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Abstract

While photons have been widely explored for the development of platforms that
couple quantum objects together, there are fundamental constraints that limit their
applications. Typically, these photons populate cavities whereby supported reso-
nant frequencies are dependent on the geometry of the device, and there is little
scope offered to change this in-situ. Magnons, on the other hand, can couple to a va-
riety of subsystems such as photons and phonons and support a broad frequency
range dependent on an applied biasing field. The interaction between magnons
and phonons, parametric in nature, has been explored experimentally prior using
a sphere of yttrium-iron-garnet and a copper cavity, although the device implemen-
tation is bulky and incompatible with on-chip realisations. To this end, this thesis
examines the possibility of a “cavity-free’ realisation of parametric magnon-phonon
coupling, in which the device need not be situated within a physical cavity, rather
driven by a superconducting wave-guide. For this, magnons supported in thin films
of yttrium-iron-garnet are coupled to the phonon modes of the bulk substrates on
which it is grown to mediate coupling. This offers both a nano-scale implementa-
tion compatible with chip designs as well as the promise of a versatile device in
which substrates of a smaller mechanical damping could easily be integrated.

The theory of coupling between phonons and magnons is derived assuming that
the bulk substrate can be treated as an Euler-Bernoulli beam and that the thin mag-
netic film does not impact the elastic dynamics. Analysis finds that a single magnon-
phonon coupling rate some three to four orders of magnitude larger than that pre-
viously reported using the YIG sphere and copper cavity device setup, and that
cooperativities on the order of 100s to 1000s should be attainable using this newly
proposed device. This thesis also considers a number of bench-marking phenom-
ena to establish where the device sits in the larger landscape of coupled systems.
For a pre-cooled device at currently attainable cryogenic temperatures, accessing
the mechanical ground state should be feasible. The emergence of magnomechan-
ically induced transparency windows is also considered, and the strength of the
magnon-phonon interaction leads to behaviour of the mechanical sidebands previ-
ously unseen. Lastly, the magnon spring effect is found to permit significant spring-
hardening of the phonons almost 3 orders of magnitude larger than previously re-
ported even in the resolved-sideband regime.
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Introduction
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FIGURE 1.1: Characteristic frequencies and decay rates for various degrees of
freedom able to be coupled to spin-waves. v, k, and I are the decay rates of the
phonons, photons, and magnons, respectively [1].

Mechanical oscillators have been widely explored as a mediator between differ-
ent systems, in which a number of possible forces are exploited to couple the me-
chanical vibrations (phonons) to optical photons. Specifically, optomechanics is the
research field which explores these couplings and the effects that they can produce
[2]. Contributions to the field have been made in considering the radiation force
[3, 4, 5], the electrostatic force [6, 7], and the piezoelectric force [8, 9]. Within these
systems, however, there is often an intrinsic lack of tunability of the photons, where
supported photon frequencies are dictated by the geometry of the device with little
scope to modify this in situ.

Magnons, on the other hand, offer a promising candidate to replace photons in
devices that interact with mechanical oscillators. To this end, it is essential to have
magnons with as long a lifetime as is practical, and as many of them as is possible.
The ferrimagnet yttrium-iron-garnet, referred to as YIG in literature, is a promising
material. YIG has many magnetic properties which make it appealing for such uses
[10, 11], including it's low magnetic damping, the ability to grow high-quality single
crystal samples [12, 13], high spin-density [14], and highly pronounced non-linear
dynamics [15].



2 Chapter 1. Introduction

In superseding photons with magnons, a number of benefits may be noted. Firstly,
magnons are able to couple to a wide variety of degrees of freedom through a num-
ber of interactions as shown in Fig. 1.1, taken from Saitoh, Kikkawa and Hioki’s
contribution to the Roadmap on Spin-Wave Computing [1]. As examples, magnons
may be coupled to microwave photons via the Zeeman interaction [16], or coupled
to optical photons via the Faraday effect [17, 18]. Experimental works have shown
the strong coupling of magnons and cavity microwave photons [19, 20], leading to
significant progress in quantum information [21, 22, 23], as well as strongly cou-
pling magnons to optical photons [17]. Additionally, magnons are able to support
a rich frequency landscape and a high degree of tunability, with frequencies being
dictated simply by the strength, and direction with respect to the magnetisation, of
the biasing magnetic field [24]. Often, this is a parameter that is trivial to control in
experiments. In principle, these considerations alleviate the restrictions put forth by
photons while still retaining comparable coupling schemes, and offer a new regime
of hybrid systems to consider and explore.

Magnons may also be coupled to mechanics through the magnetoelastic inter-
action [25, 26]. In this, the strain of the lattice couples to magnetic moment sites
through their displacement as the material undergoes deformation. Most of the
work involving this interaction has been done in the resonant scheme, in which
magnons and phonons are of the same frequency. The first work to demonstrate co-
herent magnomechanical coupling in which there were parametric excitations (that
is, magnon frequencies on the order of GHz and phonons on the order of MHz)
came in 2016 from Zhang et al. [27], where coherent coupling was observed in a
magnon-photon-phonon system driven by a magnetic cavity. Since then, a number
of theoretical proposals relying on this form of interaction and experimental set-up
have followed, most notably in quantum information processing [28, 29], entangle-
ment of states [30, 31] and state squeezing [32].

There are, however, still notional improvements to be made with regards to the
implementation as proposed by Zhang et. al. Their demonstration of magnome-
chanical coupling utilised a YIG magnetic sphere of diameter 250 um, as well as
placing the YIG sphere inside an RF cavity of dimensions 4.4 x 2.1 x 0.72 cm?, giving
the device a large footprint and preventing implementations for on-chip schemes.
Further, the usage of YIG as both the magnetic and elastic medium presents a case
for potential improvements given YIG’s relatively poor mechanical Q-factor [33] by
optomechanical viewpoints [34, 35, 36]. Clearly, this leads to a need to explore al-
ternative schemes in which a magnomechanically coupled device can be both made
smaller and in such a way that the elastic dynamics may be improved, or at the
very least incorporate the scope for this. To this end, this thesis is focused on the
implementation of a physically cavity-free nano-scale magnomechanical device, in
which a YIG thin film grown on a gadolinium-gallium-garnet substrate is coupled
to a superconducting wave-guide.

Chapter 2 of this thesis introduces the theory of magnetism and of spin-wave
excitations as viewed from the Landau-Lifshitz-Gilbert equation. Chapter 3 then
introduces the important aspects of elasticity, stress, and strain, beginning with gen-
eral equations and then applying them to the geometry of cantilevers and bridges.
Chapter 4 introduces the mathematics of optomechanics pertinent to deriving a new
theory of magnomechancis, including the theory of cavities and the quantum equa-
tions of motion. Chapter 5 then introduces this theory of thin-film magnomechanics,
deriving the single and multimagnon-phonon coupling strength, go and g respec-
tively, under the assumption of a flat magnetisation mode profile. It then moves
to include higher order corrections to the theory as a result of a physically accurate
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mode profile. Chapter 6 reviews some potential applications for this new theory
and feasible attainment of ground-state cooling. Chapter 7 introduces the replace-
ment of the GGG substrate with a high-Q silicon nitride film to explore potential
improvements to the magnomechanical parameters. In Appendix A, the modes of a
transmission line are quantised from the Lagrangian of the system, and the creation
and annihilation operators for the voltage modes are derived. Appendix B presents
a brief review of the magnetic susceptibility tensor of ferromagnetics for the specific
case of an infinite thin film with anisotropy and magnetisation parallel to the sur-
face of the film. Appendix C presents a review of the magnetostatic modes of a thin
film using the susceptibility prior derived and obtains an expression for the charac-
teristic equation of the wave-vectors of the modes, and lastly Appendix D presents
the proof of the orthogonality of the Euler-Bernoulli eigenmodes required to ignore
normalisation constants in the quantum theory.



Chapter 2

Magnetism

bl

FIGURE 2.1: Pictorial representations of the magnetic moments in (a) ferromag-
netism, (b) antiferromagnetism, and (c) ferrimagnetism.

Many crystals have an ordered magnetic structure, arising from its electron con-
figuration. In such crystals and in the absence of an external magnetic field, the
average magnetic moment of (at least) an atom in each unit cell is non-zero. These
magnetic moments originate from the unpaired electron’s orbital and spin angular
momenta.

For some materials, in the absence of an external field the resultant magnetic
moments are orientated randomly due to thermal fluctuations and the material has a
net zero total magnetic moment. In being subjected to an external magnetic field, the
moments can be made to align with the direction of the field, but fundamentally the
material does not possess a net magnetic moment without this persuasion. Materials
whose unpaired electrons behave as such are said to be paramagnetic.

In some materials, there is correlation between the directions of the electron’s
spins of each atom, which is due to the principle of indistinguishability of identical
particles. From this comes the Pauli Exclusion Principle, which is stated as the wave-
function of a fermion system must be antisymmetric with respect to the interchange
of the coordinate and spin variables. This gives rise to a preferential alignment of
spins, and the dependence of the energy of a system on the magnitude of the resul-
tant spins is known as the exchange interaction. Ultimately, this is then what results
in the phenomena known as ferromagnetism.

The simplest form of magnetically ordered crystals are ferromagnets, such as Fe,
Ni, and Co [37, 38, 39, 40]. In these, the average magnetic moments are aligned
through the exchange interaction provided that temperatures of the system remain
below the Curie temperature, above which thermal disorder dominates and causes
ferromagnetic ordering to be lost. This gives rise to a spontaneous magnetisation,
even in the absence of external magnetic fields.

Conceptually the ‘opposite” of the ferromagnet are the antiferromagnets (which
includes carbonates, anhydrous sulphates, oxides, and flourides of Mn, Ni, Co, and
Fe [41, 42, 43]). In these, the magnetic moments compensate each other within the
unit cell in the absence of a magnetic field. They are described using sub-lattices,
each having a non-zero magnetic moment. In analogy to the Curie temperature of
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ferromagnets, antiferromagnetic ordering only occurs if the temperature remains
below the Néel temperature.

There are magnetically ordered crystals which consist of a number of sublattices
in which the magnetic moments are not compensated, known as ferrimagnets [44]
(named as such after ferrites [45, 46], in which ferrimagnetism is often displayed).
Ferrimagnets are like antiferromagnets in that there are sub-lattices of opposing
magnetic moments but these are not equal, and so ferrimagnets show a spontaneous
magnetisation. With regards to temperatures, ferrimagnets are only ferrimagnetic
below the Curie temperature, the same as ferromagnets.

This list is not exhaustive, rather it forms a simplistic overview of magnetism,
and Fig. 2.1 shows these forms of magnetism pictorially. More exotic forms of mag-
netism can exist which are technologically relevant, including quantum spin liquids
[47], metamagnetism [48], superparamagnetism [49], and helimagnetism [50]. This
thesis restricts itself to the consideration of ferro- and ferrimagnetism.

2.1 Coulomb exchange

To illustrate the exchange interaction, consider here a simple system of a hydrogen
molecule. The hydrogen molecule consists of two electrons interacting electrostati-
cally both with each other, as well as with the two protons. When two nuclei are at
fixed differences away from each other, the Hamiltonian for the system of electrons

must be ) )
1 1 1 1 1 1
woPtE, p(l, 1 1 1 _1_1) 1)
21Me Tap  T12  Tal Ta2 Tg1  Tp2

where p; and p; are the electron momentum operators, m. and e are the electron
mass and charge respectively, and r = 7,4 is the distance between the particles « and
B where 1 and 2 refer to the electrons and « and B are used to denote the different
nuclei. In this Hamiltonian, terms involving the momentum operators represent the
kinetic energy of the electrons, r,; and 7, the potential energy of attraction between
electrons and their associated protons, 71, the potential energy of proton-proton re-
pulsion, 7,5 the potential energy of electron-electron repulsion, and 7, and rg; the
potential energy electron-proton attraction between the counter-host proton.

The wave-function ¢ describing the system may be written as a product of spatial
and spin wave-functions

P(r101,1202) = ¢(r1,12) X (01, 02) 2.2)

where o1 and o, are projections of the electron spins on a given axis (typically con-
sidered as the z-axis of the system), and ¢ and ) are the spatial and spin parts of the
wave-function, respectively.

To satisfy the exclusion principle,  must be antisymmetric with respect to the
simultaneous interchange of the coordinates and of the spin variables of the elec-
trons. In practice, this means that an antisymmetric spatial function is associated
with a symmetric spin function, and vice versa. The function x will be symmetric
if the resultant spin S of the two electrons is equal to 1, and antisymmetric is the
resultant spin is equal to 0. The spatial function will be antisymmetric for S = 1 and
symmetric for S = 0, which are denoted ¢, and ¢s.

Assuming that the interaction is weak such that the system is in its ground state,
a wave-function compatible with the fermionic nature of electrons can be found from
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perturbation theory and approximated by

1

¢s(11,12) = W (¢(ra1)p(rp2) + p(ra2)p(xp1)), S=0

pa(r1,12) — 2(11_,” (p(ta)p(rpn) — p(re2)plrpn)), S =1

In this, it is defined ¢ (1) is the normalised wave function of the hydrogen atom
consisting of the i-th electron and the a-th nucleus, and

(2.3)

7= [ @lta)plrp) dr. (2.4)

The energies of the molecules in states corresponding to S = 1 and S = 0 are then
found as

En(r) = /¢a(r1/r2)H¢a(rlzr2) drdr,,

EN(V) = /(])s(rl, 1‘2)7‘[(]75(1‘1, 1'2) d1‘1dr2,

where 11 and 1 correspond to S = 1 and S = 0, respectively. Substituting for ¢,
and ¢s, the energies of each of these states then can be expressed as

(2.5)

_ A(r) = B(r) _ A(r) +B(r)
En() == =2 En() == (2.6)
where it is defined
Alr) = [ U9 ()¢ (x52) drrciny, 2.7)
B(r) = / U (1) (21 )b (1) b (1) iy, 2.8)
u:e2<1+1+1+1). (2.9)
ro Tz ta2 g1

In the expressions for E the terms independent of r have been omitted as represent-
ing the energy of two atoms of hydrogen at an infinite distance from each other.

The term A(r) represents the electrostatic interaction energy of the two atoms on
the assumption that each electron is rigidly fixed to one of the other nuclei. The term
B(r) represents the exchange energy, in which the consideration is that in one state
electron 1 'belongs’ to nuclei a and electron 2 "belongs’ to nuclei B, and in the other
state it is vice versa.

An important aspect of the exchange energy is that is falls of dramatically (in
fact, exponentially) with increasing distance between nuclei due to containing an
overlap of ¢(1,;) and ¢(r4;), and this overlap falls off rapidly with increasing . This
consideration shows clearly that there is a purely quantum-mechanical interaction
of electron exchange which leads to an effective interaction between atoms that is
highly sensitive to the spins when only the Coulomb interaction and particle indis-
tinguishability are considered

For a negative exchange energy (i.e. B(r) < 0), then the state with S = 0 has
a lower energy than that of the S = 1 state and is established as a preferable state.
In ferromagnets, however, the exchange energy is positive (B(r) > 0) and the state
with S = 1 has lower energy than that of the S = 0 state such that the spins of all
atoms of a ferromagnet in the ground state are preferentially parallel.
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It is often convenient to introduce the operator relating the electron spin opera-
tors s; and s; via the Hamiltonian

H=—Ts1-sp+ E(r) (2.10)

where J and E are both functions of r and are chosen such that the eigenvalues of
the operator H are equal to E4+(r) and E;(r). Noting that s; s, = 1(s1 +82)* —
1(s? + s3) which may then be further expressed as 35(S + 1) — 3 has eigenvalues of
—% for S = 0 and % for S = 1, these functions are set to

J = Ep(r) = En(1), (2.11)
E(r) = 3Ew(r) + 3E4,(r), (2.12)

correspond to the exchange energy and the mean energy. This Hamiltonian is the
exchange Hamiltonian for electrons and is denoted

He = —jsl + So. (213)

There is a maximum temperature in ferromagnets known as the Curie tempera-
ture, often denoted T, above which ferromagnets will no longer exhibit ferromag-
netic behaviour and transition to paramagnetic behaviour. There are a number of
factors which contribute to the Curie temperature, but the most fundamental of
them is that the thermal energy cannot exceed the exchange energy, else the parallel
alignment of spins becomes no longer preferential. The problem was first consid-
ered by Weiss [51], in which he introduced a constant (known as the Weiss constant,
nw), which described the constant of proportionality between the internal ‘molecu-
lar field’, and the magnetisation of the ferromagnet. The Curie temperature is then
expressed as [52]
pongeps/(J +1)

3kg

where 7 is the number of magnetic atoms per unit volume, | is the total angular
momentum, g is the Landé g-factor, yp is the Bohr magneton, y is the permeability
of free space, kg is the Boltzmann constant, and C is known as the Curie constant
and is a property of the material.

TC = ch = nw (214)

2.2 Exchange energy of a ferromagnet

In order to find the Hamiltonian for a ferromagnet, there are a number of assump-
tions made to simplify the mathematical form. First, any relativistic interactions are
neglected, and the initial Hamiltonian is assumed to contain only the Coulomb inter-
action energy between electrons and between electrons and nuclei, and the kinetic
energy of any particles. It is then assumed that the crystal is formed similar to the
hydrogen molecule, in that it consists of individual atoms, each of which contains a
single electron in it’s ground state, and that all atoms in the ferromagnet have spins
s = 1/2. With these considerations, the prior Hamiltonian in Eq. 2.13 may be used to
find an approximate energy of the ferromagnetic crystal. It is also assumed that the
correct representation of a ferromagnet near it’s ground state is obtained as a sum of
the exchange Hamiltonian for all pairs of atoms, expressed as

1
He = —5 Z j(le)Sl *Sm (2.15)
2 I#£m
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l rlm

FIGURE 2.2: Two magnetic moments in consideration in the ferromagnetic
lattice.

where | and m denote the I-th and m-th lattice sites, and J(R;,,) is a function of
the radius vector Rj,, between the two sites, only of appreciable size for adjacent
lattice sites. For a ferromagnet, this function is taken to be positive (i.e 7 (Ry;,) > 0).
Finally, it is then extrapolated that this Hamiltonian is not only valid for s = 1/2, but
for arbitrary atomic spins.

As the exchange integral falls off rapidly with atom separation, the sum across all
pairs can be reduced to that of nearest neighbours only. Each lattice site is assumed
to be a centre of symmetry, such that the exchange integral between pairs of nearest
neighbours is symmetric, and hence is reduced to a constant 7 (R;;,) = J. Taking
a semiclassical consideration of the Hamiltonian, as the structure is considered near
it’s ground-state, the angle of alignment between nearest neighbour spins must be
small (¢, << 1 for all I and m). With these in mind, a simple swap of the dot
product in the Hamiltonian to the form in which the angle of alignment is considered
can be employed;

He = —1352 Y cos(¢pm).- (2.16)
2 1#m

Then, with the small angle expansion for cos(¢) the Hamiltonian can be written as

2
HomHo— 22 Y 4, 17)
I#m

Here, the term H refers to the energy of the fully aligned state and can be neglected
as an arbitrary constant. For small deflections in the angle of alignment between
moments (the reader is referred to Fig. 2.2), one can apply the small angle approxi-
mation for the arc of a circle. Considering now the spins as magnetic moments (and
in ignoring relativistic effects the interchange of the two presents no issues), it is
found

M; - M,

o =g = M= M. (2.18)

As the exchange integral has been assumed to fall off rapidly with distance between
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sites, an expansion of a vector in powers of x; — x}, where summation is implied over
the coordinates i = x, y, z. To first order in the term |M; — M,,| [53], one finds

M) — My| = |(Ry,,. V)M (2.19)
The Hamiltonian found in Eq. 2.15 may then be expressed as

178
2 2 (Zm

e [(Ry. V)MJ?, (2.20)

where the static energy term associated with the fully aligned state o has now been
neglected. Finally, replacing summation with integration over the ferromagnetic
body and assuming cubic symmetry, one finds for the exchange energy

Eo— / wedV (2.21)
v
where the energy density is
1 /aM\?
We = E“ex (axl > (2.22)

with aey defined as aey = ‘72552 for z nearest neighbours in a unit cell of side length a.

An alternative but equivalent treatment follows from the consideration of the
magnetic moment density operator [54]. In this procedure, for a generic structure
in which each lattice site is a centre of symmetry the energy density, the energy is

expressed as

1, MM
T2, 9xy

where summation notation is implied over repeat indices. Under cubic symmetry,
there exists the reduction «a,;, = exdy, and the expression derived in Eq. 2.22 above
is recovered.

In general, contributions to the effective field which acts upon the magnetisation
can be found as the function derivative of the associated energy density with respect
to the magnetisation [54]. The exchange energy density then yields the exchange
field as

We (2.23)

Heyx = aex VM. (2.24)

2.3 Demagnetisation

When a ferromagnetic body of finite size is magnetised by an external magnetic field,
free poles are formed on the ends. These free poles act to produce an associated
magnetic field opposing the magnetisation, known as the demagnetising field and
often denoted Hy. The strength of the demagnetising field is proportional to the free
pole density, and in turn the magnetisation.

In considering a uniformly magnetised ferromagnet [54, 55], the demagnetising
field inside the ferromagnet may be expressed as

Hy = —47N(r) - M (2.25)
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where N(r), known as the demagnetisation tensor, is given by

1 02 dr’
Nik(r) = 471 9x;0x /v r—r| (2.26)

In general, the demagnetisation field is not uniform. However, for a ferromagnet of
the form of an arbitrary ellipsoidal shape and of constant magnetisation, the field
inside the ellipsoid will be uniform. Assuming that a coordinate system is aligned
with the major axes, denoted 4, b, ¢, of an ellipsoid the demagnetisation tensor is
diagonalised and has only diagonal elements.

For a sphere, these semi-axis are equal and the demagnetisation tensor compo-
nents then take the convenient analytic form

Ni=1/3, N;=1/3, N3=1/3. (2.27)

For a prolate ellipsoid of revolution, in which the rationalised coordinates satisfy
(x%/a?) + (y*> +22)/b*> = 1 and a > b, then the demagnetisation tensor coefficients
take the analytic form

1—e? [ 1+e 1 vflﬂ
Ny = 23 <ln1_e—2e), NZ—N3—§(1—N1), e= 1—;, (2.28)

Lastly, for an oblate ellipsoid, in which rationalised coordinates satisfy (x* +?)/a® +
z2/c®> = 1and a > ¢, then the demagnetisation tensor coefficients take the analytic
form

1 1- e 2
= E(l —N;3), N3= ¢ (e —arctane), e= 71 (2.29)

Ny = N >

o3
These geometries form the only exact analytic reductions for the demagnetisation
tensor, although some geometries may be approximated as limits of these geome-
tries. The cylinder is well-approximated as a limit of the prolate ellipsoid for which
a >> b, finding for the demagnetisation tensor coefficients

N; =0, N, =1/2, N3 =1/2, (2.30)

within the bulk of the cylinder. Likewise, the thin plate is well-approximated as a
limit of the oblate ellipsoid for which 4,b >> ¢, finding for the demagnetisation
tensor coefficients

N; =0, N> =0, N; =1, (2.31)

well within the bulk of the plate.

When the external field is uniform and the body has the form of an ellipsoid,
then the field and the magnetisation inside the body will also be uniform. The re-
lationship between the magnetic field inside the body H; and the magnetisation M
and external field H, is then of form

H; =Hy +H. = H. — 47N - M. (2.32)

One can find the approximate error associated with the assumption of limiting
geometry by using an approximation that the demagnetisation tensor scales linearly
with distance from the source [56, 57]. For a film magnetised uniformly along the
z-axis, N is proportional to 1/Ly, such that N, = Ny/Ly, for some proportionality
constant Ny. Assuming for the other components also this same relation, the system
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of components can be expressed as

N, N, N,
Ny = 22, N, = =2, N, = 2. (2.33)
tm Wm Lm
With N, + Ny, + N, = 1 and performing the algebra, the proportionality constant is
expressed as
_ LnwWmtm
"~ tm (L + Wm) + Lnwm

The "approximate’ behaviour of the demagnetisation tensor components in their ap-
plication to a (nearly) valid assumption of a thin plate may be deduced as

No (2.34)

N. — Lnwm
Yt (Ln + Wm) + Lnwm”
Lintm
N, = , 2.
" tm (L + Wm) + LnWm (2.35)
N, = Wmtm

~ tm (Ln + Wm) + Lnwm

It can readily be shown that in the limit Ly, wm >> tn, the demagnetisation coeffi-
cients in Eq. 2.31 are recovered.

24 Anisotropy

Most ferromagnets are characterised by a magnetocrystalline anisotropy, where the
preferred directions for the magnetisation coincide with the crystallographic axes,
and hence the anisotropy energy depends on the angles of the magnetisation with
these directions. In addition to this, there is also magnetoelastic anisotropy, in which
preferred directions are established with regards to the directions of external me-
chanical stresses. There is also shape anisotropy, in which there is a dependence on
the orientation of the magnetisation with respect to some ellipsoidal axes due to the
demagnetisation tensor, as seen in Sec. 2.3. There are further forms of anisotropy
(for example, thermal anisotropy from temperature gradients), but these are of little
concern to our purposes and play (very) minor roles in the descriptions to follow.

Magnetocrystalline anisotropy

Magnetocrystalline anisotropy is relativistic in nature, resulting from purely mag-
netic dipole interactions between the magnetic moments of atoms and the interac-
tion between the magnetic moments and the electric field of the crystal (known as
spin-orbit coupling). The symmetry of the anisotropy is dependent on the crystal
symmetry. For a cubic crystal, the magnetocrystalline anisotropy energy density can
be expressed in terms of the directional cosines a1, ap, a3 of the magnetisation vector
relative to cube edges. Given the cubic symmetry, the expression must be an even
power of each a; and invariant under changes of «; among themselves [58]. The
lowest order of these requirements is the expression of second degree: a? + a3 + a3,
which is trivially 1 by definition. The next form is of fourth degree, having form
a3ad + a2a3 + a?a3. The next term is of sixth degree, having form a%a3a3, and the
pattern follows forward. The magnetocrystalline antistropy energy density, Uy, is
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then of the form
Uy = Ko + Ki (a3a3 + a2a3 + a3a3) + Kaadada3 + ... (2.36)

Very generally, the fourth degree is as high as required for simplistic considerations.
As such, for cubic crystals the anisotropy energy density can be simplified to

Uk = Ky (e + afad + a3a3) (2.37)

where the constant term is neglected as an off-set.

In determining the preferential directions, the sign of the prefactor K; is the de-
ciding factor. For a value K; > 0, the easy axes are aligned with the cube edges and
the hard axes are along the cube diagonals. For the reverse case of K; < 0, the easy
axes are aligned with the cube diagonals and the hard axes are along the cube edges.

Shape anisotropy

It was seen in Sec. 2.3 that the demagnetisation tensor is a convenient representa-
tion of the magnetostatic field under the assumption of ellipsoidal geometry where
the internal magnetisation may be regarded as uniform. There is still, however, an
anisotropy that is dependent on the geometry of the material and originates from
this demagnetisation interaction. The internal fields may be split into two compo-
nents [59]

H;(r) = He(r) + Hy(r)

Bi(r) = Be(r) + By(r)

for an applied field He and demagnetisation field Hyq. The two demagnetising fields
are related by the integral [59]

(2.38)

/ By -Hydt =0 (2.39)
all space

where d is used to signify the integration is taken over all space. If an applied field
is not present, the energy of the demagnetisation field is the integral over all space
of the energy density Hq/87, finding

1 1
Fa=g- [  Hidr— [ (By—47M) Hydr
d 87T Jall space d 87 allspace( d ) d
1
= —= M- Hd dt
2 all space
1
— / M- HydV (2.40)
2)v

where one uses the result fall space By - Hydt = 0, and to restrict the last line to the
volume of the ferromagnetic body it is noted that there is no magnetisation outside

of the ferromagnetic body.
Magnetoelastic anisotropy

Coupling between magnetic and elastic systems exists as the intermolecular inter-
actions depend on the distances between atoms (or ions). As such, when a system
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undergoes deformation these distances marginally change and these forces are com-
pensated accordingly. With this in mind, one can write a phenomenological expres-
sion from the considerations of symmetry, in particular limited to the case where the
crystal is cubic.

To then find the dependence of the magnetocrystalline anisotropy energy on me-
chanical strains, an expansion of Eq. 2.36 may be performed under the assumption
that the strains are small finding

U,
U= (Ux)y+ Y. <aulj<> Ui+ ey (2.41)
i,j 0

which implicitly assumes that the directional cosines and the crystal lattice share the
same basis and the notation (...), denotes evaluation at the point in which there is
no strain. The partial differentials are then found as

aUK/auxx = Bloc%, auK/auxy = leX10€2,
E)LIK/auW = Bloc%, aUK/auyZ = leXzD(g,, (2.42)
BUK/auZZ = Bloc%, BUK/auxz = BQDC1DC3.

where By and B; are constants known as the magnetoelastic coupling constants. One
then finds
U = Ki(afaj + a503 + afa3)

JAe O (243)
+ By (0‘1”xx + Ko Uyy + 0‘3”22) + 2B2(“10‘2uxy + a3y + 0‘2“3uyz)

where the factor of two arises from symmetry. The magnetoelastic energy density is
identified as

2 2 2
Ume = By (m5uyy + My tyy + M)

+ 2By (mytytiyy + Myt + mymsu,;).  (2.44)

where one makes use of the definition of the direction cosines and the expression is
given in terms of the normalised magnetisation m; = M;/Ms

2.5 Magnetisation dynamics

The classical dynamics of magnetisation are governed by the precession of magnetic
moments. Magnetic moments preferentially want to align with an effective field,
H.¢, determined by the contributions to the magnetic free energy as

Heff =H,+ Hd + Hext + Hexe (245)

where Hj is the total anisotropy field contribution, Hq is the demagnetisation field
contribution, Hey is the external applied field contribution (often called the Zeeman
field or the bias field), and Hey is the exchange field contribution. Other contribu-
tions to the effective field exist, but the contributions above are the dominant ones.
Landau and Lifshitz proposed an equation for describing these dynamics [60],
referred to as the LL equation, or the LLG equation when the influence of damp-
ing is included [61]. In essence, this equation represents a torque exerted on the
magnetic moments by a field Hg¢, which in turn induces precessional motion about
the effective field. Gilbert added a damping term to this, which acts to provide a
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life-time of the oscillations. In full, the equation reads as

oM o oM
W = —')/gM X Heff + MS (MX 8t> (246)

where 7, is the electron gyromagnetic ratio and & is a dimensionless factor known
as the Gilbert damping parameter. For materials in which a« = 0, then precessional
motion is maintained indefinitely.

Solutions to the LLG offer resonant precessional modes for of the magnetisation
of a material at frequencies wm(k), where k is the wave-vector of the mode; this
phenomena is known as ferromagnetic resonance (FMR). The classical description
of this resonance was put forth by Kittel [62, 63], stemming from observations of
Griffiths [64] in which resonance of values higher than the Larmor frequency was
observed. Kittel solved the LL equation for analytic geometries under the assump-
tion of an applied radio-frequency field for the lowest order wave-vector (a station-
ary mode) and in which there was no damping. In this, the macrospin approach
was adopted, ), m; = M, for which all magnetic moments are assumed to precess in
phase. Precessional motion frequencies were then identified by wm = ygHesr, where
H,g is (H[H + 47tM]) "2 for a film geometry, H + 27tM for a long cylinder of circular
cross-section, and H for a sphere.

An alternative treatment of FMR involves a quantum description, in which there
is a separation of the electron energies due to the Zeeman interaction. If the RF pho-
tons have an energy that matches the splitting within the broadening of the mode
frequency, then there is excitation from the low energy state to the high energy state
and resonance occurs. This resonance occurs for a time proportional to the Gilbert
damping, and after this time the RF photon is remitted, allowing the spins to relax
back into their ground state [65].

The Kittel mode of a thin film

The geometry of interest for the magnetic structure considered within this thesis is
proposed here, consisting of an infinite thin film of which the lowest-order ferro-
magnetic resonant frequency (the Kittel mode) is of interest. A magnetic structure
of dimensions Ly, Wm >> tm as the length, width and thickness, is assumed, and
the surface and thickness of the structure is taken to be parallel to the y — z plane
and x axis, respectively. The structure is subjected to a bias field He = H¢Z along
it’s length, sufficiently large to saturate the magnet fully along the z-axis. Associ-
ated with this magnetisation is a demagnetisation field Hy, and an exchange field
Heyc as derived in Eq. 2.24. This coordinate system, structure, and it’s magnetisation
scheme is depicted in Fig 2.3. Contributions to the magnetocrystalline anistropy are
known to be weak in YIG and is neglected from the Kittel mode description - should
this be required, then assuming an easy axis alignment coinciding with the applied
field and an appropriate redefinition of the Zeeman field can be used to recover the
correct expression. The influence of damping is also not considered, although this
does not present a modification to the resonant frequency, only it’s line-width. With
these fields, the effective field may be expressed as

Hu = He + ey VM — 471N - M. (2.47)

When the ferromagnetic body is at saturation, the magnetisation of the preces-
sional mode may be thought of as a static saturation component augmented with
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FIGURE 2.3: Orientation of the magnetic thin film. Here, He and Hy, are the
applied bias field and the associated demagnetisation field, respectively.

some small fluctuations about it. As the magnitude of the magnetisation vector is
preserved (ie. |m| = 1), then for a structure saturated along it’s length in the Z direc-
tion, one can adopt this description to find

im|® ~ (2+6m) - (24 6m) = 1. (2.48)
Note that such a description implicitly assumes [0M| << M;s to consider a static

saturation magnetisation which is true for small driving magnetic fields. This can
further be approximated for small fluctuations as

S, = \/1 — (6m2 +om2) — 1. (2.49)

Expanded to first order in the small fluctuations then finds, an expression can be
deduced for the z-component of the fluctuations

~ 1 2 2
om ~ = ((5mx n 5my> : (2.50)

Contributions to the fluctuations of the magnetisation from dm, are then second or-
der, and it can be assumed that oscillations of the magnetisation for the lowest order
mode occur in the plane perpendicular to the applied field. The magnetisation of
the mode, dependent on position r and time ¢, may be written

m(r,t) =2+ om(r, t). (2.51)

The linearised LL equation (which is to say that terms only first order in time are
retained) can then be expressed in this reduced magnetisation as

Jém

—. = “s(&x (2exMsV20m — 4rMN - 6m) + 6m x (He — 47N -2)).  (2.52)

So far, the above expression is completely general for any geometry where magne-
tocrystalline anisotropy may be neglected with a saturating field along the length of
a magnetised structure. The assumption made for the Kittel mode is that oscillations
of the magnetisation are homogeneous, such that the magnitude of fluctuations are
not dependent on position within the film. This reduces dm(r, t) = ém(t). To lowest
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order in the small fluctuations, this spatially homogeneous Kittel mode is expressed
m(t) = 2+ (0my(t),0my(t),0) . (2.53)

In order to solve the linearised Landau-Lifshitz equation, eigenmode solutions
are sought in which time dependence is taken as harmonic o« exp (—iwmt), forming
the Kittel mode description as

om(t) = (6my, omy,0) e~ iwmt (2.54)
Upon direct substitution into Eq. 2.52, the equation
iwmdm = yq (£ X —4TMsdmy % + dm x H,Z) (2.55)

is yielded, where the exchange field does not contribute to the Kittel mode dynamics
due to the spatial homogeneity of the mode. This may then be expressed as two
equations in the components dm, and dm,,:

W OMy = Yo Hoom,y,
o mOT = T tedly (2.56)
iwmdmy = —yg (4710my + Hedmy) .

Solving these equations for wp,, one finds the expression for the Kittel mode angular
frequency [24]

Wm = 7g\/ He (He +4M,). (2.57)

Equally, the polarisation of the Kittel mode is found by substitution of this frequency
into the component expressions, yielding

(6my, 6m,) o <1,i 1+ 47;MS> (2.58)
e

which represents oscillations of ém, and ém,, 71/2 out of phase with each other, and
with ém, having a larger magnitude. This produces an elliptical polarisation as one
would expect for an infinite thin flm; as dm, increases, there is an associated demag-
netisation field that acts to squash this component that ém, does not experience due
to geometry.

Resonance is characterised by a line-width of the mode, often referred to as the
decay rate. While oscillations have a preferential resonant frequency to be driven
at, energy losses of the mode due to damping lead to a Lorentzian profile for which
line-widths are larger when energy losses are larger. In the analogy of an oscillating
mass on a spring, the line-width is determined by a viscous damping factor related
to the density of the medium through which these oscillations occur. The larger this
damping factor, the wider the line-width and energy losses in undergoing oscilla-
tions leading to short lifetimes of modes [66]. Mathematically, one expresses this
as

w
Q=4 (2.59)

In the case of magnetic media, the line-width of the ferromagnetic resonant mode is
related to the Gilbert damping which can be considered as an effective Q—factor. As
such, the decay rate of the magnon mode may be approximated using

Km = XWp. (2.60)
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For the low damping material YIG and considering typical ferromagnetic resonance
frequencies (on the order of a few to tens of GHz), rudimentary estimates suggest
decay rates on the order of 10° — 10” Hz.
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Chapter 3

Elasticity

The study of acoustic waves and vibrations has been of interest for hundreds of
years, beginning first with their applications to music. Pythagoras, a notable lyre
player, studied the relation between length of strings of a lyre and their pitch under
constant tension in the 6th Century BCE. In the late 1500s, Galileo’s father, Vincenzo
Galilei, described what lute players at the time already knew; that the pitch of a
stretched string is not only dependent on it’s length, but also on the mass density of
the string. Marin Marsenne was then the first to publish this information as a for-
mula in Harmonie Universelle ', but couldn’t explain the origin of overtunes as math-
ematicians at the time lacked the knowledge that a string can support shorter waves
than the one that is the full length of the string. Another notable achievement came
from Robert Hooke in 1678, when he formulated the proportionality between stress
and strain in elastic bodies, a law which is now known as Hooke’s law. In 1744 and
1751, Leonard Euler and Daniel Bernoulli, respectively, developed equations for the
vibrations of beams, a theory known as Euler-Bernoulli beam theory, and presented
a major contribution not only to the theory of elasticity, but also to architecture, and
forms the basis of elasticity that is required for this thesis - that is, elasticity applied
to a specific geometry of a beam. These equations break down at high frequency,
where predicted eigenmodes are seen to be unbounded and deviate from what ob-
served frequencies of beams [67]. Other contributions for beam geometry came in
the late 1800s from Rayleigh [68] in investigating the propagation of elastic waves
along an elastic surface, whereby he considered the addition of rotary-inertia effects.
This theory predicted that the frequency of eigenmodes should be bounded, but still
over-predicted the observed frequencies. The last major contribution came in the
1900s from Timoshenko [69, 70], whereby his beam theory included the additional
of shear deformations. This theory offers the most accurate frequencies a general
mathematical model has obtained to date as compared to the exact solutions [71],
and only falls short of applying finite element analysis to the general structure itself
[72].

While the Rayleigh theory and Timoshenko theory offer increasingly more accu-
rate results as compared to the Euler-Bernoulli beam theory [73], the Euler-Bernoulli
theory is perfectly valid under certain approximations. The dispersion relation for
cylindrical bars from general elasticity was given by Bancroft [74], and Hudson [75]
carried out the necessary computations to show how the phase velocity of flexural
waves depends on the ratio between their wavelength and the radius of the cylinder.
For Euler-Bernoulli beam theory, the phase velocity of a circular rod of diameter a

may be expressed as .
C=rm (3.1)

IMersenne, Marin (1636) Harnonie Universelle
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FIGURE 3.1: Dispersion relations from the Euler-Bernoulli, Rayleigh, Timon-
shenko beam theories alongside the solutions obtained by the theory of linear
elasticity [67].

where it is defined ¢ = ¢/ (E/p)% and k = ak/27, with E as the Young’s modulus and
p the density. While this gives a dispersion that is unbounded (and hence cannot be
physical), it still proves an accurate theory provided that k < 0.1, or equivalently
ka << 1 for some characteristic length a in the cross-section which will vary de-
pending on the geometry of said cross-section. It is shown in Fig. 3.1 the dispersion
relations as compared to the calculations of Bancroft and Hudson pertaining to a
circular rod of diameter @ which demonstrates the good agreement for small wave-
vector dimension products.

Considered in this Chapter are the concepts of stress and strain, and their appli-
cations to the bending of beams; that is, structures in which the widths and thick-
nesses of the cross-section are much less than the length of the structure. Elasticity
is also framed within the context of crystal structures, for which, like magnetism,
variations in elastic parameters exist dependent on the angles made with the crystal
structure. Lastly, the Euler-Bernoulli beam equation is derived, and its eigenmodes
are solved for specific boundary conditions represented the cases of cantilevers and
bridges.

3.1 Strain, stress, and Hooke’s law

Materials exist in which, when an applied force acts on the solid body, deformation
occurs to some extent. The extent to which deformation occurs depends not only on
the elastic character of the body, but also on the magnitude of the force applied. With
this deformation comes an associated change in the shape of the body, as well as the
volume of it. The position of a point inside the body in a Cartesian coordinate system
is described by a radius vector from an origin, consisting of three components

r = (x1,x2,X3). (3.2)
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When a solid body undergoes a deformation every point, in general, is subsequently
displaced by an amount. Considered is a particular point, for which it is denoted the
radius vector prior to deformation as r, with the radius vector after deformation de-
noted as r’ with associated coordinates xl/- . Then, the displacement of this particular
point is defined by the vector t' — r, denoted by u, where

u; = x; — x;. (3.3)

The vector u is called the displacement vector. The coordinates x/ are a function of
the coordinates x;, and so the vector u is also a function of the coordinates x;. If u is
given as a function of x; then the deformation is entirely determined.

When a solid body undergoes deformation, the distances between points prior to
and post deformation evidently change. Considering two points close together such
that the total derivative is the best approximation, then the radius vector joining
them before deformation is dx; and likewise after deformation is dx; = dx + du;.
The distance between two points in consideration is then, prior to deformation,

dl = 1/dxd + dx} + dx3 (3.4)

and, after deformation,
f= \Jda? o da? + da (3.5)
Implying summation over like indices, it is defined d!/ 2 — dxlz, dI? = dx = (dx; +

du;)?. On substituting for the total derivative du; = (du;/dx;)dxy, the dlsplacement
after deformation is given by

ou; ou; oi 4

dI"”? = (dx; +du;)? = dI* + Za—dx idxg + =— 9%, 91,
Xk

a kdxl (36)

As summation in the second term is over i and k, it can be interchanged (9u; / 9uy )dx;dx; =
(Quy /9u;)dx;dx; without loss of generality. Likewise, in the third term interchange
of i and [ is performed, such that

dI”? = dI? + 2udx;dx (3.7)

where the tensor u;; is defined as

_ 1 aui auk aul aul
Uik = E (axk + T + = axl BXk) (3-8)

These expressions give the change in length of an element of length when a solid
body is deformed.
The tensor u; is known as the strain tensor, and is symmetrical

Uik = Ui (3.9)
from its definition by writing
ou; ou; auk
2<ax >d xidxy = <a X ax,)ddek (3.10)

As with any symmetrical tensor, it can be diagonalised. The resulting axes are then
the principle axes of the tensor, often taken to coincide with the principle axes of
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geometry (for example, the axes of a cuboid).

For almost all cases, it can be seen that strains are small. Changes in distances
within a body are generally always small compared to the distance itself, and relative
extensions are small compared to unity. If a body undergoes small deflections, then
the components of the strain tensor are small by extension. There are, however, cases
that exist in which the displacement vector may be large relative to the distance even
for small strains. One such example is that of a thin rod, in which the deflection of
the free can be large even though the extension and compression within piece-wise
elements of the rod is small. Another example of note where this idea also occurs
is in thin plates where the same idea applies. As for the vast majority of cases the
displacement vector is small for small deformations, the last term in Eq. 3.8 may be
neglected as being second order in the small parameter u;, giving the expression

1 aui auk
r==(—+ ==, 11
Wik 2 <8xk + axi> (3 1 )

which is often what is given as the strain tensor rather than it’s full expression.

When deformation is absent from a solid body, the arrangement of molecules
within the body corresponds to that which is in a thermal equilibrium state. Consid-
ering an element of that body, then the net sum of the forces acting on that element
must be zero. In undergoing deformation, the equilibrium state is disturbed, and
forces arise which act to restore the body back to it’s equilibrium state. These are
known as internal stresses, and are the result of interaction forces between molecules.
The effect of these forces is considered to only extend as far as the distance which
separates molecules. In the theory of elasticity, however, the distances considered
are much greater than that of molecular ones. These molecular forces are therefore
‘near-action’ forces which act only on neighbouring points. Hence, it follows that
the forces exerted on elements of a body from neighbouring elements act only on
the surface of said element.

Considered here is the force acting on an element of the body. The total force is
the sum of all the forces acting on the volume element, and can be written as the
volume integral

Frot = / FdV (3.12)

where F is the force per unit volume. The forces from portions of the volume ele-
ment which act on each other must cancel, and so the total force can be regarded
as the sum of the forces exerted on the volume element from surrounding volume
elements. It has been noted, however, that these forces act on the surface of the el-
ement, and so the integral can be represented as an integral over the surface. Each
component of [ F;dV of the internal stresses may then be transformed into surface
integrals. To do so, it must be the case that F; is the divergence of a tensor of rank
two in the form of

_ do

F = .
: axk

(3.13)

The force on any volume can then be written as an integral over a closed surface

/ FdV = / ik gy — 74 odny (3.14)
axk

where dn; are the components of the surface element vector directed along the out-
ward normal.
In analogy with the strain tensor, o is known as the stress tensor. As shown
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from Eq. 3.14, ojny is the i-th component of the force on the surface element dn.
The component o of the stress tensor is the i-th component of the force on the unit
area perpendicular to the x;-axis. To illustrate this, the force on the unit area perpen-
dicular to the x-axis normal to the area is 0y, and the tangential forces are 0y, and
Ozx

The moment of the force F can be written in component form as F;x; — Frx; where
x; are the coordinates of the point of application of the force. The moment of forces
on the whole volume is then

Mm:/uﬂr4mgdv (3.15)

where (Fx; — Fex;)dV defines the moment of forces on a volume element. Substi-
tuting for Eq. 3.13 and utilising the product rule, it is found

B 90 3<Tkl (Tirxk — oxp) / oxy ox;

M = / ( ox; T ax, dv = / dx; Ti5x, ox; ~ 0x;
(3.16)
For the second term dxy/0dx; = Jy;. The first term may also be turned into an integral

over a surface, such that

M = ]{ (oirxx — ogx;) dny + / (0% — o) AV (3.17)

For My to be a surface integral only as required by it’s definition, then the second
integral must vanish which requires that

Tjie = O;. (318)

Hence, the stress tensor is also symmetrical. For arbitrary deformation, it is not the
case that the non-diagonal terms are zero. Not only is there normal forces, but there
is also shearing (tangential) forces which move elements relative to each other.

Let P be the external force on unit area of the surface of body, such that Pdn
acts on the surface element dn. For equilibrium to hold, this must be balanced by
the internal stresses cjdny acting on that element. Thus P;dn — oy dn, = 0. With
dny = nidn for n is a unit vector outward normal to the surface, it is found

oixng = P; (3.19)

which must be satisfied at every point on the surface of a body in equilibrium.
In considering the symmetry of the free energy density as a function of the strain
tensor [76], the lowest order form is must posses is given by the expression

1
UG+ pud, (3.20)

F=F
0+2

where the quantities A and y are called Lamé coefficients, and are given with units
of Pascals.

The change in volume of a solid body from a deformation is given by the sum of
the diagonal components of the strain tensor, u;;. If this sum is zero, then the volume
of the body is unchanged and only it’s shape is altered. This type of deformation is
called a pure shear deformation. On the other hand, there exists deformations which
cause changes in volume of a body, but leave it’s shape unchanged. Such a deforma-
tion is represented by u;, = constant x Jj, and is called hydrostatic compression. Any
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deformation may be represented by a sum of pure shear and hydrostatic compres-
sion, such that the components of the strain tensor may be expressed as

wie = (i — 30uun) + 30y (3.21)

In this, the first term is a pure shear term as the sum of it’s diagonal components is
zero. The second term is then a hydrostatic compression term.

It is convenient to replace Eq. 3.20 using this representation of pure shear and
hydrostatic compression. Substituting for Eq. 3.21 into Eq. 3.20, one may obtain

2
F=u (I/ll'k - %(51'](1/[”) + %Kulzl (3.22)

where the constant term F from the free energy density is neglected. The quantities
K and u are known as the bulk modulus (or modulus of compression) and the shear
modulus (or modulus of rigidity), respectively. The Lamé coefficients are recovered
from K by

K=A+ %y. (3.23)

The total derivative of the free energy density with respect to the strain tensor
components is expressed as

dF = Kuyduy 4 2p (e — 3updi) d(u — 3undic).- (3.24)

In the second term of this, multiplication of the first parenthesis by J; gives zero
(note that it reduces to uj;; — 1), and so the expression may be simplified to

dF = [Kulldik +2u (uik - %u”&'k)] du (3.25)

where it is written duj; = ;. dujy.
In considering the thermodynamics of an elastic body at equilibrium [76], the
stress tensor can be related to the free energy density via the relation

on= (3 - (326)
T

auik

Hence, an expression for the stress tensor in terms of the strain tensor for an isotropic
body is found as
1
o = Kupdix + 2p (uige — 565un) - (3.27)

In particular, this shows that if a deformation is purely shear or hydrostatic compres-
sion then the relation between the stress and strain tensors is determined entirely by
the modulus of rigidity or the modulus of compression respectively.

The opposite of this function is also worth finding, and can be done so by ex-
pressing u;; in terms of ¢j;. The sum ¢;; of the diagonal terms is found from Eq. 3.27,
yielding

0'.4
Uu;; = 3*112 (328)
which in substituting into Eq. 3.27 finds
5 Tix — 20407
Uy = ik¥11 +( ik — 39k ll)' (3.29)

9K 2

It is seen from Eq. 3.29 that the strain tensor is a linear function of the stress tensor,
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which is to say that deformation is proportional to the applied forces. This is known
as Hooke’s law.

3.2 Homogenous deformations

To illustrate the use of Hooke’s law, consider here an example of the simple extension
of a thin rod. The axis of the rod is assumed to be along the z-axis and a force per unit
area p is be applied to the ends of the rod in both directions, where this force acts
uniformly over the end surfaces. As this constitutes a homogenous deformation,
the simplification that the strain tensor is constant through the body of the rod can
be made. In turn, this requires the stress tensor must also be constant, which may
also be determined from the condition in Eq. 3.19. There are no external forces
in consideration on the side surfaces of the rod, and so for these orientations it is
trivially ojng = 0. As the unit vector on the sides of the rod is perpendicular to the
z-axis in which the force per unit area acts, it then follows that all components of o
other than 0, are zero, and on the end surfaces 0, = p.

From Eq. 3.29, all components of u; with i # k are zero. What components
remain are then expressed as

1/1 1 1/1 1
Uyy = Uy = —3 <2V — 3K> P, Uz = 3 (31( + V) p. (3.30)

The component u,, gives the relative lengthening of the rod in undergoing a ho-
mogeneous deformation from a force per unit area p. The coefficient of p is called
the coefficient of extension, and it’s reciprocal is the modulus of extensions, or Young’s
modulus, E, defined as

9Ku
3K+ u

Uyy = % where E = (3.31)

The transverse components uy, and u,, give the relative compression of the rod
in the transverse directions. The ratio of transverse compression to longitudinal
extension is called Poisson’s ratio, defined as

13K —2pu

Uyy = —VU,; Where v = 23K+ p (3.32)

and takes values between 0 and 1/2. A larger Poisson’s ratio means that there is a
higher degree of relative deformation in the transverse directions. A material pos-
sessing a Poisson ratio of 0 would be one that would collapse under transverse de-
formation. It is often customary in elasticity to use E and v as the base coefficients,
rather than K and y, and so Hooke’s law is redefined in terms of these parameters as

Ui = = [(1+v)oy — véyoy) . (3.33)

| -

3.3 Bending of rods

When a rod undergoes bending, there are sections of the rod’s body that are com-
pressed, and there are sections that are stretched. Lines on the compressed side a
stretched, and those on the stretched side are compressed. At the interface of these
two phenomena is a neutral surface which undergoes neither.
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Consider a small element of length of the rod, whereby bending may be small.
A coordinate system is defined such that the origin is on the neutral surface, and the
z-axis is parallel to the length. Bending then occurs in the zy plane.

The external forces on the sides of a thin bent rod may assumed to be small
compared with the internal stresses, and so can be taken as zero in determining the
boundary conditions (a criterion referred to as traction-free boundaries). Expressed
in terms of the stress tensor, it is found oy = 0, or Oyxtiy + oyyny, = O asn, = 0,
and similarly for i = y, z. Take a point on the circumference of the cross-section for
which the normal, n, is parallel to the x-axis, which by symmetry must have another
such point on the opposite side. At both of these points, n, = 0 and hence oy, = 0.
As the rod is thin, one is free to assume oy, must be small everywhere if it vanishes
at the sides. From this, one finds oy, = 0 throughout the whole cross-section, with
the same argument holding for all components of the stress tensor except o, which
is seen to be nonzero. A deformation in which there is only a nonzero component
in 0, is seen as simple extension, although the amount of extension varies point to
point in the cross-section giving rise to the bending profile.

The relative extension at points within the rod can be determined as such; con-
sider an element of length dz parallel to the rod, and in undergoing bending length
is denoted dz’, where both of these points considered points are close to the origin.
When undergoing bending, the only points to remain unchanged are those that lay
on the neutral axis betwixt the regions of stresses and strains. The radius of cur-
vature of the neutral surface in undergoing bending is denoted as R. With these
considerations, the length elements dz and dz’ may be regarded as arcs of circles,
having radii of R and R + x respectively, where x is the coordinate of where the
length element dz’ lays. Then

_ R+x

d /
z R

dz = (1 + %) dz (3.34)

from which the relative extension is found as

dz' —dz «x
T - E- (3-35)
This must be equal to the component u,, of the strain tensor by definition. The
component of the stress tensor can then be found by using Hooke’s law of simple

extension, 0, = Eu,,, giving
O = =X
R
It can further be shown that this condition sets the centre of mass to coincide with
the neutral axis by considering the plane at which the stress vanishes.

The free energy per unit volume of a deformed rod the rod is given by [76]

(3.36)

1 Ex?
E(Tikul‘k = EO—ZZuZZ = EF (337)
Integrating over the cross section, it is then found
1E ’
— d 3.38
S (3:39)

which is the free energy per unit length of the a bent rod. Since the rod is thin, R
may be regarded as the radius of curvature of the rod itself, taken as a line. In this
expression, it is often convenient to introduce the second moment of area, defined



26 Chapter 3. Elasticity

v
<
™~

e

FIGURE 3.2: Orientation of the (a) isosceles and (b) rectangular cross-sections.

as
I, = / 2dn (3.39)
A

in analogy to the moment of inertia, but with the surface element dn instead of the
mass element. The free energy per unit length of the rod can then be written

1EL,
SR2 (3.40)

Of particular interest to the purpose of this thesis are rods of cross-sections of
rectangles and isosceles triangles, which offer a flat surface to deposit material on
top of. The two geometries are depicted in Fig. 3.2, where their centroids coincide
with the neutral surface. For these, the principle axes about which the second area
moment of inertia is taken are expressed as

wt3 wdt
Ix,rec = E Iy,rec = E/ (3.41)
w3 w3t

Ix,iso = % Iy,iso = % (342)

The bending moment, which is the moment of the internal stress forces on a
given cross-section, may also be determined. A force 0,dn = (xE/R) dn acts along
the z-direction of the surface element dn of the cross-section. The moment about the
y-axis is then xo,dn, such that the total moment of the forces about this axis is

E » EI,

My = E/Ax dn = ?, (343)
where the symbol M has been used to avoid confusion with the magnetisation. It
is then seen that the curvature of the rod is proportional to the bending moment.
Similarly, the moment of forces about the x-axis is

CE [ Fl
Mx—ﬁ/Ay dn = = (3.44)

The quantity EI, (and similarly EI, for the other principle axis) is known as the
flexural rigidity, and is considered as the amount of moment required to produce
bending. A larger flexural rigidity denotes a "stiffer” axis than that of a smaller one.

The slope of the beam in general is approximated by the angle made with the
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neutral surface to the z-axis. For small angles, and assuming deflections in the xz-
plane only, this may be approximated with

d
6(z) ~ ch (3.45)

where ¢ is the deflection of the neutral surface of the beam. For an infinitesimal
element dz, one can then use the relation dz = Rd# to find for the radius of curvature
1 do d%
- =—=—1, 3.46
R dz dz? (3.46)
The z-directed strain is then u,, = x/R and, in using the formula for simple exten-
sion 0, = Eu,,, the components of Hooke’s law from Eq. 3.33 find

o dY
Uyy = Uyy = —vx@ 647)
dzy '
ez = X372

With the consideration that deflection only occurs in the xz -plane, one can also re-
express the moment about the x-axis as

d?¢

Mx - EIx@

(3.48)

Further, from this consideration of pure bending in the xz plane only, the shearing
force, Vy, is then defined as

o dM,
Vo= (3.49)

3.4 The elastic properties of crystals

The general form of the free energy density of a deformed crystal is given as a tensor
form [76]

1
F= E)\iklm UikUpy, (3.50)

where Ay, is a fourth-rank tensor, denoted the elastic modulus tensor. As the strain
tensor is symmetric, the product u;u;, is unchanged in swapping the pairings i, k
or [,m,ori,I and k, m. The tensor is therefore defined to have the same properties

Aikim = Akitm = Aikml = Aimik- (3.51)

In the absence of these symmetries, the number of components would be 3% =81,
but taking into account 6 equivalent pairs of i, j and [, m, the total number of inde-
pendent components is the same as the number of components in a 6 X 6 symmetric
matrix. This is 6 for the diagonal entries, and 15 for the off-diagonal entries, finding
21 independent components in total. The stress tensor, in accordance with Eq. 3.26,

is then found as

oF
Oik = F AikimUim (3.52)

where terms of du;; appear twice due to the symmetry for i # k, and hence the factor
of 2 is lost.
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For crystals, which implicitely have symmetries, then relations exist between the
components of Ay, to reduce the number of independent components further. Of
particular note for our interests is cubic systems.

In a cube, there are three mutually orthogonal axes having reflection symmetry,
about which it is assumed the system axes are set. As there is four-fold rotational
symmetry, the different components of the tensor is limited to at most Ayyyy, Azzzz,
Axxzzr Axxyys Axyxys Axzxz. Considering rotations of %71 about the x and y axes finds
that successive pairs of components are equal, and so only 3 different components
remain. Adopting the Voigt notation to coincide with literature, in which the indexes
become xx =1, yy = 2, and xy = 4, and A = ¢, the elastic free energy density of the
crystal may be expressed as

Ue = %Cll(ugzcx + uiy + ugz) + ClZ(”xx”yy + Uxxlzz + uyyuzz) + 2C44(1/l§y + u;zcz + uﬁz)-

(3.53)

To find the Young’s modulus of a cubic crystal as a function of the axes direc-

tions, the axes of coordinate are taken along the three orthogonal axes of tetragonal

symmetry. Let the axis of a rod cut from a cubic crystal be along the unit vector
direction n. Assuming traction free boundaries, the stress tensor must satisfy

i. when oy, is multiplied by n; the extending force is then parallel to the n.

ii. when oy is multiplied by a vector perpendicular to n the resulting extending
force must be 0.

As such, the tensor must be of the form oy, = pn;ny, where p is the extension force
per unit area at the ends of the rod. The free energy density of the cubic crystal has
been found in Eq. 3.53, and so now Eq. 3.52 is applied directly directly. For the non
diagonal components, it is trivial to see

oF

Xy

where the components of u;;, with i # k give twice the value of the corresponding
ok as the strain tensor appears twice in dF = ojdu;, due to its symmetry. From this,
by comparison, one may identify

_ nyny
Uyy = p72c44 . (3.55)
To determine the diagonal components;

oF

Oxx = F = C11lUxx + ClZ(“yy + uzz) = Pni (3.56)
uXX
oF

Oy = 5. — = Cinthyy + €12ty + tz2) = pn (3.57)
Uyy
oF

Ozz = 87 = C11Uzz + ClZ(”xx + uyy) = Png (358)
Uzz

Rearranging Eq. 3.56 for cq1uyy, and substituting in Eq. 3.57 and Eq. 3.58 finds

c
Clillxy = pN2 — ﬁ (pnﬁ + pn2 — c12(tyy + uzz) — 2c12uxx)) . (3.59)
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FIGURE 3.3: (a) A thin rod undergoing transverse motion, and (b) a zoom-in of
an element of the rod.

Finally, substituting for c1» (uyy + 1) from Eq. 3.56 and noting the relation njzc + n§ +
n? = 1 one arrives at
(C11 + 2612)TZ§ —C12

Uyy = 3.60
P (c11 — c12) (€11 + 2¢12) (3.60)

where similar expressions exists for the other components.
The relative longitudinal extension of a rod is found as

_dr—di
T

(3.61)

where d!’ is given by Eq. 3.7 and dx;/d! = n;. For small deformations, and hence d!
small, the displacement is found as u = ujn;n. It has been shown in Eq. 3.31 that,
upon extending to the three-dimensional case, the Young’s modulus is determined
by p = Eu. Hence, Young’s modulus as a function of crystal direction is given by
the expression

1 c11 + c12 1 2 (22 2.2 22)
_—— 3.62
<C44 p— C12> nymy, + nins + n,n; ( )

E (c11 — c12) (€11 + 2¢12)

which has extremum values in the directions of the edges of the cube, and of the
spatial diagonals of the cube. With regards to the value in the first set of brackets of
the second term, the elastic anisotropy parameter is introduced

2C44

A= (3.63)

c11—c12
This quantifies the extent to which elastic anisotropy is present in the crystal. When
this parameter is equal to 1, then the crystal is elastically isotropic and the second
term in Eq. 3.62 vanishes.

3.5 The Euler-Bernoulli equation

Consider the thin rod as depicted in Fig. 3.3(a), as well as the differential element,
dz, as shown in Fig. 3.3(b). The subscript x from the moments and shearing forces
is dropped and it is assumed that this becomes obvious by considering motion only
in the xz plane. In considering this element, there are the bending moment, M, the
shear force, V, and the variations of the two acting.
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To find the equation of motion for the differential element in the vertical direc-
tion, Newton’s second law is used

2

d’y

v

v (Ve

where A is the cross section of the beam and p is it’s mass density per unit volume.
This reduces further to
oV Py
oz o
Substituting the equation relating the shearing force to the bending moment, Eq.
3.49, into this then yields

0A (3.65)

>M 0%y
Tz Poe (3.66)
and finally, substituting the expression for the bending moment in Eq. 3.48 gives
02 0%y 0%y

This is then the governing equation for the transverse motion of a thin rod. In the
case that the material is homogeneous such that E is independent of position and
that the cross-section is constant such that I is constant, then Eq. 3.67 reduces to
simpler form

oty 1 9%

— +5=5=0 3.68

T (3.68)
where it is defined I
2 X

= ) .69

a oA (3.69)

Note that this is not a wave equation, nor does a have equivalent dimensions to

velocity.
There are a number of restrictions placed on this theory for which their relevance
is stated.

i. The restriction of homogeneity of the beam as well as the cross section being
constant in reducing Eq. 3.67 to Eq. 3.68 is not a fundamental step, and is
assumed to simplify the mathematics required. It is perfectly valid to analyse
beams without these properties through Eq 3.67, with the addition of some
mathematical complexities to solve.

ii. Should the assumption of small deflections made to arrive at Eq. 3.46 not be
the case, then the full expression for the curvature would be required rather
than the simplification to the second-derivative of deflection.

iii. It has been assumed that the deflections occur in the xz plane only, which re-
quires that the cross-section be symmetric with respect to this plane. Should
this not be the case, then coupled torsional-flexural modes would need to be
considered.

iv. Rotational-inertia effects have been neglected. The translational and kinetic
energies are expressed as

1, (ap\? 1 a0\’
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where dm is the mass of the element dz, R is it’s radius of gyration, and 9/a: is
the rotational velocity. The rotational energy is small and negligible compared
to the translational energy as so it may be assumed that the rotational velocity
is small.

v. The assumption of the Euler-Bernoulli criterion, in that plane sections remain
as such, is only valid for pure bending. When shearing forces are present, the
assumption of this hypothesis essentially requires there is an in infinite shear
rigidty, which is to say that shearing deformations are neglected.

3.6 Solutions to the Euler-Bernoulli equation
To find solutions to Eq. 3.68, a separable solution is assumed of the form

y(z,t) = ¢(z)T(t). (3.71)

By substitution into Eq. 3.68 and noting that each must be equal to some shared
constant, it is found

" T
2270 _ T _ (3.72)
¢(2) T(t)
It is readily apparent from Eq. 3.72 that simple harmonic motion exists for T(t) and
yields a general solution of

T(t) = Acos(wt) + Bsin(wt) (3.73)

subject to the boundary conditions of the system, from which the constants A and B
may be determined.

To find a solution for the spatial dependence, it is standard to assume a trial
solution of

¢(z) = Cysin(k,z) + Ca cos(k,z) + Cs sinh(ky,z) + C4 cosh(k,z) (3.74)

where k;, called the frequency parameter, is defined by

K= =R, (3.75)
However, it is more convenient for this specific case to order the trial solution as

¢(z) = Dy (cos(knz) + cosh(k,z)) + D, (cos(knz) — cosh(k,z))
D3 (sin(ky,z) 4 sinh(k,z)) + D4 (sin(k,z) — sinh(k,z)). (3.76)

There are 3 primary classes of boundary conditions to consider that present sup-
ports (or lack thereof) at the extremes of the beam. These are commonly referred to
as pinned, clamped, and free boundaries.

¢ In pinned boundary conditions, rotations are possible but the displacement and
bending moment are zero, leading to

82(P (Zpinned/ t)

= =0 (3.77)

¢(Zpinned,t) =0 and



32 Chapter 3. Elasticity

_____ .

t~
)

N>

\
Y

FIGURE 3.4: A cantilevered Euler-Bernoulli beam.

¢ In clamped boundary conditions, the support is rigid and does not permit dis-
placement or rotation, leading to

a(P (champed/ t)

- =0 (3.78)

¢(zc1amped/ t) =0 and

¢ In free boundary conditions, there is no support and displacement is possible,
but there are no stresses or moments, leading to

azq)(zfreer t) 33<P(Zfree, t)
— oz = 0 and T T 0 (3.79)

Cantilever beam

Assumed is that a cantilevered beam of length a Lr coincides with the z axis, and
is to the right of the neutral axis, as shown in Fig. 3.4. Also assumed is that the
cross-section, generic in nature but symmetric with respect to the plane of flexure,
is sufficiently small compared to the beam’s length and hence the beam obeys Eq.
3.68. Such a beam will have a deflection profile, denoted ¢, (z), where n denotes the
mode number.

For this beam geometry, the ends of the beam impose a clamped boundary at the
beam support, with boundary condition given by Eq. 3.78, and a free boundary, with
boundary condition given by Eq. 3.79, at the left end and right end, respectively.
Applying first the clamped boundary, one finds

Pn (0) =2D; =0
=D =0 (3.80)

#,(0) =2D; = 0
=D3=0 (3.81)
Applying now the free boundary, one finds

¢n(L) =0
= K2D, (— cos(k,L) — cosh(k,L)) + k3 Dy (—sin(k,L) — sinh(k,L)) (3.82)
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FIGURE 3.5: A bridged Euler-Bernoulli beam.

¢ (L) =0
= k3D, (sin(k,L) — sinh(k,L)) 4+ k3 Dy (— cos(k,L) — cosh(k,L))  (3.83)

Representing Eq. 3.82 and Eq. 3.83 as a matrix

—cos(k,L) — cosh(k,L) —sin(k,L) —sinh(k,L)\ (D2\ (0O
< sin(k,L) — sinh(k,L)  —cos(knL) — cosh(knL)> (Di) o <0> (3.84)

for which solutions can only exist when the determinant is equal to 0, it is then
possible to show

cos?(k, L) + sin?(k, L) + cosh?(k, L) — sinh?(k, L) 4 2 cos(k,L) cosh(k,L) = 0.
(3.85)
This equation may further be reduced to find the characteristic equation

cos(k,L) cosh(k,L) +1 =0, (3.86)

which gives permissible values of kL for the cantilever. Rearranging Eq. 3.82 for
Dy,
— cos(k,L) — cosh(k,L)

sin(k,L) + sinh(k,L)
which upon substitution into Eq. 3.76 alongside with Eq. 3.80 and Eq. 3.81, the full
general solution is given by the function

Dy =D, (3.87)

cos(k,L) 4 cosh(k,L)

¢n(z) = D2 | cosh(knz) — cos(knz) + sin(k,L) + sinh(k,L)

(sin(k,z) — sinh(k,z)) ]

(3.88)
where —1 has been factored into D, as an arbitrary phase. This is the static deflection
profile of a cantilever beam.

Bridged beam

Assumed is bridged beam of length a Lr which coincides with the z axis, and is
to the right of the neutral axis, as shown in Fig. 3.5. As was the case prior, the
cross-section, generic but symmetric, is taken to be sufficiently small compared to
the beam’s length and hence the beam obeys Eq. 3.68. Again, such a beam will have
a deflection profile, denoted ¢, (z), where n again denotes the mode number.

For this beam geometry, the ends of the beam impose a double clamped bound-
ary by the supports, with the boundary conditions given again by Eq. 3.78. Applying
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first the clamped boundary at the left end, one finds
$n(0) = ¢u(L) = ¢},(0) = ¢(L) = 0. (3.89)
As is the case in the cantilever beam, the boundary conditions require that
D; = D3 = 0. (3.90)
Applying now the clamped boundary at the right end,

¢n(L) =0
= D; (cos(k,L) — cosh(k,L)) + D4 (sin(k,L) — sinh(k,L)), (3.91)

$n(L) =0
= kD; (—sin(k,L) — sinh(k,L)) 4+ kD4 (cos(k,L) — cosh(k,L)).  (3.92)

Representing Eq. 3.91 and Eq. 3.92 as the matrix

(i) iy o) o) (32)=(5) o

and solving again for the determinant equal to 0, the expression

cos?(k,L) + sin?(k,L) 4 cosh?(k, L) — sinh?(k,L) — 2 cos(k,L) cosh(k,L) = 0.
(3.94)
is yielded. Again, this may further be reduced to the characteristic equation which
gives permissible values of k, L for the bridge

cos(k,L) cosh(k,L) —1=0. (3.95)
Rearranging Eq. 3.92 for Dy

sin(k,L) + sinh(k,L)

Dy=D
* ? | cos(ky,L) — cosh(k,L)

(3.96)

which upon substitution into Eq. 3.76 alongside Eq. 3.90, the full general solution is
given by the function

sin(k,L) + sinh(k,L)
cos(k,L) — cosh(k,L)

¢n(z) = Dy | cos(k,z) — cosh(k,z) + (sin(k,z) — sinh(k,z))

(3.97)

3.7 Frequency parameter and mode shapes

The characteristic equations for permissible frequency parameters of the cantilever
and bridge, given in Eq. 3.86 and Eq. 3.95, are transcendental equations that may be
solved numerically to yield their values of k,L. Shown in Table 3.1 are the first few
roots of these characteristic equations. These have the property that as the mode
number increases the spacing between successive the modes approaches that of 7
for both cases. Also shown in Fig. 3.6 are the first three deflection modes for the can-
tilever and bridge assuming that the profiles are length normalised and D = 1. The
bridge, being doubly clamped, has a deflection and curvature profile that alternates
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Function kiL

koL k3L kiL ksL

cos(k,L) cosh(k,L)+1=0 | 0.5977

1.4947 | 2.5007t | 3.5007t | 4.5007T

cos(k,L) cosh(k,L) —1 =0 | 1.5067

2.5007 | 3.5007 | 4.5007 | 5.5007T

TABLE 3.1: Roots of Eq. 3.86 and Eq. 3.95 in terms of the frequency parameter

kyL

Deflection

L

0.0 0.5 1.0
Normalised beam length

Curvature

0.0 05 1.0
Normalised beam length

—k,L

Deflection

_2 1
0.0 0.5 1.0

Normalised beam length

Curvature

0.0 0.5 1.0
Normalised beam length

FIGURE 3.6: Deflection profiles for the cantilever and bridge beams [top], and
their curvatures [bottom], as obtained from Euler-Bernoulli beam theory.

between an even and off function. Lastly, shown in Fig. 3.7 is a comparison of the
frequency of beams of different cross-sections (square, annulus, circular, and isosce-
les) for modes n = [1, 8]. For illustrative purposes, the dimensions have been taken

as a width w = 400nm to set a scaling factor, and then taken t = w for the square
and isosceles, and L = 100w. For the circle and annulus, the radii have been taken
asrp =r = w/2 and r; = rp/2. The inset shows the frequencies of these structures

for the fundamental mode.
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FIGURE 3.7: First 8 flexural mode frequencies of square, annulus, circular, and
isosceles cross-sections for a cantilever. The inset shows the frequencies of these
structures for the fundamental flexural mode.
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Optomechanics

Fundamentally, light carries momentum through which it is able to exert a force.
Often, this force is referred to as the radiation-pressure force. Postulation of this
force dates back to the 1600s, and Maxwell predicted that electromagnetic radiation
can exert forces through the electromagnetic stress-tensor in the late 1800s. Experi-
mental proof of such forces didn’t come until the early 1900s [77, 78], and given that
the force a beam of light exerts is small (in fact, inversely proportional to the speed
of light), it proved difficult at the time to separate this force from the dominating
thermal effects. Einstein’s analysis' of the statistics on the fluctuations of the radia-
tion force proved fundamental to this end in resolving radiation-pressure from this
thermal background. Optomechanics is the research field which is concerned with
the interaction of light with mechanical degrees of freedom through the radiation-
pressure force, and is the easiest formalism to frame the context of magnomechanics
within.

In the years since these discoveries, there has been a great deal of interest into
the applications of optomechanics, driven by a number of reasons. Firstly, there
is immense interest in sensitive detection of forces, displacements, and masses. In
part, this has been driven by the need for this detection in macroscopic mirrors (for
example, with use in LIGO for the detection of gravitational waves) [79], but there
also exists this need towards the micro- and nano-mechanical scales [80] for various
sensing purposes. Further, there is also great interest in the practical applications of
the manipulation of mechanical oscillators in the quantum regime. In particular, op-
tomechanical systems have a wide variety of uses, with effects such as optical spring
effect (also known as the light induced spring constant), [81, 82] and the associated
bistablilty [83, 84], which in turn have led to exploitations allowing the cooling of
mechanical resonators down to their ground state [5, 85, 86, 87, 88]. Other applica-
tions include uses in the transfer of states [89, 90] (of particular importance to quan-
tum information and quantum computing in mediating transfer between of qubits
to longer-lived mechanical excitations), squeezing of states [91, 92, 93], phonon las-
ing [94, 95], as well as the controlling of the optical response of media via the op-
tomechanical interaction [96, 97, 98] in analogy to the electromagnetically induced
transparency [99], which can have applications in the amplification and filtering of
states [100]. There are also applications of optomechanics in testing the fundamental
limits of quantum mechanics [101, 102].

While the mathematics used in optomechanics is often stated under the assump-
tion of a radiation-pressure force, and most of the experimenal successes have used
this form, the derivations are (for the most part) completely general to modes driven
through a field [103, 104, 105]. For example, from the optomechanical perspective,
the Hamiltonian often begins with that of two single modes, a cavity mode and a

!An English translation of the proceedings given by Einstein can be found at
http:/ /physics.ucsc.edu/~ccrummer/radal.pdf
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FIGURE 4.1: A basic Fabry-Perot inferetometer, consisting of two mirrors of re-
flectivity Ry and R, separated by a distance L being illuminated by light

phonon mode, and a laser drive Hamiltonian. There is, however, nothing distin-
guishing about this. It is equally general to assume the two single modes are, in the
case of this thesis, a magnon mode and a phonon mode, and the laser drive Hamil-
tonian can be considered as that of a microwave field drive. This only amounts to
a redefinition of the creation and annihilation operators, but the form of the Hamil-
tonian remains the same. As the vast majority of review papers and proposals are
based on the perspective of optomechanics, it is natural to follow this interpretation
of the maths.

4.1 Classical Descriptions of a Cavity

While the form of the experimental set-up may be different (notably, the geometry
and the force through which the systems are coupled), all systems of coupled oscil-
lators can be unified under a mathematical description. To this end, illustrated here
is this concept by considering the description of a classical cavity. This cavity takes
the form of a Fabry-Perot inferetometer, which is depicted in Fig. 4.1. A Fabry-Perot
inferetometer is formed by two highly reflective plane-parallel mirrors, separated by
a distance L. If one of the mirrors is illuminated with monochromatic laser light, the
cavity becomes populated with photons. For such a cavity, the wavelengths that are
supported by the mirrors are given by
2L

Acav - m 7 (4'1)
where m is the mode number. Note that the polarisation of the photons has been
ignored, which only acts to introduce a multiplicative constant and has no bearing
on the nature of the physics. With these mirrors, there are a series of supported
angular frequencies at resonance given by

7Tmce
Weav = T/ (42)
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where c is the speed of light through the medium between the two mirrors (in most
cases this is either vacuum or air). The separation between these angular frequencies

is trivially
s

T

While the mirrors are of high-reflectivity, this reflectivity is not infinite. Conse-
quently, photons may be "lost” from the cavity through the mirrors. In addition to
this, photons in the cavity are absorbed by the mirrors, as well as having the poten-
tial to scatter out of the cavity. These effects result in the loss of photons, defined as
a photon intensity decay rate, x.

Given that a portion of this decay rate is intrinsic to the cavity, cavities are often
characterised by a quality factor, denoted by Q. First, consider the photon lifetime,
denoted 7, which is conceptually thought of as the "average’ time in which a photon
‘exists” within the cavity, and is given as the reciprocal of the decay rate. Then, the
cavity Q-factor may be expressed as

AcaV = (43)

w

Qeav = Weav T = 1c(av (4.4)
A larger Q implies that photons have a longer lifetime, and it is preferential to have
as large a Q as is possible. Another useful parameter in characterising cavities is the

optical finesse, given by

Acav
F=== (4.5)

which quantifies an average number of 'round trips” before the photon leaves the
cavity. A high finesse cavity has a long photon lifetime within the cavity.

As part of the cavity decay rate is intrinsic to the cavity itself, it is instructive to
separate it into two components. These components are k., a contribution which
includes the input and output coupling into the cavity via lasing, and «p, a contribu-
tion which includes the internal intrinsic losses of the system. In the case of a cavity
with high Q, the relation between these is

K = Kex + K0- (4.6)

For the Fabry-Perot cavity of this discussion, x.x would be attributed to the loss-rate
at the input mirror, and « is attributed to internal losses (absorption, scattering, and
transmission at the second mirror).

4.2 The Interaction of Light with Matter

Optomechanics performed using a Fabry-Perot cavity may be interpreted using ra-
diation pressure. Considered still is the case of a Fabry-Perot resonator, but one of
the mirrors is suspended such that it is free to oscillate. Following from quantum
theory, it is known that light carries momentum, p, determined by

p = hk (4.7)

where 71 is the reduced Planck’s constant, and k is the wavevector of the photons. As
the light circulates in the cavity, a momentum transfer occurs at each reflection from
the end mirrors, imparting a momentum

Ap = 2hk (4.8)
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to the mirror. In everyday life, this effect is minuscule and is virtually undetectable.
However, when the mirror masses are very small (and hence the momentum transfer
becomes appreciable), and when the number of photons impinging on the mirror is
large, the effect can become influential.

It is important to note that this effect does not simply accumulate and consis-
tently move the suspended mirror away and elongate the cavity ad infinitum. The
effect that the movement of the suspended mirror has on the photons within the cav-
ity must be taken into account. As the mirror is displaced, the cavity length changes
and with this is a change in the resonant angular frequency of the cavity. Due to this,
the detuning

A = WL — Weav (49)

of the driving laser with the cavity frequency is changed, which determines the pop-
ulation of the cavity. At smaller detunings, more light is able to enter the cavity
as it is closer to the resonant angular frequency of the cavity. However, as this de-
tuning grows, the radiation pressure falls as light is unable to enter, and the mirror
begins to return to the original position, again, changing the resonant cavity angular
frequency. Thus, it is seen that the radiation pressure is dependant on the mirror
displacement.

4.3 Hamiltonian formulation of coupling

The Hamiltonian of a system of electromagnetic radiation interacting with a vibra-
tional mode of an oscillator [106, 107] can be each be represented as simple harmonic
oscillators at their respective frequencies, written as

H = hweaydtd + hwrh'h (4.10)

where 4 (@) and bt (b) are the creation (annihilation) operators for the photon and
phonon modes, respectively. Introducing the fact now that the end mirror of the
cavity is suspended and hence free to move, the cavity frequency may be expanded
as a function of displacement to find the approximation

Weay (X) A Weay + X + ... 4.11)
where for most optomechanical systems it is sufficient to retain only linear terms in
the displacement. Substitution of this into the harmonic oscillator Hamiltonian of
the cavity finds

ox

where the displacement has been promoted to the quantum version

)
ey (x)aT ~ 1 <wcav + % wc‘”) ata (4.12)

2 = Xz (13 T 13*) . (4.13)

with xzpp = /li/2megwr as the zero-point fluctuation of the oscillator of effective
mass Meg. Introduced now is the single photon-phonon coupling rate,

80 =~ XzpF (4.14)
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such that the optomechanical Hamiltonian can be written
Hom = heweayd d + hwrbth — hgoa'a (i} n 19*) = Ho + Hine (4.15)

where go quantifies the strength of the interaction between a single phonon with a
single photon. In this description, it has been assumed the Hamiltonian is simply
modelled as two harmonic oscillators. This, however, does not encapsulate all as-
pects of the physics, and the full Hamiltonian will also include the frictional effects
in moving the mirror, thermal creation of phonons, photon decay, and driving forces.
These effects are most easily described using input-output formalism.

It is convenient when discussing the optical modes to transform to a rotating
frame at the laser frequency, wy. To do so, a transformation U= exp (iwLﬁ’LaAt)is
applied, such that

ua (ﬁ* exp (—iwpt) + dexp (ith)> U =at+a. (4.16)
This then generates a new Hamiltonian [108]

. . ~out
H = UHaqU" — ihua—ti, (4.17)

where H 4 is the Hamiltonian in the non-rotating frame. It may then be shown

ol

Mol = heoeay + hwr (515) — hgodta (z} n fﬁ) , =Sy = —hao's, (418)
from which, it is found
H = —hAata + hwrbth — hgoa'a (i} + 19*) (4.19)

where the detuning is defined as A = wy, — Weay-

4.4 Input-Output Theory

The internal dynamics of a cavity coupled to electromagnetic radiation in a quan-
tum mechanical description can be achieved in using master equations [109]. How-
ever, if the fields being emitted or reflected are of interest, then it is necessary to use
a formalism known as input-output theory [110, 111], stemming from the Heisen-
berg equation of motion [108]. Input-output theory describes the time-evolution of
a quantum operator and considers the quantum fluctuations introduced from a cou-
pling port into the cavity. The quantum fluctuations constantly replenish the pho-
ton amplitude, which is known to decay at the rate x/2. The resulting Heisenberg-
Langevin equation for the cavity amplitude being driven by a laser is found as

j‘; - —% 2, H] — ga N (4.20)
where H is the Hamiltonian of the system, the second term represents a linear damp-
ing of the cavity due to photon leakage, and the third term describes the driving of
the cavity due to noise from the bath, (where it is normalised ﬁ;rnﬁin is the photon

PO . 1 . .
number flux such that 4;, is in units of m). In the case where there is no coupling
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in the system, it is found that [2]
R K R R ~
a= —Eﬁ + 1AG + V Kex@in + vV K()fin (421)

where fin, denotes the mechanical dissipation associated with the decay rate xo. The
tield that is reflected by the cavity is found as

Aout = Ain — \/Kexd. (4.22)

Focusing not on the operators, but instead their classical average quantities, then Eq.
4.21 and Eq. 4.22 can be solved, where (f;,) = 0, to find

(a) = V/Fex {fin) (4.23)

5 —iA
The steady-state photon population is then

Kex P

= N (4.24)

Meay = ’<ﬁ>|2

where the parameter, P, is the input power launched into the cavity by the laser,
with
P = hwy flcay = hewr, | (Bin) (4.25)

4.5 Operator equations of motion

Mechanical motion induces a shift to the optical mode resonance frequency, altering
the intensity of the light in the cavity, and hence inducing a radiation pressure force
on the motion. As the decay rate of the cavity introduce a delay between the motion
and changes in the force, this is known as dynamical back-action.

To analyse dynamical back-action, again the formalism of input-output theory
is adopted. Both the cavity field amplitude, 4, and the mechanical field amplitude,
b, are driven by the thermal noise entering the system. Their time evolution can be
described by quantum Heisenberg-Langevin equations of the form

dA . A A A r
d{ - _ga +i (D + GR) & + /Kexin + /K0 fins (4.26)
% _ <_in _ F2R> b+ igoi'd + /Trbin (4.27)

where it is defined x¢x as the coupling into the cavity, o as the overall decay rate of
the cavity, and I'r as the mechanical damping.

The classical averaged versions of these equations may also be given by assum-
ing a(t) = (4(t)) and x(t) = (£(t)), from which the amplitudes of the light and
oscillator can be written, as

d
d—‘: = —grx +1 (A + GX) &+ \/KexXin (428)
d?x dx

meff@ = —meffa)f{x — mefera +nG |0(|2 (429)



4.6. Strong coupling and normal mode splitting 43

where fluctuations have been neglected as a result of the averaging. Note that, to ob-
tain Eq. 4.29, one is writing the equation of motion for the displacement of a damped
simple harmonic oscillator with an additional coupling term into the system 7 Gficay.

The equations of motion, Eq. 4.26 and Eq. 4.27, are non-linear as they contain
products of the mechanical oscillator amplitude and the cavity field, or the radi-
ation pressure force (proportional to the photon number) that is quadratic in the
photon operators. As such, there is no exact solution to these, either analytically or
numerically. These can, however, be linearised about a fluctuation by again using
4 = a + 4. Keeping only terms that are linear, the fluctuations may be expressed as

doa . K\ cn - (2 2 A y
W = (lA — E) od + g (b + b+> + KexOlin + V KOfin/ (430)
R o . A
'Z) = (—in — ZR) b+ig ((5& + 5ﬁ+) + /I'rbin. (4.31)

The coupling between the optical and vibrational degrees of freedom are now lin-
ear, with the strength determined by the field-enhanced coupling rate § = go+v/7icav-
These equations are often the starting point for describing coupled quantum system-
atic phenomena, including cooling, normal-mode splitting, and amplification. For
the classical regime of the equations, 4.28 and 4.29, the linearisation process can be
applied. In this, notation is simplified with 2 = (4) and x = (%) and find for the
linearisation process

dda , K .
T <1A — E) éa +iGax, (4.32)
d?x dx
Meft 35 = —meffcul%x — meffFRa +hG (a*da+ ada™). (4.33)

There is also an associated form of these equations expressed in frequency space,
whereby b [w] and 64 [w] represent the Fourier transforms of the operators b and 54
respectively. In this formalism, differentiation produces a prefactor of —iw and the
substitution for the Fourier components produces the equations finding

—iwda [w] = (iA - g) oa [w] +iGax [w], (4.34)
—Meggw?x [W] = — Mg x [w] — iwmegTrY [w] 4+ 1G (a*6a [w] + a(éa*) [x]). (4.35)

where (6a*) = éa [—w]".

4.6 Strong coupling and normal mode splitting

When the cavity-enhanced coupling rate approaches the decay rate of the system,
g ~ «, it will be observed that new features appear as a consequence of the Hamil-
tonian. This regime is referred to as the strong coupling regime. In this, the driven
optical mode (in analogy to magnon mode) and the mechanical mode hybridise to
form two new modes, whereby the splitting between the two modes is given by 2g.

The transition to the strong coupling regime is fully described by the equations
of motion. If the redefinitions A = A +ix/2 and wr = wgr — il'g are made, then the
eigenvalues of the matrix describing the relation between the time-derivatives of the
averages (ie. (64) such that the noise fluctuations can be neglected) and the averages



44 Chapter 4. Optomechanics

themselves are found as

o —A+i(K+FR)+wR
- 2

w4 + \/g2 + i (A+i(x—Tg) — wr)™. (4.36)

Using the further redefinition § = —A — wg, it is finally found

5 i(k+T §+i(Tr —x)\?
ws—awr+ S - IR 4 ey (041 TRm8) 437)
2 2 2
At resonance A = —wg and hence § = 0. Making the assumption ¥ >> TIF,

which for most realisations of interest will be true, then this reduces the form of the
eigenvalues to
K

g Lofg— (5)2_ (4.38)

At the threshold ¢ = /2, the roots change from purely imaginary to real valued,
corresponding to the transition into the strong coupling regime.

W4+ = wWR — I

4.7 Dynamical backaction

In the event that the light force reacts immediately to the mechanical motion, then
the equilibrium position is shifted and a new "effective’ spring constant is produced[81].
At large enough intensities, it can be the case that the potential added by the light
force means that it may develop into a double potential well, leading to what is
referred to as static bistability [112]. This typically occurs at detunings correspond-
ing to cooling, which provides a limit to the achievable temperatures in the regime
K >> WR.

Considering dynamical effects, for which ¥ << wg and referred to the "resolved
sideband’ regime, then Eq. 4.34 and Eq. 4.35 are used as the starting points. To
begin with, consider the response of an oscillator in the absence of any coupling
into the system. In such a circumstance, the mechanical oscillator has a mechanical
susceptibility expressed as [66]

X (W) = Mt ((wfg — w?) — iTrw) (4.39)

which produces the familiar Lorentzian response of mechanical oscillators driven at
a variable frequency, w. In the event that there were to exist coupling into the system,
then there is a related shift to the susceptibility which encompasses the effect of the
coupling on the oscillations. This can be expressed

X4 (w)=X+Z(w). (4.40)

By solving Eq. 4.34 and Eq. 4.35, it will be shown that the susceptibility then has a
modification [113] as

3 2 2 1 1
T (w) = 2Megwig <(A+w)+ix/2 v —iK/2) (4.41)

which encompasses the coupling, where g = g0+/7icayv. It is often defined [2] that

Y (w) = Megrw (20wp (w) — i) (4.42)
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where I'. is the additional coupling-provided damping. With this redefinition, it is
then found

_ ReZ(w) _ L2WR A+w A—w
dwg (w) = 2W Mgt w <(A+w)2 N (K/2)2 + (A— w>2 n (K/2)2> (4.43)
— M _ 2WR K B K
ST <<A +w) + (12" (A-w)+ <;</z)2) .

which are also valid for the strong coupling regime. The term dwgr leads to an effect
known as the optical spring effect, in which the mechanical oscillator is either spring
softened or hardened depending on the detuning of the laser. A complete discussion
of the optical spring effect and its uses is lengthy and does not represent the sole
interest of this thesis; the interested reader to literature [114, 115].

Assuming that w = wg, then the coupling damping rate is expressed

— o2 K _ K
I'e= 8 ((A +CUR)2 + (K/2)2 (A . WR)Z + (K/2)2> (445)

from which the full effective damping of the oscillator is found as the sum of the me-
chanical damping, I'n,, and the coupling-provided damping. As the optical damping
rate can be negative or positive depending on the detuning, the damping of the os-
cillator can either be decreased, leading to cooling, or increased, leading to heating.
Considering this equation only in the resolved sideband regime, then a further sim-
plification can be made. The function has maxima and minima at the sidebands (i.e.
A = Fwg), from which the maximum cooling rate can be approximated as

2
T, — 4% (4.46)
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Chapter 5

Thin-film magnon-phonon
coupling

FIGURE 5.1: A basic pictorial representation of the device proposed. The device
consists of a YIG thin film, shown in yellow, deposited on-top of a functionalised
GGG substrate, shown in grey, whereby the substrate has been manufactured as
a cantilever cleaved from and still attached to the bulk GGG, forming a chip. This
YIG on this chip is then a distance d. above a superconducting transmission line,
shown in blue.

While the current experimental proposal for magnomechanics presents coherent
coupling in a hybrid magnon-photon-phonon system, the achieved magnon-phonon
cooperativity is only of order unity, and the device has a large footprint due to the
use of a cavity preventing on-chip designs. To this end, it is proposed within this
thesis an alternative approach to the device design inspired by a number of recent
technological advances.

The strong coupling between magnetic and photonic systems was hypothesised
and explored by Soykal et al. [116, 117], in which they theoretically investigated the
interaction of a nanomagnet with a single photonic mode inside a cavity. In these
works, they predicted the feasibility of a strong interaction between light and matter,
made possible by a high spin density. A significant experimental work came from
Zhang et al. [19], in which they demonstrated such a light-matter hybrid system, and
showed the strong interaction between a magnetic and photonic system by placing a
mm-sized YIG sphere at the maximal point in a photonic cavity’s field. The primary
findings in this work was to demonstrate ultrastrong coupling, and find a cooper-
ativity between their systems of C = 12600. Other notable works came from Li et
al. [118], in which they further reduced the size of the magnet, taking the number
of spins from 10', as demonstrated by Zhang, to 10'3. To do this, they utilised a
permalloy stripe of dimensions 500 ym by 8 ym by 50nm above a niobium super-
conducting co-planar waveguide, electrically isolated by a MgO layer. With this, it
was seen that strong coupling could be attained, and that cooperativities of 160 were
achieved. In a similar work, Hou et al. [119] also used a superconducting CPW and
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a permalloy stripe of dimensions 900 ym by 14 ym by 30 nm, and achieved a cooper-
ativity of 68. While these cooperativies obtained are some two orders of magnitude
lower than those attained by Zhang, they represented significant progress to utilis-
ing on-chip devices with dimensions being brought to the micro-scale. While strong
magnon-cavity photon realisations form a cornerstone of the field [19] utilising YIG
spheres and copper cavities, the recent advances using superconducting co-planar
wave-guides allow for strong magnon-photon coupling with overall footprints of
devices on the order of hundreds of nanometers [120] and circumvents the need for
a physical cavity. The required pre-cooling of these waveguides to exhibit their su-
perconducting nature could be employed as a benefit in using the device for ground
state cooling. Similar developments have been made in the field of nanofabrication,
where the deposition of YIG films that are on the order of tens of to hundreds of
nanometers in width [121, 122] are shown to have similarly low damping to that of
bulk YIG, as well as recent works showing the possibility of milling YIG films into
micron-sized YIG cantilevers [123, 124] and bridges [125] and retaining sufficiently
low Gilbert damping. These developments ground this proposal in reality.

Consider a GGG substrate which has been functionalised into geometry that
presents a beam free to resonate. This beam may either be in the configuration of
a bridge, in which both ends of the beam remain connected to the bulk of substrate,
or that of a cantilever in which only one end of the beam is connected to the bulk of
the substrate. This beam has dimensions Lr > wg 2 fRr for the length, width and
thickness of the beam respectively, and the cross-sectional area these dimensions
form is assumed to be either rectangular or isosceles which should be geometries
easy to fabricate given available processes. Deposited onto the top-most surface of
the beam is a YIG film which has dimensions Ly, 2 wm >> tn, as the length, width,
and thickness of the film respectively. Clearly, with the geometry of the beam it is
required L, < Lg. An additional constraint is made on the width of the magnetic
film (although one that is not necessarily fundamental to the device) and restrict
considerations to a geometry which imposes w, = wg as the smaller of the two
lateral dimensions of the resonator. The case L, = Ly is then the case in which the
the surface of the beam is entirely covered the the YIG thin film. In the case that
Lm < LR, the central position of the magnetic thin film can be varied, provided that
the full extent of the thin film remains on the beam and has a strain profile as the
beam-film complex undergoes flexural motion. The nanostructure is a central dis-
tance d. (that is, from the centre of the transmission line to the centre of the magnetic
structure) above a superconducting transmission line used to excite the Kittel mode
of the magnetic structure. This transmission line is assumed to be sufficiently long
compared to the length of the nanostructure such that any edge effects to the mag-
netic field can be neglected. A biasing field of H. is applied along the length of the
film, assumed to be sufficiently strong so as to saturate the magnetic structure along
it’s length. This device is shown in Fig. 5.1, where the specific case of the cantilever
is depicted.

Thin film YIG has an exceptionally low coercivity, with values reported < 10e
[126], meaning that small biasing fields can be used to produce a saturated mag-
netisation state, a requirement necessary for compatibility with superconducting
wave-guides to avoid the breakdown field. It is also achievable to attain a satu-
ration magnetisation of 4tM; ~ 1750 Oe with these thin film configurations [127],
comparable to that of bulk YIG. Thin film YIG grown on GGG substrates are also
known to exhibit low magnetic damping, with reported values of & ~ 10~* — 10>
at room temperature in literature for films of thicknesses of tens of, to hundreds of,
nanometers [12, 128, 129], with thicker films generally showing a lower damping
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[130]. In this work, it is preferential to have films in the sub-100 nm thickness re-
gion in functionalising thin films [131]; while this is not something that is explicitly
considered within this thesis, it is evidently a novelty of the device that the current
magnomechanical device set-up cannot present. As YIG is a popular material used
for spintronic purposes [132], the device presented within has the scope to be easily
incorporated in current spintronic designs. With this in mind, the thin film of YIG
is taken to be composed of 25 atomic layers (where one atomic layer has lattice con-
stant ag = 12.376A), corresponding to a nominal thickness of ~ 31 nm, and estimate
the damping of this film as « = 10~* in line with current literature. Note, however,
that films grown to 3.7nm have exhibited damping at this same order of magni-
tude [133]. in recent years. YIG is well-suited over other magnetic materials for
magnomechanical applications due to its high spin density (required for apprecia-
ble magnon-photon coupling), its insulating properties (providing a playground for
purely magnetoelastic coupling), its low damping (making realising strong coupling
easier over other materials), and progress with manufacturing enabling ultra-thin
films (required to ignore the effect of an elastic interface).

The elastic properties of GGG have been determined by Graham and Chang
[134], in which they found for the elastic moduli ¢;; = 2.857 x 1012 dyne/ cm?,
cpp = 1.148 x 1012 dyne/ cm?, and ¢y = 0.902 x 10'2 dyne/ cm?. Calculating the
elastic anisotropy parameter given in Eq. 3.63, a value of Aggg = 1.056 is found
for the crystal. As such, the crystallographic orientation of the GGG crystal struc-
ture with respect to the orientation of the beam axes is of little consequence, and the
crystal can be considered elastically isotropic. With this, the Young’s modulus of the
structure is estimated as Eggg ~ 2.2 X 1012 dyne/ cm?. The Poisson ratio of the ma-
terial can also be determined from these constants, and with these a value of vggg =
c12/(c11 + c12) = 0.287 is found. Similarly, the elastic properties of YIG have been
determined by Clark and Strakna [135] (with more recent ab initio studies in good
agreement [136]). It was found for the elastic modulii ¢ = 2.69 X 10'2 dyne/ cm?,
c1p = 1.08 x 102 dyne/cm?, and cyy = 0.764 x 102 dyne/cm?. Calculating again
the elastic anisotropy parameter, one finds a value Ayjc = 0.95, which again can
be roughly interpreted as elastic isotropy. Then, the Young’s modulus is Eyic ~
2.10 x 1012 dyne/ cm? and a Poisson ratio of vyvig = 0.286.

There are numerous works that measure the strength of the magnetoelastic inter-
action in YIG through a variety of techniques [137, 138, 139], from which it is possible
to determine the magnetoelastic constants. To date, the most often used measure-
ments of the magnetoelastic constants are determined as B; = 3.48 x 10° erg/cc and
By = 6.96 x 10%erg/cc at room temperature [139, 140], which puts the strength of
this interaction weaker than those of other garnet structures [141].

While direct measurements of the Q-factor of beam-like devices fabricated from
GGG do not appear in literature, studies have been performed on the attenuation of
sound waves in bulk GGG [142, 143, 144]. Specifically, taking the attenuation coeffi-
cient of 0.9m™~! for a 0.418 GHz acoustic wave at a longitudinal speed of 6400 ms !
[142], one can infer a Q-factor for the bulk crystal as Qpuikgee ~ 10°. In functionalis-
ing the bulk crystal to a nano-sized device, an impact is expected to the detriment of
the Q-factor whereby clamping losses and surface losses become appreciable meth-
ods of energy loss within the structure [145]. With this in mind, a value Qggg =~ 10*
is taken as a conservative estimate for the Q-factor of a functionalised GGG sub-
strate. Note that the Q-factor of YIG beams fabricated in literature corresponds to
roughly Qyig ~ 10° [124], roughly an order of magnitude less than that postulated
of the GGG beam.

To preserve the Q-factor of the GGG beam in depositing another elastic layer on
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the surface, the geometry of the device must be considered as having the thickness
of the magnetic structure much less than that of the elastic resonator (t, << tg) as
the lowest order consideration such that the effect of the elastic interaction between
the two layers and the additional mass can be considered negligible. In essence, this
is taking the limit that there is no material on the surface which evidently should
tend to that of the bare cantilever. However, it has been noted that the coating of
mechanical resonators even with a thin layer still impacts the Q-factor [146]. In the
study, a coating of gold was deposited onto the top of a silicon dioxide cantilever, of
thickness ratio tay/tsio, ~ 0.1. This in turn produced a reduction of around 20% in
the Q-factor in vacuum conditions (from 500 to 400), and an improvement of around
50% in the Q-factor (from 10 to 25) at atmospheric conditions. It is important to
note that the Poisson ratios of SiO; and gold are vsio, ~ 0.20 [147] and va, ~ 0.42
[148], respectively. These values present a large mismatch in elastic characters of
both layers. The elastic characteristics between GGG and YIG, however, are far more
similar than those of S5iO, and gold, and so it would be reasonable to expect these
deviations to be less significant. With this, it seems intuitive to take the proposed
value of the Q-factor for GGG beam as simply an order of magnitude rather than
definitive.

The original research within this Chapter is contained within the following Sec-
tions. Sections 5.1.1 and 5.1.2, wherein a simplified Hamiltonian for the spin-waves
is obtained alongside the implications in their quantisation. Sec. 5.2 then contains
details on the single magnon-phonon coupling rates attainable for cantilever and
bridge geometries. Sec. 5.3 then contains research on the influence of the Kittel
mode profile, and applies Guslienko’s theory of dipolar pinning [149] to determine
the relevence of higher order effects. Sec. 5.4 evaluates the coupling of transmission
line photons into into the magnon modes in order to determine the number of mag-
nomechanically relevent magnons. Sec. 5.5 is somewhat hybrid, in that it begins
with a recap of the types of magnon modes following from literature. It then applies
this beginning with an expansion of the characteristic wave-vector in an approach
unseen in literature and uses it to estimate the frequency-separation of the next near-
est magnon mode and whether a single-mode model is applicable. Lastly, Sec. 5.6
performs optimisation of the theory to determine the largest magnomechanical pa-
rameters attainable.

5.1 Quantisation of magnons

To adopt a quantum approach to magnons and write their Hamiltonian as a simple
harmonic oscillator, the first required step is to obtain creation and annihilation op-
erators for the Kittel mode. Many of those who have done this step do so using the
Fourier transform of the operators [150], wherein to use this Fourier basis they have
presupposed that the system is translationally variant. Much of this thesis aims to
address the influence of the demagnetisation field whereby a translational invari-
ance cannot be presupposed. Therefore, one is required to make use of a Bogoliubov
transformation and proceed with an analysis of the coherent mode to determine the
appropriate prefactors in the quantisation.

In disturbing the equilibrium state of a given magnetic moment in a ferromagnet,
the moment will process and a spin wave will propagate throughout the crystal. The
energy of this spin-wave must be equal to the excitation energy of the crystal that
was required to cause the change in orientation of the atomic spin. This energy of
an elementary excitation of the spin-wave may be obtained from multiplying it’s
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frequency, wm (k) by 1, where the energy
Em(k) = hwp (k) (5.1)

can be regarded as the energy of a particle, and the quantity p = ik can be regarded
as it’s momentum. This "particle” is what is referred to as a magnon. If the excitation
energy Ep, of the ferromagnet is small, then it may be regarded as a sum of energies
of each of the individual spin-waves propagating, which is to say it is the sum of the
magnon energies

Em{n} =) hwnm(k)n(k).s (5.2)
k

where n(k) is the number of magnons of wave-vector k, and summation is taken
over all k.

As is standard in quantum physics, creation and annihilation operators can be
introduced to manipulate these "particles’. Introduced here are the creation operator
for a magnon, C}L (k), and the annihilation operator for a magnon, c;(k). These oper-
ators create and destroy a magnon of type j and with wave-vector k and satisfy the

standard commutation relations
[Cj(k)/ C}-/ (kl)} = (5]']'/5(1( - kl>, [C]'(k), Cj (k/)] =0. (5.3)

The Hamiltonian for a magnetically ordered crystal can now be expressed in
terms of these magnon creation and annihilation operators. Assuming that the magnons
do not interact with each other, then this Hamiltonian has the form

Him = Y Twom j(k)ef (k)ej(k), (5.4)

where the sum is taken over all values of the wave-vector k and type indices j. The
eigenvalues of the operator are then the spin wave energies

Em =) hwnj(k)n;(k). (5.5)
k,j

Prior in Sec. 2.2, the Hamiltonian of a ferromagnet was expressed in terms of the
atomic-spin operators. Consider now the extension that it is required to express the
Hamiltonian in terms of the creation and annihilation operators of magnons. To do
so, the work of Holstein and Primakoff [151] is followed, in which they introduced
operators a] and g; that satisfy the commutation relations

{ul,uﬂ = . (5.6)

and defined a set of operators as

+
. aja
st =gt +is! = V2saty/1 - L=
1 1 i 1 25

- x_ oY a;ral
s, =s; —is; = V2sy/1— s W

z _ t
S| = —s+a;a.

These operators, s;” and s;°, are the spin raising and lowering operators, and the
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operators a] and a; are bosonic operators. If the number of spins that are excited is
small compared to the total number of spins, (i.e. if a;ral << s), then it is possible to

approximate
.'.
a'a
1-— | =1L 5.8
(1-%) 68)
Hence, the operators reduce to
s = s +is] ~ V2sa]
s, = s —is] ~ V2sa (5.9)
§f=—s+ala,

and a single boson excitation flips a spin.
Returning now to Eq. 2.15, and performing substitution for s from Eq. 5.9, one
finds the expression

1 1, -
H=—3J Y [2 (/5 + 5 5m) +slzsfn]
1#m
1
= —Ej ) {salaL +safay — safa; — sal,ay + afajal,a, + 25| . (5.10)
I#£m

This Hamiltonian includes terms which implicitly couple spin-sites (terms acting
on site /| mixed with terms acting on site m), and so any excitation as a result of
these operators must be one that is collective. Another consequence of note of this
Hamiltonian is that this is not diagonal one. It is therefore necessary to perform a
transformation which will result in a diagonalised Hamiltonian to arrive at opera-
tors that quantise the spin-waves. This unitary transformation is the Bogolyubov
transformation, and can be written in the form [152]

a(k)

urc(k) + viec’ (—k),
a’r (k) t

(5.11)
e’ (k) + vge(=k),

where 1y and v are functions of the wavevector k.

The operators in Eq. 5.9 may be expressed in terms of the reduced magnetisa-
tion. Considering the spin magnetic moments for electrons, and taking the magnetic
body at saturation, these operators can be written in terms of the fluctuation of the
magnetisation as each electron is excited from it’s ground state and flipping the ori-
entation of the moment. By inspection of the relation M = g.1gS, one may write
ladder operators for the fluctuations of the magnetisation from Egs. 5.9, and find

omt = 1/2‘3\/16;:]3a+,
P 2%\2#13 0 (5.12)
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where the subscript | is dropped for breivity. The raising and lowering operators for
the x and y components of the fluctuation of the magnetisation are then written as

(6m™ +6ém™) = /gZ%\P/{IB (a + a*) ,
s (5.13)

1 R T R () 1 N
5my—2(5m om”) =i 2Ms<a a).

5mx -

N[ —

5.1.1 The Kittel mode Hamiltonian

Beginning here is the presentation of the work performed in order to derive a the-
ory of thin-film magnomechanics. To apply the Bogolyubov transformation for the
specific case of the Kittel mode of YIG in such a way that the coefficients of the
transformation in Eq. 5.11 are completely determined, it will be necessary to have
an approximation for the spin-wave Hamiltonian of the Kittel mode. This Hamil-
tonian can be obtained by considering the Hamiltonian of a ferromagnet under the
assumption of a negligible anisotropy and by ignoring the effect of exchange.

Consider the classical Hamiltonian for a thin plate ferromagnetic body at satu-
ration, with equivalent geometry to the device proposal. To recapitulate, this forms
a magnetic structure Ly, > wm >> tn, (and associated volume Vy,), laying in the
y — z plane, exposed to a saturating bias field H.Z which induces an associated de-
magnetisation field Hyq. Within these approximations, the classical Hamiltonian for
this can be expressed as the energy associated with bias field and the internal de-
magnetisation field. This Hamiltonian is found as [59]

Hm = — M-HedV—1 M-HydV (5.14)
Vin 2 IV
where the first term represents the Zeeman field energy and the second term repre-
sents the demagnetisation field energy.

The Kittel mode description adopted in this case amounts to what has been seen
in Sec. 2.5. A saturation magnetisation is assumed along the z-axis, with dominant
fluctuations of the magnetisation dm, and dm, in the x- and y- directions. At this
stage, the fluctuations of dm, are also included along the saturation direction, known
to be second order in the fluctuations ém, and dm,. Evaluate of the Hamiltonian is
then performed under this description of the magnetisation. Note that this Kittel
mode description assumes that the fluctuations of the magnetisation do not vary
spatially with position inside the magnetic structure which is not something that is
implicitly justified for a finite structure. Regardless, this description then expresses
the magnetisation as

m= o = (0,0,1) + (6, omy, ) (6.15)
S

For the Zeeman field contribution to the Hamiltonian, it is simple to find

—Ms/ m-HedV = — M,HeVin (14 6m2) = — MsHoVin (1 - % (6m2 + 5m§)> .
Vi

(5.16)
The demagnetisation energy contribution is somewhat more laborious. Given that
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the ferromagnetic body can be roughly approximated as a prolate ellipsoid, the de-
magnetisation tensor noted in Sec. 2.3 may be used to express

4t M? .

—% m-HydV = i s/ m- (N-m) dV
Vm m

 ATM2Vy

2

(Nx(smi + Nyom2 + Nz (1+ 5mz)2) . (5.17)

With the coefficients found in Eq. 2.35, the terms in the demagnetisation evaluate to

L
2 M2V N o2 = 2t M2V, 51> mom
T s ¥Ym+Vx mx 7T s Ym mxtm(Lm+wm)+mem

~ 2T M2V dm2,

Lot
2 M2V N, 6m?% = 2t M2V, 6m? m-m
7TV Vm y my 7TV Vm mxtm(Lm+wm)+mem

Y ZnMngtgnémﬁ,

Wmim
tm (Lm + wm) + mem (518)
~ 2M2wmt?,

2T M2V N, = 27tM2 Vi

Wmim
L + Wm) + LnWm

AT M2V NoO1m, = —27tM2Vig (5m§ + 5m§) i
m

~ —2TM2wnt?, <5m§ + 5m§) ,
t
27t M2V Nobm2 = 27t M2V 5112 @mlm
TV Y20 = s O (Lo + W) + Lonrm
~ 2T MW t2 6m?2.

where the geometry t;, << Lmy, wn of the structure has been used to reduce terms
in fractions. The full Hamiltonian of a ferromagnetic body exposed to a biasing
magnetic field at saturation supporting a spatially homogeneous Kittel mode is then
expressed as

Hm = — MgH Vi 4+ 2 M2wmt2,

1
+ 5 MyHeVim <5m,% i 5m§) 4 2T MV O (5.19)

+ 2MP Ly 0m% — 2t M2, (5m§ + o2 — 5m§) .

In discussing Eq. 5.19, terms that are static in the magnetisation do not contribute
to the dynamics of spin-waves - as such, the first line may be neglected. Neglected
also are the terms of order t2, since the geometry imposes tm << Wm, L. The Hamil-
tonian of the spatially homogeneous Kittel mode is then

1
Hew ~ 5MsHeVin (5m§ + 5m§) 4 2T MV Omi2. (5.20)

5.1.2 Quantisation of the Kittel mode

With the Hamiltonian in Eq. 5.20, the Bogolyubov transformation may be applied to
find magnon creation and annihilation operators specific to the Kittel mode. To do
s0, given that the c—numbers are not defined, it is necessary to use a state for which
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the evolution is known and apply the Kittel mode Hamiltonian. One such state is
the coherent state [108], for which the quantum state has dynamics that follow the
evolution of the evolution of the classical state with finite amplitude «; (for the I-th
mode of the LLG equation), such that

o lay) = we o)), cula) =0 n Al (5.21)

with
Haw ((m(£));, (5my(t)),) = heoy |a]® (5.22)

where (dmy,(t)), = (a;|6m,,(t)|a;) follows the classical evolution of the state. For
the Kittel mode specifically, it may be written

. 2
(1] las) = (wpe ")
. 2
(wlefRla) = (o eten) 629
{w|cocdlar) = (a|cgeo + 1|ar) = ajay +1

where the specificity of the creation and annihilation operators to the Kittel mode
is denoted with a subscript 0. If the transformation in Eq. 5.11 is applied to the
operators found in Eq. 5.13, one finds

omyp = 823\23 ((uo +vo)co + (ug + US)Ca) , (5.24)
smyo = |5 (il —vo)eo +i(uf —v5)cf) (5.25)

The classical polarisation of this mode representing it’s temporal evolution has al-
ready been found in Eq. 2.58, in which it was seen that the x and y fluctuations of the
magnetisation oscillate 77/2 out of phase and of different relative amplitudes. One
may then write

<5m§”(t)>0 =iy [1+ % <5m§*>(t)>0, (5.26)

for the creation terms, and the annihilation terms are instead proportional to exp (—iwmt),
seen by complex conjugation. This equation represents the relation between the evo-
lution of the expectation value of the two. With this expression, a relation between

vo and 1 can be written such that

/ 47t M / 47tM,
vo—ug = 4/1+ H > (uo + Uo) =4/14+ H SAO (5.27)
e e

where Ag = up + vp and is chosen to be real. Substituting 5.27 into Eq. 5.24 one finds

2
‘57”3:,0 = gze]\;/lIB (Aoco + ASCS) ,
S

Sell , .
= & (Agcoco + Al A (2cgc0 + 1) +A02cgcg) . (5.28)
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Using now the relations listed in Eq. 5.23, it can be deduced that

. 2 2
(oo (t)?) = S8 ((Aof’élel“"“t) + AjAg (2af +1) + (A* : Wmf) >

2Mg
B —i * * m *
= ge]\;l//ll <<A0(X1€ iwmt + A m) t) -+ A()AO)
_ 28epn 8elB 42
M. Aja? cos? (wmt) + M. A} (5.29)

where the last term in Eq. 5.29 may be neglected as a static offset. Likewise for
dmy0(t), substituting Eq. 5.27 into Eq. 5.25 finds

2
5m§/0 = ii\P/lIB <A017CO - Aoiyco)

B * *
= —% (Aoc co — ApAo (6005 + Cch) + A02C$C$> (5.30)

where it is defined # = /14 47M;/H. for convenience of presentation. Again
using the relations in Eq. 5.23, a similar expression is arrived at

2 ) )
(omyo(t)?) = —SLBL <<Aoaze“"mt) — Ao A (2mai +1) + Ao A ((Agaje') )

2Mg
2 .
_8'32];\1/31’7 <(Aouqel“’mt—A§zx;"eWmt) —A0A3>,
S
2gey377 geﬂBﬂ 2
M. “OeE L A3a? sin® (wmt) + M. =L Af (5.31)

where again the last term in Eq. 5.31 is neglected as an offset.

The Hamiltonian of the Kittel mode that was derived in Sec. 5.1.1 may now be
used to determine the form of the spin-wave operators. The spin-wave Hamiltonian,
evaluated at the expectations of (6my(t)?) and (6myo(t)?) must have the relation
given in Eq. 5.22 as this is the property of the coherent state. Hence, it is found

28t Vin A3 <<H + 27‘[Ms> cos? (wmt) + <1 +

47M;s\ H
2

€ sin? —

H. 5 sin (wmt)> hewm.
(5.32)

Substitution for the Kittel mode frequency from Eq. 2.57 and taking t = O finally

finds

1
2
4”M5> (5.33)

e

H,
29e1BVinAj <27TM5 + 2) = getpHe <1 +

from which it can be infered

1
1 4 -1
Ag = 4| — <1+ "MS> : (5.34)
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Hence, the fluctuations of the spatially homogeneous Kittel mode are quantised as

1
Iy (1 . 4_7TMS>4 y

+
e =\ 3MLvi H. 0
X (5.35)
hy 47tMs 4
+ — ; g 1 S
om, o =i 2Msvm< TR ) c

where it is defined vy = gepip/ 1.

5.2 Single magnon-phonon coupling

By expanding the magnetocrystalline anisotropy density as a function of small strains,
it has been seen in Sec. 2.4 that the magnetoelastic energy density of a magnetic sub-
strate undergoing strain can be expressed as

2 2 2
Ume = B (mxuxx + my, Uy -+ mzuzz> + By (mxmyuxy + MMy, + mymzuyz) ,

where B; is the i-th magnetoelastic constant, m; is the i-th component of the reduced
magnetisation m; = M;/Ms, and u;; are the components of the Cartesian strain ten-
SOr.

Considered here is the application of magnetoelastic energy density to the case of
YIG deposited onto an elastic beam such that the single coupling between magnons
and phonons can be elucidated. It has been seen in Eq. 3.47 that for a simple Euler-
Bernoulli beam there are no shearing strains and so u;; = 0 for i # k As such, the
second term may be neglected in Eq. 2.4. Under the description of the simple spa-
tially homogeneous Kittel mode magnetisation, the magnetoelastic energy density
may be split into a static term, denoted U0, and a fluctuating term, denoted éUe.
Substituting the Kittel mode description into the magnetoelatic energy density and
retaining terms up to second order in the spin-wave operators, it is found

SUne = Ume — Umeo = B (5m§uxx + iy, + 25m§uzz) (5.36)

When considering the coupling between magnons and phonons, only the dynamical
term is of consequence and the static magnetoelastic energy density term does not
affect the dynamics of the coupling; it may be neglected.

The displacement operator of a single mechanical mode, labelled 7, can be ex-

pressed as [153, 154]
[ ;
=\ 3 <bn + bn) (5.37)

where u, = N ¢, is the n-th mode profile of phonon frequency wg, p is the density
of the material, and

N2 /V »* =1. (5.38)

Correct to first order of the deflection profile, it is sufficient to say that the displace-
ment profile of a Euler-Bernouilli beam is simply given by the deflection profile
[154], given in Eq. 3.88 and Eq. 3.97 for a cantilever and bridge, respectively. The
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normalisation for both structures can then be found as

1 1
N \/fAR dA [, $3dz \/;' (5.39)

where Ay is the cross-sectional area of the mechanical resonator, taken to be constant,
and Lp is the resonator length. Note that D = 1 has been taken, given that the states
form an orthogonal set (c.f. Sec. D) and the displacement operator accounts for
the zero-point motion. With the quantisation of the displacement profile, the strains
from Eq. 3.47 can be expressed as

L S T
Hooe = uyy - prR ARLR d22 b bn)
/ / 4’y Pt
Moz = X 2pr ARLR dz? b + bn)

In Sec. 5.1.2 the operators for the fluctuations of the magnetisation of the spatially
homogeneous Kittel were quantised as

(5.40)

(5.41)

In constructing terms for Eq. 5.36, those proportional to c3 and cf? may be neglected
under the rotating wave approximation as being higher order in the magnon fre-
quency and hence not coupling. For terms linear in ¢{c, it is found

hy 47'[M / / d? 4>
2 _ g n +
OMilyy = M.V <1+ zpr ARLR Oco b +0b )
hey 4nM d2pu(z
2 _ g s n +
oMy = Vi <1 oy 2pr \ ARLR dz? OCO (b2 +81).

(5m ZUzz = 21/ (5m *Uxx +(5m Llyy

(5.42)
With these terms, the magnetoelastic energy density can be constructed in terms of
the magnon and phonon creation and annihilation operators to extract the single

magnon-phonon coupling strength. For the coupled fluctuations of this density, one
finds

B (v + 1) h’yg / / 47t Mg ~3
5ume - 2‘0(4]R ARLR ( H ) (1 + He )
d

g’z( 2) b cheo (b +b*). (5.43)

Since for the consideration of the thin film nanostructure proposed the device
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has ty << tg, the strain through the thickness of the film can be taken to be uniform
and therefore be evaluated at the interface such that x — tg/2. Integrating the
magnetoelastic energy density over the bounds of the magnetic structure, it is found

OUme =

Vi
(v —|— 1) h'yg IR 47'£Ms 2 (s 47t M 2
zpr ARLR He

He
Vi / coco (b +b*) (5.44)

and hence
Hme =

(v —|— 1) h'yg trk? 47‘(Ms : (14 ATM\ 2
zpr ARLR 2 He He

X (Pn(2)")s. cleo (b + b*) (5.45)

where ¢, (z)" is expressed in units of k?, and < ... >s_ denotes the spatial average
of the function within angular brackets over the surface of the magnetic structure.
By comparison to the interaction Hamiltonian seen in Eq. 4.15, the single magnon-
phonon coupling strength, go, can be identified as

Bi(v+1)7g [ 1 \¢ 47TM,\ 2 47TM,\ "2
0= 21/2 M Lr <EIPAR) frk <1 * He ) * <1 * He )
X (§u(2)")s. (5.46)

where the definition of wg is assumed from Eq. 3.75 and Eq. 3.69, and the negative
sign is dismissed as an irrelevent phase-factor, to yield an expression as a function
of the fundamental parameters to the device configuration. This formula is valid
for any shape of magnetic texture in which the Kittel mode of the film couples to
the elastic mode of an Euler-Bernoulli beam, provided that it is thin with respect
to the resonator thickness and that the approximations in considering the effective
magnetic field hold (that the demagnetisation tensor coefficients obey Eq. 2.35, and
that the magnteocrystalline anisotropy can be neglected). In principle, this limits the
geometry to oblate ellipsoidal shapes, or limits thereof (i.e. plates or disks). Another
fundamental constraint on the application of this theory with regards to the elastic
equations follows from Eq. 3.1, in which the Euler-Bernoulli beam theory is only
known to hold for small products of the wave-vector and transverse dimensions.
These inequalities are stated as

kwr <<1 and ktg << 1. (5.47)

Clearly, if wg > tgr then one needs only evaluate the largest of the inequalities to
ensure that the elastic description is valid.

Eq. 5.46 offers a rich parameter space to optimise to, and under the approxima-
tions made is independent of the resonator thickness (note that Ag and I introduce
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Parameter Value Reference

ATM, 1750 Oe [127]

B, 3.48 x 10° dyne/cm? [140]
Voaa 0.287 [134]
Ecao | 22x10%dyne/em® | [134]
Poce 7.085g/cm’ [134]

t 256!0

m

TABLE 5.1: Choice parameters for use in g§* and their sources where applicable.

a factor of 1/t). If the simplification that the magnetic material is rectangular in ge-
ometry, then one may separate the spatial average into two independent integrals.
In doing so, the spatial average then has no variation across the width of the mag-
netic structure, as the deflection profile is a function of the variable z only. The form
of go is then simplified further to

1 1 1
Bi(v+1)yy [H ( 1 > ( 47tMS>2 ( 47TMS>2
rec _ - ok 1+ + 1+
80 2vaM.  \ Ik \ElpAg ) ® He He
x (Pu(2)"), . (548)

where < ... > is now used to denote the length average of the function within
angular brackets over the length of the magnetic structure.

With regards to the shape of the cross-section of the resonator, it was stated in the
proposal of the device that given the design constraints the GGG beam is assumed
to have either a rectangular or isosceles cross-section. Due to both the lower mode
frequencies, as well as the smaller cross-sectional area for equivalent widths and
thicknesses, the isosceles cross-section offers a numerical pre-factor that boost the
value of gg over the what would be attained for comparable dimensions of the device
in assuming a rectangular elastic resonator cross-section. Mathematically, this is
expressed as

Aiso 1 i
fiso _ 2 d == 5.49
Aq 2 % I, 3 (49

vl

7

e}
—_

which leads to an multiplicative increase to the value of gy of 67* ~ 1.5 for the
isosceles elastic resonator cross-section compared to that the rectangular one.

The following sections look to characterise g;* for both a cantilever and a bridge
elastic resonator onto which a thin film of YIG is applied. As the curvature ¢/ (z)
of the resonator varies as a function of position along the resonator, it would seem
instructive to also vary the effective central position of the magnetic material for
the scheme Ly; < Lg. To this end, it is shown g as a function of width, w,, and
length, L, for an exemplar somewhat arbitrary range than presents a nanoscale
configuration that also satisfies the mode validity criterion in Eq. 5.47. As gi¢ is
independent of the resonator thickness, no variation is performed for this parameter.
With the width of the magnetic structure as the smaller of the two lateral dimensions
of the device, the length of magnetic structure is investigated for schemes Ly, < Lg.
Presented in Table 5.1 is a recap of the parameters chosen for the YIG/GGG complex
which were noted in the introduction to this chapter.
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a) b) j e

) ! =

FIGURE 5.2: Placement and movement of the magnetic section deposited on top
of the cantilever corresponding to the itemised list.

5.2.1 Cantilever

For the cantilever/YIG elastic resonator, there are a number of regimes to consider
in optimising ¢{*°. The most intuitive of these is to simply cover the entirety of the
topmost surface of the cantilever with YIG. However the curvature of the resonator,
which varies as a function of position, could also presents schemes that may obtain
preferential values. These regimes are depicted in Fig. 5.2, and are described as

(@) A cantilever resonator in which the surface is completely covered in magnetic
material.

(b) A cantilever resonator in which the central placement of the magnetic structure
begins at the fixed end of the cantilever, and is varied to the midpoint of the
cantilever as a parameter to optimise.

(c) A cantilever resonator in which the the central placement of the magnetic
structure begins at the free end of the cantilever, and is varied to the midpoint
of the cantilever as a parameter to optimise.

(d) A cantilever resonator in which the central placement of the magnetic material
varies along the cantilever’s length, for varying lengths of magnetic material.

Explored within this section is the influence of the position of the YIG magnetic
material.
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FIGURE 5.3: g€ for a cantilever resonator assuming the surface is covered with
thin film YIG. (a) corresponds to a square cross-section, and (b) corresponds to
an isosceles cross-section

Shown in Fig. 5.3 is the behaviour of gi* for the case of the cantilever res-
onator of (a) square cross-section and (b) isosceles cross -section with thin film YIG
fully covering the surface of the resonator. As example dimensions, considered
are an elastic resonator length L = L, = 20 ym and cross-sectional dimensions
wr = tr = 500 nm. In this figure, plotted are gi° for the first 4 flexural modes of the
cantilever for both the rectangular and isosceles cross-sections as a function of ap-
plied magnetic field. In considering g{* for the fundamental mode (n = 1) and the
second mode (1 = 1), there is an increase of some 50% to the value. However, higher
modes than n = 2 appear to converge to the same values of gi* as that of n = 1,
and appreciable increases to ;¢ are only seen between the fundamental and second
mode. Listed also in the figure is the mode validity parameter from Eq. 5.47, which
requires that the cantilever resonator be made longer, thinner, or a combination of
both, in order to be satisfied to a reasonable degree. With the mode validities in
mind, the following discussion is limited to the fundamental mode only - gf°° scales
as L%{/ 2, and so moving to the longer cantilever resonators in order to access higher
order modes is detrimental to gi*°. It is also seen that smaller applied fields offer
higher values for gi*¢, but fields strong enough to saturate the magnetic moments in
thin film YIG are still required. With this in mind, and in accordance with the plots,
a tentative H. = 350 Oe is taken as the nominal field moving forward. While the
coercivity of YIG is known to be 2 to 3 order of magnitude smaller than this, it is
assumed that the 350 Oe field is sufficiently strong to account for any kinds of de-
viations from the saturated state that arise close edges of the structure that arise as
a result of the demagnetisation field. In principle, one needs only have a field large
enough to make the volume of structure in which these deviations exist sufficiently
small.
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FIGURE 5.4: (a) gi° of a cantilever resonator with a surface covered with thin
film YIG as a function of Lg and wg. Line scans are taken through (a) at (b)
Lr =55umand (c) wg = 0.2 ym.

Shown in Fig. 5.4 is the dependence of ¢i* on the cantilever resonator dimen-
sions. It is assumed that the resonator surface is entirely covered with thin film YIG,
corresponding to case (a) mentioned prior. Chosen for the resonator dimensions is to
plot the function in the range of lengths Ly, = Lr = [5: 15] ym and cross-sectional
dimensions wg = wy = fr = [100 : 600] nm to give a scope of attainable values.
These ranges have been chosen such that that any combination of length and width
can be interpreted to satisfy the mode validity criterion in Eq. 5.47, with the largest
product corresponding to a value kjwr ~ 0.225 for minimal Lg and maximal wg.
An applied field of He = 3500e is assumed, and the cross-sectional area is taken
to be isosceles since this geometry gives larger values of g as compared to square
cross-sections. Shown also in 5.4 are line-scans, taken at values Lg = 5.5 ym and
wr = 200nm. These plots depict the expected Ly /2 and wg ' dependence. The value
of gi¢ is maximised for Sg = Lrwr — 0 but this clearly offers little use physically,
further displays the ineffability of using higher order modes - the shrinking of di-
mensions is preferable for maximising ¢i* whereas accessing higher order modes
requires making longer and thinner structures.
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FIGURE 5.5: g for a cantilever resonator expressed in terms of the ratio of cov-
erage of thin film YIG to resonator length, Ly, /Lgr. The black curve corresponds
to case (ii) and the red curve corresponds to case (iii) in Fig. 5.2

Fig. 5.5 shows the behaviour for g{* as a function of the ratio of thin film YIG
structure length to cantilever resonator length (i.e. as a function of Ly, /LR) for the
fundamental resonator mode. In this figure, two cases are presented. In the first
case (the black line), the origin of coordinates is taken to begin at the fixed end of
the cantilever. In the second, the origin of coordinates is taken to begin at the free
end of the cantilever (the red line). These correspond to cases (b) and (c) mentioned
prior. Nominal dimensions of Lg = 6 ym and wr = 200nm have been taken, an
applied field of He = 350 Oe has been assumed, and the cross-section is taken to be
isosceles. Note that there is an indeterminacy as the ratio L, /Lg — 0 in which g
tends to infinity which has not been captured in the figure. This is an extension of
the behaviour seen in Fig. 5.4, in which g was maximised for Sg — 0. At ratios of
1, the two approaches coverage converge to the same value, regardless of which end
of the cantilever the ratio is taken from which is to be expected of a fully covered
cantilever. Curvature of the cantilever plays a larger role in the approach from the
free end, as the curvature from the fixed end is roughly linear for the first half (c.f.
Fig. 3.6). In partial coverage of the cantilever, larger values of g{* are attainable in
covering from the fixed end of the cantilever rather than the free end, corresponding
to where the strain is largest.
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FIGURE 5.6: gi°¢ for a cantilever resonator in moving magnetic structure sections
along the resonator’s length. The dotted line indicates the value of gi for full
coverage with magnetic structure.

Lastly, Fig. 5.6 shows how g{*¢ varies in moving segments of thin film YIG of
lengths 0.2LR, 0.4Lg, 0.6LR, and 0.8Lg along the length of the cantilever for it’s fun-
damental mode, corresponding to case (d). To express this, a central magnetic length
is introduced, defined as

1Ly
Le=——. .
c T 2 Ix (5.50)
The central magnetic position, p., is then varied in the interval p. = [Lc:1— L],

where p. = L. is taken to start from the cantilever’s fixed end, and g is expressed
as a function of p.. Nominal dimensions of Lg = 6 ym and wr = 200 nm are again
assumed, alongside an applied field of H. = 350 Oe, and isosceles cross-section. As
was seen in Fig. 5.5, owing to the linearity of the curvature of the cantilever, the
different lengths follow largely the same trajectory for the first half of the cantilever.
Depicted in the figure as the dotted line is the value of g in assuming full cover-
age of the resonator with magnetic structure as a benchmark comparison. Again,
placement towards the fixed end of the cantilever offers preferential values than
placement towards the free end.
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FIGURE 5.7: Placement and movement of the magnetic section depositied on top
of the bridge corresponding to the itemised list.

5.2.2 Bridge

The bridge resonator is able to offer larger values of g{* for directly equivalent di-
mensions, but ¢i* becomes 0 for certain placements of magnetic material owing to
the symmetry of the bridge’s curvature. In assuming the geometry of a bridge, the
parameter k, L is larger than that of the cantilever, which means that directly com-
parable dimensions are not always attainable given that the mode validity criterion
in Eq. 5.47 is harder to meet. With the dimensions considered for the cantilever
(Lk = 6 ym and wr = 200nm), these may still be used for the bridge but note is
made of the higher kjwr ~ 0.16, compared to a value of 0.063 for the cantilever.
These dimensions then give a direct baseline to compare the two approaches. To
this end, considered also is the same value of applied field, H. = 3500e, and the
cross-section is also assumed to be isosceles. The curvature of the bridge is an odd
function, and so the length average that arises in the derivation of ¢f*® prevents cov-
ering the entire bridge surface with thin film YIG, lest ¢i* be rendered useless. As
with the cantilever, the L=2 and w~! scaling still holds from it’s formula and so
showing ¢(* as a function of length and width is neglected. Hence, considered are
only two cases;

(a) A bridge resonator in which the central placement of the magnetic structure is
held at the centre of the resonator and the length of the magnetic structure is
varied towards Lg.

(b) A bridge resonator in which the central placement of the magnetic structure
begins at a fixed end of the bridge, and is varied towards the midpoint of the
bridge as a parameter to optimise.

These cases are depicted in Fig. 5.7. Note that the symmetry of the the bridge’s
deflection profile presents a redundancy in case (b), in that whichever free end is
chosen is equivalent.
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FIGURE 5.8: g{ for a bridge res- FIGURE 5.9: g(*° for a bridge res-
onator as a function of the ratio of onator as a function of the ratio
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onator length, with the magnetic length, with the magnetic struc-
structure placed at the central po- ture beginning from a fixed end
sition p. = Lr/2. of the bridge.

Fig. 5.8 shows how g varies for the bridge resonator as a function of the ra-
tio Ly /Lr where the thin film YIG’s central position is at the bridge’s midpoint,
corresponding to case (i). Again, the value of gi* is maximised as Sg — 0 which
offers little use physically. Further, it is seen that g;*° is 0 for a ratio L, /Lr = 1,
corresponding to a bridge resonator in which the surface is fully covered with thin
film YIG. From a manufacturing perspective, fully covering the surface would be
convenient but the symmetry of the curvature prevents this.

Fig. 5.9 shows how g varies for the bridge resonator as a function of the ratio
L/ Lg, where now the central position of the magnetic structure is assumed to begin
at a fixed end of the bridge, corresponding to case (ii). Due to the symmetry of
the deflection profile (a consequence of the clamped-clamped boundary conditions),
which fixed end of the bridge the central position is assumed to begin from is of
no distinction, and either approach provide equivalent values of gi* up to a phase
factor. Note that the symmetry of the bridge’s curvature not only precludes full
coverage with magnetic material, but also coverage of the first half (or, equally, the
second half). For obtaining larger values of g;° within this scheme, it is preferable to
have lengths of magnetic material L, < 0.4Lg. Atratios Ly, /Lr = 0.4and Ly, /Lg =

0.74 the same value of g5 is obtained.

5.3 The effect of the magnetisation mode profile

While the notion of a "flat’ magnetisation profile for the Kittel mode simplifies the
derivations, it is physically inaccurate. In considering a film at saturation supporting
a spin wave, Maxwell’s equations impose that tangential components of the mag-
netic field and the normal components of the magnetic field be continuous across
the surfaces of the film [54]. For this to be true, the fluctuations of the magnetisation
must vanish at the bounding surfaces of the magnetic structure. These boundary
conditions alone, however, leave the amplitude of the magnetisation fluctuations
undefined [149]. A basic consideration of this behaviour is to model the mode pro-
file as having sinusoidal dependence through the transverse dimensions of the film
[155]. For the geometry assumed for the device proposed within this thesis, this
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spatial dependence gives the fluctuations of dm, and dm, the result that they van-
ish at the transverse boundaries of the film. For high aspect ratio structures, work
suggests that this consideration is also insufficient [156], and that quantisation of the
wave-vector in the smaller of the transverse dimension results in an "effective’ mag-
netic width weg > wm such that individual components of the fluctuation no longer
vanish at the boundary of this smaller transverse dimension. Considered here both
of these cases, and their impact on g is assessed.

5.3.1 Simple trigonometric dependence

As the most basic model of the two cases, that in which simple cosine dependencies
of periods 2Ly, and 2wy, is considered first, such that both ém, and dm, vanish at
the transverse boundaries of the magnetic structure. For this, the fluctuations of the
magnetisation of the Kittel mode may be expressed as

(6my, 6my) — (6my, 6my) cos <7W> cos (m) ) (5.51)
Wm Lm
where ém, will also have a spatial dependence entering through Eq. 2.50. The Kittel
mode which was previously considered to be homogeneous will then have spatial
dependence included as

M
m=— = (0,0,1) + (dmy% + 6myH) cos <7ry> cos <7TZ> + om;2. (5.52)
M Wm L
One can now proceed in the same fashion as in Eq. 5.15 in finding the Hamiltonian
for the Kittel mode. For the Zeeman energy, it is found

—Ms/ m-H.dV
Vin

1 T iz
= —MHc Vi + EMsHe ((5m§ + (5711;) /m cos? (y> cos? (L

o ) dV (5.53)

m

As the integral above enters the proceeding work a number of times, it is stated that

1 1 1
/ cos? (7‘[y> cos® <7rz> dV = Vm/21 dx /21 cos? (rry) dy /21 cos® (rz) dz = Yin
Vm wm Lm 72 B 72 . 72 4

(5.54)
where integration by substitution is used for the middle step. Hence the Zeeman
energy term evaluates to

1
~M; | m-HedV = —MHeVin + 5MsHeVin (5m§ n 5m§) (5.55)
Vi
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For the demagnetisation energy term, one finds

47t M2 .
- S/mm-(N-m) dv

= ang/ <cos2 <7Ty> cos® <7er> <Nx5m32c + Ny5m§> + N, (1+ 5mz)2> dv
Vi

wm m

1 1
= 7 (27M2V (Nuom2 + Nyomi2) ) + 27M2ViaN; = § (22M2ViN; (S + om2))
9
+ (2T M2V N.6m?) (5.56)
which can be seen to be fractions of the terms already derived Eq. 5.18. Hence

Hm = — MsHe Vi + 2t M2wi t2,
1/1
+- <2MsHeVm (om2 + 5m§) + 2nM§Vm§m§>

4 (5.57)

1 9
v (anngtsnam§ oMt (amg Ty 16(sm§>) |
The Hamiltonian for the Kittel mode under the assumption of a mode profile is then
found with the same considerations prior (i.e. neglect terms which do not fluctuate
and terms proportional to #2)) to find

Hew ~ i GMSHeVm (§m§ n (5m§) n 2nM§Vm5m§> . (5.58)
which is 1/4 of the Hamiltonian for the Kittel mode under the assumption of a flat
mode profile.

As before, substitution of Eq. 5.29 and 5.31 into Eq. 5.22 is performed to find the
quantisation of the mode profiled Kittel mode fluctuations. With the simplification
that the profiled Hamiltonian is 1/4 of the flat Hamiltonian and taking t = 0, it is
found

1
47‘[Ms> 2

SellBy, A2 (2nMS + H) = geppHe (1 +
e

2 2

from which Ay is found as
1
1 4 Mg\ " *
Ay =24/ — (1 . 5.60
o=2yfy (1+ 552 (5.60)

The Kittel mode fluctuations are then
1
2hyg 4tMs\ ¢ 4 Ty iz
omly =/ YA <1 + . S) Cg Cos (wrn) cos <Lm>
1
2hy 4tM; \ * Ty iz
om, o =i E (1 - — —=
m, g 1\@ ( -+ . Co COS 0 Ccos Lo

where it is again used yg = geptp/ 1. Note that these have a pre-factor of 2 relative to
those derived under the assumption of a flat mode profile.

(5.59)

(5.61)
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5.3.2 Single magnon-phonon coupling strength

The creation and annihilation operators for the fluctuations of the magnetisation of
the Kittel mode under the assumption of a spatial cosine dependence then follows
the exact same procedure as in Sec. 5.2. These operators are then quantised as

1
2Ny 4rM\ T H Ty nz
Smy = & (1 ° : — —
My MoV ( + H, > (co + cy) cos (wm) cos <Lm> ,

1
B 2hyg 4T M\ * t Ty Tz (5.62)
omy =i MV (1 + . ) (co — ¢p) cos <wm> cos <Lm> ,
1
om, =~ —E((Smi + (5m§)

In constructing terms fluctuations of the magnetoelastic energy density (Eq. 5.36),
terms proportional to c3 and c}? may again be neglected under the rotating wave ap-
proximation. With this, one finds to second order in the spin-wave operators

4h
Sty = — Ts <1 47TM

MV, Z,OwR ARLR

_1
2
d¢n

t Ty 2 [ 72
d2 <b+b)cos (wm>cos <Lm>’

4hy 47tM
2 g S
= 1+ vx, [ N
(Smyuyy Mst < prR ARLR
d Pn(z + 2 (Y 2 (72
2 co 0 <b+b )cos _ cos L)

1
(Smguzz = —E(émiuxx + 5m§uyy). (5.63)

and hence the fluctuations of the magnetoelastic energy density is expressed as

1
B 4B1 (v + 1) h’yg / / 47'L'M 4TMg\ 2
OUme = prR ARLR < > + <1 + H, > )
d? (Pn( ) o t
X X COS <Z(}In> (Lm> d 5 OCO <b + b ) . (564)

Again, using the geometry of the structure proposed (t,, << tgr), the strain may be
considered to be uniform over the thin film and hence be evaluated at the interface
such that x — fr/2. Integrating over the structure, it is found

/ 5Ume =

4By ( 1/+1 ) g tr 1+47TM5 %+ LA ~3
prR A 2 H, H,
2

Lr
i . cos? (7'[]/) cos <7TZ> dzq)n(Z)CgCo (b + b*) . (5.65)

V]m Wm L dz2
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Rescaling the magnetic origin such that it coincides with the elastic origin of the
beam, the expression becomes

5ume =

431 1/+1 hvg k2 47TM, %+ | A ~3
prR ARLR 2 e He
[l I " t T
<s1n (wm) sin <Lm) Pn(z) >sm coCo (b+b ) (5.66)

where ¢,(z)" is again ¢,(z)" expressed in units of k?, and < ... >5_ denotes the
spatial average of the enclosed function over the magnetic surface. By comparison
with the interaction Hamiltonian, the single magnon-phonon coupling strength can

be identified as
47TM, \ 2 47TM,\ "2
TTVlg TTVlg
1
tRk<<1+ H. ) +< + HL ) >

4Bi(v+1)yg | 1
0= am, \Ix (EIpAR)
.o TTY\ . o TTZ\ < "
X <sm <Wm> sin <Lm> Pn(z) >sm (5.67)

Eq. 5.67 offers some differences to that in Eq. 5.46, most notably that there is a
prefactor of 4 which provides a simple numerical boost to the values of go. However,
due to the profiling of the curvature which enters in the spatial average, it is not that
trivial to assume that Eq. 5.10 provides a betterment in all scenarios.

The simplification that the magnetic surface is assumed to be rectangular is again
made, such that the spatial average may be separated into y and z components.
Under this assumption, the expression becomes

1 1 1
e Bilv+1)yg | 1 \4% 47TM )\ 2 47TM,\ "2
8= am, L(mpA W\ ) U R
X <sir12 <7TZ> (f)n(z)"> (5.68)
Lm Lm

where < ... > denotes the length average of the enclosed function over the mag-
netic length. In comparing gi* of flat magnetisation profile to that of a trigonometric
profile, the ratio of the two is expressed as

ENT

rec (fpi i i 8
g6 (trigonometric profile) P (@n(2)"),, _ (5.69)

gi*<(flat profile) <sin2 (%) Pn (Z)//>L

In order to gain an effective boost to gi* in adopting a more physical description of
the mode profile, it is required that the ratio of the length averages of the trigono-
metric profile and the flat profile be greater than 1/2.

5.3.3 Cantilever

In including a more accurate description of the Kittel mode profile, the argument
included in the spatial (or length) average is no longer simply that of the curvature.
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In essence, this curvature is windowed by the same function that describes the spa-
tial dependence of the magnetisation in that the two are multiplied. Not only is
there a difference in the pre-factor of g{°, but there will also exist a difference to the
spatial averages themselves. Repeated here are the same plots as in Sec. 5.2.1 but
instead using Eq. 5.67 to characterise the behaviour of ¢i*° and determine the impact
of the magnetisation profile. To this end, comparable dimensions as were used for
the previous figures are assumed. To recapitulate these, considered are Lg = 6 ym
and wg = 200nm), and applied field of H. = 350 Oe, and the cross-section of the
resonator is assumed to be isosceles in shape.
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FIGURE 5.10: (a) Trigonometric mode profile ¢i* of a fully covered cantilever
resonator as a function of Lgr and wg. Line scans are taken through (a) at (b)
Lr = 55um and (c) wg = 0.2um and include comparison to the flat mode
profile.

First, shown in Fig 5.10 is the analogous plot to Fig. 5.4. This is the dependence
of g for the fundamental flexural mode in varying the width and length of the
cantilever resonator, assuming that the surface is fully covered with thin film YIG.
Dimensions and applied field are chosen exactly the same of those in Fig. 5.4 (L, =
Lg = [5:15] um, isosceles cross-sectional dimensions wr = fg = [100 : 600] nm,
applied field He = 350 Oe), and line-scans are taken through the same region. Rel-
ative to the flat mode profile, there is a net loss to the parameter gi*°. Inclusion of
a physically representative mode profile is detrimental for maximisation, but un-
avoidable in considering a realistic Kittel mode for a thin film. With regards to the
scaling of ¢i°¢ with length, the Ly /2 pehaviour is no longer exactly preserved for the
trigonometric mode profile given that the length of the magnetic material enters into
the spatial average through the spatial dependence of the magnetisation. In moving
to lengths longer than considered, it would appear that the inclusion of the mode
profile would become beneficial. While the inclusion of a realistic mode profile is
detrimental, the percentage decrease is less than 10% for this geometry.
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FIGURE 5.11:  Trigonometric mode profile ¢ for a cantilever
mode profile ¢i*¢ for a cantilever resonator in moving magnetic
resonator assuming for a ratio of structure sections along the
coverage of magnetic structure, resonator’s length. The dotted
L1, With origins taken at the line indicates the value of gf*
cantilever’s fixed or free end. for full coverage with magnetic

structure.

Fig. 5.11 shows the analogous plot to Fig. 5.5. This is dependence of gi*° as
a function of the ratio L,/ L; for the fundamental mode. The same two cases are
presented as was done prior, with the ratio of resonator to magnetic structure lengths
having origins taken at the the cantilever’s fixed or free end for either case. The
inclusion of a physically realistic trigonometric mode profile offers little affect to the
theory derived, and only produces a marginal loss to the value of g;¢. This loss
appears dependent on the length ratio, with the largest loss seen for a coverage ratio
of L, /Ly = 1 and the impact of the inclusion of the profile being minimised as the
ratio L,/ Lg becomes smaller.

Lastly, Fig. 5.12 shows the analogous plot to Fig. 5.6. This is how gf* varies as
sections of magnetic structure of lengths of 0.2Lg, 0.4Lg, 0.6Lg and 0.8Lg are moved
along the length of the resonator. The same presentation of the data is used as in Fig.
5.6, in which the central magnetic position of the magnetic material with respect to
the length of the resonator, p., is introduced to describe it’s placement. The linearity
of the function is largely preserved from the cantilever’s curvature, but trajectories
deviate far less as p. approaches the free end of the cantilever given the effective
windowing of the spatial average that the inclusion of a realistic mode profile intro-
duces. It is still the case that placement of magnetic material towards the fixed end
of the cantilever yields larger values than those for the free end, and that g offers
slightly smaller values than the assumption of a flat magnetisation mode profile.
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FIGURE 5.13: Trigonometric mode profile gi* for a bridge resonator as a function
of the ratio of magnetic structure length to resonator length, with the magnetic
structure placed centrally at x = L/2.

5.3.4 Bridge

As was the case for the cantilever resonator, inclusion of the magnetisation mode
profile windows the bridge’s curvature which, in general, produces a reduction in
the values of gi°. However, there is a benefit to it’s inclusion in that the length
average of the curvature for a magnetic structure which covers the bridge resonator
surface entirely no longer reduces to 0 as was seen in Figs. 5.8 and 5.9. Assumed
again are comparable dimensions as were used for the previous figures (Lr = 6 yum
and wr = 200nm), and applied field of H. = 350 Oe, and the cross-section of the
resonator is taken as isosceles in shape).

Shown again in Fig. 5.13 is analogous plot to Fig. 5.8. This is the behaviour of
go°¢ for the bridge resonator as a function of the ratio Ly, /Lr, where the magnetic
material begins at the bridge’s centre point and approaches the bridge’s fixed ends
equally. In assuming a profiled magnetisation, larger values of g are obtained for
centrally placed lengths of magnetic structure of 0.84L or larger, with the largest
increase in g relative to the flat profile obtained for full coverage of the bridge which
is now a viable geometry.
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FIGURE 5.14: Trigonometric mode profile g for a bridge resonator as a function

of the ratio of magnetic length to resonator length, with the magnetic structure
beginning from a fixed end of the bridge.

Fig. 5.14 is the analogous plot to Fig. 5.9. In this, gi¢ is shown for the bridge
resonator as a function of Ly, /Lg, where the origin is taken at one of the bridge’s
fixed ends. Again, due to the symmetry of the curvature profile of the bridge, there
is no distinguishing features between which end is fixed and which end is free. In
adopting the spatial dependence of the magnetisation, there then exists a point at
which preferential values for gi°¢ are seen. This corresponds to a magnetic structure
length of 0.78L for this scheme. While not of huge significance, it is also seen that
covering the first half of the cantilever no longer results in gi* becoming 0 - this is
instead seen for the slightly smaller ratio Ly, /Lr = 0.45.

5.3.5 Higher order magnetisation profiles

While the trigonometric profile assumed in Sec. 5.3.1 offers a mathematically ide-
alised description for the profile of the magnetisation in which the fluctuations van-
ish at the transverse boundaries of the magnetic structure, it is not necessarily the
most physically accurate description to utilise. Maxwell’s equations as applied to
the boundary leave the amplitude of the dynamic magnetisation at the boundaries
of a rectangular magnetic stripe undefined [149]. It is often assumed that the mag-
netisation at the lateral edges of a magnetic stripe act as magnetic walls and this can
be treated as fictitious boundary conditions [14], which leads to a quantisation of the
magnon wave-vector k along the finite size of the waveguide (which corresponds to
the width, wy, for the geometry adopted in this thesis). Present here are two "higher’
order corrections to consider which arise from dipolar pinning of the magnetic mo-
ments at the lateral surfaces of the magnetic structure. One of these models is to still
assume a simple trigonometric profile, but instead use an effective magnetic width
description in the smaller of the two transverse dimensions, arising from the quanti-
sation of the wave-vector in that dimension [156]. The other model is to fit a Fourier
series directly to the simulated magnetisation profile of the magnetic structure as
obtained from OOMMEF simulations.
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Dipolar pinning

In this section, the theory developed by Guslienko et. al [156] is followed. They
consider an axially magnetised rectangular cross-section stripe. In the coordinate
system presented in this thesis, their dimensions correspond to a thickness t,, and
width wy,, with t,, << wn, and a coordinate system taken to coincide with the
centre of mass. This is depicted in Fig. 5.15.

A
X

FIGURE 5.15: Geometry of the axially magnetised stripe.

The boundary condition assumptions produce a quantisation condition for the
wave-vector directed along one of the lateral dimensions as
nr
k=—, 5.70
; (570)
where n = 0,1, 2, ... is the mode number of the spin-wave, and 4 is the characteristic
length of the dimension [14]. The profiles of the magnetisation are assumed to be
trigonometric in nature but their behaviour at the edges is undetermined due to
the boundary conditions. Analysis of the boundary conditions [156] leads to the
introduction of the pinning parameter for the y-direction as
27
d(p) = —— (5.71)
p (1 +2In ?)

where the aspect ratio of the cross-section is p = tm, /wm << 1. With this condition,
the wave-vector is augmented with

ky = (”;1;3)7T <]__0Ui9)> . (5.72)

forn = 0,1,2,.... It is then identifiable from this that there is an ’effective’ magnetic
width expressed as

5\ -1
As p << 1, then it must be the case that d(p) < 0 which further implies that weg > w

[157, 158, 159, 160].
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This effective width description may then be used to proceed through the quan-
tisation of the Kittel mode again. For this, the fluctuations of the Kittel mode are
assumed to have spatial dependence as

(6my, 6my) — (6my, 6my) cos <£eyff> cos (Zi) , (5.74)

where any limits in the integration over the width of the structure remain over wy, /2
to —wm /2. As before, for convenience it is stated

/ cos? <W> cos? (nz) dv
m Weff L
cos? (rz) dz

v [ o (s (1-2) o

Vi (dsin(27t/4d)
T4 ( 27(d —2)

NI—

1
+ 2) (5.75)

where the argument of p from d(p) is dropped for convenience only.
In following the quantisation procedure as in Sections 5.1.1 and 5.3.1, the Kittel
mode Hamiltonian to the lowest order in the small parameter ¢, is expressed as

dsin(2r/d) 1

_ /m - 1 2 2 2 2
Haw = 1 (m =2 2) (2MSHe (5mx n (Smy> + 27t M26m? (5.76)

which can be seen to again be equivalent to the simple trigonometric profile and flat
mode profile Hamiltonian with the existance of a numerical prefactor. In proceeding
through the coherent mode approach, it is found

3el'B dsin(2r/d) | 1Y He\ 47T M
) Vm< 270(d — 2) —|—2 Aj | 2tM; + 5 = gepipHe ( 1+ H (5.77)

from which Ap may be identified as
1
1 (dsin(2m/d) 1\ " 4M;\
Ay=2 —_— = 1 . 7
\/v ( md—2) z) T H, (5.78)
The Kittel mode fluctuations are then
1
2y, (dsin(2r/d) 1\ " 4tMg\ 4 y nz
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+ o g ! s iz

omy, g _Z\/MSVm ( 27(d — 2) +2) <1+ He ) €0 o8 (weff) €08 (Lm>
(5.79)

where 7g = gepp /1.

These expressions don’t offer as large a boost to the quantisation pre-factor as
in assuming a simple trigonometric profile. For an example, if an aspect ratio of
p = 10 is assumed, then the first term in the bracket of Eq. 5.79 yields a value of
0.0127. Compared to the trigonometric profile, it is just slightly larger than the 1/2
obtained. Nonetheless, they represent a more accurate interpretation of the mode
profile.
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While the pre-factors of the fluctuations are smaller than those of the trigono-
metric profiles, in the schemes considered for the device presented they make no
difference. For our structures, a rectangular geometry is assumed. In determining
the value of gp, the magnetoelastic energy density is integrated over the magnetic
structure yielding a spatial average as

(o (32 -3)) () ),

where the magnetic origin is changed to coincide with the elastic one. However,
in assuming a rectangular geometry, the surface integral reduces to two separate
integrals and it is found for the average along the width

2 2 1 (dsin(2m/d) 1
/,1 cos? <7Ty <1 — P>> dy = 5 (271(d—2) + 2> . (5.80)

2

This factor cancels directly with the the fluctuation pre-factor obtained as a result of
the quantisation. Gains/losses to g;°¢ are determined entirely by the magnetisation
profile with respect to the length of the structure, which is unchanged with this

dipolar pinning consideration.

OOMMF simulations

There are even higher order corrections that can be seen to the magnetisation profile.
While the trigonometric interpretation is more representative of the physics at hand
rather than assuming a flat profile, it still does not capture the actual physics of the
system [161, 162, 163].

Present here is a simulation of a YIG thin-film structure using the Object Ori-
ented MicroMagnetic Framework, otherwise known as OOMMEF [164]. OOMMEF is
a micromagnetic simulator, in that magnetic properties are attributed as an average
to a macroscopic cell, a number of which then make up a mesh representing the ge-
ometry being simulated; this is opposed to atomistic simulators that instead model
the behaviour of individual magnetic moments that form the crystal structure and
hence the sample geometry. Micromagnetic codes offer a significant reduction in the
run-time of simulations in assuming bulk qualities [165, 166], and allow large-scale
structures [167, 168, 169] to be simulated without the limiting factor of computa-
tional power as is often required with atomistic models [170, 171].

To match the required inputs for OOMMEF, the parameters used for the YIG sys-
tem are given in the MKS unit system. To describe the YIG material, assumed are
a saturation magnetisation M; = 1.4 x 10° Am~! [172, 173], an exchange stiffness
A =37 x 1072 m! [174], and a Gilbert damping a = 0.0001 [12]. As anistropy is
known to be very weak in YIG [175], it is neglected from inclusion in the simulations
to match the theory derived so far. A rectangular geometry of dimensions 30 nm by
400 nm by 10 ym, corresponding to the thickness, width, and length of the structure,
is assumed as well as this geometry being sufficiently generic to apply to dimen-
sions in which the relevant aspect ratios are approximately held. This geometry is
then discretised using a rectangular mesh of cells of dimensions (30 x 15 x 15) nm,
resulting in a geometry that is 1 by 27 by 667 cells. The stopping time used in out-
putting stage data is 5t = 10~!!s, which in Fourier space gives a maximum fre-
quency of 50 GHz, and run the simulation for 2000 stages, giving a resolution of
0.025GHz. The geometry of the mesh has imposed that the structure is one cell
thick, which in essence is asserting that there is no variation of the magnetisation
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FIGURE 5.16: Fluctuations of the magnetisation profile along the length and
width of a thin-film magnetic structure.

through the thickness of the structure. For thin-film simulations this grid may seem
coarse, but in the lateral dimensions the cell-size is less than the exchange length
of YIG (roughly around 17 nm) which in principle means that exchange effects are
still captured. Further, assuming a one cell thick film also presents valid results pro-
vided that the cell-size is less than the wavelength of spin-wave being investigated
[176, 177]. For the fundamental mode, this is easily satisfied. An external biasing
field of 35 mT is applied along the length of the structure, and a sinusoidally vary-
ing driving magnetic field is induced, applied across the width of the structure, to
excite the resonant dynamics. The amplitude of this field has been chosen to be
0.05mT, and its frequency is equivalent to the fundamental resonant mode of the
film (fm ~ 2.7 GHz).

Shown in Fig. 5.16 are the components of the magnetisation profile along the
length and width of the magnetic structure under simulation. Here, the x and y com-
ponents are taken at their maximum, and then oscillate « exp (iwmt) along with the
driving field. Note that a number of these profiles were checked at timescales on the
order of 10, 100, and 1000 oscillations and all profiles look (roughly) the same; this
eliminates the effect of any other possible transients. Clearly, the profiles presented
in these plots do not match the flat assumptions first assumed in deriving the theory
contained withim. However, the x and y components are not too dissimilar from the
trigonometric profiles that were assumed as a higher order correction. The magneti-
sation profile offered along the length of the structure more closely resembles the
Mathieu functions as described by Gubbiotti [161] and seen experimentally [178].
Similarly, the magnetisation profile offered across the width of the structure shows
the effective magnetic width as described by Guslienko [156]. The y-component of
the magnetisation does not match this theory exactly, and even for being driven
at the fundamental mode’s frequency it appears that there are slight anti-nodes to-
wards the extremes of the profile which isn’t seen with the x-component. In princi-
ple, this would mean that the fundamental mode is not being exclusively excited,
and some higher order mode is simultaneously existing. Finite size effects exist
which act to break the symmetry of the structure and in turn allow higher order
modes to be excited, such as edge modes, and the effect of demagnetisation can-
not be simplified to that of an infinite film as has been assumed. Shown further in
Fig. 5.17 are the Fourier transform of the oscillating magnetisation components such
that the constituent frequencies may be identified. Additionally shown in Fig. 5.17
are the spatial character of the specific frequencies identified, which show where in
the film these resonances are taking place. This data is presented as heatmaps, in
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FIGURE 5.17: The graph shows the resonant frequencies of the oscillating compo-
nents of the magnetisation for a drive field at the Kittel mode frequency, obtained
via Fourier transform. Heat maps depict the spatial character of the peaks iden-
tified, namely 1.5 GHz, 2.7 GHz, and 3.75 GHz, in descending order.

which white corresponds to maximal relative intensity of the individual frequen-
cies. Clearly, despite the structure being driven at resonance, other modes still exist
which impact the magnetisation profile. The existence of these modes goes some
way to explaining the additional anti-nodes seen in the magnetisation profile.

Lastly, a function is fitted to the simulated mode profile to obtain a semi-analytic
function which describes the mode profile of the fluctuations of the magnetisation.
For this, a progressive sinusoidal fitting is used whereby successive terms in the
series represent sine waves of increasing numbers of anti-nodes, akin to a Fourier
decomposition. This function has the form

fa(x) =) Aysin <(2"_L1)7Tx> , (5.81)

where A, are the amplitudes of each sin term of number of anti-nodes 1, and L is the
length of the dimension. Assuming a rectangular magnetic structure which was seen
to cancel the influence of the mode profile across the width, only the mode profile
along the length of the structure is focused on. For this, the profile is normalised such
that its maximum is 1, and for the simplicity of fitting it is further assumed L = 1.
Shown in Table 5.2 are the pre-factors for this expression for the first 8 functions.
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AL | A | As | Ay | As | As | Ay As
1121 | - : - - - - .
1121 | 0152 | - - - - - -

1.121 | 0.152 | -0.011 -
1.121 | 0.152 | -0.011 | 0.012 -
1.121 | 0.152 | -0.011 | 0.012 | 0.027 -
1.121 | 0.152 | -0.011 | 0.012 | 0.027 | 0.006 - -
1.121 | 0.152 | -0.011 | 0.012 | 0.027 | 0.006 | -0.010 -
1.121 | 0.152 | -0.011 | 0.012 | 0.027 | 0.006 | -0.010 | -0.008

||| Ul | W N R B

TABLE 5.2: Prefactors for the sine wave fitting of Eq. 5.81 for successive values
of n. Here, the first 8 terms are given.

Likewise, shown in Fig. 5.18 are the R-square values for these functions, along
with the inset showing the conformity of the first 2 functions to the simulated mode
profile. Fig. 5.18 shows that for terms above n = 2 the correction to the R-square
value is less than 0.01, and so these corrections can be considered negligible. Like-
wise, even for a single term of the sine expansion, an R-square of 0.85 can be
achieved which is a good agreement, and the addition of a second term increases
that to 0.99 which is almost maximal.

Finally, the effect of these mode profiles on the spatial average in the calculation
of gy is considered in Fig. 5.19. The magnetic structure is taken to be rectangular
such that the spatial average reduces to the length average and the solid lines in
these plots represent the length averages of the fitting functions collated in Table 5.2.
The non-solid lines are used for comparison; the dotted lines represent the length av-
erage under the assumption of a flat mode profile, and the dashed line represents the
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FIGURE 5.18: R-square fitting values for fitting the sine wave decomposition in
Eq. 5.81 to the maximum normalised magnetisation profile. Inset shows form
of the functions for n = 1 and n = 2 terms plotted alongside the magnetisation
profile.
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FIGURE 5.19: Plots showing the length average of the resonator’s curvature as a
function of the number of sine terms used in a fitting.

length average under the assumption of a simple trigonometric description. Inter-
esting, for the bridge convergence is seen towards the simple trigonometric profile
assumed, presumably because of the similarity in shape between the profile and the
curvature. For the cantilever there is divergence away from description until the
value plateaus. Clearly, in both cases, the length average using the flat mode profile
massively deviates from the more realistic interpretation. As has been seen for the
R-square value, relative correction to the length averages falls off after 2 terms in the
sine fitting.

5.4 Photon decay into magnon modes

In the classical picture, the oscillating drive field of the transmission line applies a
"torque’ to the magnetic moments which causes them to precess. In the quantum
picture, photons excited by the transmission line can decay into the magnons modes
of the magnetic material. Considered here is this decay of photons into the Kittel
mode, a step necessary in the determination of the number of magnomechanically
relevant magnons in Eq. 4.24. The magnetic structure is assumed to be placed a
distance d. centrally above a conducting wire, and is pictorially represented in Fig.
5.20.

tm:g_ i YIG
b | GGG
Y. :
dcé 2 P
! 0
E o
L y

FIGURE 5.20: Representation of the magnetic material above a conducting wire.
The plane of view is taken down the length of the structure
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The magnetic field of this wire is known to be given by [179]
B(p) = —6 (5.82)

where p is the magnitude of the radial distance from the wire, I is the current flowing
through the wire, and 0 is a radial unit vector.

In considering the interaction between the magnetic moments and the magnetic
field, one need only consider the fluctuating part as driving the dynamics, and only
consider the magnetic field coupling to the fluctuations of the Kittel mode, expressed
by the integral

Hy = — M " dm(r) - B(r)dV. (5.83)
It is assumed that the description of the mode profile reverts to that of the flat one
discussed in Sec. 5.1.2 as a lowest order approximation. The effect and accuracy of
this will be considered later. Under this assumption, one has

sm(r) - B(x) = dm - B(r) = 2or

cos(6) (5.84)
where 0 is the angle measured from the plane perpendicular to both the planes of
the magnetic structure and the conducting wire. Here, contributions of ém, can
be immediately neglected as these can be seen to average to 0 due to the reflection
symmetry.

From elementary geometry, it is trivial to see that

N .. (559

such that the interaction between the magnetic field and magnetic moments may be

expressed as
2IMdm X
Hy = — ‘] dv. 5.86

M c v x2 I yZ ( )
In the thin-film limit for which ¢, << W, Ly, the further approximation that varia-
tion in the x—direction is negligible as compared to the variation in the y—direction
of the structure can be made; this then permits, as a rudimentary simplification,
x — d. and the integral is further reduced to

~ 2IMom, de

Hwv =
M c Ve @2 4 12

dv. (5.87)
Upon evaluation of this integral
L t w
2IMsmy 5" det 3" 2 de
HM:—ic /;Lim dz/d_tﬂ d.X'/_wde_'_yzdy
2 <772 2 ¢

ATM 1y Lintm
2

Wm
arctan <2dc> . (5.88)

The issue of quantising the modes of a transmission line is non-trivial but has been
done in prior work [180] which is summised in Appendix A. For quantisation, it is
found following from Eq. A.44 that the left- and right-propagating voltage modes
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can be expressed as

. dweZ o
V=V Ve = ,/% (bq+b:§l> (5.89)

where wg is the photon frequency, Zry is the transmission line characteristic impedance,
Lt is the length of the transmission line, and vy, is the group velocity. It is then easy

to convert this expression to a current through Ohm’s law. In substituting for Eq.
5.89 and Eq. 5.41, the interaction Hamiltonian becomes

1
AMgLmtm . fiyg 4tM )\ * Wm
Hy = — N 1 tan [ m
M e o, Ut ) arctan{ oy

x ; zz:;f (Eq+13§1) (co —c5>. (5.90)

The decay rate between photon modes and the Kittel mode then follows from Fermi’s
Golden Rule [108, 181]

ey = %” |Gi|H[f)* 6 (hwq — hiewm) (5.91)

where (i| and |f) are the initial and final states, respectively, and H is the interaction
Hamiltonian. Note that here the factor of 2 accounts for both the left- and right-
moving modes in the transmission line. The matrix elements can be evaluated and
one finds for the decay rate

1
T16M2L2 2 Ty, 47tM; \ 2 5 [ Wm 2hwqc
= — 1 t — —0 (hwq — hwm) ,
TR Ve T H, ) 2 Zq: Loz © (10— heom)

(5.92)
which is then to be integrated over the density of states of the transmission line. For
a transmission line producing a 1-dimensional density of states [179], it is known

_ wq _ 2nn
al=—, = I (5.93)
and the density of states follows as
L
= . 94
8lwg) = — (5.94)

Exchanging summation for integration over this density, the decay rate is constructed
as

1
mT16M2L2 t2 Ty, 47T M\ 2 5 (Wm\ 2hc
_ m'‘m 1 t “%m |\ &nt
x =52 oM T ) R\ 2 ) Tz

L
x [ 6 (g — feom) wqdewy (5:95)
7te q
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FIGURE 5.21: ke for a rectangular magnetic structure of width wp, placed cen-
trally a distance d. above a transmission line.

and, finally, an expression for the decay of photon modes into the Kittel mode is
obtained as

1
B 16 MsygLmtmwm 47T M\ 2 > Wm
Kex = ozt (1 + . arctan 2. (5.96)

which offers a rudimentary estimate.

The function is linear in L, and t,, and presents more complex scaling with wp,.
Shown in Fig. 5.21 is the behaviour of this function for a YIG magnetic structure with
regards to the parameters wy, and d. in the ranges [100 : 600] nm and [0.1 : 1] pm.
Considered are a magnetic structure length of L,, = 6 um, thickness t,, = 25a9,
an applied field of He = 3500e and the transmission line is assumed to have an
impedance of Z1;, = 50(). As the cantilever and bridge structures are required
to undergo flexure, central distances of the order of maximal displacement are not
possible without interfering with the dynamics. To this end, 0.1 ym is assumed as
the lower possible limit of the central distance. For reasonable dimensions (micron
sized magnetic structure and central distance lengths with nanometer sized struc-
ture widths) then decay rates ~ 10 — 100 KHz are attainable.

While the strength of interaction between the magnetic field and the magnetisa-
tion fluctuations simply increases with the magnetic volume (towards some plateau-
ing value), for the decay rate (a quantum consideration) competition is introduced
from the magnon quantisation for which the pre-factor is larger for a smaller mag-
netic volume. As such, the decay rate into the Kittel modes with this formulation has
a maximal value for a specific width of magnetic structure relative to the central dis-
tance from the transmission line. From differentiation, the location of this maxima

can be found as
2d. 1 2d. 4d. B
o () (G () ) = o

for which there is no analytical solution. Shown in Fig. 5.22 is the decay rate as a
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function of the width wy,, taken for a central distances of 0.10 ym, 0.15 ym, 0.20 ym,
and 0.25 ym, with the same dimensions of YIG as prior. This produces a saturated
decay rate of around xex = 300 kHz at a magnetic structure width wy, ~ 275nm and
a central distance d. = 0.1 um. For central distances d. 2 200nm, then saturating
the decay rate doesn’t appear feasible for our geometry of interest.

300 . T

——d,=0.10um —— d,=0.15um
50 ——d,=0.20um —— d_=0.25um |

200 400 600
Wy, (nm)

FIGURE 5.22: kex for a rectangular magnetic structure of width wy,, placed for
varying central distance dc above a transmission line.

5.4.1 Higher order corrections to the decay rate

While prior it was stated that the flat mode profile is non-physical in representing
the Kittel mode, there are significant complexities arising in repeating the procedure
for the decay rate for a more physical description of the magnetisation. Specifically,
complexities arise in evaluating the integral

o Ty de
— dy. 5.98
/“’zmcos(wm> Z+y 5:%9)

to a simple form which is non-trivial. In full, the integral can be shown to evaluate
to

%Cosh @dm) (7r — i (Ci(F_) + Ci(Fy — ) — 2Ci(E+)))

— sinh

7N\

Z,d) (Si(F-) + Si(Fy)) (599)

m

where the cos and sin integrals are defined as

Ci(z) = — /Z “cos() 4t and S = /0 “sin(t) g (5.100)

t t

with the argument

Fo=n (1 + MC) . (5.101)
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Given that this is not a simple function to evaluate, the behaviour is illustrated
by considering the integral numerically, and it is solved for a few cases to compare
against the analytic behaviour of the integral under the assumption of the flat mode
profile. In Fig. 5.23 the difference between the two approaches of the integral is pre-
sented. In this, the black line represents the analytic solution to the integral under
the assumption of a flat mode profile (which is to say 2 arctan(wm /2d.) is solved)
and the red line represents the numerical solutions to Eq. 5.98. This is shown for
the central distance d. = 1um, and then the width wy, is varied. The more realis-
tic solution of a trigonometric mode profile lessens the decay rate, and as the width
becomes larger this deviation from the analytic result for the flat mode profile be-
comes larger. In the theory presented, this under-prediction of the decay rate will
most likely mean that fewer magnons are excited than what is representative, which
would mean that the validity of the Kittel mode (i.e. much more spin sites than
magnons) will be easier to meet than initially considered. As such, this does not
present a concern for the theory contained within.

©
AN
o
T
1

Analytic flat mode profile
Numerical trigonometric mode profile

© o o o o
S NN W oW
o o o o O

Absolute value of the integral
=
o

0.05 | 4

1 1 1 1 1
0.10 0.15 0.20 0.25 0.30 0.35 0.40

W, (um)

FIGURE 5.23: The behaviour of the integral over width in the decay rate for a
rectangular magnetic structure of width wn, placed centrally a distance d. = 1ym
above a transmission line. Considered are the simple flat magnetisation mode
profile and the trigonometric mode profile.

5.5 Justification of the single-mode model

Throughout this work, it has been assumed that the coupling of phonons only oc-
curs to a single magnon mode (the single-mode model), but have yet to elaborate on
this. Hybrid system theories may be derived under the assumption of a multi-mode
model [182, 183, 184], and recent work has explored the coupling of the drive field
used in magnomechanics to higher-order Walker modes in YIG spheres [185] find-
ing variation within the coupling strengths. To this end, it would be preferential to
ensure that there is coupling only to a single magnon mode.

To justify a single-mode model, one is required to show that the mode spacing
of the magnons, denoted A, is much greater than that of the phonon frequency
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(Am >> wgr), such that the phonons do not couple to higher order magnetic excita-
tions. This ratio

WR

— <<1 (5.102)

Am
is referred to as the single mode criterion (SMC), and ultimately is what is necessary
to meet to consider a single mode model. With magnons in a thin-film magnetic
structure, it is not as easy a task to consider the spacing between individual modes
which is dependent on the dimensions of the magnetic structure, unlike with Walker
modes of a sphere in which the higher order frequencies are close to that of the Kittel
mode and largely independent of dimensions [186].

To determine how far in frequency space the Kittel mode of a thin film is from
the next nearest magnon mode, one can again use OOMMEF to investigate. The same
YIG thin film structure as in Sec. 5.3.5 is considered, and the structure retains the
same magnetic parameters as were listed. In order to investigate the higher order
modes, an excitation which is non-uniform such that the symmetry of the structure is
broken must be used. This could either be achieved by applying a uniform excitation
to only a portion of the structure (for example, applying a Gaussian pulse to only a
strip of the nanostructure), or applying an excitation that varies cell to cell for all
cells (for example, applying a sinc pulse across the entire structure). Adopted here
is the latter of the two approaches, where a sinc pulse [157] of the form

_ sin(qey’) sin (gc2') sin (27 fet’)
hmh =T qcy’ g2’ 2rfet

(5.103)

where Y’ = y —yo, 2/ = z —zp, and t' = t — t; represent the “offsets’ in space and
time, g. are the bounds of the excitation wave-vector such that —g. < g < g, fc is the
bounds of the excitation frequency such that —f. < f < f, and I as the maximum
amplitude of the sinc pulse. For the simulation, (yo,z0) = (225nm, 5 ym) is chosen
such that the pulse is applied centrally to the structure. Further, g. = 250 x /- which
should excite the first 250 modes of the structure, and set f. = 50 GHz (although
note that the magnetic moments are coupled and so modes with higher frequency
can still be excited, in the same way that driving at the FMR frequency was seen to
excite edge modes in Sec. 5.3.5). I' = 1kA/m is assumed to provide a sufficiently
weak excitation to steer clear of non-linear dynamics.

For the meshing of our structure, a slight deviation from what was presented
in Sec. 5.3.5 is needed. As w(k) is the parameter of interest, it will be required to
perform a 2-dimensional Fourier transform on the response of the structure in both
the time-step, and also the relevant cell length. With this, the mesh size is not only
relevant from the perspective of the accuracy of the simulation, but also relates to
the accuracy of the Fourier transform. As aliasing is known to be an issue with the
discrete Fourier transform [187], in which modes are folded back into the cut-off
frequency regime, the large discrepancy between the sampling size of the frequency
5t = 10~ s, and the sampling size which is attainable with the mesh is a point to
consider. Simulations are performed on a YIG thin-film structure for length 10 ym,
width 450 nm and thickness 30 nm and the mesh is formed of cells of lengths 10nm
for the width and length of the resonator, and for thickness the thickness the cell
length of 30 nm is retained. This corresponds to a mesh geometry of 1001 x 4 x 1.

To obtain the dispersion branches, a ’slice” of the cells along the length of the
structure down the centre of the width may be constructed, and a stack of these in
time can be formed as the dynamics evolve from the application of the pulse. A
two-dimensional Fourier transform is then applied to obtain the surface map of the
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FIGURE 5.24: Dispersion branches obtained for a YIG thin film structure, with
the wave-vector taken along the z-direction.

magnetisation intensities as a function of wave-vector and frequency, such that

My (42, w) = F [my (xo,Y0,2,t) — mz (x0,Y0,2,0)] (5.104)

where % is used to denote the two dimensional Fourier transform and xg and z; are
at the centre of the strip. The result of this procedure is shown in Fig. 5.24. From this,
a branch separation of around 0.8 GHz can be extracted. The branch separation is not
the next nearest mode, however. Each branch is composed of individual modes, but
the simulations lack the spectral resolution to determine specifically what the sepa-
ration between them is. For the frequency, a sampling of 0.025 GHz is attained from
the time-step, but for the wave-vector a sampling of only 1.5 x 10° can be achieved.
It’s not immediately clear what the separation between the modes on a branch are,
but it is clearly much less than these sampling frequencies.

Given that it is indeterminate what resolution OOMMTF requires to resolve the
modes along a branch, one can instead analyse the magnon dispersion relation in
the case that the wave-vectors are small from a mathematical viewpoint, such that
the modes considered approach the Kittel mode. The reader is referred to Appendix
C for the derivation of the dispersion relation for a magnetostatic slab whose surface
lays in the y — z plane, and the magnetic field and saturation both being in-plane. In
this procedure, it is found that the resonant frequencies may be expressed as

gi + 45
w? = vgHe (nge + 4mngTy) . (5.105)
and that the permissible wave-vectors could be found via the relation

4 s
A7sMs o qy) . (5.106)

1
2g, cot tm) = —F/—— 2 _ g2 g?
qx (qx ) \/m (qx qy qz — 0O qZ

To analyse the behaviour of the resonant frequencies, a number of re-definitions are
made to clarify nomenclature. Firstly, the dimensionless reduced saturation, de-
fined as My = 47Ms/H, is introduced. Also defined is the in-plane wave-vector as
qp = g + 42 As, in principle, the derivations performed in Appendix C are done
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under the assumption that the thickness t,, — 0, it makes little sense to discuss an
x—component of the wave-vector. As such, this component is relabeled as g, = g«
such that it appears distinct from the other components and avoids confusion. Also
introduced is the reduced dimensionless wave-vector, §, which is express as the ratio
of § = @/ Finally, the resonant frequency is defined, w, = ygH,, as well as the
magnon resonance for a thin film, w% = w? (1+ M), using the new notation for the
reduced magnetisation.

With these re-definitions accounted for, one may re-express Eq. 5.105 in a slightly

less cumbersome form

24 2
- gyt
w? = w? + w?M; I . Iy (5.107)
These terms are then reorganised to find the expression
~ ~ qZ
w? = w? + WM, — wiqu—;, (5.108)
and hence the magnon frequency spectrum is re-expressed
~ qZ
w? = wj — WwiM=. (5.109)

q

Solving the partial fraction and dividing through by w?, the re-arranged expression

~ 2
w ~ ~ g T
— = |1+ M, — M—— :
Wy I GR + 3

(5.110)

in terms of § and g, can be arrived at. With these expressions, the characteristic
equation for the wave-vectors can be redefined as

- 1
20pq< cot (G<tm) = 4% — g5 — M (q2< + qf,) 7 (5.111)

Some elementary behaviour of these equations is first considered, in which two no-
table case are examined. These are the cases of g, = 0, which results in surface
waves, and of gy = 0, which results in backwards volume waves.

Surface waves

For the case of surface waves (often called Damon-Eshbach modes), one assumes
g- = 0 such that waves have a wave-vector perpendicular to the saturation magneti-
sation and field. With some rearrangement, the characteristic equation in Eq. 5.111
can be reduced to

2Gqpq< cot (q<tm) = G(q% — q5) — Ms(q% +q3). (5.112)
In the case that g, = 0, the only way for this equation to hold is that
M;(q% +q3) =0, (5.113)

and since M is non-zero, this further implies the unique property that

q2< = —q}% = (< = iqp. (5.114)
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FIGURE 5.25: Magnon surfe}ce mode branch for a thin film as plotted from Eq.
5.118. Note that it is taken Mg = 1 aswell as t,,, = 1.

This relation is then used to solve for g2 + qf,, finding

M;(q% + a3 = G(9% — a3) — 24qpq< cot (G<tm)
1 L
=%+ = i (=295 — 24451 cot (igptm )

S

24 2
_— Z‘Z;SP (1+icot (igptm))
24 2
= — ;Z;P (1+ coth (gptm)) - (5.115)
With the relation 5 )
1+ coth (x) = e><19@((}2)x()i)1' (5.116)

it follows from Eq. 5.115 that

4443 exp (2qptm)
242 =-=F P . 117
<+ M (exp (2gptm) — 1 (-117)

Lastly, substituting this into Eq. 5.110 and with some further rearranging the exact
solution

w w2 M
= w—g+ 1 (1—exp (—2qptm)) (5.118)

Wi
can be yielded, which is identical to the surface wave equation as derived prior
by Stancil [24]. Note that there only exists a single branch branch with the surface
wave character. Shown in Fig. 5.25 is the profile of this frequency spectrum under
the assumption that Mg = 1 such that w% = 2w?, where t,, = 1 is also taken for
simplicity.
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Backwards volume waves

For the case of backwards volume waves, it is assumed g, = 0 such that the waves
have a wave-vector parallel to the saturation magnetisation and field. With some
rearrangement, the characteristic equation in Eq. 5.111 can be expressed as

20:4< cot (G<tm) = 4% — 42 (5.119)

Likewise, the frequency equation in Eq. 5.110 can be shown to reduce to

2 2
w Yo _ pi— 1z

o o2 S (5.120)

Unlike was the case for the surface waves, the characteristic equation presents no
analytic form and is transcendental. As such, there are two approaches to consider
to yield solutions. The first of these is that, as g<t,, is small, an expansion of the cot
term as a function of the small parameter gt can be used to achieve an approxi-
mate analytic form for the spin-wave frequencies close to the origin. The alternative
is to numerically solve the characteristic equation to find the roots of the equation
and then plot the frequency with these to find an exact, although not immediately
conformable to an analytic form, solution.

Considered here is the first case in expanding the function. For small x, it can be
shown that the cot function has a series expansion as given by

cot(x) ~ % ————— O(x%), (5.121)

where, as is standard, an infinite number of terms in the expansion are required to
perfectly replicate the function at the specified point. As more higher order terms are
included, the result becomes more accurate towards the function being replicated.
For simplicity, the solution using the 1%t-, 274~ and 3™-order expansions of the cot
function is used.

In using the 1%*-order expansion, the characteristic equation in Eq. 5.119 reduces
to find

2
qi:7%+¢ (5.122)

With this, the frequency equation may be shown to reduce to

> =
w wy  Ms  gqitm

— =y — 5.123
Wy w? 2 gytm +1 ( )

In using the 2"4-order expansion, the characteristic equation in Eq. 5.119 reduces
to find 5 )
2 qu +4z

= (5.124)
T T 112,
With this, the frequency equation may be shown to reduce to
w w? ~  Gztm (292tm +3)
— =4/2-M (5.125)

Wy w? *20:tm (§ztm +3) +6
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In using the 3_order expansion, the characteristic equation in Eq. 5.119 results
in the polynomial

1 (2 3 2 2 (2
< <45thm + < 1+ 3thm + qz fo +q; . (5.126)

With the redefinition x = g2, x> = g% this may be solved this as a quadratic, under
which it is find

2
— (14 3aut) (1 Bact)” 44 () (0 (2 +02))

X12 = (5.127)
5010
and then reduced to the form
1= 2ot & \/ et (G2t (22t +9) +15) +1
X12 = i (5.128)
EEIZtm
With this, the frequency equation may be shown to reduce to
2 2
w “o V 9z
— = | —= - . 5.129
Wy w? s 120+ v/ & Gt (92t (242t +9) +15)+1 5 ( )
%‘htm + qZ

Clearly, successively higher terms give more unwieldy equations for use in a
mathematical theory. An approximate form for the backwards volume mode has
been derived by Kalinikos [188], giving

w _ \/1 4 M. <1 —Xp (_zqztm)). (5.130)

Wi qztm

As such, the functions derived from the series expansion are plotted against this to
check their validity. For this, M, = 1 such that wy = 2wy, and again take t,, = 1
for simplicity. Shown in Fig. 5.26 is this comparison plot, along with an inset show-
ing the behaviour of the functions for g, < 0.03. Clearly, the 1%-order approxi-
mation does not accurately capture the behaviour of the correct function beyond
g: 2 1. However, the 2"- and 3"-order approximations offer much more accu-
rate behaviour in the limit g, £ 1. If one assumes a length of magnetic structure of
Lm 10, pm, a thickness of 30 nm, and assume that the wave-vectors are quantised as
gz = nm/Lny, then one finds for the fundamental mode g,tm, ~ 102 for which all
orders of the approximation as well as the analytic form converge to the same line.
As such, the 1%'-order approximation would appear fine for the description of the
magnon modes.
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FIGURE 5.26: Comparison of the backwards volume mode description of a thin
film as plotted from frequency equations using the series expansion in Eq. 5.121.

Lastly, the numerical behaviour of the characteristic equation for the backwards
volume mode can be investigated, and plot the frequency obtained. Upon inspection
of Eq. 5.119, it can be seen by means of a rudimentary plot (shown in Fig. 5.27)
that, in taking g, = 1, the fundamental root of the equation roughly corresponds to
7t/2, and that higher order roots converge to n7t. This can be used as approximate
lower bounds for each of the roots to start from with Mathematica’s inbuilt Newton
method. The simplified frequency equation

2
w _ 9z

ws 7% + g2

(5.131)

can then be plotted where M = 1 and t,, = 1. The solutions to this are then also
shown in Fig. 5.27 as a function of 7., as well as the approximate expression obtained
by Kalinikos. Clearly, for the limit of small g, it is seen again that the n = 1 and the
approximate form both converge to the same line. Unlike for the surface waves,
there exist an infinite number of branches with backwards volume behaviour - plot-
ted only is the first 5.
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FIGURE 5.27: (a) The roots of the characteristic equation in Eq. 5.119, assuming
that g, = 1 and ¢, = 1 for simplicity. Dashed vertical lines show the following;:
green represents 7t/2, cyan represents 7t, magenta represents 277, and violet rep-
resents 377. (b) The frequency that these characteristic roots yield as a function of
gz, compared to the expression obtained by Kalinikos.

Mixed modes

The characteristic equation is known to present a rich manifold of modes, and has
been explored by Damon and Eshbach [189], pictorally presented in Fig. 5.28. This
has the interesting feature that only the highest branch of the backwards volume
mode shares the same plane with the surface wave branch, and that all other back-
wards volume branches converge to the Kittel mode. Also, the density of modes is
infinite at the top of the bands, and decreases monotonically with frequency to the
bottom of the band.
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FIGURE 5.28: The spin-wave manifold of a magnetostatic slab [189]

Due to the quantisation of the wavevectors (in the most rudimentary consider-
ation, the wavevectors would be found as g; = 7, for i = y, x), the case of purely
backwards volume mode or surface mode cannot be considered. As the geometries
of the device proposed are of lengths an order of magnitude greater than widths,
one should equally expect g, to be about an order of magnitude larger than g,, but
not sufficiently so that it may be considered one or the other to be 0 with compari-
son to each. Rather, it is required to seek the expansion of the characteristic equation
for the case of both pertinent wavevectors being small. In practice, this requires ex-
panding for small § which places no constraints on g,, and then expanding for small
gy, which sets that g, and g, are both small. It is not possible to expand directly in g,
and g as this type of expansion is undefined given 1/4..

Starting with the characteristic equation, this may be expanded to the lowest
order in the small parameter gt to find an approximate analytical solution to use;

2q, ) 2 ~ 2 2\ 1
TN =gy M <q< n qp> = (5.132)

In powers of gp, this is rearranged to

2 _1_ 2 +q+quf,, (5.133)

which may then be expanded in powers of § such that

- ~ ! ~ - ]_ 1 ~ o
92 (9p,9) ~ 9% (4p, G = 0) + 4% (4p, 7 = 0) + 59% (3, F = 0)7" + ... (5134)
To cubic order, this finds

1 2 2

i i 12
9% (qp,4) = —qp — el Eaéq —

2
Sy Y L (5.135)
M52 dp4

tm
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Substitution of this expression into Eq. 5.110, and expanding first as a function of §
to first order finds

- -2 2\ .
w N$ s MSqutm B M (3‘1ytm+2(%tm) )‘1
Wi

1+ Mg+
2(1 t - 2
o] s gt i e
ym

(5.136)

which is then to be expanded again as a function of g,, again to first order. Using
that g, = I7t/wm and g, = {7 for integers [ and 7, one finds

~ 2 2
w - Mg TTttm 3tmWm (N7
— =~/ 1+ M I—= — . 5.137
Wk " S+4\/1—|—]\7Is (wm 2 il (Lm) ) ( )

To compare this against the branch spacing obtained from the OOMMEF simula-
tions, first consider the mode spacing for the case = 1,n =1and [ = 2,n = 1. This
correlates to the branch spacing, denoted 7, that was found from the 2-dimensional
Fourier transform. Under this assumption, one finds

~ 2
to_ M (i Stat (7' -
Wi 4\ 1+ M, \ Wm 2 7 Lm

which results in a branch spacing (taking the parameters used in the OOMMF sim-
ulation) of around 7, ~ 0.8 GHz, roughly corresponding to what was observed.

Considering now the next nearest magnon which exists on the same branch, then
the magnon mode spacing, denoted Ap,, can be expressed as

Am -~ 37gnptmwm(4nMs)2
ws 8H.L2 wy

(5.139)

where p = n% — n% and has values of p = 3 for the cantilever (I; = 1, [ = 1 and

ny =1,n; =2)and p = 8 for the bridge (1 = 1,1, = 1and ny = 1, n, = 3) due to
the absence and presence of symmetry, respectively.

Taking some choice parameters to illustrate an example (t,, = 2549, Wy = 400 nm,
Lym = 10um, H, = 3500e), and consider that the surface of the resonator is fully
covered, the mode spacing to the next nearest Kittel-like magnon mode is

Am =~ 3.4 x 10%p. (5.140)

With these dimensions, as a rough order of estimate for the cantilever and bridge
geometries as having mechanical frequencies of the order of a MHz, then it appears
that the geometries do not conform to the consideration of the single mode model
being valid (it would appear that wr/An ~ 0.5 as a very rough estimate which does
not present A, >> wgr). Further schemes in which this condition is met will be
explored later. In order to resolve this frequency difference using OOMME, it would
be required to run the simulation for a total of ~ 500000 stages to get a resolution of
0.1 MHz.

The ratio of the mechanical mode frequency to the mode spacing has some inter-
esting features. Assuming first that the length of the resonator is fully covered with
the magnetic material (although not necessarily the width), and considering only
the fundamental elastic mode (which makes the criterion easier to meet given that
higher order modes are of larger mechanical frequency), the ratio of the mechanical
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FIGURE 5.29: The character of Eq. 5.141 in varying the applied magnetic field for
an isosceles cross-section cantilever.

mode frequency to the magnetic mode spacing may be expressed as

wr _ 8 E@He(He-l-‘lﬂMs) 1 tr (5.141)
Am 3\ pp  (4nMs)?  7TWM tmWm '

where it is defined g = 1/3/6 for a rectangular resonator cross-section and g =
\/2/6 for an isosceles triangle cross-section, and 0 = 1.87512 for the cantilever and
0 = 4.7300? for the bridge. First, having an isosceles triangular cross-section pro-
vides the most benefit to meeting the criterion, as this provides an immediate pre-
factor that is smaller than that of the rectangular cross-section. It is also beneficial
for meeting the single mode criterion to use a cantilever resonator due to the the
ratio o/ p = 1.172 being smaller than that of the bridge (0/p = 2.797). Regardless of
the cross-sectional shape of choice, the mechanical mode frequency is independent
of the width of the cross-section, but the ratio of the mechanical frequency to the
magnetic mode spacing still depends on the width of the magnetic structure. This
would imply that that it would be beneficial to have wy, > wr but this clearly isn’t
possible - wy, should be treated as the limiting case for the width of the resonator,
at best, although it isn’t necessary to have wy = wr and wy < wg is also perfectly
valid under the mathematical considerations. To provide an optimal mode spacing
such that the single mode criterion is met, it seems necessary to saturate the width
of the resonator with the magnetic material. For full coverage in the length of the
structure being sought, then the ratio of the mechanical mode frequency to the mag-
netic mode spacing is independent of the length of the magnetic structure. Finally,
the ratio of the mechanical mode frequency to the magnetic mode spacing scales as
tr/tm, which implies that the resonator should be made as thin as possible while
also making the magnetic thin film as thick as possible - this is not an easy condi-
tion to optimise to given that it is required tg >> ty, in order to neglect the elastic
influence of depositing a thin film on top of the resonator.

Shown in Fig. 5.29 is the variation of Eq. 5.141 with the applied field, H.. For
this, a cantilever of isosceles cross-section is assumed of wg = wy, = tg = 400nm,
and a magnetic thickness of t,, = 254y, to give a 'best case scenario’ type approach.
It is then seen to be preferential to minimise the applied field as much as possible to
meet the single mode criterion, although this is not necessarily feasible when trying
to achieve saturation of the magnetic structure.



5.5. Justification of the single-mode model

Or/Ay OR/An
6.000 .
4.000
4.000 X
2.000
2.000 :
- 1.000
€ 1.000 3 |
= = 0.5000
£ 0.5000 £ 0.
3 3 0.2500
0.2500 :
: 0.1000
0.1000 .
-0.1 0.2 03 04 05 06 07 08 09 1.0 -0.1 0.2 03 04 05 06 0.7 08 09 1.0
t (um) t (um)
Or/An Or/An
15.00
10.00
10.00
6.000 6.000
4.000 4.000
— — 2.000
€ 2.000 €
5 5 1.000
£ 1.000 € .
3 E
0.5000 0.5000
0.2500 0.2500
. 0.1000 1 0.1000
0.1 02 03 04 05 06 07 08 09 1.0 01 02 03 04 05 06 07 08 09 1.0
t (um) t (um)

FIGURE 5.30: Eq. 5.141 for cantilever and bridge geometries as functions of res-
onator thickness and width, assuming full coverage with the magnetic material.
The top plots are for rectangular and isosceles cantilever cross-section, respec-
tively, and the bottom plots are for bridge geometry, respectively. The red line
denotes wg /Am = 0.25.

Likewise, Fig. 5.30 shows density plots of wr/Am as a function of the width
and thickness of the resonator, assuming full coverage with the magnetic material,
for both the cantilever and bridge geometries and for square and isosceles cross-
sections. These plots have been generated for an applied field of H, = 350 Oe, and
for a thickness of the magnetic structure of t;,, = 25a9. Note that the red lines are
used to denote the point wgr/Am = 0.25. For full coverage, it is required to make the
resonator thickness exceptionally large and shrink the width as much as possible in
order to satisfy the single mode criterion which is not preferential in maximising the
magnomechanical parameters.

If one instead assumes that the magnetic structure does not fully cover the length
of the resonator, then a more robust landscape which makes attaining the single
mode criterion far more feasible opens up. Under the assumption that L, < Lg,
the ratio of the mechanical mode frequency to the magnetic mode spacing can be

expressed as

w _ 3 [EqoHo(He+d4mMy) 1 tr (Lm\* 1

Am 8\ pp (47tMs)2 7TwWm tm \ LR / wWm
where g, 0, and p retain their same definitions as before. With regards to the ge-
ometry of choice for the resonator, the same reasoning still applies as before, which

is to say that choosing the cantilever is best for minimising single mode criterion,
maximising the width such that wy, = wg is preferential, and using an isosceles

(5.142)
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FIGURE 5.31: The character of Eq. 5.142 in varying the thickness and width of
a cantilever of isosceles cross-section cantilever. The red line denotes wr/Am =
0.25

cross-section is best. However, in considering the scheme in which L;,, < LR then
in order to minimise wg /A, it is beneficial to minimise the length of magnetic ma-
terial placed on the resonator. For example, covering only half of the length of the
resonator provides a ratio (Lm/Lgr)?* of 1/4, which acts to aid in meeting the single
mode criterion. While this, in principle, deteriorates the magnomechanical param-
eters by having less magnetic material present on the beam, the ability to choose
where exactly to place the magnetic material such that g, and hence g™ and C™¢,
may be maximised through the curvature profile helps offset this while also offering
a conformity to the single mode criterion.

Shown in Fig. 5.31 is a density plot of Eq. 5.142 a cantilever in assuming an
isosceles cross-section and full coverage in the width, as a function of the width and
thickness of the resonator. Taken as before is an applied field of H. = 350 Oe, and
assumed is a ratio of lengths of L, /Lr = 0.5. The red line is used again to denote
wr/Am = 0.25. Clearly, the scheme in which the magnetic material does not fully
cover the length of the resonator offers a much more versatile regime of dimensions,
and offers geometries in which meeting the single model criterion is viable while
retain small dimensions that should maximise the magnomechanical parameters.

5.6 Characterisation of ¢ and C

While gy is in itself a useful parameter, it only represents the interaction between
a single magnon and a single phonon. Often, the figures of merit for these hybrid
systems are the, in the case of the theory presented, multimagnon-phonon coupling
(denoted g), and the cooperativity (denoted C). The multimagnon-phonon coupling
is defined as

8 = 80/ Mmag, (5.143)
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where 71,g is the number of magnons, and may be determined from Eq. 4.24. This
parameter then encapsulates the total strength of all interactions taking place be-
tween magnons and phonons in the system. Likewise, the cooperativity, defined
as 4o
8
C=-F (5.144)
is then a parameter used to to quantify the systems efficiency in exchanging magnons
and phonons. In essence, it represents the product of ratios between coupling and
losses of the system.

As was done for g{*, presented now is the scaling of the multi-magnon coupling
strength as well as the cooperativity assuming that the geometry of the surface of the
magnetic structure forms a rectangle. Owing to their dependence on the decay rate
into magnon modes, ey, the mechanical damping, I'r, and the number of magnome-
chanically relevant magnons, #mag, all of which are functions of the dimensions of
the resonator and magnetic structure, the scalings of g"¢ and C™¢, while depending
on gi¢, are no longer equivalent as this. As such, the parameter space for the two is
briefly reconsidered. In addition, with the various constraints placed on the system
(the single mode criterion, the mode validity criterion, the resolved side-band con-
dition, and the magnon non-linearity condition specifically), this parameter space
is non-trivial in considering which regimes are permissible, and how to maximise
these parameters subject to the constraints. Assumed in the following is only isosce-
les cross-sections, given that this produces lower mechanical mode frequencies and
should gives the largest value of g*°. Given that the mechanical damping is pro-
portional to the frequency, it would seem apparent that the isosceles cross-section
would in turn provide another boost for C™¢ for the same set of parameters as that
of a rectangular cross-section with this lower mode frequency. Lastly, as the mag-
nomechanical parameters are maximised for smaller applied fields, the applied field
is again assumed to be H. = 350 Oe. There is little point is repeating these proce-
dures for g* as derived under the assumption of a flat mode profile given that it
does not represent a physical system. Hence, only considered are g;* and C™* for
the trigonometric mode profile as the physically representative case.

First, the scaling of ¢"¢ with central distance from the transmission line, d. in-
troduced in Sec. 5.4, is considered. It was seen that the decay rate, x.x was a linear
function in the length and thickness of the magnetic material, but had a saturation
value with regards to the ratio wy, /2d.. With this in mind, it would appear intu-
itive to characterise the scaling of ¢g"¢ for wp, as the parameter d. is varied. As now
the system is dependent on the resonator dimensions, and taken for this example
is wy = wg, it makes little sense to consider wg << tgr despite scaling suggesting
this would maximise parameters. The minimum limit of tg is around 250ap owing
to the elasticity criteria, and so widths in the region wy, = [250 : 600] are used for
illustrative purposes. Lengths are then taken of L, = Lr = 6 um, tg = 350nm, a
transmission line power of P, = 250nW, a detuning A = wg, and the variation of
g™ for the central distances d. = {0.1,0.25,0.5,1} ym is presented for a cantilever
geometry in Fig. 5.32. The magnetic and elastic parameters are retained from Table
5.1. The cooperativity is expected to scale largely the same since the dominating
decay factor is the intrinsic decay of the magnon mode xy = awn, which is indepen-
dent of dimensions. Clearly, smaller central distances offer larger coupling for the
same dimension of resonator. As the central distance becomes larger, the coupling
becomes relatively insensitive to changes in the width of magnetic material.
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FIGURE 5.32: g™ for the cantilever resonators as a function of the magnetic
width, plotted for different central distances dye. from the transmission line.

For exploring the dependence of g and C, two relevent cases may be identified.
These are

¢ that there is full coverage of the resonator surface with the magnetic material,

¢ that the magnetic material coincides with the cantilever’s fixed end and is al-
lowed to vary.

Given that the deflection of the cantilever was largely linear and that placing
material on or towards the cantilever’s free end provided lesser values of gi°, these
two cases present the most sensible geometry. Shown first is the scaling of "¢ and
C™¢ in assuming full coverage of a cantilever resonator as a function of resonator
surface dimensions in Fig. 5.33. Also shown in Fig. 5.34 is how g™ and C™* varies
expressed as the ratio Ly, /Lg, where the origin is taken to start at the cantilever’s
fixed end. A detuning A = wr is used as well as an applied field He = 350 Oe, and
d. = 0.1 ymis taken to form a benchmark. An isosceles cross-section is assumed, and
g™ and C™* is plotted with respect to wn, and ty,. The inset shows the dependence
on Ly,. Unless the dimension is varied, geometry is taken as Ly, = Lr = 6 ym, wm =
wr = tr = 350nm. The parameter tg has only been plotted to a minimum of tgr =
100 nm due to sharp scaling - the value of g"¢ approaches 22 MHz. Regardless, the
scaling in this region isn’t accessible due to the thickness constraints. The parameters
tr and wg retain roughly the same scaling with C™¢, whereas L shifts from linear
scaling in the depicted region for g"¢ into roughly quadratic scaling for C*.
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FIGURE 5.33: (a) g™ and (b) C** for a cantilever resonator with isosceles cross-
sections for full coverage with magnetic material as a function of dimensions.
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FIGURE 5.34: (a) g™ and (b) C™ for a cantilever resonator with isosceles cross-
sections as a ratio of lengths. The origin is taken at the cantilever’s fixed end.

Likewise, for the bridge the cases
* that there is full coverage of the resonator surface with the magnetic material,

* that the magnetic material is placed centrally and approaches the bridge’s fixed
ends equally,

are considered. Again, these represent the most logical schemes from the bridge
as inferred from the characterisation of g{*. Shown in Fig. 5.35 is the dependence
of gRe¢ and C™ for the bridge in assuming full coverage with magnetic material.
Identical dimensions to that of the cantilever have been assumed for comparison.
The scaling for the two parameters is identical, but the attainable g™ is around an
order of magnitude less, with C™¢ around two orders of magnitude lower, than that
of the cantilever. Also shown in Fig. 5.36 is the variation of g™ and C™¢ as a function
of bridge coverage. For this, the origin is taken to be at the bridge’s midpoint, and
the ends of the magnetic structure approach the bridge’s fixed ends equally.
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FIGURE 5.35: (a) g™ and (b) C™* for a bridge resonators with isosceles cross-
sections for full coverage with magnetic material as a function of dimensions.
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FIGURE 5.36: (a) g™ and (b) C™ for a bridge resonator with isosceles cross-
sections as a ratio of lengths. The origin is taken at the bridge’s midpoint.

5.6.1 Optimisation

Given not only the scaling of the parameters g"¢ and C™¢, but also the scaling of the
constraints themselves on our system, optimising the device dimensions to provide
maximal g"¢ and C™¢ is non-trivial and offers a diverse space to consider. There are,
however, routines available to find maximal values (or minimal) of a function subject
to constraints. To this end, Mathematica is made use of along with it’s NMaximize
function to find the largest values of g™ and C™° subject to the specific constraints.
These constraints are as follows;

¢ the mode validity criterion which set limits on the aspect ratios of the resonator
itself. This criterion stem from the validity of the Euler-Bernoulli beam theory,
and realistically can be taken as

kn,wr <0.15, and k,tg < 0.15 (5.145)
given that, in principle, the theory holds for wave-vectors ka = 0.6.

¢ the resolved sideband condition

Ko (5.146)
WR
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which is a function of both the magnetic structure’s dimensions and the res-
onator’s dimensions. As « is largely dominated by the intrinsic losses, awm,
and this is of the order of 10°, at minimum one requires a mechanical frequency
of 10 MHz which is largely attainable with any configuration of nanodimen-
sions that also obey the mode validity criterion. As a guideline, a length
Lr = 10 ym and thicknesses and widths tg = wr = 400 nm provide a mechan-
ical mode frequency of wr ~ 10 MHz for the cantilever and wg ~ 100 MHz for
the bridge, both of which would meet this criterion.

¢ the Kittel mode quantisation condition

Nmag

<<1 (5.147)
ns

which requires that the number of magnomechanically relevant magnons is
much less that the number of magnetic moment spin sites, such that the ex-
pansion used for deriving the Kittel mode operators can be assumed to hold.
Somewhat awkwardly, this depends not only on the magnetic structure’s di-
mensions, but also on the dimensions of the resonator which enter through the
detuning, A. The number of spin sites scales linearly with the volume of mag-
netic material, but the number of magnons does not, which tends to mean that
larger volumes would be preferable for meeting this criterion.

¢ the single mode criterion

% <<1, (5.148)

which has already been seen to offer a complicated parameter landscape in
Sec. 5.5. Ultimately, the finding for this was that it would be necessary to only
cover a portion of the resonator else the the restrictions on the device design
would make it difficult to meet the other criterions.

¢ the elastic interface condition ;
R <1 (5.149)

tm
which limits the thickness of the resonator. For the consideration of ¢, = 25ay,
this essentially puts a cap on how thin the resonator can be at t = 310 nm.

For the geometry of the device proposed within, parameter dimensions are consid-
ered in the ranges
1pym < Lg <40pum,
200nm < wy = wr < 800 nm, (5.150)
350nm < t < 800 nm.

In principle, the thickness can be taken down to fg = 310 nm, but this level of preci-
sion seems redundant given the resolution of manufacturing processes. With these
conditions clarified, Mathematica is able to find the maximum of a function sub-
ject to these constraints. In the following cases, an input power P, = 250nW is
assumed as well as an applied field of He = 350 Oe, and consideration is only given
to the fundamental mechanical modes of the resonators. Note that optimisation for
the structure is done to different values of the constraints (apart from the mode va-
lidity constraint, which is kept static at < 0.15). In principle, one should take these
constraints to be as small as possible, and as the leniency of the constraints is made
smaller, it will be seen the magnomechanical parameters deteriorate.
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In optimising the structures for g™ and C™¢ under the assumption that the res-
onator surface is entirely covered with magnetic material and subjected to the con-
straints, there are are no geometries in which all of the conditions are able to be
met. As such, full coverage for the cantilever is not a regime that can be physically
considered while also meeting the required constraints to specified tolerances. For
the optimisation, the central distances d. = {0.1,0.25,0.5,1} ym are taken as exem-
plar dimensions, but the upper limit is not arbitrary; it presents the largest central
distance for an approximation of a uniform driving field used within Chapter 6 but
presents no constraints to what has been presented so far.

Cantilever

For the geometries of consideration, g is always of the order of MHz. In tandem
with the lower mechanical mode frequency optimisation of only the cooperativity to
be as large as possible seems the most intuitive given that the strong coupling regime
will, under most circumstances, be satisfied. No geometries were found for the rect-
angular cross-section for which the constraints had tolerances < 0.05, although two
regimes did exist for the isosceles cross-section within the central distances consid-
ered. The isosceles cross-section is able to offer larger ¢"*¢ and C™ than the rectan-
gular one, and also allows the constraints to be kept to more stringently, but both
geometries present feasible regimes.

In optimising the cantilever for C™ for the fundamental mode under the assump-
tion of partial coverage, the origin of the magnetic placement is taken to be at the
cantilever’s fixed end such that the large curvature of the mode profile may be ex-
ploited to boost the single magnon-phonon coupling as much as possible in line with
Sec. 5.3.2. With this geometry, it is possible to meet the constraints imposed on the
system while also giving large magnomechanical parameters. The results of the opti-
misation for a cantilevered beams having 254 layers of YIG deposited are presented
in Table 5.3 for isosceles cross-section, and in Table 5.4 for rectangular cross-section.
The lateral dimensions of the YIG film are then specified within these tables. Note
that the cantilever can produce attractive cooperativies of order 10%, three orders of
magnitude larger than previously reported using the cavity implementation [27]

Bridge

In a similar vein to the cantilever, owing both to the higher mechanical mode fre-
quency as well as the smaller ¢g**¢ of order of 100s of KHz, this again lends itself to
performing optimisation for the cooperativity to be as large as possible solely given
that it is unlikely to be optimised to the extent that it meets the strong coupling
threshold significantly. Optimisation is again performed for the bridge for C™ for
the fundamental mode. Coverage of magnetic material is assumed as a ratio of the
resonator length, and the origin of the magnetic placement is taken at the centre
of the bridge. The results of the optimisation for 254 layers of YIG are shown in
Table 5.5 assuming an isosceles cross-section, and in Table 5.6 assuming a rectangu-
lar cross-section, where again the lateral dimensions of the YIG film are contained
within.

In general, the bridge produces cooperativities around an order of magnitude
less than the cantilever but still exceeds those previously reported using the cavity
implementation [27]. However, the bridge requires a much longer resonator length
to attain comparable mechanical frequencies to that of the cantilever, and in turn
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geometries which stringently meet the constraints are easier to access given the sim-
ple numerical pre-factor that enters into the mode spacing and excitation of fewer
magnomechanically relevent magnons. Optimising the constaints to tolerances of
< 0.05 finds regimes for both rectangular and isosceles cross-sections whereas these
tolerances were only attainable for the isosceles cross-sectional cantilever. Values
of d. which do not appear in the Table represent regimes in which maximisation
produced ratios Ly, /Lr = 0 which are neglected as nonphysical, in which optimi-
sation placed preference on minimising the amount of magnetic material placed on
the beam rather than being physically unable to satisfy the constraints.



' Lm | g
Constraints | d. (ym) | Lg (ym) | Wrm (Um) | tg (ym) e | 21 (MHz) . cree
0.10 49 0.20 0.35 0.40 1.06 32 | 12.7 x 10°
0.25 7.0 0.20 0.35 0.40 0.73 2.7 | 15.0 x 10°
5020 0.50 9.7 0.25 0.35 0.45 0.53 2.1 | 16.0 x 10
1.00 13.7 0.25 0.35 0.50 0.38 15 | 17.0 x 10°
0.10 4.5 0.20 0.35 0.35 0.95 31 | 9.1x10°
0.25 6.5 0.25 0.35 0.35 0.65 24 | 10.0 x 10
S 015 0.50 9.0 0.30 0.35 0.40 0.48 19 | 114 x 10°
1.00 12.5 0.25 0.35 0.40 0.34 14 | 115 x 10°
0.10 4.5 0.30 0.35 0.35 0.79 25 | 63x10°
0.25 6.1 0.35 0.35 0.40 0.59 21 | 7.1x10°
5010 0.50 8.3 0.40 0.35 0.40 0.43 17 | 7.8x10°
1.00 10.2 0.35 0.35 0.40 0.28 11 | 5.0x10°
< 0.05 0.50 7.1 0.50 0.35 0.35 0.35 14 | 3.8x 102
~ 1.00 7.2 0.60 0.35 0.35 0.19 08 | 1.1 x10

80T

TABLE 5.3: Optimisation of the cantilever nanostructure of isosceles cross-section for maximal cooperativity including the fundamental constraints
listed at the beginning of Sec. 5.6.1.
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‘ Lo | g g
Constraints | d. (ym) | Lg (ym) | Wrm (ym) | tg (pm) e | 27 (MHz) . cree

0.10 5.4 0.20 0.35 0.40 0.61 1.8 | 4.0x 10°

0.25 7.7 0.20 0.35 0.40 0.42 15 | 48x 10°

5020 0.50 10.8 0.25 0.35 0.45 0.31 12 | 53x10°

1.00 15.2 0.30 0.35 0.45 0.22 09 | 5.6 x 10

0.10 6.5 0.50 0.35 0.40 0.44 13 | 3.0x10°

0.25 7.3 0.25 0.35 0.35 0.38 14 | 3.6 x10°

S 015 0.50 10.0 0.35 0.35 0.40 0.28 11 | 37x10°

1.00 13.8 0.30 0.35 0.40 0.20 0.8 | 3.7 x 10

0.10 5.6 0.45 0.35 0.40 0.41 12 | 2.0x10°

0.25 6.9 0.40 0.35 0.40 0.33 12 | 23x10°

S 010 0.50 9.3 0.50 0.35 0.40 0.25 09 | 25 x 10°

1.00 11.3 0.40 0.35 0.40 0.16 07 | 1.6 x 10

D pue & Jo uonesLapeIey) ‘9'q

TABLE 5.4: Optimisation of the cantilever nanostructure of rectangular cross-section for maximal cooperativity including the fundamental con-
straints listed at the beginning of Sec. 5.6.1.
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. Lm | g g
Constraints | d. (ym) | Lg (ym) | Wrm (ym) | tg (pm) e | 27 (MHz) p cree

0.10 15.7 0.50 0.35 0.40 0.25 0.50 | 7.5 x 10?

0.25 18.7 0.40 0.35 0.40 0.21 0.57 | 10.0 x 102

5020 0.50 254 0.55 0.35 0.45 0.16 0.51 | 10.2 x 10?

1.00 34.8 0.55 0.35 0.45 0.12 0.43 | 10.5 x 102

0.10 14.0 0.45 0.35 0.35 0.23 0.51 | 5.5 x 10?

0.25 18.6 0.60 0.35 0.40 0.18 0.48 | 7.3 x 10?

S 015 0.50 24.3 0.75 0.35 0.45 0.14 0.44 | 9.2 x 10?

1.00 30.8 0.50 0.35 0.35 0.01 0.37 | 8.2 x 10?

0.10 121 0.40 0.35 0.25 0.19 0.50 | 3.2 x 10?

<0.10 0.25 16.4 0.50 0.35 0.30 0.15 0.47 | 4.7 x 10

1.00 25.2 0.60 0.35 0.35 0.08 0.30 | 3.6 x 10?

<005 0.25 13.3 0.40 0.35 0.20 0.11 0.40 | 1.9 x 10?

~ 1.00 18.1 0.60 0.35 0.20 0.04 0.8 | 0.6 x 10?

0Tt

TABLE 5.5: Optimisation of the bridge nanostructure of isosceles cross-section for maximal cooperativity including the fundamental constraints
listed at the beginning of Sec. 5.6.1.
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. Lo | g g
Constraints | d. (ym) | Lr (ym) | Wrm (ym) | tg (pm) e | 27 (MHz) ” Cree

0.10 184 0.60 0.35 0.40 0.13 0.26 | 2.3 x 10?

0.25 21.2 0.45 0.35 0.40 0.12 0.31 | 3.3 x 10?

5020 0.50 28.3 0.60 0.35 0.40 0.09 0.28 | 3.9 x 10?

1.00 38.5 0.55 035 | 0.40 0.07 0.25 | 4.6 x 10?

0.10 l16.4 0.50 0.35 0.35 0.14 0.27 | 1.8 x 10?

0.25 21.2 0.65 0.35 0.40 0.10 0.26 | 2.4 x 107

5015 0.50 274 0.85 0.35 0.40 0.08 0.23 | 2.8 x 10?

1.00 33.9 0.50 0.35 0.35 0.06 0.20 | 2.6 x 10?

< 0.0 0.10 14.0 0.45 0.35 0.25 0.10 0.27 | 1.0 x 10?

~ 0.25 18.6 0.60 0.35 0.30 0.08 0.25 | 1.4 x 10?

0.25 15.0 0.45 0.35 0.20 0.06 0.22 | 0.6 x 10?

<0.05 0.50 19.5 0.45 0.35 0.20 0.05 0.18 | 0.6 x 10?

1.00 20.0 0.65 035 | 0.20 0.03 0.10 | 0.2 x 10?

D pue & Jo uonesLapeIey) ‘9'q

TABLE 5.6: Optimisation of the bridge nanostructure of rectangular cross-section for maximal cooperativity including the fundamental constraints
listed at the beginning of Sec. 5.6.1.
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Chapter 6

Applications

Ultimately, while photons and phonons have been introduced to magnons sepa-
rately, the three are free to form a coupled hybrid photon-magnon-phonon system.
Explored here is the application of this system in the context of magnomechanics
[129]. For this, the description of the interaction of elasticity with magnetism will be
brought into place with the prior mentioned description of photons interacting with
magnetism, and the feasibility of ground state cooling, magnomechanically induced
transparency, and the magnon spring effect will be explored as ‘benchmarking” for
the proposed device.

6.1 Magnon-photon coupling

In this section, incorporating the proposed device into the strong magnon-photon
regime while retaining strong magnon-phonon coupling. Strong coupling is a pre-
requisite for coherent information transfer in which losses are exceeded by the cou-
pling into the system, and so bringing magnons and photons into the strong cou-
pling regime would permit coherent information transfer between the three particle
types. The coupling between magnons and photons on a superconducting wave-
guide realisation is proportional to \/Vp,, and so geometries here which could permit
this strong coupling consideration are considered here.

In the absence of a cavity, it has been derived that the coupling between photons
of a transmission line and individual spins in the a magnetic material, g5, can be

found as [119]
[ h
8s = YgPriwp 87 (6.1)

where 1, is the electron gyromagnetic ratio, B, is the magnetic field per unit cur-
rent, and wp and Zry is the transmission line photon frequency and characteristic
impedance, respectively. The multispin-photon coupling is then given by

&ma = gs\/ﬁs/ (6.2)

where the subscript ma is used to distinguish between g, which has prior been used
as the multimagnon-phonon coupling.In this expression, Ns is the number of spins,
determined by Ny = Vs for the spin-density ps. For YIG, this spin-density is taken
as ps,yig = 4.22 x 10 m~3 [14].

For geometry which permits the length of the inductive wire sufficiently long rel-
ative to the length of the magnetic structure such that edge effects can be neglected,
and that the spacing of the magnetic structure from the inductive wire, d., is much
less than the width of the inductive wire, wcpw, (i-e. d. << wcpw), then one may
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use the approximation for the rf field [190]

_ Ho Pin
2wcpw \| Z1L

6.3)

rf

from which B+ = po/2wcpw is the prior expression. Associated with these res-
onators is a linewidth denoted x, which may be obtained by means of a microwave
transmission spectrum.

There exists a wide range of quality factors for on-chip microwave resonators
[191] made of a variety of materials. Of particular interest are superconducting res-
onators, which offer large quality factors and are versatile as single photon detectors
[192]. To this end, it makes sense to adopt this consideration for the microwave
resonator given the potential quantum applications of our device. The supercon-
ducing materials used in these transmission line require cooling (typically down to
a few Kelvin) to exhibit their properties, which naturally lends itself to the ground-
state cooling scheme. In addition to this, they also only operate below a critical
magnetic field, H. above which they no longer behave fully as a superconductor.
For magnetic applications, a superconducting transmission would require a large
critical field. A common material used as a superconductor in such a transmission
lines is aluminium [193], having a critical field H. = 100 Oe [194]. More popular
for magnetic experiments is niobium [195], which has a much larger critical field
H. =~ 2000 Oe [196].

6.1.1 Coplanar waveguide

Considered here is a superconducting niobium transmission line as used by Hou et.
al [119]. They fabricated a winding transmission line of length Icpyy = 12 mm, lead-
ing to a fundamental resonant frequency of w, /27 = 4.69 GHz, which was close to
their magnon frequency. Microwave transmission measurements then found a line-
width x, /27t = 1.5 MHz for a transmission line of width wcpyw = 20 ym, and having
characteristic impedance Z11, ~ 50(). For our work, considered is an applied mag-
netic field H. = 350 Oe leading to a Kittel mode frequency wy, /27w = 2.4GHz. In
making the transmission line shorter to support a resonance close to this, it is extrap-
olated that the line-width of the microwave resonator is not significantly effected.
With the measurements prior, a single spin-photon coupling strength gs/27m =
7.2Hz could be achieved. To attain strong coupling, it is required that 2sv/Ns/ Kp >
1/2. For the YIG thin film device proposed, it is then possible to calculate dimen-
sions that access the strong magnon-photon coupling regime. First, the minimum
number of spins to satisfy the inequality strong coupling inequality is expressed as

1 2
Ns > (2?> — 1010 (6.4)
S

by rearrangement. Using this and the spin density of YIG, one can calculate the
volume of YIG that must be in excess of to support strong magnon-photon coupling.

Assuming a rectangular film of thickness ¢, = 2540, one finds for the surface area
required at mimumum a product

=77 (um)?. (6.5)
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For the nano-device proposed, this requires lengths in excess of some 100 ym, for
which there is no geometry that satisfies the constraints placed by our magnome-
chanical theory.

6.1.2 Lumped element resonator

If instead one uses the parameters for the lumped element resonator as used by Hou
et. al [119], one finds a much more attractive geometry landscape. Their fabricated
lumped element resonator had a fundamental mode frequency w,/2m = 5.42 GHz,
a line-width x, /27 = 1.05 MHz, a width wi g = 4 ym and a characteristic impedance
Z11L =~ 15Q). Again, itis assumed that in fabricating such a lumped element resonator
to have a fundamental mode frequency similar to the Kittel mode frequency that the
line-width and impedance can be extrapolated.

For these parameters, one finds for the single spin-photon coupling strength,
gs/27m = 66 Hz, an order of magnitude larger than for the coplanar waveguide ow-
ing both to the smaller waveguide width and lower impedance. Following the same
procedure as before, the minimum number of spins to reach the strong coupling
threshold can be found as Ns > 6.33 x 107, which in turn corresponds to a surface
area of the YIG film of Lywy, > 0.5 (um)?. This is a geometry that is far more acces-
sible for the YIG film, and all of the dimensions listed in Tables 5.3, 5.4, 5.5, and 5.6
meet it.

Takes more stringent adherence to the strong coupling threshold (gs V/Ns/xa > 1)
to account for any kind of deviations from the parameters used, then the minimum
number of spins required is found as

2
N, > (Ka) — 25 % 10°. (6.6)

With this, a minimum surface of YIG is found as Ly, wy, = 2. No values in the afore-
mentioned Tables meet this, but it can be included as an additional constraint in the
optimisation process at the detriment to the magnitude of some of the magnome-
chanical parameters

Shown in Table 6.1 is the optimisation of the magnomechanical parameters to
constraints satisfying kn{wrtr} /Lr < 0.15 and {#m/WR, imag/1s, Wr/ Am} S 0.1 for
the bridge and cantilever. The cross-section is taken to be isosceles as producing
the largest magnomechanical parameters. Note that the criterion for the applica-
tion of B, limits the value of the central distance that can be considered, and so
d. is not considered as the same regime like was performed before. Optimisation
here has been performed for Lywm = 2(um)? where possible, and otherwise to
Lmwm 2 0.5 (um)? With the parameters listed in the Table, magnon-photon strong
coupling is attainable to gsv/Ns/ka > 0.5 while also retaining magnon-phonon cou-
pling strengths comparable to what was seen in the prior maximisation processes.
Only the bridge resonator is able to attain the regime gs1/Ns/k, > 1, specifically
for the central distances d. = {0.25,0.50} ym given the larger lengths of magnetic
material able to be considered. The cantilever is unable to be optimised to this level
of stringency while also meeting the magnomechanical constraints. Specifically, the
single mode criterion is the limiting constraint which approaches wr/Am ~ 1 given
the higher mode frequency than the bridge.
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L | g | g
Lgr 27 K
0.10 | 5.0 | 040 | 0.35 | 040 | 0.76 | 2.3 | 6.8 x 10°
Cantilever | 025 | 6.1 | 0.35 | 0.35 | 040 | 0.59 | 2.1 | 7.1 x 10°
050 | 83 | 04 | 035|040 | 043 | 1.7 | 7.8 x10°
0.10 | 12.1 | 040 | 0.35 | 0.25 | 0.19 | 0.50 | 3.3 x 10?
Bridge | 025 |18.0 | 0.55 | 040 | 0.30 | 0.14 | 0.42 | 42 x 10°
0.50 | 21.8 | 0.70 | 0.35 | 0.35 | 0.12 | 0.40 | 5.7 x 102

Geometry | d. Lr | Wrm | fR cree

TABLE 6.1: Optimisation of C™¢ for the magnon-photon strong coupling criteria
Lmwm > 0.5 (um)?. Lengths are given in microns, and g™ is given in MHz

6.1.3 Larger-Q microwave resonators

The niobium microwave resonators considered correspond to Q-factors of Qcpw =
3 x 10% and Qg = 5 x 10° for the coplanar waveguide and lumped element res-
onators, respectively. With regards to superconducting niobium microwave res-
onators, quality factors of 10* have been achieved [197]. Should the quality factor
of the resonator be improved, then the linewidth is decreased and the number of
spins required to reach the strong coupling is reduced quadratically.

There are perhaps also more suitable materials for the fabrication of these su-
perconducting waveguides. Niobium-titanium alloys have also been noted for the
superconducting properties [198], and have critical fields on the order of 10T [199,
200]. Microwave resonators utilising this material are able to attain Q—factors of 10*
[201] to 10° [202, 203] although not necessarily to the same degree of miniaturisa-
tion. Other materials have been noted for their superconducting coplanar waveg-
uide properties [204], so transitioning to a higher Q resonator would be beneficial
for the device.

6.2 Hybridised modes

When the magnons and photons are brought into strong coupling, the modes be-
come hybridised in which they behave as ‘part’ magnon and "part’ photon. Note
that the standard naming convention that has been used so far for the operators is
continued; that is, that photons are described by the operators 4, phonons by b, and
magnons by ¢. To distinguish between the magnon-photon and the magnon-phonon
coupling rates, the subscripts ma and mb are used, respectively. To denote the single
couplings from the multi-couplings, a superscript 0 is used for the former and the
latter is left as g..

The mathematical description of cavity magnomechanics has already been pro-
vided by Tang [27], in which the normal modes of a hybridised magnon-photon
system, denoted A, are described by the matrix

()= (20 e () )
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where the coupling angle can be found as

2g ma

tan (26) - m,

6.8)

with 6 varying between 6 = [0,7/2] and ‘'maximal’ hybridisation occurring for the

angle 0 = /4. The frequency of these hybridised modes is described by the expres-

sion N ,

W, + w

T 0y (4gma)” + A3, (6.9)

resulting in a splitting proportional to gma. The normal mode splitting, Aw, is w —
492 4+ AZ .. Each of these resulting hybridised modes then have a hy-

bridised decay rate found as

w4 =

Kk = cos? (8) ka + sin® (8) km,

6.10
k_ = sin® (8) x, + cos? (8) Km. (610

Note that for x, ~ «,, then each of these modes has a decay rate that is equal, which
is what will be assumed throughout.
The Hamiltonian for the system can be expressed as [129]

H=—hAAVA, —ho_AT A
+hwnbth+ hgy (AL + AL ) (67 +6) +hg (AL +A-) (57+5) (611)

where the Hamiltonian has been linearised using the hybrid modes. Note that it is
defined the parametrically-enhanced magnon-phonon coupling rates, g+ as

1 cos (26)

8 = ShpAss— o (6.12)

where A g is the steady state excitation of the hybridised mode. In the simple single
mode regime, this steady state excitation is given by

P/ 2hsex b (6.13)

—i(wy —wq) — Kt \ hwy”

Ai,ss -

in analogy to the cavity population 7.,y, for a hybridised external decay rate

1+ cos (26)

5 Fex (6.14)

K+ ex =

For modes which are maximally hybridised, 6 = 71/4 and the expression reduces to
g+ = g0 Ay ss/2. The cooperativity of the system is then defined as

2
C= lfj;', (6.15)
+Ap

which, for a cavity resonant with the magnon modes at a field He, becomes the
cooperativities and multimagnon-phonon coupling rates shown in Sec. 5.
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6.2.1 Magnon-phonon cooling

Often, quantum control requires oscillators to be in their ground state for use in
quantum applications. At minimum, it is often considered that the oscillator is at
least near the ground state, for which 7i; << 1. Following from Bose-Einstein statis-
tics, the thermal population of phonons at a temperature T is found as

1
T — (6.16)

exp (Z}%) ~1

To consider the oscillator in its ground state, it is required that T << hwgr/kg. As
a figure of merit, for a mechanical oscillator at MHz frequency, the notional tem-
perature required for this ground-state assumption require T << 107> K. Exper-
imentally, this proves a (very) difficult temperature to achieve [205], and so often
additional cooling methods of the mechanical oscillator is required.

Dynamical back-action offers a feasible implementation of this involving exploit-
ing the hybrid damping rate. For a classical oscillator at an initial temperature, T;,
subjected to an additional source of damping providing a damping rate, I'pt, the
final temperature of the oscillator in the classical picture can be thought of as [206]

I'm
Tt =T; I T (6.17)
This expression, however, is not valid at sufficiently low temperatures due to the
fluctuations of the radiation pressure from photon noise, which are not present in
the classical theory.

In deriving a quantum picture of hybrid cooling, that presented in optomechan-
ics in the scattering picture is the easiest to interpret. Photons that are red-detuned
from the resonance of the cavity need to scatter upwards in order to enter. In doing
s0, they absorb a phonon from the oscillator via the optomechanical interaction, and
carry away the mechanical energy from the resonator, being blue-shifted in the pro-
cess. In ket notation, this transition describes |0),, [n) — [0),, [ —1). This occurs at
arate A~, such that the associated transition rate can be expressed as

T, 1 =nA". (6.18)

The alternative arrangement is then that the photons interact with the resonator and
are red-shifted, where they then impart a phonon. In ket notation, this transition
describes |0),, [n) — |0), |[n+1). This occurs at a rate A, such that the associated
transition rate can be expressed as

I1=(m+1)AT. (6.19)
The full damping rate then expressed as the sum of these two individual rates,
Topt =A™+ AT, (6.20)

There also exists additional transition rates due to the thermal environment, which
has a mean thermal population as given by Eq. 6.16. These inherent processes are
dictated by mechanical damping [172],

Ag =plm  and Ay = (figy + 1. 6.21)
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The evolution of the average phonon number, 7, can then be determined from the
transition rates, I',_1, and I, 1, augmented with the thermal contributions (i.e. At —
AT + Ai). It is found

dn - _
5 -+ (AT +AL) - (A”+Ag), (6.22)
such that the steady-state final average number of phonons is

AT iy,

fig = . 6.23
& ropt + rm ( )

In the absence of any thermal effects, the minimum average phonon number is

At At
Fopt - At + A~ '

Nmin =

(6.24)

It can be shown by analysis of the quantum noise spectra [88, 172] that the average
minimum number of phonons is determined by

i = B wr)” 4 (k/2)° _1, (6.25)
(A+wr)* + (x/2)?

and hence the average final number of phonons as re-expressed as

_(0) I‘op’ﬂ’_llrmin + Il

il 6.26
f Iﬂopt + Iﬂm ( )

In the case that there is strong coupling (c.f. Section 4.6), then ground state cooling
becomes less effective as transition routes become subjected to the cavity decay rate
[207], and so the modified average final number of phonons

T T
g =) + = + 2ﬁmin%°t (6.27)

While, in principle, I'opt should be evaluated at w = w for both the hybrid modes
that arise as a consequence of the normal-mode splitting, the correction to the magnon-
hybridised mode frequency is of the order of £ MHz. Compared to the assumed
magnon mode frequency of 10s of GHz, it is assumed that this makes negligible
differences to the coupling damping rate.

Dynamical back-action cooling has been seen in a number of systems [85, 208,
209], whereby reductions in temperature have been observed as a result of the cou-
pling between resonator modes. Cooling to the ground state, for which phonon
occupancy are (well) below 1 is non-trivial. To provide a head-start to attaining
ground-state cooling, often cryostats and dilution fridges are used to pre-cool de-
vices down to temperature on the order tens of milliKelvin. The pre-cooling temper-
ature of T; = 20mK is attainable with dilution fridges [210, 211], but works have
demonstrated ground ground state cooling from higher environmental tempera-
tures [86], as well as room-temperature ground state cooling [212, 213]. Explored
here is the regime of magnomechanical cooling under the assumption of exemplar
cryogenic temperatures of T; = 4K, T; = 200mK, and T; = 20mK, for which the
input power assumption down the transmission line thus far for the transmission
line is compatible with the cooling power of all these temperatures [205, 214, 215].
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onsidered are the geometries listed in Tables 5.3 and 5.5, and take the values with
the largest ¢ to give the largest cooling rates. While magnomechanical cooling
has not been observed to the ground state [216], proposals based on the YIG sphere-
magnetic cavity device have hypothesised that ground-state cooling should be fea-
sible with realistic parameters [217] - note that, for this proposal a sphere diameter
of 250 ym is used, which retains the bulky size non-compatible with on-chip de-
signs. The device proposed within achieves comparable ground state final phonon
occupancies in both the bridge and cantilever geometries, while having dimensions
on the nano-scale. The system also presents coupling strengths g"/wr ~ 1/10 on
which their theory is derived. While pre-cooling of the system is required (they as-
sume a thermal occupation 71y, = 1000), this should allow the ground state cooling
proposal to translate directly to our device.

For the cantilever, the resonator is in the strong coupling regime, and evaluation
of the modified final phonon number in Eq. 6.27 is required. Strong coupling dete-
riorates cooling, but ground state cooling should should be possible with sufficient
pre-cooling. A resonator geometry Lg = 4.5um, Ly, = 0.35Lg, Wm = wr = 300nm,
and tg = 350nm for an isosceles cross-section is assumed. For this, it was found
there was an associated multimagnon-phonon coupling rate g*¢/2m = 0.79MHz
and decay rate /27t = 0.316 MHz. The mechanical mode frequency of the funda-
mental mode of the resonator is wgr /27w = 12.7 MHz. From Eq. 6.25, the minimum
number of phonons that these parameters give is fimin = 3.8 X 107°. The magnome-
chanical damping rate is then I'opt /271 = 7.9 MHz, and the mechanical damping rate
(assuming Qggg = 10%) finds I'y, /271 = 1270 Hz.

Taking a pre-cooled temperature of T; = 20mK, then the final phonon number
in the strong coupling regime is found as

g (20mK) =52 x 1072 +1.3 x 1071 + 1.9 x 1073 ~ 0.14. (6.28)

For a pre-cooled temperature T; = 200 mK, the final number of phonons in the strong
coupling regime is

g (200mK) =53 x 102 +13+19x 107> ~ 1.4. (6.29)

For a pre-cooled temperature T; = 4K, the final number of phonons in the strong
coupling regime is

i (4K) =1.14+263+1.9 x 1072 ~ 27.4. (6.30)

These correspond to 0.14 quantas, 1.4 quantas, and 27.4 quantas of mechanical en-
ergy in the oscillator. Only at a pre-cooling of T; = 20mK can the cantilever be
considered in it’s ground state.

For the bridge, the resonator can be considered in the strong coupling and the
weak coupling regime, depending on both the resonator dimensions and the res-
onator cross-section. The isosceles device presents geometries which attain strong
coupling quite well, whereas the rectangular device is unable to replicate this. Pre-
sented here are cases for which the resonator has dimensions placing it in strong
coupling (requiring Eq. 6.27), and also dimensions placing it in weak coupling (re-
quiring Eq. 6.26).

For strong coupling, the resonator geometry Lr = 12.1 ym, Ly, = 0.25Lg, Wy, =
wr = 400nm, and fg = 350nm for an isosceles cross-section is assumed. For this, it
was found there was an associated multimagnon-phonon coupling rate g"*¢/27r =
0.19 MHz and decay rate /27t = 0.38 MHz. The mechanical mode frequency of the
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fundamental mode of the resonator is wr /27 = 11.2 MHz. From Eq. 6.25, the mini-
mum number of phonons that these parameters give is fipmin = 1.8 X 107°. The mag-
nomechanical damping rate is then I'opt /271 = 2 MHz, and the mechanical damping
rate (assuming Qggg = 10%) finds T, /271 = 1120 Hz. For a pre-cooled temperature
of T; = 20 mK, then the final phonon number in the strong coupling regime is found
as

7if (20mK) =74 x 10724+ 1.1 x 1071 + 1.9 x 107 ~ 0.18. (6.31)

Higher temperatures are neglected as these follow the same trend as for the can-
tilever. Again, in the strong coupling regime the only accessible temperature for
ground state cooling is of the order of 20 mK.

For weak coupling, the resonator geometry Lg = 14 um, L, = 0.25Lg, wm =
wr = 450nm, and tg = 350 nm for a rectangular cross-section is assumed. For this,
it was found there was an associated multimagnon-phonon coupling rate g"¢ /2w =
0.10MHz and decay rate /27t = 0.37 MHz. The mechanical mode frequency of
the fundamental mode of the resonator is wr/27r = 10.2MHz. From Eq. 6.25, the
minimum number of phonons that these parameters give is fimin = 2.1 x 107°. The
magnomechanical damping rate is then I'opt/271 = 0.11 MHz, and the mechanical
damping rate (assuming Qggg = 10%) finds 'y, /27t = 1000 Hz. Taking a pre-cooled
temperature of T; = 20 mK, then one finds for the final phonon number in the weak
coupling regime

7ig (20mK) =74 x 10724+ 1.1 x 1071 + 1.9 x 107> ~ 0.36. (6.32)

Even in the weak coupling regime where cooling is more effective the final number
of phonons achievable is still higher than in the strong coupling regime.
Lastly, some comments are made on the ‘quantum’ cooperativity at these tem-

peratures, defined as
C

Cq =" (6.33)
This parameter quantifies the efficiency of state transfer, and quantum coopera-
tivities of order unity signify that state transfer between magnons and phonons is
faster than the decoherence rate to the thermal environment, an important scheme
for applications such as quantum computing. If one takes the same dimensions as
noted for the cooling schemes, then it is found for the cantilever a cooperativity of
C = 6.3 x 10° at a mechanical frequency wg /27t = 12.7 MHz. If one takes the scheme
for which the structure was within the ground state (i.e. 20 mK), then it is found for
the average phonon occupation iy, ~ 32. In turn, this corresponds to a quantum co-
operativity Cq(20 mK) ~ 200 while also being compatible with ground state cooling.
Instead considering the other cryogenic temperatures, one finds for the quantum
cooperativity Cq(200mK) ~ 20 and C4(4K) ~ 1. Note that quantum cooperativies
of order unity at moderate cryogenic temperatures (typical helium cryostats oper-
ating at 4K) have not been seen typical cavity optomechanical setups until recent
[218]. Instead assuming the bridge geometry mentioned, then one finds a cooper-
ativity of C = 3.2 x 10? at a mechanical frequency wg/27w = 11.2MHz. This then
corresponds to quantum cooperativities at each temperature roughly an order of
magnitude lower than that of the cantilever, which means that the bridge can only
attain quantum cooperativities of order unity up to 200 mK.
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6.2.2 Magnomechanically induced transparency

In analogy with optomechanically induced transparency [96], the theory of mag-
nomechanics also predicts the emergence of an interference of a probe signal, an
effect which is necessary for slow light conversion and quantum memories [219].
The effect of magnomechanically induced transparency can be investigated via con-
sideration of the output field of the weak probe [219]. In full, the solution [129] to
this field is found as

Xy = gha ((2G2, (Xb- — Xb+) — Xb—Xbt Xm—) s (6.34)
Xz = Xat+ (Gap (Xo— — Xb+) (Xm— — Xm+) + Xb— bt Xm—Xms+) , (6.35)
X3 = gma (Xo- bt (Xa—Xm— + XatXm+) — Gap (Xa— — Xat) (Xo- — Xbt)), (6:36)
X3 = Xa—Xa+ (Gpp2 (Xb— = Xbt) (Xm— — Xm+) + Xb— Xbt Xm—Xm+) , (6.37)

where it is defined

Xat = ti(Wa — wq £ ws) — Ka, (6.38)
Xb+ = Fi (wp £ ws) — Ky, (6.39)
Xmt = £i (Wm — wq £ Ws) — Km, (6.40)

with cavity-boosted magnon-phonon coupling G, = g2, mss and mgs being the
steady-state population of magnons. Note that this is distinct to the parametrically-
enhanced coupling rate g+ which is the parameter of consequence for applications.
The reflection spectrum may be then calculated from

X; — X»

r=14+1iv2x .
ex X3+ X4+ Xb—Xb+8mat

(6.41)

The steady-state population of magnons is found via use of the Heisenberg equa-
tion for the magnon, photon, and phonon operators, and solving by setting time
derivatives to 0. In doing so, one finds the expression [31]

Zg ma€d vV 2Kex

(i (wa — wa) = Ka) (i (Wd — Wm) = Km) + &ha”

Mgs = (6.42)

where €5 = /Pin/hwq. It is then possible to plot the output spectrum to explore
magnomechanically induced transparency.

Presented here are two speculative geometries that may be of interest relating
to the bridge and cantilever nanostructures. For this, isosceles cross-sections are
assumed such that g?nb is maximised relative to the geometry, and again consider an
applied field of H. = 350 Oe, resulting in a magnon frequency wr, /27t = 2.408 GHz
assumed to be resonant with the cavity frequency w,. For simplicity, the device is
only considered at a central distance d. = 1um above a transmission line. With
these assumptions, the single mode criterion in particular presents difficulties, but
a strong coupling regime of interest is accessible. The geometries are described as
follows;

¢ For the bridge, a resonator of length Lr = 22.5 ym, thickness tg = 0.35 um,
and width wg = 0.5pum is taken, with associated flexural mode frequency
wr/2m = 3.23MHz and mechanical damping I'r /27t = 323 Hz. Placed cen-
trally on this bridge resonator is a YIG magnetic structure of length L, = 9 ym,
width wy = wg, thickness t, = 254, resulting in a decay rate into magnon



122 Chapter 6. Applications

Reflectivity

0.9999

0.9978 b)
0.9957
0.9936

0.9915

0.992 -

Reflectivity

0.9894

0.9874

0.9853

0.9832 1 i L I
346 347 348 349 350 351 352 353 354 -2 0 2 4 6

Field (Oe) Adw,

FIGURE 6.1: The reflection spectrum (a) of the cantilever-YIG resonator structure
as a function of field and frequency, as well as the cross-section of the plot (b)
taken at He = 350 Oe, with ¢_,0 = 0.

modes ke /27T = 15.7KHz. With these dimensions, one finds for the con-
straints a mode validity ko{wg, tr}/Lr = {0.1,0.07}, a resolved sideband of
k/wr = 0.08, a magnon nonlinearity 7mag/Ns = 0.06 and a slightly obtuse sin-
gle mode criterion, wr/Am = 0.18. One finds for the single magnon-phonon
coupling g0, /2m = 12.0Hz, a multimagnon-phonon coupling gmp/27 =
73.8 KHz, a multimagnon-photon coupling gma /27 = 1.6 MHz, and a magnon-
phonon cooperativity C,,,, = 262. Note that these parameters put the device
on the triple resonance scheme for which wr/gma ~ 2.

¢ For the cantilever, a resonator of length Lg = 12.5 ym, thickness tg = 0.5 ym,
and width wg = 0.65 um is taken, with associated flexural mode frequency
wr/2m = 2.35MHz and mechanical damping I'r /27 = 235Hz. The first 1/3
of the cantilever’s surface from the fixed edge is covered with magnetic mate-
rial, producing dimensions of L, ~ 4 ym and wy, = wg, and take the film to
be tm = 25a¢. This then results in a decay rate into magnon modes «ex /27T =
8.83 KHz. With these dimensions, one finds for the constraints a mode validity
ko{wg, tr}/Lr = {0.12,0.08}, a resolved sideband of ¥ /wgr = 0.11, a magnon
nonlinearity #mag/Ns = 0.12 and a single mode criterion wr/Am = 0.05.
One also finds for the single magnon-phonon coupling g?nb/ 2t = 57Hz, a
multimagnon-phonon coupling gip /271 = 0.223 MHz, a multimagnon-photon
coupling gma/2m = 1.22MHz and a magnon-phonon cooperativity Cy, =
3404, over an order of magnitude larger than for the bridge. These parame-
ters also put the device close to the triple resonance scheme with wr = 1.9gma.

When plotting Eq. 6.41 as a function of applied magnetic field and frequency, w,
for when the magnon-phonon coupling is ‘switched” off (that is g2, = 0, then one
recovers the familiar simple strong coupling splitting [2] as illustrated in Fig. 6.1. For
this figure, a red-detuning is assumed such that Ay = wm(He = 3500e) — w), for
the cantilever parameters listed prior. Shown also in this figure is the cross-section in
frequency taken at wm (He = 350 0e) = w,, plotted as a function of the rationalised
detuning Ay /wy, which shows that the splitting is equal to 2gma = wp,.
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FIGURE 6.2: The reflection spectrum of the (a) cantilever-YIG and (b) bridge-YIG
resonator structures as a function of field and frequency.

When the system is red-detuned and the magnon-phonon coupling is ‘switched’
on with the values listed in the prior sections, far more interesting behaviour emerges
in the reflection spectrum. Depicted in Fig. 6.2 is the reflection spectrum for both the
cantilever and bridge parameters. When the effect of the magnon-phonon coupling
included, one sees the emergence of new mechanical side-bands in the reflection
spectrum, a unit of wy, either side of the drive tone. The frequency of the side-bands
vary as a function of field, and the separation changes in frequency at the field which
provides a magnon mode that is equal to the drive tone of the system; for the pa-
rameters used for the cantilever, this frequency is at He ~ 349.2 as is seen in the
plot. The emergence of the mechanical side-bands, which in turn is a consequence
of the magnon-phonon coupling, is not as well seen in the reflection spectrum of
the bridge, owing to the smaller single magnon-phonon coupling rate of the system
(some factor of 4 smaller than what is attained for the cantilever).

Taking a cross-section for where the magnon modes are resonant with the cavity
mode, H. = 350 Oe, one can see the influence of the side-bands within the reflection
spectrum and the emergence of the transparency window, a plot which is shown in
Fig. 6.3 (a). As the bridge has a larger decay rate into the magnon modes, %, than the
cantilever, a larger dip in the reflection spectrum is attainable and provides a reflec-
tivity in the trench of the reflection twice as deep as that of the cantilever. However,
the cantilever is able to offer a much larger transparency window, essentially pro-
viding a resonance dip depth to transparency window depth of almost 1. From the
graph, one can relate the linewidth of the transparency window to the mechanical
damping to find an estimate of the cooperativity [220] of roughly Cyp ~ 3000 as
anticipated for the cantilever. Also shown in Fig. 6.3 (b) and (c) are cases which
cross-sections which on the cantilever plot where the side-bands are more visible
and taking cross-sections at a field where the separation of the emergent side-bands
is greatest. In these, (b) shows the cross-section taken where the side-band separa-
tion is greatest (H. = 349.2 Oe), and (c) shows another cross-section to right of this
where the increase in separation begins (He. = 349.5 Oe). Firstly, one can see that the
separation of the side-bands increases. At points away from this feature, the separa-
tion of the peaks is given by 2wy, (i.e they are a factor of wy, either side of the drive
tone). Where this feature occurs at a field supplying a magnon mode equal to the
drive tone, then the separation of the side-bands is (roughly) wy + 0.004 MHz. In
addition to this change in separation, an increase in the line-width of the side-band
occurs, roughly doubling it. Neither of these features have been previously seen in
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FIGURE 6.3: Cross-section of the reflection plot taken at the field (a) H, = 350 Oe
showing the transparency window for the cantilever and bridge devices, and ad-
ditional cross-sections taken at the fields (b) He = 349.2 Oe and (c) He = 349.5 Oe.
The red bars on (b) denote the shift in the side-band positions.

experimental data [129, 216], and remain as a hallmark of the significant boosts to
g%, and g, that the theory contained within presents (some 3 orders of magnitude
and 2 orders of magnitude larger, respectively)

6.2.3 Magnon spring effect and magnomechanical damping

As a consequence of the magnon-phonon coupling, and in analogy with the dy-
namical backaction presented in Sec. 4.7, magnons impart a parametric force on the
phonons. One can solve the equations of motion in the frequency domain to find an
approximation for the phonon self-energy as a consequence of the dynamical back-
action [216, 221] as

2 (w) = i |g0mss| (O(w) — 0% (—w)) (6.43)

where
1

_—
Xm+ + & rznaXaJr
and is an expression of the modification to the susceptibility of the phonons as a
result of it’s interactions with the magnons. Through the expression X it is then

possible to consider the influence of the magnon spring effect, in analogy to the
optical spring effect and the magnomechanical damping rate, where the two effects

0= (6.44)
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FIGURE 6.4: Magnon-spring effect as a function of drive detuning for (a) the
bridge geometry and (b) the cantilever geometry for differing input powers.

enter as

Op = wp + dwp, (6.45)
[t = 1—‘b + I (646)

where I'c represents the additional coupling as a result of the magnomechanical in-
teraction.

Shown in Fig. 6.4 is the influence of the magnon spring effect, which finds
that the phonon modes are (immensely) spring-hardened for the parameters sug-
gested in the prior section. These plots are performed for a series of input powers,
Py, whereby the relationship appears linear. For the bridge, at the input power
P, = 2500e, one would expect a maximum difference to the phonon mode fre-
quency of dwy,/wp ~ 0.025, whereas for the cantilever, one would expect a max-
imum difference of dwy/wp =~ 0.43. These represent significant deviations from
reported values using the prior experimental approach to magnomechanics [216],
where increases of the order of around 100 Hz were seen. This kind of modula-
tion of the mechanical frequency with input power is necessary for the entangling
of states [222], and the range of modulation to the phonon frequency could offer
regimes to implement entanglement for magnons.

The regime of ground state cooling using the magnomechanical decay rate has
already been explored in Sec. 6.2.1; regardless, the data is presented in Fig. 6.5 as
a function of the drive detuning for completeness. As was already expected given
the disparity in multimagnon-phonon coupling rates attainable, the cantilever far
exceeds that of the bridge, offering rates almost a order of magnitude larger decay
rates.
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Chapter 7

A SizNy device

Mechanical dissipation imposes fundamental constraints on the observation of quan-
tum behaviour in optomechanical systems, which is clearly something that is needed
to be minimised. Breakthroughs with regards to high quality low mechanical damp-
ing devices appeared in 2008, in which commercially available SiIN membranes were
used to form a membrane-in-the-middle type cavity with exceptional mechanical
properties [36, 223].

Silicon nitride exhibits non-zero pre-stress, which exists as a consequence of it’s
manufacture. It is made using a process of low-pressure chemical vapour deposition
(LPCVD), occuring at around 800K and at ~ 200 mTorr of pressure. In this, volatile
constituent compounds are exposed to a silicon wafer, which react to form a thin
layer of silicon nitride on the surface of the wafer. As the substrate cools, an intrinsic
tensile stress is formed due to the thermal mismatch of silicon and silicon nitride.
Due to the pre-stress originating from this thermal mismatch, it is not possible to
manufacture resonators that are not doubly clamped (or equally pinned), else the
silicon nitride film is allowed to relax through the free end.

Building on this, work now looks to incorporate high tensile stress silicon nitride
films into hybrid quantum systems. High tensile pre-stress provides another way
in which a mechanical resonator can store energy, without introducing a new en-
ergy loss mechanism in undergoing vibrations [224, 225, 226], and high stress silicon
nitride, in particular, has been widely explored [227, 228, 229]. Initial optomechan-
ical implementations used the fundamental mode of 1 mm? films, and obtained a
Q-factor of 10° and wg ~ 0.1 MHz, which can roughly be inferred as a pre-stress
of ¢ = 100MPa [230]. Stiochiometric silicon nitride, however, is able to achieve
much higher pre-stresses [231], and with this came a demonstration of ground-state
cooling from room temperature. Further, stoichiometric silicon nitride films with
pre-stresses of up to 1 GPa are commercially available'. The Q-factor of high-tensile
stress membranes has been studied, and an expression for such bridge structures is
expressed as [226, 230]

-1
- EI EI
bridge — 0. 2,212
Q™%(0) = Qintr <2L gL UA) , (7.1)

where Qjint is the intrinsic Q-factor of the material without the presence of pre-stress,
n is the mode number of the bridge flexural mode, E is the material’s Young’s mod-
ulus, A is the cross-sectional area of the bridge and I is the bridge’s second moment
of area. The intrinsic Q-factor is not only a characteristic of the material, but phonon
tunneling through the surface also contributes. Models of this behaviour introduce

INorcada, for example, are one such manufacturer: http://www.norcada.com
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the expression [230]

Qunte = Quurr + Quat = P+ Qo (7.2)
where Qg and Q. are the surface and volume contributions to the intrinsic Q-
factor, respectively, and ¢ is the resonator thickness. Comprehensive fitting on SizNy
has been performed by Villanueva and Schmidt [230], and found Q. = 2.8 x 10*
and B = (60 & 40) nm~!. These values are used, along with Equations 7.1 and 7.2, to
estimate the Q—factor of the resonator structure. Note that while the expressions are
general, the parameter 8 has been fitted from a rectangular cross-section resonator,
in which the width is linear as a function of thickness. It is unclear how well this
fitting translates to isosceles cross-sections, whereby the width is dependent on the
thickness. Regardless, it is assumed that any corrections are within the stated error.
For some example dimensions, a 100 ym length resonator of width and thickness
w = t = 400 nm finds a ratio of Q(¢)/Qye =~ 10. Q-factors are larger for longer and
thinner resonators, and the Q-factor is independent of the resonator width.

The growth of high quality epitaxial YIG on Si3sNy4 has not been realised due to, in
part, the large mismatch between the coefficients of thermal expansion (SizN4 pos-
sesses one of ~ 3.2 x 107 K~! [232] while YIG has one of 10.4 x 10~ K~ [233]).
This mismatch necessitates low growth temperatures to prevent the film from crack-
ing [234, 235], and YIG films grown on such silicon substrates are polycrystalline
[236]. These cracks present boundaries which act to raise the magnetic damping,
and as such, a reconsideration of the Gilbert damping is required for the use of sili-
con nitride as a growth substrate. Crack-free thin films of YIG have been deposited
onto SiO,, and have achieved dampings of & ~ 1073 [237, 238]. Thicker polycrys-
talline films of thickness 400 nm have achieved damping of & ~ 107*%, and with the
aid of a thin platinum capping this damping was nearly halved [239]. In line with
this literature, tentatively considered here is a Gilbert damping of « ~ 1072 as a
current limiting scenario. High quality YIG has also been grown on GGG substrates
and then transferred to a silicon nitride membrane [240], although the dimensions
of the structure were far larger than what this thesis aims to address - regardless, if
the geometry and constraints permit, this could be a feasible implementation for the
device.

7.1 Euler-Bernoulli theory and pre-stressed beams

Consider the case of an Euler-Bernoulli beam subjected to pre-stress alone, such that
the general equation of motion becomes [67]

oty Oy P’y
EI— —0cA—% A—2< =0, 7.
0z4 7 0z2 e ot2 0 (7.3)
where ¢ is the intrinsic pre-stress, and other terms retain their definitions as in Eq.
3.68. In the so-called high-stress string limit [226, 230], which is to say

gA
\/ﬁL >>1, (7.4)

then the tension present in the beam can reduce the bending stiffness EI to zero.
With this, the system can be treated simply as a string under tension [67]. Eq. 7.3 is
then simplified to

Py _ pdy

A 7.5

0z o ot? (7.5)
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If one assumes propagating harmonic solutions of the form exp (kz — wt), then the

familiar dispersion relation
o
w=k,/—, (7.6)
\[p

of a tensile string is found. Assuming normal-modes of the form y = ¢(z) exp (—iwt),
then substitution into Eq. 7.5 yields

dZ
= -w*2o(2) (7.7)

The equation has solutions offered by simple harmonic motion, for which one has
the general solution
¢(z) = Asin (kz) + Bsin (kz) . (7.8)

While the system is now under pre-stress, the boundary conditions remain the same
as outlined for the bridge in Sec. 3.6. Reiterating, these are

$(0) = ¢(L) = ¢'(0) = ¢'(L) =0 (7.9)
which can be used to solve the general solution to find
¢(z) = sin (kz) (7.10)

withk =nm/L.

7.2 Magnon-phonon coupling in the pre-stressed regime

The reader is spared a drawn-out derivation for the single magnon-phonon coupling
strength as it follows equivalently to Sec. 5.3.2, apart from having new mode pro-
files and mode frequencies. The normalisation constant of the mode profile can be

expressed as
2 2
= =4 — 7.11
N = [l av =[5 (7.11)

where the bridge, of length Lg, has been assumed to have constant cross-section Ag.
Following the same procedure, one finds for the single magnon-phonon coupling
strength

e _ BTV 75 [WER (. 4mM, 2 | M, ~z
gec = — + + (14
M; (po) ARLR He He

x <sir1 <I7fz> ¢! (z)>. (7.12)
Considering the fundamental mode of the bridge only, one further finds
TPB (14 v)ys 1 B2 ILIVAE: AnM,\ 2
1) 1 0 (o )l aminy
80 ( ) M, (PU)1/4 12\ Ag H. .

x <sin <Zj> sin (Z§>> (7.13)
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Parameter Value Reference
ATTM, 1750 Oe [127]

B, 3.48 x 10° dyne/cm? [140]
0SisN, 27¢g/ cm?® [227]
EsisN, 2.2 x 102 dyne/cm? | [227, 241, 242].
USioN, 0.23 [241]

rec

e, and their sources.

TABLE 7.1: Choice parameters for use in g

where the minus sign that enters through differentiation has been neglected as a
further irrelevant phase factor.
Considering comparable dimensions to what was assumed for the bridge (Lr =
6 ym and wr = tg = 200nm), and taking full coverage of the resonator surface with
magnetic material, then one finds for the single magnon-phonon coupling strength
a value gi*°(n = 1)/2m ~ 175Hz for a mechanical frequency wr/2m = 46.8 MHz
with a commercially available pre-stress of o = 1 GPa. This coupling strength repre-
sents a factor of around 2 relative to the GGG substrate, primarily owing both to the
reduction of the stress ratio
EN"
<> ~4 (7.14)

g

and the increase in the mechanical mode frequency. If instead one wishes to com-
pare against the mechanical mode frequency of the GGG bridge, then a length Lg =
60 ym which yields a frequency wr/27m = 4.68 MHz. With this, one finds a single
magnon-phonon coupling strength gi*“(n = 1)/27 ~ 1.8 Hz. For comparable fre-
quencies, then the silicon nitride resonator offers much smaller couplings relative to
the GGG substrate, whereas for similar dimensions, an increase is seen.

73 gand(C

While the parameter landscape of the constraints for the Si3Ny device is far less ro-
bust than for the GGG substrate, it still seems possible to achieve C ~ 1, which is
generally considered the bare-minimum for quantum purposes. Feasible attainable
values for g™ and C™* are presented here, and the parameters used for the system
are given in Table 7.1. The Gilbert damping is assumed a = 1073 in like with the
discussion in the introduction to this Chapter.

Owing both to the higher mechanical mode frequency of the Si3sNy bridge and
the larger line-width of the magnon mode due to higher magnetic damping, the
limiting constraint for this regime is the resolved side-band condition (wgr/x). For
the same reason, it is also highly unlikely that the device will be able to reach the
strong magnon-phonon coupling regime. Because of the higher mechanical mode
frequency, bridges made of isosceles cross-section are only considered - while in
the high-stress string regime the mode frequency is independent of cross-sectional
shape, it does provide an increase to gi° which should permit longer resonators to
be considered than for the square cross-section. In turn, this allows one to reduce
the mechanical mode frequency which should make meeting the resolved side-band
condition easier. An applied saturating field of H. = 350 Oe has been taken.

With the complexity and limiting values of the constraints, performing a maximi-
sation search to the same extent as for the GGG substrate is not something strictly
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e (Crec Ns WR /El x
Nm | Am AL | wr
16 0 | 0.06 0.09 0.11

9 0 |0.10 0.09 0.11
4 0 |0.12 0.08 0.12

0q

g
L 27t
0.10 | 13.7 | 050 | 0.35 | 2.0 | 69.8
025 138 | 030 | 035]20 | 524

0.50 | 15.0 | 0.50 | 0.35 | 3.0 | 30.3

de | LR | WrRm | tR

ol oc| oA

TABLE 7.2: Some exemplar values dimensions to attain C™¢ of order, at least,
unity. Lengths are given in microns, and g™ is given in kHz

feasible. To this end, presented are some benchmark values which give desirable
magnomechanical parameters, but these may not be the ‘best” which are attainable
for the device. First, the limiting case for the thickness of the Si3sNy resonator is taken
as tr = 350 nm and is not something that is varied given that prior optimisation pro-
duces greater values for thinner resonators and that thinner structures also present
higher Q-values, so this thickness seems nominal. With the reduction in the Gilbert
damping, the line-width of the magnon mode is now some xy ~ 15 MHz. To then
meet the resolved side-band condition, a mechanical mode frequency at least an or-
der of magnitude larger than this is required, meaning short Si3Ny resonators must
be employed; a value of Lg = 20 ym provides a mechanical mode frequency of some
100 MHz. Shorter structure lengths provide higher mechanical mode frequencies,
and so this is taken as a limiting value. With these considerations, one may look for
values which provide optomechanical parameters of interest which are presented in
Table 7.2. As the optimisation hasn’t taken place to the constraints, the values each
of the constraints yield is also tabulated. The higher mechanical mode frequency ex-
cites fewer magnons, which in turn makes meeting the requirement of quantisation
easier. This reduction in the number of magnons makes the multimagnon-phonon
cooperativity far poorer, and a reduction of 2 orders of magnitude in g™ is seen.
Regardless, cooperativities of orders 10° and 10! can be obtained, with the best-case
representing only an order of magnitude reduction relative to the GGG substrate
bridge device.

Were smaller Gilbert dampings able to be considered, then larger cooperativities
are achievable. Some benchmarking is presented in Table 7.3. A reduction in the
damping of 1/4 it’s original value presents a doubling of the cooperativity for the
smallest central distance, although it is quadratic at the largest - this owes itself to the
increase in the excitation of magnons. Thicker substrates present larger cooperativi-
ties and also are able to meet the conditions imposed; substrates thicker than 500 nm
are not considered in line with SizNy films commercially available, and that mag-
nomechanical parameters are larger for smaller widths - this combination of large
thickness and small width seems improbable from a manufacturing perspective.

Lastly, considered briefly is the scheme in which high-quality YIG is grown on
GGG substrates and then transferred to the Si3sNy bridge via the omniprobe method.
For this scheme, equivalent dimensions to the YIG film grown in [240] are consid-
ered. These are a YIG film of dimensions 13 x 5 x 0.185 ym, and taken for the Gilbert
damping is a value of & = 10~%. Note that, in this paper, a thickness of GGG of some
150 nm remained on the film. In practice, to neglect the elastic effect on the Si3Ny
substrate this requires that it’s thickness be at least 3.5 ym, which is compatible with
an isosceles cross-section for the width of the YIG film. As the resolved side-band
condition requires shorter structures whereas the high-stress string limit requires
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longer ones, this competition presents no feasible regime which stringently meets
the constraints if one assumes that the width of the resonator is the same as the
width of the thin film.

7.4 Potentials of application

To compare against the prospect of employing a silicon nitride substrate over a GGG
one, briefly considered here is the benchmarking phenomena of ground state cool-
ing. The benchmarking temperature of 20 mK is considered to yield the lowest the-
oretically attainable phonon number. As the Si3sNy device operates in the weak cou-

pling regime, one can use the simplified final phonon number, ﬁﬁo). Table 7.2 is used
to provide the dimensions Lg = 13.7, Ly, = 2 ym, Wry, = 500nm and fg = 350 nm,
and a Gilbert damping « = 1073 is assumed. These dimensions correspond to a
Q—factor Q = 45,000 and mechanical mode frequency wg /27 = 22.2 MHz, in turn
finding a mechanical damping rate I'r /27t = 490 Hz. Also with these dimensions,
one finds for the multimagnon-phonon coupling rate ¢/27m = 69.8 kHz, a magnon
decay rate k/27 = 2.5 MHz, leading to a cooling rate I'opt /271 = 7.8 kHz. From Eq.
6.25, the minimum number of phonons achievable is fimin = 7.9 X 1074, At the tem-
perature 20 mK, the average number of phonons is found as 7y, (20mK) ~ 18, and
in turn one finds for the final number of phonons in the ground state cooling regime

2% (20 mK) ~ 1.1 (7.15)

which is insufficient to consider the device in the ground state even at the lowest of
the benchmarking temperatures. Even if dimensions that maximise the multimagnon-
phonon coupling rather than the cooperativity were adopted, it is still not pos-
sible to achieve final phonon occupations much lower than the above as the in-
trinsic damping of the magnon mode is far too high. As an exemplar considera-
tion, multimagnon-phonon couplings higher than the order of MHz do not appear
feasible in light of the constraints, and the resolved sideband condition presents
inflexibilities with regards to larger phonon frequencies that the high-stress res-
onator supports. At best, while roughly meeting the constraints, it would appear
that 71¢(20mK) =~ 0.5 would be possible for this scheme in assuming Lg = 12.25,
Lym = 2pum, Wr;m = 250nm and tg = 350 nm. Additionally, quantum cooperativies
of order unity are barely feasible even at the cryogenic temperature 20 mK.



| e ) | L o) | o o) |t o) | L o) | Sty | 8 | o | Mo e JELLT R
0.1 16 0.25 0.35 2.0 90.1 0.05| 50 | 0.05 | 0.10 0.08 0.10

075 % 10~ | 025 165 0.35 0.35 25 475 | 003 | 15 | 001|011 008 |0.10
0.50 16.5 0.50 0.35 2.8 26.7 0.01 5 0.00 | 0.10 0.08 0.10

0.1 21.6 0.25 0.35 2.5 74.7 0.06 | 97 | 0.10 | 0.12 0.06 0.09

0.50 x 1072 0.25 24.5 0.35 0.35 2.8 34.0 0.03 | 28 | 0.03 | 0.09 0.05 0.10
0.50 25.0 0.50 0.35 3.5 19.8 0.02 | 10 | 0.01 | 0.10 0.05 0.10

0.1 22 0.25 0.5 2.3 84.1 0.12 | 183 | 0.10 | 0.10 0.08 0.05

025102 | 025 455 0.4 0.5 41 256 | 0.04] 90 |010]010| 004 |0.10
0.50 47.5 0.60 0.5 54 15.0 0.02 | 36 | 0.03 | 0.11 0.04 0.10

0.1 21.5 0.25 0.5 2.3 86.1 0.25 | 370 | 0.10 | 0.10 0.08 0.02

010x10~% | 025 435 0.35 05 3.7 263 | 009 | 195 | 0.10 | 0.09 | 0.04 | 0.04
0.50 86.5 0.60 0.5 7.2 9.54 0.03 | 110 | 0.11 | 0.10 0.02 0.08

TABLE 7.3: Dimensions and attainable C™° for different values of the Gilbert damping for a silicon nitride based resonator.
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Chapter 8

Conclusions and further work

Bolstered by the number of ways in which spin-waves are able to interact with sub-
systems, magnons have offered a promising new avenue to further develop the the-
ory and applications of mechanical resonators in the quantum regime. Inspired by
recent developments towards engineering cavity-free installations of strong magnon-
photon coupling [118, 119], a new theory is identified to establish strong coupling
between magnons and phonons, exploiting the Kittel mode of a thin film and the
flexural modes of bridges and cantilevers. Current works are underpinned by the
standard ’cavity” method [129], which may be considered bulky and offers little
scope to adapt the mechanical properties, being dependent on a YIG sphere. To this
end, this thesis proposes a nano-scale implementation of thin film YIG deposited on
a thick substrate, in which the substrate consideration can be replaced to modify the
elastic characteristic.

This thesis can be considered in two sections. The first section introduces the rel-
evant background information. Chapter 2 begins with a description of magnetism
from exchange and introduces the Landau-Lifshitz equation and the Kittel mode’s
origin from within it. Chapter 3 introduces the theory of elasticity beginning from
considerations of stress and strain, their applications to crystal structures, and the
Euler-Bernoulli equation governing beams under geometries comprising beams and
rods. Chapter 4 then introduces the basic theory underpinning hybrid quantum sys-
tems as presented through optomechanics, in the form of the single photon-phonon
and multiphoton-phonon coupling rates, strong coupling and the emergence of nor-
mal modes, and the effect of dynamical backaction on a mechanical resonator.

The second section is then comprised of the derivations relevant to the new the-
ory and it’s applications. This begins in Chapter 5, with the quantisation of magnons
and subsequent derivation of the single magnon-phonon coupling rates to cantilever
and bridge geometries. As the demagnetisation field within a sphere is known to be
uniform [54], a feature which is present only within the bulk of a thin film, the de-
pendence of the magnon-phonon coupling rates on the form of the profile of the
magnetisation is investigated, assuming a simple trigonometric function as well as
fitting to computational data. From this, it is established that only the magnetisation
profile along the length of the structure, which can safely be assumed to be trigono-
metric in form as the larger of the transverse aspect ratios, is of relevance to the
scheme considered in which the magnetic film forms rectangular geometry. The cou-
pling of the waveguide modes to the Kittel mode is then investigated, and a formula
is established to provide a rudimentary estimate under a flat profile assumption.
This formula is then checked numerically against a trigonometric profile, and finds
that the flat profile sets a higher bound such that values are free to be extrapolated
without significant consequences. The validity of the single mode assumption made
for a thin film is then established, and optimisation for the multimagnon-phonon
coupling rate and the magnomechanical copoerativity is given for the cantilever
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and bridge geometries as a function of several geometric parameters. Chapter 6
presents a tentative exploration of the applications of the device, including the pos-
sibility of exploiting the magnomechanical interaction to cool to the ground state
and the emergence of magnomechanically induced transparency windows. Chap-
ter 7 presents a possible avenue of using a high-Q silicon nitride substrate to realise
a device compatible with the quantum regime for which low-loss mechanical res-
onators are preferable.

Experimental realisations have for magnomechanics have so far been realised
only using cavities, from which extensive theoretical proposals have come. These
all use a somewhat static configuration, in which the cavity provides a large device
footprint and elastic parameters are dictated by a YIG sphere. In proposing this
new device, it is anticipated a new emergence of work in magnomechanics in which
compatibility with superconducting transmission lines, as well as significant boosts
to the magnomechanical cooperativity, can be attained. In addition, the versatility
of this theory provides scope to include other low-loss magnetic materials on alter-
native substrates of differing elastic character, such as spinel ferrite thin films [243]
grown on MgAl,Oy [244], or [245] grown on MgO [246]. Also noted is the com-
paratively unexplored ‘continuum’ regime [247], in which the magnetic structure is
continued beyond the support of the beam such that a continuum of magnon modes
may be coupled to.
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Appendix A

Quantisation of the transmission
line

Transmission lines are media that confine electromagnetic fields, effectively reduc-
ing the number of relevant dimensions to one. In order to present a comprehensive
magnomechanical theory of a thin-film resonator, the consideration of the coupling
between transmission line modes and magnetic excitations are required. In turn, this
requires a theory of quantisation for photons of the transmission line, for which this
appendix follows the work of Clerk [180].

A.1 The Coaxial Cable

Consider a rudimentary transmission line formed by a coaxial wire as a perfect con-
ductor. The wire has an inductance per unit length, given by ¢, and a capacitance
per unit length, given by c. The characteristic impedance of the transmission line is
then found from

14
71 = - (A1)

In general, the impedance is a complex number formed by the addition of both the
resistance, R, of the element, and the reactance, X, where Z1;, = R 4 iX. A generic
impedance may be related to the current flowing through the element through Ohm’s
law

V =17Z1. (A.2)

The coaxial cable of consideration is such that it’s length coincides with the
x—axis of a coordinate system, and it’s cross-section is parallel to the ¥ — z plane.
If the wire supports a voltage, V(x, t), at position x at a time ¢, then the charge den-
sity is given as

q(x,t) =cV(x,t) (A3)

As the coaxial cable forms a closed system, the current flowing, I(x, t), obeys charge
conservation. The current and charge densities may be related by the continuity
equation

0rq(x,t) + 9 I(x,t) = 0. (A4)

where 0, = d/0dx and d; = 9/9dt. Similarly, in assuming a lossless transmission line,
the acceleration of the charges is related to the gradient of the voltage as

0.V (x,t) = —00I(x,1). (A.5)

Equations A.4 and A.5 are known as the telegrapher’s equations [248], and form a
set of coupled differential equations. These equations can be decoupled in assuming
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that the system can be expressed as a sum of left- and right-propagating modes of
the voltage. In doing so, one expresses the voltage and the current as

Vix,t)= [V +V], (A.6)

I(x,t) = ZlTL v v, (A7)

Expressing Eqs. A.4 and A.5 in terms of these left- and right-propagators, it can be
shown

0,0,V — V< =0. (A9)

where the wave phase velocity is defined as
(A.10)

These equations represent conservation laws, and have solutions which propagate
by uniform translations [53]. As such, consider two arbitrary functions, Vi, and Vo,
of the arguments t + x /vy, as

X

V20 = Voult = ), (A11)
P

V(2 t) = Vin(t+ ). (A.12)
Up

Were the transmission line infinite, then these functions would be completely inde-
pendent of each other and the two solutions don’t meet. However, for the realistic
case of a semi-infinite transmission line these functions cannot be deemed to be inde-
pendent as the transmission line is terminated at some point. The relation between
the solutions is then determined by the boundary conditions being imposed by the
termination. Assuming that the transmission line is terminated at the coordinate
x = 0, then the boundary conditions may be expressed using the new functions Vi,
and Vgt as

V(0,8) = [Vou(t) + Vinlt)] (A13)
10,6) = o Vour (1) = Vin(t) (A19)

from which it follows that
Vout () = Vin(t) + Z10.1(0,1) (A.15)

For an open circuit (1(0, t) = 0), then trivially Vi, = Vout, and the output wave is the
result of the input wave reflecting at the termination of the open circuit. In general,
the current radiates an additional outgoing wave, injected into the transmission line
by the system’s dynamics. Without an incoming wave, the line simply acts as a
resistor, carrying energy away with propagating waves rather than Ohmic heating.
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A.2 Lagrangian Formulation of the Transmission Line

To quantise the modes of the transmission line, it is necessary to formulate the La-
grangian of the system and from this determine the canonical momentum and the
Hamiltonian. The system conveniently acts as a collection of a large number of har-
monic oscillators in the form of the normal modes. In the quantisation of the trans-
mission line it is often deemed useful to define a flux [249, 250] as

p(x,t) = /:o V(x,7)dt (A.16)

where T is introduced as an integration variable to avoid ambiguity. The local volt-
age is expressed as V(x,t) = d¢/dt. For an infinitesimal length of the transmission
line, dx, having inductance ¢dx, the voltage drop along it given by —0,0:¢(x, t)dx.
The flux through the infinitesimal length is then —d,¢(x, t)dx and the local current
then follows from Eq. A.5 as

I(x, ) = —%ax¢(x,t). (A17)

It is known that the energy density of inductive and capacitive elements are deter-
mined by the expressions

1

Uy = 5512 = Uin (A.18)
1

Ue = 27‘/2 = Upot (A.19)

where in determining their analogy with the kinetic and potential energy densities a
more rigorous treatment is required [251, 252], but the result stands regardless. The
Lagrangian density can then be expressed in terms of the flux

2 = i~ tpen = 5 () 217 (3:0)2. (A.20)

For a 1-dimensional transmission line, the Lagrangian of the system is then the inte-
gral over all x of the Lagrangian density, found as

(e ] oo 1
L= /0 Zdx = /0 (; (at(P)z ~ 5 (ax(P)Z) dx. (A.21)

From this Lagrangian, one then invokes the action principle to find the Euler-Lagrange
equation of the system as

o (at09) a1 (at0) * 56 = a2

and in applying it find a massless Klein-Gordon type equation of the form

Py 9
v, ax‘f atf =0. (A.23)

The momentum that is canonically conjugate to the flux variable, ¢(x,t), is simply
found as 5.

d (9:¢9)

= coip = cV(x,t) =q(x,t) (A.24)
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which is exactly the charge density at the point x and time t. The Hamiltonian
density is then found from the Legendre transformation of the Lagrangian density,
where

_ 9z (1 1 )

Already seen in Sec. A.1 is that the charge density can be expressed as sums of left
and right moving solutions given as arbitrary functions. As g is a real valued object,
then it must necessarily contain both e** and e~** terms, even if it is only right
or left moving. However, for k > 0 and a right mover, then the e’k is associated
with the positive frequency term e, and the e~*** is associated with the negative
frequency term ¢“s', where wy = v, |k|. Clearly, the opposite holds for left movers,
and so the issue is rectified. The mode amplitudes are defined such that

1 [ 1 12
A = ﬁ/e k <mq(x,t) — z\/;(p(x,t)) dx (A.26)

where the fields are taken to obey periodic boundary conditions on a length L.
Hence, the Hamiltonian is in the form

1
H= 5 Y (Af AL+ AKAR) (A.27)
k

The equation of motion for the Lagrangian, Eq. (A.23), then becomes

atAk = —ikak (A28)
such that
_ ¢ ikx —iwyt * iwyt
g(x, t) = Z—Ze {Ak(O)e + A;(0)e }
k
¢ i(kx—aw, * —i(kx—w,
=\/37 ; [Ak(o)e (kx—wit) A% (0)eilk kﬂ (A.29)

For k > 0, the wave is moving to the right and the ¢/** term is associated with positive
frequency and e~ *** with negative frequency (and vice versa for left movers). Note
that to attain the voltages, one finds

Vo= Y [A(0)eFr=ext) 1y (0)e~lkeent)] (A.30)
2Lc =0

ve =/ Ly |A(0)etxent) 4 A (0)e ket (A31)
2Lc =0

A.3 Transmission Line Mode Quantisation

Eq. (A.24) shows that the momentum conjugate to the flux variable ¢(x,t) is the
charge density q(x,t). Hence, to quantise the transmission line modes one needs
to promote these two quantities to quantum operators by enforcing the canonical
commutation relation

[4(x),p(x"))] = —ihd(x —x'). (A.32)
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From this, it follows that the mode amplitudes become quantum operators that obey
{Ak’rAﬂ = hwkékk/. (A33)
The ladder operators are identified as

Ak =\ T’lwk?)k (A34)

where by destroys a photon in mode k. The quantum form of the Hamiltonian fol-
lows from Eq. A.27 as

fe 1
H= ;hwk [b,ﬁbk + 2] . (A.35)

In Egs. A.11 and A.12 is was seen that the voltage may be resolved into right and
left moving components, such that
F— ) V() (A.36)

Vixt) =V Up Up

As such, should V™ be specified for all points in space at t = 0 then the voltage is
determined for all times. Conversely, specifying it for all times at x = 0 determines
it’s voltage at all spatial points. Extending Eqs. A.30 and A.31 to the quantum case
and taking x = 0, it follows

~ 1 a .
pg— - —iwyt
1% — k; Viwr [bke +H.C} (A.37)
_ 1 hwZr T —iwt
_/0 m\/T[b [we +H.C] dw (A.38)
where it is defined
b~ =21 |2 Y bed(w — wp). (A.39)
L &=
Similarly
A © 1 hwZty, 7, —i(kx—wt)
—~ T — 1(kx—w
Ve — /0 e [ w)e + H.e| do, (A.40)
with
b =2y |2 Y bed(w — wp). (A.41)
L=

Transmission lines support a relatively narrow band of frequencies, centered on
some characteristic drive frequency, w;. In this case, one can Fourier transform the

expressions b~ and b which finds

k>0 .

b (t) = U—L”Ze*“wk*‘”q)qu(o), (A42)
k<0 .

b (1) = %Ze—lwk—%)qu(o). (A.43)

such that

V7 (0) ~ h“’quZTL [?Jq(o) +z§;(0)} (A.44)
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and a similar expression for V. These are then the quantum operators required to
dedude the coupling rate between the transmission line and the magnon modes.
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Appendix B

Magnetic susceptibility tensor of
ferromagnets

Consider the oscillations in the magnetisation M(r,t) of a ferromagnet about the
equilibrium magnetisation, My. In addition to the magnetisation oscillations, there
will also be some oscillation of the internal magnetic field HV (r, t) around the equi-
librium value H((]l). These oscillations are denoted as m(r, t) and h(r, t) for the mag-
netisation and internal field, respectively. In turn these oscillations are related by the

linearised equation of motion [54, 253]

om 0’m R R
g =g |:M0 X <h —+ %ikm + an (mn)

- ]\}IZ ((MO.Hg;)) +B (Mo.ﬁ)2> mﬂ (B.1)
0

where arguments are dropped for brevity. § is defined as the unixial anistropy con-

stant, a;; as the exchange tensor seen in Eq. 2.23, and fi as the anisotropy unit vector.

Note that in setting § to 0 one recovers Eq. 2.52. Assuming that the oscillations are

harmonic functions of time, one can express the fluctuations as

m(r, t) = m(r) exp(i(k.r — wt))
. (B.2)
h(r, t) = h(r) exp(i(k.r — wt))

The susceptibility tensor relates the oscillations of the internal magnetic field to
the magnetisation. Consider an infinite plate, oriented such that the surface normal
is parallel to the x axis and it’s infinite extent lays in the y — z plane. Considered here
is the case that there is an anisotropy axis laying parallel to the plane of the plate,
and that the equilibrium magnetisation and equilibrium magnetic field are oriented
along this. Assumed further is that the magnetic field saturates the plate such that
My = M;z and that fluctuations of the magnetisation along this axis are negligible.
With these assumptions in mind, one can substitute Eq. B.2 into Eq. B.1 and solve
the cross product to find

—iw (my) =8 {( Mohy ) — <0¢ijkz‘kj + M]&I;IO +5> ( Momy (B.3)
0 0 0 0

Letting

(i)
M, -H
O = 7gM; (“z’jkik}' + —"Mg o+ ﬁ) (B.4)
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one can write the matrix relating the the field oscillations to the magnetisation oscil-

lations as .
My \ gMoQ 1 % hy
() =2 (e ) ®9

Hence, the full susceptibility of this specific geometry is then

o[l &0

Slh s M '

X(nz)ngsz(lg 1 O) (B.6)
0 0
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Appendix C

Non-uniform ferromagnetic
resonance of an infinite plate

The derivation of the dispersion relation for magnons is non-trivial, and was first
presented by Walker for the case of spheroids of arbitrary axial ratios and presenting
symmetry along the applied field direction, which led to the derivation of the so-
called Walker equation [186]. In the years after this, Damon and Eshbach put forth
their theory for the case of a uniformly magnetised slab [189, 254]. For this work, the
same principles as was applied in their work is followed but with a formalism more
appropriate for the work contained in this thesis. As such, the resulting dispersion
relation is more tractable for a mathematical use.

Consider here the case of resonance where the field and the magnetisation are
functions of the coordinates, but the oscillations of each remain essentially magne-
tostatic. The equations of magnetostatics apply, given by

Vxh® =0, V.h =0 (C.1)
vxh® =0 V. (h(i) + 47rm> =0 (C.2)
for the components of the oscillations of the magnetic field inside (denoted with 1)

and outside (denoted with e) of a specimen. These oscillations are assumed to be
harmonic functions of time, such that

h® (r, £) = hW(x) exp(—iwt),
h(®)(r, ) = h(® (r) exp(—iwt)

(C.3)

It is necessary to introduce the scalar potentials ¢/} and ¢(©) to satisfy the curl
magnetostatic equations, related to the fields such that

h)(x) =~V (1)

C.
h(®) (1) = ~ Vgl (n 0

Eq. C.4 may then be substituted into the remaining magnetostatic equations to find

APl =0

‘ 92 4,(1') (C.5)
Note that this uses the susceptibility relation m = gh!) for the magnetic suscep-
tibility tensor, x. In addition to these governing equations, there are also bound-
ary conditions which must be imposed on the specimen. These require that both
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the tangential components of the magnetic field and the normal components of the
magnetic field must be continuous across the surface of the specimen, providing

. (C.6)
hl(,z) +4tm, = h,(f)

where T and v represent the tangential and normal components, respectively. In
addition, it is also required that as r — oo, the field h(e)(r), and hence cp(e), must
vanish, giving

lim ¢(®) = 0. (C.7)

r—o0

With Eq. C.4, the boundary conditions in Eq. C.6 may be rewritten

4)(i) — (P(e)
oD’ a(p(i) _ 34,(6) (C.8)
Ukaixk —|—4.7TUk)(kjiaxj = U axk

where vy is defined as the projection of the unit vector along the normal onto the k
axis.

The oscillations of the magnetisation in an infinite extent plane-parallel plate can
now be considered. The plate is assumed to have thickness t,,, it's y and z axes lie
in the plane of the plate and the x axis is perpendicular to the surface (with x = 0
passing through the middle of the thickness). For these, one finds for the boundary
conditions in Eq. C.8

=0 (C.9)

As v is 1 for the x axis and 0 for the y and z axes, one finds for the remaining
boundary condition

G, o) o0
¢ = ( AP ) (C.10)
0x p— 0x ox; —
and hence
op(®) B o) o) o)
e (yxx oy T Hw g e _ (C.11)
2 - 2
where it is defined pj = dj + 47T )xik-
Outside of the specimen, solutions of the form
¢ = ¢(x) exp(i(qyy +4:2)) (C.12)

are assumed. These may be substituted into Laplace’s equation in Eq. C.4 to find

¢" — (g3 +q2)p = 0. (C.13)
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Hence, the solutions must be of the form

Cexp(—fx), ifx>1
€ = + .2 P C.14
where it is defined
f=a+a
Inside the specimen, solutions of the form
¢! = exp(i(qyy + q:2)) [A cos(q:x) + Bsin(g,x)] (C.15)
are sought. These may be substituted into the second of Eq. C.5 to find
(~% = 4% — )9 + 47 (X — Xy — Xee2) = O (C16)
and hence
7+ 47 (Xea + Xy + K22 = 0 (C17)

where it is defined 4> = g3 + q; + 42.
The boundary conditions may then be used to determine constants. Employing
tirst Eq. C.9 for the surface at x = t,,/2, one finds

thm . thm o _fﬂ
Acos( > >+Bs1n< 5 >—Cexp( 2)

A cos (q’ ’") + Bsin (q*t’">

=C= (C.18)
exp ( £ t’”)
Similarly for the surface at x = —t,,/2, one finds
thm . . thm o . fﬂ
A cos (2 ) Bsin (2 ) —Dexp( 5
Acos (") — Bgin ( %m
~ D= ( 2 ) ( ) . (C.19)

exp ( ft’”)
Using Eq. C.11 for the surface at x = t,,/2
— _fﬂ — _ : thm thm
fCexp ( 5 = Uxxfx Asin 5 + Bcos 5
+ 1 A Qx m [JX m
Haxyqy cos { = + Bsin 5
. Qx m xtm

+ ipy2q;, | Acos 5 + Bsin > . (C.20)
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Substituting for C from Eq. C.18, this may be re-expressed as

N [JXtm . fhtm o
f<Acos( 5 )+Bsm< 5 >> =
Hxxqx <—A sin <6]xtm> + Bcos (
+ i]/lxyqy <A COSs (qxtm> + Bsin <

+ ipy2q2 <Acos< 5 ) + Bsin (qxztm>> (C.21)

(f + ipxyqy + ipxzqz) sin (‘“t”’> + Mxxqx COS (
HxxGx SN (qxzm> — (f + ipxyqy + iixzqz) cos (

Rearranging for A, one finds

For simplicity of reading, a redefinition of variables

17 = f + l;flxyqy + i]/lxqu/ g = ]/lqux

is made. With this, one can express

xtnl
1+ cot (4
chu
¢ — 1 cot (qz

T

For the surface at x = t’" ,Eq. C.11 gives

i . ((qxtm Gxtm
fDexp ( 5 ) = Haxlx Asin 5 + Bcos 5
- qxt 9
+ipxyqy (A cos <x2m) Bsin < xzm)>
+ ipxzgz <A cos <qxzt’“> — Bsin (q"zt’” > ) (C.23)
Substituting for D from Eq. C.19, one finds
f( Acos Gxbm\ _ poin (Txim) ) =
2 2
Haxxqx (Asin <l]x2m> + B cos <Qx2m>>
. Gxtm . Gxtm
+ iy gy <A cos <2> — Bsin <"2>>
+ ipxzgz <A cos <’7"2t’”> — Bsin (qxzt'” > ) (C.24)
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which may be rearranged to

A sin ( ) + B cos (
A cos (q*t’”) Bsin (

*)

) ] + ipxyy + ipxzqz (C.25)

f = paxqx [

Focussing on the prefactor in square brackets, substituting for Eq. C.22 yields

17+€C0t( 2 ) Qrtm q’ctm
<§ oot (& 2tm)>sm( )-l-cos( )
C.26
17+§cot<%2fm ) cos (qM) + sin (qxtm) ( )
-1 cot( qxzt”‘ ) 2
which can finally be reduced to
T — 1 cot (qytm) (C27)
1+ L cot (qytm) '
Eq. C.25 then reads
{ —ncot (gqyt . ,
f = Hxxfx [17 +Zcot EZ;Z; + 1pxyqy + 1hxzfz (C.28)

which can be expanded as

cot (qxtm) (fC + Maxxl] — TpxyqyC — iP‘xzng) = PxxxQ + iphxy Gyl + ipxzgz1] — f1]

HxxfxG + iplxy Gyl + ipazqzl] — f1]
fC+ paxqxn — ii‘xy%g — ifxzqzG

= cot (gxtm) = (C.29)

Inspecting terms, one notes

iMxyGyl] = ifxyqyf — ,”iy”l; — HxyHxzqy4z
ithacfel] = ipaaef — PactbayQ=fly = 1r:d2 (€.30)
Haxqxl] = HaxGxf + ipaxayGyqx + ixx Hxzxqz
fn= fz + iy qy f + ipxzqzf

such that for the numerator in Eq. C.29 one finds
) ) 2
1202+ ity @y + 2021 — 1= (Hadx)” — (payy + pazgz)” — 2 (C31)
and for the denominator

fC+ paxqut] — iphxyqyC — iphxzqz0 = 2Haxqxf- (C32)

Hence, one finally arrives at the expression

2
(hxxx)? = (Hyly + pxzqz)” — 0% — 4

cot (I]xtm) = 2]/lquxf
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Summarising definitions, one has

f=JRid (C.33)
(1) = (aylly + pu=lz)” — e

(o) — C35

cO (QX ) 2VquXf ( )

The expressions can then be applied for the case of an infinite plate where the
anisotropy axis is parallel to the surface of the plate, along with a saturating applied
magnetic field. Such a susceptibility tensor was found in Appendix B as

1 20
tlh=2) = 20 (;; | 0)
0 0
and that under these conditions
where Hf, = Hj — 47NM,y with N; = N3 = O,N, = 1, and ignored the spatial

dispersion term for the lowest ordered mode in k. If one substitutes this into Eq.
C.34

4717, MpQ)
2 g 2 2\ _
+ 02 — w? (qX+qy)_0
= w = /Q(Q + 47y, My sin? (©)) (C.36)
where it is defined y
_|_
sin (@) = 7 (C.37)
q
From Eq. C.35, one has
47y, Mo\ 2 —4tiny e Mow \ 2
1 () - () g -2
2gy cot (Gxtm) = yT— e . (C.38)
2 2 1+ TgMo
\/ 9y 14z ( P—? )
Noted is A MO 5
Tty gVl 1 —9z
LS lng [N = C.39
0?2 — w? sin? (@) 42+ qﬁ ( )
as well as
—47tiye Mow 2 B 47ty Mow 2 B w
02 — 2 - P —-w? ) \Qsin? (0)
—qg* 471y, M 2
- T 0 (40
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Hence, the above fraction in 4 may be rearranged to

_ % (q% + 45) 1AM 6% o s
z
9% + q; 92 (%% N q§>2 O
which can be expanded to
2 (2 4 2
A q'ay _ AmygMo zﬁ i 1y (qx + qy) LR
R R P 9) e e T T4y
X y qz (%{ + qy) z z
It can then be shown that
4.2 2 2 2
_ 0392 _ 19y +qy<q"+qy> +q2+q2:q2_q2_q2
TG 2 (3 +a2) g2 S

such that one finds for Eq. C.38

4mye Mo 2(15)

1
2y cot (Gatm) = ——— (qi —qp—q: - q
NG ’ a Ta

(CA1)

(C.A42)

(C.43)

(C.44)
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Appendix D

Orthogonality of Euluer-Bernoulli
eigenmodes

It is instructive to know that the Euler-Bernoulli eigenmodes form an orthogonal
set, which can be proven from the integration of the functions. To do this, one may
follow a standard proof as presented by Graff [67]. For brevity, one writes ¢, rather
than ¢, (z), and hence in considering the integral one finds

K /0 ' Pnpm dz = /0 ' ¢y O dz (D.1)
= [vgn]. ~ [orai], + [00]. — [out] + [ outis iz ©2)
=k [ a2 (D3)

For the boundary conditions of interest, the terms integrated that are to be evaluated

at 0 and L must be 0, and so for n # m it must be the case that fOL ¢npn dz = 0. For
the case of m = n, the basis functions

Ro(z) = % (cosh(z) + cos(z)) = Ri(z),  Ra(z) = % (cosh(z) — cos(z)) = R} (z),
Ry(z) = % (sinh(z) +sin(z)) = Rj(z), Rs(z) = % (sinh(z) —sin(z)) = R{(z).
(D.4)

may be used. The trigonometric identities then cos?(z) + sin?(z) = 1 and cosh?(z) —
sinh?(z) = 1 become
R} —2RiR3 +R3 =1

D.5
R? —2RgR; + R3 = 0. (D:3)

Some integrals of use will be noted. These are
[ R(@) 42 = § BRa2)Rs ) ~ Rol2)Rs () +2)
[ Re(0)Rs(2) 2 = JRE(2) D)
[ R0 a2 = § BR(@)Ro(2) ~ Ri(2)Ra(2)
from which it can be expressed

¢x = 2D3 (Ra(knz) — BR3(knz)), B = = . (D.7)
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Performing the integration, one then finds

1 L 5 L 2
b7 /0 $2dz =4 /O (Ra(knz) — BR3(knz))? dz
L L L
:4/ Rg(knz)dz—SB/ Ro(knL)Rs (kL) dz+432/ R2(k,L) dz
0 0 JO

1 4B
=5 (3Ra(k,L)R3(kyL) — Ro(kyL)Ry(k,L) + kL) — ER%(knL)

2
4 2 (3Rs (kL Ro(kaL) — R (ki L)Ralks L)) (D)

In substituting for B or 1/ B, this becomes

n

1 B
7 | 93z = L+ = (Ro(kuL)RalkiL) — Ri(ksL))

- ‘Ing(knL) + Ii (3R3(knL) — Ro(kuL)Ra(kL))
I kﬁ (2Ro(knL)Ra(kuL) — R3(kyL) — R(kyL))  (D.9)

where the last term is seen to disappear from the trigonometric identity. Hence, in
full

/0 0 (2)fm(2) dz = Dy DL (D.10)

Proceeding in a similar fashion for the bridge will also yield this same orthogonality.
In fact, this is true for any configuration in which the boundary conditions are not
functions of time. From this, it can be interpreted D = 1 for like eigenmodes of the
cantilever and bridge geometries.
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