mode Hamiltonians, since every contribution to the sum depends on
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the modes J and −J. In other words, even in the free theory, the Peter– This section provides
a somewhat novel
extension of the
literature as it deals
with aspects
regarding the
Hamiltonian that
were never clarified
(see [101]).

Weyl modes are a priori pairwise coupled such that the dynamics
of the mode J is coupled with that of the mode −J. Since the term
within brackets in (113) is symmetric with respect to exchanging J
and −J (recall that KJ = K−J by assumption), the sum receives the
same contribution twice.12 One thus obtains an overall factor of 2, so
that we are interested in summing over two-mode components of the
form

Ĥ(J,−J) = − π̂J(χ)π̂−J(χ)

K(2)
J

− K(0)
J φ̂J(χ)φ̂−J(χ) . (114)

Excluding the rather fine-tuned modes for which K(0)
J = 0, the con-

tributions (114) can be of two different types, depending on the signs
of K(0)

J and K(2)
J . The modes for which these have the same sign (we

denote this case with a single dash ′) contribute with a two-mode
Hamiltonian Ĥ′

(J,−J) that automatically decouples the mode J from
−J when working in the ladder operator basis. Indeed, by inverting
(106) one can use

φ̂J =
1√
2ΩJ

(
ϵJ â†

−J + âJ

)
,

π̂J = i

√
ΩJ

2

(
â†

J − ϵJ â−J

)
,

(115)

to write the two-mode Hamiltonian (114) as

Ĥ′
(J,−J) = ϵJωJ

(
â†

J âJ +
1
2

)
+ ϵJωJ

(
â†
−J â−J +

1
2

)
= ĤHO

J + ĤHO
−J ,

(116)

where (cf. (98))

ωJ = − sgn
(
K(0)

J
)√∣∣K(0)

J
/

K(2)
J

∣∣ . (117)

That is, Ĥ′
(J,−J) decouples into the sum of two single-mode harmonic

oscillator (HO) Hamiltonians, which have well-known properties (eigen-
value problem, spectral decomposition, et cetera).

12 The only exception is the case where J = −J, i.e., a mode with vanishing magnetic
indices. This special case automatically contributes with a single-mode Hamiltonian
so it does not need to be considered in the following discussion.
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On the other hand, the modes for which K(0)
J and K(2)

J have opposite
signs (we denote this case with a double dash ′′) contribute with a
two-mode Hamiltonian Ĥ′′

(J,−J) that takes the form

Ĥ′′
(J,−J) = ωJ

(
â†

J â†
−J + âJ â−J

)
, (118)

where ωJ is given in (117). While this is still a two-mode operator
coupling J and −J (specifically, it is related to a two-mode squeezing
operator), it is possible to diagonalise it as follows. First, we introduce
the vector notation aT = (âJ , â−J) and (a†)T = (â†

J , â†
−J) which allows

to rewrite (118) as

Ĥ′′
(J,−J) =

1
2

ωJ

(
(a†)Tσ1 (a†) + (a)Tσ1 (a)

)
, (119)

where here and in the following σi refers to the i-th Pauli matrix.
Then, we perform a change of basis, a → Ua, by means of a unitary
transformation

U = e−i π
4 σ2

1 0

0 −i

 . (120)

Finally, thanks to the property ei π
4 σ2 σ1 e−i π

4 σ2 = σ3, one can easily
check that UTσ1U = I2×2 so that Ĥ′′

(J,−J) can be written in the di-
agonal form

Ĥ′′
(J,−J) =

1
2

ωJ

(
(â†

J )
2 + â2

J

)
+

1
2

ωJ

(
(â†

−J)
2 + â2

−J

)
= ĤSQ

J + ĤSQ
−J ,

(121)

namely as the sum of two single-mode squeezing (SQ) Hamiltonians.
To summarise, all types of two-mode contributions Ĥ′

(J,−J) and
Ĥ′′

(J,−J) can be brought into a diagonal form ((116) and (121)); i.e.,
the Hamiltonians Ĥ(J,−J) in (114) decouple into a sum of single-mode
Hamiltonians for all modes. For the reasons shown above, it is con-
venient to define JHO as the set of J such that K(0)

J and K(2)
J have the

same sign and JSQ as the set of J such that K(0)
J and K(2)

J have oppo-
site signs. Then, it follows that the total GFT Hamiltonian (113) can
be cast as

Ĥ = ∑
J

ĤJ − V[φ] , (122)
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where, depending on the set J belongs to, ĤJ takes one of the two
forms

ĤJ =


ϵJωJ

(
â†

J âJ +
1
2

)
, J ∈ JHO

1
2 ωJ

(
(â†

J )
2 + â2

J

)
, J ∈ JSQ .

(123)

As we will see in Section 3.3, the case of a squeezing Hamiltonian
is particularly relevant for applications to cosmology, where the po-
tential V[φ] is usually neglected. In the case of a free GFT, the Hamil-
tonian for modes J ∈ JSQ does not leave the Fock vacuum invariant
as squeezing leads to an exponentially growing number of particles In the literature one

generally works
with the two-mode
Hamiltonian (118)
adopting the “old
basis” (prior to the
transformation
(120)). In this basis,
particles of geometry
are created in pairs
with opposite values
for the magnetic
indices [186].

under evolution in χ [5, 186, 379]. Since the volume operator (112)
is closely related to the particle number, this provides a compelling
picture for an expanding cosmological geometry arising from such
an instability of the ground state, realising a type of “geometrogene-
sis” (the term was coined in [249] and then used in the GFT literature
[183, 294, 297]). On the other hand, the particle number for modes
J ∈ JHO is conserved under χ evolution, and this is interpreted as a
volume that remains constant in time. Such stable modes quickly be-
come insignificant compared to the unstable ones, which is why they
ar usually ignored. Indeed, one can show that the modes associated
with a squeezing Hamiltonian always dominate asymptotically [176].
In the next section we will explicitly see that the volume for a single
mode J ∈ JSQ satisfies the correct effective Friedmann equation for
any state in the theory [184]. This is in contrast with the way dynam-
ics are encoded in the algebraic approach, since one there needs to
use specific states that satisfy, e.g., (92) or (94) (and we will see that
only coherent states seem to provide a viable option).13

We remark that specialising to the kinetic term given by (80) the
coupling (117) takes the form ωJ = −

√
m2 − M2 ∑I jI(jI + 1), just like

in the algebraic approach (cf. (99)). In the deparametrised approach,
|ωJ | plays the role of the rate of squeezing (often called squeezing pa-
rameter), which will in turn correspond to cosmological expansion;
as mentioned, this is dominated by modes in which |ωJ | takes a max-
imum, namely those with the lowest spins jI .

13 As we have seen in Section 3.2.1, the Fock space of the algebraic approach (84) is not
physical, and it is natural to require states to satisfy some constraints. However, we
will see that essentially no solutions to (92) or (94) are known beyond the simplest
Fock coherent states, so that the physical state space is very limited.
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3.3 extracting cosmological dynamics

A major challenge for discrete approaches to quantum gravity is the
derivation of an effective (emergent) continuum description which
can be compared with classical GR or more general gravitational the-
ories. The challenge arises on many levels, for instance in recover-
ing the usual notions of a spacetime manifold from combinatorial
structures [85]; recovering an effective description in terms of coor-
dinates and restoring the continuum notion of diffeomorphisms or
coordinate changes [136]; and understanding the intricate interplay
between a continuum and semiclassical limit. Deriving such a de-
scription, however, is crucial for understanding the phenomenology
of such quantum gravity theories and ensuring their compatibility
with observation given that, e.g., new fifth-force degrees of freedom
at low energies would have to be compatible with tight experimental
bounds [4]. A common approach in this situation is to restrict to sce-
narios of high symmetry, in particular spatially homogeneous cosmol-
ogy or spherically symmetric black holes. While by assumption they
no longer include all degrees of freedom, symmetry-reduced models
would be expected to capture at least some phenomena of the un-
derlying theory (as they do in classical general relativity), while also
connecting directly to phenomenology given the obvious relevance
of cosmological and black hole spacetimes. An example is given by
LQG, whose cosmological sector has been studied in loop quantum
cosmology [37, 46, 78], and which allows to include discretisation ef-
fects in a number of effective black hole models [82, 166, 230, 240].

In this section we review the effective cosmological models that
have been constructed in the GFT approach to quantum gravity, specif-
ically working with the canonical quantisation schemes reviewed in
Section 3.2. We will see that, mainly thanks to coupling the massless
scalar field to be used as relational clock (cf. Section 3.1), GFT cos-By contrast, note

that very little has
been achieved in the

context of black
holes from a GFT

perspective, as the
only existing work is

purely kinematical
[303, 307]. We will

comment on new
possibilities later on.

mology models can recover the dynamics of a flat FLRW Universe
and include quantum corrections that allow to resolve the Big Bang
singularity, replacing it with a bounce [5, 184, 186, 272, 305, 306, 379].
Interestingly, these results hold regardless of the approach followed,
and thus provide strong insights regarding early cosmology from a
quantum gravity perspective.

assumptions . In order to link GFT with cosmology, some sim-
plifying assumptions are needed. First of all, the cosmological sector
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of GFTs often deals with regimes in which interactions can be ne-
glected, so we will only consider the kinetic term of the action (i.e.,
the free theory). Since neglecting interactions between spin-network
nodes (or correlations between the GFT quanta) can be thought as de-
scribing GFT configurations of high symmetry, this approximation is
often interpreted as corresponding to macroscopic homogeneous space-
times [183, 379]. Let us note that, because the theory describes a grow-
ing particle number, such an approximation can only hold for a finite
amount of time before the number of quanta is too large and interac-
tions become important [305, 306].

Moreover, we now focus on a single Peter–Weyl mode (cf. (58)).
Indeed, it turns out that considering only a single J (somewhat repre-
senting excitations of the same “type”) is enough to obtain the correct
cosmological dynamics of a flat FLRW Universe [305, 306]. Other than
by computational simplicity, this restriction is motivated by the fact
that one mode quickly dominates dynamically (see discussion below An effective

restriction to a
single mode would
essentially emerge
dynamically in any
case, as shown in
[176].

(99) and (123)) so that this approximation becomes better and better
with time. There is evidently a certain clash with the first approxi-
mation of negligible interactions, which gets worse over time, mean-
ing that we expect GFT cosmological models to be valid in an inter-
mediate regime sometimes called “mesoscopic”.14 The single-mode
approximation means that a cosmological spacetime expands or con-
tracts by modifications to the combinatorial structure of the spin net-
work (i.e., by changing number of the GFT quanta), rather than by
changing the spin labels on the network (i.e., transitioning between
GFT quanta of different spin representations). Furthermore, one can
use the insights gained from loop quantum cosmology, where all the
spins are usually fixed to only one value [37, 46, 78], to motivate this
single-mode restriction in GFT. Such assumptions behind loop quan-
tum cosmology models are often motivated by a suggestion that cos-
mological expansion or contraction is indeed realised by a changing
graph structure in full LQG [39, 83].

Finally, one then also needs to specify quantum states to calcu-
late expectation values of the operators of interest (in particular, the
volume operator). While neglecting interactions and restricting to a
single mode are assumptions that apply to both the algebraic and
the deparametrised quantisations described in Section 3.2, the choice
of states plays a different role depending on the approach. Specifi-

14 In [305], such a regime is defined in analogy with condensed matter physics, where
the number of GFT quanta is large enough to admit a global geometric interpretation
but small enough to consider the GFT system as a “dilute non-interacting gas”.
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cally, since the notion of dynamics in the algebraic approach is im-
plemented through the states, they represent a crucial ingredient for
obtaining effective cosmology (as there is no Heisenberg picture). As
we have described, one here needs (exactly or approximately) phys-
ical states that satisfy some constraint equations (cf. (92) and (94)),
which however seem to be only solved by the quite specific class
of coherent states;15 while we will use coherent states in the follow-
ing, we note that this represents quite an important restriction of the
full physical state space. On the other hand, in the deparametrised
approach dynamics are defined in the Heisenberg picture by (105)
regardless of the choice of states. One can then discuss relational dy-
namics of operators (such as the volume (112)) thanks to (109), even
before computing expectation values. In both approaches, one usu-
ally considers coherent states to implement a notion of semiclassi-
cality similar to what is often done in quantum cosmology. This is
because in a macroscopic Universe quantum fluctuations over expec-
tation values should be small, as discussed in [273] and [184], where
different choices of coherent states are examined with respect to this
criterion. We will expand on the choice of states in Chapter 5, where
we generalise previous results on semiclassicality to a broader family
of states.

3.3.1 Algebraic GFT cosmology

As explained at the end of Section 3.2.1, one needs to specify a set of
quantum states to extract dynamics in the algebraic quantisation of
GFT. The prototypical state adopted in this formalism is given by a
field coherent (or “condensate”) state [183, 305]In order to simplify

the notation, we will
drop the index J in

our single-mode
expressions.

|σ⟩ = Nσ exp
(∫

dχ σ(χ)φ̂†(χ)

)
|∅⟩ , (124)

with

Nσ = exp
(
−1

2

∫
dχ|σ(χ)|2

)
. (125)

The key property of such states,

φ̂(χ)|σ⟩ = σ(χ)|σ⟩ , (126)

15 We will explain this in more detail in Chapter 5, where we explicitly check the
conditions necessary for states to be physical in the algebraic approach.
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allows replacing (after normal ordering) all field operators by the
collective variable σ(χ) (sometimes called condensate wavefunction), Since all quanta are

characterised by a
single quantum
state and
wavefunction, it has
been conjectured
that these states
correspond (when
coarse-grained) to
homogeneous
cosmological
spacetimes [183].

which explicitly depends on χ. Indeed, the coherent state (124) imple-
ments the idea of mean-field approximation discussed around (96),
and the quantum equation of motion essentially reduces to the classi-
cal GFT equation of motion.

While often described as an approximate solution in the literature
(even for GFT models based on the free theory), we stress that states
of the form (124) can solve (92) exactly. Indeed, due to the property
(126), |σ⟩ is a physical state provided that the function σ(χ) satisfies
the classical free GFT equation of motion (cf. (97))

(
∂2

χ − ω2) σ(χ) = 0 . (127)

Note that for any σ solving (127) one has Nσ = 0 in (125), meaning the
state is non-normalisable. One way of regularising the state |σ⟩ is by
introducing an ad hoc cutoff in χ, which would represent an arbitrarily
large (but finite) range of validity for the resulting effective relational
dynamics.16 Explicitly, the solution to (127) [176],

σ(χ) = Aeωχ + Be−ωχ , (128)

where A and B are constants (which generically depend on the mode
J), dictates how dynamics are implemented in the algebraic approach,
as geometrical quantities inherit χ dependence through σ(χ). One
can indeed derive effective dynamics for expectation values of the
operators of interest, such as N̂(χ) and in particular V̂(χ), basically
ignoring fluctuations. Starting from generic “second quantised” op-
erators (85), and recalling that we are restricting to a single J, one
calculates expectation values as

⟨Ô(χ)⟩σ = O⟨σ|φ̂†(χ)φ̂(χ)|σ⟩
⟨σ|σ⟩ = O|σ(χ)|2 . (129)

For the specific definitions (86) and (87) of the number and volume
operators, one finds

⟨N̂(χ)⟩σ = |σ(χ)|2 , (130)

16 One might argue that this does not represent an issue as the free-theory approxi-
mation breaks down at some χ (when the interactions become important), so one
should not trust the model for too large χ anyway.
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and

⟨V̂(χ)⟩σ = v|σ(χ)|2 . (131)

These expectation values can now be evaluated for a solution of the
free theory (127). In particular, substituting the solution (128) into
(131), one finds the volume

⟨V(χ)⟩σ = v [S cosh(2ωχ) +D sinh(2ωχ) + 2Re(AB̄)] , (132)

where S = |A|2 + |B|2 and D = |A|2 − |B|2. Crucially, this form
for the volume corresponds to a cosmological solution that satisfies
Friedmann-like dynamics while also containing a cosmological bounce.17

To make this explicit, one can introduce the conserved quantities [176,
305, 306]

E = −4Re(AB̄) ,

Q = 2Im(AB̄) ,
(133)

respectively associated with χ translations and with the U(1) symme-
try of the complex GFT. With these, one finds that (132) satisfies an
effective Friedmann equation

(
1

⟨V̂(χ)⟩σ

d⟨V̂(χ)⟩σ

dχ

)2

= 4ω2
(

1 +
vE

⟨V̂(χ)⟩σ

− v2Q2

⟨V̂(χ)⟩2
σ

)
. (134)

While the interpretation of E (sometimes called the “GFT energy”)
was never clarified, in [305] it was proposed that ωQ plays the role
of conjugate momentum to the scalar field, so that by defining an
effective energy density

ρeff =
ω2Q2

2⟨V̂(χ)⟩2
σ

, (135)

and a critical energy density ρc = ω2/(2v2), one can rewrite (134) in
a form similar to loop quantum cosmology [359]The term

proportional to the
GFT energy E is

absent in loop
quantum cosmology

(see Appendix A).

(
1

⟨V̂(χ)⟩σ

d⟨V̂(χ)⟩σ

dχ

)2

= 4ω2
(

1 +
vE

⟨V̂(χ)⟩σ

− ρeff

ρc

)
. (136)

17 Even though the original work [305] was based on equilateral tetrahedra which were
supposed to encode isotropy (meaning the spins jI in J were assumed to be equal, cf.
(59) and Figure 7), one can retain four different spins jI for the faces of the building
blocks; the key ingredient for this result lies in the single-mode restriction alone.
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In (136), ρc would represent a universal upper bound for the density
ρeff, which allows a bounce at a minimum nonsingular volume, just
like in loop quantum cosmology. However, it is not clear why the U(1)
“charge” Q should be interpreted as the conjugate momentum of the
matter field χ, as it would make more sense to associate this role to E
(which is the conserved quantity associated with χ translations; see,
e.g., [185] for more on this).

The large volume limit of (134) needs to be consistent with the clas-
sical Friedmann equation (V ′/V)2 = 12πG, which is easily found in
classical GR by adopting a scalar field as a clock (we review its deriva-
tion in Appendix A, see in particular (405)). In this case, large vol-
umes (or low energy densities) are obtained when |χ| is big enough
so that we are away from the bounce. Hence, agreement with the clas-
sical theory requires the identification between the GFT coupling and Note that by

identifying the GFT
coupling with
Newton’s constant
one has ρc ∼ ρPlanck

as v ∼ l3
P (cf. (1)).

Newton’s constant as

ω2 = 3πG . (137)

This identification should be seen as the “emergence" of Newton’s
constant from more fundamental GFT parameters. We emphasise that
while the first term in (134) recovers the (relational) Friedmann equa-
tion of GR, the two subleading contributions are seen as GFT (i.e.,
quantum gravity) corrections to classical cosmology, with the 1/⟨V̂(χ)⟩2

σ

term crucially being responsible for the generic resolution of the Big
Bang singularity. Furthermore, we remark that in order to obtain (134)
we had to specifically use the state (124), as indicated by the index
of ⟨V̂(χ)⟩σ. In contrast, the effective Friedmann equation of the de-
parametrised approach holds in any state as we will see in the next
section.

Finally, as we mentioned when defining the relational operator (87),
note that even if the volume itself does not show any infinities, one
can use the property

⟨φ̂†(χ)φ̂(χ)φ̂†(χ)φ̂(χ)⟩ = δ(0)⟨φ̂†(χ)φ̂(χ)⟩+ ⟨(φ̂†(χ))2 φ̂2(χ)⟩ , (138)

which follows from the commutator (81), to show that volume fluctu-
ations diverge as

(∆V̂)2
σ

⟨V̂⟩2
σ

=
δ(0)

|σ(χ)|2 , (139)
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where (∆V̂)2
σ = ⟨V̂2⟩σ − ⟨V̂⟩2

σ. If one removes the distribution δ(0)
by means of some regularisation procedure (e.g., replacing the Dirac
delta in (81) with a Kronecker delta by considering smeared observ-
ables [40, 41, 250], or imposing the dynamics in a different way by
working with the peaked coherent states of [272]), (139) gets automat-
ically smaller and smaller over time as σ(χ) grows exponentially (cf.
(128)). In this sense, one might then argue that these coherent states
are semiclassical. In Chapter 5 we explore other states and study their
semiclassicality.

coherent peaked states . As we mentioned in Section 3.2.1,
one way of dealing with the issues of divergences (such as (139)) aris-
ing due to the distributional nature of relational operators is given by
the coherent peaked states proposal [272]. This falls within the alge-
braic approach to GFT cosmology and focusses on specific types of
states, defined as coherent states (cf. (124))

|σϵ; χ0, π0⟩ := Nσϵ exp
(∫

dχ σϵ(χ)φ̂†(χ)

)
|∅⟩ (140)

where Nσϵ is as in (125) with the difference that the mean fieldThe Gaussian plays
the role of a

“peaking function”
and allows to

discuss states that
are peaked at the

relational time χ0.

σϵ(χ; χ0, π0) = e−
(χ−χ0)

2

2ϵ eiπ0(χ−χ0)σ̃(χ) (141)

is given by the product of a Gaussian and a function σ̃(χ) (dubbed
“reduced” wavefunction). The state carries various labels: ϵ is the stan-
dard deviation of the Gaussian, π0 is a parameter needed to make
sure quantum fluctuations are small [273], and crucially, χ0 repre-
sents the value of the relational time at which the states are peaked.
Requiring the Gaussian to be sharply peaked allows to interpret the
internal clocks of the GFT quanta as “synchronised”.18 In other words,In a sense, the states

(140) can be
considered as

describing some kind
of discrete

counterpart of
“leaves of a foliation”

with respect to the
massless scalar field.

one can effectively interpret the expectation value of an operator on
a coherent peaked state characterised by χ0 as if it were computed
at a relational time (i.e., on a slice labelled by) χ0. As a possible criti-
cism, note that (140) is actually a one-parameter family of states with
respect to χ0, which seems to play the role of an ad hoc external (back-
ground) time label, like in non-relativistic quantum mechanics.

18 On a technical level, some assumptions are needed for the states to behave well.
Importantly: the standard deviation of the Gaussian is required to satisfy ϵ ≪ 1, and
one also imposes the condition ϵπ2

0 ≫ 1 so that quantum fluctuations are assured to
be small. We refer to [272, 273] for the details and the approximations employed.
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The wavefunction (141), required to satisfy certain equations as
sketched below, is assumed to make the coherent peaked state nor-
malisable in the Fock space inner product (since, naively, the inte-
gral in (125) can be rendered convergent by the peaking function of
(141), in particular for small ϵ). To be more precise, since it is not
clear whether (140) satisfies any constraint discussed in Section 3.2.1
(namely, the strong imposition (92) or even the approximate require-
ment (94)) for the commonly used kinetic term (79), a critical assump-
tion of this formalism is that the action contains a kinetic term that
can be expanded as

K =
∞

∑
n=0

K(2n)

(2n)!
χ2n . (142)

In [272], this is justified by recalling that the kinetic term with (in prin-
ciple infinite) even derivatives mentioned in footnote 3 admits a repre-
sentation in terms of smooth functions. This is a weighty assumption
which in particular means one is not able to specify an explicit GFT
model. By means of some approximations on (142) (see [272]), one
here simply considers the “instantaneous” averaged Euler–Lagrange
equations (94), This equation is

essentially only
required to hold at
χ = χ0, as indicated
by the argument of
the functional
derivative.

〈
σϵ; χ0, π0

∣∣∣∣δS[φ̂, φ̂†]

δφ̂†(χ0)

∣∣∣∣ σϵ; χ0, π0

〉
= 0 , (143)

where the coherent peaked state (140) is labelled by the same param-
eter χ0 appearing in the argument of the functional derivative. Then,
the difference with a standard coherent state (124) is that the small
parameter ϵ ≪ 1 in (141) allows to adopt a generic (reduced) wave-
function σ̃(χ), which does not need to be slowly varying in χ (cf.
footnote 3).

With all such assumptions, one can obtain an effective equation of
motion for σ̃(χ) (viewed as approximations to the full equations of
motion) which crucially has the same functional form of (127), but
with generalised definitions of ω2, E and Q (cf. (133)). In particular,
such quantities now depend on the coherent peaked states parame-
ters ϵ and π0 (their explicit form is not important for our purposes,
see [272, 273]). This is how this formalism reproduces the main results
shown earlier, curing its (distributional) divergences.19 To see it ex-

19 While the infinities related to distributional operators are dealt with in this approach
(see [273] for the explicit computation of all the fluctuations, including in the clock
field χ̂), the divergences in (the norm of) the states are bypassed altogether as the
coherent peaked state is defined “by hand” to be normalisable (cf. (141) and (125)).
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plicitly, we recall that this approach makes use of “totally integrated”
operators instead of the χ-dependent ones (which are distributional).
Indeed, using the number operator as an example, computing the ex-
pectation value of (88) one finds a function of the parameter χ0 used
in the definition of the state (140),

⟨N̂⟩σϵ,π0,χ0 =
∫

dχ |σϵ(χ; χ0, π0)|2 ≃ |σ̃(χ0)|2 , (144)

which is reminiscent of (130) but here with the state parameter χ0

playing the role of relational time. Furthermore, given that the expec-
tation value of the scalar field operator (89) in a coherent peaked state
is ⟨X̂⟩σϵ,π0,χ0 ≃ χ0⟨N̂⟩σϵ,π0,χ0 , one now defines an intensive (effective)
clock operator by

χ̂ =
X̂

⟨N̂⟩σϵ,π0,χ0

, (145)

which is such that [χ̂, Π̂] = i (see (91) and discussion thereafter). Then,
in the given approximations, one has ⟨χ̂⟩σϵ,π0,χ0 ≃ χ0, and χ0 can
indeed be seen as the expectation value of the clock χ̂ (which is why
this approach classifies as a “tempus post quantum” formalism [272]).

Finally, one can define an ad hoc Hermitian operator represent-
ing an effective Hamiltonian that by construction describes evolution
with respect to the parameter χ0, and check that in the states (140)
and with the mentioned approximations [272]Note that the

effective
Hamiltonian is

state-specific, so that
it should more

correctly be denoted
by Ĥσϵ ,π0,χ0 , but we

will not do so to
lighten the notation.

⟨Ĥ⟩σϵ,π0,χ0 ≃ ⟨Π̂⟩σϵ,π0,χ0 , (146)

where Π̂ is given in (90). This allows to obtain an effective Heisenberg-
like equation for fully integrated operators Ô such as the number (88)
(or the volume),20

d
dχ0

⟨Ô⟩σϵ,π0,χ0 = i⟨[Ĥ, Ô]⟩σϵ,π0,χ0 , (147)

providing an alternative notion of relational dynamics in the alge-
braic approach, imposed via peaked coherent states. In this picture,
dynamical equations emerge on the kinematical Hilbert space from
considering the evolution of expectation values relative to the clock

20 Some subtleties arise regarding the fact that the expectation value of the effective
Hamiltonian depends on χ0 (specifically as ⟨Ĥ⟩σϵ ,π0,χ0 ≃ π0|σ̃(χ0)|2); these strange
effects seem to be due to the granularity of geometry in GFT. See [272] for a discus-
sion on these issues, their possible meaning and resolution.
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expectation value ⟨χ̂⟩σϵ,π0,χ0 , choosing rather specific states so that a
simple relation between these expectation values can be derived.

Note that, as already mentioned in Section 3.2.1, the fact that the
algebraic approach relies on constraints (cf. (92)) implies that observ-
ables should be identified as those operators which preserve the phys-
ical state space (and not just any Hermitian operators). This concern
applies to the algebraic approach in general, regardless of the approx-
imations used or the choice of coherent peaked states (140); however,
it can be seen as more pressing here as the operators are central in
defining relational dynamics. Indeed, it is not clear whether, for in-
stance, the operator χ̂ in (145) (whose expectation value plays the
role of relational time variable) preserves the physical state space.

Regarding cosmological dynamics, it clearly follows that just like
(144) one can write down the volume operator expectation value as

⟨V̂⟩σϵ,π0,χ0 = v
∫

dχ |σϵ(χ; χ0, π0)|2 ≃ v|σ̃(χ0)|2 , (148)

which represents the “coherent peaked states counterpart” of (131).
As anticipated, (148) leads to effective cosmological dynamics that
have the same functional form of (134), where now evolution is de-
scribed in terms of the parameter χ0 and the coefficients in the Fried-
mann equation depend on the labels defining the state (140) (i.e., ω2

as well as E and Q depend on π0 and ϵ, see [272]).
Ultimately, the coherent peaked states formalism provides a novel

version of the algebraic approach which is not subject to the diver-
gences typical of distributional operators (see discussion around (86)
and (87)). It relies on different ways of approximating the full quan-
tum dynamics and leads to the same results, supporting the robust-
ness of the GFT cosmology approach overall. While providing signif-
icant insights on the possible quantum nature of the relational clock
itself (which was treated as a classical time in previous studies), the
proposal does not refer to a classical Hamiltonian notion of dynamics
or to classical relational observables as in usual Dirac quantisation,
and it is unclear whether constraints such as (92) or (94) play a fun-
damental role. We will return to these important points in Chapter 6,
where we define a new way to impose dynamics in GFT inspired by
the quantum time operator χ̂, but keeping in line with a traditional
Dirac quantisation (and hence reducing from a kinematical to a phys-
ical Hilbert space by means of quantum constraints).
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3.3.2 Deparametrised GFT cosmology

The idea of deparametrisation was introduced in GFT cosmology in
[5] (see also [250] for related ideas) where an effective Friedmann
equation similar to (134) was recovered in a simple toy model with
a squeezing Hamiltonian generating evolution with respect to a pre-
ferred matter clock, without requiring a mean-field approximation.
The same strategy was then adopted in full GFT in the Hamiltonian
formalism of [186, 379], which we reviewed in Section 3.2.2. Initially,
coherent states were used to obtain approximate solutions for expec-
tation values of operators of interest, but this limitation was overcome
in [184] where the dynamics were solved for operators in the Heisen-
berg picture, without requiring a specific state (cf. (109)). States still
need to be chosen to compare expectation values with previous re-
sults; effective Friedmann equations could be found for many types
of coherent states,21 e.g., based on the su(1, 1) algebra generated by
the volume and Hamiltonian operators [59], which we explain below.

Neglecting V[φ] in the Hamiltonian (122) (see also (123) and dis-
cussion thereafter), the restriction to a single Peter–Weyl label for a
free GFT practically means focusing on a Hamiltonian that describes
single-mode squeezing. It is worth noting that even without the ex-
plicit reduction to single-mode contributions seen in Section 3.2.2,
one could easily obtain a single-mode squeezing Hamiltonian starting
from (118) by choosing “symmetric” initial conditions âJ(0) = â−J(0),
which are shown to be preserved under time evolution [186, 379].22

As in the algebraic approach section, we simplify the notation by
dropping the index J in our single-mode expressions. Hence, we now
deal with a quantum system described by bosonic operators â(χ) and
â†(χ) with

[
â(χ), â†(χ)

]
= 1 (cf. (107)). The main operators of interest

for cosmological purposes are the squeezing Hamiltonian in (123), the
number (111) and the volume (112), which reduce to

Ĥ = −ω

2

(
(â†)2 + â2

)
,

V̂(χ) = v N̂(χ) = v â† â ,
(149)

21 We will come back to the notion of semiclassical states for GFT cosmology in Chap-
ter 5, where we expand the existing results to the general family of Gaussian states.

22 More directly, one could also consider a J with vanishing magnetic indices mI = 0
(so that J = −J); this is a somewhat mild assumption as no geometrical observable
depends on the values of the magnetic indices.
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where again v represents the volume of a GFT quantum. As men-
tioned, the operators (149) generate the Lie algebra su(1, 1) extended
by a central element [59, 184]. The algebra is closed by adding

Ĉ = i
v
2

(
(â†)2 − â2

)
, (150)

which would be related to the “Thiemann complexifier” in some anal-
ogous LQG models [62]. Here (150) does not have a direct physi-
cal interpretation, but determines whether the resulting cosmology
has a time-reversal symmetry. The su(1, 1) algebra of these opera-
tors follows from their composition in terms of ladder operators:
one traditionally defines the three possible quadratic combinations
K̂0 = 1

4 (â† â + ââ†), K̂+ = 1
2 (â†)2 and K̂− = 1

2 â2, which satisfy the
su(1, 1) algebra[

K̂0, K̂±
]
= ±K̂± ,[

K̂−, K̂+

]
= 2K̂0 .

(151)

In our case, the GFT operators relate to these su(1, 1) generators as

Ĥ = −ω(K̂+ + K̂−) ,

V̂ = 2vK̂0 −
v
2

, (152)

Ĉ = iv(K̂+ − K̂−) ,

and the algebra closes as

[
V̂, Ĥ

]
= 2iωĈ ,[

Ĉ, V̂
]
= 2i

v2

ω
Ĥ , (153)[

Ĉ, Ĥ
]
= 2iω

(v
2
+ V̂

)
,

where we see the central element (identity operator) appearing in the
third relation. We point out that the structure (153) (together with a
cosmological interpretation) is generically found in other realisations
of su(1, 1) quantum cosmology [59, 79, 80], for example in loop quan-
tum cosmology (where this algebra commonly appears [73–75, 266]).
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We can now turn to the dynamics of such operators. Ĥ determines
the evolution of any other operator Ô via the Heisenberg equation
(105). From this, one can obtain the solutions [184]

V̂(χ) = −v
2
+
(

V̂ +
v
2

)
cosh(2ωχ) + Ĉ sinh(2ωχ) , (154)

Ĉ(χ) = Ĉ cosh(2ωχ) +
(

V̂ +
v
2

)
sinh(2ωχ) , (155)

where V̂ = V̂(0) and Ĉ = Ĉ(0). We can now see that, while V̂ repre-Note that (154)
bears a strong

(functional)
similarity with the
algebraic approach

expression (132),
though the former is
an operator equation

and the latter an
expectation value.

sents the volume at χ = 0, the presence of Ĉ determines whether the
volume evolution (154) has a symmetry under χ → −χ (i.e., whether
one has different pre- and post-bounce scenarios in the cosmological
dynamics we derive below). Since we are working in the Heisenberg
picture, the solutions (154) and (155) do not refer to any choice of
quantum state; in fact, (154) is all one needs to obtain an effective
Friedmann equation. Denoting by ⟨Ô(χ)⟩ the expectation values in
any state, one finds

(
1

⟨V̂(χ)⟩
d⟨V̂(χ)⟩

dχ

)2

= 4ω2
(

1 +
v

⟨V̂(χ)⟩
− 1

⟨V̂(χ)⟩2
I0

)
, (156)

where I0 = ⟨V̂⟩2 + v⟨V̂⟩ − ⟨Ĉ⟩2 essentially represents initial condi-
tions (it is fully specified by the operators (154) and (155) at χ = 0).
(156) describes the same result obtained in the algebraic approach (cf.
(134)), with only minor differences. To reiterate the main points: while
for large volumes (or late times χ → ±∞) (156) is consistent with the
classical Friedmann provided we identify the GFT coupling with G
as in (137), the GFT quantum correction 1/⟨V̂(χ)⟩2 is responsible for
the generic resolution of the Big Bang singularity, which is replaced
with a cosmological bounce through a minimal nonsingular volume.

Although the differences between (156) and (134) are minor, it is
worth spelling out the analogies with the quantities E and Q appear-
ing in (134) and defined in (133). First, it is immediate to see that the
analogue of the “GFT energy” is automatically fixed to be 1 in the
deparametrised approach. Moreover, by defining here again a critical
energy density ρc = ω2/(2v2) and rewriting the last term inside the
brackets of (156) in the suggestive form −ρeff/ρc, one finds a more ap-
propriate interpretation in terms of the relational Hamiltonian (149)
as conjugate momentum to the matter field. To be more precise, while
the role of the conjugate momentum to χ was somehow played by the
quantity ωQ in the algebraic approach (Q being the U(1) charge asso-
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ciated with the complex GFT, see (133) and (135)), one here has that
effective energy density ρeff takes the form [184]

ρeff = ρχ(χ) +
1

2⟨V̂(χ)⟩2
Ĩ0 , (157)

where Ĩ0 = ω2 (⟨N̂⟩2 + ⟨N̂⟩ − ⟨â†⟩2⟨â⟩2) again refers to initial condi-
tions.23 Crucially, the matter energy density ρχ(χ) is now defined by
identifying the Hamiltonian H = ⟨Ĥ⟩ (cf. (149)) with the conjugate
momentum of χ, namely

ρχ(χ) =
H2

2⟨V̂(χ)⟩2
, (158)

as one would expect (see (135) for comparison). Explicitly, using (157)
and (158) one can rewrite (156) just like (136) as

(
1

⟨V̂(χ)⟩
d⟨V̂(χ)⟩

dχ

)2

= 4ω2
(

1 +
v

⟨V̂(χ)⟩
− ρeff

ρc

)
, (159)

namely with a loop quantum cosmology-like term (cf. Appendix A).
To conclude, we also point out that (156) holds regardless of whether

the quantum state one uses to compute expectation values is a pure
or mixed state. All that is needed to obtain (156) is a (linear) opera-
tion mapping operators to their expectation values, and the density
matrix expression ⟨V̂(χ)⟩ = tr

(
ρ̂ V̂(χ)

)
is as good as the pure-state

evaluation ⟨V̂(χ)⟩ = ⟨ψ|V̂(χ)|ψ⟩. This point was not stressed in [184]
where (156) was obtained, and will allow us to investigate semiclas-
sical properties of mixed (in particular thermal) states in Chapter 5.
Finally, while true for any quantum state, we emphasise that (156) is
a relation between expectation values only, and does not take into ac-
count fluctuations (which, if large, may be problematic for a semiclas-
sical interpretation). To claim that the effective Friedmann equation is
a good description of the dynamics of cosmological observables, one
needs to adopt quantum states that show some semiclassical features,
another point that we address in Chapter 5.

23 The additional contributions to ρeff encoded in Ĩ0 also scale as 1/⟨V̂(χ)⟩2, so they
effectively simply shift the scalar field momentum compared to its classical value H.





Part II

P H E N O M E N O L O G Y, Q U A N T U M S TAT E S ,
R E L AT I O N A L I S M

This part describes the research results of the thesis. These
represent innovative developments and advancements of
the general framework introduced in Part I, contributing
significantly to the field of GFT and going beyond the ex-
isting state of the art along three distinct directions. Specif-
ically, Chapter 4 extends the phenomenological results on
GFT cosmology of Section 3.3 to anisotropic settings. Chap-
ter 5 investigates semiclassical properties of quantum states,
analysing the general class of Gaussian states for the cos-
mological models of interest. Finally, Chapter 6 develops
a new rigorous way of defining relational dynamics for
canonical group field theories (working with the free the-
ory but not necessarily specialising to the cosmological
sector), providing crucial insights on the notion of covari-
ance and the problem of time in quantum gravity.





4
T O WA R D S A N I S O T R O P I C C O S M O L O G Y

This chapter introduces anisotropic models for cosmology in group
field theory. It is based on [99], and with the exception of a portion
of Section 4.2.1 (where we review some quantum geometry notions
imported form loop quantum gravity), it constitutes original research.

We have seen in Chapter 3 that the canonical formulation of group
field theory provides a natural arena for studying effective cosmologi-
cal models from a quantum gravity perspective. Indeed, in Section 3.3
we showed that the GFT cosmology literature is rich of ways to derive
effective cosmological dynamics; more specifically, using a restriction
to a single mode, one finds that a flat isotropic cosmology effectively
emerges from GFT in a number of ways. An effective Friedmann equa-
tion that reproduces general relativity at late times and deviates from
classical gravity at early times (with a quantum bounce replacing the
initial singularity) is obtained following both the algebraic approach
of Section 3.3.1 (which is how the GFT cosmology programme be-
gan) and adopting a deparametrised point of view as described in
Section 3.3.2. Such dynamical equations are also similar to the effec-
tive dynamics of loop quantum cosmology, and describe an effective
repulsive behaviour at high energies in a similar fashion.

While important for the phenomenology of GFT and for connecting
to approaches such as loop quantum cosmology, these results have so
far been restricted to the case of a flat homogeneous, isotropic Uni-
verse.1 Some studies have included anisotropies perturbatively [105,
321] showing that they decay leading to isotropisation, but until re-
cently there was no characterisation of, e.g., an anisotropic Bianchi
cosmology.

In [99] we took the first steps towards the study of anisotropic cos-
mologies in group field theory; we devote this chapter to explaining
those results, focussing on the simplest possible case of Bianchi I cos-
mology with local rotational symmetry so that two out of the three
directional scale factors are taken to be equal. There are at least two,
initially quite separate, challenges involved in this extension of past
work. The first is to find a characterisation of anisotropies in group

1 Inhomogeneities can be included perturbatively as in [170, 274], and match physical
expectations at least in a long-wavelength limit.
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field theory, i.e., to define an observable that can distinguish isotropic
and anisotropic geometries and quantify the amount of anisotropy.
Here the key idea we use is the Misner parametrisation of Bianchi
models (see, e.g., [81]; a review is also provided in Appendix A) in
terms of a volume degree of freedom and two relative anisotropy
variables, the Misner variables β±. In a classical Bianchi I model β±

behave as free, massless scalar fields in a flat FLRW geometry,2 which
have already been studied in GFT. On the other hand, the discreteness
of geometry in GFT means that we cannot simply take over a contin-
uum definition of anisotropy, so the construction of an analogue β±

variable requires careful thought. The second challenge is to under-
stand which simplifying approximations used in past work (see Sec-
tion 3.3) need to be relaxed in order to allow for anisotropies in the
effective description. For instance, while the work of [305, 306] only
used “isotropic” states interpreted as describing simplicial building
blocks for which all faces have equal area, it is known (see, e.g., [184])
that this microscopic restriction to isotropy is neither necessary nor
sufficient to obtain the correct (flat FLRW) Friedmann dynamics: the
more relevant assumption is to restrict to a single field mode in the
Peter–Weyl expansion in representation data. Hence, in order to de-
scribe anisotropic geometries, multiple Peter–Weyl modes must be
taken into account, but it is not clear how many (and which) modes
are needed to capture physical anisotropies.

In this work we show how to tackle the first challenge; we define a
β± analogue with a clear geometric interpretation, quantum ambigu-
ities that disappear for large quanta, and correct physical properties –
constant velocity and hence linear evolution – at least for a certain cos-
mological period of time, before the isotropisation observed in [105,
321] sets in and the anisotropy disappears. The second challenge is
partially addressed, given that the β± dynamics partially match ex-
pectations from classical relativity, but the observed isotropisation
does not correspond to a classically expected behaviour and, more
importantly, anisotropies do not backreact on the effective Friedmann
equation as expected. This suggests that while our constructions will
be useful for future work, our model needs further refinement to re-
produce the correct physics of a classical Bianchi Universe.

2 This property makes the Misner parametrisation particularly natural in classical GR.
For comparison we should mention that in loop quantum cosmology the situation is
different, as one quantises an LQG-corrected Hamiltonian constraint and the partic-
ular type of corrections makes Misner variables less convenient [39, 83].
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We point out that any monotonically evolving quantity in a cos-
mological model can be used as a relational time: all other dynami-
cal variables can be written, at least in principle, as functions of this
“clock”. In a vacuum Bianchi I model, the anisotropy variables β±

have this property and hence, in contrast to what is often done in
quantum cosmology and in particular in GFT, no coupling to mat-
ter would be needed to be able to express the dynamics in relational
terms. The fact that we define a new quantity with monotonic evolu-
tion in GFT cosmological models hence raises the possibility of defin-
ing relational evolution in GFT without adding matter fields, which
might help in understanding the problem of time [233, 257, 340], or
possible dependence of dynamics on the choice of clock, in GFT (see
[185] for some work on this issue in models with multiple possible
clocks). We will return to this question in Chapter 6, where we de-
velop the technical tools to potentially change relational clocks in the
quantum cosmological models stemming out of GFT.

anisotropies in group field theory. Classically, incorporat-
ing anisotropy means going from the FLRW Universe to the more
general class of Bianchi models. We here aim to define a GFT model
that can generalise the results presented in Section 3.3 at least to the
simplest anisotropic cosmology (Bianchi I). To do this, we need to
consider two new aspects: understanding how anisotropies modify
the effective Friedmann equation, and understanding the dynamics
of the anisotropies themselves.

As we will explain in the rest of the chapter, an anisotropic GFT
model naively requires quanta of geometry which are non-equilateral
tetrahedra. Moreover, in order to obtain a nontrivial time evolution
for the anisotropies we will need to lift the single-mode restriction
adopted in Section 3.3. Heuristically, this is because if the shape of
non-equilateral tetrahedra is fixed there is no room for a dynamical
notion of anisotropy. Multiple modes are required, so that the relative
contributions of different shapes can change and a macroscopically
“average” anisotropy can become dynamical.

Some preliminary work on anisotropic GFT cosmology was done
in [105] where anisotropies were seen as perturbations. Furthermore,
an anisotropic trirectangular tetrahedron was used as building block
in [321] where a notion of “dynamical isotropisation” was found, but
without details on the evolution of a (global) anisotropy parameter.
This will be one of the main novelties in our work: we define a
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measure for anisotropies given by a parameter (corresponding to a
Misner-like variable β± in classical cosmology) emerging from funda-
mental quantum gravity arguments.

outline of the chapter . In Section 4.1 and Section 4.2 we set
up the new model motivating the introduction of effective β± vari-
ables used to characterise anisotropies in GFT. After discussing ini-
tial conditions in Section 4.3, we propose scenarios based on a few
Peter–Weyl modes in Section 4.4 and study the effective dynamics of
the anisotropies and the spatial volume, comparing both with the dy-
namics of general relativity. In order to compute all quantities for the
new model, we will need to review some aspects regarding the clas-
sical and quantum geometry of tetrahedra as used in LQG and GFT.
This is done in Section 4.2.1, and represents the only review part of
the chapter. We also propose a simplified “toy model” in Section 4.5,
where some of our main results, in particular the linear growth in
anisotropy which matches classical expectations, can be derived ana-
lytically rather than numerically. We conclude with a discussion on
the possibility of including more Peter–Weyl modes and a brief sum-
mary of the main results in Section 4.6 and Section 4.7.

4.1 the new anisotropic gft model

In order to study anisotropic cosmologies in GFT, we need to define
a notion of “anisotropy variables”, analogous to the Misner variables
β±. We will study the (relational) dynamics of these variables and ob-
serve how they affect the effective Friedmann equation for the volume
V(χ) (cf. Chapter 3). We will compare these effective dynamical equa-
tions with those of Bianchi models (see Appendix A for the details), in
particular with the simplest Bianchi I cosmology which would be the
natural extension of the spatially flat FLRW Universe previously stud-
ied in GFT. As in the isotropic case reviewed in Section 3.3, we will
follow both the algebraic and deparametrised approaches; we still
work in the free theory and we consider the kinetic term KJ givenAs usual, we

consider a GFT
based on

SU(2)4 × R (see
Section 3.2 and

Section 3.3).

in (80) so that the GFT coupling ωJ will be explicitly given by (99).
We will once again see that the two approaches give slightly different
behaviours close to the bounce, but basically match otherwise.

We will study two different observables, representing the degrees
of freedom of a classical Bianchi I cosmology. The volume is defined
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as in Chapter 3; in particular, we will be interested in the expectation
value In this chapter,

expectation values
are always taken
with respect to Fock
coherent states.

V(χ) = ∑
J

vJ NJ(χ) , (160)

of the operators (87) or (112), depending on the approach followed (cf.
Section 3.3.1 and Section 3.3.2). We use the notation for the quantities
of interest without a hat to represent (coherent state) expectation val-
ues of the operators defined in Chapter 3; e.g., NJ(χ) = ⟨N̂J(χ)⟩ is the
expectation value of the particle number in the mode J (where N̂J(χ)

is either φ̂†
J (χ)φ̂J(χ) or â†

J (χ)âJ(χ)). Moreover, we introduce the new
“average anisotropy parameters” β±(χ), defined as

β±(χ) :=
1

N(χ) ∑
J

βJ
±NJ(χ) , (161)

where βJ
± represents a mode-dependent “local anisotropy” measure

associated to the GFT quanta in the mode J, analogous to how vJ in
(160) is the quantum volume of the GFT building blocks. The defini-
tion of the functions βJ

± constitutes a substantial part of the work for
the new anisotropic GFT models; we will provide all the details on
these in later sections.

Notice that the expression for β±(χ) is different from the usual
structure of operators in GFT (cf. (85)). We think of anisotropies as
determined by the shape of our geometric building blocks; these vari-
ables should be “intensive” and not simply grow with the number
of quanta, therefore we divide by the total number N(χ) = ∑J NJ(χ)

(see, e.g., [180] for a similar concern related to a possible scalar mat-
ter quantum operator). β±(χ) is not an expectation value, and we do Since (161) is not an

expectation value,
the functions βJ

± are
not eigenvalues of
an operator, though
they heuristically
play a similar role.

not propose any definition of operators β̂± representing anisotropy;
the overall 1/N(χ) could not arise from taking an expectation value.
Instead, the definition (161) introduces a semiclassical and effective
notion of anisotropy only.

multiple peter–weyl modes . In contrast to the single-mode
assumption for isotropic GFT cosmology of Section 3.3, our anisotropic
setup requires including multiple Peter–Weyl modes. Indeed, for only
a single J in (161), β±(χ) would clearly be constant, which is con-
sistent with the idea that we would not incorporate any dynamical
“shape” degrees of freedom. Moreover, we already know that the vol-
ume emerging from a single mode would give rise to an effective
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Friedmann equation of the form of (134) or (156), which corresponds
to an isotropic Universe. These two statements agree with the clas-
sical observation that the Bianchi I relational dynamics (426) do not
differ from FLRW (405) if the anisotropy parameters are constant, as
they only appear through derivatives (see Appendix A). Another way
of seeing this is to observe that a Bianchi I metric for which the Mis-
ner variables are constant can be brought to FLRW form by rescaling
coordinates. Hence, to make β±(χ) dynamical one needs to allow for
contributions coming from multiple shapes, i.e., modes with different
values for βJ

±.
In order to compute the sum for the volume (160) and the anisotropies

(161), we need to specify the single-mode expectation values NJ(χ),
and the coefficients vJ and βJ

±. The volume eigenvalues vJ , as men-
tioned when defining the operators (87) and (112), are imported from
LQG; a procedure to (numerically3) compute them is well-known
[68, 69], and will be briefly recalled in Section 4.2.1. The expectation
values NJ(χ) were discussed in Chapter 3: since for a single mode
V(χ) = vJ NJ(χ), we already have the explicit expressions for the two
approaches in (132) and (154). The definitions of βJ

±, on the other
hand, deserve some further elucidation, which we provide below.

4.2 defining β J
± : the trisohedral tetrahedron

Unlike for quantities such as areas and volumes, there is no funda-
mental operator in LQG corresponding to Misner variables β±. Our
task is therefore to give a proposal for βJ

± as functions of such more
fundamental geometrical quantities, defined at the level of each tetra-
hedron. Areas and volume, in turn, are determined by the spins jI

and intertwiner ı, as depicted in Figure 7 and mentioned in the spinRecall that for a
given set of spins
one has multiple

intertwiners ıκ

labelled by κ (cf. (58)
and (44)); the choice

of the specific
intertwiner is

discussed in the
following.

network overview of Section 2.2.4 (we will provide a more detailed
exposition in Section 4.2.1). We think of the fundamental tetrahedra
as embedded into a manifold with Bianchi I metric, and reconstruct
parts of that metric from geometric quantities of a tetrahedron, as
originally proposed for GFT in [183]. There is clearly some ambi-
guity in any such procedure, given that the required embedding is
not part of the GFT formalism but additional input. Our proposal
is a relatively direct extension of previous work in GFT cosmology:

3 Given that these eigenvalues can only be computed numerically there is little or no
hope to be able to solve the sums (161) in a closed form. We will have to truncate
them and make some suitable choices for the modes.
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we follow the idea [305, 306] that equal spins for a four-valent node
(i.e., jI = (j, j, j, j)) capture a discrete notion of isotropy; hence such
a configuration should correspond to β± = 0. Departures from this
microscopic notion of isotropy are, in a sense, assumed to add up
coherently to a macroscopic definition of anisotropy.

For any excitation associated to J (cf. (59)), the spins jI determine
the areas of faces of a tetrahedron (see Figure 7); more precisely, the
eigenvalues of the area operator ÂI associated to the I-th face of a
quantum tetrahedron are given by formula (34), i.e., l2

0

√
jI(jI + 1).

However, these areas are not sufficient to determine the shape of a
tetrahedron; there is a two-sphere’s worth of different tetrahedra with
given face areas [69], so additional assumptions are needed to iden-
tify a given quantum state with a configuration of a classical tetrahe-
dron. The idea of [305, 306] is that for equal spins we should choose
a regular tetrahedron, whose edges are all of equal length. To jus- A regular

tetrahedron is the
simplest platonic
solid; it is specified
by a single number
(e.g., edge length,
height, distance
between opposite
edges) and has fixed
dihedral angles
between its
congruent faces.

tify this assumption one fixes the intertwiner (implicitly appearing in
the multi-index J, cf. (59)) to maximise the volume eigenvalue, as this
would represent a situation which goes as close as possible to the clas-
sical picture. More generally, we decide to focus on orthocentric [169]
simplices (discussed in some detail in Section 4.2.1). Importantly, or-
thocentric tetrahedra maximise the volume for given face areas, and
the regular tetrahedron is a particular example of orthocentric tetra-
hedra. This motivates us to always choose the largest allowed volume
eigenvalue for given face areas, and hence spins jI ; we will then inter-
pret our states as orthocentric tetrahedra. For a few specific shapes,
we explicitly show in Section 4.2.1 that the largest volume eigenvalue
for a given mode is indeed the closest one to the classical volume of
an orthocentric tetrahedron for the same face areas. In this sense, a
choice for the intertwiner is dictated by the comparison that we make
between GFT models and classical geometry.

The sum over J = (jI , mI , κ) in (160) and (161) then reduces to
spins jI and magnetic indices mI only, since for each choice of spins
the intertwiner ıκ (cf. (58)) is already fixed in all the sums from now
on. Symbolically, we are left with

∑
J
= ∑

jI

∑
mI

∑
κ

⇒ ∑
jI

∑
mI

, (162)

since we always use the largest volume eigenvalues in such sums.
Note that we still need to make sure that each combination of jI in-
cluded in the sum allows for a nonvanishing intertwiner.
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A very minimal requirement for our definition of βJ
± (now implic-

itly associated to the intertwiner fixed by the jI) is that it should van-
ish for jI = (j, j, j, j), but be nonzero if at least one of the four spins
differs from the others. The simplest “non-isotropic” (but still ortho-
centric) building block one can think of is a tetrahedron we will refer
to as trisohedral. As one can see in Figure 9, this too is a quite partic-
ular shape, with three isosceles triangles (called “sides” with area A)
and an equilateral one (called “base” of the tetrahedron, with area B).

χ

A

B

ja

jb

ja

ja

Figure 9: The trisohedral tetrahedron has two types of areas, edges, or di-
hedral angles (between sides and between a side and the base), et
cetera. It generalises the regular tetrahedron, still remaining rather
specific. We propose to associate a notion of anisotropy to such a
non-equilateral shape.

Following the analogy from before, we then make the assumption
that such a tetrahedron is represented by modes of the form

jI = (ja, ja, ja, jb) , (163)

where the spin ja is associated with the area of the sides and jb
with the base (cf. (34)). Again, this assumption is partially justified
by choosing an intertwiner that maximises the volume eigenvalue. It
should be clear, however, that for given face areas this volume eigen-
value will not exactly match the classical volume of a trisohedral tetra-
hedron. We again refer to [69] and Section 4.2.1 for more discussion
of this in the context of LQG.

In order to specify the numbers βJ
± = β

(ja,ja,ja,jb)
± ≡ β

ja,jb
± , we now

think of the trisohedral tetrahedron of Figure 9 as embedded in a
locally rotationally symmetric (LRS) Bianchi I spatial slice. This is a
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Bianchi I geometry with only one preferred direction in which the
expansion (or contraction) differs from the other two directions. The
(spatial) line element follows from (418) and (419),

dl2 = a2
1(dx2 + dy2) + a2

2dz2

= V2/3e2β+(dx2 + dy2) + V2/3e−4β+dz2 .
(164)

Because of the symmetry of our building block, the model only needs
two different scale factors, so we have set β− = 0. Now consider a
tetrahedron embedded in such a space, with one of its triangles lying
on the x − y plane. The tetrahedron is chosen such that it would be
regular with respect to the background “fiducial" coordinates x, y and
z; but its physical geometry depends on the dynamical variables.4 In
particular, the areas of the equilateral base and the isosceles sides are

B =
3 6
√

3
2

e2β+V2/3 ,

A =
6
√

3
2

e2β+

√
1 + 8e−6β+V2/3 .

(165)

We identify B and A with the area eigenvalues associated to the spins
jb and ja (see Figure 9). We then see that a configuration in which
B and A are different would be interpreted as anisotropy (β+ ̸= 0)
whereas B = A corresponds to β+ = 0, as anticipated.

Inverting either one of equations (165), one can express the anisotropy
parameter as a function of face areas and volume, and define this to
be the “anisotropy” associated to the tetrahedron. In the quantum
theory, A, B and V are represented as eigenvalues determined by the
spins (the volume eigenvalue also depends on the intertwiner, but we
have fixed this as discussed above). This then leads us to possible pro-
posals for how to define β

ja,jb
+ in (161). In order to compute these, we

now review the geometrical notions needed for explicit calculations.

4.2.1 Classical and quantum geometry of tetrahedra

In this section we give a brief overview of important aspects regard-
ing the geometry of tetrahedra, in particular recalling quantum prop-
erties coming from SU(2) recoupling theory and adopted in loop
quantum gravity. After a review part mainly focussing on the LQG

4 We fix the edge length l =
√

2 3
√

3 such that the physical volume of the tetrahedron
is equal to V in (164).
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volume eigenvalues, we conclude this section with the definition of
our new “local anisotropy parameters” β

ja,jb
+ ; these will then allow us

to continue the analysis of our anisotropic GFT model in later sec-
tions, where we will be studying its relational dynamics.

In general, the shape of a tetrahedron requires the knowledge of
six quantities to be determined unambiguously; if only the areas of
the four faces are known the space of possible configurations forms
a two-sphere [69]. However, there is a unique orthocentric tetrahedron
for given face areas, which is the one of maximal volume [169]. A
tetrahedron is orthocentric if and only if all three pairs of opposite
edges are perpendicular, or equivalently

e2
1 + e2

2 = e2
3 + e2

4 = e2
5 + e2

6 , (166)

where e1, . . . , e6 are the six edge lengths (such that e1 is opposite to e2,
and so on). For such 3-simplices, an analogue of Heron’s formula

16∆2 = (a + b + c)(a − b + c)(a + b − c)(−a + b + c) , (167)

which gives the area ∆ of a triangle given its sides (a, b and c), can
be derived. In the cases of interest for this chapter one finds that face
areas A or (A, B) and the volume V are related by

V2
reg =

8
27
√

3
A3 ,

V2
tri =

1
27
√

3
B(9A2 − B2) ,

(168)

for the regular and the trisohedral tetrahedron of Figure 9, respec-
tively. In the quantum theory, we take the analogue of an orthocentric
tetrahedron to be the SU(2) intertwiner with largest volume eigen-
value; we explain the concept of LQG volume eigenvalues in what
follows.

lqg volume eigenvalues . Following the terminology introduced
in Chapter 2, we focus on a single four-valent node, with spins la-
belling its links denoted by jI = (j1, j2, j3, j4) (see Figure 7). To each
representation jI , with I = 1, . . . , 4, we associate a (2jI + 1)-dimensional
vector space HjI that carries the action of the SU(2) generators J⃗I

(see (28) and discussion thereafter). The Hilbert space of the quan-
tum tetrahedron then reads H4 = Inv

[
Hj1 ⊗ . . . ⊗Hj4

]
, and objects

that live in this space are called intertwiners (cf. (30)). A nonvan-



4.2 defining β J
± : the trisohedral tetrahedron 95

ishing intertwiner can only exist if the jI sum to an integer. We in-
troduce a basis labelled by κ in the recoupling channel Hj1 ⊗ Hj2 ,
where the index κ ranges between κmin = max {|j1 − j2|, |j3 − j4|} and
κmax = min {j1 + j2, j3 + j4} in integer steps. The Hilbert space H4 is
d-dimensional with d = κmax − κmin + 1. States on this space can be
understood as describing quantum tetrahedra, as firstly pointed out
in [43, 51].

We refer to the literature (see, e.g., [125]) for the full derivations
of the geometrical eigenvalues in the context of LQG. Here we only

recall that the area operator takes the form Â = l2
0

√
J⃗ · J⃗, where l0 is a

fundamental quantum gravity length scale (usually taken to depend
on the Barbero–Immirzi parameter of LQG [50, 232]). States in H4 are
eigenstates of the operator ÂI , which measures the area of the I-th
face of the quantum tetrahedron, with eigenvalues l2

0

√
jI(jI + 1) (cf.

(34)). Moreover, the volume operator introduced for a tetrahedron in
LQG reads [32, 342]

V̂ =

√
2

3
l3
0

√
|ϵijk Ji

1 J j
2 Jk

3 | . (169)

We can focus on the radicand in (169). Without showing all the details
of the calculation (which can be found in [69, 94]), one defines the
operator Q̂ = J⃗1 · (⃗J2 × J⃗3) with matrix element Qκ,κ′ := ⟨κ|Q̂|κ′⟩,
where κ and κ′ label intertwiner states as explained above. One can
then show that nonvanishing matrix elements are obtained only if κ

and κ′ differ by 1. Thus one can denote aκ = iQκ,κ−1, so that

Q =


0 ia1 0 · · ·

−ia1 0 ia2

0 −ia2 0
...

. . .

 (170)

is a d× d matrix. With the above conventions, the matrix elements are
found to be [92, 93]

aκ =
1
4

√
(j1 + j2 + κ + 1)(−j1 + j2 + κ)(j1 − j2 + κ)(j1 + j2 − κ + 1)√

2κ + 1

×
√
(j3 + j4 + κ + 1)(−j3 + j4 + κ)(j3 − j4 + κ)(j3 + j4 − κ + 1)√

2κ − 1
.

(171)
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To obtain a compact expression, (171) can be cast in terms of Heron’s
formula (167) as

aκ =
4√

4κ2 − 1
∆
(

j1 +
1
2

, j2 +
1
2

, κ

)
∆
(

j3 +
1
2

, j4 +
1
2

, κ

)
. (172)

Hence, for given spins jI computing the spectrum of the volume
operator amounts to finding the d eigenvalues of (170) (let us denote
them qκ

jI
) and then computing, according to (169),The lighter notation

vJ , hiding all the
labels of vκ

jI
into the

multi-index J, is
adopted throughout
the document. The

only exception is
given by this section,
where all the details
are explicitly shown.

vκ
jI
=

√
2

3
l3
0

√
qκ

jI
. (173)

Note that if jI = (j, j, j, j) the matrix elements (172) simplify to

aj
κ =

(2jκ + κ)2 − κ4

4
√

4κ2 − 1
, (174)

while for jI = (ja, ja, ja, jb) (as in (163)) they read

aja,jb
κ =

√
(2jaκ + κ)2 − κ4

4
√

4κ2 − 1

×
√
(jb − ja + κ)(ja + jb − κ + 1)(ja − jb + κ)(ja + jb + κ + 1) .

(175)

These matrix elements can be used to find the maximal volume eigen-
values vmax

j and vmax
ja,jb

for the quantum shapes corresponding to regu-
lar and trisohedral tetrahedra, respectively; see Table 1 for examples.

For large spins, these volume eigenvalues show semiclassical be-
haviour (see, e.g., [67, 69, 94]), and so the “eigenvalue-counterparts”
(using (34)) of equations (168),

(vmax
j )2/l6

0 ≈ 8
27
√

3
[j(j + 1)]3/2 ,

(vmax
ja,jb )

2/l6
0 ≈ 1

27
√

3

√
jb(jb + 1) [9ja(ja + 1)− jb(jb + 1)] ,

(176)

become more accurate as the spins grow. Here vmax means that we fix
the intertwiner label κ so as to obtain the largest volume eigenvalue.

In Figure 10 and Figure 11 we show the possible volume eigen-
values vκ

j and vκ
ja,jb

in units of l3
0 (dots), compared with the maximal

classically allowed volume (curve and surface) for the same face areas
(given by l2

0

√
j(j + 1)). We also show how the relative difference be-

tween this classical volume (for orthocentric tetrahedra) and the high-
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est LQG volume eigenvalue decreases as the spins increase. Figure 10

focuses on the case of equal areas ja = jb, whereas Figure 11 shows
various other combinations of ja and jb. Notice that both the classical
and quantum volume of a tetrahedron are no longer well-defined for
jb > 3ja. In the quantum theory, this constraint comes about because In terms of

(classical) geometry
arguments, one
easily sees that the
trisohedral
tetrahedron of
Figure 9 cannot
exist if B > 3A.

the dimension d of the Hilbert space H4 needs to be positive. The
right panel of Figure 11 shows, as an illustrative example, the relative
distances between the maximum eigenvalues and the surface along
the plane ja = 2jb, but the qualitative behaviour is similar for other
ratios.

5 10 15 20 25
j
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20
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50

Vj/l0
3
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j
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Figure 10: Left: comparison between LQG volume eigenvalues vκ
j /l3

0 (every
dot for a given j corresponds to a different κ) and the classical vol-
ume of an equilateral tetrahedron as function of the area (curve).
Right: relative difference between the classical volume and largest
LQG eigenvalue. After two initial anomalies the mismatch de-
creases indefinitely: it becomes reasonably small (∼ 1%) when
j ∼ 40, and goes down to ∼ 0.1% when j ∼ 350.

Figure 11
generalises the
setting by depicting
the dependence on
two different spins
ja and jb; indeed, the
blue dots in the left
panel of Figure 11
give the left panel of
Figure 10.
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Figure 11: Left: comparison between some of the LQG volume eigenvalues
vκ

ja ,jb
/l3

0 (dots) and the classical volume of a trisohedral tetrahe-
dron (transparent surface) as function of the two areas. We plot
eigenvalues along specific planes for which ja = jb (blue), ja = 2jb
(orange), ja = 5jb (green), 2ja = jb (red) and 3ja = jb (grey). The
latter gives vanishing eigenvalues only and represents the limit-
ing case as there are no tetrahedra (no nonzero intertwiners) for
3ja < jb. Right: relative discrepancy along the plane ja = 2jb.
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anisotropies . We now finally turn to the question of how to de-
fine a notion of anisotropy at the level of quantum geometry, in terms
of a function βJ

+ = β
ja,jb
+ for our trisohedral building blocks. While

such a definition is not unique, we will identify the best candidate to
play such a role.

Starting from (165), there are three ways to classically define the
anisotropy of a tetrahedron in terms of two other geometric quanti-
ties: by inverting any one of (165) or combining them, one can obtain
classical expressions such as β+(V, B), β+(V, A) or β+(A, B). Once
we pick a favoured definition, the strategy is to replace classical ex-
pressions by LQG eigenvalues to obtain an effective (discrete) notion
of anisotropy as a function of the spins associated to the faces of a
tetrahedron.

For instance, inverting the first equation in (165), one can readily
obtain

β+(V, B) =
1
2

log
(

2
3 6
√

3
B

V2/3

)
, (177)

and replace the classical area B with l2
0

√
jb(jb + 1) and the classical

volume with the maximal eigenvalue vmax
ja,jb

to get

β
ja,jb
+ =

1
2

log

(
2

3 6
√

3

l2
0

√
jb(jb + 1)

(vmax
ja,jb

)2/3

)
. (178)

Notice that by definition β
ja,jb
+ > 0 when ja < jb (naively, for volumes

smaller than the equilateral ones). (178) could be used as a definition,
but we can identify a number of issues. First, it cannot be written
more explicitly, since the volume eigenvalue vmax

ja,jb
is only obtained

numerically, as outlined above. Moreover, (178) is not well-defined
when the volume is exactly zero, and it is nonvanishing when ja = jb.

The same arguments would apply if we defined the anisotropy
starting from the second relation in (165). In this case we would obtain
an even more cumbersome expression β+(V, A), which could then be
turned into a β

ja,jb
+ as a function of ja, jb and volume eigenvalues vκ

ja,jb
.

A third definition is obtained by taking the ratio of equations (165).
The advantage of this choice is that one can get rid of the volume:

A
B

=
1
3

√
1 + 8e−6β+ . (179)
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We can now rearrange to obtain a simpler definition of the anisotropy
parameter as a function of A and B, which straightforwardly turn
into the spins ja and jb. Indeed, starting from

β+(A, B) = −1
6

ln
(

9A2 − B2

8B2

)
, (180)

our candidate reads

β
ja,jb
+ := −1

6
ln
(

9ja(ja + 1)− jb(jb + 1)
8jb(jb + 1)

)
. (181)

This definition again (conventionally) gives a negative value for ja >

jb, and crucially it also gives β
ja,jb
+ = 0 for “isotropic” configurations,

as we would like to demand. Moreover, it is always finite and well-
defined regardless of the volume eigenvalue associated to the same
pair (ja, jb).

Table 1 shows the maximum volume eigenvalues (cf. (173)), ex-
pressed in units of l3

0 , and the corresponding (dimensionless) anisotropies
(181) for given spins jI = (ja, ja, ja, jb). Even though we may use
larger spins in some of our calculations, we only give values up to
ja = jb = 7/2.

ja jb vmax
ja,jb

β
ja,jb
+

1/2 1/2 0.310 0

1/2 3/2 0 0.384

1 1 0.620 0

1 2 0.620 0.231

1 3 0 0.462

3/2 1/2 0.620 -0.284

3/2 3/2 0.993 0

3/2 5/2 1.075 0.172

3/2 7/2 0.931 0.324

2 1 1.075 -0.196

2 2 1.425 0

2 3 1.560 0.138

ja jb vmax
ja,jb

β
ja,jb
+

5/2 1/2 0.931 -0.427

5/2 3/2 1.560 -0.153

5/2 5/2 1.910 0

5/2 7/2 2.086 0.116

3 1 1.520 -0.315

3 2 2.086 -0.126

3 3 2.444 0

7/2 1/2 1.241 -0.526

7/2 3/2 2.111 -0.254

7/2 5/2 2.653 -0.107

7/2 7/2 3.022 0

. . .

Table 1: Maximal volume eigenvalues and anisotropy parameters for a range
of spins.

Even though we consider the definition (181) to be well-motivated
for GFT cosmology, the ambiguity we have highlighted here intro-
duces, at least in principle, an additional uncertainty into the cosmo-
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logical interpretation of GFT models. To quantify this uncertainty we
can compare the various definitions we have discussed. To do this
we plot in Figure 12 two-dimensional slices of the anisotropy depen-
dence on the spins ja and jb, first for constant jb = 1

2 and along the
plane ja = 2jb.

2 4 6 8 10 12 14
jb=1/2

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

β+
ja,jb

2 4 6 8 10 12 14
ja=2jb

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

β+
ja,jb

Figure 12: Left: For constant jb, we see that the discrepancy between the
three β

ja ,jb
+ definitions is larger away from ja = jb. Right: Choosing

ja = 2jb shows how the three definitions agree more and more for
increasing spin.

To summarise, we have compared different definitions for β
ja,jb
+ de-

rived from (165), with the aim to obtain an effective local anisotropy
associated to the mode (163) of the quantum tetrahedron of Figure 9.
These definitions do not agree in general: this is because we fixed the
volume of the tetrahedron to match with the quantity V in the met-
ric assuming that we have an orthocentric tetrahedron, and there is
no quantum eigenvalue satisfying exactly the same relations between
volume and areas. Only one definition is simple and satisfies our de-
sired property β

(j,j,j,j)
+ = 0; this is given by (181). If we assume j ≥ 1

2 ,
the expression for β

ja,jb
+ in (181) is always finite and well-defined, re-

gardless of the volume eigenvalue for the given mode (as opposed to
the other definitions) which may vanish for some spin configurations.
For instance, v(1,1,1,3) = 0.

With this definition, we are finally in a position to evaluate (161).
We now focus on the initial conditions needed for tackling the sums.

4.3 initial conditions

Independently of the approach one follows, the kinetic term (80) is
characterised by the coupling (99), which for a mode specified by
(163) reads

ω2
J = m2 − M2

(
3ja(ja + 1) + jb(jb + 1)

)
. (182)
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Since we would like to include a number of Peter–Weyl modes in
(161) for which ω2

J > 0, the coupling M needs to be small relative to
the “mass” m. For any given ratio M/m there will be maximum spins
after which (182) becomes negative; for instance, choosing M/m = 0.1
means that 3ja(ja + 1) + jb(jb + 1) < 100 for ω2

J > 0. In the numerical
analysis below, we will assume M/m = 0.1.

Given that we are not interested in the bounce or the connection
between the contracting and expanding phases, we will be looking
at χ-symmetric solutions, for which the minimum of the volume is
at χ = 0. Thus, in the general expressions of Section 3.3, we set
AJ = BJ =: αJ in the algebraic approach (specifically in (128) and Recall that A = AJ

and B = BJ in
σJ(χ) depend on J;
this index was
dropped in
Section 3.3.1 since
we were working
with a single mode.
Similar remarks hold
for the operator
Ĉ = ĈJ (150) of the
deparametrised
approach of
Section 3.3.2.

(132)) and ĈJ(0) = 0 in the deparametrised formulation (cf. (154)).
The expectation values for single-mode number operators then be-
come

Nalg
J (χ) = |σJ(χ)|2

= 2|αJ |2 (1 + cosh(2ωJχ)) = 4|αJ |2 cosh2 (ωJχ) ,
(183)

for the algebraic scheme with a mean-field approximation, and

Ndep
J (χ) = −1

2
+

(
Ndep

J (0) +
1
2

)
cosh(2ωJχ) , (184)

for the deparametrised approach. In (183), αJ is related to the num-
ber of quanta at χ = 0 as Nalg

J (0) = 4|αJ |2. In the deparametrised

approach, we then fix Ndep
J (0) = 4|αJ |2 so that the initial conditions

are the same for both methods.
We then need to fix the range of the sums in (162). We are inter-

ested in modes of the form (163), specified by two spins ja and jb. In
principle, the sums over ja and jb run from 1

2 to ∞; but in practice,
they have to be truncated because the eigenvalues are only computed
numerically. Furthermore, not all combinations are allowed by SU(2)
recoupling theory, as not all of them allow for a nonvanishing inter-
twiner. Moreover, modes corresponding to zero volume are not re-
ally physically interesting and would not allow for a useful notion of
anisotropy. In principle, all these considerations are to be taken into
account. We will simplify these issues greatly by only keeping a few
modes.

We also need to sum over magnetic indices mI (cf. (162)). None of
the geometric observables we are considering depend on mI , so the
mI index corresponds to a degeneracy factor for physically indistin-
guishable modes. Given this, we will assume that the initial condition
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parameters NJ(0) = NjI ,mI (0) = NjI (0) do not depend on mI (i.e., the
coefficients αJ = αjI ,mI = αjI in (183) and (184) only depend on the
spins). The sums over mI then just return additional multiplicative
factors,Recall (cf. (29)) that

m ∈ [−j, j] is the
familiar magnetic

index of SU(2)
recoupling theory.

∑
jI

∑
ma

∑
ma

∑
ma

∑
mb

= ∑
(ja,jb)

(2ja + 1)3(2jb + 1) . (185)

We then still need to truncate these sums to a few chosen values for
ja and jb. One motivation for keeping only a small number of modes
(but more than one) is the increasing arbitrariness coming from the
need to specify initial conditions for each additional mode. This ques-
tion of dependence on initial conditions generally affects cosmologi-
cal models derived from fundamental quantum gravity, which tend
to depend on some specific choice of (class of) initial states (see, e.g.,
[9–11, 120] for models from LQG).

There is then a choice of which modes to include, in particular
whether ja and jb should be large or small. Here two main factors
may come into play. At the kinematical level, the quantum properties
of tetrahedra show semiclassical geometrical features for large spins
[67, 69, 94]; large spins allow for more possible discrete (quantum)
states, so that classical concepts such as orthocentric tetrahedra can
be approximated closely. Indeed, the largest volume eigenvalues we
choose are always smaller than the volume of the corresponding or-
thocentric tetrahedron, but the relative difference decreases as the
spins grow (we have seen this feature in Section 4.2.1 for two specific
examples). This would suggest keeping modes associated to large val-
ues of (ja, jb), since the geometric picture of orthocentric tetrahedra
would be closer to the volume eigenvalues used.

On the other hand, we know that for the type of GFT dynamics
considered here (namely based on the free theory with kinetic term
(80)), the lowest spins will dominate the sum eventually [176], and
larger spins give less important contributions to the dynamics at late
times (see comments below (99) and at the end of Section 3.2.2). This
is why in previous work the sum was often trivialised to only the
smallest spins, or to a few values. This truncation is analogous to
loop quantum cosmology where the spins are usually all fixed to be
j = 1

2 (but see [61] for an attempt at generalisation). Therefore, even
though using large spins might make sense kinematically, when we
include the dynamics we see that larger spins will quickly become
insignificant for the evolution of the cosmological model. Finally, on
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general grounds one would expect that, for any fundamentally dis-
crete (simplicial) approach to quantum gravity, a useful continuum
limit is obtained for large simplicial complexes made of little sim-
plices, rather than by magnified semiclassical building blocks.5 Thus,
we will only consider a few relatively small spins.

We now need to specify initial conditions given by the initial num-
ber of quanta NjI (0) = Nja,jb(0), which we then use for both the al-
gebraic and deparametrised approaches. These initial conditions are
of course in general arbitrary, but for concreteness we assume they
follow a Gaussian distribution

Nja,jb(0) = N exp

(
−(ja − ja)2 − (jb − jb)2

σ2

)
, (186)

where we set Nja,jb = 0 for modes with vanishing volume. For contin-
uous parameters, such distributions allow for analytical integrations,
as we will show in a toy model in Section 4.5. Here the spins are
discrete, so we are considering a “discrete Gaussian distribution”, as-
suming that the initial configuration is dominated by values around
(ja, jb). By setting these away from ja = jb = 1

2 , we will see some initial
(anisotropic) contribution coming from larger spins, before the low-
est ones take over dynamically. Moreover, given that we effectively
set to zero all terms after an arbitrary spin, it is reasonable to choose
initial quanta having occupancy numbers that gradually go to zero, as
modes approach the last one. This motivates using a Gaussian also in
the discrete case. The initial conditions (186) are then determined by
the peaks (ja, jb), standard deviation σ and normalisation factor N .

4.4 three modes with fixed base

We now focus on a simple model in which we assume the spin as-
sociated to the base of the tetrahedron to be fixed to its minimum
value jb = 1

2 . We keep three modes associated to the lowest (allowed)
spin values for the sides of the tetrahedron, ja = { 1

2 , 3
2 , 5

2}. This is a
simple generalisation of the single-mode case reviewed in Section 3.3,
since we consider two modes which encode anisotropy (as defined in
Section 4.2) and one associated with equilateral tetrahedra (see Fig-
ure 13).

5 This resonates with the analysis of the semiclassical regime of spin foams mentioned
at the end of Section 2.2.4, where recent work aims to include more refined triangu-
lations (i.e., more vertices) other than studying large spin asymptotics [18, 143, 217].
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ja = 1
2 ja = 3

2 ja = 5
2

Figure 13: Three modes represent tetrahedra with the same base jb = 1
2 and

three different area values for the sides. Note that the first mode
corresponds to the regular tetrahedron.

Denoting the eigenvalues vJ = vja,jb and the parameters βJ
+ = β

ja,jb
+ ,

and noticing that (2jb + 1) = 2 in this case, we truncate (160) and
(161) after the first three contributions obtaining

V(χ) = 2
(

23 v 1
2 , 1

2
N1

2 , 1
2
(χ) + 43 v 3

2 , 1
2
N3

2 , 1
2
(χ) + 63 v 5

2 , 1
2
N5

2 , 1
2
(χ)
)

, (187)

and

β+(χ) =
2

N(χ)

(
��������
23 β

1
2 , 1

2
+ N1

2 , 1
2
(χ) + 43 β

3
2 , 1

2
+ N3

2 , 1
2
(χ) + 63 β

5
2 , 1

2
+ N5

2 , 1
2
(χ)

)
,

(188)

where N(χ) = 2 ∑5/2
ja=1/2(2ja + 1)3Nja, 1

2
(χ). Since β

1
2 , 1

2
+ = 0, the first

term in (188) is zero. The other values of vja,jb and β
ja,jb
+ can be found

in Table 1.
Our initial condition function (186) now only depends on ja. We

fix the peak to be at ja = 3
2 ; σ is chosen to be around 1 so that the

initial distribution is peaked at ja = 3
2 but also includes some quanta

in the other modes. N is fixed by the requirement that the initial
state should be reasonably semiclassical; given that we only focus on
expectation values of operators, quantum fluctuations should not be
too large (see [184] for a detailed analysis of relative fluctuations).
As these fluctuations decrease with N ≫ 1 (this is a generally ex-
pected behaviour also found, e.g., in [273]), we demand that initially
all modes have an expected particle number of at least 25. Figure 14

shows different σ choices according to these criteria.
In Figure 15, we plot the effective Friedmann equation [V ′(χ)/V(χ)]2

and the anisotropy evolution β+(χ) stemming from (187) and (188).
We compare the effective Friedmann equation with the classical (re-
lational) Bianchi dynamics reviewed in Appendix A (namely, solu-
tions of (426) and (431)), where we set β− = 0 because of the local
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Figure 14: Initial conditions Nja , 1
2
(0) for different standard deviations, σ =

3
2 , 1 , 2

3 . N is chosen such that the number of quanta at χ = 0 for
the first and third mode is 25.

rotational symmetry of our GFT model. While the Bianchi I model
is a natural comparison, we also compare with Bianchi II as this is Note that we will

not discuss in detail
how the the
geometry of the GFT
modes (163) relates
to the Bianchi II
metric; we only
show in Figure 15 a
qualitative contrast
with the Bianchi II
model for broader
comparison.

a less simple classical anisotropic cosmology, which deviates from
Bianchi I only at late times (which is what the GFT description of the
anisotropy does too, albeit in a different way). The other free parame-
ters of the classical plots are fixed as follows: Newton’s constant G is
determined by demanding that at late times we follow the isotropic
solution [V ′(χ)/V(χ)]2 = 12πG; the slope dβ+/dχ is obtained from
a linear fit of the initial part of the GFT anisotropy dynamics.

Figure 15: Effective Friedmann equation [V′(χ)/V(χ)]2 and evolution of
anisotropy β+(χ). GFT couplings are set to m = 1, M = 0.1, while
the Gaussian parameters are fixed as in Figure 14 with σ = 1. Dif-
ferent parameter choices do not change the qualitative behaviour
of these plots.

The value of pχ could, in principle, be fixed from the fundamen-
tal GFT model by using the quantity playing the role of a conjugate
momentum of the scalar χ. In the algebraic approach one identifies

pχ = ∑
J

ωJQJ , (189)

as discussed below (134) (with QJ = 2Im(AJ B̄J) given in (133) but
here generalising the expressions to the case of multiple Peter–Weyl
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modes). For our states with AJ = BJ , the quantities QJ are actually
zero, but one could introduce an arbitrary phase into AJ or BJ to ob-
tain a nonvanishing pχ. In the deparametrised formulation, the con-
jugate momentum of χ is given by the (relational) Hamiltonian

pχ = ∑
J
⟨ĤJ⟩ , (190)

as explained below (157) (again here for multiple modes); (190) could
then also be evaluated using coherent states. In either case, these ex-
pressions yield a relatively small pχ and the Bianchi II curve in the
plots would deviate from the linear Bianchi I behaviour very quickly,
which is not what we see in the GFT model. In an attempt at obtain-
ing a better fit, in Figure 15 we fix pχ by assuming that the non-linear
behaviour of Bianchi II appears roughly when the function β+(χ) in
GFT ceases to be linear.

Notice that the constant dashed red curve in the left panel rep-
resents Bianchi I but is indistinguishable from the asymptotic FLRW
limit because the classical anisotropy backreaction (cf. (426)) would be
very small: it scales as (dβ+/dχ)2 ∼ 4 × 10−5 if we take dβ+/dχ as
the slope of the initially linear part of the GFT expression for β+(χ).

Figure 15 shows the dynamical “isotropisation” already mentioned
in the literature [321]. As discussed below (99) and (123) for the two
approaches of (3.3), this late-time limit is inevitable given that, for
a model involving multiple Peter–Weyl modes, the mode with the
largest value that ωJ can take will end up dominating the dynamics
[176]. In our case this is achieved by the smallest spins ja = jb = 1

2 ;
this mode dominates at some point and will then dominate indefi-
nitely (see Figure 16). When this happens, the effective Friedmann
equation reaches a constant plateau (described by the first term in
(187)) while the anisotropy gradually converges to zero (the crossed-
out term in (188) now dominates the average). The constant value
taken by (V ′/V)2 in this asymptotic limit is then the one we would
have obtained for a single-mode model corresponding to the FLRW
Universe. In the left panel of Figure 15 we label this constant value
as “FLRW/Bianchi I” since, as we explained, the difference between
FLRW and Bianchi I is too small to be noticeable in the plot.

The period before the asymptotic isotropisation (but after the bounce)
can be compared with the classical Bianchi I model. In the left panel
of Figure 15 we see that the GFT curve does not show a constant
[V ′(χ)/V(χ)]2 (with value higher than the asymptotic FLRW value),
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Figure 16: As time elapses, the peak moves towards the smallest spin until
the mode with ja = jb = 1

2 dominates forever. Soon after χ ∼ 40
the anisotropic contributions will become insignificant.

as the classical dynamics (426) would suggest. Instead, the green line
shows the transition between different modes, which will eventually
stop when the last mode takes over and dominates. This behaviour
can be made more or less evident by changing the standard deviation
σ in (186). We will see an example with a manifest transition between
modes later on.

In the right panel of Figure 15 we see that β(χ), on the other hand,
shows a much better agreement with classical (relational) cosmology.
The anisotropy is approximately linear for a reasonably long time
after the bounce, as would be expected from general relativity. Be-
cause of the tendency to isotropise, this agreement will obviously
stop at some point as the anisotropy will approach zero; but before
that point, β(χ) compares well with a classical Bianchi I model. It
is worth reiterating here that in this construction we are ignoring
GFT interactions (cf. Section 3.3), which become important when χ

becomes sufficiently large.6 Hence these plots are not to be trusted
for too late times, when the weak-coupling assumption breaks down.
In particular, we might never reach isotropisation but simply remain
in a phase where β(χ) is approximatively linear, before interactions
take over and change the picture completely.

Regardless of when β+(χ) ceases to be linear, it is always mono-
tonic; so in principle, as in classical cosmology, it could be used
as a relational clock for GFT cosmology instead of the ad hoc intro-
duced scalar field χ. Adding matter arbitrarily is often seen as an in-
escapable necessity plaguing any cosmological model coming from a
background-independent quantum gravity theory, given the absence
of (time) coordinates. In contrast, this model contains a gravitational
degree of freedom which could potentially be used as relational time,
and perhaps help addressing issues such as the problem of time or

6 When the total particle number is large, one expects correlations between the GFT
quanta to be non-negligible. N(χ) grows quickly; with our choice of parameters,
N(5) ∼ 107, N(25) ∼ 1024 and N(50) ∼ 1045.
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clock dependence in quantum cosmology (for more on this see, e.g.,
[272] and Chapter 6).

approach independence . So far, we have completely glossed
over the question whether the time evolution of the particle number
in each mode follows (183) in the algebraic approach, or (184) in the
deparametrised approach. It turns out that, as one might have ex-
pected, the two approaches give identical results after a very short
initial phase directly after the bounce, see Figure 17.
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V ′(χ)2

V(χ)2

1 2 3 4 5
χ
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-0.34

-0.33

-0.32

β+(χ)

Figure 17: Effective Friedmann equation and anisotropy dynamics at high
energies directly after the bounce, for both approaches and with
the same parameters (fixed as in Figure 15).

The discrepancy between the two approaches can be traced back
to the different effective Friedmann equations for a single mode, as
discussed in Section 3.3 (see (134) and (156)). After the 1/V(χ)2 con-
tribution dominates (giving rise to the bounce), but before the con-
stant term of the Friedmann equation takes over, there is a difference
in the 1/V(χ) term which in the algebraic approach depends on the
arbitrary “GFT energy” EJ of (133) (which happens to be negative for
(186) and our choice of parameters), whereas in the deparametrised
approach it is fixed and positive. The plot for β+(χ) also shows a
minor difference between the two approaches. Changing initial con-
ditions changes the details of these differences, but the underlying
features are always the same; and given that we are interested in
comparing later times (larger volumes) with classical models, these
differences do not play a role in our analysis. Already for these small
values of χ we observe an almost-constant [V ′(χ)/V(χ)]2 and quasi-
linear β+(χ).
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4.5 mean-field continuous toy model

As discussed, the general expressions (160) and (161) must be eval-
uated numerically, even in simple cases such as the model of Sec-
tion 4.4. In order to obtain some analytical result, one can consider
toy models which allow explicit solution due to some simplifying
assumptions. The model presented in this section uses the solutions
in the mean-field approximation of the algebraic approach (183), but
drops the assumption of discrete spins jI .

Recall that the classical relations (165) relate the two types of area
(for the base B and the sides A of the trisohedral tetrahedron) with
the volume and the anisotropy parameter,

B = B(V, β+) ,

A = A(V, β+) .
(191)

Hence, at the classical level, the pair (V, β+) is in one-to-one corre-
spondence with the face areas (A, B); it would be easier to take these
variables as the basic characterisation of a tetrahedron, expressing A
and B as functions of them. We will do this here, and forget about the
fact that in LQG (and GFT) the fundamental variables are discrete
areas.

If we focus on V and β+, we can make another simplifying assump-
tion: we assume that the volume per tetrahedron is simply fixed to
be V = V0, and that only β+ varies continuously. We follow the pic-
ture coming from single-mode truncations of GFT that the evolution
of the total volume comes only from adding or removing building
blocks, rather than changing their “size”; but we still have a range
of different “shapes”. This avoids the previously inevitable mixing of
effects coming from modes with both different volume eigenvalues
and different values of β+.

We want to work with the same GFT kinetic term, i.e., the same
expression (182) for the effective couplings for each mode. But given
that we no longer have discrete spins, we need to rewrite this ex-
pression using V and β+. We will do this by using the LQG relation
A2

I = l4
0 jI(jI + 1) for area eigenvalues (cf. (34)) and the classical rela-
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tions (165). We can then write down a relation between the discrete
and toy models for modes of the form (163),

3ja(ja + 1) + jb(jb + 1) =̇
3A2 + B2

l4
0

=
(3V0)4/3

l4
0

(
e4β+ + 2e−2β+

)
.

(192)

The symbol =̇ means that we are equating quantum eigenvalues with
classical quantities using the LQG interpretation given to the spins.
This relation is then substituted into the time-dependent expression
of the average particle number (183), with initial conditions fixed by
a suitable choice of αJ which we again take to be a Gaussian, αβ+ =What used to be

called αJ in (183)
now gets renamed

αβ+
as there are no
spins here, and

anisotropy is
encoded directly in
the continuous β+

variable.

exp{−(β+ − β+)2/(2σ2)}. Given that we do not have discrete modes,
we do not have to worry about a specific normalisation factor. This is
now a continuous normal distribution, the analogue of (186).

The “toy model counterparts" of (160) and (161) then read

V(χ) = V0

∫
dβ+ α2

β+
cosh2(wβ+χ) , (193)

and

β+(χ) =
V0

V(χ)

∫
dβ+ β+α2

β+
cosh2(wβ+χ) , (194)

where we defined the continuous analogue of (182) (via (192)),

w2
β+

= m2 − M2
(

3V0

l3
0

)4/3 (
e4β+ + 2e−2β+

)
. (195)

Numerical evaluation of [V ′(χ)/V(χ)]2 and β+(χ) shows qualita-
tively similar behaviour to the plots in Figure 15 derived in the pre-
vious three-mode model; see Figure 18 for an example. Again we see
an asymptotic “isotropisation” leading to the effective FLRW limit at
late times, and an approximately linear evolution for the parameter
β+. We can now also strengthen these results by analytical approxi-
mations.

In order to find analytical solutions to the integrals (193) and (194)
we assume small anisotropy, i.e., a Gaussian distribution with β+ ≪ 1.
This justifies approximating the cosh function under the integral up
to second order in β+,

cosh2(wβ+χ) ≈ cosh2(w0χ)− 6β2
+

M2(3V0/l3
0)

4/3 sinh(2w0χ)

w0
χ , (196)
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Figure 18: The effective Friedmann equation (V′/V)2 quickly becomes con-
stant in the analytical approximation and grows slowly in the
numerics, but always gives values lower than the isotropic FLRW
case (orange line). The right panel shows that the anisotropy is
well approximated by the linear behaviour seen in general rela-
tivity. The late-time limit shows isotropisation: (V′/V)2 tends to
the orange constant and β+(χ) goes to zero. Here we fixed m = 1,
M = 0.1, V0/l3

0 = 1, β+ = −0.1616 and σ = 0.15.

where w0 =
√

m2 − 3M2(3V0/l3
0)

4/3. This approximation leads to in-
tegrals over β+ that can be done immediately, and relatively simple
expressions such as

V(χ) ≈
√

π V0 σ

(
cosh2(w0χ)− 3M2(3V0/l3

0)
4/3(2β+ + σ2) χ sinh(2w0χ)

w0

)
.

(197)

To simplify these further we then use the fact that M/m is small (see
discussion below (182)) and expand β+(χ) and [V ′(χ)/V(χ)]2 up to
second order in M/m. This yields a simple analytical expression for
the anisotropy, The tanh function

quickly approaches 1
as χ elapses.

β+(χ) ≈ β+ − 12M2(3V0/l3
0)

4/3
β+σ2

m
χ tanh(mχ) , (198)

and the effective Friedmann equation(
V ′(χ)

V(χ)

)2

≈ 4m2 tanh2(mχ)

− 6M2(3V0/l3
0)

4/3
(

4β+
2
+ 2σ2 + 1

)
F (mχ) ,

(199)

where F (mχ) = sech2(mχ) (2mχ + sinh(2mχ)) tanh(mχ). We can see
that the anisotropy (198) is essentially a linear function of χ very soon
after the bounce, with a slope dependent on parameters of our Gaus-
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sian such as β+ and σ. Moreover, noticing that F (mχ)
|χ|→∞→ 2, we also

obtain a constant late-time limit for the effective Friedmann equation,

(
V ′(χ)

V(χ)

)2 |χ|→∞∼ 4
[
m2 − 3M2(3V0/l3

0)
4/3
(

4β+
2
+ 2σ2 + 1

)]
. (200)

By comparing with exact numerical results we can see that these ap-
proximations cannot be trusted for too large χ, see Figure 18.

In the limit in which we “switch off” anisotropic contributions,
β+ → 0 and σ → 0, (198) vanishes and in (200) we have (V ′/V)2 →
4m2 − 12M2(3V0/l3

0)
4/3 = 4w0, which is nothing but the orange line

in Figure 18. In (192) this corresponds to 4j(j + 1) =̇ 3(3V0/l3
0)

4/3

when the spins are all equal.
As a final comment, recall that in the classical Bianchi I model

the Friedmann equation gets a constant contribution (dβ+/dχ)2 com-
pared to the FLRW Universe (see Appendix A). We can ask whether
the terms in (200) that depend on β+ and σ are related to the deriva-
tive of (198). But we see that

(
dβ+

dχ

)2 |χ|→∞∼ 144M4(3V0/l3
0)

8/3β+
2
σ4

m2

̸= −4
3

M2 (3V0/l3
0)

4/3
(

4β+
2
+ 2σ2

)
.

(201)

As already noticed in the full GFT model of the previous section,
contrary to what happens in general relativity, in our toy model the
presence of anisotropy decreases (V ′/V)2. The two quantities we are
comparing also are of different orders of magnitude, in particular
different powers of the small ratio M/m.

Overall, our toy model could reproduce the main qualitative fea-
tures seen in the full GFT analysis, in particular a nearly linear growth
in the anisotropy for a range of χ and a negative contribution to the
effective Friedmann equation.

4.6 including more modes into gft models

We now return to the discrete setting of full GFT, presenting results
for models that go beyond the simple case described in Section 4.4.
The easiest extension of what we showed before is to include more
than three modes, but keep the assumption of a fixed base area (i.e.,
jb = 1

2 ). This means we add shapes to Figure 13 for greater ja which
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are increasingly more stretched (“anisotropic”). We find that such an
extension gives results that are not qualitatively different from the
previous case, regardless of how many modes of this form we add. In
Figure 19 we show the case of five modes, letting ja range between 1

2

and 9
2 .
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Figure 19: The main features encountered in Figure 15 are reproduced in
this model: [V′(χ)/V(χ)]2 shows shifts between modes before
reaching the plateau for ja = jb = 1

2 , and β+(χ) can be approx-
imated by a linear function for some time before going to zero.
Initial conditions and parameter choices are shown in Figure 20.

Since jb = 1
2 for all modes, we can see from (181) that the values of

β+ for the modes we consider all have the same sign, and are increas-
ingly more negative as ja grows. This is why β+(χ) does not lose
its monotonicity property in Figure 19. From the geometrical point
of view, the shapes we are adding are progressively more stretched
along one axis so that their local anisotropy never flips the direction
in which it changes.
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Figure 20: Initial conditions (defined as in (186)) for five and for eleven
modes. As in Figure 14, N is such that the number of quanta is 25
in the modes which are the farthest from the peak. Left: jb = 1

2 ,
ja ∈ { 1

2 , . . . , 9
2}, ja = 5

2 and σ = 1. Right: (ja, jb) ∈ { 1
2 , . . . , 5

2},
ja = jb = 3

2 and σ = 1
2 . Combinations of spins with zero volume

are not included.
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A more important generalisation of our model can be obtained by
relaxing the assumption that jb is fixed to 1

2 . If jb can vary, the first mi-
nor novelty comes from the fact that we now have some combinations
of spins which need to be removed; these are spin configurations for
which volume eigenvalues are zero. For instance, when jb = 3ja the
volume eigenvalue vanishes (see Table 1 and Section 4.2.1), as one
might expect from classical arguments (the tetrahedron of Figure 9

flattens into a plane when B = 3A, and areas (34) scale linearly in
j for large j). A second key novelty comes from the fact that not all
the β

ja,jb
+ parameters have the same sign: in the dynamical evolution,

we now no longer obtain a strictly monotonically increasing sequence
of β

ja,jb
+ values associated to the modes dominating at different times.

Hence, we generically find a non-monotonic β+(χ). We show in Fig-
ure 21 an example with eleven generic modes, defined by letting both
spins vary in the range { 1

2 , . . . , 5
2} and excluding the ones not allowed

by SU(2) recoupling theory. See right panel of Figure 20 for a depic-
tion of the initial number of quanta in the allowed modes. One could
change initial conditions such that β+(χ) is monotonic even with vari-
able base spin jb, by choosing ad hoc modes such that the succession
of dominant β

ja,jb
+ values goes to zero monotonically.
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Figure 21: Shifts between modes in [V′(χ)/V(χ)]2 are accentuated thanks
to a smaller standard deviation in (186), σ = 1

2 . Anisotropy can
decrease because these modes have a non-monotonic sequence of
dominant β

ja ,jb
+ values as χ elapses. Initial conditions and param-

eter choices are shown in Figure 20.

While any number of modes can be included without any compu-
tational obstacle, we do not report additional details on these many-
mode scenarios because they are characterised by a larger arbitrari-
ness encoded in further initial conditions, without introducing im-
portant novelties.
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4.7 conclusion and outlook

The work described in this chapter represents a first attempt at char-
acterising homogeneous but anisotropic (Bianchi) cosmologies within
the framework of group field theory, focusing on the simplest Bianchi
I model with an additional local rotational symmetry. Previous work
in GFT cosmology has dealt with anisotropies perturbatively, demon-
strating a decay process leading to isotropisation, but lacked a precise
measure to quantify anisotropy. In this chapter we have proposed
such a measure of anisotropy and studied its dynamics in simplified
models.

Inspired by Misner’s parametrisation of Bianchi models, we intro-
duced GFT analogues of the anisotropy parameters β±, which be-
have like free massless scalar fields on a flat FLRW background. We
defined anisotropy in terms of expectation values of GFT operators,
assigning a microscopic value of anisotropy at the level of each Peter–
Weyl mode, and dividing by the total number of GFT quanta to create
an “intensive” average quantity.

Having discussed various options for the effective notion of anisotropy
at the local (quantum geometry) scale, and defined one which sat-
isfies the demand that a tetrahedron with equal face areas is con-
sidered isotropic, we then showed the dynamics of the expectation
value of the total volume and of the newly introduced anisotropy
observable. Results indicate partial agreement with general relativ-
ity: while the volume dynamics differ from classical expectations, the
anisotropy shows the expected linear evolution before isotropisation.
We explored multiple scenarios, focussing in particular on a model
with three Peter–Weyl modes. An analytical toy model, assuming
anisotropy is a continuous parameter and fixing the volume per tetra-
hedron, could reproduce analytically the main features of the discrete
models.

Future research directions stemming out of this work will be thor- An extension of our
work has already
been suggested in
[308], where the
possibility of
cosmological models
retaining two
anisotropies is
considered.

oughly described in Chapter 7. We only emphasise here that this
work allows for further cosmological investigations and also entirely
new lines of research. The first include: studying GFT interactions for
Bianchi models, analysing the effects of anisotropy on the cosmologi-
cal bounce (given that anisotropies can disrupt bounce scenarios [88]),
and comparing GFT results with Bianchi models in loop quantum
cosmology (in particular investigating whether the GFT anisotropic
bounce corresponds to a Kasner transition [72, 378]). Moreover, novel
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research directions could also include the possibility of studying black
hole dynamics in GFT (leveraging on the fact that the interior of a
Schwarzschild black hole can be described by the anisotropic Kantowski–
Sachs metric [239], which is very similar to Bianchi spacetimes), and
exploring the use of anisotropy as a relational clock without coupling
to an external scalar field (as we will stress in Chapter 6).

In the next chapter, we shift our focus to an equally important
aspect of the GFT cosmology paradigm of Chapter 3: the quantum
states used in the effective dynamical equations of the models of in-
terest, and their semiclassical properties. Indeed, most of the litera-
ture (including the anisotropic models of this chapter) only considers
(Fock) coherent states; we will introduce and investigate the general
family of Gaussian states in Chapter 5.



5
G E N E R A L I S E D G A U S S I A N S TAT E S F O R s u ( 1 , 1 )
Q U A N T U M C O S M O L O G Y

This chapter defines and analyses Gaussian states for quantum cos-
mologies based on the su(1, 1) algebra, mainly focussing on the group
field theory framework.1 It is based on [100] and constitutes original
research.

In any quantum theory based on a canonical formulation, one of-
ten requires semiclassical states to describe macroscopic phenomena.
A prime example, closely related to what we will discuss in the fol-
lowing, is the description of a macroscopic electromagnetic field in
terms of coherent or squeezed states in quantum optics. In general,
an important question is whether coherence or semiclassical proper-
ties of an initially chosen state will be preserved under time evolution.
This is famously the case for the harmonic oscillator (or free quantum
fields) but not for more general interacting quantum systems.

In quantum gravity and quantum cosmology, identifying a semi-
classical spacetime description is a rather crucial requirement, both
conceptually and for making the link to the low-energy world in
which we do not observe spacetime superpositions. In traditional
Wheeler–DeWitt quantum cosmology, semiclassical spacetime was of-
ten identified in a WKB (Wentzel–Kramers–Brillouin) regime in which
the wavefunction is assumed to be highly oscillating. This approxima-
tion is at the heart of applications to cosmological perturbation theory,
in which the curved spacetime quantum field theory setting of infla-
tionary cosmology emerges from the semiclassical limit of quantum
cosmology (see, e.g., [214, 245, 271]). The notion of semiclassicality ap-
plied here is different from that of using coherent states or wavepack-
ets; a WKB state is (by assumption) not localised in configuration
space, but rather describes an entire family of classical trajectories
“all at once”.

Loop quantum gravity offers its own proposals for the semiclassi-
cal limit. In the canonical formulation of LQG, one works with quan-
tum states living on superpositions of graphs (see the spin network

1 As we will explain, our results only rely on the su(1, 1) algebra generated by the op-
erators of interest ((152) in GFT), and hence apply to more general models provided
that one can give a cosmological interpretation to some of the generators.
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paragraph in Section 2.2.4). A class of coherent states for LQG, which
has found many applications in the literature, was proposed in [362,
364], whereas more recent proposals include [98, 164]. These states re-
alise the traditional properties of coherent states, peakedness around
a given classical configuration with small uncertainties. In general,
given the rather complicated dynamics of full LQG (see comments
at the end of Section 2.1), it is not clear whether these semiclassical
properties would be preserved dynamically.

As we have seen in Chapter 3, the canonical framework of group
field theory is closely related to the canonical formalism for LQG;
Fock space quantisations of GFT (in both the algebraic and the de-
parametrised approaches) lead to state spaces that can be interpreted
in terms of spin-network states of LQG (cf. Section 3.2). One may ask
what kind of GFT quantum states could be used for a semiclassical,
macroscopic limit of the theory, relevant in particular in the applica-
tion to cosmology. As reviewed in Section 3.3, a particularly influen-
tial idea has been to use analogies with condensed matter physics and
think of a “condensate” of quanta of geometry, or LQG spin-network
vertices [183, 187, 294, 300]. Such a condensate can be characterised
in a mean-field approximation, or equivalently using a Fock coherent
state built on the fundamental field operators or the annihilation and
creation operators of the theory. Many cosmological applications of
GFT have focused exclusively on such coherent states in extracting a
semiclassical limit, as reviewed in Section 3.3.

In [100] we broadened this perspective, and discussed a class of
semiclassical states that go beyond the simplest choice of Fock co-
herent states. In particular, we could write down the most general
Gaussian state associated with a single GFT (Peter–Weyl) field mode,
and also discuss mixed states following the work of [40, 41, 250] on
thermal states in GFT. This chapter provides an expositions of the re-
sults we found in [100]: our work builds on the work of [184], which
had already discussed some more general types of coherent states
built on the su(1, 1) algebra of observables most relevant for cosmol-
ogy in the deparametrised approach (see Section 3.3.2), and extends
all such results substantially, as explained below.

semiclassicality criteria . When discussing the relative mer-
its of possible choices of semiclassical states, we need to be clear about
what properties we require for a state to be considered semiclassical.
Here we follow to a large extent the criteria set out in the context of
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GFT in [184] and [273]; our main requirement for semiclassicality is
that the relative uncertainty in the volume, (∆V̂)/⟨V̂⟩, can be made
arbitrarily small, in particular at late times (large volumes) after dy-
namical evolution. This criterion is similar to what is often required
for a semiclassical limit in loop quantum cosmology [29, 359]. In the
deparametrised approach, we also require a small relative uncertainty
in the Hamiltonian (associated with the matter coupled to gravity in
GFT, see Section 3.2.2 and Section 3.3.2), which is time-independent.
In contrast, one could also require that a semiclassical state saturate
the lower bound on uncertainties implied by the uncertainty princi-
ple, in its stronger Robertson–Schrödinger form. We will argue that
this second requirement seems less relevant physically, since the right-
hand side of the uncertainty principle is in general state-dependent,
and one can end up with an equality for which both sides are large.
For the context of GFT and the most relevant cosmological observ-
ables, energy and volume, we will find a conflict between the two
requirements: states with small relative uncertainties do not saturate
the Robertson–Schrödinger inequality, while those that saturate the
inequality do not have small relative uncertainties. This discrepancy
was observed for squeezed states in [184]; again we generalise this
discussion to general Gaussian states.

We will show that while general Gaussian states can be constructed
using displacement, squeezing and thermality, semiclassical proper-
ties are mostly determined by the magnitude of displacement: squeezed
or thermal states alone are not semiclassical in the sense we require,
and hence do not lead to a good interpretation in terms of emergent
cosmology. These results can be seen as justifying to an extent the
emphasis on Fock coherent states in the GFT literature. While most
of our analysis uses the deparametrised approach of Section 3.2.2
and Section 3.3.2, we also discuss generalised Gaussian states in the
more commonly used algebraic approach of Section 3.2.1 and Sec-
tion 3.3.1. In that setting, we find that generalisations of simple coher-
ent states are difficult to construct, and only very simple versions of
squeezing and thermality can be straightforwardly defined. We also
encounter a number of technical issues related to divergences in the
definition of states and observables. Ignoring these as much as possi-
ble, the general qualitative statements agree with those found in the
deparametrised approach.
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su(1 , 1) quantum cosmology. While we are mostly interested
in GFT models, our results are much more generally applicable to
any su(1, 1) cosmological scenario. Recall that the su(1, 1) Lie alge-
bra naturally emerges in the deparametrised approach to GFT cos-
mology (see in particular (151)–(153)); however, this is not the only
scenario with this feature. Indeed, as pointed out in [59], isotropic
models of loop quantum cosmology and (bosonic) GFT cosmology
can be seen as different realisations of the same underlying structure
(sometimes called “harmonic cosmology” [79, 80]). The su(1, 1) Lie
algebra was then also investigated in detail in the context of loop
cosmology in [266], where it was realised that dynamics could be
implemented as SU(1, 1) transformations, and it was later associated
with the “Complexifier-Volume-Hamiltonian (CVH) algebra” in [62]
(see also [73–75] for more recent work).

outline of the chapter . In Section 5.1 we discuss different
definitions of semiclassicality, and study the examples of coherent
and squeezed states explicitly in Section 5.1.1 and Section 5.1.2. This
analysis is then extended to general Gaussian states in Section 5.2. All
such investigations deal with the deparametrised approach to GFTWe have seen that

states play a very
different role in the

two approaches
described in

Chapter 3; this is
why we present their

respective results
separately here.

cosmology (cf. Section 3.3.2), where no technical or conceptual ob-
stacle is encountered. Given that the algebraic approach to canonical
quantisation is used in most of the GFT literature (cf. Section 3.3.1), in
Section 5.3 we discuss our efforts at obtaining similar types of states
in that approach. Specifically, we write down generalised Gaussian
(condensate-like) states in Section 5.3.1, and study technical issues of
condensates in Section 5.3.2 and Section 5.3.3. Section 5.4 summarises
the main results. Some of the explicit analytics and computational
techniques for this chapter are given in Appendix B.

5.1 semiclassical properties and candidate states

While true for any quantum state, the effective Friedmann equationRecall that in the
general setup of
(isotropic) GFT

cosmology we deal
with a single

Peter–Weyl mode;
this assumption is

used throughout.

(156), found in the deparametrised approach to GFT cosmology (as
described in Section 3.3.2), is a relation between expectation values
only. To claim that (156) is a good description of the dynamics of
cosmological observables, one needs to adopt quantum states that
show some semiclassical features, such as coherent states. More gen-
erally, one needs to specify criteria for any candidate state for cos-
mology to be considered as semiclassical. Here we focus on two



5.1 semiclassical properties and candidate states 121

criteria that are commonly used: the study of relative uncertainties
and the Robertson–Schrödinger uncertainty principle. We define vari-
ances and covariances for any operators Â and B̂ as

(∆Â)2 = ⟨Â2⟩ − ⟨Â⟩2 , (202)

∆(ÂB̂) =
1
2
⟨{Â, B̂}⟩ − ⟨Â⟩⟨B̂⟩ , (203)

where {·, ·} is the anticommutator.
Our first criterion for semiclassicality would be to require that rel-

ative uncertainties (∆Â)2/⟨Â⟩2 be small at least in a large-volume
or late-time regime where the classical theory is expected to emerge;
here Â could be either the Hamiltonian Ĥ or volume V̂ of the de-
parametrised, single-mode theory of Section 3.3.2. One can also check
what happens to the operator Ĉ defined in (150), even though its inter-
pretation is less transparent, hence it is unclear whether this operator
would need to be semiclassical.

There is another characterisation of semiclassical states that makes
use of the quantities (202) and (203), namely the saturation of the
Robertson–Schrödinger (RS) uncertainty principle [332, 348]. For the
GFT operators (149) and (150), the uncertainty principle reads

(∆V̂)2(∆Ĥ)2 ≥ |∆(V̂Ĥ)|2 + ω2⟨Ĉ⟩2 . (204)

For basic examples in standard quantum mechanics an inequality of
this type is saturated (i.e., it becomes an equality) for canonically
conjugate pairs when using coherent (or more generally Gaussian)
states; but in general it is not guaranteed that there are states for
which (204) can be minimised. As the volume evolves in time, the RS
uncertainty principle (204) is a statement for each χ.

In the context of GFT cosmology or quantum cosmology in general,
demanding small relative uncertainties seems physically more rele-
vant than minimising uncertainties by demanding equality in (204);
nothing in (204) requires both sides to be small in any sense, whereas
the Universe appears to be sharp to observations, without quantum
effects on large scales. Hence, we would say that a good candidate
state for GFT cosmology models primarily needs to show small rela-
tive uncertainties. As we will see shortly, (Fock) coherent states have
this property; we will also define more general states that are semi-
classical in this sense.
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From (154) we can derive the χ-dependent form of the volume vari-
ance as well as that of the covariance between the volume and the
Hamiltonian,

(∆V̂χ)
2 = (∆V̂)2 cosh2

2ωχ +(∆Ĉ)2 sinh2
2ωχ +∆(V̂Ĉ) sinh4ωχ , (205)

∆(V̂χĤ) = ∆(V̂Ĥ) cosh2ωχ +∆(ĈĤ) sinh2ωχ , (206)

where from now on we use subscripts to indicate time-dependentHere and in the rest
of this chapter we
adopt a somewhat

unusual notation fα

instead of f (α) for
trigonometric and

hyperbolic functions;
this is to save space

in lengthy
expressions below.

operators Ôχ = ˆO(χ); operators with no subscript refer to initial
conditions (i.e., to χ = 0). We can then immediately derive the large-
volume limit of relative uncertainties by taking χ → ±∞ in these
expressions: (∆Ĥ)2/⟨Ĥ⟩2 does not evolve in time, but for the relative
volume fluctuations we find using (205) and (154)

(∆V̂χ)2

⟨V̂χ⟩2

χ→±∞−→ (∆V̂)2 + (∆Ĉ)2 ± 2∆(V̂Ĉ)(
⟨V̂⟩+ v

2 ± ⟨Ĉ⟩
)2 . (207)

To verify the RS uncertainty principle, we would also need the limit

(∆(V̂χĤ))2

⟨V̂χ⟩2⟨Ĥ⟩2
+ω2 ⟨Ĉχ⟩2

⟨Vχ⟩2⟨Ĥ⟩2

χ→±∞−→
(
∆(V̂Ĥ)± ∆(ĈĤ)

)2(
⟨V̂⟩+ v

2 ± ⟨Ĉ⟩
)2 ⟨Ĥ⟩2

+
ω2

⟨Ĥ⟩2
.

(208)

All these quantities are determined by the initial conditions only. No-(207) and (208) are
crucial in order to

explicitly obtain
relatively simple

expressions for all
the states discussed
in this chapter, see

Appendix B for
details.

tice that the late-time limit χ → +∞ in general differs from the limit
χ → −∞ (as indicated by the ± notation) so that the asymmetry
described by the quantity Ĉ (cf. (150)) is manifest here.

One might also be interested in the evolution of these quantities
beyond the strict infinite-volume limit χ → ±∞. We will show some
examples for general evolution of the RS inequality (204) and the
relative uncertainties of the volume operator. For analytical results,
we derive expansions in powers of the inverse volume as

(∆V̂χ)2

⟨V̂χ⟩2
= A+ B v

⟨V̂χ⟩
+ C v2

⟨V̂χ⟩2
+ · · · , (209)

where A, B, C, . . . are functions of initial conditions. Such an expan-
sion captures very well the full evolution as soon as we are in the
macroscopic regime ⟨V̂χ⟩ ≫ v.

We shall see that the saturation of (204) does not necessarily indi-
cate that the states under question have small relative fluctuations;
conversely, states such as the simplest Fock coherent states, which
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are semiclassical by looking at relative fluctuations, fail to minimise
(204). In Section 5.1.1 and Section 5.1.2 we briefly review quantum
states that have been investigated in the context of GFT cosmology,
expanding the literature by explicitly checking whether the RS uncer-
tainty principle is minimised and obtaining the exact dynamics of the
relative uncertainties for the volume in closed form. These properties
will serve as comparison for the new family of states presented in
Section 5.2.

5.1.1 Coherent states

The most commonly used states in the GFT cosmology literature
are Fock coherent states as we explained in Section 3.3 (these were
introduced already in [183] and used in different ways in the de-
parametrised formalism [186, 379] and the algebraic approach [272,
305, 306]). As is customary in bosonic theories, coherent states can be
defined via the action of the displacement operator D̂(α) on the Fock
vacuum as

|α⟩ = D̂(α)|0⟩ , (210)

with

D̂(α) = eαâ†−ᾱâ , α ∈ C . (211)

These have the key property that, at χ = 0, â(0)|α⟩ = α|α⟩. Ap- Recall that we work
in the Heisenberg
picture.

pendix B contains a table with all the quantities of interest computed
with the state (210) (see in particular Section B.1 and Table 2).

One can easily check that the RS uncertainty principle (204) for V̂
and Ĥ is not saturated by coherent states. For instance (using Table 2

in appendix Appendix B), we see that at χ = 0 (204) reads

v2ω2

2
|α|2 + v2ω2|α|4 ≥ v2ω2|α|4 . (212)

This feature occurs because (149) and (150) are su(1, 1) compositions
of the bosonic ladder operators, whereas the Fock coherent state is
coherent with respect to â and â†. One can in fact show that (204) is
never saturated by coherent states. We refer to Appendix B where we
report explicitly the analytical expressions representing the general
case of (204); such a minimisation does not happen at any time and
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in particular not as χ → ±∞, where the system is meant to become
semiclassical.

As one might expect, this does not really spoil the semiclassical
nature of coherent states in the sense of relative uncertainties. De-
composing α into modulus and argument as α = |α| exp(iϑ), one can
see that the relative uncertainties at χ = 0 (again, see Appendix B),

(∆V̂)2
C

⟨V̂⟩2
C

=
1

|α|2 ,

(∆Ĥ)2
C

⟨Ĥ⟩2
C

=
4|α|2 + 2

4|α|4 cos2
2ϑ

,

(∆Ĉ)2
C

⟨Ĉ⟩2
C

=
4|α|2 + 2

4|α|4 sin2
2ϑ

,

(213)

can be made arbitrarily small by choosing appropriate |α| and avoid-
ing parameters for which ϑ is a multiple of π

4 (or of the form π
4 + k π

2

with k ∈ Z, if we are only interested in small (∆Ĥ)2
C/⟨Ĥ⟩2

C). Away
from χ = 0, from (154) and (205) one finds the relative volume relative
uncertainty

(∆V̂χ)2
C

⟨V̂χ⟩2
C

=

(
4|α|2 + 1

)
cosh4ωχ +4|α|2 sin2ϑ sinh4ωχ −1

((2|α|2 + 1) cosh2ωχ +2|α|2 sin2ϑ sinh2ωχ −1)2 . (214)

By choosing |α| to be large, this can be made arbitrarily small at all
times: consider the asymptotic behaviour of (214) for large |α|,

(∆V̂χ)2
C

⟨V̂χ⟩2
C

∼ 1
|α|2

sin2ϑ sinh4ωχ + cosh4ωχ

(sin2ϑ sinh2ωχ + cosh2ωχ)2 , (215)

and notice that 1/|α|2 multiplies a bounded function in χ. For late
times, we recover the results of [184]

(∆V̂χ)2
C

⟨V̂χ⟩2
C

χ→±∞−→ 2(1 + 4|α|2(1 ± sin2ϑ))

(1 + 2|α|2(1 ± sin2ϑ))2 =: AC . (216)

Again, this becomes arbitrarily small for large |α| and avoiding the
values ϑ = π

4 + k π
2 .

We can also expand (214) in inverse volume powers, finding

(∆V̂χ)2
C

⟨V̂χ⟩2
C

= AC

(
1 +

v
⟨V̂χ⟩

)
+ CC

v2

⟨V̂χ⟩2
+O

(
1

⟨V̂χ⟩4

)
, (217)
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with

CC = −
|α|2 ± 2|α|4(sin2ϑ ±1)

(
|α|2(cos4ϑ +1) + 3

)
(2|α|2(sin2ϑ ±1)± 1)2 . (218)

We see that the 1/⟨V̂(χ)⟩ correction is such that BC = AC in (209),
which is similar to the terms in the Friedmann equation (156). Higher
contributions can be found, but they only minimally improve the ex-
pansion, whose key behaviour is already captured at the 1/⟨V̂(χ)⟩2

order.

5.1.2 Squeezed states

Mimicking standard quantum mechanics notation, squeezed states
can be defined via the action of the squeezing operator Ŝ(z) on the
Fock vacuum as

|z⟩ = Ŝ(z)|0⟩ , (219)

with

Ŝ(z) = e
1
2 (zâ†2−z̄â2) , z ∈ C . (220)

We decompose z as z = reiψ, where r and ψ are real parameters.
These squeezed states can be seen as part of the Perelomov–Gilmore

class of coherent states [192, 310] associated with SU(1, 1); this is how
they were introduced for GFT in [184]. As described in [184], the vol-
ume operator (149) is bounded from below only in the su(1, 1) rep-
resentations of the positive ascending series; when one restricts to
the cases of interest for GFT,2 the Perelomov–Gilmore coherent states
coincide exactly with the squeezed states that we define in (219).

Contrary to coherent states, one can readily find that squeezed
states do saturate the RS uncertainty principle (204) for the operators
V̂ and Ĥ. Using again Table 3 in Appendix B, at χ = 0 one explicitly
has

v2ω2

16
sinh2

2r

(
2 sinh2

2r cos2ψ + cosh4r +3
)

=
v2ω2

16
cos2

ψ sinh2
4r +

v2ω2

4
sin2

ψ sinh2
2r .

(221)

2 The representations of the positive discrete series are labelled by a real parameter k
called Bargmann index. Using the bosonic realisation of su(1, 1) (151) and including
the Fock vacuum among the eigenstates of the volume operator, one is led to choose
k = 1/4, for which all the results of [184] coincide with the ones described here.
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This minimisation happens because we are interested in uncertainties
of the GFT operators (149) and (150), which form the su(1, 1) structureAn analogous result

for SU(1, 1)
coherent states in

loop quantum
cosmology is

reported in [266].

that squeezed states are built on (see Section 3.3.2). Turning on time
dependence, we find that the uncertainty principle is indeed an exact
equality throughout the whole evolution for the state in (219). Again
we refer to Appendix B for the analytical expressions at generic times;
there we show that the RS uncertainty principle is minimised for all
values of χ and in particular in the late-time limit χ → ±∞.

The minimisation of the RS principle does not necessarily mean
that relative uncertainties of cosmological observables are small, and
indeed we find at χ = 0 (see Table 3 in Appendix B)

(∆V̂)2
S

⟨V̂⟩2
S

= 2 coth2
r ,

(∆Ĥ)2
S

⟨Ĥ⟩2
S

= 2 + 2 sec2
ψ csch2

2r ,

(∆Ĉ)2
S

⟨Ĉ⟩2
S

= 2 + 2 csc2
ψ csch2

2r .

(222)

All these quantities are bounded from below by 2. One can still check
whether the situation improves with time evolution; a minimal re-
quirement for semiclassicality is that relative uncertainties are only
small at large volume. Using (154) and (205) one can readily write
down the exact time evolution of the relative uncertainties as

(∆V̂χ)2
S

⟨V̂χ⟩2
S

= 2
sinψ sinh2r sinh2ωχ + cosh2r cosh2ωχ +1
sinψ sinh2r sinh2ωχ + cosh2r cosh2ωχ −1

= 2

(
1 +

v
⟨V̂χ⟩

)
. (223)

Hence, the lower bound of 2 for the relative uncertainty holds at all
times; a uniform large-volume limit of 2 was already found in [184].

dipole states . As a final remark on squeezed states, we point
out that a “dipole condensate” state defined as

|ξ⟩ = exp
(

1
2

ξ â† â†
)
|0⟩ , ξ ∈ C , (224)

is nothing else but a non-normalised squeezed state. States similar to
(224) were introduced as possible condensate-like states in the early
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stages of GFT cosmology [183] (we will return to a discussion of these
states in the algebraic approach in Section 5.3). Given the norm

⟨ξ|ξ⟩ = 1√
1 − |ξ|2

, (225)

we should assume |ξ| < 1 in order to obtain a normalisable state.
To see that (224) is a squeezed state, we write the squeezing opera-

tor Ŝ(z) in “normal form” [158]

Ŝ(z) = exp
(

z
2|z| tanh |z|(â†)2

)
exp

(
− ln cosh |z|

(
â† â +

1
2

))
× exp

(
− z̄

2|z| tanh |z| â2
)

,
(226)

so that one can write a squeezed state as

|z⟩ = Ŝ(z)|0⟩ = 1√
cosh |z|

exp
(

z
2|z| tanh |z|(â†)2

)
|0⟩ . (227)

(227) shows that a dipole state (224) is a (rescaled) squeezed state
(219), |ξ⟩ =

√
cosh |z| |z⟩, where the dipole parameter ξ and the

squeezing parameter z are related by

ξ =
z
|z| tanh |z| . (228)

Since they are just squeezed states, dipole condensates have no chance
of being semiclassical according to the criterion of small relative un-
certainties (cf. (222) and (223)).

5.2 the general family of gaussian states

Gaussian states can be defined in several equivalent ways. Tradition-
ally, they are presented in quantum mechanics textbooks as states
whose characteristic functions and quasi-probability distributions (also
known as Wigner functions) are Gaussian functions. Equivalently, es-
pecially in the quantum optics and quantum information literature,
Gaussian states are often described as states which are fully deter-
mined by the first and second canonical moments only [351]. Other
characterisations are possible, both physical (as minimum uncertainty
states) and mathematical (see [212] for connections to complex struc-
tures and symplectic forms).
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We will focus on an equivalent but more operational definition of
Gaussian states, given as Gibbs states of generic second-order Hamil-
tonians of bosonic fields [351]. Specifically, they can be defined as
arising from the action of the displacement operator (211) and squeez-
ing operator (220) on a thermal state [107, 277] (see Appendix B, and
specifically Section B.2),

ρ̂G(α, z, β) := D̂(α)Ŝ(z) ρ̂β Ŝ†(z)D̂†(α) , (229)

where, denoting the usual Fock states by |n⟩ = (n!)−1/2(â†)n|0⟩,In this chapter, the
symbol β always
refers to thermal

effects and should
not be confused with

the anisotropies of
Chapter 4.

ρ̂β :=
e−βâ† â

tr(e−βâ† â)
= (1 − e−β)∑

n
e−βn|n⟩⟨n| . (230)

β > 0 is a free parameter, the analogue of the inverse temperature in
the usual canonical ensemble.

A key property of Gaussian states is that (in the Schrödinger pic-
ture) they retain their Gaussian nature under time evolution; Û ρ̂G Û†

is also a Gaussian state if Û is the unitary time evolution opera-
tor.3 This property motivates studies of “Gaussian quantum mechan-
ics”, in which one restricts to Gaussian-preserving measurements and
transformations and where quadratic Hamiltonians are fundamental
[292, 374]. In this setting one avoids the difficulties that come with
higher-order dynamics.

Of course, the family of pure Gaussian states is a subset of (229)
obtained in the vanishing “temperature” limit,

ρ̂G
β→∞−→ D̂(α)Ŝ(z)|0⟩⟨0|Ŝ†(z)D̂†(α) =: |α, z⟩⟨α, z| . (231)

These states are the well-known displaced squeezed states, which re-
late nicely to the simpler states discussed in Section 5.1.

The general class of states (229) can straightforwardly be imported
in the deparametrised GFT framework (and analogue su(1, 1) cos-
mologies) since, as detailed in Section 3.3.2, we deal with a bosonic
system governed by a second-order Hamiltonian (149). The state (229)
can in fact also be understood along the lines of [40, 41, 250], where
GFT states are defined as statistical equilibrium states of exponen-
tial form e−Ô for some operator Ô. The parameter β in (230) is to

3 For a quadratic Hamiltonian the evolution operator can always be decomposed as
Û = eiγŜ(z)D̂(α)R̂(ϕ) where R̂(ϕ) = exp(iϕ â† â) is the rotation operator and exp(iγ)
a phase factor [268, 269, 350]. While a rotation operator can in principle enter the
definition of Gaussian states (229), it does not affect any result (see Section B.2 for
details).
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be taken formally (for instance as the periodicity in the 1-parameter
flow of a Kubo–Martin–Schwinger state or as a Lagrange multiplier
[40, 41, 250]), and does not necessarily relate to a physical notion of
temperature. Effectively, given that N̂ = â† â represents the number
of quanta, β in (230) could be seen more akin to a chemical potential
of a grandcanonical ensemble.

Equipped with the new and generalised family of states (229), we
can now turn to the calculation of quantities of interest for harmonic
cosmology; Section B.2 outlines helpful tools for using (229) to obtain
the following results. First, we compute the expectation value of the
three main operators for our models, given in (149) and (150). One
finds

⟨V̂⟩G = v
(
|α|2 + Nβ cosh2r + sinh2

r

)
,

⟨Ĥ⟩G = −ω

2
(
2|α|2 cos2ϑ +(2Nβ + 1) sinh2r cosψ

)
,

⟨Ĉ⟩G =
v
2
(
2|α|2 sin2ϑ +(2Nβ + 1) sinh2r sinψ

)
,

(232)

where we denote the thermal expectation value (computed with (230))
of the number operator as

Nβ = ⟨N̂⟩thermal = tr
(

ρ̂β â† â
)
=

1
eβ − 1

. (233)

By means of (233), the reduction to pure states (β → ∞) is achieved
by setting Nβ = 0. Next, we evaluate variances (202) and covariances
(203). Incorporating the displacement and squeezing phases into a
shorthand F± = cos2ϑ cosψ ± sin2ϑ sinψ and noticing that 2Nβ + 1 =

cothβ/2, one finds

(∆V̂)2
G =

v2

4

[
4|α|2 coth β

2
(cosh2r +F+ sinh2r) + coth2

β
2

cosh4r −1
]

,

(∆Ĥ)2
G =

ω2

8

[
8|α|2 coth β

2
(cosh2r + F− sinh2r)

+ coth2
β
2

(
1 + 2 sinh2

2r cos2ψ + cosh4r

)
+ 2
]

,

(∆Ĉ)2
G =

v2

8

[
8|α|2 coth β

2
(cosh2r −F− sinh2r)

+ coth2
β
2

(
1 + 2 cosh4r sin2

ψ + cos2ψ

)
+ 2
]

,

(234)
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and

∆(V̂Ĥ)G = −vω

4

[
4|α|2 coth β

2

(
sinh2r cosψ + cosh2r cos2ϑ

)
+ coth2

β
2

sinh4r cosψ

]
,

∆(V̂Ĉ)G =
v2

4

[
4|α|2 coth β

2

(
sinh2r sinψ + cosh2r sin2ϑ

)
+ coth2

β
2

sinh4r sinψ

]
,

∆(ĤĈ)G = −vω

4

[
4|α|2 coth β

2
sinh2r(sin2ϑ cosψ + cos2ϑ sinψ)

+ coth2
β
2

sinh2
2r sin2ψ

]
.

(235)

The quantities in (232), (234) and (235) combine in a nontrivial way
coherent, squeezed and thermal contributions; they generalise the ex-
pressions for simple states reported Section B.1, being now (at the
same time) functions of α = |α|eiϑ, z = reiψ and β.

Expectation values, variances and covariances are all the ingredi-
ents one needs to analyse the semiclassical criteria discussed in Sec-
tion 5.1. For instance, using the first two expressions in (234), the first
in (235) and the last in (232), it is straightforward (albeit tedious) to
see that the Robertson–Schrödinger uncertainty principle (204) is not
minimised by Gaussian states at χ = 0. One can in fact prove that
the inequality is never saturated for any χ, much like with coherent
states. As expected, the inequality becomes an identity only when
α = Nβ = 0, which is the case of a pure squeezed state (221). Details
on the Robertson–Schrödinger principle for Gaussian states are given
in Appendix B.

More importantly, we now show that Gaussian states can be chosen
to have small quantum fluctuations. Even with such a large parameter
space (spanned by α, z and β), one can notice from (234) and (232) that
it is always possible to manipulate the displacement parameter α to
make relative uncertainties arbitrarily small at χ = 0. While squeezed
and thermal states alone do not allow for such a feature, squeezing
and thermal effects can lead to semiclassical Gaussian states as long
as one uses a large enough displacement. To make this more explicit,
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we can expand the fluctuations stemming out of (234) and (232) for
large |α|, obtaining

(∆V̂)2
G

⟨V̂⟩2
G

∼ 1
|α|2 coth β

2
(cosh2r +F+ sinh2r) , (236)

(∆Ĥ)2
G

⟨Ĥ⟩2
G

∼ 1
|α|2 cos2

2ϑ

coth β
2
(cosh2r +F− sinh2r) , (237)

(∆Ĉ)2
G

⟨Ĉ⟩2
G

∼ 1
|α|2 sin2

2ϑ

coth β
2
(cosh2r −F− sinh2r) . (238)

These expressions still refer to χ = 0, so they generalise (213) and
(222). We now discuss the dynamics of quantum fluctuations, fo-
cussing on the volume operator.

Recall from Section 3.3.2 that the single-mode GFT Hamiltonian
(149) makes the evolution operator Û(χ) = e−iĤχ a squeezing oper-
ator (with purely imaginary squeezing parameter). Relations allow-
ing a reordering of displacement and squeezing operators, or the
composition of two squeezing operators into one, are well known
(see appendix Section B.2), and it might be tempting to work in the
Schrödinger picture and to define

ρ̂G(α, z, β; χ) = Û(χ)D̂(α)Ŝ(z) ρ̂β Ŝ†(z)D̂†(α)Û†(χ) , (239)

as a time-dependent Gaussian state. However, one finds that using
properties such as (433) and (434) on (239) leads to very complicated
calculations, due to the mixing of parameters. We thus keep working
in the Heisenberg picture, in which the explicit dynamical equations
(154), (205) and (206) allow us to obtain the χ-evolution of all the
quantities of interest. For example, the χ-dependent expression of the
volume expectation value reads

⟨V̂χ⟩G =
v
2

[
2|α|2(cosh2ωχ + sinh2ωχ sin2ϑ)− 1

+ coth β
2
(sinh2ωχ sinh2r sinψ + cosh2ωχ cosh2r)

]
.

(240)

While it is not useful to show all the other χ-dependent counterparts
of (232), (234) and (235) in full, one can compute them in the same
fashion (also using (155) for quantities containing Ĉ). Crucially, we
find that Gaussian states can be chosen to make the volume relative
uncertainties, (∆V̂χ)2

G/⟨V̂χ⟩2
G, arbitrarily small at all times. We can
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analytically show this again by considering the asymptotic behaviour
of the evolving volume fluctuations for large |α|, finding

(∆V̂χ)2
G

⟨V̂χ⟩2
G

∼
cothβ/2

|α|2
Θ

(sin2ϑ sinh2ωχ + cosh2ωχ)2 , (241)

with

Θ = sinh4ωχ(sin2ϑ + sinh2r sinψ) + cosh4ωχ(sinh2r sin2ϑ sinψ +1)

+ sinh2r cos2ϑ cosψ .
(242)

Again avoiding the problematic values ϑ = π
4 + k π

2 with k ∈ Z,
this is the product of a bounded function (in χ) and a factor 1/|α|2,
which can hence be made arbitrarily small at all times. (241) exhibits
similar features to the coherent-states case and generalises (215) to
Gaussian states by also keeping squeezing and thermal contributions.
The dynamics hence do not spoil the semiclassical behaviour of suit-
ably chosen Gaussian states. To give some graphical intuition, we also
plot in Figure 22 a few instances illustrating some interplay between
the various state parameters, in particular exemplifying that |α| can
make (∆V̂χ)2

G/⟨V̂χ⟩2
G as small as desired at all times. Compared to

the choice of |α|, the other parameters seem to have relatively minor
impact on the relative uncertainty.
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Figure 22: Volume relative uncertainties with Gaussian states for some state
parameters.

Finally, we can explicitly find the asymptotic behaviour represented
by the plateaus in Figure 22,

(∆V̂(χ))2
G

⟨V̂(χ)⟩2
G

χ→±∞−→ 2− 8|α|4(sin2ϑ ±1)2[
2|α|2(sin2ϑ ±1)± cothβ/2(cosh2r ± sinh2r sinψ)

]2 .

(243)
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which generalises (216) and shares the same properties. In particular,
denoting AG the right-hand side of (243), we can approximate it for
large |α| and see that it can be made arbitrarily small:

AG ∼ 2
|α|2

cothβ/2(cosh2r ± sinh2r sinψ)

(1 ± sin2ϑ)
. (244)

We can also expand (∆V̂χ)2
G/⟨V̂χ⟩2

G in inverse volume powers as per
(209), finding

(∆V̂χ)2
G

⟨V̂χ⟩2
G

= AG

(
1 +

v
⟨V̂χ⟩

)
+ CG

v2

⟨V̂χ⟩2
+O

(
1

⟨V̂χ⟩3

)
, (245)

where, using h± = coth β
2
(cosh2r ± sinh2r sinψ) to encapsulate squeez-

ing and thermal contributions,

CG =
h±
(
4|α|2(sin2ϑ ±1)± h±

)
8

[
2|α|2(sin2ϑ ∓1)∓ h∓
h± ± 2|α|2(sin2ϑ ±1)

(246)

+
8|α|2 cos2ϑ cotψ(h± − h∓)± cot2

ψ(h± − h∓)2 ∓ 4

2h± (h± ± 4|α|2(sin2ϑ ±1))

∓
2|α|2

(
h+ + h− + 2|α|2 cos2

2ϑ ± sin2ϑ(h∓ − h±)
)
+ h−h+ − 4

(h± ± 2|α|2(sin2ϑ ±1))2

]
.

Interestingly, here again BG = AG, as with all the other states. One
can check that CG reduces to (218) for r = 0 and β → ∞ (since h± → 1)
and vanishes for α = 0 and β → ∞ (cf. (223)).

To summarise, we have seen that the general family of Gaussian
states contains states with small relative uncertainties and can thus
be regarded as semiclassical. This property is realised for the volume,
the Hamiltonian and the Ĉ operator in the context of GFT cosmology
in the deparametrised approach, and it holds at all times (crucially
at late times, where quantum fluctuations are actually expected to
be small). Because all harmonic cosmologies [59, 79, 80] rely on the
same underlying Lie algebra, these results actually hold for any gen-
eral su(1, 1) (or CVH) quantum cosmological scenario. As for coher-
ent states, Gaussian states do not saturate the Robertson–Schrödinger
uncertainty principle, showing again that it is not clear whether such
a criterion should be invoked to classify states as semiclassical.
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5.3 algebraic approach and semiclassical states

In this section we explore the role and behaviour of semiclassical
states in the original formalism of the GFT cosmology programme,
namely the algebraic approach reviewed in Section 3.2.1 and applied
to cosmology in Section 3.3.1. In particular, we investigate whether
generalised Gaussian states can exist, and we highlight differencesWe continue to

adopt the
single-mode

restriction as with
previous sections.

with the deparametrised approach adopted in previous sections.
We have seen in Section 3.2.1 that the algebraic formalism for group

field theory shares some similarities with a Dirac quantisation. It is
based on the construction of a kinematical Hilbert space of abstract
states, among which physical states are selected by demanding that
they satisfy a constraint coming from the underlying theory. In this
picture, states in the GFT kinematical Fock space (84) would be un-
physical quantum tetrahedra (or spin network-like states, see (83)),
on which dynamics are imposed a posteriori. As we have pointed out,
since physical states live on the original Hilbert space, one finds that
they have infinite norm (see, e.g., (124), (125) and (128)). Moreover,
working in a “timeless” setting, one defines kinematical operators as
relational observables (e.g., the volume as a function of the scalar field
χ), which may also contain infinities. We will encounter divergences
at many points in this chapter, so that our expressions need to be
treated as formal and subject to some regularisation procedure (some
ideas for dealing with these infinities include the coherent peaked
states seen at the end of Section 3.3.1 [272] and the work on smeared
observables of [40, 41, 250]). We are mainly interested in a general
conceptual comparison with the analysis on Gaussian states of Sec-
tion 5.2; regardless of divergences one can check whether Gaussian-
like states can be defined in this formalism, in the sense of at least
approximately physical states (see discussion around (93) and (94)).

coherent condensate states . The only class of states which
has been successfully used to extract cosmological dynamics in the
algebraic approach is given by field coherent statesThe specific proposal

given by the
coherent peaked

states of [272] is
part of this class of

states (cf. (140)).

|σ⟩ = D̂(σ)|∅⟩ , (247)

with

D̂(σ) = exp
(∫

dχ
[
σ(χ)φ̂†(χ)− σ(χ)φ̂(χ)

])
, (248)
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which we define here in analogy with (210) and (211) using a displacement-
like operator. Due to the Baker–Campbell–Hausdorff formula, (247)
is equivalent to a single-particle condensate state of the type usu-
ally adopted in the literature, namely (124) (which explicitly shows
a divergent norm, see comments below (127)). We have seen in Sec-
tion 3.3.1 that states of the form (247) can solve (92) exactly provided
that the displacement parameter σ(χ) satisfies the classical free GFT
equation of motion (127), namely

(
∂2

χ − ω2) σ(χ) = 0. The solution
to this equation determines the dynamics of the algebraic approach
since the volume depends on χ via σ(χ) (cf. (131)). In particular, one
can obtain the volume expectation value ⟨V̂(χ)⟩σ given in (131) and
show that it satisfies the Friedmann-like equation given in (134). Fi-
nally, let us recall that the states (247) are considered semiclassical in
the sense that volume fluctuations, once regularised, decrease auto-
matically over time as σ(χ) grows exponentially (cf. (139)).

5.3.1 Gaussian-like states

Because the effective Friedmann equation (134) seems to rely on co-
herent states, as indicated by the index of ⟨V̂(χ)⟩σ, it is natural to ask
whether one can use more general states – such as Gaussian states –
to obtain a similar result. Given how dynamics are implemented in
the algebraic approach, we shall see that it is not clear whether Gaus-
sian states are a useful option for this framework. In order to define
generalised Gaussian states we resort to the thermofield formalism
since a well-defined procedure in terms of thermal-like density ma-
trices is not directly available in the algebraic approach to GFT. The
thermofield dynamics were developed in the context of GFT in [40,
41, 250] for thermal coherent states; this naturally extends to the case
of Gaussian states following the strategy of Appendix B (see in par-
ticular Section B.2), with suitably generalised definitions. Explicitly,
in analogy with (450), a Gaussian-like state in the algebraic approach
can be defined as4

|σ, ζ, β⟩ := D̂(σ)Ŝ(ζ)|∅β⟩ , (249)

4 Just like (247), the state (249) has a divergent norm. Again, one could impose a
cutoff in the χ integrations, but in this case the divergences are even more severe. In
Section 5.3.2 we provide more details on condensate states and their norms.
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where we introduce a squeezing-like operator (cf. (220))

Ŝ(ζ) = exp
(

1
2

∫
dχ
[
ζ(χ)(φ̂†(χ))2 − ζ(χ)φ̂2(χ)

])
, (250)

and the algebraic counterpart of the thermal vacuum (444),

|∅β⟩ = T̂ (θβ)|∅, ∅̃⟩ ,

T̂ (θβ) = exp
(∫

dχ θβ(χ)
[

φ̂†(χ) ˆ̃φ†(χ)− φ̂(χ) ˆ̃φ(χ)
])

.
(251)

The general construction of Section B.2 applies here: the state |∅, ∅̃⟩
is a product vacuum for the doublet kinematical Hilbert space (cf.
(82)), the tilde operators ˆ̃φ(χ) and ˆ̃φ†(χ) satisfy the algebra in (81)
(i.e., [ ˆ̃φ(χ), ˆ̃φ†(χ′)] = δ(χ − χ′)) while commuting with non-tilde
operators, et cetera. In particular, one can make use of the relation
sinh2(θβ(χ)) = (eβ(χ) − 1)−1 (cf. (449)) to express results in terms of
the statistical parameter β(χ).

Such a Gaussian-like state is not physical as it does not solve the
constraint (92). More precisely, focussing on the case of a pure Gaus-
sian state for simplicity,

|σ, ζ⟩ = D̂(σ)Ŝ(ζ)|∅⟩ , (252)

(92) leads to the condition

(
∂2

χ − ω2) (σ(χ) +
ζ(χ)

|ζ(χ)| tanh(|ζ(χ)|)
(

φ̂†(χ)− σ(χ)
))

= 0 , (253)

which cannot generically be solved for the displacement and squeez-
ing functions σ(χ) and ζ(χ). Including thermal contributions only
results in a more complicated equation with no interesting novelties,
as T̂ (θβ) is essentially a generalised squeezing operator just like Ŝ(ζ).
While setting ζ = 0 in (253) returns the classical equation of motion
for σ(χ) (which makes the coherent-like state (247) physical), notice
that setting σ = 0 shows that a purely squeezed-like state

|ζ⟩ = Ŝ(ζ)|∅⟩ (254)

is also unphysical as

(
∂2

χ − ω2) ( ζ(χ)

|ζ(χ)| tanh(|ζ(χ)|) φ̂†(χ)

)
= 0 (255)

cannot yield a solution for the squeezing function ζ(χ).
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The usual strategy in this situation is to shift the attention towards
averages, and require that the state be only approximately physical.
We can use the general Gaussian states (249) in (93), e.g. with Ô = 1,
to determine the form of our state parameters as functions of χ. One
finds that the first Schwinger–Dyson equation does not provide a
condition for the squeezing and thermal functions:〈

δS[φ̂, φ̂†]

δφ̂†

〉
σ, ζ, β

=
(
∂2

χ − ω2) ⟨φ̂(χ)⟩σ, ζ, β

=
(
∂2

χ − ω2) σ(χ) = 0 .

(256)

As essentially observed in [40, 41, 250] for thermal coherent states, we
can only determine the χ-dependence for the displacement parameter
σ(χ), which in particular is the same as in the (pure) coherent-states
scenario. This is due to the fact that squeezed states |ζ⟩, and thus
also squeezed thermal states |ζ, β⟩, have a vanishing field expectation
value ⟨ζ, β|φ̂(χ)|ζ, β⟩ = 0. As a consequence, one cannot use (256) to
extract dynamical information for ζ and β.

Since going to Schwinger–Dyson equations of higher order is rather
complicated (see Section 5.3.2 for an attempt with dipole states and
squeezed-like states), we can follow the idea of [40, 41, 250] and as-
sume that the parameters ζ and β are constant. While the dynamics
is still governed by the same function σ(χ), this simple generalisa-
tion does affect observable averages (such as the volume), and hence
the resulting Friedmann equation, with new static contributions of
squeezing and thermal nature. From the volume expectation value
computed with (249), Of course, (257)

reduces to (131)
when squeezing and
thermal
contributions are
switched off (ζ = 0
and β → ∞).

⟨V̂(χ)⟩σ, ζ, β = v
[
|σ(χ)|2 + δ(0) sinh2(|ζ|)+ δ(0)

eβ − 1
cosh(2|ζ|)

]
, (257)

one finds the following effective Friedmann equation:(
1

⟨V̂(χ)⟩σ, ζ, β

d⟨V̂(χ)⟩σ, ζ, β

dχ

)2

= 4ω2

(
1 +

v
⟨V̂(χ)⟩σ, ζ, β

(E + E)− v2

⟨V̂(χ)⟩2
σ, ζ, β

(Q2 +Q2)

)
,

(258)
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where E and Q are given in (133) and the squeezing and thermal
contributions are encoded in

E = δ(0)
[
1 − coth(β/2) cosh(2|ζ|)

]
,

Q2 = −1
4
E (E + 2E) .

(259)

As mentioned, we formally keep the Dirac delta distributions in these
expressions assuming one can get rid of them by using, e.g., a smear-
ing procedure [40, 41, 250]. Notice that such divergences affect the
thermal and squeezing contributions already at the level of the vol-
ume expectation value (257) (contrary to the coherent-state case where
they only appear at the level of fluctuations, see (139)).

Of course, when ζ = 0 and β → ∞, the generalised Friedmann
equation (258) reduces to (134) since E = Q = 0. Similarly, one can
check that the result of [40, 41, 250] with a “static thermal cloud”
emerges by setting ζ = 0. We remark however that both (258) and the
modified Friedmann-like equation of [40, 41, 250] represent only a
somewhat weak generalisation of (134) as the new contributions are
assumed to be χ-independent; this is an arbitrary assumption that
was made because the model is not predictive for ζ and β (cf. (256)).

Along the same lines, one can also find new constant contributions
to the volume fluctuations for general Gaussian-like states. Since all
the χ-dependence is encoded in the displacement parameter σ(χ),
one can proceed to remove the divergences of the usual kind and
find again that relative uncertainties are automatically tamed under
time evolution. To give a concrete but concise example, the pure5

Gaussian-like states |σ, ζ⟩ defined in (252) yield the following relative
uncertainties

(∆V̂)2
σ, ζ

⟨V̂⟩2
σ, ζ

=
δ(0)Ξ

2|ζ|
(
|σ(χ)|2 + δ(0) sinh2(|ζ|)

)2 , (260)

with

Ξ = 2|ζ||σ(χ)|2 cosh(2|ζ|) + sinh(2|ζ|)
(
σ(χ)2 ζ + σ(χ)2 ζ

)
+ δ(0)|ζ| sinh2(2|ζ|) .

(261)

Since σ(χ) grows exponentially, one easily finds that at late times
(260) reduces to an analogue of (236) (in this case with β → ∞). Of

5 One can write down an expression including β, but it is not insightful to show this
in full since thermal contributions are of squeezing type (see thermofield formalism
in Section B.2) and assumed to be constant.
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course, in the limit ζ → 0 one recovers (139). Notice that when σ = 0
one is left with an expression which incidentally has no divergences,
namely

(∆V̂)2
ζ

⟨V̂⟩2
ζ

= 2 coth2(|ζ|) , (262)

just as in (222). We show a similar feature for dipole states (expected
to be a type of squeezed state) in Section 5.3.2.

5.3.2 A closer look at condensates: the dipole states

In this section we provide more details on the (condensate) states that
have been proposed in the algebraic approach to GFT [183, 187, 294,
300], and study their properties in relation to the questions addressed
in this chapter.

As mentioned in Section 3.3.1, the single-particle condensate state
ubiquitously adopted in the literature |σ⟩ (cf. (124) or equivalently
(247)), with σ(χ) solving the classical equations of motion (127), is an
exact solution of the constraint (7) for a free GFT. After some regular-
isation (e.g., a cut-off in χ) is adopted to make the state well-defined,
this yields compelling cosmological effective dynamics (134) as well
as volume uncertainties (139) which are well-behaved if one considers
smeared observables.

Next to |σ⟩, two-particle (or dipole) condensate states

|ξ⟩ = Nξ exp
(

1
2

∫
dχ ξ(χ)φ̂†(χ)φ̂†(χ)

)
|∅⟩ , (263)

with

Nξ = exp

(
−

∞

∑
k=1

1
4k

δ(0)
∫

dχ|ξ(χ)|2k

)
, (264)

were also initially proposed for GFT cosmology [183], even though
they were never used to obtain relational dynamics. Here we return
to these states because of the connection with squeezed states (see
Section 5.1.2, and in particular (228)), which makes them part of the
Gaussian states family. Indeed, assuming one can make such two-
particle states well-defined, dipoles |ξ⟩ (263) and squeezed-like states
|ζ⟩ (254) correspond to the same type of states and share the same
properties.
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An important difference between the normalisation factor Nξ in
(264) and the one given in [183] is the appearance of a Dirac delta
function δ(0) due to the commutator (81), which does not appear for
models without a matter scalar field. A cut-off in χ, while required
to make sense of the integrals in Nξ , is not enough to make the state
well-defined; some other regularisation would be needed to deal with
the δ(0). As in Section 5.1.2, we will proceed to study properties of
dipole states assuming that a way of regularising (263) is found (and
hence leaving formal δ(0) factors in our expressions). We shall see
that, even assuming they exist, dipole states are not viable candidates
as semiclassical states for the class of GFT models discussed in this
paper, for a number of reasons.

Formally keeping divergences in all our expressions below, one
can “blindly” follow the usual strategy to derive a cosmological sce-
nario by focussing on the volume operator. Computing its expectation
value with respect to (263), one findsThese computations

generalise the
coherent-state ones

of the literature,
described in

Section 3.3.1 (see,
e.g., (129)).

⟨V̂(χ)⟩ξ = v
⟨ξ|φ̂†(χ)φ̂(χ)|ξ⟩

⟨ξ|ξ⟩

= vδ(0)
|ξ(χ)|2

1 − |ξ(χ)|2 ,
(265)

where again the commutator (81) gives rise to a δ(0). Since the expec-
tation value (265) is positive by construction, one concludes that the
dipole function must satisfy the condition

|ξ(χ)| < 1 , (266)

similarly to what we observed in Section 5.1.2. Next, we shall find that
for any ξ(χ), quantum fluctuations of these states are never small. To
see this, one first computes the volume variance (using the property
(138)) as

(∆V̂(χ))2
ξ = v2

[
δ(0)⟨φ̂†(χ)φ̂(χ)⟩ξ + ⟨(φ̂†(χ))2 φ̂2(χ)⟩ξ − ⟨φ̂†(χ)φ̂(χ)⟩2

ξ

]
= v2δ2(0)

2|ξ(χ)|2
(|ξ(χ)|2 − 1)2 ,

(267)

so that the relative uncertainty reads

(∆V̂(χ))2
ξ

⟨V̂(χ)⟩2
ξ

=
2

|ξ(χ)|2 . (268)
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Even though the δ(0) distributions fortuitously cancel (as already
seen in (262)), such fluctuations can never be made small because
of the condition (266). This means that dipole states never become
semiclassical according to our main criteria.

One can now still turn to the task of finding the form of ξ(χ) using
dynamical equations, but as anticipated for squeezed-like states in
Section 5.3.2 (see in particular (255) and discussion thereafter), this
does not seem to be possible. First of all, the dipole state (263) is
not exactly physical since it does not solve the constraint (92). To be
precise, using the property φ̂(χ)|ξ⟩ = ξ(χ)φ̂†(χ)|ξ⟩, from (92) one
can obtain the condition

(
∂2

χ − ω2) (ξ(χ)φ̂†(χ)
)
= 0 , (269)

which cannot yield a solution for the dipole function ξ(χ). (269) is
the analogue of (255) translated into the notation of dipole states via
(228).

One could then try to find ξ(χ) as an approximate solution from ex-
pectation values of the type (93). As already assessed in Section 5.3.2
for more general states (cf. (256)), the first Schwinger–Dyson equa-
tion does not help in this respect since dipoles have vanishing field
expectation value. Climbing the tower of Schwinger–Dyson equations
would entail setting, e.g., Ô = φ̂ in (93), which gives

(
∂2

χ − ω2) ⟨ξ|φ̂(χ′)φ̂(χ)|ξ⟩ = 0 . (270)

Calculating explicitly the correlation function ⟨ξ|φ̂(χ′)φ̂(χ)|ξ⟩ yields

(
∂2

χ − ω2) (δ(χ − χ′)
ξ(χ) + ξ(χ′)|ξ(χ)|2
1 − |ξ(χ′)|2|ξ(χ)|2

)
=
(
∂2

χ − ω2) (δ(χ − χ′)
ξ(χ)

1 − |ξ(χ)|2

)
= 0 ,

(271)

where in the last step we used the relation δ(χ − χ′) f (χ, χ′) = δ(χ −
χ′) f (χ). To show the connection with squeezed-like states one last
time, one can write the same Schwinger–Dyson equation using the
state |ζ⟩ = Ŝ(ζ)|∅⟩ defined in (254) with (250), finding

(
∂2

χ − ω2) (δ(χ − χ′)
ζ(χ)

2|ζ(χ)| sinh(2|ζ(χ)|)
)
= 0 . (272)

Unfortunately, it seems that no nontrivial solution to either (271) or
(272) exists. Schwinger–Dyson equations of higher order would be
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even harder to solve. In short, two-particle states such as squeezed-
like states (254) or dipoles (263) do not seem to be suitable candidate
states for the GFT models under investigation. Specifically, while they
are clearly not semiclassical (cf. (268)), it is also not clear whether one
can tackle the problem of finding a condition for the function ξ(χ) so
to extract dynamics (in the same way that solving (127) gave rise to
σ(χ) in (128) which led to (134)), in any meaningful way.

These observations are in conflict with some results of [183], where
a detailed account on dipole states can be found. In particular, in the
specific case of a GFT coupled to a matter scalar field χ, the condition
on the dipole function is not given by the classical GFT equation of
motion (97),

(
∂2

χ − ω2) ξ(χ) = 0 , (273)

as was claimed in [183]. Interestingly, plugging the solution of (273)
(i.e., ξ(χ) = αeωχ + βe−ωχ) into the volume expectation value (265)
one finds new effective cosmological dynamics, where the volume
diverges as ⟨V(χ)⟩ξ ∼ (χ − χ0)−1 in a finite relational time χ = χ0.6

In particular, assuming α and β are small (so to satisfy (266)) and real
for simplicity, one has the effective Friedmann equation

(
1

⟨V̂(χ)⟩ξ

d⟨V̂(χ)⟩ξ

dχ

)2

= 4ω2

(
C1 −

vC2

⟨V̂(χ)⟩ξ

+
C3

v
⟨V̂(χ)⟩ξ +

C4

v2 ⟨V̂(χ)⟩2
ξ

)
,

(274)

where C1 = 1 − 12αβ, C2 = 4αβ, C3 = 2 − 12αβ and C4 = 1 − 4αβ.
Note that the last two terms in (274) effectively behave like matter com-
ponents with equations of state typical of “dust” and “dark energy”,
respectively. To see this explicitly, we recall that in classical cosmol-
ogy the relational Friedmann equation for the volume as a function
of χ takes the form [184, 302](

1
V(χ)

dV(χ)

dχ

)2

= ∑
i

AiV(χ)−wi+1 , (275)

where Ai are constants and i labels the different types of perfect fluids
(with equations of state pi = wiρi) in the Universe. Comparing (274)
and (275) one can readily find the “effective equation of state param-

6 If (α, β) ∈ R, one finds ⟨V(χ)⟩ξ ∼ v(1−4αβ)−1/2

2ω(χ−χ0)
, with time of divergence given by

ωχ0 = ln
(

1+
√

1−4αβ
2α

)
.
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eters” w3 = 0 and w4 = −1. Note that a term ∼ 1/⟨V̂(χ)⟩2
ξ , usually

characterising effective Friedmann equations coming from GFT, is ab-
sent in the “dipole cosmological dynamics” (274). While this path
might have some interesting implications from a phenomenological
point of view, it is not clear why one should assume (273) to begin
with.

5.3.3 Physicality conditions

To shed some light on the more general question of finding physical
states, we conclude by deriving the general solution to the constraint
(92), here

(
∂2

χ − ω2) φ̂(χ)|Φ⟩ = 0 . (276)

Any element |Φ⟩ of the Fock space (84) can be written as

|Φ⟩ =
∞

∑
n=0

∫
dχ1 . . . dχn fn(χ1, . . . χn)φ̂†(χ1) . . . φ̂†(χn)|∅⟩ , (277)

where the functions fn are totally symmetric under exchange of their
arguments. Substituting this form into (276) and using the commuta-
tor (81), it follows that we would need

∞

∑
n=0

n
∫

dχ1 . . . dχn−1
(
∂2

χ − ω2) fn(χ, χ1, . . . , χn−1)φ̂†(χ1) . . . φ̂†(χn−1)|∅⟩ = 0 ,

(278)

which is true if and only if

∫
dχ1 . . . dχn−1

(
∂2

χ − ω2) fn(χ, χ1, . . . , χn−1)φ̂†(χ1) . . . φ̂†(χn−1) = 0

(279)

for all values of n. If such equations are satisfied by some fn, then
the state |Φ⟩ is physical. For example, forgetting about normalisation,
the coherent state (124) corresponds to (277) with

fn(χ1, . . . , χn) =
1
n!

σ(χ1) . . . σ(χn) . (280)

The conditions (279) for the first few n’s read In (281) we are
explicitly showing
n = 1, 2, 3.
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(∂2
χ − ω2)σ(χ) = 0 ,∫

dχ1 σ(χ1) φ̂†(χ1)(∂
2
χ − ω2)σ(χ) = 0 ,∫

dχ1 dχ2 σ(χ1)σ(χ2) φ̂†(χ1)φ̂†(χ2)(∂
2
χ − ω2)σ(χ) = 0 ,

...

(281)

Clearly all these conditions are met if σ(χ) satisfies (127). Note that
the constants 1/n! in (280) do not play a role in obtaining (281), so
(280) can straightforwardly be generalised to fn(χ1, . . . , χn) = cnσ(χ1) . . . σ(χn),
where cn are generic coefficients. In other words, one can define a
slightly more general class of exact physical states,

|Fσ⟩ = F
(∫

dχ σ(χ)φ̂†(χ)

)
|∅⟩ , (282)

where F can be any function that can be expressed in a power se-
ries, generalising the previously used exponential (cf. (124)). However,
all these (physical) states are non-normalisable regardless of F; even
the simple one-particle state | ⟩ =

∫
dχ σ(χ)φ̂†(χ)|∅⟩, for example,

would require a cut-off as ⟨ | ⟩ =
∫

dχ|σ(χ)|2. The only regular
physical state (without any cut-off) seems to be the Fock vacuum.

As a last example, we can use the general expressions (279) to con-
firm that the two-particle condensate state (263) cannot be a physical
state. Again forgetting about the normalisation, (277) reduces to a
dipole state by choosing fn(χ1, . . . , χn) = 0 for n = 2m + 1 and

fn(χ1, . . . , χn) =
1

2mm!
δ(χ1 −χm+1) . . . δ(χm −χ2m)ξ(χm+1) . . . ξ(χ2m) ,

(283)

for n = 2m, where m ∈ N. The state would be physical if the condi-
tions (279) are satisfied. However, the first few readExcluding the trivial

(odd) ones, in (284)
we explicitly show

n = 2, 4, 6.
(∂2

χ − ω2)
(

ξ(χ)φ̂†(χ)
)
= 0 ,∫

dχ1 ξ(χ1)(φ̂†(χ1))
2(∂2

χ − ω2)
(

ξ(χ)φ̂†(χ)
)
= 0 ,∫

dχ1dχ2 ξ(χ1)ξ(χ2)(φ̂†(χ1))
2(φ̂†(χ2))

2(∂2
χ − ω2)

(
ξ(χ)φ̂†(χ)

)
= 0 ,

...

(284)

which reduce to the condition (269).
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In conclusion, it seems that only states built from iterations of the
same single creation operator

∫
dχ σ(χ)φ̂†(χ), generically given by

(282) and in particular including the coherent state (124) (or equiva-
lently (247)), are exact solutions of (276), and hence physical states.
To the best of our knowledge, no other (nontrivial) state can be found
such that the infinitely many conditions (279) are satisfied.

5.4 conclusion and outlook

In this chapter we constructed the wide class of (mixed) Gaussian
states in the context of group field theory and su(1, 1) quantum cos-
mological models, and we analysed relevant properties for such states
to be semiclassical and lead to a macroscopic cosmology. Drawing
inspiration from quantum optics and quantum information theory,
we defined Gaussian states in their most general form by applying
displacement and squeezing operators to a thermal state. In a dis-
crete setting such as GFT, the notion of particle number allows one
to think of a statistical ensemble where adding or removing quanta
might come with some intrinsic cost in “energy” (usually the chemi-
cal potential in thermodynamics). In this sense, the “thermal” effects
appearing in our results are not inherently related to some physical
temperature like the one adopted in standard cosmology, but a grand-
canonical interpretation might be more meaningful.

Our work extends prior research in GFT cosmology, which mainly
focused on coherent states, to the more general family of semiclassi-
cal states, in the context of a free GFT and a single field mode. The
general family includes pure coherent and squeezed states as special
cases, as well as thermal (or generally mixed) states. In the context
of the deparametrised approach to canonical quantisation of GFT, we
provide explicit analytical results for quantum fluctuations at all re-
lational times. We find that while Gaussian states generally do not
saturate the Robertson–Schrödinger inequality, their fluctuations can
be minimised, especially at late times (where classical behaviour is
expected to emerge). This result is mainly governed by the displace-
ment parameter, which can be adjusted to include nonvanishing ther-
mal and squeezing contributions. All such results rely on the algebra
generated by the volume, the Hamiltonian and the Ĉ operator. For
this reason, our findings apply to any general quantum system based
on the su(1, 1) algebra, such as loop quantum cosmology.
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Additionally, we investigated Gaussian-like states within the alge-
braic approach to GFT cosmology and found that, although we can
define generalised Gaussian states assuming some regularisation is
performed, no such states appear to be physical (even approximately),
except for the pure coherent states considered in prior studies. In light
of these findings, we analysed a simplified scenario where squeez-
ing and thermality are time-independent, deriving an effective Fried-
mann equation that extends previous results, and observed that vol-
ume fluctuations decrease over time. We also found a class of physi-
cal states that are more general than coherent states, but these are not
Gaussian states and are (in general) not semiclassical.

As we will emphasise in Chapter 7, future research could explore
the connections between entanglement, entropy, and geometry in GFT
(which has seen recent attention for example in LQG [58, 70, 264]),
and extend our work to multi-mode Gaussian states, which may re-
veal new features for GFT cosmology that are not captured by the
single-mode approach used here.

We stress that the algebraic approach and the deparametrised set-
ting described in Chapter 3 were always considered to be two sides of
the same underlying scenario, simply adopting different perspectives
(more precisely, different quantisation strategies). After all, they were
always found to give very similar results in all applications to cos-
mology (including the work on anisotropies of Chapter 4). The new
discrepancies encountered here, specifically related to the implemen-
tation of dynamics and the discussion on quantum states, motivated
the work of the next chapter. In Chapter 6, we will clarify some as-
pects of relational quantum dynamics for canonical GFT by means of
a rigorous Dirac quantisation (cf. Chapter 2) and the Page–Wootters
formalism.



6
R E L AT I O N A L Q U A N T U M D Y N A M I C S A N D
PA G E – W O O T T E R S F O R M A L I S M

This chapter introduces a novel and rigorous definition of relational
quantum dynamics for group field theory by means of well-established
quantisation methods. With the exception of minor review sections
(where we briefly recall necessary notions regarding, e.g., Dirac ob-
servables and the Page–Wootters formalism) it constitutes original
research, and it is based on [101].

We have seen in Part I that a central theme in many approaches
to quantum gravity is that of background independence. This prin-
ciple stems directly from general relativity where the geometry of
spacetime is not taken as a background structure for a given system,
but rather is understood as a dynamical part of it. In particular, the
absence of a background time poses a challenge for the definition of
dynamics, which leads to the “problem of time” of classical and quan-
tum gravity [233, 257]. More precisely, as we mentioned in Section 2.1,
the canonical Hamiltonian of general relativity vanishes on shell and
gravitational observables, required to have vanishing Poisson brack-
ets with the constraints, appear to be “frozen” in coordinate time [16,
133, 224]. The most common proposal to bypass this problem is to
adopt a relational strategy, where one picks a degree of freedom of
the system to serve as internal time relative to which the remaining
degrees of freedom evolve. For example, in the case of cosmological
settings, the proposal is usually to add matter (commonly a massless
scalar field) to describe the relational dynamics of the gravitational
degrees of freedom.

As we will exemplify in this chapter, one can classically define rela-
tional Dirac observables of constrained systems following the general
theory of [135, 190, 358] (see also [336–339] for earlier work and [197]
for a recent extension of the concept of relational observables), which
allows to deal with the freedom of choosing different clocks by means
of “complete observables”. These implement precisely the idea of en-
coding dynamics as a relation between phase space functions, with-
out referring to any external structure (in particular any background
time). The quantum theory for constrained systems can be obtained

147
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following the Dirac quantisation programme [133, 224, 282], which
has the advantage of preserving the structures of the classical theory
such as constraints. The Dirac programme provides a clear notionIn the case of

gravity, the
constraints are

associated with the
notion of covariance,

see Section 2.1.

of relational observables for the quantum theory and importantly, be-
cause all the degrees of freedom are treated on the same footing, does
not require any gauge-fixing or choice of time parameter before quan-
tisation. This aspect is clarified in particular in the recent work of [227,
228] (see also [106] for a study on periodic clocks), where the Dirac
quantisation programme is denoted “clock-neutral” as it describes
physics before choosing a (temporal) reference frame.

As explained in Section 2.3 and Chapter 3, GFT adheres to the
paradigm of background independence, and describes spacetime as
emerging from the collective behaviour of (possibly pre-geometric)
quantum gravity degrees of freedom [160, 296]. While GFT is closely
related to the covariant spin foam formulation of LQG and to ten-
sor models (cf. Chapter 2), we showed that the canonical framework
of Chapter 3 provides an excellent arena to explore cosmological ap-
plications (cf. Section 3.3). This is similar, in spirit, to the situation
in canonical LQG (which inspired a Hilbert space quantisation for
GFT in the first place [298]) and its cosmological sector loop quan-
tum cosmology, as both settings offer relatively easy access to dynam-
ical equations which can be related to the equations of cosmology.
However, while LQG and loop quantum cosmology follow a more
standard quantisation strategy (à la Dirac1), GFT is subject to quite
unique dilemmas which are circumspectly addressed following the
two approaches described in Section 3.2 and Section 3.3.

distinctive complications for gft. The somewhat peculiar
challenge for the GFT framework is that one cannot directly apply the
standard methods of canonical quantisation due to the absence of a
Hamiltonian formulation of the theory. Since there is no background
time and no immediate definition of a phase space structure at the
classical level (cf. Section 2.3.1), the Hilbert space formalism of the
algebraic approach to GFT is not derived from a canonical quantisa-
tion of a classical theory; rather, it is introduced via the kinematical
structures of a Fock space, constructed along the lines of many-body
quantum physics (cf. Section 3.2.1). As we have seen, this is a canon-

1 While the full Dirac quantisation programme for LQG faces significant technical
challenges (see the end of Section 2.1), notable progress has been made in the context
of loop quantum cosmology [37] where, due to symmetry reduction, there is only
one constraint associated with the freedom to choose the time parameter.
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ical formulation where the equations of motion are imposed at the
quantum level as constraints (cf. (92)), so as to reduce from the pos- While the coherent

peaked states
formulation can be
seen as a “tempus
post quantum”
framework (cf.
(145)), the algebraic
approach still does
not refer to a
Hamiltonian theory
or to relational
observables as in
usual Dirac
quantisation.

tulated kinematical Hilbert space to a physical Hilbert space. As il-
lustrated in Section 3.2.2, another way to define dynamics in GFT
is to follow a deparametrised approach: this amounts to selecting a
time parameter for the classical theory which allows to write down
a relational Hamiltonian (cf. (103)), and hence perform a standard
canonical quantisation. Deparametrisation, however, is subject to the
general concerns and criticisms of “tempus ante quantum” frame-
works [233, 257], as it is not clear whether the choice of a classical
time label before quantisation breaks clock-covariance [272]. While
both of these frameworks yield similar dynamics in the restriction to
homogeneous cosmology (cf. Section 3.3 and Chapter 4), one would
ideally like to leverage their complementary strengths by perform-
ing a genuine canonical quantisation of a classical theory in terms of
constraints, without singling out an arbitrary time parameter at the
classical level.

In this chapter we address these challenges by defining relational
dynamics in GFT, in particular for models where a scalar field is used
as relational clock, in a way that connects with the known methods
for quantisation (such as the Dirac programme mentioned above and
the Page–Wootters formalism, as explained below). We will only be in-
terested in the free theory, where interactions are ignored. Follow-
ing the parametrisation strategy adopted in quantum mechanics [133,
224] and quantum field theories [255, 256, 370], we reformulate GFT
cosmology models as constrained systems where the constraint is as-
sociated with the notion of time reparametrisation invariance. This
allows us to implement the programme of Dirac quantisation along
the lines of other systems that are well understood (e.g., loop quan-
tum cosmology), and to connect with the “trinity of relational quan-
tum dynamics” of [227, 228]. Already for the classical theory, we can
define relational Dirac observables for GFT in a precise way as those
that Poisson-commute with the constraint [135, 190, 358]. Quantising
the parametrised GFT à la Dirac, namely reducing from a kinemati-
cal Hilbert space to a physical space via group averaging techniques,
makes clock covariance transparent for the GFT cosmological models
of interest. In particular, we define the relational Dirac observable as-
sociated with the GFT number operator (the main observable for cos-
mology), and interpret its quantum dynamics by means of the Page–
Wootters formalism [309, 381]. More precisely, thanks to the equiva-
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lence established in [227, 228], we describe the expectation value of
the GFT number operator as conditional on the reading of the (quan-
tum) clock associated with the matter scalar field. This is the first ap-
plication of the Page–Wootters formalism in non-perturbative quan-
tum gravity (a recent application to a perturbative quantum gravity
setting was given in [126]), and enables us to discuss GFT cosmology
in a “tempus post quantum” framework [233, 257, 272]. Remarkably,
the relational dynamics turn out to match with the ones obtained in
the deparametrised setting (where the clock is selected prior to quan-
tisation), proving that deparametrisation in GFT cosmology is fully
covariant. By defining a new variant of the Page–Wootters formalism
for the case of multiple quantum clocks, we also generalise the setup
to a situation with multiple Hamiltonian constraints (associated to an
independent gauge invariance for each field mode), which realises
the idea of “multi-fingered time evolution” [253, 254].

Ultimately, in this chapter we establish a framework that consis-
tently describes the relational evolution of GFT geometric observables
with respect to a “quantum time”, here identified with the matter
scalar field. Crucially, this is given by a canonical quantisation that
does not require to single out the clock classically, and where dynam-
ics are implemented by a Hamiltonian constraint (somewhat similar
to the situation in general relativity). We thus ameliorate and some-
what clarify the situation as presented in the literature (so far in terms
of the algebraic and deparametrised approaches of Section 3.2.1 and
Section 3.2.2) by obtaining a manifestly covariant formulation of GFT
relational quantum dynamics. This in particular is equipped with the
conditional interpretation of the Page–Wootters formalism, and hence
provides robust insights on relational dynamics for quantum gravity.

outline of the chapter . We start in Section 6.1 by parametris-
ing a simple GFT model, which relies on a single field mode, and we
discuss the notion of classical Dirac observables. We then quantise the
theory in Section 6.2, clearly distinguishing between kinematical as-
pects and relational quantum dynamics, obtained equivalently with
the Dirac and the Page–Wootters formalisms. The construction is gen-
eralised to the case of multiple field modes in Section 6.3, where we
showcase two scenarios: one where all the modes evolve with respect
to one clock, and one where they evolve with respect to separate
“single-mode times”, respectively in Section 6.3.1 and Section 6.3.2.
We provide a summary of the results in Section 6.4.
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6.1 parametrisation of classical group field theory

Working with a group field φ : SU(2)4 × R → R, we consider a free Just like in
Chapter 3, in the
following we always
refer to GFT models
coupled to the
matter scalar field χ

(cf. Section 3.1).

GFT defined by an action with kinetic term (79). We then start from
the action (100) neglecting the interactions, which after integration by
parts yields (101), reported here (without V[φ]) for convenience:

S0[φ] =
1
2

∫
dχ ∑

J

(
K(0)

J φ−J(χ)φJ(χ)− K(2)
J ∂χ φ−J(χ)∂χ φJ(χ)

)
.

(285)

We now apply the general idea of deparametrisation (see, e.g., [133,
224]) as explained in the following. To start with a simple case, we re-
strict the formalism to a single field mode J with vanishing magnetic
indices,2 and we postpone the discussion of a quantum theory with
multiple field modes to Section 6.3. The action then reads

S0[φ] =
1
2

sgn
(
K(0)

J
) ∫

dχ
[∣∣K(0)

J

∣∣φ2
J +

∣∣K(2)
J

∣∣(∂χ φJ)
2
]

, (286)

where we chose a mode for which K(0)
J and K(2)

J have opposite sign,
meaning the dynamics for this mode are governed by a Hamiltonian
of the form (cf. (103)) In the quantum

theory, expressing
the Hamiltonian
(287) in the ladder
operator basis, one
finds the squeezing
Hamiltonian in
(123), as explained
in Section 3.2.2.

HJ(φJ , πJ) =
1
2

sgn
(
K(0)

J
) πJ

2∣∣K(2)
J

∣∣ − ∣∣K(0)
J

∣∣φ2
J

 . (287)

Because we deal with this (specific) mode only, we drop the label J
in the following discussion. Since the global sign of (287) is irrele-
vant,3 from now on we choose K(2) < 0 and K(0) > 0 without loss of
generality.

Following the standard parametrisation strategy [133, 224], we now
introduce an arbitrary parameter τ to describe φ(χ) by means of two
functions φ(τ) and χ(τ), so that the group field and the matter field
are treated parametrically on the same footing. In this manner we
obtain a new action

S[φ, χ] =
1
2

∫
dτ

[∣∣K(0)∣∣φ2(∂τχ) +
∣∣K(2)∣∣ (∂τ φ)2

(∂τχ)

]
. (288)

2 Recall that a mode (59) with mI = 0 satisfies J = −J.
3 This becomes transparent by explicitly solving the eigenvalue problem for (the quan-

tum version of) the Hamiltonian (287), as we do in Section 6.2.
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The Hamiltonian theory derived from the parametrised action (288)
has an extended phase space spanned by coordinates (φ, χ) and con-
jugate momenta (πφ, pχ) defined as usual,

πφ :=
∂L

∂(∂τ φ)
=
∣∣K(2)∣∣∂τ φ

∂τχ
,

pχ :=
∂L

∂(∂τχ)
=

1
2

∣∣K(0)∣∣φ2 − 1
2

∣∣K(2)∣∣ (∂τ φ)2

(∂τχ)2 .
(289)

It is easy to check that the Hamiltonian associated to the new action
(288) vanishes. Indeed, the momenta (289) form a constraintWe denote C the

constraint (290)
because of the

similarity with GR
(cf. Section 2.1).
Note that this is

only an analogy; in
this chapter, the

symbol C should not
be confused with the
constraint (5) of GR.
The same reasoning

applies to the
multiplier N.

C = pχ + H(φ, πφ) = 0 , (290)

where H(φ, πφ) is given in (287). (290) defines a constraint hypersur-
face in the extended phase space and generates trajectories on such
surface according to

∂τ f = { f , NC} , (291)

for any phase space function f , where N is a Lagrange multiplier
defining the particular parametrisation of these trajectories. From
(291) one can find the equations of motion

∂τ φ = {φ, NC} = N
πφ∣∣K(2)
∣∣ ,

∂τχ = {χ, NC} = N ,
(292)

while ∂τπφ = ∂τ pχ = 0. Of course, combining the equations (292) one
finds the definition of πφ in (289). The second equation in (292) shows
that N gives the rate of change of χ with respect to the label τ, and
we call it lapse function for this reason (borrowing the nomenclature
from general relativity, see Section 2.1). Using (289), (290) and (292)
one can formulate the same dynamics starting from the action

S[φ, χ, πφ, pχ, N] =
∫

dτ
(
πφ∂τ φ + pχ∂τχ − NC

)
, (293)

which explicitly shows that NC plays the role of the Hamiltonian
(sometimes called super-Hamiltonian), and indeed yields the same
equations of motion (292). Note that such a parametrised theory de-
scribes the same physics of the initial action S0[φ] (cf. (286)); while
(293) contains one extra canonical pair (χ, pχ), it also implies the con-
straint (290) (obtained by varying with respect to N). Since (290) is
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a first-class constraint, it eliminates two degrees of freedom so that
the two actions describe the same number of independent degrees
of freedom. We have now introduced a form of “general covariance”,
as (293) is invariant under τ-reparametrisation. This symmetry is re-
flected in the fact that N can be an arbitrary function, playing the role
of a gauge field.

classical dirac observables . The action (293) is comprised
of two parts: one related to geometry described by the group field φ,
and one for the matter scalar field χ. Since we will want to use the
scalar field χ as internal dynamical clock to describe the GFT system
(which corresponds to the choice of the lapse N = 1), we briefly
review here the notions of classical relational dynamics and Dirac
observables. Following [135, 190, 358], we begin by noticing that (291)
defines a flow ατ

C with parameter τ that transforms a phase space
function f as

f 7→ ατ
C( f ) :=

∞

∑
n=0

τn

n!
{ f , C}n , (294)

where { f , C}n denotes the iterated Poisson bracket defined as { f , C}n+1 :=
{{ f , C}, C}n with { f , C}0 = f . Given that the action (293) is invariant
under τ-reparametrisation, the evolution with respect to the flow pa-
rameter τ is not physical as it is a gauge transformation on the con-
straint hypersurface defined by (290). Physical observables (known
as Dirac observables) are defined as functions of canonical variables
F(φ, πφ, χ, pχ) that are invariant under τ evolution. Then, they satisfy

{F, C} ≈ 0 , (295)

where ≈ represents a “weak equality”, meaning the equality holds
on the constraint hypersurface. In other words, functions F satisfying
(295) are constant along the trajectories (within the constraint hyper-
surface) generated by the constraint (290).

One can now use the strategy of “evolving constants of motion”
[336–339] to define relational Dirac observables, which evolve with re-
spect to another chosen observable along the flow generated by C.
These are also known as “complete” observables Ff ,χ(χ0), and corre-
spond to the value a partial observable f takes on C when another
partial observable χ takes the value χ0. The second partial observable
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χ is thought as a dynamical “clock” degree of freedom, chosen to
parametrise the flow in place of the unphysical parameter τ. In short,
one can construct a complete observable satisfying (295) as [135, 190,
227, 228, 358]

Ff ,χ(χ0) ≈
∞

∑
n=0

(χ0 − χ)n

n!

{
f ,

C
{χ, C}

}
n

. (296)

While (296) holds for (finite-dimensional) systems with a generic Hamil-
tonian constraint [135, 190, 358], our scenario belongs to the specific
class of systems thoroughly analysed in [227, 228]; a simplification
arises because of the partition of the classical constraint (290) into a χ

component and a φ component

C = Hχ + Hφ = 0 , (297)

where the so-called clock Hamiltonian is Hχ = pχ and the GFT Hamil-
tonian Hφ is given in (287). Thanks to the crucial fact that the clock
Hamiltonian is canonically conjugate to χ,

{χ, Hχ} = {χ, pχ} = 1 , (298)

a relational Dirac observable associated to a function fφ of the GFT
phase space (i.e., a function of φ and πφ) takes the simple form (using
(297) and (298) in (296)) [135, 190, 227, 228, 358]

Ffφ,χ(χ0) ≈
∞

∑
n=0

(χ0 − χ)n

n!
{ fφ, Hφ}n . (299)

In the context of our group field theory (cf. (293)), the observables
Ffφ,χ(χ0) are then interpreted as geometrical quantities (at this stage
still described by classical phase space functions of GFT degrees of
freedom) that evolve relationally with respect to the values that the
matter scalar field takes. For instance, upon quantisation, this setting
will be able to describe the evolution of the GFT number (or volume)
operator as a function of the scalar field. In fact, the partition into
a matter clock sector and a geometry sector will be exploited in the
quantum theory to express the dynamics in the general framework of
[227, 228]; this will allow to relate the parametrised theory introduced
here to existing approaches to canonical quantisation of GFT.
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6.2 quantum theory for single mode

6.2.1 Kinematics

We now quantise the theory described by S[φ, χ] in (293), promoting
the canonical coordinates and momenta to operators with the com-
mutation relations[

φ̂, π̂φ

]
= i ,

[χ̂, p̂χ] = i ,
(300)

all the others being zero. Kinematically, the Hilbert space of such a
quantum theory is the tensor product of two Hilbert spaces: one for
the matter sector associated with the scalar field χ and one for the
geometry sector associated with the group field φ, namely

Hkin = Hχ ⊗Hφ . (301)

Both Hχ and Hφ are spaces of square-integrable functions over the
real line, so that Hkin = L2(R2).

geometry sector . The Hamiltonian for the (single-mode) GFT
system living on the geometry sector is given by promoting (287) to
an operator on Hφ as

Ĥφ =
1
2

sgn
(
K(0)) ( π̂2

φ∣∣K(2)
∣∣ − ∣∣K(0)∣∣φ̂2

)
, (302)

which resembles the Hamiltonian of a quantum particle with an in-
verted harmonic potential. The Schrödinger problem for the Hamil-
tonian (302) can be solved explicitly [112, 113]. Specifically, given the
shape of the potential and by virtue of general properties for the
one-dimensional Schrödinger equation (see, e.g., [258]), the energy
spectrum is continuous, σ(Ĥφ) = (−∞, ∞), and doubly-degenerate

Ĥφ|ψE
±⟩ = E|ψE

±⟩ , E ∈ R . (303)

As mentioned below (287), note that the global sign factor sgn(K(0))

in (302) is irrelevant since switching sign amounts to a relabelling
of the eigenvalue E ∈ (−∞, ∞). Thus we can set sgn(K(0)) = 1 for
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simplicity and without loss of generality in what follows. In terms of
wavefunctions, we then want to solve ĤφψE

±(φ) = E ψE
±(φ), that is

d2

dφ2 ψE
±(φ) +

(∣∣K(0)K(2)∣∣φ2 + 2
∣∣K(2)∣∣E)ψE

±(φ) = 0 . (304)

To that end, we introduce the variable

ζ =

√
2i
√∣∣K(0)K(2)

∣∣ φ (305)

so that (304) becomes

d2

dζ2 ψE
±(ζ) +

(
ν +

1
2
− ζ2

4

)
ψE
±(ζ) = 0 , (306)

with

ν = −i

√∣∣∣∣K(2)

K(0)

∣∣∣∣ E − 1
2

. (307)

(306) is called Weber equation and has known solutions in terms of
special functions known as parabolic cylinder functions [2, 201], de-
noted Dν(ζ). Specifically, the two independent solutions are given
by ψE

+(ζ) = N+Dν(ζ) and ψE
−(ζ) = N−D−ν−1(iζ), where N± are

normalisation constants and ζ and ν are given in (305) and (307). In-
terestingly, when ν is a non-negative integer n, a parabolic cylinder
function simplifies to Dn(ζ) = 2−n/2e−ζ2/4Hn(ζ/

√
2), where Hn is a

Hermite polynomial (which notably solves the differential equation
representing the eigenvalue problem for the standard harmonic oscil-
lator).

The first important property that we will need when discussing
relational quantum dynamics in Section 6.2.2 is the orthonormality
of the eigenstates |ψE

±⟩ (switching to the bra-ket notation), which for
suitable N± reads [112, 113]

⟨ψE
m|ψE′

n ⟩ = δmnδ(E − E′) , (308)

where m and n label the degeneracy (+ or −) and the Kronecker delta
δmn indicates that “+ states” and “− states” are orthogonal. (308) is
sometimes called generalised orthonormality because of the distribu-
tional nature of the Dirac delta (one can rigorously deal with distribu-
tions by considering rigged Hilbert spaces; see, e.g., [45]). Moreover,



6.2 quantum theory for single mode 157

one can decompose the Hamiltonian (302) and obtain a spectral reso-
lution in the following form [112, 113]

Ĥφ =
∫

dE E |ψE
+⟩⟨ψE

+|+
∫

dE E |ψE
−⟩⟨ψE

−|

=
∫
±

dE E |ψE
±⟩⟨ψE

±| ,
(309)

where we introduced the notation
∫
± := ∑±

∫
to take into account the

double degeneracy of the spectrum. Note that while a Schrödinger
equation for GFT with the Hamiltonian (302) was introduced in [186,
379], there was no discussion of exact solutions (even for a single field
mode).

Similarly to the deparametrised approach described in Section 3.2.2,
one can now change basis and introduce ladder operators â and â†

(which are defined just like in (106) in terms of the parameters ap-
pearing in (302)). These are to be considered kinematical operators at
this stage: the dynamics of our (parametrised) theory are only de-
fined when the quantum version of the constraint (297) is used, as we
will do in the next section. In other words, one can build a kinematical We stress that this is

different from the
deparametrised
formalism of
Section 3.2.2, which
deals with physical
states (cf. discussion
around (108)).

Fock space starting from the Fock vacuum |0⟩ defined by â|0⟩ = 0,
and building n-particle states in the usual way; for example, the one-
particle state reads |1⟩ = â†|0⟩. Moreover, one can discuss kinematical
operators built from â and â†, such as the number operator

N̂ = â†â , (310)

and the volume operator V̂ = vN̂. We use a new notation for these
kinematical operators to emphasise that these are a priori different
operators than the ones introduced in the deparametrised approach.

matter sector . As already discussed at the classical level, we
will want to use the matter field as relational clock. The quantum
theory living on Hχ is isomorphic to the Hilbert space of a particle
on a line, so we have the following properties for the χ̂ operator

χ̂|χ⟩ = χ|χ⟩ ,

⟨χ|χ′⟩ = δ(χ − χ′) ,
(311)

and similarly for its conjugate momentum

p̂χ|pχ⟩ = pχ|pχ⟩ ,

⟨pχ|p′χ⟩ = δ(pχ − p′χ) ,
(312)
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where we choose conventions with ⟨pχ|χ⟩ = 1√
2π

e−ipχχ. It follows
that one can write the identity on Hχ as

Iχ =
∫

dχ|χ⟩⟨χ| =
∫

dpχ|pχ⟩⟨pχ| , (313)

and the spectral decomposition of χ̂ and p̂χ as

χ̂ =
∫

dχ χ |χ⟩⟨χ| , (314)

Ĥχ = p̂χ =
∫

dpχ pχ |pχ⟩⟨pχ| . (315)

Notice that interpreting p̂χ as the (quantum) clock Hamiltonian (cf.
(297) and (298)) implies that the operator χ̂ in (314) will be interpreted
as time operator.4 The clock states correspond to eigenstates |χ⟩ of theAlbeit in a very

different way, χ̂ will
conceptually play a
similar role to that

of the operator (145)
in the coherent

peaked states
formulation of the

algebraic approach.

time operator χ̂. Such states “evolve” under the action of the group
generated by p̂χ as

Ûχ(α)|χ′⟩ = |χ′ + α⟩ , (316)

where

Ûχ(α) = e−ip̂χα , α ∈ R . (317)

6.2.2 Relational dynamics

One now makes use of the quantum version of the classical constraint
(290), Ĉ, to identify physical states among the kinematical ones. This
is the first step of the Dirac quantisation procedure, which allows to
discuss the notion of relational Dirac observables in a precise sense
(via the quantum analogue of (295) and (299)). At the same time, the
tensor product structure of (301) suggests that the Page–Wootters for-
malism (recalled below) could also be used to implement the notion
of relational dynamics. For this reason, we explicitly write the quan-
tum constraint as

Ĉ = p̂χ + Ĥφ

= p̂χ ⊗ Iφ + Iχ ⊗ Ĥφ ,
(318)

where Iφ and Iχ are the identity operators on Hφ and Hχ respectively.
It was shown in [227, 228] that with a constraint of the form (318),

4 More formally, one can define the time operator χ̂ as the first moment operator (314)
of the “time observable” Eχ := |χ⟩⟨χ|, in turn defined via the most general notion
of quantum observable as a positive operator-valued measure (POVM) [227, 228].
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the Dirac algorithm for a constraint quantisation (for instance imple-
mented using group averaging techniques) and the Page–Wootters
formalism yield equivalent relational dynamics, as we will exemplify
with our GFT model.

From now on, both operators and states will occasionally have a
subscript χ or φ, to clarify (when necessary) in which sector of (301)
they act or live.

dirac quantisation. A generic state in the kinematical Hilbert
space (301), |Ψkin⟩ ∈ Hkin, can be written as

|Ψkin⟩ =
∫
±

dE
∫

dpχ Ψ±(pχ, E) |pχ⟩χ ⊗ |ψE
±⟩φ . (319)

Following the Dirac programme for quantising constrained systems,
one defines physical states by demanding that they are annihilated
by the constraint (318), As mentioned, this

is conceptually
similar to the
situation in general
relativity (cf. (7)).

Ĉ|Ψphys⟩ = 0 . (320)

As is well known [367], such physical states are not normalisable in
Hkin; one needs to introduce a new inner product since ⟨Ψphys|Ψphys⟩kin

diverges, where ⟨·|·⟩kin is the inner product on (301). One way of do-
ing this is by “projecting” a kinematical state onto a physical one by
means of group averaging [279, 280, 367],

δ(Ĉ) = 1
2π

∫
dα eiαĈ , (321)

as |Ψphys⟩ = δ(Ĉ)|Ψkin⟩, and then defining a physical inner product

⟨Ψphys|Ψphys⟩phys := ⟨Ψkin|δ(Ĉ)|Ψkin⟩kin . (322)

Starting from (319) and using properties (303), (308) and (312), one
explicitly finds

|Ψphys⟩ =
∫
±

dE Ψ±(−E, E) | − E⟩χ ⊗ |ψE
±⟩φ , (323)

and

⟨Ψphys|Ψphys⟩phys =
∫
±

dE |Ψ±(−E, E)|2 . (324)
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This norm defines Hphys as the space of solutions to (320). Physical
states do not change under the flow of the total Hamiltonian Ĉ,

Ûχφ(α)|Ψphys⟩ = |Ψphys⟩ , (325)

with

Ûχφ(α) := e−iαĈ = e−iα p̂χ ⊗ e−iαĤφ , α ∈ R , (326)

and are sometimes called “timeless” or “frozen”. More recently [227,
228], they have been denoted “clock-neutral” as they describe physics
before choosing a temporal reference system. (325) is what gives rise
to the problem of time [233, 257], which can be tackled by defining
the quantum counterpart of Dirac relational observables (cf. (295) and
(299)). Indeed, one can now choose the temporal reference system
(namely, the clock) associated with the Hilbert space Hχ with proper-
ties (311)–(316), and find the quantised version of (299) as [227, 228]

F̂fφ,χ(χ0) =
1

2π

∫
dχ |χ⟩⟨χ| ⊗

∞

∑
n=0

in

n!
(χ − χ0)

n
[

f̂φ, Ĥφ

]
n

, (327)

where the commutator [ f̂φ, Ĥφ]n := [[ f̂φ, Ĥφ]n−1, Ĥφ] and [ f̂φ, Ĥφ]0 :=
f̂φ. Thanks to the Baker–Campbell–Hausdorff formula, (327) can be
equivalently recast as

F̂fφ,χ(χ0) =
1

2π

∫
dχ |χ⟩⟨χ| ⊗ Ûφ(χ − χ0) f̂φÛ†

φ(χ − χ0)

=
1

2π

∫
dα Ûχφ(α)

(
|χ0⟩⟨χ0| ⊗ f̂φ

)
Û†

χφ(α) ,
(328)

where Ûφ(α) = e−iĤφα, Ûχφ(α) is given in (326), and in the last line
we changed integration variable, χ → α + χ0. Crucially, quantum
relational observables defined using the prescription (327) commute
with the constraint operator Ĉ,[

F̂fφ,χ(χ0), Ĉ
]
= 0 , (329)

and are thus called (quantum) Dirac observables.5

5 Since our clock Hamiltonian is simply Ĥχ = p̂χ, the commutator in (329) vanishes
strongly (i.e., algebraically). In [227, 228] it is shown that for more complicated clock
Hamiltonians one can still prove that a Dirac observable associated to a physical
phase space function weakly commutes with the constraint Ĉ, namely when applied
to physical states.
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The prototype Dirac observable for our GFT model is the number
operator f̂φ = N̂ (cf. (310)); thus, we will be specifically interested in The number operator

is directly related to
the volume operator
usually adopted in
GFT cosmology, as
seen in Chapter 3.

the observable

N̂D(χ0) :=
1

2π

∫
dα Ûχφ(α)

(
|χ0⟩⟨χ0| ⊗ N̂

)
Û†

χφ(α) , (330)

where the subscript D refers to the fact that this is a Dirac observable
on the total Hilbert space. As opposed to the kinematical counterpart
N̂, the operator N̂D(χ0) evolves as the parameter χ0 runs (taking the
values the time operator χ̂ can take), meaning that (330) truly defines
relational quantum dynamics on Hphys for the GFT number operator.
In particular, even if physical states do not transform under the action
of the Hamiltonian constraint Ĉ, we will evaluate the relational Dirac
observable (330) using the physical inner product (322) so as to obtain
an expectation value for the number operator which indeed changes
with respect to the matter scalar field.

page–wootters formalism . The framework introduced by Page
and Wootters [309, 381] provides another way to define relational dy-
namics for systems subject to a quantum constraint of the form (318).
Specifically, starting again with a kinematical Hilbert space (301) that
is split into clock and system (our matter scalar field χ and single-
mode GFT model, respectively), one selects physical states using the
constraint equation (320). The apparent difference with the previous
description arises when choosing an inner product on Hphys to com-
pletely specify the space of solutions of (320).

The conceptual idea behind the Page–Wootters formalism is to in-
terpret quantum theory with conditional probabilities. More precisely,
one defines the state of a system at a given instant of (relational) time
as a solution to the constraint equation conditioned on a subsystem of
the theory to be in a state corresponding to that time. Following this
idea, we define the state of our single-mode GFT system at a given
time, say χ0, as a solution to the constraint (320) conditioned on the
clock being in the state |χ0⟩, Figure 23 provides a

pictorial
representation of the
physical (history)
state (332) and the
conditioning (331).

|ψ(χ0)⟩φ :=
(
⟨χ0| ⊗ Iφ

)
|Ψphys⟩ . (331)

It follows that a physical state can be expressed as a “history state”,
namely

|Ψphys⟩ =
∫

dχ0 |χ0⟩χ ⊗ |ψ(χ0)⟩φ , (332)
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since Iχ ⊗ Iφ =
∫

dχ0|χ0⟩⟨χ0| ⊗ Iφ. Indeed, the state (332) encodes
information about the whole timeline. The usual formulation of quan-
tum mechanics for the conditioned states can be recovered in terms
of a Schrödinger equation in the clock time χ0 [309, 381],

i
d

dχ0
|ψ(χ0)⟩φ = Ĥφ|ψ(χ0)⟩φ , (333)

which is easily found from the constraint equation by “condition-
ing” as

(
χ⟨χ0| ⊗ Iφ

)
Ĉ|Ψphys⟩ = 0. Moreover, one introduces what

is known as the Page–Wootters inner product [227, 228, 352]

⟨Ψphys|Ψphys⟩PW := ⟨Ψphys|
(
|χ0⟩⟨χ0| ⊗ Iφ

)
|Ψphys⟩kin , (334)

which is consistent with the usual inner product on Hφ at all times
since, using (311),

⟨Ψphys|Ψphys⟩PW =

(∫
dχ′

χ⟨χ′| ⊗ φ⟨ψ(χ′)|
)(

|χ0⟩χχ⟨χ0| ⊗ Iφ

)
×
(∫

dχ̃ |χ̃⟩χ ⊗ |ψ(χ̃)⟩φ

)
(335)

= φ⟨ψ(χ0)|ψ(χ0)⟩φ ,

where φ⟨ψ(χ0)|ψ(χ0)⟩φ = φ⟨ψ(0)|ψ(0)⟩φ is independent of χ0 thanks
to (333) and the fact that Ĥφ is self-adjoint (cf. (302)).

In what follows we will provide an application of the equivalence
shown in [227, 228] between the relational dynamics defined using a
Dirac quantisation and using the Page–Wootters formalism, mainly
focussing on the number operator of our GFT model. To begin with,
it is easy to check explicitly that

⟨Ψphys|Ψphys⟩PW =
∫
±

dE |Ψ±(−E, E)|2 (336)

is the same as (324). Note that in the following calculations we use
the generic expressions for the physical inner product (322) and the
Page–Wootters inner product (334) instead of their explicit form (336)
(or (324)).
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number dynamics . We can now turn to the calculation of the
expectation value of the Dirac observable associated to the number
operator (330), using the physical inner product. First, we find

N̂D(χ0)|Ψphys⟩ =
1

2π

∫
dα Ûχφ(α)

(
|χ0⟩⟨χ0| ⊗ N̂

)
|Ψphys⟩

=
1

2π

∫
dα Ûχ(α)|χ0⟩⟨χ0| ⊗ Ûφ(α)N̂|Ψphys⟩

= δ(Ĉ)
(
|χ0⟩⟨χ0| ⊗ N̂

)
|Ψphys⟩ ,

(337)

where we used Û†
χφ(χ)|Ψphys⟩ = |Ψphys⟩ (cf. (325)) and the defini-

tions (326) and (321). Then, we calculate the expectation value in the
physical inner product (322) as

ND(χ0) := ⟨Ψphys|N̂D(χ0)|Ψphys⟩phys

= ⟨Ψphys|δ(Ĉ)
(
|χ0⟩⟨χ0| ⊗ N̂

)
|Ψphys⟩phys

= ⟨Ψkin|δ(Ĉ)
(
|χ0⟩⟨χ0| ⊗ N̂

)
δ(Ĉ)|Ψkin⟩kin

= ⟨Ψphys|
(
|χ0⟩⟨χ0| ⊗ N̂

)
|Ψphys⟩kin

= ⟨Ψphys|N̂|Ψphys⟩PW .

(338)

Of course, using the definition of conditioned states (331), it is easy to
show that (338) gives back the result of the deparametrised approach
of Section 3.2.2:

ND(χ0) = ⟨Ψphys|
(
|χ0⟩⟨χ0| ⊗ N̂

)
|Ψphys⟩kin

= φ⟨ψ(χ0)|N̂|ψ(χ0)⟩φ

= φ⟨ψ| Û†
φ(χ0) N̂ Ûφ(χ0) |ψ⟩φ ,

(339)

where |ψ⟩φ = |ψ(0)⟩φ and we switched from the Schrödinger picture
to the Heisenberg picture in the last equality. Indeed, (339) shows
that the expectation value of the relational Dirac observable N̂D(χ0),
computed with the physical inner product on Hphys, is equivalent to
the expectation value of what was denoted N̂(χ) = Û†(χ) â† â Û(χ)

in the deparametrised quantum theory (cf. (111) and (109), here for
a single mode). Of course, the same holds true for the volume op- In particular, it is

straightforward to
obtain the relational
quantum dynamics
of Dirac observables
for the volume and
the Ĉ operators of
Section 3.3.2, i.e.,
(154) and (155).

erator (and any other one built from ladder operators), so that all
the GFT results and applications to cosmology are recovered in our
parametrised theory.

The equivalence established in (339) strengthens the deparametrised
approach described in Section 3.2.2 and Section 3.3.2, since the Dirac
observable N̂D(χ0) in (330) is defined relationally with respect to the
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eigenvalues of a time operator χ̂, in contrast with the deparametrised
theory where the clock label is chosen before quantisation. In this
sense, the construction of Section 6.2 belongs to the “tempus post
quantum” type of relational dynamics discussed in [233].

Moreover, (338) shows that ND(χ0) is also equal to the Page–Wootters
expectation values of the corresponding kinematical operator N̂, which
allows to reinterpret GFT observables as conditional on the clock. In
particular, this suggests a canonical picture characterised by a split-
ting between quantum geometry and a constant-time “slice” on the
history state (332), where the internal time takes a fixed value χ0 (see
left panel of Figure 23). This construction is similar in spirit to the
3+ 1 splitting of canonical GR, where one describes evolution as a se-
quence of constant time hypersurfaces. While the physical state (332)
of Page and Wootters is a superposition of all clock states and all GFT
states, it allows to answer the relevant questions of what happens at
any specific value of relational time. In other words, this approach
justifies the interpretation of the GFT quanta as being associated to
the same clock reading since the conditioned state (331), by definition,
involves a projection onto the χ0 slice (see right panel of Figure 23).

|Ψphys⟩

|ψ(χ0)⟩ϕ
χ0 χ0

χ0

χ0 χ0

Figure 23: Left: the three-dimensional shape represents the history state
|Ψphys⟩ given in (332), where the Hilbert space of the clock is visu-
alised horizontally. The quantum geometry (GFT) state |ψ(χ0)⟩φ

at the time χ0 is obtained by conditioning |Ψphys⟩ on the clock be-
ing in the state |χ0⟩ (cf. (331)) and is pictorially represented by a
two-dimensional slice. Right: the tetrahedra counted by the num-
ber expectation value ND(χ0) in (339) can be thought as labelled
by the same value of the scalar field.
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6.3 extension to multiple field modes

In this section we show that our construction can be extended to any
number of Peter–Weyl modes. While in principle a GFT contains an
infinite number of modes J (see (58)), we will consider a truncation
to a finite (but arbitrary) number of modes. Such a truncation could
be elegantly implemented using the quantum group SUq(2),6 where
the deformation parameter q is related to a nonvanishing cosmologi-
cal constant (see, e.g., [71, 161, 270, 353]), which leads to a maximum
irreducible representation and hence a maximum value for the multi-
index J. Similar ideas on q-deformation were recently applied in the
context of three-dimensional group field theories in [193], and pro-
vide a way to implement a cut-off value Jmax in the Peter–Weyl de-
composition (58). We assume such a cut-off in the following sections.

6.3.1 Single reparametrisation symmetry

Without making any assumptions on magnetic indices and on the rel-
ative sign of K(0)

J and K(2)
J for the various modes, we start the analysis

with the generic action given in (285). As a first generalisation of the
procedure described in Section 6.1, we proceed here by introducing
a parameter τ for the theory with multiple field modes. Then, all the
φJ(τ)’s as well as χ(τ) depend on τ, and by means of the chain rule
one obtains the action

S[φ, χ] =
1
2

∫
dτ ∑

J

(
K(0)

J φ−J φJ(∂τχ)− K(2)
J

(∂τ φ−J)(∂τ φJ)

∂τχ

)
. (340)

All the key points discussed for the single-mode scenario also apply
here. In particular, while we have enlarged the phase space, the theory
is now subject to a Hamiltonian constraint (cf. (290))

C = Htot
φ + pχ = 0 , (341)

where, rewriting (103) (without interactions) here for convenience,

Htot
φ = −1

2 ∑
J

πJ(χ)π−J(χ)

K(2)
J

+ K(0)
J φJ(χ)φ−J(χ)

 , (342)

6 This is akin to how the Turaev–Viro model is obtained as a regularised Ponzano–
Regge model (cf. Section 2.2.2), and similarly for the four-dimensional Barrett–Crane
model (see footnote 14).
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with momenta given by

πJ = −K(2)
J

∂τ φ−J

∂τχ
, (343)

pχ =
1
2 ∑

J

(
K(0)

J φ−J φJ + K(2)
J

(∂τ φ−J)(∂τ φJ)

(∂τχ)2

)
. (344)

The equations of motion for every group field mode, ∂τ φJ = −Nπ−J/K(2)
J ,

and for the matter field, ∂τχ = N, can be obtained as in (292). They
also follow from the action (in Hamiltonian form)

S =
∫

dτ

(
∑

J
πJ∂τ φJ + pχ∂τχ − NC

)
, (345)

which generalises (293) for multiple modes.
Finally, in complete analogy with Section 6.1, one can adopt the

strategy of relational Dirac observables and define quantities satisfy-
ing {F, C} ≈ 0 as

Ffφ,χ(χ0) ≈
∞

∑
n=0

(χ0 − χ)n

n!
{ fφ, Htot

φ }n , (346)

where Htot
φ is given in (342) and fφ is now a function of multiple GFT

modes. The complete observable Ffφ,χ(χ0) associates values of fφ to
the specific relational time χ = χ0 (see Section 6.1).

The quantum theory corresponding to the above construction is
obtained in the usual manner by means of the commutators[

φ̂J , π̂J′
]
= iδJ J′ ,

[χ̂, p̂χ] = i ,
(347)

where the kinematical Hilbert space can be written as

Hkin = Hχ ⊗Htot
φ , (348)

with

Htot
φ =

⊗
J

HφJ , (349)

namely as a tensor product of a matter clock sector Hχ (just as in
(301)) and the total GFT Hilbert space given by the tensor product of
single-mode Hilbert spaces HφJ for the various modes.
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Even though the Hamiltonian Ĥtot
φ (obtained by quantising (342), cf.

(113)) couples modes in pairs (J is coupled to −J), we showed in Sec-
tion 3.2.2 that it can be written as the sum over modes of single-mode
contributions (see discussion around (122)). As we have seen, one can
distinguish between two cases based on the relative signs of K(0)

J and

K(2)
J , which lead to the harmonic oscillator (HO) and squeezing (SQ)

Hamiltonians in (123); indeed, the total Hamiltonian for a free GFT
can be written as Recall that JHO is

the set of J such that
K(0)

J and K(2)
J have

the same sign and
JSQ is the set of J
such that K(0)

J and

K(2)
J have opposite

signs.

Ĥtot
φ = ∑

J∈JHO

ĤJ + ∑
J∈JSQ

ĤJ ; (350)

we refer to the explanation around (122) and (123) for all the details.
In (350) we are suppressing the explicit mentioning of the identity
operators acting on all the other factors of Htot

φ ; i.e., a tensor product
with

⊗
J′ ̸=J IφJ′ is understood for every single-mode Hamiltonian ĤJ .

Both types of single-mode Hamiltonians in (350) (cf. (123)) admit a
spectral decomposition.7 Specifically, one can make use of (309) and
the standard properties of harmonic oscillator-like Hamiltonians to
obtain a total spectral decomposition for Ĥtot

φ of the form

Ĥtot
φ = ∑

J
ĤJ = ∑

J

(∫
∑

E
EJ |ψEJ ⟩⟨ψEJ |

)
, (351)

where the sum-integral notation introduced in [227, 228] is used to
take into account all modes in a compact way (it represents a sum for
modes J ∈ JHO and an integral

∫
± for modes J ∈ JSQ). Accordingly,

the notation |ψEJ ⟩ refers to harmonic oscillator number eigenstates as-
sociated with discrete energy eigenvalues EJ for J ∈ JHO,8 and squeez-
ing Hamiltonian eigenstates |ψEJ

± ⟩ introduced in Section 6.2.1, with
continuous label EJ , for J ∈ JSQ.

Since every ĤJ in the total Hamiltonian only acts on the correspond-
ing HφJ (namely the factor of (348) with the same J), one can easily
show that

Ĥtot
φ

(⊗
J

|ψEJ ⟩
)

= Etot

(⊗
J

|ψEJ ⟩
)

, (352)

7 While the harmonic oscillator case is solved in any quantum mechanics textbook,

the case with K(0)
J and K(2)

J having opposite signs is explicitly given in Section 6.2.1
using the (φ̂, π̂) basis, see (302) and discussion thereafter.

8 Specifically, EJ = ϵJωJ

(
n + 1

2

)
for J ∈ JHO, with n ∈ N0 (cf. (123)).
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where
⊗

J |ψEJ ⟩ ∈ Htot
φ and Etot := ∑J EJ . Then, one can use the quan-

tum constraint, Ĉ = p̂χ ⊗ Itot
φ + Iχ ⊗ Ĥtot with Itot

φ =
⊗

J IφJ , to for-
mally define a group averaging operation δ(Ĉ) (see (321)) to obtain
physical states. As in the single-mode scenario, one starts with a kine-
matical state

|Ψkin⟩ =
∫
∑
{EJ}

∫
dpχ Ψ (pχ, {EJ}) |pχ⟩ ⊗

(⊗
J

|ψEJ ⟩
)

, (353)

where Ψ(pχ, {EJ}) depends on discrete EJ variables for all J ∈ JHO

and on continuous EJ variables for all J ∈ JSQ, which are respectively

all summed and integrated over with the notation
∫
∑
{EJ}

. Then, a phys-

ical state |Ψphys⟩ = δ(Ĉ)|Ψkin⟩ reads

|Ψphys⟩ =
∫
∑
{EJ}

Ψ (−Etot, {EJ}) | − Etot⟩ ⊗
(⊗

J

|ψEJ ⟩
)

. (354)

By suitably generalising the construction for multiple field modes,
the Page–Wootters formalism described in Section 6.2 can be applied
here. In particular, one can define the conditioned state |ψ(χ0)⟩φtot ∈
Htot

φ as

|ψ(χ0)⟩φtot :=
(
⟨χ0| ⊗ Itot

φ

)
|Ψphys⟩ , (355)

and check that both the Page–Wootters inner product (defined as in
(334) with Iφ replaced by Itot

φ ) and the physical inner product (322)
evaluate to

⟨Ψphys|Ψphys⟩PW = ⟨Ψphys|Ψphys⟩phys =
∫
∑
{EJ}

∣∣Ψ± (−Etot, {EJ})
∣∣2 .

(356)

Since the procedure is the same as in the single-mode case, we
can readily show the main results as follows. First, one defines the
quantum version of (346) for the total number operator9

N̂tot := ∑
J

[
â†

J âJ ⊗
(⊗

J′ ̸=J

IφJ′

)]
, (357)

9 We are here being extra careful with notation for the sake of precision, for example
mentioning the identity operators explicitly in (357).
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generalising (330) as

N̂tot
D (χ0) :=

1
2π

∫
ds
[
Ûχ(s)⊗

(⊗
J

ÛφJ (s)
)]

×
(
|χ0⟩⟨χ0| ⊗ N̂tot

) [
Û†

χ(s)⊗
(⊗

J

Û†
φJ
(s)
)]

.
(358)

In (358), the tensor product of operators

Ûχ(s)⊗
(⊗

J

ÛφJ (s)

)
:= e−isp̂χ ⊗

(⊗
J

e−isĤJ

)
(359)

leaves the physical state (354) invariant (cf. (325) and (326)).
Finally, exactly as in (338) and (339), one shows that

Ntot
D (χ0) := ⟨Ψphys|N̂tot

D (χ0)|Ψphys⟩phys

= ⟨Ψphys|N̂tot|Ψphys⟩PW

= φtot⟨ψ(χ0)|N̂tot|ψ(χ0)⟩φtot ,

(360)

where we used the conditioned state of the Page–Wootters formalism
(355) in the last equality. Recalling that the conditioned state satisfies
a Schrödinger equation with respect to χ0 (cf. (333)), we recover the
results from the deparametrised approach for a GFT with multiple
modes since, working in the Heisenberg picture, (360) is

Ntot
D (χ0) = φtot⟨ψ|

[⊗
J

Û†
φJ
(χ0)

]
N̂tot

[⊗
J

ÛφJ (χ0)
]
|ψ⟩φtot

= φtot⟨ψ| ∑
J

Û†
φJ
(χ0) â

†
J âJ ÛφJ (χ0) |ψ⟩φtot ,

(361)

namely the expectation value of (111) (cf. also (109)). Again note that
a tensor product with

⊗
J′ ̸=J IφJ′ is understood in the last line of (361).

In summary, this section simply shows that one can properly in-
troduce both a Dirac quantisation and the Page–Wootters formal-
ism for a parametrised GFT with any number of Peter–Weyl modes,
and obtain a generalisation of all the results of Section 6.1 and Sec-
tion 6.2. From a conceptual point of view, everything is analogous to
the single-mode case: the quantum theory obtained from our parametrised
GFT is still characterised by a Hilbert space split into clock and geom-
etry (cf. (348)). By carefully adapting the formalism to accommodate
multiple GFT modes, one finds a clear notion of physical relational ob-
servables representing quantum geometrical quantities (for instance,
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the total number of GFT quanta in the various modes (361)) for every
value of relational time.

While we have assumed a maximum value for the Peter–Weyl label
Jmax in the above scenario, one might be able to remove the cut-off and
consider the full GFT using the theory of infinite tensor products firstly
developed in [290] and implemented in the context of loop quantum
gravity in [347, 363]. In particular, extra care would be needed to
make sure the inner product (356), which in principle can contain
infinite sums and integrals, converges. Such questions require func-
tional analysis techniques that are beyond the scope of the present
work, and we leave them for future research.

6.3.2 Many reparametrisation symmetries and multi-fingered time

Here we go beyond the simple generalisation of Section 6.3.1, look-
ing into the possibility of having different clocks for different GFT
modes. In the quantum theory of Section 6.2, which focuses on a sin-
gle (group field) mode, the Hilbert space (301) seems to have an “arti-
ficial” symmetry as it splits into two equal pieces, one for the matter
clock and one for the GFT mode. This is not the case for the theory of
Section 6.3.1, where we consider multiple modes on the GFT sector,
but we still make use of one single clock (cf. (348)). In this section
we restore such a symmetry so that we have a clock Hilbert space
that is “as big” as the GFT Hilbert space. In other words, we study
the case where every GFT mode J has its own relational time, which
realises what is known as multi-fingered time evolution [253, 254], as
we explain below. This relates to some of the ideas of [272] where the
various GFT quanta are associated with different “single-quantum
times”; however, in that scenario one encounters the problem of syn-
chronisation since it is not clear how to find a unique time variable to
describe the whole many-body system (see also the earlier work [250]
for a classical picture). Here, we will show that by working with field
modes – and “single-mode times” – rather than particles, one can still
obtain well-defined Dirac observables and therefore pose meaningful
relational dynamical questions.

In order to discuss “multiple times” and hence generalise the single
reparametrisation invariance of Section 6.3.1, we employ the follow-
ing trick. First, we need to rewrite the action (285) as a sum over
single-J contributions, S0[φ] =

∫
dχ ∑J LJ ; namely, we separate the

theory into uncoupled modes already from classical considerations
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in the Lagrangian formalism. In short, one can use the following clas-
sical field redefinitions that combine the J and −J modes (somewhat
as in (120)),

φJ −→ φ̃J =
1√
2
(φJ + iφ−J) ,

φ−J −→ φ̃−J =
1√
2
(φJ − iφ−J) ,

(362)

together with the corresponding “velocities” ∂χ φ̃J and ∂χ φ̃−J , to show
that the summands of the Lagrangian in (285) can be written in the
following form

1
2

(
K(0)

J φ̃−J φ̃J − K(2)
J ∂χ φ̃−J∂χ φ̃J

)
=

1
4

(
K(0)

J φ2
J − K(2)

J (∂χ φJ)
2

+ K(0)
J φ2

−J − K(2)
J (∂χ φ−J)

2
)

=:
1
2
(LJ + L−J) . (363)

Just as with the Hamiltonians (see discussion above (114)), the La-
grangians LJ and L−J provide the same contribution to the sum ∑J

so that one can write the action (285) as The same
decomposition was
already reached in a
different way in
[185].

S0[φ] =
1
2

∫
dχ ∑

J

(
K(0)

J φ2
J − K(2)

J (∂χ φJ)
2
)

=
∫

dχ ∑
J
LJ .

(364)

Next, we move the integral sign under the summation sign in (364)
and rename dummy integration variables such that, for every element
in the sum over J, χ gets labelled with an index as χJ . This allows to
write the action equivalently as

S0[φ] =
1
2 ∑

J

∫
dχJ

(
K(0)

J φ2
J (χJ)− K(2)

J
(
∂χJ φJ(χJ)

)2
)

. (365)

Then, one can apply the parametrisation strategy adopted in previ-
ous sections, but here for every mode J. In other words, one can
parametrise the theory multiple times (adding a symmetry for ev-
ery J) by introducing a set of parameters τJ . Just as in Section 6.1,
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this process essentially doubles the phase space and one can write
the parametrised action as

S[φ, χ] =
1
2 ∑

J

∫
dτJ

(
K(0)

J φ2
J (∂τJ χJ)− K(2)

J
(∂τJ φJ)

2

∂τJ χJ

)

=
1
2

∫
dτ ∑

J

(
K(0)

J φ2
J (∂τχJ)− K(2)

J
(∂τ φJ)

2

∂τχJ

)
.

(366)

The first line of (366) explicitly shows multiple reparametrisation in-
variances (one for every mode) and in the second line we renamed
the dummy integration variables τJ to τ, so that we could write the
action as a single integral. Note that while in the action (340) the same
χ contributes to all the terms in the sum, in (366) we have a different
χJ for every J. With the usual steps, one can easily derive the Hamil-
tonian theory from (366). The conjugate momenta to φJ and χJ are
defined for every mode J as

πJ = −K(2)
J

∂τ φJ

∂τχJ
,

pχJ =
1
2

(
K(0)

J φ2
J + K(2)

J
(∂τ φJ)

2

(∂τχJ)2

)
.

(367)

Moreover, the theory is subject to a set of independent first-class con-
straints (one for every mode),

CJ = HJ + pχJ = 0 , (368)

with

HJ = −1
2

π2
J (χ)

K(2)
J

+ K(0)
J φ2

J (χ)

 . (369)

While the constraint (341) was associated with a single lapse function,
one here has a mode-dependent lapse NJ for every constraint (368).
Indeed, just like with (293) and (345), it is easy to see that this theory
can be obtained from an action

S =
∫

dτ ∑
J

(
πJ∂τ φJ + pχJ ∂τχJ − NJCJ

)
, (370)
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which explicitly shows that the total super-Hamiltonian is given by

∑J NJCJ . Since the modes are independent, one obtains the equations
of motion

∂τ φJ = {φJ , ∑J NJCJ} = −NJ
πJ

K(2)
J

,

∂τχJ = {χJ , ∑J NJCJ} = NJ ,

(371)

clearly showing that the lapses NJ describe the rate of change of the
various χJ (which will be used as clocks) with respect to τ.

Following [135, 190, 358, 366], one can generalise the notion of rela-
tional Dirac observables to systems with multiple constraints. In par-
ticular, the scenario discussed here is easily tractable since the con-
straints form an Abelian algebra,10 {CJ , CJ′} = 0. Because a gauge
orbit is multi-dimensional, one needs to introduce as many dynami-
cal clocks as there are constraints. Then, similarly to the single-clock
case, a complete observable can be defined as a relation between a
phase space function fφ (of the φ degrees of freedom only) and a
set of independent clocks χJ . In short, the relational Dirac observable
(generalising (299) and (346)) defined as [135, 190, 358, 366]

Ffφ,{χJ}({χ0
J}) :=

∞

∑
n=0

1
n!

{
fφ, ∑

J
αJ HJ

}
n

∣∣∣∣∣
αJ→(χ0

J−χJ)

(372)

is invariant under the flows generated by the constraints (368). Essen-
tially, Ffφ,{χJ}({χ0

J}) gives the value of fφ when the dynamical clocks
χJ take the values χ0

J for all J’s (the curly brackets in (372) are meant to
emphasise that we deal with a set of clocks and not with the J-th clock
only). The linear combination of the single-mode GFT Hamiltonians

∑J αJ HJ can be used to define a physical Hamiltonian11 which gener-
ates evolution for the complete observables (372). Indeed, since one
can show that ∂χ0

J
Ffφ,{χJ}({χ0

J}) = {Ffφ,{χJ}({χ0
J}), HJ}, the quantity

∑J αJ HJ is the generator of multi-fingered time evolution; it evolves
observables along the various arbitrary parameters αJ (related to the
lapse functions in (371)) associated with the clocks χJ (see [135, 190,
358, 366] for details).

10 Not many physical systems exhibit this property. An example with multiple con-
straints forming an Abelian algebra can be found in [102, 166], where loop quantum
gravity techniques are applied to spherically symmetric settings.

11 Note that incorporating the J-dependent flow parameters into the definition of the
Hamiltonian is equivalent to a rescaling of τ such that the initial and final configu-
rations are separated by a time interval of length unity.
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All the properties of the quantum theory corresponding to the ac-
tion (370) easily follow by suitably generalising the constructions of
previous sections. The canonical operators now satisfy[

φ̂J , π̂J′
]
= iδJ J′ ,[

χ̂J , p̂χJ′

]
= iδJ J′ ,

(373)

and the kinematical Hilbert space is defined as

Hkin = Htot
χ ⊗Htot

φ =
(⊗

J

HχJ

)
⊗
(⊗

J

HφJ

)
=
⊗

J

(
HχJ ⊗HφJ

)
,

(374)

where in the last equality we rearranged the single-mode Hilbert
spaces to show that this theory can be seen as a tensor product over
modes of the theory studied in Section 6.2. While we already dealt
with a theory on Htot

φ with multiple GFT modes in Section 6.3.1, it
also follows from the structure in (374) that all the kinematical con-
siderations for the “matter sector” (cf. (311)–(317)) described in Sec-
tion 6.2 apply here. Thus, all single-mode quantities described there
will simply obtain a J label here (for both the φ and χ sectors).

In order to follow Dirac’s quantisation programme, we write down
the quantum constraints (corresponding to (368)) on the Hilbert space
(374) as

ĈJ = p̂χJ ⊗
(⊗

J′ ̸=J

IχJ′

)
⊗ Itot

φ + Itot
χ ⊗ ĤφJ ⊗

(⊗
J′ ̸=J

IφJ′

)
, (375)

where the various identity operators clarify that each ĈJ acts non-
trivially only on the respective J-th piece of Htot

χ and Htot
φ in (374). A

physical state is annihilated by all the constraints separately,

ĈJ |Ψphys⟩ = 0 ∀ J , (376)

and is defined via group averaging as |Ψphys⟩ := ∏J δ(ĈJ)|Ψkin⟩, where
a generic state |Ψkin⟩ on (374) reads

|Ψkin⟩ =
∫
∑
{EJ}

∫
∏

J
dpχJ Ψ

(
{pχJ}, {EJ}

) [⊗
J

(
|pχJ ⟩⊗ |ψEJ ⟩

)]
. (377)
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Here we adopt the notation of Section 6.3.1 (see in particular (353)),
and

∫
∏J dpχJ means we integrate over the scalar field momenta for

all modes. One obtains the physical states

|Ψphys⟩ =
∫
∑
{EJ}

Ψ({−EJ}, {EJ})
[⊗

J

(
| − EJ⟩ ⊗ |ψEJ ⟩

)]
, (378)

which naturally generalises all the findings of previous sections (cf.
(323) and (354)). Aiming to discuss again the equivalence between
the physical inner product with multiple constraints (denoted with
an M), which we define as

⟨Ψphys|Ψphys⟩M
phys := ⟨Ψkin|∏

J
δ(ĈJ)|Ψkin⟩kin , (379)

and the Page–Wootters inner product, one needs to extend the Page–
Wootters construction to the case of multiple clocks. In short, by in-
troducing the “multi-conditioned” state in Htot

φ

|ψ({χ0
J})⟩M

φtot
:=
[(⊗

J

⟨χ0
J |
)
⊗ Itot

φ

]
|Ψphys⟩ , (380)

which generalises (331) by “projecting” all clocks to the values χ0
J ,

12

one is lead to the following definition of the multi-fingered (M) time
Page–Wootters inner product

⟨Ψphys|Ψphys⟩M
PW := ⟨Ψphys|

[(⊗
J

|χ0
J ⟩⟨χ0

J |
)
⊗ Itot

φ

]
|Ψphys⟩kin . (381)

Then, as expected from the results for a single clock of [227, 228],

⟨Ψphys|Ψphys⟩M
phys = ⟨Ψphys|Ψphys⟩M

PW =
∫
∑
{EJ}

|Ψ({−EJ}, {EJ})|2 .

(382)

We point out that the steps presented here represent the first explicit
construction of the Page–Wootters formalism extended to the case
of multiple (but finitely many) clocks, which corresponds to a Dirac
quantisation with multiple Hamiltonian constraints. We note how-

12 Note that a physical state can be written as

|Ψphys⟩ =
(⊗

J

∫
dχ0

J |χ0
J ⟩
)
⊗ |ψ({χ0

J})⟩M
φtot

so that it encodes information about all the timelines in their entirety; we call it “state
of histories”, generalising (332).
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ever that this could be seen as a special case of [226], where the
Page–Wootters formalism is formally applied to field theories. As
mentioned above, the limiting case of infinitely many modes (and
thus clocks) could be related to infinite tensor product techniques,
and indeed be dealt with wave-functional treatments for quantum
field theories (which are employed in [226]).

We now proceed to the formal quantisation of the classical observ-
able (372),

F̂fφ,{χJ}({χ0
J}) :=

[⊗
J

( ∫ dχJ

2π
|χJ⟩⟨χJ |

)]
⊗

∞

∑
n

in

n!

[
f̂φ , ∑

J
αJ ĤφJ

]
n

∣∣∣∣∣
αJ→(χJ−χ0

J )

,

(383)

which represents a natural generalisation of the quantity (327) intro-
duced in [227, 228]. In this sense, (383) extends the discussion of Dirac
observables (and their connection to the Page–Wootters formalism) to
the multi-fingered time scenario, which we now apply to our GFT set-
ting.

From the physical Hamiltonian ∑J αJ ĤφJ one can define the multi-

fingered evolution operator
⊗

J ÛφJ (αJ) := e−i ∑J αJ ĤφJ on Htot
φ , where

the factors ÛφJ (αJ) = e−iαJ ĤJ generalise the evolution operators of
previous sections (cf. (328)) by evolving along the mode-dependent
time parameter αJ . Then, specialising the expression (383) to the GFT
number operator with f̂φ = N̂tot (as in Section 6.3.1, cf. (357)), one
can define

N̂tot
D ({χ0

J}) :=
[⊗

J

( ∫ dχJ

2π
|χJ⟩⟨χJ |

)]
(384)

⊗
[(⊗

J

ÛφJ (χJ − χ0
J )
)
N̂tot

(⊗
J

Û†
φJ
(χJ − χ0

J )
)]

=
∫

∏
J

dαJ

2π
Ûtot

χφ({αJ})
[(⊗

J

|χ0
J ⟩⟨χ0

J |
)
⊗ N̂tot

]
(Ûtot

χφ)
†({αJ}) ,

where Ûtot
χφ({αJ}) :=

⊗
J

(
ÛχJ (αJ)⊗ ÛφJ (αJ)

)
is the generalisation of

(326), we used the properties of the clock states introduced in Sec-
tion 6.2 (which now apply to all the clocks χJ), and we changed in-
tegration variables χJ → αJ + χ0

J in the last line. We emphasise that
N̂tot

D ({χ0
J}) is different from (358) as it depends on multiple clocks

and thus it represents a multi-fingered time version of the number
operator. Recall that the subscript D means that (384) defines a true
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Dirac observable, which strongly commutes with all the constraints,
namely

[
N̂tot

D ({χ0
J}), ĈJ

]
= 0 ∀ J . (385)

Finally, by means of the property (generalising (337))

N̂tot
D ({χ0

J})|Ψphys⟩ = ∏
J

δ(ĈJ)
[(⊗

J

|χ0
J ⟩⟨χ0

J |
)
⊗ N̂tot

]
|Ψphys⟩ , (386)

one can use the inner products (379) and (381), as well as the state
(380), to show that

⟨Ψphys|N̂tot
D ({χ0

J})|Ψphys⟩M
phys = ⟨Ψphys|N̂tot|Ψphys⟩M

PW

= M
φtot

⟨ψ({χ0
J})|N̂tot|ψ({χ0

J})⟩M
φtot

= M
φtot

⟨ψ| ∑
J

Û†
φJ
(χ0

J ) â
†
J âJ ÛφJ (χ

0
J ) |ψ⟩M

φtot
,

(387)

where |ψ⟩M
φtot

= |ψ(0, . . . , 0)⟩M
φtot

and we suppressed again the trivial
factors

⊗
J′ ̸=J IφJ′ . As expected, the last line in (387) shows that every

GFT mode in the total number operator evolves according to its own
relational time parameter.

At this point we want to stress that since in a free GFT the various
J modes are decoupled, a multi-fingered setting still allows to have
well-defined Dirac observables, both classically and at the quantum
level (in the sense that they commute with the constraints (385)). In
other words, synchronisation between the different J-times is not re-
ally an issue here: while one can indeed reduce to the synchronised
case of Section 6.3.1 by gauge-fixing all the χJ to be the same χ (us-
ing the freedom coming from all the reparametrisation symmetries),
this is not necessary in order to answer physically meaningful ques-
tions. Indeed, one can study the dynamics of the various modes of
the number operator by means of mode-dependent clocks, and still
be able to compute the total number operator combining all the in-
formation (i.e., summing all the separate contributions together). In a
sense, it does not matter whether one uses a unique time or a differ-
ent time for every mode (even with an infinite number of modes), as
they are independent.
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On this note, we also emphasise that the synchronisation problem13

mentioned in the literature [272] relies on having different clocks
for different GFT quanta, rather than field modes. Specifically, the
issue arises because the number of particles is not conserved under
time evolution (indeed, this is how the GFT cosmology framework ex-
plains the expansion of the Universe, cf. Section 3.3). Even in standard
quantum field theory the number of particles is not a well-defined
quantity, and the Fourier mode decomposition (here given by the
Peter–Weyl decomposition (58)) represents the most natural way of
reducing the theory to quantum-mechanical systems. Of course, one
then interprets field excitations as particles so that the single-mode
times of (387) describe the evolution of GFT quanta associated with
the same J (naively, building blocks of quantum geometry with the
same “shape”, cf. Figure 7).

Finally, since adding reparametrisation symmetries does not change
the physical content of the theory, we note that one could have inves-
tigated equivalent questions directly in the deparametrised setting of
Section 3.2.2. While there one usually studies observables where ev-
ery mode is associated with the same time label (cf. (111) and (109)),
(387) suggests that one could have defined an observable as a sum of
single-mode contributions at different times,

Ôtot({χJ}) = ∑
J

eiĤJ χJ ÔJ(0) e−iĤJ χJ , (388)

where every Peter–Weyl mode is associated with a different reading
of the same clock. In the free theory, this is a well-defined observ-
able for the deparametrised approach that was never investigated
because of its somewhat unusual interpretation (where the modes
are observed at different times), which in Section 6.3.2 is revisited in
terms of multi-fingered time evolution. When Ô = N̂, the expecta-
tion value of (388) is nothing but (387); in this sense, the articulated
construction of Section 6.3.2 shows again the equivalence between
deparametrisation and “post-quantum time” dynamics.

6.4 discussion and outlook

The main result of this chapter is the construction and quantisation of
parametrised group field theory models for quantum gravity coupled

13 The coherent peaked states of the algebraic approach try to address this question
“by hand”, see discussion below (140).
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to a massless scalar field (to be used as a clock), and a proper defi-
nition of the corresponding relational quantum dynamics. By virtue
of the equivalence between the quantum dynamics defined by rela-
tional Dirac observables and the Page–Wootters formalism [227, 228],
we showed that using the quantum degree of freedom associated to
the scalar field as dynamical clock yields the same results as choos-
ing the scalar field as background time variable at the classical level
(i.e., following the deparametrised approach of Section 3.2.2). In other
words, our “tempus post quantum” theory proves that choosing a
clock (here specifically the scalar field χ) and quantising are proce-
dures that commute for free GFT models.

We first analysed a simple scenario restricted to a single field mode
and examined the evolution of number operator relative to the scalar
field; we used the strategy of “evolving constants of motion” at the
classical level, and defined the quantum relational dynamics follow-
ing both Dirac’s method for constraint quantisation and the Page–Wootters
formalism. This marks the first application of the Page–Wootters for-
malism to a non-perturbative quantum gravity theory, and provides
a coherent GFT framework describing the evolution of (the expecta-
tion values of) the geometrical quantities of interest conditional on a
quantum time operator reading a certain value.

We then generalised the construction to the more complicated case
of free GFT models with an arbitrary (but finite) number of field
modes. We distinguished between two scenarios: one where the sys-
tem exhibits a single reparametrisation invariance (just like in the
single-mode case) and one with many such invariances. While the
first setting straightforwardly extends all the previously mentioned
results, the case of many reparametrisation symmetries required a
novel extension of the Page–Wootters formalism to the case of multi-
ple quantum clocks.

We note in passing that since our construction is built upon a well-
defined physical inner product in the quantum theory, no divergences
arise as in formalisms that aim to describe relational dynamics at the
kinematical level (cf. Section 3.2.1).

As we will stress in Chapter 7, this work opens up the possibility
of investigating clock changes and obtaining a quantum notion of co-
variance [171, 225, 229, 369] in group field theory models. Given that
the GFT literature relies to a great extent on a single massless scalar
field, one can now explore other clock candidates with a proper treat-
ment at the quantum level (e.g., building on the work of [185] for
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models with multiple scalar fields). Additionally, the tools developed
here allow to explore what happens if one uses a degree of freedomPotentially, other

geometrical
observables in GFT

could be used as a
clock, for example
the anisotropies of

Chapter 4.

on the geometry sector (e.g., a GFT mode) as a clock to describe re-
lational dynamics of the matter scalar field. All such investigations
would provide a stronger handle on general covariance questions in
a quantum gravity framework such as GFT; questions that might be
of interest for the communities of quantum information and founda-
tions of quantum mechanics, other than quantum gravity.



7
C O N C L U S I O N

This chapter summarises the thesis and outlines potential future re-
search directions that can stem from the results discussed herein.

Summary

In this thesis we presented the group field theory approach to the
problem of quantum gravity and studied consequences in regards of
its phenomenological applications in cosmology and its theoretical
foundations. After introducing and motivating the field of research
and the main techniques adopted in the literature, we focussed on
three independent research directions: the definition of new anisotropic
models for GFT cosmology, the analysis of semiclassical properties
for general Gaussian-like quantum states, and the investigation of
the formal tools underlying the idea of quantum relational dynamics.

More in detail, we first introduced the problem of quantum grav-
ity in Chapter 1, emphasising that despite progress in several ap-
proaches, no comprehensive theory can describe the physics of the
Planck scale in a consistent and satisfactory way. We stressed the com-
plications caused by the problem of time, especially for background-
independent approaches, and the importance of relational dynamics.
We focussed in particular on the group field theory (GFT) approach,
which describes spacetime as emerging from fundamental quanta
and has promising applications in cosmology, especially in resolv-
ing the Big Bang singularity through a “Big Bounce” scenario. Since
cosmology offers a potential testing ground for quantum gravity, par-
ticularly in early Universe contexts where quantum effects may have
played a crucial role, we emphasised that the GFT framework can of-
fer insights into fundamental questions about the structure of space-
time at the Planck scale and the nature of quantum gravity in general.

We then delved into the technical details in Chapter 2: here we
briefly presented the obstacles encountered when applying the canon-
ical and path integral quantisation strategies to general relativity, and
hence we moved onto discrete perspectives. We then followed a some-
what historical route describing discrete path integral approaches to

181
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quantum gravity, starting from Regge calculus and illustrating the
details of the Ponzano–Regge model, matrix models and spin foam
models (often considered a covariant formulation of loop quantum
gravity). These approaches set the incentive for the definition of the
general framework of group field theory; indeed, we concluded the
chapter by emphasising that GFT relates to (and generalises) the pre-
viously studied approaches, and focussed on its path integral quan-
tisation. In particular, given that the Feynman graphs of some GFTs
can be seen as simplicial complexes that are dual to a discretisation of
spacetime, we motivated the GFT framework by showing that it can
formally yield a discrete version of the path integral for 4d quantum
gravity.

In Chapter 3 we switched gears and discussed the formalism un-
derlying the research results of the thesis: the canonical formula-
tion of GFT and the methods to effectively extract cosmology from
such a quantum gravity candidate. This reformulation permits to use
second-quantisation tools that connect with the canonical LQG frame-
work, and allows to apply techniques typical of bosonic systems to
quantum geometry (i.e., where ladder operators create and annihi-
late GFT quanta). Crucially, after having described the importance of
matter coupling (specifically where a scalar field is used as relational
clock), we highlighted that one can follow two distinct methods to
obtain a canonical quantisation of GFT. These implement the notion
of dynamics in different ways: the algebraic approach uses kinemati-
cal structures and imposes dynamical equations as constraints, and
the deparametrised approach selects a time variable classically and di-
rectly obtains a physical Fock space in the quantum theory. Despite
their disparate strategies, we showed that they lead to very similar
effective dynamics when applied to cosmology, in particular yielding
a bouncing FLRW model that resolves the Big Bang singularity by
means of quantum corrections.

We then devoted the second part of the thesis to the exposition
of our original research results. In Chapter 4, we tackled the ques-
tion of describing anisotropic cosmologies in group field theory for
the first time, focusing on the simplest case given by a locally ro-
tationally symmetric (LRS) Bianchi I model. Since anisotropies in
GFT were only considered (and shown to decay) perturbatively in
previous work, our investigation breaks new ground by providing a
precise definition of anisotropy that can discern between isotropic
and anisotropic effective cosmologies (and quantify the degree of
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anisotropy). In essence, we defined a GFT-analogue of the classical
Misner variables β± of GR, and studied their dynamics within the
framework of GFT cosmology. After motivating the definition of a
mode-dependent quantity capable of assigning “microscopic values
of anisotropy” to the GFT quanta (in particular, ensuring that a build-
ing block of geometry with equal face areas can be considered isotropic),
we constructed a global anisotropy observable by summing over the
Peter–Weyl modes of the underlying GFT, multiplying by the number
operator for that mode, and dividing by the total number of quanta
to obtain an “intensive” measure. While our models partially agree
with general relativity in terms of anisotropy evolution, they fail to
reproduce the expected faster (compared to the isotropic case) ex-
pansion rate of the volume. Our findings suggest that interactions
or different kinetic terms might be necessary to fully match classical
behaviour, but show that the anisotropy observable follows the ex-
pected behaviour for a certain period after the bounce. Importantly,
we could analytically confirm the linear behaviour of anisotropy in
the context of a toy model with the help of some approximations.

Chapter 5 was devoted to a thorough analysis of Gaussian states
in group field theory (and more generally su(1, 1)-based) quantum
cosmology, focussing in particular on two main semiclassical proper-
ties: the behaviour of relative uncertainties for the quantities of inter-
est and the Robertson–Schrödinger uncertainty principle. Although
in quantum optics and quantum information theory Gaussian states
are naturally associated with a statistical interpretation, we examined
them from a formal mathematical point of view in GFT; this is be-
cause it is not easy to give a precise physical meaning to statistical
parameters for a background-independent quantum gravity theory,
where spacetime is only seen as emergent. In the deparametrised ap-
proach to GFT, we showed analytically that the fluctuations of energy
and volume can be made arbitrarily small, even though Gaussian
states do not saturate the Robertson–Schrödinger inequality (which
we argued to be a less relevant criterion). While we could also de-
fine generalised Gaussian states in the algebraic approach, where ad-
ditional dynamical equations (constraints) are imposed on physical
states, we found that only pure coherent states can be considered
physical. In this context we analysed a simplified scenario with con-
stant squeezing and thermal effects, finding a new effective Fried-
mann equation and decreasing volume fluctuations. Our construc-
tions and results include all previous findings as subcases, and thus
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provide an exhaustive and complete framework for semiclassical states
in GFT (working with a single-mode free theory).

Motivated by the dissonance between the algebraic approach and
the deparametrised setting (hinted at in their basic formulations al-
ready in Chapter 3, but ultimately rendered manifest in the study
of Chapter 5), in Chapter 6 we looked into the formalities behind
the concept of quantum relational dynamics. Drawing inspiration
from the “tempus post quantum” idea embraced by the peaked co-
herent states of [272], but aiming to implement a proper quantisa-
tion based on constraints, we constructed parametrised GFT mod-
els and quantised them following the Dirac programme as well as
the Page–Wootters formalism. Already for a free parametrised GFT
with a single field mode, we showed that using the scalar field as
a dynamical clock in the quantum theory reproduces results from
the deparametrised approach (specifically, regarding the relational
evolution of the number operator). While the equivalence between
Dirac quantisation and the Page–Wootters formalism was established
in [228], the work of this chapter constitutes its first application to a
non-perturbative quantum gravity setting; importantly, this enriches
the notion of GFT dynamics with the conditional interpretation of the
Page–Wootters formalism. In essence, these results resolve previous
concerns about the loss of covariance due to classical deparametri-
sation, and provide a consistent description of the relational evo-
lution of GFT geometric observables with respect to a “quantum
time”. We also generalised the construction to theories with multiple
field modes: we were able to relate our findings to the idea of multi-
fingered time evolution by extending the Page–Wootters formalism
to handle multiple quantum clocks. This was done considering sep-
arate “mode times” for each Peter–Weyl mode rather than “particle
times”, so as to automatically avoid issues related to synchronisation
between the GFT quanta.

Outlook

We now mention possible developments that may arise from the work
presented in this thesis. While the general research programme of
group field theory offers a vast range of unexplored directions – both
in foundational aspects and in technical advancements (see, e.g., [288]
for a recent philosophical take on GFT and [301] for a proposal sug-
gesting connections between quantum gravity, quantum fluids and
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cosmology) – we limit ourselves to mentioning only those aspects
that are directly related to the results of this thesis.

gaussian states . First, we point out that the work on Gaussian
states provides the technical framework to explore questions typi-
cal of statistical mechanics (and statistical field theories), and hence
opens up the possibility of connecting ideas such as that of entangle-
ment entropy to quantum geometry. These concepts have seen atten-
tion for example in LQG [58, 70, 264]; thus, a natural direction for
future work is to investigate similar questions in the context of GFT.
In particular, in order to discuss entanglement, one could generalise
the construction of Chapter 5 to multiple modes, specifically to more
general squeezed states like those used in areas such as quantum op-
tics [373] or cosmology [202]. One could explore whether our results
hold for two-mode (or generically multi-mode) Gaussian states, at
least in the deparametrised approach where such states can be easily
defined. This extension may add new features to GFT cosmological
scenarios which are not captured by our single-mode construction.
Ultimately, these ideas align with the broad picture of investigating
the (possibly holographic) behaviour of quantum geometry and the
emergence of spacetime from more fundamental notions [110], such
as the entanglement between GFT quanta.

anisotropies . The work on anisotropies conducted in Chapter 4

offers a broad spectrum of potential directions for future research. To
begin with, one could ask whether the effective dynamics of anisotropies
change if GFT interactions are taken into account. This would compli-
cate the resulting calculations further, beyond the need for multiple
Peter–Weyl modes (see, e.g., [184] for an already quite involved nu-
merical study of a single mode with interactions).

A different direction would be to analyse the detailed effects of
anisotropy on the bounce phase. In Chapter 4 we focused on a post-
bounce regime because we aimed to compare with classical relativ-
ity, but in general one might ask whether the bounce itself could be
spoiled (or in general modified) by anisotropies, as is often a main
worry in bounce scenarios in which anisotropies dominate asymptot-
ically on approach to the singularity [88]. In our model, we have a
massless scalar field as matter, which would classically prevent the
domination of anisotropies. We saw that anisotropies are present at
early times and disappear at late times, but singularity avoidance
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does not seem affected by the inclusion of anisotropies. The details of
the bounce may still be altered by their presence. Another line of in-
vestigation, closely related to the previous one, would be to compare
the exact details of the cosmological bounce with the similar singu-
larity resolution of loop quantum cosmology. In the Bianchi I context,
this would mean to investigate whether the anisotropic nature of the
model has the same influence (if any) on the bounce in loop quantum
cosmology [39, 83] and in our work. Furthermore, a comparison with
loop quantum cosmology [72, 378] suggests the potential to investi-
gate whether the GFT anisotropic bounce corresponds to a Kasner
transition.

A specific restriction of the work of Chapter 4 was that we were
studying the GFT analogue of a Bianchi I Universe with an additional
rotational symmetry, so that there is only one β variable rather than
two. To lift this restriction, one could consider more general types of
tetrahedra rather than trisohedral ones, discuss different proposals
for β± variables in this more general context, and study their dynam-
ics along the lines we have discussed. Inspired by our work, some
advancements in this direction have already been proposed in [308].

Given the monotonic evolution of the new anisotropy observable
β+ in GFT, another significant line of research would be to try to use
such a gravitational degree of freedom as relational clock. This would
be similar to what happens at the classical level, where in a (LRS)
Bianchi I Universe without matter the classical Friedmann equation
can be written as1

(
1

3V
dV
dβ+

)2

= 1 , (389)

so that β+ can be a relational clock with no need for a separate mat-
ter field. One might hope to incorporate this idea into GFT, and de-
scribe relational evolution without coupling to the somewhat arbi-
trary massless scalar field. Such a relational formalism would appear
to require using an expectation value as a clock parameter, perhaps
along the lines suggested in [272] (via peaked coherent states) or us-
ing the novel framework we developed in Chapter 6.

Finally, we highlight one last idea stemming out of the work in
Chapter 4 that can potentially say something about the dynamics
of black holes, thus pushing the canonical quantisation of GFT in

1 Following analogous steps to those in Appendix A, one can choose β+ to be the
clock by fixing the lapse appropriately (imposing β̇+ = 1, cf. (422)) and using the
vanishing of (421); with p− = pχ = 0 this implies p2

+ = 9V2 p2
V , and yields (389).
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genuinely new phenomenological directions. Specifically, one could
leverage the fact that the interior of a (Schwarzschild) black hole
can be described by the class of metrics known as Kantowski–Sachs
(KS) [239], which are not so different from Bianchi models (an im-
portant difference being that the spatial topology of KS spacetimes
is fixed to be R × S2). At the classical level, using the KS metric The KS spacetime

only has one
anisotropy β (with
momentum pβ).

ds2 = −N2dt2 + V2/3e−4βdr2 + V2/3e2βdΩ2, with dΩ2 the metric on
the 2-sphere, one shows that the Hamiltonian constraint in the action
S =

∫
dt
(

pVV̇ + pβ β̇ + pχχ̇ − NC
)

(cf. (391)) can be written as

C = −6πGVp2
V +

2πG
3

p2
β

V
+

p2
χ

2V
− V1/3

8πG
e−2β . (390)

This is very similar to the Hamiltonian constraint of a (generally
curved) Bianchi model, such as the Bianchi II model reviewed in Ap-
pendix A (see in particular (428); the difference only lies in the last
term of (390), which is due to curvature). The effective strategy em-
ployed in Chapter 4 may then allow to obtain the first dynamical GFT
model for black holes. Indeed, the only existing work is kinematical
[303, 307], and does not tell us anything about solutions of some dy-
namical equations, nor it predicts avoidance of the classical singular-
ity. While nonsingular scenarios for black holes were explored in LQG
from different perspectives, e.g. using loop quantum cosmology tech-
niques [26], applying the “improved dynamics” scheme [165] or in
spin foam models [66, 220, 281], these results still describe a plethora
of different outcomes without a unique, clear physical description. A
bounce-like scenario (similar to the one described in Chapter 4) is
expected in GFT too, and could align with the results of LQG: the
bounce could be seen as a transition from a black hole to a white hole
(as in, e.g., [213]) or as a black hole generating a shock wave [230].

page–wootters formalism and relational dynamics . To
conclude, we want to stress the importance of the technical (and con-
ceptual) results of Chapter 6, and their consequences.

A major repercussion of our work has to do with the general line
of research on the notion of changing temporal reference frames [171,
225, 229, 369]. In light of the results of [227, 228], our work paves
the way for exploring clock changes and achieving a quantum notion
of covariance for group field theory. Specifically, it allows to go be-
yond the massless scalar field (ubiquitously used as relational time
in the literature) by considering other clock candidates with a proper
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quantum treatment given by the Page–Wootters formalism. For in-
stance, building on the models with multiple scalar fields discussed
in [185], one could take advantage of the “clock-neutral” picture to
explicitly show the equivalence between quantum dynamics with dif-
ferent choices of clocks in GFT. The methods of Chapter 6 also allow
for the investigation of using geometric degrees of freedom – such as
a GFT mode – as clocks to describe the relational dynamics of mat-
ter fields. In a sense, this reflects the situation in classical cosmology
where for example the volume of an expanding Universe is expected
to be a good clock. Potentially, these tools could be applied to other
geometrical observables in GFT which may be considered as dynam-
ical clocks (e.g., the anisotropy degree of freedom we developed in
Chapter 4). These lines of research would contribute to a deeper un-
derstanding of the notion of general covariance in the GFT approach
to quantum gravity, and can potentially spark discussions with other
research programmes, such as quantum information [325] and foun-
dation of quantum mechanics (see [126] for a recent result with im-
plications for bridging the quantum gravity and quantum reference
frame communities).

Finally, another natural line of research would be to extend the
results of Chapter 6 to the case with infinite field modes, which re-
quires functional analysis tools for the Page–Wootters formalism in
the context of field theories [226], and might be related to infinite
tensor product techniques [290, 347, 363].
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A
R E L AT I O N A L D Y N A M I C S I N C O S M O L O G Y

In this appendix we give a brief overview on how to obtain a rela-
tional description of cosmological models in general relativity, and we
mention similar relevant aspects in the context of effective loop quan-
tum cosmology. Such a relational formulation of classical dynamics,
in particular where a free massless scalar field χ is used as clock, is
needed if one wants to compare the GFT results of Section 3.3 with
GR (and loop quantum cosmology). Indeed, while the background in-
dependence of GFT forced us to consider relational cosmological dy-
namics, in GR one has the freedom to choose to work with different
clocks (e.g., one can easily switch from the standard time coordinate
t to the relational clock χ). This is essentially due to the Hamiltonian
constraint (see Section 2.1) and more specifically, to the choice of the
lapse function in the action (4), as we explain below.

We will first obtain a relational formulation of the dynamics of a
(classical) Friedmann–Lamaître–Robertson–Walker (FLRW) Universe,
which essentially represents the GR equivalent of the relational Fried-
mann equations (134) and (156) found in GFT. Such classical dynam-
ics were mentioned in Section 3.3 and implicitly used to make the
identification between the GFT coupling ω and Newton’s constant G
in (137). Then, we will give a summary of the related results obtained
in what is called “effective loop quantum cosmology”, which studies
the evolution of the expectation values of the volume observable of
loop quantum cosmology in semiclassical states. We will only focus
on a flat isotropic scenario and describe the loop quantum cosmology
effective Friedmann equation, which can also be compared with the
GFT results (134) and (156). Finally, we will extend the discussion to
the case of (classical) anisotropic cosmologies, specifically Bianchi I
and Bianchi II models, which are important for a comparison with
the results of Chapter 4. A relational Friedmann-like equation can
indeed be written for these models, which additionally describe the
dynamics of the anisotropies themselves with respect to the scalar
field χ.

As seen in Section 2.1, the Hamiltonian formulation of general rela-
tivity is described by means of the ADM action (4). In this thesis, the

191
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models of interest deal with gravity coupled to a free massless scalar
field χ (which will serve as relational clock) with conjugate momen-
tum pχ. Moreover, we are only interested in homogeneous (but possi-
bly anisotropic) settings, therefore we do not have an energy gradient
term for χ, and we can set Na = 0 in (4). The action then reads

S =
∫

dt
∫

d3x
(

πabq̇ab + pχχ̇ − NC
)

, (391)

where a dot denotes a t derivative, and the constraint C for the total
system has a gravitational part C and a matter part (denoted Cχ),

C = C + Cχ = 0 . (392)

The gravitational part C appearing in (392) is given in (5) and we
rewrite it here for convenience

C =
16πG
√

q

(
πabπab − 1

2
(πa

a)
2
)
−

√
q

16πG
R(3) , (393)

while the matter part reads1

Cχ =
p2

χ

2
√

q
. (394)

If all fields are assumed to be spatially homogeneous, the integralIn a sense, we
implicitly pick a

compact integration
region and fix its
constant volume.

over space
∫

d3x in (391) just gives a constant, which we can set to
unity. This does not play any physical role in homogeneous settings.

a.1 flrw and loop quantum cosmology

We now specialise the above framework to a spatially flat, homoge-
neous and isotropic FLRW (classical) Universe. Given the metric

ds2 = −N(t)2dt2 + a(t)2 (dx2 + dy2 + dz2) , (395)

the action (391) is simply expressed in terms of the scale factor a and
its conjugate momentum pa, as

S =
∫

dt (pa ȧ + pχχ̇ − NC) , (396)

1 To see this explicitly, one simply starts from the scalar field Lagrangian Lχ = 1
2

√
q

N χ̇2

(cf. (75)) and switches to the Hamiltonian formulation by means of the momentum

pχ =
√

q
N χ̇ and the Legendre transform pχχ̇ − Lχ = NCχ with Cχ given in (394).
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with Hamiltonian [81]

NC = −2πG
3

Np2
a

a
+

Np2
χ

2a3 = 0 . (397)

As it is well known, the dynamics corresponding to the vanishing of Explicitly, from the
Lagrangian in (3),
reduced to a flat
FLRW setting as
L = − 3

8πG
aȧ2

N , one
finds pa = − 3

4πG
aȧ
N ,

which substituted in
(397) yields (398).

the Hamiltonian (397) are encoded in the Friedmann equation, which
is usually written as

H2 =

(
ȧ

aN

)2

=
8πG

3
ρχ , (398)

where H denotes the Hubble parameter, and the energy density of
the scalar field χ is

ρχ =
p2

χ

2a6 . (399)

Given the importance of the volume observable in GFT models for
cosmology, we now work with the volume variable V = a3 (and its
conjugate momentum pV) instead of the scale factor, as this will facil-
itate the comparison with the dynamics obtained in Section 3.3. Writ-
ing the symplectic part of the Lagrangian in (396) in the new variables
as pVV̇ implies a relation between the momenta (namely, pa = 3a2 pV)
that leads to the Hamiltonian (cf. (397))

NC = −6πGNVp2
V +

Np2
χ

2V
= 0 . (400)

We can finally make use of the freedom associated with such a con-
straint to pick the scalar field χ as relational time variable. Recall that
χ can act as clock because it is monotonic, since pχ is a constant of
motion as ṗχ = {pχ, NC} = 0. Indeed, the equation of motion for χ,

χ̇ = {χ, NC} =
Npχ

V
, (401)

can be arranged so as to relate the evolution in t with the rate of
change in χ by the lapse function as

Ndt =
V
pχ

dχ . (402)

Then, the equation of motion for the volume,

V̇ = {V, NC} = −12πGNVpV , (403)
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can be reformulated using χ as clock thanks to the relation (402):
substituting this in (403) one can express pV as

pV = − 1
12πG

pχ

V2
dV
dχ

. (404)

Finally, plugging (404) in the vanishing of the Hamiltonian constraint
(400), one finds the relational Friedmann equation(

1
3V

dV
dχ

)2

=
4πG

3
, (405)

which describes the dynamics of the volume with respect to the val-
ues of the scalar field χ. The large-volume limit of the isotropic GFT
models reviewed in Section 3.3 is compared to (405), which in partic-
ular suggests the identification (137).

Note that (405) can be equivalently obtained following different
strategies. For instance, one could rearrange the constraint (400) for

pχ = ±
√

12πG VpV , (406)

and directly evaluate the Poisson brackets

dV
dχ

= {V, pχ} = ±
√

12πG V . (407)

Essentially, (407) represents the evolution of V as dictated by the rela-
tional Hamiltonian pχ that is conjugate to the chosen time variable χ.
Clearly, squaring both sides of (407) yields (405). Yet another way to
derive the relational Friedmann equation is given by explicitly mak-
ing use of the lapse function: by setting χ̇ = 1 in (401) (which means
picking χ as time), one finds the lapse

N =
V
pχ

. (408)

Given that the Hubble parameter in the volume variable reads

H2 =

(
ȧ

aN

)2

=

(
V̇

3VN

)2

, (409)

one can directly substitute (408) in the traditional Friedmann equa-
tion (398) to immediately find (405). We will also use the lapse (408)
to describe dynamics with respect to χ in the case of loop quantum
cosmology.
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effective loop quantum cosmology. Loop quantum cosmol-
ogy uses the quantisation techniques of loop quantum gravity for
models that are reduced by symmetry arguments at the classical level
(i.e., one considers cosmological settings before quantisation). In par-
ticular, in this framework one can obtain a well-defined quantum the-
ory for an isotropic FLRW Universe (coupled with a scalar field χ)
which resolves the Big Bang singularity replacing it with a quantum
bounce [28, 36, 77].

An important aspect in quantum cosmology is the peakedness of
semiclassical states around classical solutions; this property is shown
to be preserved during evolution in loop quantum cosmology, in par-
ticular for the volume observable we are interested in [345]. In such
semiclassical states, the main features of the dynamics (in particular
the bounce) are captured by the evolution of the expectation values
of total volume and the momentum of the scalar field pχ. Indeed, one
can show that the so called effective approach to loop quantum cosmol-
ogy provides semiclassical dynamics that are in excellent agreement
with the quantum dynamics for sharply peaked states [35, 36, 130].
This is interpreted as an effective, semiclassical description of space-
time that incorporates quantum effects from loop quantum gravity,
essentially due to a discretisation (sometimes called “polymerisation”
[117]) of the Hamiltonian constraint, as explained below.

The first step in this scheme is to adopt a new variable representing
the conjugate momentum of the volume V. Specifically, one usually
defines the variable b as proportional to the Hubble parameter

b = kH = −4πGkpV (410)

where k is a numerical constant (usually identified with the Barbero–
Immirzi parameter of LQG [50, 232]) and H is given in (409) (the
last equality in (410) follows from (403)). Clearly, one can use the
pair (b, V) with Poisson brackets {b, V} = 4πGk to describe the
same FLRW classical dynamics discussed above, simply expressing
the Hamiltonian constraint (400) as

NC = −3NVb2

8πGk2 +
Np2

χ

2V
= 0 . (411)
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The “quantum effects” of the effective approach to loop quantum
cosmology are incorporated in a semiclassical manner by means of
the replacement

b → sin(λb)
λ

, (412)

where λ is some length parameter (proportional to the Planck length
(cf. (1))). (412) essentially represents a discretisation (or polymerisa-
tion) choice: this idea is imported from the full theory of LQG, whereIn LQG, gravity is

seen as a theory of a
SU(2) connection

(cf. Section 2.1). The
holonomy of such a
(generically curved)
connection describes

the extent to which
parallel transport

around closed loops
fails to preserve the

geometrical data.

operators can only be defined for matrix elements of holonomies and
not for the connection itself [34, 341]. As we will see, the cosmological
dynamics resulting from the choice (412) modify the classical scenario
with quantum gravity (holonomy) corrections [27]. Importantly, such
holonomy modifications are responsible for a cosmological bounce in
isotropic models: from (412) and (411) one simply obtains an effective
Hamiltonian constraint

NC(eff)
LQC = − 3NV

8πGk2
sin2(λb)

λ2 +
Np2

χ

2V
, (413)

which can now be used to define effective dynamics. In particular, the
equation of motion for the volume (cf. (403)) gets modified as

V̇ = {V, NC(eff)
LQC} =

3NV
kλ

sin(λb) cos(λb) . (414)

This, together with the vanishing of the Hamiltonian constraint (413),
readily leads to a modified version of the classical Friedmann equa-
tion (398) which reads [359]

H2 =
8πG

3
ρχ

(
1 − ρχ

ρc

)
, (415)

with H2 and ρχ given in (409) and (399), and where

ρc =
3

8πGk2λ2 (416)

represents a maximum value for the energy density. The quantum
gravity correction thus appears as a −ρ2

χ/ρc modification to the clas-
sical Friedmann equation, meaning that the volume of the Universe
bounces when the energy density approaches ρc ∼ ρPlanck.2

2 The precise value ρc = 0.41ρPlanck is found in LQG by fixing the length scale kλ
(related to what was earlier called l0) so that the leading term in black hole entropy
calculations matches the Bekenstein–Hawking formula [22, 23, 141, 284, 314]. This
can also be seen as a free parameter for comparison with observations [25, 30].
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Just like for the GR case, the loop quantum cosmology effective
Friedmann equation (415) can be written in relational terms using χ

as clock variable. As we have seen above, it is enough to choose the
lapse given in (408); substituting this into (415) (and also recalling
(399)) quickly yields(

1
3V

dV
dχ

)2

=
4πG

3

(
1 − ρχ

ρc

)
. (417)

This is the type of equation that also emerges in GFT cosmology, al-
beit with minor differences and from completely different starting
points. We refer the reader to Section 3.3 for all the details, where in
particular we compare the GFT effective Friedmann equations (136)
and (159) with the relational dynamics of GR (cf. (405)) and effective
LQC (417).

a.2 bianchi i and ii

We now move our attention to a classical Bianchi I cosmology, with
metric

ds2 = −N(t)2dt2 + a1(t)2dx2 + a2(t)2dy2 + a3(t)2dz2 . (418)

This generalises the flat FLRW metric (395) to the case with separate
scale factor ai(t) in each Cartesian direction i = 1, 2, 3. We introduce
the Misner parametrisation (see, e.g., [81]) with a volume variable
V = a1a2a3,

a1 = V1/3eβ++
√

3β− ,

a2 = V1/3eβ+−
√

3β− ,

a3 = V1/3e−2β+ .

(419)

The variables β± represent anisotropy parameters and have their own
momenta p±. Using this parametrisation, equations (391) and (392)
become Just like for the

momentum pχ of
the field χ, note that
also the momenta of
the anisotropies β±
are conserved, i.e.,
ṗ± = 0.

S =
∫

dt
(

pVV̇ + p+ β̇+ + p− β̇− + pχχ̇ − NC
)

, (420)

where

NC = −6πGNVp2
V +

2πG
3

Np2
+

V
+

2πG
3

Np2
−

V
+

Np2
χ

2V
= 0 . (421)
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Notice the similarity between the anisotropy variables and the scalar
field χ. Their contribution to the Hamiltonian is basically the same,
expect for numerical factors; at least classically, a Bianchi I Universe is
not different from an FLRW Universe with free massless scalar fields.
Even though we still make use of a matter clock in Chapter 4, this
equivalence suggests that the anisotropy variables β± could play the
role of a clock in GFT cosmological (anisotropic) models.

As before, we now use χ as a clock and we extract relational dy-
namics from the equations of motion as follows. Other than the equa-
tions of motion for the volume and the scalar field (which are also
here given by (401) and (403)), we also have the dynamics for the
anisotropies

β̇± = {β±, NC} =
4πG

3
Np±

V
. (422)

One can then use V̇ and χ̇ to obtain pV as in (404), which can be
substituted into the vanishing of (421), to get(

1
3V

dV
dχ

)2

=

(
4πG

3

)2 p2
+ + p2

−
p2

χ

+
4πG

3
. (423)

This relational (generalised) Friedmann equation reduces to (405) in
the isotropic case. We point out that the new anisotropic contribution
is (also) constant in χ as the momenta p± and pχ are constants of
motion.

Moreover, we now have anisotropy degrees of freedom, whose re-
lational dynamics are obtained in a similar fashion. We use (422) (to-
gether with χ̇) to write the momenta

p± =
3pχ

4πG
dβ±
dχ

. (424)

Importantly, since p± are constants of motion, we see that the anisotropies
are linear in χ. Substituting the momenta (424) into the Hamiltonian
constraint (421), we obtain

(
dβ±
dχ

)2

=

(
4πG

3

)2
(

9V2 p2
V

p2
χ

− p2
∓

p2
χ

)
− 4πG

3
. (425)

Albeit tedious one can also check from the right-hand side of (425)
that dβ±/dχ is constant (specifically, one shows that other than pχ

and p±, also the product VpV is conserved).
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Conveniently, some algebraic manipulations show that (423) and
(425) can also be combined into the relational equation Note that constant

anisotropies yield
the same relational
dynamics of a
FLRW Universe
(405). This is
consistent with the
fact that constant
anisotropies can
directly be removed
from the metric by
simply rescaling
coordinates.

(
1

3V
dV
dχ

)2

=

(
dβ+

dχ

)2

+

(
dβ−
dχ

)2

+
4πG

3
. (426)

This form has the advantage that it only relies on derivatives with
respect to χ rather than canonical momenta. This equation is used as
a classical comparison for the anisotropic GFT cosmological model of
Chapter 4 in the large volume limit.

a model with curvature . For the sake of completeness, we ex-
tend the above formalism to the Bianchi II case to see how curvature
affects relational (classical) dynamics. We follow the same strategy as
before, but we now also have the Bianchi II curvature term appearing
in (392), which reads [81]

(3)R = −1
2

V−2/3e4(β++
√

3β−) . (427)

The Hamiltonian constraint (392) then takes the form

C = −6πGVp2
V +

2πG
3

p2
+

V
+

2πG
3

p2
−

V
+

V1/3

32πG
e4(β++

√
3β−)+

p2
χ

2V
= 0 .

(428)

Without repeating all the steps seen in the Bianchi I case, we recall
that the strategy is to use the equations of motion to obtain the mo-
menta pV and p±. Plugging them into C = 0 one obtains(

1
3V

dV
dχ

)2

=

(
4πG

3

)2 p2
+ + p2

−
p2

χ

+
4πG

3
+

V4/3

12p2
χ

e4(β++
√

3β−) , (429)

and

(
dβ±
dχ

)2

=

(
4πG

3

)2
(

9V2 p2
V

p2
χ

− p2
∓

p2
χ

)
− 4πG

3
− V4/3

12p2
χ

e4(β++
√

3β−) .

(430)

These are nothing but extensions of (423) and (425). Finally, putting
everything together one can write a Bianchi II generalisation of the
(relational) Friedmann equation,(

1
3V

dV
dχ

)2

=

(
dβ+

dχ

)2

+

(
dβ−
dχ

)2

+
4πG

3
+

V4/3

12p2
χ

e4(β++
√

3β−) , (431)
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which reduces to (426) when the last term (which comes from (3)R) is
zero. Notice that in an expanding Universe this term becomes dom-
inant at later times: the dynamics are initially close to Bianchi I and
deviate only when the exponential expansion of the volume takes
over. Because of this, and given that the Bianchi II scenario is the sim-
plest Bianchi model involving spatial curvature, we also compare our
anisotropic GFT cosmology to these equations in Chapter 4.



B
C O M P U TAT I O N S W I T H G A U S S I A N S TAT E S

In this appendix we provide all the details needed to achieve some
of the main results of Chapter 5. Specifically, in Section B.1 we fo-
cus on the Robertson–Schrödinger uncertainty principle (cf. (204)) as
a possible criterion for defining semiclassical states, and we prove
some claims of Section 5.1 and Section 5.2 showing all the analyti-
cal expressions. Then, we briefly review the thermofield formalism in
Section B.2, a computational tool that is used for most of the results of
Chapter 5. While Section B.1 contains details for the results of Chap-
ter 5 that focus on the deparametrised approach to GFT cosmology,
Section B.2 introduces a framework that is used in both approaches
(in a straightforward manned for the deparametrised approach, and
with suitable generalisations described in Section 5.3 for the algebraic
approach).

b.1 robertson–schrödinger uncertainty principle

In this section we analyse in detail the Robertson–Schrödinger (RS)
inequality (204) for all states described in Section 5.1 and Section 5.2.
To begin with, we report in Table 2 and Table 3 the expectation val-
ues, variances and covariances for the operators of interest at χ = 0,
using coherent states (210) and squeezed states (219). Moreover, us-
ing the analytical expressions for the time evolution of variances and
covariances (cf. (205) and (206)), we explicitly compute the dynamical
behaviour of the left-hand side and right-hand side of the RS inequal-
ity (204). For coherent states we find Just like in

Chapter 5, the
subscript of
trigonometric and
hyperbolic functions
denotes their
arguments in some
lengthy equations.

(∆V̂χ)
2
C(∆Ĥ)2

C =
v2ω2

8
(
2|α|2 + 1

)
×
[
4|α|2(sinh4ωχ sin2ϑ + cosh4ωχ) + cosh4χω −1

]
,

and

(∆(V̂χĤ))2
C + ω2⟨Ĉχ⟩2

C =
v2ω2

4

[
4|α|4 cosh2

2ωχ cos2
2ϑ

+
(
2|α|2(cosh2ωχ sin2ϑ + sin2ωχ) + sinh2ωχ

)2
]

,

201



202 computations with gaussian states

Coherent states evaluation

⟨V̂⟩ v|α|2

⟨Ĥ⟩ −ω
2

(
ᾱ2 + α2) = −ω|α|2 cos(2ϑ)

⟨Ĉ⟩ i v
2

(
ᾱ2 − α2) = v|α|2 sin(2ϑ)

(∆V̂)2 v2|α|2

(∆Ĥ)2 ω2

2

(
1 + 2|α|2

)
(∆Ĉ)2 v2

2

(
1 + 2|α|2

)
∆(V̂Ĥ) − vω

2

(
ᾱ2 + α2) = −vω|α|2 cos(2ϑ)

∆(V̂Ĉ) i v2

2

(
ᾱ2 − α2) = v2|α|2 sin(2ϑ)

∆(ĤĈ) 0

Table 2: Useful quantities computed with coherent states |α⟩ (cf. (210)),
where the displacement parameter is decomposed as α = |α|eiϑ.

which can only be equal if vω|α|2 cosh2ωχ = 0. Since we exclude the
trivial cases with vanishing GFT parameters and with α = 0 (which
would reduce a coherent state |α⟩ to the vacuum |0⟩), there is no
χ for which the Robertson–Schrödinger relation is saturated. Con-
versely, for squeezed states we find that the uncertainty principle is
minimised at all times:

(∆V̂χ)
2
S(∆Ĥ)2

S = (∆(V̂χĤ))2
S + ω2⟨Ĉχ⟩2

S

=
v2ω2

16

[
sinh2

2ωχ

(
sinh4

2r sin2
2ψ +4 cosh2

2r

)
+ cosh2

2ωχ

(
4 sinh2

2r sin2
ψ + sinh2

4r cos2
ψ

)
+

1
4

sinh4ωχ sinψ

(
8 sinh3

2r cosh2r cos2ψ +6 sinh4r + sinh8r

) ]
.

In other words, χ-evolution does not change the statement of whether
the RS uncertainty principle is saturated. Figure 24 shows this feature
for some state parameters.

Other than studying generic intermediate times, we can in particu-
lar also evaluate the large-volume limits (207) and (208), which pro-
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Squeezed states evaluation

⟨V̂⟩ v sinh2(r)

⟨Ĥ⟩ −ω
2 sinh(2r) cos(ψ)

⟨Ĉ⟩ v
2 sinh(2r) sin(ψ)

(∆V̂)2 v2

2 sinh2(2r)

(∆Ĥ)2 ω2

8

(
3 + cosh(4r) + 2 cos(2ψ) sinh2(2r)

)
(∆Ĉ)2 v2

8

(
3 + cosh(4r)− 2 cos(2ψ) sinh2(2r)

)
∆(V̂Ĥ) − vω

4 cos(ψ) sinh(4r)

∆(V̂Ĉ) v2

4 sin(ψ) sinh(4r)

∆(ĤĈ) − vω
4 sin(2ψ) sinh2(2r)

Table 3: Useful quantities computed with squeezed states |z⟩ (cf. (219)),
where the squeezing parameter is decomposed as z = reiψ.

vide simpler expressions. Using the quantities in Table 2 and Table 3,
we find

(∆V̂χ)2
C

⟨V̂χ⟩2
C

(∆Ĥ)2
C

⟨Ĥ⟩2
C

χ→±∞−→ (2|α|2 + 1)[1 + 4|α|2(1 ± sin2ϑ)]

|α|4 cos2
2ϑ(1 + 2|α|2(1 ± sin2ϑ))2

,

(∆(V̂χĤ))2
C

⟨V̂χ⟩2
C⟨Ĥ⟩2

C
+ ω2 ⟨Ĉχ⟩2

C

⟨Vχ⟩2
C⟨Ĥ⟩2

C

χ→±∞−→
1 + 4|α|2

(
2|α|2 + 1

)
(1 ± sin2ϑ)

|α|4 cos2
2ϑ(1 + 2|α|2(1 ± sin2ϑ))2

,

and

(∆V̂χ)2
S

⟨V̂χ⟩2
S

(∆Ĥ)2
S

⟨Ĥ⟩2
S

χ→±∞−→ 4 + 4csch2
2r sec2

ψ ,

(∆(V̂χĤ))2
S

⟨V̂χ⟩2
S⟨Ĥ⟩2

S
+ ω2 ⟨Ĉχ⟩2

S

⟨Vχ⟩2
S⟨Ĥ⟩2

S

χ→±∞−→ 4 + 4csch2
2r sec2

ψ ,

showing confirmation of the above statements for both classes of
states.

In a similar fashion, one can also deal with the more general Gaus-
sian states (229). As with coherent states, one finds that Gaussian
states do not minimise the RS principle at any χ. For χ = 0 one can
quickly read off from the results in Section 5.2 (cf. (232), (234) and
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Figure 24: Left-hand side (LHS) and right-hand side (RHS) of the RS in-
equality (204) for coherent (α = 1) and squeezed (z = 1) states,
setting v = 1. The first two panels show that coherent states do
not saturate the inequality at early or late times; the last panel
shows that squeezed states saturate (204) at all times.

(235)) that the right-hand side and the left-hand side of the inequality
(204) do not match, as

(∆V̂)2
G(∆Ĥ)2

G =
v2ω2

32

(
4|α|2B(cosh2r +F+ sinh2r) + B2 cosh4r −1

)
×
[
8|α|2B(cosh2r +F− sinh2r) + B2

(
2 sinh2

2r cos2ψ + cosh4r +1
)
+ 2
]

,

and

(∆(V̂Ĥ))2
G + ω2⟨Ĉ⟩2

G =
v2ω2

16

[
4
(
2|α|2 sin2ϑ +B sinh2r sinψ

)2

+ B2 (4|α|2(cosh2r cos2ϑ + sinh2r cosψ) + B sinh4r cosψ

)2
]

,

where B = cothβ/2 and F± = cos2ϑ cosψ ± sin2ϑ sinψ. As with any
other states, one can also use the time-dependent expressions (205)
and (206) to compute the behaviour of the uncertainty principle un-
der time evolution. Even though such results can be calculated ana-
lytically, we do not report the (lengthy) Gaussian state expressions
because they are not insightful; we refer the reader to Figure 25 in-
stead. On the other hand, we show explicitly that the inequality is
not saturated for χ → ±∞. Using again the convenient large-volume
limit (207), one can compute the product of the (late-time) volume
and Hamiltonian relative uncertainties

(∆V̂χ)2
G

⟨V̂χ⟩2
G

χ→±∞−→ 2 − 8|α|4(sin2ϑ ±1)2

D1
,

(∆Ĥ)2
G

⟨Ĥ⟩2
G

=
1

2D2

[
8B|α|2(cosh2r +F− sinh2r)

+ B2
(

2 sinh2
2r cos2ψ + cosh4r +1

)
+ 2
]

,
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where for convenience we defined

D1 =
[
2|α|2(sin2ϑ ±1) + B(sinh2r sinψ ± cosh2r)

]2
,

D2 =
(
2|α|2 cos2ϑ +B sinh2r cosψ

)2
.

Comparing the product of (∆V̂χ)2
G/⟨V̂χ⟩2

G and (∆Ĥ)2
G/⟨Ĥ⟩2

G with (208),
which here reads

(∆(V̂χĤ))2
G

⟨V̂χ⟩2
G⟨Ĥ⟩2

G
+ ω2 ⟨Ĉχ⟩2

G

⟨Vχ⟩2
G⟨Ĥ⟩2

G

χ→±∞−→ B2

D1D2

{[
B
(

sinh4r cosψ ± sinh2
2r sin2ψ

)
+ 4|α|2(sinh2r(cosψ ± sin2ϑ+ψ) + cosh2r cos2ϑ)

]2}
+

4
D2

,

one can see that the saturation of the RS relation does not occur at
late times. Since the complexity of Gaussian states makes these ex-
pressions somewhat intransparent, we report in Figure 25 a graphical
demonstration of the exact time evolution for some state parameters.
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Figure 25: Left-hand side (LHS) and right-hand side (RHS) of the RS prin-
ciple (204) for Gaussian states, setting v = 1. The inequality is
not saturated at early or late times regardless of the choice of
parameters.

b.2 gaussian states and thermofield formalism

In this appendix we present the features of Gaussian states that lead
to the definition (229), as well as the tools used to obtain all the results
of Section 5.2 (and generalised in Section 5.3). We start by means of a
pivotal result, originally investigated in [268, 269, 350] (see also [212,
351] for modern perspectives), which states that when dealing with
second-order bosonic Hamiltonians, the most general Gaussian state
can always be expressed as three types of unitary operators acting
on the thermal state ρ̂β (230) (or on the Fock vacuum |0⟩ for pure
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Gaussian states). These so-called “fundamental Gaussian unitaries”
are the squeezing, displacement and rotation operators

Ŝ(z) = e
1
2 (zâ†2−z̄â2) ,

D̂(α) = eαâ†−ᾱâ ,

R̂(ϕ) = eiϕâ† â ,

(432)

where (z, α) ∈ C, z = reiψ and (r, ψ, ϕ) ∈ R.
To prove that a general Gaussian state can be taken to be of the

form (229), one can first notice that the operators in (432) satisfy

R̂(ϕ1)R̂(ϕ2) = R̂(ϕ1 + ϕ2) ,

D̂(α1)D̂(α2) = e
1
2 (α2α1−α2α1)D̂(α1 + α2) ,

Ŝ(z1)Ŝ(z2) = eiϕ/2Ŝ(z3)R̂(ϕ) ,

(433)

where, defining ta = tanh(ra) exp(iψa), ϕ and z3 are determined by
eiϕ = 1+t1t2

|1+t1t2|
and t3 = t1+t2

1+t1t2
. Moreover, one finds that operators of

different types “compose in a closed way”, namely

Ŝ†(z)D̂(α)Ŝ(z) = D̂(α cosh(r)− ᾱeiψ sinh(r)) , (434)

R̂†(ϕ)Ŝ(z)R̂(ϕ) = Ŝ(e−2iϕz) , (435)

R̂†(ϕ)D̂(α)R̂(ϕ) = D̂(e−iϕα) . (436)

Since the state parameters are arbitrary, properties (433)–(436) show
that one can produce a Gaussian state by acting on ρ̂β with any num-
ber of the operators in (432), in any order. Finally, we can see that it
is no loss of generality to define Gaussian states without using the
rotation operator. Using (435) and (436), starting from an arbitrary
definition of Gaussian states we could move the rotation operator un-
til it acts on ρ̂β (or on |0⟩ in the case of zero temperature). These
operations only change the free parameters z and α, which were ar-
bitrary to being with, by a phase. But R̂(ϕ) leaves both ρ̂β and |0⟩
invariant, and hence has no effect whatsoever.

Central to the computation of expectation values with (both pure
and mixed) Gaussian states is the action of the displacement operator
and squeezing operator on â and â†:

Ŝ†(z)âŜ(z) = cosh(r)â + eiψ sinh(r)â† ,

Ŝ†(z)â†Ŝ(z) = cosh(r)â† + e−iψ sinh(r)â ,
(437)
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and

D̂†(α)âD̂(α) = â + α ,

D̂†(α)â†D̂(α) = â† + ᾱ .
(438)

From these one can see that, for any function f of the ladder op-
erators, expressions of the form Ŝ†(z)D̂†(α) f (â, â†)D̂(α)Ŝ(z) are in
general simpler than D̂†(α)Ŝ†(z) f (â, â†)Ŝ(z)D̂(α). This is why, for in-
stance, displaced squeezed states |α, z⟩ = D̂(α)Ŝ(z)|0⟩ are usually
adopted as pure Gaussian states instead of squeezed coherent states
|z, α⟩ = Ŝ(z)D̂(α)|0⟩ (the same applies to our general definition (229));
the property (434) effectively allows us to choose the most convenient
ordering.

While by use of (437) and (438) one can obtain all the expressions
of Section 5.2 using the density matrix ρ̂G (229) and the standard tech-
niques for calculating traces, we outline here the thermofield formalism
as a very useful tool to extract the same results (in particular if one
wishes to use a computational software, such as Mathematica). This
also allows us to link the present paper with the work of [40, 41, 250],
where such a formalism was adopted to introduce thermal effects in
GFT.

Thermofield dynamics were introduced in [357] (see [241] for a re-
cent detailed treatment) as a formalism to link ensemble averages of
statistical mechanics to expectation values computed with a temperature-
dependent vacuum state, dubbed thermal vacuum and denoted |0β⟩. In
a nutshell, such a framework establishes a correspondence between a
density matrix, which in our case is of thermal type ρ̂β (230), and the
pure vector state |0β⟩, such that

tr
(
ρ̂βÔ

)
= ⟨0β|Ô|0β⟩ . (439)

In [357] it is shown that one can define a thermal vacuum satisfying
(439) only by enlarging the conventional Fock space. Specifically, one
needs to double it by adding a fictitious system (denoted with a tilde)
identical to the one under investigation. For simple theories such as
our single-mode GFT cosmological models, this means introducing a
new pair of bosonic ladder operators ( ˆ̃a, ˆ̃a†) and constructing a second
Fock space from a “tilde vacuum” |0̃⟩ in the standard way, with[

ˆ̃a, ˆ̃a†
]
= 1 , (440)
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and

ˆ̃a|0̃⟩ = 0 . (441)

The tilde operators commute with the non-tilde operators as they live
in distinct spaces. The next step in the thermofield formalism is to
define a “product vacuum” in the doublet Hilbert space as a zero-
temperature ground state,

|0, 0̃⟩ := |0⟩ ⊗ |0̃⟩ , (442)

such that â|0, 0̃⟩ = ˆ̃a|0, 0̃⟩ = 0, from which one can construct product
states in the usual manner,

|n, m̃⟩ = (â†)n( ˆ̃a†)m
√

n!
√

m!
|0, 0̃⟩ . (443)

Finally, the correspondence with thermal states is established by intro-
ducing temperature through a Bogoliubov transformation that mixes
the real and fictitious systems:

|0β⟩ = T̂(θβ)|0, 0̃⟩ , (444)

with

T̂(θβ) = eθβ(â† ˆ̃a†−â ˆ̃a) . (445)

The so-called thermalising operator T̂(θβ) is a two-mode squeezing op-
erator and the real parameter θβ encodes temperature in a way that
will enable us to verify (439). One can easily check that the trans-
formed, now temperature-dependent, ladder operators

âβ = T̂(θβ)âT̂†(θβ) = cosh(θβ)â − sinh(θβ) ˆ̃a† ,

ˆ̃aβ = T̂(θβ) ˆ̃aT̂†(θβ) = cosh(θβ) ˆ̃a − sinh(θβ)â† ,
(446)

indeed annihilate the state (444)

âβ|0β⟩ = ˆ̃aβ|0β⟩ = 0 . (447)

The operators (446) and their adjoints still satisfy the bosonic algebra
because Bogoliubov transformations are canonical. Therefore, one can
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construct a Fock space with respect to the β-dependent operators,
where general states read

|n, m̃; β⟩ = T̂(θβ)|n, m̃⟩ =
(â†

β)
n( ˆ̃a†

β)
m

√
n!
√

m!
|0β⟩ . (448)

The association of the thermal vacuum |0β⟩ with a density matrix
ρ̂β as given in (230) is obtained by determining θβ as a function of β.
This is done by imposing the condition (439) for the number operator
so that, thanks to (233), one has

1
eβ − 1

= tr
(

ρ̂β â† â
)
= ⟨0β|â† â|0β⟩ = sinh(θβ)

2 , (449)

where the right-hand side is computed using the thermal vacuum
(444). The fictitious system is understood as unphysical and is only
introduced as a useful tool. We are not interested in expectation val-
ues of tilde operators; this helps to define a simple thermofield coun-
terpart of Gaussian states.

Starting from the thermal vacuum |0β⟩, we can construct states by
analogy with (210) and (219) and hence use displacement and squeez-
ing operators to define general Gaussian states in the thermofield for-
malism. Indeed, we can generalise the GFT coherent thermal states of
[40, 41, 250], defining the thermofield analogue of ρ̂G (cf. (229)) as

|α, z, β⟩ = D̂(α)Ŝ(z)T̂(θβ)|0, 0̃⟩ = D̂(α)Ŝ(z)|0β⟩ , (450)

which clearly reduces to a pure Gaussian state when β → ∞ (or equiv-
alently θβ → 0). Since the thermalising operator (444) is of squeezing
type, the order in which the operators appear in (450) is in princi-
ple arbitrary (see discussion below (433)) and is chosen for conve-
nience. There is however a subtlety: while D̂(α) and Ŝ(z) only act on
the non-tilde sector, T̂(θβ) is a two-mode operator which mixes the
physical and fictitious parts. Thus, choosing T̂(θβ) to be to the left
of D̂(α) and/or Ŝ(z) requires the introduction of ˆ̃D(α̃) and/or ˆ̃S(z̃),
with α̃ = ᾱ and z̃ = z̄ (see [241] for details).1

On the other hand, if the mixing between the physical and the
fictitious sectors happens first (i.e., T̂(θβ) is to the right of every other
operator as in (450)), one is free to displace and squeeze only the
non-tilde component of the state. Of course, one can also include the

1 One can for example use the state T̂(θβ)D̂(α) ˆ̃D(ᾱ)Ŝ(z) ˆ̃S(z̄)|0, 0̃⟩ or any other alter-
native definition achieved by changing the operator ordering; they will all be related
to |ΨG; β⟩ in (450) via (434).
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tilde operators ˆ̃D(ᾱ) and ˆ̃S(z̄) acting from the left in (450) (as done
in [40, 41, 250] for coherent states), but this is not necessary; it would
only be relevant if one were interested in the expectation values of
tilde operators. In short, the state (450) is the simplest thermofield
analogue of the Gaussian density matrix (229).

The explicit computational convenience of the thermofield formal-
ism comes from the following transformation rules of our GFT ladder
operators

T̂†(θβ)âT̂(θβ) = cosh(θβ)â + sinh(θβ) ˆ̃a† ,

T̂†(θβ)â†T̂(θβ) = cosh(θβ)â† + sinh(θβ) ˆ̃a ,
(451)

which were tacitly used to compute the right-hand side of (449). The
transformations (451), together with (437) and (438), allow us to for-
get entirely about Gaussian density matrices and taking traces. This
makes calculations very mechanical: one first simply computes ex-
pectation values with (450) exactly as if using pure states; then, one
makes use of the identification (449) to map the thermofield results
to the standard (β-dependent) results of the density matrix approach.

While in the above we focused on techniques used for the de-
parametrised approach to GFT cosmology (i.e., for the results in Sec-
tion 5.2), suitably generalised definitions and expressions can easily
be applied to the algebraic approach; the details can directly be found
in Section 5.3.
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[255] K. Kuchař. “Dirac constraint quantization of a parametrized
field theory by anomaly-free operator representations of space-
time diffeomorphisms”. Phys. Rev. D 39, 2263–2280 (1989).
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