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Abstract

Extensive research has outlined the pivotal role of appropriate spectra in en-

abling quantum information transfer via spin chain mirror inversion. Through

a combination of numerical and analytical methods, researchers have iden-

tified configurations of nearest-neighbor couplings and on-site energies that

facilitate perfect or near-perfect state transfer (PST-PGST). One notably

effective model, derived from an equidistant spectrum (Christandl et al.),

relies on strongly inhomogeneous couplings across the sites while leaving lo-

cal magnetic fields unaltered. Through the use of evolutionary numerical

methods, specifically a tailored genetic algorithm, we have uncovered an al-

ternative spectrum. This alternative spectrum yields high-fidelity transfer

solely through modulation of on-site energies. This spectrum, up to an ap-

proximate number of sites, allows for complete homogeneity of the couplings,

thereby simplifying experimental requirements.

We’ve also used a secondary numerical approach in an inverse eigenvalue

method to provide an auxiliary analysis in distinguishing quasi-perfect state

transfer (QPST) and PST, as well as highlighting the trade-offs for both.

Through these analyses we may propose alternative prescriptions which offers

potential advantages for experimental implementation while still aiming for

perfect or near-perfect state transfer.
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1
Introduction

‘I have trouble with Dirac. This

balancing on the dizzying path

between genius and madness is

awful.’

– Albert Einstein, Letter to

Paul Ehrenfest, Aug. 23, 1926.

Nature seems to be fundamentally quantum. How else could we have built

technologies which were reliant on quantum mechanics providing novel in-

sight? Quantum information science, the marriage between the principles

of quantum mechanics and information theory, as a field, has seen expo-

nential growth within the last few decades. The analysis of how might the

underlying properties of quantum systems be understood in terms of facil-

itating the storage, processing and transmission of data has served as the

basis of research concerning Quantum Information Processing (QIP). Sub-

sequent investigations into how these properties might also be exploited for

future technological advancement have served as the seminal motivation for

the origin of one of the most recent technological divisions, the quantum

technologies sector.
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Historical technological triumphs, which require quantum theory to un-

derstand their underlying mechanisms, include (non-exhaustively) nuclear

power, laser technology, medical imaging techniques, and solid-state elec-

tronics. New developments within this aforementioned division of quantum

technologies, which instead now require the manipulation of quantum infor-

mation for their successful application, include implementations for quantum

sensing [1, 2, 3], quantum metrology [4, 5], and quantum communications

(QKD) [6, 7], to name a few broad subdivisions. The rapid advancement of

these technologies has not gone without notice, particularly regarding their

potential benefits for the financial sector, government bodies, military oper-

ations, and even agricultural and environmental concerns, in countries where

investment has been consistent [8, 9, 10, 11, 12, 13].

However, arguably the most prevalent pursuit amongst quantum technol-

ogists to date, has been the construction of a universal fault-tolerant quan-

tum computer. Though the physical environment which would serve as its

hardware has not been unanimously agreed on yet, there has still been ex-

tensive research on the criteria/requirements a hardware-agnostic prototype

must fulfill to be considered a candidate for a realizable quantum computer

[14, 15]. Further research has also extended into how one could compare, and

ultimately test, functioning quantum computers’ advantage against classical

computation [16, 17, 18], with a number of proposed algorithms a quantum

computer alone may exploit to garner an advantage [19, 20, 21].

Quantum computers are to be the most compact and yet most power-

ful computational devices possible. Reasonable questions have been raised

about counteracting the inherent fragility of quantum systems while main-

taining control over them to enable the construction of a functional quantum

device. Blueprints for the scaling of these quantum computer candidates

have existed for some time [22, 23, 24, 25], with considerable recent progress

being made [26, 27]. By far, one of the most promising and natural appli-
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cations for quantum computers, which we have a solid foundation to believe

in, is the same application that Feynman envisaged more than 40 years ago:

the simulation of quantum systems [28, 29].

We know this to be a clear and obvious advantage as exact classical means

of simulating these systems hits a limit of infeasability well before 60 Qubits

[30]. Certain quantum hardware has surpassed this classical threshold in the

number of physical qubits with high fidelity gate operations [31] and therefore

novel findings even within the current ‘noisy intermediate-scale quantum’

(NISQ) devices are probable [32]. These developments are milestones in

nature, but the task of scaling up these devices beyond the NISQ domain,

to further increase the computational capacity, presents new difficulties in

error-rate propagation and noise elevation [33, 34]. In fact, until the advent of

Quantum Error Correction (QEC), the prospect of a universal, fault-tolerant

quantum computer appeared far-fetched [35, 36]. The difficulty in useful

QEC approaches however, is the requirement of even more physical qubits

to protect the encoded information from the environment. This presents an

argument that there may be limitation on how large (qubit-wise) a single

quantum processor can be.

A proposal to circumvent this issue has been brought forward. Instead

of sizing up a single-module quantum computer, that the computer itself

be constructed as an array or ensemble of processors/modules, which are

connected by ‘quantum wires’ [37, 38, 39]. These wires, formed by spin

chains/permanently coupled qubits, may act as data transmission channels,

or even take part in the computation themselves, in the form of entangle-

ment generation to assist the modular ensemble with the processing of in-

formation [40, 41, 42]. To this end, there has been extensive research of the

pre-engineering of these one-dimensional wires to achieve unit-fidelity state

transfer, of initially encoded quantum information, from the beginning to the

end of the chain. One of the most successful theoretical schemes, for which
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there has been experimental demonstrations of its efficacy [43], requires a

strongly inhomogenous coupling profile [44, 45]. This prescription has not

been implemented throughout different hardware, due to the inherent diffi-

culty in tuning the inter-qubit interactions across the candidate substrates

ubiquitously. It has therefore been suggested that a homogenous (or near-

homogenous) coupling profile would be more desirable [40, 46].

In this thesis, we present an alternative model, with homogeneous cou-

pling, using an optimization approach via a genetic algorithm. This model

requires only the modulation of on-site energies to achieve high-fidelity state

transfer or quasi-perfect state transfer (QPST). We will also discuss how

these QPST schemes can be converted to perfect state transfer (PST) models,

examining the trade-offs involved through further analysis using an inverse

eigenvalue approach. Additionally, we explore the potential for experimen-

tal realizations of our proposal, including the degree of precision required.

Through this investigation, we emphasize the importance of grounding the-

oretical modeling in experimental feasibility, ultimately with the aim of pro-

gressing the development of future quantum technologies. Previous research

has discussed solutions of single, specific chain length and a corresponding

tuning of a general harmonic potential [47, 48], or the creation of dual-site

‘barrier’ potentials for high transmission probability [49]. In contrast, the

results presented here are systematic and offer a number of prescriptions for

varied (odd and even) chain lengths with distinct ‘families’ of adjustments

that may be made based on the spectral properties of the system, whilst still

respecting the homogeneity of the inter-qubit coupling scheme.
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1.1 Foundations of Quantum Computing

1.1.1 The Qubit

The primary contrast between means of quantum vs. classical computation,

is the necessary distinction by how we define an irreducible ‘bit’ of informa-

tion. In classical computation, a bit is typically represented by the state of

a physical system, such as a transistor, which is relatively large compared to

quantum scales. The bit can exist in one of two distinct states, corresponding

to

(0) or (1),

which may be interpreted as functionality-dependent signals, such as

(Yes/On) or (No/Off).

The term ‘bit’, being a contraction of the term binary digit, popularized by

Shannon in his famous 1948 paper [50] (though he attributes the first use

of the word to John W. Tukey), has become foundational within the lexicon

of theoretical computer science and information theory. Within quantum

computing, there is a mathematical object that is analogous to the classical

bit, the quantum bit or ‘qubit’ [51]. Instead of 0’s and 1’s, there are ket

vectors |0⟩ and |1⟩, whose respective vector representations are conventionally

|0⟩ =

1

0

 , |1⟩ =

0

1

 , (1.1)

and serve as our quantum computational basis. From the standpoint of

quantum mechanics, it is understood that unless a state has been ‘acted

upon’ in some way, the most accurate description of its current nature is
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within a linear algebraic combination or ‘superposition’ of possible states

|ψA⟩ = α|0⟩ + β|1⟩, (1.2)

where α and β are corresponding amplitudes to the probabilistic outcomes

we’ve superimposed onto our basis of |0⟩ and |1⟩

α = ⟨0|ψA⟩, β = ⟨1|ψA⟩,

resulting from the inner product between orthonormal basis states being

⟨i|j⟩ = δij. This protean construction of |ψA⟩ is expressed within a 2-

dimensional complex vector space, known formally as a Hilbert space, de-

noted as H. The principle of superposition exhibited by qubits introduces

a form of functional-agnosticism, which can be leveraged in numerous ways

due to the flexibility it offers in its mapping to a plethora of physical phe-

nomena. So long as a quantum system, or a specific feature of it, can exist

in (or rightly between) two distinct, well-defined levels—one state, its sister

state, and a superposition of both—it may serve as a valid qubit, subject to

further quality assessment. In fact, Feynman demonstrated this versatility

of physical systems which may be considered as a qubit, in showcasing the

MASER mode of the ammonia (NH3) molecule, and its electric dipole mo-

ment either being anti-aligned µ↓ (|0⟩) or aligned µ↑ (|1⟩) with respect to a

longitudinal electric field [52].

Origins of the probabilistic interpretation of α and β, within Eq.(1.2),

stems from the projection of their statistical ‘weight’ formalized by the nor-

malization condition [53]

|α|2 + |β|2 = 1, (1.3)

resultant from the insistence that the state vector, |ψA⟩, is a unit vector
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Figure 1.1: Bloch sphere representation of a state vector, |Ψ⟩,

(⟨ψA|ψA⟩ = 1) within the associated Hilbert space.

In defining α = cos( θ
2
) and β = eiφ sin( θ

2
) (thus fulfilling Eq.(1.3)) single

qubits may be mapped to a vector extending out (from the origin) along the

interior surface of what’s known as the Bloch Sphere (See Fig.1.1) [54]. θ

and φ within Fig.1.1, are numbers which define the polar and azimuthal co-

ordinates, placing the end of the Bloch vector |ψ⟩ throughout infinitely many

points on the sphere, with its coordinates being indicative of the likelihood

of measuring the outcome associated with an adjacent pole. It should be

noted that these angles are angles between state vectors within the Bloch

sphere representation, not within the Hilbert space itself. As spin-1
2

states,

| ↑ ⟩ and | ↓ ⟩, of fermions are isomorphic to qubits [37, 55], Eq.(1.2) may be

re-expressed as

|ψA⟩ = α| ↓ ⟩ + β| ↑ ⟩,

and thereby we may exploit the spin-1
2

degrees of freedom of fermionic quan-

tum systems to map to the computational basis and vice versa.
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1.1.2 Multiple Qubits

Moving out of the Bloch sphere representation and on to consider more than

2 degrees of freedom in the combination of the |0⟩ and |1⟩ states of a single

qubit, we may observe 2 corresponding separable qubits |ψA⟩ = α|0⟩ + β|1⟩
and |ψB⟩ = γ|0⟩ + η|1⟩ and defining |ψC⟩ as a product of them

|ψC⟩ = |ψA⟩ ⊗ |ψB⟩ = αγ|00⟩ + βγ|10⟩ + αη|01⟩ + βη|11⟩, (1.4)

where the tensor product ⊗ presents outcomes from |ψA⟩ and |ψB⟩ together.

It should be noted that this is not the only form that two-qubit states can

take. Any state vector that cannot be expressed in the form of Eq.(1.4), is

described as an ‘entangled state,’ which provides a more general represen-

tation for multiple qubits. For convenience, we focus only on the product

state form here. It can be appreciated readily that through the construc-

tion of |ψC⟩, there has been an expansion in the total number of possible

outcomes/basis states, in that the single qubit system (Eq.(1.2)) requires 2

distinct outcomes, and now, with the 2-qubit system (Eq.(1.4)), there are 4.

This demonstrates the dimensionality of, or the number of orthogonal

states allowed within, the associated Hilbert space grows like 2N , where N

is the number of 2-level systems acting as qubits we have within our total

system. This is exemplified clearly by the expression that any one state

vector

|ψ⟩ =
2N∑
n=1

an|ϕn⟩,

can be written as an expansion of its basis states |ϕn⟩ with unique coeffi-

cients an. Thus, the entire 2N -set of |ϕn⟩ states are linearly independent

vectors within the 2N -vector space, and therein form a complete basis [56].

Quantum registers, unlike their classical counterparts, not only represent one

of the 2N possible states from the N -bit system, but all of the 2N possible



1.1 Foundations of Quantum Computing 9

states simultaneously as a superposition of amplitudes. This allows for the

exploitation of ‘quantum parallelism’, enabling quantum computers to pro-

cess larger (compared to classical means of computation) pools of information

concurrently [54]. We will discuss in greater detail in subsequent chapters,

that the vector space we are interested in, concerning our current research, is

a subspace (only examining single spin-flip/excitation subspaces) of a larger

Hilbert space in which the total number of basis states grows like N , instead

of 2N .

1.1.3 Quantum Gates

In order for a quantum computer to process, store, transmit, and readout

information in a similar way to its classical counterpart, in the highly ad-

vanced digital supercomputer, it needs to be able to work with quantum

analogues of classical gate operations. These gate operations need to be able

to manipulate qubits using quantum logic gates, by which the effect is a

familiar computational process. In reviewing the classical single bit NOT

gate, whose operation is defined by taking the (0) and (1) bits

NOT (0) → (1),

NOT (1) → (0),

and simply swapping them. The way to map this action to the qubit is

non-trivial due to our quantum bit being in a combination of the outputs

associated with |0⟩ and/or |1⟩. Swapping the outputs along with their corre-

sponding amplitudes (Eq.(1.2)) does not alter the system’s overall behavior

because quantum states are described by linear combinations, so we can in-
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stead consider swapping the amplitudes themselves as a Q-NOT gate

Q-NOT |ψA⟩ = α|1⟩ + β|0⟩. (1.5)

Using ⟨i|j⟩ = δij and Eq.(1.5), we can deduce the Bra-Ket [54] representation

of Q-NOT to be

Q-NOT = |0⟩⟨1| + |1⟩⟨0|.

Furthermore, noticing the matrix form of our computational basis (Eq.(1.1))

we find

Q-NOT =

0 1

1 0

 , (1.6)

which turns out to be conveniently the Pauli-X matrix, σx. It can be shown

through similar treatment that all of the Pauli matrices are in fact quantum

gates

σx =

0 1

1 0

 , σy =

0 −i
i 0

 , σz =

1 0

0 −1

 . (1.7)

and remarkably any such matrix/operator which fulfills the unitarity con-

straint AA† = Î also serves as a valid quantum gate. Some of the most

prevalent quantum gate operations, along with their circuit symbols and

output states, are shown in Table 1.1.

For single qubit gates, we can visualize their action as the state vector

rotating within the Bloch sphere (Fig.1.1). For multiple qubits however, we

require more intricate circuit designs, such as those exhibited within Ta-

ble.1.2. The ability to map physical processes to the actions of logical gates,

along with the knowledge of how one can decompose complicated functions

into elements of a universal set of operations, serves as the foundation by

which quantum computing may be built upon.
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Gate Circuit Symbol |0⟩ Output |1⟩ Output

I (Identity) |0⟩ |1⟩

σx (Pauli-X) X |1⟩ |0⟩

σy (Pauli-Y) Y i|1⟩ −i|0⟩

σz (Pauli-Z) Z |0⟩ −|1⟩

H (Hadamard) H
1√
2
(|0⟩ + |1⟩) 1√

2
(|0⟩ − |1⟩)

Table 1.1: Truth table and corresponding circuit symbols for single-qubit quan-
tum gates.

Gate Circuit Diagram Matrix Representation

SWAP |1⟩ × |0⟩
|0⟩ × |1⟩


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


CNOT |1⟩ • |1⟩

|0⟩ |1⟩


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 1.2: Multi-qubit quantum circuits, demonstrating the action of SWAP
and CNOT gates along with their matrix representations in the computational
basis.

1.1.4 Decoherence

The formal study of decoherence is an incredibly rich subject [57, 58, 59, 60]

which has given valuable insight into ideas surrounding the correspondence

principle, the measurement problem and the very idea of how physical sys-

tems become entangled with their environment. The coherences within our

quantum mechanical description may be mathematically represented through

the density operator of our previously introduced pure state, |ψA⟩,

ρ̂A = |ψA⟩⟨ψA|.
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The matrix representation of ρ̂A being (through taking the outer-product of

Eq.(1.2))

ρA =

|α|2 α∗β

β∗α |β|2

 . (1.8)

The off-diagonal terms in α∗β and β∗α serve as the coherence amplitudes,

which are responsible for the ‘quantumness’ (interferences within double-slit

experiments, for example) of our system, within a chosen basis. For a pure

state, it is known that

ρ2A = ρA.

However, for mixed states (defined by tr(ρ2) < 1), the system is no longer

pure and the square of the density matrix will not be equal to itself, ρ2 ̸= ρ.

Decoherence can be witnessed in the decay of the off-diagonal terms of

Eq.(1.8); however, this effect is basis-dependent (unlike the purity of the

state), as the presence of only diagonal entries within the density matrix

does not necessarily indicate that the system behaves classically. Efforts are

made to maintain and subsequently capitalize upon the presence of the coher-

ence amplitudes, for means of computation. These amplitudes are essential

for quantum computers to function, and thereby allowing sequential gate op-

erations to occur reasonably. The time for a particular quantum system to

lose its coherence terms and thereby decohere, is dependent upon factors such

as the system size (effective scattering area), temperature and the coupling

to its environment [59, 61].

1.2 Di Vincenzo’s Criteria

In 2000, David Di Vincenzo outlined cogently the desiderata for physical

implementations of a practically realizable quantum computer [15]. The

criteria are as follows.
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1.2.1 Scalability and Qubit Characterization

It is vital to characterize well the nature of the two-level ‘qubit’ from the

candidate physical substrate. In the language of physics, we must have a

comprehensive understanding of all of the effective interactions both within

our system and necessary external connections. This provides a foundation as

to how computation may be executed given external probing or the reliance

on internal mechanisms. Relying on two quantized energy levels (serving as

our computational basis) within atomic or ionic qubits, for instance, requires

an ability to effectively decouple these energy levels from all the other possible

energy levels within the system. This isolating procedure would be crucial

in order for the system to be considered a useful and characterisable qubit.

To increase the overall quality of our qubit, efforts towards noise miti-

gation, isolation from the environment (as well as the rest of the system’s

Hilbert space for dimensions greater than 2), and decrease in gate operation

errors are reasonable short-term goals [32]. As we are currently still residents

of the NISQ era of quantum computers, further development within quantum

error correction [34], along with experimental findings/refinement holds the

greatest amount of promise in the increase in the total number of controllable

qubits. For quantum computers to be able to solve certain tasks in which

classical computation struggles earnestly to keep up, the number of physical

Qubits required for the error corrected logical Qubits are of the order of mil-

lions [62, 63]. Given our leading hardware design still fits comfortably within

the NISQ domain of ∼ 10 − 102 qubits [31, 32], there are plenty of battles

left to be won.

1.2.2 Initializing to a simple fiducial state, |00000..⟩

This requirement may be summarized as the ability to prepare a known initial

state (with confidence) repeatedly. The processing of information and inter-
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pretation of the output (both classically and in the quantum realm) becomes

an increasingly incomprehensible task when the input is not well-known.

Cooling techniques are often implemented within particular hardware such

that the ground state is our referential fiducial state. Incorporating cool-

ing techniques, however, takes time and can be complicated, especially when

requiring to chill the system down to the µK-nK range [64]. An alterna-

tive preparation method, if possible, is to measure every qubit in the system

and apply σx operations (Eq.(1.7)), if any |1⟩ states are measured. This ap-

proach also manufactures the all-zero state, and can be useful, so long as the

time required for the bit-flip operations is significantly less than the system’s

characteristic decoherence time (discussed more within the next subsection).

Onto this fiducial state, we may create and transmit excitations and have

a clearer mapping between experimental procedure and the theoretical appli-

cation of quantum gates. This particular criterion outlines the importance

of setting conditions for reproduciblity of experiments. If we could model

a perfect input, it would be a pure state with zero entropy. This picture

however is shrouded in idealism (especially with larger and larger number

of qubits). Nature has decided for us that we will have to make necessary

compromises.

1.2.3 Decoherence time ≫ operation time

It is intuitive that we need our computational substrate to subsist long

enough for the process of computation to occur. If we only had access to

a classical computer for 5 minutes (as a metaphorical example, say someone

else needed to use it urgently) but we had good reason to believe the amount

of time we required to use it for our calculations was ≈ 10 minutes, then in

this particular moment in time this computer isn’t particularly useful to us.

At least until the conditions improve. This logic is profoundly relevant when

dealing with quantum computers due to the execution of complex quantum
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algorithms requiring a large number of gate operations and if these gate

operations can only occur within a certain window of time (given current

limitations in the laboratory or other hardware-specific concerns) we want to

have confidence that our computation can take place.

The balancing act between perfect system isolation and the necessity of

external interactions is central to this problem. Without very good isolation

from the environment we lose the ability to exploit (or even observe) quantum

effects, and without an ability to ‘tell’ the system what we want it to compute,

there is no computation. The window of time we may refer to regarding

specific hardware’s decoherence eventuality is codified by the T2 parameter

[31, 64], often referred to as the ‘transverse relaxation’ or coherence time

within the relevant literature. For future reference we will also define the

time taken for a 2-Qubit gate to be τ2.

1.2.4 Universal set of quantum gates

Within classical computation any function can be effectively built by a se-

quence of AND and NOT gates. This presents an argument of the set

of AND and NOT procedures (or indeed physical processes which mimic

them) are ‘universal’ within computation, as the execution of more com-

plicated/intricate computation may be decomposed into a sequence of the

elements within this set. It may be shown that any unitary transformation

may in fact be decomposed into single qubit and CNOT gate operations

[65]. The universal set itself is not a unique construction. Seth Lloyd, in

fact, showed in 1995 that almost any quantum logic gate is computationally

universal [66].

This universality grants us the ability for task computation, once it is

known what physical processes mimic these gate operations satisfactorily.

Having appropriately selected systems that allow for the universality of quan-

tum gate procedures is key to creating a hospitable environment for the im-
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plementation of quantum algorithms.

1.2.5 Readout of qubit-specific outcomes

If we were able to perfectly isolate a quantum system there will come a time

in which, if we expect to gain information, we will have to interact with it

by reading an output. Through this interaction we effectively measure the

system within an orthonormal measurement basis, and intuitively project

the system to one of its eigenstates, as any singular moment will give us a

singular result. We say a normalized state in |ψA⟩, when measured, is acted

upon by a measurement operator Ŵw, with outcome w. Clearly, for the

single qubit, Ŵw can only collapse |ψA⟩ to |0⟩ with Ŵ0 = |0⟩⟨0| or |1⟩ with

Ŵ1 = |1⟩⟨1|. The post-measurement state, |ψ′
A⟩, may therefore be shown to

be

|ψ′
A⟩ =

Ŵw|ψa⟩√
⟨ψ|Ŵw

†
Ŵw|ψ⟩

,

where
∑

w⟨ψ|Ŵw

†
Ŵw|ψ⟩ = 1, satisfies the completeness relation [54]. Ob-

taining |ψ′
A⟩ for specific hardware requires consideration for the nature of the

qubit itself.

For ion trap quantum computers for instance, the laser-induced excita-

tions from the ground state may serve as our two-level system [67], whilst

for semiconductor quantum dots it is the energy signature obtained from

fluorescence measurements, between the singlet and triplet state [68]. NMR

even offers unique capabilities for ‘weak’ measurements through sampling the

transverse magnetization throughout the entirety of the system, and there-

fore reducing the amount of disturbance on any one particular qubit [69].

Luckily, there are myriad ways in which one can gain information about a

quantum system, and therein lies optimism for the pursuit of future deco-

herence minimizing readout procedures.



2
Spin Chains for Quantum Communication

2.1 Genesis as ‘Quantum Buses’

In 2003 Sougato Bose pioneered the notion of exploiting the properties of sys-

tems which may be realistically described as linear chains of coupled spins,

for purposes of quantum communication and information transfer [37]. He

demonstrated that after waiting a period of time one can see that even an

unmodulated chain governed by an isotropic Heisenberg exchange interaction

may transfer an injected excitation or encoding across physical distances. He

showed this through evolving a Heisenberg ferromagnet within an appropri-

ately chosen magnetic field, from its ground state (all spins aligned with

the z-axis) with one single excitation (one spin anti-aligned) encoded at the

beginning of the chain, to eventually present high fidelity transfer to the

opposite side.

Others, in reaction to this revelation, began the pursuit of constructing

‘passive quantum network’ designs [39] by deriving optimal pre-engineered

protocols for these kinds of chains to yield perfect state transfer (PST) [39,

40, 44, 45, 46, 70, 71]. It’s been well-established that for N ≥ 4, PST is not to

be expected with a constant coupling and on-site energy profile [44, 72, 73].

Therefore, for chains of N ≥ 4, we require one of the two to be altered in

some manner for our system to accommodate high fidelity transfer, let alone

PST.
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2.2 Spin Models

A leading, widely-applicable model studied in the relevant literature, focusing

on nearest-neighbor interaction spin chains and quantum communications, is

the so-called Heisenberg exchange interaction [74] within an appropriately

chosen external magnetic field

ĤHeis = −2
N−1∑
i

Ji,i+1Si · Si+1 +
N∑
i=1

εiS
z
i , (2.1)

where Si and Si+1 are the spin operators at sites i and i+1, respectively, and

Ji,i+1 describes the ‘exchange couplings’ or simply the ‘couplings’ between

neighboring sites, with site-dependent magnetic field strengths or ‘on-site

energies’, εi. Note, that in applying an external magnetic field, we thereby

break the SU(2) symmetry [75], and the spin alignment is preferential to

align or anti-align with it. Eq.(2.1) may be expanded in the following way

ĤHeis = −
N−1∑
i=1

2Ji,i+1

(
Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 + Ŝz

i Ŝ
z
i+1

)
+

N∑
i=1

εiS
z
i . (2.2)

Within condensed matter physics, the Heisenberg model serves as the ‘effec-

tive’ Hamiltonian for the dipole interaction of magnetic ions within a crys-

talline lattice structure at low-energy scales [76, 77]. In considering only

spin-1
2

systems, the Ŝx, Ŝy, and Ŝz operators within Eq.(2.2) take the form

(with a scaling of ℏ
2
) of the Pauli operators σ̂x, σ̂y, and σ̂z (Eq.(1.7)) in which

their actions with respect to qubit operations (on site i) are well-known

σ̂x
i = (|0⟩⟨1|+ |1⟩⟨0|)i ; σ̂y

i = i(|0⟩⟨1|− |1⟩⟨0|)i ; σ̂z
i = (|0⟩⟨0|− |1⟩⟨1|)i.

We may therefore rewrite Eq.(2.2) in the computational basis, whilst ignoring

the Ŝz
i Ŝ

z
i+1 terms, so we obtain the so-called XY model (also referred to as
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the XX Hamiltonian within relevant literature)

ĤXY =
N−1∑
i=1

Ji,i+1(|1⟩⟨0|i ⊗ |0⟩⟨1|i+1 + |0⟩⟨1|i ⊗ |1⟩⟨0|i+1) +
N∑
i=1

εi|1⟩⟨1|i,

(2.3)

of which our investigations are exclusively focused. It may be shown via the

total number of excitations, Ŝtotal =
∑

i σ̂
z, that

[ĤXY , Ŝtotal] = 0, (2.4)

and therefore the total number of excitations from initialization to measure-

ment is conserved. Eq.(2.4) also demonstrates that in commuting with the

total spin operator, computational basis states are eigenstates of Eq.(2.2)

only in cases where the Hamiltonian is completely diagonal (e.g., for states

like |0000..⟩ or |1111..⟩) and therefore the dynamical evolution of the system

can only be provoked through some sort of external intervention (discussed

more in Sec.2.3.1)[39, 69]. Our Hamiltonian in Eq.(2.3), may be reformulated

via its spin-operator representation, in terms of fermionic creation and anni-

hilation operators (ĉ† and ĉ) via the Jordan-Wigner transformation [78, 79]

ĤXY =
N−1∑
i=1

Ji,i+1

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+

N∑
i=1

εiĉ
†
i ĉi, (2.5)

where the hopping terms and on-site energies may be re-conceptualized ex-

actly as a tunneling amplitude and chemical potential of the fermions respec-

tively. Eq.(2.5) may be subsequently diagonalized to yield

ĤXY =
N∑
k=1

λkĉ
†
kĉk, (2.6)
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where Eq.(2.6) is the Hamiltonian of a single non-interacting fermion which

exists in the kth energy eigenstate |k⟩. As this Hamiltonian also describes

non-interacting fermions, the computational basis state |0⟩ corresponds to a

vacuum state where no particle has been detected, whilst |1⟩ corresponds to

the presence of a maximum of a single particle. This equivalence between

Eq.(2.5) and Eq.(2.3) demonstrates an ability to map the spin-1
2

XY model to

a Hubbard model for non-interacting fermions [39]. The eigenvalues of both

Eq.(2.3) and Eq.(2.5) (λn & λk), are constrained to a dispersion relation

reminiscent of the tight-binding model [80]

λk = εk − 2J cos

(
kπ

N + 1

)
, (2.7)

assuming Ji,i+1 = J for all i, with k ∈ [1, 2, ..., N ], which informs our intuition

as to an allowance of the eigenvalues. The XY model Eq.(2.3) takes the form

of a tridiagonal matrix

HXY =



ε1 J1,2 · · · 0 0

J1,2 ε2 · · · 0 0
...

...
. . .

...
...

0 0 · · · εN−1 JN−1,N

0 0 · · · JN−1,N εN


N×N

, (2.8)

within the site basis and through appropriate calculation of the matrix ele-

ments ⟨i|Hij|j⟩. Alongside describing the interactions within naturally occur-

ring systems and giving insight within the study of ferro/anti-ferromagnetism

of materials, this Hamiltonian has also been used to successfully model a

number of artificial qubit-hardware landscapes [69, 81, 82, 83, 84, 85, 86, 87].
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2.3 Initialization

2.3.1 Zero State

The preparation of the all-zero state may come about in different ways,

namely two for reference. Within an appropriately chosen magnetic field the

orientation of the spins, at zero temperature, are aligned with each neigh-

boring site with respect to the direction of the magnetic field axis

|000000000000000⟩T=0.

Therefore we may induce the zero, fiducial state through thermal cooling of

the system to its ground state. However, in the case of a non-uniform/existent

magnetic field we may measure each spin within the array. If all are measured

to be down, |0⟩i for all i, then we have successfully prepared the fiducial state.

In the event we measure one site to be spin up, |1⟩i at site i, we simply apply

a spin flip operation, σ̂x
i , to that site (See Sec.1.2.2).

2.3.2 Initial State

The initialized system |ψ1⟩, in which our investigation is exclusively focused,

is the single excitation deviation of the otherwise completely ferromagnetic

linear spin chain

σ̂+
1 |0000000⟩ = |1000000⟩ = |ψ1⟩, (2.9)

represented here as a N = 7-site chain, where σ̂i
± = (σx

i ±iσ
y
i ) either removes

(-) or adds (+) a spin flip at site i. This translates to the ground state of a

zero-temperature ferromagnet, with an initial spin flip or excitation exactly

localized at the very beginning of the chain (site 1). It can be shown this

single spin flipped chain is no longer an eigenstate of the XY model and

therefore will evolve when acted on by the time evolution operator.
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2.4 Natural Dynamics

The aim for linear register communication protocols is for an initial encoding

to traverse to the opposite side of the chain at some predictable time tm,

|ψ1⟩ = |100...00⟩ tm→ |ψN⟩ = |000...01⟩. (2.10)

We may also illustrate this process concretely as a sequential spin-flip qubit

operation

|ψ1⟩ = |100...00⟩ tm→ σ+
Nσ

−
1 |ψ1⟩ = |000...01⟩, (2.11)

and in doing so highlighting the mapping between tm and TQ (See Sec.1.2.3).

To be able to demonstrate the evolution of this system we evoke the Schrödinger

equation for the appropriate time evolution operator corresponding to our

time-independent Hamiltonian (Eq.(2.3)), Û(t, 0) = e−iHXY t/ℏ. The action of

the time evolution operator on a general state, |ψ0⟩ =
∑N

i=1 ai|ϕi⟩ where |ϕi⟩
are the eigenstates, imparts a time-dependence

Û(t, 0)|ψ0⟩ =
N∑
i=1

e−iHXY t/ℏai|ϕi⟩ =
N∑
i=1

ai(t)|ϕi⟩ = |ψ0(t)⟩, (2.12)

where the evolution of the state is orchestrated by HXY . The success of the

the pre-selected values of Ji,i+1 and εi, in terms of allowing high likelihood

for state transfer between sites, is codified by the transfer fidelity over time

F (t) = |⟨ψN |e−iHXY t/ℏ|ψ1⟩|2, 0 ≤ F (t) ≤ 1. (2.13)

Fidelity values which surpass 66.66%, presents an advantage over classical

means of communication and may be considered ’useful’ [38, 88]. Scores of

100% (up to a reasonable level of numerical precision), which are periodic/re-

current in time, signify perfect state transfer (PST).
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Quantum State Transfer:

Necessary-Sufficient Conditions

and Known Protocols

3.1 Mirror Symmetry

Achieving PST within linear one-dimensional chains, comprising N -sites, ne-

cessitates that the system’s Hamiltonian exhibit a ‘mirror symmetry’ with

respect to the chain’s mid-point [38, 44, 89]. This requires that the sin-

gle excitation subspace matrix representation of our Hamiltonian (Eq.(2.3))

commutes with the corresponding mirror operator M̂

M =



0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


N×N

, (3.1)

which takes the form of this N×N matrix. Its operation on the N×1 initial

state vector, |ψ1⟩, (Eq.(2.9)) is

M̂ |ψ1⟩ = M̂ |100..00⟩ = |000..01⟩ = |ψN⟩. (3.2)
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In this way |ψN⟩ may be defined as the ‘mirror image’ of |ψ1⟩ with respect to

mirror operation. Note, the commuting of our single-excitation Hamiltonian

matrix with the mirror matrix of Eq.(3.1)

[ĤXY , M̂ ] = 0, (3.3)

therefore enforces a necessary condition for state mirroring (Eq.(3.2)) to be

εi = εN−i+1, (3.4)

Ji,i+1 = JN−i,N−i+1, (3.5)

for all i ∈ (1, 2, 3, .., N − 1). For any system described by |ψ1⟩, this state

can be expressed as a linear combination of its symmetric |ψ⟩+, and anti-

symmetric |ψ⟩− components

|ψ1⟩ =
1√
2

(|ψ⟩+ + |ψ⟩−), (3.6)

their respective definitions as eigenstates of M̂ being

|ψ⟩+ =
1√
2

(|ψ1⟩ + M̂ |ψ1⟩) and |ψ⟩− =
1√
2

(|ψ1⟩ − M̂ |ψ1⟩),

with eigenvalues of +1 (for symmetric/even states) and −1 (for anti-symmetric/odd

states). Due to the commuting of ĤXY and M̂ (Eq.(3.3)), the eigenstates of

ĤXY must have definite symmetry/parity (either ±1) under M̂ operation.

The symmetric and anti-symmetric components expanded over their even

and odd parity eigenstates |ϕj⟩+ and |ϕl⟩− are respectively

|ψ⟩+ =
neven∑
j=1

aj,+|ϕj⟩+ and |ψ⟩− =

nodd∑
l=1

al,−|ϕl⟩−, (3.7)
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with coefficients aj,+ and al,− and the number of even states, neven, and

number of odd states, nodd, correspondingly satisfying neven + nodd = N .

The system’s adherence to mirror symmetry is captured by the action of the

mirror operator M̂ on these eigenstates, yielding

M̂ |ψ⟩+ = +|ψ⟩+ = +

(
neven∑
j=1

aj,+|ϕj⟩+

)
, (3.8)

and

M̂ |ψ⟩− = −|ψ⟩− = −

(
nodd∑
l=1

al,−|ϕj⟩−

)
, (3.9)

therefore,

M̂ |ψ1⟩ =
1√
2

(|ψ⟩+ − |ψ⟩−) = |ψN⟩. (3.10)

This results in unit fidelity (Eq.(2.13)) between the mirrored twin state vec-

tor M̂ |ψ1⟩ and the time evolved state |ψ1(t)⟩, so long as the state at some

time mirrors itself, as required for perfect state transfer. The mirroring pro-

cess necessitates some passage of time, which instigates the identification of a

characteristic time, tm. Within our framework of a time-independent Hamil-

tonian, we can be assured that even and odd states (formally symmetric and

anti-symmetric states), will remain even and odd throughout the duration

of the eigenstates’ evolution [53], via the time evolution operation discussed

previously (Eq.(2.12)). Therefore if we want the transfer fidelity (Eq.(2.13))

at some time tm (the mirroring time), to be exactly equal to 100%, we require

that [71]

e−iHXY tm/ℏ = e−iαM̂, (3.11)

for some global dynamical phase α. Requiring Eq.(3.11) constrains our

Hamiltonian and thus its spectrum. When this condition holds, the time

evolution of the system will generate Eqs.(3.8) and (3.9) on the component
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eigenstates, which are necessary for PST. We may show from Eq.(2.13) and

Eq.(3.2) that

F (tm) = |⟨ψN |e−iHXY tm/ℏ|ψ1⟩|2

= |⟨ψN |e−iαM̂ |ψ1⟩|2

= |⟨ψN |ψN⟩|2 = 1, (3.12)

signifying the accomplishment of PST across an arbitrary N -site chain, given

a Hamiltonian and corresponding spectrum that fulfills a required condition.

3.2 Spectral Considerations

Alongside the mirror symmetry, the eigenvalues of our Hamiltonian (Eq.(2.8))

play an important role in the capacity for the chain to transmit information

effectively. Recalling that for the condition of Eq.(3.11) to hold, there must

be constraints on the spectrum of our system. We will illustrate the nature

of these constraints with an example for N = 4.

Consider a N = 4-site spin chain with an equally spaced energy spectrum

given by

λn ∈ {3α, α,−α,−3α} , (3.13)

where the spacing between sequential eigenvalues ∆λn,n+1 = 2α. The eigen-

states exhibit an alternating symmetry, from the highest eigenenergy (even)

to the lowest (even for odd-site chains, odd for even-site chains). When

evolving the even and odd symmetry eigenstates (with ℏ = 1), one may de-

termine the time at which the system mirrors itself. For the even symmetry

eigenstates, the time evolution is

|ψ(t)⟩+ = a3αe
−i3αt|ϕ3α⟩ + a−αe

iαt|ϕ−α⟩,
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and for the odd symmetry eigenstates, it is given by

|ψ(t)⟩− = aαe
−iαt|ϕα⟩ + a−3αe

3iαt|ϕ−3α⟩.

Setting t = π
2α

, the eigenstates evolve as follows. For the even symmetry

eigenstates

|ψ
( π

2α

)
⟩+ = a3αe

−i 3π
2 |ϕ3α⟩ + a−αe

iπ
2 |ϕ−α⟩,

= ei
π
2

(
a3αe

−i2π|ϕ3α⟩ + a−α|ϕ−α⟩
)
,

= ei
π
2 |ψ(0)⟩+,

and for the odd symmetry eigenstates

|ψ
( π

2α

)
⟩− = aαe

−iα π
2α |ϕα⟩ + a−3αe

3iα π
2α |ϕ−3α⟩,

= ei
π
2

(
aαe

−iπ|ϕα⟩ + a−3αe
iπ|ϕ−3α⟩

)
,

= −ei
π
2 |ψ(0)⟩−.

The even and odd eigenstates acquire the same global phase, ei
π
2 , with a rela-

tive minus sign for the odd states. Thus, it can be analytically observed that

PST is guaranteed at time t = π
2α

(referring to Eq.(3.10)), for a configuration

corresponding to an equidistant energy spectrum. It has also been demon-

strated that, more generally, the ratio of the difference between sequential

eigenvalues must be rational for PST [44, 72]. This may be shown clearly in

the inherent periodicity of a PST-accommodating, mirror symmetric system,

in that when at time 2tm

|⟨ψ1|e−2iHtm|ψ1⟩| = |⟨ψ1|ψ1(2tm)⟩| = 1, (3.14)

as M̂2 = Î and as expected after a state perfectly mirrors at time tm, it will

return to the initial state with unit fidelity at time 2tm. Writing the evolved
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initial state |ψ1(2tm)⟩ in the energy eigenbasis |ϕn⟩

|ψ1(2tm)⟩ =
N∑

n=1

bne
−2iλntm|ϕn⟩,

and imposing

|ψ1(2tm)⟩ = ei2θ
N∑

n=1

bn|ϕn⟩,

(with θ as a phase constant, independent of n) we may therefore present the

condition

2λntm − 2θ = 2knπ,

where kn is simply an integer. We may take the difference of sequential

eigenvalues

2tm(λn − λn+1) = 2π(kn − kn+1), (3.15)

thereby removing the phase constant 2θ, and dividing by another sequential

non-degenerate eigenvalue pair λo and λo+1 to remove the tm dependence we

find that
λn − λn+1

λo − λo+1

=
kn − kn+1

ko − ko+1

∈ Q, (3.16)

with Q indicating for the set of all rational numbers. This condition demon-

strates that the ratio of differences between any sequential eigenvalue pairs

must be rational to ensure constructive phase alignment for PST. An equiv-

alent condition to Eq.(3.16), which is useful for spin chain construction, is

the difference between any sequential eigenvalue pairs being

λn+1 − λn =
πOn,n+1

tm
, (3.17)

where On,n+1 is simply a pair-dependent odd integer [70, 89]. PST neces-

sitates On,n+1 (as well as the differences of kn − kn+1 from Eq.(3.15)) to

be an odd integer to ensure the alternating symmetry between the eigen-
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states with even and odd parity (Eqs.(3.8) & (3.9)). Any spectra which is

consistent with Eq.(3.17) thereby guarantees Eq.(3.11). Therefore, any XY

Hamiltonian with eigenvalues that fulfil Eq.(3.17) will elicit PST through its

dynamics. If the spectrum itself exhibits symmetry about its center, such as

a linear spectrum, it may be written as

λn = −λN−n+1, for n ∈ [1, 2, ..., N ], (3.18)

with the consequence that the diagonal elements of our mirror symmetric

matrix are confined to be a site-independent constant εi = ε for all i [89].

Therefore, if we desire our system to harbor some variation of the on-site

energies, we require a non-symmetric spectrum.

3.3 PST Protocols

3.3.1 Inhomogeneous Coupling Configurations (εi = ε)

To begin, we consider models with uniform and constant on-site energies. A

prominent coupling model known for PST, with experimental support for its

transfer efficacy [43], is

Ji,i+1 = J0
√

(N − i)i, (3.19)

where J0 sets the scale for the hopping amplitudes [44, 45]. This model is

demonstrably powerful in that it is a general solution for N -site chains. Also,

due to the linearity of its spectra (equidistant eigenvalues), it sets a referential

speed limit for quantum information transfer through spin chains [90], not to

imply there cannot be others which may match its swiftness in information

propagation. We can observe from Fig.3.1, using a N = 31-site chain as an

example, the coupling trend across the chain, the associated transfer fidelity
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dynamics and the linearity of the spectrum for this protocol.

Unfortunately, the strong inhomogeneity required of the couplings, which

worsens with increasing system size N , presents difficulty in experimental

implementation. Namely the energy difference between the maximum cou-

pling value, Jmax, and the minimum couplings towards the outer-sites, leads

to an elevated susceptibility to external noise at either ends of the chain,

arising from the environment-dependent imprecision of the values. It is due

(a)

(b) (c)

Figure 3.1: The coupling configuration (a) along the sites of the chain
(Eq.(3.19)), associated dynamics (b) and spectrum (c), for a N = 31-site XY
chain. The ‘Normalized Value’ along the y-axis of (a) is recorded as the dimen-

sionless unit of relative values (
Ji,i+1

Jmax
), whilst (c) λn are in units of Jmax.

to these concerns which led others to focus instead on a coupling scheme
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which only required minimal alterations to the couplings [46], as this would

effectively quash the outer-site susceptibility issue and highlights an alter-

native scheme which still accomplishes PST. The proposed spectrum within

[46] follows closely the dispersion relation of the spin model (Eq.(2.7)) though

maintaining the spacing such that Eq.(3.17) and Eq.(3.18) are satisfied

λn ∈

 0, ±21, ±40, ±61, ±80, ±97, ±116, ±131,

±146, ±161, ±172, ±183, ±192, ±199, ±204, ±207

 .

An example for the 31-site chain can be found within Fig.3.2 displaying

the coupling trend across the chain, the transfer fidelity dynamics, and the

dispersion-like spectrum. However, now due to the minimal variation re-

quired, the differences between coupling values require a level of precision

which may be currently unrealistic. As an example of the level of precision

required for the spectrum proposed for N = 31, it may be shown that it

achieves 99.8%1 transfer fidelity when truncating the exact coupling values

to 4 significant figures (in which the rounding to numbers of significant fig-

ures follows conventional arithmetic rounding; 1235, [4 s.f.] → 1240, [3 s.f.])

but falls to ≈ 50% when valued up to 2 s.f. in the same time frame of

t · Jmax = 30 (Table 3.1). For comparison, the coupling profile of Eq.(3.19)

maintains transfer fidelity of 96.5% when rounded to 2 s.f., thereby demon-

strating that what the scheme lacks in current experimental wide-scale ap-

plicability, it compensates for within the environments it may be produced

in, with durability up to 2 s.f., where after it eventually falls down to ∼ 50%

also.

1It can be shown that this protocol achieves transfer fidelities of 99.99..% with period-
icity, which is demonstrative of PST, but is lower (99.8%) when discussed here, due to the
level of precision required in the coupling values for PST exceeding 4 significant figures,
which is the highest we present within this thesis.
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(a)

(b) (c)

Figure 3.2: The coupling configuration proposed by Karbach-Stolze (a), with
relative difference in the coupling throughout the chain being ∼ 3%. It can be
seen from (b) that PST is still acquired within eigenvalues which are chosen
such that they are closely representative of the dispersion relation (c). The
‘Normalized Value’ along the y-axis of (a) is recorded as the dimensionless unit

of relative values (
Ji,i+1

Jmax
), whilst (c) λn are in units of Jmax.

Configuration 4 s.f. 3 s.f. 2 s.f. 1 s.f.

Christandl-Nikolopoulos [44, 45] 99.9% 99.9% 96.5% 44.9%

Karbach-Stolze [46] 99.8% 85.6% 52.9% 52.4 %

Table 3.1: Comparison of the degree of precision required for high-fidelity state
transfer between two well-cited models.
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3.3.2 Alternative Configurations (εi ̸= ε)

Albanese et.al. [71] proposed another spectrum which is general in N , is

quadratic instead of linear, and may be shown to violate Eq.(3.18) and there-

fore incurs a variation to the diagonal elements of the XY Hamiltonian. This

variation in the on-site energies creates a negative parabola (similar to the

structure of the relative coupling values exhibited within previous coupling

scheme of Eq.(3.19)) along with the variation within the coupling, thus cre-

ating a model in which both form a negative parabolic structure to attain

PST. The authors subsuquently chose appropriate Zeeman terms such that

the diagonal elements all cancel out, resulting in a close resemblance to the

original Christandl-Nikolopoulos scheme [44, 45].

Yung-Bose [40] also proposed a spectrum, for a 4-site chain, in which there

is a discontinuous ‘push’ between the top-two eigenvalues, of an otherwise

equidistant spectrum

λn ∈
{

1, 2, 3, 2(m+ 1)
}

for m ≥ 1.

This spectrum also satisfies the necessary spectral conditions, and due to

its discontinuity it necessitates site-dependence of the on-site contributions.

This scheme, alongside Albanese et.al., evokes a negative parabolic structure

of both the on-site energies and the couplings. The differences between the

outer-site couplings and the couplings towards the center are still quite large

( J1,2
Jmax

= 69.5%), and the on-site energies must now also be externally modu-

lated for PST. Therefore, it is not immediately clear why one would choose

to utilize this spectrum instead of the aforementioned all-coupling proposals.

The matrix elements of Eq.(2.3), for this particular proposal though were

not analytically but numerically derived from a general formula, which was

itself obtained through an inverse eigenvalue method. We will discuss more

of the background and execution of this approach within Sec.4.2.
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3.3.3 p-Spectra

We now present a novel non-symmetric spectrum that is expected to produce

PST. This has been devised by the York research group and preliminary

results were presented in [91]. Here we present more detailed results, with a

paper to follow [92]. We start with a N = 4 example, analogous to that of

Eq.(3.13), and then present detailed analysis of the N = 3 case.

Consider, instead of a relative ‘push’ between the top two eigenvalues as

previously described, the top two eigenvalues to be ‘pinched’ by the inverse

of an odd integer p, such that the spacing between them is 1
p

of the spacing

throughout the rest of the spectrum. For instance, if we consider a N = 4-

site chain with a mostly equidistant eigenvalue spacing of 2α, if the spacing

between our top two eigenvalues were pinched by a strength of p = 3, our

spectrum becomes

λn ∈ {5α/3, α,−α,−3α} ,

as the highest energy eigenvalue 5α
3

is equal to α (second highest eigenvalue)+

2α
p
. From Eq.(3.17) this spectrum translates to

On,n+1 =

3 for n = 1, 2, . . . , N − 2

1 for n = N − 1,

and thereby satisfies the eigenvalue conditions for PST. To ascertain the time

for state mirroring we observe again the time evolution of the symmetric and

anti-symmetric components of our state vector

|ψ(t)⟩+ = a5/3αe
−i5αt/3|ϕ5/3α⟩ + a−αe

iαt|ϕ−α⟩,

and

|ψ(t)⟩− = aαe
−iαt|ϕα⟩ + a−3αe

3iαt|ϕ−3α⟩.
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It can be ascertained that unlike the example of a linear spectra Eq.(3.13),

t = π
2α

will not suffice for all of the eigenstates to mirror invert. If we instead

set t = 3π
2α

and evolve our states we find

|ψ
(

3π

2α

)
⟩+ = ei

3π
2

(
a5/3α|ϕ5/3α⟩ + a−α|ϕ−α⟩

)
,

= ei
3π
2 |ψ (0)⟩+,

and

|ψ
(

3π

2α

)
⟩− = −ei

3π
2 (aα|ϕα⟩ + a−3α|ϕ−3α⟩) ,

= −ei
3π
2 |ψ (0)⟩−,

acquire a global phase with a relative (±) sign, thus establishing the mirroring

time, tm = 3π
2α

. It may be shown through similar treatment, that the time for

perfect state mirroring to occur from this upper-eigenvalue pinch spectrum

is

tm =
pπ

2α
. (3.20)

We should therefore have to wait incrementally longer for each whole value

increase of p, to the next odd integer (1 → 3 → 5 etc., due to the necessity of

satisfying Eq.(3.17)). For a detailed analytical discussion we may begin with

an N = 3, XY spin chain. For N = 3, exact PST results from equal couplings

and with zero on-site energies, generating an equally-spaced spectrum, as the

very simplest example of Eq.(3.19). However, we can introduce on-site energy

dependence and explore pinching the spectrum by setting ε1 = ε3 = ε, ε2 = 0

and all Jn,n+1 = 1 for simplicity. Using Eq.(2.3) we may derive the following

Hamiltonian matrix

HXY(N=3)
=


ε 1 0

1 0 1

0 1 ε

 . (3.21)

The eigenvalues of Eq.(3.21) are λ1 = ε and λ2,3 = ε
2
±

√
ε2+8
2

, and through
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further algebra, taking the eigenvalue spacing between the highest eigenvalues

to be 1
p

of the lowest, an expression to relate the p-factor to the value of ε is

found to be

ε =

√
2

p
· (p− 1). (3.22)

This demonstrates that this spectrum arises when the strengths of εi are

minimal at the midpoint of the chain, and maximal at the ends. This pro-

vokes further tuning efforts to be directed towards optimizing on-site energy

values, for larger N , guided by an auxiliary search for configurations whose

spectra match the pre-selected p-values.



4
Numerical Methods:

Spin Chain Construction

4.1 Genetic Algorithm

For the genetic algorithm (GA) work detailed in this thesis, I developed a

new fitness function, as described in Eq.(4.1). In addition, I tailored the

mutation process of the previously-existing code, referenced in [93], to suit

the specific needs of this research.

4.1.1 Background and Fitness

Determining an on-site energy and/or coupling profile which maximizes the

transfer fidelity across an N -site chain can be effectively addressed through

evolutionary computation, specifically utilizing a genetic algorithm [93, 94].

This algorithmic process generally commences with an initial population of

potential solutions, which are then subjected to a Darwinian selection process

based on their performances, as assessed by a predefined fitness function

[95, 96]. The fitness function effectively guides the genetic algorithm towards

a solution which outperforms others with regard to a specific set of traits. A

mutation process—either fixed or dynamically varying—then either expands

or narrows the exploration within the search space, balancing the trade-off

between global exploration and convergence to local optima. To search for

high-fidelity configurations forming from a desired spectrum (tuned by a
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selected p-value, see Sec.3.3.3), the fitness function was modified from the

original code as follows

f(Fmax, υ;Q, p, σE) = ℵ((A · Fmax) − (B · υ)), (4.1)

where Fmax is the maximum fidelity score achieved by the configuration

within the time frame of evaluation, υ is the cumulative penalty associated

with the desired spectrum

υ =

∣∣∣∣Q− 1

p

∣∣∣∣+ σEn , (4.2)

formed by a Q-factor

Q =
∆EN−1,N(∏N−2

n=1 ∆En,n+1

) 1
N−2

,

as well as the standard deviation

σEn =

√√√√ 1

N − 2

N−2∑
n=1

(∆En,n+1 − ⟨∆Ē⟩)2,

of the eigenvalue spacings, apart from the reduced spacing between the high-

est two energy levels, ∆EN−1,N . The spectral penalty υ is minimized when

Q ≈ 1
p
, where we have a pre-defined value for p, therby optimizing the de-

sired rational spacing, and when the variance of the eigenvalue spacings σEn

is relatively small. The fitness function was designed to optimize both high

fidelity and specific spectral spacing as previous findings indicated that high-

fidelity solutions with homogeneous coupling were achievable only for particu-

lar eigenvalue spectra [91]. The previous fitness function used within [91, 93],

explored solutions which occurred with high-fidelity but also optimized for

fastest time of transfer. Within Eq.(4.1), A and B are adjustable scaling
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factors, giving relative weights between the fidelity and spectral penalties,

whilst ℵ is the normalization

ℵ = (A · Fmax +B · υ)−1, (4.3)

so that the fitness is scaled by the combination of the largest contributions of

the penalties and the fitness values falls within the range [0− 1]. It becomes

clear that if A is chosen such that A ≫ B, the genetic algorithm will find

configurations which lead to purely higher-fidelity configurations with little

consideration for the spacing between eigenvalues within the spectrum. The

reverse is true when A ≪ B, where the genetic algorithm will search for

configurations which have the most desirable spectra and fidelity is a lesser

consideration. Particularly for smaller chain lengths (such as N = 3, 4), A

was selected to be of the order of B (A ≈ B), to give approximately equal

weight to the fidelity and spectra, whilst for higher order N -site chains, there

was a larger weight placed on the fidelity (A > B).1

4.1.2 Algorithm Execution

The genetic algorithm begins with the selection of an individual created

with a randomised on-site Hamiltonian configuration and equal couplings

Ji,i+1 = 1, from a population of the desired form (Eq.(2.8)). A subsequent

mutation function takes the individual from the population and randomly

alters the diagonal of the individual by values within a specified range (1-10

throughout all of the iterations discussed here). It had been decided that

in the interest of preserving mirror symmetry about the centre of the chain

(Eq.(3.4)), as well as greatly narrowing the search space and subsequently

the computational taxation required, that the algorithm should only consider

1There is an expectation of a relative saturation of higher fidelity solutions within
smaller N -site chains [38].
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mirror symmetric individuals. This is enforced throughout the mutation

process via the mutated offspring being mirrored about its centre, see Fig.4.1,

and then subsequently passed onto the fitness evaluation within the genetic

algorithm.

The natural dynamics of the system are then observed, recording the

maximum fidelity attained within the allotted time window, the spacing of

the energy spectrum, and the standard deviation of the spacing between the

eigenvalues. The information about the individual is then indexed within the

genetic algorithm, and its fitness score assessed via the specification defined

by the fitness function Eq.(4.1). The crossover operation to proliferate infor-

mation to the next generation of prospective solutions (offspring) then follows

and is in-line with previous research where an evenly-distributed amount of

genetic information, between selected parents, are exchanged to serve as the

genetic material for their children [93].

This exchange between the previous generation occurs with equal proba-

bility so each parent has an opportunity to pass on 50% of their respective

encoding. Iterations of these altered individuals, over sufficiently large gener-

ations, are selected with increasing fitness scores until the fittest ‘Darwinian

individual’ is returned once the algorithm successfully terminates. The pa-

rameters for generations, initial population size, and mutation rate (including

its evolution) were selected to mirror the methodology employed in prior re-

search on adaptive quantum device design and are shown in Table.4.1 [93].

Generations Population− Size Mutation−Rate

200 1024 ∗20%

Table 4.1: The optimization parameters employed for all of the data presented
within Sec.5. *Note, though the mutation rate is set to 20%, it was chosen to
decrease, as a function of the number of generations, to increase the exploration
of the local optima.

The primary alterations from the methodology in [93] comes predomi-
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Figure 4.1: The mutation process illustrated for a 6-site chain. The initial ran-
domised chain (1.) is reflected about its centre (2.) from the left, to enforce
mirror symmetry of the on-site energies throughout the execution of the algo-
rithm. The solid black lines connecting the sites imply homogeneous coupling
Ji,i+1 = 1.

nantly through the aforementioned mirroring-mutation process (See Fig.4.1)

as well as the new fitness function. It is therefore suggested that the follow-

ing results showcased in this thesis may be reasonably reproduced through

simply making these modifications. Once the parameters are set within the

fitness function, N may be adjusted through the scaling of the associated

N ×N Hamiltonian matrix, along with the size of the initial and final states

(Eq.(2.10)). The value of p was increased in even-integer steps (to the next

odd integer) within Eq.(4.2) to further produce solutions for very high-fidelity

transfer with the desired spectral characteristics.

4.2 Persymmetric Matrix Reconstruction

To find the diagonal and off-diagonal terms of a tridiagonal mirror-symmetric

matrix, with only the knowledge of the relative spacing of its eiegenvalues,

one may also employ an inverse eigenvalue method. For the persymmetric
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matrix reconstruction work presented in this thesis, I wrote code that was in-

formed by the theoretical principles and algorithms outlined in the references

provided within this chapter. This code (See Appendix.A for the full imple-

mentation within Python) was useful in enabling the analysis of protocols

(and comparisons between multiple) carried out in this research.

4.2.1 Mathematical Foundation

Since the late 70’s, it has been a matter of interest amongst mathematicians

to establish numerical methods/algorithms to reconstruct Jacobi matrices

(positive, semi-definite and tridiagonal with negative co-diagonal elements)

from their corresponding spectral data [97, 98, 99, 100, 101]. Particularly,

a Jacobi matrix, H, of a specific kind, known as persymmetric (or mirror-

symmetric for our purposes) offers advantages due to the incident simplifica-

tion in computation resulting from the uniform condition of Eq.(3.4)

H =



ε1 J1,2 · · · 0 0

J1,2 ε2 · · · 0 0
...

...
. . .

...
...

0 0 · · · εN−1 JN−1,N

0 0 · · · JN−1,N εN



=



εN JN−1,N · · · 0 0

JN−1,N εN−1 · · · 0 0
...

...
. . .

...
...

0 0 · · · ε2 J1,2

0 0 · · · J1,2 ε1


.

(4.4)

Calculating the matrix elements of matrices of the kind presented in Eq.(4.4),

from their spectra, is the essence of an inverse eigenvalue problem [100, 101].
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There are a number of established approaches (algorithms) which manipulate

monic-orthogonal polynomials, the weights characterized by their discrete

inner product, and three-term recurrence relations to yield a numerically

stable, and unique persymmetric matrix [97, 98, 99].

Let PN(λ) =
∏N

k=1(λ− λk) represent the characteristic polynomial of H,

with the jth leading principal minor of the matrix (λI − HN), denoted by

Pj(λ), representing the characteristic polynomial of truncated (starting from

the upper left corner) H. The sequence of polynomials Pj(λ) forms a Sturm

sequence, satisfying a three-term recurrence relation for j = 1, 2, . . . , N

Pj(λ) = (λ− ϵj)Pj−1(λ) − J2
j−1Pj−2(λ). (4.5)

A Sturm sequence, by definition, exhibits a crucial property, in that the roots

of Pj(λ), denoted as λjk, interlace those of Pj−1(λ)

λj,j−1 < λj−1,j−2 < λj,j−2 < · · · < λj,1 < λj−1,0 < λj,0. (4.6)

This property leads to the following relationship [40]

sgn[PN−1(λk)] = (−1) × sgn[PN−1(λk−1)],

which serves as mathematical foundation of the alternating parity of the

eigenvectors, as these polynomials are related to the coefficients within the

eigenbasis expansion. Using a combined approach, only requiring knowledge

of the spacing of the spectral data to calculate the weights [98, 99]

wk =
N−1∏
j ̸=k

1

|λk − λj|
,

which are defined with respect to orthogonal polynomials discrete inner prod-
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ucts via

⟨f, g⟩ =
N∑
k=1

f(λk)g(λk)wk,

where f(λk) and g(λk) are generic monic-orthogonal polynomials, we may

capitalize on the three-term recurrence relation and interlacing property of

the roots of the polynomials (Eq.(4.6)) to deduce the entries of the tri-

diagonal matrix. Note, two polynomials are said to be orthogonal with

respect to the weights wk, which measures the contribution of specific eigen-

values to their inner product.

4.2.2 Calculating Matrix Elements from Spectral Data

We may use the recurrence relation (Eq.(4.5)) and initially set P0 to 1, and

P1 to λ− λ1, where λ1 is one of the eigenvalues of HN , to find the coupling

and on-site potentials governed by λk ∈ {λ1, λ2, . . . , λN}

ϵi−1 =
⟨λ · Pi−1,:, Pi−1,:⟩

∥Pi−1,:∥2
=

∑N
k=0 λk · Pi−1(λk)2 · wk∑n−1

k=0 Pi−1(λk)2 · wk

, (4.7)

Ji−1 =
∥Pi,:∥
∥Pi−1,:∥

=

∑N
k=1 Pi(λk)2 · wk∑N

k=1 Pi−1(λk)2 · wk

, (4.8)

iterating over λk [101]. The polynomials evaluated at each eigenvalue Pi(λk),

which satisfy Eq.(4.5), and the weights wk, maintains accurate representa-

tion of the spectral structure within the reconstruction [98]. Through this

numerically stable approach, one may reconstruct all of the elements of a

tridiagonal persymmetric matrix (Eq.(4.4)), with knowledge only of the rel-

ative spectral spacing. The utility of this method, from the standpoint of

constructing quantum communication protocols, seems to have been first

discussed by Yung and Bose [40], followed by Vinet and Kay [70, 89].
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Results and Discussion

In the following section, we outline the results from the genetic algorithm

designed for on-site energy parametrization, as presented in Sec.4.1. Any

reference to time within the figures shown, proceeds through the use of natu-

ral units (ℏ = 1), consequently making Jmax the characteristic energy/inverse

time scale.

5.1 Results from Tailored Genetic Algorithm

5.1.1 N = 3-site chain

Beginning with a 3-site chain, using A = 1.0 and B = 1.0 from Eq.(4.3), as

a test, the genetic algorithm was able to obtain the predicted relative values

of the on-site energies for p = 3 − 11. Consequently, the highlighted points

within Fig.5.1 display perfect correspondence between analytical foundation

(Eq.(3.22)) and numerical findings. Furthermore, the dynamics for each of

the p-solutions for N = 3 are shown in Fig.5.2, where the increase in time

required for successful state transfer is in accordance with Eq.(3.20). The

distinct shapes associated with the fidelity of the evolved and initial state

over time, are formed by the number of ‘attempts’ (we may denote as a)

required for the state to mirror invert completely

a =
(p− 1)

2
.
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Clearly for p = 1 no previous attempts are required, making this the most

time-efficient approach to PST. The next best option is waiting proportion-

ally to p, for the next opportunity.

Figure 5.1: Eigenvalue equations for N = 3, (with central on-site energy set
to zero) plotted as a function of ε, the two outer on-site energies, with the
corresponding values of the on-site energies from the numerical results. The
highlighted (red) points correspond to the values of epsilon (Eq.(3.22)) that the
spacing between the top two eigenvalues and the lowest two eigenvalues are
exactly; p = 1 − 11 (increasing by successive odd integers at each step).

5.1.2 N = 4; p = 3 and N = 7; p = 5

As will be demonstrated, we have discovered families of solutions for different

p and N . We start by discussing two specific examples. Here, we present

two distinct N -site: p-solutions, for both even (N = 4) and odd (N =

7) site chains, from a tailored genetic algorithm approach to grant QPST.

Optimizing first the N = 4-site chain, in setting A = 1.0 and B = 0.5 within

Eq.(4.3), we observe from Fig.5.3(a) that the optimized protocol follows a

positive parabolic structure, about the centre of the chain, similar to the

inverted triangular configuration showcased by the N = 3 analytical case

(Eq.(3.21)). This solution, founded by a p = 3 spacing of the eigenvalues

(Fig.5.3(c)), will transfer encoded information across the chain with a fidelity

of 99.99% (Fig.5.3(a)).
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Figure 5.2: Fidelity with target state (red solid curve) and Fidelity with initial
state (blue dashed curve) versus re-scaled time t ·Jmax for p = 1 (top left) to 11
(bottom right), for N = 3-site chain. The figures are displayed corresponding
to the top row being p = 1, 5, 7 and bottom row p = 3, 9, 11. The dashed
(grey) horizontal line provides a reference line along fidelity value of 100% and
the dashed (black) vertical line indicates first instance of perfect state transfer.

.

Then in leveraging the genetic algorithm approach for N = 7-sites, A =

1.0 and B = 0.1 (relaxing spectral optimization), with an auxiliary search

for p = 5 spacing, we observe that the positive parabolic structure of the on-

site energies is also maintained in an odd-site chain (Fig.5.4), with transfer

fidelity percentages that compare favorably to those of the previously-known

coupling protocols in Sec.3.3.1. It was previously established that perfect

state transfer (PST) is possible in homogeneously coupled chains of size N =

3 [44]. While this configuration for an N -site chain (N = 7) does not achieve

PST, it demonstrates that even in a chain more than double the size of

N = 3, high transfer fidelity (≈ 99%, see Fig.5.4(b)) can still be attained.

5.1.3 Families of p-solutions

In extending the application of the genetic algorithm to a number of N -

sites, we discovered a set of optimal solutions characterized by specific p-

values (3, 5, and 7) across various chain lengths (N = 3 to 7), as depicted
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(a)

(b) (c)

Figure 5.3: On-site energies and coupling configuration across the optimized
N = 4-site chain (a). N = 4; p = 3-solution associated transfer dynamics
(b) and spectrum (c). Transfer fidelity of 99.99% at time t · Jmax= 6.28. The
eigenvalue magnitudes λn (along the y-axis of (c)) have been rounded to 2
significant figures for convenience. The ‘Normalized Value’ on the y-axis of (a)
is calculated as ( εi

εmax
).

in Fig.5.5. The p-solutions for different chain lengths can be grouped into

distinct families, with respect to the time required for PST (for N = 3) and

QPST (for N = 4 to 7). Each individual p-family exhibits an approximately

linear dependence on the chain length N and of the transfer time in units

of t · Jmax, with a gradient that increases with increasing p. The on-site

energy configuration trends for these different p-solutions are displayed in

Fig.5.6. The trends showcase an approximate parabolicity of the on-site

energies about the centre of the chain, similar to the analytical results of
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(a)

(b) (c)

Figure 5.4: On-site energies and coupling configuration across the optimized
N = 7-site chain (a). N = 7; p = 5-solution associated transfer dynamics
(b) and spectrum (c). Transfer fidelity of 98.52% at time t · Jmax=20.97. The
eigenvalue magnitudes λn (along the y-axis of (c)) have been rounded to 2
significant figures for convenience. The ‘Normalized Value’ on the y-axis of (a)
is calculated as ( εi

εmax
).

the N = 3-site chain, with the inverted triangular configuration (Eq.(3.21)).

Furthermore, the degree of steepness of the descent from the two outer on-site

energies towards the middle, generally becomes larger with increasing order

of p. The general shape and structure of the spectra associated with various

strengths of pinching between the highest and second highest eigenvalue,

can be observed in these two eigenvalues tending towards degeneracy as p

increases.

The genetic algorithm was also able to find other p-solutions for N > 7,
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Figure 5.5: Comparison of times (in units of t · Jmax) to acquire QPST (PST
for N = 3) via the on-site energy parametrization, and the previously known
coupling scheme with no on-site energy variation (Eq.(3.19)).

such as N = 8 and N = 9 (not shown), but it becomes progressively more

difficult to systematically extend the complete range of families, of the kind

exhibited in Fig.5.5, for larger N .

5.2 QPST vs. PST

Within this section we outline the nuances of different classification schemes

pertaining to state transfer protocols and the necessary trade-offs therein. In

general, one can conclude that PST has not occurred if the initial state |ψ1⟩
has not fully transitioned to |ψN⟩. Therefore, regarding the transfer fidelity

over t ∈ R+, there is a quantity κ such that

|⟨ψN |U(t∗m, 0)|ψ1⟩|2 = 1 − κ, where 0 < κ ≤ 1. (5.1)

Here, t∗m is the time in which the transfer fidelity is maximal. This is a

sufficient argument due to the defining property of PST (Eq.(2.13)) being

a transfer fidelity of unity with periodicity (Eq.(3.14)). There are more so-



5.2 QPST vs. PST 51

Figure 5.6: On-site configuration trends for N = 1 − 7 spin chains, considering
p-values of 3, 5, and 7 for the solution families. Each plotted point is shifted for
N < 7 along the x-axis by (7−N)− 1

2
, aligning each plot’s central site/mid-bond

center with the midpoint of N = 7. This adjustment enables a more convenient
comparison of the relative strengths of outer-onsite energies versus central site
potentials across different chain lengths and solution families.

phisticated theorems and conditions although, regarding the codification of

‘pretty good state transfer’ or PGST [72, 73, 102]. Namely, for homoge-

neously coupled graphs (chains) governed by an XY Hamiltonian, with un-
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weighted vertices (on-site energies ignored εi = 0, for all i), the associated

quantum walk may exhibit PGST if the total number of vertices (N -sites) is

equal to q − 1, where q is a prime integer [102]. The family of solutions we

have shown here exhibit transfer fidelities between 99.9% and 90.2% (corre-

sponding to 0.01 < κ ≤ 0.1, within Eq.(5.1)), as shown in Table.5.1. They do

not also exhibit perfect periodicity (particularly within longer time frames,

see Fig.5.8). Hence, we feel it more appropriate to associate them within

the previously established, more flexible category of high-fidelity solutions in

QPST [103].

As an illustrative example of the discrepancies between PST and QPST,

we may begin with a previously discovered, optimized high-fidelity solution

of a 5-site chain with a mostly equidistant then ‘pinched’ (p = 3) spectra

HXY =



3.4000 0.9100 0.000 0.000 0.000

0.9100 2.6000 0.9100 0.000 0.000

0.000 0.9100 2.3333 0.9100 0.000

0.000 0.000 0.9100 2.6000 0.9100

0.000 0.000 0.000 0.9100 3.4000


(5.2)

where we have found all of the matrix elements ⟨i|Hij|j⟩ of Eq.(2.3) via

genetic algorithm optimization. However we have now simply set Ji,i+1 =

0.91 for future convenience. From Fig.5.7 we can see firstly that though this

is a completely homogeneously coupled system we have described in Eq.(5.2),

we have shown transfer fidelity of 99.98% within the time window presented.

Through direct diagonalization of the matrix Eq.(5.2), the associated spectra

which dictates the transfer efficacy throughout the time evolution of the

state can be shown to nearly but not precisely satisfy the conditions on the

eigenvalues (Eq.(3.17))

λN=5 ∈ {1.006, 2.006, 3.001, 3.994, 4.326} ,
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Figure 5.7: High-fidelity dynamics plot of N = 5 with a pinch between the highest
two eigenvalues of exactly 1

3
of the differences of each other eigenvalue pair.

Highest fidelity attained: 99.98% at t · Jmax = 8.63. Modest decay exemplified
by each subsequent ‘quasi-mirroring’ attempt (2nd and 3rd peak of 99.84% and
99.56% at t · Jmax = 25.89 and 43.15 respectively).

and therefore the periodicity of F (t) ≈ 100% over arbitrarily long time scales,

characteristic to PST solutions, cannot be expected. We may however use the

inverse eigenvalue method (discussed in Sec.4.2) to reconstruct the unique

persymmetric matrix which fulfills the conditions concretely, by using the

spectral points

λ∗N=5 ∈
{

1.00, 2.00, 3.00, 4.00, 4.33
}
, (5.3)

and subsequently find the solution for the system capable of PST to be

H∗
XY =



3.400 0.9165 0.000 0.000 0.000

0.9165 2.600 0.9129 0.000 0.000

0.000 0.9129 2.333 0.9129 0.000

0.000 0.000 0.9129 2.600 0.9165

0.000 0.000 0.000 0.9165 3.400


, (5.4)

which may be subsequently diagonlized to regain the spectrum Eq.(5.3) and

thereby observe the success of the numerical reconstruction. Though not

completely homogeneous, and therefore capitalizing on the apparent advan-
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tages of such solutions, the difference in the energies of the coupling required

to transition from QPST to PST is just 0.4%. Comparing this to the well-

known coupling model in Eq.(3.19), which for a 5-site chain with initial

strength J0 = 0.91, this requires a difference of ≈ 20% between the maxi-

mum and minimum coupling values for PST to occur.

(a) (b)

Figure 5.8: Comparison of the transfer fidelity over a significantly longer time
frame than what we have considered before (t · Jmax = 400), between an op-
timized QPST solution (a) and a PST (b) solution derived from persymmetric
matrix reconstruction.

In discussing the trade-offs between the QPST and PST solutions in this

example, the transfer fidelity decay over extended time periods, which is char-

acteristic of QPST, as shown in Fig.5.8(a), may be problematic if the system

is expected to perform multiple mirror inversions over time. In the case where

our system is being used to cache information, such as for short-term memory

storage, multiple mirror inversions are crucial in order to transport the infor-

mation spatially to the opposite end of the chain, return back, and be able to

be retrieved again (if desired) at the injection site (i = 1), at predictable time

intervals of l ·tm (where l is an even integer). We can see from the comparison

within Fig.5.8, that not only does the transfer fidelity score (red-solid line)



5.3 Experimental Considerations 55

decay over an extended time frame for the QPST protocol, but so does the

fidelity between the evolved and fixed initial state (blue-dotted line), thereby

curtailing its relative storage capabilities and presenting a clear advantage

for PST protocols. For this particular N = 5-site solution, if the system only

needs to perform a mirror inversion once (or even a couple of attempts with

high transfer fidelity), the difference in transfer fidelities between QPST and

PST protocols is minimal. Therefore, for a ‘single-shot’ transfer of informa-

tion, which may be all that is required of linear registers within modular

ensembles, either protocol will effectively achieve the desired outcome in this

case.

Within the next section, we discuss the gate operation times in relation

to being orders of magnitude smaller than the best estimates for the time

for the system decohere, as an advantage consistent with Di Vincenzo’s third

criteria (Sec.1.2.3). However, regarding the prospective necessity for a single

mirror inversion, if the number of gate operations are of the order of ≫ 1,

this may prove to be superfluous as the primary concern would be the fidelity

value at the first peak.

5.3 Experimental Considerations

In this section we outline the importance in reconciling theoretical explo-

ration of the homogeneously-coupled quantum communication protocols with

experimental realizablity and practicality.

5.3.1 Robustness

The fidelities associated with the on-site energy trends displayed in Fig.5.6

may be found in Table.5.1. This table presents, in the far left column, the

number of sites N(p=1−7), sub-scripted with the corresponding p-value for the

solution, and includes the degree of precision required for the values of εi
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to enable QPST. Notably, all of the fidelity measurements displayed within

Table.5.1, even when rounded to one significant figure, comfortably exceed

66.66% (discussed in Sec.2.4). This demonstrates a level of robustness to

imprecision which still allows for high fidelity transfer, even though rounding

each on-site energy value to one significant figure results in a noticeably

different structure of the on-site energies across the chain (See Fig.5.9). The

N(p=3) 4 s.f. 3 s.f. 2 s.f. 1 s.f.
4 99.9% 99.9% 99.8% 98.8%
5 99.9% 99.9% 99.9% 97.7%
6 99.8% 99.8% 99.4% 97.1%
7 96.7% 96.7% 95.6% 94.1%

N(p=5) 4 s.f. 3 s.f. 2 s.f. 1 s.f.
4 99.9% 99.9% 99.8% 98.4%
5 99.5% 99.5% 98.0% 90.3%
6 97.8% 97.8% 97.4% 89.2%
7 98.5% 98.5% 94.1% 87.9%

N(p=7) 4 s.f. 3 s.f. 2 s.f. 1 s.f.
4 99.7% 99.6% 99.4% 98.1%
5 98.7% 98.7% 92.2% 91.5%
6 94.6% 94.6% 90.7% 89.8%
7 90.2% 90.2% 82.2% 81.1%

Table 5.1: Transfer fidelity scores associated with the presented on-site energy
configurations, with decreasing levels of precision, quantified by the reduction in
the number of significant figures of, εi. This table demonstrates the robustness
of the configurations shown for p = 3−7 within Fig.5.6, for N -site chains ranging
from 4 to 7 sites, evaluated up to 1 significant figure as a metric for the degree
of experimental precision required.

reduction in significant figures involves a different approach to that employed

within [93], as it involves rounding numbers in the conventional sense, as

opposed to a hard ‘cut’ without arithmetic rounding. As an illustration, the

value 1.452, containing four significant figures (4 s.f.), is rounded to 1.45 when

expressed to three significant figures (3 s.f.), 1.5 rounded to two significant

figures (2 s.f.), and finally 2 when reduced to one significant figure (1 s.f.).
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Figure 5.9: On-site configuration trend for N = 6; p = 3 chain with decreasing
orders of precision. When the values of εi is rounded to 1 significant figure (solid
line-square marker), 97.1% fidelity is still achieved (Table.5.1). The plot for 4
s.f. was simply omitted due to the respective plots associated with 4 s.f. and 3
s.f. overlapping due to the degree of similarity of the values, obstructing visual
differentiation.

This approach provides another way to test the system’s parameter error

tolerance, offering further insight into the reproducibility of these protocols

within potentially non-ideal settings.

5.3.2 Hardware Realizability

As Jmax is hardware-dependent and the times to achieve QPST occur within

a time window of approximately t ·Jmax = 30 (See Fig.5.5), we may now pro-

duce a qualitative analysis observing how these protocols may be effectively

incorporated within physical hardware. In reference to DiVincenzo’s third

requirement, Sec.1.2.3, for a physically realizable quantum computer [15], we

must ensure that

T2
TQPST

≫ 1, (5.5)
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and therefore that our time to QPST is much less than the coherence time

T2, in which the system is likely to decohere. In defining TQPST as the time

(in seconds) required for QPST, we need only to observe the characteristic

energy values intrinsic to candidate hardware environments [31, 64].

Table.5.2 demonstrates (in the number of operations, measured by the ratio

Hardware Jmax/ℏ TQPST T2 (T2/TQPST)

Superconductor [64] 10 GHz 3 ns 50 µs ∼ 104

Ion Trap [31] 150 MHz 0.2 µs ∼ minutes ∼ 107

Semiconductor (Si-SiGe) [31] 10 MHz 3 µs 100 µs ∼ 101

Neutral Atom Array [31] 1 MHz 30 µs 1 second ∼ 104

Table 5.2: Comparison of different hardware in terms of operation time against
decoherence. Jmax corresponds to the typical energy scale estimate derived from
the typical two-qubit gate operation time τ2, and TQPST is the estimated time (in
seconds) required for QPST. The Si-SiGe semiconductor was selected specifically
as it allows for control over the largest number (to-date) of individually controlled
semiconducting spin-qubits (N = 6).

( T2

TQPST
)) that our protocol fulfills the criteria (Eq.(5.5)), in allowing for a

substantial number of operations/computational attempts before concerns

related to decoherence become relevant.

All barring the semiconductor hardware allows for multiple orders of mag-

nitude of operations, within the frame of time considered. In reflecting that

TQPST was taken simply as the largest time considered within Fig.5.5, the

specific times (in seconds) associated with the various number of sites (p-

solutions) will be able to operate even longer. It is because of this reasoning

that the number of attempts calculated from Eq.(5.5), and the values taken

from Table.5.2, may be understood as a lower limit. This strongly indicates

that our proposals could be utilized effectively within a variety of different

physical hardware, for which the evolution of the system is governed by a

Hamiltonian of the form Eq.(2.3).



6
Conclusions and Future Work

6.1 Conclusions

To conclude, we have demonstrated through the use of a genetic algorithm,

that novel solutions in the configurations of on-site energies within a range

of uniformly coupled XY Hamiltonians may be shown to yield QPST. These

optimized solutions are in perfect correspondence with the analytical descrip-

tion of chains of the length of N = 3, also displayed here, and have a unique

spectrum in comparison to previously-established coupling configurations,

for which PST is expected. The general structure and approach for previous

genetic algorithm investigations of spin chains/networks was maintained in

this work, with only modest changes being made to the fitness function and

mutation process.

This choice ensures reproducibility and consistency with pre-established

methodologies, thereby facilitating comparison and validation of results across

analyses. Alternative numerical approaches such as persymmetric matrix re-

construction can also be used to find PST protocols through rounding of

the optimized spectra, to the spectra corresponding to necessary spectral

conditions for PST, as a QPST-to-PST transition process. Using both in

tandem can unearth a potential for synergy between theoretical novelty and

experimental realizability. We also present that these protocols are robust

to uncertainty/imprecision in the approximations of the on-site energies εi,

across the chains through which we aim to transmit and/or store encoded
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information.

In paraphrasing Scott Aaronson [104], due to pioneering work in the 90’s

(quantum error correction/fault-tolerance) we have realized what we are up

against is merely an incredibly difficult engineering problem. It may suffice

to say we are standing at a pivotal point within history in pushing the bound-

aries of what was previously thought to be an impossible engineering project,

and therefore we cannot afford any potential avenue for innovation to be left

without meticulous scrutiny. It is through theoretical explorations such as

these, along with future collaborations with experimentalists, that mankind

may eventually be beholden to the age of emphatic quantum advantage.

6.2 Future work

Current and future research endeavours are focusing on extending the opti-

mization and numerical techniques employed herein to explore larger N -site

chains, as it may be advantageous to use linear registers of the order of ∼ 102

qubits. A complementary approach involving unitary transformations [105]

could also be used to explore more complex (non-linear) networks. Further-

more, there is an opportunity to investigate the physical foundations under-

lying the observed on-site energy configuration patterns, particularly in the

parabolic orientation evident in configurations with p > 1. There is also an

underdeveloped area in exploring the relation between temperature and in-

formation transfer protocols, as often is the case that numerical simulations

within this area are conducted within the zero-temperature regime. Ongoing

efforts by the York research group are currently exploring these questions,

though a detailed discussion lies beyond the scope of this thesis. We suggest

that these initiatives deepen our understanding of the technological potential

within quantum systems and provide additional insights into experimental

proposals to improve upon current quantum communication protocols.
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A
Python Code:

Persymmetric Matrix Reconstruction

The following Python code simulates quantum state transfer in a linear

chain of N -sites, using monic orthogonal polynomials and relative spectral

weights wk (theory discussed in Sec.4.2) to construct a persymmetric matrix

[97, 98, 101], which is then implemented into the time evolution of the sys-

tem, via Û = e−iHt (ℏ = 1). The code is defaulted to 6 eigenvalues (thereby

instating an N = 6-site chain), with an eigenvalue spacing consistent with

p = 5.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.linalg import expm

4

5 # Set the number of and values of the spectrum and consequently the length

of the chain N

6 eigenvalues = np.array ([1, 2, 3, 4, 5, 5.2])

7 N = len(eigenvalues)

8

9 # Function to compute weights and orthogonal polynomials

10 def compute_weights_and_orthogonal_polynomials(eigenvalues):

11 n = len(eigenvalues)

12 e = np.zeros(n) # On-site energies

13 J = np.zeros(n-1) # Coupling terms

14 p = np.zeros((n, n)) # Orthogonal polynomials

15 H = np.zeros((n, n)) # Hamiltonian matrix

16 w = np.ones(n) # Weights

17

18 # Compute weights
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19 for k in range(n):

20 for j in range(n):

21 if j != k:

22 w[k] /= abs(eigenvalues[k] - eigenvalues[j])

23

24 # Compute orthogonal polynomials

25 p[0, :] = 1

26 e[0] = np.sum(eigenvalues * p[0, :]**2 * w) / np.sum(p[0, :]**2 * w)

27 p[1, :] = (eigenvalues - e[0]) * p[0, :]

28 J[0] = np.sum(p[1, :]**2 * w) / np.sum(p[0, :]**2 * w)

29

30 # The calculation of the matrix elements

31 for i in range(2, n):

32 e[i-1] = np.sum(eigenvalues * p[i-1, :]**2 * w) / np.sum(p[i-1,

:]**2 * w)

33 p[i, :] = (eigenvalues - e[i-1]) * p[i-1, :] - J[i-2] * p[i-2, :]

34 J[i-1] = np.sum(p[i, :]**2 * w) / np.sum(p[i-1, :]**2 * w)

35

36 # Constructing the unique persymmetric matrix

37 for i in range(n):

38 H[i, i] = e[i]

39 if i < n-1:

40 H[i, i+1] = np.sqrt(J[i])

41 H[i+1, i] = np.sqrt(J[i])

42

43 return w, H

44

45 # Calculate weights and Hamiltonian matrix

46 weights , H = compute_weights_and_orthogonal_polynomials(eigenvalues)

47

48 # Print the unique persymmetric matrix

49 np.set_printoptions(edgeitems =30, linewidth =150, formatter=dict(float=lambda

x: "%.5f" % x))

50 print(’H:’)

51 print(H)

52

53 # Define fidelity function

54 def fidelity(initial_state , target_state):

55 return np.abs(np.vdot(initial_state , target_state))**2

56

57 # Define initial state (excitation at the beginning of the chain)

58 initial_state = np.zeros(len(eigenvalues))

59 initial_state [0] = 1

60
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61 # Define target state (excitation at the other end of the chain)

62 target_state = np.zeros(len(eigenvalues))

63 target_state [-1] = 1

64

65 # Define time points

66 t_values = np.linspace(0, N*np.pi , 2000) # Time period

67

68 # Initialize lists to store fidelity values

69 initial_fidelity_values = []

70 target_fidelity_values = []

71 highest_fidelity = 0

72

73 # Loop over time points to calculate fidelity

74 for t in t_values:

75 # Time evolution operator

76 U = expm(-H/(np.max(np.diagonal(H, -1))) * 1j * t)

77

78 # Apply time evolution to the initial state

79 evolved_state = U.dot(initial_state)

80

81 # Calculate fidelity with initial state

82 initial_fidelity = fidelity(initial_state , evolved_state)

83 initial_fidelity_values.append(initial_fidelity)

84

85 # Calculate fidelity with target state

86 target_fidelity = fidelity(evolved_state , target_state)

87 target_fidelity_values.append(target_fidelity)

88

89 # Update highest fidelity and time at which it occurs

90 highest_fidelity = max(highest_fidelity , target_fidelity)

91 highest_fidelity_time = t_values[np.argmax(target_fidelity_values)]

92

93 # Plot transfer fidelity over time

94 plt.figure(figsize =(12, 6))

95

96 # Sort the eigenvalues and calculate difference between the highest two

97 sorted_eigenvalues = np.sort(eigenvalues)

98 difference = sorted_eigenvalues [-1] - sorted_eigenvalues [-2]

99

100 # Calculate p as the reciprocal of the difference

101 p = 1 / difference

102

103 # Plot the fidelities
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104 plt.plot(t_values , initial_fidelity_values , ’b--’, linewidth =2, label=r’$|\

langle\Psi_ {|1..0\ rangle }|\Psi(t)\rangle |^2$’)

105 plt.plot(t_values , target_fidelity_values , ’r-’, linewidth=2, label=r’$|\

langle\Psi_ {|0..1\ rangle }|\Psi(t)\rangle |^2$’)

106 plt.xlabel(’$t \cdot J_{max}$’, labelpad =20, fontsize =15)

107 plt.ylabel(’Fidelity ’, labelpad =20, fontsize =15)

108 plt.title(f’$N = {N};\\ p = {p:.1f}$’, fontsize =15)

109 plt.legend(loc=’lower right’)

110 plt.grid(True)

111 plt.show()

112

113 # Print the highest fidelity attained and the corresponding time

114 print("Highest fidelity attained: {:.4%} at t = {:.2f}".format(

highest_fidelity , highest_fidelity_time))

Listing A.1: Python code for persymmetric matrix reconstruction using spectral

data. Subsuquent calculation and plot of transfer fidelity corresponding to the

eigenvalues chosen.
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