
A novel approach for modelling
water waves and fluid-structure

interactions

Wajiha Rehman

Submitted in accordance with the requirements for the degree

of Doctor of Philosophy

The University of Leeds

Department of Applied Mathematics

April 2024

Intellectual Property Statement

The candidate confirms that the work submitted is her own, except where work which has formed

part of jointly authored publications has been included. The contribution of the candidate and

the other authors to this work has been explicitly indicated below. The candidate confirms that

appropriate credit has been given within the thesis where reference has been made to the work

of others.

Chapters 2 and 3 include work which is published in:

[69] Rehman, W., Bokhove, O. and Kelmanson, M. “A Systematic Approach of Developing a

Numerical Wavetank to Simulate Driven Shallow- and Deep-Water Waves.” Proc. ASME 2023

42nd Int. Conf. on Ocean, Offshore and Arctic Eng.: p. 10. 2023. ASME. Other minor details

are in the EU project report that will be publicly available through the EU website.

The original idea was proposed by O. Bokhove, which is based on the extension of his previous

collaborations with F. Gidel [34], T. Salwa[72], and A. Kalogirou [10]. The candidate derived

and implemented the mathematical and numerical models of the piston-driven wavetank models

based on shallow water equations and potential flow theory. The publication was written in

collaboration with O. Bokhove, with proofreading from M. Kelmanson and T. Bunnik.

Chapter 4 includes work which is published in:

[69] Rehman, W., Bunnik, T., Bokhove, O. and Kelmanson, M. “Experimental Modeling of

Water-Wave Interactions with a Flexible Beam.” Proc. ASME 2023 42nd Int. Conf. on Ocean,

Offshore and Arctic Eng.: p. 10. 2023. ASME. Moreover, a detailed version of this work is

publicly accessible on Earth ArXiv: DOI https:doi.org10.31223X5998B.

The experimental study explained in Chapter 4 is conducted under the supervision of T. Bunnik,

with proofreading from O. Bokhove, and M. Kelmanson.

i

https://eartharxiv.org/repository/view/6586/

Chapters 5 and 6 include work from an ASME manuscript which has been submitted:

Rehman, W., Bunnik, T. “Fluid-structure interaction modelling of the regular water waves

impact on a flexible beam.” Proc. ASME 2024 Power and Energy Conference.: p. 10. 2024.

ASME.

This work has been completed under the supervision of T. Bunnik, and L. Kaydihan. The

candidate used MARIN’s in-house linear and high-fidelity fluid-structure interactions analysis

software to conduct this study.

This doctoral dissertation was conducted as a part of an EU-funded project entitled “Ea-

gre/Aegir: high-seas wave-impact modelling”(DOI 10.3030/859983), with grant agreement ID:

859983. The detailed research plan is explained in ANNEX 1 of the Grant Agreement-

859983-EAGRE.pdf . Preliminary findings presented in this thesis have been incorporated

into deliverable reports for the European Union.

This copy has been supplied on the understanding that it is copyright material and that no quo-

tation from the thesis may be published without proper acknowledgement. The right of Wajiha

Rehman to be identified as the Author of this work has been asserted by her in accordance with

the Copyright, Designs and Patents Act 1988.

© 2024 The University of Leeds, Wajiha Rehman

ii

https://github.com/obokhove/EagreEUEID20202023
https://github.com/obokhove/EagreEUEID20202023

Acknowledgements

Since childhood, I connected my life’s purpose with serving humanity and this project is a

significant step towards it because knowledge is an everlasting contribution. This thesis is the

result of unconditional support, help, encouragement and guidance from many individuals, to

whom I want to extend my gratitude.

Being a believer, I would start by paying my gratitude to Allah and Prophet Muhammad

(PBUH) for being my light and hope in the darkest of times. I am extremely thankful to my

supervisors Prof. Onno Bokhove, and Prof. Mark Kelmanson from the University of Leeds, and

Dr Tim Bunnik from Maritime Research Institute Netherlands (MARIN) for sharing their vast

knowledge, unwavering support and valuable advice. Special thanks to Onno for choosing me

for this research opportunity and for all the hard work he has put into efficiently managing this

project in the challenging times of the COVID-19 pandemic.

Thanks to the Firedrake developers for their technical assistance. I am especially grateful to

Dr Koki Sagiyama for his advice and support with code implementation.

Many thanks to my friends and colleagues from the School of Maths, Joseph, Janet, Jonny,

Muyang and Sakina for the valuable discussions and their company. Special thanks to my

friends, Fatima Sehar, Shazia Waqas, Asad, Tianqi, Rukia, Sara, Wafa, Isha, Simi, Aqsa,

Marlous, Umar, and Azhar, for being my family far from my family and for their support during

the COVID-19 pandemic. A particular gratitude is reserved for Yang Lu for his companionship

and scientific help throughout the extensive PhD journey.

On a personal note, I would like to express my love and heartfelt gratitude to my parents,

Shahjahan and Abdul Rehman, and my siblings, Fatima, Abdullah, Zain, Farhan, and Maria

for their unconditional love, support and encouragement in every phase of my life. Thank

you for being with me in all the ups and downs of life. Special thanks to Tania Imran for

iii

her companionship in Wageningen and for proofreading my OMAE presentations and thesis. I

genuinely enjoyed your company and jokes.

I also want to thank my teachers, Shellah Aziz, Shagufta Aslam, Saba Qamer, Dr Muhammad

Farhan, Dr Faraz Fazal, and Dr Rabiya who made me a science enthusiast. Lastly, I am grateful

to the European Commission, Marie Curie Actions - Initial Training Networks (ITN), project

number 859983, for funding this project.

iv

Abstract

The significance of the maritime industry is undeniable in the sectors of global trading, renewable

energy, and oil and gas industry. As a growing industry, there is continuous research on the

development of better ships, efficient wind farms and reliable floating structures for which

wavetanks are extensively used to perform scaled-model testing. However, such experimental

campaigns are not only expensive but also time-consuming, therefore, limiting the number of

tests required for data acquisition. To address this problem, researchers have proposed numerous

numerical models to replace extensive experimental testing but these models are limited in their

applications. Hence, we present a solution which is a novel approach for developing numerical

wavetank models that can simulate a broad spectrum of water dynamics, i.e. shallow- and deep-

water dynamics, and can be extended to analyse water-wave interactions with flexible offshore

structures, thereby offering applicability to a wide array of maritime industrial challenges.

The establishment of such mathematical and numerical wavetank models is a challenge which

can only be accomplished systematically. The dynamics of linear and nonlinear water waves

are governed by a variational principle (VP) that emphasizes the conservative structure of

nonlinear water-wave dynamics. This is because energy and mass conservation, as well as the

conservation of phase-space volume, are intimately connected with the conservative structure.

A novel feature of our model is that it implements the time-discretized variational principle

directly in the finite-element-based environment, Firedrake, which automates the derivation of

time-discretized weak formulations and subsequently reduces the time and effort for the model

implementation. At first, we developed a depth-averaged numerical wavetank model based

on linear and nonlinear shallow water dynamics and established our novel approach through

extensive testing. After that, we increased the model’s complexity by developing a piston-

driven numerical wavetank model based on linear and nonlinear potential flow theory. Our

time-discretized VP-based model is capable of generating a numerical representation of actual

v

wavetanks by including piston wavemaker for wave generation and beaches for wave absorption.

The results from the novel approach are promising and we are confident that this approach

will simplify the development process of waveflap-driven numerical wavetank model, a widely

utilized tool in the maritime industry. Furthermore, we have also developed and shared a

hyperelastic structure model that can be coupled with the numerical wavetank to solve fluid-

structure interaction (FSI) problems. However, the coupling is still in the development stages

and is not presented in this thesis.

The numerical wavetank models must undergo experimental validation before they are deemed

suitable for industrial use. Recognizing this necessity, we designed an experimental setup which

is capable of measuring incoming waves, the structure’s accelerations in response to the wave

interactions, and waves reflected from the structure, simultaneously. After designing the setup,

we conducted a series of experiments under a wide range of sea conditions ranging from regular-

to-irregular and moderate-to-extreme wave height and steepness. The study of such a wide range

of conditions makes the experiments suitable for providing reliable data in the validation of a

suite of mathematical and numerical FSI solvers, i.e., linear, nonlinear and high-fidelity. The

data from the experiments has been made publicly available through open-source data-sharing

platforms. Lastly, we have used the experimental data to validate MARIN’s in-house linear and

high-fidelity FSI solvers, which confirms that the data is suitable for validation purposes.

vi

Contents

1 Introduction 1

1.1 Project overview . 1

1.2 Motivation and objectives . 2

1.2.1 Mathematical and numerical modelling of a wavetank with versatile ap-

plications . 2

1.2.2 Experimental modelling of water-wave interactions with a flexible beam . 4

1.3 Thesis outline . 5

2 Systematic development of a novel approach for better modelling of wavemaker-

driven numerical wavetanks 7

2.1 Introduction . 7

2.2 A brief overview of numerical wavetanks . 9

2.2.1 Wave generation and absorption zones . 9

2.2.2 Wave propagation zone . 11

2.3 Mathematical modelling of water waves based on variational principle 17

2.3.1 Water dynamics based on shallow water equations 18

2.4 Numerical implementation of the VP . 24

2.4.1 Spatial discretisation of VP based on finite element method 24

2.4.2 Time discretisation . 26

2.4.3 Shallow-water equations with piston wavemaker 26

2.4.4 Timestep criterion . 28

2.5 Verification and validation . 29

2.5.1 Comparison of linear shallow water equation with exact solution 29

vii

CONTENTS CONTENTS

2.5.2 Comparison of two implementation approaches for nonlinear shallow wa-

ter dynamics . 32

2.5.3 Test case: high amplitude waves . 37

2.6 Industrial applications of SWE-based numerical wavetank model 40

2.7 Conclusion . 41

3 Mathematical and numerical modelling of piston-driven numerical wavetank

based on nonlinear potential flow equations 42

3.1 Introduction . 42

3.2 Variational modelling water dynamics based on potential-flow theory 43

3.2.1 Linear potential flow equations . 44

3.2.2 Nonlinear potential flow equations . 45

3.2.3 Time discrete VP for potential-flow equations with piston wavemaker . . 49

3.3 Numerical implementation . 51

3.3.1 Spatial discretisation . 51

3.3.2 Timestep criterion . 52

3.4 Results and discussion . 52

3.4.1 Comparison of driven long waves using shallow-water and potential-flow

dynamics . 53

3.4.2 Test case: high-amplitude waves . 56

3.4.3 Three-dimensional extension of two-dimensional wavetank 58

3.5 Extension of numerical wavetank to solve fluid-structure-interaction (FSI) problems 60

3.5.1 Variational modelling of hyperelastic beam for solving FSI problems in

the numerical wavetanks . 60

3.5.2 Hyperelastic beam with viscous structural damping 64

3.5.3 Implementation in Firedrake . 64

3.5.4 Results and discussion . 66

3.6 Conclusion . 70

4 Experimental modeling of water-wave interactions with a flexible beam 72

4.1 Introduction . 72

4.2 Design of experimental set-up . 74

4.2.1 Beam selection and procurement . 78

viii

CONTENTS CONTENTS

4.3 Hammer tests on the beam . 81

4.3.1 Results from dry and wet hammer tests 82

4.4 Case-1 experiments: interactions of regular waves with the flexible beam when

the carriage is at rest . 90

4.5 Case-2 experiments: interactions of regular water waves with the flexible beam

when the carriage is moving at a constant speed 92

4.6 Case-3 experiments: interactions of irregular water waves with the flexible beam

when the carriage is at rest . 96

4.7 Experimental uncertainty . 101

4.8 Conclusion . 104

5 Linear fluid-structure interaction modelling of regular water waves with the

flexible beam 106

5.1 Introduction . 106

5.2 Experimental case 1 . 107

5.2.1 Subcase 1: beam submerged at 0.25m . 108

5.2.2 Subcase 2: beam submerged at 0.5m . 109

5.3 Harmonic analysis of the experimental data . 111

5.4 SEACAL: A linear FSI solver . 113

5.4.1 Generalized Modes . 114

5.4.2 Fluid solver . 116

5.4.3 Beam’s response calculation . 117

5.5 Results and comparison . 117

5.5.1 Regular-wave and beam interactions when the beam is submerged at

0.25m. 118

5.5.2 Regular-wave and beam interactions when the beam is submerged at 0.5m. 125

5.6 Conclusion . 131

6 High-fidelity fluid structure interactions modelling of regular and irregular

water waves 133

6.1 Introduction . 133

6.1.1 RANSE-based fluid model . 134

6.1.2 Modal analysis of beam structure . 136

ix

CONTENTS CONTENTS

6.1.3 Fluid structure interactions . 138

6.2 FSI modelling in ReFRESCO . 139

6.3 Setup for numerical modelling . 141

6.3.1 Geometry and spatial discretisation of the computational domain 141

6.3.2 Grid and time convergence study . 145

6.4 Results and Discussion . 147

6.4.1 Regular-wave and beam interactions when the beam is submerged at

0.25m. 147

6.4.2 Regular-wave and beam interactions when the beam is submerged at 0.5m.154

6.5 Nonlinear modelling of irregular waves . 157

6.6 Conclusion . 160

7 Code Tutorials 162

7.1 Introduction . 162

7.2 Shallow water dynamics . 162

7.2.1 Linear Shallow water equations . 162

7.2.2 Nonlinear shallow water equations: comparison of two implementation

approaches by using symplectic-Euler scheme 185

7.2.3 Nonlinear shallow water equations: comparison of two implementation

approaches by using Störmer-Verlet scheme 208

7.3 Piston-driven numerical wavetank based on potential flow equations 233

7.4 Conclusion . 243

8 Conclusion 244

8.1 Summary . 244

8.1.1 Overview of objectives and accomplishments 244

8.2 Discussion on concomitant extensions . 245

8.2.1 Inclusion of wave absorbing feature . 245

8.2.2 Numerical wavetank for FSI analysis . 246

8.2.3 Extension and experimental validation of the waveflap driven numerical

wavetank . 246

8.3 Outreach activities . 248

8.4 Online outreach activities . 249

x

CONTENTS CONTENTS

8.4.1 Event 1: Differential Equations in Real Life 249

8.4.2 Event 2: Meet a scientist . 249

8.5 Exhibition in MathsCity . 249

8.6 Details of the second outreach activity . 252

8.7 An online presentation on fluid-structure interactions (FSI) 254

A Derivation of the exact solution of the shallow water equations with piston

wave-maker 255

B Spatial discretization of the VP for linear potential-flow equations 262

C Availability of data 265

C.0.1 Main folders . 265

C.0.2 Sub-folders . 268

C.1 Post-processing codes . 270

References 277

xi

List of Figures

2.1 Two different types of wavetanks are shown. 8

2.2 Different zones of a typical numerical wavetank are depicted [85]. 9

2.3 Schematic of different methods for the wave generation and absorption are pre-

sented [85]. 10

2.4 A schematic demonstration of water-particle motion when the ratio of water-

depth to -wavelength varies [25]. 15

2.5 Variations of water-wave steepness and amplitude with sea-bed morphology. L

in abscissa mean length of the domain, η(x, t) is free surface elevation, and H0 is

a variable depending on horizontal x-coordinate. 16

2.6 Schematic of a three-dimensional rectangular wavetank with piston wavemaker

at x = R(t). The piston wavemaker oscillates horizontally in 0 ≤ x ≤ Lw < Lx

to generate water waves. The vertical coordinate is z. The free surface resides

at z = h(x, y, t) above a flat bottom at z = 0; t is time, y the lateral horizontal

coordinate and the velocity potential is ϕ(x, y, t). The depth at rest is H0, which

defines a perturbation η of the free surface from rest. The lateral extent of the

tank is Ly. 18

2.7 The three-dimensional time-dependent computational domain, i.e. (x, y, z), is

transformed into a new static computational domain denoted by (ξ, µ, ζ). 22

2.8 Plots of the initial conditions for η and ϕ, given in (2.57) and (2.58), evaluated

at time t = 0 in Firedrake. 30

2.9 Comparison of numerical and exact solution of η and ϕ at different time steps.

Numerical results are shown by solid lines while the dashed black lines show the

exact solution. 31

xii

LIST OF FIGURES LIST OF FIGURES

2.10 Time evolution of L∞ norms of the difference between numerical simulations

of solutions η (left) and ϕ (right), for the linear shallow-water equations, for

Case 1 and Case 2. Norms are taken over the full solution domain and each

subgraph confirms that the results of the two cases are, as expected, equivalent

to within machine precision. The positive mean slope in both plots reflects error

accumulation with the evolving number of calculations. Vertical axes display

multiples of 10−13 and 10−16 in left- and right-hand plots respectively. A CG1

spatial discretisation with 200 elements has been used. 32

2.11 The two-dimensional spatially-discretised computational domain for solving the

VP of shallow water equations is shown. 33

2.12 The evolution of piston wavemaker displacement and velocity is plotted for the

complete computational time. 33

2.13 The evolution of the wave through the computational domain is shown at one

instant of the simulation. 34

2.14 Comparison of novel and classical approaches for implementing the VP for non-

linear shallow water equations by using the first-order symplectic-Euler scheme

is shown. 35

2.15 Comparison of novel- and classical-approach for implementing the the VP for non-

linear shallow water equations by using the second-order Störmer-Verlet scheme

is shown. 36

2.16 Evolution of total energy of the system. 37

2.17 The evolution of piston wavemaker displacement and velocity is plotted for the

complete computational time. 38

2.18 Evolution of free-surface elevation (h = H0 + η) at different time steps. 39

2.19 Evolution of velocity potential at different time steps. 39

3.1 Schematic of a rectangular wavetank with piston wavemaker. The piston wave-

maker oscillates horizontally in 0 ≤ x ≤ Lw to generate water waves. On the

right side of the wave tank, there is a stationary solid wall. 43

3.2 Schematic of the static computational domain corresponding to a rectangular

wavetank with piston wavemaker. Transformed spatial coordinates are ξ, µ, ζ. . . 46

xiii

LIST OF FIGURES LIST OF FIGURES

3.3 Wave frequencies for potential-flow (black) and shallow-water (red) cases. The

red disc shows the chosen frequency of the wavemaker. 53

3.4 Free-surface velocity potential after one time period t = Tp. Black, cyan and

red lines respectively correspond to potential, nonlinear and linear shallow-water

solvers. 54

3.5 Free-surface velocity potential at final time t = 2Tp. Black, cyan and red lines

respectively correspond to potential, nonlinear and linear solvers. 55

3.6 Free-surface elevation after one time period t = Tp. Black, cyan and red lines

respectively correspond to potential, nonlinear and linear solvers. 55

3.7 Free-surface elevation at final t = 2Tp. Black, cyan and red lines respectively

correspond to potential-flow, nonlinear and linear solvers. 56

3.8 Evolution of free-surface elevation (h = H0+η) at different time steps. The wave

generated by the wavemaker is shown in orange line while the reflected wave is

shown in green line. 57

3.9 Evolution of velocity potential at different time steps. 57

3.10 Evolution of the kinetic energy of the system. 58

3.11 Demonstration of evolution of free surface elevation in a three-dimensional wave-

tank. 59

3.12 Cross section of a beam in the x–z plane is shown [72]. The solid line shows

the reference state and the dotted line shows the position after deformation;

a = X(a, 0) is the Lagrangian coordinate in the reference state while X̃(a, t) in

the deformed state. The movable boundary is denoted by ∂ΩO = ∂Ω0 while the

fixed bottom is denoted by ∂Ωb
O = ∂Ωb

0. 61

3.13 The initial conditions for (a) velocity U and (b) displacement X. 67

3.14 Time evolution of L∞–norms of the difference, at a single label/Lagrangian point

a, between numerical simulations for U (left) and X (right), generated for case 1

and case 2, of the 3D hyperelastic beam. The graphs confirm that the results of

the two set-ups are, as expected, equivalent to within machine precision. Vertical

axes display multiples of 10−13 and 10−16 in left- and right-hand plots respec-

tively. 67

3.15 Comparison of oscillations (magnitude of velocity) of the beam with and without

using the damping coefficient κ. The results are shown at the final time step. . . 68

xiv

LIST OF FIGURES LIST OF FIGURES

3.16 Energy evolution plots over time in the case of undamped and damped oscilla-

tions of the beam are shown. Energy is fluctuating in a periodic manner in the

undamped case while in the case of damped oscillations, energy converging to zero. 69

4.1 Schematic of different fixed-bottom OWT foundations; monopile, gravity-based

and jacket. Copyright © 1969, Elsevier [42]. 75

4.2 Schematic side view of the experimental set-up. An Eulerian-coordinate system

(denoted by x, y and z) is used for the wavetank; its origin (x, y, z) = (0, 0, 0)m

is located in the middle of the wavemaker at rest. A Lagrangian-coordinate

system at rest (denoted by X,Y and Z) is used for the beam; its origin is at

the base plate (labelled O in the figure) (X,Y,Z) = (0, 0, 0), which origin has

fixed Eulerian position (xb, yb, zb) = (30, 2.05, 4.6)m. At rest, the end plate at

the free submerged end of the beam is located at (X,Y,Z) =(0, 0, 2.5)m. The

experiments are conducted for two submergence depths, i.e. 0.25m and 0.5m

from the still-water level H0. The base plate is flexible enough to allow rotation

of the beam, represented by a pinned joint with a torsion spring. Moreover, the

submerged accelerometer is internal. A more detailed CAD drawing of the set-up

with exact dimensions and location of the sensors can be found on GitHub. . . . 77

4.3 Schematic plan view of the concept wave basin at MARIN, The Netherlands [59]. 78

4.4 Two-dimensional view, in the x, y plane, of a one-dimensional cantilever beam of

length Lc [9]. 78

4.5 Baseplate, wooden support, beam, accelerometers and cables of the beam. See

text for details. 80

4.6 Time-domain beam responses (accelerations in x direction) for the three hammer

tests. Dry (blue), wet (red, 0.25m-deep) and wet (green, 0.50m-deep) tests. . . . 83

4.7 Frequency-domain beam-response spectra for the three hammer tests. 84

4.8 Profiles of first three beam modes, integrated from sensor accelerations measured

in dry hammer tests. 84

4.9 Natural frequency-based decomposition of the beam’s accelerations obtained from

the dry hammer tests are plotted. 86

xv

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments/blob/main/CAD_fsi_beam_exp.pdf

LIST OF FIGURES LIST OF FIGURES

4.10 Schematic diagram of bending test. The beam before deflection is shown as a

dark-grey rectangle. The beam deflected by loading of mass mi appears as a

the light-grey curvilinear quadrilateral. Movement of the base is precluded by

clamping the base plate with rigid wooden blocks (shown in yellow) in such a

way that the beam can move freely in the x-direction. 87

4.11 Semilog plot of data in Table 4.7 on which linear interpolation of kL/EI is

performed, as described after (4.9) in the text. 89

4.12 Interactions of regular waves with the beam. 91

4.13 The time domain plots of the incident wave signal and the beam’s response (accel-

erations) recorded by all accelerometers are shown. These plots are corresponding

to the third test case in Table 4.9, i.e. wave height H =0.016 m and T = 0.5 s. . 93

4.14 Single-frequency response of the flexible beam to regular water waves. These

plots are corresponding to the third test case in Table 4.9, i.e. wave height

H =0.016 m and T = 0.5 s. 94

4.15 Single-frequency response of the flexible beam to regular water waves. These

plots are corresponding to the last test case in Table 4.10 when wave height

H =0.016 m and T = 0.58 s. 95

4.16 Multi-frequency response of the flexible beam to regular water waves. These

plots are corresponding to the second test case in Table 4.10 when wave height

H =0.126 m and T = 1 s. 95

4.17 Multi-frequency of the flexible beam to regular water waves.These plots are cor-

responding to the third test case in Table 4.10 when wave height H =0.282 m

and T = 1.5 s. 96

4.18 Response of the flexible beam (0.5m submerged) to regular water waves when

the carriage is moving at a constant speed. The wave height and time period are

0.126 m and 1.56 s. 97

4.19 A zoomed-in part of the time domain signals of beam’s response (0.5m sub-

merged) to regular water waves when the carriage is moving at a constant speed.

The wave height and time period are 0.126 m and 1.56 s. 97

4.20 Interactions of irregular waves with the beam. 98

4.21 Impact of steep irregular waves with the beam. 100

4.22 Response of the flexible beam to irregular waves. 100

xvi

LIST OF FIGURES LIST OF FIGURES

4.23 The time-domain experimental signals are plotted in the frequency domain. The

top plot shows the wave signal while the bottom plot depicts the beam response. 101

4.24 Frequency analysis of the response of the flexible beam to irregular waves. The

original signal (blue) is decomposed into higher (yellow) and lower (red) frequency

responses. In the legend, AX1 represents the original signal, while AX1-HF and

AX1-LF are the respective high-frequency and low-frequency parts of the original

signal. 102

5.1 Schematic side view of the experimental set-up [69]. 107

5.2 A plot of the wave heights corresponding to the wave frequencies which are used

to study the beam’s response when the beam’s submerged depth is 0.25m. . . . 109

5.3 A plot of the wave heights corresponding to the wave frequencies which are used

to study the beam’s response when the beam’s submerged depth is 0.5m. 110

5.4 The top plot shows the incident wave signal and the bottom plot shows the

response, i.e. accelerations in x direction, measured by the accelerometer located

at the submerged end of the beam. 112

5.5 The top plot shows the amplitude and frequency of the dominant mode of the

incident wave while the bottom plot shows the beam response,i.e. amplitude

and frequency of the incoming wave harmonics, that got excited due to the wave

interaction. 113

5.6 The straight beam shows the initial state of the beam and the deformed beam

shows the beam shape when the first fundamental mode is excited. 115

5.7 The comparison of response amplitude operator (RAO) obtained from SEACAL

and experimental data when submerged depth is 0.25m is presented. The values

of the first fundamental frequency, i.e. ωn and ωn/2, are represented by vertical

grey dashed lines. 119

5.8 The comparison of response amplitude operator (RAO) 1/s2 obtained from SEA-

CAL and experimental data for all accelerometers when submerged depth is

0.25m is presented. 120

xvii

LIST OF FIGURES LIST OF FIGURES

5.9 Harmonic analysis of incident wave signals (top) and corresponding beam’s re-

sponse (bottom) in the frequency domain are shown. The beam’s response to-

wards two waves of the same amplitude but different frequencies, i.e. amplitude

0.007m and the encounter frequencies of 10.83 rad/s and 12.56 rad/s, is shown. . 121

5.10 Comparison of the beam’s response calculated from SEACAL with the measure-

ments obtained from the experiments is shown. Each colour represents a specific

wave height corresponding to wave encounter frequency. 122

5.11 Percentage relative difference of experimental values of beam’s response with re-

spect to SEACAL’s results for the corresponding wave amplitudes and encounter

frequencies is shown. 122

5.12 Harmonic analysis of incident wave signals (top) and corresponding beam’s re-

sponse (bottom) in the frequency domain are shown. The nonlinear response of

the beam towards the wave with the highest relative error, i.e. amplitude 0.195m

and the encounter frequency of 2.51rad/s is shown. 123

5.13 The time domain signals of the incident wave and beam’s response (accelerations

in x directions) measured from all accelerometers are plotted. 124

5.14 The comparison of response amplitude operator (RAO) 1/s2 values obtained

from SEACAL and experimental data at different wave amplitudes and encounter

frequencies is shown. 126

5.15 The comparison of response amplitude operator (RAO) values obtained from

SEACAL and experimental data at different wave amplitudes and encounter

frequencies is shown. 127

5.16 Comparison of the beam’s response calculated from SEACAL with the measure-

ments obtained from the experiments is shown. Each colour represents a specific

wave amplitude corresponding to wave encounter frequency. 127

5.17 Percentage relative error of experimental values of beam’s response with respect

to SEACAL’s results for the corresponding wave amplitudes and encounter fre-

quencies is shown. 128

xviii

LIST OF FIGURES LIST OF FIGURES

5.18 The beam’s response (bottom) to the water waves (top) with the highest dis-

crepancy, i.e. ≈ 29%, is shown in the frequency domain. This case corresponds

to the wave with an amplitude of 0.007m and an encounter frequency of 12.56

rad/s. The incident wave is shown in the top plot while the beam response is

shown in the bottom plot. 129

5.19 The beam’s response (bottom) to the water waves (top) with the second highest

discrepancy, i.e. ≈ -25%, is shown in the frequency domain. This case cor-

responds to the wave amplitude of 0.12m with an encounter frequency of 3.14

rad/s. The incident wave is shown in the top plot while the beam response is

shown in the bottom plot. 129

5.20 The time domain signals of the incident wave and beam’s response (accelerations

in x directions) measured from all accelerometers are plotted. 130

6.1 The experimental set-up for the FSI study is shown. Photo courtesy MARIN. . . 134

6.2 Classification of different types of FSI methods [68]. 138

6.3 A flowchart for the FSI modelling in ReFRESCO [43]. 140

6.4 A comparison of the experimental and numerical set-up of the FSI problem. . . . 142

6.5 A front view of the discretised computational domain is presented. The bound-

ary conditions at different regions of the computational domain are shown with

orange-coloured arrows. The three zones based on the cell size are also shown. . 143

6.6 Top view of the spatially discretised fluid’s free surface. 144

6.7 Front view of the spatially discretised beam is presented. The submerged part of

the beam has hydro-mesh which is finer mesh as compared to the structural mesh. 144

6.8 Mesh convergence study for the FEM model. The rectangular mesh elements of

the beam FEM model are refined and natural frequency is computed. 145

6.9 Comparison of wave amplitude value obtained from spatial and temporal conver-

gence study with the experimental results obtained from Probe 2 (grey dashed

line) is shown. 147

6.10 A comparison of wave amplitude values obtained from ReFRESCO and the ex-

periments is shown. The experimental results are presented by blue marker while

the numerical results are shown by red marker. 149

xix

LIST OF FIGURES LIST OF FIGURES

6.11 Comparison of beam response (accelerations) obtained from ReFRESCO and the

experiments is shown. 149

6.12 Relative error between the experimental and numerical results for the first sub-

case is presented. 150

6.13 Time domain signals of the incident wave (Awave = 0.125 m and ω= 3.14 rad/s)

and beam response (accelerations) obtained from the experiments are shown in

the frequency domain. 151

6.14 The incident wave (Awave = 0.125 m and ω= 3.14 rad/s) and beam response

(accelerations) obtained from ReFRESCO are shown in the time domain. 151

6.15 Comparison of the incident wave (Awave = 0.125 m and ω= 3.14 rad/s) and

beam response (accelerations) obtained from ReFRESCO and the experiments

are shown in the frequency domain. 152

6.16 The incident wave (Awave = 0.031 m and ω= 6.28 rad/s) and beam response

(accelerations) obtained from the experiments are shown in the time domain. . . 152

6.17 The incident wave (Awave = 0.031 m and ω= 6.28 rad/s) and beam response

(accelerations) obtained from ReFRESCO are shown in the time domain. 153

6.18 Comparison of the incident wave (Awave = 0.031 m and ω= 6.28 rad/s) and

beam response (accelerations) obtained from ReFRESCO and the experiments

are shown in the frequency domain. 153

6.19 Wave amplitude values obtained from the numerical modelling are compared with

the experiments. The experimental results are presented by blue marker while

the numerical results are shown by red marker. 154

6.20 Comparison of beam response (accelerations) obtained from the numerical mod-

elling and the experiments is shown. 155

6.21 Relative error between the experimental and numerical results for the first sub-

case is presented. 155

6.22 The incident wave (Awave = 0.141 m and ω= 4.19 rad/s) and beam response

(accelerations) obtained from the experiments are shown in the time domain. . . 156

6.23 The incident wave (Awave = 0.141 m and ω= 4.19 rad/s) and beam response

(accelerations) obtained from ReFRESCO are shown in the time domain. 156

xx

LIST OF FIGURES LIST OF FIGURES

6.24 Comparison of the incident wave (Awave = 0.141 m and ω= 4.19 rad/s) and

beam response (accelerations) obtained from ReFRESCO and the experiments

are shown in the frequency domain. 157

6.25 The iterative process of focused wave modelling to measure wave-breaking impact

and response of flexible fixed-bottom monopile in ReFRESCO is explained [14]. . 158

6.26 A focused wave generated at the beam’s location (top plot) and the flexible beam

response (bottom plot) to steep irregular waves are shown [69]. 159

6.27 The focused wave generated in the experiments (red line) is compared with the

wave modelled by ReFRESCO (black dashed line) at the beam’s location. 159

6.28 Comparison of the experimental and ReFRESCO results is plotted in the fre-

quency domain. The top plot shows the wave signal while the bottom plot depicts

the beam response. 160

8.1 Schematic wavetank with waveflap wavemaker, at its left-hand end, having posi-

tion x = W (z, t); it is this relationship that binds two spatial coordinates. 247

8.2 The top plot shows the comparison of the interpolated and measured wavemaker

motion during one complete test and the bottom plot shows the zoomed-in part

of the comparison shown in the top plot. 248

8.3 The experimental set-up used for the demonstrations is shown. 250

8.4 Children building paper windmills from the provided material. 251

8.5 Wajiha and Yang while demonstrating the standing waves experimentally. The

standing waves were produced in the scaled wavetank to demonstrate that the

results obtained by the theoretical model (exact solution) and numerical solution

were aligned with the experiments. 253

8.6 Yang while explaining the simulations’ results to the students. 253

8.7 Wajiha while explaining the mathematical model used for simulating the wave

impact on the turbine’s mast. 253

8.8 Classification of the students’ responses on the advantages and disadvantages of

each method and their favourite method. 254

8.9 Captured during the discussion session. 254

C.1 Format of the .pan files. 268

xxi

LIST OF FIGURES LIST OF FIGURES

C.2 The top plot shows the variation of the position of the waveflap wavemaker as

time proceeds. The bottom plot shows the signals measured by the wave probe

which is located in front of the beam. 272

C.3 The top plot shows the accelerations obtained from the accelerometer located

at the submerged free-end of the beam when the incident wave, shown in the

bottom plot, interacted with the beam. 276

xxii

List of Tables

4.1 Eigenvalues λi and σi of the cantilever beam, from Table 8-1 of [9]. 80

4.2 Masses and locations of experimental furniture. The position of baseplate is used

as a reference for the distances in the second column. 81

4.3 Beam parameters in the FSI experiments. 81

4.4 Natural frequency and time period of the beam’s first mode, from accelerometer

data in hammer tests. 85

4.5 Damping ratios Υ1, Υ2, and Υ3 corresponding to the beam’s first (f1), second

(f2), and third (f3) natural frequencies are given, respectively. 85

4.6 Dependence of deflection ζi and maximum static offset δi,max of beam on increas-

ing mass-loading mi. 88

4.7 Natural frequencies of a pinned free beam with a torsion spring at a pinned

joint. λi is a function of kL/(EI). Table reproduced from [9], in which data are

provided to 4 significant figures. 88

4.8 Material parameters of the beam used for the FSI experiments. Error tolerances

are not available for all parameters. 89

4.9 Input parameters and characteristics of regular waves when the carriage is at rest

and 0.25m of the beam is submerged in water. 91

4.10 Input parameters and characteristics of regular waves when the carriage is at rest

and 0.5m of the beam is submerged in water. 92

4.11 Input parameters and characteristics of regular waves when the carriage is moving

at a constant speed and 0.25m of the beam is submerged in water. 93

4.12 Input parameters and characteristics of regular waves when the carriage is moving

at a constant speed and 0.5m of the beam is submerged in water. 94

xxiii

LIST OF TABLES LIST OF TABLES

4.13 Input parameters and characteristics of irregular waves when the carriage is at

rest and 0.25m of the beam is submerged in water. 99

4.14 Input parameters and characteristics of irregular waves when the carriage is at

rest and 0.5m of the beam is submerged in water. 99

4.15 Percentage relative error between the input wave parameters and those of the

actual wave generated in the wavetank; here, for the first subcase of experimental

case 1. 103

4.16 Accelerometer-measurement errors. 104

5.1 Regular-wave parameters and characteristics when the carriage is at rest and

0.25m of the beam is submerged in water. 108

5.2 Regular-wave parameters and characteristics when the carriage is at rest and

0.5m of the beam is submerged in water. 110

5.3 Comparison of the beam’s natural periods and angular frequencies correspond-

ing to the first natural mode are obtained from the experiments and SEACAL

calculations when the beam is in the air and submerged in the water. 118

5.4 Comparison of the results obtained from the linear FSI numerical solver are

compared with the experimental results. 119

5.5 Comparison of the results obtained from the linear FSI numerical solver are

compared with the experimental results. 125

6.1 Mesh convergence study for the FEM model. 145

6.2 Mesh convergence study for the FSI model. 146

6.3 Grid convergence study for the ReFRESCO model. 146

6.4 A summary of the wave parameters used in different test cases of the first subcase,

and corresponding results obtained from experimental and numerical modelling

of each test case are presented. 148

6.5 A summary of the wave parameters used in different test cases of the second

subcase, and corresponding results obtained from experimental and numerical

modelling of each test case are listed. 154

C.1 Regular-wave parameters and characteristics when the carriage is at rest and

0.25m of the beam is submerged in water. 265

xxiv

LIST OF TABLES LIST OF TABLES

C.2 Regular-wave parameters and characteristics when the carriage is at rest and

0.5m of the beam is submerged in water. 266

C.3 Regular-wave parameters and characteristics when the carriage is moving at a

constant speed and 0.25m of the beam is submerged in water. 266

C.4 Regular-wave parameters and characteristics when the carriage is moving at a

constant speed and 0.5m of the beam is submerged in water. 267

C.5 Irregular-wave parameters and characteristics when the carriage is at rest and

0.25m of the beam is submerged in water. 267

C.6 Irregular-wave parameters and characteristics when the carriage is at rest and

0.5m of the beam is submerged in water. 267

C.7 Description of the sensor names mentioned in .pan file. 269

xxv

Chapter 1

Introduction

1.1 Project overview

This PhD project falls under Work Package 2 (WP2): “Wave Turbine Impact” of a European

Industry Doctorate (EID) project: “Eagre/Aegir: High-Seas Wave-Impact Modelling” that is

funded by the H2020 Marie Sk lodowska-Curie programme. The project aims to develop an

affordable and practical numerical tool for simulating water waves and their interactions with

the offshore wind turbine’s mast and can be employed by the maritime industry for designing

offshore wind turbine farms. The target of creating such a tool will be achieved in two major

steps, as follows:

1. Developing the numerical wavetank which is a representation of the actual experimental

wavetanks and can be extended to perform fluid-structure interaction (FSI) analysis, i.e.

water-wave interactions with the hyperelastic structures.

2. Experimental modelling of water-wave interactions with a flexible beam to perform bench-

mark test cases for validation of the numerical solvers that solve fluid-structure interactions

(FSI) problems.

The initiation of this EID program is driven by industrial demand, which is the development

of an effective numerical tool for modelling water waves and their interactions with offshore

structures. The purpose of an EID project is to increase the collaboration between industry

and academia for better training of researchers, therefore, this project is done in collaboration

with the Maritime Research Institute Netherlands (MARIN). The first eighteen months of the

1

Chapter 1. Introduction

research project were spent at the University of Leeds under the supervision of Prof. Onno

Bokhove and the second eighteen months were spent at Maritime Research Institute (MARIN)

Academy BV, The Netherlands, under the supervision of Dr Tim Bunnik, Sanne van Essen, and

Dr. Bulent Duz. The mathematical model and codes are developed at the University of Leeds

while the experimental modelling of water-beam interactions is performed at MARIN Academy

BV. Furthermore, validation of MARIN’s in-house linear and nonlinear FSI software has been

carried out by utilizing the data from experimental modelling.

1.2 Motivation and objectives

Keeping in view the project targets and industrial demands, the thesis can be divided into two

parts. The first part is about the mathematical and numerical modelling of numerical wavetank

models that are driven by piston wavemakers to simulate shallow- and deep-water dynamics

and can be extended to perform FSI analysis. The second part concerns the experimental study

and validation of the numerical tools which are used for modelling fluid-structure interaction

problems, i.e. water-wave interactions with a flexible beam. This section briefly introduces each

of the aforementioned parts, with more detailed explanations provided in subsequent chapters

of this thesis.

1.2.1 Mathematical and numerical modelling of a wavetank with versatile

applications

The maritime industry frequently uses wavetanks to study water waves and their interactions

with maritime structures in an experimental environment. The water waves are generated in the

wavetanks using different types of wavemakers whose specific form depends on the desired sea

state, i.e., the relation between the water depth with the amplitude and wavelength of the water

waves to be modelled. For example, to model shallow- or deep-water dynamics, wavetanks are

equipped with piston- or waveflap-wavemakers respectively. Model basin tests can be used to

validate numerical models. However, performing such laboratory experiments is expensive and

time-consuming, potentially impeding the acquisition of sufficient experimental data. Hence,

mathematical and numerical models of wavetanks are extensively used to facilitate initial de-

sign processes and to validate and augment laboratory wavetank experiments. Additionally,

numerical simulations are very useful in the early design stage when model tests are not yet an

2

Chapter 1. Introduction

option.

Gidel [34] has successfully implemented the variational principle (VP) of potential flow equations

to develop a numerical wavetank model driven by a piston wavemaker by utilizing the classical

approach of VP implementation, i.e. time-discrete weak formulations. This wavetank model can

accurately predict the water-wave dynamics in shallow water conditions, whereas an effective

numerical wavetank to simulate deep-water dynamics still needs to be developed. Thus we

aimed to develop a mathematical and numerical model of a waveflap-wavemaker wavetank by

implementing the variational principle (VP) of nonlinear potential-flow equations in the finite-

element-based environment Firedrake. However, establishing the mathematical and numerical

model of such a wavetank by using Gidel [34] (classical) approach for VP implementation in

Firedrake is complex and time-consuming. The two-dimensional waveflap-wavemaker boundary

motion of the computational domain further increases the complexity far beyond that of the

piston-wavemaker problem in which the boundary motion is one-dimensional. Hence, we have

developed a novel approach for implementing the equations of motion by using a time-discrete

VP instead of weak formulations. The finite-element compiler architecture Firedrake allows this

method to automatically generate the time-discrete weak formulation, thereby reducing both

the likelihood of human error and the time taken to develop and implement the code. Therefore,

the focus of this thesis is on the development of the new approach instead of the development

of the waveflap-driven numerical wavetank model.

The development of the novel approach is done systematically so that it can be verified and

validated at each development stage. First, the VPs of linear and nonlinear shallow-water

equations are implemented in Firedrake to develop a numerical piston-wavemaker wavetank.

Second, the complexity of the first model is increased by deriving the VP based on potential-

flow theory to develop a numerical piston-wavemaker wavetank. Additionally, we have briefly

discussed our strategy [69] for the waveflap-driven wavetank model. The proposed systematic

approach facilitates not only cumulative validation of results but also understanding and imple-

mentation for both developer and user. This novel approach holds promise for future extensions

of the piston-driven wavetank model to waveflap-driven wavetank model, within manageable

development times, which can be further extended to numerical monolithic models of fluid-

structure-interactions based on coupled VPs for fluid and structure.

3

Chapter 1. Introduction

1.2.2 Experimental modelling of water-wave interactions with a flexible beam

In the maritime industry, mathematical and numerical modelling is gaining significance because

experimental scaled-model testing is not always feasible in early design stages due to time and

budgetary constraints. Furthermore, the experimental modelling of flexible structures at the

model scale is not straightforward, motivating researchers to develop mathematical and numer-

ical models for solving FSI problems. These models generally fall into two categories. First,

they range from straightforward linear shallow-water equations and linear modal analysis to

intermediate-complexity linear potential-flow solvers coupled to linear elastic structural equa-

tions [72, 71]. Second, there are more sophisticated approaches based on nonlinear potential

flow, Navier-Stokes (NS) equations [86], and Smoothed Particle Hydrodynamics (SPH) [22] cou-

pled with nonlinear hyperelastic structural equations. However, results generated by numerical

models require validation using benchmark experimental data.

Therefore, a series of experiments, divided into three experimental cases, have been performed

with two goals in mind [69]: to understand fluid-structure interactions (FSIs) of waves impact-

ing on a flexible beam with simultaneous measurements of beam accelerations and incident and

reflected waves; and, to use the acquired data set for validation of a hierarchy of FSI numerical

models. The experiments are divided into three cases, each of which aims to study the dy-

namic response of the flexible beam to varying wave conditions; from regular-to-irregular and

moderate-to-extreme wave height and steepness. Experimental Case 1 concerns interactions

with the flexible beam when the carriage is at rest; this case will help in validating the lin-

ear FSI solvers in the non-resonant regime, as the natural frequencies of the beam are higher

than the wave frequencies. Experimental Case 2 concerns interactions with the flexible beam

when the carriage is moving at a constant speed. Moving the carriage changes the frequency of

encounter with the waves, so that the dynamic response of the beam and its interaction with

water waves, particularly at the onset of resonance, can be studied. By changing the steepness

of the regular wave, both linear and nonlinear FSI solvers can be validated. Experimental Case

3 concerns steep, irregular wave interactions with the flexible beam when the carriage is at

rest. This is the most complex case and is designed to yield data on structural dynamics due

to nonlinear wave-loading processes related to steep and breaking waves. This case will help

to validate the high-fidelity FSI solvers. Hence, the study covers a wide range of FSI problems

that can be used to establish benchmarks for FSI-code validations.

4

Chapter 1. Introduction

To achieve the second goal of the study, i.e. validation of linear, nonlinear and high-fidelity

numerical FSI solvers that are commonly employed by the maritime industry in the design

of fixed-foundation offshore wind turbines, it is essential to make experimental data publicly

accessible. Hence, an open-source online platform, specifically including a GitHub1 public

repository, is created to make the data available to the public. Moreover, we have shared the

details of the experiments with the scientific community in the form of a published research

article [69]. Finally, we have also performed the validation study of two in-house FSI tools used

at MARIN, i.e. SEACAL and ReFRESCO. This study confirms that the experimental data is

of high quality and can be used for the validation of the numerical FSI solvers.

1.3 Thesis outline

The thesis is divided into eight chapters. As described in the previous section, the thesis can

be divided into two main parts, i.e. i) development of the numerical models of wavetanks, and

ii) experimental modelling of water-wave interaction with a flexible beam. Hence, Chapter 2

and 3 are dedicated to the systematic development, verification and validation of the numerical

wavetank models, and Chapter 4 to 6 provide a detailed description of the experimental study

and the validation of linear (SEACAL) and nonlinear (ReFRESCO) FSI tools used in MARIN.

A brief overview of each chapter is as follows:

• Chapter 1 is dedicated to the introduction of the problem, an explanation of the motivation

and objectives, and a description of the thesis outline.

• Chapter 2 explains the mathematical and numerical modelling of the wavetank models

based on shallow water equations. In this chapter, we have developed and tested a novel

approach for the implementation of variational problems in a finite-element-based environ-

ment Firedrake. The new approach is to implement a time-discrete variational principle

instead of time-discrete weak formulations as it automates the derivation of time-discrete

weak formulations and reduces human time and error at the code implementation stage.

Furthermore, this approach has the potential to facilitate the development process of a

waveflap-driven numerical wavetank model based on potential flow equations.

• Chapter 3 describes the derivation of the mathematical model and the numerical imple-

mentation of the piston-driven wavetank models based on potential flow equations by

1https://github.com/EAGRE-water-wave-impact-modelling/FSI Experiments

5

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments
https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments

Chapter 1. Introduction

utilising the novel approach developed in Chapter 2. The results obtained from the nu-

merical analysis are also presented in a published article [67].

• Chapter 4 explains the experimental modelling of the water-wave interactions with a

flexible beam which is conducted at MARIN’s concept basin. The beam’s response is

tested under a wide range of wave conditions and parameters. The experimental setup is

designed such that it admits the simultaneous measurements of incident waves and the

beam’s response and, therefore, it is suitable for studying FSI problems and validation of

the numerical solvers for FSI problems [70]. A GitHub public repository is also created

to make the data available to the public and details of this experimental study have been

published in the form of a research article [69].

• Chapter 5 covers the validation of a MARIN’s in-house linear FSI solver, i.e. SEACAL

[58], which is based on linear potential flow theory. The numerical results obtained from

SEACAL are compared with the experimental data obtained from Case 1, followed by

conclusions. This validation study confirms that the experimental data is suitable for the

validation of numerical FSI solvers.

• Chapter 6 is about the validation of MARIN’s in-house nonlinear FSI solver, i.e. ReFRESCO

[57], which is based on Reynolds Averaged Navier Stokes Equations (RANSE). The test

cases from experimental Case 1 and Case 3, in Chapter 4, are simulated in ReRESCO

and the numerical results obtained from ReFRESCO are compared with the experimental

data.

• Chapter 7 is dedicated to the explanation and implementation of the codes developed

for the simulation of the numerical wavetank models in finite-element based environment

Firedrake [66, 4, 5]. Additionally, a public GitHub repository has been created to share

the codes.

• Chapter 8 summarizes this dissertation, presents key conclusions, suggests improvements

and possible extensions of the present work, and provides a detailed account of the out-

reach activities.

6

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments

Chapter 2

Systematic development of a novel

approach for better modelling of

wavemaker-driven numerical

wavetanks

2.1 Introduction

Wavetanks have prime significance in the maritime industry for the experimental modelling

of water waves and their interactions with scaled offshore structures. A typical wavetank is a

water-filled rectangular-shaped tank which has a wavemaker to generate waves at one end while

the other end has a wave-absorbing surface such as porous beaches. Wavetanks of different

shapes and dimensions are equipped with different types of wavemakers to simulate specific

sea states, as specified by the relation between water depth, amplitude and wavelength of the

modelled water waves. To model shallow-water waves, wavetanks are equipped with piston-

type wavemakers; and, to model intermediate-depth or deep-water waves, wavetanks tend to be

equipped with waveflap-type wavemakers. Fig. 2.1 shows an instant when scaled experimental

modelling of water waves is performed in different wavetanks, i.e., a rectangular wavetank with

regular waves and a circular wavetank with a freak wave [79].

7

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

(a) Regular water waves generated in a rectangular wavetank at MARIN.
Photo courtesy of MARIN.

(b) A freak wave generated in a circular wavetank [79].

Figure 2.1: Two different types of wavetanks are shown.

The challenges associated with scaled model tests are that they are time-consuming, budget-

intensive, and sometimes not suitable because the scaled model is not sufficiently large to

capture the actual physics, thus limiting the maritime industry to test the models in a wide

range of sea conditions. Therefore, to address the challenges faced by the maritime industry and

to facilitate the initial design process, researchers have proposed mathematical and numerical

models to simulate water dynamics in the wavetanks.

Before explaining our model of the numerical wavetank we give a brief overview of different

numerical wavetanks models in §2.2. After that, we explain our mathematical model in §2.3

and its numerical implementation in §2.4. Section §2.5 shows the comparison of numerical

results obtained from our approach with the classical approach and conclusion is drawn in §2.7.

8

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

2.2 A brief overview of numerical wavetanks

Similar to an actual wavetank, a typical numerical wavetank has three zones; (i) wave generation,

(ii) wave propagation, and (iii) wave absorption. At first, the water waves of desired amplitude

and period are generated in the wave generation zone which are then propagated through

the computational domain until they reach the wave absorption zone where these waves are

absorbed. Fig 2.2 demonstrates these zones [85].

Figure 2.2: Different zones of a typical numerical wavetank are depicted [85].

Each zone has its specific role which can be achieved by a variety of mathematical and numerical

models which are briefly explained in this section.

2.2.1 Wave generation and absorption zones

Windt et al. [85] have presented a thorough assessment of a variety of numerical wavemaker and

absorption methodologies which are summarised in Fig 2.3. Generally, wave generation methods

can be classified into five categories, whereas wave absorption methods can be classified into six

categories, described as follows.

• In the relaxation zone method (RZM)[41], the wave signal is gradually introduced in the

wavetank over a certain distance known as the relaxation zone. Within the relaxation

zone, the generated wave signal is smoothly adjusted with the target wave signal through

an iterative process which depends on the implemented algorithm. Thus, minimizing any

artificial effects or disturbances that may occur if the waves were abruptly introduced into

the tank. This method ensures that the generated waves accurately represent the target

wave conditions for various numerical simulations or experiments conducted in the wave

tank.

• In the static boundary method (SBM), the wave velocity and wave elevation are defined

as the Dirichlet boundary condition at the inlet and outlet of the numerical wavetank.

9

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

Figure 2.3: Schematic of different methods for the wave generation and absorption are presented
[85].

This method requires less computational time than RZM.

• In the dynamic boundary method (DBM), the velocity inlet boundary of the numerical

wavetank replicates the wavemaker motion of the actual experimental wavetank, hence,

allowing a real representation of the physical problem. This allows maritime researchers

to use the experimental wave signal, i.e. the time series of wavemaker displacement

and velocity, as input to the numerical model. Similar to wave generation, in DBM the

waves can be absorbed by a moving boundary whose motion is controlled by experimental

measurements, analytical expressions or forced feedback. Implementation of DBM can be

found in [35, 63].

• Mass source method (MSM)[54] and impulse source method (ISM)[17] are utilised in

Reynolds Averaged Navier Stokes (RANS)-based numerical wavetanks by adding a source

term to the RANS equations which are responsible for wave generation, whereas a separate

beach is required for wave absorption.

10

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

For numerical wave absorption, there are three other methods which are not discussed previ-

ously, i.e. numerical beaches, sloped beaches, and mesh stretching. Numerical beaches absorb

the waves by means of numerical dissipation which is done by introducing a damping term in

the mathematical model. The damping term varies gradually from the start to the end of the

numerical beach to avoid reflections due to the sharp interface. Another method is to change

the domain shape by introducing a slop and letting the mathematical model replicate real-world

physics. This method is called sloped beach. The mesh stretching method uses gradually in-

creasing cell size towards the far field of the fluid domain which filters out the waves smaller

than the mesh size. Examples of the mesh stretching method can be found in [8, 23].

Based on these studies, we have selected a wave generation method based on the dynamic

boundary method since we aim to facilitate the maritime industry by replicating their actual

wavetank and this method provides the most realistic model. The wave signal generated by

a wave generation method is used as the initial condition for the mathematical model which

numerically simulates wave propagation and interactions.

2.2.2 Wave propagation zone

The wave propagation zone is where the problems concerning the wave interactions, both wave-

to-wave and wave-to-structure, are investigated through numerically discredited mathematical

models. The well-known governing equations or mathematical models for the development

of numerical wavetanks include viscid Reynolds Averaged Navier Stokes equations (RANSE),

inviscid Laplace equation, Boussinesq-type equations, and shallow water equations.

RANSE-based numerical wavetank models

In the field of fluid mechanics, the flow of an incompressible (constant density) and viscous

fluid can be expressed by a set of partial differential equations, also known as Navier-Stokes

equations (NSE), i.e. mass conservation or continuity equation, and momentum conservation

equation. In the Cartesian plane, the fluid flow can be described as a vector field that varies in

space and time [82]. The velocity vector in three-dimensional space is written as:

V⃗ (x1, x2, x3, , t) = u1(x1, x2, x3, t)⃗i+ u2(x1, x2, x3, t)⃗j + u3(x1, x2, x3, t)k⃗, (2.1)

11

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

where, u1, u2, and u3 respectively are the velocity components corresponding to x1−, x2−, and

x3− coordinate axes. To satisfy the incompressibility condition, the divergence of the velocity

field must be zero, i.e.

∇ · V⃗ =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= 0. (2.2)

Therefore, the continuity equation can be written as:

∇ · (ρV⃗) = 0, (2.3)

where ρ is the fluid density. The conservation of momentum equation is given as

ρ
(∂V⃗
∂t

+ V⃗ · ∇V⃗
)

= −∇P + ∇ · τ + F⃗b, (2.4)

where
∂V⃗

∂t
is acceleration; V⃗ · ∇V⃗ is convective acceleration; −∇P is pressure term; τij is the

viscous part of the stress tensor for a Newtonian fluid, given as µ
(∂Vi
∂xj

+
∂Vj
∂xi

)
; and F⃗b represents

body forces acting on the fluid, e.g. gravity. In addition to the Navier stokes equations, a

transport equation i.e. conservation of arbitrary scalar quantity ϕ is also solved. The generic

transport equation for ϕ is given as:

∂(ρϕ)

∂t
+ ∇ · (ρϕV) = ∇ · (ν∇ϕ) + ρQϕ, (2.5)

where ν is diffusivity of ϕ, and Qϕ represents a source and sink of ϕ. Capturing turbulent flow

by numerically solving NSE requires a very fine spatial and temporal discretisation which is

computationally intensive and time-consuming. Therefore, instead of using NSE, the problem

is solved by using Reynolds Averaged Navier Stokes equations (RANSE). In RANSE [83], the

instantaneous quantities of velocity and pressure are decomposed into fluctuating and time-

averaged components. Let u be the instantaneous component of velocity V , then it can be

written as a combination of a time-averaged term ūi(xi) and a fluctuating term u′i(xi, t), as

follows:

ui(xi, t) = ūi(xi) + u′i(xi, t). (2.6)

The momentum conservation after Reynolds averaging is written as:

ρ(
∂ūi
∂t

+ ūj
∂ūi
∂xj

) = − ∂P̄
∂xi

+ µ
∂2V⃗i
∂xj∂xj

− ρ
∂u′iu

′
j

∂xj
+ ρFb (2.7)

12

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

Here,
∂u′

iu
′
j

∂xj
is an additional unknown term called Reynolds stresses. To close the equations,

Reynolds stresses must be modelled by equations of known quantities. In 1877, Boussinesq [12]

proposed a formula for Reynolds stresses based on molecular viscosity theory which is given as

follows:

−ρ ¯u′iu
′
i = τij = µt(

∂ūj
∂xj

+
∂ūj
∂xi

) − 2

3
(pk + µt

∂ūk
∂xk

)δij (2.8)

where, µt and k are turbulent viscosity and turbulent kinetic energy respectively. Turbulent

viscosity should be modelled again to close the system of equations. The most frequently used

models for this purpose are known as the two-equation eddy viscosity models which are k–ϵ,

k–ω, and SST models. The two-equation models have two partial differential equations; one for

the turbulence length scale and the other for the turbulent velocity scale.

RANSE-based numerical wavetanks are becoming common in maritime industry due to the

rising availability and computational power of high-performance computing systems. Many

researchers [84, 41, 62] have developed RANSE- based numerical wavetanks to predict the per-

formance of wave energy converter devices [74], seakeeping performance of a ship [78], designing

of offshore floater [47], and response of offshore structures [19, 55]. The RANSE-based numer-

ical wavetanks can predict the nonlinear turbulent flows, effects of viscosity and intricate free

surface elevations like wave breaking accurately; however, at high computational cost and time

which makes them infeasible to solve the problem at a large computational domain and long

duration. To overcome this challenge, researchers have proposed low-fidelity models based on

potential flow theory which are described next in this section.

Potential flow equations based numerical wavetanks

Potential flow equations are based on potential flow theory in which we assume the fluid flow

(V⃗ (x, y, z)) is inviscid, irrotational (∇× V⃗ = 0), and incompressible,

∇2ϕ = 0, (2.9)

which is the Laplace equation. In potential flow equations-based methods, we find the velocity

potential (ϕ(x, y, z, t)) by solving the Laplace equation with free-surface boundary conditions,

i.e. kinematic boundary conditions, and dynamic boundary conditions, which can be comple-

mented by additional boundary conditions in the computational domain, for example, no-slip

13

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

boundary condition at the bottom of the wavetank, and velocity boundary condition at the

wavemaker surface. Once velocity potential is known we can find the fluid velocity by using the

following relation:

∇ϕ = V⃗ (x, y, z). (2.10)

The kinematic free-surface boundary condition specifies the behaviour of fluid interface with its

surroundings which is air which is known as the free surface of the fluid at z = h(x, y, t), where

z is the vertical coordinate and h(x, y, t) = H + η(x, y, t) is the total fluid depth. It states that

the fluid particles at the fluid-free surface stay at the interface, i.e. there is fluid flow along the

free surface or interface but not through it. It is given as

∂h

∂t
+ ∇ϕ · ∇h− ∂ϕ

∂z
= 0, (2.11)

where the first term shows free surface is time-dependent, the second term shows fluid is space-

dependent, and the third term is a component of fluid velocity in z direction, i.e. perpendicular

to the free surface. The dynamic free-surface boundary condition also known as the unsteady

Bernoulli equation of motion states that the pressure exerted by fluid particles is in equilibrium

with the pressure exerted by the surroundings. At atmospheric pressure, the dynamic boundary

condition is given as:

∂ϕ

∂t
+

1

2
(∇2ϕ) + g(h−H0) = 0, (2.12)

where the second and third terms denote the kinetic and potential energy of the fluid, respec-

tively. It is challenging to solve these equations because the free surface is not only a boundary

of the domain but also the unknown of the problem. Researchers have developed numerical

wavetank models based on linear and nonlinear potential flow equations to compute regular-

[87, 29, 71] and irregular-wave [11] loading on structures and found satisfactory results from

experimental validation.

Wavetanks based on potential flow equations are capable of simulating deep-water dynamics.

The water dynamics are considered deep when the water depth h is greater than the half of

wavelength (Λ), i.e. h/Λ ≥ 1/2, as in this condition water dynamics are effectively unaffected

by the bottom (z = 0) and fluid particles follow the orbital path. On the other hand, when the

water depth is 20 times smaller than the wavelength, i.e. h/Λ ≤ 1/20, the water dynamics are

strongly affected by the bottom (z = 0) and water particles follow the elliptical path. To model

14

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

shallow-water dynamics we need to solve shallow-water equations which are described next in

this section. Fig. 2.4 [25] demonstrates the transition of water particles’ motion as the ratio of

water depth and wavelength varies.

Figure 2.4: A schematic demonstration of water-particle motion when the ratio of water-depth
to -wavelength varies [25].

Shallow-water equations based numerical wavetank models

In shallow water, the horizontal velocity component of the flow is dominant as compared to

the vertical velocity component and hence we can consider depth-averaged dynamics, i.e. free-

surface elevation η(x, y, t) and velocity potential ϕ(x, y, t) are independent of fluid depth (z-

coordinate). Unlike potential-flow equations, the shallow-water equations (SWEs) do not solve

the Laplace equation and only solve free-surface boundary conditions, i.e. the kinematics bound-

ary condition

∂

∂t
(αH0 + η) = − ∂

∂x
((H0 + αη)ϕx) , (2.13)

and dynamic boundary condition

∂ϕ

∂t
ϕ = −1

2
α|∂ϕ
∂x

|2 − gη, (2.14)

where α = 0 yields linear shallow water dynamics and α = 1 yields nonlinear shallow water

dynamics. SWEs are widely used to study surface waves and for the modelling of floods [21],

tsunamis [80], and tides [52] as SWEs are capable of modelling the breaking of waves on the

shore, which occurs when the water depth becomes comparable to the wavelength of the waves.

To utilise this capability of SWEs, researchers [61, 35] have developed hybrid models of nu-

merical wavetank by coupling either Boussinesq-type equations or potential-flow equations with

nonlinear shallow water equations to model the phenomena of wave breaking.

In Fig. 2.5 we have implemented non-dimensionalised linear shallow water equations when

15

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

bottom morphology changes, i.e. H0 = h(x) to demonstrate the variations of water-wave

steepness and amplitude with water depth/ sea-bed morphology.

Figure 2.5: Variations of water-wave steepness and amplitude with sea-bed morphology. L
in abscissa mean length of the domain, η(x, t) is free surface elevation, and H0 is a variable
depending on horizontal x-coordinate.

In this research work, we present a Variational Principle(VP)-based approach of potential flow

theory for developing wavetank models to simulate water dynamics. The original aim was to

extend Gidel’s [34] piston-driven numerical wavetank model to include waveflap wavemaker

as it is widely used by the maritime industry. However, deriving and implementing a model

of a waveflap-driven numerical wavetank based on Gidel’s approach is time-consuming as the

waveflap motion is space- and time-dependent which makes equations cumbersome to derive

and implement. To address this challenge, we have developed a novel method for implementing

VP in the finite-element environment, i.e. Firedrake, and successfully used this approach for

the development of a piston-driven numerical wavetank model. This approach is capable of

automating the derivation of weak formulations which drastically reduces the time and effort

for the code implementation and therefore can simplify the development process of piston- and

waveflap-driven wavetank models and coupling of hyperelastic structure’s equations with the

numerical wavetank to perform FSI analysis.

In this chapter, we explain the development, verification and validation of our novel approach for

16

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

implementing the variational principles. We commence by explaining the variational principle

for water dynamics in the next section.

2.3 Mathematical modelling of water waves based on varia-

tional principle

Luke’s variational principle [56] for an inviscid, incompressible and irrotational fluid in a three-

dimensional domain is the starting point of developing a numerical wavetank, which is given

as

0 =δ

∫ T

0
L[ϕ, h] dt = δ

∫ T

0

∫
ΩH

∫ h(x,y,t)

0
∂tϕ+

1

2
|∇ϕ|2 + g(z −H0) dz dx dy dt, (2.15)

where t is time; x, y and z are the spatial coordinates; g is gravitational acceleration; ϕ(x, y, z, t)

is the velocity potential, and h(x, y, t) is the total fluid depth which is obtained by adding free-

surface elevation η(x, y, t) and fluid depth at rest H0(x, y), i.e., h(x, y, t) = H0(x, y) + η(x, y, t).

The use of a VP emphasizes the conservative structure of nonlinear water-wave dynamics, since

energy and mass conservation, as well as the conservation of phase-space volume, are intimately

connected with this structure. The preservation of these conservation properties in the numerical

discretisation ensures that simulations are compatible with the continuum dynamics, facilitating

accuracy and stability. Several groups have therefore based their numerical discretisations

directly on space and/or space-time discrete analogues of the underlying VP or associated

Hamiltonian dynamics, see, e.g. [13, 33] and references therein for potential-flow dynamics in a

vertical cross-section and for Hamiltonian Boussinesq dynamics in [50]. Such an approach based

on VPs that generate the dynamics can be extended to include water-wave interactions with

floating and flexible structures such as ships and offshore wind-turbine masts. However, the

time to development of stand-alone special-purpose numerical implementations of numerical

techniques, including those based on variational techniques for such maritime applications,

can be substantial. A solution to the variational issue is to use a domain-specific compiler

architecture, e.g. for the implementation of finite-element methods, because both finite-element

methods and VPs are naturally aligned integral methods. Firedrake is one such “automated

system for the solution of partial differential equations using the finite element method (FEM).

17

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

Firedrake uses sophisticated code generation”1.

2.3.1 Water dynamics based on shallow water equations

Now we will explain the mathematical modelling of a numerical wavetank based on shallow

water equations. Consider a rectangular wavetank with a piston wavemaker on the left side, a

stationary solid wall on the right side, and water free surface at the top boundary. The wave-

maker moves along the x direction up to x = Lw. A schematic of the wavetank is demonstrated

in Fig. 2.6.

Figure 2.6: Schematic of a three-dimensional rectangular wavetank with piston wavemaker at
x = R(t). The piston wavemaker oscillates horizontally in 0 ≤ x ≤ Lw < Lx to generate water
waves. The vertical coordinate is z. The free surface resides at z = h(x, y, t) above a flat bottom
at z = 0; t is time, y the lateral horizontal coordinate and the velocity potential is ϕ(x, y, t).
The depth at rest is H0, which defines a perturbation η of the free surface from rest. The lateral
extent of the tank is Ly.

In one spatial dimension, the mathematical model is based on the variational principle for

linear and nonlinear shallow-water dynamics, which is a simplification of (2.15). Luke’s VP for

a two-dimensional numerical wavetank driven by a piston wavemaker is given as:

0 = δ

∫ T

0

∫ Lx

R(t)

∫ h(x,t)

0
∂tϕ+

1

2
|∂xϕ|2 + g(z −H0) dz dx dt, (2.16)

1http://firedrakeproject.org/index.html

18

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

where ϕ(x, z, t) has dependency on the fluid depth which is denoted by z coordinate. In shallow

water, the dynamics become depth-independent, with variables h(x, t) = H0+η(x, t), and ϕ(x, t)

as in Fig. 2.6. Therefore, we can integrate along the depth z = h(x, t) as follows

0 = δ

∫ T

0

∫ Lx

R(t)
h∂tϕ+

1

2
h|∂xϕ|2 +

1

2
gh2 − ghH0 dx dt. (2.17)

The boundary condition at the wavemaker is obtained by applying the product rule to the

first term of (2.17) as h∂tϕ = ∂t(hϕ) − ∂thϕ, and evaluating the derivative term (∂t(hϕ)) by

employing the Leibniz integral rule, given as:

d

dx

∫ b(x)

a(x)
f(x, t) dt = f(x, b(x))

d

dx
b(x) − f(x, a(x))

d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt. (2.18)

The byproduct of the steps from (2.16) to (2.18) yields the VP for piston-driven numerical

wavetank based on nonlinear shallow water equations, as follows:

0 =δ

∫ T

0

∫ L

R(t)
ϕ∂th− 1

2
h|∂xϕ|2 −

1

2
gh2 + ghH0 dx − Ṙhϕ|x=R(t) dt. (2.19)

Furthermore, a VP for the linearized shallow water dynamics can be derived from (2.19) by

omitting the high-order terms from Taylor expansion of the variables ϕ and h in (2.19). The

VP for the linear shallow-water dynamics is given as:

0 = δ

∫ T

0

∫ L

0
ϕ∂tη −

1

2
H|∇ϕ|2 − 1

2
gη2 dx−H∂tRϕ|x=0 dt, (2.20)

A VP for the combined linear and nonlinear shallow-water dynamics can be written as:

0 =δ

∫ T

0

∫ L

αR(t)
ϕ∂tη −

1

2
(H0 + αη)|∂xϕ|2 −

1

2
g(αH + η)2 + αgH0(H0 + η) dx

−
(

(H0 + αη)Ṙϕ
)
|x=αR(t) dt; (2.21)

when α = 0 the dynamics resulting from varying (2.21) are linear and, when α = 1, the nonlinear

dynamics are recovered. Variations of (2.21) are defined, see e.g. [51], by

δLswe[ϕ, η] ≡ lim
ϵ→0

Lswe[ϕ+ ϵδϕ, η + ϵδη] − Lswe[ϕ, η]

ϵ

with the following functions as variations δη = δη(x, t), δϕ = δϕ(x, t). After taking such varia-

19

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

tions of (2.21) with respect to ϕ and η, as follows:

=

∫ T

0

∫ L

R(t)
δϕ

(
∂th+ ∂x(h∂xϕ)

)
− δh

(
∂tϕ+

1

2
|∂xϕ|2 + g(h−H0)

)
dx

+
(
h∂xϕ− hṘ

)
|x=R(t)δϕ|x=R(t) dt, (2.22)

the following equations of motion and boundary conditions emerge when arbitrariness of vari-

ables is used

ht = −∂x (hϕx) , (2.23a)

∂tϕ = −1

2
|∂xϕ|2 − gη (2.23b)

∂xϕ = Rt at x = 0, and (2.23c)

∂xϕ = 0 at x = L. (2.23d)

These equations respectively comprise the continuity equation, the Bernoulli equation and the

boundary conditions. The VP has a time-dependent horizontal domain R(t) ≤ x ≤ L because

the wavemaker position R(t) is a function of time. Both the time-dependent position of the

free surface h(x, t) = H0 + η(x, t) and the velocity potential ϕ(x, t) are unknown. In order to

render static the mesh in the numerical discretisation, the VP (2.19) is transformed into a new,

fixed-coordinate system in which, e.g., the new longitudinal coordinate satisfies ξ ∈ [0, L].

The forward and backward coordinate transformations are

x(ξ, τ) =

R(τ) +

ξ(Lw −R(τ))

Lw
ξ ∈ [0, Lw]

ξ ξ ∈ [Lw, L]

=
ξLw + (Lw − ξ)R(τ)Θ(Lw − ξ)

Lw
, τ = t, (2.24a)

ξ(x, t) =Lw
(x−R(t))

Lw −R(t)
− R(t)(x− Lw)Θ(x− Lw)

Lw −R(t)
, t = τ, (2.24b)

where Θ(Lw − ξ) is the Heaviside function which makes transformation effective in the time-

dependent-mesh part of the computational domain i.e. x ∈ [R(t), Lw] . Note that every Heav-

iside function in these expressions is multiplied by its argument and that there is no ratio of

Heaviside functions. That is, it does not matter whether the Heaviside function is 0, 1/2 or

1 when its argument is zero, because this very argument always multiplies the corresponding

20

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

Heaviside function. Using the short-hand notations:

X(ξ) =ξ − Lw; (2.25a)

R̃(τ) =RΘ(Lw − ξ); (2.25b)

R̃τ (τ) =RτΘ(Lw − ξ); (2.25c)

V (ξ, τ) =Lw − R̃. (2.25d)

The Jacobian of transforms (2.24b) mapping (x, t) to (ξ, τ) is,

J ≡ ∂(x, t)

∂(ξ, τ)
=

Lw − R̃

Lw

R̃τ (Lw − ξ)

Lw

0 1

 , (2.26)

where Lw = O(λ), with λ is the wavelength generated by the wavemaker. The inverse of J−1 is

calculated as

J−1 ≡ ∂(ξ, τ)

∂(x, t)
=

 Lw

Lw − R̃
−R̃τ (Lw − ξ)

Lw − R̃

0 1

 . (2.27)

After using the chain rule, given as

∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂τ

∂t

∂

∂τ
,

∂

∂x
=
∂ξ

∂x

∂

∂ξ
, dx dt = |J | dξ dτ, (2.28)

and (2.27), the space and time derivatives are transformed as follows:

∂t =
R̃τ (ξ − Lw)

V
∂ξ + ∂τ , (2.29a)

∂x =
Lw

V
∂ξ, (2.29b)

dx dt =|J |dξ dτ =
Lw − R̃

Lw
dξ dτ. (2.29c)

After applying the transformations (2.24a) to (2.29c) to (2.19), the VP in the new coordinate

system {ξ, τ} reads

0 =δ

∫ T

0

∫ L

0

[
−1

2

L2
w

V
h(ϕξ)

2 + ϕ(V hτ +XR̃τhξ) − V gh(
1

2
h−H0)

]
dξ

− LwRτϕh|ξ=0 dτ. (2.30)

21

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

The process of domain transformation is graphically illustrated in Fig 2.7.

Figure 2.7: The three-dimensional time-dependent computational domain, i.e. (x, y, z), is trans-
formed into a new static computational domain denoted by (ξ, µ, ζ).

Note that the expression (2.30) is similar to the transformed VP stated in equation (8) in [36]

after excluding dependencies on the y and z coordinates and taking the velocity potential as a

function of x and t only. After taking the variations with respect to δϕ and δh, as follows:

0 =

∫ T

0

(∫ L

0

[
δϕ

(
XR̃τhξ + V hτ

)
− L2

w

V
h∂ξϕ∂ξ(δϕ)

− δh
(1

2

L2
w

V
(ϕξ)

2 + V ϕτ + V g(h−H0)
)

+XR̃τϕ∂ξ(δh)
]

dξ

− LwRτhδϕ|ξ=0 − LwRτϕδh|ξ=0

)
dτ, (2.31)

22

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

and evaluating the boundary terms by performing integration by parts, the resulting weak

formulation is

0 =

∫ T

0

∫ L

0

([
XR̃τhξ + V hτ −

L2
w

V
∂ξ(hϕξ)

]
δϕ

−
[
XR̃τϕξ + V ϕτ +

1

2

L2
w

V
(ϕξ)

2 + V g(h−H0)
]
δh

)
dξ

+
(L2

w

V
(hϕξ) − LwRτh

)∣∣∣
ξ=0

δϕ|ξ=0dτ. (2.32)

The resulting transformed equations of motion are given as:

δϕ : XR̃τhξ + V hτ −
L2
w

V
∂ξ(hϕξ) = 0, (2.33a)

δh : XR̃τϕξ + V ϕτ +
1

2

L2
w

V
(ϕξ)

2 + V g(h−H0) = 0, (2.33b)

δϕ|ξ=0 :
(L2

w

V
(hϕξ) − LwRτh

)∣∣∣
ξ=0

δϕ|ξ=0 = 0. (2.33c)

Since each variation δϕ in the interior, δη in the interior and δϕ at the (transformed) piston-

wavemaker location ξ = 0 is arbitrary, each bracketed expression before each variation holds

pointwise in space and time. Through this observation, the transformed continuity, Bernoulli

and wavemaker equations emerge. Note that, in the above variations, end-point contributions

arising through integration by parts in time are annihilated because of the temporal-end-point

conditions δη(ξ, 0) = δη(ξ, T) = 0, the former of which logically follows from the specified initial

condition η(ξ, 0), whose variation is definitively zero; the latter follows by invoking symmetry

in time.

Finally, we observe that the presence of wavemakers implies that the integrands in the VPs are

functions of variables whose spatio-temporal dependence is both implicit and explicit, the latter

reflecting that the resulting dynamics are non-autonomous. In the absence of wavemakers, the

total energy H, comprising the integral sum of kinetic and potential energy, is a conserved

quantity such that dH/dt = 0, and that H(t) = H(t = 0) is independent of time. In contrast,

when wavemakers are present, dH/dt ̸= 0 even though the total mass or water volume is

conserved in a closed domain.

23

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

2.4 Numerical implementation of the VP

The VP derived in §2.3 represents the continuum world whereas computers can only solve the

discrete problems, therefore, researchers have developed different numerical methods for the spa-

tial and temporal discretisation of the mathematical equations. To enhance the reader’s under-

standing, we will explain the theoretical background of the spatial and temporal discretisation

of the VP in the finite-element-based environment (Firedrake) in which we are implementing

the derived VP. First, we describe the spatial discretisation, briefly as it is highly automated

intrinsically within Firedrake, followed by a description of the temporal discretisation of the

VPs.

2.4.1 Spatial discretisation of VP based on finite element method

In Firedrake, we spatially discretised the equations by using continuous Galerkin finite elements.

This section aims to explain the detailed process of spatial discretisation in Firedrake by em-

ploying the finite element method. To keep the derivations simple and understandable we will

consider a rather simpler case, i.e the VP for linear shallow water equations without piston

wavemaker, given as follows

0 = δ

∫ T

0

∫∫
ΩH

η∂tϕ+
1

2
|∇ϕ|2 +

1

2
η2 dxdy dt, (2.34)

and then approximate the unknown variables η(x, t) and ϕ(x, t) by a finite linear combination

of basis functions φj(x). After utilizing the Einstein’s summation convention, we have

ϕ ≈ ϕh(x, t) = ϕj(t), φj(x), and η ≈ ηh(x, t) = ηj(t)φj(x). (2.35)

Substituting (2.35) into (2.34) yields

0 = δ

∫ T

0

∫∫
ΩH

[
(∂t(ϕiφi)ηjφj) +

1

2
|∇(ϕiφi)|2 +

1

2
(ηjφj)

2

]
dxdy dt

= δ

∫ T

0

[
ηj

dϕi
dt

∫∫
ΩH

φiφj dxdy +
1

2
ϕiϕj

∫∫
ΩH

∇φi · ∇φj dxdy

+
1

2
ηiηj

∫∫
ΩH

φiφj dxdy
]
dt,

(2.36)

24

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

in which we can use Mij =
∫∫

ΩH
φiφj dxdy and Sij =

∫∫
ΩH

∇φi · ∇φj dxdy to obtain the

following VP

0 = δ

∫ T

0

dϕi
dt
Mijηj +

1

2
ϕiSijϕj +

1

2
ηiMijηj dt. (2.37)

Applying the variational principle to the first term:

δ

∫ T

0

dϕi
dt
Mijηj dt = lim

ϵl→0

1

ϵl

∫ T

0

d(ϕi + ϵlδϕi)

dt
Mij(ηj + ϵlδηj) −

dϕi
dt
Mijηj dt

= lim
ϵl→0

1

ϵl

∫ T

0

(
dϕi
dt
ηj + ηjϵl

dδϕi
dt

+ ϵl
dϕi
dt
δηj + ϵ2l

dδϕi
dt

δηj

)
Mij

− dϕi
dt
Mijηj dt

= lim
ϵl→0

∫ T

0

(
dδϕi
dt

Mijηj +
dϕi
dt
Mijδηj + ϵlδηjMij

dδϕi
dt

)
dt,

(2.38)

and evaluating the limits and temporal boundary condition

=

∫ T

0

(
dδϕi
dt

Mijηj +
dϕi
dt
Mijδηj

)
dt

= δϕiMijηj |T0 −
∫ T

0

(
δϕiMij

dηj
dt

− dϕi
dt
Mijδηj

)
dt,

(2.39)

we obtain the final expression, as follows

=

∫ T

0

(
dϕi
dt
δηj −

dηj
dt
δϕi

)
Mij dt. (2.40)

Similarly, the variations of the second term of (2.37) are as follows:

δ

∫ T

0

1

2
ϕiSijϕj dt =

1

2

∫ T

0
ϕiSijδϕj + δϕiSijϕj dt. (2.41)

and variations of the third term are given as:

δ

∫ T

0

1

2
ηiMijηj dt =

1

2

∫ T

0
ηiMijδηj + δηiMijηj dt. (2.42)

Combining all three terms by substituting equations (2.40)–(2.42) into (2.37), we have

0 =

∫ T

0

dϕi
dt
Mijδηj −

dηj
dt
δϕiMij +

1

2
ϕiSijδϕj +

1

2
ϕjSijδϕi +

1

2
ηiMijδηj +

1

2
ηjMijδηi dt (2.43)

which yields the equations of motion after using the arbitrariness of variations δη and δϕ, and

25

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

considering Mij and Sij being symmetrical, as follows

δη :
dϕi
dt
Mijδηj +

1

2
ηiMijδηj +

1

2
δηiMijηj =

dϕi
dt
Mijδηj + δηjηiMij = 0,

⇒ dϕi
dt
Mij + ηiMij = 0 ⇔ Mij

dϕj
dt

+Mijηj = 0; (2.44)

δϕ : − dηj
dt
δϕiMij +

1

2
ϕiδϕjSij +

1

2
δϕiSijϕj = −δϕiMij

dηj
dt

+ δϕiSijϕj = 0,

⇒ Mij
dηj
dt

= Sijϕj . (2.45)

Fortunately, Firedrake sped up the process of implementing the derived equations of motion by

eliminating the need to define all the vectors and matrices as it automatically defines all the

vectors and matrices once the user provides the weak formulations and defines the mesh and

function spaces.

2.4.2 Time discretisation

The conservative nature of the dynamics requires that special time integrators are applied.

Since the spatially-discrete dynamics remains conservative given its generation from a spatially-

discrete VP without any numerical damping added, that requirement to use special integrators

for stiff problems remains valid. We will therefore use so-called geometric time integrators

[37, 33, 10] such as the first-order symplectic-Euler (SE) and second-order Störmer-Verlet (SV)

time-integration schemes. These are explicit for linear wave dynamics but semi-implicit with

a timestep restriction for nonlinear wave dynamics. Alternatively, a fully implicit second-order

geometric mid-point scheme has been under consideration. The latter equates to the Crank-

Nicolson time-stepping scheme for linear wave dynamics.

2.4.3 Shallow-water equations with piston wavemaker

For linear shallow-water dynamics, two formulations are derived to facilitate a comparison

between a numerical implementation with classical weak formulations and one using the time-

discrete VPs provided below. The time-discrete weak formulations are derived by multiplying

the time-discrete equations of motion found in (2.23) by respective test functions, i.e., by δϕn and

δηn+1, and integration (by parts) in space. A combined forward-Euler timestep for updating η

and backward-Euler timestep for updating ϕ, forming a so-called linear SE scheme, is employed.

26

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

The resulting time-discrete weak formulations are as follows

∫ L

0
δϕn

(ηn+1 − ηn)

∆t
−H0∇ϕn ·∇δϕn dx−H0R

n
t δϕ

n|x=0 = 0, (2.46a)∫ L

0

((ϕn+1 − ϕn)

∆t
+ gηn+1

)
δηn+1 dx = 0. (2.46b)

The corresponding combined linear and nonlinear time-discrete weak formulations are

∫ L

0
V n η

n+1 − ηn

∆t
δϕn − L2

w

V n
(H0 + αηn+1)ϕnξ ∂ξ(δϕ

n) dξ =∫ L

0
−αXR̃n

τ η
n+1
ξ δϕn + LwR

n
τ (H0 + αηn+1)δϕn

∣∣∣
ξ=0

, (2.47a)∫ L

0

(
V n+1ϕn+1 − V nϕn

∆t
+ gV nηn+1

)
δηn+1 dξ =∫ L

0
αXR̃n

τ ϕ
n∂ξ(δη

n+1) − 1

2
α
L2
w

V n
(ϕnξ)2δηn+1 dξ

− αLwR
n
τ ϕ

nδηn+1
∣∣∣
ξ=0

, (2.47b)

which coincide with (2.46), for α = 0 and V = Lw. Note that, in the nonlinear case, the

conjugate variable to η is the combination V ϕ. The geometric factor V can be evaluated at

(indexed) times n, n+ 1/2 or n+ 1 for this first-order scheme; here we evaluated at n, see [10,

33]. The corresponding time-discrete analogue of the continuum VP (2.30) for linear/nonlinear

shallow-water equations reads:

0 = δ

∫ L

0

[
ϕn

(
αXR̃τ∂ξη

n+1 + V n η
n+1 − ηn

∆t

)
− V n+1ϕn+1 η

n+1

∆t

− 1

2

L2
w

V n
(H0 + αηn+1)|ϕnξ |2 −

1

2
gV nηn+1)2

]
dξ − LwR

n
τ (H0 + αηn+1)ϕn|ξ=0, (2.48)

which is directly implemented into Firedrake. The above time-discrete VP is a simplified ver-

sion of a systematic derivation, following work by [10, 32]. Employing the Firedrake (partial)

“functional” derivative command derivative with respect to δϕn, δηn+1 automatically generates

the weak formulations to be solved numerically (see §17.5.1 in [1] and §6.4 in [2]). While the

above variational approach is straightforward for shallow-water dynamics, for the (transformed)

potential-flow dynamics of coupled nonlinear water-wave dynamics and dynamics of hyperelas-

tic structures, described by coupled VPs, this automated procedure using time-discrete VPs is

more effective than manual derivation. Based on a similar systematic derivation, a time-discrete

27

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

VP leading to a second-order SV time discretisation reads:

0 = δ

∫ L

0

[
−2ηn

(V n+1/2ϕn+1/2 − V nϕn

∆t

)
− 2ηn+1

(V n+1ϕn+1 − V n+1/2ϕn+1/2

∆t

)
+ αXR̃n+1/2

τ

(
∂ξη

n+1 + ∂ξη
n
)
ϕn+1/2

− 1

2

L2
w

V n+1/2
(ϕ

n+1/2
ξ)2

(
(H0 + αηn+1) + (H0 + αηn)

)
− 1

2
gV n+1/2

(
(ηn+1)2 + (ηn)2

)]
dξ

− LwR
n+1/2
τ ϕn+1/2

(
(H0 + αηn+1) + (H0 + αηn)

)∣∣∣
ξ=0

. (2.49)

As illustration, for the case α = 0 and V = Lw, variations of (2.49) with respect to δηn, δϕn+1/2

and δηn+1 yield the time-discrete weak formulations of linear shallow-water dynamics based on

a second-order Störmer-Verlet time-stepping scheme, as follows

∫ L

0
−2

(ϕn+1/2 − ϕn

∆t

)
δηn − gηnδηn dx = 0, (2.50a)∫ L

0
2
(ηn+1 − ηn

∆t

)
δϕn+1/2 − 2H0∂ξϕ

n+1/2∂ξ(δϕ
n+1/2) dx

− 2H0R
n+1/2
t δϕn+1/2|x=0 = 0, (2.50b)∫ L

0
−2

(ϕn+1 − ϕn+1/2

∆t

)
δηn+1 − gηn+1δηn+1 dx = 0. (2.50c)

In Firedrake, however, we do not implement these weak formulations explicitly but instead

generate the weak forms automatically from the time-discrete VP.

2.4.4 Timestep criterion

The SE and SV schemes are conditionally stable. A linear stability criterion can be based on

analysis of the linear harmonic oscillator, with frequency ωmax [37], as follows

∆t = CFL(2/ωmax), (2.51)

where for the Courant-Friedrichs-Lewy (CFL)-number we take CFL ≤ 1. For linear wave

dynamics, ωmax is the maximum wave frequency, which can be estimated using the linear,

potential-flow dispersion relation

ωmax ≈
√
gk tanh(kH0) ≤

√
gH0k (2.52)

28

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

the upper bound holding in the shallow-water limit. The maximum wavenumber k = 2π/∆x

depends on an estimate ∆x of the minimum mesh size. For nonlinear wave dynamics, the CFL

(again satisfying CFL ≤ 1) needs to be estimated and tested. Codes are anticipated to become

unreliable when waves become too steep; this can be circumvented by using parametrised wave-

breaking schemes such as the one in [81]. Wave-breaking parametrisation schemes have not

been considered here.

2.5 Verification and validation

2.5.1 Comparison of linear shallow water equation with exact solution

The VP for linear shallow-water dynamics is given as:

0 =δ

∫ T

0

∫ L

0
ϕ∂tη −

1

2
H|∇ϕ|2 − 1

2
gη2 dx dt. (2.53)

The time-discrete variational principle (VP) based on the Symplectic Euler scheme [37] for the

linear potential-flow shallow-water dynamics reads

0 =δ

∫ L

0
ϕn

(ηn+1 − ηn)

∆t
− ϕn+1 η

n+1

∆t
− 1

2
H|∇ϕn|2 − 1

2
g(ηn+1)2 dx. (2.54)

Variations of (2.54) with respect to δϕn and δηn+1 yield the Symplectic-Euler time-discrete

weak formulations, as follows

∫ L

0
δϕn

(ηn+1 − ηn)

∆t
−H∇ϕn ·∇δϕn dx = 0 and (2.55)∫ L

0

((ϕn+1 − ϕn)

∆t
+ gηn+1

)
δηn+1 dx = 0. (2.56)

The exact standing wave solution for ϕ(x, t) and η(x, t), for the linearised shallow water equa-

tions with piston wavemaker, is derived in Appendix A, which is given as

ϕ(x, t) =
g

ω
cos k1x (−A sinωt+B cosωt), (2.57)

η(x, t) = cos k1x (A cosωt+B sinωt). (2.58)

The initial conditions are the same as the exact solutions, given in (2.57) and (2.58), evaluated

at time t = 0. In this case, a unit square computational domain, i.e. Lx×Ly = 1×1, is spatially

29

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

discretised into 99 × 99 square finite elements. The initial conditions for ϕ and η at time t = 0

are shown in Fig. 2.8.

(a) Initial condition for η (2.58) at t = 0.

(b) Initial condition for ϕ (2.57) at t = 0.

Figure 2.8: Plots of the initial conditions for η and ϕ, given in (2.57) and (2.58), evaluated at
time t = 0 in Firedrake.

The comparison of the numerical results obtained for ϕ(x, t) and η(x, t), from the novel approach

for implementing the VP, with the exact solution is shown in Fig. 2.9. The final time of the

simulation is twice the time period of wave i.e. Tp = 2π/ω.

30

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

(a) Free surface elevation η when Rt = 0.

(b) Velocity potential ϕ when Rt = 0.

Figure 2.9: Comparison of numerical and exact solution of η and ϕ at different time steps.
Numerical results are shown by solid lines while the dashed black lines show the exact solution.

The comparison shown in Fig. 2.9 of the numerical solution, i.e. shown by solid lines, with the

exact solution, i.e. shown by dashed black lines, depicts that the numerical results agree with

the exact solution. After obtaining satisfactory results from the novel approach, we divide our

study into two cases to compare the results from the novel approach of implementing the VP

(Case 1) with the classical approach of implementing the weak formulations (Case 2). This

comparison aims to prove that the numerical results from case 1 are consistent with case 2, and

both approaches are equivalent mathematically and numerically. Therefore we performed the

comparison by plotting the L∞ norm at each time step t of the simulation, given as

|L∞|t = max|εc1 − εc2|t, 0 ≤ t ≤ Tp, (2.59)

31

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

where εc1 represents the numerical results from Case 1, εc2 represents the numerical results

from Case 2, and Tp is the end time of the simulation. Fig. 2.10 shows the L∞ norm of cases 1

and 2 which proves that the approaches used in each are (numerically) equivalent. Notably,

the advantage of using the approach used in case 1 is that it reduces the effort required when

implementing software, thereby decreasing the likelihood of introducing human error.

Figure 2.10: Time evolution of L∞ norms of the difference between numerical simulations of
solutions η (left) and ϕ (right), for the linear shallow-water equations, for Case 1 and Case 2.
Norms are taken over the full solution domain and each subgraph confirms that the results of
the two cases are, as expected, equivalent to within machine precision. The positive mean slope
in both plots reflects error accumulation with the evolving number of calculations. Vertical axes
display multiples of 10−13 and 10−16 in left- and right-hand plots respectively. A CG1 spatial
discretisation with 200 elements has been used.

2.5.2 Comparison of two implementation approaches for nonlinear shallow

water dynamics

In this section, we solve the VP for nonlinear shallow water dynamics with the aim of comparing

the two approaches, i.e. the novel- (time-discrete VP) and the classical-(time-discrete weak for-

mulations) approach. Furthermore, we will use two different time-integration schemes, i.e. the

first-order Symplectic-Euler (SE) and second-order Störmer-Verlet (SV), for both approaches.

We start the comparison by defining a two-dimensional horizontal computation domain of 140m

× 40m which is discretised by 200 elements in x-direction and 1 element in y-direction. The

32

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

number of elements/element size is selected after performing a mesh convergence study which

is not shown here. Note that the computational domain, shown in Fig. 2.11, and equations are

non-dimensionalized, however, we have used units to give an idea of the order of magnitude.

Figure 2.11: The two-dimensional spatially-discretised computational domain for solving the
VP of shallow water equations is shown.

(a) The plot of the wavemaker displacement.

(b) The plot of wavemaker velocity.

Figure 2.12: The evolution of piston wavemaker displacement and velocity is plotted for the
complete computational time.

33

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

Initially, free surface elevation η and velocity potential ϕ are set to zero. Note that η = 0,

however the total fluid depth h = H0 + η = 1m because still water level H0 is 1m. The

wavemaker motion chosen and controllable parameters are:

R(t) =

 γ cos (σt) 0 ≤ t ≤ Tp

0 t > Tp

, (2.60)

σ =
√
gH0k =

√
gH02π/Λ, Λ = 70m, Tp = 2π/σ, γ = 0.002m.

Here, σ is the wavemaker angular velocity, k is the wavenumber given as 2π/Λ, and γ is the

amplitude of the wavemaker displacement. The total computational time is two times the wave

time period, i.e. 2Tp = 44.68 seconds. We turn the wavemaker on for 1Tp and keep it off for

another 1Tp, as shown in Fig. 2.12. When the wavemaker moves a wave of 1Tp is generated and

when the wavemaker stops the wave generated by the wavemaker continues travelling to the

end of the numerical wavetank. The length of the wavemaker is chosen as twice the wavelength

which is 140m. At this stage, we have not included any wave absorption mechanism in the

wavetank and hence to avoid wave reflections we simulate to a time of 2Tp. The evolution of

wave through the computational domain is shown in Fig. 2.13.

(a) Evolution of velocity potential (ϕ) along the computational domain.

(b) Evolution of free-surface elevation (h = H0 + η) along the computational domain.

Figure 2.13: The evolution of the wave through the computational domain is shown at one
instant of the simulation.

34

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

At first, we test the two approaches when time discretisation is based on the first-order Symplectic-

Euler scheme. A slice along the horizontal x-axis of the computational domain is taken to plot

the evolution of velocity potential and free-surface elevation through the computational domain

at different time steps, shown in Fig. 2.14.

(a) Evolution of velocity potential (ϕ) at different time steps.

(b) Evolution of free-surface elevation (h = H0 + η) at different time steps.

Figure 2.14: Comparison of novel and classical approaches for implementing the VP for nonlinear
shallow water equations by using the first-order symplectic-Euler scheme is shown.

35

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

Now, we will depict a similar comparison by using the second-order Störmer-Verlet scheme in

Fig. 2.15.

(a) Evolution of velocity potential (ϕ) at different time steps.

(b) Evolution of free-surface elevation (h = H0 + η) at different time steps.

Figure 2.15: Comparison of novel- and classical-approach for implementing the the VP for
nonlinear shallow water equations by using the second-order Störmer-Verlet scheme is shown.

36

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

The visual analysis proves that both approaches are mathematically and numerically equivalent

and hence the novel approach can replace the classical approach for the development of more

sophisticated wavetank models. We have performed a similar comparison of two approaches

based on symplectic-Euler and Störmer-Verlet time integration schemes for linear shallow water

dynamics and monitored the evolution of energy, which is shown in Fig. 2.16.

Figure 2.16: Evolution of total energy of the system.

We noticed that the behaviour of energy is in line with real-world physics. When the piston

wavemaker is turned on, the system’s total energy increases and when the wavemaker is turned

off after 1Tp the energy stays at the constant level, which shows the system’s energy is conserved.

After proofing that the results from the traditional and novel approaches agree well, i.e. within

machine precision. We can perform more test cases to exhibit the capabilities of the numerical

wavetank.

2.5.3 Test case: high amplitude waves

In this test case, we aim to generate waves of amplitude 0.1 m in the wavetank which is 1 m

deep. Note that the comparison study explained in the previous study has waves of 1.5 mm

amplitude. Therefore, we test the wavetank by increasing the wave amplitude and allowing

them to reflect from the fixed wall. The wave period Tp is 22.36 seconds and the wavelength is

70 m. The total simulation time is 4Tp; the wavemaker is turned off after 2Tp and the waves

generated by the wavemaker are allowed to reflect. Figs. 2.17a and 2.17b show the displacement

and velocity of the wavemaker, respectively.

37

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

(a) The plot of the wavemaker displacement.

(b) The plot of wavemaker velocity.

Figure 2.17: The evolution of piston wavemaker displacement and velocity is plotted for the
complete computational time.

Figs. 2.18 and 2.19 show the generated and reflected wave heights and velocity potentials,

respectively.

38

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

Figure 2.18: Evolution of free-surface elevation (h = H0 + η) at different time steps.

Figure 2.19: Evolution of velocity potential at different time steps.

39

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

2.6 Industrial applications of SWE-based numerical wavetank

model

Although the numerical wavetank based on shallow water equations is a stepping stone for

developing a numerical wavetank based on potential-flow equations by employing the novel

approach for the implementation of variational principles, it does have industrial applications.

In this section, we will discuss some of the industrial applications of the numerical wavetank

based on shallow water equations, which are as follows:

• Modelling of the waves at wavetank beach. The shallow water equations can be coupled

with numerical wavetanks based on potential flow equations to model the waves at shallow

beaches for wave absorption.

• Ship manoeuvring in shallow waters. The SWE-based numerical wavetank can simulate

the flow around the ships and determine the manoeuvring dynamics of ships in shallow

water, i.e. near port and inland navigation. Such simulations may eventually lead to

development of the automatically manoeuvred ships.

• Floating solar panels. The idea of utilising the surface of shallow water bodies like lakes

and ponds for the installation of floating solar panels is getting attention in the maritime

industry. Our model of the SWE-based numerical wavetank can assist in the designing

process by predicting the wave loads on the floating panels.

• Hydrodynamics loads on offshore structures. Most of the fixed-bottom offshore turbines

are installed in shallow waters. Coupled with hyperelastic beam equations, our model can

determine the hydrodynamic loads on the turbine’s mast by performing fluid-structure

analysis. Salwa et al. [71] have developed such a model by coupling the variational

principle of the hyperelastic beam model with the variational principle of potential flow

equations. We have derived the time-discrete variational principle for hyperelastic equa-

tions that can be coupled with SWE-based numerical wavetanks. See §3.5.1 of this report

for more details on the derivations and initial results from the time-discrete variational

principle for hyperelastic equations.

40

Chapter 2. Systematic development of a novel approach for better modelling of
wavemaker-driven numerical wavetanks

2.7 Conclusion

In this chapter, we have developed a piston-driven numerical wavetank model to simulate shallow

water dynamics and developed a novel approach for implementing the variational principle in

Firedrake. In the novel approach, we implement a time-discrete variational principle whereas,

in the classical approach, we implement time-discretised weak formulations. The advantage of

the novel approach is that it automates the derivation of time-discrete weak formulations and

reduces human time and error in the code implementation stage. The comparison of the novel

and classical approaches proves that both approaches are equivalent mathematically as well as

numerically. Therefore, we can replace the classical approach and use the novel approach for

developing more sophisticated numerical wavetank models.

41

Chapter 3

Mathematical and numerical

modelling of piston-driven numerical

wavetank based on nonlinear

potential flow equations

3.1 Introduction

In this chapter, we explain the extension of the shallow-water equations based on numerical

wavetank models, developed in chapter 2, to more sophisticated wavetank models based on

potential-flow equations. The numerical models based on potential-flow equations are capable

of simulating deep-water dynamics, as explained in §2.2.2. This potential-flow-based model of

piston-driven numerical wavetank has been derived and implemented by employing the time-

discrete variational principle which is a novel approach to implement the variational problems.

We commence by explaining the mathematical derivation of the variational problem in §3.2.

Following that, the numerical discretisation and implementation of the derived mathematical

model of the numerical wavetank are described in §3.3. The results obtained from the simula-

tions are discussed in §3.4, and the possible extension of the numerical wavetank to simulate

fluid-structure interactions problems is presented in §3.5. Ultimately, the chapter is concluded

in section §3.6.

42

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

3.2 Variational modelling water dynamics based on potential-

flow theory

The piston-driven wavetank model developed from the non-linear shallow water equations can

be extended to a wavetank model based on the non-linear potential flow model. The non-linear

shallow water equations model solves the equations only at the free surface while the model

based on the non-linear potential flow also solves for the inner fluid domain. Therefore, in this

model, the velocity potential ϕ(x, y, z, t) depends on the horizontal coordinates x and y, and

the vertical coordinate z of the tank. The schematic of the wavetank is shown in Fig. 3.1.

Figure 3.1: Schematic of a rectangular wavetank with piston wavemaker. The piston wave-
maker oscillates horizontally in 0 ≤ x ≤ Lw to generate water waves. On the right side of the
wave tank, there is a stationary solid wall.

Luke’s variational principle for two-dimensional numerical wavetank based on potential-flow

water waves with piston wavemaker R(t) at x = 0 and solid wall at x = L is given as:

0 = δ

∫ T

0

∫ L

R(t)

∫ h(x,t)

0
−ρ∂tϕ+ H dz dx dt

= δ

∫ T

0

∫ L

R(t)

∫ h(x,t)

0
−ρ

(
∂tϕ+

1

2
|∇ϕ|2 + g(z −H0)

)
dz dx dt, (3.1)

where Hamilton H consists the kinetic and potential energies.

43

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

3.2.1 Linear potential flow equations

The corresponding variational principle (VP) for two-dimensional linear potential-flow equations

without piston-wavemaker is given by:

0 = δ

∫ T

0

∫ Lx

0

(
ϕ∂tη −

1

2
gη2 −

∫ H0

0

1

2
|∇ϕ|2 dz

)
dx dt. (3.2)

The equations of motions for the linear potential-flow model with piston wavemaker can be

derived by taking the variations of (3.2) with respect to η(x, t) and ϕ(x, t), and then integrating

by parts to eliminate the boundary terms by applying the end-point conditions, i.e. δϕ|t=0 =

δϕ|t=T = 0.

δϕ : ∇2ϕ = 0 on Ω, (3.3a)

δϕ|z=H0 : ∂tη = ∂zϕ at z = H0, (3.3b)

δη : ∂tϕ = −gη at z = H0. (3.3c)

In the classical approach of implementing the variational principle we derive the weak formu-

lations by multiplying the equations of motions with a test function and then we integrate by

parts in space. In the final step, we discretize the weak formulations in time and implement

them in Firedrake. The time-discretised weak formulations for the linear potential flow case are

derived as follows:

∫ Lx

0

((ϕn+1 − ϕn)

∆t
+ gηn

)
δηn dx = 0, (3.4)∫ Lx

0

∫ H0

0
∇δϕn+1 ·∇ϕn+1 dx dz = 0, (3.5)∫ Lx

0
δϕn+1 (ηn+1 − ηn)

∆t
dx−

∫ Lx

0

∫ H0

0
∇ϕn+1 ·∇δϕn+1 dx dz = 0. (3.6)

Notice that (3.5) may seem superfluous as it repeats in the (3.6), however in the numerical

implementation process we need to explicitly update the velocity potential of the inner domain.

In chapter 6 of [72], Salwa has explicitly implemented (3.5) in Firedrake to update the inner

domain velocity potential. However, we propose a different approach in which we define the

velocity potential (ϕ(x, z, t)) of the complete domain as a sum of velocity potential for the

free surface (ψ(x, t)) and velocity potential for the inner domain (φ(x, z, t)), such that when at

free surface the velocity component for the inner domain is zero, i.e. ϕ(x, z, t) = φ(x, z, t) +

44

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

ψ(x, t)z/H0 (with φ(x,H0, t) = 0). Based on this split approach, our time-discrete variational

principle based on the symplectic-Euler scheme is given as:

0 = δ

∫ Lx

0
ψn+1 (ηn+1 − ηn)

∆t
+ ψn η

n

∆t
− 1

2
g(ηn)2 dx

−
∫ Lx

0

∫ H0

0

1

2
|∇φn+1|2 + ∇φn+1 ·∇ψn+1 +

1

2
|∇ψn+1|2 dx dz. (3.7)

The corresponding time-discrete weak formulations that are automatically generated and im-

plemented in Firedrake by using command derivative are as follows:

∫ Lx

0

((ψn+1 − ψn)

∆t
+ gηn

)
δηn dx+

∫ Lx

0

∫ H0

0
∇(ψn+1 + φn+1) ·∇δφn+1 dx dz = 0, (3.8)∫ Lx

0

(ηn+1 − ηn)

∆t
δψn+1 dx = 0. (3.9)

In (3.8), we use the known value of free surface elevation ηn and ψn to find the updated value

of free surface velocity potential ψn+1 and update the inner domain velocity potential φn+1 by

using the updated ψn+1 as Dirichlet boundary condition in unison. Hence, the test function

δϕn+1 is defined on mixed function space [30]. Following that we use the updated value of

velocity potential at free surface ψn+1 in (3.9) to compute the updated value of free surface

elevation ηn+1. After developing the implementation strategy for the time-discrete variational

principle of linear potential flow dynamics we can proceed with implementing the same strategy

for nonlinear potential flow equations.

3.2.2 Nonlinear potential flow equations

The equations of motions for the non-linear potential-flow model with piston wavemaker can be

derived by taking the variations of (3.1) with respect to h(x, t) and ϕ(x, t), and then eliminating

the boundary terms by applying the end-point conditions, i.e. δϕ|t=0 = δϕ|t=T = 0. Finally,

the arbitrariness of variations δϕ, δh, and (δϕ)|z=h yields the following equations of motion

δϕ : ∇2ϕ = 0 on Ω, (3.10a)

δϕ|z=H0 : ∂th+ ∇ϕ · ∇h = ∂zϕ at z = h(x, y, t), (3.10b)

δh : ∂tϕ+
1

2
|∇ϕ|2 + g

(
h−Ho

)
= 0 at z = h(x, y, t), (3.10c)

δϕ|x=R(t) : ∂xϕ = ∂tR. (3.10d)

45

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

To obtain the VP in a fixed domain, the VP stated in (3.1) is transformed to one in new, fixed

coordinate η ∈ [0, H0] and ξ ∈ [0, L] with domain movement in x ∈ [R(t), Lw] and no domain

movement in x ∈ [Lw, L] with Lw ≪ L. The domain after transformation is shown in Fig. 3.2.

The forward and backward coordinate transformations read

Figure 3.2: Schematic of the static computational domain corresponding to a rectangular wave-
tank with piston wavemaker. Transformed spatial coordinates are ξ, µ, ζ.

x(ξ, η, τ) =

R(τ) +

ξ(Lw −R(τ))

Lw
ξ ∈ [0, Lw]

ξ ξ ∈ [Lw, L]

=
ξLw + (Lw − ξ)R(τ)Θ(Lw − ξ)

Lw
, τ = t; (3.11)

ξ(x, z, t) =Lw
x−R(t)

Lw −R(t)

− R(t)(x− Lw)Θ(Lw − x)

Lw −R(t)
, t = τ ; (3.12)

ζ(x, z, t) =z
H0

h(x, t)
. (3.13)

Here Θ(Lw − x) is the Heaviside function, defined as unity for x < LW and zero elsewhere.

Thus making the coordinate transformation effective in x ∈ [R(t), Lw] and eliminating the need

46

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

to transform the structure away from the wavemaker. Using the short-hand notations:

X = ξ − Lw; (3.14a)

R̃τ = RτΘ(Lw − ξ); (3.14b)

R̃ = R(τ)Θ(Lw − ξ); (3.14c)

V = Lw − R̃; (3.14d)

The Jacobian of transforms (3.13) mapping (x, z, t) to (ξ, ζ, τ) where ζ ∈ [0, H0] and ξ ∈ [0, Lw]

is,

J ≡ ∂(x, z, t)

∂(ξ, ζ, τ)
=

V

Lw
0 −R̃τ

X

Lw

hξ
ζ

H0

V

Lw

h

H0

ζ

H0

(
hτ − R̃τ

X

Lw
hξ

)
0 0 1

 , (3.15)

where Θ(Lw − ξ) is the Heaviside function and Lw = O(λ), with λ being the wavelength of the

water waves generated by the wavemaker. The inverse of J−1 is calculated as

J−1 ≡ ∂(ξ, ζ, τ)

∂(x, z, t)
=

Lw

V
0 R̃τ

X

V

−hξ
ζ

h

Lw

V

H0

h
− ζ
h

(
hτ + R̃τ

X

V
hξ

)
0 0 1

 . (3.16)

Substituting the values of partial derivatives in (3.16) into the chain rule, the partial derivatives

in transformed coordinates are given as

∂t =R̃τ
X

V
∂ξ −

ζ

h

(
R̃τ

X

V
hξ + hτ

)
∂ζ + ∂τ , (3.17a)

∂x =
Lw

V
∂ξ − ζ

hξ
h

Lw

V
∂ζ , (3.17b)

∂z =
H0

h
∂ζ , (3.17c)

dx dt =|J |dξ dτ =
h

H0

V

Lw
dξ dτ. (3.17d)

47

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Subsequently, after substituting the transformations (3.17) into (3.1), the VP in the transformed

coordinates is given as

0 =δ

∫ T

0

∫ Lx

0

∫ H0

0

[
V
(
hϕτ − ζhτϕζ

)
+XR̃τ

(
hϕξ − ζhξϕζ

)
+

1

2

Lw

V
h(ϕξ −

ζ

h
hξϕζ)

2 +
1

2
V
H2

0

h
(ϕζ)

2

+ gV h
(
ζ
h

H0
−H0

)] 1

H0Lw
dζ dξdτ. (3.18)

After multiplying by H0Lw and integrating by parts in x the third term , and in z the second

and fourth terms of VP(3.18), the resulted VP can be written as:

0 =δ

∫ T

0

[∫ Lx

0

(∫ H0

0

[1

2

L2
w

V
h(ϕξ −

ζ

h
hξϕζ)

2 +
1

2
V
H2

0

h
(ϕζ)

2
]

dζ

+H0

[
−ϕ̃

(
XR̃τhξ + V hτ

)
+ ghV

(1

2
h−H0

)]
|ζ=H0

)
dξ

+

∫ H0

0

(
LwhR̃τϕ

)
|ξ=0 dζ

]
dτ. (3.19)

Now we will split the velocity potential for the complete domain (ϕ) into a free surface (ψ) and

inner domain (φ) components, such that when at free surface the velocity component for the

inner domain is zero, i.e. ϕ(x, z, t) = φ(x, z, t) +ψ(x, t)z/H0 (with φ(x,H0, t) = 0). (3.19) with

the split is given as follows:

0 =δ

∫ T

0

[∫ Lx

0

(∫ H0

0

[1

2

L2
w

V
h
(

(ψ + φ)ξ −
ζ

h
hξφζ

)2
+

1

2
V
H2

0

h
(φζ)

2
]

dζ

+H0

[
−ψ

(
XR̃τhξ + V hτ

)
+ ghV

(1

2
h−H0

)]
|ζ=H0

)
dξ

+

∫ H0

0

(
LwhR̃τ (ψ + φ)

)
|ξ=0 dζ

]
dτ. (3.20)

After taking the variations of (3.19) with respect to h, ϕ̃ and ϕ and eliminating the boundary

terms obtained after integrating by parts. Eventually, due to the arbitrariness of variations

δϕ, δψ, and δh we obtain the following equations of motions and boundary conditions in the

48

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

transformed coordinates system, as follows:

δϕ :
[L2

w

V

(
hϕξξ +

ζ

h
(hξ)

2(2ϕζ + ζϕζζ − ζ(ϕζhξξ) + 2hξϕξζ)
)

+ V
H2

0

h
ϕζζ

]
= 0; (3.21)

δψ|ζ=H0 :
[L2

w

V

(H0

h
h2ξϕζ − hξϕξ

)
−XR̃τhξ + V

(H0

h
ϕζ − hτ

)]
= 0; (3.22)

δh
∣∣∣
ζ=H0

:
[
ϕτ + g(h−H0) −

1

2

H2
0

h2
(ϕ2ζ) +

1

2

(Lw

V

)2(
ϕ2ξ −

H2
0

h2
(h2ξ)(ϕ

2
ζ)
)

+
X

V
R̃τϕξ

]
= 0 (3.23)

δϕ|ξ=0 :
[Lw

V

[
ϕξ −

ζ

h
hξϕζ

]
− R̃τ

]
= 0. (3.24)

After splitting the velocity potential for the complete domain and evaluating the partial deriva-

tive in (3.24) yields the following equations of motion:

δϕ :
[L2

w

V

(
h(ψ + φ)ξξ +

ζ

h
(hξ)

2(2φζ + ζφζζ − ζ(φζhξξ) + 2hξ(ψ + φ)ξζ)
)

+ V
H2

0

h
φζζ

]
= 0; (3.25)

δψ|ζ=H0 :
[L2

w

V

(
−hξϕξ

)
−XR̃τhξ + V

(
−hτ

)]
= 0; (3.26)

δh
∣∣∣
ζ=H0

:
[
ψτ + g(h−H0) +

1

2

(Lw

V

)2(
ϕ2ξ

)
+
X

V
R̃τψξ

]
= 0 (3.27)

δϕ|ξ=0 :
[Lw

V

[
(ψ + φ)ξ −

ζ

h
hξφζ

]
− R̃τ

]
= 0. (3.28)

The process of deriving a time-discrete variational principle could be iterative because we need to

formulate a variational principle that yields time-discretised weak formulations when variations

are taken.

3.2.3 Time discrete VP for potential-flow equations with piston wavemaker

Presently, elliptic equations in Firedrake must be solved with a Dirichlet boundary condi-

tion that does not include an unknown. For consistent geometric time integrators such as

SE or SV schemes, potential-flow equations require the solution of Laplace’s equation with

the unknown ϕ(ξ, ζ = H0, t) specified at the transformed free surface. Hence, we introduce

a splitting of the velocity potential into a sum of its surface-bound and interior parts, i.e.

ϕ(ξ, ζ, τ) = ψ(ξ, τ)ϕ̂(ζ) +φ(ξ, ζ, τ) for ϕ̂(H0) = 1, with the former ψ(ξ, τ) = ϕ(ξ,H0, τ) and the

latter zero at the free surface (in transformed coordinates), φ(ξ,H0, τ) = 0. To date, we have

49

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

mainly considered a vertical structure function ϕ̂(ζ) = 1 but other choices may be more optimal.

Also note that ∂ζψ = 0 and that the combined Neumann condition n̂ ·(∂ξ(ψ+φ), ∂ζφ) = 0 holds

at solid-wall boundaries with outward normal n̂. Consequently, this condition remains imposed

naturally in the weak formulations ensuing from the time-discrete VP. The domain considered

here has a flat bottom and a vertical sidewall on the right.

A first-order time-discrete analogue of the VP (3.19) for potential-flow dynamics with a piston

wavemaker yielding an SE time discretisation for the two conjugate kinematic and Bernoulli

equations at the free surface reads

0 =δ

∫ Lx

0

∫ H0

0
−
[1

2

L2
w

V n+1
hn(ψn+1

ξ + φn+1
ξ + (ζ/hn)hnξ)φn+1

ζ)2 +
1

2
V n+1H

2
0

hn
(φn+1

ζ)2
]

dζ dξ

+

∫ Lx

0
−gH0V

n+1hn(
1

2
hn −H0) +H0V

n+1ψn+1 (hn+1 − hn)

∆t
+H0V

nψn h
n

∆t

−H0ψ
n+1(ξ − Lw)Rn+1

τ hnξ dξ

−
∫ H0

0
LwR

n+1
τ (ψn+1 + φn+1)hn|ξ=0 dζ dτ. (3.29)

Note that V ψ is considered as conjugate variable to the “position” variable h. Hence, we

consistently evaluate terms with explicit time dependence at discrete time level n + 1, except

for one term that links to the past. Two intrinsically coupled weak formulations follow from

variations of the VP (3.29) with respect to {δhn, δφn+1} yielding the combined solution updates

{ψn+1, φn+1}. The algebraic equation for ψn+1 is nonlinear and coupled to a linear equation for

φn+1. Herein, the Dirichlet boundary condition φn+1(ξ,H0, τ) = 0 is explicitly imposed at the

(transformed) free surface at z = H0. The final weak formulation follows from the variation of

VP (3.29) with respect to δψn+1, yielding an explicit update hn+1. We have similarly derived

a second-order SV time-discrete VP for potential-flow equations with a piston wavemaker that

50

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

reads

0 =δ

∫ Lx

0

∫ H0

0
−
[1

4

L2
w

V n+1/2
hnζ/hn)hnξ)φ

n+1/2
ζ

)2

+
(1

4

L2
w

V n+1/2
hn+1(ψ

n+1/2
ξ + φ

n+1/2
ξ + (ζ/hn+1)hn+1

ξ)φ
n+1/2
ζ

)2

+
1

4
V n+1/2H

2
0

hn
(φ

n+1/2
ζ)2 +

1

4
V n+1/2 H2

0

hn+1
(φ

n+1/2
ζ)2

]
dζ dξ

+

∫ Lx

0
−1

2
gH0V

n+1/2hn+1(
1

2
hn+1 −H0) −

1

2
gH0V

n+1/2hn(
1

2
hn −H0)

+H0(V
n+1/2ψn+1/2 (hn+1 − hn)

∆t
− V n+1ψn+1h

n+1

∆t
+ V nψn h

n

∆t
)

− 1

2
H0ψ

n+1/2(ξ − Lw)Rn+1/2
τ (hnξ + hn+1

ξ) dξ

− 1

2Lw

∫ H0

0
Rn+1/2

τ (ψn+1/2 + φn+1/2)(hn + hn+1)|ξ=0 dζ dτ. (3.30)

The combined variations of VP (3.30) with respect to {hn, φn+1/2} yield equations for the

pairing {ψn+1/2, φn+1/2}, the latter which are solved in unison. These coupled equations are

nonlinear in ψn+1/2 and linear in φn+1/2. Finally, the variation of VP (3.30) with respect to

hn+1 yields an equation for the update ψn+1. The conjugate variable V ψ is again suitably

discretised in time. Additionally, a VP matching the modified midpoint time discretisation was

derived in [69].

3.3 Numerical implementation

3.3.1 Spatial discretisation

The VPs for the numerical wavetanks are solved after spatial discretisation of the computational

domain and weak formulations by using Firedrake. The two-dimensional computational domain

is created by extruding the horizontal line mesh (x direction) along the fluid depth, i.e. z

direction. The function space to numerically solve the equations is the first-order piece-wise-

linear continuous Galerkin (CG); and it is created in a way that the function space of the free-

surface velocity potential (ψ(x,H0, t)) and the velocity potential of the inner domain (φ(x, z, t))

can be differentiated. For this purpose, Firedrake allows the creation of a mixed-function space

that can extract the ψ(x,H0, t) and φ(x, z, t) from the total velocity potential ϕ(x, z, t) by using

a command split on the mixed function space. See Appendix B for detailed derivation of the

spatial discretisation of linear potential flow equations by using finite element expansions.

51

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

A two-dimensional rectangular computational domain of 140m x 1m in x and z directions,

respectively, is spatially discretised by using 600 quadrilateral finite elements. There are 200

elements in the x direction and 4 elements in the z direction.

3.3.2 Timestep criterion

Gagarina et al. [31] have developed robust first- and second-order symplectic time integrator

schemes that are applicable to Hamiltonian forms. These schemes, i.e. the first-order symplec-

tic Euler (SE), and the second-order Störmer-Verlet (SV), are conditionally stable. A linear

stability criterion can be based on analysis of the linear harmonic oscillator, with frequency

ωmax [37, 34], given as

∆t = CFL(2/ωmax), (3.31)

where for the Courant-Friedrichs-Lewy (CFL)-number we take CFL ≤ 1. For linear wave

dynamics, ωmax is the maximum wave frequency, which can be estimated using the linear

potential-flow dispersion relation,

ωmax ≈
√
gk tanh(kH0) ≤

√
gH0k (3.32)

the upper bound holding in the shallow-water limit. The maximum wavenumber k = 2π/∆x

depends on an estimate ∆x of the minimum mesh size. For nonlinear wave dynamics, the CFL

(again satisfying CFL ≤ 1) needs to be estimated and tested. The current mathematical and

numerical model cannot model wave breaking phenomenon, therefore, codes are anticipated to

become unreliable when waves become too steep; this can be circumvented by implementing

parametrised wave-breaking schemes such as the one in [81]. Wave-breaking parametrisation

schemes have not been considered here.

3.4 Results and discussion

The described spatio-temporal discretisation of nonlinear wave dynamics results in algebraic

systems of equations having both nonlinear and linear parts. These have been solved using the

nonlinear solvers built into Firedrake, including Newton iteration and PetSc [5], which solvers

can be made problem-specific via suitable preconditioners. Optimisation of the numerical solvers

employed is in progress.

52

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

3.4.1 Comparison of driven long waves using shallow-water and potential-

flow dynamics

Simulation results obtained from the presently developed numerical wavetanks based on the

VPs for linear/non-linear shallow-water equations are compared with the potential-flow solver,

from ([36]), in the small-amplitude limit for the case of waves generated from rest by a piston

wavemaker. In the latter potential-flow solver, weak forms are implemented explicitly, after the

vertical z-dependence in the VP is integrated out using one element in the vertical with a higher-

order standard Lagrange polynomial expansion of the variables; the resulting VP then depends

on only the horizontal coordinates and time. Corresponding variations yield algebraically-

complex weak formulations that are subsequently implemented in (Firedrake), cf. ([34, 36]).

Figure 3.3: Wave frequencies for potential-flow (black) and shallow-water (red) cases. The red
disc shows the chosen frequency of the wavemaker.

The angular frequency of the wavemaker is chosen in such a way as to generate long waves,

thereby admitting a comparison of the results obtained from shallow-water equations with those

obtained by solving the potential-flow equations. The dispersion relation for wave frequency ω,

as a function of wave number k, for linear potential-flow and shallow-water motion is shown,

for free waves, in Fig. 3.3, in which the chosen wavemaker frequency is indicated by a red disc.

The (static computational) domain has dimensions Lx = 140m and H0 = 1m; first-order

53

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

piecewise-linear continuous Galerkin (CG1) polynomials are used, with 200 elements and timestep

∆t = 0.02s; we furthermore employ nz = 4th-order Lagrange polynomials across the transformed

depth. The wavemaker motion chosen and controllable parameters used are:

R(t) =

 γ cos (σt) 0 ≤ t ≤ Tp

0 t > Tp

, (3.33)

σ =
√
gH0k =

√
gH02π/λ, λ = 70m, Tp = 2π/σ, γ = 0.002m.

Simulations are undertaken over two time periods 0 ≤ t ≤ 2Tp. Initially, the wavemaker and

free surface of the water are at rest. The wavemaker gradually starts from rest and stops after

completing one wave period.

Figure 3.4: Free-surface velocity potential after one time period t = Tp. Black, cyan and red
lines respectively correspond to potential, nonlinear and linear shallow-water solvers.

54

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Figure 3.5: Free-surface velocity potential at final time t = 2Tp. Black, cyan and red lines
respectively correspond to potential, nonlinear and linear solvers.

Figure 3.6: Free-surface elevation after one time period t = Tp. Black, cyan and red lines
respectively correspond to potential, nonlinear and linear solvers.

55

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Figure 3.7: Free-surface elevation at final t = 2Tp. Black, cyan and red lines respectively
correspond to potential-flow, nonlinear and linear solvers.

These simulations are seen to compare well, as evidenced by the near-coincident profiles of the

free surfaces and surface-velocity potentials plotted at t = Tp, 2Tp in Figs. 3.4 to 3.7. Finally, not

shown here, we report that the potential-flow simulation directly implementing the VP (3.29)

into Firedrake yields the same results as those obtained from this potential-flow simulation.

3.4.2 Test case: high-amplitude waves

In this test case, we generate waves of amplitude 0.3 m in the wavetank which is 25 m deep. The

two-dimensional computational domain is 140 m long in x-direction and 25 m deep in z-direction.

The domain is discretised into 1400 element in x-direction and 6 elements in z-direction, while

the time step selected based on the Courant-Friedrichs-Lewy (CFL) condition, mentioned in

(3.31), is 0.0159. Note that the comparison study explained in the previous study has waves

of 1.5 mm amplitude. Therefore, we test the wavetank by increasing the wave amplitude and

allowing them to reflect from the fixed wall. The wave period Tp is 6.7673 seconds. The total

simulation time is 8Tp = 54.1445 seconds; the wavemaker is turned off after 4Tp = 27.056

seconds and the waves generated by the wavemaker are allowed to reflect. Fig. 3.8 and 3.9

show the generated and reflected wave heights and velocity potentials, respectively.

56

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Figure 3.8: Evolution of free-surface elevation (h = H0 + η) at different time steps. The wave
generated by the wavemaker is shown in orange line while the reflected wave is shown in green
line.

Figure 3.9: Evolution of velocity potential at different time steps.

57

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Fig. 3.10 shows the evolution of the system’s kinetic energy. It can been that the system’s

energy increases when the wavemaker is turned on, i.e. 0 < t < 27.056 seconds, and oscillates

at the same level when the wavemaker is turned off.

Figure 3.10: Evolution of the kinetic energy of the system.

3.4.3 Three-dimensional extension of two-dimensional wavetank

In Firedrake, a two-dimensional variational problem can easily be implemented in a three-

dimensional computational domain which is generated by extruding the horizontal two-dimensional

mesh in z-direction. The assignment of the boundary conditions to the three-dimensional do-

main slightly differs from the two-dimensional domain. For demonstration, we present a three-

dimensional model of a numerical wavetank based on linear potential flow equations in Fig.

3.11. A similar framework can then be used to develop a three-dimensional wavetank based on

nonlinear potential flow equations.

58

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

(a) The initial position (initial condition) of the free surface
elevation at t = 0.

(b) Free surface elevation at t = 25s.

(c) Free surface elevation at t = 50s.

Figure 3.11: Demonstration of evolution of free surface elevation in a three-dimensional wave-
tank.

59

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

3.5 Extension of numerical wavetank to solve fluid-structure-

interaction (FSI) problems

The variational principle for the numerical wavetank can be coupled with the variational princi-

ple of the hyperelastic structure equations to solve the problems of fluid-structure interactions.

Salwa [72] has already developed a variational principle that couples water dynamics with hy-

perelastic beam equations, however, he has used the classical approach for implementing the

variational principle and the water and beam dynamics are linearized. Therefore, in this sec-

tion, we develop and implement a time-discrete variational principle for hyperelastic structure

equations thus making it compatible with our time-discrete variational principle for numerical

wavetank.

3.5.1 Variational modelling of hyperelastic beam for solving FSI problems

in the numerical wavetanks

We start by considering the variational principle for the hyperelastic beam model developed by

Salwa[72] (Chapter 2), which is given as

0 = δ

∫ T

0

∫∫∫
ΩO

ρ0U · ∂tX− 1

2
ρ0|U|2 − ρ0gZ −W (E) dadbdcdt, (3.34)

where ρ0(a) is the material density,
1

2
ρ0(a)|U |2 is the kinetic energy which depends on the

velocity vector U ≡ ∂X/∂t, gZ is the potential energy, and the internal energy W (E) depends

on the position vector X, is given as

W (E) =
1

2
λ |tr(E)|2 + µ tr(E2). (3.35)

Lamé parameters λ and µ are used to define the material properties. We consider a rect-

angular beam in the Eulerian framework in which Eulerian coordinates in space and time X

= X(a, b, c, t) = (X,Y, Z)T = (X1, X2, X3)
T are defined in terms of Lagrangian coordinates

a = (a, b, c)T = (a1, a2, a3)
T and time t. The schematic of the beam is shown in Fig. 3.12.

The variations of (3.34) is taken with respect to velocity U and position X and end-point

condition i.e., δX(a, 0) = δX(a, T) = 0 is applied while considering the Lagrangian-Green

stress tensor Eij = 1
2(FkiFkj − δij) = Eji, we have Eij(FkiδFkj + FkjδFki) = 2EijFkiδFkj with

60

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Figure 3.12: Cross section of a beam in the x–z plane is shown [72]. The solid line shows the
reference state and the dotted line shows the position after deformation; a = X(a, 0) is the
Lagrangian coordinate in the reference state while X̃(a, t) in the deformed state. The movable
boundary is denoted by ∂ΩO = ∂Ω0 while the fixed bottom is denoted by ∂Ωb

O = ∂Ωb
0.

deformation gradient Fkj = ∂Xk/∂aj , to obtain

0 =

∫ T

0

∫∫∫
ΩO

ρ0(∂tX−U) · δU−
(
ρ0∂tUl + ρ0gδ3l −

∂Tli
∂ai

)
δXl da dbdcdt

−
∫ T

0

∫∫
∂ΩO/∂Ωb

O

niTliδXl dS dt,

(3.36)

where Tli ≡ λtr(E)Fli +2µEkiFlk is stress tensor and ni is the outward normal component. The

equations of motions are obtained after using the arbitrariness of variations, as follows

δU : ∂tX = U on ΩO (3.37a)

δXl : ρ0∂tUl = −ρ0gδ3l +
∂Tli
∂ai

on ΩO (3.37b)

δXl|∂ΩO/∂Ωb
O

: 0 = niTli on ∂ΩO/∂Ωb
O. (3.37c)

Hence, on the fluid-beam interface a = Ls, where Ls is the location of interface, with outward

61

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

normal n̂ = (−1, 0) and c ∈ [0, cs], the boundary equations are

0 = Tl1. (3.37d)

The classical approach for VP implementation

After describing the mathematical model for hyperelastic structures, we describe the traditional

approach for implementing the variational problem. In the classical approach, the equations are

implemented in ‘Firedrake’ as weak formulations which are derived after taking the variations

of the variational principle without using the integration by parts. The weak formulations for

the hyperelastic beam are derived as

δXk :

∫∫∫
ΩO

ρ0∂tUkδXk + ρgδXkδ3k + [λtr(E)Fkj + 2µEijFki]
∂(δXk)

∂aj
dadbdc = 0 (3.38a)

δUk :

∫∫∫
ΩO

ρ0(∂tXk − Uk)δUk dadbdc = 0. (3.38b)

The function space to numerically solve the functions, i.e. Xk, Uk, δXk, and δUk, is the first

order piecewise-linear continuous Galerkin (CG). The advantage of using CG function space

is that it is a higher-order, local, easy to use with conforming adaptivity and to formulate

Schur complement. The conventional approach to solving the equations in ‘Firedrake’ is to

use the time discrete weak formations. The time integrator can either be based on the first-

order Symplectic-Euler scheme or second-order Störmer-Verlet scheme. In the symplectic-Euler

scheme, the updated velocity/ velocity at the next time step Un+1 of the beam is calculated by

using the position at the current time step Xn as follows:

∫∫∫
ΩO

ρ0
(Un+1

k − Un
k)

∆t
δXk + ρ0gδXkδ3k + [λtr(En)Fn

kj+

2µEn
ijF

n
ki]
∂(δXk)

∂aj
da dbdc = 0 (3.39a)

using the shorthand notation

En
ij =

1

2
(Fn

kiF
n
kj − δij), Fn

kj = ∂Xn
k /∂aj . (3.39b)

62

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Then the position at the next time step Xn+1 is calculated by using velocity Un+1 as follows

∫∫∫
ΩO

ρ0
(Xn+1

k −Xn
k)

∆t
δUk da dbdc =

∫∫∫
ΩO

ρ0U
n+1
k δUk dadbdc. (3.39c)

The novel approach for VP implementation

The second/novel approach is to solve the system of equations by using the time-discrete

variational principle instead of time-discrete weak formations and use a ‘Firedrake’ function

‘fd.derivative’ to take variations of the time-discrete variational principle with respect to δUn+1

and δXn to obtain the time-discrete weak formations implicitly. This approach makes the im-

plementation process efficient as time to type the equations and chances of human error are

reduced. The time-discrete adjoint formulation is derived as follows (3.40)

0 = δ

∫∫∫
ΩO

−ρ0Xn · (Un+1 −Un)

∆t
+ ρ0X

n+1 · U
n+1

∆t

− 1

2
ρ0|Un+1|2 − ρ0gZ

n −W (En) da dbdc with (3.40)

En =E(Xn)

As a check, the variations of (3.40) with respect to δUn and δXn+1 must yields the time-discrete

weak formulations given in (3.39). The variations of (3.40) with respect to δUn yields

∫∫∫
ΩO

ρ0
(Un+1

k − Un
k)

∆t
δXk + ρ0gδXkδ3k + [λtr(En)Fn

kj + 2µEn
ijF

n
ki]
∂(δXk)

∂aj
da dbdc = 0

(3.41a)

using the shorthand notation

En
ij =

1

2
(Fn

kiF
n
kj − δij), Fn

kj = ∂Xn
k /∂aj , (3.41b)

and variations with respect to δXn yields

∫∫∫
ΩO

ρ0
(Xn+1

k −Xn
k)

∆t
δUk da dbdc =

∫∫∫
ΩO

ρ0U
n+1
k δUk dadbdc, (3.41c)

which proves that the second approach is mathematically equal to the first approach.

63

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

3.5.2 Hyperelastic beam with viscous structural damping

It is noticed that solving the set of equations (3.38) yields oscillating in the beam; therefore,

the weak formulation (3.38a) is modified as follows

δXk :

∫∫∫
ΩO

ρ0∂tUkδXk + ρgδXkδ3k + [λtr(E)Fkj + 2µEijFki]
∂(δXk)

∂aj

+ κρ0UkδXk da dbdc = 0, (3.42a)

in which an additional damping term is added with a damping coefficient κ(t) > 0 for testing

purposes. The damping term is introduced in the equations so that the oscillations of the beam

can be numerically damped in an exponential manner to achieve the lithostatic state of rest.

The numerical damping is essential to obtain the lithostatic state of rest for the beam because

the coupled FSI problem involves dealing with the complex moving interface between the water-

free surface and hyperelastic beam; as a result, it is important to use the lithostatic state as

the initial condition for the efficient and accurate numerical treatment of the water and beam

movements. The equations for the first-order symplectic-Euler time scheme with the damping

term κ(t) are stated as follows:

∫∫∫
ΩO

ρ0
(Un+1

k − Un
k)

∆t
δXk + ρ0gδXkδ3k + [λtr(En)Fn

kj + 2µEn
ijF

n
ki]
∂(δXk)

∂aj

+
1

2
κρ0(U

n+1
k + Un

k) δXk dadbdc = 0 (3.43a)∫∫∫
ΩO

ρ0
(Xn+1

k −Xn
k)

∆t
δUk dadbdc =

∫∫∫
ΩO

ρ0U
n+1
k δUk da dbdc, (3.43b)

employing the shorthand notation

En
ij =

1

2
(Fn

kiF
n
kj − δij), Fn

kj = ∂Xn
k /∂aj . (3.43c)

3.5.3 Implementation in Firedrake

The first-order symplectic Euler time discretisation scheme is employed to solve the system of

equations. At first, the equation (3.44) is solved – with the damping term in it – to calculate

the updated version of velocity Un+1. In the code, the terms are calculated sequentially before

reaching the final step of calculating updated velocity Un+1 and then updated position Xn+1.

Firstly, energy (W (E) = 1
2λ |tr(E)|2 + µ tr(E2)) is computed for the nonlinear case by using

64

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

the appropriate value of Green Lagrange strain tensor (E) as stated in (3.43c). At this stage,

the value of energy is scalar. In the next step, this scalar is converted into ‘Foam’, which

is a term used by Firedrake to denote that something has been integrated over the spatial

domain. The step which follows after this is the derivative of the obtained ‘Foam’ with respect

to spatial coordinates denoted by X. It is done by using an inbuilt function of Firedrake

denoted as ‘fd.derivative’ in the software. This function automatically derives the time-discrete

weak formulations in (3.44) and (3.45). After this step, the damping term is also converted into

‘Foam’ by integrating it over the domain and then added to the previously calculated expression.

The expression with the damping term is given in (3.43a), after separating the Un+1 terms from

Un terms and denoting the 1
2λ |tr(E)|2 + µ tr(E2) dadbdc by a shorthand notation ‘Fexpr’, the

rearranged version of (3.43a) can be written as follows:

∫∫∫
ΩO

Un+1
k δXk dV =

∫∫∫
ΩO

2

2 + ∆tκ

[
Un
k δXk −

∆t

2ρ0

(
ρgδXk + Fexpr +

1

2
κUn

k δXk

)]
dV.

(3.44)

It is worth noting, that when the damping coefficient κ is equal to zero it yields a time-discrete

weak formulation of the equation of motion given in eq (3.43a). The updated value of velocity

is then used to calculate the updated value of the coordinates of the beam, as follows:

∫∫∫
ΩO

Xn+1
k δUk dV =

∫∫∫
ΩO

Xn
k δUk + ∆t

(
Un+1
k δUk

)
dV. (3.45)

When the above-mentioned set of equations is solved without a damping term, the solution

shows oscillations in the beam because the constitutive laws for the nonlinear hyperelastic beam

do not include a damping term and allow the beam to deform under its weight. Hence, these

oscillations are damped numerically so the lithostatic state can be achieved. At the lithostatic

state, the beam is at rest which means the outward normal force and the external normal force

acting on the beam’s surface are in balance, which is given by the following expression

0 = −ρ0gδ3l +
∂Tli
∂ai

on ΩO. (3.46)

Once the weak formulations are derived, the next step is to select suitable parameters i.e. mesh

size and time step ∆t as they are crucial for the stability of the numerical results. For the

symplectic-Euler scheme, the restriction on time step size is determined by the frequency ‘ω’,

65

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

which is given by the stability criterion as follows [72]:

|ω∆t| ≤ 2, (3.47)

where ω = k
√

(µ+ 2λ)/ρ0 and k = 2π
√

1/∆a2 + 1/∆b2 + 1/∆c2, while ∆a, ∆b and ∆c are

the smallest distance between mesh nodes in a, b and c directions, respectively. As a result, the

stable time step for the scheme depends on the mesh resolution and it is computed as:

∆t = CFL(2/ω), (3.48)

where for the Courant-Friedrichs-Lewy (CFL)-number we take CFL ≤ 1. The simulation has

been run with and without the damping term by setting the value of damping-coefficient κ

equal to three and zero, respectively. To ensure that the results have reached a steady state,

the comparison of both kinetic and potential energy evolution has been done by using different

time durations. The comparison showed that the energy got stable after 1.8 seconds. Hence,

the final time of 1.8 seconds is chosen to do further simulations.

3.5.4 Results and discussion

Comparison of classical and novel approaches for VP implementation

Next, we implement both approaches, i.e. the time-discrete weak formulations (traditional) and

time-discrete VP (novel), in ‘Firedrake’ to compare the results. The codes for the implementa-

tion of the time-discrete VP problem are based on the extension of Salwa’s [72] codes for the

implementation of time-discrete weak formulations. The initial conditions for the velocity U

and position X are depicted in Fig. 3.13.

A comparison is first made of the beam’s velocity U and position X by solving the VPs obtained

using two approaches: “case 1”, a time-discrete VP (3.40), and “case 2”, a weak formulation of

equations of motions (3.38). This comparison is done in order to prove that both approaches are

equivalent in that they yield results that agree with each other to machine error. The equations

in both approaches are solved using the Symplectic-Euler time scheme, and quantification of

the comparison is shown in Fig. 3.14.

66

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

(a) Initial condition for U at t = 0. (b) Initial condition for X at t = 0.

Figure 3.13: The initial conditions for (a) velocity U and (b) displacement X.

Figure 3.14: Time evolution of L∞–norms of the difference, at a single label/Lagrangian point
a, between numerical simulations for U (left) and X (right), generated for case 1 and case 2,
of the 3D hyperelastic beam. The graphs confirm that the results of the two set-ups are, as
expected, equivalent to within machine precision. Vertical axes display multiples of 10−13 and
10−16 in left- and right-hand plots respectively.

Since Fig. 3.14 demonstrates that the L∞–norm of the difference between the results at one

point computed from cases 1 and 2 is of the order of machine precision, it is confirmed that the

two approaches are (numerically) equivalent.

67

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

Comparison of beam’s equations with and without structural damping

The comparison of oscillations in the beam dynamics with and without damping (κ) at different

times, i.e. initial, middle and final, is shown in Fig. 3.15.

(a) Undamped case (κ = 0, t = 0 sec) (b) Damped case (κ = 3, t = 0 sec)

(c) Undamped case (κ = 0, t = 0.9 sec) (d) Damped case (κ = 3, t = 0.9 sec)

(e) Undamped case (κ = 0, t = 1.8 sec) (f) Damped case (κ = 3, t = 1.8 sec)

Figure 3.15: Comparison of oscillations (magnitude of velocity) of the beam with and without
using the damping coefficient κ. The results are shown at the final time step.

68

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

It is noticed that the oscillations have damped and the beam has reached the lithostatic state

of rest which can be the initial condition for the coupled FSI problem. This case has been run

without assuming any hydrostatic force acting on the beam. The energy plots for the energy

evolution in both cases are shown in Fig. 3.16.

(a) Energy evolution in the undamped oscillations case (κ = 0)

(b) Energy evolution in the damped oscillations case (κ = 3)

Figure 3.16: Energy evolution plots over time in the case of undamped and damped oscillations
of the beam are shown. Energy is fluctuating in a periodic manner in the undamped case while
in the case of damped oscillations, energy converging to zero.

The comparison of energy evolution for the damped with the undamped case shows that as the

oscillations of the beam are damping over time the fluctuations of energy are also reducing and

69

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

converging to zero.

The expression given in (3.50) can compute the hydrostatic pressure acting on the beam. In-

tegrating the hydrostatic pressure along the beam’s surface will convert it into force. As this

pressure is the function of height which increases with the water depth; therefore, greater com-

pressive force will be acting at the base of the mast as compared to the free surface. In this

case, the lithostatic state would only be achieved when the outward component of the stress

tensor at the beam’s surface T b
li is equal to the outward component of the stress tensor by the

water Tw
li . Thus, when water is interacting with the beam at a = Ls, the boundary equation is

niT
b
li = niT

w
li for l, i = 1, 2, 3 (3.49)

where Tw
li is defined as follows

Tw
li = ρg(H0 − Z(Ls, c, t))δliΘ(H0 − Z(Ls, c, t))

=

ρg(H0 − Z(Ls, c, t))δli, if Z ≤ H0

0, if Z > H0

on ∂ΩO with c ∈ [0, Lz > H0]. (3.50)

To balance the increasing hydrostatic pressure Tw
li , the outward normal stress tensor T b

li must

increase with the water depth which is taken into account by adding a time-dependant variable

Z(Ls, c, t)) in (3.50). Notice that both cases, i.e. with and without considering the hydrostatic

pressure would yield a lithostatic state of the beam. However, solving the problem with hydro-

static pressure is significant because it can verify the results for the water-beam coupled case

when considering that water is at rest.

3.6 Conclusion

We have developed a piston-driven numerical wavetank model to simulate intermediate- and

deep-water dynamics by utilising our novel spatio-temporal discrete finite-element numerical

schemes for potential-flow wave dynamics based on variational principles (VPs), including ex-

tended formulations of these principles in which waves are driven by piston wavemaker at one end

of the wavetank. The finite-element methods have been implemented in the finite-element envi-

ronment Firedrake, whose intrinsic domain-specific compiler-architecture has, through valida-

70

Chapter 3. Mathematical and numerical modelling of piston-driven numerical wavetank based
on nonlinear potential flow equations

tion of automated derivations, allowed us to demonstrate a reduction in time-to-implementation,

thereby offering promise to extend the approach to more complex coupled water-wave dynamics

with FSI. A novel feature is that we have developed and tested the numerical implementa-

tions of the dynamics via consistent (i.e. stable and conservative) geometric time-discrete VPs,

hence the discrete evolution equations are generated automatically within Firedrake and sub-

sequently solved via its inbuilt (non)linear solvers. Preliminary numerical tests are therefore

promising, and a full and further optimised implementation – through a time-discrete VP and

verification/validation of potential-flow dynamics driven by waveflaps – is in progress.

71

Chapter 4

Experimental modeling of

water-wave interactions with a

flexible beam

4.1 Introduction

Fixed offshore wind turbines (FOWT) are considered an attractive alternative to onshore wind

turbines because offshore wind flow is stronger and steadier than on land. Offshore installation

additionally circumvents problems related to land availability, noise and interference with com-

munication signals [49, 65]. However, building FOWT farms is capital-intensive as the design,

fabrication and installation of structures in often-harsh ocean conditions are challenging. In

addition, FOWTs are prone to higher risks of structural damage because they are larger than

onshore wind turbines and have to endure hydrodynamic loading in addition to aerodynamic

loading [45]. It is clearly of great importance to predict such loading accurately, which demands

a better understanding of the physics of water-wave interactions with a fixed-bottom flexible

monopile. The problem of water-wave interactions with such a beam is a complex multiphysics

phenomenon known as a fluid-structure interaction (FSI). In FSI problems, the fluid flow in-

teracts with the flexible structure in a way that deforms the structure and, as a result, the

structural deformations change the initial fluid flow. Thus a FSI problem is a coupled, two-way

problem of which, due to the complexity of the underlying physics, investigation is challenging

in terms of experimentation, mathematical analysis and numerical modelling.

72

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

In the maritime industry, mathematical and numerical modelling is gaining significance be-

cause experimental scaled-model testing is not always feasible in early design stages due to

time and budgetary constraints. Moreover, the experimental modelling of flexible structures

at the model scale is not straightforward, motivating researchers to develop mathematical and

numerical models for solving FSI problems. These models generally fall into two categories.

First, they range from straightforward linear shallow-water equations and linear modal analy-

sis to intermediate-complexity linear potential-flow solvers coupled to linear elastic structural

equations [72, 71]. Second, there are more sophisticated approaches based on nonlinear po-

tential flow, Navier-Stokes (NS) equations [86], and Smoothed Particle Hydrodynamics (SPH)

[22] coupled with nonlinear hyperelastic structural equations. However, results generated by

numerical models require validation using benchmark experimental data. The present research

therefore concerns wave-basin experiments of FSI problems; specifically, the dynamic response

of a flexible beam exposed to (controllably generated) water waves. The study’s objective is

the generation of a high-quality experimental data set to be used to validate diverse numerical

models for solving FSI problems i.e., linear, nonlinear and high-fidelity.

The experimental set-up includes a vertically mounted flexible cylindrical beam equipped with

six accelerometers, distributed evenly along its length, that record its dynamic response. Two

probes placed at the free surface of the water close to the beam (forward of and to the side of the

beam) measure the free-surface elevation of the incident and reflected water waves. The beam

is fixed to a basin carriage that traverses horizontally along the wavetank at different speeds to

control the frequency with which waves encounter the beam. The upper and lower parts of the

beam are respectively in air and submerged in water. This model set-up was prompted by the

basin depth (3.6m) which excludes the possibility of modelling a bottom-mounted beam. The

FSI physics therefore do not exactly resemble those of a FOWT but have sufficient similarity

to provide suitable validation material for FSIs of a FOWT. For example, a numerical model

of the exact experimental setup can be created and validated with the experimental data and

then the direction of gravitational acceleration and water loads can be reversed to match the

physics with the actual FOWT model. Researchers [77, 3] have also studied experimentally the

dynamic response of a bottom-fixed monopile turbine in waves. Note that we cover a very wide

range of sea conditions ranging from regular-to-irregular and moderate-to-extreme wave height

and steepness. The study of such a wide range of conditions makes the experiments suitable

for providing reliable data in validating a suite of mathematical and numerical FSI solvers,

73

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

i.e., linear, nonlinear and high-fidelity. Furthermore, the data from the experiments are made

publicly available through open-source data-sharing platforms.

Hammer tests have been performed on the beam in air and water to obtain the dry and wetted

modes, natural frequencies and structural and hydrodynamic damping. The novelty of the

experimental set-up is that it allows simultaneous measurement of beam deflections and their

effect on the incident and reflected waves, rendering feasible a study of the FSI problem in

diverse-yet-controllable conditions.

The experiments are divided into three cases, each of which is aimed at studying the dynamic

response of the flexible beam to varying wave conditions ranging from regular-to-irregular and

moderate-to-extreme wave height and steepness. Experimental Case 1 concerns interactions

of regular waves with the flexible beam when the carriage is at rest; studying this case will

facilitate the validation of linear FSI solvers in the non-resonant regime, since the non-linear

dynamic response of beam is not excited by the incident-wave frequencies. Experimental Case

2 concerns interactions with the flexible beam when the carriage is moving at a constant speed.

Moving the carriage changes the frequency of encounter between beam and waves, so that the

dynamic response of the beam and its interaction with water waves, particularly at the onset

of resonance, can be studied. By changing the steepness of the regular waves, both linear

and nonlinear FSI solvers can be validated. In this case, the dynamic response of the beam

results from an accumulated hydrodynamic loading that cannot be distinguished, by the current

experimental set-up, into its consistuent wave- and current-induced components. Experimental

Case 3 concerns steep, irregular-wave interactions with the flexible beam when the carriage is

at rest. This is the most complex case and is designed to yield data on structural dynamics due

to nonlinear wave-loading processes related to steep and breaking waves. This case will help to

validate the high-fidelity FSI solvers.

Hence, the study covers a wide range of FSI problems that can be used to establish benchmarks

for FSI-code validations.

4.2 Design of experimental set-up

The experimental set-up and laboratory facilities are now explained. The FSI set-up is designed

to mimic the (simplified by neglecting the rotor effects) physics of a fixed-bottom offshore wind

74

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

turbine (OWT) mast; i.e. the focus is solely on the response of the flexible mast to water-

wave loading and the concomitant changes in fluid flow due to the mast’s deformations. Such

a rotorless set-up will hopefully admit extensions aimed at broadening the application of the

experimental data to other FSI problems; for example, in the design of vortex bladeless wind

turbines [73]. Fixed-bottom OWTs occur in three forms, defined by their foundations, as shown

in Fig. 4.1.

Figure 4.1: Schematic of different fixed-bottom OWT foundations; monopile, gravity-based and
jacket. Copyright © 1969, Elsevier [42].

Of the three types of OWT foundation, the monopile is the subject of the present experimental

study as it has the simplest design; one that comprises a single steel-tube pile. Before designing

the experimental set-up, it is important to have a basic understanding of the (rotorless) dynamics

of the mast of the monopile fixed-bottom OWT. Study of soil-structure interactions [7] confirms

that the overturning moment generated at the mast’s bottom, due to the wind and water-wave

loading acting on the mast, causes angular movement of the buried (in soil) section of the

foundation. Therefore, this behaviour should be incorporated into the experimental set-up.

The experimental set-up, a schematic side view of which is shown in Fig. 4.2, comprises an

initially vertical flexible cylindrical beam, one (top) end of which is fixed to a basin carriage

having a base made of PVC that is flexible enough to allow angular motion of the top of the

beam, yet at the same time strong enough to keep the assembly intact. The other (bottom)

free end – initially vertically below the fixed end – is submerged in water. The basin carriage

can traverse along the basin’s length at different speeds. There are six equidistant accelerom-

eters attached along the beam’s length for measuring the beam’s acceleration. Five out of six

75

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

accelerometers are attached to the outer surface of the beam while the sixth one is attached to

the inner surface of the submerged end of the beam. This is done to eliminate the interaction

of the accelerometer with the water waves. Additionally, two probes (indicated by red discs in

Fig. 4.2) are placed at the water free-surface, in the vicinity of the beam, to measure the wave

elevation of the incident and reflected waves from the beam; the two probes are located (x, y,

z) = (26.25, 1.475, 3.6)m and (30, 1.475, 3.6)m from the wavemaker, where x is the distance

along the length of the wavemaker and y shows the distance in lateral direction from the centre

of the wavemaker. This set-up admits simultaneous measurement of beam deflections and their

effect on the incident and reflected waves and hence facilitates a quantifiable study of the FSI

problem in a controlled environment.

Mathematically the experimental setup is analogous to a wind turbine’s mast, when the user ap-

plies the hydrodynamic loads at the beam’s fixed-end instead of the free-end. The experimental

setup resembles the fixed-bottom monopile offshore wind turbine’s mast which experiences the

overturning moment generated at the mast’s bottom, due to the wind and water-wave loading

acting on the mast, causes angular movement of the buried (in soil) section of the foundation.

Therefore, this behaviour is incorporated into the experimental setup by attaching a PVC base

plate which allows the angular movement of the beam at the fixed end.

Experiments are conducted in the concept-design basin at the Maritime Research Institute

Netherlands (MARIN). The concept basin is a 220m-long, 4.01m-wide and 3.6m-deep rectilinear

basin filled with fresh water. It has a stiff carriage that can traverse along the basin’s length

at a maximum speed of 10m/s. At one end of the basin, there is a flap-type wavemaker that

has eight contiguous paddles. The wave generator has the capacity to generate waves up to a

significant wave height of 0.55m, at a peak period of 2.3s. A schematic plan view of the basin

is shown in Fig. 4.3.

First, parameters for generating a required theoretical waveform are given to the wavemaker and

the waves generated experimentally are measured by probes and compared with the required

waveform. The difference between the experimental and required waves is used to adjust the

wavemaker in order to obtain the required wave. However, a difference of up to 5% may still

accrue between desired and iterated waveforms, but this is not an issue since the undisturbed

waves ulitmately used in the experiments are recorded. The wave parameters, i.e. wavelength

Λ and wave height H, can be calculated using the dispersion relation for deep-water dynamics

76

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.2: Schematic side view of the experimental set-up. An Eulerian-coordinate system
(denoted by x, y and z) is used for the wavetank; its origin (x, y, z) = (0, 0, 0)m is located
in the middle of the wavemaker at rest. A Lagrangian-coordinate system at rest (denoted by
X,Y and Z) is used for the beam; its origin is at the base plate (labelled O in the figure)
(X,Y,Z) = (0, 0, 0), which origin has fixed Eulerian position (xb, yb, zb) = (30, 2.05, 4.6)m. At
rest, the end plate at the free submerged end of the beam is located at (X,Y,Z) =(0, 0, 2.5)m.
The experiments are conducted for two submergence depths, i.e. 0.25m and 0.5m from the
still-water level H0. The base plate is flexible enough to allow rotation of the beam, represented
by a pinned joint with a torsion spring. Moreover, the submerged accelerometer is internal. A
more detailed CAD drawing of the set-up with exact dimensions and location of the sensors can
be found on GitHub.

i.e., water depth d > Λ/2 (which applies here), given as

ω2 = gk, (4.1)

where g is gravitational acceleration, and the wave number is k = 2π/Λ, so that wavelength

and period are related via

Λ =
g

2π
T 2. (4.2)

Formulae (4.1) and (4.2) are used to compute wave parameters Λ and ω, values of which are

given in the following descriptions of experimental cases.

77

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments/blob/main/CAD_fsi_beam_exp.pdf

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.3: Schematic plan view of the concept wave basin at MARIN, The Netherlands [59].

4.2.1 Beam selection and procurement

The first significant experimental-set-up step is the selection of a beam flexible enough to model

the FSI problem yet stiff enough to maintain a straight vertical position in the absence of

external loading. After considering different material parameters, cost, and market availability,

a cylindrical beam made of polyvinyl chloride (PVC) was selected. Beam dimensions were

decided by calculating the natural beam frequency for different values of chosen parameters of

length, wall thickness, and diameter. This parametric study is based on analysis of the horizontal

cantilever beam shown in Fig. 4.4 and given as the clamped, free-beam case in [9, Table 8-1].

Note that the x, y coordinates in Fig. 4.4 differ from those used in the FSI experiments, the

latter being used solely for referencing the beam geometry. Since the beam in the experimental

set-up hangs vertically, any horizontal deflections from rest will be small, and the impact of

water waves in the actual experiments will dominate over the restoring force of gravity, which

is accordingly ignored in the analysis.

Figure 4.4: Two-dimensional view, in the x, y plane, of a one-dimensional cantilever beam of
length Lc [9].

78

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

The goal being to select the values of the aforementioned parameters such that the beam’s

natural frequency lies outside the short, primary-wave regime. In this way, natural modes of

the beam could not be excited by linear-wave effects, thereby admitting study of the nonlinear

response of the beam. By moving the carriage into the waves, the wave-beam-encounter fre-

quency of the waves can be tuned to match the natural frequency of the beam; in this way, the

linear resonant response can also be studied. The empirical formula for the natural frequency

fi of the ith mode of the cantilever beam is given by

fi =
λ2i

2πL2
c

(EcIc
Mc

)1/2
; i = 1, 2, 3, . . . , (4.3)

where Lc is the length of the cantilever beam; Ec is the elastic modulus and Mc its mass per

unit length of the cantilever beam’s material, and

Ic =
π

4
(a4c − b4c) (4.4)

is the area moment of inertia of the tubular beam with outer and inner radii ac and bc re-

spectively. The modal profile ỹ corresponding to the ith-mode of the cantilever beam is given

by

ỹi = cosh
λix

Lc
− cos

λix

Lc
− σi

(
sinh

λix

Lc
− sin

λix

Lc

)
;

i = 1, 2, 3, . . . (4.5)

where x is the distance from the fixed end, and the eigenvalues λi and σi of the cantilever

beam, corresponding to each mode number i, are real numbers calculated by Blevins [9] using

the modal-analysis method of vibration response: their values for a cantilever beam are shown

in Table 4.1, which is taken from [9]. That is, these formulae (4.3)-(4.5) and parameters (i.e.

Ec, Ic, Lc and Mc) are for a cantilever-beam set-up that allows us to obtain initial guesses for

the natural frequency and dimensional parameters of the beam that would be actually used in

the study. The parameters chosen for the actual beam used in the experiments will be denoted

without the subscript c, i.e. by E, I, L and M . Now the beam material has been selected,

we continue considering the FSI set-up of Fig. 4.2. A PVC baseplate attached to the beam

allows it to be mounted to the wavetank carriage. The baseplate additionally admits cables

to be connected to the sensors in such a way that interaction with any beam displacements is

79

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Table 4.1: Eigenvalues λi and σi of the cantilever beam, from Table 8-1 of [9].

Mode number (i) λi σi
1 1.87510407 0.73409551
2 4.69409113 1.01846732
3 7.85475744 0.9992245
4 10.9955407 1.00003355
5 14.1371684 0.99999855

i > 5 (2i− 1)π/2 ≈ 1

minimised as much as possible. The free (submerged) end of the beam is sealed with a PVC

circular end plate such that water cannot enter the hollow beam. The described set-up is shown

in Fig. 4.5.

Figure 4.5: Baseplate, wooden support, beam, accelerometers and cables of the beam. See text
for details.

The masses and locations of accelerometers and end plate are given in Table 4.2. The total

mass of the beam with accelerometers and baseplate is 4.66kg. The accelerometers (ACC) are

numbered from 1 to 6 where ACC-1 is the accelerometer attached at the submerged free end

and ACC-6 is attached at the fixed end of the beam. Calculations using these data give an

effective mass per unit length of M = 1.6048kg/m . Parameters for the beam chosen for the

80

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Table 4.2: Masses and locations of experimental furniture. The position of baseplate is used as
a reference for the distances in the second column.

Distance from baseplate [m] Mass [kg]

ACC-6 -0.035 0.079
ACC-5 0.465 0.079
ACC-4 0.965 0.079
ACC-3 1.465 0.079
ACC-2 1.965 0.158
ACC-1 2.465 0.079

End plate 2.5 0.15

experiments are given in Table 4.3.

Table 4.3: Beam parameters in the FSI experiments.

Parameter Value [mm]

Outer diameter (do) 125
Inner diameter (di) 120
Thickness (a− b) 2.5
Length (L) 2500

Although the purpose of these calculations is to obtain an estimate of the beam’s material and

dimensional parameters and dynamic response, the actual parameters and responses are better

determined by performing hammer tests, as the calculations do not take into account factors such

as the weight of sensors and cables, and unavoidable deviations in material properties accrued

during manufacturing and fabrication processes. Hence, material parameters and dynamic

responses of the beam assembly are determined by performing hammer tests, as described next.

4.3 Hammer tests on the beam

A hammer test is an experimental method for determining a structure’s response and measuring

its frequency response function (FRF). An impulse force is applied to excite the structure at

a wide range of frequencies and the response is measured using accelerometers. The purpose

of exciting the structure at a wide range of frequencies is to obtain its resonance frequencies.

The obtained response can then be analysed in the frequency domain to determine dynamic

parameters such as stiffness, mass and damping; modal parameters such as natural frequency

and mode shapes; and, material properties of the structure. FRF, also known as the accelerance,

is defined as the ratio of the output response (here accelerations) and input (impulse force) [27].

FRF therefore has dimensions of inverse mass and the units of the input and output signals

determine the units of the FRF. For example, if the input signal is in units of force (N) and the

81

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

output signal is in units of acceleration (m/s2), then the FRF will have units of kg−1. However,

in this article, we have computed neither FRF nor accelerance, their mention being only for

information.

The response is obtained in terms of time-domain signals, here the sensor accelerations, that can

be subsequently integrated to yield either velocity or displacement. The output is measured

at different positions along the beam, while the input force is applied at a specific position.

Hammer tests are performed to obtain the natural periods of the beam, which are used to

calibrate the wave frequency required to excite the beam at that period. Exciting the beam at

its natural period results in large deformations of the beam, which can be used to validate FSI

solvers against nonlinear (hyperelastic) structural solvers.

Dry hammer tests of the beam assembly shown in Fig. 4.5 are conducted by lifting the beam in

the air and applying an impulse force with a hammer, upon which dynamic responses (acceler-

ations) of the beam are measured by the accelerometers. Wet hammer tests (of direct relevance

to FSI studies) are performed in order to study the effect of submerged beam length on its

response. It is found that the resonance time period of the beam increases with increasing

submergence of the free end of the beam since the increasing submergence raises the hydro-

dynamic damping coefficient and added mass. The added mass refers to the inertia added to

the system due to the fluid volume displaced by a submerged beam’s motion. Based on the

hammer-test study, two submergence depths, of 0.25m and 0.5m, are used in the experiments

since the resonance time periods of the beam for these depths are achievable using the waveflap

wavemaker at the facility.

4.3.1 Results from dry and wet hammer tests

Time-domain beam responses obtained from both dry and wet hammer tests (the latter, at two

different submergence depths) are presented in Fig. 4.6. Each test comprised three hammer

strikes on the beam. Hence, there are 9 peaks in total; three for each test. For the purpose of

graphical comparison, the extra signal before the first peak is manually excluded so all peaks

can coincide at the start of the signal. A zoomed portion of the comparison is shown in Fig.

4.6. The second blue reading is hidden behind the second red peak. Comparison of the three

initial peaks appears in the expanded “early” inset in Fig. 4.6, revealing the dependence on the

degree of submergence.

82

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.6: Time-domain beam responses (accelerations in x direction) for the three hammer
tests. Dry (blue), wet (red, 0.25m-deep) and wet (green, 0.50m-deep) tests.

Fig. 4.7 shows the frequency-domain dynamic beam response for the three hammer tests. The

peaks show the frequencies of the dominant modes of the beam for each test. The reduction in

peak frequency in the hammer-test sequence dry (blue), wet (red, 0.25m-deep) and wet (yellow,

0.50m-deep) is clearly consistent with the above-mentioned increase, with submerged depth, of

both damping and effective beam mass. However, the impact of the added mass surpasses that

of the damping. In addition, Fig. 4.8 shows the first three modes of the beam calculated by

integrating the accelerations obtained in the hammer tests. See Earth Arxived version 1.

Finally, we compute the time periods and natural frequencies of the beam responses, measured

in the hammer tests, by converting the time-domain signal into the frequency domain using

the MATLAB functions for Fast-Fourier Transform (FFT), Direct Fourier Transform (DFT),

and Cross Spectral Density (CSD) methods. Each type of hammer test (one dry and two wet)

was performed twice and the values of frequency and time period of the measured accelerations

over time are shown in Table 4.4, each augmented by an error tolerance. Error tolerance is

calculated by taking the standard deviation σ of the fundamental frequency which is calculated

by using six values, the three “FFT”s for two repeat tests.

Table 4.4 confirms that the resonant time period of the beam increases when the beam is

1https://eartharxiv.org/repository/view/6586/

83

https://eartharxiv.org/repository/view/6586/
https://eartharxiv.org/repository/view/6586/

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.7: Frequency-domain beam-response spectra for the three hammer tests.

Figure 4.8: Profiles of first three beam modes, integrated from sensor accelerations measured
in dry hammer tests.

84

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

submerged in the water due to an increase in added mass and damping coefficient. Measurement

errors are propagated into subsequent calculations by using the mean, of the implied extreme

values, on which a symmetric error range is centred.

Table 4.4: Natural frequency and time period of the beam’s first mode, from accelerometer data
in hammer tests.

Period(Tp) Natural Frequency (f) Natural Frequency (ω)

[s] [s−1] [rad/s]

Dry hammer test 0.28 ± 0.002 3.6 ∓ 0.03 22.62 ∓0.19
Wet hammer test (0.25m) 0.43 ± 0.037 2.34 ∓ 0.2 14.70 ∓ 1.26
Wet hammer test (0.5m) 0.58 ± 0.028 1.72 ∓ 0.09 10.81 ∓ 0.53

Since the time domain response (accelerations) of the beam has been obtained from the hammer

tests, the logarithmic decrement method [60] can be used to calculate the damping ratios of

the beam in dry and partially submerged cases. The given time domain signals include a range

of frequencies. Therefore, to apply the logarithmic decrement method, we first convert the

time domain signal into the frequency domain and then apply the band-pass filters around each

identified dominant frequency to isolate each component. See the decomposition of the time

domain accelerations signal, obtained from the dry hammer test, based on natural frequencies

in Fig. 4.9.

The damping ratios (Υ) of the beam’s first three fundamental frequencies in dry and partially

submerged cases are given in Table 4.5.

Table 4.5: Damping ratios Υ1, Υ2, and Υ3 corresponding to the beam’s first (f1), second (f2),
and third (f3) natural frequencies are given, respectively.

Υ1 Υ2 Υ3

[s−1] [s−1] [s−1]

Dry hammer test 0.0131 0.0057 0.0014
Wet hammer test (0.25m) 0.0470 0.0004 0.0006
Wet hammer test (0.5m) 0.0614 0.0037 0.0029

The elastic modulus of the beam is measured experimentally by performing the bending test

with the beam while its fixed end is clamped. The bending test consists of applying a gradually

increasing known force Fi = g ×mi at a point Lp = 2.0m from the clamped end of the beam

and then measuring the beam’s increasing deflection as 1kg masses are sequentially stacked on

top of each other on a string attached to the beam’s free end. The schematic of the bending

test is shown in Fig. 4.10.

85

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.9: Natural frequency-based decomposition of the beam’s accelerations obtained from
the dry hammer tests are plotted.

Each distance Di in Table 4.6 is measured from the bottom of the plate at which mass mi is

placed. These masses are in the form of circular iron disks that are stacked on top of each other

as described above. The deflection or static offset of the beam is the difference between the two

consecutive values of measured distances, i.e.

ζi = Di−1 −Di; i = 0, 1, . . . , 11. (4.6)

The measured distances and deflections corresponding to the applied point loads are listed in

Table 4.6.

The flexural rigidity EI of the beam is given by

EI =
FmaxL

3
p

3δmax
, (4.7)

where Fmax is the maximum applied point force and δmax is the corresponding maximum de-

flection or static offset. Using the experimentally determined natural frequencies (and hence

86

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.10: Schematic diagram of bending test. The beam before deflection is shown as a
dark-grey rectangle. The beam deflected by loading of mass mi appears as a the light-grey
curvilinear quadrilateral. Movement of the base is precluded by clamping the base plate with
rigid wooden blocks (shown in yellow) in such a way that the beam can move freely in the
x-direction.

periods) given in Table 4.4 , and the elastic modulus E of the material computed using (4.7) ,

the spring constant k of the torsional spring shown in Fig. 4.2 can now be calculated, by using

the procedure formulated by Blevins [9], as follows. The expression for the natural frequency

of the pinned free beam with a torsion spring at the pinned joint is given in [9] as

fi =
λ2i

2πL2

(EI
M

)1/2
; i = 1, 2, 3, . . . , (4.8)

where fi is the fundamental frequency of the ith mode (computed via hammer tests), M is

the mass per unit length (computed via the mass-distribution information in Table 4.2), L is

87

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Table 4.6: Dependence of deflection ζi and maximum static offset δi,max of beam on increasing
mass-loading mi.

i Mass Force Distance Deflection
Maximum
deflection

mi Fi Di ζi δi,max

[kg] [N] [mm] [mm] [mm]

0 0 0 519 0 0
1 1 9.81 512 7 7
2 2 19.62 506 6 13
3 3 29.43 500 6 19
4 4 39.24 495 5 24
5 5 49.05 488 7 31
6 6 58.86 481 7 38
7 7 68.67 476 5 43
8 8 78.48 470 6 49
9 9 88.29 464 6 55
10 10 98.1 458 6 61
11 11 107.91 452 6 67

the length (measured), EI is flexural rigidity (computed via a bending test), and λi is a non-

dimensional frequency parameter which is a function of kL/(EI) and obtained from Table 4.7,

which displays the data given in Blevins [9].

Table 4.7: Natural frequencies of a pinned free beam with a torsion spring at a pinned joint. λi
is a function of kL/(EI). Table reproduced from [9], in which data are provided to 4 significant
figures.

kL/EI
λi(kL/EI)
i = 1

0 0
0.01 0.4159
0.1 0.7357
1 1.248
10 1.723
100 1.857
∞ 1.875

For the given material parameters, the stiffness k of the moving base, represented by the torsional

spring in Fig. 4.2, is derived as follows; first, λ is calculated by rearranging (4.8)

λ =

√
f2πL2M1/2

(EI)1/2
= 1.65 ± 0.01, (4.9)

which value of λ is then used to find the corresponding value of kL/EI from Table 4.7 via linear

interpolation when the ratio kL/EI is converted onto a logarithmic scale, as shown in Fig. 4.11.

88

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

This yields

log
(kL
EI

)
= 1.96 ± 0.03 (4.10)

from which the logarithmically interpolated kL/EI is 7.13 ± 0.24. Finally, the stiffness or

torsional spring constant k is then computed as

k = (7.13 ± 0.24)
EI

L
(4.11)

= (12.24 ± 0.41) × 103Nm/rad.

Figure 4.11: Semilog plot of data in Table 4.7 on which linear interpolation of kL/EI is per-
formed, as described after (4.9) in the text.

Finally, all material parameters of the beam are summarised in Table 4.8.

Table 4.8: Material parameters of the beam used for the FSI experiments. Error tolerances are
not available for all parameters.

Parameters Units Values

Spring Stiffness (k) [Nm/rad] (12.24 ± 0.41) × 103

Elastic Modulus (E) [N/m2] 2.378 × 109

Mass per length (M) [kg/m] 1.6048
Length (L) [mm] 2500

Density [kg/m3] 1668

89

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

In addition to material parameters, there are flow-based non-dimensional parameters significant

in determining the flow-induced loading on the beam [48, 16], e.g. Froude number (Fr), Reynolds

number (Re), and Keulegan-Carpenter number (KC)[46, 24]. The Froude number (Fr) is the

ratio of inertial forces (flow velocity) to gravity forces (wave propagation speed or gravity waves).

It is crucial for understanding the wave-induced forces on the beam and given as

Fr = c/
√
gdo, (4.12)

where the phase velocity of the wave, i.e. c = Λ/T , g is gravitational acceleration, and do is

the outer diameter of the beam. Reynolds number is the ratio of inertial forces (flow velocity

around the beam’s outer diameter) to viscous forces (dynamic water viscosity) in a fluid flow.

The Reynolds number characterizes the flow regime (laminar or turbulent) around the beam.

Re = ρUdo/ν, (4.13)

where the peak oscillatory flow velocity U = πH/T , ρ is water density, and ν = 1 × 10−6m2/s

is dynamic water viscosity. Keulegan-Carpenter number (KC) [46, 24] is given as the following

ratio

KC = πH/do. (4.14)

When KC>10, flow separation occurs, viscous effects and drag forces dominate, and diffraction

and radiation forces are negligible. On the contrary, when KC<2, the flow remains attached

to the body, diffraction and radiation forces are significant, and the effects of drag forces are

important at resonance only.

4.4 Case-1 experiments: interactions of regular waves with the

flexible beam when the carriage is at rest

Fig. 4.12 depicts the set-up for Case 1, which is further divided into two subcases corresponding

to different submerged beam lengths. Subcases 1 and 2 respectively have 0.25m and 0.5m of

the beam submerged, and the wave parameters for each subcase are shown in Tables 4.9 and

4.10 respectively, in which H denotes the wave height, T the wave period and Λ the wavelength;

the last column gives the (dimensionless) wave steepness, defined as H/Λ. Waves of steepnesses

90

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

0.08, 0.04 and 0.03 are generated to interact with the flexible beam. We remark that the wave

parameters in Tables 4.9 and 4.10 are those relating to experimental input; parameters gleaned

from the actual waves generated in the wavetank were observed to differ from the input ones

by up to 5%, as discussed in more detail in section 4.7 below.

Figure 4.12: Interactions of regular waves with the beam.

Table 4.9: Input parameters and characteristics of regular waves when the carriage is at rest
and 0.25m of the beam is submerged in water.

H T Λ Steepness (H/Λ)

[m] [s] [m] [-]

0.126 1 1.56 0.081
0.282 1.5 3.51 0.080
0.016 0.5 0.39 0.041
0.062 1 1.56 0.040
0.14 1.5 3.51 0.040
0.25 2 6.239 0.040
0.39 2.5 9.748 0.040
0.016 0.58 0.525 0.031

Case 1 aims to validate the linear FSI solvers in the non-resonant regime, as the natural fre-

quencies of the beam are higher than those of the wave. The time domain plots of the incident

wave signal and the beam’s response (accelerations) recorded by all accelerometers are shown in

Fig. 4.13. It can be noticed that the beam’s response is highest at the free end and lowest at the

91

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Table 4.10: Input parameters and characteristics of regular waves when the carriage is at rest
and 0.5m of the beam is submerged in water.

H T Λ Steepness (H/Λ)

[m] [s] [m] [-]

0.032 0.5 0.39 0.082
0.126 1 1.56 0.081
0.282 1.5 3.51 0.080
0.016 0.5 0.39 0.041
0.062 1 1.56 0.040
0.14 1.5 3.51 0.040
0.25 2 6.24 0.040
0.016 0.58 0.52 0.030

fixed end. Similarly, plots were checked for accelerations in X, Y , and Z directions and a greater

response was found in X−coordinate which is also the direction of incoming waves. Therefore,

the beam’s free-end response in the x−direction will be considered for further analysis.

In Fig. 4.13, it can be noticed that the wave and acceleration signals show an irregular pattern

after 200 seconds due to the interactions of the incoming waves with the waves reflected from

the other end of the wavetank. For signal analysis, we will consider the part of the signals

unaffected by the reflected waves.

Fig. 4.15 and Fig. 4.14 show a part of the time domain signals in the form of two subplots:

(upper) the undisturbed incident water waves in solid line and refracted water waves from the

beam in dashed line; (lower) acceleration, in the x-direction, of the submerged end of the beam.

Some tests with high waves were also performed that excited the beam’s natural frequency due

to nonlinear (sum-frequency) effects, as shown in Fig. 4.16 and Fig. 4.17, whose two subplots

show: (upper) the undisturbed incident water waves in solid line and refracted water waves

from the beam in dashed line; (lower) acceleration, in the x-direction, of the submerged end of

the beam.

4.5 Case-2 experiments: interactions of regular water waves

with the flexible beam when the carriage is moving at a

constant speed

Case-2 experiments are divided into two subcases, distinguished as in Case 1: wave parameters

for the first and second subcases are now shown in Tables 4.11 and 4.12 respectively.

92

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.13: The time domain plots of the incident wave signal and the beam’s response (accel-
erations) recorded by all accelerometers are shown. These plots are corresponding to the third
test case in Table 4.9, i.e. wave height H =0.016 m and T = 0.5 s.

Table 4.11: Input parameters and characteristics of regular waves when the carriage is moving
at a constant speed and 0.25m of the beam is submerged in water.

H T Λ Steepness (H/Λ) u0 ωe

[m] [s] [m] [-] [m/s] [rad/s]

0.126 1 1.560 0.081 0.297 7.480
0.016 0.5 0.390 0.041 0.149 14.967
0.062 1 1.560 0.040 0.297 7.480
0.14 1.5 3.509 0.040 0.446 4.987

Moving the carriage changes the frequency with which waves encounter the beam, so that the

dynamic response of the beam and its interaction with water waves, particularly at the onset

of resonance, can be studied. Changing the steepness of regular waves allows both linear and

93

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.14: Single-frequency response of the flexible beam to regular water waves. These plots
are corresponding to the third test case in Table 4.9, i.e. wave height H =0.016 m and T = 0.5
s.

Table 4.12: Input parameters and characteristics of regular waves when the carriage is moving
at a constant speed and 0.5m of the beam is submerged in water.

H T Λ Steepness (H/Λ) u0 ωe

[m] [s] [m] [-] [m/s] [rad/s]

0.126 1 1.56 0.081 -0.215 5.417
0.016 0.5 0.39 0.041 -0.1077 10.831
0.062 1 1.56 0.040 -0.2154 5.415
0.14 1.5 3.51 0.040 0.6864 5.418

nonlinear FSI solvers to be validated. The encounter frequency ωe of the waves is calculated as

ωe = ω0 ± u0
ω2
0

g
, (4.15)

where ω0 = 2π/T is the earth-bound frequency of the waves, u0 is the velocity of the carriage

(designated as positive/negative when the carriage moves against/with the waves) and g is the

gravitational acceleration. Tests are conducted for cases where the carriage moves both with

and against the waves. The speed was selected such that the natural frequency was an integer

multiple (1,2 or 3) of the encounter frequency. The speed was limited to 0.7m/s because higher

speeds introduce loads that would have damaged the experimental set-up. The complete time-

94

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.15: Single-frequency response of the flexible beam to regular water waves. These plots
are corresponding to the last test case in Table 4.10 when wave height H =0.016 m and T =
0.58 s.

Figure 4.16: Multi-frequency response of the flexible beam to regular water waves. These plots
are corresponding to the second test case in Table 4.10 when wave height H =0.126 m and T =
1 s.

95

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.17: Multi-frequency of the flexible beam to regular water waves.These plots are corre-
sponding to the third test case in Table 4.10 when wave height H =0.282 m and T = 1.5 s.

domain signal of the flexible beam’s response to regular waves with 0.5m of the beam submerged

is shown in Fig. 4.18 while Fig. 4.19 shows a zoomed-in section of the complete time domain

signals.

4.6 Case-3 experiments: interactions of irregular water waves

with the flexible beam when the carriage is at rest

Case-3 experiments are divided into two subcases, distinguished as in Cases 1 and 2: wave

parameters for the first and second subcases are now shown in Tables 4.13 and 4.14 respectively.

Case 3, whose experimental set-up is shown in Fig. 4.20, is the most complex of the cases

considered and is designed to yield data on structural dynamics due to nonlinear wave-loading

processes related to steep and breaking waves. Irregular waves are modelled in the experimental

facilities by using already-developed wave-spectrum models, which were developed to replicate

oceanographic waves and are given in the form of parameterised functions. There are different

models to represent waves in different regions of the world and conditions, i.e. deep seas [38],

96

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.18: Response of the flexible beam (0.5m submerged) to regular water waves when the
carriage is moving at a constant speed. The wave height and time period are 0.126 m and 1.56
s.

Figure 4.19: A zoomed-in part of the time domain signals of beam’s response (0.5m submerged)
to regular water waves when the carriage is moving at a constant speed. The wave height and
time period are 0.126 m and 1.56 s.

97

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.20: Interactions of irregular waves with the beam.

shallow water[40], and fully developed seas [64]. In this study, we have experimentally modelled

the JONSWAP (Joint North Sea Wave Observation Project) spectrum [38], which represents

irregular wave patterns in the North Sea. The parametric equation for the JONSWAP spectrum

is given as follows:

S(f) =
αg2

(2π)4f5
exp

(
−5

4

(f

fm

))
γ
exp

(−(f − fm)2

2σ2f2m

)
, (4.16)

σ =

σa = 0.07 for f ≤ fm,

σb = 0.09 for f > fm,

where fm is the maximum frequency of the spectrum; g is gravitational acceleration; α is a

coefficient, known as the Philips parameter, that scales the overall magnitude of the spectrum

and is taken as 0.0081; γ is the peak-enhancement factor whose value is region dependent[53],

e.g. 3.43 to 3.70 for the Jiangsu waters in China[28]. This case aims to validate high-fidelity

98

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

FSI solvers.

Table 4.13: Input parameters and characteristics of irregular waves when the carriage is at rest
and 0.25m of the beam is submerged in water.

MARIN Test No.
70065 02CB 02

Environment
Time

Irregular-Sea Characteristics
JONSWAP Type Spectrum
Hs Tp Dir. γ

[s] [m] [s] [deg] [-]

North Sea state

011 001 01 Gain 1.0 1781 0.34 2.25 180 2.9

011 001 01 Gain 0.25 1781 0.085 2.25 180 2.9

011 001 01 Gain 0.5 1781 0.17 2.25 180 2.9

Table 4.14: Input parameters and characteristics of irregular waves when the carriage is at rest
and 0.5m of the beam is submerged in water.

MARIN Test No.
70065 02CB 02

Environment
Time

Irregular-Sea Characteristics
JONSWAP Type Spectrum
Hs Tp Dir. γ

[s] [m] [s] [deg] [-]

North Sea state

011 001 01 Gain 1.0 1781 0.34 2.25 180 2.9

011 001 01 Gain 0.5 1781 0.17 2.25 180 2.9

In Tables 4.13 and 4.14, the Environment parameter Gain 1.0 represents the actual wave spec-

trum of the North Sea state, whereas Gain 0.25 generates scaled waves up to a quarter of the

actual wave height and Gain 0.5 generates waves scaled up to half the actual wave height. Hs

is the significant wave height and Tp is the wave period. We report one interesting event that

occurred when a steep breaking wave interacted with the beam, shown in Fig. 4.21.

The response of the beam to the breaking wave is recorded and plotted in terms of the time-

and frequency-varying data which is shown in Figs. 4.22 to 4.24.

The nonlinear dynamic beam response clearly shows multiple modes, which are further investi-

gated by performing Fourier transform in the frequency domain, as shown in Fig. 4.23.

Furthermore, frequency analysis is also performed in which the time-domain response is first

filtered (using proprietary Matlab software from MARIN) and then decomposed into higher

and lower time-domain response-frequency components. The actual and filtered time-domain

responses are compared in Fig. 4.24, which reveals that the impact wave excited multiple

natural frequencies in the beam. The filter frequency is 25 rad/s.. The nonlinear response of

the beam is due to the excitation of higher frequencies: in particular, it can be seen that the

99

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.21: Impact of steep irregular waves with the beam.

Figure 4.22: Response of the flexible beam to irregular waves.

100

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.23: The time-domain experimental signals are plotted in the frequency domain. The
top plot shows the wave signal while the bottom plot depicts the beam response.

high-frequency response (yellow) decays faster than the low-frequency response (red) as a result

of structural and hydrodynamic damping.

4.7 Experimental uncertainty

To assess the accuracy and reliability of the experimental data recorded, it is essential to quan-

tify the error at each stage of the experiments. Therefore, this section explains the different

types of errors that may affect the measurements, and the precautionary steps taken to minimise

them. The experimental campaign can be divided into three stages: designing and fabricating

the experimental set-up; performing the experiments and recording the measurements; and, pro-

cessing the recorded data. Each stage incurs associated specific errors. In the first stage, errors

may accrue through defects in the design and manufacturing. Cooke et al.[20] presents three

case studies that are useful to understand error occurrence during the design stage. Therefore,

to minimise this error the set-up was designed and fabricated by the team of researchers and

technicians at MARIN and the material was procured from certified providers. The sensors were

tested and calibrated, and the set-up was inspected before deploying in the wavetank. During

101

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

Figure 4.24: Frequency analysis of the response of the flexible beam to irregular waves. The
original signal (blue) is decomposed into higher (yellow) and lower (red) frequency responses.
In the legend, AX1 represents the original signal, while AX1-HF and AX1-LF are the respective
high-frequency and low-frequency parts of the original signal.

this stage, we found that one of the accelerometers (ACC-2) was defective and was hence re-

placed by the team. ACC-2 was placed on the external surface of the beam which interacted

with the water in the event of high-amplitude waves and hence a source of uncertainty. The

setup could be improved by placing the accelerometer (ACC-2) at the internal surface of the

beam. Also note that the accelerometers rotate with the beam as they are fixed to the beam.

Therefore, the measurement of the acceleration component normal to the beam, i.e. along the

x-direction, contains a gravitational term g sin(ϕ), where ϕ is the angle between the local ro-

tation of the beam with the original vertical position of the beam. However, the contribution

of the gravitational term is negligible as compared to the accelerations due to beam vibrations.

We performed several hammer tests during the experiments to ensure that the structure’s reso-

nance period after the experiments was the same as the initial resonance period before applying

the loading. The purpose was to ensure that the beam was not damaged by the water-wave

interactions.

The second stage is when actual experiments are performed during the generation of water waves

in the wavetank. Before recording actual experimental measurements, the six accelerometers

and two probes (see Fig. 4.2 and section 4.2) were calibrated. Experimental wave-generation

102

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

is an iterative process and, from previous experiments, the experts observed that the actual

generated-wave parameters in the wavetank can differ by 1% to 5% from the input-wave pa-

rameters. These variations occur due to basin effects, i.e., wave reflections. To quantify the

discrepancy, we have compared the input-wave parameters and actual waves measured by the

probe for the first subcase of experimental case 1. The percentage relative error between the

input parameters, i.e. wave amplitude, time period and wavelength and those of the actual

wave measured in the basin are listed in Table. 4.15. We note that the percentage relative

error ranges from 0 to 6.98. To obtain the values of wave amplitude presented in Table. 4.15,

Table 4.15: Percentage relative error between the input wave parameters and those of the actual
wave generated in the wavetank; here, for the first subcase of experimental case 1.

A T Λ

[m] [s] [m]

0.00% -0.50% -0.99%
2.17% -0.86% -1.71%
2.56% 1.01% 2.03%
-5.20% 0.05% 0.10%
1.45% -0.17% -0.33%
1.63% 0.03% 0.06%
0.52% 0.40% 0.80%
-6.98% 0.52% 1.04%

we performed a harmonic analysis of measurements obtained from the probe located in front

of the beam. That is, an uninterrupted wave-signal window was selected from the measured

wave elevation and then analysed in the frequency domain by performing a Fourier transform.

Next, the signal’s amplitude at the corresponding time period was recorded. To minimise this

error, we experimentally simulated water waves without the beam set-up and ensured that the

generated waves were within the acceptable range i.e. 5% to 6%, in keeping with the above

percentage-relative error quantification.

Another type of error, arising at the second stage, is the intrinsic instrument error of the mea-

suring equipment. The sensors involved are the two wave probes that measure the incident

and reflected waves, and the six accelerometers that measure the beam’s accelerations at six

equidistant points. To quantify this type of error, we took measurements twice and then com-

puted the relative difference. Table 4.16 shows the relative difference in the first fundamental

frequency (f (1)) of the beam, measured by the accelerometers, when a dry hammer test was

performed twice. The fundamental frequency is computed by taking the Fourier transform of

103

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

the time-domain signal by using the MATLAB function FFT. Results shown in Table 4.16 show

that the relative difference of the frequencies from the two hammer tests is less than 1%, which

confirms that the instrumental errors are dominated by those accruing from wave-generation

effects.

Table 4.16: Accelerometer-measurement errors.

Test 1 Test 2 Relative error %

f (1) [1/s] f (1) [1/s]

AX1 3.6 3.59 0.28%
AX2 3.6 3.59 0.28%
AX3 3.6 3.59 0.28%
AX4 3.58 3.59 -0.28%
AX5 3.56 3.59 -0.84%
AX6 3.6 3.58 0.56%

In the third stage, errors arise in the time-domain processing of experimentally measured data,

for example, the signal’s amplitude and frequency. The data-processing error depends upon the

algorithm used to analyse the data, e.g. discrete Fourier transform. Other common examples

of this type of error are truncation error, overflow error, and rounding error.

In addition to the above-mentioned errors, human error also contributes towards total error; this

can be minimised by re-examining both set-up and measurements. Accordingly we ensured that

specialised teams of experts performed relevant parts of the experiments, i.e. design, fabrication,

bending test, hammer tests and the actual FSI experiments in the wavetank. Moreover, through

our numerical model of the beam (ultilising the parameters given in Table. 4.8), we found that

the relative error between the experimentally- and numerically-computed dry resonance period

is 0.3%.

See Appendix C for the details of data availability and post-processing codes.

4.8 Conclusion

This experimental study tested the dynamic response of a flexible beam subjected to a wide

range of simulated sea states, namely, mild-to-extreme and regular-to-irregular. The experi-

mental data obtained herein will be useful for mathematical, engineering and computational

research communities in the validation of FSI numerical solvers ranging from linear to high-

fidelity. In the next two chapters, we will explain the development of the numerical models

for this specific experimental setup and perform the validation of MARIN’s in-house linear and

104

Chapter 4. Experimental modeling of water-wave interactions with a flexible beam

high-fidelity FSI solvers.

105

Chapter 5

Linear fluid-structure interaction

modelling of regular water waves

with the flexible beam

5.1 Introduction

A series of experiments, divided into three experimental cases, have been performed with two

goals in mind [69]: to understand fluid-structure interactions (FSIs) of waves impacting on a

flexible beam with simultaneous measurements of beam accelerations and incident and reflected

waves; and, to use the acquired data set for validation of a hierarchy of FSI numerical models.

The experimental campaign has successfully been carried out at the concept basin facility of

the Maritime Research Institute Netherlands (MARIN) and high-quality data has been recorded

and shared to enhance our understanding of the FSI process. To achieve the second goal of

the study, i.e. validation of linear, nonlinear and high-fidelity numerical FSI solvers that are

commonly employed by the maritime industry in the design of fixed-foundation offshore wind

turbines, it is essential to make experimental data publicly accessible. Hence, an accessible

online platform, specifically a GitHub1 public repository, is created to make the data available

to the public. Furthermore, we have shared the details of the experiments with the scientific

community in the form of a published research article [69]. Now that the experiments are

performed and shared publicly, the next step is to perform a validation study which is the

1https://github.com/EAGRE-water-wave-impact-modelling/FSI Experiments

106

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments
https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

concern of this chapter.

This comparison study uses SEACAL [58] to simulate the flexible beam’s response to the water-

wave conditions that are tested in the first experimental case. The numerical results obtained

from the SEACAL are then compared to the experimental data. The wave conditions tested in

experimental case 1 are explained in the next sections.

5.2 Experimental case 1

The experimental setup includes a flexible beam which is attached to the basin’s carriage at

one end while the other free end is submerged in the water. The beam is equipped with six

accelerometers which are equally distributed along the beam’s length. These accelerometers

measure the beam response. There are two probes to measure the incident and the reflected

water-wave elevation. The probe in the front of the beam measures the undisturbed incident

wave and the probe parallel to the beam measures the change in the wave, which is caused by

the beam’s motion. The setup is designed such that it admits the simultaneous measurements

of incident waves and the beam’s response. Hence, it is suitable for studying FSI problems [69].

Figure 5.1: Schematic side view of the experimental set-up [69].

107

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Experimental Case 1 concerns interactions of the regular waves with the flexible beam when

the carriage is at rest. This case aims to validate the linear FSI solvers in the non-resonant

regime, as the beam’s natural frequencies are higher than those of the wave. However, some

tests with high waves were also performed that excited the beam’s natural frequency due to

nonlinear (sum-frequency) effects.

This experimental case is further divided into two subcases corresponding to different submerged

beam lengths. Subcases 1 and 2 respectively have 0.25m and 0.5m of the beam submerged.

5.2.1 Subcase 1: beam submerged at 0.25m

At first, the beam is submerged at 0.25m and its response towards the different wave parameters

and characteristics is studied. The waves with different parameters and characteristics, which

are used in this study, are listed in Table 5.1.

Table 5.1: Regular-wave parameters and characteristics when the carriage is at rest and 0.25m
of the beam is submerged in water.

H A T ω Λ Steepness (H/Λ)

[m] [m] [s] [rad/s] [m] [-]

0.126 0.063 1 6.28 1.56 0.081
0.282 0.141 1.5 4.19 3.51 0.080
0.016 0.008 0.5 12.56 0.39 0.041
0.062 0.031 1 6.28 1.56 0.040
0.14 0.070 1.5 4.19 3.51 0.040
0.25 0.125 2 3.14 6.239 0.040
0.39 0.195 2.5 2.51 9.748 0.040
0.016 0.008 0.58 10.83 0.525 0.031

In Table 5.1, H denotes the wave height, A wave amplitude, T the wave period, ω the encounter

frequency, and Λ the wavelength; the last column gives the (dimensionless) wave steepness,

defined as H/Λ. Waves of steepnesses 0.08, 0.04 and 0.03 are generated to interact with the

flexible beam. The plot of wave height corresponding to the encounter frequency is plotted to

explain the selection criteria of different wave parameters. The plot is shown in Fig. 5.2.

108

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.2: A plot of the wave heights corresponding to the wave frequencies which are used to
study the beam’s response when the beam’s submerged depth is 0.25m.

The red markers show the wave height corresponding to the wave frequency which is also the

beam’s encounter frequency. There are two grey-coloured vertical dashed lines; the first dashed

line is plotted at half of the first resonant frequency of the beam while the second one is

plotted at the first resonant frequency of the beam. The resonant frequency of the beam, when

submerged depth is 0.25m, is measured experimentally by performing the hammer tests. Some

wave parameters are selected such that the resonance frequency and sum-frequency effect can

be studied on the beam’s response.

5.2.2 Subcase 2: beam submerged at 0.5m

After subcase 1, the beam’s submerged depth was increased up to 0.5m to study how different

submerged depths will affect the beam’s response. This study of the different regular-wave

interactions with a beam, when the beam’s submerged depth is 0.5m, is explained in subcase

2. Similar to subcase 1, regular waves of different parameters and characteristics are chosen to

study the beam’s response in diverse wave conditions. The wave parameters and characteristics

for the second subcase are listed in Table5.2.

Similar to Table 5.1, in Table 5.2, H denotes the wave height, A wave amplitude, T the wave

109

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Table 5.2: Regular-wave parameters and characteristics when the carriage is at rest and 0.5m
of the beam is submerged in water.

H A T ω Λ Steepness (H/Λ)

[m] [m] [s] [rad/s] [m] [-]

0.032 0.016 0.5 12.56 0.39 0.082
0.126 0.063 1 6.28 1.56 0.081
0.282 0.141 1.5 4.19 3.51 0.080
0.016 0.008 0.5 12.56 0.39 0.041
0.062 0.031 1 6.28 1.56 0.040
0.14 0.070 1.5 4.19 3.51 0.040
0.25 0.125 2 3.14 6.24 0.040
0.016 0.008 0.58 10.83 0.52 0.030

period, ω the encounter frequency and Λ the wavelength; the last column gives the (dimension-

less) wave steepness, defined as H/Λ. Waves of steepnesses 0.08, 0.04 and 0.03 are generated

to interact with the flexible beam.

Figure 5.3: A plot of the wave heights corresponding to the wave frequencies which are used to
study the beam’s response when the beam’s submerged depth is 0.5m.

Similar to subcase 1, the red markers in Fig. 5.3 show the wave height corresponding to the

wave frequency which is also the beam’s encounter frequency. There are two grey-coloured

vertical dashed lines. The first line is plotted at half of the first resonant frequency of the beam

while the second one shows the first resonant frequency of the beam. The resonant frequency of

the beam is measured experimentally by performing the hammer tests. Some wave parameters

110

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

are selected such that the resonance frequency and sum-frequency effect can be studied on

the beam’s response. It can be noticed that the beam’s natural frequency decreases as we

submerged the beam deeper in the water. This is due to an increase in the added mass and

damping introduced by the medium.

5.3 Harmonic analysis of the experimental data

The output data from the experiments are in the form of time domain signals which require

further signal processing to extract essential information, i.e. magnitude and phase of the fun-

damental frequency, and harmonics of the fundamental frequency. This information identifies

whether the structure’s response is linear or nonlinear. Before analysing the structure’s re-

sponse, it is necessary to determine whether the structure corresponds to a linear or a nonlinear

system. One way to determine this is by applying impact load on the structure, i.e. hammer

test, and analysing the structure’s response in the frequency domain. Therefore, we performed

dry and wet hammer tests and examined the beam’s response in the frequency domain. Based

on the response, we concluded that the beam used in this study corresponds to a linear sys-

tem [69]. However, a linear system can also exhibit a nonlinear response in certain loading

conditions; therefore, it is essential to distinguish a linear response from a nonlinear response.

The characteristics associated with the linear response are: a linear system obeys the principle

of superposition, i.e. if a system’s response to two inputs x1(t) and x2(t) are y1(t) and y2(t),

respectively, then superposition holds if input ax1(t)+bx2(t) results in a response ay1(t)+by2(t)

where a and b are constants [75]. A linear response will either show one fundamental frequency

or harmonics that are integer multiples of the fundamental frequency. When harmonics appear

in the response of a linear system, the magnitude of the harmonics will decrease with increasing

harmonic order, and the phase relationship between the harmonics should be consistent, i.e. an

integer multiple of the phase angle of the fundamental frequency. As an example of a linear

response, the output signal of the incident wave recorded by the wave probe located at the

front of the beam and accelerations of the submerged end of the beam in x-direction are shown

in Fig. 5.4. This plot refers to the first subcase of experimental case 1 in which the beam is

submerged at 0.25m, and the wave amplitude is 0.031m with a time period of 1s.

111

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.4: The top plot shows the incident wave signal and the bottom plot shows the response,
i.e. accelerations in x direction, measured by the accelerometer located at the submerged end
of the beam.

The beam’s response is composed of different frequencies as the response is also affected by

the waves reflected from the beach in addition to the incident waves. This study is about the

validation of a linear solver, therefore, we need to extract the first fundamental frequency of the

signal. For this, we select a signal window which is not affected by the reflecting waves and find

the first fundamental natural frequency/mode by taking the Fourier transform. The Fourier

transform of the signals shown in Fig. 5.4 from time 100 to 250 seconds is shown in Fig. 5.5.

The top plot shows the dominant frequency and amplitude of the wave signal. In this test

case, a regular wave of 0.031m amplitude is generated with an angular frequency of 6.28 rad/s,

therefore, the Fourier transform shows one peak of 0.03m amplitude at 6.32 rad/s. The difference

in the angular frequency is due to the phase shift. Similarly, the Fourier transform of the

beam’s response signal shows that multiple high-order frequencies or harmonics got excited

due to wave interaction. These harmonics are the integer multiples of fundamental frequency

and their amplitude decreases as the frequency increases. This observation shows that the

beam’s response is linear to this wave condition. In this study, we will only consider the beam’s

response at the first natural frequency because the software that needs to be validated is a linear

FSI solver. Once the amplitudes of the input (incident wave) signal and the output (beam’s

112

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.5: The top plot shows the amplitude and frequency of the dominant mode of the
incident wave while the bottom plot shows the beam response,i.e. amplitude and frequency of
the incoming wave harmonics, that got excited due to the wave interaction.

accelerations in x direction) signal are known for the first mode, the next step is to compute

the response amplitude operator (RAO). RAO is defined as the ratio of the amplitude of the

output to the amplitude of the input signal in the frequency domain. RAO is given as

RAO(f) =
O(f)

I(f)
=

Aacc

Awave
, (5.1)

where Aacc is the amplitude of the beam’s acceleration in x direction and Awave is the amplitude

of the incident wave. The output from SEACAL is in the form of RAO. The wave amplitude is

a known input and the response is calculated by using the relation given in (5.1). Finally, the

RAO and beam’s response obtained from the experiments and SEACAL are compared.

5.4 SEACAL: A linear FSI solver

This section is dedicated to the explanation of mathematical and numerical models used in

SEACAL to carry out the FSI simulation. These explanations are the summary of the details

113

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

mentioned in SEACAL’s theory manual [58]. SEACAL is a linear FSI solver which calculates

the behaviour of floating structures, mainly ships, in water waves. This software is developed in

the Cooperative Research Ships (CRS) SEACAL WG (2021-2023). It has three sub-programs

which are:

1. HYDMES, to create the free-surface mesh around the floating structure and describe

the structure’s surface by using 3D panels. It also performs hydrostatic calculations and

determines the flexural modes.

2. HYDCAL, to calculate the hydrodynamic coefficients by solving the linearised boundary

value problem.

3. RESCAL, to calculate the response of the structure in waves and added resistance.

5.4.1 Generalized Modes

A finite element (FE) model of the structure is created in FE software which is not a part

of SEACAL. The objective is to compute the structure’s generalized modes. The generalized

modes of the structure consist of six rigid body modes and E elastic modes. Hence, a 6×(6+E)

mode-shape matrix is defined at each node P of the structure’s FE model. For this purpose,

the structure is discretised by using finite elements with N total number of nodes. The global

rigid body modes of the structure are defined at each node P of the model. The global modes

consist of three rigid translations and three rigid rotations. The rotations are defined around

an arbitrary point G that is taken at the structure’s global centre of gravity. However, in this

case, rigid-body modes are not considered because the beam is clamped.

The elastic/ dry natural modes of the structure are computed by solving the following eigenvalue

problem [
M̂

][
¨̂
ξ
]

+
[
K̂
][
ξ̂
]

= 0, (5.2)

where [M̂] is a (6N) × (6N) mass matrix, [K̂] a (6N) × (6N) structural stiffness matrix, and

ξ̂ a 6N × 1 motions vector. The FE solver outputs the eigenvectors for a given mode i at each

node P of the model as

[hi]p = [hi1hi2hi3hi4hi5hi6]
−1
P = [ξ̂i]P , (5.3)

114

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

and the corresponding forces at each node as

[Fi]P =

 F̂i

M̂i

P

= ω2
i

[[
M̂

][
ξ̂i

]]
P
. (5.4)

The generalized modes shapes at each node are given as:

[h]P =
[
[h]GP [h]EP

]
. (5.5)

For demonstration, the FEM model created for the SEACAL simulations is shown in Fig. 5.6.

Figure 5.6: The straight beam shows the initial state of the beam and the deformed beam shows
the beam shape when the first fundamental mode is excited.

The beam’s model is created through a combination of structural and hydro mesh elements.

Hydro mesh elements are used for the submerged part of the beam, while structural mesh

elements are utilized for the part above water. The submerged part of the beam is distinguished

by the dark blue bottom in Fig 5.6 while the part at the top of the dark blue part is in the air.

The elastic modes that were calculated by the FE solver are then transferred to the SEACAL

tool in terms of nodal points and wetted elements. The transferred variables are then used as

generalized mode shapes in the above formulas for the calculation of the flexible response.

115

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

5.4.2 Fluid solver

SEACAL’s fluid solver, HYDCAL, is based on potential flow theory, therefore, the considered

fluid flow is non-viscous, irrotational, and incompressible and it satisfies the Laplace equation:

∇2ϕ = 0. (5.6)

The set of equations obtained from Laplace equation (5.6) and boundary conditions, i.e. kine-

matic free-surface and dynamic, are solved by using the boundary element method (BEM).

Once the velocity potential is obtained, the pressure p and wave elevation ζ respectively can be

computed using the Bernoulli equation and kinematic free-surface boundary condition. Since

SEACAL solves the first-order linear quantities, therefore, the first-order variations of pressure

and free surface elevation respectively are given as

p(1) = −ρ
(∂ϕ(1)

∂t
+ ∇̂ϕs · ∇̂ϕ(1)

)
, (5.7)

and

ζ(1) = −1

g

(∂ϕ(1)
∂t

+ ∇̂ϕs · ∇̂ϕ(1)
)
, (5.8)

where ϕs is the steady part steady part while ϕ is the unsteady (time-dependent) part. In this

case, there is no steady flow as the beam is not moving with forward speed therefore we are

neglecting ϕs. After calculating the pressure, the global fluid forces on the structure are then

computed by integrating the pressure over the structure’s surface. Once the pressures and forces

are known, the next step is to compute hydrostatic and hydrodynamic coefficients which are

required to solve the equation of motion. The hydrostatic restoring (stiffness) matrix C has a

contribution from the hydrostatic pressure Ch and mass elements CM .

C = Ch + CM (5.9)

The contribution due to the hydrostatic pressure is calculated either by summation over the

panels (hydrodynamic mesh) or by summation over the Gauss points (integration mesh).

The hydrodynamic coefficients, i.e. added mass and damping coefficients, are calculated from

the radiation forces. The radiation forces are obtained by integrating the pressure over the

116

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

structure’s surface S after taking into account the local normal vector n⃗ and local modal dis-

placement H, as follows:

F⃗ (rad) =

∫ ∫
S
p(rad)(n⃗ · H⃗)dS. (5.10)

After computing the radiation force, we can calculate added mass and damping coefficient by

using the known encounter frequency ωe, as follows

Aij(ωe) =
Re(F

(rad)
ij (ωe))

ω2
e

and Bij(ωe) =
Im(F

(rad)
ij (ωe))

ωe
. (5.11)

Once all the required input matrices and coefficients to compute the structure’s response are

known, the next step is to solve the equation of motion, which is described in the next subsection.

5.4.3 Beam’s response calculation

SEACAL has a subprogram, RESCAL, to compute the structure’s response. RESCAL solves

the linear equation of motion in the frequency domain to compute motion and internal loads.

The general form of which is given as

[
−ω2

e(M +AL) + iωeBL + CL

]
x = FL, (5.12)

where ωe is encounter frequency; x is the N × 1 motion response vector and N is the number of

degrees of freedom; M is the N ×N mass matrix; AL is N ×N linear added mass matrix; BL is

N ×N linear damping matrix. The linear added mass and damping matrices are calculated by

using potential flow equations. CL is N ×N linear restoring matrix, which is calculated from

hydrostatics; and FL is N × 1 linear excitation force vector. Equation (5.12) can be written as

S(x)x = F (x), (5.13)

where S(x) represents the linear system of matrices at the left-hand side of (5.12) and F (x)

represents the linear right-hand side vector of (5.12).

5.5 Results and comparison

In this section, we present the comparison of the results obtained from SEACAL with the

experimental tests. Before proceeding with the FSI simulation, it is important to ensure the

117

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

accuracy of the beam’s FEM model by comparing the numerically obtained natural period and

fundamental frequency with the experimental results. Therefore, the natural period of the FEM

model should be close to the natural period of the actual beam when it is in the air. The results

obtained from such comparison are shown in Table. 5.3.

Table 5.3: Comparison of the beam’s natural periods and angular frequencies corresponding to
the first natural mode are obtained from the experiments and SEACAL calculations when the
beam is in the air and submerged in the water.

Experiment SEACAL

Tp ω Tp ω

[s−1] [rad/s] [s−1] [rad/s]

Dry hammer test 3.6 22.62 3.606 22.657
Wet hammer test (0.25m) 2.34 14.70 2.390 15.017
Wet hammer test (0.5m) 1.72 10.81 1.697 10.664

The relative percentage error between the numerical and experimental results for the natural

periods of the beam in the air is only 0.16%, which shows that the FEM model is an accurate

representation of the actual beam’s structure. However, it can be noticed that the relative

error is −2.09% and 1.369% when the beam’s submerged depth is 0.25m and 0.5m, respectively.

The error is slightly larger as compared to the dry mode values when the beam is submerged

because the added mass values computed by SEACAL are different from the experimental ones.

Furthermore, we can notice that, in both experimental and numerical results, the natural period

of the beam increases as it moves from a less dense medium (air) to a more dense medium (water)

and is then submerged deeper in the more dense medium (water). This is due to an increase

in the added mass and damping introduced by the medium. In the next subsections, we will

show the comparison of SEACAL results with the experimental data. For the beam’s response,

we choose to compare the results obtained from the accelerometer at the submerged free-end of

the beam because it shows maximum accelerations.

5.5.1 Regular-wave and beam interactions when the beam is submerged at

0.25m.

All the wave conditions tested in the first subcase of the experiments are simulated in SEACAL.

SEACAL computes the RAO values for all six accelerometers at the input values of angular

wave frequencies or encounter frequencies, and then the relation mentioned in (5.1) can be used

to compute the beam’s response. In this report, we consider the RAO values and response of

118

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

the accelerometer which is attached to the submerged end of the beam because the accelerations

of the submerged end are of higher order as compared to the other locations, as shown in Fig.

4.13. The results obtained from the experiments and SEACAL are listed in Table 5.4.

Table 5.4: Comparison of the results obtained from the linear FSI numerical solver are compared
with the experimental results.

Given Initials SEACAL Experiments

A Tp ω RAO Response RAO Response

[m] [s] [rad/s] [1/s2] [m/s2] [1/s2] [m/s2]

1 0.063 1.000 6.283 10.697 0.674 9.619 0.606
2 0.138 1.500 4.189 2.117 0.292 1.964 0.271
3 0.0074 0.500 12.566 102.380 0.758 87.838 0.650
4 0.0327 1.000 6.283 11.415 0.373 9.083 0.297
5 0.069 1.500 4.189 2.117 0.146 1.739 0.120
6 0.123 2.000 3.142 0.710 0.087 0.423 0.052
7 0.195 2.500 2.513 0.298 0.058 0.077 0.015
8 0.0069 0.580 10.833 75.914 0.524 53.623 0.370

A comparison of the RAO values obtained from the SEACAL and experiments at the beam’s

submerged end is plotted in Fig. 5.7 while Fig. 5.8 shows the comparison of RAO values

obtained from accelerometers at other locations of the beam.

Figure 5.7: The comparison of response amplitude operator (RAO) obtained from SEACAL
and experimental data when submerged depth is 0.25m is presented. The values of the first
fundamental frequency, i.e. ωn and ωn/2, are represented by vertical grey dashed lines.

119

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.8: The comparison of response amplitude operator (RAO) 1/s2 obtained from SEACAL
and experimental data for all accelerometers when submerged depth is 0.25m is presented.

It can be noted in Fig. 5.7 that results agree well when the wave encounter frequency is

lower than half of the beam’s resonance frequency, i.e. from 2.513 to 6.28 rad/s. Through

harmonic analysis, it is found that the beam’s response is linear for the mentioned range of

frequencies, therefore SEACAL’s predictions are accurate. An example of linear harmonic

response is demonstrated in Fig. 5.5. However, as the wave encounter frequency approaches

the resonance frequency, the beam resonates at the resonance period and the deformations

get large, as a linear solver, SEACAL’s computations deviate from experimental data. Fig.

5.9 shows the harmonic analysis of the experimental results of the incident wave and beam

response at the encounter frequency of 10.83 rad/s and 12.56 rad/s. The amplitudes of the

120

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

response signals are significantly higher than the amplitude of the incident wave signals. This

shows that these incident waves excited the resonance frequency of the beam.

Figure 5.9: Harmonic analysis of incident wave signals (top) and corresponding beam’s response
(bottom) in the frequency domain are shown. The beam’s response towards two waves of the
same amplitude but different frequencies, i.e. amplitude 0.007m and the encounter frequencies
of 10.83 rad/s and 12.56 rad/s, is shown.

Fig. 5.10 shows the comparison of the beam’s response obtained from SEACAL and experimen-

tal data. After visual inspection of Fig. 5.10, it can be noticed that the response predicted by

SEACAL is higher than in actual experiments. The reason is, SEACAL’s fluid solver is based

on potential flow theory, therefore, it neglects the viscous effect and predicts higher fluid loads

on the beam thus resulting in higher values of RAO and the beam’s response. A mere visual

inspection of the results could be misleading and therefore one needs to check the relative error,

which is presented in Fig. 5.11.

121

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.10: Comparison of the beam’s response calculated from SEACAL with the measure-
ments obtained from the experiments is shown. Each colour represents a specific wave height
corresponding to wave encounter frequency.

Figure 5.11: Percentage relative difference of experimental values of beam’s response with re-
spect to SEACAL’s results for the corresponding wave amplitudes and encounter frequencies is
shown.

122

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Fig. 5.11 shows the percentage relative difference in the experimental and numerical results.

This way the effect of wave height and wave encounter frequency on the result’s discrepancy

becomes apparent. The plot in Fig. 5.11 depicts that five of eight test cases have a relative

error of less than 20%. The two test cases which showed the highest discrepancy, i.e. percentage

relative error of -40% and-74%, are the waves with amplitudes of 0.123m and 0.195m with the

encounter frequencies of 3.14 rad/s and 2.51 rad/s interact with the beam. Therefore, harmonic

analysis in the frequency domain is performed to investigate the reason for the high discrepancy.

The harmonic analysis is shown in Fig. 5.12.

Figure 5.12: Harmonic analysis of incident wave signals (top) and corresponding beam’s response
(bottom) in the frequency domain are shown. The nonlinear response of the beam towards the
wave with the highest relative error, i.e. amplitude 0.195m and the encounter frequency of
2.51rad/s is shown.

In Fig. 5.12, the top plot shows the amplitudes and encounter frequencies of the incident waves

while the bottom plot shows the amplitudes and frequencies of the beam’s response. The

input wave signal is linear as there is one dominant regular wave with an angular frequency

of 2.51rad/s. However, the beam’s response is highly nonlinear, as multiple high-order modes

got excited and the amplitudes of the high-order modes are much higher than the first mode.

123

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

To further elaborate, in Fig. 5.13, time domain signals of the incident wave and the resulting

beam’s response (accelerations in x directions) measured from all accelerometers are plotted.

The beam’s multiple-frequency response can be seen in the time-domain plots.

Figure 5.13: The time domain signals of the incident wave and beam’s response (accelerations
in x directions) measured from all accelerometers are plotted.

Hence, as a linear solver, SEACAL is incapable of computing such a response. A similar kind

of nonlinear beam response is seen upon harmonic analysis of the wave with 0.123m amplitude

124

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

and 3.14 rad/s frequency.

5.5.2 Regular-wave and beam interactions when the beam is submerged at

0.5m.

All the wave conditions tested in the second experimental subcase are simulated in SEACAL

to obtain the RAO values for the range of given angular wave/encounter frequencies and then

the relation mentioned in (5.1) is used to compute the beam’s response. Due to an increase in

the beam’s submerged depth, from 0.25m to 0.5m, the beam’s resonance frequency decreases

respectively from 14.70rad/s to 10.81rad/s. Hence, making it possible to study the regular-wave

interaction with the beam when wave-encounter-frequency is larger than the beam’s resonance

frequency. The wave parameters and the results obtained from experiments and SEACAL are

listed in Table 5.5.

Table 5.5: Comparison of the results obtained from the linear FSI numerical solver are compared
with the experimental results.

Given Initials SEACAL Experiments

A Tp ω RAO Response RAO Response

[m] [s] [rad/s] [1/s2] [m/s2] [1/s2] [m/s2]

1 0.0044 0.500 12.560 72.920 0.321 80.682 0.355
2 0.064 1.000 6.280 14.872 0.952 14.313 0.916
3 0.12 1.500 4.190 3.312 0.397 3.692 0.443
4 0.007 0.500 12.560 72.920 0.510 94.143 0.659
5 0.033 1.000 6.280 14.872 0.491 13.818 0.456
6 0.057 1.500 4.190 3.312 0.189 3.579 0.204
7 0.12 2.000 3.140 1.166 0.140 0.867 0.104
8 0.0062 0.580 10.830 147.025 0.912 154.516 0.958

A detailed comparison of the RAO values obtained from the experiments and SEACAL is

shown in Fig. 5.14. Fig. 5.14 has four sub-plots and each subplot corresponds to a different

accelerometer. The topmost subplot shows the RAO values of all test cases calculated from the

accelerometer located at the submerged free end of the beam. SEACAL did not yield any RAO

value for the two accelerometers located around the beam’s fixed end, therefore, comparison

plots for ACC-5 and ACC-6 are not shown.

Fig. 5.15 and 5.16 and show the comparison of numerical results, obtained from SEACAL, with

the experimental data. Fig. 5.15 shows the comparison of RAO values while the comparison of

beam’s response is shown in Fig. 5.16.

125

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.14: The comparison of response amplitude operator (RAO) 1/s2 values obtained from
SEACAL and experimental data at different wave amplitudes and encounter frequencies is
shown.

Unlike the first subcase and our expectations, we noticed from Fig. 5.16 that SEACAL under-

predicted the value of RAO and thus beam’s response for five of eight test cases. The difference in

this subcase is that the beam is submerged deeper and therefore the effects due to hydrodynamics

are more significant, which might have excited the high-order frequency response in the beam

which SEACAL is unable to predict because of the limitations of the linear model. Further in

this section, we will perform a harmonic analysis of the test cases with the highest deviation

and testify our deduction. Hence, the first step is to quantify the relative error and identify

the cases with the highest value of relative error. Fig. 5.17 shows a plot of percentage relative

error.

126

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.15: The comparison of response amplitude operator (RAO) values obtained from
SEACAL and experimental data at different wave amplitudes and encounter frequencies is
shown.

Figure 5.16: Comparison of the beam’s response calculated from SEACAL with the measure-
ments obtained from the experiments is shown. Each colour represents a specific wave amplitude
corresponding to wave encounter frequency.

127

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.17: Percentage relative error of experimental values of beam’s response with respect to
SEACAL’s results for the corresponding wave amplitudes and encounter frequencies is shown.

Fig. 5.17 shows that six of eight test cases have a percentage relative error of around 10%.

Only two cases have a relative error of more than 10%, i.e. ≈ 29% for the wave with 0.007

m amplitude and 12.56 rad/s frequency, and ≈ -25% for the wave with 0.12m amplitude and

frequency of 3.14rad/s. We will investigate these two cases by performing harmonic analysis. In

addition to this observation, we have observed that whenever two waves of different amplitudes

are tested at the same frequency, the relative error for the wave with a high amplitude is higher

than the wave with a small amplitude. For example, we tested two incident waves of different

amplitudes at the same encounter frequency, i.e. 6.28 rad/s and the high-amplitude wave, i.e.

0.064m, showed higher error as compared to the low-amplitude wave i.e. 0.033m.

Fig. 5.18 shows the harmonic analysis of the incident wave and beam response corresponding to

the test case with the highest relative error of ≈ 29%. The beam’s response shows one peak at

the encounter frequency of the incident wave. This shows the resonance response of the beam.

128

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

Figure 5.18: The beam’s response (bottom) to the water waves (top) with the highest discrep-
ancy, i.e. ≈ 29%, is shown in the frequency domain. This case corresponds to the wave with an
amplitude of 0.007m and an encounter frequency of 12.56 rad/s. The incident wave is shown in
the top plot while the beam response is shown in the bottom plot.

Figure 5.19: The beam’s response (bottom) to the water waves (top) with the second highest
discrepancy, i.e. ≈ -25%, is shown in the frequency domain. This case corresponds to the wave
amplitude of 0.12m with an encounter frequency of 3.14 rad/s. The incident wave is shown in
the top plot while the beam response is shown in the bottom plot.

129

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

In Fig. 5.19, results from the harmonic analysis show that the harmonic loading from the

incident wave has excited the high-frequency modes whose amplitudes are comparable to the

first fundamental mode. This indicates that the beam’s response is nonlinear. To further

elaborate, in Fig. 5.20, time domain signals of the incident wave and the resulting beam’s

response (accelerations in x directions) measured from all accelerometers are plotted. The

beam’s multiple-frequency response can be seen in the time-domain plots.

Figure 5.20: The time domain signals of the incident wave and beam’s response (accelerations
in x directions) measured from all accelerometers are plotted.

130

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

5.6 Conclusion

This work presents a comparison study of experimental data with SEACAL, an in-house linear

FSI solver used at MARIN. The purpose is to validate SEACAL’s results for a range of regular

wave conditions and parameters. The presented study has two experimental subcases based

on the submerged depth of the beam, i.e. 0.25m and 0.5m. It is noticed that increasing the

submerged depth from 0.25m to 0.5m reduces the natural frequency of the beam, due to an

increase of the added mass, thus allowing to perform comparison at resonance.

In the first subcase, when the submerged depth is 0.25m, the experimentally measured beam’s

resonance frequency is 14.7rad/s which is higher than the encounter frequency of all the wave

conditions tested in that subcase. Therefore, it is observed from the harmonic analysis that, for

most of the tests, the beam’s response remained linear, i.e. the response obeyed the principle of

superposition and the harmonics are integer multiples of the fundamental frequency and their

amplitude decreases as the frequency increases. An example of linear response is shown in Fig.

5.5. In this subcase, the absolute error when the beam showed a linear response is less than

20%. However, when the encounter frequencies are 2.51rad/s and 3.14rad/s, the absolute error

is greater than 30% for both test cases. Upon further investigation by performing harmonic

analysis, it is revealed that these two cases excited the high-frequency modes of the beam and

being a linear solver SEACAL could not predict the beam’s response accurately.

In the second subcase, when the submerged depth is 0.5m, the experimentally measured beam’s

resonance frequency is 10.81rad/s, thus allowing us to study beam’s response when the wave

encounter frequency is close to and greater than the beam’s resonance frequency. Therefore,

the nonlinear resonance response of the beam could be excited by more wave conditions as

compared to subcase 1. Six of the eight test cases showed a linear response and the absolute

error remained around 10%, as shown in Fig. 5.17. However, when the beam’s response is

nonlinear, the maximum relative error is around 30% for the wave with an amplitude of 0.12m

and an encounter frequency of 3.14rad/s. The cause of the large discrepancy is similar to the

first subcase, i.e. excitation of high-frequency modes which has amplitudes larger than the

fundamental low-frequency mode.

As SEACAL is a linear solver whose fluid solver is based on potential flow theory, therefore,

the major cause for the discrepancy is due to the elimination of high-order terms and viscous

131

Chapter 5. Linear fluid-structure interaction modelling of regular water waves with the flexible
beam

effects. However, the software is fast as the simulation time for all wave conditions is within

five minutes and, according to the experts at MARIN, the discrepancy of the results, when the

beam’s response is linear, is in the acceptable range for the initial design testing, i.e., around

10% to 15% relative error. In the test cases when beam’s nonlinear response is excited, the

discrepancy in the results is over 35% which shows that a nonlinear FSI solver should be used.

Therefore, in Chapter 6, we will use high-fidelity Reynold Averaged Navier Stokes equation

(RANSE)-based ReFRESCO code [57] to simulate nonlinear wave-beam interactions.

132

Chapter 6

High-fidelity fluid structure

interactions modelling of regular and

irregular water waves

6.1 Introduction

In this chapter, we present numerical modelling of the fluid-structure-interaction (FSI) problem,

i.e. regular and irregular water waves’ interactions with a flexible beam, by coupling Reynold’s

Averaged Navier Stokes Equations (RANSE) based solver with a finite element model (FEM)

of the flexible beam such that the beam’s deformations could be large or nonlinear while the

interaction between the FEM nodes is modelled as a linear spring system. This study aims

to validate numerical results produced by MARIN’s in-house high-fidelity FSI solver, i.e. Re-

FRESCO (Reliable & Fast RANS Equations Code for Ships and Constructions Offshore) [57],

by comparing numerical results with the test cases from experimental case 1 and case 3. For

the sake of completeness of this report, we will first briefly explain the experimental setup. The

experimental set-up consists of a flexible PVC beam which is attached to the basin carriage,

the beam is equipped with six accelerometers which are located equidistantly. There are two

probes, indicated as probe 1 and probe 2, as shown in Fig. 6.1. Probe 1 is located in front of

the beam while probe 2 is in parallel to the beam. Both probes record the total amplitude of

waves which are resultant of incoming waves from the wavemaker and diffracted waves from the

beam. Thus the designed experimental setup is capable of measuring the wave amplitude and

133

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

the resulting beam’s response in a simultaneous fashion which makes the setup suitable for FSI

study.

Figure 6.1: The experimental set-up for the FSI study is shown. Photo courtesy MARIN.

Before sharing the results from the comparison we would briefly explain the theoretical back-

ground of RANSE, modal analysis, and FSI.

6.1.1 RANSE-based fluid model

The basic theoretical concept of RANSE-based models is explained in §2.2.2 of this report. As

you know turbulent viscosity in RANSE should be modelled to close the system of equations.

However, in ReFRESCO, instead of using turbulence models we have applied a slip-wall con-

dition at the beam’s surface. The CFD software used in this project is ReFRESCO which is

a RANSE-based solver. ReFRESCO is capable of handling intricate geometries and complex

physics as it includes innovative meshing techniques and the latest physical models. Further in

this section, we will explain how the mathematical equations which are explained in this section

are discretised in space and time by ReFRESCO.

FVM-based numerical modelling of fluid

In this section, the spatial discretisation of the fluid equations is explained. The explanation is

based on the theory manual of ReFRESCO [15]. ReFRESCO uses the Finite Volume Method

134

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

(FVM) along with the turbulence closure models to solve RANS equations in the integral form.

To derive the integral form of the equations (2.3) and (2.4), consider an arbitrary shape control

volume Γ that is enclosed by a surface S which has an outward pointing unit normal vector n⃗.

This system is fixed in the absolute reference frame in time. Now, we can integrate the equations

(2.3) and (2.4) for the considered control volume and apply Gauss’ divergence theorem to obtain

the integral form of the conservation equations, as follows:

∂

∂t

∫
Γ
ρdΓ +

∫
S

(ρV⃗)n⃗dS = 0, (6.1)

∂

∂t

∫
Γ
(ρV⃗)dΓ +

∫
S
ρV⃗ V⃗ · n⃗dS =

∫
S

(τij − P) · n⃗dS +

∫
Γ
ρFbdΓ. (6.2)

Similarly, the integral form of the transport equation is given as:

∂

∂t

∫
Γ
(ρϕ)dΓ +

∫
S
ρϕV⃗ · n⃗dS =

∫
S
ν∇ϕ · n⃗dS +

∫
Γ
ρQϕdΓ. (6.3)

The derived integral equations can now be discretised by the finite-volume method (FVM). The

physical fluid domain is discretised into cells, the integral form of the equations is integrated

for each grid cell and dependent variables are defined at each cell centre. The volume integrals

are approximated as follows: ∫
Γ
ϕdΓ ≈ ϕc∆Γ, (6.4)

where ϕc is the value of integral at the cell center and ∆Γ is the cell volume. The surface

integrals are approximated as: ∫
S
ϕdS ≈

Nf∑
i=1

ϕfiSfi , (6.5)

which requires the face values ϕfi of the integrand by interpolation on cell center data as well

as the face area Sfi of all Nf cell faces [15].

Time discretisation

In this section, the temporal discretisation of the spatially discredited fluid equations in Re-

FRESCO is explained [15]. The time derivative term for a volume control Γ takes the form

∂

∂t

∫
Γ
(ρϕ)dΓ, (6.6)

135

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

where ϕ is any scalar, which is discretised by an implicit backward approximation scheme:

∂

∂t

∫
Γ
(ρϕ)dΓ ≈ [c1(ρcϕc∆Γ)n + c2(ρcϕc∆Γ)n−1 + c3(ρcϕc∆Γ)n−2]/∆t, (6.7)

where n is the time level; ∆t is the time step; ρc and ϕc are the cell centred values of the

variables; and c1, c2, and c3 are the coefficients whose value depend on the scheme we want to

apply. For example, the values of the coefficients for the first-order backward Euler scheme are

c1 = 1.0, c2 = −1.0, and c3 = 0.0 and for the second-order backward scheme, the coefficients

are: c1 = 1.5, c2 = −2.0, and c3 = 0.5 [15].

6.1.2 Modal analysis of beam structure

The modal analysis is a type of linear dynamic analysis which is performed to determine the

natural frequency and normal mode shapes of the structure by solving the equation of motion

[18, 39]. Consider the following equation of motion:

[M]{ẍ} + [C]{ẋ} + [K]{x} = {f(t)}, (6.8)

where M is the mass matrix, ẍ is the acceleration vector, C is the linearized damping matrix,

ẋ is the velocity vector, K is the linearized stiffness matrix, x is the displacement vector, and

f(t) is the force vector. The linearized damping and stiffness matrices are derived from the

small motion perturbations of the finite element model nodes. The natural frequencies and

mode shapes are the natural characteristics of the structure and therefore are independent of

time and external loads. For this reason, the equation of motion excludes the external loads

and is solved in the frequency domain, this is also called free vibration analysis. The equation

of motion for this case is given as:

[M]{ẍ} + [K]{x} = 0. (6.9)

Note that we also do not need to include the effect of damping therefore C is not taken into

account. This system is referred to as a free and undamped system. (6.9) is still time-dependent

as it involves x. To convert (6.9) into frequency domain we assume that each point i of the

136

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

structure is moving harmonically as follows:

{x} = {A}i sin(ωit+ θi), (6.10)

where A is the amplitude of the harmonic motion of each point i, ω2 is the angular frequency

which same for all points, and θ is the phase angle of each point. This means, that all points

of the structure are moving harmonically such that they have the same angular frequency but

can have different amplitudes, and can be out of phase with respect to each other. The double

derivative of (6.10) with respect to time is

{ẍ} = −ω2
i {A}i sin(ωit+ θi). (6.11)

Substituting (6.11) and (6.10) into (6.9) we obtain:

(
[K] − ω2

i [M]
)
{A}i = 0, (6.12)

where ω2 i.e. the eigenvalue, and A i.e. the eigenvector, are the time-independent unknowns

of the problem instead of time-dependent x and ẍ. Hence, (6.12), which is a classic eigenvalue

problem, can be solved in the frequency domain. The angular frequency of the system can be

found by solving the non-trivial solution of (6.12), as follows:

det
(

[K] − ω2
i [M]

)
= 0 (6.13)

where, M and K are known matrices. Once the angular frequency is computed, we can sub-

stitute it into (6.12) to calculate the mode shape vector or eigenvector A. If M and K are of

N × N dimensions then there are N eigenvalues; for each eigenvalue there is a corresponding

eigenvector. The natural frequency is related to the angular frequency of the system by using

the following expression:

fi = ωi/2π (6.14)

Finally, the angular frequencies and amplitudes can be substituted in (6.10) and (6.11) to obtain

the displacement and acceleration of the structure.

137

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

FEM-based numerical model for modal analysis

The finite element method (FEM) is a numerical method of solving differential equations. The

finite element model of the beam is developed at MARIN by using ANSYS Mechanical. The

beam model is created by shell elements.

6.1.3 Fluid structure interactions

Fluid-structure interaction is a multi-physics problem which deals with the interactions of fluid

flow with the flexible structure in a way that the structure deforms and, as a result, the struc-

tural deformations change the initial fluid flow. Thus a FSI problem is a two-way coupled

problem, due to the complexity of the underlying physics, investigation is challenging in terms

of experimentation, mathematical analysis and numerical modelling. An FSI problem can be

categorized either into a monolithic approach or a partitioned approach based on the way equa-

tions of fluid and structure are solved. A complete classification of a FSI problem based on the

equations-solving procedure is shown in Fig. 6.2.

Figure 6.2: Classification of different types of FSI methods [68].

In the monolithic approach, both solid and fluid are treated as one unified system and equations

of both systems are solved simultaneously. In the partitioned approach, fluid and solid are

treated as two different systems coupled at the interface. The partitioned approach is preferred

in engineering applications because it allows the use of independently developed and tested

solvers for fluid and structural analysis. The partitioned approach is further subdivided into

one-way and two-way coupling. In the one-way coupled FSI analysis, at first, the fluid analysis

138

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

is done until convergence then the loads from the fluid are imported to the FEM solver and

structural analysis is done until convergence and the simulation stops [6]. Conversely, in the

two-way coupled FSI analysis, the process is iterative. After the structural solver computes

the geometry displacement, these displacements are imported back into the fluid solver and

the fluid analysis is done for the next time step. The process is repeated until the geometry

reaches equilibrium. The two-way coupled FSI analysis is further divided into explicit and

implicit approaches depending on the way the information is exchanged between the fluid and

the structural solvers [76].

6.2 FSI modelling in ReFRESCO

In this section, we explain the procedure by which ReFRESCO solves an FSI problem. The

explanation is based on the internal reports [44] and [43]. ReFRESCO’s FSI module solves the

equation of motion which includes the fluid forces and the structure’s deformation; however,

structural damping is neglected. Therefore the resulting equation of motion is given as:

[M]ẍ+ [K]x = F (x), (6.15)

where F (x) is the fluid force vector, and [M] and [K] are structure’s mass and stiffness matrices.

The mass and stiffness matrices are computed by creating the FEM model of the beam in

ANSYS and then these matrices are imported into ReFRESCO. Thus the mesh used for the

fluid simulation is different from the structural mesh. Therefore, ReFRESCO uses the two-

way coupled partitioned approach to solve the FSI problem. The loads computed by the fluid

solver are interpolated on the structural mesh at the interface, also called as coupling interface.

The coupling of the fluid and structure meshes is performed employing kinematic and dynamic

boundary conditions at the coupling interface(γ), which are written as follows:

x⃗f = x⃗s on γ; (6.16)

p⃗f n⃗f = p⃗sn⃗s on γ, (6.17)

where x⃗f and x⃗s are the respective fluid and structural displacements; p⃗f and p⃗s are the respec-

tive pressure part of the stress tensors at the fluid and structure interface; and n⃗f and n⃗s are

the outward normal vectors at the fluid and structure interface, respectively. These boundary

139

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

condition, i.e. kinematic and dynamic, states that either the displacement field of the fluid and

structure are equal or the stresses due pressure field of the fluid and structure are in equilibrium

at the coupling interface. However, if the energy is conserved at the coupling interface then a

conservative coupling approach can be used, which is stated in surface integral form as follows:

∫
γf

x⃗f · p⃗f n⃗fdS =

∫
γs

x⃗s · p⃗sn⃗sdS. (6.18)

The FSI module of ReFRESCO monitors the total energy, energy change, and energy loss at

each time step. the interpolation matrix can be created by different methods, however, in this

comparison study, we have used the Radial Basis Function (RBF) interpolation method which

is based on C2 radial function with compact support.

The flow chart depicted in Fig. 6.3 explains the process of solving the FSI problem in Re-

FRESCO.

Figure 6.3: A flowchart for the FSI modelling in ReFRESCO [43].

140

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

6.3 Setup for numerical modelling

Before explaining the setup of the numerical model, it is important to understand the physical

fluid domain. The actual experimental set-up has a fresh water-filled wavetank which is 220m-

long, 3.6m-deep, and 4.01m-wide. The wavetank has a waveflap-type wavemaker at one end to

generate water waves while the other end has a beach to absorb the incoming waves and reduce

the reflected waves. It would be an extremely costly and time-consuming simulation if one tries

to model the complete wavetank by using CFD. To make the simulations relatively fast and

affordable, we have made simplifications in the numerical model which are explained later in

this section. First, we have considered a much smaller computational domain as compared to

the actual wavetank. Hence, we have modelled the FSI problem in the region of interest, i.e.

beam and the fluid flow in the vicinity of the beam. Second, the model does not include any

wavemaker to generate water waves, instead, an inflow boundary condition is applied at one

end of the computational domain. The inflow boundary condition requires the wave height and

time period as input parameters for the initial condition of the wave. Third, the model does not

include a beach to absorb reflected waves, instead, an outflow boundary condition (Sommerfeld)

is applied with an absorption zone behind the beam in which the difference between incoming

wave and ReFRESCO wave is gradually removed using body forces in momentum equation and

free-surface equation. Fourth, a free-slip boundary condition is applied at the bottom of the

computational domain because we did not model the actual depth of the basin.

Fig. 6.4 shows a comparison of the experimental set-up (Fig. 6.4(a)) and the numerical set-up

(Fig. 6.4(b)) which are used in the study of this FSI problem. The computational domain is

shown in Fig. 6.4(b).

6.3.1 Geometry and spatial discretisation of the computational domain

The computational domain consists three-dimensional rectangular domain which has a fluid

part and a structure part. The structural part consists of a FEM model of a cylindrical beam

whose one end is attached to the top boundary of the rectangular computational domain and the

other end is submerged in the water. The water flow inserts load on the submerged end of the

beam and the beam deforms in response. The three-dimensional rectangular domain is 2m-long

in the x direction, 3m-high in the z direction, and 1m-thick in the y direction. The fluid part

of the computational domain is discretised by using finite-volume cells of three different sizes.

141

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

(a) Experimental set-up is depicted. (b) Numerical set-up is shown.

Figure 6.4: A comparison of the experimental and numerical set-up of the FSI problem.

The different cell sizes are used to further optimize the computational time. The computational

domain is divided into three zones based on the cell size. Zone-1 has the largest cells and zone-3

has the finest cell while zone-2 has intermediary cell size as it ensures a smooth transition of

cells from zone-1 to zone-3. We use fine mesh in zone-3 because it is the part of the domain

where fluid interacts with the beam therefore there is a requirement for high accuracy in this

region. The spatially discretised numerical model with labelled boundary conditions and cell

zones is depicted in Fig. 6.5.

142

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.5: A front view of the discretised computational domain is presented. The boundary
conditions at different regions of the computational domain are shown with orange-coloured
arrows. The three zones based on the cell size are also shown.

In the spatially discretised fluid-free surface, shown in Fig. 6.6, a circular hole can be seen

which is the region where the beam comes in contact with the free surface. The boundary of

the hole is treated as an impermeable wall which ensures no fluid flow through the beam. The

loads exerted by the fluid are also interpolated around the boundary of the circular hole.

The spatial discretisation of the beam is shown in Fig. 6.7. The beam has two types of meshes,

i.e. structural mesh and hydro-mesh. The hydro-mesh is in the lower submerged end of the

beam and it is used to compute and transfer loads due to water waves and air pressure on the

beam. The beam is attached to the top boundary of the computational domain, however, the

type of connection is not fixed, i.e. degrees of freedom are not equal to zero. To obtain a similar

connection type as with the experimental setup, i.e. pin-joint with rotational spring, the beam

allowed rotation in x− z plane and restricted to have translation along x−, y−, and z−axis.

143

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.6: Top view of the spatially discretised fluid’s free surface.

Figure 6.7: Front view of the spatially discretised beam is presented. The submerged part of
the beam has hydro-mesh which is finer mesh as compared to the structural mesh.

144

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

6.3.2 Grid and time convergence study

After setting up the model, the next step is to perform a grid and time convergence study to

ensure that the numerical results are not affected by grid and time-step size. In case of the beam

model, the grid convergence study is performed in ANSYS. The model is constructed by using

shell elements and modal analysis is performed to compute the first fundamental frequency.

The modal analysis is performed by using different sizes of shell elements, this study is shown in

Table 6.1 and Fig. 6.8. In addition to the first fundamental frequency value, the other criterion

for the grid selection is computational time which is not shown here.

Table 6.1: Mesh convergence study for the FEM model.

∆x ∆y f1
[mm] [mm] [1/s]

1. 25.00 25.00 3.578
2. 16.50 18.70 3.598
3. 12.50 12.50 3.606
4. 6.15 6.25 3.612

Figure 6.8: Mesh convergence study for the FEM model. The rectangular mesh elements of the
beam FEM model are refined and natural frequency is computed.

Based on this study we selected a grid size of 12.5mm. This grid size is optimal for this study

because the frequency has a percentage relative error of 0.16% with the experimental value of

145

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

frequency and the computational time is also acceptable.

In the case of fluid mesh, we have tested three different grid sizes for zone-1 while zone-3 has a

four times smaller grid size than zone-1 grid, i.e. zone-3 has four times more cells than zone-1.

The different cell numbers, along x−, y− and z−axis of the domain, corresponding to each case,

i.e. Grid 1, Grid 2, and Grid 3, used for the mesh convergence study are summarized in Table

6.2.

Table 6.2: Mesh convergence study for the FSI model.

Zone-1 Zone-3

Nx Ny Nz Nx Ny Nz

Grid 1 25 12 40 100 48 160
Grid 2 35 17 56 140 68 224
Grid 3 50 24 80 200 96 320

Since the FSI problem under consideration is time-dependent, hence, selection of a suitable time

step that must satisfy the CFL condition is necessary for the stable simulation. We performed

a temporal convergence study by using different time steps (∆t) which are: 0.01, 0.005, and

0.0025.

Table 6.3: Grid convergence study for the ReFRESCO model.

∆t= 0.01 ∆t=0.005 ∆t=0.0025

Awave Awave Awave

[m] [m] [m]

Grid 1 0.0162 0.0268 0.03
Grid 2 0.0246 0.0255 0.0298
Grid 3 0.0224 0.0191 0.0301

Table 6.3 shows the spatial and temporal convergence study performed for one of the test cases,

i.e. incident wave with amplitude 0.031m and frequency 6.28 rad/s. The wave amplitude values

obtained from the ReFRESCO simulations are compared with the experiment. A plot of the

convergence study with different grid and time step sizes is shown in Fig. 6.9. Based on this

study we found that Grid 2 with time step 0.0025 is most suitable in terms of accuracy and

computational time. Hence, we will use Grid 2 with a time step (dt) size of 0.0025 to carry out

the numerical simulations which are presented in the next section.

146

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.9: Comparison of wave amplitude value obtained from spatial and temporal conver-
gence study with the experimental results obtained from Probe 2 (grey dashed line) is shown.

6.4 Results and Discussion

In this section, we will compare and discuss the results obtained from the numerical solver with

the experimental data. Generating waves experimentally utilizing a wavemaker in the wavetank

to achieve a wave of a certain wave amplitude and period is called experimental modelling of

the waves. It is important to note that the actual wave generated in the wavetank is not always

the same as the given input parameters and there could be a deviation. One can notice from the

presented study that the wave amplitude measured from the experiments slightly varies from

the input wave amplitude. Therefore, the comparison of the numerical results is done with the

experimental results and not with the given inputs.

6.4.1 Regular-wave and beam interactions when the beam is submerged at

0.25m.

The actual subcase of the experimental case-1 includes eight test cases based on different wave

parameters, i.e. wave amplitude and wave time period. However, this comparison study is

performed for selected test cases, which are summarized in Table 6.4. In Table 6.4, the column

147

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

heading “Given initials” presents the wave parameters that we intended to achieve through

experimental and numerical modelling.

Table 6.4: A summary of the wave parameters used in different test cases of the first subcase,
and corresponding results obtained from experimental and numerical modelling of each test case
are presented.

Given initials Experiments ReFRESCO Relative error

Awave ω Awave Response Awave Response Awave Response

[m] [rad/s] [m] [m/s2] [m] [m/s2] [m] [m/s2]

1 0.063 6.28 0.062 0.606 0.059 0.550 4.92% 10.18%
2 0.141 4.19 0.120 0.271 0.112 0.270 6.70% 0.37 %
3 0.031 6.28 0.033 0.297 0.030 0.305 8.88% -2.62%
4 0.070 4.19 0.055 0.120 0.055 0.140 -0.91% -14.29%
5 0.125 3.14 0.125 0.052 0.121 0.122 2.89 % -57.20%
6 0.008 10.83 0.007 0.445 0.006 0.365 7.81% 1.37%

The column heading “Experiments” has two subcolumns which present the wave amplitude,

measured by Probe 2, and beam response which is measured by an accelerometer located at

the submerged end of the beam. The column heading “ReFRESCO” has two subcolumns

which present the wave amplitude and beam response obtained from the numerical modelling.

The accelerometer measures the beam’s accelerations in all three axes, i.e. x-, y- and z-axes.

However, we have only considered accelerations along the x-axis because the incoming water

waves and the resulting maximum accelerations both are in the x direction. The output signals

from experimental modelling and numerical simulations are in the time domain. These time

domain signals need to be analysed in the frequency domain by performing a Fourier transform

to determine the magnitude and phase of different harmonics. The maximum amplitude of

the first harmonic is found for each signal, i.e. wave amplitude and beam’s accelerations,

corresponding to each test case which are then listed in the Table and plotted in the graphs

shown in this section. The relative error obtained by comparing the numerical results with the

experiments is presented under the column heading “Relative error”. Later in this section, we

present the plots of data listed in Table 6.4.

At first, we will compare the wave amplitude predicted by ReFRESCO with the actual experi-

mental results. This comparison is shown in Fig. 6.10.

148

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.10: A comparison of wave amplitude values obtained from ReFRESCO and the exper-
iments is shown. The experimental results are presented by blue marker while the numerical
results are shown by red marker.

After that, we have shown the comparison of the beam response obtained from numerical

modelling with the experimental results in Fig. 6.11.

Figure 6.11: Comparison of beam response (accelerations) obtained from ReFRESCO and the
experiments is shown.

149

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Finally, the relative errors of wave amplitude and beam response obtained from the comparison

of the experimental and numerical results are shown in Fig. 6.12.

(a) Percentage relative error for wave amplitude. (b) Percentage relative error for beam response.

Figure 6.12: Relative error between the experimental and numerical results for the first subcase
is presented.

In Fig. 6.12 (a), we can see that the relative error of wave amplitude for all six test cases

ranges from 0 to 10%. Fig 6.12(b) shows the relative error of beam response. We can note

that the error for five of six test cases ranges from ≈ -15 to 10%. However, there is a case

with a large deviation, i.e. relative error of ≈ 60% for the beam response while the relative

error for the wave amplitude is 2.89%. To investigate the reason for deviation we perform the

harmonic analysis of the numerical results for the incident wave and beam response produced in

this case. The time domain signals obtained from the experiments and ReFRESCO are shown

in Fig. 6.13 and Fig. 6.14, respectively. To further investigate the amplitude and frequency

of the dominant signals we have performed harmonic analysis, i.e. a Fourier transform (Fast

Fourier Transform, FFT) on the time-domain signals. The harmonic analysis shown in Fig.

6.15 clarifies the reason for the large deviation in the beam response. It can be seen that the

wave is single-frequency whereas the beam’s response has multiple frequencies. Furthermore,

the high-frequency modes are dominant than the low-frequency modes, therefore, the beam’s

response is nonlinear. However, the FEM model used in this study is linear and thus incapable

of accurately model nonlinear response.

After showing a case with the highest discrepancy in Fig. 6.15, we present a comparison case

in Fig. 6.18 when the results from the numerical simulations and experiments agree well.

150

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.13: Time domain signals of the incident wave (Awave = 0.125 m and ω= 3.14 rad/s)
and beam response (accelerations) obtained from the experiments are shown in the frequency
domain.

Figure 6.14: The incident wave (Awave = 0.125 m and ω= 3.14 rad/s) and beam response
(accelerations) obtained from ReFRESCO are shown in the time domain.

151

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.15: Comparison of the incident wave (Awave = 0.125 m and ω= 3.14 rad/s) and
beam response (accelerations) obtained from ReFRESCO and the experiments are shown in
the frequency domain.

Figure 6.16: The incident wave (Awave = 0.031 m and ω= 6.28 rad/s) and beam response
(accelerations) obtained from the experiments are shown in the time domain.

152

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.17: The incident wave (Awave = 0.031 m and ω= 6.28 rad/s) and beam response
(accelerations) obtained from ReFRESCO are shown in the time domain.

Figure 6.18: Comparison of the incident wave (Awave = 0.031 m and ω= 6.28 rad/s) and
beam response (accelerations) obtained from ReFRESCO and the experiments are shown in
the frequency domain.

153

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

6.4.2 Regular-wave and beam interactions when the beam is submerged at

0.5m.

Similar to the first subcase, instead of simulating all the test cases in the second subcase

of experimental case 1, we will simulate some cases. The cases selected for this study are

summarised in Table 6.5.

Table 6.5: A summary of the wave parameters used in different test cases of the second subcase,
and corresponding results obtained from experimental and numerical modelling of each test case
are listed.

Given Initials Experiments ReFRESCO Relative error

Awave ω Awave Response Awave Response Awave Response

m rad/s m m/s2 m m/s2 m m/s2

1 0.063 6.280 0.061 0.915 0.059 0.793 2.71% 15.38%
2 0.141 4.190 0.113 0.360 0.112 0.430 0.89% -16.28%
3 0.031 6.280 0.032 0.494 0.030 0.427 7.02% 15.69%
4 0.070 4.190 0.057 0.204 0.056 0.214 1.79% -4.63%

Fig. 6.19 shows the comparison of wave amplitude values obtained from numerical and experi-

mental modelling.

Figure 6.19: Wave amplitude values obtained from the numerical modelling are compared with
the experiments. The experimental results are presented by blue marker while the numerical
results are shown by red marker.

Fig. 6.20 shows the comparison of the beam response (accelerations) obtained from numerical

and experimental modelling.

154

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.20: Comparison of beam response (accelerations) obtained from the numerical mod-
elling and the experiments is shown.

Finally, the relative errors of wave amplitude and beam response obtained from the comparison

of the experimental and numerical results are shown in Fig 6.21.

(a) Percentage relative error for wave amplitude. (b) Percentage relative error for beam response.

Figure 6.21: Relative error between the experimental and numerical results for the first subcase
is presented.

In Fig. 6.21(a), we can see that the relative error of wave amplitude for all four test cases ranges

from ≈ 1 to 7%. Fig. 6.21(b) shows the relative error of beam response. We can note that

the error for five of six test cases ranges from ≈ -15 to 15%. Next, we select a test case with

the highest discrepancy, i.e. Awave = 0.141 m and ω= 4.19 rad/s, and compare the numerical

155

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

and experimental results in both the time and frequency domains. The time domain plots are

shown in Fig. 6.22 and Fig. 6.23 while the comparison in the frequency domain is shown in

Fig. 6.24.

Figure 6.22: The incident wave (Awave = 0.141 m and ω= 4.19 rad/s) and beam response
(accelerations) obtained from the experiments are shown in the time domain.

Figure 6.23: The incident wave (Awave = 0.141 m and ω= 4.19 rad/s) and beam response
(accelerations) obtained from ReFRESCO are shown in the time domain.

156

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.24: Comparison of the incident wave (Awave = 0.141 m and ω= 4.19 rad/s) and
beam response (accelerations) obtained from ReFRESCO and the experiments are shown in
the frequency domain.

6.5 Nonlinear modelling of irregular waves

This section is dedicated to the explanation of irregular-wave modelling and the beam response

to impact loads in ReFRESCO. In addition to regular waves, ReFRESCO is capable of mod-

elling irregular waves. Researchers from MARIN have presented a detailed study in [26] with

different examples of extreme waves from the maritime industry to demonstrate ReFRESCO’s

capabilities. Although ReFRESCO can model extreme irregular waves, due to the limitations

of computational cost and time, it is impossible to simulate all events of irregular waves that

happened in a 220m long wavetank for the duration of an hour. The challenging aspect of mod-

elling a specific event is that it requires tuning the wave parameters to generate a steep wave of

specific height and frequency at a precise location, i.e. at the beam location, thus the impact

loads on the beam due to wave breaking can be modelled. Hence, modelling such an event is

an iterative process which requires running several simulations after adjusting the parameters.

Bunnik et al. [14] have elaborated the iterative process of irregular wave modelling by using

ReFRESCO in their study of wave-breaking impact on a flexible fixed-bottom monopile, which

is shown in Fig. 6.25.

157

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.25: The iterative process of focused wave modelling to measure wave-breaking impact
and response of flexible fixed-bottom monopile in ReFRESCO is explained [14].

The first step of modelling an irregular wave in ReFRESCO is to select a specific event that

occurred during the experimental modelling of irregular waves. In this study, we select an event

in which a steep wave breaks at the beam thus resulting in high beam accelerations. Fig. 6.26

shows plots of the incident wave signal and the resulting beam’s response that occurred during

the experiments. The top plot of Fig. 6.26 shows the wave signal measured by the probe which

is located parallel to the beam (Probe 2 in Fig. 6.1)and the bottom plot shows the beam’s

response to the wave signal.

After the signal is selected, the next step is to run an initial simulation by using the selected

wave signal from the experiments as an incoming wave condition at the left-hand side of the

computational domain. The computational domain used in this irregular-wave impact on the

flexible beam study is the same as the one used for the study of regular-wave impact on the

flexible beam. The selection of suitable spatial and temporal sizes is based on the grid and

temporal convergence study which is already performed in the regular wave case, therefore,

based on our study we have selected a grid size corresponding to Grid 2 given in Table 6.3

and time step 0.0025. The results obtained from the initial run for the wave signal in the time

domain are shown in Fig. 6.27.

158

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.26: A focused wave generated at the beam’s location (top plot) and the flexible beam
response (bottom plot) to steep irregular waves are shown [69].

Figure 6.27: The focused wave generated in the experiments (red line) is compared with the
wave modelled by ReFRESCO (black dashed line) at the beam’s location.

Furthermore, a comparison between the experiments and numerical results is performed in the

frequency domain, which is depicted in Fig. 6.28.

159

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

Figure 6.28: Comparison of the experimental and ReFRESCO results is plotted in the frequency
domain. The top plot shows the wave signal while the bottom plot depicts the beam response.

We can conclude from the visual analysis of Figs. 6.27 and 6.28 that the wave modelled by

ReFRESCO has a large discrepancy from the experimental wave, thus leading to a huge differ-

ence in impact load and dynamic response of the beam’s submerged end. Therefore, another

simulation should be performed with the readjusted wave parameters.

6.6 Conclusion

In this comparison study, we have simulated selected test cases from the first and second subcase

of experimental case 1 which is presented in [69] by using a RANSE-based high-fidelity MARIN

in-house numerical solver, i.e. ReFRESCO. This study aims to validate ReFRESCO. For both

subcases, we found that the wave amplitude value predicted by ReFRESCO simulation has a

relative error of ≈ 10% as compared to the experimental value, whereas, in the case of beam

response, the relative error was around 10 to 15%. However, we found one test case had a large

160

Chapter 6. High-fidelity fluid structure interactions modelling of regular and irregular water
waves

relative error because the beam response was nonlinear. Hence, we conclude that this model is

limited to the cases when the structure’s response is linear, however, nonlinear wave modelling is

possible. ReFRESCO’s capability to simulate nonlinear waves is tested by performing an initial

simulation of a test case from the experimental case 3. Modelling focused waves in ReFRESCO

is an iterative process; however, due to time and budget constraints, we could not complete

this study and are sharing preliminary results to explain the process of irregular focused wave

modelling in ReFRESCO.

161

Chapter 7

Code Tutorials

7.1 Introduction

This chapter is dedicated to code explanation of the numerical wavetank models that we have

developed in Chapter 2 and Chapter 3 of this thesis. This tutorial aims to facilitate the user

by explaining the use and possible extension of the code in Firedrake. Furthermore, the codes

are also available on an open GitHub repository with public access for code sharing.

To run the codes the user must have Firedrake installed in their systems. The detailed process

of Firedrake installation is available on Firedrake website. Furthermore, there is a Firedrake

slack channel where users can directly ask the developers if they encounter any problems related

to Firedrake. Having shared this information, we now proceed with the code tutorial.

7.2 Shallow water dynamics

This section explains the codes for the piston-driven numerical wavetank model based on the

linear and nonlinear shallow water dynamics which are based on the mathematical and numerical

models explained in Chapter 2 of this thesis.

7.2.1 Linear Shallow water equations

First, we will share and explain the code for the linear shallow water equations case. This

code solves the problem by using the novel approach that we have developed in this thesis, i.e.

time-discrete variational principle based on the first-order symplectic-Euler and second-order

Störmer-Verlet (SV) time-integration schemes. As this model is the simplest of all numerical

162

https://github.com/Wajiha11/EAGRE_-WP2/tree/main/SWE
https://www.firedrakeproject.org/download.html
https://app.slack.com/client/T1Q0ATNSY/C1Q0Y6H8A
https://app.slack.com/client/T1Q0ATNSY/C1Q0Y6H8A

Chapter 7. Code Tutorials

models, therefore, using this case as the staring example for the code tutorial will assist in the

understanding process of user.

Define user parameters

Solving a variational problem in Firedrake can be classified into seven steps. Before, explaining

the seven-step process, we need to include the relevant libraries in our python script and define

the variable. Note that we include Firedrake as a library as well by typing "import firedrake

as fd". In this code, the user has the choice to select a case number, as follows:

1. Case 1: Solves linear shallow water case by using time-discrete VP based on symplectic-

Euler (SE) scheme.

2. Case 2: Solves linear shallow water case by using time-discrete VP based on Störmer-Verlet

(SV) scheme.

After that, there are three choices for the user to select the wavemaker motion type, defined by

variable "start wavemaker" as follows:

1. "start wavemaker" = 0. If the user assigns 0 value to "start wavemaker" then the

wavemaker will not move and no water waves will be generated. This setting can be used

with initial conditions defined as variable "ic"=1 to compare the numerical results with

the exact solution.

2. "start wavemaker" = 1. If the user assigns 1 value to "start wavemaker" then the

wavemaker will keep on moving through the simulation time according to the parameters

defined for the wavemaker motion and velocity.

3. "start wavemaker" = 2. If the user assigns 2 to "start wavemaker" then the wavemaker

will move at first and then stop after a certain simulation time. This setting assists in

monitoring the energy behaviour of the system. The time after which the wavemaker

stops can be defined by the user in "Parameters for wavemaker" block of the code.

The variable "ic" stands for initial condition. Selecting "ic"=1 assign the standing wave

solution to the variables ϕ and η. The user should select "ic"=1 when wavemaker motion

is not included, i.e. "start wavemaker" = 0, and aim is to compare the numerical standing-

wave solution with the exact standing-wave solution. Finally, the user can compute the wave

parameters, i.e wave time period (Tp) and angular frequency (w), by defining the wave number

163

Chapter 7. Code Tutorials

(k). This calculation can help to select an appropriate parameters for the wavemaker motion if

the user wants to produce standing waves in the numerical wavetank.

1 # Import Python libraries

2 import firedrake as fd

3 import math as m

4 import numpy as np

5 from matplotlib import animation , pyplot as plt

6 import os

7

8 print(’### ’)

9 print(’#################### User input parameters ######################## ’)

10 print(’### ’)

11

12 ’’’

13 Case 1 => Solves Linear shallow water case by using time -discrete VP based on

SE scheme.

14 Case 2 => Solves Linear shallow water case by using time -discrete VP based on

SV scheme.

15 ’’’

16

17 case = 1

18 start_wavemaker = 2 # (start_wavemaker = 0 => Does not move at all ,

start_wavemaker = 1 => wavemaker keeps moving , start_wavemaker = 2 =>

Wavemaker starts and then stops)

19 ic = 0 # ic = 1 to use ics

= func , ic = 0 use ics as 0

20 settings = 1 # settings for

wavemaker , 1 == original , 2 == yangs settings

21 alp = 0

22 dt = 0.02

23 print(’Time step size =’, dt)

24 save_path = "data_Lin_SWE"

25 if not os.path.exists(save_path):

26 os.makedirs(save_path)

27

28 H0 = 1 # water depth

29 g = 9.8 # gravitational

acceleration

30 c = np.sqrt(g*H0) # wave speed

164

Chapter 7. Code Tutorials

31

32 #__________________ FIGURE PARAMETERS _____________________#

33 tsize = 18 # font size of image title

34 size = 16 # font size of image axes

35 factor = 2

36 t = 0

37 tt = format(t, ’.3f’)

38

39 ##__________________ Parameters for wave _____________________ ##

40 print("###")

41 print(’######################## PARAMETERS of Wave ##################### ’)

42 print("###")

43

44 t = 0 # start time

45

46 m1 = 1

47

48 k1 = (2* fd.pi * m1) /Lx

49 print(’Wavenumber in x direction (k1) =’,k1)

50

51 w = c * np.sqrt(k1**2)

52 print(’wave frequency (w)’,w)

53

54 k = np.sqrt(k1**2)

55 print(’Total wavenumber (k) =’,k)

56

57 Tp = (2* fd.pi) /w

58 print(’Time period of wave (Tp) =’,Tp)

59

60 ##__________________ Parameters for wavemaker _____________________ ##

61 print("###")

62 print(’######################### Parameters for wavemaker ################## ’)

63 print("###")

64 gamma = 0.002

65

66 lamb = 70 # Wavelength

67 print(’Wavelength of wavemaker=’, lamb)

68

69 kp = 2*fd.pi/lamb # Wave number

165

Chapter 7. Code Tutorials

70 print(’Wavemaker wave number (kp) =’,kp)

71

72 sigma = c * fd.sqrt(kp**2) #fd.sqrt(g*kp*fd.tanh(kp*H0)) # Wavemaker

frequency

73 print(’Wavemaker frequency (sigma) =’, sigma)

74

75 Tw = 2*fd.pi/sigma # Wavemaker period

76 print(’Time period of wavemaker (Tw)=’, Tw)

77

78 t_end = 2*Tw # time of simulation in sec

79 print(’End time =’, t_end)

80

81 ts = int(t_end/dt)

82 print(’time_steps =’, ts)

83 ##______________ Plot to spot the region of wavemaker frequency ____________ ##

84

85 lam = np.linspace(1, 200 ,200)

86 k_plot = 2*fd.pi/lam

87 w_pot = (np.sqrt(g* k_plot * np.tanh(k_plot*H0)))

88 w_shallow = c * np.sqrt(k_plot **2)

89 Time_period = 2*fd.pi/w_pot

90

91 plt.title(" Wave frequency (ω) vs. wave number (k)",fontsize=tsize)

92 plt.plot(k_plot , w_pot , ’k--’,label = ’$Potential$ ’)

93 plt.plot(kp , sigma , ’ro’)

94 plt.plot(k_plot , w_shallow , ’r--’, label = ’$Shallow$ ’)

95 plt.xlabel(’k ’,fontsize=size)

96 plt.ylabel(’$\omega $ ’,fontsize=size)

97 plt.xlim ([0.05 , 3])

98 plt.legend(loc =1)

99 plt.grid()

100

101 ##______________ Settings to get results at different time steps

______________ ##

102

103 time = []

104 while (t <= t_end):

105 t+= dt

106 time.append(t)

166

Chapter 7. Code Tutorials

107

108 x2 = int(len(time)/2)

109 t_plot = np.array ([time[0], time[x2], time[-1]])

110 print("t_plot =", t_plot)

111 i = 0

112 if ic ==1:

113 color= np.array([’g-’, ’b-’, ’k-’])

114 colore= np.array ([’m--’, ’c--’, ’r--’])

115 else:

116 color= np.array([’g-’, ’b--’, ’r:’])

117 colore= np.array ([’k:’, ’c--’, ’m:’])

118

119 t_stop = t_end /2

Step 1: define the computational domain and mesh

The first step in the process of implementing a variational problem in Firedrake is to define a

computational domain and mesh, i.e. spatially discredited computational domain. Firedrake

offers built-in meshing options “ Firedrake also provides a number of built-in mesh types for a

number of standard shapes. 1-dimensional intervals may be constructed with IntervalMesh(); 2-

dimensional rectangles with RectangleMesh(); and 3-dimensional boxes with BoxMesh(). There

are also more specific constructors (for example to build unit square meshes). See utility meshes

for full details.” Furthermore, the user can use Gmsh, triangle, CGNS, and Exodus to create

meshes for complicated geometries because the format of mesh files for the aforementioned

software is compatible with Firedrake. In our case, we are using a two-dimensional rectangular

domain of Lx × Ly, the user can assign a value to Lx and Ly to construct a domain of their

choice. Similarly, the user can define the number of nodes for spatial discretisation by assigning

a value to variable nx and ny.

1 #________________________ MESH _______________________#

2

3 nx = 200 # number of nodes in x direction of mesh

4 n = nx

5 ny = 1 # number of nodes in y direction of mesh

6 dx= 1/nx

7 Lx = 140 # Length of domain in x direction

8 Ly = 40 # Length of domain in y direction

167

Chapter 7. Code Tutorials

9 print("Lx =", Lx)

10 print(’Ly =’, Ly)

11 print("Nodes in x direction =", nx)

12

13 mesh = fd.RectangleMesh(nx, ny, Lx, Ly)

14 x,y = fd.SpatialCoordinate(mesh)

15 Lw = 5 # Point till which coordinates

trandformation will happen

16 print(’Lw =’, Lw)

17

18 xvals = np.linspace(0, Lx -0.001 , nx)

19 yvals = np.linspace(0, Ly - 0.001 , ny)

20 yslice = Ly/2

21 xslice = Lx/2

22

23 wavemaker_id = 1 # 1 => left side of the domain

Step 2: define the function spaces

Now, we define the function space on which we would like to solve the problem. Firedrake

offers a range of function spaces that we can choose, for example continuous Galerkin (CG),

Dis-continuous Galerkin (DG), and Lagrange etc. More options for function spaces can be found

on Firedrake website. In our case, we are using continuous Galerkin (CG).

1 #__________________ Define function spaces __________________ ##

2

3 V = fd.FunctionSpace(mesh , "CG", 1) # scalar function

space

4

5 phi = fd.Function(V, name = "phi") # phi^n

6 phi_new = fd.Function(V, name = "phi_new") # phi^n+1

7

8 phi_half = fd.Function(V, name = "phi_half") # phi^n

9

10 eta_half = fd.Function(V, name = "eta_half") # phi^n

11

12 eta = fd.Function(V, name = "eta") # eta^n

13 eta_new = fd.Function(V, name = "eta_new") # eta^n+1

14

168

Chapter 7. Code Tutorials

15 #_______________________ Wavemaker _______________________#

16

17 R = fd.Function(V, name = "wavemaker") # Wavemaker motion

18 Rt = fd.Function(V, name = "wavemaker motion") # Wavemaker

velocity

19 Rt_half = fd.Function(V, name = "wavemaker motion") # Wavemaker

velocity

20

21 #______________________ Exact solution _______________________#

22 phie= fd.Function(V, name = "phi_exact")

23 he = fd.Function(V, name = "h_exact")

24 etae = fd.Function(V, name = "eta_exact")

Step 3: define the test function space

A test function is a function for which we are solving the variational problem, i.e. the unknown

of the problem. Therefore, the function space of the test function should be consistent with the

function space of the unknown function, which are ϕ and η in this case.

1

2 #__________________ Define Test functions __________________ ##

3

4 v = fd.TestFunction(V)

Step 4: define initial conditions and assign them to the corresponding function

spaces

After defining the appropriate function spaces, we need to assign functions/ initial conditions

to our problem. If the user choose to assign initial conditions for the standing wave solution

,i.e. ic = 1, then the standing wave solution at t = 0 will be assigned to the function spaces

of relevant to phi and eta. If ic = 0, then 0 will be assigned as initial conditions to phi and

eta and changes due to the wavemaker motion will be observed in the simulation results. The

wavemaker motion chosen and controllable parameters used are:

R(t) =

 γ cos (σt) 0 ≤ t ≤ Tp

0 t > Tp

, (7.1)

σ =
√
gH0k =

√
gH02π/λ, λ = 70m, Tp = 2π/σ, γ = 0.002m.

169

Chapter 7. Code Tutorials

Simulations are undertaken over two time periods 0 ≤ t ≤ 2Tp.

1

2 ##___________________ Parameters for IC _________________________ ##

3 if ic == 1:

4 print(’### ’)

5 print(’################ Parameters of ICs and Exact #################### ’)

6 print(’### ’)

7

8 A0 = 0.009

9 B0 = 0.009

10

11 print(’A0 =’, A0)

12 print(’B0 =’, B0)

13

14 Uo = gamma

15

16 tic = 0

17 aic = np.exp(-1j * sigma * tic)

18 print(’aic =’, aic)

19

20 ##______________________ Parameters for Exact Sol _______________________ ##

21

22 P = (kp * fd.sin(kp * Lx))

23 print(’P = (kp * fd.sin(int(kp) * Lx)) =’,P)

24

25 U_0 = Uo * 1j * sigma

26

27 a = np.exp(-1j * sigma * t_end)

28 print("Real part of exp(-1j * sigma * t_end) =",a.real)

29 ##

30 # Assign Initial Conditions #

31 ##

32

33 print(’Assigning initial conditions ’)

34

35 if ic ==1:

36 ic1 = phi.interpolate((U_0.real)/P * aic.real* fd.cos(kp * (x - Lx)) \

37 + (g/w) * fd.cos(k1 * x) * (-A0*fd.sin(w * tic) + B0*fd.cos(w * tic))

)

170

Chapter 7. Code Tutorials

38 ic2 = eta.interpolate((((1j*sigma)/ g) * (U_0.real)/(P) * np.exp(-1j *

sigma * tic)).real * fd.cos(kp * (x - Lx))\

39 + fd.cos(k1 * x) * (A0*fd.cos(w * tic) + B0*fd.sin(w * tic)))

40

41 else:

42 ic1 = phi.assign (0)

43 ic2 = eta.assign (0)

44

45 phi.assign(ic1)

46 phi_new.assign(ic1)

47 phi_half.assign(ic1)

48

49 eta.assign(ic2)

50 eta_new.assign(ic2)

51 eta_half.assign(ic2)

52

53 phivals = np.array([ic1.at(x, yslice) for x in xvals])

54 etavals = np.array([ic2.at(x, yslice) for x in xvals])

55

56 fig , ((ax1 , ax2)) = plt.subplots (2)

57 ax1.set_title(’Initial Conditions ’,fontsize=tsize)

58 ax1.plot(xvals , etavals , label = ’η’)

59 ax1.set_ylabel(’$\eta (x,t)$ [m] ’,fontsize=size)

60

61 ax1.grid()

62

63 ax2.plot(xvals , phivals , label = ’ϕ’)

64 ax2.set_xlabel(’x [m] ’,fontsize=size)

65 ax2.set_ylabel(’$\phi (x,t)$ ’,fontsize=size)

66 ax2.grid()

67

68 ##

69 # Wavemaker #

70 ##

71

72 print(’############### Wavemaker motion calculations block ################# ’)

73

74 nt = 0

75 nnt = np.linspace(0, t_end , ts+1)

171

Chapter 7. Code Tutorials

76

77 ##__________________ Plot of wavemaker motion _____________________ ##

78 print(’Plot of wavemaker motion ’)

79 Rt1=[]

80 Rh1 = []

81

82 if start_wavemaker == 2:

83 print(’The wavemaker will stop after time step =’,t_stop)

84

85 t = 0

86 for nt in range(len(nnt)):

87 if start_wavemaker == 1:

88 R_h1 = -gamma*fd.cos(sigma*t)

89 Rt_1 = gamma*sigma*fd.sin(sigma*t)

90

91 elif start_wavemaker == 2:

92

93 R_h1 = -gamma *fd.cos(sigma*t)

94 Rt_1 = gamma *sigma*fd.sin(sigma*t)

95

96 if t >= t_stop:

97 R_h1 = -gamma*fd.cos(sigma*t_stop)

98 Rt_1 = 0*gamma*sigma*fd.sin(sigma*t_stop)

99

100 elif start_wavemaker == 0:

101

102 R_h1 = fd.Constant (0)

103 Rt_1 = fd.Constant (0)

104

105 t+=dt

106 Rt1.append(Rt_1)

107 Rh1.append(R_h1)

108

109 if start_wavemaker == 1:

110 Amp_wave = max(Rh1)

111 print(’Maximum amplitude of wavemaker =’, Amp_wave)

112 vel_wave = max(Rt1)

113 print(’Maximum velocity of wavemaker =’, vel_wave)

114 else:

172

Chapter 7. Code Tutorials

115 pass

116

117 fig , (ax1 , ax2) = plt.subplots (2)

118

119 ax1.set_title(’Wavemaker Position ’,fontsize=tsize)

120 ax1.plot(nnt , Rh1 , ’r-’, label = f’$h_e: t = {t:.3f}$ ’)

121 ax1.set_ylabel(’$R(t)[m]$ ’,fontsize=size)

122 ax1.grid()

123

124 ax2.set_title(’Wavemaker velocity ’,fontsize=tsize)

125 ax2.plot(nnt , Rt1 , ’r-’, label = f’$\phi_e: t = {t:.3f}$ ’)

126 ax2.set_xlabel(’$Time [s]$ ’,fontsize=size)

127 ax2.set_ylabel(’$R_{t} [m/s]$ ’,fontsize=size)

128 ax2.grid()

129 ##_________________ FIGURE SETTINGS __________________________ ##

130 print(’Figure settings ’)

131

132 plt.figure (2)

133 fig , (ax1 , ax2) = plt.subplots (2)

134 ax2.set_title(r’ϕ value in x direction ’,fontsize=tsize)

135 ax1.set_title(r’η value in x direction ’,fontsize=tsize)

136 ax1.set_ylabel(r’$\eta (x,t) \times 10^{ -2} [m]$ ’,fontsize=size)

137 ax1.grid()

138 ax2.set_xlabel(r’$x [m]$ ’,fontsize=size)

139 ax2.set_ylabel(r’$\phi (x,t)$ ’,fontsize=size)

140 ax2.grid()

Step 5: define the variational problem

After assigning the initial conditions we can define the variational problem in Firedrake. Note

that Firedrake uses a high-level language, UFL, to describe variational problems. Therefore,

the format for writing the problem should be consistent with UFL.

In Case 1, we are solving linear shallow-water equations with piston wavemaker by using time-

discrete VP based on SE scheme, given as:

0 =δ

∫ L

0
ϕn

(ηn+1 − ηn)

∆t
− ϕn+1 η

n+1

∆t
− 1

2
H0|∇ϕn|2 − 1

2
g(ηn+1)2 dx−HRn

t ϕ
n|x=0, (7.2)

173

https://fenics.readthedocs.io/projects/ufl/en/latest/
https://fenics.readthedocs.io/projects/ufl/en/latest/

Chapter 7. Code Tutorials

the variations of (7.2) with respect to ϕn and ηn+1 yield the symplectic-Euler time-discrete

weak formulations, as follows

∫ L

0
δϕn

(ηn+1 − ηn)

∆t
−H0∇ϕn ·∇δϕn dx−HRn

t δϕ
n|x=0 = 0 and (7.3)∫ L

0

((ϕn+1 − ϕn)

∆t
+ gηn+1

)
δηn+1 dx = 0. (7.4)

In the code, we write the time-discretised VP and automatically derive the time-discretised

weak formulations by using fd.derivative(VP, phi, v) and fd.derivative(VP, eta new,

v).

1

2 ####################### VARIATIONAL PRINCIPLE ##############################

3 print("###")

4 print(’######################### Numerical Calculations ################## ’)

5 print("###")

6

7 t = 0

8

9 if case == 1:

10 print("You have selected case 1 : Linear (alpha = 0) /Nonlinear (alpha = 1)

SWE VP solved by firedrake by using fd.derivative ")

11 print("Linear shallow water solved by using time -discrete VP based on SE

scheme")

12

13 E1_t = []

14 E1_p = []

15 E1_k = []

16

17 VP = (fd.inner ((eta_new - eta)/dt , phi) - fd.inner(phi_new , (eta_new/dt

)) \

18 - (1/2 * (H0 + alp*eta_new) * fd.inner(fd.grad(phi), fd.grad(phi))) \

19 - (1/2 * g * fd.inner(eta_new ,eta_new))) * fd.dx - (H0 + alp*eta_new

)* Rt *phi*fd.ds(1)

20

21

22 eta_expr = fd.derivative(VP, phi , v) # derivative of VP wrt phi^n to get

the expression for eta^n+1 first

23 eta_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

174

Chapter 7. Code Tutorials

eta_expr , eta_new))

24

25

26 phi_expr = fd.derivative(VP, eta_new , v) # derivative of VP wrt eta^n+1 to

get the value of phi^n+1

27 phi_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

phi_expr , phi_new))

28

29 ##__________ Define .PVD OUTPUT FILES ______________________ ##

30 if start_wavemaker ==1:

31 outfile_phi = fd.File("results_LinSWE_SE_wm1_case1/phi.pvd")

32 outfile_eta = fd.File("results_LinSWE_SE_wm1_case1/eta.pvd")

33 elif start_wavemaker == 2:

34 outfile_phi = fd.File("results_LinSWE_SE_wm2_case1/phi.pvd")

35 outfile_eta = fd.File("results_LinSWE_SE_wm2_case1/eta.pvd")

36 elif start_wavemaker == 0:

37 outfile_phi = fd.File("results_LinSWE_SE_wm0_case1/phi.pvd")

38 outfile_eta = fd.File("results_LinSWE_SE_wm0_case1/eta.pvd")

39

40 ### ________________ Define .TXT OUTPUT FILES _________________ ###

41 if start_wavemaker == 1:

42 filename1 = "Linear_SWE_SE_wm1.txt"

43 elif start_wavemaker == 2:

44 filename1 = "Linear_SWE_SE_wm2.txt"

45 elif start_wavemaker == 0:

46 filename1 = "Linear_SWE_SE_wm0.txt"

47

48 f = open(filename1 , ’w+’)

49

50

Step 6: Solve the variational problem

We define a time loop in which we solve the variational problem by storing the solution at time

n and updating the variable values at to find values at time n + 1. The time step should be

chosen according to the CFL condition.

1

2 ## ________________ TIME LOOP _________________ ##

3

175

Chapter 7. Code Tutorials

4 while (t <= t_end):

5 tt = format(t, ’.3f’)

6 ## ______________________ wavemaker motion _________________________ ##

7 # # wavemaker moving from t = 0 to t = t_end

8 if start_wavemaker == 1:

9 R.assign(-gamma * fd.cos(sigma*t))

10 Rt.assign(gamma * sigma * fd.sin(sigma*t))

11

12 # # wavemaker moves at first and then stops after some time

13 if start_wavemaker == 2:

14 R.assign(-gamma * fd.cos(sigma*t))

15 Rt.assign(gamma * sigma * fd.sin(sigma*t))

16

17

18 if t >= t_stop:

19 R.assign(-gamma *fd.cos(sigma*t_stop))

20 Rt.assign (0)

21

22 # # wavemaker does not move at all

23 elif start_wavemaker == 0:

24 Rt.assign (0)

25 R.assign (0)

26 ## ___ ##

27

28 eta_expr.solve ()

29 phi_expr.solve ()

30

31 t+= dt

32 # print(’velocity of wavemaker ’,Rt.dat.data) #Rt.dat.data

33

34 Epp = fd.assemble ((1/2 * g * fd.inner(eta ,eta))* fd.dx)

35 Ekk = fd.assemble (0.5 * H0* (fd.grad(phi)**2 * fd.dx))

36 Et = abs(Ekk) + abs(Epp)

Step 7: Plot and output the results

Finally, within the time loop, we compute and write the value of variables in .txt files and

generate .pvd files for visualisation.

1

176

Chapter 7. Code Tutorials

2 f.write(’%-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s\n’ \

3 % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.at

(0,0)), str(eta.at(0,0)), str(Epp), str(Ekk), str(Et)))

4

5 if (t in t_plot):

6 print(’Plotting starts ’)

7 print(’t =’, t)

8 i += 1

9

10

11 if ic == 1:

12 phi_exact = phie.interpolate((U_0.real)/P * a.real* fd.cos(kp

* (x - Lx)) \

13 + (g/w) * fd.cos(k1 * x) * (-A0*fd.sin(w *

t) + B0*fd.cos(w * t)))

14

15 eta_exact = etae.interpolate((((1j*sigma)/ g) * (U_0.real)/(P)

* np.exp(-1j * sigma * t_end)).real * fd.cos(kp * (x - Lx))\

16 + fd.cos(k1 * x) * (A0*fd.cos(w * t) + B0*

fd.sin(w * t)))

17

18 phievals = np.array ([phi_exact.at(x, yslice) for x in xvals])

19 etaevals = np.array ([eta_exact.at(x, yslice) for x in xvals])

20 else:

21 pass

22

23 eta1vals = np.array ([eta_new.at(x, Ly/2) for x in xvals])

24 phi1vals = np.array ([phi_new.at(x, Ly/2) for x in xvals])

25

26

27 if start_wavemaker == 1:

28 eta_file_name = ’eta_lswe_SE_wm1_ ’+tt+’.txt’

29 phi1_file_name = ’phi_lswe_SE_wm1_ ’+tt+’.txt’

30 elif start_wavemaker == 2:

31 eta_file_name = ’eta_lswe_SE_wm2_ ’+tt+’.txt’

32 phi1_file_name = ’phi_lswe_SE_wm2_ ’+tt+’.txt’

33 elif start_wavemaker == 0:

34 eta_file_name = ’eta_lswe_SE_wm0_ ’+tt+’.txt’

35 phi1_file_name = ’phi_lswe_SE_wm0_ ’+tt+’.txt’

177

Chapter 7. Code Tutorials

36

37 eta_file = open(os.path.join(save_path , eta_file_name), ’w’)

38 phi1_file = open(os.path.join(save_path , phi1_file_name), ’w’)

39

40 y_slice = Ly/2

41 x_coarse = np.linspace(0,Lx -0.001 ,200)

42 for ix in x_coarse:

43 eta_file.write(’%-25s %-25s %-25s\n’ %(str(ix), str(H0 + eta.

at(ix,y_slice)), str(eta.at(ix,y_slice))))

44 phi1_file.write(’%-25s %-25s\n’ %(str(ix), str(phi.at(ix ,

y_slice))))

45

46

47 ax1.plot(xvals , eta1vals * (10 ** factor), color[i-1], label = f’ $\

eta_n: t = {t:.3f}$’)

48 ax2.plot(xvals ,phi1vals , color[i-1], label = f’ $\phi_n: t = {t:.3f

}$’)

49

50

51 if ic == 1:

52 ax1.plot(xvals , etaevals* (10 ** factor), colore[i-1], label =

f’$h_e: t = {t:.3f}$ ’)

53 ax2.plot(xvals , phievals , colore[i-1], label = f’$\phi_e: t =

{t:.3f}$ ’)

54 else:

55 pass

56 ax1.legend(loc =4)

57 ax2.legend(loc =4)

58

59 outfile_eta.write(eta_new)

60 outfile_phi.write(phi_new)

61

62 E1_t.append(Et)

63 E1_k.append(Ekk)

64 E1_p.append(Epp)

65

66 phi.assign(phi_new)

67 eta.assign(eta_new)

68

178

Chapter 7. Code Tutorials

69 f.close()

70 eta_file.close ()

71 phi1_file.close()

72

73 fig , (ax1 , ax2 , ax3) = plt.subplots (3)

74 fig.suptitle(’Energy evolution with time’,fontsize= tsize)

75 ax1.plot(time , E1_k)

76 ax1.set_ylabel(’Kinetic energy[J] ’,fontsize=size)

77 ax1.grid()

78

79 ax2.plot(time , E1_p)

80 ax2.set_ylabel(’Potential Energy [J]’,fontsize=size)

81 ax2.grid()

82

83 ax3.plot(time , E1_t)

84 ax3.set_xlabel(’$Time [s]$ ’,fontsize=size)

85 ax3.set_ylabel(’Total energy [J] ’,fontsize=size)

86 ax3.grid()

Similarly, the process is repeated from steps 5 to 7 for solving the linear shallow water case by

using time-discrete VP based on the Störmer-Verlet (SV) scheme. The time-discrete variational

principle (VP) based on the Stormer Verlet scheme for the linear potential-flow shallow-water

dynamics reads

0 =δ

∫ L

0

(
−2

(ϕn+1/2 − ϕn

∆t

)
ηn − 2

(ϕn+1 − ϕn+1/2

∆t

)
ηn+1

− 1

2
g
(

(ηn)2 + (ηn+1)2
)
−H|∇ϕn+1/2|2

)
dx

− 2HR
n+1/2
t ϕn+1/2

∣∣∣
x=0

. (7.5)

The variations of (7.5) with respect to δηn, δϕn+1/2 and δηn+1 yield

∫ L

0
−2

(ϕn+1/2 − ϕn

∆t

)
δηn − gηnδηn dx = 0, (7.6)∫ L

0
2
(ηn+1 − ηn

∆t

)
δϕn+1/2 − 2H∇ϕn+1/2∇δϕn+1/2 dx− 2HR

n+1/2
t δϕn+1/2|x=0, (7.7)∫ L

0
−2

(ϕn+1 − ϕn+1/2

∆t

)
δηn+1 − gηn+1δηn+1 dx = 0, (7.8)

respectively. We directly implement the time-discrete variational principle in Firedrake and

179

Chapter 7. Code Tutorials

automatically derive the weak formulations.

1

2 elif case ==2:

3 print(’Case 2: The linear SWE will be solved with time discrete VP based on

SV scheme.’)

4

5 E1_t = []

6 E1_p = []

7 E1_k = []

8

9 VP =(-fd.inner (2 * (phi_half - phi)/dt , eta) \

10 - fd.inner (2 * (phi_new - phi_half)/dt , eta_new) \

11 - (1/2 * (H0) * fd.inner(fd.grad(phi_half), fd.grad(phi_half)) \

12 + 1/2 * (H0) * fd.inner(fd.grad(phi_half), fd.grad(phi_half))) \

13 - (1/2 * g * (fd.inner(eta_new ,eta_new) + fd.inner(eta ,eta))))*

fd.dx\

14 - (H0 * Rt_half *phi_half + H0 * Rt_half *phi_half) *fd.ds(1)

15

16

17 phi_half_expr = fd.derivative(VP , eta , v) # derivative of VP wrt eta^n+1

to get the value of phi^n+1

18 phi_half_expr = fd.NonlinearVariationalSolver(fd.

NonlinearVariationalProblem(phi_half_expr , phi_half))

19

20 eta_expr = fd.derivative(VP, phi_half , v) # derivative of VP wrt phi^n to

get the expression for eta^n+1 first

21 eta_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

eta_expr , eta_new))

22

23

24 phi_expr = fd.derivative(VP, eta_new , v) # derivative of VP wrt eta^n+1 to

get the value of phi^n+1

25 phi_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

phi_expr , phi_new))

26

27

28 ##__________ OUTPUT FILES ______________________ ##

29 if start_wavemaker ==1:

30 outfile_phi = fd.File("results_LinSWE_SV_wm1_case1/phi.pvd")

180

Chapter 7. Code Tutorials

31 outfile_eta = fd.File("results_LinSWE_SV_wm1_case1/eta.pvd")

32 elif start_wavemaker == 2:

33 outfile_phi = fd.File("results_LinSWE_SV_wm2_case1/phi.pvd")

34 outfile_eta = fd.File("results_LinSWE_SV_wm2_case1/eta.pvd")

35 elif start_wavemaker == 0:

36 outfile_phi = fd.File("results_LinSWE_SV_wm0_case1/phi.pvd")

37 outfile_eta = fd.File("results_LinSWE_SV_wm0_case1/eta.pvd")

38

39 ### ________________ TXT FILES _________________ ###

40 if start_wavemaker == 1:

41 filename1 = "Linear_SWE_SV_wm1.txt"

42 elif start_wavemaker == 2:

43 filename1 = "Linear_SWE_SV_wm2.txt"

44 elif start_wavemaker == 0:

45 filename1 = "Linear_SWE_SV_wm0.txt"

46

47 exact_sol = "exact_sol.txt"

48

49 f = open(filename1 , ’w+’)

50 e = open(exact_sol , ’w+’)

51

52

53 ## ________________ TIME LOOP _________________ ##

54

55 while (t <= t_end):

56 tt = format(t, ’.3f’)

57 t_half = t + dt/2

58 ## ______________________ wavemaker motion _________________________ ##

59 # # wavemaker moving from t = 0 to t = t_end

60 if start_wavemaker == 1:

61 R.assign(-gamma * fd.cos(sigma*t))

62 Rt.assign(gamma * sigma * fd.sin(sigma*t))

63 Rt_half.assign(gamma * sigma * fd.sin(sigma*t_half))

64

65 # # wavemaker moves at first and then stops after some time

66 if start_wavemaker == 2:

67 R.assign(-gamma * fd.cos(sigma*t))

68 Rt.assign(gamma * sigma * fd.sin(sigma*t))

69 Rt_half.assign(gamma * sigma * fd.sin(sigma*t_half))

181

Chapter 7. Code Tutorials

70

71 if t >= t_stop:

72 R.assign(-gamma *fd.cos(sigma*t_stop))

73 Rt_half.assign(gamma * sigma * fd.sin(sigma *

t_stop))

74 Rt.assign (0)

75

76 # # wavemaker does not move at all

77 elif start_wavemaker == 0:

78 Rt.assign (0)

79 R.assign (0)

80 Rt_half.assign (0)

81 ## ___ ##

82 phi_half_expr.solve()

83 eta_expr.solve ()

84 phi_expr.solve ()

85

86

87 t+= dt

88 # print(’velocity of wavemaker ’,Rt.dat.data) #Rt.dat.data

89

90 Epp = fd.assemble ((1/2 * g * fd.inner(eta ,eta))* fd.dx)

91 Ekk = fd.assemble (0.5 * H0* (fd.grad(phi)**2 * fd.dx))

92 Et = abs(Ekk) + abs(Epp)

93

94 f.write(’%-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s\n’ \

95 % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.at

(0,0)), str(eta.at(0,0)), str(Epp), str(Ekk), str(Et)))

96

97 if (t in t_plot):

98 print(’Plotting starts ’)

99 print(’t =’, t)

100 i += 1

101

102 if ic == 1:

103 phi_exact = phie.interpolate((U_0.real)/P * a.real* fd.cos(kp

* (x - Lx)) \

104 + (g/w) * fd.cos(k1 * x) * (-A0*fd.sin(w *

t) + B0*fd.cos(w * t)))

182

Chapter 7. Code Tutorials

105

106 eta_exact = etae.interpolate((((1j*sigma)/ g) * (U_0.real)/(P)

* np.exp(-1j * sigma * t_end)).real * fd.cos(kp * (x - Lx))\

107 + fd.cos(k1 * x) * (A0*fd.cos(w * t) + B0*

fd.sin(w * t)))

108

109 phievals = np.array ([phi_exact.at(x, yslice) for x in xvals])

110 etaevals = np.array ([eta_exact.at(x, yslice) for x in xvals])

111 else:

112 pass

113

114 eta1vals = np.array ([eta_new.at(x, Ly/2) for x in xvals])

115 phi1vals = np.array ([phi_new.at(x, Ly/2) for x in xvals])

116

117

118 if start_wavemaker == 1:

119 eta_file_name = ’eta_lswe_SV_wm1_ ’+tt+’.txt’

120 phi1_file_name = ’phi_lswe_SV_wm1_ ’+tt+’.txt’

121 elif start_wavemaker == 2:

122 eta_file_name = ’eta_lswe_SV_wm2_ ’+tt+’.txt’

123 phi1_file_name = ’phi_lswe_SV_wm2_ ’+tt+’.txt’

124 elif start_wavemaker == 0:

125 eta_file_name = ’eta_lswe_SV_wm0_ ’+tt+’.txt’

126 phi1_file_name = ’phi_lswe_SV_wm0_ ’+tt+’.txt’

127 if ic == 1:

128 etae_file_name = ’etae_lswe_SV_wm1_ ’+tt+’.txt’

129 phi1e_file_name = ’phie_lswe_SV_wm1_ ’+tt+’.txt’

130

131

132 eta_file = open(os.path.join(save_path , eta_file_name), ’w’)

133 phi1_file = open(os.path.join(save_path , phi1_file_name), ’w’)

134

135 y_slice = Ly/2

136 x_coarse = np.linspace(0,Lx -0.001 ,200)

137 for ix in x_coarse:

138 eta_file.write(’%-25s %-25s %-25s\n’ %(str(ix), str(H0 + eta.

at(ix,y_slice)), str(eta.at(ix,y_slice))))

139 phi1_file.write(’%-25s %-25s\n’ %(str(ix), str(phi.at(ix ,

y_slice))))

183

Chapter 7. Code Tutorials

140

141

142 ax1.plot(xvals , eta1vals * (10 ** factor), color[i-1], label = f’ $\

eta_n: t = {t:.3f}$’)

143 ax2.plot(xvals ,phi1vals , color[i-1], label = f’ $\phi_n: t = {t:.3f

}$’)

144

145 if ic == 1:

146 ax1.plot(xvals , etaevals* (10 ** factor), colore[i-1], label =

f’$h_e: t = {t:.3f}$ ’)

147 ax2.plot(xvals , phievals , colore[i-1], label = f’$\phi_e: t =

{t:.3f}$ ’)

148 else:

149 pass

150 ax1.legend(loc =4)

151 ax2.legend(loc =4)

152

153 outfile_eta.write(eta_new)

154 outfile_phi.write(phi_new)

155

156 E1_t.append(Et)

157 E1_k.append(Ekk)

158 E1_p.append(Epp)

159

160 phi.assign(phi_new)

161 eta.assign(eta_new)

162

163

164 f.close()

165 eta_file.close ()

166 phi1_file.close()

167

168 fig , (ax1 , ax2 , ax3) = plt.subplots (3)

169 fig.suptitle(’Energy evolution with time’,fontsize= tsize)

170 ax1.plot(time , E1_k)

171 ax1.set_ylabel(’Kinetic energy[J] ’,fontsize=size)

172 ax1.grid()

173

174 ax2.plot(time , E1_p)

184

Chapter 7. Code Tutorials

175 ax2.set_ylabel(’Potential Energy [J]’,fontsize=size)

176 ax2.grid()

177

178 ax3.plot(time , E1_t)

179 ax3.set_xlabel(’$Time [s]$ ’,fontsize=size)

180 ax3.set_ylabel(’Total energy [J] ’,fontsize=size)

181 ax3.grid()

182

183

184 else:

185 print(" The selected number does not match any case")

186

187 plt.show()

188 print(’*************** PROGRAM ENDS ****************** ’)

7.2.2 Nonlinear shallow water equations: comparison of two implementation

approaches by using symplectic-Euler scheme

Now, we share and explain the code for the nonlinear shallow water equations case. This code

solves the problem by using two approaches, i.e. the classical approach of using the time-

discretised weak formulations and the novel approach of implementing the time-discretised

variational principle we developed in this thesis. The aim is to compare the two approaches for

the implementation of variational principle for the two approaches for the implementation of

variational principles for the first-order symplectic-Euler time-integration scheme. The settings

and code description is according to the explanation given for linear shallow water case except

this code solves nonlinear shallow water equations instead of linear.

1

2 import firedrake as fd

3 import math as m

4 import numpy as np

5 from matplotlib import animation , pyplot as plt

6 import os

7

8 print(’### ’)

9 print(’###################### Initial parameters ######################### ’)

10 print(’### ’)

185

Chapter 7. Code Tutorials

11 # case = 1 (Solves SE based Non -linear SWE with piston wavemaker by using Novel

approach)

12 # case = 2 (Solves SE based NL -SWE by with piston wavemaker by using classical

approach)

13 case = 1

14 ramp = 0

15 start_wavemaker = 2 # (start_wavemaker = 1 => wavemaker started to move ,

start_wavemaker = 2 => Wavemaker starts and then stops)

16 ic = 0 # ic = 1 to use ics

= func , ic = 0 use ics as 0

17 settings = 2 # settings for

wavemaker , 1 == original , 2 == yangs settings

18 alp = 1

19 dt = 0.02 # time step

20 print(’Time step size =’, dt)

21 save_path = ’data_SWE_SE ’

22 if not os.path.exists(save_path):

23 os.makedirs(save_path)

24

25 H0 = 1 # water depth

26 g = 9.8 # gravitational

acceleration

27 c = np.sqrt(g*H0) # wave speed

28 #__________________ FIGURE PARAMETERS _____________________#

29 tsize = 18 # font size of image title

30 size = 16 # font size of image axes

31 factor = 2

32 t = 0

33

34 ##__________________ Parameters for wave _____________________ ##

35 print("###")

36 print(’######################## PARAMETERS of Wave ##################### ’)

37 print("###")

38

39 t = 0 # start time

40 m1 = 1

41 m2 = 0

42

43 k1 = (2* fd.pi * m1) /Lx

186

Chapter 7. Code Tutorials

44 print(’Wavenumber in x direction (k1) =’,k1)

45

46 k2 = 0 #(2* fd.pi * m2) /Ly

47 print(’Wavenumber in y direction (k2) =’,k2)

48

49 w = c * np.sqrt(k1**2 + k2**2)

50 print(’wave frequency (w)’,w)

51

52 k = np.sqrt(k1**2 + k2**2)

53 print(’Total wavenumber (k) =’,k)

54

55 Tp = (2* fd.pi) /w

56 print(’Time period of wave (Tp) =’,Tp)

57

58 ##__________________ Parameters for wavemaker _____________________ ##

59 print("###")

60 print(’######################### Parameters for wavemaker ################## ’)

61 print("###")

62 A_max = 0.002

63

64 lamb = 70 # Wavelength

65 print(’Wavelength of wavemaker=’, lamb)

66

67 kp = 2*fd.pi/lamb # Wave number

68 print(’Wavemaker wave number (kp) =’,kp)

69

70 sigma = c * fd.sqrt(kp**2) #fd.sqrt(g*kp*fd.tanh(kp*H0)) # Wavemaker

frequency

71 print(’Wavemaker frequency (sigma) =’, sigma)

72

73 Tw = 2*fd.pi/sigma # Wavemaker period

74 print(’Time period of wavemaker (Tw)=’, Tw)

75

76 t_end = 2*Tw # time of

simulation in sec

77 print(’End time =’, t_end)

78

79 t_steps = int(t_end/dt)

80 print(’time_steps =’, t_steps)

187

Chapter 7. Code Tutorials

81

82 t_stop = Tw

83 gamma = A_max

84 ##______________ Plot to spot the region of wavemaker frequency ____________ ##

85

86 lam = np.linspace(1, 200 ,200)

87 k_plot = 2*fd.pi/lam

88 w_pot = (np.sqrt(g* k_plot * np.tanh(k_plot*H0)))

89 w_shallow = c * np.sqrt(k_plot **2)

90 Time_period = 2*fd.pi/w_pot

91

92 fig , ((ax1 , ax2)) = plt.subplots (2)

93 ax1.set_title(" Wave frequency (ω) vs. wave number (k)",fontsize=tsize)

94 ax1.plot(k_plot , w_pot , ’k--’,label = ’$Potential$ ’)

95 ax1.plot(kp , sigma , ’ro’)

96 ax1.plot(k_plot , w_shallow , ’r--’, label = ’$Shallow$ ’)

97 ax1.set_ylabel(’$\omega $ ’,fontsize=size)

98 ax1.legend(loc =1)

99 ax1.grid()

100

101 ax2.plot(k_plot ,w_pot , ’k--’,label = ’$Potential$ ’)

102 ax2.plot(k_plot , w_shallow , ’r--’, label = ’$Shallow $’)

103 ax2.plot(kp , sigma , ’ro’)

104 ax2.set_xlabel(’k ’,fontsize=size)

105 ax2.set_ylabel(’$\omega $ ’,fontsize=size)

106 ax2.set_xlim ([0.05 , 3])

107 ax2.legend(loc =1)

108 ax2.grid()

109

110 ##______________ To get results at different time steps ______________ ##

111

112 time = []

113 while (t <= t_end):

114 t+= dt

115 time.append(t)

116

117 x2 = int(len(time)/2)

118 t_plot = np.array ([time[0], time[x2], time[-1]])

119 print("t_plot =", t_plot)

188

Chapter 7. Code Tutorials

120

121 lim1 = t_stop

122 i = 0

123 color= np.array([’g-’, ’b--’, ’r:’])

124 colore= np.array ([’k:’, ’c--’, ’m:’])

125

126 ##___________________ Parameters for IC _________________________ ##

127 if ic == 1:

128 print(’### ’)

129 print(’################ Parameters of ICs and Exact #################### ’)

130 print(’### ’)

131 if case ==1 :

132 A0 = 0.009

133 B0 =0.009

134 else:

135 A0 = 0.009

136 B0 = 0.009

137 print(’A0 =’, A0)

138 print(’B0 =’, B0)

139

140 Uo = gamma

141 tic = 0

142 aic = np.exp(-1j * sigma * tic)

143 print(’aic =’, aic)

144

145 ##______________________ Parameters for Exact Sol _______________________ ##

146 P = (kp * fd.sin(kp * Lx))

147 print(’P = (kp * fd.sin(int(kp) * Lx)) =’,P)

148

149 U_0 = Uo * 1j * sigma

150

151 a = np.exp(-1j * sigma * t_end)

152 print("Real part of exp(-1j * sigma * t_end) =",a.real)

Step 1: define the computational domain and mesh

1

2 #________________________ MESH _______________________#

3 nx = 200

4 n = nx

189

Chapter 7. Code Tutorials

5 ny = 1

6 dx= 1/nx

7 Lx = 140 # make it equal to wavelength

8 Ly = 40

9 print("Lx =", Lx)

10 print(’Ly =’, Ly)

11 print("Nodes in x direction =", nx)

12

13 mesh = fd.RectangleMesh(nx, ny, Lx, Ly)

14 x,y = fd.SpatialCoordinate(mesh)

15 Lw = 1 # Point till which coordinates trandformation

will happen

16 print(’Lw =’, Lw)

17

18 xvals = np.linspace(0, Lx -0.001 , nx)

19 yvals = np.linspace(0, Ly - 0.001 , ny)

20 yslice = Ly/2

21 xslice = Lx/2

22

23 wavemaker_id = 1 # 1 => left side of the domain

Step 2: define the function spaces

1

2 #__________________ Define function spaces __________________ ##

3

4 V = fd.FunctionSpace(mesh , "CG", 1) # scalar function

space

5

6 phi = fd.Function(V, name = "phi") # phi^n

7 phi_new = fd.Function(V, name = "phi_new") # phi^n+1

8

9 h = fd.Function(V, name = "eta") # h^n

10 h_new = fd.Function(V, name = "eta_new") # h^n+1

11

12 #______________________ Exact solution _______________________#

13

14 phie= fd.Function(V, name = "phi_exact")

15 he = fd.Function(V, name = "h_exact")

16 etae = fd.Function(V, name = "eta_exact")

190

Chapter 7. Code Tutorials

17

18 #_______________________ Wavemaker _______________________#

19

20 R = fd.Function(V, name = "wavemaker") # Wavemaker motion

21 Rt = fd.Function(V, name = "wavemaker motion") # Wavemaker

velocity

22

23 Rh = fd.Function(V, name = "wavemaker") # Wavemaker motion

till Lw

24 Rht = fd.Function(V, name = "wavemaker_velocity") # Wavemaker

velocity with Heaviside

25

26 Rh_new = fd.Function(V, name = "wavemaker") # Wavemaker

motion till Lw at t+1

27

28 W_new = fd.Function(V, name = "Lw - Rh_new")

29 W = fd.Function(V, name = "Lw - Rh")

30

31 X = fd.Function(V, name = "x_coord - Lw")

Step 3: define the test function

1 trial = fd.TrialFunction(V) # trail function

2

3 v = fd.TestFunction(V)

Step 4: assign initial conditions to the function spaces

1

2 ##

3 # Initial Conditions #

4 ##

5

6 print(’Initial conditions ’)

7 if ic ==1:

8 ic1 = phi.interpolate((U_0.real)/P * aic.real* fd.cos(kp * (x - Lx)) \

9 + (g/w) * fd.cos(k1 * x) * (-A0*fd.sin(w * tic) + B0

*fd.cos(w * tic)))

10

191

Chapter 7. Code Tutorials

11 ic2 = h.interpolate((((1j*sigma)/ g) * (U_0.real)/(P) * np.exp(-1j *

sigma * tic)).real * fd.cos(kp * (x - Lx))\

12 + fd.cos(k1 * x) * (A0*fd.cos(w * tic) + B0

*fd.sin(w * tic)) + H0)

13 else:

14 ic1 = phi.assign (0)

15 ic2 = h.assign (1.0)

16

17 phi.assign(ic1)

18 phi_new.assign(ic1)

19

20 h.assign(ic2)

21 h_new.assign(ic2)

22

23 etavals = np.array([ic2.at(x, yslice) for x in xvals])

24 phivals = np.array([ic1.at(x, yslice) for x in xvals])

25

26 fig , ((ax1 , ax2)) = plt.subplots (2)

27 ax2.plot(xvals , phivals , label = ’ϕ’)

28 ax1.plot(xvals , etavals , label = ’h’)

29 ax1.set_ylabel(’$h(x,t)$ [m] ’,fontsize=size)

30 if ic == 1:

31 pass

32 else:

33 ax1.set_ylim ([0.0, 1.5])

34

35 ax1.grid()

36 ax2.set_xlabel(’x [m] ’,fontsize=size)

37 ax2.set_ylabel(’$\phi (x,t)$ ’,fontsize=size)

38 ax2.grid()

39

40 ##

41 # Wavemaker #

42 ##

43

44 print(’############### Wavemaker motion calculations block ################# ’)

45

46 nt = 0

47 nnt = np.linspace(0, t_end , t_steps +1)

192

Chapter 7. Code Tutorials

48

49 ##__________________ Plot of wavemaker motion _____________________ ##

50 print(’Plot of wavemaker motion ’)

51 Rt1 = []

52 Rh1 = []

53 lim = t_stop # time after which wavemaker stops

54

55 if start_wavemaker == 2:

56 print(’The wavemaker will stop after time =’,lim)

57

58 t = 0

59

60 for nt in range(len(nnt)):

61 if start_wavemaker == 1:

62 if settings == 1:

63 R_h1 = -gamma *(np.exp(-1j * sigma *t)).real

64 Rt_1 = gamma * ((1j * sigma) * np.exp(-1j * sigma *t)).real

65 else:

66 R_h1 = -gamma*fd.cos(sigma*t)

67 Rt_1 = gamma*sigma*fd.sin(sigma*t)

68

69 elif start_wavemaker == 2:

70 if settings == 1:

71 R_h1 = -gamma *(np.exp(-1j * sigma *t)).real

72 Rt_1 = gamma * ((1j * sigma) * np.exp(-1j * sigma *t)).real

73

74 if t >= t_stop:

75 R_h1 = -gamma *(np.exp(-1j * sigma * t_stop)).real

76 Rt_1 = 0 * gamma * ((1j * sigma) * np.exp(-1j * sigma *

t_stop)).real

77 elif settings == 2:

78 R_h1 = -gamma*fd.cos(sigma*t)

79 Rt_1 = gamma*sigma*fd.sin(sigma*t)

80

81 if t >= t_stop:

82 R_h1 = -gamma*fd.cos(sigma*t_stop)

83 Rt_1 = 0*gamma*sigma*fd.sin(sigma*t_stop)

84 else:

85 R_h1 = fd.Constant (0)

193

Chapter 7. Code Tutorials

86 Rt_1 = fd.Constant (0)

87

88 t+=dt

89 Rt1.append(Rt_1)

90 Rh1.append(R_h1)

91

92 if start_wavemaker == 1:

93 Amp_wave = max(Rh1)

94 print(’Maximum amplitude of wavemaker =’, Amp_wave)

95 vel_wave = max(Rt1)

96 print(’Maximum velocity of wavemaker =’, vel_wave)

97 else:

98 pass

99

100 fig , (ax1 , ax2) = plt.subplots (2)

101

102 ax1.set_title(’Wavemaker Position ’,fontsize=tsize)

103 ax1.plot(nnt , Rh1 , ’r-’, label = f’$h_e: t = {t:.3f}$ ’)

104 ax1.set_ylabel(’$R(t)[m]$ ’,fontsize=size)

105 ax1.grid()

106

107 ax2.set_title(’Wavemaker velocity ’,fontsize=tsize)

108 ax2.plot(nnt , Rt1 , ’r-’, label = f’$\phi_e: t = {t:.3f}$ ’)

109 ax2.set_xlabel(’$Time [s]$ ’,fontsize=size)

110 ax2.set_ylabel(’$R_{t} [m/s]$ ’,fontsize=size)

111 ax2.grid()

112 ##_________________ FIGURE SETTINGS __________________________ ##

113 print(’Figure settings ’)

114

115 fig , (ax1 , ax2) = plt.subplots (2)

116 ax1.set_title(’Initial Conditions ’,fontsize=tsize)

117 ax1.set_title(r’$h $ value in x direction ’,fontsize=tsize)

118 ax1.set_ylabel(r’$h(x,t)\times 10^{ -2} [m]$ ’,fontsize=size)

119 ax1.grid()

120 ax2.set_xlabel(r’$x [m]$ ’,fontsize=size)

121 ax2.set_ylabel(r’$\phi (x,t)\times 10^{ -2} $ ’,fontsize=size)

122 ax2.grid()

194

Chapter 7. Code Tutorials

Step 5: define the variational problem

The symplectic-Euler time-discrete version of the transformed VP is

0 =δ

∫ L

0

[
ϕn

(
XR̃n

τ h
n+1
ξ +Wnh

n+1 − hn

∆t

)
− ϕn+1h

n+1

∆t
Wn+1

− 1

2

L2
w

Wn
hn+1(ϕnξ)2 − 1

2
Wng(hn+1)2

+WngH0h
n+1

]
dξ − LwR

n
τ h

n+1ϕn|ξ=0 (7.9)

which is directly implemented into Firedrake.

1 ####################### VARIATIONAL PRINCIPLE ##############################

2 print("###")

3 print(’######################### Numerical Calculations ################## ’)

4 print("###")

5

6 t = 0

7

8 if case == 1:

9 print(’## ’)

10 print("You have selected case 1 : Non_Linear SWE VP with piston wavemaker

solved by firedrake by using fd.derivative ")

11 print(" Time discrete VP is based on Symplectic -Euler scheme ")

12 print(’## ’)

13 E2_t = []

14 E2_k = []

15 E2_p = []

16

17 pot_ener = Lx * Ly * 9.8 * 0.5

18 x = fd.SpatialCoordinate(mesh)

19 x_coord = fd.Function(V).interpolate(x[0])

20

21 ##################################### VP #################################

22

23

24 # VP = ((x_coord - Lw) * Rht * fd.inner(h_new.dx(0), phi)\

25 # + fd.inner ((Lw - Rh) * (h_new - h)/dt , phi) \

26 # - (Lw - Rh_new) * fd.inner(phi_new , (h_new/dt)) \

27 # - 1/2 * (Lw **2/(Lw - Rh)) * h_new * fd.inner(fd.grad(phi), fd.grad(

phi))\

195

Chapter 7. Code Tutorials

28 # - (1/2 * g * (Lw - Rh) *fd.inner(h_new ,h_new))\

29 # + (Lw - Rh)* g * H0 * h_new) * fd.dx \

30 # - (Lw * Rt * h_new*phi)*fd.ds(1)

31

32 ##_________________ VP with short hand notations ______________________ ##

33 # Using short hand notation

34 # X = x_coord - Lw

35 # W = (Lw - Rh)

36 # W_new = (Lw - Rh_new)

37

38 VP = ((X) * Rht * fd.inner(h_new.dx(0), phi)\

39 + fd.inner (W * (h_new - h)/dt , phi) \

40 - (W_new) * fd.inner(phi_new , (h_new/dt)) \

41 - 1/2 * (Lw**2/(W)) * h_new * fd.inner(fd.grad(phi), fd.grad(phi))\

42 - (1/2 * g * (W) *fd.inner(h_new ,h_new))\

43 + (W)* g * H0 * h_new) * fd.dx \

44 - (Lw * Rt * h_new*phi)*fd.ds(1)

45

46

47 ##

48

49 h_expr = fd.derivative(VP, phi , v) # derivative of VP wrt phi^n to get the

expression for h^n+1

50 phi_expr = fd.derivative(VP, h_new , v) # derivative of VP wrt h^n+1 to get

the value of phi^n+1

51

52

53 h_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

h_expr , h_new))

54

55 phi_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

phi_expr , phi_new))

56

57 ### ________________ OUTPUT FILES _________________ ###

58 if start_wavemaker ==1:

59 outfile_phi = fd.File("results_SE_NLSWE_wm1_case2/phi.pvd")

60 outfile_eta = fd.File("results_SE_NLSWE_wm1_case2/eta.pvd")

61 elif start_wavemaker == 2:

62 outfile_phi = fd.File("results_SE_NLSWE_wm2_case2/phi.pvd")

196

Chapter 7. Code Tutorials

63 outfile_eta = fd.File("results_SE_NLSWE_wm2_case2/eta.pvd")

64 elif start_wavemaker == 0:

65 outfile_phi = fd.File("results_SE_NonLinSWE_wm0_case2/phi.pvd")

66 outfile_eta = fd.File("results_SE_NonLinSWE_wm0_case2/eta.pvd")

67 ### ________________ TXT FILES _________________ ###

68 if start_wavemaker == 1:

69 filename1 = "NLSWE_SE_wm1.txt"

70 filename2 = "eta_NLSWE_SE_wm1.txt"

71 filename3 = "phi_NLSWE_SE_wm1.txt"

72 elif start_wavemaker == 2:

73 filename1 = "NLSWE_SE_wm2.txt"

74 filename2 = "eta_NLSWE_SE_wm2.txt"

75 filename3 = "phi_NLSWE_SE_wm2.txt"

76 elif start_wavemaker == 0:

77 filename1 = "NLSWE_SE_wm0.txt"

78 filename2 = "eta_NLSWE_SE_wm0.txt"

79 filename3 = "phi_NLSWE_SE_wm0.txt"

80

81 f = open(filename1 , ’w+’)

Step 6: solve the variational problem

1 ######### TIME LOOP ############

2

3 while (t <= t_end):

4 tt = format(t, ’.3f’)

5 t_new = t+dt

6

7 X.interpolate(x_coord - Lw)

8 W.interpolate(Lw - Rh)

9 W_new.interpolate(Lw - Rh_new)

10 ## ______________________ wavemaker motion _________________________ ##

11 if start_wavemaker == 1:

12 R.assign(-gamma * fd.cos(sigma*t))

13 Rt.assign(gamma * sigma * fd.sin(sigma*t))

14 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

15 Rht.interpolate(fd.conditional(fd.le(x_coord ,Lw),gamma

* sigma * fd.sin(sigma*t) ,0.0))

16 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

197

Chapter 7. Code Tutorials

gamma * fd.cos(sigma * t_new), 0.0))

17 # # wavemaker moves at first and then stops after some time

18 if start_wavemaker == 2:

19 R.assign(-gamma * fd.cos(sigma*t))

20 Rt.assign(gamma * sigma * fd.sin(sigma*t))

21 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

22 Rht.interpolate(fd.conditional(fd.le(x_coord ,Lw),gamma

* sigma * fd.sin(sigma*t) ,0.0))

23 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_new), 0.0))

24

25 if t >= t_stop:

26 R.assign(-gamma *fd.cos(sigma*t_stop))

27 Rt.assign (0)

28 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_stop), 0.0))

29 Rht.assign (0)

30 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw)

, -gamma * fd.cos(sigma * (t_stop+ dt)), 0.0))

31

32 # # wavemaker does not move at all

33 elif start_wavemaker == 0:

34 Rt.assign (0)

35 R.assign (0)

36 Rh.assign (0)

37 Rht.assign (0)

38 Rh_new.assign (0)

39

40 ## ___ ##

41 h_expr.solve()

42 phi_expr.solve ()

43

44 t+= dt

45

46 Epp1 = fd.assemble((1/2 * g * fd.inner(h,h))* ((Lw - Rh)/Lw) * fd.dx)

47 Epp2 = fd.assemble((g *h * H0)* ((Lw - Rh)/Lw) * fd.dx)

48

49

198

Chapter 7. Code Tutorials

50 Epp = fd.assemble((Lw - Rh)*(g*h*(0.5*h - H0))* fd.dx)

51 Ekk = fd.assemble (0.5 * (Lw **2/(Lw - Rh)) * h * fd.inner(fd.grad(phi),

fd.grad(phi)) * fd.dx)

52

53

54 Et = abs(Ekk) + abs(Epp)

Step 7: Plot and output the results

Finally, within the time loop, we compute and write the value of variables in .txt files and

generate .pvd files for visualisation.

1

2 f.write(’%-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s\n’

\

3 % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.at

(0,0)) ,\

4 str(h.at(0,0)), str(Epp), str(Ekk), str(Et) , str(Epp1), str

(Epp2)))

5 # % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.

at(0,0)), str(h.at(0,0)), str (4410.367500000001 - Epp), str(Ekk), str(Et))

)

6

7 if (t in t_plot):

8 print(’Plotting starts ’)

9 print(’t =’, t)

10 i += 1

11 if ic == 1:

12 phi_exact = phie.interpolate((U_0.real)/P * a.real* fd.cos(kp

* (x_coord - Lx)) \

13 + (g/w) * fd.cos(k1 * x_coord) * (-A0*fd.sin(w *

t) + B0*fd.cos(w * t)))

14

15 h_exact = he.interpolate((((1j*sigma)/ g) * (U_0.real)/(P) *

np.exp(-1j * sigma * t_end)).real * fd.cos(kp * (x_coord - Lx))\

16 + fd.cos(k1 * x_coord) * (A0*fd.cos(w * t)

+ B0*fd.sin(w * t)) + H0)

17

18 phievals = np.array ([phi_exact.at(x, yslice) for x in xvals])

19 etaevals = np.array ([h_exact.at(x, yslice) for x in xvals])

199

Chapter 7. Code Tutorials

20

21 else:

22 pass

23

24 phi1vals = np.array ([phi_new.at(x, Ly/2) for x in xvals])

25 h1vals = np.array ([h_new.at(x, Ly/2) for x in xvals])

26

27 if start_wavemaker == 1:

28 h_file_name = ’h_SE_nlswe_wm1_ ’+tt+’.txt’

29 phi_file_name = ’phi_SE_nlswe_wm1_ ’+tt+’.txt’

30 elif start_wavemaker == 2:

31 h_file_name = ’h_SE_nlswe_wm2_ ’+tt+’.txt’

32 phi_file_name = ’phi_SE_nlswe_wm2_ ’+tt+’.txt’

33 elif start_wavemaker == 0:

34 h_file_name = ’h_SE_nlswe_wm0_ ’+tt+’.txt’

35 phi_file_name = ’phi_SE_nlswe_wm0_ ’+tt+’.txt’

36

37 h_file = open(os.path.join(save_path , h_file_name), ’w’)

38 phi_file = open(os.path.join(save_path , phi_file_name), ’w’)

39

40 y_slice = Ly/2

41 x_coarse = np.linspace(0,Lx -0.001 ,200)

42 for ix in x_coarse:

43 h_file.write(’%-25s %-25s\n’ %(str(ix), str(h.at(ix,y_slice)))

)

44 phi_file.write(’%-25s %-25s\n’ %(str(ix), str(phi.at(ix ,

y_slice))))

45

46 ax1.plot(xvals , h1vals * (10 ** factor), color[i-1], label = f’ $\

eta_n: t = {t:.3f}$’)

47 ax2.plot(xvals ,phi1vals , color[i-1], label = f’ $\phi_n: t = {t:.3f

}$’)

48

49

50 if ic == 1:

51 ax1.plot(xvals , etaevals* (10 ** factor), colore[i-1], label =

f’$h_e: t = {t:.3f}$ ’)

52 ax2.plot(xvals , phievals , colore[i-1], label = f’$\phi_e: t =

{t:.3f}$ ’)

200

Chapter 7. Code Tutorials

53 else:

54 pass

55 ax1.legend(loc =4)

56 ax2.legend(loc =4)

57

58

59 outfile_eta.write(h_new)

60 outfile_phi.write(phi_new)

61

62 # set -up next time -step

63 E2_t.append(abs(Et))

64 E2_p.append(abs(Epp))

65 E2_k.append(abs(Ekk))

66

67 phi.assign(phi_new)

68 h.assign(h_new)

69

70 f.close()

71 h_file.close ()

72 phi_file.close ()

73

74 fig , (ax1 , ax2 , ax3) = plt.subplots (3)

75 fig.suptitle(’Energy evolution with time’,fontsize= tsize)

76 ax1.plot(time , E2_k)

77 ax1.set_ylabel(’Kinetic energy[J] ’,fontsize=size)

78 ax1.grid()

79

80 ax2.plot(time , E2_p)

81 ax2.set_ylabel(’Potential Energy [J]’,fontsize=size)

82 ax2.grid()

83

84 ax3.plot(time , E2_t)

85 ax3.set_xlabel(’$Time [s]$ ’,fontsize=size)

86 ax3.set_ylabel(’Total energy [J] ’,fontsize=size)

87 ax3.grid()

The complete code is publicly available as Lin SWE piston.py on the GitHub repository.

201

https://github.com/Wajiha11/EAGRE_-WP2/blob/main/SWE/Lin_SWE_piston.py

Chapter 7. Code Tutorials

Case 2: solve the nonlinear SWE VP with piston wavemaker by using time discrete

weak formulations.

The time-discrete weak formulations based on the symplectic-Euler scheme are as follows:

∫ L

0
Wnh

n+1 − hn

∆t
δϕn dξ =

∫ L

0
−XR̃n

τ h
n+1
ξ δϕn +

L2
w

Wn
hn+1ϕnξ ∂ξ(δϕ

n) dξ

+ LwR
n
τ h

n+1δϕn
∣∣∣
ξ=0

; (7.10)∫ L

0

Wn+1ϕn+1 −Wnϕn

∆t
δhn+1 dξ =

∫ L

0
XR̃n

τ ϕ
n∂ξ(δh

n+1) − 1

2

L2
w

Wn
(ϕnξ)2δhn+1

− gWn(hn+1 −H0)δh
n+1 dξ

− LwR
n
τ ϕ

nδhn+1
∣∣∣
ξ=0

. (7.11)

1 elif case == 2:

2

3 print(’### ’)

4 print("You have selected case 2 : Non_Linear SWE VP with piston wavemaker

solved by using time discrete weak formulations. ")

5 print("Time discrete weak formulations are based on Symplectic -Euler scheme

. ")

6 print(’### ’)

7 E2_t = []

8 E2_k = []

9 E2_p = []

10

11 pot_ener = Lx * Ly * 9.8 * 0.5

12 DBC = fd.DirichletBC(V, Rht , wavemaker_id)

13 x = fd.SpatialCoordinate(mesh)

14 y = 0

15 x_coord = fd.Function(V).interpolate(x[0])

16

17

18 ##################################### VP #################################

19

20

21 h_expr = (fd.inner ((Lw - Rh)* (h_new - h)/dt , v) \

22 + (x_coord - Lw)* Rht * h_new.dx(0) * v \

23 - ((Lw**2)/(Lw - Rh)) * h_new * phi.dx(0) * v.dx(0))*fd.dx\

202

Chapter 7. Code Tutorials

24 - (Lw * Rt * h_new *v)* fd.ds(1)

25

26

27 phi_expr = (fd.inner ((((Lw - Rh_new)* phi_new) - ((Lw - Rh)*phi))/dt , v

) \

28 - (x_coord - Lw) * Rht * phi * v.dx(0) \

29 + 0.5 * ((Lw**2)/(Lw - Rh)) * fd.inner(fd.grad(phi), fd.grad(

phi)) * v \

30 + g * (Lw - Rh) * (h_new - H0) * v) *fd.dx \

31 + (Lw * Rt * phi * v) * fd.ds(1)

32

33

34 h_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

h_expr , h_new))

35

36 phi_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

phi_expr , phi_new))

37

38

39 ### ________________ OUTPUT FILES _________________ ###

40 if start_wavemaker ==1:

41 outfile_phi = fd.File("results_SE2_NLSWE_wm1/phi.pvd")

42 outfile_eta = fd.File("results_SE2_NLSWE_wm1/eta.pvd")

43 elif start_wavemaker == 2:

44 outfile_phi = fd.File("results_SE2_NLSWE_wm2_case2/phi.pvd")

45 outfile_eta = fd.File("results_SE2_NLSWE_wm2_case2/eta.pvd")

46 elif start_wavemaker == 0:

47 outfile_phi = fd.File("results_SE2_NLSWE_wm0/phi.pvd")

48 outfile_eta = fd.File("results_SE2_NLSWE_wm0/eta.pvd")

49 ### ________________ TXT FILES _________________ ###

50 if start_wavemaker == 1:

51 filename1 = "NLSWE_SE2_wm1.txt"

52 filename2 = "eta_NLSWE_SE2_wm1.txt"

53 filename3 = "phi_NLSWE_SE2_wm1.txt"

54 elif start_wavemaker == 2:

55 filename1 = "NLSWE_SE2_wm2.txt"

56 filename2 = "eta_NLSWE_SE2_wm2.txt"

57 filename3 = "phi_NLSWE_SE2_wm2.txt"

58 elif start_wavemaker == 0:

203

Chapter 7. Code Tutorials

59 filename1 = "NLSWE_SE2_wm0.txt"

60 filename2 = "eta_NLSWE_SE2_wm0.txt"

61 filename3 = "phi_NLSWE_SE2_wm0.txt"

62 # filename = "NL_SWE.txt"

63 f = open(filename1 , ’w+’)

64 ######### TIME LOOP ############

65

66 while (t <= t_end):

67 tt = format(t, ’.3f’)

68 t_new = t+dt

69 ## ______________________ wavemaker motion _________________________ ##

70 if start_wavemaker == 1:

71 R.assign(-gamma * fd.cos(sigma*t))

72 Rt.assign(gamma * sigma * fd.sin(sigma*t))

73 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

74 Rht.interpolate(fd.conditional(fd.le(x_coord ,Lw),gamma

* sigma * fd.sin(sigma*t) ,0.0))

75 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_new), 0.0))

76 # # wavemaker moves at first and then stops after some time

77 if start_wavemaker == 2:

78 R.assign(-gamma * fd.cos(sigma*t))

79 Rt.assign(gamma * sigma * fd.sin(sigma*t))

80 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

81 Rht.interpolate(fd.conditional(fd.le(x_coord ,Lw),gamma

* sigma * fd.sin(sigma*t) ,0.0))

82 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_new), 0.0))

83

84 if t >= t_stop:

85 R.assign(-gamma *fd.cos(sigma*t_stop))

86 Rt.assign (0)

87 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_stop), 0.0))

88 Rht.assign (0)

89 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw)

, -gamma * fd.cos(sigma * (t_stop+ dt)), 0.0))

204

Chapter 7. Code Tutorials

90

91 # # wavemaker does not move at all

92 elif start_wavemaker == 0:

93 Rt.assign (0)

94 R.assign (0)

95 Rh.assign (0)

96 Rht.assign (0)

97 Rh_new.assign (0)

98 ## ___ ##

99

100 h_expr.solve()

101 phi_expr.solve ()

102

103 t+= dt

104

105 Epp1 = fd.assemble((1/2 * g * fd.inner(h,h))* ((Lw - Rh)/Lw) * fd.dx)

106 Epp2 = fd.assemble((g *h * H0)* ((Lw - Rh)/Lw) * fd.dx)

107

108 Epp = fd.assemble((Lw - Rh)*(g*h*(0.5*h - H0))* fd.dx)

109 Ekk = fd.assemble (0.5 * (Lw **2/(Lw - Rh)) * h * fd.inner(fd.grad(phi),

fd.grad(phi)) * fd.dx)

110

111 Et = abs(Ekk) + abs(Epp)

112

113 f.write(’%-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s\n’

\

114 % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.at

(0,0)) ,\

115 str(h.at(0,0)), str(Epp), str(Ekk), str(Et) , str(Epp1), str

(Epp2)))

116 # % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.

at(0,0)), str(h.at(0,0)), str (4410.367500000001 - Epp), str(Ekk), str(Et))

)

117

118 if (t in t_plot):

119 i+=1

120 print(’Plotting starts ’)

121 print(’t =’, t)

122 if ic == 1:

205

Chapter 7. Code Tutorials

123 phi_exact = phie.interpolate((U_0.real)/P * a.real* fd.cos(kp

* (x_coord - Lx)) \

124 + (g/w) * fd.cos(k1 * x_coord) * (-A0*fd.sin(w *

t) + B0*fd.cos(w * t)))

125

126 h_exact = he.interpolate((((1j*sigma)/ g) * (U_0.real)/(P) *

np.exp(-1j * sigma * t_end)).real * fd.cos(kp * (x_coord - Lx))\

127 + fd.cos(k1 * x_coord) * (A0*fd.cos(w * t)

+ B0*fd.sin(w * t)) + H0)

128

129 phievals = np.array ([phi_exact.at(x, yslice) for x in xvals])

130 etaevals = np.array ([h_exact.at(x, yslice) for x in xvals])

131

132 else:

133 pass

134

135 phi1vals = np.array ([phi_new.at(x, Ly/2) for x in xvals])

136 h1vals = np.array ([h_new.at(x, Ly/2) for x in xvals])

137

138 if start_wavemaker == 1:

139 h_file_name = ’h_SE2_nlswe_wm1_ ’+tt+’.txt’

140 phi_file_name = ’phi_SE2_nlswe_wm1_ ’+tt+’.txt’

141 elif start_wavemaker == 2:

142 h_file_name = ’h_SE2_nlswe_wm2_ ’+tt+’.txt’

143 phi_file_name = ’phi_SE2_nlswe_wm2_ ’+tt+’.txt’

144 elif start_wavemaker == 0:

145 h_file_name = ’h_SE2_nlswe_wm0_ ’+tt+’.txt’

146 phi_file_name = ’phi_SE2_nlswe_wm0_ ’+tt+’.txt’

147

148 h_file = open(os.path.join(save_path , h_file_name), ’w’)

149 phi_file = open(os.path.join(save_path , phi_file_name), ’w’)

150

151 y_slice = Ly/2

152 x_coarse = np.linspace(0,Lx -0.001 ,200)

153 for ix in x_coarse:

154 h_file.write(’%-25s %-25s\n’ %(str(ix), str(h.at(ix,y_slice)))

)

155 phi_file.write(’%-25s %-25s\n’ %(str(ix), str(phi.at(ix ,

y_slice))))

206

Chapter 7. Code Tutorials

156

157 ax1.plot(xvals , h1vals * (10 ** factor), color[i-1], label = f’ $\

eta_n: t = {t:.3f}$’)

158 ax2.plot(xvals ,phi1vals , color[i-1], label = f’ $\phi_n: t = {t:.3f

}$’)

159

160

161 if ic == 1:

162 ax1.plot(xvals , etaevals* (10 ** factor), colore[i-1], label =

f’$h_e: t = {t:.3f}$ ’)

163 ax2.plot(xvals , phievals , colore[i-1], label = f’$\phi_e: t =

{t:.3f}$ ’)

164 else:

165 pass

166 ax1.legend(loc =4)

167 ax2.legend(loc =4)

168

169

170 outfile_eta.write(h_new)

171 outfile_phi.write(phi_new)

172

173 # set -up next time -step

174 E2_t.append(abs(Et))

175 E2_p.append(abs(Epp))

176 E2_k.append(abs(Ekk))

177

178 phi.assign(phi_new)

179 h.assign(h_new)

180

181 f.close()

182 h_file.close ()

183 phi_file.close ()

184

185 fig , (ax1 , ax2 , ax3) = plt.subplots (3)

186 fig.suptitle(’Energy evolution with time’,fontsize= tsize)

187 ax1.plot(time , E2_k)

188 ax1.set_ylabel(’Kinetic energy[J] ’,fontsize=size)

189 ax1.grid()

190

207

Chapter 7. Code Tutorials

191 ax2.plot(time , E2_p)

192 ax2.set_ylabel(’Potential Energy [J]’,fontsize=size)

193 ax2.grid()

194

195 ax3.plot(time , E2_t)

196 ax3.set_xlabel(’$Time [s]$ ’,fontsize=size)

197 ax3.set_ylabel(’Total energy [J] ’,fontsize=size)

198 ax3.grid()

199

200 else:

201 print(" The selected number does not match any case")

202

203 plt.show()

204 print(’*************** PROGRAM ENDS ****************** ’)

The complete code is publicly available as NL SWE SE.py on the GitHub repository.

7.2.3 Nonlinear shallow water equations: comparison of two implementation

approaches by using Störmer-Verlet scheme

Now, we share and explain the code for the nonlinear shallow water equations case. This code

solves the problem by using two approaches, i.e. the classical approach of using the time-

discretised weak formulations and the novel approach of implementing the time-discretised

variational principle we developed in this thesis. The aim is to compare the two approaches

for the implementation of variational principle for the second-order Störmer-Verlet (SV) time-

integration scheme.

Step 0: define the user inputs

1 import firedrake as fd

2 import math as m

3 import numpy as np

4 from matplotlib import animation , pyplot as plt

5 import os

6

7 ’’’

8 Case 1 => Solves NL_SWE case by using time -discrete VP based on SV scheme.

9 Case 2 => Solves NL_SWE case by using time -discrete weak formulations VP based

on SV scheme.

208

https://github.com/Wajiha11/EAGRE_-WP2/blob/main/SWE/NL_SWE_SE.py

Chapter 7. Code Tutorials

10

11 ’’’

12 print(’### ’)

13 print(’###################### Initial parameters ######################### ’)

14 print(’### ’)

15

16

17 case = 2 # Case = 1 (Non -linear SWE by SV) & case = 3 (NLSWE by SV2)

18 start_wavemaker = 2 # (start_wavemaker = 1 => wavemaker started to move ,

start_wavemaker = 2 => Wavemaker starts and then stops)

19 ic = 0 # ic = 1 to use ics

= func , ic = 0 use ics as 0

20 settings = 2 # settings for

wavemaker , 1 == original , 2 == yangs settings

21 alp = 1

22 dt = 0.02 # time step

23 print(’Time step size =’, dt)

24 save_path = ’data_SWE_SV ’

25 if not os.path.exists(save_path):

26 os.makedirs(save_path)

27

28

29 H0 = 1 # water depth

30 g = 9.8 # gravitational

acceleration

31 c = np.sqrt(g*H0) # wave speed

32

33 #__________________ FIGURE PARAMETERS _____________________#

34

35 tsize = 18 # font size of image title

36 size = 16 # font size of image axes

37 factor = 2

38 t = 0

39

40

41 ##__________________ Parameters for wave _____________________ ##

42 print("###")

43 print(’######################## PARAMETERS of Wave ##################### ’)

44 print("###")

209

Chapter 7. Code Tutorials

45

46 t = 0 # start time

47 m1 = 1

48 m2 = 0

49

50 k1 = (2* fd.pi * m1) /Lx

51 print(’Wavenumber in x direction (k1) =’,k1)

52

53 k2 = 0 #(2* fd.pi * m2) /Ly

54 print(’Wavenumber in y direction (k2) =’,k2)

55

56 w = c * np.sqrt(k1**2 + k2**2)

57 print(’wave frequency (w)’,w)

58

59 k = np.sqrt(k1**2 + k2**2)

60 print(’Total wavenumber (k) =’,k)

61

62 Tp = (2* fd.pi) /w

63 print(’Time period of wave (Tp) =’,Tp)

64

65 ##__________________ Parameters for wavemaker _____________________ ##

66 print("###")

67 print(’######################### Parameters for wavemaker ################## ’)

68 print("###")

69 A_max = 0.002

70

71 lamb = 70 # Wavelength

72 print(’Wavelength of wavemaker=’, lamb)

73

74 kp = 2*fd.pi/lamb # Wave number

75 print(’Wavemaker wave number (kp) =’,kp)

76

77 sigma = c * fd.sqrt(kp**2) # Wavemaker frequency

78 print(’Wavemaker frequency (sigma) =’, sigma)

79

80 Tw = 2*fd.pi/sigma # Wavemaker period

81 print(’Time period of wavemaker (Tw)=’, Tw)

82

210

Chapter 7. Code Tutorials

83 t_end = 2*Tw # time of

simulation in sec

84 print(’End time =’, t_end)

85

86 t_steps = int(t_end/dt)

87 print(’time_steps =’, t_steps)

88

89 t_stop = Tw

90

91 gamma = A_max

92

93 ##______________ Plot to spot the region of wavemaker frequency ____________ ##

94

95 lam = np.linspace(1, 200 ,200)

96 k_plot = 2*fd.pi/lam

97 w_pot = (np.sqrt(g* k_plot * np.tanh(k_plot*H0)))

98 w_shallow = c * np.sqrt(k_plot **2)

99 Time_period = 2*fd.pi/w_pot

100

101 fig , ((ax1 , ax2)) = plt.subplots (2)

102 ax1.set_title(" Wave frequency (ω) vs. wave number (k)",fontsize=tsize)

103 ax1.plot(k_plot , w_pot , ’k--’,label = ’$Potential$ ’)

104 ax1.plot(kp , sigma , ’ro’)

105 ax1.plot(k_plot , w_shallow , ’r--’, label = ’$Shallow$ ’)

106 ax1.set_ylabel(’$\omega $ ’,fontsize=size)

107 ax1.legend(loc =1)

108 ax1.grid()

109

110 ax2.plot(k_plot ,w_pot , ’k--’,label = ’$Potential$ ’)

111 ax2.plot(k_plot , w_shallow , ’r--’, label = ’$Shallow $’)

112 ax2.plot(kp , sigma , ’ro’)

113 ax2.set_xlabel(’k ’,fontsize=size)

114 ax2.set_ylabel(’$\omega $ ’,fontsize=size)

115 ax2.set_xlim ([0.05 , 3])

116 ax2.legend(loc =1)

117 ax2.grid()

118

119 ##______________ To get results at different time steps ______________ ##

120

211

Chapter 7. Code Tutorials

121 time = []

122 while (t <= t_end):

123 t+= dt

124 time.append(t)

125

126 x2 = int(len(time)/2)

127 t_plot = np.array ([time[0], time[x2], time[-1]])

128 print("t_plot =", t_plot)

129

130 lim1 = t_stop

131 i = 0

132 color= np.array([’g-’, ’b--’, ’r:’])

133 colore= np.array ([’k:’, ’c--’, ’m:’])

134

135 ##___________________ Parameters for IC _________________________ ##

136 if ic == 1:

137 print(’### ’)

138 print(’################ Parameters of ICs and Exact #################### ’)

139 print(’### ’)

140 if case ==1 :

141 A0 = 0.009

142 B0 =0.009

143 else:

144 A0 = 0.009

145 B0 = 0.009

146 print(’A0 =’, A0)

147 print(’B0 =’, B0)

148

149 Uo = gamma

150 tic = 0

151 aic = np.exp(-1j * sigma * tic)

152 print(’aic =’, aic)

153

154 ##______________________ Parameters for Exact Sol _______________________ ##

155

156 P = (kp * fd.sin(kp * Lx))

157 print(’P = (kp * fd.sin(int(kp) * Lx)) =’,P)

158

159 U_0 = Uo * 1j * sigma

212

Chapter 7. Code Tutorials

160

161 a = np.exp(-1j * sigma * t_end)

162 print("Real part of exp(-1j * sigma * t_end) =",a.real)

Step 1: define the computational domain and mesh

1 #________________________ MESH _______________________#

2

3 nx = 200

4 n = nx

5 ny = 1

6

7 dx= 1/nx

8

9 Lx = 140 # make it equal to wavelength

10 Ly = 40

11 print("Lx =", Lx)

12 print(’Ly =’, Ly)

13 print("Nodes in x direction =", nx)

14

15 mesh = fd.RectangleMesh(nx, ny, Lx, Ly)

16 x,y = fd.SpatialCoordinate(mesh)

17 Lw = 1 # Point till which coordinates

trandformation will happen

18 print(’Lw =’, Lw)

19

20 xvals = np.linspace(0, Lx -0.001 , nx)

21 yvals = np.linspace(0, Ly - 0.001 , ny)

22 yslice = Ly/2

23 xslice = Lx/2

24

25 wavemaker_id = 1 # 1 => left side of the domain

Step 2: define the function spaces

1 #__________________ Define function spaces __________________ ##

2

3 V = fd.FunctionSpace(mesh , "CG", 1) # scalar function space

4

5

213

Chapter 7. Code Tutorials

6

7 phi = fd.Function(V, name = "phi") # phi^n

8 phi_half = fd.Function(V, name = "phi") # phi^n+1/2

9 phi_new = fd.Function(V, name = "phi_new") # phi^n+1

10

11

12 h = fd.Function(V, name = "eta") # h^n

13 h_new = fd.Function(V, name = "eta_new") # h^n+1

14

15 #______________________ Exact solution _______________________#

16

17 phie= fd.Function(V, name = "phi_exact")

18 he = fd.Function(V, name = "h_exact")

19 etae = fd.Function(V, name = "eta_exact")

20

21 #_______________________ Wavemaker _______________________#

22

23 R = fd.Function(V, name = "wavemaker") # Wavemaker motion

24 Rt = fd.Function(V, name = "wavemaker motion") # Wavemaker velocity

25

26

27 Rt_half = fd.Function(V, name = "Rt_half") # Wavemaker velocity

28

29 Rh = fd.Function(V, name = "wavemaker") # Wavemaker motion till Lw

30 Rh_new = fd.Function(V, name = "wavemaker") # Wavemaker motion till Lw

at t+1

31 Rh_half = fd.Function(V, name = "Rh_half ")

32 Rht_half = fd.Function(V, name = "Rht_half")

33

34 W = fd.Function(V, name = "Lw - Rh")

35 W_half = fd.Function(V, name = "Lw - Rh")

36 W_new = fd.Function(V, name = "Lw - Rh_new")

37

38 X = fd.Function(V, name = "x_coord - Lw")

Step 3: define the test function

1 trial = fd.TrialFunction(V) # trail function

2

3 v = fd.TestFunction(V)

214

Chapter 7. Code Tutorials

Step 4: assign initial conditions to the function spaces

1 ##

2 # Initial Conditions #

3 ##

4

5 print(’Initial conditions ’)

6

7 if ic ==1:

8 ic1 = phi.interpolate((U_0.real)/P * aic.real* fd.cos(kp * (x - Lx)) \

9 + (g/w) * fd.cos(k1 * x) * (-A0*fd.sin(w * tic) + B0

*fd.cos(w * tic)))

10

11 ic2 = h.interpolate((((1j*sigma)/ g) * (U_0.real)/(P) * np.exp(-1j *

sigma * tic)).real * fd.cos(kp * (x - Lx))\

12 + fd.cos(k1 * x) * (A0*fd.cos(w * tic) + B0

*fd.sin(w * tic)) + H0)

13 else:

14 ic1 = phi.assign (0)

15 ic2 = h.assign (1.0)

16

17 phi.assign(ic1)

18 phi_new.assign(ic1)

19

20 h.assign(ic2)

21 h_new.assign(ic2)

22

23 etavals = np.array([ic2.at(x, yslice) for x in xvals])

24 phivals = np.array([ic1.at(x, yslice) for x in xvals])

25

26 fig , ((ax1 , ax2)) = plt.subplots (2)

27 ax2.plot(xvals , phivals , label = ’ϕ’)

28

29 ax1.plot(xvals , etavals , label = ’h’)

30 ax1.set_ylabel(’$h(x,t)$ [m] ’,fontsize=size)

31 if ic == 1:

32 pass

33 else:

34 ax1.set_ylim ([0.0, 1.5])

35

215

Chapter 7. Code Tutorials

36 ax1.grid()

37 ax2.set_xlabel(’x [m] ’,fontsize=size)

38 ax2.set_ylabel(’$\phi (x,t)$ ’,fontsize=size)

39 ax2.grid()

40

41 ##

42 # Wavemaker #

43 ##

44

45 print(’############### Wavemaker motion calculations block ################# ’)

46

47 nt = 0

48 nnt = np.linspace(0, t_end , t_steps +1)

49

50 ##__________________ Plot of wavemaker motion _____________________ ##

51 print(’Plot of wavemaker motion ’)

52 Rt1 = []

53 Rh1 = []

54 lim = t_stop # time after which wavemaker stops

55

56 if start_wavemaker == 2:

57 print(’The wavemaker will stop after time =’,lim)

58

59 t = 0

60

61 for nt in range(len(nnt)):

62 if start_wavemaker == 1:

63 if settings == 1:

64 R_h1 = -gamma *(np.exp(-1j * sigma *t)).real

65 Rt_1 = gamma * ((1j * sigma) * np.exp(-1j * sigma *t)).real

66 else:

67 R_h1 = -gamma*fd.cos(sigma*t)

68 Rt_1 = gamma*sigma*fd.sin(sigma*t)

69

70 elif start_wavemaker == 2:

71 if settings == 1:

72 R_h1 = -gamma *(np.exp(-1j * sigma *t)).real

73 Rt_1 = gamma * ((1j * sigma) * np.exp(-1j * sigma *t)).real

74

216

Chapter 7. Code Tutorials

75 if t >= t_stop:

76 R_h1 = -gamma *(np.exp(-1j * sigma * t_stop)).real

77 Rt_1 = 0 * gamma * ((1j * sigma) * np.exp(-1j * sigma *

t_stop)).real

78 elif settings == 2:

79 R_h1 = -gamma*fd.cos(sigma*t)

80 Rt_1 = gamma*sigma*fd.sin(sigma*t)

81

82 if t >= t_stop:

83 R_h1 = -gamma*fd.cos(sigma*t_stop)

84 Rt_1 = 0*gamma*sigma*fd.sin(sigma*t_stop)

85 else:

86 R_h1 = fd.Constant (0)

87 Rt_1 = fd.Constant (0)

88

89 t+=dt

90 Rt1.append(Rt_1)

91 Rh1.append(R_h1)

92

93

94 if start_wavemaker == 1:

95 Amp_wave = max(Rh1)

96 print(’Maximum amplitude of wavemaker =’, Amp_wave)

97 vel_wave = max(Rt1)

98 print(’Maximum velocity of wavemaker =’, vel_wave)

99 else:

100 pass

101

102 fig , (ax1 , ax2) = plt.subplots (2)

103

104 ax1.set_title(’Wavemaker Position ’,fontsize=tsize)

105 ax1.plot(nnt , Rh1 , ’r-’, label = f’$h_e: t = {t:.3f}$ ’)

106 ax1.set_ylabel(’$R(t)[m]$ ’,fontsize=size)

107 ax1.grid()

108

109 ax2.set_title(’Wavemaker velocity ’,fontsize=tsize)

110 ax2.plot(nnt , Rt1 , ’r-’, label = f’$\phi_e: t = {t:.3f}$ ’)

111 ax2.set_xlabel(’$Time [s]$ ’,fontsize=size)

112 ax2.set_ylabel(’$R_{t} [m/s]$ ’,fontsize=size)

217

Chapter 7. Code Tutorials

113 ax2.grid()

114 ##_________________ FIGURE SETTINGS __________________________ ##

115 print(’Figure settings ’)

116

117 fig , (ax1 , ax2) = plt.subplots (2)

118 ax1.set_title(’Initial Conditions ’,fontsize=tsize)

119 ax1.set_title(r’$h $ value in x direction ’,fontsize=tsize)

120 ax1.set_ylabel(r’$h(x,t)\times 10^{ -2} [m]$ ’,fontsize=size)

121 ax1.grid()

122 ax2.set_xlabel(r’$x [m]$ ’,fontsize=size)

123 ax2.set_ylabel(r’$\phi (x,t)\times 10^{ -2} $ ’,fontsize=size)

124 ax2.grid()

Step 5: define the variational problem

The Störmer-Verlet based time-discrete version of the transformed variational principle is given

as:

0 =δ

∫ L

0

[
−2hn

(Wn+1/2ϕn+1/2 −Wnϕn

∆t

)
− 2hn+1

(Wn+1ϕn+1 −Wn+1/2ϕn+1/2

∆t

)
+XR̃n+1/2

τ (hn+1
ξ + hnξ)ϕn+1/2 − 1

2

L2
w

Wn+1/2
(ϕ

n+1/2
ξ)2(hn+1 + hn)

− gWn+1/2
(1

2
((hn+1)2 + (hn)2) +H0(h

n+1 + hn)
)]

dξ

− LwR
n+1/2
τ ϕn+1/2(hn+1 + hn)

∣∣∣
ξ=0

, (7.12)

where X = ξ − Lw, and W = Lw − R(τ)Θ(Lw − ξ). In the code, W is Wn, W half is Wn+1/2,

W new is Wn+1, h is hn, h new is hn+1, phi is ϕn, phi new is ϕn+1, phi half is ϕn+1/2, Rt half

is R
n+1/2
τ , and h new.dx(0) is hn+1

ξ .

1 ####################### VARIATIONAL PRINCIPLE ##############################

2 print("###")

3 print(’######################### Numerical Calculations ################## ’)

4 print("###")

5

6 t = 0

7

8 if case == 1:

9 print(’## ’)

218

Chapter 7. Code Tutorials

10 print("You have selected case 1 : Non_Linear SWE VP with piston wavemaker

solved by firedrake by using fd.derivative ")

11 print(" Time discrete VP is based on Symplectic -Euler scheme ")

12 print(’## ’)

13 E2_t = []

14 E2_k = []

15 E2_p = []

16

17 pot_ener = Lx * Ly * 9.8 * 0.5

18 x = fd.SpatialCoordinate(mesh)

19 x_coord = fd.Function(V).interpolate(x[0])

20

21

22 ##################################### VP #################################

23

24

25 VP =(- 2 * h * ((W_half*phi_half) - (W*phi))/dt \

26 - 2 * h_new * ((W_new*phi_new) - (W_half*phi_half))/dt \

27 + X * Rht_half * (h_new.dx(0) + h.dx(0)) * phi_half \

28 - (1/2 * (Lw**2/ W_half) * fd.inner(fd.grad(phi_half), fd.grad(

phi_half)) * h_new\

29 + 1/2 * (Lw**2/ W_half) * fd.inner(fd.grad(phi_half), fd.grad(

phi_half)) * h) \

30 - (1/2 * g * (Lw - Rh_half) * (fd.inner(h_new ,h_new) + fd.inner(h,h

))) \

31 + g * H0 * (Lw - Rh_half) * (h_new + h))* fd.dx \

32 - (Lw * Rt_half * phi_half* (h_new + h)) *fd.ds(1)

33

34

35 ##

36 phi_half_expr = fd.derivative(VP , h ,v) # derivative of VP wrt h^n to get

the expression for phi^n+1/2

37 h_expr = fd.derivative(VP, phi_half , v) # derivative of VP wrt phi^n+1/2

to get the expression for h^n+1

38 phi_expr = fd.derivative(VP, h_new , v) # derivative of VP wrt h^n+1 to

get the value of phi^n+1

39

40

219

Chapter 7. Code Tutorials

41 phi_half_expr = fd.NonlinearVariationalSolver(fd.

NonlinearVariationalProblem(phi_half_expr , phi_half))

42 h_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

h_expr , h_new))

43 phi_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

phi_expr , phi_new))

44

45

46 ### ________________ OUTPUT FILES _________________ ###

47 if start_wavemaker ==1:

48 outfile_phi = fd.File("results_SV_NLSWE_wm1_case2/phi.pvd")

49 outfile_eta = fd.File("results_SV_NLSWE_wm1_case2/eta.pvd")

50 elif start_wavemaker == 2:

51 outfile_phi = fd.File("results_SV_NLSWE_wm2_case2/phi.pvd")

52 outfile_eta = fd.File("results_SV_NLSWE_wm2_case2/eta.pvd")

53 elif start_wavemaker == 0:

54 outfile_phi = fd.File("results_SV_NonLinSWE_wm0_case2/phi.pvd")

55 outfile_eta = fd.File("results_SV_NonLinSWE_wm0_case2/eta.pvd")

56 ### ________________ TXT FILES _________________ ###

57 if start_wavemaker == 1:

58 filename1 = "NLSWE_SV_wm1.txt"

59 filename2 = "eta_NLSWE_SV_wm1.txt"

60 filename3 = "phi_NLSWE_SV_wm1.txt"

61 elif start_wavemaker == 2:

62 filename1 = "NLSWE_SV_wm2.txt"

63 filename2 = "eta_NLSWE_SV_wm2.txt"

64 filename3 = "phi_NLSWE_SV_wm2.txt"

65 elif start_wavemaker == 0:

66 filename1 = "NLSWE_SV_wm0.txt"

67 filename2 = "eta_NLSWE_SV_wm0.txt"

68 filename3 = "phi_NLSWE_SV_wm0.txt"

69

70 f = open(filename1 , ’w+’)

Step 6: solve the variational problem

1 ######### TIME LOOP ############

2

3 while (t <= t_end):

4 tt = format(t, ’.3f’)

220

Chapter 7. Code Tutorials

5 print(’t =’, t)

6

7 t_new = t + dt

8 t_half = t + dt/2

9

10 X.interpolate(x_coord - Lw)

11 W.interpolate(Lw - Rh)

12 W_new.interpolate(Lw - Rh_new)

13 W_half.interpolate(Lw - Rh_half)

14 ## ______________________ wavemaker motion _________________________ ##

15 if start_wavemaker == 1:

16 R.assign(-gamma * fd.cos(sigma*t))

17 Rt.assign(gamma * sigma * fd.sin(sigma*t))

18

19 Rt_half.assign(gamma * sigma * fd.sin(sigma*t_half))

20

21 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

22 Rh_half.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_half), 0.0))

23 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_new), 0.0))

24

25 Rht_half.interpolate(fd.conditional(fd.le(x_coord ,Lw),

gamma * sigma * fd.sin(sigma*t_half) ,0.0))

26

27 # # wavemaker moves at first and then stops after some time

28 if start_wavemaker == 2:

29 R.assign(-gamma * fd.cos(sigma*t))

30 Rt.assign(gamma * sigma * fd.sin(sigma*t))

31

32 Rt_half.assign(gamma * sigma * fd.sin(sigma*t_half))

33

34 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

35 Rh_half.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_half), 0.0))

36 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_new), 0.0))

221

Chapter 7. Code Tutorials

37

38 Rht_half.interpolate(fd.conditional(fd.le(x_coord ,Lw),

gamma * sigma * fd.sin(sigma* t_half) ,0.0))

39

40 if t >= t_stop:

41 R.assign(-gamma * fd.cos(sigma*t_stop))

42 Rt.assign (0)

43

44 Rt_half.assign (0)

45

46 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_stop), 0.0))

47 Rh_half.interpolate(fd.conditional(fd.le(x_coord ,Lw

), -gamma * fd.cos(sigma * (t_stop + dt/2)), 0.0))

48 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw)

, -gamma * fd.cos(sigma * (t_stop + dt)), 0.0))

49 Rht_half.assign (0)

50

51 # # wavemaker does not move at all

52 elif start_wavemaker == 0:

53 R.assign (0)

54 Rt.assign (0)

55

56 Rt_half.assign (0)

57 Rh.assign (0)

58 Rh_half.assign (0)

59 Rh_new.assign (0)

60 Rht_half.assign (0)

61

62 ## ___ ##

63

64 phi_half_expr.solve()

65 h_expr.solve()

66 phi_expr.solve ()

67

68 t+= dt

69

70 Epp1 = fd.assemble((1/2 * g * fd.inner(h,h))* ((Lw - Rh)/Lw) * fd.dx)

71 Epp2 = fd.assemble((g *h * H0)* ((Lw - Rh)/Lw) * fd.dx)

222

Chapter 7. Code Tutorials

72

73 Epp = fd.assemble((Lw - Rh)*(g*h*(0.5*h - H0))* fd.dx)

74 Ekk = fd.assemble (0.5 * (Lw **2/(Lw - Rh)) * h * fd.inner(fd.grad(phi),

fd.grad(phi)) * fd.dx)

75

76

77 Et = abs(Ekk) + abs(Epp)

Step 7: Plot and output the results

Finally, within the time loop, we compute and write the value of variables in .txt files and

generate .pvd files for visualisation.

1

2 f.write(’%-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s\n’

\

3 % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.at

(0,0)) ,\

4 str(h.at(0,0)), str(Epp), str(Ekk), str(Et) , str(Epp1),

str(Epp2)))

5 # % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.

at(0,0)), str(h.at(0,0)), str (4410.367500000001 - Epp), str(Ekk), str(Et))

)

6

7 if (t in t_plot):

8 print(’Plotting starts ’)

9 print(’t =’, t)

10 i += 1

11 if ic == 1:

12 phi_exact = phie.interpolate((U_0.real)/P * a.real* fd.cos(kp

* (x_coord - Lx)) \

13 + (g/w) * fd.cos(k1 * x_coord) * (-A0*fd.sin(w *

t) + B0*fd.cos(w * t)))

14

15 h_exact = he.interpolate((((1j*sigma)/ g) * (U_0.real)/(P) *

np.exp(-1j * sigma * t_end)).real * fd.cos(kp * (x_coord - Lx))\

16 + fd.cos(k1 * x_coord) * (A0*fd.cos(w * t)

+ B0*fd.sin(w * t)) + H0)

17

18 phievals = np.array ([phi_exact.at(x, yslice) for x in xvals])

223

Chapter 7. Code Tutorials

19 etaevals = np.array ([h_exact.at(x, yslice) for x in xvals])

20

21 else:

22 pass

23

24 phi1vals = np.array ([phi_new.at(x, Ly/2) for x in xvals])

25 h1vals = np.array ([h_new.at(x, Ly/2) for x in xvals])

26

27 if start_wavemaker == 1:

28 h_file_name = ’h_SV_nlswe_wm1_ ’+tt+’.txt’

29 phi_file_name = ’phi_SV_nlswe_wm1_ ’+tt+’.txt’

30 elif start_wavemaker == 2:

31 h_file_name = ’h_SV_nlswe_wm2_ ’+tt+’.txt’

32 phi_file_name = ’phi_SV_nlswe_wm2_ ’+tt+’.txt’

33 elif start_wavemaker == 0:

34 h_file_name = ’h_SV_nlswe_wm0_ ’+tt+’.txt’

35 phi_file_name = ’phi_SV_nlswe_wm0_ ’+tt+’.txt’

36

37 h_file = open(os.path.join(save_path , h_file_name), ’w’)

38 phi_file = open(os.path.join(save_path , phi_file_name), ’w’)

39

40 y_slice = Ly/2

41 x_coarse = np.linspace(0,Lx -0.001 ,200)

42 for ix in x_coarse:

43 h_file.write(’%-25s %-25s\n’ %(str(ix), str(h.at(ix,y_slice)))

)

44 phi_file.write(’%-25s %-25s\n’ %(str(ix), str(phi.at(ix ,

y_slice))))

45

46 ax1.plot(xvals , h1vals * (10 ** factor), color[i-1], label = f’ $\

eta_n: t = {t:.3f}$’)

47 ax2.plot(xvals ,phi1vals , color[i-1], label = f’ $\phi_n: t = {t:.3f

}$’)

48

49

50 if ic == 1:

51 ax1.plot(xvals , etaevals* (10 ** factor), colore[i-1], label =

f’$h_e: t = {t:.3f}$ ’)

224

Chapter 7. Code Tutorials

52 ax2.plot(xvals , phievals , colore[i-1], label = f’$\phi_e: t =

{t:.3f}$ ’)

53 else:

54 pass

55 ax1.legend(loc =4)

56 ax2.legend(loc =4)

57

58

59 outfile_eta.write(h_new)

60 outfile_phi.write(phi_new)

61

62 # set -up next time -step

63 E2_t.append(abs(Et))

64 E2_p.append(abs(Epp))

65 E2_k.append(abs(Ekk))

66

67 phi.assign(phi_new)

68 h.assign(h_new)

69

70 f.close()

71 h_file.close ()

72 phi_file.close ()

73

74 fig , (ax1 , ax2 , ax3) = plt.subplots (3)

75 fig.suptitle(’Energy evolution with time’,fontsize= tsize)

76 ax1.plot(time , E2_k)

77 ax1.set_ylabel(’Kinetic energy[J] ’,fontsize=size)

78 ax1.grid()

79

80 ax2.plot(time , E2_p)

81 ax2.set_ylabel(’Potential Energy [J]’,fontsize=size)

82 ax2.grid()

83

84 ax3.plot(time , E2_t)

85 ax3.set_xlabel(’$Time [s]$ ’,fontsize=size)

86 ax3.set_ylabel(’Total energy [J] ’,fontsize=size)

87 ax3.grid()

225

Chapter 7. Code Tutorials

Case 2: Non-Linear SWE VP with piston wavemaker solved by firedrake by using

time-discrete weak formulations.

The time-discrete weak formulations based on the second order Störmer-Verlet time stepping

scheme are as follows

∫ L

0
2
(Wn+1/2ϕn+1/2 −Wnϕn

∆t

)
δhn dξ =

∫ L

0
XR̃n+1/2

τ ϕn+1/2∂ξ(δh
n)

− 1

2

L2
w

Wn+1/2
(ϕ

n+1/2
ξ)2δhn

− gWn+1/2(hn −H0)δh
n dξ

− LwR
n+1/2
τ ϕn+1/2δhn

∣∣∣
ξ=0

; (7.13)∫ L

0
2Wn+1/2

(hn+1 − hn

∆t

)
δϕn+1/2 dξ =

∫ L

0
−XR̃n+1/2

τ (hn+1
ξ + hnξ)δϕn+1/2

+
L2
w

Wn+1/2
(hn+1 + hn)ϕ

n+1/2
ξ ∂ξ(δϕ

n+1/2) dξ

+ LwR
n+1/2
τ (hn+1 + hn)δϕn+1/2

∣∣∣
ξ=0

; (7.14)∫ L

0
2
(Wn+1ϕn+1 −Wn+1/2ϕn+1/2

∆t

)
δhn+1 dξ =

∫ L

0
XR̃n+1/2

τ ϕn+1/2∂ξ(δh
n+1)

− 1

2

L2
w

Wn+1/2
(ϕ

n+1/2
ξ)2δhn+1

− gWn+1/2(hn+1 −H0)δh
n+1 dξ

− LwR
n+1/2
τ ϕn+1/2δhn+1

∣∣∣
ξ=0

. (7.15)

1

2 elif case == 2:

3

4 print(’### ’)

5 print("You have selected case 2 : Non_Linear SWE VP with piston wavemaker

solved by firedrake by using time -discrete weak formulations. ")

6 print("Time discrete weak formulations based on SV scheme. ")

7 print(’### ’)

8 E2_t = []

9 E2_k = []

10 E2_p = []

11

12 pot_ener = Lx * Ly * 9.8 * 0.5

13 DBC = fd.DirichletBC(V, Rht_half , wavemaker_id)

226

Chapter 7. Code Tutorials

14 x = fd.SpatialCoordinate(mesh)

15 y = 0

16 x_coord = fd.Function(V).interpolate(x[0])

17

18

19 ##################################### VP #################################

20

21 VP =(- 2 * h * ((W_half*phi_half) - (W*phi))/dt \

22 - 2 * h_new * ((W_new*phi_new) - (W_half*phi_half))/dt \

23 + X * Rht_half * (h_new.dx(0) + h.dx(0)) * phi_half \

24 - (1/2 * (Lw**2/ W_half) * fd.inner(fd.grad(phi_half), fd.grad(

phi_half)) * h_new\

25 + 1/2 * (Lw**2/ W_half) * fd.inner(fd.grad(phi_half), fd.grad(

phi_half)) * h) \

26 - (1/2 * g * (Lw - Rh_half) * (fd.inner(h_new ,h_new) + fd.inner(h,h

))) \

27 + g * H0 * (Lw - Rh_half) * (h_new + h))* fd.dx \

28 - (Lw * Rt_half * phi_half* (h_new + h)) *fd.ds(1)

29

30 phi_half_expr = (-2 * fd.inner((W_half*phi_half - W*phi)/dt , v)\

31 + (X * Rht_half * phi_half * v.dx(0)) \

32 - 0.5* (Lw**2/ W_half) * (phi_half.dx(0))**2 * v \

33 - g * W_half * (h - H0)* v)* fd.dx \

34 - (Lw * Rt_half * phi_half * v)*fd.ds(1)

35

36

37 h_expr = (+2* fd.inner(W_half* (h_new - h)/dt, v) \

38 + (X * Rht_half * fd.inner(h_new.dx(0) + h.dx(0), v)) \

39 - (Lw**2/ W_half) * phi_half.dx(0) * v.dx(0) * (h_new + h))*fd.dx

\

40 - (Lw * Rt_half * (h_new + h) * v) * fd.ds(1)

41

42 phi_new_expr = (- 2 * fd.inner(((W_new*phi_new) - (W_half*phi_half))/dt

, v) \

43 + (X * Rht_half * phi_half * v.dx(0))\

44 - 0.5 * (Lw**2/(W_half)) * (phi_half.dx(0))**2 * v \

45 - g*(W_half)*(h_new - H0)* v)*fd.dx\

46 - (Lw * Rt_half * phi_half * v) * fd.ds(1)

47

227

Chapter 7. Code Tutorials

48 phi_half_expr = fd.NonlinearVariationalSolver(fd.

NonlinearVariationalProblem(phi_half_expr , phi_half))

49 h_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

h_expr , h_new))

50 phi_new_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem

(phi_new_expr , phi_new))

51

52 ### ________________ OUTPUT FILES _________________ ###

53 if start_wavemaker ==1:

54 outfile_phi = fd.File("results_SV2_NLSWE_wm1/phi.pvd")

55 outfile_eta = fd.File("results_SV2_NLSWE_wm1/eta.pvd")

56 elif start_wavemaker == 2:

57 outfile_phi = fd.File("results_SV2_NLSWE_wm2_case2/phi.pvd")

58 outfile_eta = fd.File("results_SV2_NLSWE_wm2_case2/eta.pvd")

59 elif start_wavemaker == 0:

60 outfile_phi = fd.File("results_SV2_NLSWE_wm0/phi.pvd")

61 outfile_eta = fd.File("results_SV2_NLSWE_wm0/eta.pvd")

62 ### ________________ TXT FILES _________________ ###

63 if start_wavemaker == 1:

64 filename1 = "NLSWE_SV2_wm1.txt"

65 filename2 = "eta_NLSWE_SV2_wm1.txt"

66 filename3 = "phi_NLSWE_SV2_wm1.txt"

67 elif start_wavemaker == 2:

68 filename1 = "NLSWE_SV2_wm2.txt"

69 filename2 = "eta_NLSWE_SV2_wm2.txt"

70 filename3 = "phi_NLSWE_SV2_wm2.txt"

71 elif start_wavemaker == 0:

72 filename1 = "NLSWE_SV2_wm0.txt"

73 filename2 = "eta_NLSWE_SV2_wm0.txt"

74 filename3 = "phi_NLSWE_SV2_wm0.txt"

75

76 f = open(filename1 , ’w+’)

77 ######### TIME LOOP ############

78

79 while (t <= t_end):

80 tt = format(t, ’.3f’)

81 t_new = t + dt

82 t_half = t + dt/2

83

228

Chapter 7. Code Tutorials

84 X.interpolate(x_coord - Lw)

85 W.interpolate(Lw - Rh)

86 W_new.interpolate(Lw - Rh_new)

87 W_half.interpolate(Lw - Rh_half)

88 ## ______________________ wavemaker motion _________________________ ##

89

90 if start_wavemaker == 1:

91 R.assign(-gamma * fd.cos(sigma*t))

92 Rt.assign(gamma * sigma * fd.sin(sigma*t))

93

94 Rt_half.assign(gamma * sigma * fd.sin(sigma*t_half))

95

96 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

97 Rh_half.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_half), 0.0))

98 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_new), 0.0))

99

100 Rht_half.interpolate(fd.conditional(fd.le(x_coord ,Lw),

gamma * sigma * fd.sin(sigma*t_half) ,0.0))

101

102 # # wavemaker moves at first and then stops after some time

103 if start_wavemaker == 2:

104 R.assign(-gamma * fd.cos(sigma*t))

105 Rt.assign(gamma * sigma * fd.sin(sigma*t))

106

107 Rt_half.assign(gamma * sigma * fd.sin(sigma*t_half))

108

109 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -gamma

* fd.cos(sigma * t), 0.0))

110 Rh_half.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_half), 0.0))

111 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_new), 0.0))

112

113 Rht_half.interpolate(fd.conditional(fd.le(x_coord ,Lw),

gamma * sigma * fd.sin(sigma* t_half) ,0.0))

114

229

Chapter 7. Code Tutorials

115 if t >= t_stop:

116 R.assign(-gamma * fd.cos(sigma*t_stop))

117 Rt.assign (0)

118

119 Rt_half.assign (0)

120

121 Rh.interpolate(fd.conditional(fd.le(x_coord ,Lw), -

gamma * fd.cos(sigma * t_stop), 0.0))

122 Rh_half.interpolate(fd.conditional(fd.le(x_coord ,Lw

), -gamma * fd.cos(sigma * (t_stop + dt/2)), 0.0))

123 Rh_new.interpolate(fd.conditional(fd.le(x_coord ,Lw)

, -gamma * fd.cos(sigma * (t_stop + dt)), 0.0))

124

125 Rht_half.assign (0)

126

127 # # wavemaker does not move at all

128 elif start_wavemaker == 0:

129 R.assign (0)

130 Rt.assign (0)

131 Rt_half.assign (0)

132 Rh.assign (0)

133 Rh_half.assign (0)

134 Rh_new.assign (0)

135 Rht_half.assign (0)

136

137 ## ___ ##

138 phi_half_expr.solve()

139 h_expr.solve()

140 phi_new_expr.solve()

141

142 t+= dt

143

144 Epp1 = fd.assemble((1/2 * g * fd.inner(h,h))* ((Lw - Rh)/Lw) * fd.dx)

145 Epp2 = fd.assemble((g *h * H0)* ((Lw - Rh)/Lw) * fd.dx)

146

147 Epp = fd.assemble((Lw - Rh)*(g*h*(0.5*h - H0))* fd.dx)

148 Ekk = fd.assemble (0.5 * (Lw **2/(Lw - Rh)) * h * fd.inner(fd.grad(phi),

fd.grad(phi)) * fd.dx)

149

230

Chapter 7. Code Tutorials

150 Et = abs(Ekk) + abs(Epp)

151

152 f.write(’%-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s %-25s\n’

\

153 % (str(t), str(R.dat.data [2]), str(Rt.dat.data [2]), str(phi.at

(0,0)) ,\

154 str(h.at(0,0)), str(Epp), str(Ekk), str(Et) , str(Epp1), str

(Epp2)))

155

156 if (t in t_plot):

157 i+=1

158 print(’Plotting starts ’)

159 print(’t =’, t)

160 if ic == 1:

161 phi_exact = phie.interpolate((U_0.real)/P * a.real* fd.cos(kp

* (x_coord - Lx)) \

162 + (g/w) * fd.cos(k1 * x_coord) * (-A0*fd.sin(w *

t) + B0*fd.cos(w * t)))

163

164 h_exact = he.interpolate((((1j*sigma)/ g) * (U_0.real)/(P) *

np.exp(-1j * sigma * t_end)).real * fd.cos(kp * (x_coord - Lx))\

165 + fd.cos(k1 * x_coord) * (A0*fd.cos(w * t)

+ B0*fd.sin(w * t)) + H0)

166

167 phievals = np.array ([phi_exact.at(x, yslice) for x in xvals])

168 etaevals = np.array ([h_exact.at(x, yslice) for x in xvals])

169

170 else:

171 pass

172

173 phi1vals = np.array ([phi_new.at(x, Ly/2) for x in xvals])

174 h1vals = np.array ([h_new.at(x, Ly/2) for x in xvals])

175

176 if start_wavemaker == 1:

177 h_file_name = ’h_SV2_nlswe_wm1_ ’+tt+’.txt’

178 phi_file_name = ’phi_SV2_nlswe_wm1_ ’+tt+’.txt’

179 elif start_wavemaker == 2:

180 h_file_name = ’h_SV2_nlswe_wm2_ ’+tt+’.txt’

181 phi_file_name = ’phi_SV2_nlswe_wm2_ ’+tt+’.txt’

231

Chapter 7. Code Tutorials

182 elif start_wavemaker == 0:

183 h_file_name = ’h_SV2_nlswe_wm0_ ’+tt+’.txt’

184 phi_file_name = ’phi_SV2_nlswe_wm0_ ’+tt+’.txt’

185

186 h_file = open(os.path.join(save_path , h_file_name), ’w’)

187 phi_file = open(os.path.join(save_path , phi_file_name), ’w’)

188

189 y_slice = Ly/2

190 x_coarse = np.linspace(0,Lx -0.001 ,200)

191 for ix in x_coarse:

192 h_file.write(’%-25s %-25s\n’ %(str(ix), str(h.at(ix,y_slice)))

)

193 phi_file.write(’%-25s %-25s\n’ %(str(ix), str(phi.at(ix ,

y_slice))))

194

195 ax1.plot(xvals , h1vals * (10 ** factor), color[i-1], label = f’ $\

eta_n: t = {t:.3f}$’)

196 ax2.plot(xvals ,phi1vals , color[i-1], label = f’ $\phi_n: t = {t:.3f

}$’)

197

198 if ic == 1:

199 ax1.plot(xvals , etaevals* (10 ** factor), colore[i-1], label =

f’$h_e: t = {t:.3f}$ ’)

200 ax2.plot(xvals , phievals , colore[i-1], label = f’$\phi_e: t =

{t:.3f}$ ’)

201 else:

202 pass

203 ax1.legend(loc =4)

204 ax2.legend(loc =4)

205

206 outfile_eta.write(h_new)

207 outfile_phi.write(phi_new)

208

209 # set -up next time -step

210 E2_t.append(abs(Et))

211 E2_p.append(abs(Epp))

212 E2_k.append(abs(Ekk))

213

214 phi.assign(phi_new)

232

Chapter 7. Code Tutorials

215 h.assign(h_new)

216

217 f.close()

218 h_file.close ()

219 phi_file.close ()

220

221 fig , (ax1 , ax2 , ax3) = plt.subplots (3)

222 fig.suptitle(’Energy evolution with time’,fontsize= tsize)

223 ax1.plot(time , E2_k)

224 ax1.set_ylabel(’Kinetic energy[J] ’,fontsize=size)

225 ax1.grid()

226

227 ax2.plot(time , E2_p)

228 ax2.set_ylabel(’Potential Energy [J]’,fontsize=size)

229 ax2.grid()

230

231 ax3.plot(time , E2_t)

232 ax3.set_xlabel(’$Time [s]$ ’,fontsize=size)

233 ax3.set_ylabel(’Total energy [J] ’,fontsize=size)

234 ax3.grid()

235

236 else:

237 print(" The selected number does not match any case")

238

239 plt.show()

240 print(’*************** PROGRAM ENDS ****************** ’)

The complete code is publicly available as NL SWE SV.py on the GitHub repository.

7.3 Piston-driven numerical wavetank based on potential flow

equations

In this section, we share and explain the code developed and implemented for simulating the

nonlinear potential flow equations with and without the piston wavemaker. This code solves

the problem by using the novel approach that we have developed in Chapter 3 of this thesis, i.e.

time-discrete variational principle based on the first-order symplectic-Euler and second-order

Störmer-Verlet (SV) time-integration schemes. As we have already explained the seven-step

233

https://github.com/Wajiha11/EAGRE_-WP2/blob/main/SWE/NL_SWE_SV.py

Chapter 7. Code Tutorials

process of solving the variational problem in Firedrake and the current code is based on the

extension of the numerical wavetank model based on shallow-water equations, hence, we will

only discuss the steps which are different from shallow water equations case and share a weblink

of the repository at the end of this section where the complete code for all the test cases is

available.

User defined parameters

First, we will describe the user-defined parameters. The user can choose the dimensions of the

two-dimensional wavetank by changing the value of variables Lx and Lz which denote the wave-

tank length in x and z directions. Furthermore, the user can change the spatial discretisation

of the domain by changing the number of nodes in x and z directions, denoted by nx and nz

respectively. Lastly, the user has the choice to select one of the four test cases by assigning an

appropriate value to the variable ‘‘nvpcase", as follows:

1. "nvpcase" = 1. If the user assigns 1 value to "nvpcase" then the equations for the linear

potential-flow case without wavemaker will be solved by using the time-discrete variational

principle.

2. "nvpcase" = 2. If the user assigns 2 to "nvpcase" then the equations for the non-linear

potential-flow case without wavemaker will be solved by using the time-discrete variational

principle based on the first-order symplectic-Euler scheme.

3. "nvpcase" = 21. If the user assigns 21 to "nvpcase" then the equations for the non-

linear potential-flow case with piston wavemaker will be solved by using the time-discrete

variational principle. The time-discretisation is based on the first-order symplectic-Euler

scheme.

4. "nvpcase" = 22. If the user assigns 22 to "nvpcase" then the equations for the non-

linear potential-flow case with piston wavemaker will be solved by using the time-discrete

variational principle. The time-discretisation is based on the second-order Störmer-Verlet

(SV) scheme.

The user also finds a variable called "top id", we suggest not to change this variable because it

denotes the top-edge or free-surface of the rectangular numerical wavetank. We use this variable

later to define the Dirichlet boundary condition to solve the Laplace equation. The code block

234

Chapter 7. Code Tutorials

for the user parameters is shown as follows:

1 # parameters in SI units

2 g = 9.81 # gravitational acceleration [m/s^2]

3

4 # water

5 Lx = 140 # length of the tank [m] in x-direction

6 Lz = 1

7 nx = 120 # no. of nodes in x-direction

8 nz = 6 # no. of nodes in z-direction

9 nCG = 2 # function space order horizontal

10 nCGvert = 6 # function space order vertical

11 H0 = Lz # rest water depth [m]

12

13 # control parameters

14 output_data_every_x_time_steps = 20 # to avoid saving data every time step

15

16 top_id = ’top’

17

18 nvpcase = 1 # case 1 (SE linear), 2 (SE nonlinear), 21 (SE nonlinear piston

wavemaker), 22 (SV nonlinear piston wavemaker)

Step 1: define computational domain and mesh

Now, we will define the creation of the computational domain and mesh to solve the variation

problem. In this case, we use a special mesh known as extruded mesh. This mesh type allows us

to use different function spaces in different regions of the computational domain. Therefore, a

two-dimensional computational domain is created by extruding the horizontal line (x direction)

along the fluid depth, i.e. z direction.

1 #________________________ MESH _______________________#

2 # Extruded mesh; see example:

3 # https ://www.firedrakeproject.org/demos/extruded_continuity.py.html

4 # https ://www.firedrakeproject.org/extruded -meshes.html

5 # CG x R for surface eta and phi

6 # CG x CG for interior phi or varphi

7

8

9 mesh1d = fd.IntervalMesh(nx, Lx)

235

Chapter 7. Code Tutorials

10 mesh = fd.ExtrudedMesh(mesh1d , nz, layer_height=Lz/nz, extrusion_type=’uniform ’

)

Step 2: define function spaces

The function space to numerically solve the equations is the first-order piece-wise-linear con-

tinuous Galerkin (CG); and it is created in a way that the function space of the free-surface

velocity potential (ψ(x,H0, t)) and the velocity potential of the inner domain (φ(x, z, t)) can

be differentiated. For this purpose, Firedrake allows the creation of a mixed-function space

(mixed V = V R * V W) that can extract the ϕf (x,H0, t) and φ(x, z, t) from the total velocity

potential ϕ(x, z, t) by using split command on the mixed function space. The function space

for the functions at the free-surface, i.e. velocity potential at free-surface and free-surface ele-

vation, is created by expression V R = fd.FunctionSpace(mesh, ’CG’, nCG, vfamily=’R’,

vdegree=0), this expression creates a matrix equal for the complete domain size but assigns

zero values to the nodes corresponding to the inner domain.

1 #__________________ Define function spaces __________________#

2

3 # interior potential varphi; can have mix degrees in horizontal and vertical

dimension

4 V_W = fd.FunctionSpace(mesh , ’CG’, nCG , vfamily=’CG’, vdegree=nCGvert)

5

6 # free surface eta and surface potential phi extended uniformly in vertical:

vdegree =0

7 V_R = fd.FunctionSpace(mesh , ’CG’, nCG , vfamily=’R’, vdegree =0)

8

9 # Variables at the inner -domain

10 varphi = fd.Function(V_W , name="varphi")

11

12 # Variables at the free -surface

13 phi_f = fd.Function(V_R , name="phi_f")

14 phiii = fd.Function(V_R , name="phi")

15 phif_new = fd.Function(V_R , name="phi_f")

16

17 eta = fd.Function(V_R , name="eta")

18 eta_new = fd.Function(V_R , name="eta_new")

19

20 heta = fd.Function(V_R , name="heta")

236

Chapter 7. Code Tutorials

21 h_new = fd.Function(V_R , name="h_new")

22

23 # Variables for Stormer -Verlet waves

24 mixed_V = V_R * V_W

25 result_mixed = fd.Function(mixed_V)

26 phii , varphii = fd.split(result_mixed)

Step 3: define test functions

The test functions corresponding to the unknown functions at the free surface and inner domain

are v R = fd.TestFunction(V R), and v W = fd.TestFunction(V W) respectively. Moreover,

we also need a test function corresponding to the mixed function space which is defined as vvp

= fd.TestFunction(mixed V).

1 #__________________ Define test functions __________________#

2

3 # Test functions

4 v_W = fd.TestFunction(V_W)

5 v_R = fd.TestFunction(V_R)

6

7 # Stormer -Verlet waves

8 vvp = fd.TestFunction(mixed_V)

9 vvp0 , vvp1 = fd.split(vvp) # These represent "blocks ".

Step 4: define initial conditions

The fourth step is to assign values to the function spaces. The user has a choice to assign one

of two values to the variable "nic" and solve one of the following two cases:

1. nic = 0 computes the exact standing wave solution at the initial time, i.e. t=0, by using

the analytical expression. Then the computed values are assigned as initial conditions to

the function spaces of the problem. This choice should be made when the user wants to

compare the numerical results with the exact solution.

2. nic = 1 computes the wavemaker displacement and velocity by using the predefined or

user-defined functions. In this case, the value 0 is assigned to the functions spaces and

wavemaker motion and velocity will dictate the functions according to the time-discrete

weak formulations.

237

Chapter 7. Code Tutorials

1 if nic == 0:

2 print(’######################## Parameters of standing -wave exact sol

##################### ’)

3 n_mode = 2

4 kx = 2 * np.pi * n_mode / Lx

5 omega = np.sqrt(gg * kx * np.tanh(kx * Lz))

6 A = 0.2*4

7 D = -gg*A/(omega*np.cosh(kx*H0))

8 Tperiod = 2*np.pi/omega

9 print(’Period: ’, Tperiod)

10 phi_exact_expr = D * fd.cos(kx * x[0]) * fd.cosh(kx * x[1]) * np.sin(omega

* t0) # D cos(kx*x) cosh(kx*z) cos(omega t)

11 phi_exact_exprH0 = D * fd.cos(kx * x[0]) * fd.cosh(kx * H0) * np.sin(omega

* t0) # D cos(kx*x) cosh(kx*z) cos(omega t)

12 eta_exact_expr = A * fd.cos(kx * x[0]) * np.cos(omega * t0)

13 t_end = Tperiod # time of simulation [s]

14 dtt = np.minimum(Lx/nx ,Lz/nz)/(np.pi*np.sqrt(gg*H0)) # i.e. dx/max(c0) with

c0 =sqrt(g*H0)

15 Nt = 500

16 CFL = 0.5

17 dt = CFL*Tperiod/Nt # time step [s]

18 print(’dtt=’,dtt , t_end/dtt ,dt ,2/ omega)

19

20 ##______________ To get results at different time steps ______________ ##

21 while (t <= t_end+dt):

22 time.append(t)

23 t+= dt

24 nplot = 4

25

26 elif nic == 1:

27

28 print(’######################## PARAMETERS of Wavemaker

##################### ’)

29

30 lambd = 70

31 n_mode = Lx/lambd #

32 print(’n_mode ’,n_mode)

33 kx = 2 * np.pi * n_mode / Lx

34 omega = np.sqrt(gg * kx * np.tanh(kx * Lz))

238

Chapter 7. Code Tutorials

35 Tperiod = 2.0*np.pi/omega

36

37 nTfac = 35

38 tstop = (nTfac -7)*Tperiod

39 t_end = nTfac*Tperiod # time of simulation [s]

40 Tstartmeas = 30* Tperiod

41

42 dtt = np.minimum(Lx/nx ,Lz/nz)/(np.pi*np.sqrt(gg*H0)) # i.e. dx/max(c0) with

c0 =sqrt(g*H0)

43 Nt = 500

44 CFL = 0.5

45 dt = CFL*Tperiod/Nt # time step

46 print(’dtt=’,dtt , t_end/dtt ,dt ,2/ omega)

47 D = 0.0

48 phi_exact_expr = D * x[0] * x[1]

49 phi_exact_exprH0 = D * x[0]

50 eta_exact_expr = D * x[0]

Step 5: define the variational problem

The code can solve four cases of the variational problem based on potential flow equations

ranging from linear to nonlinear, and with and without piston wavemaker, see §7.3. Solving the

variational problem based on potential-flow equations is similar to the case of the shallow-water

equation. However, the two cases differ in the application of boundary conditions and the use of

mixed-function spaces. To explain the use of boundary conditions and mixed function spaces,

we are using the simplest case, i.e. the time-discrete variational principle of linear potential-flow

equations based on the symplectic-Euler scheme without a piston wavemaker, given as:

0 = δ

∫ Lx

0
ϕn+1
f

(ηn+1 − ηn)

∆t
+ ϕnf

ηn

∆t
− 1

2
g(ηn)2 dx

−
∫ Lx

0

∫ H0

0

1

2
|∇φn+1|2 + ∇φn+1 ·∇ϕn+1

f +
1

2
|∇ϕn+1

f |2 dx dz. (7.16)

The expression denoted by VP11 in the code block represents the VP in (7.16). By using (7.16),

we aim to complete three steps at each time step, explained as follows:

1. Step 1: compute the value of free-surface velocity potential (ϕn+1
f), where the suffix n+ 1

denotes the next time step, by using the initial conditions of free-surface velocity potential

239

Chapter 7. Code Tutorials

(ϕnf) and free-surface elevation (ηn), where the suffix n denotes the current time step. The

time-discrete weak formulation is given as:

∫ Lx

0

(ϕn+1
f − ϕnf

∆t
+ gηn

)
δηn dx = 0. (7.17)

To obtain (7.17), we take variations of (7.16) with respect to ηn, which is accomplished by

phif expr1 = fd.derivative(VP11, eta, du=vvp0), where vvp0 represents the block

for ϕf in the mixed test-function space.

2. Step 2: update the value of the velocity potential for the whole domain (ϕ) by using the

updated value of free-surface velocity potential (ϕn+1
f) as a Dirichlet boundary condition.

∫ Lx

0

∫ H0

0
∇(ϕn+1

f + φn+1) ·∇δϕn+1 dx dz = 0 (7.18)

Note that the dimensions of matrices for the free-surface velocity potential (ϕn+1
f) and

velocity potential for the inner domain (φ) would be different if we use standard Func-

tion spaces. Therefore, to make the dimensions of matrices consistent we use mixed-

function space which contains the value of free-surface and inner domain functions si-

multaneously and we can use fd.split() command to extract the values later in the time

loop. To accomplish this step in Firedrake, first, we take variations of (7.16) with re-

spect to inner-domain velocity potential (φ) which is done by the expression phi expr1

= fd.derivative(VP11, varphii, du=vvp1) in the code block, where vvp1 represents

the block for φ in the mixed test-function space. Then we add the phi expr1 to (7.17) to

have an expression for the velocity potential of the whole domain, given by the expression

phi combo in the code. In this way, we find the updated value of free-surface velocity po-

tential (ϕn+1
f) and update the value of inner-domain velocity potential in one step when

we solve the variational problem.

3. Step 3: compute the value of free surface elevation ηn+1 by using the value of ϕn+1
f , as

follows:

∫ Lx

0

(ηn+1 − ηn)

∆t
δϕn+1

f dx = 0. (7.19)

To obtain (7.19), we take variations of (7.16) with respect to ϕnf , which is accomplished

240

Chapter 7. Code Tutorials

by eta expr2 = fd.derivative(VP11, phii, du=v R), where v R represents the test

function for ϕf in the function space V R .

1 ##_________________ Boundary Conditions __________________________ ##

2

3 BC_varphi_mixed = fd.DirichletBC(mixed_V.sub(1), 0, top_id)

4

5 if nvpcase ==1:

6 print(’### ’)

7 print("You have selected case 1 : Linear PF VP without piston wavemaker

solved by firedrake by using fd.derivative. ")

8 print("Time discrete VP is based on Symplectic -Euler scheme. ")

9 print(’### ’)

10

11 ##________ Time -discrete Variational Principle

12 ________##

13

14

15 VP11 = (fd.inner(phii , (eta_new - eta)/dt) + fd.inner(phi_f , eta/dt) -

(1/2 * gg * fd.inner(eta , eta)))* fd.ds_t \

16 - (1/2 * fd.inner(fd.grad(phii+varphii), fd.grad(phii+varphii))) *

fd.dx

17

18 ##________ Automatic derivation of time -discrete weak formulations

________ ##

19

20 # Step -1 and 2 must be solved in tandem: f-derivative VP wrt eta to find

update of phi at free surface

21 # int -phi/dt + phif/dt - gg*et) delta eta ds a=0 -> (phi -phif)/dt = -gg *

eta

22 phif_expr1 = fd.derivative(VP11 , eta , du=vvp0) # du represents

perturbation

23

24 # Step -2: f-derivative VP wrt varphi to get interior phi given surface

update phi

25 # int nabla (phi+varphi) cdot nabla delta varphi dx = 0

26 phi_expr1 = fd.derivative(VP11 , varphii , du=vvp1)

27 Fexpr = phif_expr1+phi_expr1

28 phi_combo = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

Fexpr , result_mixed , bcs = BC_varphi_mixed))

241

Chapter 7. Code Tutorials

29

30 # Step -3: f-derivative wrt phi but restrict to free surface to find updater

eta_new; only solve for eta_new by using exclude

31 eta_expr2 = fd.derivative(VP11 , phii , du=v_R)

32 eta_expr = fd.NonlinearVariationalSolver(fd.NonlinearVariationalProblem(

eta_expr2 ,eta_new))

Step 6: solve the variational problem

Finally, we initiate the time loop and solve the variational problem at each time step. The code

for nvpcase==1 is given as follows:

1 while t <= t_end + dt: #

2

3 tt = format(t, ’.3f’)

4

5 # Solves the variational problem

6 if nvpcase == 1: # VP linear steps 1 and 2 combined # solve of phi

everywhere steps 1 and 2 combined

7 phi_combo.solve() #

8 phii , varphii = result_mixed.split ()

9 eta_expr.solve ()

10

11 # Update the values of Functions

12 if nvpcase == 1: # VP linear steps 1 and 2 combined

13 phi_f.assign(phii)

14 eta.assign(eta_new)

15

16 # Compute energy

17 if nvpcase == 1: # VP linear steps 1 and 2 combined

18 EKin = fd.assemble(0.5*fd.inner(fd.grad(phii+varphii),fd.grad(phii+

varphii))*fd.dx)

19 EPot = fd.assemble(0.5*gg*fd.inner(eta ,eta)*fd.ds_t)

20

21 E = EKin+EPot

22

23 t+= dt

The complete code is publicly available as PF piston wavetank.py on the GitHub repository.

Following this tutorial, the user can adopt the code to their problem and simulate the wave

242

https://github.com/Wajiha11/EAGRE_-WP2/blob/main/Potential_flow_piston/PF_piston_wavetank.py

Chapter 7. Code Tutorials

waves in a piston-driven numerical wavetank.

7.4 Conclusion

This chapter shares the codes for the simulation of numerical wavetank models based on

linear/non-linear shallow water equations and linear/non-linear potential flow equations. For

the sake of brevity, the equations are not rewritten, however, the corresponding chapter num-

bers are mentioned in each section. All the the codes produce ’.txt’ files which include the

evolution of free-surface elevation and velocity potential at different time steps. The user will

need MATLAB or Python codes to read the files and plot the data. Furthermore, separate

folders are created with ‘.pvd’ files that can be visualized in Paraview.

243

https://www.paraview.org/

Chapter 8

Conclusion

8.1 Summary

Undeniably, the maritime industry has a significant role in global trading and the energy sector.

Hence, the research and development sector of the maritime industry is actively developing in-

novative designs for better shipping and energy solutions which require extensive experimental

testing. However, the time and budget constraints associated with the experimental campaigns

limit the number of tests which compels the researchers to develop affordable numerical tools

to assist industry in the design process. To address the industrial demands, we have derived

and implemented numerical wavetank models by utilizing a novel approach that can drastically

reduce the time and effort for model implementation. Furthermore, the developed numeri-

cal wavetank models can be coupled with hyperelastic structure models to perform structure

interaction (FSI) analysis.

8.1.1 Overview of objectives and accomplishments

The project aims to develop a practical and effective numerical tool to simulate water-wave in-

teractions with hyperelastic structures, also known as fluid-structure interaction (FSI) analysis.

This process has been accomplished in two major steps, as follows:

1. In the first step we developed wavemaker-driven numerical wavetank models that can

simulate a wide range of water dynamics, i.e. shallow to deep. These models will be the

numerical representation of the physical wavetanks that are employed in maritime facil-

ities. Furthermore, the developed numerical wavetank models are capable of extending

244

Chapter 8. Conclusion

their functionality to include fluid-structure interaction (FSI) analysis of water waves and

the hyperelastic structures. Therefore, we have developed a hyperelastic structure model

whose formulation is compatible with the numerical wavetank models. A novel feature

of our numerical models is that we have developed and tested the numerical implementa-

tions of the dynamics via consistent (i.e. stable and conservative) geometric time-discrete

variational principles that automate the derivation of discrete weak formulations within

Firedrake and drastically reduce the time and effort for model implementation. The de-

tails of the derivation and implementation of the numerical models developed in this step

are discussed in Chapter 2 and 3, and the actual codes are shared in Chapter 6.

2. The numerical results require experimental validation and hence, we performed a series of

FSI experiments under a wide range of wave conditions ranging from regular-to-irregular

and moderate-to-steep to record the dynamic response of a flexible beam at MARIN’s

concept basin. The experimental setup is designed such that it is capable of measuring

incident waves, beam accelerations, and waves reflected from the beam simultaneously,

making it suitable for studying FSI problems experimentally. The data acquired from

the experiments are made publicly available with open access via a GitHub repository.

Lastly, we used the experimental data for the validation of MARIN in-house FSI solvers

which confirmed that the data are suitable for the validation of a variety of FSI numerical

solvers, i.e. linear to high-fidelity. The details of the experimental campaign are discussed

in Chapter 4 while the validation studies of the FSI solvers are discussed in Chapter 5

and 6.

The numerical models can be further improved to enhance their applicability in industry. Such

extensions and improvements will be discussed next.

8.2 Discussion on concomitant extensions

8.2.1 Inclusion of wave absorbing feature

The numerical wavetank models developed in this research project do not include any wave-

absorbing feature in this instance. A quick solution is to change the solid-wall boundary condi-

tion at the end of the wavetank to a static wave-absorbing boundary condition as explained in

Chapter 2. Nevertheless, our objective is to create a numerical model that accurately reflects

245

Chapter 8. Conclusion

the experimental wavetank, which necessitates the inclusion of a numerical beach. Furthermore,

the numerical beaches should be adjustable to accommodate the various shapes and types of

beaches installed in the experimental facilities. However, there is a challenge associated with the

implementation of slopes as the water dynamics transit from deep to shallow when the waves

move along the slope or beach which makes a numerical model, solely based on potential flow

equations, inadequate to predict water dynamics at beaches. A solution is to couple potential

flow equations with shallow water equations such that the bottom-varying part of the numerical

wavetank is solved by shallow water equations while potential flow equations are used in other

regions. Gidel [34] has presented the derivation and implementation of such beaches by using

shallow water equations

8.2.2 Numerical wavetank for FSI analysis

The maritime industry frequently uses wavetank facilities to study the response of fixed and

floating offshore structures in water waves. Hence, a numerical wavetank that can implicitly

perform two-way coupled FSI analysis is an industrial necessity. To cater to this need, we have

developed a hyperelastic structure model which is compatible with the numerical wavetank

models based on our novel approach. Nevertheless, there is a challenge associated with the cou-

pling of two governing equations as the potential flow equations are in the Eulerian reference

frame while the hyperelastic structure equations are in the Lagrangian frame of reference, thus

making the nodes of computational meshes discontinuous at the FSI interface which causes nu-

merical instabilities. Therefore, this is a topic under research and requires further investigation.

A temporary solution for this problem is to couple the two systems explicitly, i.e. solve the fluid

equations first and interpolate the fluid loads on the structure’s mesh. After that, solve the

hyperelastic structure equations and after convergence interpolate the structure’s deformation

back onto the fluid mesh and solve the fluid equations.

8.2.3 Extension and experimental validation of the waveflap driven numeri-

cal wavetank

A piston-driven numerical wavetank is capable of simulating shallow- and intermediate-depth

water dynamics, as the motion of water particles generated by piston wavemaker resembles

shallow-water dynamics. The maritime industry uses piston wavemakers in shallow-water basins

while for deep-water basins waveflap wavemakers are deployed. Therefore, a waveflap-driven

246

Chapter 8. Conclusion

numerical wavetank model is an industrial requirement to study ship manoeuvring and the

response of offshore floating structures in deep waters. The novel approach we have developed

in Chapter 3 can be extended to include waveflap wavemaker. See [69] for the preliminary results

obtained from the implementation of the time-discrete variational principle for the waveflap-

driven wavemaker. A schematic of the wavetank is demonstrated in Fig. 2.6.

Figure 8.1: Schematic wavetank with waveflap wavemaker, at its left-hand end, having position
x = W (z, t); it is this relationship that binds two spatial coordinates.

As we know, experimental validation is an essential step before utilizing a numerical tool in

industry. Therefore, to serve the purpose of validation, the experimental study presented in

Chapter 4 has been conducted in waveflap-driven wavetank. We have recorded the waveflap

displacement and velocity for different wave conditions. This data can be found in ‘.txt’ files

shared through GitHub repository. To numerically reproduce the same wavemaker motion as in

the experimental study, the measured data is linearly interpolated which then can be assigned

to a numerical function at each time step and used as a seed to run the numerical wavetank

simulations. The numerical time step is often smaller than the experimental time step due to the

247

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments

Chapter 8. Conclusion

CFL condition; therefore, we interpolate the measured data by using the first-order polynomial.

The measured and interpolated wavemaker motion is plotted in Fig. 8.2.

Figure 8.2: The top plot shows the comparison of the interpolated and measured wavemaker
motion during one complete test and the bottom plot shows the zoomed-in part of the compar-
ison shown in the top plot.

The plots shown in Fig. 8.2 can be generated by using the shared Python script wave-

flap wavemaker.py shared on the GitHub repository. The interpolated signal agrees well

with the measured signal, as the plots are visually indistinguishable.

8.3 Outreach activities

The outreach activities aim to inspire the non-specialist public by engaging them in the research

work. The research work carried out in this European Industry Doctorate (EID) project, i.e.

“Eagre/Aegir: High-Seas Wave-Impact Modelling”, highlights the importance and role of sci-

ence, technology, engineering and mathematics (STEM) in our lives. Therefore, the awareness

of these topics in the general public is capable of instilling a positive change in society that will

have fruitful results for mankind in the long run.

248

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments

Chapter 8. Conclusion

8.4 Online outreach activities

During the first year of the project, the rules related to in-person social activities were restrictive

due to the COVID-19 pandemic. Therefore, virtual means for communication and outreach were

employed. This section explains the two outreach activities that were carried out virtually.

8.4.1 Event 1: Differential Equations in Real Life

Wajiha Rehman took part as a speaker in an international conference held on 21-06-2021 in

Pakistan, titled “WUM - One-day international webinar on challenges, innovation and oppor-

tunities in mathematics”, organised by Women University Multan, in which scientists with

mathematical backgrounds delivered talks and shared their research with undergraduate-level

female students of the university. The topic of Wajiha’s talk was “Differential Equations in

Real Life”, which explained the process of mathematical modelling of physical systems, i.e., wa-

ter waves and fluid-structure interactions between water waves and a hyperelastic beam. The

purpose of the talk was to inspire female students in Pakistan to choose mathematics as their

future career. The talk can be found on the WUM YouTube channel (time of presentation at

circa 3:00:00 to 3:16:00hr) at the hyperlink The Women University Multan Official.

8.4.2 Event 2: Meet a scientist

Wajiha Rehman joined the “Science Fuse Fellowship Programme” organised by Science Fuse to

promote science among the local students in Pakistan. As a part of this fellowship, she took part

in an interview, in a “Meet a scientist” program, in which Wajiha explained her research-project

work to a non-mathematical audience at the high-school level. The interview was delivered in

Urdu with the remit of inspiring the youth of Pakistan to pursue future careers in engineering

and numerical modelling. The interview can be found at the Facebook hyperlink Science Fuse

(dated 03-07-2021 –one needs to be logged on Facebook– https://www.facebook.com/page/

1602882396609358/search/?q=wajiha).

8.5 Exhibition in MathsCity

Wajiha Rehman and Yang Lu visited MathsCity, located in Trinity shopping centre, Leeds,

to carry out the outreach activities. The exhibition was done to introduce the concept of clean

energy production by exploiting renewable natural resources, i.e. wind energy, to a group of

249

https://www.youtube.com/watch?v=rhvmlz0aels
https://sciencefuse.com/
https://www.facebook.com/sciencefuse
https://www.facebook.com/page/1602882396609358/search/?q=wajiha
https://www.facebook.com/page/1602882396609358/search/?q=wajiha
https://mathscity.co.uk/

Chapter 8. Conclusion

home-schooled children. The outreach activity consisted of three steps as follow:

• The first step was the introduction of general concepts. The activity started with a brief

presentation on the concept of global warming, the challenges of harvesting wind energy

in the oceans, the role of the PhD project in this scenario and the process of simulating

water waves and wind turbines.

• The second step was about experimental demonstrations. After explaining the general

overview of the project, experimental demonstrations were given by using a scaled wave-

tank which had a paper windmill attached at one end. To apply water loads on the

turbine’s mast the waves were generated manually by using a plunger while a blow dryer

was used to artificially generate the wind loads on the turbine’s blades. The experimental

set-up used for the demonstration is shown in Fig.8.3.

Figure 8.3: The experimental set-up used for the demonstrations is shown.

The purpose of performing these demonstrations was to give an idea of the magnitude of

loads that are acting on an offshore wind turbine and let the audience feel the gravity of

the situation when there is a sea storm.

• In the last step, the children were encouraged to make their own paper windmills by using

the provided material. The children and their parents enjoyed this fun activity. A picture

of the kids while making their own paper wind turbines is shown in Fig.8.4

250

Chapter 8. Conclusion

Figure 8.4: Children building paper windmills from the provided material.

The CEO of MathsCity, Dr Katie Chicot, has given the following feedback on the Outreach

event.

“ Around 40 home school children visited on the day and the staff reported that you had good

interactions with the families. In terms of feedback on your activities, the first thing you should

ask yourself is if I were to do this again, what would I do differently and what would I keep the

same?

I thought you were enthusiastic and accessible and you are authoritative. I think it is good that

you worked together and were part of the presentation rather than making something stand-

alone. One point that I noted was that the level of your slides was probably too high for the

intended audience. I doubt any of them had seen a function so showing a few variables and

functions perhaps didn’t match the audience. I think you should build into your outreach plans

ways of gauging how your audience is understanding your material and adapting your offering

in the moment to that response. Your hands-on activities were at a junior level which was a

good balance to the technicality of your slides. MathsCity attracts a range of ages and so its

necessary to have a balance of activities that cover a range of maths levels.

Your session at MathsCity was well received and showed a new application of maths that the

audience would not have otherwise seen. You definitely fulfilled the stated goal. I hope you

enjoyed it and would deliver more outreach in the future. If you do then I think it would be good

to build on what you’ve done already and add more activities and demonstrations.”

Based on the feedback from the CEO of MathsCity, Wajiha and Ynag understood that the pre-

251

Chapter 8. Conclusion

sentation content was technically advanced for the invited age group; however, the experimental

demonstrations were at the level of the audience and helped in a better understanding of the

process. Therefore, in the future, a greater emphasis will be given to the experimental demon-

strations as they are more engaging. The scientific and intellectual impact of the activities can

additionally be increased in the future by targeting high school students or undergraduates,

with some basic knowledge of calculus. This would facilitate comprehension of the underlying

mathematical issues to be conveyed, such as the societal dependence on modelling and com-

putational simulation when solving complex real-world problems whose exact solutions elude

analytical and theoretical approaches.

8.6 Details of the second outreach activity

On February 26th 2022, Wajiha Rehman and Yang Lu jointly delivered a talk to year 9 students

at a “Secondary Mathematics Masterclass” organised by The Royal Institution in the MALL

of School of Mathematics, the University of Leeds. The topic of the talk was “Maths for Green

Power: Windmills in Sea Waves”. It was a two-hour-long talk which was divided into different

sections.

• The first session was based on the explanation of the role of mathematics in real life and

the process of carrying out research. The talk started with a discussion to access the

current level of understanding of the students, followed by an explanation of the effects of

global warming on climate change, and the possible solutions to prevent it. The concepts

of green energy and technologies to exploit renewable energy resources were also explained

in detail. It was concluded that the knowledge of mathematics is significant during the

designing phase of technologies to generate power from renewable energy resources i.e.

solar, wind and water.

• In the second session, the concept of “Research Trinity” was explained to the students

by doing a thought experiment. The students were asked to write down their response

to the following question, “ How can you find the temperature in the centre of the cake

when the temperature at the boundaries is known?”. The responses were collected and

categorised under one of the three pillars of research i.e. theoretical, experimental and

numerical. At this stage, the majority of students said that they would use a thermometer

to measure the temperature, i.e. experimental ways, and only a few suggested theoretical

252

https://www.rigb.org/learning/ri-masterclasses

Chapter 8. Conclusion

and numerical ones. Based on the results, it was found that the majority of the students

were unfamiliar with the numerical methods. Therefore, the process of mathematical and

numerical modelling for solving the system of equations was explained by using standing

waves as an example. The basic terminologies related to waves were taught, which was

then followed by the derivation of the exact solution by using intuition instead of rigorous

mathematics. Later the results of the numerical solutions were shown and an experimental

demonstration was given by using the scaled wavetank.

Figure 8.5: Wajiha and Yang while demonstrating the standing waves experimentally. The
standing waves were produced in the scaled wavetank to demonstrate that the results obtained
by the theoretical model (exact solution) and numerical solution were aligned with the experi-
ments.

• During the third session, both researchers explained their research work focused on po-

tential flow equations with a piston wave-maker, wave-turbine interactions model, and

simulations from the mathematical and numerical modelling of water waves.

Figure 8.6: Yang while explaining the sim-
ulations’ results to the students.

Figure 8.7: Wajiha while explaining the
mathematical model used for simulating
the wave impact on the turbine’s mast.

253

Chapter 8. Conclusion

• The fourth session was based on interactive activities. The students were told to share

their views on the advantages and disadvantages of each method, i.e. theoretical, nu-

merical and experimental, and suggest their preferred method. Each student was given a

sticky note and was told to write down their answers anonymously. The responses of the

student were collected and classified on the basis of their preferred method. This time,

the majority of students suggested theoretical and numerical methods over experimental

methods. Through this activity, researchers understood that their message related to the

advantages of theoretical and numerical methods was well delivered.

Figure 8.8: Classification of the students’
responses on the advantages and disadvan-
tages of each method and their favourite
method.

Figure 8.9: Captured during the discussion
session.

8.7 An online presentation on fluid-structure interactions (FSI)

The final outreach activity of the project is about the explanation of the experimental modelling

of the water-wave interactions with a flexible beam. This fluid-structure interaction study was

performed at the Maritime Research Institute Netherlands (MARIN). The experimental study

is explained in the form of a presentation which is shared publicly on LinkedIn. Therefore,

this knowledge can be accessed and shared by a wide range of audiences across the world. The

shared presentation starts with the introduction of general concepts related to fluid-structure

interactions (FSI) and their significance in real life. After that, it explains how FSI problems

are studied in the maritime industry and why benchmark experiments are important. Lastly, it

provides insights on the actual experimental campaign that was carried out in MARIN’s concept

basin and the key results of the experiments.

254

https://drive.google.com/file/d/1mh-TQ37EEN8-r-VPSXGJSbn203xHwfzV/view?usp=sharing
https://www.linkedin.com/posts/wajiha-rehman-52248595_dynamic-fluid-structure-interaction-activity-7122587177565188097-o3Me?utm_source=share&utm_medium=member_desktop

Appendix A

Derivation of the exact solution of

the shallow water equations with

piston wave-maker

The equations of motion for nonlinear shallow water equations with piston wavemaker R(t) at

the left side boundary are as follows:

δϕ : ht + ∂x(hϕx) = 0, (A.1)

δh : ∂tϕ+
1

2
|∂xϕ|2 + g(h−H0) = 0, and (A.2)

δϕ|x=R(t) : (hϕx −Rth)|x=R(t) = 0, (A.3)

which can be linearized around a state of rest, i.e. H0, by introducing small perturbations of

order O(ϵ) around H0 as follows:

ϕ = ϕ0 + ϵ1ϕ1 +O(ϵ2) + . . . and, (A.4)

η = η0 + ϵ1η1 +O(ϵ2) + (A.5)

Neglecting the high order terms with O(ϵ2) will linearize the equations, as follows:

1

2
|∂xϕ|2 = O(ϕ2) = O(ϵ2) ≈ 0. (A.6)

255

Chapter A. Derivation of the exact solution of the shallow water equations with piston
wave-maker

The linearization of ∂xϕ(x = R(t), t) is done by introducing the perturbation variable R in the

Taylor expansion at x = 0

∂xϕ(x = R(t), t) = ∂xϕ(x = 0, t) +
∂(∂xϕ)

∂x
|x=0R(t) ≈ ∂xϕ(0, t) = Rt. (A.7)

After linearization at H0, the shallow water equations

∂tη = −H0∇2ϕ, (A.8a)

∂tϕ = −gη, (A.8b)

∂xϕ = Rt at x = 0, and (A.8c)

∂xϕ = 0 at x = L, (A.8d)

have the following format of solutions in a 1D domain of size Lx with a solid wall at the right

side and piston wavemaker R(t) on the left side of the domain. Taking the time derivative of

(A.8b) and then putting it into (A.8a) gives an expression for ϕ which is as follows

∂ttϕ = c2∂xxϕ, (A.9)

where c2 = gH0 is the wave velocity. This equation is the wave equation which can be separated

into a temporal eiσt and spatial ϕ̂(x) part by using the separation of variable, as follows:

ϕ(x, t) = ϕ̂(x) e−iσt, (A.10)

where σ =
2π

Tp
is the forcing frequency and Tp is the time period of the forcing term. The

resulting ordinary differential equation is given as

∂tt(ϕ̂(x) e−iσt) = c2∂xx(ϕ̂(x) e−iσt)

−σ2ϕ̂(x) e−iσt = c2 e−iσt∂xx(ϕ̂(x))

∂xx(ϕ̂(x)) = −σ
2

c2
ϕ̂(x) (A.11)

256

Chapter A. Derivation of the exact solution of the shallow water equations with piston
wave-maker

which is the eigenvalue equation for ϕ̂(x) and it has a well-known plane wave solution which is

given as

ϕ̂(x) = Ae±ik1x

ϕ̂(x) = Ae+ik1x +Be−ik1x (A.12)

with wave number kp = σ/c. Substituting (A.12) into (A.10) gives

ϕ(x, t) = e−iσt
(
Ae+ikpx +Be−ikpx

)
. (A.13)

The boundary conditions at the solid wall (x = L) and wave-maker (x = R(t)) should be

satisfied. The boundary condition at the solid wall (x = L) says that the velocity of waves in x

direction, i.e. ∂xϕ, must be equal to zero, which is stated as

∂ϕ

∂x

∣∣∣
x=L

= 0

ike−iσt
(
Ae+ikpL −Be−ikpL

)
= 0. (A.14)

Solving (A.14) yields the value of the coefficient B as follows

Ae+ikpL = Be−ikpL

B = Ae2ikpL. (A.15)

The value of B is then substituted in (A.12):

ϕ̂(x) =
(
Aeikpx +Be−ikpx

)
= Aeik1L

(
eikp(x−L) + e−ikp(x−L)

)
. (A.16)

Finally, the hyperbolic identity, i.e. cosh(ix) =
1

2
(eix + e−ix) = cos(x), is used to obtain the

expression for ϕ̂(x)

ϕ̂(x) = 2AeikpL
eikp(x−L) + e−ikp(x−L)

2

= Ã cos(kp(x− L)). (A.17)

257

Chapter A. Derivation of the exact solution of the shallow water equations with piston
wave-maker

Substituting (A.17) into (A.10) results into the expression for ϕ(x, t) as follows

ϕ(x, t) = Ãe−iσt cos(kp(x− L)). (A.18)

Similarly, the boundary condition at the wave-maker (x = R(t)) says that the velocity of waves

in x direction , i.e. ∂xϕ, must be equal to the velocity of wave-maker which is:

Rt = U0iσe
−iσt, (A.19)

and the motion of wavemaker R(t) is given as

R(t) = −U0e
−iσt. (A.20)

Therefore, the boundary condition at the wave-maker (x = R(t)) is given as

∂ϕ

∂x

∣∣∣
x=0

= Rt

−Ãkpe−iσt sin(kp(0 − L)) = U0iσe
−iσt

Ãkp sin(kpL) = U0iσ. (A.21)

As a result, the value of Ã is obtained as

Ã =
U0iσ

kp sin(kpL)
. (A.22)

Plugging the value of Ã in (A.18) gives the final expression for ϕ(x, t) which is also the particular

solution of the problem, denoted as ϕp(x, t), as follows

ϕp(x, t) =
U0iσ

kp sin(kpL)
e−iσt cos(kp(x− L)). (A.23)

The expression for η(x, t) is obtained by substituting the expression of ∂tϕ in (A.8b), as follows

η = −1

g

∂ϕ

∂t

=
iσ

g

U0iσ

kp sin(k1L)
e−iσt cos(kp(x− L)). (A.24)

258

Chapter A. Derivation of the exact solution of the shallow water equations with piston
wave-maker

To avoid the phenomenon of resonance the value of forcing frequency σ must not be equal to

the natural frequency of the system. To find the resonance frequency ω, consider the solution

ϕ(x, t) as follows

ϕ(x, t) = ϕ̂(x) e−iωt (A.25)

where, ω is the natural frequency of the system. Following the same procedure that is used

to obtain the eigenvalue equation (A.11) for ϕ̂(x) the eigenvalue equation for the spatial part

ϕ̂p(x) of the particular ϕp(x, t) is

ϕ̂(x) = Cek2x +De−k2x (A.26)

with wave number k2 = ω/c. Putting (A.26) into (A.25) gives

ϕ(x, t) = e−iωt
(
Ceik2x +De−ik2x

)
. (A.27)

In this case, the boundary condition at x = L says that velocity in x direction i.e. ∂xϕ is equal

to zero. This condition is stated as follows

∂ϕ

∂x
|x=L = 0

ik2

(
Ceik2L −De−ik2L

)
= 0 (A.28)

which gives the value of D as

D = Ce2ik2L. (A.29)

Substituting the value of D in (A.26) and then applying the hyperbolic identity i.e. cosh(ix) =

1

2
(eix + e−ix) = cos(x), gives

ϕ̂(x) = C̃cos(k2(x− L)). (A.30)

Putting (A.30) into (A.25) gives

ϕ(x, t) = e−iωtC̃cos(k2(x− L)). (A.31)

259

Chapter A. Derivation of the exact solution of the shallow water equations with piston
wave-maker

In the case when no forcing is acting on the domain the boundary condition at x = 0 is given

as

∂ϕ

∂x
|x=0 = 0

e−iωtC̃sin(k2L) = 0. (A.32)

As a result of (A.32) the value of C̃ is zero and wave number k2 is

k2 =
2πm1

L
, (A.33)

and the natural frequency of the system is

ω = ck2 = c
2πm1

L
and m1 = 1, 2, 3, .. (A.34)

After linearisation at H0, the shallow water equations have the following format of free wave

solutions

η(x, t) = cos k1x (A cosωt+B sinωt), and (A.35a)

ϕ(x, t) =
g

ω
cos k1x (−A sinωt+B cosωt), (A.35b)

which satisfy (A.8b), as follows:

∂ϕ

∂t
= g cos k1x (−A cosωt−B sinωt)

= −g cos k1x (A cosωt+B sinωt)

= −gη.

(A.36)

Next, considering that ω =
√
gH

√
k21 and

∂ϕ

∂x
= −k1

g

ω
sin k1x (−A sinωt+B cosωt), (A.37a)

∂2ϕ

∂x2
= −k21

g

ω
cos k1x (−A sinωt+B cosωt), (A.37b)

260

Chapter A. Derivation of the exact solution of the shallow water equations with piston
wave-maker

we have

−H∇2ϕ = −H
(
∂2ϕ

∂x2

)
=
gH

(
k21
)

ω
cos k1x (−A sinωt+B cosωt)

= ω cos k1x (−A sinωt+B cosωt).

(A.38)

In addition,

∂η

∂t
= ω cos k1x (−A sinωt+B cosωt)

= −H∇2ϕ,

(A.39)

which means (A.8a) is also satisfied. Finally, the solid wall boundary conditions at the two ends

of the domain , i.e. x = 0 and x = L, should be satisfied as follows

∂ϕ

∂x

∣∣∣∣
x=0

= −k1
g

ω
sin k1x (−A sinωt+B cosωt) = 0, (A.40a)

∂ϕ

∂x

∣∣∣∣
x=Lx

= −k1
g

ω
sin k1Lx (−A sinωt+B cosωt) = 0. (A.40b)

This implies k1Lx = 2πm1. Therefore, the wave number should be k1 = 2πm1/Lx with m1

being a positive integer. Therefore, ω =
√
gH

2πm1

Lx
The total solution for ϕ(x, t) is given as

the sum of particular solution i.e. ϕp(x, t) and homogeneous solution i.e. ϕh(x, t)

ϕ(x, t) = e−iσtÃcos(kp(x− L)) +
g

ω
cos k1x (−A sinωt+B cosωt) (A.41)

and the total solution for η(x, t) is given as

η(x, t) =
iσ

g

U0iσ

kp sin(kpL)
e−iσt cos(kp(x− L)) + cos k1x (A cosωt+B sinωt). (A.42)

261

Appendix B

Spatial discretization of the VP for

linear potential-flow equations

The corresponding variational principle (VP) for the linear potential-flow equations is given by:

0 = δ

∫ T

0

(∫
Lx

ϕ∂tη −
1

2
gη2dx−

∫
Lx

∫ H0

0

1

2
|∇ϕ|2 dzdx

)
dt. (B.1)

Substituting the approximation of the unknown variables η(x, t) and ϕ(x, t) by a finite linear

combination of basis functions φj(x), given as

ϕ ≈ ϕh(x, t) = ϕj(t), φj(x), and η ≈ ηh(x, t) = ηj(t)φj(x). (B.2)

into (B.1), and then evaluating the limits and boundary conditions yields the spatially dis-

cretized VP as follows:

0 = δ

∫ T

0
ϕkMkl

dηl
dt︸ ︷︷ ︸

1

− 1

2
gηkMklηl︸ ︷︷ ︸

2

− 1

2
ϕiSijϕj︸ ︷︷ ︸

3

dt. (B.3)

Taking the variations of the first term gives:

δ

∫ T

0
ϕkMkl

dηl
dt

dt =

∫ T

0
δϕkMkl

dηl
dt

− dϕk
dt

Mklδηl dt. (B.4)

262

Chapter B. Spatial discretization of the VP for linear potential-flow equations

The variations of the second term gives:

δ

∫ T

0

1

2
gηkMklηl dt =

∫ T

0
gηkMklδηl dt. (B.5)

In (B.3), the stiffness matrix Sij in the third term represents the whole domain which includes

free surface nodes (denoted by subscripts k and l) as well as inner fluid domain (denoted by

subscripts i′ and j′), therefore it can be rewritten as

Sij =

Skl Skj′

Si′l Si′j′

 . (B.6)

Then we can split Sijϕiϕj in the third term of (B.3) as follows

ϕiSijϕj = ϕkSkjϕj + ϕi′Si′jϕj

= ϕkSklϕl + ϕkSkj′ϕj′ + ϕi′Si′lϕl + ϕi′Si′j′ϕj′ .

(B.7)

After substituting (B.7) into the third term of (B.1) and taking the variations gives

δ

∫ T

0

1

2
ϕiSijϕj dt

=

∫ T

0
δϕkSklϕl +

1

2
ϕkSkj′δϕj′ +

1

2
δϕkSkj′ϕj′ +

1

2
ϕi′Si′lδϕl +

1

2
δϕi′Si′lϕl + ϕi′Si′j′δϕj′ dt

=

∫ T

0
δϕkSklϕl + ϕkSkj′δϕj′ + δϕkSkj′ϕj′ + ϕi′Si′j′δϕj′ dt.

(B.8)

After substituting the variations of all the terms into(B.1), the following

0 =

∫ T

0
Mklδϕk

dηl
dt

−Mkl
dϕk
dt

δηl − gMklηkδηl − δϕkSklϕl − ϕkSkj′δϕj′

− δϕkSkj′ϕj′ − ϕi′Si′j′δϕj′ dt

=

∫ T

0

(
−Mkl

dϕk
dt

− gηkMkl

)
δηl +

(
Mkl

dηl
dt

− Sklϕl − Skj′ϕj′

)
δϕk

−
(
ϕkSkj′ + ϕi′Si′j′

)
δϕj′ dt. (B.9)

Equation (B.9) is equal to eq(4.32) in [72] excluding the terms related to coupling and beam.

Finally, using the arbitrariness of variations δηl, δϕk and δϕj′ , we can obtain a system of ordinary

263

Chapter B. Spatial discretization of the VP for linear potential-flow equations

and algebraic equations from (B.9), as follows

δηl :
dϕk
dt

Mkl + gηkMkl = 0, (B.10)

δϕk : Mkl
dηl
dt

− Skjϕj = 0, (B.11)

δϕj′ : ϕi′Si′j′ + ϕkSkj′ = 0. (B.12)

In addition, the discretized Laplace equation (B.12) shows that interior degrees of freedom can

be eliminated:

ϕi′ = −S−1
i′j′

(
Skj′ϕk

)
= −S−1

j′i′
(
Skj′ϕk

)
= −Skj′S−1

j′i′ϕk. (B.13)

Substitute (B.7) into (B.3) and use (B.13), the variational principle becomes

0 = δ

∫ T

0
ϕkMkl

dηl
dt

− 1

2
gηkMklηl −

1

2

(
ϕkSklϕl + ϕkSkj′ϕj′ + ϕi′Si′lϕl

+ ϕi′Si′j′ϕj′
)

dt

= δ

∫ T

0
ϕkMkl

dηl
dt

− 1

2
gηkMklηl −

1

2

[
ϕkSklϕl + ϕkSkj′ϕj′ − Si′lS

−1
j′i′(Skj′ϕk)

− Si′j′(Skj′S
−1
j′i′ϕk)ϕj′

]
dt

= δ

∫ T

0
ϕkMkl

dηl
dt

− 1

2
gηkMklηl −

1

2
ϕkBklϕl dt, (B.14)

where Bkl = Skl − Skj′S
−1
j′i′Si′l is the Schur complement. Equation (B.14) is equal to eq(4.36)

in Salwa’s thesis [72] excluding the terms related to coupling and beam.

264

Appendix C

Availability of data

This section explains the online platform that is used to share the experimental data, the

data arrangement into different folders, and the content of each folder. An open, public-access

GitHub the repository has been created to share all experimental data1.

C.0.1 Main folders

The repository has seven main folders corresponding to each experimental case.

1. Exp1 carriage rest 0.25m

• The data generated during experimental case 1 when the submerged depth of the

beam’s free end was 0.25m is shared in this folder. The folder has eight sub-folders

which correspond to each wave condition. The wave parameters corresponding to

each sub-folder are listed in Table. C.1.

Table C.1: Regular-wave parameters and characteristics when the carriage is at rest and 0.25m
of the beam is submerged in water.

Sub-folder H T λ Steepness (H/λ)

[m] [s] [m] [-]

1 51 0.126 1 1.560 0.081

2 52 0.282 1.5 3.509 0.080

3 55 0.016 0.5 0.390 0.041

4 56 0.062 1 1.560 0.040

5 57 0.14 1.5 3.509 0.040

6 58 0.25 2 6.239 0.040

7 59 0.39 2.5 9.748 0.040

8 60 0.016 0.58 0.525 0.0305

1Data are also available upon request.

265

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments

Chapter C. Availability of data

2. Exp1 carriage rest 0.5m

• The measurements corresponding to the wave parameters in experimental case 1

when the beam’s submerged free-end length is 0.5m are shared in this folder. This

folder also has eight sub-folders which correspond to each wave condition. The wave

parameters corresponding to each sub-folder are listed in Table. C.2.

Table C.2: Regular-wave parameters and characteristics when the carriage is at rest and 0.5m
of the beam is submerged in water.

Sub-folder H T λ Steepness (H/λ)

[m] [s] [m] [-]

0 50 0.032 0.5 0.39 0.082

1 51 0.126 1 1.56 0.081

2 52 0.282 1.5 3.51 0.080

3 55 0.016 0.5 0.39 0.041

4 56 0.062 1 1.56 0.040

5 57 0.14 1.5 3.51 0.040

6 58 0.25 2 6.24 0.040

7 60 0.016 0.58 0.52 0.030

3. Exp2 carriage moving 0.25m

• This folder shares the measurements obtained from the interactions of the regular

waves with the flexible beam while the carriage was moving at a constant speed. The

free end of the beam is submerged at 0.25m. This main folder has four sub-folders

which correspond to each wave condition. The wave parameters corresponding to

each sub-folder are listed in Table. C.3.

Table C.3: Regular-wave parameters and characteristics when the carriage is moving at a con-
stant speed and 0.25m of the beam is submerged in water.

Sub-folder H T λ Steepness (H/λ) Speed Encounter frequency

[m] [s] [m] [-] [m/s] [rad/s]

1 51 0.126 1 1.560 0.081 0.297 7.480

2 55 0.016 0.5 0.390 0.041 0.149 14.967

3 56 0.062 1 1.560 0.040 0.297 7.480

4 57 0.14 1.5 3.509 0.040 0.446 4.987

4. Exp2 carriage moving 0.5m

• The results obtained in experimental case 2 when the submerged depth of the beam’s

free end is 0.5m are shared in this folder. The folder has four sub-folders which

correspond to each wave condition and are listed in Table. C.4.

266

Chapter C. Availability of data

Table C.4: Regular-wave parameters and characteristics when the carriage is moving at a con-
stant speed and 0.5m of the beam is submerged in water.

Sub-folder H T λ Steepness (H/λ) Speed Encounter frequency

[m] [s] [m] [-] [m/s] [rad/s]

1 51 0.126 1 1.56 0.081 -0.215 5.417

2 55 0.016 0.5 0.39 0.041 -0.1077 10.831

3 56 0.062 1 1.56 0.040 -0.2154 5.415

4 57 0.14 1.5 3.51 0.040 0.6864 5.418

5. Exp3 irreg waves 0.25m

• The results obtained in experimental case 3, when the submerged depth of the beam’s

free end is 0.25m, are shared in this folder. The folder has three sub-folders which

correspond to each wave condition and are listed in Table. C.5.

Table C.5: Irregular-wave parameters and characteristics when the carriage is at rest and 0.25m
of the beam is submerged in water.

Sub-folder
MARIN test no.
70065 02CB 2

Environment
Time

Irregular sea characteristics
JONSWAP type spectrum
Hs Tp Dir. γ

[s] [m] [s] [deg] [-]

North Sea state

gain01 011 001 01 Gain 1.0 1781 0.34 2.25 180 2.9

gain one fourth 011 001 01 Gain 0.25 1781 0.085 2.25 180 2.9

gain half 011 001 01 Gain 0.5 1781 0.17 2.25 180 2.9

6. Exp3 irreg waves 0.5m

• Similar to Exp3 irreg waves 0.25m, this folder contains measurements for the water-

beam interactions when the submerged depth of the beam’s free end is 0.5m. The

corresponding sub-folder and the wave parameters and characteristics are given in

Table.C.6.

Table C.6: Irregular-wave parameters and characteristics when the carriage is at rest and 0.5m
of the beam is submerged in water.

Folder name
MARIN test no.
70065 02CB 2

Environment
Time

Irregular sea characteristics
JONSWAP type spectrum
Hs Tp Dir. γ

[s] [m] [s] [deg] [-]

North Sea state

gain 01 011 001 01 Gain 1.0 1781 0.34 2.25 180 2.9

gain half 011 001 01 Gain 0.5 1781 0.17 2.25 180 2.9

267

Chapter C. Availability of data

7. hammer tests

• A hammer test is an experimental method for measuring a structure’s natural re-

sponse/frequency. This folder shares the .h5m files obtained from the dry and wet

hammer tests. The file dry 004 01.h5m contains accelerations of the beam when

hammer test is performed in air. A dry hammer test is performed to obtain the

natural frequency of the beam in the air when it is unaffected by the water. The

wet hammer tests are performed when the beam is submerged. The purpose of wet

hammer tests is to observe the effect of water on the natural frequency of the beam,

therefore, wet hammer tests are performed with two depths of the submerged beam’s

end, that is, 0.25m and 0.5m. The file wet1 001 01.h5m and wet2 006 01.h5m cor-

responds to the wet hammer tests with submerged end depth of 0.25m and 0.5m

respectively.

C.0.2 Sub-folders

All the main folders have several sub-folders and each sub-folder consists of mainly two types

of files, i.e. .pan and .h5m. The files with extension .pan states the general information about

experimental tests and sensors in text format, which is depicted in Fig C.1.

Figure C.1: Format of the .pan files.

268

Chapter C. Availability of data

There are three rows and the third row is divided into several columns. The second row states the

information related to the experimental test, for example, the test number (80372 02CB 05 051 001 01),

project name (AEGRE), submerged depth of the beam (Proeven 0.25m), gain (1), facility name

(CB stands for concept basin), and scale (1.000). The first column of the third row shows the

abbreviated sensor names. The abbreviation of the names which are used to plot the measure-

ments are given in Table C.7.

Table C.7: Description of the sensor names mentioned in .pan file.

Name Description

C.SPEED Speed of the carriage

WAVE.FORE Wave elevation measured by the probe which is located at the front of the beam (26.25 m away from the wavemaker)

WAVE.SB Wave elevation measured by the probe which is in parallel to the beam (30 m away from the wavemaker)

AX.i Accelerations of the beam in x direction recorded by the accelerometer, where i denotes the accelerometer number

AY.i Accelerations of the beam in y direction recorded by the accelerometer, where i denotes the accelerometer number

AZ.i Accelerations of the beam in z direction recorded by the accelerometer, where i denotes the accelerometer number

Flap 3 Pos Position of the waveflap wavemaker

The number with the accelerations, e.g. AX.1, AY.2, and AZ.3, denotes the position of the ac-

celerometer along the beam. The accelerometers are numbered from 1 to 6, where accelerometer

number 1 is at the submerged free end of the beam while accelerometer number 6 is located at

the fixed end of the beam. The rest of the accelerometers are numbered 2 to 5 from the free end

to the fixed end. The second column shows the unit of the measurements, the fifth and sixth

columns show the maximum and minimum range of the sensors respectively; the seventh col-

umn shows the frequency; and the last column shows the statistical parameters for the sensors’

measurement. On the other hand, the files with extension .h5m contain the actual time-domain

measurements obtained from the sensors. Each .h5m from the experimental case contains ac-

celeration signal from all six accelerometers in the x-direction, wave elevation measured by the

probe that is 26.25 m away from the wavemaker, wave elevation measured by the probe that

is 30 m away from the wavemaker, carriage speed, and variation waveflap position through-

out the run. These measurements can be read with the help of post-processing code. The

post-processing codes based on MATLAB and Python scripts, with comments, are shared. The

names of the MATLAB and Python scripts are read model tst.m and read model tst.py

respectively. Each script needs the name of the .h5m file as user input. In addition to reading

the .h5m file, the script plots the signals from the sensors. The MATLAB and Python scripts

which are used to read and post-process the signals are shared next.

269

Chapter C. Availability of data

C.1 Post-processing codes

This section shares a MATLAB script, with comments, to read the .h5m files produced during

the experimental study which is explained in Chapter 4 of this dissertation. The name of this

script in GitHub repository is read model tst.m.

1 clear

2

3 %%# Put the file name in commas

4 h5mfile_in=’80372 _02CB_05_051_001_01.h5m’;

5

6 %% Read data from accelerometers

7 t1=h5read(h5mfile_in ,’/1200.31 Hz/Time’); %# time axis for accelerometers

8 AX1=h5read(h5mfile_in ,’/1200.31 Hz/AX.1’); %# accelerometer at the free end

9 AX2=h5read(h5mfile_in ,’/1200.31 Hz/AX.2’);

10 AX3=h5read(h5mfile_in ,’/1200.31 Hz/AX.3’);

11 AX4=h5read(h5mfile_in ,’/1200.31 Hz/AX.4’);

12 AX5=h5read(h5mfile_in ,’/1200.31 Hz/AX.5’);

13 AX6=h5read(h5mfile_in ,’/1200.31 Hz/AX.6’); %# accelerometer at the fixed end

14 %%# Wave Probes and carriage

15 t_wave=h5read(h5mfile_in ,’/200.05 Hz/Time’); %# time axis for the waves

16 WAVE_FORE=h5read(h5mfile_in ,’/200.05 Hz/WAVE.FORE’); % probe in front of the

beam (26.25 m away from wavemaker)

17 WAVE_SB=h5read(h5mfile_in ,’/200.05 Hz/WAVE.SB’); %# probe parallel to the beam

(30 m away from wavemaker)

18

19 %%# Waveflap wavemaker position

20 t3 = h5read(h5mfile_in ,’/100.00 Hz/Time’); %# time axis for the wavemaker

21 flap_pos=h5read(h5mfile_in ,’/100.00 Hz/Flap 3 Pos’); % position of the waveflap

wavemaker

22

23 %%# Waveflap Wavemaker position

24 plot(t3, flap_pos ,’DisplayName ’, ’Wavemaker position ’)

25 ax = gca;

26 ax.FontSize = 15;

27 xlabel(’Time [s]’)

28 ylabel(’Wavemaker position [deg]’)

29 grid

30

31 %# Top plot

270

https://github.com/EAGRE-water-wave-impact-modelling/FSI_Experiments

Chapter C. Availability of data

32 figure

33 ax1 = nexttile;

34 plot(t3, flap_pos ,’DisplayName ’, ’Wavemaker position ’)

35 title(ax1 ,’Wavemaker position [deg]’)

36 ax1.FontSize = 20;

37 ylabel(’Wavemaker position [deg]’)

38 grid(ax1 ,’on’)

39

40 %# Bottom plot

41 ax2 = nexttile;

42 plot(t_wave ,WAVE_SB ,’DisplayName ’, ’WAVE_SB ’)

43 title(ax2 ,’Wave elevation measured by the probe ’)

44 ax2.FontSize = 20;

45 ylabel(’Wave elevation [m]’)

46 xlabel(’Time [s]’)

47 grid(ax2 ,’on’)

48

49 %%# Top plot

50 figure

51 ax1 = nexttile;

52 plot(t_wave ,WAVE_SB ,’DisplayName ’, ’WAVE_SB ’)

53 title(ax1 ,’Plot 1’)

54 ax1.FontSize = 20;

55 ylabel(’Wave elevation ’)

56 grid(ax1 ,’on’)

57

58 %# Bottom plot

59 ax2 = nexttile;

60 plot(t1, AX1 ,’DisplayName ’, ’AX1’)

61 title(ax2 ,’Plot 2’)

62 ax2.FontSize = 20;

63 xlabel(’Time [s]’)

64 ylabel(’Acceleration ’)

65 grid(ax2 ,’on’)

For demonstration, the provided MATLAB script is used to plot the comparison of the wave-

maker position with the wave elevation measured by the wave probe that is 26.25 m away from

the wavemaker.

271

Chapter C. Availability of data

Figure C.2: The top plot shows the variation of the position of the waveflap wavemaker as time
proceeds. The bottom plot shows the signals measured by the wave probe which is located in
front of the beam.

A visual analysis of the top plot in Fig C.2 shows that the wavemaker starts moving gradually

from 0 seconds and takes approximately 4 to 5 seconds to reach its maximum position because

the wavemaker motion is ramped when it is about to commence and terminate. This ramped

motion helps to keep the free surface smooth. It can be noticed from the bottom plot that the

wave probe starts to measure the wave elevation at approximately 26 seconds which is because

the probe is located 26.25 m away from the wavemaker. Similar to the wavemaker motion,

the initial wave elevation signal detected by the probe is small in amplitude which gradually

increases to maximum amplitude. In this case, the wave period is 1 second and the wavelength

is 1.56 m. The test ran for 300 seconds which means the probe measures the reflected waves in

the last 40 seconds of the test. Although, in this case, the effect of the reflected wave on the

incident wave is not significant, it is preferable to use the wave data which is not affected by

the reflected waves for code validation purposes.

A Python script has been shared on the GitHub site to read the .h5m files. The script with

comments is shown below, the script needs the file name as user input.

1 # https :// docs.h5py.org/en/stable/quick.html

2

272

Chapter C. Availability of data

3 import h5py

4 import numpy as np

5 import matplotlib.pyplot as plt

6

7 # Write file name within commas

8 filename = "exp1_c1.h5m"

9

10 #__________________ FIGURE PARAMETERS _____________________#

11

12 tsize = 18 # font size of image title

13 tsize2 = 12

14 tic_size = 14

15 size = 16 # font size of image axes

16 tic_size = 14

17

18 #________________ READ .h5m FILE _________________________#

19

20 with h5py.File(filename , "r") as f:

21 # Print all root level object names (aka keys)

22 # these can be group or dataset names

23 print("Keys: %s" % f.keys())

24

25 # Time array for the signals obtained from accelerometers

26 t1 = f[’/1200.31 Hz/Time’][()]

27

28 # Time array for the signals obtained from wave probe

29 t2 = f[’/200.05 Hz/Time’][()]

30

31 # Time array for the signals obtained from waveflap wavemaker position

32 t3 = f[’/100.00 Hz/Time’][()]

33

34 # Accelerations in x-direction obtained from accelerometer at the submerged

free end of the beam (AX1)

35 AX1 = f[’/1200.31 Hz/AX.1’][()]

36

37 # Accelerations in x-direction obtained from accelerometer above the

submerged free end of the beam (AX2)

38 AX2 = f[’/1200.31 Hz/AX.2’][()]

39

273

Chapter C. Availability of data

40 # Accelerations in x-direction obtained from the third accelerometer from

the submerged free end of the beam (AX3)

41 AX3 = f[’/1200.31 Hz/AX.3’][()]

42

43 # Accelerations in x-direction obtained from the fourth accelerometer from

the submerged free end of the beam (AX4)

44 AX4 = f[’/1200.31 Hz/AX.4’][()]

45

46 # Accelerations in x-direction obtained from the fifth accelerometer from

the submerged free end of the beam (AX5)

47 AX5 = f[’/1200.31 Hz/AX.5’][()]

48

49 # Accelerations in x-direction obtained from the accelerometer at the

fixed end of the beam (AX6)

50 AX6 = f[’/1200.31 Hz/AX.6’][()]

51

52 # Wave elevation obtained from the probe at the front of the beam

53 Wave_fore = f[’/200.05 Hz/WAVE.FORE’][()]

54

55 # Wave elevation obtained from the probe parallel to the beam

56 Wave_sb = f[’/200.05 Hz/WAVE.SB’][()]

57

58 # carriage speed

59 C_speed = f[’/200.05 Hz/C.SPEED’][()]

60

61 # Waveflap wavemaker motion

62 Wave_maker = f[’/100.00 Hz/Flap 3 Pos’][()]

63

64 ##____________________ Time step details ___________________ ##

65

66 time_2 = np.array(t2)

67 dt_wave_elevation = time_2 [1] - time_2 [0]

68 print(’Time step for wave elevation =’, dt_wave_elevation)

69

70 time_3 = np.array(t3)

71 dt_wavemaker = time_3 [1] - time_3 [0]

72 print(’Time step for the wavemaker motion =’, dt_wavemaker)

73

74 ##_________________ PLOT SIGNALS __________________________ ##

274

Chapter C. Availability of data

75

76 fig , (ax1 , ax2) = plt.subplots (2)

77 ax1.set_title(’waveflap wavemaker position ’,fontsize=tsize)

78 ax1.plot(t3 , Wave_maker , ’r-’, linewidth= 0.2 ,label = ’$Wavemaker pos$ ’)

79 ax1.set_ylabel(’Wavemaker position [deg] ’,fontsize=size)

80 ax1.tick_params(axis=’x’, labelsize= tic_size)

81 ax1.tick_params(axis=’y’, labelsize= tic_size)

82 ax1.grid()

83

84 ax2.set_title(’Wave elevation of the incoming wave’,fontsize=tsize)

85 ax2.plot(t2 , Wave_fore , ’b-’, linewidth= 0.2 ,label = ’$Wave_fore$ ’)

86 ax2.set_xlabel(’$Time [s]$ ’,fontsize=size)

87 ax2.set_ylabel(’Wave elevation [m] ’,fontsize=size)

88 ax2.tick_params(axis=’x’, labelsize= tic_size)

89 ax2.tick_params(axis=’y’, labelsize= tic_size)

90 ax2.grid()

91

92

93 fig , (ax1 , ax2) = plt.subplots (2)

94 ax1.set_title(’Acceleration of the submerged free end of the beam’,fontsize=

tsize)

95 ax1.plot(t1 , AX1 , ’r-’, linewidth= 0.2 , label = ’$AX.1$ ’)

96 ax1.set_ylabel(’Accelerations in x-direction [m/s] ’,fontsize=size)

97 ax1.tick_params(axis=’x’, labelsize= tic_size)

98 ax1.tick_params(axis=’y’, labelsize= tic_size)

99 ax1.grid()

100

101 ax2.set_title(’Wave elevation of the incoming wave’,fontsize=tsize)

102 ax2.plot(t2 , Wave_fore , ’b-’, linewidth= 0.2 , label = ’$Wave_fore$ ’)

103 ax2.set_xlabel(’$Time [s]$ ’,fontsize=size)

104 ax2.set_ylabel(’Wave elevation [m] ’,fontsize=size)

105 ax2.tick_params(axis=’x’, labelsize= tic_size)

106 ax2.tick_params(axis=’y’, labelsize= tic_size)

107 ax2.grid()

108

109 plt.show()

110 print("--------- Program ends ----------")

As a demonstration of the Python script, one of the plots that are generated by the Python

275

Chapter C. Availability of data

script is shared in Fig. C.3, which compares the incident wave and the beam’s response to the

incident wave in the form of two sub-plots.

Figure C.3: The top plot shows the accelerations obtained from the accelerometer located at the
submerged free-end of the beam when the incident wave, shown in the bottom plot, interacted
with the beam.

It can be noticed that the signals in the last 50 seconds of the run are affected by the reflected

waves. Therefore, the user should use the part of the signal that is not affected by the reflected

waves for validation purposes.

276

References

[1] M.S. Alnaes. UFL: a finite element form language. In: Automated Solution of Differential

Equations by the Finite Element Method by Logg, Mardal, and Wells (Eds), 2011.

[2] M.S. Alnaes et al. Unified Form Language: A domain-specific language for weak formu-

lations of partial differential equations. Tech. rep. 2013. url: https://arxiv.org/pdf/

1211.4047.pdf.

[3] E. Bachynski, M. Thys, and V. Delhaye. “Dynamic response of a monopile wind turbine

in waves: Experimental uncertainty analysis for validation of numerical tools”. In: Applied

Ocean Research 89 (2019), pp. 96–114.

[4] S. Balay et al. “Efficient Management of Parallelism in Object Oriented Numerical Soft-

ware Libraries”. In: Modern Software Tools in Scientific Computing. Ed. by E. Arge, A. M.

Bruaset, and H. P. Langtangen. Birkhäuser Press, 1997, pp. 163–202.

[5] S. Balay et al. Petsc users manual revision 3.8. Tech. rep. Office of Scientific and Technical

Information (OSTI), 2017.

[6] F.K. Benra et al. “A comparison of one-way and two-way coupling methods for numerical

analysis of fluid-structure interactions”. In: Journal of applied mathematics 2011 (2011).

[7] S. Bhattacharya et al. “Soil-Structure Interactions (SSI) for offshore wind turbines”. In:

IET Engineering and Technology Reference 24.16 (2017).

[8] M. Bhinder et al. “Numerical and experimental study of a surging point absorber wave

energy converter”. In: Proceedings of the 8th European Wave and Tidal Energy Conference,

Uppsala, Sweden. 2009, pp. 7–10.

277

https://arxiv.org/pdf/1211.4047.pdf
https://arxiv.org/pdf/1211.4047.pdf

REFERENCES REFERENCES

[9] R. D. Blevins and R. Plunkett. “Formulas for natural frequency and mode shape”. In:

Journal of Applied Mechanics 47.2 (1980), p. 461.

[10] O. Bokhove and A. Kalogirou. “Variational water wave modelling: from continuum to

experiment”. In: Bridges, T., Groves, M., and Nicholls, D., LMS Lecture Note Series,

Cambridge University Press 426 (2016), pp. 226–260.

[11] S.Y. Boo. “Linear and nonlinear irregular waves and forces in a numerical wave tank”.

In: Ocean Engineering 29.5 (2002), pp. 475–493.

[12] J. Boussinesq. Essai sur la théorie des eaux courantes. Impr. nationale, 1877.

[13] F.J. Brink, F. Ferenc Izsák, and J.J.W. van der Vegt. “Hamiltonian Finite Element Dis-

cretization for Nonlinear Free Surface Water Waves”. In: J. Sci. Comp. 73 (2017), pp. 366–

394.

[14] T. Bunnik, J. Helder, and E.J. de Ridder. “Deterministic simulation of breaking wave

impact and flexible response of a fixed offshore wind turbine”. In: International Con-

ference on Offshore Mechanics and Arctic Engineering. Vol. 56574. American Society of

Mechanical Engineers. 2015, V009T09A049.

[15] T. Bunnik et al. ReFRESCO theory manual. Tech. rep. MARIN Academy, Wageningen,

2017.

[16] John R Chaplin and P Teigen. “Steady flow past a vertical surface-piercing circular cylin-

der”. In: Journal of Fluids and Structures 18.3-4 (2003), pp. 271–285.

[17] J. Choi and S.B. Yoon. “Numerical simulations using momentum source wave-maker ap-

plied to RANS equation model”. In: Coastal Engineering 56.10 (2009), pp. 1043–1060.

[18] Anil K Chopra. “Modal analysis of linear dynamic systems: physical interpretation”. In:

Journal of structural engineering 122.5 (1996), pp. 517–527.

[19] G.F. Clauss, C.E. Schmittner, and R. Stuck. “Numerical wave tank: Simulation of ex-

treme waves for the investigation of structural responses”. In: International Conference

on Offshore Mechanics and Arctic Engineering. Vol. 41979. 2005, pp. 785–792.

278

REFERENCES REFERENCES

[20] J.A. Cooke, C.A. McMahon, and M.R. North. “Sources of error in the design process”.

In: Recent Advances in Integrated Design and Manufacturing in Mechanical Engineering

(2003), pp. 421–430.

[21] G. Coulibaly et al. “Urban flood modeling using 2D shallow-water equations in Oua-

gadougou, Burkina Faso”. In: Water 12.8 (2020), p. 2120.

[22] A.J.C. Crespo et al. “Towards simulating floating offshore oscillating water column con-

verters with smoothed particle hydrodynamics”. In: Coastal Engineering 126 (2017),

pp. 11–26.

[23] J. Davidson, S. Giorgi, and J.V. Ringwood. “Linear parametric hydrodynamic models

for ocean wave energy converters identified from numerical wave tank experiments”. In:

Ocean Engineering 103 (2015), pp. 31–39.

[24] Det Norske Veritas, Design of offshore wind turbine structures, Tech. Rep. DNV-OS-J101.

Tech. rep. Det Norske Veritas (DNV), 2017.

[25] Geological Digressions. Tsunamis behave as shallow-water waves. https://www.geological-

digressions.com/tsunamis-behave-as-shallow-water-waves/. 2024.

[26] S. van Essen et al. “Linking experimental and numerical wave modelling”. In: Journal of

Marine Science and Engineering 8.3 (2020), p. 198.

[27] D.J. Ewins. Modal testing: theory, practice and application. John Wiley & Sons, 2009.

[28] W. B. Feng et al. “Study on wave spectra in south coastal waters of Jiangsu”. In: Applied

Mechanics and Materials 212 (2012), pp. 193–200.

[29] P. Ferrant. “Time domain computation of nonlinear diffraction loads upon three dimen-

sional floating bodies”. In: ISOPE International Ocean and Polar Engineering Conference.

ISOPE. 1995, ISOPE–I.

[30] Firedrake. Defining variational problems. https://www.firedrakeproject.org/variational-

problems.html. Accessed: 2024-02-19. 2024.

279

https://www.firedrakeproject.org/variational-problems.html
https://www.firedrakeproject.org/variational-problems.html

REFERENCES REFERENCES

[31] E Gagarina et al. “On variational and symplectic time integrators for Hamiltonian sys-

tems”. In: Journal of computational physics 306 (2016), pp. 370–389.

[32] E. Gagarina. “Variational approaches to water wave simulations”. PhD thesis. University

of Twente, 2014.

[33] E. Gagarina et al. “On variational and symplectic time integrators for Hamiltonian sys-

tems”. In: J. Comput. Phys. 306 (2016), pp. 370–389.

[34] F. Gidel. “Variational water-wave models and pyramidal freak waves”. https://etheses.

whiterose.ac.uk/21730/. PhD thesis. University of Leeds, 2018.

[35] F. Gidel, O. Bokhove, and M.A. Kelmanson. “Driven nonlinear potential flow with wave

breaking at shallow-water beaches”. In: Int. Conf. on Offshore Mechanics and Arctic

Engineering. Vol. 57632. American Society of Mechanical Engineers. 2017, V001T01A053.

[36] F. Gidel et al. “Variational and numerical modelling strategies for cost-effective simula-

tions of driven free-surface wave”. 2022. url: https://eartharxiv.org/repository/

view/3411/.

[37] E. Hairer et al. “Geometric numerical integration”. In: Oberwolfach Reports 3.1 (2006),

pp. 805–882.

[38] K. Hasselmann et al. “Measurements of wind-wave growth and swell decay during the

Joint North Sea Wave Project (JONSWAP).” In: Ergaenzungsheft zur Deutschen Hydro-

graphischen Zeitschrift, Reihe A (1973).

[39] J He and ZF Fu. “Mathematics for modal analysis”. In: Modal Analysis 2001 (2001),

pp. 12–48.

[40] N.E. Huang et al. “A unified two-parameter wave spectral model for a general sea state”.

In: Journal of Fluid Mechanics 112 (1981), pp. 203–224.

[41] N.G. Jacobsen, D.R. Fuhrman, and J. Fredsøe. “A wave generation toolbox for the open-

source CFD library: OpenFoam®”. In: International Journal for numerical methods in

fluids 70.9 (2012), pp. 1073–1088.

280

https://etheses.whiterose.ac.uk/21730/
https://etheses.whiterose.ac.uk/21730/
https://eartharxiv.org/repository/view/3411/
https://eartharxiv.org/repository/view/3411/

REFERENCES REFERENCES

[42] Z. Jiang. “Installation of offshore wind turbines: A technical review”. In: Renewable and

Sustainable Energy Reviews 139 (2021), p. 110576.

[43] S.H. Jongsma. On a method for performing fluid-structure interaction simulations with re-

fresco (internal technical report 80165-12-RD). Tech. rep. MARIN Academy, Wageningen,

2016.

[44] S.H. Jongsma, E.T.A. van der Weide, and J. Windt. Implementation and verification of a

partitioned strong coupling fluid-structure interaction approach in a finite volume method

(internal technical report). Tech. rep. MARIN Academy, Wageningen, 2016.

[45] J. Jonkman et al. Definition of a 5-MW reference wind turbine for offshore system devel-

opment. Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States),

2009.

[46] Garbis H. Keulegan and Lloyd H. Carpenter. “Forces on Cylinders and Plates in an

Oscillating Fluid”. In: Journal of Research of the National Bureau of Standards 60.5

(1858).

[47] J.W. Kim et al. “Technical and economic readiness review of CFD-based numerical

wave basin for offshore floater design”. In: Offshore Technology Conference. OTC. 2016,

D011S014R002.

[48] Bonguk Koo et al. “Reynolds and Froude number effect on the flow past an interface-

piercing circular cylinder”. In: International Journal of Naval Architecture and Ocean

Engineering 6.3 (2014), pp. 529–561.

[49] A. Kumar and T. Weir. “Wind power in Fiji: A preliminary analysis of the Butoni wind

farm”. In: International solar energy society conference. 2008.

[50] R. Kurnia, Badriana M.R., and E. van Groesen. “Hamiltonian Boussinesq Simulations

for Waves Entering a Harbor with Access Channel”. In: J. Waterway, Port, Coastal, and

Ocean Eng. 144 (2017).

[51] C. Lanczos. The variational principles of mechanics. Courier Corporation, 2012.

281

REFERENCES REFERENCES

[52] T.T. Le, D.H. Phung, and V.C. Tran. “Numerical simulation of tidal flow in Danang Bay

Based on non-hydrostatic shallow water equations”. In: Pacific Journal of Mathematics

for Industry 8.1 (2016), p. 1.

[53] U.J. Lee, W.M. Jeong, and H.Y. Cho. “Estimation and analysis of JONSWAP spectrum

parameter using observed data around Korean coast”. In: Journal of Marine Science and

Engineering 10.5 (2022), p. 578.

[54] P. Lin and P.L.F. Liu. “Internal wave-maker for Navier-Stokes equations models”. In:

Journal of waterway, port, coastal, and ocean engineering 125.4 (1999), pp. 207–215.

[55] X. Lu et al. “A CFD study of focused extreme wave impact on decks of offshore structures”.

In: International Conference on Offshore Mechanics and Arctic Engineering. Vol. 45400.

American Society of Mechanical Engineers. 2014, V002T08A047.

[56] J. C. Luke. “A variational principle for a fluid with a free surface”. In: J. Fluid Mechanics

27.2 (1967), pp. 395–397.

[57] MARIN. ReFRESCO. https://www.marin.nl/en/facilities-and-tools/software/

refresco. Accessed: 2023-08-01. 2023.

[58] MARIN. SEACAL Theory Manual. Tech. rep. CRS SEACAL Working Group, 2023.

[59] MARIN Concept Basin. file:///Users/mmwr/Downloads/Concept_Basin.pdf. Ac-

cessed: 19-11-2022.

[60] Leonard Meirovitch. Fundamentals of vibrations. Waveland Press, 2010.

[61] J. Orszaghova, A.GL. Borthwick, and P. H. Taylor. “From the paddle to the beach–A

Boussinesq shallow water numerical wave tank based on Madsen and Sørensen’s equa-

tions”. In: Journal of Computational Physics 231.2 (2012), pp. 328–344.

[62] C.R. Ortloff and M.J. Krafft. “Numerical Test Tank: Simulation of Ocean Engineering

Problems by Computational Fluid Dynamics”. In: Offshore Technology Conference. OTC.

1997, OTC–8269.

282

https://www.marin.nl/en/facilities-and-tools/software/refresco
https://www.marin.nl/en/facilities-and-tools/software/refresco
file:///Users/mmwr/Downloads/Concept_Basin.pdf

REFERENCES REFERENCES

[63] J. Park, D. Cho, and T. Jang. “A numerical experiment on a new piston-type wavemaker:

Shallow water approximation”. In: International Journal of Naval Architecture and Ocean

Engineering 15 (2023), p. 100535.

[64] W. J. Pierson Jr and L. Moskowitz. “A proposed spectral form for fully developed wind

seas based on the similarity theory of SA Kitaigorodskii”. In: Journal of geophysical re-

search 69.24 (1964), pp. 5181–5190.

[65] K. Ram, M.R. Ahmed, and Y.H. Lee. “Experimental Study of Wave Forces on an Offshore

Wind Turbine Tower Model”. In: 2017 4th Asia-Pacific World Congress on Computer

Science and Engineering (APWC on CSE). IEEE. 2017, pp. 265–270.

[66] F. Rathgeber et al. “Firedrake: automating the finite element method by composing ab-

stractions”. In: ACM Transactions on Mathematical Software (TOMS) 43.3 (2016), pp. 1–

27.

[67] W. Rehman, O. Bokhove, and M.A. Kelmanson. “A Systematic Approach for Developing

a Numerical Wavetank to Simulate Driven Shallow- and Deep-Water Waves”. In: Proc.

ASME 2023 42nd Int. Conf. on Ocean, Offshore and Arctic Eng. ASME. 2023, p. 10.

[68] W. Rehman, S. Paboeuf, and J.P. Tomy. “A Comparison of Different Fluid-Structure

Interaction Analysis Techniques for the Marine Propeller”. In: ASME Power Conference.

Vol. 85109. American Society of Mechanical Engineers. 2021, V001T12A008.

[69] W. Rehman et al. “Experimental modeling of water-wave interactions With a flexible

beam”. In: Int. Conf. on Offshore Mechanics and Arctic Eng. Vol. 86892. American Society

of Mechanical Engineers. 2023, V007T08A022.

[70] W. Rehman et al. “Experimental Modelling of Water-Wave Interactions with a Flexible

Beam”. In: EarthArXiv eprints (2024), X5998B.

[71] T. Salwa, O. Bokhove, and M.A. Kelmanson. “Variational modelling of wave-structure

interactions with an offshore wind-turbine mast”. In: J. Eng. Math. 107.1 (2017), pp. 61–

85.

283

REFERENCES REFERENCES

[72] T.J. Salwa. “On variational modelling of wave slamming by water waves”. http : / /

etheses.whiterose.ac.uk/23778/. PhD thesis. University of Leeds, 2018.

[73] P. Sassi et al. “Simulation of vorticity wind turbines”. In: Heliyon 6.10 (2020), e05155.

[74] P. Schmitt et al. “The opportunities and limitations of using CFD in the development of

wave energy converters”. In: Marine & Offshore Renewable Energy (2012), pp. 89–97.

[75] D.M. Storer. “Dynamic analysis of non-linear structures using higher order frequency

response functions”. PhD thesis. The University of Manchester (United Kingdom), 1991.

[76] M.A. Storti et al. “Fluid-structure interaction with a staged algorithm. Aerospace appli-

cations.” In: CIMEC Document Repository (2006).

[77] L. Suja-Thauvin et al. “Experimental results of a multimode monopile offshore wind

turbine support structure subjected to steep and breaking irregular waves”. In: Ocean

Engineering 146 (2017), pp. 339–351.

[78] K. Tanizawa. “The state of the art on numerical wave tank”. In: Proc. of 4th Osaka

Colloquium on Seakeeping Performance of Ships, 2000. 2000, pp. 95–114.

[79] The University of Edinburgh. https://www.eng.ed.ac.uk/about/news/20170329/

marine-energy-testing-tank-sets-sights-new-horizons. Accessed: 2022-07-20.

[80] A.C. Varsoliwala and T.R. Singh. “Mathematical modeling of tsunami wave propagation

at mid ocean and its amplification and run-up on shore”. In: Journal of Ocean Engineering

and Science 6.4 (2021), pp. 367–375.

[81] W. Wang et al. “A fully nonlinear potential flow wave modelling procedure for simulations

of offshore sea states with various wave breaking scenarios”. In: Applied Ocean Res. 117

(2021), p. 102898.

[82] F. M. White. Fluid Mechanics. McGraw Hill Higher Education, 2006.

[83] D.C. Wilcox et al. Turbulence modeling for CFD. Vol. 2. DCW industries La Canada, CA,

1998.

284

http://etheses.whiterose.ac.uk/23778/
http://etheses.whiterose.ac.uk/23778/
https://www.eng.ed.ac.uk/about/news/20170329/marine-energy-testing-tank-sets-sights-new-horizons
https://www.eng.ed.ac.uk/about/news/20170329/marine-energy-testing-tank-sets-sights-new-horizons

REFERENCES REFERENCES

[84] C. Windt, J. Davidson, and J.V. Ringwood. “High-fidelity numerical modelling of ocean

wave energy systems: A review of computational fluid dynamics-based numerical wave

tanks”. In: Renewable and Sustainable Energy Reviews 93 (2018), pp. 610–630.

[85] C. Windt et al. “On the assessment of numerical wave makers in CFD simulations”. In:

Journal of Marine Science and Engineering 7.2 (2019), p. 47.

[86] J. Yan et al. “Computational free-surface fluid–structure interaction with application to

floating offshore wind turbines”. In: Computers & Fluids 141 (2016), pp. 155–174.

[87] C. Yang and R.C. Ertekin. “Numerical simulation of nonlinear wave diffraction by a

vertical cylinder”. In: Journal of Offshore Mechanics and Arctic Engineering 114.1 (Feb.

1992), pp. 36–44.

285

	Introduction
	Project overview
	Motivation and objectives
	Mathematical and numerical modelling of a wavetank with versatile applications
	Experimental modelling of water-wave interactions with a flexible beam

	Thesis outline

	Systematic development of a novel approach for better modelling of wavemaker-driven numerical wavetanks
	Introduction
	A brief overview of numerical wavetanks
	Wave generation and absorption zones
	Wave propagation zone

	Mathematical modelling of water waves based on variational principle
	Water dynamics based on shallow water equations

	Numerical implementation of the VP
	Spatial discretisation of VP based on finite element method
	Time discretisation
	Shallow-water equations with piston wavemaker
	Timestep criterion

	Verification and validation
	Comparison of linear shallow water equation with exact solution
	Comparison of two implementation approaches for nonlinear shallow water dynamics
	Test case: high amplitude waves

	Industrial applications of SWE-based numerical wavetank model
	Conclusion

	Mathematical and numerical modelling of piston-driven numerical wavetank based on nonlinear potential flow equations
	Introduction
	Variational modelling water dynamics based on potential-flow theory
	Linear potential flow equations
	Nonlinear potential flow equations
	Time discrete VP for potential-flow equations with piston wavemaker

	Numerical implementation
	Spatial discretisation
	Timestep criterion

	Results and discussion
	Comparison of driven long waves using shallow-water and potential-flow dynamics
	Test case: high-amplitude waves
	Three-dimensional extension of two-dimensional wavetank

	Extension of numerical wavetank to solve fluid-structure-interaction (FSI) problems
	Variational modelling of hyperelastic beam for solving FSI problems in the numerical wavetanks
	Hyperelastic beam with viscous structural damping
	Implementation in Firedrake
	Results and discussion

	Conclusion

	Experimental modeling of water-wave interactions with a flexible beam
	Introduction
	Design of experimental set-up
	Beam selection and procurement

	Hammer tests on the beam
	Results from dry and wet hammer tests

	Case-1 experiments: interactions of regular waves with the flexible beam when the carriage is at rest
	Case-2 experiments: interactions of regular water waves with the flexible beam when the carriage is moving at a constant speed
	Case-3 experiments: interactions of irregular water waves with the flexible beam when the carriage is at rest
	Experimental uncertainty
	Conclusion

	Linear fluid-structure interaction modelling of regular water waves with the flexible beam
	Introduction
	Experimental case 1
	Subcase 1: beam submerged at 0.25m
	Subcase 2: beam submerged at 0.5m

	Harmonic analysis of the experimental data
	SEACAL: A linear FSI solver
	Generalized Modes
	Fluid solver
	Beam's response calculation

	Results and comparison
	Regular-wave and beam interactions when the beam is submerged at 0.25m.
	Regular-wave and beam interactions when the beam is submerged at 0.5m.

	Conclusion

	High-fidelity fluid structure interactions modelling of regular and irregular water waves
	Introduction
	RANSE-based fluid model
	Modal analysis of beam structure
	Fluid structure interactions

	FSI modelling in ReFRESCO
	Setup for numerical modelling
	Geometry and spatial discretisation of the computational domain
	Grid and time convergence study

	Results and Discussion
	Regular-wave and beam interactions when the beam is submerged at 0.25m.
	Regular-wave and beam interactions when the beam is submerged at 0.5m.

	Nonlinear modelling of irregular waves
	Conclusion

	Code Tutorials
	Introduction
	Shallow water dynamics
	Linear Shallow water equations
	Nonlinear shallow water equations: comparison of two implementation approaches by using symplectic-Euler scheme
	Nonlinear shallow water equations: comparison of two implementation approaches by using Störmer-Verlet scheme

	Piston-driven numerical wavetank based on potential flow equations
	Conclusion

	Conclusion
	Summary
	Overview of objectives and accomplishments

	Discussion on concomitant extensions
	Inclusion of wave absorbing feature
	Numerical wavetank for FSI analysis
	Extension and experimental validation of the waveflap driven numerical wavetank

	Outreach activities
	Online outreach activities
	Event 1: Differential Equations in Real Life
	Event 2: Meet a scientist

	Exhibition in MathsCity
	Details of the second outreach activity
	An online presentation on fluid-structure interactions (FSI)

	Derivation of the exact solution of the shallow water equations with piston wave-maker
	Spatial discretization of the VP for linear potential-flow equations
	Availability of data
	Main folders
	Sub-folders

	Post-processing codes

	References

