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Abstract

The field of machine learning has drawn heavily from the fields of psychology and
neuroscience, in particular in the development of artificial neural network architec-
tures, which are based on simplified versions of structures in the brain. While effective
for many tasks, neural networks do not, in general, incorporate any way of storing
specific experiences, instead using training data to parameterise a model, and then
discarding the training date prior to inference. We explore an alternative option: a
simple, explainable model from the field of human psychology called Minerva 2, which
uses previously seen examples to perform classification or regression. By comparing
Minerva 2 with neural networks, we demonstrate that Minerva 2 is in fact a neural
network itself, with parameters taken directly from the data, rather than being trained
by backpropagation. We propose new architectures, which are based on Minerva 2 and
incorporate both a memory of previous examples and parameterisation that allows
model flexibility. We show that feature representation is crucial for this type of model,
which might explain the lack of representation of this type of model in the literature.
Speech and text representations have improved rapidly in recent years, however, and if
this trend continues, simple, interpretable models such those proposed here will become
more competitive. As evidence of this, we use high quality speech representations in
conjunction with a Minerva-based model to demonstrate state-of-the-art performance
on a speech intelligibility task.
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Chapter 1

Introduction

1.1 Background

The history of deep learning is littered with examples of cognitively-inspired architec-
tures and frameworks. Most famously, Artificial Neural Networks (ANNs) are based on
(and named for) the neural structures found in the brain. McCulloch & Pitts (1943)
proposed simplified artificial neurons in an attempt to explain and understand the
human brain, and the perceptron, upon which much of deep learning is based, was
created to explore theories of brain function (Rosenblatt 1958). The Rectified Linear
Unit (ReLU) activation, widely used in modern ANNs, is based on biological neuron
function (Fukushima 1969). More sophisticated architectures are also cognitively in-
spired: the Neocognitron, an image processing network proposed by Fukushima (1980),
and a forerunner of Convolutional Neural Networks (CNNs), is based on the eyes of
cats (Hubel & Wiesel 1962, 1965). The attention mechanism that forms the core of the
transformer architecture (Vaswani et al. 2017) is named for attentional control, which
has been widely studied in humans (Cherry 1953, Schneider & Shiffrin 1977, Shiffrin
& Schneider 1977). More general principals can also be traced back to theories of
cognition: the Hebbian theory of learning (Do 1949), which has been summarised as
“neurons that fire together wire together” has been used as biological motivation for
unsupervised learning.

Since humans still outperform machines at many speech and language tasks, there
is clearly more that can be learned from human cognition. One aspect of cognition
that has not been widely explored in machine learning is that of memory, and in
particular, memories of specific experiences. Modern deep learning models frequently

1
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use previous examples for training, but these examples are rarely retained for inference.
Such examples are referred to as exemplars, and form the focus of this thesis.

1.2 Exemplar and prototype models

In the field of human psychology, the terms prototype and exemplar are used to de-
scribe two different approaches to concept categorisation (Medin & Coley 1998). In a
prototype approach (Figure 1.1), examples of a category are used to construct a proto-
type, which can be thought of as a model or summary of the category’s features. The
features of new items to be categorised are assessed with respect to the features of the
category, as summarised by the prototype. Only the prototype is used for decision-
making; the examples used to construct it are discarded. As an example, a robin might
be classified as a bird because the class “bird” includes features such a flight, singing,
wings and a beak. The robin therefore has very similar features to the class.

Training set O

Inputs Outputs

Model

(a) Training

DecisionInputs Outputs

Model

(b) Evaluation

Figure 1.1: Prototype approach.

In contrast, an exemplar approach makes direct use of category examples, or exemplars,
so that a new item is categorised based on its similarity to known members of a category
(Figure 1.2). No model or summary is constructed; all decision-making is based on the
exemplars themselves. In this case, the robin might be classed as a bird because it is
similar to a previously seen sparrow, raven and starling that are known to belong to
the class “bird”.

The same terms can be applied to models in machine learning. Models such as K-
nearest neighbour directly use exemplars at decision time, and are exemplar models.
ANNs, on the other hand, learn their parameters from data during training, but make
no other use of the training data at inference; they are prototype models.
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Exemplar set D

Inputs Outputs

DecisionInputs Outputs

Figure 1.2: Exemplar approach.

Experiments suggest that humans may not exclusively use either prototype or exemplar
approaches. Nosofsky et al. (1994) suggest that human categorisation is largely rule-
based, but with specific exceptions (exemplars) also being referred to. Erickson &
Kruschke (1998) propose a more balanced approach, with transitions between prototype
and exemplar-based approaches. Rouder & Ratcliff (2006) concluded that humans use
an exemplar-based approach when the objects to be classified are clearly distinct, but
a prototype-based approach when they are easily confused, for example, classifying
lines as “long” or “short” is more likely to be prototype-based, whereas classifying
them as “red” or “yellow” is more likely to be exemplar-based. Natal et al. (2013)
found that the choice of exemplar or prototype-based approach might vary depending
on the person. More recently, researchers used techniques such as functional Magnetic
Resonance Imaging (fMRI) to determine which approach is used. Mack et al. (2013)
found evidence for a largely exemplar-based approach; Bowman & Zeithamova (2018)
found results consistent with a prototype approach. The literature is therefore mixed
with regard to when exemplar and prototype approaches are used, but there is evidence
that humans use both prototype and exemplar-based approaches at least some of the
time. This is not reflected in automated speech and language tasks, in which data-
driven, parametric, prototype-based deep learning approaches are overwhelmingly more
popular.

Exemplar approaches in machine learning do exist and have some benefits. They are
interpretable, since it is generally simple to see which exemplars are used for each
decision. They can also be used for limited data; theoretically, only a single exemplar
for each class is required in order to perform classification, for example. The exemplar
set can in some cases be changed at decision time with little computational cost, so
that new data can be easily incorporated. Exemplar approaches are not typically
scalable, however, so while they may be effective for small data sets, they are rarely
used for large-scale data. This inability to scale leads to poor performance compared
with modern, data-driven approaches.
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As with humans, hybrid approaches, which make use of both the exemplar approach
and the prototype approach, may be a better option that either alone. This has been
explored to some extent: incorporating a memory into language models has shown
promise (Wu et al. 2022), and Conditional Neural Processes (CNPs) are a form of
hybrid models that has been demonstrated to work for both classification and regression
(Garnelo et al. 2018).

The objective of this PhD is to explore the use of exemplars for speech and language
tasks, drawing inspiration from theories of human cognition. Minerva 2 is an exemplar-
based simulated memory model proposed by Hintzman (1984, 1986), and intended to
test the exemplar theory of categorisation. It has been in use for decades, and has
been compared against numerous human subject studies. It has also previously been
adapted for speech and language tasks, having been used for vowel classification (Maier
& Moore 2005) and restricted word recognition Moore & Maier (2007). It therefore
serves as a useful starting point for for this work.

1.3 Research questions

When proposing the perceptron, on which modern ANNs are based, Rosenblatt (1958)
identified three fundamental questions regarding cognition:

1. how information is sensed or detected;

2. how it is stored; and

3. how it affects recognition and behaviour.

The perceptron was intended to explore the second and third of these questions, which
are still relevant to ANNs today, and which form the basis of the following research
questions.

RQ1 What are the similarities and differences between the exemplar model Minerva 2
and ANNs?

Prototype and exemplar models present different approaches to storing infor-
mation. What are the underlying similarities and differences? Are there any
circumstances under which they are equivalent?

RQ2 What exemplars should be stored in memory, and how should they be repre-
sented?

Minerva 2’s exemplars set is crucial to its function. How big should it be? What
form should the exemplars take? Theories of human cognition typically assume
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good feature representation, which is not always the case in machine learning.
What effect does feature representation have on the performance of exemplar
and prototype models? How does feature representation affect how exemplar
and prototype models compare with each other?

RQ3 How can an exemplar model be combined with parameters to form a hybrid
exemplar-prototype model? What benefits, if any, does this bring?

Since humans appear to use both exemplar and prototype approaches, how can
Minerva 2 be adapted to make used of both? What benefits does this have, with
respect to performance and interpretability?

1.4 Contributions

This thesis provides an answer to Research Question 1 in Chapter 3, with the following
contributions:

• It is shown that Minerva 2 with a fixed memory is a constrained form of feed-
forward neural network.

• A process for inference described by Minerva 2’s creator, and referred to here as
echo-of-echoes, is shown to be a fixed point process and a form of Deep Equilib-
rium Model.

Research Question 2 is addressed in Chapter 4, with the following contributions:

• Feature representation is shown to be crucial to the function of Minerva 2, with
improved feature representation not just improving performance, but closing the
gap between the performance of the exemplar-based Minerva 2 models and pro-
totype models.

• Several parameterised variants of Minerva 2, combining both exemplar and pro-
totype approaches, are proposed and compared with prototype and exemplar
models.

Research Question 3 is covered in Chapter 5, with the following contribution:

• A hybrid exemplar-prototype model based on Minerva 2 is shown to provide
state-of-the-art performance on a the Clarity Prediction Challenge 2 speech in-
telligibility prediction task.
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1.5 Thesis outline

This thesis is divided into six chapters. Following this introduction, Chapter 2 describes
Minerva 2 in more detail, as well as describing how it has been used both in the field of
human psychology and for speech and language tasks. It also gives relevant background
information on exemplar, prototype and hybrid models that have been used for speech
and language tasks, and provides a brief overview of aspects of machine learning that
will be relevant to later chapters.

Chapter 3 covers the theoretical framework. It presents the equivalence between Min-
erva 2 and various prototype models, as well as discussing implications for the exemplar
set size and describing proposed parameterised variants of Minerva 2 that combing ex-
emplar and prototype approaches into hybrid models.

Chapter 4 describes the experimental work that has been carried out, testing the
theoretical conclusions from Chapter 3 and testing the proposed hybrid models on
several speech and language tasks.

Chapter 5 describes the use of a hybrid model to perform speech intelligibility pre-
diction on the Clarity Prediction Challenge 2 task, on which achieves state-of-the-art
performance.

In Chapter 6, the findings of previous chapters are summarised, and avenues for further
research are proposed.

1.6 Publications

Mogridge, R., Close, G., Sutherland, R., Hain, T., Barker, J., Goetze, S., & Ragni, A.,
(2024), “Non-intrusive speech intelligibility prediction for hearing-impaired users using
intermediate asr features and human memory models”, in: 2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 306–310.

Mogridge, R., Ragni, A., 2024. “Learning from memory-based models”, in: Proceed-
ings of the Annual Conference of the International Speech Communication Association,
INTERSPEECH 2024.
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1.7 Notation

Table 1.1 shows the non-standard mathematical notation that will be used in this
thesis.

Table 1.1: Mathematical notation

Notation Example Meaning
non-bold a, A scalar
bold lower case a vector
bold upper case A matrix
circle power a◦b, A◦b raise elements to the power b
tilde on vector ã L2 normalise vector a

tilde on matrix Ã L2 normalise each column-vector in A
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Chapter 2

Preliminaries

2.1 Overview

This chapter provides an overview of the global memory model Minerva 2, as well
as covering more general aspects of exemplar and prototype approaches to machine
learning that will be relevant for future chapters. The chapter begins with a detailed
description of the Minerva 2 cognition model, along with a summary of prior work that
has made use of it in the fields of human psychology and machine learning. There
follows an overview of other exemplar, prototype and hybrid approaches in machine
learning, including an overview of how such models are trained. Several options for
features representation are described, both for speech and text, since exemplar repre-
sentation is a key research question for this thesis. Finally, there is a summary of the
evaluation metrics that will be used in later chapters.

2.2 Minerva 2

Minerva 2 is a global memory model proposed by Hintzman (1984), created to test
theories of human cognition. Global memory models in general are intended to mimic
and explain a range of different experimental results, rather than focusing on a specific
task. Minerva 2 is an exemplar-based model which uses previous experiences, or ex-
emplars, to label new experiences. Each new input label is generated from the labels
of exemplars, weighted by how similar the new experience is to each of the previous
experiences. The mechanism by which the new label is produced, shown in Figure 2.1,
is a form of attention, although Minerva 2 predates the term “attention”.

9
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exemplar
classes

V

echo

activation
power

c

a
activations

input
features

q

K

exemplar features

v1

vN

...

...

Figure 2.1: Minerva 2.

Let q be an input query, representing a new experience to be labelled. Each previous
experience, or exemplar, is represented by a feature vector and a label vector. Let K =[
k1 . . . kN

]
be a matrix of column vectors, each of which represents an exemplar

feature vector; in Figure 2.1, this is in green at the top left. Let V =
[
v1 . . . vN

]
be matrix of column vectors representing the exemplar labels. In Figure 2.1, these are
shown in green towards the right.

The elements of the query and exemplar vectors are restricted ±1. The model also
permits values of 0, meaning that the information is either irrelevant or not available.
In Minerva 2’s original form, the exemplar feature and label elements are in a single
vector; for convenience, the feature and label information has been split into separate
vectors. This is a notation change only, and does not affect the underlying model. The
input query, exemplar features and exemplar labels are equivalent to the queries, keys
and vectors in attention: to label a new query, q, it is compared against each of the
stored exemplar feature vectors, using a scaled form of dot product similarity,

s =
1

F
K⊤q, (2.1)

where F is the length of the query and exemplar feature vectors, ensuring that each
element of s falls in the range [−1, 1]. The activation, a, of the exemplars is a positively-
accelerated function of the similarities, with Hintzman (1984) suggesting raising each
element in the vector to an odd power β. The notation

a = s◦β (2.2)

denotes raising each element of s to the power β. This form differs from conventional
attention, in which a softmax function is used. The activation power helps prevent
exemplars that are very similar to the probe from being drowned out by large num-
bers of exemplars with only limited similarity. In principle, any positively accelerated
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function that preserves the sign could be used. As with attention, the new label, c,
referred to as the echo, is generated as a weighted sum of the exemplar labels, with
the activations as weights:

c = V a. (2.3)

Finally, the echo is normalised by dividing by its largest absolute element value, which
is equivalent to the L∞ norm,

⟨c⟩∞ =
c

||c||∞
. (2.4)

The intensity of the echo is a measure of how recognisable it is, and is associated with
the human feeling of familiarity. It is given by,

I =
N∑

n=1

an. (2.5)

While differing in some details, the overall mechanism of Minerva 2 is very similar to
attention, except that in conventional self-attention, the queries, keys and values are
all derived from the input. In Minerva 2, the exemplars, which make up the keys and
values, are pre-defined and separate from the input.

2.2.1 Echo-of-echoes

Ideally, the normalised echo (Equation 2.4) will closely resemble a known class, but
this is not guaranteed, leading to the problem of ambiguous recall. A class could
be identified using a similarity or distance-based measure, comparing the normalised
echo with some “true” class representation, but this is only possible if a true class
representation is available. Instead, Hintzman (1988) suggests that normalising the
echo and iterating the process of echo generation produces an ‘echo-of-echoes’ that
closely resembles one of the classes. This process is shown in Figure 2.2.

Let ⟨c⟩(0)∞ be the initial normalised echo, as described in Equation 2.4. The ith echo-
of-echo is compared to the exemplar class labels to give the similarity,

s(i) =
1

J
V ⊤⟨c⟩(i−1)

∞ (2.6)

a(i) = s(i)
◦β

(2.7)

c(i) = V a(i) (2.8)

⟨c⟩(i)∞ =
c(i)

||c(i)||∞
. (2.9)
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Figure 2.2: Minerva 2 echo-of-echoes.

Note that the ith echo is compared to the the exemplar labels, not the exemplar features
in this process.

Hintzman (1988) found that iterating this process for any initial echo rapidly converges
to echoes that closely resemble one of the exemplar classes, but Maier & Moore (2005)
were unable to replicate this behaviour on a phone classification task. This process is
examined more closely in Section 3.3.

2.2.2 Learning and forgetting

In Hintzman (1986), a learning and forgetting option for Minerva 2 was introduced,
controlled by the learning parameter, pL, and the forgetting parameter, pF . During
each learning cycle, there is a probability pL that each element of the input is learned.
Elements of the input that are not learned are set to zero. This means that, for pL < 1,
learning is imperfect. Similarly, during a forgetting cycle, there is a probability pF that
each element of any exemplars already in memory will be forgotten, and set to 0. For
pF > 0, memory degrades over time.

2.2.3 Prior work in human psychology

Minerva 2 has been used for decades in the field of human psychology, often in com-
parison with the results of human experiments. A brief overview of some of the work
conducted is given here, with particular emphasis on speech and language related tasks.
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2.2.3.1 Schema abstraction

Schema abstraction is the process of learning a class from examples (Elio & Anderson
1984). For example, a human may encounter a pigeon, a robin and a sparrow, and
be told that each of them is a bird. From these examples, and others, they may
learn about the category ‘bird’, and can use this knowledge to determine that a crow,
which they have never seen before, is also a bird. This is contrasted with a rules-
based approach to learning, in which they are explicitly told rules, such as that birds
have wings and a beak. Hintzman (1986) showed that, like humans, Minerva 2 is able
to perform schema abstraction, correctly classifying new inputs based on exemplars,
without explicitly being told any rules.

2.2.3.2 True and false recognition

Humans may have a false sense of familiarity about concepts they have not previously
encountered that are closely related to concepts that they have encountered. The
Deese/Roediger—McDermott (DRM) associative memory illusion task (Deese 1959,
Roediger & McDermott 1995) has been used to test this in human experiments. Par-
ticipants are shown lists of words, with the following example list taken from Nick
Reid & Jamieson (2023): BED, REST, AWAKE, TIRED, DREAM, WAKE, SNOOZE,
BLANKET, DOZE, SLUMBER, SNORE, NAP, PEACE, YAWN, and DROWSY. Par-
ticipants are then shown a separate list of words, some of which are on the previous list,
and some which are not, including the “critical lure” SLEEP, which does not appear
on the first list, but is highly associated with words that do. Typically, humans falsely
recognise the critical lure as being on the original list at well above chance, despite it
not appearing on the first list.

Minerva 2 has been shown to replicate this false sense of familiarity, with high intensity
(Equation 2.5) for critical lures, as well as for items that actually appeared on the list.
This was initially shown for a related task that made use of randomly simulated vectors
to represent words (Arndt & Hirshman 1998, Gallo 2010). More recently, the true task
was replicated by Nick Reid & Jamieson (2023), who made use of Latent Semantic
Analysis (LSA) (see §2.7.1.1) to represent the words on each list as vectors.

2.2.3.3 Artificial grammar learning

In the artificial grammar learning task, proposed by Reber (1967), strings of characters
are generated by a finite state grammar, such as that shown in Figure 2.3, which would
allow the strings ‘ABDA’, ‘CCB’ and ‘CDA’, but not the string ‘ACD’. Human partic-
ipants are shown sets of strings. For the control group of participants, the strings are
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randomly constructed. For the test group of participants, the strings are constructed
using the finite state grammar. The participants attempt to memorise these strings.
Following this, participants are informed that the strings were constructed using rules,
and are asked to sort new test strings according to whether they are grammatical or
ungrammatical. Participants who were originally shown grammatical strings are better
able to sort them than those who were shown random strings. Despite this, participants
are typically unable to articulate the grammatical rules.

S1

S0

S2

S4

S3

A

B

C

D

D

B

A

C

Figure 2.3: Example of a finite state grammar.

Jamieson & Mewhort (2009) was able to replicate this experiment using Minerva 2,
replacing the strings with vectors, and using either random vectors for the example
set (controls) or grammatical vectors (test group), with imperfect learning (see §2.2.2).
They were able to closely replicate the results of the human experiment.

2.2.4 Minerva 2 for speech and language tasks

Although intended for psychology experiments, Minerva 2 has been used for speech
and language tasks: Maier & Moore (2005) found that Minerva 2 showed promise on a
vowel classification tasks using a restricted data set of 10 vowel sounds from 76 speakers
(Peterson & Barney 1951). The model was later adapted to a restricted word corpus
(Moore & Maier 2007), and the authors note that the exemplar-based model was able
to retain fine phonetic detail, while prototype systems tend to generalise. This ties
in with comments made by Sainath et al. (2012) in a review article, who noted that
exemplar-based approaches are particularly useful for modelling rare events.
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(Maier & Moore 2007) further adapted Minerva 2 into the Temporal Epsisodic Memory
Model (TEMM) for speech recognition. This model uses sequential exemplars, allowing
temporal information to be retained. The model was tested on a limited vocabulary
speech recognition task, and while for matching training/test sets it performed less
well than a comparison Hidden Markov Model (HMM), it was found to be more robust
when the test set was less well matched.

2.3 Alternative memory models

Minerva 2 is one of several global memory models in the field of human psychology, all
of which aim to mimic and explain results from multiple experiments. A selection of
these models are described here.

The Generalised Context Model (GCM), proposed by Nosofsky (1986), is similar to
Minerva 2, in that it compares an input to each of the exemplars held in memory. The
comparison metric used is Minkowsky distance-based, rather than dot-product based.
Given a set of classes C, exemplars D = {kn, vn}Nn=1 where vn ∈ C, and an input q, the
Minkowsky distance between q and each of the exemplars is given by,

dn =

(
F∑

f=1

|qf − kfn|r
) 1

r

, (2.10)

and the predicted probability that the class of q is c ∈ C is,

P (c|q,D) =
bc
∑

vn=c e
−dn∑

m∈C
(
bm
∑

vn=m e−dn
) , (2.11)

where F is the dimension of q and the kn, r is the chosen power, and the bc are class
weights. The GCM class labels are discrete, rather than vector based as in Minerva 2,
so it is fundamentally a classification model, rather than a regression model. The form
of Equation 2.11 includes a softmax, so its output is bounded, unlike Minerva 2’s.

There are several associative memory models, which focus on the associations between
items, rather than on the items themselves. One example is Search of Associative
Memory (SAM), proposed by Raaijmakers & Shiffrin (1981). It divides memory into
short term storage (STS) and long term storage (LTS). STS contains specific items
(exemplars) that can be recalled quickly and perfectly, but has a limited size and is
overwritten with new input. LTS stores relationship information, rather than specific
examples, with relationships based on the amount of time that items spend together in
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STS. Let K = {x,y}Nn=1 be a set of paired data, where x will be referred to as a ‘word’
and y as its ‘context’. STS can store the word-context pairs perfectly, until there are
r in memory, at which point a new word-context pair will overwrite an existing pair at
random. It is assumed that STS degrades over time; if there is a long wait, it will be
empty. LTS is relationship-based. The strength of the relationship between two items
is denoted S(a, b). There are different types of relationship: S(xn,yn) is the word-
context relationship for the nth data pair, and is proportional to the time it spends in
STS. S({xn,yn}, {xm,ym}) is the word/context-word/context relationship for the nth
and mth pairs, and is proportional to the time that the two pairs are both in STS. All
word-context relationships and word/context pair relationships are held in LTS.

SAM has been used to explain differences and similarities between recognition, where
an experience is perceived to be familiar, and recall, where a previous experience can
be reproduced Clark (1992, 1995). For example, if shown a list of words which are then
removed, recognition would be identifying that words were on the list if shown them;
recall would be writing out the list.

Other associative memory models include: the Theory of Distributed Associative Mem-
ory (TODAM) model (Murdock 2014), which which uses convolutions of the paired
vectors to create associations; and the matrix model (Pike 1984), which uses matrix
multiplication, rather than convolutions, to create the associations.

Experimental and theoretical studies comparing some or all of these models have been
conducted (Humphreys, Pike, Bain & Tehan 1989, Pike 1984, Humphreys, Bain & Pike
1989), with all models being imperfect and no clear evidence to select one model over
the others. In the absence of a clear winner, Minerva 2 was selected as the primary
model for study because it is simple and differentiable, it has been extensively used
for the past four decades, it is still widely used today, and it has previously been used
successfully for speech and language tasks.

2.4 Other exemplar approaches to speech and lan-

guage tasks

While not as common at present, exemplar approaches have been widely used for speech
and language tasks in the past. For classification tasks (such as phone recognition),
exemplars can be used as templates for comparison, while for generative tasks (such as
speech synthesis), they have been used as building blocks for constructing an output.
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2.4.1 k-nearest neighbour

K-Nearest Neighbour (KNN) (Fix & Hodges 1951, Cover & Hart 1967) is one of the
best-known exemplar approaches in machine learning. It is a purely exemplar-based,
non-parametric algorithm. It has been used for a wide variety of speech and lan-
guage tasks, including phone classification (Golipour & O’Shaughnessy 2009, Labiak &
Livescu 2011), voice recognition Ranny (2016), speech emotion recognition (Venkata Sub-
barao et al. 2022) and voice conversion (Baas et al. 2023).

Let q be a feature vector, let the exemplar set be D = {dn,vn}Nn=1, where dn is a
feature vector and vn is its corresponding label. Let α(q,dn) be a distance metric,
such as the Euclidean distance,

α(q,dn) =
√

(q − dn)⊤(q − dn). (2.12)

The k exemplars for which α is lowest are selected. The classification of q is then
typically based on a majority vote of the k-nearest exemplars, for classification, or
alternatively, the mean of their labels, for regression. Alternative distance or similarity
measures can be used, such as cosine or dot-product similarity.

2.4.2 Dynamic time warping

Dynamic Time Warping (DTW) is a technique for comparing sequences of different
lengths, which is able to account for signals being stretched or squashed. It has been
used for exemplar-based Automatic Speech Recognition (ASR) (Vintsyuk 1968, Sakoe
& Chiba 1978). The technique makes use of a library of labelled sound clips (the
exemplars). Each new sound is classified by comparing it to the exemplars using the
DTW similarity metric. While DTW was widely used in the 1970s and 80s, it was later
largely replaced with data-driven prototype HMMs. Some work continued, however,
with DTW used in conjunction with KNN to perform phone recognition (Golipour &
O’Shaughnessy 2009, Wachter et al. 2007). The main drawback of DTW is its lack
of scalability; hence, much of the work using DTW focused on techniques to reduce
computational load. This typically fell into two categories: using less computationally
expensive algorithms, such as approximate nearest neighbour (Arya & Mount 1993);
and reducing the search space. Wachter et al. (2003) employed temporal information
to reduce the search space. They recognised that, if the input sequence Q1:T and an
exemplar sequence K1:T ′ are similar, then if exemplar qt′ is relevant to the input yt, then
kt′+i is likely to be relevant to qt+i for reasonably small i. Their time filter algorithm
used this assumption to reduce the search space to < 1% of its original size, while still
maintaining a suitable selection of exemplars for consideration. Overall, they found
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that the baseline HMM system still outperformed the exemplar-based system, but
that the two systems were complementary, achieving the best performance when used
in combination. This work was conducted on a small vocabulary speech recognition
task of approximately 1,000 words.

Additional reductions to the search space can be made using meta-information (Wachter
et al. 2007, Demuynck et al. 2011), which may include: location of the exemplar within
an utterance; phone duration; speaker ID; the word the phone/exemplar belongs to;
and the environment type (Wachter et al. 2003, Demuynck et al. 2011).

2.4.3 Concatenative speech synthesis

In concatenative speech synthesis, short units of speech are joined together to create
the desired speech. In diphone-based speech synthesis, units start in the middle of
one phone, and transition to the middle of the next, so that they can be laid together
like dominoes. Further processing is typically required to cover the ‘seams’, such as
Pitch Synchronous Overlap and Add (PSOLA) (Charpentier & Stella 1986, Moulines
& Charpentier 1990). An alternative, data-driven option is to select speech from a
corpus using two objectives: the first is to match the speech unit to the desired speech;
and the second is to match the speech unit to the previously selected unit, so that they
concatenate smoothly. These, and other, options for concatenative speech synthesis
have been widely used (Hunt & Black 1996, Rao et al. 2005, Sak et al. 2006, Kirchner
et al. 2010, Tabet & Boughazi 2011, Khan & Chitode 2016).

2.5 Prototype approaches to speech and language

tasks

While exemplar approaches have been widely used in the past for speech and language
tasks, prototype methods are much more commonly used at present. In this section,
several common prototype approaches are described, with particular emphasis on data
driven, highly parametric ANN architectures, which show state-of-the-art performance
on a wide variety of speech and language tasks.

The parameters of ANNs are typically initialised randomly, before being trained using
an iterative process using a loss function. The loss function generally represents the
task of interest, such that a low value for the loss function indicates good performance.
Taking the gradient of the loss function with respect to each parameter allows the
parameters to be updated. Each update tends to reduce the loss towards a local
minimum.
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Relevant architectures are described in §2.5.1 to §2.5.8, followed by a more detailed
description of ANN training in §2.5.9.

2.5.1 Feed-forward neural network

The simplest form of ANN is a Feed-Forward Neural Network (FFNN), which consists
of an input layer, one or more hidden layers, and an output layer. FFNNs can be used
for both classification and regression. The ith layer of a FFNN is given by,

x(i) = σ(i)
(
W (i)x(i−1) + b(i)

)
, (2.13)

where the σ(i) are non-linear activations, the W (i) are the layer weights and the b(i)

are the layer biases. Activation functions are typically non-linear, bounded and differ-
entiable. A wide range of activation functions are used, with common options being:

σsig(z) =
1

1 + e−z
sigmoid (2.14)

σReLU(z) =

{
z z >= 0

0 z < 0
ReLU (2.15)

σtanh(z) =
ex − e−z

ez + e−z
hyperbolic tangent. (2.16)

When performing classification, the final layer is typically W -dimensional, where W is
the number of classes, and the final activation is typically a softmax,

σsm(z)w =
ezw∑W
n=1 e

zn
. (2.17)

The softmax output has the properties that each element falls in the range (0, 1),
and the outputs sum to 1. The output of a softmax function is generally assumed to
represent a probability distribution over the classes, although this does not in general
reflect the true confidence of the model. The predicted class is given by,

ŵ = argmax
w=1,...,W

(
x(out)
w

)
. (2.18)

For regression, the output layer has the same dimension as the desired prediction.

FFNNs are function approximators, and it has been shown that a FFNN with a single
hidden layer and non-polynomial, bounded activations is capable of approximating a
wide range of functions to an arbitrary degree of accuracy, given a sufficiently large
hidden layer dimension (Hornik et al. 1989, Leshno et al. 1993). FFNNs, while simple,
are used as building blocks for more sophisticated architectures.
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2.5.2 Deep equilibrium models

Deep Equilibrium Models (DEMs), proposed by Bai et al. (2019), are infinite-depth
ANNs which employ tied parameters. Referring to Equation 2.13, which gives the
equation for a layer in a FFNN, a deep equilibrium model can be represented as,

x(i) = σ
(
Wx(i−1) + b

)
i = 0, 1, 2, ... (2.19)

y = lim
i→∞

x(i), (2.20)

where x(i) is the output of the ith layer, and y is the final output of the DEM. DEMs
make the empirically-supported assumption that the limit tends to converge (Bai et al.
2019). Practically, DEMs also use skip connections between layers, meaning that a
better representation than Equation 2.19 is,

x(i) = σ
(
Wxx

(i−1) + W0x
(0) + b

)
. (2.21)

While earlier work experimented with tied parameters for finite-depth ANNs (Dehghani
et al. 2019), DEMs build on this by exploiting the fact that Equation 2.19 is a fixed
point equation. Fixed point equations have the form,

x = f(x), (2.22)

and have been widely studied. Numerous iterative methods for solving fixed point
equations are known (Hoffman & Frankel 2018). Crucially, Bai et al. (2019) demon-
strate that the gradient required for backpropagation does not depend on the method
used for finding the fixed point during the forward pass, nor does it depend on the
outputs of each iteration. This makes backpropagation an efficient, single-step pro-
cess, regardless of the number of iterations required to find the fixed point during the
forward pass.

2.5.3 Convolutional neural network

CNNs were originally based on a simplified version of parts of the eye (Fukushima 1980)
and have been extensively used for image recognition. A form of 1-dimensional CNN
for speech recognition, called a Time Delay Neural Network (TDNN), was proposed
by Waibel et al. (1989). An example of a CNN is shown in Figure 2.4. In the example
shown, ht depends directly on multiple observations yt−v, ...,yt.

Given an input Y1:T = (y1, ...,yT ), a TDNN with a single hidden layer and an output
layer can be defined as follows:

ht = σ

(
I∑

i=0

W (i)yt−i + b

)
(2.23)
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yt-1 yt yt+1

ht+1ht-1 ht

Continuous

Discrete

Function

Figure 2.4: Convolutional Neural Network.

where the Wi are network weights and I is the size of the convolution window.

(a) stride 1, kernel size 3 (b) stride 2, kernel size 4

Figure 2.5: Two examples of CNNs with different strides and kernel sizes.

In a CNN, there need not be the same number of outputs as inputs. Figure 2.5 shows
two examples of CNNs. Example (a) is similar to Figure 2.4, with each output of the
convolutional layer depending on the previous 3 inputs, and one output for each input
(excluding the first two inputs). Example (b) shows a different design, where each
output depends on the previous 4 inputs, but there is only one output for every two
inputs. The number of inputs between the outputs of the convolutional layer is known
as the stride, and the range of the inputs that feed into each output of the convolutional
layer is known as the kernel size. The example CNNs shown in Figures 2.4 and 2.5 are
both causal, meaning that the output of the convolutional layer depends on previous
observations, but not on future observations.

2.5.4 Recurrent neural network

Recurrent Neural Networks (RNNs) make use of recurrent units in order to handle
variable-length sequences, such as speech. A simple form of RNN, first proposed by
Elman (1990), uses a recurrent variable, ht, as shown in Figure 2.6, which depends on
the history and the current observation.

The Elman architecture makes the assumption that the outputs are independent of
each other, given previous and current observations. From Figure 2.6, it can be seen
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Figure 2.6: Elman RNN pseudo-dynamic Bayesian network.

that qt depends on Y1:t through the recurrent variable, ht, which is given by,

ht = σ (Aht−1 + Cyt + b) (2.24)

where A,C and b are parameters. The outputs can therefore depend on all previous
observations through ht.

2.5.5 Bi-directional RNN

An alternative implementation of RNN is bi-directional, an example of which is shown
in Figure 2.7. In this case, states depend on future observations, as well as past and
current observations.

ht-1 ht ht+1

yt-1 yt yt+1

qt-1 qt qt+1

ht-1 ht ht+1

Continuous

Discrete

Function

Figure 2.7: Example bi-directional RNN pseudo-dynamic Bayesian net-
work.
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The recurrent variable ht incorporates both forward and backward recurrent elements,

ht =

[−→
h t←−
h t

]
(2.25)

−→
h t = σ(

−→
A
−→
h t−1 +

−→
Cyt +

−→
b ) (2.26)

←−
h t = σ(

←−
A
←−
h t+1 +

←−
Cyt +

←−
b ) (2.27)

This architecture requires access to future observations, which is not always available
for streaming applications.

2.5.6 Long Short-Term Memory

RNNs suffer from vanishing gradient, in which back-propagating through long se-
quences results in the gradient diminishing to zero. The Long Short-Term Mem-
ory (LSTM) architecture was proposed by Hochreiter & Schmidhuber (1997) to solve
this problem, which is done by means of gates. Each LSTM cell incorporates an input
gate, an output gate and a forget gate. For an input xt,

ft = σsig (Wfxt + Ufht−1 + bf ) forget gate activation (2.28)

it = σsig (Wixt + Uiht−1 + bi) input gate activation (2.29)

ot = σsig (Woxt + Uoht−1 + bo) output gate activation (2.30)

c̃t = σc (Wcxt + Ucht−1 + bc) cell input activation (2.31)

ct = ft ⊙ ct−1 + tt ⊙ c̃t cell state vector (2.32)

ht = ot ⊙ σh (ct) hidden state, (2.33)

where ⊙ represents the Hadamard (elementwise) product. The function σsig is the
sigmoid function (Equation 2.14), which acts elementwise, and which ensures that the
elements of the activations of the input, output and forget gates fall in the range
(0, 1). The functions σc and σh are typically elementwise hyperbolic tangent functions
(Equation 2.16)

LSTMs are highly parameterised, making them computationally intensive both during
training and at inference. There are numerous variations of LSTM. Gated recurrent
units (Cho et al. 2014) and minimal gated unit (Heck & Salem 2017) both seek to
reduce the number of parameters, the first by removing the context vector and output
gate, the second by unifying the input, output and forget gates. Peephole LSTM
(Gers & Schmidhuber 2000, Gers et al. 2002) makes use of the cell state, rather than
the hidden state. Bi-directional LSTM, similarly to bi-RNN, employs two LSTMs,
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to provide dependence on both backward and forward directions in a sequence (see
Figure 2.7 for the RNN equivalent).

LSTMs have been used for a wide variety of sequence-based speech and language
tasks, including ASR Graves & Schmidhuber (2005), Oruh et al. (2022), handwriting
recognition (Graves & Schmidhuber 2008) and speech quality prediction (Tamm et al.
2022).

2.5.7 Transformer

Proposed by Vaswani et al. (2017) for machine translation, the basic transformer archi-
tecture employs layers of attention. Attention is a mechanism that produces weights by
comparing an input, or query, to keys, and using their similarity to produce a weighted
sum of associated values. There are variants of attention, but Vaswani et al. (2017)
use scaled dot-produce attention. Letting q be the input query, and K = [k1, ...,kN ]
and V = [v1, ...,vN ] be the keys and values respectively, scaled dot-product attention
is given by,

attention(q,K,V ) = V σsm

(
K⊤q√

F

)
(2.34)

where F is the dimension of q and each of the kn, and σsm is the softmax function
(Equation 2.17).

The transformer architecture makes use of self-attention, in which the queries, keys
and values are all generated from the input. Let Q = [q1, ..., qT ] be a sequence input,
and let Wq,Wk and Wv be weight matrices of dimensions D × F . Self attention is
given by,

A(Q;Wq,Wk,Wv) = attention(WqQ,WkQ,WvQ) (2.35)

where the softmax function σsm acts column-wise. In the transformer architecture,
Vaswani et al. (2017) use a type of combined attention called multi-head attention,
which uses several copies of scaled dot-product self-attention in parallel.

Multi-head attention is given by:

Amh = W (o)


A(1)

(
Q;W

(1)
q ,W

(1)
k ,W

(1)
v

)
...

A(H)
(
Q;W

(H)
q ,W

(H)
k ,W

(H)
v

)
 , (2.36)
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where H is the total number of heads, W (o) is a learned HD× HD weight matrix, and
the W

(h)
q , W

(h)
k and W

(h)
v are also learned parameters. Multi-head attention allows

the model to attend to different aspects of the model in parallel. The computational
complexity increases with the number of heads, so to keep the costs sufficiently low,
the authors set D = F/H.

q1

qT

...

positional
encoding

x N

c
1

c
T

...

Figure 2.8: Basic transformer encoder architecture.

In practice, there are additional considerations. Figure 2.8 shows an example trans-
former encoder. Self-attention is invariant to permutations, meaning that it does not
consider the order of the queries, keys or values. For this reason, a positional encoding
is added to the input, so that positional information is included. The architecture
also typically makes use of residual connections and layer normalisation (Lei Ba et al.
2016) following the multi-head attention layers, as well as intermediate FFNN layers.
Vaswani et al. (2017) used an encoder-decoder architecture for sequence-to-sequence
machine translation, and this architecture is common for other sequence-to-sequence
tasks. The combination of multi-head attention and FFNN is typically repeated several
times.

2.5.7.1 Positional encoding

Because self-attention ignores ordering, transformers typically make use of positional
encoding, which is added to the input and provides information about where in a
sequence each input is located. Positional encodings can be absolute, in which case
the encoding is fixed with respect to the start of the sequence, or relative, in which
case pair-wise relative distances between inputs in the sequence are preserved. Some
positional encodings include parameters that are learned from data, such as that used
by Gehring et al. (2017), but this is not required. Rotary Positional Encoding (RoPE)
(Su et al. 2024) is an example of an unlearned relative positional encoding, as is the
form of positional encoding used by Vaswani et al. (2017).
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2.5.8 Bidirectional encoder representations from transformers

Bidirectional Encoder Representations from Transformers (BERT) is a language model
proposed by Devlin et al. (2019), which has since been widely adapted and is an early
type of Large Language Model (LLM). As the name suggests, BERT is a transformer-
based encoder, which converts text tokens into fixed-length vectors, which can sub-
sequently be used for downstream tasks. It uses self-supervised pre-training, and is
typically trained using large amounts of unlabelled data. It can then be fine-tuned for
specific tasks on labelled, task-specific data.

BERT uses a tokenizer to convert words (or sub-word units) to integers, followed by
a projection layer that projects them into a dense embeddings space. This is followed
by the transformer encoder, which produces contextualised embeddings. During pre-
training, an additional task layer is included, but this not usually required for use.
Instead, the contextualised embeddings produced by the transformer encoder are used
for downstream tasks.

BERT takes as input one or two sentences (the term sentence here is used loosely; they
need not be actual sentences), with a separation character between them. The output
is a vector representing the first sentence as a whole, followed by a vector representing
each word in the sentence, and then the same for the second sentence (if there is one).
In this way, BERT can be used to generate representations of sequences of words as
well as individual words.

Pretraining is performed with two tasks: masked language model; and next sentence
prediction. In the masked language model task, input text sequences have a proportion
of their words masked at random, so that the model cannot access them. The training
objective is to predict them. In the next sentence task, sentences are given to the
model in pairs, and the objective is to predict whether the second sentence follows on
from the first in the corpus.

BERT word embeddings are contextual, which means that the embedding for cat in
the sentence “the cat and the fiddle” will not be the same as the embedding for cat in
the sentence “the cat on the roof”, because they appear in different contexts.

Further work has improved on the original BERT. Liu (2019) produced Robustly Opti-
mised BERT Pretraining Approach (RoBERTA) by changing training hyperparameters
and experimenting with the best ways to select the paired sentences for training. Yang
et al. (2019) introduced permuted language modelling, which allows the model to make
use of dependencies for masked tokens preceding the current one in the sequence. Song
et al. (2020) unified the masked language modelling of BERT and permuted language
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modelling to produce MPNet, which allows dependencies on both preceding and fol-
lowing masked tokens to be used.

2.5.9 Training artificial neural networks

Neural networks are typically trained iteratively on a dataset and task. For this
overview, consideration is restricted to the supervised cases, where labelled training
data is available.

2.5.9.1 Initialisation

The choice of initial values for ANN parameters can make a difference to how well and
fast they train. Initialising from Gaussian or uniform distributions is common, but
Glorot & Bengio (2010) propose choosing an Initialisation that preserves the input’s
variance through the layers during the first forward pass, while He et al. (2015) propose
an Initialisation specifically for ReLU-type activations.

2.5.9.2 Training

Once initialised, an ANN is trained iteratively using training data. During the forward
pass, the current parameters are used to make predictions based on the training data
inputs. These predictions are compared with the training data labels using a loss
function, also referred to as an objective function. Some examples of loss functions
are given in §2.5.10.1. Model parameters are updated during a backward pass, using
an optimiser such as Stochastic Gradient Descent (SGD), RProp (Riedmiller & Braun
1992) or Adam (Diederik 2014). Optimisers use the gradient of the loss function with
respect to each parameter to update the parameters, and different loss functions do this
in slightly different ways. Differentiation and backpropagation are typically handled
by machine learning packages such as the Pytorch (Paszke et al. 2019) package for
Python.

Training is typically performed by splitting the training data into minibatches, with
parameter updates following each minibatch. Multiple passes through the training
data may be used, with each pass referred to as an epoch. Training will ideally be
terminated at a point where the model a) performs well on the training data and b)
generalises well to unseen data. Training for too long can result in over-fitting, where
the model performs extremely well on the training data, but is unable to generalise
to unseen data. For this reason, a validation set is generally kept separate from the
training data. Performance on the validation set can be tracked during training, and
training can be terminated at an appropriate point. Training may also be terminated
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due to resource constraints, since training of larger models can be computationally
expensive. Keeping both training data and validation data separate from the final test
data is crucial.

2.5.9.3 Regularisation

Regularisation helps to prevent over-fitting. Two forms of regularisation are considered
here: L2 regularisation, and dropout. L2 regularisation, also referred to as weight
decay, adds a term to the training loss function that punishes large values for the
model’s parameters,

LL2 = λ
∑
θ∈Θ

θ2, (2.37)

where Θ represents all the model’s parameters, and λ is a hyperparameter (see §2.5.10).
Reducing large values leads to a more uniform distribution of parameters, and therefore
a less complex model.

Dropout acts during training, forcing the model to randomly ignore the outputs of
some neurons. If x is the output of a neural network layer, for example, dropout works
by setting each element of x to zero with probability p,

P (xi = 0) = p. (2.38)

Dropout acts only during training, preventing the model from relying too heavily on
specific neurons. During inference, p = 0 and all information is retained.

2.5.10 Hyperparameter tuning

Hyperparameters are parameters that are used to configure an ANN, without being
used at inference. They include the learning rate, which controls how fast model
weights are changed; minibatch size; weight decay, which controls L2 regularisation;
dropout and potentially others. Selecting hyperparameters is non-trivial, and a trial-
and-error process is often required. The validation set can be used to assess the effects
of different hyperparameters. For small models, gridsearch may be possible, where each
hyperparameter has several options, and all possible combinations of hyperparameter
options are tested. This is generally impractical for large models, however, due to the
time and hardware required.
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2.5.10.1 Loss functions

Loss functions must be suitable for the training task, with many options available.
Three common loss functions for different tasks are described here.

For binary classification, given training data T = {qi, wi}Ii=1, where wi ∈ {0, 1}, and
where the model output is assumed to be yi = P (wi = 1|qi;Θ), binary cross entropy
loss can be used,

LBCE(Θ|T ) = −1

I

I∑
i=1

wi logP (wi = 1|qi;Θ)− (wi − 1) logP (wi = 0|qi;Θ) (2.39)

For multi-class classification, where wi ∈ {1, ...,W} and where W is the number of
classes, categorical cross-entropy is commonly used as the objective function,

LCE(Θ|T ) = −1

I

I∑
i=1

logP (wi|qi;Θ). (2.40)

For regression, given training data T = {qi,wi}Ii=1, Mean Squared Error (MSE) loss
can be used,

LMSE(Θ|T ) =
1

IJ

I∑
i=1

(ŵi −wi)(ŵi −wi)
⊤. (2.41)

where ŵi is the model’s prediction of wi, and both have dimension J .

Loss functions are typically used in conjunction with L2 regularisation, as described in
Equation 2.37.

2.6 Hybrid approaches to speech and language tasks

So far, the models described have been entirely exemplar-based or entirely prototype-
based, but some models incorporate elements of both. Some examples are discussed
here.

2.6.1 Conditional neural processes

First proposed by Garnelo et al. (2018), Conditional Neural Processs (CNPs) are re-
lated to stochastic processes in that they represent distributions over functions, condi-
tioned on observations. In the case of CNPs, the distribution over functions represents
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a mapping from the inputs to the outputs. It is parameterised by an ANN, and condi-
tioned on an exemplar set, D. Figure 2.9 shows a graphical representation of a CNP.

D

...

...

...

k1 kN

vN r

f f

r1 rN

a

v1

...

...

...q1 qT

T1

Q
1:T

gg

Φ1:T

Continuous

Discrete

Function

Figure 2.9: Conditional neural process.

LetD = {kn,vn}Nn=1 be the exemplar set, where the kn are exemplar features and the vn

the corresponding labels. Let Q1:T = [q1, ..., qT ] be the inputs and W1:T = [w1, ...,wT ]
be the corresponding target outputs. CNPs assume invariance to permutations in the
inputs; changing the order of the inputs changes the order of the outputs, but has no
other effect. CNPs are likewise invariant to permutations in the exemplars. Garnelo
et al. (2018) ensure invariance by assuming a factored distribution,

P (W1:T |Q1:I ,D;Θ) =
I∏

i=1

P (wi|qi,D;Θ), (2.42)

although they note that this is merely an easy way, not the only way, of achieving the
necessary invariance.

CNPs do not condition directly on the exemplars, but instead assume that D can be
represented by a fixed-length embedding r, as shown in Figure 2.9. Applying this
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assumption, Equation 2.42 can be rewritten as,

P (W1:T |Q1:T ,D;Θ) =
I∏

i=1

P (wi|qi, r;Θ), (2.43)

where

rn = f(kn,vn;Θf ) (kn,vn) ∈ D (2.44)

r = r1 ⊕ r2 ⊕ . . .⊕ rN . (2.45)

The rn can be considered embeddings for each of the individual exemplars (qn,vn) and
⊕ represents an element-wise operation, such as the element-wise mean, to aggregate
the individual embeddings into a combined exemplar set embedding for D. This com-
bined embedding is then used to obtain parameters, ϕt, for the distributions of the
qt,

P (W1:T |Q1:T ,D;Θ) =
T∏
t=1

P (wt;ϕt) (2.46)

where

ϕt = g (qt, r;Θg) t = 1, ..., T. (2.47)

The functions f and g are ANNs, and their parameters, Θf and Θg, are learned during
training, forming the prototype part of the hybrid model.

The choice of distribution to parameterise with the ϕt will depend on the task. For a
regression task, for example, ϕt = (µt,Σt) could parameterise a Gaussian, N (µt,Σt),
for each target output. For a classification task, ϕt could parameterise the logits of the
class probabilities.

2.6.1.1 Exemplar selection

The exemplars have been represented as being distinct from the input, but in prac-
tice, CNPs typically condition on a subset of the input, that is D ⊂ Q where Q =
{(qt,wt)}Tt=1. This makes CNPs effective for generative tasks, such as image reconstruc-
tion, where a subset of the image’s pixels are available for inference, as demonstrated
by Garnelo et al. (2018).
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2.6.1.2 Training

Let T = {qn,vn}Nn=1 be the training data. At each step in the training process, a
random subset of the input is selected to be the exemplar set. The loss function is the
negative log probability of the outputs, given the inputs and the exemplars,

L(Θf ,Θg|T ,D) = −
N∑

n=1

logP (wn|qn, r;Θf ,Θg) . (2.48)

Note that this loss function scores the model on its predictions for all the elements of
T , whether they fall into the exemplar set or not.

2.6.2 Adding memory to parameterised models

Most ANN architectures distil the information in training data into the parameters
of the model, rather than using exemplars, and as such are purely prototype models.
Recently, adding memory to ANNs, particularly for language modelling, has been ex-
plored with some success. Wu et al. (2022) experimented with including non-parametric
memory (effectively an exemplar set) into transformer-based language models. The ex-
emplar set in this case is made up of previous word embeddings generated by the model
(which incorporate local context). As new embeddings are generated, they are added
to the exemplar set. The model uses approximate KNN to identify relevant exemplars.
Zhong et al. (2022) and Wang et al. (2024) incorporate the use of memory into train-
ing. The addition of the non-parametric memory improves the performance, which the
authors believe is due to the model’s ability to include long-term context.

2.7 Feature representation

Evidence from the field of human psychology suggests that humans use sophisticated
representations for speech and language that include acoustic, phonetic and semantic
information, as well as being highly contextualised (Repp 1982, Stanovich & West 1983,
Pisoni et al. 1985). Recent studies utilising fMRI to perform scans of the human brain
support this conclusion, with evidence that representations are detailed and contextu-
alised (Viganò et al. 2021, Jamali et al. 2024). In contrast, feature representations in
machine learning may not be as effective. Representing the information contained in
speech signals or in text is non-trivial, and is a major avenue for current research, with
great strides being made in recent years. Self-supervised speech representations such
as Wav2vec (Baevski et al. 2020), XLSR (Conneau et al. 2020) and HuBERT (Hsu
et al. 2021) have shown excellent performance in a wide variety of speech tasks, and
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BERT (Devlin et al. 2019) and variants of it have been used to extract representations
of both words and sentences (Reimers & Gurevych 2019).

In this section, a selection of speech and text representations are described. They cover
a range of techniques to produce feature representations of differing qualities.

2.7.1 Text representations

Text representations take a word or sequence of words, and convert it into a vector
or sequence of vectors. Three options for text representations are covered here: latent
semantic analysis; Word2vec; and BERT-based sentence embeddings. The first two
are word-based, meaning that vector representations of individual words are produced.
The third is sentence-based, meaning that it can take account of how words work
together.

2.7.1.1 Latent semantic analysis

LSA is an unsupervised technique for learning word representations, which makes use
of the distributional hypothesis in linguistics, summarised by Firth (1957) as “you
shall know a word by the company it keeps”. LSA exploits the assumption that similar
words in a set of documents will have similar distributions. Consider documents in a
collection, each of which is composed of a list of words. Let W = {w1, ..., wN} be the
set of unique words across all the documents. Each document can be represented by
an N -dimensional vector giving the count of each word that occurs in that document.
Note that this is a ‘bag of words’ technique, meaning that the order of words is not
considered. Given M documents, the document collection can be represented as a
N ×M occurrence matrix, O, where each column represents a document, and each
row a word. The occurrence matrix is typically sparse, with many words not appearing
in most documents. LSA uses Singular Value Decomposition (SVD) to reduce the rank
of the occurrence matrix. Any real matrix O can be decomposed into a product,

O = UΣV ⊤ (2.49)

where U is a N ×N orthogonal matrix, V is a M ×M orthogonal matrix, and Σ is a
M×N rectangular diagonal matrix. The rank of O is r ≤ min(M,N), and there will be
r non-zero values along the diagonal of Σ, which can be chosen to be ordered such that
Σ11 ≥ Σ22 ≥ ... ≥ Σrr. By selecting the largest singular values, and their corresponding
singular vectors from U and V , a reduced rank approximation of O can be found. If
r < M,N , then the rank can be reduced to r without loss of information. Reducing
the rank further than this can lose information, but this may come predominantly from
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any ‘noise’ present, since this is more likely to be uncorrelated. Further, the sparsity
of O means that rank can in some cases be reduced substantially with only limited
loss of information. Selecting the first k columns of U , corresponding to the largest
k singular values in Σ, and the first k rows of U produces a k-dimensional space into
which all of the documents and words are projected. Reduced-rank word vectors of
dimension k can be extracted by,

Tk = UkΣk, (2.50)

where Tk is a N × k matrix containing k-dimensional row vectors for each of the N
unique words. Thus, SVD can be used to obtain vectors of any desired dimension
to represent words. Due to the distributional hypothesis in linguistics, similar words
typically have similar representations, which makes LSA features useful for determining
semantic similarity. Once learned, LSA representations contain no information about
word order, and include no context; each word is represented in isolation, without
reference to other words in the same sentence. LSA can only produce embeddings for
words seen in the training corpus.

2.7.1.2 Word2vec

Word2vec is a family of models for obtaining vector representations of words (Mikolov,
Chen, Corrado & Dean 2013, Mikolov, Sutskever, Chen, Corrado & Dean 2013). The
Word2vec architectures are relatively simple compared to its contemporaries, with the
authors trading model power for ease of training on large quantities of data. There
are two main forms of model: Continuous Bag-Of-Words (CBOW); and continuous
skip-gram.

wc

wc-2 wc-1 wc+1wc+2

yc+1 yc+2yc-1yc-2

Predict

a. CBOW

wc-2 wc-1 wc+1wc+2

wc

yc

Predict

b. Skip-gram

word

representation

Figure 2.10: Word2vec.

The underlying assumption of the CBOW model is that knowing a good representation
of a word should give information about its near-neighbours, as shown in Figure 2.10a.
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The underlying assumption of the skip-gram model is that knowing good representa-
tions of a word’s neighbours should give you information about the word, as shown in
Figure 2.10b. In both cases, word representations yc (show in blue in Figure 2.10), are
found by maximising one of the following for a corpus C:∏

c∈C

P (wc|wc−M , ..., wc−1, wc+1, ..., wc+M), CBOW (2.51)∏
c∈C,m=±1,...,±M

P (wc+m|wc), skip-gram, (2.52)

where M is some integer giving the context over which to train. In both models, a
vector embedding, yc, is found for each unique word in the training corpus, and is in
general similar to the vectors of the words that are often found near it.

The skip-gram model is more computationally expensive, but typically outperforms
the CBOW model. Finding the probabilities P (wc+m|wc) is non-trivial, since the dis-
tribution is over the entire vocabulary, and a softmax over such a large dimension could
be prohibitively expensive. Mikolov, Sutskever, Chen, Corrado & Dean (2013) propose
two options: hierarchical softmax, in which a binary decision tree is used to reduce
the dimension of the output while still approximating the full softmax; or negative
sampling, in which the objective is to select the correct wc+m from a list of k distractor
samples.

Like LSA embeddings, Word2vec embeddings include no context or word order informa-
tion, and have largely been replaced by more sophisticated, contextual, sentence-level
representations, such as the BERT-based embeddings described next.

2.7.1.3 Sentence BERT

Sentence BERT (SBERT) (Reimers & Gurevych 2019) uses a pretrained BERT model
(Devlin et al. 2019), or a similar model such as MPNet (Song et al. 2020), and performs
further pre-training to optimise the sentence embedding. Three training objectives are
used, all of which require sentence pairs as input. The first objective also requires
labeling of the pairs: contradiction, entailment or neutral ; the training consists of
predicting the class of sentence pairs, and uses cross entropy loss. The second objective
uses mean squared error loss between the vectors representing each sentence in the
pair. The third objective uses triplet loss (Chechik et al. 2010) to compare one of the
sentences in each pair to positive and negative samples: the positive sample is the other
sentence in the pair; the negative sample is selected randomly from the corpus. The
authors found that models tuned in this way produced better sentence representations
that the original BERT models when evaluated on semantic similarity tasks.
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2.7.2 Speech representations

Raw audio signals for speech tasks are typically converted into frame-based features
prior to performing ASR. These are often spectrogram-based features, but more re-
cently, much more sophisticated feature extractors have been developed using self-
supervised learning. These Self-Supervised Speech Representations (SSSRs) use large
quantities of unlabelled speech data to learn highly-informative representations that
can be used for a wide variety of tasks.

2.7.2.1 Spectrogram

Spectrogram-based features convert speech waveforms from the amplitude-time domain
to the frequency-amplitude-time domain. This is typically done frame-wise, using
Short Time Fourier Transforms (STFTs) (Allen 1977). A common additional step
is to convert the frequencies to the mel scale (Stevens et al. 1937). Humans can
hear differences between low frequencies more easily than differences between high
frequencies, and this difference in perception is not linear. The mel scale is a non-
linear transform of the frequencies to make them match human perception, rather
than physical quantities. It can provide better results when dealing with speech.

Spectrogram features may be supplemented by additional features, such as delta and
delta-delta features (Furui 1986), which give a measure of the rate of change of the sig-
nal and the acceleration of the signal respectively. The simplest method for calculating
the delta and delta-delta features is as follows:

δ
(1)
t = xt+1 − xt−1 delta (2.53)

δ
(2)
t = δ

(1)
t+1 − δ

(1)
t−1 delta-delta (2.54)

where xt is the spectrogram (or alternative features) for the tth frame. Other methods
for calculating the delta and delta-delta features, for example, using regression, can
also be used. The delta and delta-delta features can then be concatenated with the
original features to make a new feature vector,

yt =

 xt

δ
(1)
t

δ
(2)
t

 . (2.55)

The spectrogram-based features described here can be performed as pre-processing,
and do not require training data. Despite their relative simplicity, they are still used
as input to state-of-the-art models such as Whisper (Radford et al. 2023), an ASR
model which is discussed in more detail later.
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2.7.2.2 Wav2vec2.0

Wav2vec2.0 is a SSSR framework proposed by Baevski et al. (2020), which builds on
the earlier Wav2vec framework (Schneider et al. 2019). Both Wav2vec and Wav2vec2.0
use self-supervised pre-training on unlabelled data, and take the audio waveform as
input. The Wav2vec2.0 model uses a CNN, quantization, and a transformer to extract
embeddings from the raw audio signal. The CNN, referred to by the authors as the
encoder network, creates frame-based feature vectors zt from the raw audio data. The
feature vectors are quantized using product quantization (Jegou et al. 2010), producing
discrete, rather than continuous, representations, which are used by the transformer,
referred to by the authors as the context network, to combine them into contextual
embeddings, ct. The loss function is contrastive loss,

LCL = − log
exp(c̃⊤t q̃t/κ)∑
r∈Qt

exp(c̃⊤t r̃/κ)
(2.56)

where qt is the quantized representation at time t and Qt = {qi1 , ..., qiK , qt} is the set
of K distractor samples and qt. The distractor samples are quantized representations
randomly selected from the same utterance as qt, such that ik ̸= t. The contextualised
embedding ct is the output of the context network, which takes the utterance that qt

belongs to as input, but with qt and the distractor samples masked. The objective is
to pick qt out of the set of distractors, conditioned on ct. The hyperparameter κ is the
softmax temperature, which controls the sharpness of the contrastive distribution. An
additional loss, Ld, which encourages diversity amongst the quantized representations,
is added, to prevent all representations from from converging,

L = LCL + αLd. (2.57)

Wav2vec2.0 was developed for ASR, but has been used successfully for a range of
downstream tasks, including speech emotion recognition, (Chen & Rudnicky 2023,
Sharma 2022, Wang et al. 2021), speaker verification (Fan et al. 2021, Tak et al. 2022,
Wang et al. 2021) and language identification (Fan et al. 2021, Tjandra et al. 2022, Liu
et al. 2022). Cross-Lingual Representation Learning for Speech Recognition (XLSR)
(Conneau et al. 2020) extends Wav2vec2.0 to produce multilingual embeddings by
training on multilingual data.

2.7.2.3 HuBERT

Hidden Unit BERT (HuBERT) (Hsu et al. 2021) is a SSSR that uses a masked pre-
diction task similar to BERT, but using pseudo-phonetic labels. The pseudo-phonetic
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labels are derived from a non-supervised clustering model such as k-means, using a
frame-based spectrogram or Mel Frequency Cepstral Coefficient (MFCC) represen-
tation of the data (Mermelstein 1976). Although the derivation of the labels uses
frame-based features, the input to HuBERT is the waveform. HuBERT’s architec-
ture is similar to Wav2vec2.0, with a CNN-based encoder and a BERT-based context
network.

HuBERT is trained with masking. Given an input sequence Q1:T with pseudo-phonetic
labels z1:T , a random subset of time stepsM⊂ {1, ..., T} is chosen to be masked. Each
vector qm, for m ∈ M, is replaced with a learned mask embedding q̂. This masked
sequence will be referred to as Q̂1:T . The objective is to predict z1:T . The loss is
weighted depending on whether the input being predicted is masked or not,

Lm(Θ;Q1:T ,M, z1:T ) =
∑
t∈M

log pΘ(zt|Q̂1:T , t) (2.58)

Lu(Θ;Q1:T ,M, z1:T ) =
∑
t/∈M

log pΘ(zt|Q̂1:T , t) (2.59)

L(Θ;Q1:T ,M, z1:T ) = αLm(Θ;Q1:T ,M, z1:T ) + (1− α)Lu(Θ;Q1:T ,M, z1:T ).
(2.60)

The pseudo-phonetic labelling initialised by k-means clustering is updated periodically
during training. In practice, performing clustering with different values of k to predict
multiple sets of labels, and treating each label set as parallel training tasks, is found
to give better results.

HuBERT has shown promise for downstream tasks such as ASR (Hsu et al. 2021, Chang
et al. 2021), speaker verification (Wang et al. 2021, Chen, Chen, Wu, Qian, Wang, Liu,
Qian & Zeng 2022) and speech emotion recognition (Wang et al. 2021, Morais et al.
2022).

2.7.2.4 Whisper

Whisper (Radford et al. 2023) is a transformer-based encoder-decoder ASR model. It
takes as input 30 s sequences of audio represented by log Mel spectrograms. Audio
that is longer or shorter than 30 s is padded or truncated. Whisper is trained on
extremely large quantities of data obtained from the web. The resulting labelled data
is noisy, but Radford et al. (2023) demonstrate that large quantities of lower quality
data can give better performance than smaller quantities of high quality data, especially
if sophisticated automatic filtering mechanisms are used to remove very poor quality
examples. Whisper is pre-trained on 680, 000 hours of multi-lingual data to do multiple
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tasks, including: ASR, speech translation, language identification and voice activity
detection.

Whisper gives state-of-the-art results for ASR (Radford et al. 2023). Using interme-
diate representations from trained Whisper models, taken either from the encoder or
decoder layers, has been shown to be effective for tasks such as speaker diarisation
(Papala et al. 2023), sentiment analysis (Papala et al. 2023) and speaker verification
(Zhang et al. 2024).

Whisper’s training data is not clearly specified. Care must therefore be taken when
using Whisper representations to ensure that the task’s test or evaluation data has not
been part of Whisper’s training data.

2.8 Evaluation metrics

In order to compare the performance of different models, an evaluation metric is re-
quired. The metric should, ideally, give an understanding of how well the relevant task
was performed. Different metrics are used, depending on the task, and some example
evaluation metrics that are relevant for speech and language tasks are described here.

2.8.1 Accuracy, precision, recall and F1 score

The results of a binary classification task can be summarised in a confusion matrix, as
shown in 2.1. False positives are also referred to a Type I errors, and false negatives
are referred to as Type II errors.

Table 2.1: Confusion matrix.

Actual condition
True False

Predicted True TP (true positive) FP (false positive)
Condition False FN (false negative) TN (true negative)

Accuracy is given by,

accuracy =
correctly predicted items

total number of items
=

TP + TN

TP + TN + FP + FN
(2.61)

Accuracy can be misleading for imbalanced classes. For example, if 95% of the data is
labelled negative, then 95% accuracy can be achieved by predicting that all data points
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are negative, which is clearly unhelpful. In this case, precision and recall may be more
useful, along with the F1 score,

precision =
TP

TP + FP
(2.62)

recall =
TP

TP + FN
(2.63)

F1 =
2× precision× recall

precision + recall
=

2× TP

2× TP + FP + FN
. (2.64)

2.8.1.1 Area under receiver operating characteristic curve

Given a binary classifier that returns a result r ∈ (0, 1), where higher values mean a
greater probability that the label is positive, where should the threshold be drawn? The
choice of threshold affects the confusion matrix, and therefore also the accuracy, pre-
cision, recall and F1 score. An alternative, threshold-independent measure is discussed
here.

The Receiver Operating Characteristic (ROC) curve plots the true positive rate against
the false positive rate for different thresholds.

true positive rate =
TP

TP + FN
(2.65)

false positive rate =
FP

FP + TN
(2.66)

Examples of ROC curves are shown in Figure 2.11. When the threshold is 0, all
examples will be classified negative, so both true positive rate and false positive rate
will be 0. When the threshold is 1, all inputs will be classified positive, and the true
positive rate and false positive rate will both be 1. At intermediate thresholds, the
higher the true positive rate is compared to the false positive rate, the better. If they
are always equal, then the classifier is equivalent to random chance (for a balanced
dataset), shown by the dashed black line in Figure 2.11. The blue curve is for a
classifier that performs better than chance, and the red curve is for a classifier that
behaves better still.

The better the true positive rate is compared to the false positive rate, the greater the
area under the ROC curve will be. The Area Under ROC Curve (AUC) is therefore a
useful measure of how effective a classifier is, without requiring a defined threshold.
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Figure 2.11: Example ROC curves.

2.8.1.2 Root mean squared error

Given a prediction x̂ and true value x, the MSE is given by,

MSE(x̂,x) =
1

J
(x− x̂)⊤(x− x̂), (2.67)

where J is the dimension of x and x̂. The Root Mean Square Error (RMSE) is
√

MSE,
which is equivalent to the Euclidean distance or L2 distance between x and x̂. RMSE
is generally used for evaluating the performance of a regression.

2.8.1.3 Word error rate and phone error rate

Using the ground truth sentence the cat and the fiddle, three types of errors can be
defined:

1. Substitutions, S, in which one word is incorrectly swapped with another, e.g. the
bat and the fiddle

2. Insertions, I, in which a word is added that shouldn’t be there, e.g. the black cat
and the fiddle
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3. Deletions, D, in which a word is removed that should be present, e.g. the cat and
fiddle

The Word Error Rate (WER) is given by,

WER =
S + D + I

N
(2.68)

where N is the total number of words in the ground truth sequence.

Closely related to the WER is the Phone Error Rate (PER), which is the same process
by applies to phones rather than to words.

2.9 Concluding remarks

This chapter has provided a description of Minerva 2, the human cognition model that
is the focus of this thesis, as well as covering previous work that has made use of
it. It has covered other exemplar, prototype and hybrid models that have been used
for speech and language tasks. Since representation of exemplars is a key research
question, several options for feature representation have been described.

Minerva 2 bears a strong resemblance to the attention mechanism found in the trans-
former architecture. What further similarities are there between Minerva 2 and other
architectures? This forms our focus in the next chapter, where the mathematics behind
Minerva 2 are explored in more detail, drawing connections between Minerva 2 and
other models.



Chapter 3

Theoretical framework

3.1 Introduction

In the previous chapter, clear similarities were noted between Minerva 2 and attention.
This leads to the first research question:

RQ1 What are the similarities and differences between the exemplar model Minerva 2
and ANNs?

In addition to its relationship with attention, it will be shown in §3.2 that Minerva 2
with a fixed exemplar set is a constrained form of a feed-forward neural network. It
will also be shown in §3.3 that Minerva 2’s echo-of-echoes process, described in §2.2.1,
is a fixed point problem and a form of deep equilibrium model.

In §3.5, several parameterised models based on Minerva 2 are proposed. These are
hybrid prototype-exemplar models, which can be trained by backpropagation, and
relate to Research Questions 2 and 3:

RQ2 What exemplars should be stored in memory, and how should they be repre-
sented?

RQ3 How can an exemplar model be combined with parameters to form a hybrid
exemplar-prototype model? What benefits, if any, does this bring?

Several of the models incorporate a learned linear transformation of the input features,
relating to Research Question 2. All of the them incorporate learned parameters,
potentially increasing the model’s power and flexibility. In this chapter, a theoretical

43
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framework for these models is provided, setting the stage for experimental work in later
chapters.

3.2 Minerva 2 as an artificial neural network

Memory-based models such as Minerva 2 are often contrasted with ANNs, but it can
be shown that, when using a fixed exemplar set, Minerva 2 is itself a special case of
FFNN. The ith layer in a FFNN can be represented as,

h(i) = σ(i)(W (i)h(i−1) + b(i)) (3.1)

where the W (i) are the layer weights, the b(i) are the layer biases, and the σ(i) are the
activation functions. Reproducing the Minerva 2 equations from §2.2 (Equations 2.1
to 2.4),

s =
1

F
K⊤q (3.2)

a = s◦β (3.3)

c = V a (3.4)

⟨c⟩∞ =
c

||c||∞
, (3.5)

it can be seen that, if the exemplar set is fixed, Minerva 2 can be expressed as a FFNN:

W (1) =
1

F
K⊤ b(1) = 0 σ(1)(x) = x◦β (3.6)

W (2) = V b(2) = 0 σ(2)(x) = ⟨x⟩∞. (3.7)

Thus, Minerva 2 is an FFNN, where the exemplars form the parameters. Minerva 2 is
initialised from data, rather than trained on it. This has implications for Minerva 2’s
performance in comparison with FFNNs. Exemplar and prototype models are often
contrasted, but in this case, they are structurally equivalent; the difference is in how
parameters are selected. Despite being a FFNN, Minerva 2 does not benefit from the
Universal Approximation Theory that states that FFNNs are function approximators
(see §2.5.1) because its activation function on the first layer is polynomial.
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3.3 Echo-of-echoes

The echo-of-echoes process can be re-framed as a FFNN in the same way. Reproducing
Equations 2.6 to 2.9,

s(i) =
1

J
V ⊤⟨c⟩(i−1)

∞ (3.8)

a(i) = s(i)
◦β

(3.9)

c(i) = V a(i) (3.10)

⟨c⟩(i)∞ =
c(i)

||c(i)||∞
(3.11)

it can be seen that,

a(i) = σ(3)
(
W (3)⟨c⟩(i−1)

∞ + b(3)
)

(3.12)

⟨c⟩(i)∞ = σ(4)
(
W (4)a(i) + b(4)

)
(3.13)

where

W (3) =
1

J
V ⊤ b(3) = 0 σ(3)(x) = x◦β (3.14)

W (4) = V b(4) = 0 σ(4)(x) = ⟨x⟩∞. (3.15)

Each iteration of the echo-of-echoes process is a 2-layer FFNN, with parameters shared
with previous iterations. As an infinite-depth FFNN in which the layers share param-
eters, the echo-of-echoes process is also a form of DEM (Bai et al. (2019), and see
§2.5.2).

Further examination of Minerva’s echo-of-echoes process shows that it is not in general
effective. In order to solve the problem of ambiguous recall, the echo-of-echoes pro-
cess must converge to something that can be linked to a single class with little or no
ambiguity. The ith echo-of-echoes, c(i), can be written in terms of c(i−1) by combining
Equations 3.8 to 3.11,

c(i) =
1

Jβ
V
(
V ⊤⟨c(i−1)⟩∞

)◦β
. (3.16)

In order to be useful, the c(i) must converge, that is,

lim
i→∞

c(i) = c∗. (3.17)
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If the sequence converges, then c∗ must satisfy,

c∗ =
1

Jβ
V
(
V ⊤⟨c∗⟩∞

)◦β
. (3.18)

Noting that ⟨c∗⟩∞, the L∞ normalised version of c∗, is simply a scaled version of c∗,
this can be rewritten,

c∗ = αV
(
V ⊤c∗

)◦β
, (3.19)

where α can be any positive real number. This type of equation, in which the objective
is to find a value for a function where the input is equal to the output, is a fixed
point problem. Fixed point problems have been widely studied, and there are efficient
iterative algorithms to solve them (Hoffman & Frankel 2018).

The echo-of-echoes process differs from a typical DEM in two ways. Firstly, DEMs
usually have a single layer repeated, rather than two. More importantly, for the echo-
of-echoes process, fixed points are expected to be the exemplar class representations:
c∗ ∈ {v1, ...,vN}. This is not assumed for DEMs, and warrants further investigation.

First considering the case where there are W unique, linearly independent class rep-
resentations, each of which is represented in the exemplar set once, and denoting this
restricted set of exemplars U = [u1, ...,uW ]. According to the echo-of-echoes process,
each of these class representations must be a fixed point,

u1 = α1U
(
U⊤u1

)◦β
(3.20)

...

uW = αWU
(
U⊤uW

)◦β
. (3.21)

These can be written in matrix form as,

U = U
(
U⊤U

)◦β
Λ (3.22)

where

Λ =

α1 . . . 0
...

. . .
...

0 . . . αW

 . (3.23)

Since U has been defined to have full rank, it must have an inverse, so,

U−1U = U−1U
(
U⊤U

)◦β
Λ (3.24)

IW =
(
U⊤U

)◦β
Λ (3.25)
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where IW is the W -dimensional identity matrix, and therefore,

Λ−1 =
(
U⊤U

)◦β
. (3.26)

Since Λ is diagonal, and the inverse of a diagonal matrix is also diagonal, the matrix(
U⊤U

)◦β
must be a diagonal matrix, and since β acts element-wise, so too is U⊤U .

This is only the case if the column vectors u1, ...,uW are orthogonal. Thus, if the class
representations are linearly independent, they must also be orthogonal.

In the case that Hintzman (1986) explored, which used 3 classes and 10-dimensional
class representations, the probability of high correlation between classes is relatively
low, which may explain why the echo-of-echoes process was found to work. Consider,
however, an example in which the classes are highly correlated with each other,

v1 =
[
1 1 1 1 1 1 1 1 1 1

]⊤
v2 =

[
1 1 1 1 1 1 1 1 1 −1

]⊤
v3 =

[
−1 −1 −1 1 1 1 1 1 1 1

]⊤
.

Feeding v1, v2 and v3 into Equation 3.16 and iterating until convergence gives the
following fixed points:

⟨c∗1⟩∞ =
[
0.98 0.98 0.98 1 1 1 1 1 1 0.01

]⊤
⟨c∗2⟩∞ =

[
0.98 0.98 0.98 1 1 1 1 1 1 0.01

]⊤
⟨c∗3⟩∞ =

[
−0.88 −0.88 −0.88 1 1 1 1 1 1 0.99

]⊤
None of the chosen exemplar class representations converges to itself; the exemplar
classes are not fixed points. Further, both v1 and v2 converge to the same fixed point,
which is a vector that falls between the two classes. The results of the echo-of-echoes
process are, in this case, completely ambiguous with regard to classes 1 and 2.

The results above were derived by assuming linear independence between the exem-
plars, but what if this is not the case? Equation 3.22 is then replace with,

V = V (V ⊤V )◦βΛV . (3.27)

In this case, V is a W × N matrix, where N is the number of exemplars. Since the
exemplars have some linear dependence, it has rank r < N , and as such has no left
inverse. This means that there may be multiple solutions. Equation 3.27 is not true
for every V , however; the exemplar labels would need to be chosen to be suitable.
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Rather than constraining the exemplar labels to be fixed point solutions, replacing
Equation 3.27 with,

U = V (V ⊤U )◦βΛ, (3.28)

allows the exemplar labels and fixed points to be separate. In this case, the exemplar
labels V and the prediction labels U no longer share the same label space. This is how
conventional DEMs work: since their parameters are learned through backpropagation,
there is no expectation that they will resemble the fixed point class labels.

The similarity with DEMs means that the echo-of-echoes process could in principal
be trained, leveraging known fixed-point algorithms, and making use of the efficient
backpropagation of DEMs.

3.4 Exemplar selection

3.4.1 Exemplar set size

Minerva 2 works on the assumption that similar feature vectors are likely to share the
same label, and identical feature vectors are certain to share the same label. More
mathematically, these assumptions can be expressed as:

lim
q̃→k̃n

P (w = vn) = 1. (3.29)

If these assumptions are true, then as the number of exemplars increases, so does the
probability of there being an exemplar that is a) very similar to q; and b) shares its
class. A large exemplar set also includes more exemplars that are slightly similar to q,
but do not share its class. A large exemplar set may therefore require a higher value for
the activation power β, which leaves similarities close to 1 (and -1) mostly unchanged,
but reduces the magnitude of all other similarities. Provided that the assumptions hold,
tuning β while increasing the exemplar set size will improve performance, although with
diminishing returns.

3.4.2 Exemplar selection

If Minerva 2’s exemplar set is fixed, then the exemplar features and labels can be
considered parameters of the model. Representing Minerva 2 as a function f ,

c = f(q;K,V ). (3.30)
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Options exist for how the exemplar set should be selected: curated or random, or
stratified by class or other attribute.

Rather than a fixed exemplar set, the exemplars can in principal be changed, either
during training, during inference, or both, in which case the output is conditioned on
the exemplars,

c = f(q|K,V ). (3.31)

This gives the option of selecting exemplars in some way that is meaningful: choosing
recent examples to give context; or conditioning on an exemplar set that matches the
input in some way. For example, exemplars could be chosen from the current speaker,
for speech-based task. Exemplars used in this way might allow for adaptation at
inference.

3.5 Adaptation of Minerva 2 to speech and lan-

guage tasks

Minerva 2 was designed to replicate human experiments as simply as possible, and as
such has serious limitations for real tasks:

1. The feature and class elements in the input and exemplars are restricted to the
values {−1, 1}.

2. Ambiguous recall: the class elements in the returned echo will usually not pre-
cisely match a class.

3. With no learned parameters, the model is dependent on the feature and class
vectors being truly representative.

4. Many speech and language tasks are sequence tasks, but Minerva 2 is not a
sequence model.

There follow descriptions of proposed adaptations of Minerva 2 intended to address
some of these limitations. Most the adapted models use a hybrid prototype-exemplar
approach, incorporating learned parameters into the Minerva model. A summary of
the proposed models is given in Table 3.1.
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Table 3.1: Minerva model descriptions.

Model
Input

Learned Learned
Inference Sequence

type
feature exemplar

type based
transform labels

Minerva 2 ±1 no no one-hot no
Minerva-R R no no one-hot no
Minerva-RP R yes no one-hot no
Minerva-RPC R yes no dot-product no
Minerva-RPE R yes yes one-hot no
Minerva-RPCE R yes yes dot-product no
Minerva-RPES R yes yes one-hot yes

3.5.1 Minerva-R: Minerva with real input

Limitation 1 can be addressed by replacing Equation 2.1 with the cosine similarity,

s = K̃⊤q̃ (3.32)

where q̃ =
q

||q||2
, k̃n =

kn

||kn||2
and K̃ =

[
k̃1 . . . k̃N

]
.

This version of the similarity has previously been used by Nick Reid & Jamieson
(2023). Alternative options exist: Maier & Moore (2005) used a distance-based measure
instead, but, in the case where the elements of q and K are ±1, the cosine similarity
gives an identical result to Equation 2.1, making it a more natural successor.

v1

vN

...

q

...

c

exemplar
features

input
features

echo

exemplar
labels

Input

Exemplar

Output

Figure 3.1: Minerva-R.

To address Limitation 2, one-hot representation is used for the exemplar classes. This
is a common choice in machine learning. Under these conditions, the predicted class
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label is given by,

ŵ = argmax
w=1,...,W

(cw) . (3.33)

This version of Minerva has no learned parameters, and a single tuned parameter β.
It is shown in Figure 3.1 and will be referred to as Minerva-R, since it makes use of
real input.

For Minerva 2, the L∞ normalisation applied in Equation 3.5 ensures that the highest-
magnitude element of the echo has a value ±1, so that it matches the scaling of the
inputs, which are restricted to ±1. In Minerva-R, the inputs and exemplars are no
longer restricted to ±1, so this is no longer appropriate. However, without any form
of normalisation, Minerva-R has no innate scaling at all. Large exemplar sets could
lead to extremely high magnitude echoes (see Equation 3.4). For classification tasks,
this has no effect, since the argmax in Equation 3.33 will still function. For regression
tasks, however, this lack of scaling is likely to be a problem, and some form of scaling
or calibration will be required on the output echo.

3.5.2 Minerva-RP: Learning feature transformations

To partially address Limitation 3, which notes that Minerva 2 is entirely dependent
on good feature representation, learned feature transforms can be added. These allow
the model to emphasise relevant information in the features, and discard irrelevant
information, making the similarity measure between the input and the exemplars more
meaningful. This model will be referred to as Minerva-RP, since it uses real input and
has learned parameters. The model is shown in Figure 3.2.

Input

Exemplar

Learned parameter

Output

v1

vN

...

q Wq

... Wk

c
echo

exemplar
labels

exemplar
features

input
features

Figure 3.2: Minerva-RP.

Simple linear transforms (shown in red in Figure 3.2) are applied to the input and
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exemplar features,

qw = Wqq (3.34)

Kw = WkK (3.35)

s = K̃⊤
w q̃w. (3.36)

The transforms Wq and Wk can either be identical or separate. There are potential
advantages to each: if identical, the Minerva similarity mechanism will still have mean-
ing, even prior to training, since correlated input and exemplar features q and kn will
lead to correlated transformed input and exemplar features. In the case of separate
transforms, the Minerva attention mechanism may learn to attend to different aspects
of the model, for example, tuning into or out of common confusions or adjacent phones.
This model can be used either for classification or regression.

3.5.2.1 Regression

For regression, as with Minerva-R, scaling or calibration is likely to be necessary, which
will depend on the nature of the task. The calibration can be learned with the other
parameters. Given the output echo, c, the scaled output is given by,

y = ac + b1, (3.37)

where a and b are learned parameters and 1 is a vector of 1s of the same dimension as
c.

MSE loss is used for training. Given training data T = {qi,ui}Ii=1, where qi is the
feature representation for the ith input, and ui is its corresponding label,

LMSE(ΘL|T ,ΘU) =
1

I

I∑
i=1

(yi − ui)(yi − ui)
⊤, (3.38)

where y is the scaled output, ΘL = {Wq,Wk} are the model’s learned parameters, and
ΘU = {K,V } are the model’s exemplars, which can be thought of as pre-determined,
or unlearned, parameters.

3.5.2.2 Classification

For classification, the lack of scaling on the echo has no effect at inference (the argmax
in Equation 3.33 still functions), but may have implications for training. Using a
softmax (Equation 2.17) as the final activation yields a distribution over the classes,
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but the distribution may be extremely sharp for large exemplar sets, due to the high
magnitude of the resulting echo. For this reason, the model may benefit from some form
of normalisation or scaling on the echo prior to the softmax, although the nature of
this scaling is likely to depend on factors such as task, exemplar set size and activation
power. Cross-entropy loss can be used for training. Given training data T = {qi, ui}Ii=1,
where qi is an input feature vector and ui its corresponding target class label, let yi

be the normalised or scaled model output for the ith input. The cross entropy loss is
given by,

LCE(ΘL|T ,ΘU) = −1

I

I∑
i=1

log yui,i (3.39)

3.5.2.3 Equivalence to artificial neural networks

Like Minerva-R, Minerva-RP is equivalent to a FFNN. Equations 3.6 and 3.7, are
replaced with,

W (1) = K̃⊤
wWq b(1) = 0 σ(1)(x) = x◦β. (3.40)

W (2) = V b(2) = 0, (3.41)

and the final activation σ(2) depends on the nature of the task being performed, as
discussed above, such as a softmax for classification.

Once trained, the multiplication to produce the first layer’s parameters, K̃⊤
wWq, need

only be calculated once. The computational complexity of Minerva-RP at inference
depends on the dimension of the feature transformations; if the dimension is reduced,
it will have lower computational complexity than a Minerva-R model using the same
exemplars.

3.5.3 Minerva-RPE: Learning exemplar class representations

Minerva-RP adds a feature transformation, and now a model a model in which exemplar
class representations are also learned is described. This model is referred to as Minerva-
RPE, since it uses real input, a parameterised transform for the features, and also
learned exemplar labels. It is shown in Figure 3.3. In the case of regression, learning
the exemplar labels can reduce the ‘noise’ associated with each exemplar. In the
case of classification, it allows an exemplar to fall on a spectrum between classes.
In both cases, it also allows for correction of mislabelled data in the exemplars, and
increases modelling power. The model equations remain unchanged from Minerva-
RP, but the learned parameters in the loss functions (Equations 3.38 and 3.39) are
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ΘL = {Wq,Wk,V } and the unlearned parameters are ΘU = {K}. Since it learns
representations for specific exemplars, this version of Minerva can only be used with a
fixed exemplar set.
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Figure 3.3: Minerva-RPE.

3.5.4 Minerva-RPC: Learning ‘true’ class representations

When learning exemplar class labels, as described in the previous section, there is still
an assumption when performing classification that the ‘true’ class representations are
one-hot. This is a common assumption in machine learning, but the enforced orthog-
onality of one-hot representations may not always be appropriate. Consider emotion
classification, for example: is it reasonable to assume that positive and negative emo-
tions are orthogonal? Or is it more reasonable to assume that there is a negative
correlation between them?
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Figure 3.4: Minerva-RPCE.

It may be possible to learn more meaningful class representations. Let U =
[
u1 . . . uW

]
,

where uw is the J-dimensional vector representation of the wth class. The class vectors
could be defined by experts, but could also be learned from data. This formulation al-
lows classes to be correlated with each other. The one-hot vector representations used
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previously are directly interpretable, but using learned class representations brings
back to the problem of ambiguous recall. Some kind of test is needed to determine
what class a returned echo belongs to, such as using either a similarity or a distance
measure, and selecting the closest or most similar class. Let d(c,uw) be some function
that returns the similarity of c with class vector uw. A wide variety of similarity and
distance measures could be used, but for this work, focus will be restricted to the cosine
and dot-product similarities,

dcosine(c,uw) = ũ⊤
w c̃ cosine similarity (3.42)

ddp(c,uw) = u⊤
wc dot-product similarity. (3.43)

The predicted class is given by,

ŵ = argmax
w=1,...,W

(d(c,uw)) . (3.44)

The different similarity measures may be useful for different situations. The cosine
distance compares the direction, rather than the magnitude, of the vectors. This may
be useful, given that Minerva has no innate scaling. In contrast, if the parameterised
Minerva model does learn some meaningful magnitude for the echo, the dot-product
similarity may be more effective. Both cosine and dot-product similarity allow for
negative values. Either of these options can be combined with any of the models
previously described.

3.5.5 Minerva-RPES: Sequence Minerva

Given the parallels between Minerva and attention, the transformer architecture can
be used as inspiration for a sequence version of Minerva, which will be referred to as
Minerva-RPES, and which is shown in Figure 3.5a. It is composed of two Minerva
modules: the first is Minerva-RPE (see §3.5.3), which assigns initial labels to the input
sequence, with no contextual information. The second Minerva module is a kind of
‘self-Minerva’, in which the input sequence is also used for the exemplars, making use
of the labels produced by the first Minerva module.

Let Q = [q1, ..., qT ] be a sequence input of length T . The first Minerva module, shown
to the left in Figure 3.5a., is Minerva-RPE, which can be represented in matrix form
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for the entire utterance by,

Q(b) = W (b)
q Q (3.45)

K(b) = W
(b)
k K (3.46)

S(b) = K̃(b)⊤Q̃(b) (3.47)

A(b) =
(
S(b)

)◦β
(3.48)

C(b) = V A. (3.49)
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Figure 3.5: Comparison of Minerva-RPES with 2-layer stacked self-
attention.

C(b) = [c
(b)
1 , ..., c

(b)
T ] gives the base (non-sequence) predicted labels of the sequence.

Minerva takes no account of the order of an input, so drawing inspiration from trans-
formers, a positional embedding such as RoPE (Su et al. 2024) is used. Let pos(Q) be
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the input sequence with positional embeddings. Combined with the estimated labels,
C(b), Minerva can be used with the now-labelled sequence as both input and exemplars:

Q(s) = W (s)
q pos(Q) (3.50)

K(s) = W
(s)
k pos(Q) (3.51)

S(s) = K̃(s)⊤Q̃(s) (3.52)

A(s) =
(
S(s)

)◦β
(3.53)

C = C(b)A(s) (3.54)

The matrices W
(b)
q ,W

(b)
k ,W

(s)
q and W

(s)
k are all learned transformations. The class

labels V are also trained. The model can be trained for classification or regression
using Equations 3.38 or 3.39, where the unlearned parameters are ΘU = {K}, and the

learned parameters are ΘL = {W (b)
q ,W

(b)
k ,W

(s)
q ,W

(s)
k ,V }.

Since frames located close to each other are likely to be correlated, Minerva-RPES
may allow similar, nearby frames to ‘vote together’, and reach a majority conclusion
about what class they are. This might help with common confusions, but would be
less useful for transition boundaries. Alternatively or additionally, the model might
learn information about what classes follow each other under what conditions.

Minerva 2 has previously been adapted for sequence modelling by Maier & Moore
(2007). Their Temporal Episodic Memory Model (TEMM) for speech recognition
makes use of sequential exemplars, in which multiple consecutive frames of a speech
signal are used as exemplars. The approach used in the Minerva-RPES model differs
from this in a crucial way: rather than using a set of distinct sequential exemplars,
as in TEMM, the Minerva-RPE model uses the sequential input signal itself as the
exemplars.

3.5.6 Concluding remarks

In this chapter, it has been shown that Minerva 2 is a constrained FFNN, with param-
eters taken directly from the data. This relates directly to Research Question 1:

RQ1 What are the similarities and differences between the exemplar model Minerva 2
and ANNs?

This finding has implications for Minerva 2’s performance. Given the same architecture,
the modelling power of Minerva 2 and an equivalent conventionally-trained FFNN is
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theoretically the same; in practice they are likely to differ. The practical implications
are explored experimentally in the next chapter.

Also relating to Research Question 1, it has been shown §3.3 that the iterative echo-
of-echoes process is a form of DEM. This means that the echo-of-echoes process can,
in principal, benefit from efficient algorithms proposed by Bai et al. (2019).

To address Research Questions 2 and 3, in §3.5 a range of hybrid prototype-exemplar
models base on Minerva 2 have been proposed. These proposed models form one of the
contributions of this work, and provide a framework for experiments to test the effect of
feature representation, label representation and parameterisation. These experiments
are reported in the next chapter.



Chapter 4

Experiments

4.1 Introduction

This chapter gives details of the experimental work carried out. Having concluded the
work on Research Question 1 in Chapter 3, Research Questions 2 and 3 form the focus
of this chapter:

RQ2 What exemplars should be stored in memory, and how should they be repre-
sented?

RQ3 How can an exemplar model be combined with parameters to form a hybrid
exemplar-prototype model? What benefits, if any, does this bring?

This chapter begins with a description of the three speech and language tasks used in
this chapter: frame-based phone recognition on the TIMIT dataset; emotion classifi-
cation of text on the GoEmotions dataset; and speech intelligibility prediction on the
CPC2 dataset.

The experimental work begins in §4.4 with exploration of the Minerva-R model de-
scribed in §3.5.1, covering the relationship between exemplar set size and activation
power β. In §4.6, the effects of feature representation are examined, not only the
performance of the models, but on the relative differences in performance between
models.

In §4.5 to §4.8, each of the models described in the previous chapter (§3.5) is tested and
analysed. Several options for exemplar sets are explored: random and stratified by class
(§4.4.2.2); fixed and changing (§4.9); and exemplar adaptation, in which exemplars are

59
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matched to the input in some way (§4.10).

4.2 Datasets

Three tasks with associated datasets were selected, covering both classification and
regression, and both speech and language tasks. All of these tasks have some degree of
human judgement used in their annotation, which makes them a good fit for trialling
a model based on human cognition. The datasets are:

• TIMIT (Garofolo 1993), which has human-annotated phonetic labelling, as well
as transcription;

• GoEmotions (Demszky et al. 2020), a collection of Reddit posts that have multi-
class human-annotated emotion labels; and

• Clarity Prediction Challenge 2 (CPC2) (Barker et al. 2024), a speech intelligibility
prediction task, where the intelligibility score is based on human perception of
the words.

4.2.1 TIMIT

TIMIT is a dataset composed of short, single-sentence sentence utterances labelled with
phonetic information as well as a text transcription (Garofolo 1993). The training
set has 3696 utterances from 462 speakers (326 male, 136 female), the development
set has 311 utterances from 50 speakers (32 male, 18 female), and the test set has
192 utterances from 24 speakers (16 male, 8 female). There is no speaker overlap
between training, development and test sets. This work makes use of TIMIT’s phonetic
labelling, using a reduced set of 39 labels (Lopes & Perdigão 2011), rather than the
61 labels used in the original data. Figure 4.1 shows the distribution of the 39 labels
for the training, test and development sets. While similar to each other, the sets are
imbalanced, with the ‘silence’ label representing almost a quarter of the data. The
least represented label is /g/, at 0.3%. All utterances are labelled with speaker ID,
speaker gender and the speaker’s self-reported regional accent. All speakers are native
American English speakers.

4.2.1.1 Feature representation

In order to test the effects of feature representation, three representations of differing
qualities were chosen for comparison. In order of quality, they are:
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Figure 4.1: Distribution of phones within the TIMIT data set.

• Log Mel spectrogram: 96-dimensional features were obtained from the 32
channel log Mel spectrogram. The stride was 20 ms, chosen to match the Wav2vec
and HuBERT features (see next), and the window was 32 ms. Delta (differential)
and delta-delta (acceleration) features were also included.

• Wav2vec2.0: 768-dimensional features were obtained from the final layer of a
pre-trained1 Wav2vec2.0 (Baevski et al. 2020) self-supervised speech represen-
tation model. The model was pre-trained on Librispeech, using 960 hours of
unlabelled data.

• HuBERT: 768-dimensional features were obtained from the final layer of a pre-
trained2 HuBERT (Hsu et al. 2021) self-supervised speech representation model.
Like the Wav2vec features, the HuBERT model is pre-trained on Librispeech.

Mel spectrogram-based features have been widely used for speech tasks, making them
an good basic option. The SSSRs Wav2vec2.0 and HuBERT have both shown promise
on a range of speech tasks (see §2.7.2.2 and §2.7.2.3), but HuBERT typically outper-
forms Wav2vec2.0. All of these representations have been used to good effect for ASR,
which is a close relative of the frame-based phone classification task being performed.

4.2.2 GoEmotions

GoEmotions (Demszky et al. 2020) is dataset of Reddit posts paired with annotated
human emotion labels: positive, negative, neutral and ambiguous. This is a multi-
classification task, with each utterance potentially belonging to more than one class;

1https://pytorch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2 ASR BASE 960
H.html

2https://pytorch.org/audio/main/generated/torchaudio.pipelines.HUBERT BASE.html

https://pytorch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html
https://pytorch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html
https://pytorch.org/audio/main/generated/torchaudio.pipelines.HUBERT_BASE.html
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for example, one post might be considered both neutral and positive by the same or
different annotators. There are 58,009 annotated posts in total, divided into defined
training/development/test splits of size 43,410 / 5,426 / 5427 (80% / 10% / 10%)
respectively.
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Figure 4.2: Proportion of different classes and class combinations in the
GoEmotions dataset. There is imbalance in the classes, but the proportions
are similar across the training, development and test sets.

This dataset was selected in order to test the effectiveness of the Minerva models on a
multi-classification task, and also to include a text-based task. The dataset has more
detailed annotation than that used here, subdividing the negative and positive classes
into more specific emotions. This work made use of the labels described here, since
fewer classes make it easier for data visualisation and to assess the differences between
different models.

Figure 4.2 shows the prevalence of different class combinations in the dataset. For
the majority of posts, annotators agreed on a single emotion, with positive emotions
being the most common. Combinations of classes represent around 8% of the training
data, with the most common combination being ambiguous/positive with 1.7% of the
training data. The distribution of classes is similar for the training, development and
test sets.

The human annotation of the posts is subjective, with disagreement between different
annotators. The creators note that 94% of the posts have agreement between at least
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two annotators on at least one label; given that every post was annotated by at least
three people, this leaves room for plenty of disagreement. The subjective nature of the
labels makes GoEmotions a fitting task for testing a model based on human cognition.

4.2.2.1 Feature representation

Three feature representations of varying quality were selected to test the effectiveness
of the models with different features. In order of quality, they are:

• LSA: The LSA features3 are described in Günther et al. (2015), and are pre-
trained on the Touchstone Applied Science Associates (TASA) corpus. They
are word-based 300-dimensional vectors, which were averaged over the words to
produce a single vector representation of each sentence.

• Word2vec: The Word2vec features4 (Mikolov, Chen, Corrado & Dean 2013)
were obtained from a model pretrained on a part of the Google News dataset
(around 100 billion words), resulting in 1024-dimensional word vectors, which
were averaged over words/tokens to produce a single vector representation of
each sentence.

• SBERT: The SBERT features5 were obtained using the sentence-transformers
python package (Reimers & Gurevych 2019), producing 768-dimensional vectors.
The model is based on MPNet (Song et al. 2020), then further trained on a
variety of datasets. The model output is a single vector to represent the entire
sentence.

The LSA features were selected primarily because they have previously been used with
Minerva 2 for comparison with human experiments (Nick Reid & Jamieson 2023). They
have also been used in machine learning. They include no context information, and
they are taken from a linear transformation of the term-document matrix (see §2.7.1.1).
Word2vec, as a self-supervised representation, is still not context-based, but it is no
longer linear, and can therefore, in principle, discover more complex patterns in the
data. The SBERT features are contextual, unlike the previous options, enabling them
to retain more information from the sentences. The varying quality of representation
allows us to test what effect feature representation has on the performance of the
models. More detail on LSA, Word2vec and SBERT is given in §2.7.1.1, §2.7.1.2 and
§2.7.1.3 respectively.

3https://sites.google.com/site/fritzgntr/software-resources/semantic spaces?authuser=0
4https://huggingface.co/fse/word2vec-google-news-300
5https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2

https://sites.google.com/site/fritzgntr/software-resources/semantic_spaces?authuser=0
https://huggingface.co/fse/word2vec-google-news-300
https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
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4.2.3 Clarity Prediction Challenge 2

The CPC2 dataset (Barker et al. 2024) consists of utterances that have artificial noise
added, before being enhanced by an enhancement system (a simulated hearing aid).
The enhancement system is matched to a specific hearing-impaired listener, who lis-
tens to the enhanced noisy utterance, and repeats it back. The utterance is labelled
with the ‘correctness’: the percentage of words the listener was able to repeat back
correctly. The correctness is used as a measure of intelligibility. The objective of this
task is to predict the correctness from the enhanced noisy speech waveform. Addi-
tional information is available, such as the clean audio and basic information about
the listener’s degree of hearing loss, but this work made use of only the enhanced noisy
speech waveform and the correctness label.
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Figure 4.3: The proportion of data for different correctness ranges in
the CPC2 training data. Very high and very low correctness are common;
middling values are rarer.

The CPC2 data is divided into three training/evaluation pairs. The listeners and en-
hancement systems present in each evaluation set are not present in the corresponding
training set, requiring models to generalise to unseen listeners and enhancement sys-
tems. There is overlap between the three training sets, but the evaluations sets are
distinct. There are no defined development sets, so for each training/evaluation pair,
two listeners and two enhancement systems were selected at random to form a dis-
joint development set. All data using these listeners and enhancement systems were
removed from the training data. Of the remaining training data, 10% was separated
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into a non-disjoint development set. The original Split 1 has 8599/305 data pairs for
training/evaluation; Split 2 has 8135/294; and Split 3 has 7896/298. Following the cre-
ation of disjoint and non-disjoint development sets, the training/non-disjoint/disjoint
sizes were: 5190/577/170 for Split 1; 5087/566/169 for Split 2; and 5213/580/166
for Split 3. The disjoint development sets were used for hyperparameter tuning and
model selection. The non-disjoint validation set was used to assess the difference in
performance of different models on previously-seen listeners and enhancement systems,
which in turn gives information on how well the model generalises to unseen listeners
and enhancement systems.

There is not an even balance of correctness values within the data. Correctness values
of 0 (unintelligible) and 100 (clear) are very common, while middling values are rarer.
This is likely due to the nature of the task; speech is typically intelligible or not, with
few examples in the middle ground. It has even been successfully treated as a binary
classification task (Andersen et al. 2016).

4.2.3.1 Feature representation

Three different feature representations of varying quality were chosen. In order of
quality, they are:

• Log Spectrogram: Fast Fourier transforms were used to compute 257-dimensional
log magnitude spectrogram features, with a window of 32 ms and a stride of 16 ms.

• XLS-R: 1024-dimensional XLS-R features were obtained from a model pre-
trained on 436k hours of multilingual data6.

• Whisper: 768-dimensional features were taken from the 8th decoder layer of a
pretrained7 Whisper ASR model (Radford et al. 2023), which has been found
to be effective for speech intelligibility prediction (see §5). This small Whisper
model uses 12 encoder layers and 12 decoder layers.

The 32 kHz CPC2 waveforms were downsampled to 16 kHz prior to feature extraction,
since the XLS-R and Whisper models were pre-trained on 16 kHz waveforms.

The log spectrogram, HuBERT and XLS-R features have all been shown to work for
speech intelligibility prediction, with XLS-R performing best on unseen listeners and
systems in the first Clarity Prediction Challenge (Close et al. 2023), and log spectro-
gram performing worst. The low-quality log-spectrogram features were retained, but
the HuBERT features were replaced with Whisper-based features, since initial trials

6https://huggingface.co/facebook/wav2vec2-xls-r-300m
7https://huggingface.co/openai/whisper-small

https://huggingface.co/facebook/wav2vec2-xls-r-300m
https://huggingface.co/openai/whisper-small
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with Whisper features showed very good performance, especially on unseen listeners
and systems. The three feature representations therefore provide a range of feature
quality. The pretrained Whisper model was pretrained prior to the CPC2 evaluation
sets being released, so they cannot have been used to train it.

All features, regardless of how they were obtained, were averaged over the time-domain
to provide a single vector features representation for each utterance. More sophisticated
methods exist, but this simple method has been found to perform competitively, as
will be shown in Chapter 5.

4.3 Shared methodology

All code was written in Python 3 and used the Pytorch package (Paszke et al. 2019).
All trained models were trained using the Adam optimiser (Diederik 2014).

Unless otherwise stated, all trained models had the following hyperparameters tuned:
learning rate; weight decay; dropout; and, for the Minerva models, the activation power
β. Tuning was carried out on the established developments sets for the TIMIT and
GoEmotions tasks, and using the constructed disjoint validation sets for the CPC2
task (see §4.2.3). Unless otherwise stated, minibatch sizes were 8, 512 and 128 for
TIMIT, GoEmotions and CPC2 models respectively. Hyperparameter values for all
experiments are reported in Appendix A.

All results reported in tables are the mean of five models trained with different ran-
dom initialisations and, when using fixed exemplars, with different randomly selected
exemplar sets. Unless otherwise stated, statistical tests between models are t-tests on
the five differently initialised models.

4.4 Exemplar sets and the activation power

The exemplars are a key component of the Minerva models, and the objective of this
experiment is to explore how performance changes with exemplar set size and activation
power, and how the exemplar set size and activation power interact with each other.
The Minerva-R model is used (see §3.5.1), which is purely exemplar-based, and has no
learned parameters.
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4.4.1 Methodology

Minerva-R models with varying numbers of exemplars were assessed on the TIMIT,
GoEmotions and CPC2 tasks. For TIMIT, the number of exemplars varied from 39 to
79872, with exemplars selected randomly from the training data. For smaller numbers
of exemplars, the exemplar set did not always include examples of all classes. The
class with the highest value in the resulting echo was taken as the predicted class (see
Equation 3.33).

For the GoEmotions task, exemplars were selected randomly from the training data.
Exemplar set sizes ranged from 4 to 65536. As with TIMIT, small exemplar sets did not
always include exemplars from every class. Since GoEmotions is a multi-classification
task, meaning that each input can belong to more than one class, taking the argmax
of the output is not appropriate. Instead, a sigmoid activation (Equation 2.14) was
applied to the output, and AUC was used as the assessment metric, which does not
require classification thresholds to be set (see §2.8.1.1 for more details).

For the CPC2 task, exemplars were again selected randomly from the training data,
with the exemplar set size ranging from 4 to 8192. Since the Minerva-R model has
no innate scaling (as explained in § 3.5.1), a calibration was performed on the model
output: the exemplar features were used as input to the model, and the resulting model
output was matched to the true exemplar labels using least-squares logistic regression.
The parameters for this regression were then used to scale model output at inference.

The optimal activation power β for each exemplar set size was found by tuning on the
development set.

4.4.2 Results and discussion

4.4.2.1 Exemplar set size and activation power

Figure 4.4 shows the performance and optimal activation power β of the Minerva-R
models for each task and feature representation. The spectrogram features for the
CPC2 task are excluded, since they yielded performance no better than chance on the
evaluation set, and therefore the results are not meaningful. It is clear that better
feature representation leads to better performance, and this is discussed in much more
detail in §4.6. For now, discussion is restricted to the exemplar set.

For all tasks, as the exemplar set size increases, performance improves, although with
diminishing returns. For the TIMIT and GoEmotions tasks, as the exemplar set size
increases, the optimal value of the activation power β increases. For the CPC2 task,
however, the optimal value for β appears to peak and then fall. The activation power
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Figure 4.4: Performance and optimal β for different exemplar set sizes.
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fulfills several purposes, any or all of which may affect the optimal value. It controls
how sharp the activations are in the Minerva attention mechanism (Equation 2.2).
When considering Minerva as a FFNN, it acts as a non-linearity, and it also affects the
scale of the output: each activation weight falls between −1 and 1, and so increasing
the activation power reduces the magnitude of the weights, and therefore also the
magnitude of the resulting echo (see Equations 2.1 and 2.2). In contrast, increasing
the exemplar set size increases the magnitude of the echo. These two effects may serve
to counteract each other to some extent.

The CPC2 task differs from the other two tasks in that it is regression, not classification.
The scaling of the output is therefore more critical, and may explain why the optimal
value for β is 1 for the Whisper features; the linear activation function may make the
calibration easier. In contrast, the optimal activation power for the XLS-R features
is high for exemplar set sizes ranging from 8 to 1892, with β > 100. This results
in negligible activation for any exemplar that is not extremely similar to the input.
Reducing the number of highly activated exemplars may be another way of controlling
the scaling of the output. Overall, predicting the effect of the activation power on the
resultant echo is not always easy, and the simplest course is to treat it as a parameter
to be tuned.

The activation power bears a similarity to the inverse of the temperature of a softmax
function. Both fulfill a similar purpose: controlling the sharpness of the resulting
output. The temperature of a softmax is known to affect confidence estimates during
inference (Guo et al. 2017), but also influences training by changing the scale of the
logits (Agarwala et al. 2020); it may be possible to learn similar lessons about the
activation power. Furthermore, since different activation functions behave differently,
there may be situations in which different activation functions are more suitable. In
some classification tasks, classes may be considered ‘opposites’ of each other - for
example, the positive and negative classes in the GoEmotions tasks - and so the use of
an odd activation power, which preserves the sign of the weights, may be particularly
useful. In other cases, a softmax function, which assumes orthogonality between classes,
may be a more meaningful choice.

4.4.2.2 TIMIT exemplar set stratification

Given the imbalance in the phonetic classes for the TIMIT data set (see Figure 4.1), a
randomly selected exemplar set is likely to contain substantially more exemplars from
common classes, such as silence, and far fewer exemplars from rare classes, such as
/g/. Smaller exemplar sets may have no exemplars from rare classes, which would
render the model incapable of classifying that class. To determine what effect this
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has on the performance of the models, two different exemplar selection strategies were
compared: random sampling; and random sampling stratified by class. In both cases,
14976 exemplars were selected from the training data. For the stratified exemplar
set, this resulted in 384 exemplars from each of the 39 classes. Figures 4.5 shows the
accuracy for each selection strategy by class for the HuBERT feature representations.
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Figure 4.5: Comparison of classification accuracy on the TIMIT test set
by phonetic class for the Minerva-R model using HuBERT features, with
and without stratification of the exemplars by class. The dashed lines are
the overall model accuracies.

Although the non-stratified Minerva-R model performs substantially better on overall
accuracy (78.55% compared with 73.04% for the stratified model, p < 0.01), it has
extremely poor performance on four classes in particular: /g/, /oy/, /uh/ and /uw/,
which are rare classes, making up 0.3%, 0.5%, 0.3% and 0.5% of the training set
respectively. The non-stratified model is better at predicting silence, which, given that
it makes up around 24% of the data (both training and test), gives it a substantial
advantage in overall accuracy, despite it performing worse on 28 out of 39 classes.
Discounting silence, the accuracies of the models are 73.16% and 72.31% for the non-
stratified and stratified exemplar sets respectively, meaning that the non-stratified
exemplar set still provides better accuracy, although the difference between the models
is substantially reduced. The non-stratified model’s superior accuracy comes largely
from its better performance on the classes /s/ and /ih/, which are the second and third
most common class in the test set after silence.

Figure 4.6 shows the confusion matrices for misclassified frames for the non-stratified
and stratified models. The non-stratified model misclassifies as silence a great deal,
especially for consonants, which can be seen as a bar of colour to the bottom right. It
misclassifies over 40% of the frames labelled /uw/ as /v/, and a similar proportion of
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the frames labelled /g/ are misclassified as /k/. The exemplar sets are large enough
that all classes are represented, even in the non-stratified model, but the imbalance in
the exemplars clearly affects the model’s ability to classify the less common phonetic
classes. Neither of these two confusions is particularly common for the stratified model,
although shared confusions certainly exist: /jh/ as /ch/; /z/ as /s/; and /eh/ as /ae/
are common for both models.

Imbalanced datasets therefore have implications for exemplar models and exemplar
selection. Is it better to sacrifice performance on rare classes in order to perform better
overall? Or is rare class performance as important as common class performance? The
answers to these questions are likely to depend on the task being performed.

4.5 Learned feature transformations

Adding learned feature transformations, as described in §3.5.2, is one option for param-
eterising Minerva. The objective of this experiment is to explore the effects of adding
learned feature transformations, as described in Equations 3.34 to 3.36, and to answer
the following questions:

1. What should the feature transformation dimension be?

2. Should the linear transformations of the input and exemplar features be the same
(Wq = Wk) or different (Wq ̸= Wk)?

4.5.1 Methodology

Minerva-RP models, as described in §3.5.2, were trained on TIMIT, GoEmotions and
CPC2 with both separate and shared feature transformations, and with a range of
different transformation dimensions. For comparison purposes, Minerva-R models with
the same number of exemplars and baseline FFNNs were also assessed.

For the TIMIT task, the Minerva-R and Minerva-RP models used 14976 exemplars. In
initial tests, the model was found to train poorly when there was no normalisation on
the output, so L2 normalisation was added prior to the softmax as discussed in 3.5.2.2.
The model is trained with cross entropy loss (Equation 3.39).

For the GoEmotions task, the Minerva-R and Minerva-RP models used 1024 exem-
plars. The exemplar labels, and therefore the echo, are 4-dimensional, with elements
representing each of the 4 classes. Since any given input can belong to more than one
class, using L2 normalisation, as described for the TIMIT task, is not appropriate.
Instead, learned linear scaling is applied to each output element individually, allowing
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each class to be scaled separately. This is followed by a sigmoid activation (Equa-
tions 2.14), to produce separate probabilities for each class. Binary cross entropy loss
summed across all classes is used for training.

For the CPC2 task, the Minerva-R and Minerva-RP models used 128 exemplars. The
correctness values for each speech clip is a scalar, and so is the output of the model.
A final learned transformation is therefore added, as described in §3.5.2.1, prior to the
final sigmoid function. MSE loss is used for training (Equation 3.38).

The 3-layer FFNN models trained for comparison had a hidden layer with dimension
1024 for the TIMIT and CPC2 tasks, and 512 for the GoEmotions task, since larger
FFNNs were found to over-train. The model parameters were initialised with Kaiming
initialisation (He et al. 2015).

Hyperparameters for all models were tuned as described in 4.3, and final hyperparmeter
values are given in Appendix A in Tables A.2, A.3 and A.4 for the TIMIT, GoEmotions
and CPC2 models respectively.

4.5.2 Results and discussion

4.5.2.1 Feature transform dimension

Figure 4.7 shows the performance of the Minerva-RP models with separate transforms
as the feature transform dimension increases, for each of the tasks, and with each
of the feature representations (log spectrogram feature for CPC2 are not shows, as
they yielded performance no better than chance on the CPC2 evaluation set). For the
TIMIT task, performance increases up to a transform dimension of 64, with transform
dimension larger than this offering no statistically significant improvement (p > 0.1). A
similar pattern is seen with the GoEmotions data, but with performance plateauing at a
feature transform dimension of 32. For the CPC2 task, performance decreases at higher
transform dimensions, likely due to over-fitting, and despite extensive experimentation
with L2-regularisation and dropout. In all cases, the ideal feature transform dimension
is smaller than the input features, often by a large margin: the highest quality features
for each task (HuBERT for TIMIT, SBERT for GoEmotions and Whisper for CPC2)
all have a dimension of 768. This reduction in the feature dimension likely reduces the
‘noise’ in the features, retaining only information that is relevant to the task at hand.
The dimension reduction is linear, since there is no activation function, and in this
respect is a relative of Principal Component Analysis (PCA). It differs from PCA in
that the dimension reduction is supervised and performed with a specific task in mind,
rather than unsupervised through explaining the variance.
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Figure 4.7: Performance of the Minerva-RP model with separate feature
transforms, for different feature transform dimensions.
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Table 4.1: Frame-based phone classification performance on the TIMIT
development and tests sets using the Minerva-R and Minerva-RP models,
with baseline FFNN for comparison, using different feature representations.
Standard deviations are given in parentheses. The best result is in bold.

Features Classifier
Feature

β
Learned Accuracy (%)

transform params Dev Test

Mel Spec

Minerva-R - 135 0 41.32 (0.28) 40.64 (0.31)

Minerva-RP
Shared 9 0.01 M 57.75 (0.06) 56.92 (0.23)
Separate 9 0.01 M 60.91 (0.17) 59.93 (0.24)

FFNN - - 1.19 M 69.71 (0.05) 68.20 (0.08)

Wav2vec

Minerva-R - 55 0 50.67 (0.17) 50.69 (0.19)

Minerva-RP
Shared 9 0.05 M 79.44 (0.08) 78.33 (0.07)
Separate 9 0.10 M 80.78 (0.21) 79.62 (0.20)

FFNN - - 1.88 M 82.29 (0.05) 81.07 (0.12)

HuBERT

Minerva-R - 15 0 72.94 (0.24) 72.59 (0.41)

Minerva-RP
Shared 7 0.05 M 87.94 (0.04) 87.24 (0.07)
Separate 7 0.10 M 88.20 (0.06) 87.35 (0.07)

FFNN - - 1.88 M 88.39 (0.04) 87.66 (0.02)

All of the high-quality feature representations have been shown to work well for a
variety of tasks: HuBERT has been used for speech emotion recognition, speaker ver-
ification and spoken language understanding (Wang et al. 2021), as well as for ASR
(Hsu et al. 2021); the SBERT-based features have been used for sentiment prediction
and question-type classification amongst other tasks (Reimers & Gurevych 2019); and
Whisper-based features have been shown to work for speech sentiment analysis and
speaker diarisation (Papala et al. 2023). Some of the information required for these
tasks is likely to be irrelevant to the specific tasks being carried out here. Reducing the
dimension to exclude irrelevant information (or noise) is therefore likely to make the
similarity measure with Minerva more meaningful. This also explains the substantial
reduction seen in the optimal value of the activation power β: with less noise, the cor-
relation between feature vectors of the same class is likely to be higher, making them
more distinguishable.

4.5.2.2 Minerva-RP model performance

Tables 4.1, 4.2 and 4.3 show the Minerva-RP results for the ideal feature transform
dimension (64 for TIMIT, 32 for GoEmotions and CPC2), along with the equivalent
Minerva-R results and results from the baseline FFNNs, for the TIMIT, GoEmotions
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and CPC2 tasks respectively. It can be seen that the Minerva-RP models give a sub-
stantial improvement in performance over the equivalent Minerva-R models for all
feature representations and tasks (t-tests: p < 0.01 in all cases), but do not perform as
well as a similarly-complex FFNN. This result is hardly surprising, since it has already
been established that Minerva-RP is a special case of 2-layer FFNN with restricted pa-
rameters. The baseline FFNN has an additional layer, and access to a larger parameter
space, and is therefore expected to perform better.

Table 4.2: Performance on the GoEmotions task using different feature
representations. Standard deviations are given in parentheses. The best
result is in bold.

Features Classifier
Feature

β
Learned AUC (%)

transform params Dev Test

LSA

Minerva-R - 1 0 61.47 (0.26) 61.36 (0.34)

Minerva-RP
Shared 1 0.01 M 67.91 (0.08) 68.71 (0.06)
Separate 3 0.02 M 69.16 (0.06) 69.67 (0.12)

FFNN - - 1.36 M 69.98 (0.07) 70.95 (0.05)

Word2vec

Minerva-R - 19 0 75.12 (0.17) 75.69 (0.17)

Minerva-RP
Shared 3 0.03 M 80.49 (0.09) 80.76 (0.07)
Separate 3 0.07 M 81.98 (0.07) 82.09 (0.05)

FFNN - - 1.36 M 83.23 (0.05) 83.30 (0.09)

SBERT

Minerva-R - 5 0 79.59 (0.19) 79.45 (0.22)

Minerva-RP
Shared 3 0.02 84.59 (0.09) 84.77 (0.09)
Separate 3 0.05 M 85.00 (0.04)) 85.27 (0.07)

FFNN - - 1.84 M 85.50 (0.04) 86.02 (0.04)

Using separate feature transforms rather than shared feature transforms for Minerva-
RP improves performance in all cases, although the difference is smaller for higher
quality feature representations. Allowing the feature transforms to differ gives more
modelling power, and also lets the Minerva attention mechanism attend to different
aspects of the features.

The version of Minerva-RP with shared feature transforms has a benefit though: very
high inductive bias. The model performs substantially better than chance prior to
training, achieving 68% accuracy on TIMIT with HuBERT features. The same benefit
is not seen with the others tasks, in this instance, since they use learned scaling in
addition to the Minerva mechanism (see §3.5.2 for details), but it would be possible
to initialise them using the same method for scaling used in the Minerva-R models.
This suggests an intriguing possibility: use Minerva as an initialisation for an FFNN.
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Table 4.3: Performance on the CPC2 task using Minerva-R and Minerva-
RP models, with baseline FFNN for comparison, using different feature
representations. Standard deviations are given in parentheses. The best
result is in bold.

Features Classifier
Feature

β
Learned RMSE

transform params Dev Test

Log spec

Minerva-R - 195 0 42.30 (0.08) 40.74 (0.05)

Minerva-RP
Shared 1 0.01 M 30.07 (0.10) 42.12 (0.42)
Separate 1 0.02 M 29.95 (0.09) 40.13 (0.81)

FFNN - - 0.53 M 28.78 (0.07) 40.17 (0.54)

XLSR

Minerva-R - 115 0 33.28 (0.16) 36.71 (0.42)

Minerva-RP
Shared 1 0.03 M 27.50 (0.25) 33.13 (0.79)
Separate 1 0.07 M 24.19 (0.08) 27.82 (0.28)

FFNN - - 1.31 M 23.28 (0.02) 27.70 (0.27)

Whisper

Minerva-R - 1 0 28.03 (0.30) 29.24 (0.46)

Minerva-RP
Shared 1 0.02 M 23.11 (0.17) 25.64 (0.72)
Separate 1 0.05 M 22.72 (0.04) 25.05 (0.56)

FFNN - - 1.05 M 22.68 (0.06) 24.47 (0.24)

Many existing initialisations select initial values to control the variance of the layer
output, rather than to improve performance (Glorot & Bengio 2010, He et al. 2015),
but data-driven initialisations have also been derived, often by using some form of
clustering (Gan et al. 2015, Krähenbühl et al. 2015, Alberti et al. 2017). Scaling is an
issue, however. As previously noted, the Minerva attention mechanism doesn’t include
scaling, resulting in outputs that can be substantially larger or smaller than the inputs,
so some method for controlling the variance of each layer’s outputs would be required,
and this presents an interesting option for future work.

4.5.2.3 Non-stratified and stratified exemplars for TIMIT

As seen in §4.4.2.2, Minerva-R performs better with non-stratified exemplars, but as
Figure 4.8 shows, this is not the case for Minerva-RP, for which the results for the
two options are extremely similar. It appears that learning a feature transformation
allows the model to correct for imbalances in the exemplar set, while still retaining
high performance on common classes. There is no statistically significant difference
between the Minerva-RP models with non-stratified and stratified exemplars (p > 0.1
in all cases). Further models trained on TIMIT and discussed in this work use stratified
exemplars, since this produces more repeatable results when using smaller exemplar
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sets, and gives equivalent performance.
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Figure 4.8: Comparison of classification accuracy on the TIMIT test set
by phonetic class for the Minerva-RP models using HuBERT features, with
and without stratification of the exemplars by class. The dashed lines are
the overall model accuracies.

4.6 The impact of feature representation

Improving feature representation improves performance for all models across all tasks,
as can be seen from Tables 4.1, 4.2 and 4.3. More interesting are the relative dif-
ferences between the models: the difference between models reduces with improved
feature representation. This trend is seen for both the TIMIT and GoEmotions tasks.
On TIMIT, the difference in performance between the Minerva-R and FFNN mod-
els drops from 27.6% for Mel spectrogram features to 15.1% with HuBERT features.
For the Minerva-RP models, the differences are smaller but follow the same pattern,
dropping from 8.3% to 0.3%. On GoEmotions, the difference in performance between
the Minerva-R and FFNN models drops from 9.6% for the LSA features to 6.5% with
SBERT features. For Minerva-RP on GoEmotions, the difference drops from 2.21%
with LSA features to 1.5% with SBERT features. For CPC2, neither the Minerva-R nor
Minerva-RP models are effective on the evaluation set using Mel spectrogram features,
and since the difference between the FFNN and Minerva-RP models is not statistically,
significant, the order is less meaningful. The Minerva-R model performance difference
from the FFNN follows the same pattern, however, dropping from 9.0% RMSE for the
XLSR features to 4.8% RMSE for the Whisper features.

Likely reasons for the reduced difference in performance between models include: re-
duction in the amount of noise in the high–quality features, making Minerva’s attention
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mechanism more effective; and improved linearity, in which case the reduced parameter
space and lack of conformity to the universal approximation theorem of Minerva-R and
Minerva-RP becomes less significant.

Memory-based models, such as dynamic time warping for speech recognition, or con-
catenative speech synthesis, have been competitive in the past, but they have fallen out
of use. In contrast, these results suggest that, as feature representations continue to
improve, simple, interpretable memory-based models such as Minerva-R become more
competitive.

4.7 Learned exemplar labels

The objective of these experiments is to determine:

1. whether learned exemplar labels as described in §3.5.3 improve performance; and

2. what form the labels take.

4.7.1 Methodology

Minerva-RPE models using separate feature transforms were trained on the TIMIT,
GoEmotions and CPC2 tasks and compared with equivalent Minerva-RP models, which
do not have learned exemplar labels. The TIMIT models used 384 exemplars per class
(14976 total), and a feature transformation dimension of 64. The GoEmotions models
used 1024 exemplars, and a feature transformation dimension of 32. The CPC2 models
used 128 exemplars, and a feature transformation dimension of 32. All models used
the same scaling/normalisation as the equivalent Minerva-RP models. The exemplar
labels were initialised one-hot according to the class of the exemplar.

All hyperparameters were tuned as described in §4.3, and final hyperparameter values
are given in Appendix A in Tables A.5, A.6 and A.7 for the TIMIT, GoEmotions and
CPC2 models respectively.

4.7.2 Results and discussion

Tables 4.4, 4.5 and 4.6 show the results for the TIMIT, GoEmotions and CPC2 tasks
respectively. For TIMIT with Mel spectrogram features, learning exemplar labels with
Minerva-RP gives a large improvement in performance over the Minerva-RP models
of around 7.0% (p < 0.001). For the Wav2vec features, a smaller improvement of
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around 1.1% (p < 0.001) is obtained. A very small but still statistically significant
improvement is found with the HuBERT features of 0.12% (p = 0.01).

Table 4.4: Frame-based phone classification on TIMIT using Minerva-RP
and Minerva-RPE models. Standard deviations are given in parentheses.
The best result is in bold.

Features Classifier β
Learned Accuracy (%)
params Dev Test

Mel Spec
Minerva-RP∗ 9 0.01 M 60.91 (0.17) 59.93 (0.24)
Minerva-RPE 7 0.59 M 68.31 (0.06) 66.98 (0.22)

Wav2vec
Minerva-RP∗ 9 0.10 M 80.78 (0.21) 79.62 (0.20)
Minerva-RPE 5 0.68 M 82.11 (0.07) 80.74 (0.09)

HuBERT
Minerva-RP∗ 7 0.10 M 88.20 (0.06) 87.35 (0.07)
Minerva-RPE 5 0.68 M 88.32 (0.03) 87.47 (0.04)

∗Reproduced from Table 4.1.

For the GoEmotions task, improvement in performance between Minerva-RP and
Minerva-RPE is not significant in the case of the LSA and Word2vec features (p = 0.7
and p = 0.15 respectively) but it is weakly significant for the SBERT feature represen-
tations (p = 0.04), although the improvement in the AUC is very small.

Table 4.5: Emotion classification of text on GoEmotions using Minerva-
RP and Minerva-RPE models. Standard deviations are given in parenthe-
ses. The best result is in bold.

Features Classifier β
Learned AUC (%)
params Dev Test

LSA
Minerva-RP∗ 3 0.02 M 69.16 (0.06) 69.67 (0.12)
Minerva-RPE 3 0.02 M 69.05 (0.10) 69.64 (0.13)

Word2vec
Minerva-RP∗ 3 0.07 M 81.98 (0.07) 82.09 (0.05)
Minerva-RPE 3 0.07 M 82.25 (0.10) 82.19 (0.14)

SBERT
Minerva-RP∗ 3 0.05 M 85.00 (0.04)) 85.27 (0.07)
Minerva-RPE 3 0.05 M 85.06 (0.04) 85.36 (0.04)

∗Reproduced from Table 4.2.

For the CPC2 task, there is no improvement for the log spectrogram features, but
this is unsurprising, since neither the Minerva-R nor the Minerva-RP models perform
better than chance on the evaluation set. For both the XLSR and Whisper features,
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there is a statistically significant improvement of 0.5% correctness (p = 0.002) for the
XLSR features, and 0.7% correctness (p = 0.03) for the Whisper features.

Table 4.6: Speech intelligibility prediction on CPC2 using Minerva-RP
and Minerva-RPE models. Standard deviations are given in parentheses.
The best result is in bold.

Features Classifier β
Learned RMSE
params Dev Test

Log spec
Minerva-RP∗ 1 0.02 M 29.95 (0.09) 40.13 (0.81)
Minerva-RPE 1 0.02 M 29.79 (0.17) 40.88 (0.71)

XLSR
Minerva-RP∗ 1 0.07 M 24.19 (0.08) 27.82 (0.28)
Minerva-RPE 1 0.07 M 23.54 (0.05) 27.34 (0.22)

Whisper
Minerva-RP∗ 1 0.05 M 22.72 (0.04) 25.05 (0.56)
Minerva-RPE 1 0.05 M 22.76 (0.01) 24.36 (0.19)

∗Reproduced from Table 4.3.
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Figure 4.9: Comparison of classification accuracy on the TIMIT test set
by phonetic class for the Minerva-RP and Minerva-RPE models using Mel
spectrogram features. The dashed lines are the overall model accuracies.

Where is the improvement coming from on the TIMIT and CPC2 tasks? Starting
with the TIMIT model using Mel spectrogram features, a combination which gave the
largest improvement in performance from learning exemplar class labels, Figure 4.9
shows the performance by class of the Minerva-RP and Minerva-RPE models on the
TIMIT test set. Minerva-RPE performs better than Minerva-RP on all classes but
three: /uh/, /s/ and /b/. Of these classes, /uh/ and /b/ are rare, each representing
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Figure 4.10: Heat map showing the annotated class and learned exemplar
class of exemplars for which they are not the same, for the TIMIT Minerva-
RPE model using Mel spectrogram features.

0.4% of the TIMIT test set. The class /s/ is the second most common, at 6.4%, so the
model is not learning common classes at the expense of rare ones.

There are three label types for each exemplar: firstly, its annotated label from the
data set; secondly, its learned exemplar label; and thirdly, the predicted label when it
is used as input to the model. For the TIMIT model using Mel spectrogram features,
the learned exemplar labels do not match the annotated labels around 28% of the
time. Despite this, over 50% of these exemplars with ‘incorrect’ learned labels have
correctly predicted classes when classified using the model. A similar pattern is seen
with the HuBERT Minerva-RPE model: around 30% of exemplar labels do not match
the annotated labels, but nevertheless, around 73% of these exemplars with ‘incorrect’
learned labels are still predicted correctly. It is clear that the learned exemplar label
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Figure 4.11: Minerva-RPE exemplar correctness vs learned exemplar la-
bels.

space does not perfectly match the prediction label space. This makes some sense,
since the labelling of each input is affected by every exemplar label to some extent,
and therefore will not perfectly match the closest exemplar. The exception to this
is when the activation power β → ∞, in which case Minerva approximates 1-nearest
neighbour (see §2.2). In this case, the exemplar label space and the prediction label
space will ideally match each other perfectly. The smaller β becomes, the more effect
distant exemplars have, and the more different the labels spaces have to become to
accommodate this.

The CPC2 exemplar labels are easier to visualise, since they are scalars. Figure 4.11
shows them plotted against the correctness labels from the data set. There is a clear
correlation, but while the correctness labels are clustered around 0% correctness and
100% correctness, the exemplar labels are bunched much more closely together: the
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total range is from 27 to 50. Given that each predicted label is a weighted sum of
learned exemplar labels, it is not at all surprising that the scaling of the two label
sets is different, but the correlation is imperfect, meaning that the prediction and
exemplar label spaces are once again different. In this case, some of this may be due
to the listener variability. The correctness scores are derived from a single listener
attempting to repeat back the words they have heard. Given an identical speech clip,
different listeners can potentially give quite different correctness scores. Learning the
exemplar labels allows the model to adjust for this.

4.8 Learned ‘true’ class representations

Previous models have all used one-hot encoding for the ‘true’ class representations. As
discussed in §3.5.4, this makes the class representations orthogonal to each other, which
may not reflect reality. For example, two of the emotions in the GoEmotions emotion
classification task are positive and negative. It seems reasonable to assume that these
will be negatively correlated, rather than orthogonal. Likewise, on the TIMIT phone
classification task, this makes the assumption that all classification errors are equally
important, which may not be true: misclassifying /ih/ as /eh/ seems more reasonable
than misclassifying /ih/ as /g/, for example.

The objective of this experiment is to determine what benefit there may be from using
the learned ‘true’ class representations described in §3.5.4, and compare them with
previous models to see if performance is improved.

4.8.1 Methodology

Minerva-RPC and Minerva-RPCE models (see §3.5.4) were trained for the TIMIT and
GoEmotions tasks. The Minerva-RPC model replaces one-hot representation for the
classes with learned class representations, allowing classes to be correlated with each
other. The Minerva-RPCE model does the same, but additionally learns a label for
each individual exemplar.

The TIMIT models used 384 exemplars per class (14976 total), and a feature transfor-
mation dimension of 64. The exemplars were stratified by class and randomly selected
from the training data. The GoEmotions models used 1024 exemplars, randomly se-
lected from the training data, and a feature transformation dimension of 32. All models
used the same scaling/normalisation as the equivalent Minerva-RP models, described
in §4.5.1. In all cases, the class representations were initialised as one-hot. Since the
CPC2 task is not a classification task, it was excluded from this experiment.
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All hyperparameters were tuned as described in §4.3, and details are given in Ap-
pendix A in Tables A.8 and A.9 for the TIMIT and GoEmotions models respectively.

4.8.2 Results and discussion

Table 4.7 shows the results for the Minerva-RPC and Minerva-RPCE models trained
on TIMIT, along with comparison models from earlier experiments. In all cases, the
Minerva-RPC models performed better than the Minerva-RP models. The difference
was not statistically significant for the Mel spectrogram features (p = 0.43), but was
weakly significant for the Wav2vec (p = 0.01) and HuBERT features (p = 0.04).

Table 4.7: Frame-based phone classification on TIMIT with learned class
representations. Standard deviations are given in parentheses. The best
result is in bold.

Features Classifier β
Learned Accuracy (%)
params Dev Test

Mel Spec

Minerva-RP∗ 9 0.01 M 60.91 (0.17) 59.93 (0.24)
Minerva-RPC 7 0.01 M 62.95 (0.01) 61.94 (0.34)
Minerva-RPE† 7 0.59 M 68.31 (0.06) 66.98 (0.22)
Minerva-RPCE 5 0.59 M 68.29 (0.06) 66.95 (0.12)
FFNN∗ - 1.19 M 69.71 (0.05) 68.20 (0.08)

Wav2vec

Minerva-RP∗ 9 0.10 M 80.78 (0.21) 79.62 (0.20)
Minerva-RPC 7 0.10 M 81.19 (0.05) 79.96 (0.12)
Minerva-RPE† 5 0.68 M 82.11 (0.07) 80.74 (0.09)
Minerva-RPCE 5 0.68 M 82.18 (0.03) 80.84 (0.13)
FFNN∗ - 1.88 M 82.29 (0.05) 81.07 (0.12)

HuBERT

Minerva-RP∗ 7 0.10 M 88.20 (0.06) 87.35 (0.07)
Minerva-RPC 9 0.10 M 88.26 (0.01) 87.46 (0.07)
Minerva-RPE† 5 0.68 M 88.32 (0.03) 87.47 (0.04)
Minerva-RPCE 7 0.68 M 88.33 (0.03) 87.50 (0.04)
FFNN∗ - 1.88 M 88.39 (0.04) 87.66 (0.02)

∗Reproduced from Table 4.1.
†Reproduced from Table 4.4.

Adding learned exemplar class representations is more beneficial than adding learned
‘true’ class representations, however, as shown by the Minerva-RPE models outper-
forming the Minerva-RPC models in all cases. This is not surprising, since the learned
exemplar class representations can provide more power to the model than learning
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‘true’ class representations, as can be seen from the number of learned parameters in
Table 4.7.

The Minerva-RPCE models use both learned exemplar representations and learned
‘true’ class representations, but this appears to provide no benefit over the Minerva-
RPE models, which learn only the exemplar class representations (p = 0.83 for Mel
spectrogram features, p = 0.18 for Wav2vec features and p = 0.25 for HuBERT fea-
tures).

Figure 4.12 shows a heat map representation of the similarity matrix for the learned
‘true’ class representations from the Minerva-RPC model using Mel spectrogram fea-
tures. The similarities are obtained by taking the dot-product of the learned class
representations with each other. For the one-hot representation used in previous ex-
periments, this would result in 1 along the diagonal, and 0 elsewhere. Figure 4.12
differs from this in two ways:

1. The scale of each class differs, as can be seen by some points on the diagonal
being darker than others; and

2. Some of the classes have slight negative correlation with each other, which shows
as pale blue in Figure 4.12.

To make the cross-class similarities easier to see, Figure 4.13 shows the same similarity
matrix for the Mel spectrogram features with the diagonal set to 0. Interestingly, the
most dissimilar pairs are, phonetically, similar to each other: /s/ and /z/, /aw/ and
/ey/, and /g/ and /k/. Referring to Figure 4.15, which shows the model performance
by phonetic class for the Minerva-RP and Minerva-RPC models, it can be seen that
performance is reduced on class /s/, but improved by a larger amount on class /z/.
Likewise, performance is slightly reduced on class /ay/, but improved by on /aw/.
Both /g/ and /k/ see improved performance. Rather than learning similar represen-
tations for similar classes, in many cases the model instead appears to learn dissimilar
representations for common confusions. There is an exception: /m/ and /n/ are pho-
netically similar and commonly confused, but their learned ‘true’ class representations
are similar, as can be seen from the dark orange colour in Figure 4.13. Interestingly,
both of these classes see slightly improved performance using the Minerva-RPC model.

Figure 4.14 shows the learned ‘true’ class similarity matrix for the Minerva-RPC model
trained on TIMIT using HuBERT features. This is very close to being a diagonal
matrix, with any cross-similarity between classes being very small, meaning that the
class representations are orthogonal to each other, and hence differ from the previously-
used one-hot class representations only in the magnitudes of the class representations
(shown by lighter and darker squares on the diagonal). In this case, scaling the class
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Figure 4.12: Heat map representation of the covariance matrix for the
learned ‘true’ class representations for the TIMIT Minerva-RPC model
trained on Mel spectrogram features
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Figure 4.13: Heat map representation of the covariance matrix for the
learned ‘true’ class representations for the TIMIT Minerva-RPC model
trained on Mel spectrogram features
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Figure 4.14: Heat map representation of the covariance matrix for the
learned ‘true’ class representations for the TIMIT Minerva-RPC model
trained on HuBERT features.
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Figure 4.15: Comparison of classification accuracy on the TIMIT test set
by phonetic class for the Minerva-RP and Minerva-RPC models using Mel
spectrogram features. The dashed lines are the overall model accuracies.

representations to have different magnitudes appears to make little difference to the
overall performance.

Table 4.8 shows the performance of the Minerva-RPC and Minerva-RPCE models on
the GoEmotions task. The Minerva-RPC model shows no improved performance over
the Minerva-RP model for the LSA features (p = 0.15) and SBERT features (p = 0.06),
but shows a small but statistically significant improvement for the Word2vec features
(p < 0.01). As with the TIMIT task, there is no benefit to having both learned exemplar
representations and learned ‘true’ class representations: the differences between the
Minerva-RPE and Minerva-RPCE models are not statistically significant (p > 0.05 in
all cases).

Figure 4.16a. shows the similarity matrices for the ‘true’ class representations for
each of the feature representations. Figure 4.16b. shows the same matrix, but with
the diagonal elements set to zero to make the cross-class similarities easier to see.
There are strong negative cross-class correlations for LSA and Word2vec features, as
well as differences in the magnitudes of the class representations. The SBERT class
representations, on the other hand, are balanced in terms of magnitude, and have very
little cross-class correlation; they are effectively one-hot. This explains why there is no
improvement for this feature set.

For the LSA and Word2vec features, the positive and negative classes are anti-correlated,
as expected, but interestingly, the neutral class is strongly negatively correlated with
the positive class as well. Negative correlation between two classes means that, if an
input is similar to exemplars from the first class, it makes it less likely to belong to
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Figure 4.16: Heat map representations of the similarities between the
learned ‘true’ class representations for the Minerva-RPC model trained on
GoEmotions with LSA, Word2vec and SBERT features showing a. all class
similarities; and b. only cross-class similarities.
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Table 4.8: Emotion classification of text on GoEmotions using Minerva
models. Standard deviations are given in parentheses. The best result is in
bold.

Features Classifier β
Learned AUC (%)
params Dev Test

LSA

Minerva-RP∗ 3 0.02 M 69.16 (0.06) 69.67 (0.12)
Minerva-RPC 3 0.02 M 69.22 (0.10) 69.85 (0.21)
Minerva-RPE† 3 0.02 M 69.05 (0.10) 69.64 (0.13)
Minerva-RPCE 3 0.02 M 69.08 (0.15) 69.61 (0.17)
FFNN∗ - 1.36 M 69.98 (0.07) 70.95 (0.05)

Word2vec

Minerva-RP∗ 3 0.07 M 81.98 (0.07) 82.09 (0.05)
Minerva-RPC 3 0.07 M 82.30 (0.11) 82.27 (0.10)
Minerva-RPE† 3 0.07 M 82.25 (0.10) 82.19 (0.14)
Minerva-RPCE 3 0.07 M 82.38 (0.08) 82.37 (0.07)
FFNN∗ - 1.36 M 83.23 (0.05) 83.30 (0.09)

SBERT

Minerva-RP∗ 3 0.05 M 85.00 (0.04) 85.27 (0.07)
Minerva-RPC 3 0.05 M 85.01 (0.13) 85.14 (0.11)
Minerva-RPE† 3 0.05 M 85.06 (0.04) 85.36 (0.04)
Minerva-RPCE 3 0.05 M 85.01 (0.12) 85.25 (0.11)
FFNN∗ - 1.84 M 85.50 (0.04) 86.02 (0.04)

∗Reproduced from Table 4.2.
†Reproduced from Table 4.5.

the second class. This relationship is unsurprising for the positive and negative classes,
since a single sentence is unlikely to belong to both. For the Word2vec features, how-
ever, the negative correlation is stronger between the positive and neutral classes than
between the positive and negative classes, which is not intuitive.

4.9 Unfixed exemplars

All previous experiments have been conducted with a fixed exemplar set, but the
exemplar set can in principle be changed, either during inference or during training, or
both. Previous experiments have used a fixed exemplar set, in which case the output
can be represented as a function of the input, q,

y = f(q;K,V ,Θ). (4.1)



4.9. UNFIXED EXEMPLARS 93

In this case, the exemplar features K and exemplar labels V are treated as parameters.
They remain fixed throughout inference, along with any other parameters of the model,
Θ, which might include the learned linear feature transform in Minerva-RP, and/or
the ‘true’ class representations in the Minerva-RPC model. Using unfixed exemplars
means that they are no longer treated as parameters. Now the output of the model
depends on both the input and the exemplars,

yj = f(q,Kj,Vj;Θ). (4.2)

One of the benefits of a changing exemplar set is that multiple variants of the same
model can be used at inference, each using the same parameters, but a different exem-
plar set. Since the model need only be trained once, this is an efficient way of creating
an ensemble model,

ye =
1

J

J∑
j=1

f(q,Kj,Vj;Θ) (4.3)

where ye is the output of the ensemble.

Alternatively, inference can be performed with a larger exemplar set than the model is
trained with. Since larger exemplar sets give better performance (see §4.4), this may
provide better performance at inference without additional computational requirements
for training.

The objective of this experiment is to determine what effect a changing exemplar set
has on the performance of the Minerva-RP and Minerva-RPC models.

4.9.1 Methodology

Minerva-RP and Minerva-RPC models using randomly selected exemplars were trained
on the TIMIT, GoEmotions and CPC2 tasks. All models used separate transforms
Wq ̸= Wk for the input and exemplars (see Equations 3.34 to 3.36). A new exemplar
set was randomly selected for each new minibatch, during both training and inference.

The TIMIT models used 384 exemplars per class (14976 total), and a feature transfor-
mation dimension of 32. The GoEmotions models used 1024 exemplars and a feature
transform dimension of 32. The CPC2 models used 128 exemplars. The feature trans-
formation dimension was 32.

All models used the same scaling/normalisation as the equivalent Minerva-RP models
(see §4.5.1). All hyperparameters were tuned as described in §4.3, and final hyper-
parameters are given in Appendix A in Tables A.10, A.11 and A.12 for the TIMIT,
GoEmotions and CPC2 models respectively.
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Once models were trained, they were evaluated in two ways:

1. With k different exemplar sets of the same size they were trained with, forming
an ensemble, as described in Equation 4.3; and

2. With an exemplar set k times larger than the one they were trained with.

The value k will be referred to as the exemplar set multiple, since it gives the factor
of increase in the number of exemplars used at inference compared to training. For a
given value of k, both options use exactly the same exemplars.

When using option 2, the GoEmotions and CPC2 models require an adaptation to
the scaling to account for the larger number of exemplars. Both models use a sigmoid
activation as the final activation to produce an output that falls between 0 and 1. In
both cases, the logits scaled by a factor of 1/k prior to the sigmoid. The value of k
ranged from 1 to 10.

4.9.2 Results and discussion

Table 4.9 shows performance of the Minerva-RP and Minerva-RPC models with fixed
and changing exemplars trained on the TIMIT task.

In all cases, the models using changing exemplars performed worse than the models
with fixed exemplars. This is not surprising, since randomly changing exemplar will
inevitably add ‘noise’ into the model. This might, in some situations, provide regular-
isation, in much the same way that dropout does. It differs from dropout, however, in
that the noise will still be present during inference.

Figure 4.17 shows the performance on the TIMIT test set of ensembles with increasing
numbers of systems, compared with models using an exemplar set increasing size. The
x-axis shows the exemplar set size multiplier: in the case of the ensembles, this is the
number of models forming the ensemble; in the case of the larger exemplar sets, this is
the factor by which the exemplar set size has been increased from the training set size.

Performance generally increases as the exemplar multiplier increases, with similar im-
provements for the two methods. The Mel spectrogram models benefit most from
increasing the number of exemplars, with an improvement in accuracy of around 2%.
The improvement using HuBERT features is less that 0.2%. For both the Wav2vec and
HuBERT features, the fixed exemplar set models still perform better than the unfixed
exemplar models, despite the unfixed models using 10 times as many exemplars.

The performance of the fixed and unfixed Minerva-RP and Minerva-RPC models on
the GoEmotions task is given in Table 4.10. As with the TIMIT results, the unfixed
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Figure 4.17: Performance of Minerva-RPC models on TIMIT test set
with either: system combination of models with different exemplar sets; or
increased exemplar set size.
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Table 4.9: Frame-based phone classification on TIMIT using Minerva-
RP and Minerva-RPC models, with fixed and unfixed exemplars. Standard
deviations are given in parentheses.

Features Model Exemplars β
Learned Accuracy (%)
params Dev Test

Mel Spec
Minerva-RP

Fixed∗ 9 0.01 M 60.91 (0.17) 59.93 (0.24)
Unfixed 9 0.01 M 58.76 (0.22) 58.10 (0.23)

Minerva-RPC
Fixed† 7 0.01 M 62.95 (0.01) 61.94 (0.34)
Unfixed 9 0.01 M 61.27 (0.11) 60.29 (0.18)

Wav2vec
Minerva-RP

Fixed∗ 9 0.10 M 80.78 (0.21) 79.62 (0.20)
Unfixed 9 0.10 M 79.57 (0.06) 78.57 (0.13)

Minerva-RPC
Fixed† 7 0.10 M 81.19 (0.05) 79.96 (0.12)
Unfixed 7 0.10 M 80.06 (0.12) 78.97 (0.09)

HuBERT
Minerva-RP

Fixed∗ 7 0.10 M 88.20 (0.06) 87.35 (0.07)
Unfixed 7 0.10 M 88.01 (0.04) 87.27 (0.06)

Minerva-RPC
Fixed† 9 0.10 M 88.26 (0.01) 87.46 (0.07)
Unfixed 9 0.10 M 88.10 (0.06) 87.33 (0.12)

∗Reproduced from Table 4.1.
†Reproduced from Table 4.7.

exemplar set models give worse performance than the equivalent fixed exemplar set
models (p < 0.01 in all cases).

Figure 4.18 shows the performance of the GoEmotions ensemble models and models
with increased exemplar set sizes. Although the performance tends to increase with
an increased exemplar set multiple, none of the models match the performance of the
equivalent fixed exemplar set model.

The results for the Minerva-RP models trained using unfixed exemplars on the CPC2
dataset are given in Table 4.11.

Unlike the TIMIT and GoEmotions tasks, there is no statistically significant difference
in performance between fixed and unfixed exemplar sets (p = 0.28, p = 0.85 and
p = 0.86 for the log spectrogram, XLSR and Whisper features respectively). This
may tie in to the innate variability of the correctness labels: two different listeners
can easily have different correctness scores for the same utterance. This ‘noise’ on the
labels may mask the differences between the fixed and unfixed exemplar sets. Another
possible reason is that 128 exemplars is sufficient to meaningfully represent the data;
in §4.4, the performance of the model by exemplar set size began to plateau at 128
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Figure 4.18: Performance of Minerva-RPC models on the GoEmotions
test set with either: system combination of models with different exemplar
sets; or increased exemplar set size.
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Table 4.10: Frame-based phone classification on GoEmotions using
Minerva-RP and Minerva-RPC models, with fixed and unfixed exemplars.
Standard deviations are given in parentheses.

Features Model Exemplars β
Learned Accuracy (%)
params Dev Test

LSA
Minerva-RP

Fixed∗ 3 0.02 M 69.16 (0.06) 69.67 (0.12)
Unfixed 3 0.02 M 68.30 (0.06) 68.73 (0.24)

Minerva-RPC
Fixed† 3 0.02 M 69.22 (0.10) 69.85 (0.21)
Unfixed 3 0.02 M 68.63 (0.07) 69.20 (0.14)

Word2vec
Minerva-RP

Fixed∗ 3 0.07 M 81.98 (0.07) 82.09 (0.05)
Unfixed 3 0.07 M 81.22 (0.05) 81.36 (0.13)

Minerva-RPC
Fixed† 3 0.07 M 82.30 (0.11) 82.27 (0.10)
Unfixed 3 0.07 M 81.41 (0.03) 81.67 (0.06)

SBERT
Minerva-RP

Fixed∗ 3 0.05 M 85.00 (0.04)) 85.27 (0.07)
Unfixed 3 0.05 M 84.71 (0.02) 84.87 (0.10)

Minerva-RPC
Fixed† 3 0.05 M 85.01 (0.13) 85.14 (0.11)
Unfixed 3 0.05 M 84.71 (0.04) 84.86 (0.07)

∗Reproduced from Table 4.2.
†Reproduced from Table 4.8.

Table 4.11: Speech intelligibility prediction on CPC2 using Minerva-RP
models, with fixed, unfixed and adaptive exemplars. Standard deviations
are given in parentheses.

Features Exemplars β
Learned RMSE
params Dev Test

Log spec
Fixed∗ 1 0.02 M 29.95 (0.09) 40.13 (0.81)
Unfixed 5 0.02 M 29.99 (0.15) 40.59 (0.35)

XLSR
Fixed∗ 1 0.07 M 24.19 (0.08) 27.82 (0.28)
Unfixed 1 0.07 M 23.43 (0.26) 27.87 (0.46)

Whisper
Fixed∗ 1 0.05 M 22.72 (0.04) 25.05 (0.56)
Unfixed 3 0.05 M 23.04 (0.11) 25.10 (0.23)

∗Reproduced from Table 4.3.

exemplars, with little further improvement in performance. This may also explain why
the ensemble systems and larger exemplar sets, shown in Figure 4.19, give little benefit.
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Figure 4.19: Performance of Minerva-RP models on the CPC2 test set
with either: system combination of models with different exemplar sets; or
increased exemplar set size.
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4.10 Adaptive exemplars

Rather than selecting unfixed exemplar sets at random, more information may be made
available to the model by selecting exemplars that are in some way relevant to the input
under test. This will be referred to as an adaptive exemplar set, described in §3.4.2.
In this case, the output is conditioned on the exemplar set; that is, the exemplar set
is expected to tell us something useful about the input. In this respect, the adaptive
exemplar models are similar to CNPs (see §2.6.1). The objective of this experiment
is to determine whether performance can be improved by conditioning on exemplars
based on metadata.

4.10.1 Methodology

Minerva-R, Minerva-RP and Minerva-RPC models using adaptive exemplars were
trained on the TIMIT and CPC2 tasks. All models used separate transforms Wq ̸= Wk

for the input and exemplars (see Equations 3.34 to 3.36). The GoEmotions task was
excluded from this experiment because it has no metadata to use for adapting exem-
plars.

The TIMIT models used 384 exemplars stratified by class (14976 total), and a feature
transformation dimension of 64. The exemplar adaptation was by gender: two separate
exemplar sets were randomly selected for each minibatch, one consisting of frames from
female speakers, and the other consisting of frames from male speakers. Exemplar sets
were changed for every minibatch, whether during training or inference. For each
minibatch, inputs from female speakers were classified using the female exemplar set,
and inputs from male speakers were classified using the male exemplar set. All training
minibatches contained both male and female speakers. All exemplars were randomly
selected from the training data.

Models were trained on the CPC2 task using both listener-adaptive exemplars and
system-adaptive exemplars. Each exemplar set had 16 exemplars; this is a reduced
number of exemplars from previous experiments, which used 128 exemplars, because
insufficient exemplars for each listener or system were available. During training, ex-
emplar sets from each listener or system in the minibatch were constructed and used to
predict the intelligibility of the relevant inputs. All minibatches used data from more
than one listener or system. Since the CPC2 evaluation sets have no speaker or system
overlap with their training sets, all exemplars at evaluation came from the evaluation
sets. For this reason, the results reported for this experiment are not directly compara-
ble with other work, since the model cheats by ‘peeking’ at the evaluation data during
inference. The evaluation exemplars were matched to the relevant listener or speaker
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for each input. In all cases, a new exemplar set was randomly selected for each new
minibatch. The feature transformation dimension was 32. For comparison, models
with equivalent architecture were trained with both fixed and random (non-adaptive)
exemplar sets with 16 exemplars, since models from previous experiments used more
exemplars than this, and are therefore not directly comparable.

All models used the same scaling/normalisation as the equivalent Minerva-RP models
(see §4.5.1). All hyperparameters were tuned as described in §4.3, and final hyperpa-
rameter values are given in Appendix A in Tables 4.12, 4.13 for the TIMIT models and
A.15 for the CPC2 models.

4.10.2 Results and discussion

Table 4.12 gives the results for the Minerva-RP models trained on TIMIT. For the Mel
spectrogram features, using gender-adaptive exemplars improves performance over the
non-adaptive unfixed exemplar model (p < 0.01), but still gives lower performance
than the non-adaptive fixed exemplar set. It appears that, in this case, the benefit of
adaptation is not sufficient to make up for the ‘noise’ added by randomly changing the
exemplar set.

Table 4.12: Frame-based phone classification on TIMIT using Minerva-
RP models, with fixed, unfixed and adaptive exemplars. Standard deviations
are given in parentheses.

Features Exemplars β
Learned Accuracy (%)
params Dev Test

Mel Spec
Fixed∗ 9 0.01 M 60.91 (0.17) 59.93 (0.24)
Unfixed† 9 0.01 M 58.76 (0.22) 58.10 (0.23)
Adaptive 9 0.01 M 60.11 (0.10) 59.29 (0.12)

Wav2vec
Fixed∗ 9 0.10 M 80.78 (0.21) 79.62 (0.20)
Unfixed† 9 0.10 M 79.57 (0.06) 78.57 (0.13)
Adaptive 9 0.10 M 79.29 (0.13) 78.27 (0.13)

HuBERT
Fixed∗ 7 0.10 M 88.20 (0.06) 87.35 (0.07)
Unfixed† 7 0.10 M 88.01 (0.04) 87.27 (0.06)
Adaptive 9 0.10 M 88.00 (0.07) 87.21 (0.08)

∗Reproduced from Table 4.1.
†Reproduced from Table 4.9.

For the Wav2vec and HuBERT features, there is no statistically significant difference
between the performance of models with unfixed and adaptive exemplar sets. It is
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possible that these sophisticated speech representations already include information on
gender, making the adaptive exemplar sets superfluous. Both Wav2vec and HuBERT
features have previously been used to good effect for gender classification, further
supporting this hypothesis.

Table 4.13 shows the results for the Minerva-RPC models trained on TIMIT. There is
no benefit to using adaptive exemplars for the Wav2vec and HuBERT features, sup-
porting the hypothesis that these representations already meaningfully convey gender
information. For the Mel spectrogram features, however, the adaptive exemplar set
gives an improvement over both the unfixed exemplar set (p < 0.01), but still fails to
match the performance of the fixed exemplar set model.

Table 4.13: Frame-based phone classification on TIMIT using Minerva-
RPC models, with fixed, unfixed and adaptive exemplars. Standard devia-
tions are given in parentheses.

Features Exemplars β
Learned Accuracy (%)
params Dev Test

Mel Spec
Fixed∗ 7 0.01 M 62.95 (0.01) 61.94 (0.34)
Unfixed† 9 0.01 M 61.27 (0.11) 60.29 (0.18)
Adaptive 11 0.01 M 62.65 (0.08) 61.54 (0.05)

Wav2vec
Fixed∗ 7 0.10 M 81.19 (0.05) 79.96 (0.12)
Unfixed† 7 0.10 M 80.06 (0.12) 78.97 (0.09)
Adaptive 7 0.10 M 79.92 (0.10) 78.79 (0.15)

HuBERT
Fixed∗ 9 0.10 M 88.26 (0.01) 87.45 (0.07)
Unfixed† 9 0.10 M 88.10 (0.06) 87.33 (0.12)
Adaptive 7 0.10 M 88.11 (0.05) 87.27 (0.10)

∗Reproduced from Table 4.7.
†Reproduced from Table 4.9.

Table 4.14 shows the results for the CPC2 task. Interestingly, both the listener- and
system-adaptive log spectrogram models perform better than chance on the evaluation
set; these are the only models that do so out of any experiment. Closer examination of
the data reveals that the system-adaptive model is acting as a system-predictor, rather
than an intelligibility predictor, however. These results are therefore less promising
than they appear.

For the XLSR features, the adaptive models have worse performance on the evaluation
set than the non-adaptive models. It is possible that this is due to poor scaling: if
all the exemplars change their range of values, as may happen with different listeners
providing the correctness scores, the learned scaling of the output may be inappropriate.



4.11. SEQUENCE MINERVA 103

Using Whisper features, the listener adaptive system performs best out of all those
reported. The difference is not statistically significant, however: p = 0.42 for the
unfixed exemplar set, and p = 0.62 for the fixed exemplar set.

Table 4.14: Speech intelligibility prediction on CPC2 using Minerva-RP
models, with fixed, unfixed and adaptive exemplars. Standard deviations
are given in parentheses.

Features Exemplars β
Learned RMSE
params Dev Test

Log spec

Fixed 1 0.02 M 30.44 (0.52) 40.85 (0.73)
Unfixed 5 0.02 M 30.38 (0.08) 40.55 (0.66)
Listener adapted 5 0.02 M 33.13 (0.44) 39.67 (0.80)
System adapted 7 0.02 M 28.47 (0.05) 33.47 (0.99)

XLSR

Fixed 1 0.07 M 23.44 (0.20) 27.81 (0.47)
Unfixed 1 0.07 M 24.48 (0.67) 29.31 (0.93)
Listener adapted 1 0.07 M 23.15 (0.16) 30.82 (0.51)
System adapted 3 0.07 M 25.81 (0.59) 33.67 (1.86)

Whisper

Fixed 1 0.05 M 22.82 (0.14) 24.89 (0.28)
Unfixed 3 0.05 M 22.75 (0.14) 25.03 (0.20)
Listener adapted 1 0.05 M 22.55 (0.18) 24.66 (0.93)
System adapted 3 0.05 M 23.73 (0.16) 26.14 (0.39)

Overall, it appears that meaningful adaptation using exemplar sets is not as simple
as training randomly changing models. There is information to be gained, however,
especially for the CPC2 listener adaptation, where the listener information is poorly
represented by the provided audiogram, and numerous utterances labelled by each
listener are available. A more intelligent method of training the model might yield
better results, perhaps by incorporating meta-learning, or by learning a non-linear
scaling mechanism, rather than scaling with a single neuron. This is certainly an
avenue for further research.

4.11 Sequence Minerva

The objective of this experiment is to perform preliminary tests on the Minerva-RPES
model for sequence-to-sequence tasks by comparing it to equivalent non-sequence Min-
erva models and a baseline FFNN. The quantity of context that is useful is also
explored.
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4.11.1 Methodology

Minerva-RPES models, as described in §3.5.5, were trained on TIMIT with Mel spec-
trogram, Wav2vec and HuBERT features. The models used a fixed exemplar set with
384 exemplars per class, for 14976 total, and a feature transform dimension of 64 for
both the initial Minerva modules and the self-Minerva module. Since GoEmotions
and CPC2 are not sequence-to-sequence tasks, only the TIMIT task was used for this
experiment. Hyperparameter tuning was carried out as described in §4.3, and final
hyperparameter values are given in Appendix A in Table A.16. The model was trained
with cross entropy loss.

4.11.2 Results and discussion

Table 4.15 includes results for the sequence Minerva-RPES model, which performs
equivalently to the Minerva-RPE models with Mel spectrogram and Wav2vec features,
but performs better than either the Minerva-RPE model or the FFNN with the Hu-
BERT features. In both cases, the improvement is statistically significant (p < 0.01
for both).

Table 4.15: Frame-based phone classification on TIMIT using the
sequence-based Minerva-RPES model. Standard deviations are given in
parentheses. The result is in bold.

Features Classifier β
Learned Accuracy (%)
params Dev Test

Mel Spec
Minerva-RPE† 7 0.59 M 68.31 (0.06) 66.98 (0.22)
Minerva-RPES 5 0.61 M 68.29 (0.06) 66.95 (0.12)
FFNN∗ - 1.19 M 69.71 (0.05) 68.20 (0.08)

Wav2vec
Minerva-RPE† 5 0.68 M 82.11 (0.07) 80.74 (0.09)
Minerva-RPES 5 0.78 M 82.18 (0.03) 80.84 (0.13)
FFNN∗ - 1.88 M 82.29 (0.05) 81.07 (0.12)

HuBERT
Minerva-RPE† 5 0.68 M 88.32 (0.03) 87.47 (0.04)
Minerva-RPES 5 0.78 M 88.73 (0.11) 87.88 (0.12)
FFNN∗ - 1.88 M 88.39 (0.04) 87.66 (0.02)

∗Reproduced from Table 4.1.
†Reproduced from Table 4.4.

Minerva-RPES uses the entire utterance in the sequence-based Minerva modules by
default, but further experiments were performed to determine how much context is
useful, shown in Figure 4.20.
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Figure 4.21: Comparison of classification accuracy on the TIMIT test set
by phonetic class for the Minerva-RPE and Minerva-RPES models using
HuBERT features. The dashed lines are the overall model accuracies.

Context is measured in terms of frames, which have a stride of 10 ms, and ranged
from zero (effectively the same as Minerva-RPE) to 1024, which, since the TIMIT
utterances are short, is sufficient to provide full context for all utterances. Results for
mid, backward and forward context are given. All three types of context are useful,
with mid-context being the most effective. Performance peaks at around 32 frames of
context, following which it plateaus.

Figure 4.21 shows the performance by class of the Minerva-RPE and Minerva-RPES
models using HuBERT features. There are substantial gains for the classes /oy/ and
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Figure 4.22: Confusion matrices for the Minerva-RPE and Minerva-
RPES models, showing only frames where the models disagreed.
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/uw/. Figure 4.22 shows the confusion matrices for the two models, but only for those
frames where they disagreed. Improvements are not restricted to any particular type
of sound: there are improvements to vowels, fricatives and plosives. Minerva-RPES is
also less likely to incorrectly classify frames as silence.

4.12 Sequence Minerva and transformer

As was previously discussed in §3.5.5, Minerva-RPES is architecturally similar to trans-
formers, with three main differences:

1. Transformers derive keys and values from the input, while Minerva-RPES uses
exemplars as the keys and values;

2. Transformers use a softmax on the similarities between the keys and values to
produce the activations, while Minerva-RPES uses the activation power; and

3. Transformers typically incorporate intermediate feed-forward layers and layer
normalisation (Lei Ba et al. 2016) between self-attention modules.

The objective of this experiment was to compare models that mix-and-match each of
these properties in order to explore the relationship between the architecture.

4.12.1 Methodology

Minerva-RPES and equivalent transformer encoders with two layers of self-attention
were trained for the TIMIT frame-based phone classification task. The feature trans-
formation dimension for the Minerva-RPES models was 64, as was the model dimension
for the transformers. The transformers incorporated additional feed-forward layers and
layer normalisation following each self-attention module.

The transformer encoder model takes a complete utterance as input. In order for the
two models to be equivalent, the number of exemplars must therefore match the number
of frames in the input. The utterance length in TIMIT is on average 152 frames. Using
4 exemplars per class results in an exemplar set of size 156, which is a close match.

In addition to the Minerva-RPES and transformer encoder models, models that mix-
and-match the characteristics of both were trained, leading to a total of eight model
architectures. Each model architecture was trained using Mel spectrogram and Hu-
BERT features, using binary cross entropy loss. All models had hyperparameters tuned
as described in §2.5.10, and final hyperparameter values are given in Table A.18 and
A.17 for the Mel spectrogram and HuBERT models respectively.
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4.12.2 Results and discussion

Table 4.16 shows the performance on the TIMIT test set of all eight model architec-
tures, using both Mel spectrogram and HuBERT features. For both feature types,
the Minerva-RPES model performs best, although the Mel spectrogram model benefits
greatly from extra feed-forward layers and layer normalisation, whereas the HuBERT
model does not.

It should be noted that the HuBERT features already incorporate context, so the
modest gains using these features are to be expected. In contrast, the gains for the
sequence models for the Mel spectrogram features are unsurprisingly much more im-
pressive, since the spectrogram features offer less in the way of context.

These are preliminary results, and more work is required to put them into context, but
the model performance is promising.

Table 4.16: Performance of models on the Minerva-Transformer spec-
trum, using Mel spectrogram and Hubert features. Standard deviations are
given in parentheses.

Exemplars Activations
FFNN + Learned params Accuracy (%)
layer norm MelSpec/Hubert MelSpec Hubert

Yes
Minerva

None 31 k / 203 k 65.66 87.77
Both 34 k / 206 k 69.58 87.52

scaled dot- None 31 k / 203 k 64.65 87.72
product Both 34 k / 206 k 68.10 87.38

No
Minerva

None 29 k / 158 k 53.50 86.03
Both 35 k / 164 k 69.24 87.10

scaled dot- None 29 k / 158 k 48.78 86.45
product Both 35 k / 164 k 67.29 86.35

FFNN∗ - No 13 k / 56 k 63.54 86.70
∗The FFNN has the same model dimension as the sequence-based models, but is much

less complex.

4.13 Concluding remarks

It has been shown that good feature representation is crucial for Minerva 2 and the
models derived from it. As such, performance of the untrained Minerva-R model can
be substantially improved by:
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1. Using high-quality input features, such as HuBERT (Hsu et al. 2021) or Whisper-
derived features (Radford et al. 2023) for speech; or BERT-based features for text

2. Incorporating a learned linear feature transformation on the input features

This combination results in the best performance, and also decreases the difference in
performance between models. Given that feature representations for speech and text
are likely to continue improving, simple models such as Minerva are likely to become
more competitive.

Three options for the exemplar set have been trialled: fixed exemplars; randomly
changing exemplars; and adaptive exemplars. Of these, the fixed exemplars appear to
perform best, especially in conjunction with learned exemplar labels in the Minerva-
RPE model. The adaptive exemplar option trialled here was found to be ineffective,
but this option should not be ruled out. CNPs (Garnelo et al. 2018) condition on a
exemplar set effectively, and might provide a template for using adaptive exemplars in
a Minerva-based model.

Of the models that were proposed in Chapter 3 and tested here, the Minerva-RPES
sequence model and the Minerva-RPE model show the most promise. For the sequence
model the results are preliminary, and further experimentation is required, ideally
including comparison with other architectures on a range of tasks. The Minerva-RPE
model shows particular promise on the CPC2 task, and this result is explored further
in the next chapter.
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Chapter 5

Applications: Clarity Prediction
Challenge 2

5.1 Introduction

5.1.1 Overview

The work reported in previous chapters has focused on exploring how Minerva is related
to prototype models, and how it can be parameterised to improve its performance. In
Chapter 4, it was found that the Minerva-RPE model, which uses a learned feature
transform and learned exemplar labels, performed best in general. In this chapter,
this finding is built on by using a Minerva-RPE model to demonstrate state-of-the-art
performance on the CPC2 speech intelligibility prediction task. Part of this chapter
covers a more sophisticated model, which was submitted to the Clarity Prediction
Challenge 2, and which placed 2nd. This submitted model is compared with the much
simpler models described in Chapter 4, which proved to be more effective, as well as
simpler, smaller and faster. The performance of all these models is put into context
with other submissions to the challenge.

The submission to CPC2 is reported in Mogridge et al. (2024). I was lead author, and
the paper was co-authored by fellow PhD students George Close and Robert Suther-
land, along with their supervisors.

Co-author contributions:

• George contributed initial code which had been used for the closely-related Clarity
Prediction Challenge 1 (CPC1), implementing a LSTM model with various dif-
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ferent feature representations, including log spectrogram and XLSR. He also con-
tributed substantially to the introduction, conducted some of the analysis, and
provided review of the finished paper.

• Robbie conducted some of the hyperparameter tuning, contributed to the intro-
duction of the paper, and reviewed the completed paper.

• I adapted George’s code from CPC1 to CPC2, added the use of Whisper encoder
and decoder, implemented the Minerva models and conducted some of the hyper-
parameter tuning. I also conducted some of the analysis and wrote the majority
of the paper.

All work on the simpler models reported in earlier chapters, and used for comparison
here, was conducted by me.

5.1.2 Chapter content

This chapter begins with some background on the Clarity Prediction Challenge 2,
followed by a summary of work conducted on the previous iteration of the challenge.
Several models are described, including prototype and hybrid variants, followed by
reporting and analysis of the results.

5.1.3 Background

Hearing loss is a growing problem throughout the world, and since it is often an age-
related problem, and given that the world population is aging, incidence of hearing loss
is expected to rise from around 466 million people in 2018, to around 630 million in
2030, and 900 million in 20501.

Hearing Aids (HAs) can improve quality of life for those with hearing loss, and machine
learning algorithms show promise for improving the effectiveness of HAs (Doclo et al.
2015, Goetze et al. 2010). While assessment of HA algorithms by human listeners is
essential, it is also time consuming and expensive. Automated speech intelligibility
predictors therefore have a place in developing new and improved HA algorithms.

In this work, several models of varying complexity are proposed and tested to perform
non-intrusive speech intelligibility prediction. All of the models make use of Whisper
decoder layer features (Radford et al. 2023), previously described in §2.7.2.4. Both pure

1World Health Organisation 2018: https://apps.who.int/iris/bitstream/handle/10665
/260336/9789241550260-eng.pdf

https://apps.who.int/iris/bitstream/handle/10665/260336/9789241550260-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/260336/9789241550260-eng.pdf
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prototype and Minerva-based models are included, as well as system combinations of
the two, which are found to be particularly effective.

5.2 Clarity Prediction Challenge 2

A description of the CPC2 dataset is given in §4.2.3, but more background and motiva-
tion is given here. The Clarity Project runs two challenges in sequence with the aim of
improving HA technology: the Clarity Enhancement Challenge and the Clarity Predic-
tion Challenge. The Clarity Enhancement Challenge (CEC) objective is to design HA
systems to enhance noisy signals for hearing-impaired listeners. The Clarity Prediction
Challenge (CPC) objective is to predict the intelligibility of the CEC systems.

The challenge has both a non-intrusive track, where only the enhanced noisy signal
processed by the hearing aid can be used, and an intrusive track, where a clean version
of the input audio can also be used. All of the models described here are non-intrusive,
and although the CPC2 data provides additional information about the listener, all
models described use as input only the enhanced noisy audio signal. This choice was
made because the listener audiograms, which describe each listener’s level of hearing
loss at different frequency ranges, were found to be unhelpful in previous studies (Barker
et al. 2022).

5.2.1 Challenge baseline

The baseline system provided by the challenge organisers (Barker et al. 2024) makes
use of the Hearing-Aid Speech Perception Index (HASPI), version 2 (Kates & Arehart
2021). This is an intrusive system that makes use of both the enhanced noisy signal
and the clean speech signal. A HASPI score is computed for both the left and right ear
signals and logistic regression is used to predict the correctness scores from the higher
HASPI score.

5.3 Prior approaches

Approaches used for the first version of the challenge, CPC1, varied widely. The
winning non-intrusive submission used an ensemble of ASR models, and used dis-
agreements between the ensemble’s transcript predictions to model uncertainty about
transcripts, with high uncertainty mapping to low intelligibility (Tu et al. 2022). Other
approaches used pre-trained SSSRs features Zezario et al. (2022), Close et al. (2023,
2022), for direct prediction using neural networks.
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CPC2 differs from CPC1 in that its evaluation sets are disjoint in terms of listener and
hearing aid system relative to its training sets. This means that some of the better-
performing approaches to CPC1, which operated effectively as predictors of the hearing
aid system, were not at all useful in CPC2, which was discovered in early experiments
for this work with the CPC2 data.

5.4 Experimental setup

5.4.1 Feature representation

The Whisper model used for feature extraction consists of both an encoder and a
decoder. Whisper encoder features are frame-based, encoding 30 s of audio at a time.
Audio with a shorter duration is padded, and audio with a longer duration is truncated.
In the case of the CPC2 data, all audio clips are shorter than 30 s and are padded.
The output of the Whisper encoder layers is 1500 × 768 × 12, where 1500 is the 30 s
time duration (Whisper encoder frames have a stride of 20 ms), the model dimension
is 768 and 12 is the number of layers. The decoder features are label-synchronous,
rather than frame synchronous, and have dimension W × 768 × 12, where W is the
number of predicted tokens (typically around 10 to 20 for the CPC2 data), 768 is the
model dimension, and 12 is the number of layers. Preliminary experiments suggested
that the decoder features were more effective.

5.4.2 Model architecture

Bidirectional Long Short-Term Memory (BLSTM)-based architectures incorporating
attention pooling, were used for the challenge submission, since they have been shown
to be effective for speech quality prediction by Tamm et al. (2022), and further used for
speech intelligibility prediction by Close et al. (2023). Both prototype and exemplar-
informed versions of the BLSTM model are proposed, as well as a system combinations
of the two. Figure 5.1 shows the architecture of the system combination of the BLSTM
models.

5.4.3 Prototype BLSTM SI prediction model

The prototype BLSTM model is shown to the right in Figure 5.1. The model uses
a learnable weighted sum of the Whisper decoder representations, implemented as a
learnable linear layer with 12 parameters, all initialised to 0, followed by a softmax to
ensure that the layer weights sum to 1. This representation of dimension W×768 is then
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Figure 5.1: BLSTM system combination model architecture for SI predic-
tion.

processed by 2 BLSTM layers with an input size of 768 and a hidden layer size of 384.
Finally, an attention pooling feed-forward layer with sigmoid activation outputs to a
single neuron which represents the primary predicted correctness value ŷp normalized
between 0 and 1. The prototype model has approximately 8.3 M parameters. The
prototype model is trained for 25 epochs with batch size 8, learning rate 10−5 and
weight decay 10−4.

5.4.4 Exemplar-informed BLSTM SI prediction model

The exemplar-informed BLSTM model differs from the prototype BLSTM model in
that the attention-pooling output feeds into an exemplar-informed Minerva-RP mod-
ule, which feeds to a single neuron used for scaling the model output (see §3.5.2). The
exemplar-informed module incorporates an exemplar set drawn from the training data.
A new set of 16 random exemplars is selected for each training or inference minibatch.
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Exemplars are processed in the same way as the input, feeding through the BLSTM
and attention pooling, before being used in the exemplar module.

Let q be the output of the attention pooling for a given input (see Figure 5.1). The
exemplars, k1, ...,kN , are processed in the same way as the input, with layer weights,
BLSTM and attention pooling producing them from the exemplar inputs. The out-
put, c, of the Minerva-RP module passes through a single linear neuron, and then
through a sigmoid activation, which yields the exemplar-informed model’s prediction,
ŷe, normalised to fall between 0 and 1. The exemplar model has approximately 10 M
parameters. The exemplar-informed model is trained for 50 epochs with learning rate
2× 10−6 and weight decay 10−4.

5.4.5 System combination

The prototype and exemplar-informed BLSTM models each output a prediction for
the correctness of each input, and are trained separately with MSE loss. The output
of the BLSTM system combination, ŷsc, for a given input signal is the mean of the
outputs of the prototype ŷp and exemplar-informed systems ŷe,

ŷsc =
ŷe + ŷp

2
. (5.1)

5.4.6 Simplified models

The sophisticated BLSTM model described above is compared with simpler architec-
tures from the previous chapter, which are reused here:

1. The FFNN described in §4.5.1, with results reported in Table 4.3, which is the
best performing prototype model from the previous chapter;

2. The Minerva-RP model with unfixed exemplars, described in §3.5.2, with results
reported in §4.14, which uses same number of exemplars and the same exem-
plar selection strategy as the exemplar-informed BLSTM model, but uses them
directly, rather than incorporating a BLSTM and attention pooling; and

3. The Minerva-RPE model, described in §3.5.3 and §4.7.1, with results reported
in Table 4.6, which is the best-performing exemplar-informed model from the
previous chapter.
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5.5 Results and discussion

Table 5.1 shows the results for the prototype BLSTM model and the exemplar-informed
BLSTM model, as well as replicating the results for the simplified models from Chap-
ter 4. The CPC2 challenge baseline model’s overall performance is also shown (detailed
results for this model are not available).

The validation sets contain enhancement systems and listeners seen in the correspond-
ing training training data. The evaluation sets are disjoint, containing only unseen
enhancement systems and listeners. All of the models reported here beat the baseline
system by a substantial margin, despite being non-intrusive systems, while the baseline
is intrusive.

Table 5.1: Model performance on the validation and evaluation splits. The
best result is in bold.

Model
RMSE

validation split evaluation split
1 2 3 all 1 2 3 all

CPC2 baseline 28.70
BLSTM prototype 21.6 23.5 22.8 22.66 28.5 23.9 23.3 25.26
BLSTM exemplar 21.7 23.5 22.7 22.65 29.1 24.5 23.4 25.75
BLSTM ensemble 21.6 23.4 22.7 22.54 28.6 23.9 23.2 25.27
FFNN∗ 22.2 23.1 22.8 22.68 26.6 24.7 22.1 24.47
Minerva-RPE fixed† 22.2 23.0 23.1 22.76 26.7 24.5 21.9 24.36
Minerva-RP unfixed∗∗ 22.0 23.3 22.9 22.75 27.6 25.3 22.2 25.03
FFNN/Minerva-RPE ensemble 22.1 22.9 22.8 22.57 26.5 24.4 21.8 24.21
∗Reproduced from Table 4.3
†Reproduced from Table 4.6
∗∗Reproduced from Table 4.14

All of the simplified models (FFNN, Minerva-RPE, Minerva-RP unfixed) outperform
the BLSTM models by a substantial margin (p < 0.001 in all cases) on the evaluation
sets, despite the BLSTM models showing good performance on previous speech quality
and intelligibility studies. The differences between the BLSTM models and simplified
models on the non-disjoint validation sets is not statistically significant (p > 0.1 in all
cases). It appears that the simpler models generalise better to unseen listeners and
systems.
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5.5.1 Prototype and exemplar-informed models

The prototype and exemplar-informed BLSTM models show similar performance on the
validation sets, with the ensemble of the two outperforming either, and in fact giving
the best performance out of any of the models on the validation sets. This is not
replicated on the evaluation set, where the primary model outperforms the secondary
model, and performs equivalently to the ensemble.

As previously seen, the FFNN and Minerva-RPE models show similar performance to
each other on both validation and evaluation sets. An ensemble of the two performs
better than either individual model for all splits on both the validation and evaluation
sets.

5.5.2 Performance by intelligibility

Figure 5.2a. shows the performance of the BLSTM ensemble model for different cor-
rectness value ranges, and Figure 5.2b. shows the performance of the FFNN/Minerva-
RPE ensemble model for different correctness value ranges. The BLSTM ensemble
model performs well for very low intelligibility (0 correctness) and for very high in-
telligibility (100 correctness), but performs poorly between the two extremes. This
corresponds with the distribution of true correctness scores in the training data (see
Figure 4.3 in §4.2.3), in which 0 and 100 correctness are over-represented. In con-
trast, the FFNN/Minerva-RPE ensemble model performs fairly similarly for different
correctness ranges, but trending towards lower prediction error for higher intelligibility.

The differing performance between the two ensemble models suggest that combining all
models in a 4-way ensemble, incorporating the prototype BLSTM, exemplar BLSTM,
FFNN and Minerva-RPE models, might be beneficial. This combination gives a slight
improvement on the validation sets over the individual and 2-way ensemble models,
with a validation RMSE of 22.3% correctness. There is no improvement over the
FFNN/Mineva-RPE ensemble on the evaluation sets, however, with evaluation RMSE
of 24.3% correctness. Nevertheless, this may be a useful avenue for further research.

5.5.3 Model performance on unseen enhancement systems

All the models show lower performance on Evaluation Split 1. This appears to stem
from the presence of audio enhanced by enhancement system E001 (the baseline in the
Clarity Enhancement Challenge 2), which is present in this evaluation set. Audio en-
hanced by this system has an average correctness value of 28.7%, which is significantly
lower than the average of the other two enhancement systems in Evaluation Set 1, E022
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Figure 5.2: Model performance by true correctness, for the BLSTM and
FFNN/Minerva-RPE ensemble models.
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and E031, which have average correctness values of 73.0% and 84.3%, respectively.
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Figure 5.3: Model performance by mean hearing aid system correctness.

Although the models can generalise to unseen enhancement systems to some extent,
they appear to predict correctness less accurately on some system than others.
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Figure 5.3 shows the FFNN/Minerva-RPE ensemble model’s performance by enhance-
ment system correctness across all enhancement systems. The model is very good at
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predicting the correctness for enhancement system E009, but poor at predicting the
correctness for enhancement system E001. It is interesting that E001 is the worst-
performing enhancement system and E009 is the best-performing enhancement sys-
tem. This suggests that better-performing enhancement systems, which produce out-
puts with high correctness scores, may be easier to predict. Figure 5.4 shows the
predicted (left) and true (right) correctness across all enhancement systems, showing
that the FFNN/Minerva-RPE ensemble model overestimates the correctness of the
two worst-performing enhancement systems, E001 and E038, while generally slightly
underestimating the correctness of the better-performing enhancement systems.

5.5.4 Whisper layer weights

The learned weights for the Whisper decoder layers from the primary BLSTM model
are shown in Figure 5.5. These show how the model uses the information to weight
each decoder layer feature, and therefore the higher the value the more useful the model
finds the layer to be. The weights are shown for each of the three models trained on
the different training splits.

The general pattern for the different training splits is similar, with layers 7 and 8
having the highest weights across all splits. This suggests that layers 7 and 8 contain
the most relevant information for intelligibility. Interestingly, the model trained on
Split 3 learns weights that emphasise layers 7 and 8 more strongly. This information
was used to select layer 8 as the input features to the simplified models used in the
previous chapter, including the FFNN and Minerva-RPE models examined here.
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Figure 5.5: Learned weights for the primary model Whisper decoder layers.
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5.5.5 Performance comparison

Figure 5.6 shows the performance of the FFNN/Minerva-RPE model, which is the best
performing model reported in this thesis, compared to all other challenge entries, as
well as the challenge HASPI baseline. System P002 is the BLSTM ensemble model,
which was submitted to the challenge and placed second. Prior is a system which
always predicts the average of the intelligibility over the training set, regardless of the
input. P011 was the winning submission to the challenge (Cuervo & Marxer 2024).
The FFNN/Minerva-RPE ensemble model outperforms all other models submitted to
the challenge by a substantial margin; the winner of challenge, system P011, achieved
a RMSE of 25.1%.
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5.5.6 Concluding remarks

The Whisper decoder layers are a useful feature representation for speech intelligibility
prediction, with layers 7 and 8 appearing to be the most relevant. Several other chal-
lenge submissions also used Whisper features, including the challenge winner (Cuervo
& Marxer 2024), demonstrating that Whisper’s intermediate layers, both encoder and
decoder, are effective feature representations for speech intelligibility prediction.



5.5. RESULTS AND DISCUSSION 123

A non-intrusive ensemble combining a simple FFNN model with a Minerva-RPE model
achieves state-of-the-art performance on the CPC2 task, outperforming the HASPI re-
gression baseline and all challenge submissions by a substantial margin, despite several
of these systems being intrusive systems that have access to the reference signal. Sim-
ple models with good feature representation appear to work best, providing better
generalisation to unseen listeners and enhancement systems compared to models that
use lower quality features or more sophisticated architecture.
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Chapter 6

Conclusions and further work

6.1 Summary of contributions

In this thesis, the use of exemplars has been investigated using the Minerva 2 exemplar-
based model from the field of human psychology. In Chapter 1, three research questions
were introduced, which are now revisited.

RQ1 What are the similarities and differences between the exemplar model Minerva 2
and artificial neural networks?

In §3.2, it was shown that, rather than being separate from artificial neural networks,
Minerva 2 is in fact itself a 2-layer feed-forward neural network, but with parameters
taken directly from data, rather than being learned through backpropagation.

Further, the iterative inference process, proposed by Minerva 2’s creator and referred to
here as the echo-of-echoes process, has been shown to be a fixed point problem. It is also
an infinite-depth artificial neural network with tied parameters, and as such, is a form
of Deep Equilibrium Model (DEM) (Bai et al. 2019). This means that previous findings
relating to DEMs can be applied to the echo-of-echoes process, including the use of
well-understood and efficient algorithms to find the fixed point solutions (Hoffman &
Frankel 2018). There is also potential to train the echo-of-echoes process in the same
way as a DEM, offering up a further avenue of research.

RQ2 What exemplars should be stored in memory, and how should they be repre-
sented?

It was shown empirically in §4.4 that as exemplar set size increases, so does perfor-
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mance, albeit with diminishing returns. The exemplar set size is analogous to the
model dimension of an artificial neural network, since the exemplar features form the
parameters of the first layer.

In §4.6, it was shown that good feature representation is crucial for Minerva 2 and
the models derived from it. Two options for improving the feature representation were
demonstrated: firstly, by using a learned linear transformation to perform dimension re-
duction of the input features; and secondly, by using sophisticated pre-trained features
for the input. The first of these options both improves model performance, and also
reduces the computational complexity. The two options work particularly well in tan-
dem. Using high quality feature representation improves the performance of all models,
but also reduced the difference in performance between the simple, untrained Minerva-
R model and a trained feed-forward neural network. Feature representations for both
speech and text are constantly improving, with rapid gains having been made in recent
years. Numerous self-supervised speech representations such as Wav2vec2.0 (Baevski
et al. 2020), XLSR (Conneau et al. 2020), HuBERT (Hsu et al. 2021) and (Chen, Wang,
Chen, Wu, Liu, Chen, Li, Kanda, Yoshioka, Xiao, Wu, Zhou, Ren, Qian, Qian, Wu,
Zeng, Yu & Wei 2022) have been proposed in the past few years. Text representations
have also improved substantially, with linear representations based on word-document
frequency, such as LSA, replaced first with more sophisticated but non-context based
representations derived from deep learning, such as Word2vec Mikolov, Chen, Corrado
& Dean (2013), and then with contextual representations from BERT-based models
(Devlin et al. 2019, Song et al. 2020, Reimers & Gurevych 2019). Continuing progress
on both speech and text representations seems likely. If so, the use of simple, inter-
pretable models such as Minerva and its derivatives may become increasingly compet-
itive.

RQ3 Can an exemplar model be combined with parameters to form a hybrid exemplar-
prototype model? What benefits, if any, does this bring?

In §3.5 a family of Minerva-based models has been proposed with an increasing degree
of parameterisation, and in Chapter 4 these models have been compared against each
other other and against a baseline feed-forward neural network on three separate speech
and language tasks. Preliminary results on a sequence-based version of Minerva show
particular promise. The sequence-Minerva model is closely related to the transformer
architecture (Vaswani et al. 2017), a connection that could potentially be exploited for
further performance gains. Numerous different options are available for transformers,
including options for positional encoding (Vaswani et al. 2017, Su et al. 2024), the
addition of convolutional layers (Gulati et al. 2020), to name just two. Given the
similarities between the sequence-Minerva model and transformers, many options that
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apply to transformers might be viable for Minerva-derived models as well.

For non-sequence tasks, the Minerva-RPE model, which incorporates a learned linear
transformation and learned exemplar classes into the Minerva model, showed the most
promise. In Chapter 5, a system that includes Minerva-RPE as a key component
was described, which provides state-of-the-art performance on the Clarity Prediction
Challenge 2 task Barker et al. (2024). The system consists of a parameterised Minerva-
RPE model used in combination with a simple feed-forward classifier. The resulting
system provides the best performance seen on the CPC2 dataset, outperforming the
challenge winner by a substantial margin (Barker et al. 2024, Cuervo & Marxer 2024),
despite being a much smaller model. This is further evidence that simpler models are
competitive when used in conjunction with high-quality features.

6.2 Further work

6.2.1 Minerva initialisation

The untrained Minerva-R model is a feed-forward neural network with parameters set
directly from data, rather than being trained. Furthermore, its parameterised variant,
Minerva-RP, which incorporates a learned linear transform of the input features, also
shows high inductive bias, performing substantially better than chance at two classifi-
cation tasks prior to training. It might be possible to benefit from both Minerva’s high
inductive bias and the flexibility and power of training an artificial neural network by
backpropagation by treating Minerva as an initialisation of a feed-forward neural net-
work. This may prove an useful avenue for further research, particularly in situations
where there is limited data.

Since Minerva does not include innate scaling, this may be an area to focus on. The
output of the first layer can, depending on feature representation and exemplar set
size, result in an output orders of magnitude larger than its input. It may be possible
to account for this by a linear scaling of the layers, either mathematically, or more
practically, by using an initial minibatch of data to determine the likely gain and
account for it.

6.2.2 Echo-of-echoes and deep equilibrium models

Since the echo-of-echoes process is a form of deep equilibrium model, as shown in §3.3,
it would be interesting to to test its effectiveness on real tasks. In particular, testing
under what circumstances the exemplar classes are also fixed point outputs of the
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model, either theoretically or experimentally, would answer the question of whether
the echo-of-echoes process in it original form is fit for purpose.

6.2.3 Sequence Minerva

The sequence Minerva-RPES model shows promise on the preliminary experiments on
a TIMIT frame-based phone classification task, as shown in §4.11. These initial results
are insufficient to demonstrate effectiveness, however, and further work comparing this
model with transformers and other architectures on additional sequence tasks would
be a logical next step.

6.2.4 Adaptative exemplars

In §4.10, an option for using adaptive exemplars was tested, which was not successful.
It appears that meaningful adaptation using exemplar sets is not as simple as matching
exemplars to the inputs during training. There may be more effective ways of handling
the training, however, so that the model learns a tool for using the exemplars, rather
than using them directly as parameters. Conditional Neural Processes (Garnelo et al.
2018), for example, have been shown to condition effectively on an exemplar set, and
might provide a guide for more effective adaptive exemplars. A more intelligent method
of training the model might also yield better results, perhaps by incorporating meta-
learning, or developing loss functions specifically to target exemplar effectiveness.
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Appendix A

Hyperparameters and tuning

Models were initially trained with the hyperparameters given in Table A.1. Each
hyperparameter was then adjusted both up and down in the following way:

• the learning rate was incremented/decremented by a factor of 10

• the weight decay was incremented/decremented by a factor of 10

• dropout was incremented/decremented by a step of 0.1

• activation power was incremented/decremented by a step of 2

This resulted in a search space of 9 initial models (or 7 for models that do not use β).
If the best performing model fell at the edge of the search space (i.e. it did not use the
hyperparameters in Table A.1), then the ‘base’ value for that parameter was adjusted
to the better value, and the search was repeated. This process was repeated until the
best performing model did not fall at the edge of the search space.

Table A.1: Starting values for hyperparameter reduced grid search.

Learning Weight
Dropout β

rate decay
10−3 10−3 0.1 3

Tables A.2 to A.18 give the final hyperparameter values for all experiments reported
in Chapter 4.
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Table A.2: Tuned hyperparameter values for the TIMIT FFNN and
Minerva-RP models (Table 4.1).

Features Model
Feature Learning Weight

Dropout
transform rate decay

Mel spec
Minerva-RP

Shared 10−3 105 0.1
Separate 10−3 10−6 0.0

FFNN - 10−5 10−4 0.3

Wav2vec
Minerva-RP

Shared 10−3 10−7 0.0
Separate 10−3 10−7 0.0

FFNN - 10−5 10−5 0.5

HuBERT
Minerva-RP

Shared 10−4 10−5 0.1
Separate 10−3 10−7 0.1

FFNN - 10−4 10−6 0.7

Table A.3: Tuned hyperparameter values for the GoEmotions FFNN and
Minerva-RP models (Table 4.2).

Features Classifier
Feature Learning Weight

Dropout
transform rate decay

LSA
Minerva-RP

Shared 10−2 10−3 0.2
Separate 10−4 10−3 0.0

FFNN - 10−4 10−1 0.6

Word2vec
Minerva-RP

Shared 10−2 10−3 0.1
Separate 10−1 10−3 0.1

FFNN - 10−4 1 0.7

SBERT
Minerva-RP

Shared 10−2 10−2 0.3
Separate 10−2 10−3 0.4

FFNN - 10−4 1 0.9
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Table A.4: Tuned hyperparameter values for the CPC2 FFNN and
Minerva-RP models (Table 4.3.)

Features Classifier
Feature Learning Weight

Dropout
transform rate decay

Log spec
Minerva-RP

Shared 10−2 10−4 0.0
Separate 10−2 10−4 0.0

FFNN - 10−2 10−4 0.1

XLSR
Minerva-RP

Shared 10−2 10−4 0.0
Separate 10−2 10−4 0.0

FFNN - 10−4 10−5 0.2

Whisper
decoder Minerva-RP

Shared 10−2 10−4 0.0
Separate 10−2 10−4 0.0

FFNN - 10−3 10−3 0.0

Table A.5: Tuned hyperparameter values for the TIMIT Minerva-RPE
models (Table 4.4).

Features Classifier
Learning Weight

Dropout
rate decay

Mel Spec Minerva-RPE 10−3 10−7 0.0
Wav2vec Minerva-RPE 10−3 10−7 0.0
HuBERT Minerva-RPE 10−3 10−7 0.2

Table A.6: Tuned hyperparameter values for the GoEmotions Minerva-
RPE models (Table 4.5).

Features Classifier
Learning Weight

Dropout
rate decay

LSA Minerva-RPE 10−2 10−2 0.2
Word2vec Minerva-RPE 10−1 10−3 0.1
SBERT Minerva-RPE 10−2 10−2 0.3
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Table A.7: Tuned hyperparameter values for the CPC2 Minerva-RPE
models (Table 4.6).

Features Classifier
Learning Weight

Dropout
rate decay

Log spec Minerva-RPE 10−3 10−3 0.0
XLSR Minerva-RPE 10−3 10−3 0.0
Whisper Minerva-RPE 10−2 10−3 0.0

Table A.8: Tuned hyperparameter values for the TIMIT Minerva-RPC
and Minerva-RPCE models (Table 4.7).

Features Classifier
Learning Weight

Dropout
rate decay

Mel Spec
Minerva-RPC 10−3 10−7 0.1
Minerva-RPCE 10−3 10−6 0.0

Wav2vec
Minerva-RPC 10−2 10−7 0.0
Minerva-RPCE 10−3 10−7 0.0

HuBERT
Minerva-RPC 10−3 10−7 0.2
Minerva-RPCE 10−3 10−7 0.2

Table A.9: Tuned hyperparameter values for the GoEmotions Minerva-
RPC and Minerva-RPCE models (Table 4.8).

Features Classifier
Learning Weight

Dropout
rate decay

LSA
Minerva-RPC 10−2 10−2 0.2
Minerva-RPCE 10−2 10−3 0.3

Word2vec
Minerva-RPC 10−2 10−4 0.2
Minerva-RPCE 10−1 10−4 0.2

SBERT
Minerva-RPC 10−4 10−3 0.3
Minerva-RPCE 10−4 10−3 0.3
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Table A.10: Tuned hyperparameter values for the TIMIT Minerva-RP
and Minerva-RPC models with unfixed exemplars (Table 4.9).

Features Model
Learning Weight

Dropout
rate decay

Mel Spec
Minerva-RP 10−3 10−7 0.1
Minerva-RPC 10−3 10−7 0.0

Wav2vec
Minerva-RP 10−3 10−7 0.0
Minerva-RPC 10−3 10−7 0.0

HuBERT
Minerva-RP 10−3 10−6 0.1
Minerva-RPC 10−3 10−7 0.1

Table A.11: Tuned hyperparameter values for the GoEmotions Minerva-
RP and Minerva-RPC models with unfixed exemplars (Table 4.10).

Features Model
Learning Weight

Dropout
rate decay

LSA
Minerva-RP 10−2 10−4 0.0
Minerva-RPC 10−2 10−5 0.3

Word2vec
Minerva-RP 10−2 10−4 0.3
Minerva-RPC 10−2 10−4 0.3

SBERT
Minerva-RP 10−3 10−3 0.4
Minerva-RPC 10−3 10−1 0.3

Table A.12: Tuned hyperparameter values for the CPC2 Minerva-RP
models with unfixed exemplars (Table 4.11).

Features Model
Learning Weight

Dropout
rate decay

Log spec Minerva-RP 10−2 10−4 0.0
XLSR Minerva-RP 10−5 10−2 0.0
Whisper Minerva-RP 10−3 10−3 0.2
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Table A.13: Tuned hyperparameter values for the TIMIT Minerva-RP
models with adaptive exemplars (Table 4.12).

Features Model
Learning Weight

Dropout
rate decay

Mel Spec Minerva-RP 10−3 10−6 0.1
Wav2vec Minerva-RP 10−2 10−7 0.0
HuBERT Minerva-RP 10−3 10−6 0.1

Table A.14: Tuned hyperparameter values for the TIMIT Minerva-RPC
models with adaptive exemplars (Table 4.13).

Features Model
Learning Weight

Dropout
rate decay

Mel Spec Minerva-RP 10−3 10−6 0.0
Wav2vec Minerva-RP 10−2 10−7 0.0
HuBERT Minerva-RP 10−3 10−6 0.1

Table A.15: Tuned hyperparameter values for the CPC2 Minerva-RP
models with adaptive exemplars (Table 4.14).

Features Exemplars
Learning Weight

Dropout
rate decay

Log spec

Fixed 10−2 10−4 0.0
Unfixed 10−2 10−4 0.0
Listener adapted 10−2 10−2 0.0
System adapted 10−2 10−4 0.0

XLSR

Fixed 10−4 10−3 0.0
Unfixed 10−5 10−2 0.0
Listener adapted 10−5 10−3 0.0
System adapted 10−5 10−2 0.0

Whisper

Fixed 10−3 10−3 0.0
Unfixed 10−3 10−3 0.1
Listener adapted 10−3 10−3 0.4
System adapted 10−3 10−4 0.2



151

Table A.16: Tuned hyperparameter values for the TIMIT Minerva-RPES
models (Table 4.15).

Features Classifier
Learning Weight

Dropout
rate decay

Mel Spec Minerva-RPES 10−3 10−7 0.0
Wav2vec Minerva-RPES 10−3 10−7 0.0
HuBERT Minerva-RPES 10−3 10−7 0.4

Table A.17: Tuned hyperparameter values for the TIMIT Minerva-RPES
and transformer models with Mel spectrogram features (Table 4.16).

Exemplars Activations
FFNN + Learning Weight

Dropout
layer norm rate decay

Yes
Minerva

None 10−3 10−3 0.0
Both 10−3 10−7 0.0

scaled dot- None 10−3 10−7 0.0
product Both 10−3 10−6 0.0

No
Minerva

None 10−2 10−7 0.0
Both 10−2 10−7 0.0

scaled dot- None 10−4 10−7 0.1
product Both 10−3 10−5 0.0

FFNN - No 10−3 10−5 0.0

Table A.18: Tuned hyperparameter values for the TIMIT Minerva-RPES
and transformer models with HuBERT features (Table 4.16).

Exemplars Activations
FFNN + Learning Weight

Dropout
layer norm rate decay

Yes
Minerva

None 10−4 10−5 0.2
Both 10−3 10−6 0.3

scaled dot- None 10−3 10−6 0.2
product Both 10−3 10−7 0.4

No
Minerva

None 10−3 10−7 0.2
Both 10−3 10−7 0.2

scaled dot- None 10−4 10−6 0.2
product Both 10−3 10−3 0.1

FFNN - No 10−4 10−7 0.1
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