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Abstract

Advancements in the study of extended topological quantum field theories have
recently relied upon constructing suitable symmetric monoidal n-categories
whose objects are smooth m-dimensional manifolds and whose k-morphisms
are (m + k)-dimensional cobordisms, with composition given by gluing along
boundaries and monoidal structure by disjoint union. A number of such con-
structions currently prevail in the literature, in particular those defined as
symmetric monoidal bicategories and those obtained as symmetric monoidal
(∞, n)-categories, usually using the model of complete n-fold Segal spaces.
The former have proven suitable for explicit computations, often admitting
finite presentations that quickly yield new topological quantum field theories.
The latter instead revel in their generality; with them, it is possible to con-
sider full extension to all n > 0 and to consider all degrees of extension, using
m-dimensional manifolds for any m ≥ 0 as the objects.

There is an unfortunate divide between these two approaches to TQFTs -
until the work in this thesis was developed, there was no complete direct in-
vestigation into obtaining fully weak homotopy bicategories from 2-fold Segal
spaces, which has left researchers without the technology needed to translate
results about (∞, 2)-categorical TQFTs into their bicategorical counterparts.
Moreover, there has been no means to develop TQFTs using algebraic models
of n-category for general n, such as those of Trimble or Batanin and Lein-
ster. Such models may be more amenable to presentations by generators and
relations, in a similar manner to bicategories.

In this thesis, we take steps towards developing homotopy n-categories of
n-fold Segal spaces with the goal of application to higher categories of mani-
folds and cobordisms. In particular, we functorially obtain the unbiased homo-
topy bicategory of a Reedy fibrant 2-fold Segal space, constructed by choosing
sections of the Segal maps and homotopies between sections. We compare
this with a simpler approach obtained by formally inverting the homotopy 1-
functors of the Segal maps; our belief is the former method will more easily
extend to homotopy n-categories for n > 2. We then concretely establish a
general Reedy fibrant replacement functor, which we specialize to projective
fibrant 2-fold Segal spaces. We obtain and discuss the resulting homotopy bi-
category of a projective fibrant 2-fold Segal space by this method. We then ap-
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Abstract

ply our constructions to obtain fundamental bigroupoids of topological spaces,
which serves to illustrate our notion of homotopy bicategory in action. Finally,
we consider some resulting characterizations of completeness and equivalences
between complete 2-fold Segal spaces.
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Chapter 1

Introduction

Over the past several decades, an extraordinary synergy of category theory,
physics and topology has made itself apparent in the form of topological quan-
tum field theories. The mathematical definition of a topological quantum field
theory (TQFT) was designed to model those quantum field theories (QFTs) in-
variant under diffeomorphisms. These particular quantum field theories enjoy
a formal mathematical description not easily extended to more general QFTs,
which was first discovered by Segal in the case of conformal field theories
[Seg88] and later extended to the topological case by Atiyah [Ati88]. This lat-
ter contribution has blossomed into the modern category-theoretic perspective
on the subject of TQFTs.

Henceforth, we use the following notation:

Notation 1.0.1. If M is an oriented smooth manifold, then write M to denote
the same smooth manifold with opposite orientation.

In general, a topological quantum field theory may be formalized as a
symmetric monoidal functor

Z : Bordn → B

where the codomain B is some symmetric monoidal category, often with duals,
and usually of a ‘linear’ nature, such as the category Hilb of Hilbert spaces or
RepC(G) of complex representations for some finite group G.

The domain Bordn, following [Lur09b, Def. 1.1.1] in the oriented case,
has as its objects compact (n− 1)-dimensional smooth manifolds M , possibly
with framing, orientation or some other structure. We will only discuss the
oriented and unoriented cases here. This category then has as its morphisms
diffeomorphism classes of n-dimensional cobordisms

M ↪→ Σ←↩ N

1
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namely smooth (un)oriented n-dimensional compact smooth manifolds, where
in the oriented case the maps above induce an orientation-preserving diffeo-
morphism

M ⊔N ∼= ∂Σ.

In the unoriented case, the diffeomorphism is of the form M ⊔N ∼= ∂Σ.
The diffeomorphisms identifying two cobordisms as the same morphism in

Bordn must respect these boundaries, meaning such a diffeomorphism f : Σ ∼=
Σ′ between two such cobordisms must be such that the diagram

Σ

M N

Σ′

f

commutes.
The source and target are given by the source and target boundaries M

and N of the equivalence class of cobordisms [Σ] in question. Composition of
cobordisms M ↪→ Σ1 ←↩ N and N ↪→ Σ2 ←↩ P are given by pushouts in Top

Σ1 ⊔N Σ2

Σ1 Σ2

M N P

where smooth structure is induced by collars, a nontrivial matter in general
[Mil65, Thm. 1.4]. Identities are given by cylinders M ↪→ M × [0, 1] ←↩ M ,
while the symmetric monoidal structure is induced by disjoint union [Lur09b,
Ex. 1.1.3].

There is interest in TQFTs not only from the side of physics, but also ge-
ometry; indeed, a TQFT Z immediately supplies an invariant of n-dimensional
smooth manifolds [Lur09b, pg. 7]. Consider some such smooth manifold
M , perhaps with orientation, depending on Z. This defines a cobordism
∅ →M ← ∅, where ∅ is the unit of the monoidal structure on Bordn. Then, if
for instance B = VectC is the category of complex vector spaces, interpreting
M as such a cobordism implies a linear map

Z(M) : C ∼= Z(∅)→ Z(∅) ∼= C

namely a complex number Z(M) ∈ C assigned to M . This number is mul-
tiplicative in connected components, as Z(M ⊔ N) ∼= Z(M) ⊗ Z(N). More

2



Chapter 1: Introduction

importantly, since Z is defined on diffeomorphism classes of cobordisms, we
have that the complex number Z(M) is a diffeomorphism invariant of M . The
efficacy of TQFTs as an invariant of smooth manifolds has been an active topic
of research [RS22] [Dav11].

A major advantage of TQFTs as an invariant of smooth manifolds, at least
in low dimensions, is that they are highly computable. For instance, it is
a classical result that, due to a finite presentation of Bord2 in the oriented
case by generators and relations as a symmetric monoidal category, the 2-
dimensional oriented TQFTs with target Vectk are classified by commutative
Frobenius algebras [Koc03].

Unfortunately, this story of finite presentations cannot be expected to hold
for the case of Bord3; the objects of this category are 2-dimensional compact
smooth manifolds, of which there are an infinite number of diffeomorphism
classes even in the path-connected case. This is in direct contrast to Bord2,
where all objects are generated by S1 under disjoint union. We cannot there-
fore expect any finite presentation of Bordn for n ≥ 3, which makes the clas-
sification of higher-dimensional TQFTs considerably more complex. This is
somewhat troublesome, as invariants of smooth manifolds really only become
interesting above dimension 2. After all, the finite presentation of oriented
2-dimensional TQFTs is largely due to Euler characteristic being a complete
invariant of compact oriented 2-dimensional smooth manifolds already.

A solution to this issue is to be found in higher category theory. Instead
of constructing a presentation for the category Bord3, we should instead con-
sider a presentation for a bicategory Bord3,2, whose objects are 1-dimensional
smooth manifolds, morphisms are 2-dimensional cobordisms and 2-morphisms
are ‘2-cobordisms’ between cobordisms. A more precise definition, found for
instance in [Sch14b, Def. 3.9], establishes higher cobordisms between (n− 1)-
dimensional cobordisms M ↪→ Σ1 ←↩ N and M ↪→ Σ2 ←↩ N as diffeomorphism
classes of diagrams

M Σ1 N

M × [0, 1] Q N × [0, 1]

M Σ2 N

where Q is an n-dimensional compact smooth manifold with corners, whose
boundary ∂Q is given by the four maps into Q in the above diagram. Compo-
sition is given by pushouts in the vertical or horizontal directions once again,
while disjoint unions now induce a symmetric monoidal bicategory structure
on Bordn,n−1 [Sch14b, pg. 186-188].

3
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There is now a greater hope of constructing finite presentations once more:
where 2-dimensional manifolds were once the objects in Bord3 and so could
not be decomposed into cobordisms, they are now the 1-morphisms in Bord3,2

and such a decomposition is now possible. Success has been found in obtaining
presentations of certain such bicategories, such as the seminal work of [Sch14b]
on the unoriented and oriented cases of Bord2,1, the work of [Pst14] in the
framed case of Bord2,1 and [Bar+14] in the case of Bord3,2 with orientation.

Of course, the problems we faced with Bord3 will inevitably rear their
heads again with Bord4,3; the objects are once more compact 2-dimensional
smooth manifolds, which cannot be decomposed into a finite number of isomor-
phism classes by disjoint union. We now require a symmetric monoidal tricat-
egory Bord4,3,2, or perhaps a symmetric monoidal tetracategory Bord4,3,2,1.
In general, for any n, we should expect a need for at least a symmetric
monoidal n-category Bordn+1,··· ,2 in order to obtain finite presentations and
construct computable invariants of (n+2)-dimensional compact smooth man-
ifolds. Many usually go further and demand a symmetric monoidal (n + 1)-
category Bordn+1,··· ,1, yielding what is often referred to as a fully extended
topological quantum field theory.

1.1 Higher Categories

It is now apparent that we require a general theory of higher categories to pro-
ceed further with extended TQFTs. The diverse needs of different applications
for higher categories and the current lack of a single ‘best’ definition meeting
all of these requirements at once have resulted in of countless models for higher
category theory being introduced in the literature. One could argue that the
simplest of these models is that of strict n-categories. The definition of a strict
n-category is classical, to be found for instance in [Lei04, Def. 1.4.1]; one
simply defines the category of (small) strict 0-categories StrCat0 to be Set
and inductively defines the category of (small) strict n-categories StrCatn to
be the category of small categories enriched over StrCatn−1. One must show
for the induction to proceed that each StrCatn is itself monoidal, though the
Cartesian product handles this issue easily.

Tragically, such a simple approach to higher category theory is doomed to
fail at providing a description of Bordn,··· ,2 for n > 4. As noted in [Lur09b,
pg. 13], associativity of the composition operation can only be expected to
hold up to diffeomorphism. Moreover, composition with units can only hold
up to diffeomorphism, where the diffeomorphism in question must collapse the
composed interval M × [0, 1] down to M . We cannot truly expect to rephrase
this definition such that we obtain a meaningful strict n-category, as not all
weak n-categories are equivalent to strict ones for n > 2 [Sim98]. We must
therefore prepare for the worst and assume the necessity of a weak n-category

4
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of manifolds and higher cobordisms.
There is regrettably an immediate issue with this situation, presented not

by smooth manifolds but rather n-categories themselves: the theory of fully
weak n-categories is woefully incomplete and terribly complicated. Even the
mere definition of a weak n-category becomes entirely intractable beyond n =
3, as one can see in the complete definition of a weak tetracategory written
up by Trimble in [Tri]. For higher n, we are thus forced to rely upon other
technologies to bear the brunt of the complexity.

1.1.1 (∞, n)-Categories

There are several approaches to handling the immense amount of data inherent
to a weak n-category. One of the more popular techniques is to assume the
homotopy hypothesis, a desideratum for the theory of higher groupoids posed
by Grothendieck in [Gro]. The hypothesis concerns so-called ∞-groupoids, a
special kind of higher category with n-morphisms for all n ≥ 1 such that all
morphisms are equivalences, in some suitably weak sense. While our definition
of ∞-groupoid thus far may seem appallingly vague, what Grothendieck no-
ticed makes these spaces far more familiar. The homotopy hypothesis amounts
to the following statement:

The higher category theory of ∞-groupoids is equivalent to the ho-
motopy theory of CW complexes.

One should expect to be able to interpret a CW complex X as an ∞-
groupoid, though some extra implicit cells would need to be considered for
the interpretation to be precise. The objects of the ∞-groupoid in question
are the 0-cells x ∈ X0 of X and the n-morphisms are the n-cells α ∈ Xn.
Composition is given by gluing n-cells along boundary k-cells for k < n, an
act that is weakly associative by reprarameterization. For weak units, one
considers the constant weak (n+ 1)-cells implicitly glued onto every n-cell for
n ≥ 0. For weak inverses, one notes that every n-cell for n > 0 implies another
n-cell glued in the opposite orientation, the concatenation with which gives an
n-cell that can be contracted down to an (n − 1)-cell. Conversely, we should
expect to be able to see an ∞-groupoid as a CW complex, by starting with
the set of objects and attaching n-cells for each n-morphism inductively in n
to its source and target cells.

The interpretation is not only intrinsic within a given ∞-groupoid, but
extrinsic as well. Any map between CW complexes can classically be made
cellular, which thus corresponds to a map between the induced ∞-groupoids.
Homotopies can be similarly restructured, so they correspond to natural iso-
morphisms, while homotopy equivalences precisely correspond to equivalences
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of higher groupoids. The homotopy hypothesis claims this mapping precisely
transmits all results about ∞-groupoids to CW complexes and vice versa.

Depending on one’s perspective, the homotopy hypothesis can either be a
definition or a theorem. The latter case can be found in models of n-category
such as the Tamsamani and weakly globular models [Pao19], where homotopy
theory is not immediately baked into higher groupoids and must be carefully
extracted [BP15]. Constructions analogous to our description of ∞-groupoids
realized from topological spaces can be found for the Trimble n-category model
in [Che11, Sec. 1.1] and the Batanin-Leinster ω-category model in [Lei04,
Ex. 9.2.7], though these are perhaps more analogous to singular homology
than what we have described; they assume no particular CW structure on the
topological space X in question and simply take all possible disks Dk → X.
In the former case however, where the homotopy hypothesis is assumed rather
than proven, one simply takes CW complexes or some adjacent model of weak
homotopy theory as the chosen definition of higher groupoids. In this approach,
higher groupoid theory is merely a reinterpretation of homotopy theory.

This latter approach has garnered considerable success in higher category
theory. With the starting point of a fully weak ∞-groupoid, new models of
higher category can be obtained by appending extra structure onto homotopy
types or by weakening the chosen model of weak homotopy theory. As noted in
[Rom23], approaches in these directions include quasicategories [Joy02], com-
plicial sets [Ver08], Segal n-categories [HS01], complete n-fold Segal spaces
[Bar05], Θn-spaces [BR13a] and n-quasi-categories [Ara14]. We will refer to
all such models as homotopy-theoretic models of higher category theory.

The model most commonly associated with TQFTs in this direction is
that of complete n-fold Segal spaces. These are a form of so-called (∞, n)-
category, which are higher categories where all morphisms of dimension > n
are weakly invertible. It should be noted that these are a natural generalization
of ∞-groupoids, which are (∞, 0)-categories themselves. The definition of a
complete n-fold Segal space is inductive, starting from the n = 0 case with
complete 0-fold Segal spaces being Kan complexes1.

Note the choice of Kan complex as the model of∞-groupoid, or equivalently
of (weak) homotopy type. In the case of Kan complexes, one usually interprets
weak homotopy theory for the purposes of higher groupoids in the form of
model category theory, employing the classical Quillen model structure on the
category sSet of simplicial sets. This approach underpins a more general tactic
in homotopy-theoretic models, where one constructs a model structure on some
category of presheaves whose fibrant objects are precisely the models of higher
category in question. The model structure then describes the higher category

1It is not necessarily standard to consider complete 0-fold Segal spaces in the literature;
rather, one usually starts with the case of n = 1. It is, however, perfectly consistent to start
with n = 0.
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theory, or at least its equivalences by the weak equivalences and higher natural
isomorphisms by the left or right homotopies. After all, one cannot expect
homotopy theory to capture the ‘lax’ or ‘oplax’ aspects of higher category
theory, such as noninvertible natural transformations, since homotopies can
always be inverted in a model category.

The inductive procedure for obtaining complete n-fold Segal spaces from
complete (n − 1)-fold Segal spaces induces a model structure at each step,
starting with the Quillen model structure on sSet, a model structure that is
assumed to be present throughout this thesis. Our inductive intuition here is
a natural extension of the setup of Lurie in [Lur09b, pg. 25], in the case n = 1
and moreover modified for Reedy fibrancy. It is also similar to the approach
of Haugseng in [Hau18] more generally, though differs to suit our purposes.
Assume then that one has a category CSSPn−1 of complete (n− 1)-fold Segal
spaces, which is the full subcategory of fibrant objects in some model category.
The basic datum to consider is then a simplicial object in this category, that
is a functor

X : ∆op → CSSPn−1

where ∆ is the usual simplicial category. Unwinding this induction yields an
equivalent functor

X : (∆op)n → sSet.

We may interpret X0 ∈ CSSPn−1 as the underlying ∞-groupoid of X; it
will be an (∞, n − 1)-category that is in fact an (∞, 0)-category. We may
then interpret X1 ∈ CSSPn−1 as the (∞, n − 1)-category of pseudofunctors
[1]→ X, where [1] is the category {0→ 1} with two objects and one morphism
between them. The two maps X1 → X0 then identify the source and target
of the image of [1] in this interpretation, via pullback along the two objects
[0]→ [1] where [0] = {0} is the trivial one-object category.

One might note an oddity to this intuition - if X1 is to be a higher category
of pseudofunctors and higher natural transformations, then the two images of
a 1-morphism in X1 of the form α : f ⇒ g in X0 should be maps dom(f) →
dom(g) and cod(f) → cod(g) between objects, which might not in general
be equivalences and thus invalidate that X0 is an ∞-groupoid. We should
therefore in our interpretation restrict our attention to natural transformations
that are equivalences on objects, which gives our model of higher categories a
markedly ‘globular’ flavor.

The interpretation continues to higher Xm. We have the categories

[m] := {0→ · · · → m}

of totally ordered poset categories of m + 1 objects for all m ≥ 0, with all
functors between them, as a natural alternative to ∆. We might then interpret
Xm as the (∞, n − 1)-category of pseudofunctors [m] → X. Note that our
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interpretation necessitates pseudofunctors rather than strict functors, so that
elements of Xm contain more data than a mere chain of m morphisms. For
instance, in the case of m = 2, we should expect to find a diagram in X of the
form

y

x z

gf

h

α

where x, y, z are objects, f, g, h are morphisms and α is some 2-equivalence
from g ◦f to h. In some sense, this diagram exhibits h as a composite of g and
f .

This last point is of particular importance in homotopy-theoretic models
of higher category. Consider a CW complex T . The composite of two 1-cells
f, g : [0, 1] → T is not necessarily uniquely defined, as the concatenation of
f and g could be done with many different parameterizations. All of these
are however equivalent by homotopies changing the parameterization. This
equivalence goes further than mere existence of homotopies: the space of paths
[0, 1]→ T of the form

[0, 1]
ϕ−→ [0, 2] ∼= [0, 1] ⊔∗ [0, 1]

f⊔∗g−−−→ T

for some endpoint-preserving map ϕ is contractible, as this is equivalently just
the space of endpoint-preserving maps ϕ : [0, 1]→ [0, 2]. Hence, any two points
have a path in this space, meaning a homotopy, between them, while any two
homotopies are themselves homotopic and so forth.

It is this general philosophy on composition that is taken by the homotopy-
theoretic models. Rather than specifying the singular composite g ◦ f of two
morphisms g and f , one instead presents a contractible space of possible com-
posites h. Hence, we should simultaneously regard X2 as the (∞, n − 1)-
category of composites of chains of two 1-morphisms in X.

Proceeding up to m = 3, we have a natural interpretation of elements of
X3 as diagrams of the form

x y x y

w z w z

g

h

g

hf

k

f

k

α
Ω

β δ

γ

where Ω is now an invertible 3-morphism. This therefore gives us a similar
interpretation of X3 as the (∞, n − 1)-category of composites of chains of
three morphisms in X. In general, one may naturally interpret Xm as the
(∞, n− 1)-category of composites of chains of m morphisms.

8
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To perhaps make this discussion more precise, there is a natural map, called
the Segal map, for each m ≥ 2 of the form

γm : Xm → X1 ×X0 · · · ×X0 X1

induced by considering the m maps [1] → [m] identifying the morphism (i −
1) → i for all 1 ≤ i ≤ m. A typical element of the codomain is an m-tuple
of 1-morphisms (f1, · · · , fm) where fi ∈ X1 for all 0 ≤ i ≤ n, such that the
target object of fi−1 is moreover the source object of fi for all i > 0. We thus
might see the codomain as the (∞, n−1)-category of chains of m morphisms in
X. The domain, in turn, consists of all such chains together with composites,
while the map in question forgets the composites of the chain.

We can therefore see the fiber

X(f1, · · · , fm) Xm

{(f1, · · · , fm)} X1 ×X0 · · · ×X0 X1

⌟

as the collection of all composites of the chain f1 · · · fm. We will assert a few
properties of the Segal map to obtain the contractibility property noted for
CW complexes:

1. The Segal maps must be fibrations in the model structure for complete
(n−1)-fold Segal spaces. This guarantees, since fibrations are always pre-
served under pullback, that X(f1, · · · , fm) is fibrant and thus a complete
(n− 1)-fold Segal space.

2. The Segal maps must be weak equivalences in the same model structure,
so equivalences of (∞, n−1)-categories. This implies that the Segal maps
are in fact trivial fibrations, so that the terminal map

X(f1, · · · , fm)→ {(f1, · · · , fm)} ∼= ∗

is a weak equivalence. Hence, the (∞, n − 1)-category of composites of
a given chain is always contractible, as this is the more general meaning
of contractibility in an arbitrary model category.

A few other properties are needed as well, though these are less significant
than the one above, which we term the Segal condition. A condition called
Reedy fibrancy generalizes the fact that the Segal maps are fibrations to all
face maps Xm → Xm−1, while essential constancy ensures for instance that
X0 is indeed merely an ∞-groupoid. Finally, one has completeness, which
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guarantees that the paths in X0 and the ‘invertible’ morphisms in X1 are in
direct correspondence with one another, proven in the case n = 1 for instance
in [Rez00, Prop. 6.4].

We then define a complete n-fold Segal space to be a functorX as above that
satisfies the Segal condition, is Reedy fibrant, is complete and finally satisfies
essential constancy. One then proceeds to define a natural model structure on
the category sSet(∆

op)n whose fibrant objects are the (Reedy fibrant) complete
n-fold Segal spaces and whose weak equvialences are levelwise between the
fibrant objects. We write CSSPn for the full subcategory of sSet(∆

op)n whose
objects are the complete n-fold Segal spaces.

One can also drop the requirement of completeness at each level to induc-
tively define n-fold Segal spaces, which also admit a sensible model structure
with levelwise weak equivalences between fibrant objects. We call the category
of these structures SeSpn, each object of which is a functor ∆op → SeSpn−1

satisfying the Segal condition and essential constancy. Due to the lack of com-
pleteness, the different notions of equivalence given at each inductive level are
not required to agree with one another.

1.1.2 Collars, Projective Fibrancy and Completeness

Complete n-fold Segal spaces are particularly amenable to constructing higher
categories of TQFTs for a few reasons. First, as a homotopy-theoretic model,
they make no demand for what would be an irritatingly technical composi-
tion operation on cobordisms, necessarily defined by gluing manifolds along
boundaries with a smooth structure given by collars. Another reason is that
the fundamental ‘diagrams’ in a complete n-fold Segal space are cube-like in
nature. For instance, for a complete 2-fold Segal space X, a typical 0-simplex
α in the Kan complex X1,1 has horizontal faces f, g ∈ X1,0, vertical faces
i, j ∈ X0,1 and corners w, x, y, z ∈ X0,0. We can arrange this data diagram-
matically as follows:

w x

y z

f

i j

g

α

Essential constancy will make the 1-morphisms i and j equivalences. Thus,
the 2-morphisms of X, namely the elements of X1,1 (the 1-morphisms in the
(∞, 1)-category of 1-morphisms, according to our interpretation of X) should
really be squares with essentially constant vertical sides. This is precisely how
the 2-morphisms in the bicategory Bordn,n−1 were defined, where the vertical
sides of a 2-cobordism were forced to be cylinders. In general, unwinding our
induction, an element of Xn,m should be thought to consist of a diagram of
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αi,j ∈ X1,1 for 1 ≤ i ≤ n and 1 ≤ j ≤ m of the form

x0,0 x1,0 · · · xn,0

x0,1 x1,1 · · · xn,1

...
... . . . ...

x0,m x1,m · · · xn,m

α1,1 α2,1 αn,1

α1,2

α1,m

which we may call an (n,m)-chain, together with all composites, both vertical
and horizontal. This intuition should continue to complete n-fold Segal spaces,
using n-dimensional hypercubes instead of squares. (We might then call a
diagram analogous to the above one, with ik hypercubes in direction k for
1 ≤ k ≤ n, an (i1, · · · , in)-chain.)

A final reason is that, in defining each Kan complex Xi1,··· ,in for a complete
n-fold Segal space X, it suffices to find some moduli space of (i1, · · · , in)-
chains in the (∞, n)-category X in question. One can then usually apply
some ‘singular set’ functor Sing to obtain the appropriate Kan complex. For
cobordisms, there are natural moduli spaces of manifolds one can construct,
which when appended with additional data, such as collars, serve as natural
candidates for the ∞-groupoids needed once converted into Kan complexes.

There have several success stories in obtaining complete n-fold Segal spaces
of manifolds and higher cobordisms. The first of these was in the work of
Lurie [Lur09b], a construction that was later modified by Calaque and Sche-
imbauer [CS19]. A different construction was produced more recently by Grady
and Pavlov [GP22a], while another still was given by Schommer-Pries [Sch17].
Many of these models are largely similar in their approaches to defining the
(∞, d)-category Bordn,d of n-dimensional smooth manifolds and higher cobor-
disms. In general, the elements of (Bordn,d)i1,··· ,id correspond to (n + d)-
dimensional smooth manifolds. These smooth manifolds are then decorated
with a series of ‘collars’, which divvy up the manifold into an (i1, · · · , in)-
chain of d-cobordisms between n-dimensional smooth manifolds. In particu-
lar, should any ij = 0, the singular collar in the jth direction will usually in
essence cover the entire manifold, rendering it a cylinder and thus effectively
a manifold of one dimension lower. A typical element of (Bord0,2)2,3 in the
definition posed in [CS19] is depicted in Figure 1.1, inspired by the diagrams
in [CS19, pg. 34-35].

The approaches of Lurie, Calaque and Scheimbauer and of Grady and
Pavlov are significantly different past these high-level similarities. For in-
stance, Grady and Pavlov’s construction is levelwise the nerve of a groupoid,
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rather than the singular set of a moduli space as in Calaque and Scheimbauer’s
construction or simply a topological space as per Lurie. Another difference is
that, while Grady and Pavlov’s approach seems to be Reedy fibrant, though
this appears unproven, the Lurie-style higher categories of cobordisms are not
Reedy fibrant if d > 1. For example, Reedy fibrancy would imply the maps

(Bord0,2)1,1 → (Bord0,2)0,1

are fibrations, so that solutions Q should always exist to lifting problems of
the form

∆[0] (Bord0,2)1,1

∆[1] (Bord0,2)0,1

x

Q

p

A counterexample is found if one assumes x to be a 2-cobordism as depicted
in Figure 1.2 and p to be a path of cobordisms as visualized in Figure 1.3.

Figure 1.1: A typical element (M, I) of (Bord0,2)2,3, with M a manifold and
I = (I1, I2) a pair of lists of subintervals of (0, 1), which identify the gray
regions below. I1 contains the three intervals in the horizontal direction, while
I2 contains the four in the vertical direction. The manifold M is embedded into
Rk×(0, 1)2 for some suitably high k; the ‘collars’ are then those submanifolds of
M existing above each interval in I, on which there are submersivity conditions.
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Figure 1.2: An element x = (M, I) of (Bord0,2)1,1.

Figure 1.3: A path pt = (Mt, It) for t ∈ [0, 1] in (Bord0,2)0,1. To distinguish
the vertical collars, one is depicted as a solid line and the other as a dashed
line.

It is not possible for the collars to pass over the hole in x, so no path
Q can possibly exist. Note that Grady and Pavlov’s construction avoids this
issue, as their collars are not rigid straight lines and can freely bend around
the hole in x above. We are unaware at present if either a proof against Reedy
fibrancy akin to the above or a proof for Reedy fibrancy of Grady and Pavlov’s
construction have been considered thus far in the literature.

This motivates the need for a version of complete n-fold Segal spaces that
are projective fibrant, rather than Reedy fibrant, namely ones where the Segal
maps may merely be weak equivalences rather than trivial fibrations. Indeed, it
should be noted that Reedy fibrancy is never claimed, assumed or even needed
by Lurie in [Lur09b], nor by Calaque and Scheimbauer in [CS19]; projective
fibrancy is all that these works require. There is a perfectly reasonable notion
of a projective fibrant complete n-fold Segal space, as explored in [Lur09b]
[JS17] [CS19], though the space X(f1, · · · , fm) of composites for a chain of m
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morphisms is no longer necessarily fibrant and thus not always an (∞, n− 1)-
category. Moreover, the spaces X1 ×X0 · · · ×X0 X1 are no longer guaranteed
to be fibrant as the face maps X1 → X0 are not fibrations, so a homotopy
pullback X1 ×hX0

· · · ×hX0
X1 is needed instead to obtain a higher category of

chains per se. In this situation, the elements are no longer chains of morphisms,
but rather chains

x0 x1 x′1 x2 · · · x′n−2 xn−1 x′n−1 xn
f1 p1 f2 p2 pn−2 fn−1 pn−1 fn

where each fi ∈ X1 and each pi is a path in X0 from xi to x′i.
Another issue to note in the setup of [CS19] is that this model does not

immediately seem to be complete either; this issue is discussed in [Lur09b,
Warning 2.2.8]. This means that we cannot rely on, for instance, the paths in
(Bordn,d)0,··· ,0 having anything to do with the weakly invertible 1-morphisms
in (Bordn,d)1,0,··· ,0. One could perform a completion on this space to force it to
be complete, using some generalization of the methods in [Rez00, pg. 32], as is
done in [Lur09b] and [CS19], though it has been argued in [Lur09b, Warning
2.2.8] that choosing not to perform such a completion may allow one to obtain
more refined information about the resulting TQFTs.

It is worth mentioning that one may extend these notions to obtain a
form of symmetric monoidal complete n-fold Segal space as is done for the
higher categories of cobordisms defined in [CS19] and [GP22a], which are both
symmetric monoidal by the usual disjoint union structure. In essence, one may
define a symmetric monoidal (∞, n)-category by considering Segal’s category
Γ of finite pointed sets ⟨n⟩ = {0, · · · , n} with pointed maps f : ⟨n⟩ → ⟨m⟩,
namely such that f(0) = 0, between them. One then takes a symmetric
monoidal complete n-fold Segal space to be a functor

X : Γ→ CSSPn

such that the natural induced map

X⟨n⟩ →
n∏
i=1

X⟨1⟩

is a weak equivalence for all n ≥ 0. The underlying complete n-fold Segal
space is X⟨1⟩, while X⟨n⟩ is to be interpreted as the (∞, n)-category of tuples
of n objects (x1, · · · , xn) together with all tensorings of the xi, in analogy
to Xn versus X1 ×X0 · · · ×X0 X1. In the above models of higher category of
cobordisms, X⟨1⟩ is as usual, while X⟨n⟩ simply consists of disjoint tuples of
n such higher cobordisms.
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1.2 Homotopy n-Categories

Given there has been success in obtaining both (∞, n)-categorical and bicat-
egorical notions of TQFT, there should be some explicit means to translate
between the two. Results about one should immediately obtain results about
the other. Moreover, a suitable conversion may form a sanity check of sorts, en-
suring various approaches to defining extended TQFTs agree with one another
as we should expect them to.

One might wonder what the appropriate method to compare these two
cases of TQFT might be. A possible answer is that of a homotopy bicategory
functor. Given an (∞, n)-category, it is natural to expect an n-category to
result from identifying any two n-morphisms that have an (n+1)-equivalence
between them. This should amount to taking path components in the ∞-
groupoids of n-morphisms α : f ⇒ g between two fixed (n − 1)-morphisms f
and g. In effect, this is the natural extension of the path components functor
π0 from the (∞, 0) case to general (∞, n).

The major complication of this construction arises from choosing the model
of (∞, n)-category converted from and model of n-category converted to. For
us, the clear contender for the former model is that of complete n-fold Segal
spaces while the latter for n = 2 is bicategories. Note however the discrep-
ancy between these two notions of higher category: the former is a homotopy-
theoretic model, only guaranteeing contractible spaces of compositions for mor-
phisms, while the latter is not, instead exhibiting precise choices of composites,
together with higher coherence isomorphisms between them.

We are thus faced with the task of converting from a homotopy-theoretic
model of higher category to what we might describe as an algebraic model.
Algebraic models of higher category would include classical bicategories, clas-
sical tricategories, Trimble n-categories [Che11] and Batanin-Leinster style n-
categories [Lei04]. In all of these notions of higher category, one may explicitly
know the singular composition of some pasting diagram in the higher category
in question. The challenge is then one of coherently choosing composition oper-
ations and coherence morphisms from the contractible spaces of compositions,
such that the necessary coherence conditions are satisfied.

It is the objective of this thesis to establish a notion of homotopy bicategory
that is directly applicable to comparing current models of (∞, 2)-categories and
bicategories of manifolds and cobordisms. While some work in the literature
is available to help in this task, it seems at present that there is a need for a
direct, fully concrete such construction tailored to send the (∞, 2)-categories
of cobordisms discussed thus far to bicategories of cobordisms explicitly simi-
lar to those established in the literature, such as those of Schommer-Pries in
[Sch14b]. We expect such a construction to serve as an effective foundation
for comparison of the work on TQFTs in each of these domains.
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Our main results in this regard, stated somewhat informally, are the con-
struction of functors

h2 : SeSpinj2 → Bicat

hproj2 : SeSpproj2 → Bicat

from categories SeSpinj2 and SeSpproj2 of Reedy fibrant and projective fibrant
2-fold Segal spaces respectively to a category Bicat of bicategories and pseud-
ofunctors. We claim these to be suitable models of homotopy bicategory for
2-fold Segal spaces in the context of TQFTs.

1.2.1 Previous Work

There has been some effort directed to considering homotopy bicategories of
2-fold Segal spaces previously in the literature, which our work builds upon.
In particular, one approach to obtaining homotopy bicategories of 2-fold Se-
gal spaces is conjectured in [JS17, Def. 2.12] though originally appears in
Scheimbauer’s thesis [Sch14a], the original source for the higher category of
cobordisms constructed in [CS19]. This first requires the definition of a homo-
topy (1-)category h1(X) of a projective fibrant (1-fold) Segal space X. Recall
that a projective fibrant Segal space is a functor X : ∆op → sSet that is
levelwise fibrant and such that the Segal maps

Xn → X1 ×hX0
· · · ×hX0

X1

to homotopy pullbacks are weak equivalences. This characterization of projec-
tive fibrant Segal spaces is a result of Horel [Hor15]. Thus, one may consider
the category h1(X) defined for instance in [JS17, Def. 2.2] as follows, using
the notation

Xh(x, y) := X1 ×h(X0)2
{(x, y)}

for the homotopy mapping space, itself being a Kan complex, and π0 : sSet→
Set for the path components functor, sending a simplicial set K to K0/ ∼=K ,
where ∼=K is the equivalence relation on K0 generated by the 1-simplices:

1. The objects are given by the set ob(h1(X)) := (X0)0;

2. The hom-sets are of the form

Homh1(X)(x, y) := π0(X
h(x, y));

3. Identities are given by applying π0 to the degeneracy maps

∗ ∼= X0 ×(X0)2 {(x, x)} → X1 ×h(X0)2
{(x, x)};
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4. Composition is given by considering the diagram

π0(X
h(x, y))× π0(Xh(y, z))→ π0({x} ×hX0

(X1 ×hX0
X1)×hX0

{z})
∼←− π0({x} ×hX0

X2 ×hX0
{z}))

→ π0(X
h(x, z))

and noting that the leftwards-facing map is a bijection, as it is the image
under π0 of a weak equivalence between Kan complexes. We will see
later in this thesis that π0 behaves on Kan complexes precisely like path
components of topological spaces in this manner.

One may prove that this is a category; we will give an alternative means
to prove this is the case later in this thesis. There is also a version of this
construction if X is Reedy fibrant, found for instance in [Rez00, pg. 13],
where all homotopy pullbacks are replaced with strict pullbacks. Hence, the
hom-sets of a Reedy fibrant Segal space X’s homotopy category are of the form
π0(X(x, y)) := π0(X1 ×(X0)2 {(x, y)}) rather than π0(Xh(x, y)).

Armed with this construction, one might then naturally expect an immedi-
ate generalization to bicategories. This is precisely what is proposed in [JS17,
Def. 2.12]. Given a projective fibrant 2-fold Segal space X : (∆op)2 → sSet,
the homotopy bicategory h2(X) should be obtained as follows, where we freely
reuse the notation Xh(x, y) in the same manner, now representing a projective
fibrant Segal space rather than a Kan complex:

1. The objects should be ob(h2(X)) := (X0,0)0;

2. The hom-categories should be of the form

Homh2(X)(x, y) := h1(X
h(x, y));

3. Identities are given by applying h1 to the degeneracy maps

∗ ∼= X0 ×(X0)2 {(x, x)} → X1 ×h(X0)2
{(x, x)};

4. As the map X2 → X1 ×hX0
X1 is a levelwise weak equivalence, one may

prove that the induced maps

{x} ×hX0
X2 ×hX0

{z} → {x} ×hX0
(X1 ×hX0

X1)×hX0
{z}

are weak equivalences levelwise. Moreover, h1 sends such weak equiva-
lences to equivalences of categories. Thus, one may once again consider
for composition the categorified diagram

h1(X
h(x, y))× h1(Xh(y, z))→ h1({x} ×hX0

(X1 ×hX0
X1)×hX0

{z})
∼←− h1({x} ×hX0

X2 ×hX0
{z})

→ h1(X
h(x, z))
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as h1, like π0, commutes with products. One may then consider an inverse
to the leftwards-facing functor to obtain a composition operation.

This conjectured bicategory, while quite natural in its definition, presents
some technical obstacles in the pursuit of our intended applications. For in-
stance, the chosen inverse to the functor

h1({x} ×hX0
X2 ×hX0

{z})→ h1({x} ×hX0
(X1 ×hX0

X1)×hX0
{z})

may correspond to no possible (weak) inverse to the original map of (∞, 1)-
categories

{x} ×hX0
X2 ×hX0

{z} → {x} ×hX0
(X1 ×hX0

X1)×hX0
{z}.

As an analogous example, consider the fundamental groupoid Π1(R) of the
real line. Since R is simply connected and path-connected, the fundamen-
tal groupoid is contractible. Consider then the characteristic function of the
rationals χQ : R→ R, namely the function defined such that

χQ(x) =

{
1 x ∈ Q
0 x ̸∈ Q.

This function defines a perfectly valid functor Π1(R)→ Π1(R), as indeed any
map on objects between these two categories extends to a unique functor.
However, it is not realized by any continuous map R → R. Hence, functors
between fundamental groupoids may have very little to do with the original
topological spaces.

We will see later that Π1 in fact factors through h1 in the Reedy fibrant case
by a chain of maps Top → SeSp1 → Cat. Hence, this is evidence of a more
general phenomenon when inverting induced equivalences between homotopy
categories: for two Segal spaces X and Y , functors h1(X) → h1(Y ) do not
necessarily originate from any map X → Y . In short, h1 is not a full functor.

While this issue is not necessarily severe if one is only interested in ‘the
big picture’, as all such choices should result in canonically equivalent bicat-
egories, it is somewhat obtrusive if one wants to work within the resulting
bicategory itself. Highly abnormal though technically correct composition op-
erations may result from such considerations, which may make constructions
within the homotopy bicategory unnecessarily difficult to reason about. It
would be preferable for the chosen inverse to result from some map at the level
of the (∞, 1)-categories, rather than just the 1-categorical truncation, as an
assurance that the composition operations will be closer to what the original
(∞, 2)-category would suggest. This would for instance ensure that homo-
topy bicategories of (∞, 2)-categories of cobordisms better resemble what one
might obtain by constructing bicategories of higher cobordisms by hand, as
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the composition operations would have to be induced by valid simplicial maps
between the singular sets of some moduli spaces of cobordisms. Similar con-
cerns may be raised about associators and unitors; it would be preferable to
have some direct interpretation of these natural isomorphisms in the original
(∞, 2)-category, so the resulting bicategory is clearer on a concrete level and
thus easier to work within.

1.2.2 Homotopy Bicategories of Reedy Fibrant 2-fold Se-
gal Spaces

Our first contribution, as first developed in the author’s preprint [Rom23],
is the construction of the homotopy bicategory h2(X) of a Reedy fibrant 2-
fold Segal space X. As a part of this endeavor, we also develop a homotopy
bicategory functor htr2 which can accept as its composition operations any
chosen inverses to the functors

h1

(
Xn×(X0)n+1{(x0, · · · , xn)}

)
→ h1

(
(X1×X0· · ·×X0X1)×(X0)n+1{(x0, · · · , xn)}

)
for any objects x0, · · · , xn ∈ (X0,0)0, similarly to the conjectured definition of
Johnson-Freyd and Scheimbauer in [JS17], albeit modified to suit the Reedy
fibrant case. To obtain coherence isomorphisms and coherence conditions, we
apply modified techniques from Lack and Paoli’s work on obtaining bicate-
gories from Tamsamani 2-categories in [LP08]. This method, though correct,
still faces the technical obstacles we have noted due to composition operations
being chosen after taking homotopy categories.

Beyond the concerns raised thus far, at the level of pure higher category
theory, one might simply wonder in a 2-fold Segal space X where composition
operations, associators, unitors, pentagon conditions and so forth come from
concretely at the (∞, 2)-categorical level. Truncation to homotopy categories
before obtaining this data perhaps obfuscates the source of this structure in
X itself, so one may take an inherent interest in obtaining this data from X
directly in the pursuit of better understanding 2-fold Segal spaces as a model
of higher category.

Our panacea to the above issues amounts to an alternative construction
of homotopy bicategory, involving choosing composition operations and iden-
tifying coherence isomorphisms and coherence conditions before truncation by
solving natural families of lifting problems. In this way, there is a guarantee
that the composition operations in the resulting bicategory will agree with the
truncated∞-categorical information, which should yield more natural compo-
sition maps. For instance, in the case of Bordn,2, the composition maps will
be induced by simplicial maps between singular sets of the moduli spaces of
cobordisms at each level.
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Consider some Reedy fibrant 2-fold Segal space X. In the model structure
defining Reedy fibrant 1-fold Segal spaces, all objects are cofibrant and the
Segal maps are trivial fibrations. Hence, one has a natural lifting problem
with solutions µn

Xn

X1 ×X0 · · · ×X0 X1 X1 ×X0 · · · ×X0 X1

µn

id

for all n ≥ 2. We argue that such horizontal compositions µn are the natu-
ral notion of composition operations in a 2-fold Segal space; they are simply
sections of the Segal maps, which within our interpretations of n-fold Segal
spaces amounts to coherently choosing an element

µn(f1, · · · , fn) ∈ X(f1, · · · , fn)

for each chain of 1-morphisms (f1, · · · , fn) ∈ X1×X0 · · ·×X0X1 in X. We may
identify the composition operation by postcomposing with a map Xn → X1

and taking a pullback over objects x0, · · · , xn ∈ (X0,0)0, thus obtaining an
(∞, 1)-functor ◦x0,··· ,xn of the form

X(x0, x1)× · · · ×X(xn−1, xn) ↪→ (X1 ×X0 · · · ×X0 X1)×(X0)2 {(x0, xn)}
µn×1

(X0)
2 1{(x0,xn)}

−−−−−−−−−−−−→ Xn ×(X0)2 {(x0, xn)}
→ X(x0, xn).

Note that this is remarkably similar to the conjectured homotopy bicate-
gory construction posed earlier, though this time constructed in the (∞, 1)-
categorical case. Moreover, there is a guarantee by setting µn to be a section
of the Segal maps γn that, under our interpretation of X, the map µn chooses
a composite that is indeed a composite of the source 1-morphisms. If µn was
just a homotopy inverse instead, namely a map with homotopies γnµn ∼ id
and µnγn ∼ id, the choice µn(f1, · · · , fn) may only be a composite of a chain
of maps (f ′

1, · · · , f ′
n) that is equivalent to (f1, · · · , fn) in X1 ×X0 · · · ×X0 X1.

From a choice of horizontal compositions (µn)n≥0, we would like to extract
associators and unitors that satisfy the pentagon and triangle axioms. First,
we must determine the appropriate maps to compare. If one considers for
instance the composition operation • • • 7→ •(••), the appropriate map is
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given by the two induced solutions from µ2 of the lifting problems

X2 X1

X1 ×X0 X1

X2 ×X0 X1

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 ×X0 X1id

We can rearrange this into a single solution to a lifting problem

(X2 ×X0 X1)×X1×X0
X1 X2 X1

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 ×X0 X1id

If we were to extend X : ∆op → sSet∆
op

to a functor X : sSetop → sSet∆
op

by sending colimits of representables ∆[n] ∈ sSet for [n] ∈ ∆ to limits, then
one would see that the pullback space above is simply XK for

K = (∆[2] ⊔∆[0] ∆[1]) ⊔∆[1]⊔∆[0]∆[1] ∆[2] ∈ sSet.

Portraying K graphically suggests an immediate interpretation of XK as the
space of composites h(gf) for chains of three morphisms f, g, h in X:

• •

• •

The composite of this form is obtained by applying µ2 twice. Similarly, for
the composition operation • • • 7→ (••)•, one obtains another natural lifting
problem and solution from µ2 of the form

(X1 ×X0 X2)×X1×X0
X1 X2 X1

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 ×X0 X1id

The uppermost object can be rewritten as XH , where

H = (∆[1] ⊔∆[0] ∆[2]) ⊔∆[1]⊔∆[0]∆[1] ∆[2] ∈ sSet
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is the diagram of the form

• •

• •

giving composites (hg)f of chains f, g, h in X.
We may then use the solutions to the lifting problems given above to obtain

a commutative diagram

X3 X1

XK XH

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 ×X0 X1

From this, we can proceed in one of two ways. One is to prove that the
two maps X3 → XK and X3 → XH induced by the inclusions K ↪→ ∆[3]
and H ↪→ ∆[3] are trivial fibrations, allowing us to solve the induced lifting
problems to obtain two distinct solutions µ•(••) and µ(••)• to the lifting problem

X3 X1

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 ×X0 X1

µ(••)•

µ•(••)

whose postcompositions with the map X3 → X1 give precisely the two brack-
eted composition operations induced by µ2 when fibered over objects w, x, y
and z. It is then a classical result in model category theory, proven for instance
in [Hir09, Prop. 7.6.13], that any two solutions to the same lifting problem
necessarily are related by a homotopy. There is a reasonable amount of free-
dom in choosing what is meant by a ‘homotopy’; we choose for a homotopy L
between the two solutions above to take the form

L : (X1 ×X0 X1 ×X0 X1)×N(I[1])→ X3
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where N : Cat→ CSSP1 is the classifying diagram functor in [Rez00], while
I[1] is the standard walking category, consisting of two objects and a single iso-
morphism between them. The (∞, 1)-category N(I[1]) can then be interpreted
as a countable ∞-groupoid analogue to the closed interval [0, 1].

The reason we make this choice is because there is a natural isomorphism
h1 ◦ N ∼= id. Hence, if we fiber the above homotopy over objects w, x, y, z ∈
(X0,0)0 and postcompose with the map X3 → X1, then one obtains a map

X(w, x)×X(x, y)×X(y, z)×N(I[1])→ X(w, z)

which when h1 is applied becomes a functor

h1(X(w, x))× h1(X(x, y))× h1(X(y, z))× I[1]→ h1(X(x, z)).

A functor C × I[1]→ D is precisely a natural isomorphism, so we may take L
to be our chosen associator in X.

In this thesis, we take a slightly different approach. Given we have already
chosen µ3, we instead obtain a homotopy between the two solutions

X3 XK X1

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 ×X0 X1

µ3

to obtain a homotopy from the composition operation (f, g, h) 7→ h ◦ (g ◦ f)
to µ3, which we interpret as unbiased trinary composition, sending (f, g, h) 7→
h◦g◦f . A similar diagram to above with K replaced by H obtains a homotopy
from (f, g, h) 7→ (h ◦ g) ◦ f to µ3 as well. If one desires the original associator,
one can invert the latter homotopy and concatenate the two. However, this
approach more immediately suggests an interpretation as an unbiased bicate-
gory as in [Lei00, Def. 1.2.1], with n-ary composition given by µn for all n.
An unbiased bicategory is similar to a bicategory, though has unbiased n-ary
composition operations

(f1, · · · , fn) 7→ ⃝n
i=1fi

together with coherence 2-isomorphisms adding a unary composition

f ∼= (f)

and ones which remove a level of bracketing, such as

(f ◦ g) ◦ (h ◦ k) ∼= f ◦ g ◦ h ◦ k.
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These must fulfil a coherence condition; the more pressing case for us concerns
the latter 2-isomorphism and amounts to saying that layers of brackets can be
removed in any order. For instance, the diagram

((f ◦ g) ◦ (h)) ◦ ((k ◦ l) ◦ (m ◦ n ◦ p))

(f ◦ g ◦ h) ◦ (k ◦ l ◦m ◦ n ◦ p) (f ◦ g) ◦ (h) ◦ (k ◦ l) ◦ (m ◦ n ◦ p)

f ◦ g ◦ h ◦ k ◦ l ◦m ◦ n ◦ p

is required to commute.
Obtaining such coherence homotopies is not a difficult generalization of our

discussion thus far. We are led to consider more general simplicial sets than K
and H, which we take to calling simplicial composition diagrams. Henceforth,
for convenience, we will begin writing

Sp(n) := ∆[1] ⊔∆[0] · · · ⊔∆[0] ∆[1]

for the n-spine. A simplicial composition diagram of arity n is then a diagram
in sSet Sp(n) ↪→ K ←↩ ∆[1], where K is inductively either ∆[n] or a diagram

(K1 ⊔∆[0] · · · ⊔∆[0] Kr) ⊔Sp(r) ∆[r]

such that Ki is a simplicial composition diagram of arity ki for all i and∑
i ki = n. Clearly the examples of H and K above are simplicial compo-

sition diagrams, though more generally any nested composition operation can
be represented by a unique diagram K.

There is a natural category SCDn of such diagrams of arity n for all n ≥ 0,
with maps commuting with the two morphisms from Sp(n) and ∆[1]. For the
above picture, we have a natural commuting square of such diagrams in Figure
1.4.

If we name these four simplicial composition diagrams (top to bottom, left
to right) as Q1, Q2, Q3 and Q4, where evidently Q4 = ∆[8], we obtain a new
diagram of given solutions to lifting problems

X8 = XQ4 X1

XQ2 XQ3

XQ1

XSp(8) XSp(8)

µ8

µQ2
µQ3

µQ1

id
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• •

• • • • •

• •

• • • •

• • • • • • • • • •

• • • •

• •

• • • • •

• •

Figure 1.4: A commuting diagram in SCD8.

where we have begun writing µK : XSp(n) → XK for the natural lift induced
by µr’s. In the above diagram, there are two chains of left homotopies from
µQ1 to µ8, corresponding to the two paths in the associativity condition. We
can concatenate these two paths to obtain two homotopies

V,W : XSp(8) ×N(I[1])→ XQ1

from µQ1 to ι ◦ µ8, where ι : X8 → XQ1 is the map induced by the inclusion
Q1 ↪→ ∆[8]. The homotopies V and W pass through µQ2 and µQ3 , respectively.

Note that these two homotopies are themselves solutions to the same lifting
problem

XSp(8) ⊔XSp(8) XQ1

XSp(8) ×N(I[1]) XSp(8)

µQ1
⊔(ι◦µ8)

∼
V

W

Hence, one should expect a homotopy between homotopies comparing V and
W , what we might call a 2-homotopy.

A naïve construction of such a 2-homotopy might take the form of a solution
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χ to the lifting problem(
XSp(8) ×N(I[1])

)
⊔
(
XSp(8) ×N(I[1])

)
XQ1

XSp(8) ×N(I[1]× I[1]) XSp(8)

V ⊔W

∼
χ

However, the resulting map χ, when postcomposed with the map XQ1 → X1,
fibered over objects x0, · · · , x8 ∈ (X0,0)0 and converted to a functor with h1,
results in a functor( 8∏

i=1

h1(X(xi−1, xi))
)
× I[1]× I[1]→ h1(X(x0, x8)).

We would like this datum to witness that the natural isomorphisms ϕ and ψ
induced by V and W respectively are equal, as this is precisely the content
of the coherence condition we are tasked with checking. Unfortunately, the
above functor merely provides us with a pair of natural automorphisms S on
the source of ϕ and ψ, and T on the target of ϕ and ψ, such that Tϕ = ψS. We
would like to ensure that T and S are identities. To do so, we enforce globularity
on the 2-homotopy χ by constraining it to a more substantial lifting problem(

XSp(8) ×N(I[1])
)
⊔XSp(8)⊔XSp(8)

(
XSp(8) ×N(I[1])

)
XQ1

(
XSp(8) ×N(I[1]× I[1])

)
⊔(

XSp(8)×N({0,1}×I[1])
) (XSp(8) ⊔XSp(8)) XSp(8)

V ⊔µQ1
⊔ι◦µ8W

∼
χ

which guarantees that T and S are identities as needed. Thus, χ is a globular
2-homotopy, which when h1 is applied becomes an equality between coherence
isomorphisms as needed.

Overall, we find that a somewhat inductive procedure for obtaining coher-
ence conditions presents itself: composition operations are given by solutions
to certain lifting problems, compositions of which induce multiple solutions to
the same aggregate lifting problem. Such solutions must have a homotopy be-
tween them, which gives a higher coherence condition. These may themselves
be composed, yielding solutions to the same lifting problem once again, giving
higher homotopies that amount to even higher coherences. For the purposes of
homotopy bicategories at least, it suffices to stop at 2-homotopies; any higher
conditions would simply collapse to identities between identities.
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In this way, we have therefore extracted all of the algebraic data of an
unbiased bicategory from a homotopy-theoretic model of (∞, 2)-category. We
are currently unaware of other comparable projects tackling this problem in
a similar manner, let alone ones amenable to constructing algebraic higher
categories of cobordisms.

It should also be noted that our construction is capable of extracting, from
a map F : X → Y between 2-fold Segal spaces each equipped with choices
(µn)n≥2 and (νn)n≥2 of horizontal compositions respectively, an unbiased pseud-
ofunctor h2(F ) : h2(X)→ h2(Y ) that is fully weak. The weakness stems from
the map F not needing to commute with maps µn and νn for any n; the
coherence isomorphisms such as

h2(F )(f) ◦ h2(F )(g) ∼= h2(F )(f ◦ g)

come from obtaining induced left homotopies between solutions

X2 Y2

XSp(2) YSp(2)

F2

∼
µ2

ν2◦FSp(2)

FSp(2)

to the same lifting problem. Our construction is functorial in this manner.
Finally, for any two choices µn or νn of horizontal compositions for a given
(∞, 2)-category X, we have that the induced homotopy bicategories are canon-
ically equivalent by an equivalence that acts as the identity on objects and
hom-categories.

1.2.3 Reedy Fibrant Replacement

While our means of obtaining homotopy bicategories seems to be quite natural
in the Reedy fibrant case, generalizing to the projective fibrant case is not so
straightforward. Given some projective fibrant 2-fold Segal space X, there is
no guarantee that the Segal maps

γn : Xn → X1 ×hX0
· · · ×hX0

X1

admit any section or even a homotopy inverse, namely a map ιn : X1 ×hX0

· · · ×hX0
X1 → Xn equipped with homotopies γnιn ∼ id and ιnγn ∼ id. As

is noted in [DS95, Lemma 4.24], a homotopy inverse can usually be expected
for a weak equivalence when the domain and codomain are both fibrant and
cofibrant. One can slim down their assumptions to the mere requirement that
the domain is fibrant and the codomain is cofibrant. However, while Xn will be
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fibrant in a projective model structure, cofibrancy is not such a simple condition
in this model structure and may not be satisfied by X1×hX0

· · · ×hX0
X1. Thus,

inverses to these maps at the level of homotopy categories may not be reflected
by anything at the level of X itself.

In order to enforce a reasonable interpretation of composition at the level
of (∞, 2)-categories, a natural approach is to take a fibrant replacement R(X)
of X, where R(X) is some Reedy fibrant 2-fold Segal space, together with a
weak equivalence X → R(X). One might then take the homotopy bicategory
h2(R(X)) of R(X), where the composition operations chosen may now be
reflected as chosen sections of the maps R(X)n → R(X)Sp(n).

Often, Reedy fibrant replacement functors are simply assumed to exist;
they always will, as the terminal map X → ∗ may be factorized into a trivial
cofibration followed by a fibration in the Reedy model structure. However, for
the purposes of computing homotopy bicategories, it will be necessary for us
to know precisely what the contents of a Reedy fibrant replacement R(X) of
X will be.

We propose in this thesis a general means to take a Reedy fibrant replace-
ment R(Y ) of a functor Y : C → sSet that is levelwise fibrant, where C is a
Reedy category. As far as we are aware, our approach is novel. In the simple
case of C = ∆op, the procedure inductively defines R(Y )n for increasing n,
starting with setting

R(Y )0 := Y0.

There is then a natural map Y0 → R(Y )0 given by the identity, so is a weak
equivalence.

Proceeding to R(Y )1, we require that the map R(Y )1 → R(Y )20 intuitively
identifying sources and targets of 1-morphisms, given by the maps ∆[0] ↪→
∆[1], is a fibration. Writing nerve for the standard quasi-categorical nerve
Cat → sSet and again I[1] for the walking category, one obtains a natural
factorization of the map Y1 → R(Y )0 of the form

Y1 ↪→ Y
nerve(I[1])
0 ×Y0 Y1 ×Y0 Y

nerve(I[1])
0 → Y 2

0 = R(Y )20

where the second map is a fibration and the first a trivial cofibration. We
thus set R(Y )1 to be this middle space. Intuitively, an element of R(Y )1 is a
1-morphism f with two paths in Y0, one to its source object x and one from
its target object y. We might depict such an element diagrammatically as

x′ x y y′
p f q

where f ∈ Y1 and p, q : nerve(I[1]) → Y0. The source and target maps in
R(Y ) identify the objects x′ and y′ respectively, rather than x and y.

For the degeneracy map, there is an evident morphism Y0 → R(Y )1 ob-
tained by a factorization Y0 → Y1 → R(Y )1. This sends an object to its
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identity 1-morphism, with constant paths on either end. One may check that
the simplicial identities are satisfied.

Stepping up a dimension, writing ∂∆[n] for the boundary of the n-simplex
∆[n], we now consider the induced map Y2 → Y∂∆[2] → R(Y )∂∆[2]. Note that
this is indeed a step up in induction, as R(Y )20

∼= R(Y )∂∆[1]. We again factorize
this map to obtain

Y2 → Y2 ×R(Y )∂∆[2]
R(Y )

nerve(I[1])
∂∆[2] → R(Y )∂∆[2].

This latter map is a fibration by definition, which is the required property for
Reedy fibrancy. Moreover, the former map is a trivial cofibration, so we may
set R(Y )2 to be this middle object.

An element in R(Y )∂∆[2] is three elements of R(Y )1 arranged into an ori-
ented triangle. We may thus draw an element of R(Y )2 as a diagram

y′′′

y′ y′′

x′′ y z′′

x z

x′′′ x′ z′ z′′′

g′f ′

gf

h

h′

α

The map Y2 → R(Y )2 then identifies a diagram of this form where all paths
and squares are constant.

The two degeneracy maps are now more complex; we cannot simply factor
through Y2 → R(Y )2, as R(Y )1 now contains extra data that Y1 does not. A
typical degeneracy map will obtain from a triple (p, f, q) ∈ R(Y )1 a 2-simplex
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of the form

y′

y y′

x y y′

x y

x′ x y y′

cy′q

1y′f

1y

cy′

f

f
p

p f q

1q

f̂

cf

cf

where c(−) denotes constant paths. The triangular paths in the diagram are
then homotopies that retract the paths down to identities along one coordinate.

As one proceeds to higher dimensions, it continues to be possible to induc-
tively set

R(Y )n := Yn ×R(Y )∂∆[n]
R(Y )

nerve(I[1])
∂∆[n] .

The face maps are straightforward, as is the map Yn → R(Y )n, which includes
into a constant path of boundaries. The degeneracy maps are more nuanced
and require special treatment, each obtained by an ensemble of degenerate
homotopies. It is for this last reason that we suspect this construction has not
been considered thus far in the literature.

We can generalize the above procedure to a replacement for a 2-fold Segal
space X by setting R(X)0,0 := X0,0 and inductively in n and m defining

R(X)n,m := Xn,m ×R(X)∂∆[m,n]
R(X)

nerve(I[1])
∂∆[m,n] .

The reversal of m and n in the boundary bisimplex is a matter of convention
in this thesis.

Thankfully, R(X) will preserve the Segal maps as weak equivalences and
the property of essential constancy, so will indeed be a Reedy fibrant 2-fold
Segal space. However, this object is considerably more complicated thanX was
alone. Note that even each level R(X)n will have an infinte amount of data
appended as one inductively proceeds up the spaces R(X)n,m for increasing
m. Considering even low dimensions, such as R(X)3,1, proves to be entirely
intractable at the present moment. A more concise, perhaps non-inductive,
formulation of R(X) would be a useful endeavor in this regard, which we leave
to future work.
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For the time being, R(X) still serves to have some utility. In the case of
(∞, 1)-categories, we demonstrate an alternative method to construct homo-
topy categories of projective fibrant Segal spaces by taking homotopy cate-
gories of their Reedy fibrant replacements. As it turns out, the two homo-
topy categories h1(X) and h1(R(X)) are in natural bijection on objects and
morphisms, so the complexity of R(X) can be entirely forgotten and its use
relegated to simpler proofs of coherence. A similar story thankfully holds for
the (∞, 2) case: for a projective fibrant 2-fold Segal space X, there is a natural
isomorphism of categories

h1({x} ×hX0
X1 ×hX0

{y}) ∼= h1(R(X)(x, y)).

We should perhaps not be surprised, as the objects of both categories are the
same, namely 1-morphisms augmented with paths of their source and target
objects. With these isomorphisms, we are able to prove that for any choice of
inverses to the functors

h1({x} ×hX0
X2 ×hX0

{z})→ h1({x} ×hX0
(X1 ×hX0

X1)×hX0
{z})

there is a valid choice of coherence isomorphisms that obtains an unbiased
bicategory structure. Though we suspect there is an elementary description of
these coherence isomorphisms that does not involve R(X) at all, we have not
yet obtained it. We leave this as future work.

In total, we are able to apply our Reedy fibrant replacement functor R
to demonstrate the correctness of the conjectured construction of homotopy
bicategory for projective fibrant 2-fold Segal spaces of Johnson-Freyd and Sche-
imbauer in [JS17]. This demonstrates how our approach to homotopy bicat-
egories not only unravels the algebraic data implicit in the (∞, 2)-category
in the Reedy fibrant case, but also generalizes to establish conjectured con-
structions in the projective fibrant case. Moreover, should one be interested,
the projective fibrant case is also obtained by solving a natural series of lift-
ing problems that can be concretely described by our model of Reedy fibrant
replacement.

We believe there is further potential to this approach. For instance, one
should be able to obtain symmetric monoidal structures on bicategories in
this regard. Consider a symmetric monoidal 2-fold Segal space X : Γ →
SeSp2. The category Γ is certainly not Reedy, though it is a generalized Reedy
category in the sense of [BM10], a notion developed by Berger and Moerdijk
to extend Reedy categories to permit non-trivial automorphisms of objects. If
one were to augment our construction of R to generalized Reedy categories,
one could instead begin with a functor X that is generalized Reedy fibrant,
where the required weak equivalences in the monoidal structure are instead

31



Towards Algebraic n-Categories of Manifolds and Cobordisms

trivial fibrations. One then obtains new lifting problems with solutions κn

X⟨n⟩

∏n
i=1X⟨1⟩

∏n
i=1X⟨1⟩

∼
κn

id

that serve as natural contenders for a choice of unbiased tensor product. The
same calculus of higher homotopies should be possible once again, which should
serve to obtain symmetric monoidal homotopy bicategories. Again using our
Reedy fibrant replacement functor, these results can be transmitted to the
projective fibrant case instantly, producing symmetric monoidal bicategories
of cobordisms suitable for use in TQFTs.

1.2.4 To (∞, 3) and Beyond

We suspect that our means of obtaining unbiased homotopy bicategories of
Reedy fibrant 2-fold Segal spaces should continue to extend to higher dimen-
sions, or at least some modification thereof. The general calculus of obtaining
higher homotopies as coherence conditions between existing data seems sensi-
ble as a path to comparing algebraic and homotopy-theoretic models of higher
category. It certainly appears more plausible than attempting to extend those
methods discussed thus far that obtain composition operations and coherences
after truncation; extending these approaches would involve inverting certain
(n−1)-equivalences after truncating hom-(∞, n−1)-categories to their homo-
topy (n− 1)-categories, which would likely demand explicit computation of all
the combinatorial higher algebraic structure of a weak n-category at the level
of (n− 1)-categories. By working at the level of (∞, n)-categories instead, as
our approach demonstrates, much of this challenge can be reduced to obtain-
ing homotopies between solutions to lifting problems in a model category, a
method not currently available to algebraic notions of n-categories which seem
at present to have no model structures proven in the literature.

A particular model that we find promising is that of Trimble n-categories,
as defined in [Che11]. To add a pinch of formality to our discussion, what we
construct from a Reedy fibrant 2-fold Segal space X is an unbiased bicategory
whose objects are the elements of the set (X0,0)0 and whose hom-categories are
of the form h1(X(x, y)) for all objects x, y. Our means of obtaining composition
operations immediately takes on an operadic flavor after this point. For a start,
simplicial composition diagrams form an operad SCD valued in Cat, which
at level n is the category SCDn of diagrams of arity n. The operad map, for
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n ≥ 1 and k1, · · · , kn ≥ 0 of the form

SCDn ×
n∏
i=1

SCDki → SCD∑
i ki

sends diagrams Q,K1, · · · , Kn to the diagram

(K1 ⊔∆[0] · · · ⊔∆[0] Kn) ⊔Sp(n) Q

which is easily checked to be a new simplicial composition diagram.
Our above arguments, for n ≥ 0 and objects x0, · · · , xn, amount to the

construction of functors

SCDn ×
n∏
i=1

h1(X(xi−1, xi))→ h1(X(x0, xn))

that abide by an operad law. This law states that, for a tuple of objects

Y = ((x10, · · · , x1k1), · · · , (x
n
0 , · · · , xnkn))

where xiki = xi+1
0 for all i < n and such that flattening Y and removing the

extraneous xiki ’s for i < n produces a tuple (x0, · · · , xr), we have that the
diagram

SCDn ×
∏n

i=1

(
SCDki ×

∏ki
j=1 h1(X(xij−1, x

i
j))
)

SCDr ×
∏r

i=1 h1(X(xi−1, xi))

SCDn ×
∏n

i=1 h1(X(xi0, x
i
ki
)) h1(X(x0, xr))

commutes. This is precisely the definition of a Trimble 2-category, though with
a different choice of operad: in [Che11], the operad in question is the levelwise
fundamental groupoid of the little intervals operad E, where for k ≥ 0

Ek ⊆ [0, k][0,1]

is the subspace of continuous endpoint-preserving maps [0, 1] → [0, k], while
the operad maps are given by concatenation. An important trait of this op-
erad is that it is contractible, so that all coherence isomorphisms and higher
conditions indeed form some contractible collection. It is notable then that
SCD is not even a groupoid. However, the image of every map in SCDn is a
natural isomorphism, so we could simply consider the groupoid generated by
SCDn for each n. It remains to be proven that these groupoids, or at least
some minor modifications of them, are contractible; we strongly suspect this
to be the case.
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In order to obtain higher Trimble n-categories, the aim would then be to
inductively obtain each hn−1 and perform a construction similar to above with
coherence conditions going up to dimension n. One would need a suitable
‘n-categorification’, or perhaps even ‘(∞, n)-categorification’, of SCD for this
to be possible. This problem is a topic of future work. We suspect it will pull
upon some modification of higher opetopes [BD98], as simplicial composition
diagrams seem to be equivalent to the lowest-dimensional nontrivial case of
these. Other modifications to the above methods would also be necessary,
such as either introducing a notion of weak n-functor between Trimble n-
categories similar to our construction or considering only strict n-functors,
that is, maps X → Y between n-fold Segal spaces commuting with the chosen
horizontal compositions. If all of these issues were resolved, it would result
in a completely general construction of algebraic homotopy n-categories of
homotopy-theoretic (∞, n)-categories for all n.

There are also other models to consider, such as those of Batanin and
Leinster [Lei04], though these models will require a substantially different per-
spective in order to generate suitable lifting problems. We leave this to future
work.

1.2.5 Related Constructions

A few alternative constructions of the homotopy bicategory h2(X) of a com-
plete 2-fold Segal space X are already available in the literature. One of these
was obtained by Moser in [Mos21], where a Quillen pair between Lack’s model
structure on strict 2-categories and the standard model structure for Reedy
fibrant complete 2-fold Segal spaces is obtained, the left adjoint of which is a
homotopy 2-category functor

hMos
2 : CSSP2 → 2Cat.

This approach, more concerned with model category theory than with con-
structing particular homotopy bicategories, elects to produce strict 2-categories
instead of more general weak ones. While indeed every bicategory is equiva-
lent to a strict 2-category, such a construction would not directly obtain an
explicitly weak bicategory of manifolds and cobordisms akin to, for instance,
the construction of Schommer-Pries in [Sch14b]. For this reason, we elect not
to proceed with the functor hMos

2 for our specific purposes. It should be noted
that this construction is in fact well-defined on any functor X : (∆op)2 → sSet
rather than just complete 2-fold Segal spaces, though still produces strict 2-
categories in this general case.

Another approach is to be found via the work of Campbell [Cam20], which
demonstrates a method to produce from a 2-quasicategory C, a homotopy-
theoretic model of (∞, 2)-category, a corresponding Tamsamani 2-category
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hCamp2 (C), a model of bicategory. In order to understand 2-quasicategories,
we first need a quick definition:

Definition 1.2.1 ([Rez10, pg. 11]). Suppose C is a category. Define ΘC to
be the category whose objects are tuples ([m], c1, · · · , cm) where [m] ∈ ∆ and
ci ∈ C. Morphisms between ([m], c1, · · · , cm) and ([n], d1, · · · , dn) consist of

1. A morphism f : [m]→ [n] in ∆ and

2. For each 1 ≤ i ≤ m and 1 ≤ j ≤ n such that f(i− 1) ≤ j ≤ f(i), a map
fij : ci → dj in C.

We should think of Θ2 := Θ∆ as the category of 2-dimensional past-
ing diagrams, which are a special class of 2-categories that represent ‘ari-
ties’ of 2-categorical composition operations. A typical element is of the form
([m], [n1], · · · , [nm]) for m,n1, · · · , nm ≥ 0. As an example, we should interpret
([4], [3], [1], [0], [2]) as the 2-category

• • • • •

A 2-quasicategory is then a presheaf Θop
2 → Set satisfying certain natural

conditions we will not elaborate on here.
By work of Tamsamani [Tam99] that was later refined by Lack and Paoli

in [LP08], one may then convert a Tamsamani 2-category Q into a fully weak
bicategory Q̃, as is done in [Cam20]. Of course, one must somehow first convert
a complete 2-fold Segal space X into an equivalent 2-quasicategory. A web of
functors that have been already studied is possible to piece together to this
effect2 of the form

sSet(∆
op)2 sSetΘ

op
2 SetΘ

op
2 sSet∆

op

Cat∆
op

Bicat

d#

d∗

d∗

RealD

SingD d∗

hCamp
2

d∗

τ∆
op

˜(−)

⊣
⊣

⊣ ⊣

which draws upon the following functors:
2I learned about much of this chain of equivalences, along with citations that gave more

of this chain, through the fantastic Online Workshop on (∞, 2)-Categories run by Lyne
Moser, Nima Rasekh and Martina Rovelli. I express my gratitude to all the organizers and
participants for this event and the many things I learned from it.

35



Towards Algebraic n-Categories of Manifolds and Cobordisms

• d : ∆×∆→ Θ2 is the functor sending ([n], [m]) to the pasting diagram
([n], [m], · · · , [m]);

• RealD and SingD are defined in [Ara14];

• τ : sSet → Cat is the left adjoint to the nerve functor nerve : Cat →
sSet. It restricts to the homotopy (1-)category functor for quasicate-
gories.

The rest of the functors are induced; d∗ is a pullback map, while d∗ and
d# are induced right and left adjoints. Many of the adjoint pairs of functors
depicted above have been proven to form Quillen pairs on reasonable model
structures [BR20] [Ara14] [Cam20].

There are a few nontrivial subtleties to this picture if we wanted to com-
pose some chain of these maps to obtain homotopy bicategories. The first
is that there seems to be no sensible path of left adjoints from sSet(∆

2)op to
SetΘ

op
2 . One might desire such a chain as, in general, homotopy bicategory

functors should form the left adjoints to some ‘nerve’ functor in the opposite
direction, as is the case for the constructions of Moser [Mos21] and Campbell
[Cam20]. One might believe that the composite RealD ◦ d# might be a vi-
able option. Unfortunately, the left adjoint d# to d∗ is Quillen on the wrong
model structure. Indeed, it is left Quillen on the projective model structures
rather than the injective ones [BR20, pg. 5-6], while RealD is Quillen on the
injective model structure on sSetΘ

op
2 [Ara14] [BR13b]. One might remedy this

with intermediate injective fibrant replacements, though this is a nontrivial
step. Moreover, one should not expect fibrant replacement functors to be left
Quillen, which means one functor in the chain may not be a left adjoint. A
composite of such functors appears less likely to be a left adjoint itself, which
may lead to challenges further down the line.

Another obstacle stems from the fact that Bordn,2 is not Reedy fibrant. A
Reedy fibrant replacement is thus necessary at the start of the chain, as many
of these constructions only work on Reedy model structures. We will address
sensible Reedy fibrant replacement functors in time as a part of our own con-
structions of homotopy bicategories. Moreover, its lack of completeness means
the above constructions must be expected to work without a completeness
assumption or require the incorporation of a completion functor.

Despite the challenges thus far mentioned, it is perfectly plausible that a
construction of this form could yield a useful notion of homotopy bicategory for
2-fold Segal spaces. We leave investigating such an approach and comparisons
thereof with the results of this thesis to future work.

Finally, it should be mentioned that if a sensible chain of functors is found
across the above diagram and a homotopy bicategory functor is obtained
therein, the resulting construction will necessarily present similar issues to
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the approach conjectured in [JS17]. Indeed, the final functor from Tamsamani
2-categories to classical bicategories detailed in [LP08] chooses composition
operations in essentially the same manner, so the final composition operations
will be chosen after taking homotopy categories rather than before. Regardless,
if successfully investigated, this approach may still serve as a useful model of
homotopy bicategory for TQFTs. We leave exploration of possible applications
for such an alternative approach to future work.

1.3 Outline

This thesis is organized into three major chapters, with one final short chapter
on applications and examples. Most of chapters 2 and 3, along with the discus-
sion of fundamental bigroupoids in chapter 5, are all taken directly from the
author’s preprint [Rom23], albeit with various modifications and corrections.

Chapter 2 covers all relevant background material; it assumes some ap-
titude with category theory, bicategories and model structures. Simplicial
sets and higher simplicial spaces, Reedy, injective and projective model struc-
tures, left Bousfield localization, tensors and cotensors, homotopy limits and
the model structures for both Reedy and projective fibrant (complete) n-fold
Segal spaces for n = 1, 2 are covered in this chapter. Unbiased bicategories
are then defined along with unbiased pseudofunctors, together with an estab-
lished functor which sends an unbiased bicategory to an equivalent biased one.
Finally, the notion of an equivalence of unbiased bicategories is presented.

Chapter 3 then focuses on the construction of unbiased homotopy bicate-
gories. It begins with a construction of homotopy bicategories after truncating
to homotopy categories of mapping spaces, using methods analogous to those
used by Lack and Paoli in [LP08]. Issues are noted with this approach, mo-
tivating the search for the data of a homotopy bicategory within the original
(∞, 2)-category. To obtain this data, the theory of simplicial composition dia-
grams and choices of horizontal compositions is then developed, culminating in
the construction of the operad SCD. A detailed treatment of left homotopies
and globular left 2-homotopies for Reedy fibrant Segal spaces then follows,
establishing how the homotopy category functor h1 sends left homotopies to
natural isomorphisms, how to concatenate certain left homotopies and iden-
tifying situations when globular 2-homotopies exist between left homotopies.
The construction of h2 is then described in full; a great deal of technical work
is needed to show how to functorially concatenate and compose left homo-
topies in an operadic manner, such that the resulting left homotopy solves
certain useful lifting problems. The case of unbiased pseudofunctors is then
treated, resulting in a completely functorial construction that is invariant un-
der choice of horizontal composition up to canonical isomorphism. To end the
chapter, the two constructions of homotopy bicategory are shown to precisely
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agree, up to some potential discrepancy in certain coherence isomorphisms.
We conjecture equality on these as well.

Chapter 4 presents our Reedy fibrant replacement functor. The construc-
tion is first given in full generality over any Reedy category, which is later
specialized to n-fold Segal spaces for n = 1, 2. We analyze the behavior of
our replacement functor on various example Reedy categories to better un-
derstand our construction. We then demonstrate how to apply our Reedy
fibrant replacement functors to understand homotopy categories of projective
fibrant Segal spaces, as an illustration of our construction’s efficacy. Finally,
we turn to the approach of [JS17, Def. 2.12] to defining homotopy bicategories
of projective fibrant 2-fold Segal spaces and use our Reedy fibrant replacement
functor to prove its consistency.

Chapter 5 finally demonstrates some applications of our homotopy bicate-
gory constructions and examples of them in action. First, we demonstrate how
our construction functorially obtains the fundamental bigroupoid of a topolog-
ical space. Next, we consider a new characterization of equivalences between
complete 2-fold Segal spaces in both the projective fibrant and Reedy fibrant
cases, akin to Dwyer-Kan equivalences though now employing homotopy bicat-
egories. Finally, we give a characterization of completeness for Reedy fibrant
2-fold Segal spaces using homotopy bicategories. The thesis then concludes
with some remarks on potential avenues for future work.

1.4 Notation and Conventions
We adopt a few notational conventions throughout this thesis.

In general, we write C or D to refer to generic categories. We will write
Fun(C ,D) or DC interchangeably to refer to the category of functors and
natural transformations for two categories. In general, in a category with
exponents, we write Y X for the inner hom object.

∆ will denote the simplicial category of finite ordinals with weakly mono-
tonic maps for morphisms. We use the notation

[n] := {0 < · · · < n}

to refer to the object of size n in ∆. Maps in ∆ are written in turn as

⟨i1, · · · , in⟩m : [n]→ [m]

for 0 ≤ ik ≤ m, which denotes the map sending j 7→ ij for all 0 ≤ j ≤ n. The
only requirement on these maps is that ik ≤ ik+1 for all 0 ≤ k < n. Sometimes,
we will omit the subscript and simply write ⟨i1, · · · , in⟩.

We write Cat for the category of small categories and functors, and Bicat
for the category of small bicategories and pseudofunctors. We write Set for the
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category of sets, Top for a ‘convenient category of topological spaces’ which
we will define more precisely in due course and sSet := Set∆

op

for the category
of simplicial sets. For a simplicial set X : ∆op → Set, we write Xn := X([n])
and Xf := X(f) : Xn → Xm for a map f : [m]→ [n] in ∆.

We will write sSpacen := sSet(∆
op)n to refer to the category of n-uple

simplicial spaces. In general, for an n-uple simplicial space X : (∆op)n → sSet
we write

(Xk1,··· ,kn)m :=
(
X([kn], · · · , [k1])

)
([m]).

Note the reversal of indices k1, · · · , kn. This may, by hom-tensor adjunction,
be alternatively seen as a functor X : (∆op)n+1 ∼= ∆op× (∆op)n → Set. In this
case, we write

(Xk1,··· ,kn)m := X([m], [kn], · · · , [k1]).

We will also write, for r < n, that

Xk1,··· ,kr := Xk1,··· ,kr,•, · · · , •︸ ︷︷ ︸
n−r

: (∆op)n−r → sSet.

In particular, we have that Xk = Xk,•,··· ,•. Moreover, we have that

(Xk1,··· ,kr)kr+1,··· ,kn = Xk1,··· ,kr,kr+1,··· ,kn .

We write I[n] to refer to the groupoid with n+1 objects of the form {0, · · · , n},
which has precisely one morphism between any two objects. In general, we
will call a category or groupoid contractible if every hom-set is a singleton.
A contractible category C is always a groupoid and moreover is equivalent to
a terminal category ∗ by the terminal map C → ∗. Evidently, a category is
contractible if and only if the terminal map is an equivalence of categories.
Note that we in general refer to the terminal object ∗ and the terminal map
X → ∗ from X in any category, even though terminal objects are in general
only unique up to unique isomorphism.

At times, we will describe a property for either a functor X : C → D or a
natural transformation f : X ⇒ Y between such functors as being levelwise.
By this, we mean for every c ∈ C the property holds either of X(c) or fc :
X(c) → Y (c). For instance, one can compute the product X × Y of two
simplicial setsX, Y : ∆op → Set ‘levelwise’, meaning to compute (X×Y )(c) :=
X(c)× Y (c) for each c ∈ ∆op.

We employ the framework of model categories developed by Hirschhorn in
[Hir09] throughout this thesis. In particular, this comes with the assumption
that all model categories, which we generally write as M , are equipped with
chosen functorial factorizations for all morphisms.
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Background

Some technical background is necessary before we can begin discussing the con-
structions of this thesis. In order to understand the model of (∞, n)-category
we will be using repeatedly, namely complete n-fold Segal spaces, we will re-
quire some aptitude with simplicial sets and the construction of model struc-
tures. We will also need some understanding of lower dimensional category
theory, in particular bicategories and unbiased bicategories.

For the rest of this thesis, we assume the following:

Definition 2.0.1. Let Top be the category of k-spaces, as in [Ste67].

Recall that a k-space is a Hausdorff space X such that, for every closed
subset K ⊆ X, if Q ⊆ K is such that Q∩C ̸= ∅ for all compact C ⊆ K, then
Q is itself closed [Ste67, pg. 2].

Our restriction to k-spaces is motivated by a desire for Cartesian closedness.
Indeed, our chosen definition of Top is Cartesian closed [Wyl73] and suitably
rich to admit a model structure [Hir09, Thm. 7.10.10], making it an especially
convenient workspace for our homotopy theoretic needs.

We should clarify now that there are no new results anywhere in this chap-
ter. There are many ways to go about describing complete 2-fold Segal spaces;
our choices are equivalent to the others in the literature, such as the Reedy
fibrant definitions given in [BR20] and [Mos21] and the projective fibrant case
studied in [JS17]. What is original here is merely a matter of notation, reaching
the same constructions by analogous means.

2.1 Simplicial Sets and Spaces
Simplicial sets are the fundamental building blocks for many models of (∞, n)-
category theory. The model we will use is no different; in the end, a complete
n-fold Segal space is little more than a diagram of simplicial sets that one
might interpret as representing some (∞, n)-category. The diagram is required
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to satisfy some properties that make the interpretation more believable, a feat
accomplished with the technology of model structures. Before we explore such
methods, we must understand how to construct and interpret the diagram
itself. A solid background of simplicial sets is therefore our first priority.

A simplicial set, in essence, is a geometric object built by gluing together
higher-dimensional tetrahedra. Simplicial sets share many similarities with
CW-complexes, including in their homotopy theory. We will touch on this
point more formally when we discuss model categories. For now, the basic
shapes one should keep in mind are the following:

Definition 2.1.1 ([GJ09c, pg. 3]). Let n ≥ 0. The topological n-simplex is
the space

∆t[n] :=
{
(x0, · · · , xn) ∈ Rn+1 |

n∑
i=0

xi = 1,∀i xi ≥ 0
}
⊆ Rn+1

equipped with the subspace topology.

A few illustrations of low-dimensional cases should elucidate why we should
see these as analogous to tetrahedra in all dimensions:

x1

x0

x1

x2

x0

Figure 2.1: The spaces ∆t[n] for n = 0, 1, 2 from left to right. ∆t[3] is depicted
below.

Of course, we cannot faithfully represent R4 in any straightforward way on
two-dimensional paper, so visualizing ∆t[3] as a tetrahedron will have to do.
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One might note that the simplices depicted above fit into one another as
vertices, edges and faces. For instance, there are three natural embeddings of
∆t[1] into ∆t[2] identifying the edges of the topological 2-simplex of the form
d02, d

1
2, d

2
2 : ∆t[1]→ ∆t[2] defined by

d02(x0, x1) := (0, x0, x1)

d12(x0, x1) := (x0, 0, x1)

d22(x0, x1) := (x0, x1, 0)

for all (x0, x1) ∈ ∆t[1]. These are really just special cases of the affine maps

⟨i0, · · · , in⟩m : ∆t[n]→ ∆t[m]

that send ejn 7→ e
ij
m, where ein ∈ ∆t[n] is the point such that (ein)j = δij is

the Kronecker delta. For instance, e02 = (1, 0, 0) and e24 = (0, 0, 1, 0, 0). In
particular, we have d02 = ⟨1, 2⟩2, d12 = ⟨0, 2⟩2 and d22 = ⟨0, 1⟩2.

We will only be interested in maps f : ∆t[n] → ∆t[m] that are affine,
preserve vertices and preserve an ordering on vertices. More precisely, we only
care for maps f such that if i ≤ j, then f(ein) = efim and f(ejn) = e

fj
m such that

fi ≤ fj. Hence, the full ranges of maps we will care for are ones of the form

f = ⟨f0, · · · , fn⟩m, i ≤ j ⇒ fi ≤ fj.

It should be imagined that our simplices have a particular orientation they pre-
fer. This means we exclude any automorphisms of the n-simplex that permute
the vertices, such as ⟨1, 0⟩1 : ∆t[1] → ∆t[1] sending (x0, x1) 7→ (x1, x0). One
might imagine depicting topological n-simplices with arrows on their edges:

Figure 2.2: The topological 2-simplex.

We can safely abstract such simplices and maps between them by consid-
ering only the vertices and the behavior of the maps on these vertices. We
obtain the following category:

Definition 2.1.2 ([GJ09c, pg. 3]). The simplicial category ∆ is the category
whose objects are the ordered sets

[n] := {0 ≤ 1 ≤ · · · ≤ n− 1 ≤ n}
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for n ∈ Z≥0 and whose morphisms are the maps

⟨f0, · · · , fn⟩m : [n]→ [m]

sending i 7→ fi, where i ≤ j ⇒ fi ≤ fj.

Proposition 2.1.3 ([GJ09c, pg. 3]). There is a functor •t : ∆→ Top sending
[n] 7→ ∆t[n] and ⟨f0, · · · , fn⟩m : [n]→ [m] to the analogous map ⟨f0, · · · , fn⟩m :
∆t[n]→ ∆t[m].

Proof. ∆t[n] is clearly a k-space, so the functor is well-defined. Functoriality
is then trivial.

It should be noted that Goerss and Jardine do not make mention of using
a convenient category of topological spaces such as k-spaces, as we do.

As promised, a simplicial set will then simply be an arbitrary gluing of
objects in ∆, namely an object in ∆’s cocompletion, which we may model
with the category of presheaves Set∆

op

:

Definition 2.1.4 ([GJ09c, pg. 3]). A simplicial set is a presheaf ∆op → Set.
The category of simplicial sets sSet is the presheaf category Set∆

op

.

Notation 2.1.5. Let X be a simplicial set. For [n] ∈ ∆, write Xn := X([n]) ∈
Set for the set of n-simplices in X. For ⟨i0, · · · , in⟩m : [n] → [m], write
X⟨i0,··· ,in⟩ : Xm → Xn.

Note that m is omitted in the latter notation above. It will either be clear
from context or stated explicitly henceforth.

There are a few particularly important maps in ∆ one should always keep
in mind. These include the maps di2 we explored earlier, identifying the faces
of a 2-simplex, along with a totally new class of maps called the degeneracies,
which identify two adjacent vertices and collapse an n-simplex into an (n−1)-
simplex by doing so:

Definition 2.1.6 ([GJ09c, pg. 4]). The cofaces din : [n − 1] → [n] for n ≥ 1
and 0 ≤ i ≤ n are the maps

din := ⟨0, · · · , i− 1, î, i+ 1, · · · , n⟩n

sending j to j if j < i or j + 1 otherwise.
The codegeneracies sin : [n + 1] → [n] for n ≥ 0 and 0 ≤ i ≤ n are the

maps
sin := ⟨0, · · · , i− 1, i, i, i+ 1, · · · , n⟩n

sending j to j if j ≤ i or j − 1 otherwise.

These satisfy a number of basic identities, called the cosimplicial identities :
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Proposition 2.1.7 ([GJ09c, pg. 4]). The following identities hold in ∆:

djnd
i
n−1 =

{
dind

j−1
n−1 i < j

di+1
n djn−1 i ≥ j

sjnd
i
n+1 =


dins

j−1
n−1 i < j

1 i = j, j + 1

di−1
n sjn−1 i > j + 1

sjns
i
n+1 =

{
sins

j+1
n+1 i ≤ j

si−1
n sjn+1 i > j

.

Proof. Exercise.

These identities are actually sufficient to generate a simplicial set, so they
are of particular importance.

Proposition 2.1.8 ([GJ09c, pg. 4]). Let Xn ∈ Set for all n ≥ 0 and choose
a collection of maps

δin : Xn → Xn−1, n ≥ 1, 0 ≤ i ≤ n

and
σin : Xn → Xn+1, n ≥ 0, 0 ≤ i ≤ n.

Suppose they satisfy the analogue in ∆op of the identities in Proposition 2.1.7.
Then there is a unique simplicial set X where each Xn is as the chosen sets
above, Xdin

= δin and Xsin
= σin.

Notation 2.1.9. For a simplicial set X, we call the maps Xdin
the face maps

and Xsin
the degeneracy maps.

It is high time we constructed a few example simplicial sets.

Notation 2.1.10. Let ∆[n] ∈ sSet be the representable simplicial set corre-
sponding to [n]. We call this simplicial set the n-simplex.

A number of simplicial sets then become available to us.

Definition 2.1.11. Define the n-spine Sp(n) ∈ sSet to be the simplicial set

∆[1] ⊔∆[0] · · · ⊔∆[0] ∆[1]︸ ︷︷ ︸
n

for n ≥ 1. For n = 0, let Sp(0) := ∆[0].
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We can imagine the n-spine as a chain of arrows:

0 1 · · · n− 1 n

Note that there is a natural inclusion Sp(n) ↪→ ∆[n], given by the colimit
of the maps ⟨i− 1, i⟩n : ∆[1]→ ∆[n] for 1 ≤ i ≤ n.

Definition 2.1.12 ([HM22, pg. 60]). For a simplicial set X, define the n-
skeleton for n ≥ 0 to be the minimal sub-simplicial set sknX ⊆ X which
contains every x ∈ Xk for k ≤ n.

We can think of the n-skeleton of a simplicial set as consisting solely of the
simplices up to dimension n and their degeneracies. For instance, sk0Sp(n)
is just a disjoint union of n + 1 instances of ∆[0], while sk1∆[2] is a hollow
triangle. We can generalize this latter example:

Definition 2.1.13. Define the boundary of the n-simplex to be

∂∆[n] := skn−1∆[n].

There is of course a natural inclusion ∂∆[n] ↪→ ∆[n]. Alternative descrip-
tions are given of ∂∆[n] in [HM22, pg. 161] and [GJ09c, pg. 6], though we
find Definition 2.1.13 to be more succinct.

There is one last particular simplicial set we will have some use for:

Definition 2.1.14 ([HM22, pg. 161]). Let n ≥ 0 and 0 ≤ k ≤ n. Define the
(n, k)-horn or simply horn Λnk to be the subobject of ∆[n] such that, for p ≥ 0,

(Λnk)p =
{
⟨f0, · · · , fp⟩n : [p]→ [n] | ∃i ̸= k

(
∀j i ̸= fj

)}
.

One can also define Λnk to be the maximal sub-simplicial set of ∆[n] not
containing the (n− 1)-simplex

dkn : ∆[n− 1]→ ∆[n].

The horns are also subobjects of the boundary ∂∆[n]. One should see Λnk as
consisting of all the faces of ∆[n] excluding the face dkn opposite to the vertex
⟨k⟩n.
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0

3

2

1

Figure 2.3: The horn Λ3
0.

One might get a sense from the above image for why these might be named
‘horns’; in Λ3

0 above, the vertex ⟨0⟩ is the ‘mouthpiece’, while the ‘rim’ of
the horn is the boundary ∂∆[2] ↪→ Λ3

0 that naturally fits into the commuting
diagram

∂∆[2] Λ3
0

∆[2] ∆[3]
d03

Note also that Λ2
1 = Sp(2).

With horns, we are now able to establish perhaps the most significant
type of simplicial set for our purposes: the Kan complexes, which are those
simplicial sets that perhaps admit the best interpretation as combinatorial
models of topological spaces.

Definition 2.1.15 ([GJ09c, pg. 11]). A Kan complex X is a simplicial set
such that, for every n > 0, for every 0 ≤ k ≤ n and for every map q : Λnk → X,
there exists a map p : ∆[n]→ X such that the diagram

Λnk X

∆[n]

q

p

commutes.

There are a few important functors from and to sSet that deserve dis-
cussion. The first of these, a rich source of Kan complexes and a partial
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justification for interpreting Kan complexes as homotopy types, comes from
the realization that any space T ∈ Top naturally induces a simplicial set called
the singular set, whose n-simplices are the maps ∆t[n]→ T :

Definition 2.1.16 ([GJ09c, pg. 3]). Define the singular set functor Sing :
Top→ sSet such that T 7→ Sing(T ) where for n ≥ 0 we have

Sing(T )n := HomTop(∆t[n], T )

with simplicial maps given by precomposition. For f : T → U in Top, define
Sing(f) levelwise by sending ∆t[n]→ X to ∆t[n]→ X

f−→ Y .

Proposition 2.1.17 ([GJ09c, Lemma 3.3]). For every space T ∈ Top, the
simplicial set Sing(T ) is a Kan complex.

The functor Sing is in fact a special case of a general way to obtain certain
functors, which always yield a left adjoint:

Proposition 2.1.18 ([MM94, Thm. 2, pg. 41]). Suppose A : C → E is a
functor from a small category C to a cocomplete category E . Consider the
Yoneda embedding yE : E → SetE

op

.
Let R : E → SetC

op

be the composite functor

E
yE−→ SetE

op (−)◦A−−−→ SetC
op

sending E ∈ E to the presheaf R(E), where for c ∈ C

R(E)(c) := HomE (A(c), E).

Then R admits a left adjoint L.

The left adjoint in question is given by a coend

L(X) :=

∫ c:C

A(c) ·X(c).

The situation in Proposition 2.1.18 is in general referred to as a nerve-realization
paradigm in [Lor21, Prop. 3.2.2]. The functor A : C → E is itself referred to
as a nerve-realization context, or NR context for short [Lor21, Def. 3.2.1].

We can apply this immediately to obtain a left adjoint to Sing, by setting
A to be the functor •t : ∆→ Top sending [n] to ∆t[n] for all n ≥ 0:

Definition 2.1.19 ([GJ09c, pg. 7]). Define the geometric realization functor
|·| : sSet→ Top to send X to the space

|X| :=
∫ n≥0

∆t[n] ·Xn.
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One should see this functor as forming a topological space from X with
an instance of ∆t[n] for each n-simplex in X, glued together according to the
simplicial maps.

Proposition 2.1.20. Sing is right adjoint to |·|.

Proof. This is immediate by Proposition 2.1.18.

An alternative proof to the same effect is provided by Goerss and Jardine
in [GJ09c, Prop. 2.2, pg. 7].

Another such adjunction is available to us via a totally different interpreta-
tion of ∆, one which perhaps loses some geometric color but is more attentive
to the orderings of vertices:

Definition 2.1.21. Define the functor •c : ∆ → Cat to send [n] to the poset
category [n] := {0→ 1→ · · · → (n− 1)→ n}, with maps sent to appropriate
functors.

One could identify ∆ with its image in Cat, as this functor is clearly fully
faithful. We obtain from •c a natural functor from categories to simplicial sets:

Definition 2.1.22. Define the nerve functor nerve : Cat→ sSet to be such
that, for C ∈ Cat and n ≥ 0,

nerve(C )n := HomCat([n],C ).

This functor is clearly a right adjoint by Proposition 2.1.18. We will not
make use of the left adjoint here, so omit a construction. A description of this
left adjoint and an alternative direct definition of the nerve functor are given
in [HM22, pg. 65]. Another definition is given in [MM94, pg. 453].

One final construction on simplicial sets sprouts from the apparent connec-
tion between simplicial sets and topological spaces. Given a simplicial set X,
we should expect to be able to take its set of path components :

Definition 2.1.23 ([GJ09c, pg. 61]). Let X ∈ sSet. Define π0(X) ∈ Set to
be the set

X0/ ∼=X

where ∼=X is the equivalence relation generated by declaring x ∼=X y if there is
a 1-simplex f ∈ X1 such that Xd11

(f) = x and Xd01
(f) = y.

This evidently induces a functor π0 : sSet→ Set. Kan complexes enjoy a
simpler description of π0:

Proposition 2.1.24 ([GJ09c, Lemma 6.1]). Suppose X is a Kan complex.
Then for x ∈ X0, we have that x ∼=X y if and only if there is a 1-simplex
f ∈ X1 such that Xd11

(f) = x and Xd01
(f) = y.
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There is then an immediate classical equivalence with the standard path
components functor:

Notation 2.1.25. Write πt0 : Top→ Set for the topological path components
functor, sending T ∈ Top to its set of path components πt0(T ).

Proposition 2.1.26. There is a natural isomorphism π0 ◦ Sing ∼= πt0.

Proof. Note that π0(Sing(T )) = Sing(T )0/ ∼=Sing(T ) and πt0(T ) = T/ ≃, where
≃ is the equivalence relation induced on points by paths in T . Thus, these two
sets are quotients of the same set under different equivalence relations. We
must prove then that x ∼=Sing(T ) y if and only if x ≃ y.

This is however immediate; Sing(T ) is Kan, so x ∼=Sing(T ) y if and only if
there is a 1-simplex f ∈ Sing(T )1 whose faces are x and y. By definition, such
a 1-simplex is a path f : [0, 1]→ T such that f(0) = x and f(1) = y.

This holds more generally for higher homotopy groups and so-called sim-
plicial homotopy groups, as discussed in [GJ09c, pg. 60]; their methods are in
turn more powerful and unneeded for our more simplified situation.

We should perhaps note that, due to the clear similarities between topo-
logical spaces and Kan complexes that the above result touches on, we will at
times allow ourselves to refer to a 1-simplex in a Kan complex X as a path in
X, whose source and target are given by the faces. By horn fillings, paths can
be concatenated and inverted, though not uniquely. By degeneracies, constant
paths always exist.

We will require one final important classical fact about path components:

Proposition 2.1.27. π0 preserves finite products.

Proof. Suppose X, Y ∈ sSet. We have that ∼=X×Y is generated by elements
of (X × Y )1 = X1 × Y1. Hence, we have that (x, y) ∼=X×Y (x′, y′) if and only
if there is a chain of 0-simplices (x, y) = (x0, y0), · · · , (xn, yn) = (x′, y′) and a
chain of 1-simplices (fi, gi) for 1 ≤ i ≤ n such that for each i ≥ 1, either

(xi−1, yi−1) = (Xd11
(fi), Yd11(gi)) (xi, yi) = (Xd01

(fi), Yd01(gi))

or
(xi−1, yi−1) = (Xd01

(fi), Yd01(gi)) (xi, yi) = (Xd11
(fi), Yd11(gi)).

By removing those 1-simplices fi or gi which are degenerate, we may allow the
two chains of maps f1, · · · , fn and g1, · · · , gm to be any two distinct lengths n
and m. Thus, ∼=X×Y is precisely the equivalence relation ∼=X × ∼=Y on X0×Y0.
Note finally then that

π0(X)× π0(Y ) = (X0/ ∼=X)× (Y0/ ∼=Y ) ∼= (X0 × Y0)/(∼=X × ∼=Y ).
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2.1.1 n-uple Simplicial Spaces

Our next task is to understand the kinds of diagrams in sSet we wish to
interpret as (∞, n)-categories. For us, these will be n-uple simplicial spaces,
whose definition is rather straightforward:

Definition 2.1.28 ([CS19, pg. 12]). Let n ≥ 1. An n-uple simplicial space is
a functor X : (∆op)n → sSet.

Notation 2.1.29. Write sSpacen for the category of n-uple simplicial spaces
with natural transformations between them. Write sSpace if n = 1 and
ssSpace if n = 2. We will call a 1-uple simplicial space a simplicial space
and a 2-uple simplicial space a bisimplicial space.

Clearly sSpace0
∼= sSet.

At times, we will want to decompose an n-uple simplicial spaceX : (∆op)n →
sSet by hom-tensor adjunction into, for 0 ≤ k ≤ n, some functor

(∆op)k → sSet(∆
op)n−k

= sSpacen−k.

However, there are many ways we could choose to perform such a decompo-
sition, by applying the hom-tensor adjunction to different instances of ∆op

within (∆op)n. Hence, we should establish some convention of what choices we
will generally make.

In this thesis, we choose to prioritize the identification of categories

sSpacen = sSet
∆op × · · · ×∆op︸ ︷︷ ︸

n

= sSet
∆op × · · · ×∆op︸ ︷︷ ︸

n−k

×∆op × · · · ×∆op︸ ︷︷ ︸
k

∼=
(
sSet

∆op × · · · ×∆op︸ ︷︷ ︸
n−k

)∆op × · · · ×∆op︸ ︷︷ ︸
k = sSpace(∆op)k

n−k .

Under this identification, a functor X ∈ sSpacen of the form (∆op)n → sSet
is reinterpreted as a functor X ′ : (∆op)k → sSpacen−k such that, for all
i1, · · · , in ≥ 0, we have an equality(

X ′([ik], · · · , [i1])
)
([in], · · · , [ik+1]) = X([in], · · · , [i1]).

We could inductively unravelX in this manner into an objectX in the category

X ∈ (· · · (sSet∆
op

)∆
op · · · )∆op

such that (
· · ·
(
X([i1])

)
· · ·
)
([in]) = X([in], · · · , [i1]).

We convert this decision into notation, which will henceforth have the conse-
quence of different descriptions of indices being reversals of one another:
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Notation 2.1.30. Let X ∈ sSpacen. Write Xi1,··· ,ik := X([ik], · · · , [i1]) ∈
sSpacen−k, where X is now interpreted as a functor (∆op)k → sSpacen−k as
above.

We thus have for X ∈ sSpacen, for 0 ≤ k ≤ n and for i1, · · · , in ≥ 0 that

Xi1,··· ,in = (Xi1,··· ,ik)ik+1,··· ,in .

Notation 2.1.31. Write ∆[j, in, · · · , i1] ∈ sSpacen for the representable pre-
seheaf of ([j], [in], · · · , [i1]) ∈ ∆op × (∆op)n.

With this choice, the Yoneda lemma gives us for X ∈ sSpacen that

HomsSpacen(∆[j, in, · · · , i1], X) ∼= (Xi1,··· ,in)j.

Proposition 2.1.32. sSpacen is Cartesian closed.

This is due to sSpacen being a presheaf category, which implies it to be
Cartesian closed by [MM94, Prop. 1, pg. 46]. We will write the mapping space
for X, Y ∈ sSpacen as Y X . Levelwise, we have again by [MM94, pg. 46] that

((Y X)i1,··· ,in)j = HomsSpacen(X ×∆[j, in, · · · , i1], Y ).

We will also need some modifications to these mapping spaces before we
can proceed. Suppose X is an n-uple simplicial space, so that for all k ≥ 0, we
have Xk ∈ sSpacen−1. We could interpret Xk as the ‘(n − 1)-uple simplicial
space of k-simplices in X’. More generally, consider the space

XSp(3) := X1 ×X0 X1 ×X0 X1.

This in turn could be seen as the ‘(n − 1)-uple simplicial space of 3-spines in
X’. In general, we may be interested in the space XK where K ∈ sSet. This
should be obtained by taking a limit over all the simplices in K. We will have
need for more general enrichments of sSpacen in sSpacek for k ≤ n, where for
instance K is a k-uple simplicial space, so we immediately extend the above
situation to this more general case.

Before all else, we will need a few conversions between different levels of
simplicial space. Three such conversions will be of particular importance to us
for each 0 ≤ k ≤ n, of the form

ρkn : sSpacen → sSpacek
F k
n : sSpacek → sSpacen
ιkn : sSpacek → sSpacen.

All of these functors will be identities if k = n. Intuitively, ρkn will be a trunca-
tion functor that forgets everything above level 0 in the discarded dimensions.
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F k
n will produce a levelwise discrete higher simplicial space, making all the

new dimensions degenerate, while ιkn will instead produce a levelwise constant
higher simplicial space, adding identical copies of the old space in each level
of the new dimensions.

More precisely, given an n-uple simplicial space X ∈ sSpacen, we may
obtain a k-uple simplicial space ρkn(X) ∈ sSpacek from it where

(ρkn(X)i1,··· ,ik)j = (X0,··· ,0,i1,··· ,ik)j.

In the opposite direction, given a k-uple simplicial space Y ∈ sSpacek, we
may obtain an n-uple simplicial space F k

n (Y ) ∈ sSpacen where

(F k
n (Y )i1,··· ,ik,ik+1,··· ,in)j = (Yi1,··· ,ik)ik+1

.

This is to say, for fixed i1, · · · , ik+1, we have that the induced functor

(F k
n (Y ))i1,··· ,ik,ik+1,•,··· ,•)• : (∆

op)n−k ×∆op → Set

is constant. For instance, if K ∈ sSet, note that F 0
n(K) is levelwise a constant

(n − 1)-uple simplicial space whose image is a constant simplicial set; for all
m ≥ 0, we have that F 0

n(K)m is the constant space defined by the set Km.
Finally, in the case of ιkn, if we have some Z ∈ sSpacek, we may obtain

from it an n-uple simplicial space ιkn(Z) ∈ sSpacen such that

(ιKn (Z)i1,··· ,in)j = (Zin−k+1,··· ,in)j.

We have then for all i1, · · · , in−k and j1, · · · , jn−k that

ιKn (Z)i1,··· ,in−k,•, · · · , •︸ ︷︷ ︸
k

= ιKn (Z)j1,··· ,jn−k,•, · · · , •︸ ︷︷ ︸
k

= Z•, · · · , •︸ ︷︷ ︸
k

.

Note this chain of equalities takes place in sSet.
We now formalize all of these constructions:

Definition 2.1.33. Let n ≥ 1. Define the map

ρn : sSpacen → sSpacen−1

so that ρn(X) = X0. More precisely, ρn is defined by the precomposition map
on presheaf categories induced by the functor ∆×∆n−1 → ∆×∆n sending

([j], [in−1], · · · , [i1]) 7→ ([j], [in−1], · · · , [i1], [0]).

Notation 2.1.34. Write

ρkn := ρk+1 ◦ · · · ◦ ρn−1 ◦ ρn.

Hence, ρn = ρn−1
n . Moreover, set ρnn = id.
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We see then that ρkn is given by precomposition with the functor ∆×∆k →
∆×∆n sending

([j], [ik], · · · , [i1]) 7→ ([j], [ik], · · · , [i1], [0], · · · , [0]︸ ︷︷ ︸
n−k

).

Definition 2.1.35. Let 0 ≤ k ≤ n. Define the map

F k
n : sSpacek → sSpacen

such that, for any K ∈ sSpacek,

(F k
n (K)i1,··· ,in)in+1 = (Ki1,··· ,ik)ik+1

.

More formally, this is given by the precomposition map on presheaf categories
induced by the functor ∆×∆n → ∆×∆k such that

([in+1], [in], · · · , [i1]) 7→ ([ik+1], · · · [i1]).

Definition 2.1.36. Let 0 ≤ k ≤ n. Define the map

ιkn : sSpacek → sSpacen

such that, for any K ∈ sSpacek and i0, · · · , in ≥ 0,

(ιkn(K)i1,··· ,in)j = (Kin−k+1,··· ,in)j.

More formally, this is given by the precomposition map on presheaf categories
induced by the functor ∆×∆n → ∆×∆k sending

([j], [in], · · · , [i1]) 7→ ([j], [in], · · · [in−k+1]).

Proposition 2.1.37. For any 0 ≤ k ≤ n, the functors ρkn, ιkn and F k
n are

symmetric monoidal with respect to the Cartesian closed structures.

Proof. All three maps are pullback functors between categories of presheaves.

It should be noted that several of these functors appear in [JT07] in the
context of simplicial spaces: the functor ρ01 : sSpace→ sSet is denoted by i∗2,
while ι01 : sSet → sSpace is denoted by p∗2. The map F 0

1 : sSet → sSpace
can be written in Joyal and Tierney’s notation as (−)□1.

The significance of ρkn lies in showing concretely how to enrich sSpacen in
sSpacek, simply by taking mapping spaces to be ρkn(Y X):
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Notation 2.1.38. For any 0 ≤ k ≤ n and some X, Y ∈ sSpacen, write
Mapkn(X, Y ) ∈ sSpacek for the induced k-uple mapping space between X and
Y by ρkn. More concretely, this is

Mapkn(X, Y )i1,··· ,ik = (Y X)0, · · · , 0︸ ︷︷ ︸
n−k

,i1,··· ,ik .

If n = k, this is just the inner hom.

Proposition 2.1.39. For any 0 ≤ k ≤ n, the category sSpacen is enriched
in sSpacek with mapping spaces given by Mapkn(−,−).

Proof. Apply the change of base results for enriched categories in [Rie14,
Lemma 3.4.3] and the enrichment of sSpacen in itself by the Cartesian struc-
ture.

Note that Map0
n defines an enrichment of sSpacen in simplicial sets. In

the case that k = 0 and n = 1, this is precisely the definition of the enrichment
of sSpace by sSet given in [JT07, pg. 10]. We will see a comparison with
another such mapping space in the literature later.

The significance of F k
n will be its interaction with the representable objects

∆[j, ik, · · · , i1] in sSpacek. For example, an enriched analogue of the Yoneda
lemma will be possible for n-uple simplicial spaces using F k

n and Mapkn(−,−).
We first consider a few simpler results, including some about boundaries of our
representable n-uple simplicial spaces; these will be needed once we discuss
model structures.

Notation 2.1.40. Write ∂∆[in, · · · , i0] for the maximal sub-presheaf of the
representable presheaf ∆[in, · · · , i0] missing the element (1[in], · · · , 1[i0]).

Notation 2.1.41. Write

F k
n (ik, · · · , i0) = F k

n (∆[ik, · · · , i0])
∂F k

n (ik, · · · , i0) = F k
n (∂∆[ik, · · · , i0]).

Lemma 2.1.42. There is an isomorphism

F k
n (ik, · · · , i0) ∼= ∆[0, · · · , 0, ik, · · · , i0].

Proposition 2.1.43. For all n ≥ 1 and i0, · · · , in ≥ 0, the space ∂∆[in, · · · , i0]
is isomorphic to(
∆[in, · · · , i1, 0]× ∂F 0

n(i0)
)
⊔∂∆[in,··· ,i1,0]×∂F 0

n(i0)

(
∂∆[in, · · · , i1, 0]× F 0

n(i0)
)
.
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Proof. The pushout contains all maps in ∆n of the form ([jn], · · · , [j0]) →
([in], · · · , [i0]) such that either [j0] → [i0] is not a surjection or such that the
maps [jh] → [ih] are not all surjections for 1 ≤ h ≤ n. Thus, all maps which
are not surjections on every coordinate are contained, which is an alternative
characterization of ∂∆[in, · · · , i0].

As promised, there is an interesting complementary interaction between F k
n

and the mapping spaces induced by ρn−k−1
n :

Proposition 2.1.44. For any 0 ≤ k < n and i0, · · · , ik ≥ 0,

Mapn−k−1
n (F k

n (ik, · · · , i0), X) ∼= Xi0,··· ,ik .

Proof. We can compare the two sides levelwise. Note that this isomorphism
takes place in sSpacen−k−1. Thus, for j1, · · · , jn−k ≥ 0:

(Mapn−k−1
n (F k

n (∆[ik, · · · , i0]), X)j1,··· ,jn−k−1
)jn−k

= ((XFk
n (∆[ik,··· ,i0]))0,··· ,0,j1,··· ,jn−k−1

)jn−k

∼= HomsSpacen(∆[jn−k, · · · , j1, 0, · · · , 0], XFk
n (∆[ik,··· ,i0]))

∼= HomsSpacen(F
k
n (∆[ik, · · · , i0])×∆[jn−k, · · · , j1, 0, · · · , 0], X)

∼= HomsSpacen(∆[0, · · · , 0, ik, · · · , i0]×∆[jn−k, · · · , j1, 0, · · · , 0], X)
∼= HomsSpacen(∆[jn−k, · · · , j1, ik, · · · , i0], X)
∼= ((Xi0,··· ,ik)j1,··· ,jn−k−1

)jn−k

which completes the proof.

The case of k = 0 and n = 1 is discussed in [Rez00, pg. 6]. More generally,
the case k = 0 and n ≥ 1 is discussed in [Rez10, pg. 6]. We will see a proof
that these mapping spaces agree with the enrichment in sSet Rezk considers
in the latter of these sources shortly; that they agree with the former is on the
nose.

Finally, we will need a means to tensor by lower-dimensional simplicial
spaces, wherein lies the substance of ιkn:

Notation 2.1.45. For 0 ≤ k ≤ n, write −□k
n− : sSpacen × sSpacek →

sSpacen for the functor defined such that, for X ∈ sSpacen and K ∈ sSpacek,

X□k
nK := X × ιkn(K).

For k = 0, this agrees with the □-product given in [GJ09b, pg. 370].

Proposition 2.1.46. Let 0 ≤ k ≤ n. Then ιkn : sSpacek → sSpacen is a left
adjoint to ρkn : sSpacen → sSpacek.
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Proof. We will construct a unit and counit for this pair of functors. Note first
that

ρkn ◦ ιkn = 1sSpacek

so that the unit ϵK : K → ρkn(ι
k
n(K)) = K can simply be set to be 1K .

This is clearly a natural transformation and satisfies the required universality
property.

For the counit, we have for N ∈ sSpacen that

ιkn(ρ
k
n(N))i1,··· ,in = ()0, · · · , 0︸ ︷︷ ︸

n−k

,in−k+1,··· ,in .

The counit µN : ιkn(ρ
k
n(N)) → N may be defined levelwise by the maps in

sSpacek of the form

(µN)i1,··· ,in−k
:= N⟨0,··· ,0⟩0,··· ,⟨0,··· ,0⟩0 : N0,··· ,0 → Ni1,··· ,in−k

.

Note that this is then the natural transformation of the form

µi1,··· ,in−k
:= ()⟨0,··· ,0⟩0,··· ,⟨0,··· ,0⟩0

so naturality is given immediately inN levelwise. For naturality in i1, · · · , in−k,
note that the map

⟨0, · · · , 0⟩0, · · · , ⟨0, · · · , 0⟩0 : ([in−k], · · · , [i1])→ ([0], · · · , [0])

is the terminal map from ([in−k], · · · , [i1]) in ∆n−k and so is the initial map
from this object in (∆op)n−k. Thus, for any map f : ([in−k], · · · , [i1]) →
([jn−k], · · · , [j1]) in ∆n−k, we have a commuting diagram

N0,··· ,0 N0,··· ,0

Nj1,··· ,jn−k
Ni1,··· ,in−k

1N0,··· ,0

N⟨0,··· ,0⟩,··· ,⟨0,··· ,0⟩ N⟨0,··· ,0⟩,··· ,⟨0,··· ,0⟩

Nf

as needed. Thus, µ : ιkn ◦ ρkn ⇒ 1sSpacen is a valid natural transformation.
To prove the required universal property, consider some K ∈ sSpacek

and a map g : ιkn(K)→ N . We need to show existence of a unique morphism
h : ιkn(K)→ ιkn(ρ

k
n(N)) which g factors through. We find that the only possible

such map is h := ιkn(g0,··· ,0), which factors due to the commutative diagram

ιkn(K)j1,··· ,jn−k
= K N0,··· ,0 Nj1,··· ,jn−k

ιkn(K)i1,··· ,in−k
= K N0,··· ,0 Ni1,··· ,in−k

g0,··· ,0

gj1,··· ,jn−k

ιkn(K)f=1K

N⟨0,··· ,0⟩,··· ,⟨0,··· ,0⟩

1N0,··· ,0 Nf

g0,··· ,0

gi1,··· ,in−k

N⟨0,··· ,0⟩,··· ,⟨0,··· ,0⟩

so that this is the counit as needed.
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This result implies that Map0
n(−,−) agrees for instance with the simplicial

enrichment of sSpacen defined by Rezk in [Rez10, pg. 6], where Rezk also
notes a more general version of the adjunction between ι0n and ρ0n must hold
for simplicial presheaves, which generalize n-uple simplicial spaces.

Proposition 2.1.47. Let 0 ≤ k ≤ n. Suppose W,X, Y ∈ sSpacen. There is
a natural isomorphism

Mapkn(X ×W,Y ) ∼= Mapkn(X, Y
W ).

Proof. This is just the natural isomorphism Y X×W ∼= (Y W )X postcomposed
with ρkn.

Proposition 2.1.48. Let 0 ≤ k ≤ n. Suppose K ∈ sSpacek and M ∈
sSpacen. Then there is a natural isomorphism

ρkn(M)K ∼= ρkn(M
ιkn(K)).

Proof. Consider some X ∈ sSpacek. We have that

HomsSpacek(X, ρ
k
n(M)K) ∼= HomsSpacen(ι

k
n(X ×K),M)

∼= HomsSpacen(ι
k
n(X)× ιkn(K),M)

∼= HomsSpacen(ι
k
n(X),M ιkn(K))

∼= HomsSpacek(X, ρ
k
n(M

ιkn(K))).

Varying over all X completes the proof.

Proposition 2.1.49. Let 0 ≤ m ≤ k ≤ n. Suppose K ∈ sSpacek and
X, Y ∈ sSpacen. Then there is a natural isomorphism

Mapmn (X□k
nK,Y ) ∼= Mapmk (K,Mapkn(X, Y )).

Proof. We have that

Mapmn (X□k
nK,Y ) ∼= ρmn (Y

X×ιkn(K)) ∼= ρmn ((Y
X)ι

k
n(K)) = ρmk (ρ

k
n((Y

X)ι
k
n(K)))

and
Mapmk (K,Mapkn(X, Y )) ∼= ρmk (ρ

k
n(Y

X)K)

so the isomorphism holds by Proposition 2.1.48.
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2.2 Model Category Theory
Central to our chosen definition of (∞, 2)-category is the construction of a
suitable model structure. Our intention is to encode (∞, 2)-categories as the
fibrant objects in a model structure on ssSpace.

The first and most fundamental model structure we build all other results
from in this thesis is the following classical model structure on sSet:

Theorem 2.2.1 ([GJ09c, Thm. 11.3]). There exists a model structure on
sSet whose weak equivalences are maps f : X → Y such that the geometric
realization |f | : |X| → |Y | is a weak equivalence of topological spaces and whose
cofibrations are the levelwise monomorphisms.

We will always assume this model structure on sSet. The fibrant objects
are the Kan complexes, while the fibrations are more generally the Kan fibra-
tions, namely those maps with the right lifting property with respect to all
horn inclusions Λnk ↪→ ∆[n] for 0 ≤ k ≤ n and n ≥ 1 [GJ09c, pg. 10] [Hir09,
Def. 7.10.8].

We will at times need the following classical facts:

Proposition 2.2.2 ([GJ09c, Prop. 11.1]). Suppose X is a Kan complex. Then
the unit ηX : X → Sing(|X|) of the adjunction between |·| and Sing induces
an isomorphism π0(X)→ π0(Sing(|X|)).

In fact, it is classical that |·| and Sing induce a Quillen equivalence be-
tween sSet and a model structure on Top whose weak equivalences are weak
homotopy equivalences and whose fibrations are the Serre fibrations. Though
we will at times use this more general fact, for the purposes of computations,
the details of π0 are somewhat more pressing.

Corollary 2.2.3. Suppose X is a Kan complex. Then there is an isomorphism
π0(X) ∼= πt0(|X|).

Proof. Simply consider the chain

π0(X)→ π0(Sing(|X|))→ πt0(|X|).

Corollary 2.2.4. Suppose f : X → Y is a weak equivalence in sSet between
Kan complexes. Then π0(f) : π0(X)→ π0(Y ) is an isomorphism.

Proof. We have a natural diagram of maps

π0(X) π0(Sing(|X|)) πt0(|X|)

π0(Y ) π0(Sing(|Y |)) πt0(|Y |)
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where all the horizontal maps are isomorphisms. The rightmost vertical map
is an isomorphism by the definition of a weak equivalence between Kan com-
plexes, so the other vertical maps are as well.

Proposition 2.2.5. Suppose F : C → D is an equivalence of categories. Then
the induced map nerve(F ) : nerve(C ) → nerve(D) is a weak equivalence of
simplicial sets.

Proof. An equivalence of categories is sent by nerve to a categorical equivalence
as defined in [Rez22, Sec. 24.1] by the discussion in [Rez22, pg. 58], which is
always a weak equivalence as noted in [Rez22, pg. 131].

There are several insightful resources which explore the model category
theory we will make use of in this thesis. The one we will employ the most is
Hirschhorn [Hir09], with occasional additions from other sources, like May and
Ponto [MP12], Goerss and Jardine [GJ09a], Johnson-Freyd and Scheimbauer
[JS17], Hovey [Hov07], Rezk [Rez00] and Bergner [BR13b] [BR20], and several
others. It should be noted that [JS17, App. A] explores a great deal of the
model category theory relevant to constructing projective complete n-fold Segal
spaces, so runs in parallel to our own discussions in many places.

2.2.1 Reedy Model Structures

A model structure on ssSpace for Reedy fibrant complete 2-fold Segal spaces
is explicitly described by Bergner and Rezk in [BR20], while another for pro-
jective fibrant complete 2-fold Segal spaces is described by Johnson-Freyd and
Scheimbauer in [JS17]. They are each natural extensions and modifications
of the model structure Rezk defined in [Rez00] for Reedy fibrant complete
Segal spaces. The general strategy both approaches use is to take a left Bous-
field localization of a pre-existing model structure that automatically exists
on ssSpace, whose weak equivalences are levelwise weak equivalences in sSet.
Taking such a starting point sets the stage for a truly ‘homotopy-theoretic’
approach to higher categories, inheriting structure from sSet to describe ∞-
categorical phenomena in a manner derivative from the homotopy hypothesis.
We will discuss this more later.

This initial model structure on ssSpace we now consider is known more
commonly as the Reedy model structure. The most general case is studied
in-depth in [Hir09], but we will need only the specific cases of simplicial and
bisimplicial spaces. This will not be the only such initial model structure we
employ, as is done in [JS17].

Our final chosen approach to defining Reedy fibrant complete 2-fold Segal
spaces will be a fusion of the methods in [BR20] and [JS17], where we will
begin with the Reedy model structure as in the former but localize against the
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maps presented in the latter. This keeps us close to the literature on (∞, 2)-
categorical TQFTs while reaping the added benefits of Reedy fibrancy we will
later need.

We begin with a few definitions with regards to Reedy categories in general,
which will later be specialized to the cases of particular interest in this thesis:

Definition 2.2.6 ([Hir09, Def. 15.1.2]). A Reedy category C is a small cat-
egory equipped with two wide subcategories C + and C − called the direct and
inverse subcategories and a function deg : ob(C ) → Z≥0 called the degree
function1, such that:

1. Every morphism f in C admits a unique factorization f = α+ ◦ α−,
where α+ ∈ C + and α− ∈ C −;

2. For every α+ : c → d in C + we have deg(c) ≤ deg(d) and for every
α− : a → b in C − we have deg(a) ≥ deg(b). Equality holds in either
case if and only if the morphism in question is an identity.

Proposition 2.2.7 ([Hir09, Example 15.1.12]). ∆ is a Reedy category, with
degree map deg([i]) = i, ∆+ the wide subcategory of injections and ∆− the
wide subcategory of surjections.

Proposition 2.2.8. (∆op)n is a Reedy category, with degree map

deg(([i1], · · · , [in])) =
∑
j

ij

and with ((∆op)n)+ := ((∆−)op)n and ((∆op)n)− := ((∆+)op)n.

Proof. Apply [Hir09, Prop. 15.1.5] and [Hir09, Prop. 15.1.6].

For any model category M and any Reedy category C , the Reedy model
structure is a particular model structure on the category M C whose weak
equivalences are levelwise. The substance of Reedy categories lies in their
inherently inductive nature. To see this in action, we need a few definitions:

Definition 2.2.9 ([Hir09, Def. 15.2.3]). Suppose C is a Reedy category with
an object x ∈ C .

1. The latching category ∂(C + ↓ x) is the full subcategory of (C + ↓ x)
containing all objects except for 1x.

2. The matching category ∂(x ↓ C −) is the full subcategory of (x ↓ C −)
containing all objects except for 1x.

1Bergner and Rezk in [BR13b] set the codomain of deg to be N. This is a trivial difference
that will not affect any results.
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Definition 2.2.10 ([Hir09, Def. 15.2.5]). Suppose C is a Reedy category with
an object x ∈ C . Let M be a model category, with a functor X : C →M .

1. The latching object of X at x LxX ∈M is the colimit

LxX := colim∂(C+↓x)X.

The latching map of X at x is the natural map LxX → X(x).

2. The matching object of X at x MxX ∈M is the limit

MxX := lim
∂(x↓C−)

X.

The matching map of X at x is the natural map X(x)→MxX.

Note that latching objects and matching objects are evidently functorial in
X. We thus obtain functors

Lx,Mx : M C →M .

The latching and matching maps are in turn natural transformations Lx ⇒
(−)x and (−)x ⇒Mx.

We will introduce the terminology of a latching-matching map to refer to
the following morphisms:

Definition 2.2.11. Suppose C is a Reedy category with an object x ∈ C . Let
M be a model category, with a functor X : C →M .

The latching-matching map of X at x is the natural map LxX → MxX
[Hir09, Rem. 15.2.10].

This induces a natural transformation Lx ⇒ Mx. Then, for any x ∈ C , as
noted in [Hir09, Sec. 15.2] there must be a natural commuting diagram

Xx

LxX MxX

that consists of the latching map, matching map and latching-matching map
of X at x. We could of course phrase this as a commuting diagram of natural
transformations if we wished.

What is interesting about Reedy categories is that, since there are no non-
identity morphisms between objects of the same degree, any factorization of
the latching-matching map at x is enough to define a functor X : C →M on
x:
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Proposition 2.2.12 ([Hir09, Rem. 15.2.10]). Suppose C is a Reedy category
and M is a model category. Write C <n and C ≤n for the Reedy subcategories
of C consisting of objects of degree strictly below n or of degree up to n, re-
spectively. Consider a functor X : C <n →M .

For every x ∈ C such that deg(x) = n, consider some factorization LxX →
X ′
x → MxX of the latching-matching map2 for X at x. Then these factoriza-

tions uniquely determine a functor X ′ : C ≤n → M such that X ′|C<n = X,
with latching maps

LxX
′ = LxX → X ′

x

and matching maps
X ′
x →MxX =MxX

′

given by the factorizations in question.

We can thus inductively define a functor X : C → M by choosing any
images for the objects of degree 0 [Hir09, pg. 281], then inductively factorizing
the latching-matching maps.

There is an analogous result for inductively defining natural transforma-
tions between such functors:

Proposition 2.2.13 ([Hir09, Sec. 15.2.11]). Suppose C is a Reedy category
and M is a model category. Write C <n and C ≤n for the Reedy subcategories
of C consisting of objects of degree strictly below n or of degree up to n, respec-
tively. Consider two functors X, Y : C → M and a natural transformation
κ : X|C<n ⇒ Y |C<n.

For every x ∈ C such that deg(x) = n, consider some map κ′x : Xx → Yx
such that the diagram

LxX Xx MxX

LxY Yx MxY

Lxκ κ′x Mxκ

commutes3. Then the maps κ′x uniquely induce a natural transformation κ′ :
X|C≤n ⇒ Y |C≤n.

We can moreover obtain from this an inductive technique to solve lifting
problems in M C . This procedure is what informs the definition of a Reedy
model structure.

2Note that this is well-defined, even though x is not in the domain of X. A more careful
treatment of this issue is given by Hirschhorn in [Hir09, Sec. 15.2].

3Note that Lxκ and Mxκ are both well-defined, even though κ is not defined on x yet.
Again, a more precise treatment of this issue is given in [Hir09, Sec. 15.2.11].
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Corollary 2.2.14 ([Hir09, Sec. 15.2.11]). Suppose C is a Reedy category and
M is a model category. Write C <n and C ≤n for the Reedy subcategories of C
consisting of objects of degree strictly below n or of degree up to n, respectively.
Consider four functors W,X, Y, Z : C →M and four natural transformations
inducing a commutative diagram in M C

X W

Y Z

Suppose moreover that we have a natural transformation ω : Y |C<n ⇒ W |C<n

commuting with the above diagram when restricted to C <n.
Consider, for each x ∈ C with deg(x) = n, some choice of map ω′

x : Yx →
Wx making the diagram

Xx ⊔LxX LxY Wx

Yx Zx ×MxZ MxW

ω′
x

commute. Then the maps ω′
x uniquely determine an extension ω′ of ω to C ≤n

commuting with the above diagram restricted to C ≤n.

It seems natural then to consider a cofibration to be a natural transforma-
tion X ⇒ Y such that all the maps Xx⊔LxX LxY → Yx are cofibrations in M .
Moreover, one should then take the fibrations to be those transformations such
that the maps Xx → Yx ×MxY MxX are fibrations in M . As noted in [Hir09,
pg. 288], the above corollary motivates the role of these maps in defining a
model structure as follows:

Theorem 2.2.15 ([Hir09, Thm. 15.3.4]). Suppose C is a Reedy category and
M is a model category. Then the following data specifies a model structure on
M C , termed the Reedy model structure:

1. The weak equivalences X → Y are levelwise weak equivalences in M ;

2. The cofibrations X → Y are the maps such that for all x ∈ C , the
relative latching maps

Xx ⊔LxX LxY → Yx

are cofibrations in M ;
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3. The fibrations X → Y are the maps such that for all x ∈ C , the relative
matching maps

Xx → Yx ×MxY MxX

are fibrations in M .

For the purposes of (∞, n)-categories, we will only discuss the instances of
this model structure we will make use of, namely the case where C = (∆op)n for
n ≤ 2. In this situation, the matching objects are straightforward to construct:

Proposition 2.2.16. Let X : (∆op)k → sSpacen−k be an n-uple simplicial
space. Then for ([ik], · · · , [i1]) ∈ (∆op)k, we have

M([ik],··· ,[i1])X
∼= Mapn−kn (∂F k−1

n (ik, · · · , i1), X).

Proof. Note by definition that

∂F k−1
n (ik, · · · , i1) ∼= colim

∂
(
([ik],··· ,[i1])↓((∆op)k)−

)F k−1
n .

Thus, since Mapn−kn (−, X) sends colimits to limits, the result follows.

This is an extension of Rezk’s description in [Rez00] of the Reedy model
structure for simplicial spaces, where M = sSet and C = ∆op:

Definition 2.2.17 ([Rez00, pg. 6]). A map f : X → Y in sSpace is a weak
equivalence in the Reedy model structure if and only if it is such levelwise in
sSet. It is a Reedy fibration of simplicial spaces if and only if, for every n ≥ 0,
the map

Xn → Yn ×Map0
1(∂F

0
1 (n),Y ) Map0

1(∂F
0
1 (n), X)

is a fibration in sSet, namely a Kan fibration.

Evidently, it is the case that this produces a model structure by taking
cofibrations to be maps with the left lifting property with respect to Reedy fi-
brations. An elementary description of this specific model structure is detailed
by Goerss and Jardine in [GJ09b].

We can now inductively make a similar statement about the Reedy model
structure on n-uple simplicial spaces, in particular where M = sSpacen−1 and
C = ∆op:

Definition 2.2.18. Let f : X → Y be a map in sSpacen. Then f is a
weak equivalence in the Reedy model structure on sSpacen if and only if it is
levelwise one in sSet and a Reedy fibration of n-uple simplicial spaces if and
only if, for every k ≥ 0, the map

Xk → Yk ×Mapn−1
n (∂F 0

n(k),Y ) Mapn−1
n (∂F 0

n(k), X)

is a fibration in the Reedy model structure on sSpacen−1.
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A more elementary description not invoking Reedy fibrations of simplicial
spaces is also possible, by instead taking M = sSet and C = (∆op)n. It is
shown by [Hir09, Theorem 15.5.2] that these choices will yield identical model
structures on sSpacen. We thus have:

Proposition 2.2.19. Let n ≥ 1. A map f : X → Y is a Reedy fibration in
sSpacen if and only if, for every i1, · · · , in ≥ 0, the map

Xi1,··· ,in → Yi1,··· ,in ×Map0
n(∂F

n−1
n (in,··· ,i1),Y ) Map0

n(∂F
n−1
n (in, · · · , i1), X)

is a Kan fibration.

Of particular interest to us are Reedy fibrant objects, as a special case of
these will be our (∞, 1)-categories in the case of sSpace and (∞, 2)-categories
for ssSpace. In the former case, Rezk notes in [Rez00, pg. 6] that the
Reedy fibrant simplicial spaces are just those spaces X such that the map
Xn → Map0

1(∂F
0
1 (n), X) is a Kan fibration for all n ≥ 0. Similarly, we

find that a Reedy fibrant bisimplicial space X is one such that the map
Xn,m →Map0

2(∂F
1
2 (m,n), X) is a Kan fibration for all n,m ≥ 0. In particular,

X0 and X•,0 are both Reedy fibrant simplicial spaces. We alternatively might
say that the maps Xn →Map1

2(∂F
0
2 (n), X) are Reedy fibrations of simplicial

spaces.
A useful fact about Reedy fibrations is that they are also levelwise Reedy

fibrations:

Proposition 2.2.20 ([GJ09b, pg. 366, Cor. 2.6]). Reedy fibrations and cofi-
brations in sSpacen are also levelwise Reedy fibrations and cofibrations in
sSpacen−1.

In particular, every Reedy fibrant bisimplicial space is levelwise a Reedy
fibrant simplicial space, which is then levelwise a Kan complex.

Bergner and Rezk in [BR13b] demonstrate that ∆ is in fact an elegant
Reedy category :

Definition 2.2.21 ([BR13b, Def. 2]). Let C be a Reedy category and X :
C op → Set a presheaf. Let c ∈ C and x ∈ X(c). Then x is degenerate if
and only if there exists some non-identity map α : c → d in C − such that
x = X(α)(y) for some y ∈ X(d). x is likewise nondegenerate if it is not
degenerate.

Definition 2.2.22 ([BR13b, Def. 4]). An elegant Reedy category C is a
Reedy category such that, for every presheaf X : C op → Set, every c ∈ C and
x ∈ X(c), there exists a unique map α : c→ d in C − and unique nondegenerate
y ∈ X(d) such that x = X(α)(y).

Proposition 2.2.23 ([BR13b, Cor. 4.4]). ∆ is an elegant Reedy category.
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A consequence of this fact, stated as [BR13b, Prop. 3.10], shows that the
Reedy model structures on ssSpace and sSpace are both just the injective
model structures, where weak equivalences and cofibrations are levelwise:

Proposition 2.2.24 ([BR13b, Prop. 3.10]). Let C be an elegant Reedy cate-
gory and D a category. Let M := sSetD

op

be the model category of simplicial
presheaves endowed with an injective model structure, meaning weak equiv-
alences and cofibrations are levelwise. Then the injective and Reedy model
structures on M C op coincide.

The cases of this result we have need for have already been concretely
defined, setting D = ∗ or D = ∆. What is important for us is the following
consequence:

Corollary 2.2.25. A map f : X → Y in sSpacen is a Reedy cofibration if
and only (fi1,··· ,in)j : (Xii,··· ,in)j → (Yi1,··· ,in)j is an inclusion of sets for all
j, i1, · · · , in ≥ 0.

Proof. A cofibration in an injective model structure is a levelwise cofibration.
Inductively set M = sSet, D = ∆k and C = ∆ for 0 ≤ k < n to obtain that
a Reedy cofibration in sSpacen is levelwise one in sSet. Since cofibrations in
sSet are levelwise inclusions, this completes the proof.

Corollary 2.2.26. Every object in sSpacen is Reedy cofibrant.

Another result we will need is with regards to F k
n :

Proposition 2.2.27. Let f : U → V be a Reedy cofibration in sSpacek with
0 ≤ k ≤ n. Then F k

n (f) is a Reedy cofibration in sSpacen.

Proof. By Corollary 2.2.25, it will suffice to prove that (F k
n (f)i0,··· ,in−1)in is

an inclusion of sets for every i0, · · · , in ≥ 0. This is just the map fi0,··· ,ik :
(Ui0,··· ,ik−1

)ik → (Vi0,··· ,ik−1
)ik . By Corollary 2.2.25, since f is a Reedy cofibra-

tion, the result is immediate.

Note however that trivial cofibrations are not necessarily preserved by F k
n .

For instance, g : Λ2
1
∼= ∆[1] ⊔∆[0] ∆[1] ↪→ ∆[2] is a trivial cofibration in sSet,

but F 0
1 (g) is not - indeed, we find that F 0

1 (g)1 is a map from a two-element
discrete simplicial set, the 1-simplices of the domain, to a three-element dis-
crete simplicial set. This cannot possibly be a weak equivalence, so F 0

1 (g) is
not a levelwise weak equivalence.

One should note however that ιkn does preserve both cofibrations and trivial
cofibrations, as it simply produces many copies of the same (trivial) cofibration
levelwise. This was noted in another form by Joyal and Tierney in [JT07,
Prop. 4.6] for the case of ι01. Hence, ιkn and ρkn induce a Quillen pair between
the Reedy model structures on sSpacen and sSpacek. We will not need this
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result, though it is a hint of the relevance of these functors to our Reedy model
structures, which we will elaborate upon shortly.

Finally, we should note that one may consider our concrete explorations of
Reedy model structures on sSpacen in a more general context, if the category
sSpacek for k < n already has a finer model structure imposed upon it:

Definition 2.2.28. Let M be a model category whose underlying category is
sSpacek. A weak equivalence in the Reedy model structure on M∆op is taken
levelwise, while a Reedy fibration in the Reedy model structure on M∆op is a
map f : A→ B in M∆op such that for all n ≥ 0, the induced map

An → Bn ×Map1
2(∂F

0
2 (n),B) Map1

2(∂F
0
2 (n), A)

is a fibration in M .

2.2.2 Projective and Injective Model Structures

The Reedy model structure on a category of functors M C is in general sand-
wiched between two other structures, known as the projective and injective
model structures. We have already briefly interacted with the latter. Neither
of these model structures are in general guaranteed to exist, though they will
in all circumstances we care for.

Definition 2.2.29 ([Lur08, Def. A.2.8.1]). Suppose M is a model category
and C is a small category. Then a morphism f : A→ B in M C is:

1. a weak equivalence if it is a weak equivalence levelwise in M ;

2. an injective cofibration if it is a levelwise cofibration in M ;

3. a projective fibration if it is a levelwise fibration in M ;

4. an injective fibration if it satisfies the right lifting property with respect
to all injective cofibrations that are also weak equivalences;

5. a projective cofibration if it satisfies the left lifting property with respect
to all projective fibrations that are also weak equivalences.

It is not necessarily guaranteed that the weak equivalences and injective
fibrations and cofibrations, nor the weak equivalences and projective fibra-
tions and cofibrations, will form a model category. However, should M be a
combinatorial model category, such model structures do exist:

Proposition 2.2.30 ([Lur08, Prop. A.2.8.2]). Suppose M is a combinatorial
model category [Lur08, Def. A.2.6.1] and C is a small category. Then there
is a model structure on M C , called the injective model structure, whose cofi-
brations, weak equivalences and fibrations are the injective cofibrations, weak
equivalences and injective fibrations respectively.
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Proposition 2.2.31 ([Lur08, Prop. A.2.8.2]). Suppose M is a combinatorial
model category [Lur08, Def. A.2.6.1] and C is a small category. Then there
is a model structure on M C , called the projective model structure, whose
cofibrations, weak equivalences and fibrations are the projective cofibrations,
weak equivalences and projective fibrations respectively.

Indeed, in all cases we care for this structure is satisfied. (∆op)n is of course
a small category, while it is classical that sSet is combinatorial. We thus have
two model structures immediately on sSpacen, the injective and projective
model structures using M = sSet and C = (∆op)n. We will distinguish these
by the following:

Notation 2.2.32. Write sSpaceinjn for the model category of n-uple simpli-
cial spaces with the injective model structure. Write sSpaceprojn for the model
category of n-uple simplicial spaces with the projective model structure.

Note of course that sSpaceinjn is just the Reedy model structure, owing to
our discussion on elegant Reedy categories.

The following proposition may be proven by using [Lur08, Prop. A.2.8.7]:

Proposition 2.2.33. Suppose M is a combinatorial model category and C
is a small category. Then if f is an injective fibration, it is also a projec-
tive fibration. Moreover, if f is a projective cofibration then it is an injective
cofibration.

It will be relevant for us to identify a few useful projective cofibrations.

Proposition 2.2.34 ([Hir09, Def. 11.5.7] [Hir09, Thm. 11.6.1]). Suppose M
is a cofibrantly generated model category and C is a small category. Then the
projective model structure on M C exists. Moreover, for every cofibrant object
X in M , the objects F x

X , for x ∈ C , are projective cofibrant, where for y ∈ C
we have

F x
X(y) :=

⊔
HomC (x,y)

X

and maps induced by postcomposition and 1X .

Proposition 2.2.35. For any 0 ≤ k < n and i0, · · · , ik ≥ 0, under the iden-
tification

sSpacen ∼= sSpace(∆op)k+1

n−k−1

the n-uple simplicial space F k
n (ik, · · · , i0) is isomorphic to F ([ik],··· ,[i0])

∆[0,··· ,0] .

Proof. By Lemma 2.1.42, we have that F k
n (ik, · · · , i0) is just the representable

presheaf ∆[0, · · · , 0, ik, · · · , i0]. The result then holds by inspection.
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Proposition 2.2.36. For any 0 ≤ k < n and i0, · · · , ik ≥ 0, the n-uple
simplicial space F k

n (ik, · · · , i0) is cofibrant in sSpaceprojn .

Proof. By Proposition 2.2.35, we have that F k
n (ik, · · · , i0) is just the object

F
([ik],··· ,[i0])
∆[0,··· ,0] . This will be cofibrant if ∆[0, · · · , 0] is projective cofibrant in

sSpacen−k−1. However, this space is itself just F n−1
n (0) ∼= F

([0],··· ,[0])
∆[0] , so is

projective cofibrant as ∆[0] is cofibrant in sSet.

One important application of projective and injective model structures is
the study of homotopy colimits and homotopy limits, respectively. We will only
have need for the latter in this thesis. The significance of the injective model
structure in this regard amounts to the following:

Proposition 2.2.37 ([Lur08, Prop. A.2.8.7]). Suppose M is a combinatorial
model category. Let C be a small category. Then the adjunction

M M C

dC

limC

⊣

is a Quillen pair between M and the injective model structure on M C , where
dC is the constant functor map.

We moreover have the following characterization of homotopy limits:

Proposition 2.2.38 ([Rie20, Thm. 5.2.6]). Consider a model category M
and a small category C . Then should the injective model structure on M C

exist, the homotopy limit functor

R lim
C

: M C →M

exists and may be computed as the limit of an injective fibrant replacement of
the original diagram.

To make this truly functorial demands a ‘functorial injective fibrant replace-
ment,’ as is implicit in the use of [Rie20, Cor. 4.2.4] to prove the above result.
Such a notion is made precise for example as the functorial (cofibrant) fibrant
approximations in [Hir09, Def. 8.1.15 (2)], similarly to cofibrant replacement
functors. However, as is standard, we will permit ‘case-by-case’ calculation of
such injective fibrant replacements. Indeed, limC will preserve weak equiva-
lences between injectively fibrant diagrams [Lur08, pg. 657]. Thus, any two
injective fibrant replacements of a particular diagram C → M will induce
weakly equivalent limits, so either will be admissible as a notion of ‘homotopy
limit.’
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2.2.3 Mapping Spaces and (Co)Fibrations

The interactions between our Reedy model structures and the various mapping
spaces we have constructed will be necessary for defining our models of higher
category. More generally, our situation fits into the greater problem of how
categorical enrichments interact with model structures. Our primary source
for this topic is [MP12]. We will assume henceforth that all enrichments are
over symmetric monoidal categories.

Definition 2.2.39 ([MP12, pg. 329]). A cosmos V is a bicomplete closed
symmetric monoidal category.

Proposition 2.2.40. sSpacek is a cosmos for all k ≥ 0 under the Cartesian
monoidal structure.

Recall by Proposition 2.1.39 that for all n ≥ k ≥ 0, the category sSpacen
is enriched over sSpacek via Mapkn(−,−). We wish to prove that this enrich-
ment is somehow compatible with model structures on sSpacen and sSpacek,
in particular the injective, and thus Reedy, model structures sSpaceinjn and
sSpaceinjk . The appropriate notions which make this objective precise are
tensors and cotensors :

Definition 2.2.41 ([MP12, pg. 328]). Suppose M is a V -enriched category,
where V is symmetric monoidal. Then a tensor (or copower) ⊙ : M×V →M
and cotensor (or power) ⋔: V op ×M →M are functors that induce a series
of natural isomorphisms

HomM (X ⊙ V, Y ) ∼= HomV (V,M (X, Y )) ∼= HomM (X, V ⋔ Y ).

Note that it is not always guaranteed that tensors and cotensors exist. We
invoke special terminology for when they do:

Definition 2.2.42 ([MP12, pg. 329]). A V -enriched category M is V -
bicomplete if and only if it is bicomplete and has all tensors and cotensors.

Proposition 2.2.43. sSpacen is sSpacek-bicomplete for all 0 ≤ k ≤ n.

Proof. That sSpacen is bicomplete is immediate from it being a category
of presheaves. For tensors and cotensors, consider setting ⊙ := □k

n and
⋔:= (−)ιkn(−). Then we have the natural bijection induced by the adjunction
between ιkn and ρkn of the form

HomsSpacen(X ⊙ V, Y ) = HomsSpacen(X□k
nV, Y )

= HomsSpacen(X × ι
k
n(V ), Y )

∼= HomsSpacen(ι
k
n(V ), Y X)

∼= HomsSpacek(V,Mapkn(X, Y )).
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Moreover, we have a natural bijection induced by the same adjunction of the
form

HomsSpacek(V,Mapkn(X, Y )) ∼= HomsSpacen(ι
k
n(V ), Y X)

∼= HomsSpacen(ι
k
n(V )×X, Y )

∼= HomsSpacen(X, Y
ιkn(V )).

These bijections establish the conditions for tensors and cotensors as needed.

In general, we will not use the notation of ⊙ and ⋔ and simply write □k
n and

(−)(−). Note in the latter case that we omit the ιkn implicit in the exponent.
It should be noted that these are the natural extension of the tensor and

cotensor in the projective model structure M C for a simplicial cofibrantly gen-
erated model category M and small category C in [Hir09, Def. 11.7.1]. Indeed,
sSpaceprojn is cofibrantly generated and simplicial by inductively applying this
definition and [Hir09, Thm. 11.7.3]; we have that the simplicial enrichment
Hirschhorn describes is precisely Map0

n. We are unaware of a result in the
literature establishing the above general case of sSpacen and sSpacek when
k ̸= 0.

We now wish to show that our tensor and cotensor are well-behaved with
respect to model structures. The appropriate such interactions are as follows:

Lemma 2.2.44 ([MP12, Lemma 16.4.5]). Suppose M and V are model cat-
egories such that V is a cosmos and M is V -bicomplete. Let ⊙ and ⋔ be a
tensor and cotensor on M . Then the following conditions are equivalent:

1. Given a cofibration f : X → Y in M and a cofibration p : U → V in V ,
the induced map

f□p : (Y ⊙ U) ⊔X⊙U (X ⊙ V )→ Y ⊙ V

is a cofibration in M , which is trivial if either f or p is.

2. Given a cofibration f : W → X and a fibration g : Y → Z in M , the
induced map

M [f, g] : M (X, Y )→M (W,Y )×M (W,Z) M (X,Z)

is a fibration in V , which is trivial if either f or g is.

3. Given a cofibration p : U → V in V and a fibration g : Y → Z in M ,
the induced map

⋔ [p, g] : V ⋔ Y → U ⋔ Y ×U⋔Z V ⋔ Z

is a fibration in M , which is trivial if either p or g is.
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Proposition 2.2.45 ([Hov07, Prop. 4.2.8]). The category sSet, enriched over
itself, with tensor given by Cartesian product and cotensor by the exponent,
satisfies the equivalent conditions in Lemma 2.2.44.

Proposition 2.2.46. The tensor and cotensor in Proposition 2.2.43 satisfy
all the equivalent conditions in Lemma 2.2.44.

Proof. We will prove the first condition holds. Suppose f : U → V is a cofi-
bration in sSpacen and g : W → X is a cofibration in sSpacek. By Corollary
2.2.25, these are both simply levelwise cofibrations in sSet, so checking that
the pushout product f□g : (V□k

nW ) ⊔U□k
nW

(U□k
nX) → (V□k

nX) is a cofi-
bration amounts to checking this levelwise. This problem reduces to checking
that for every i1, · · · , in ≥ 0, the map

(Vi1,··· ,in ×Win−k+1,··· ,in) ⊔Ui,··· ,in×Win−k+1,··· ,in
(Ui1,··· ,in ×Xin−k+1,··· ,in)

Vi1,··· ,in ×Xin−k+1,··· ,in

is a cofibration in sSet. By Lemma 2.2.45, f□g is then immediately a cofi-
bration as desired. The above reasoning extends to the case where f or g
is a trivial cofibration, as these are again just levelwise trivial cofibrations in
sSet.

We thus have the following useful results that we will need many times
over in this thesis, allowing us to manipulate and construct Reedy fibrations
in sSpaceinjn .

Corollary 2.2.47. Suppose f : U → V is a Reedy cofibration and p : Y → Z
a Reedy fibration in sSpacen. Then the induced map

Mapkn(f, p) : Mapkn(V, Y )→Mapkn(U, Y )×Mapk
n(U,Z)

Mapkn(V, Z)

is a Reedy fibration in sSpacek, which is trivial if either f or p is.

Corollary 2.2.48. If Y is Reedy fibrant in sSpacen and f : U → V is a
(trivial) Reedy cofibration in sSpacen, then the map

Mapkn(f, Y ) : Mapkn(V, Y )→Mapkn(U, Y )

is a (trivial) Reedy fibration in sSpacek.

We note again that this fact is not necessarily new in all cases. For instance,
the case k = 0 and n = 1 is established in [JT07, Prop. 2.4]. More generally,
the case k = 0 for all n is already known:
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Proposition 2.2.49. The mapping spaces Map0
n, tensors □0

n and cotensor
(−)ι0n(−) are precisely those obtained from the natural simplicial model structure
on sSpacen described in [GJ09b, pg. 370].

Moreover, it is precisely the enrichment from the natural simplicial model
structure on sSpaceprojn obtained inductively via [Hir09, Def. 11.7.2] and from
the enrichment of sSet by itself.

2.2.4 Localizations

A few words should be said as well about left Bousfield localizations and how
they will interact with injective and projective model structures. We first need
an auxiliary definition:

Definition 2.2.50 ([Hir09, Not. 16.1.1] [Hir09, Def. 16.1.2]). Let M be a
model category. Let X ∈M . Define cc∗(X) ∈M∆ to be the constant functor
to X.

A cosimplicial resolution of X is a cofibrant approximation X̃ → cc∗(X)
in the Reedy model category structure4 on M∆.

Within the scope of this thesis, we are not too interested in the precise
behavior of such a Reedy model structure. For us, two facts are important.
The first of these uses that every simplicial model category is naturally tensored
and cotensored over sSet as in [Hir09, Def. 9.1.6], a tensor we write as ⊗:

Proposition 2.2.51 ([Hir09, Prop. 16.1.3]). Let M be a simplicial model
category. If X is an object of M and W → X is a cofibrant approximation to
X, then the cosimplicial object W̃ , where W̃ n := W ⊗∆[n], is a cosimplicial
resolution of X.

The place where this structure matters to us is in consideration of homotopy
function complexes :

Definition 2.2.52 ([Hir09, Def. 17.1.1 and Notation 16.4.1]). Let M be a
model category and X, Y ∈M . A left homotopy function complex from X to
Y is a triple

(X̃, Ŷ ,M (X̃, Ŷ ))

where X̃ is a cosimplicial resolution of X, Ŷ is a fibrant approximation to Y
and M (X̃, Ŷ ) is the simplicial set which at level n is the set HomM (X̃n, Ŷ ).

For our purposes, left homotopy function complexes are sufficient. There
are dual right homotopy function complexes [Hir09, Def. 17.2.1] and two-sided
complexes [Hir09, Def. 17.3.1], which involve simplicial resolutions [Hir09, Def.
16.1.2]. We will refer to left homotopy function complexes as simply homotopy

4Note that the source Reedy category is now ∆ rather than ∆op.
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function complexes as in [Hir09, Def. 17.4.1], as the left nature of them is
unimportant.

Corollary 2.2.53. Let X, Y ∈ sSpacen such that Y is Reedy fibrant. Then,
setting X̃ to be the cosimplicial object where X̃n = X□0

n∆[n] as in Proposition
2.2.51, the tuple

(X̃, Y,Map0
n(X, Y ))

is a left homotopy function complex for X and Y in the Reedy model structure
on sSpacen.

Proof. Apply the cosimplicial resolution in Proposition 2.2.51, using X as a
cofibrant approximation for itself by Corollary 2.2.26.

We will use the complex in Corollary 2.2.53 as our homotopy function com-
plex and may write it as map(X, Y ) when doing so. Note that our homotopy
function complexes are in fact functorial in X and Y :

Definition 2.2.54 ([Hir09, Def. 17.5.2]). Suppose M is a model category and
K is a subcategory of M op ×M . Then a functorial left homotopy function
complex on K is a pair (F, ϕ), where

F : K → (M∆)op ×M∆op

and ϕ is a natural transformation (cc∗X, cs∗Y ) → F (X, Y ) where cs∗Y :
∆op →M is the constant functor on Y ∈M , such that

1. ϕ(X, Y ) defines a left homotopy function complex from X to Y for every
object (X, Y ) of K in that it identifies a pair of maps X̃ → cc∗X and
cs∗Y → cs∗Ŷ giving a cosimplicial resolution and fibrant approximation
respectively, and

2. F takes maps of K to compositions of maps of left homotopy function
complexes.

Proposition 2.2.55. The left homotopy function complex in Corollary 2.2.53
defines a functorial left homotopy function complex on sSpaceinjn for the full
subcategory K ⊆ sSpaceopn × sSpacen of pairs (X, Y ) where Y is fibrant.

Proof. It is evident that F : (X, Y ) 7→ (X̃, Y ) is a functor. The natural
transformation ϕ : (cc∗X, cs∗Y ) → (X̃, Y ) is defined by natural map X̃ →
cc∗X and 1Y : Y → Y . This evidently defines the appropriate left homotopy
function complex. The second point is immediate by construction.

One should consider then how to proceed with the projective model struc-
ture. Unlike in the Reedy model structure, projective cofibrancy is not always
immediate; we will in general be unable to prove it holds in our use cases.
Thus, we have the following weaker results:
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Proposition 2.2.56 ([Hir09, Prop. 8.1.17]). There exists a cofibrant replace-
ment functor on sSpaceprojn , namely a functor Q : sSpacen → sSpacen and
natural transformation η : Q⇒ 1sSpacen such that Q(X) is projective cofibrant
and ηX : Q(X)→ X is a trivial projective fibration for all X ∈ sSpacen.

Note that Hirschhorn in [Hir09, Def. 8.1.15] refers to Q and η together as
a functorial fibrant cofibrant approximation on sSpacen.

Proposition 2.2.57. Suppose X, Y ∈ sSpacen are such that Y is projective
fibrant. Then, setting ˜Q(X) to be as in Proposition 2.2.51, the tuple

( ˜Q(X), Y,Map0
n(Q(X), Y ))

is a left homotopy function complex for X and Y in the projective model struc-
ture on sSpacen. Moreover, if X is also projective cofibrant, then setting X̃
to again be as in Proposition 2.2.51, the tuple

(X̃, Y,Map0
n(X, Y ))

is another such left homotopy function complex.

Proof. Apply the cosimplicial resolution in Proposition 2.2.51, using Q(X) or
X itself as a cofibrant approximation for X respectively.

These can be made functorial in a straightforward manner, using the same
methods as for the injective model structure on sSpacen:

Proposition 2.2.58. The left homotopy function complexes on sSpaceprojn in
Proposition 2.2.57 are functorial on the full subcategory of pairs (X, Y ) such
that Y is projective fibrant or on the full subcategory of such pairs where Y is
projective fibrant and X is projective cofibrant, respectively.

Definition 2.2.59 ([Hir09, Def. 3.1.4]). Let M be a model category and C be
a class of maps in M .

An object W of M is C-local if W is fibrant and for every element f :
A→ B of C, the induced map of functorial left homotopy function complexes

f ∗ : map(B,W )→ map(A,W )

is a weak equivalence. In turn, a map g : X → Y in M is a C-local equivalence
if and only if for every C-local object W , the induced map

g∗ : map(Y,W )→ map(X,W )

is a weak equivalence.
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Note that we have specified that the homotopy function complexes must
be functorial, unlike Hirschhorn in [Hir09, Def. 3.1.4], to ensure functoriality
of the maps f ∗ and g∗ in a manner of our choosing.

Definition 2.2.60 ([Hir09, Def. 3.3.1]). Let M be a model category and C be
a class of maps in M .

The left Bousfield localization of M with respect to C, if it exists, is a
model category structure LCM on the underlying category of M such that:

1. The weak equivalences of LCM are the C-local equivalences of M ;

2. The cofibrations of LCM are the cofibrations of M .

The fibrations are then induced.

Note then that a left Bousfield localization of a model structure will have
the same cofibrations and trivial fibrations as before, while adding more weak
equivalences and trivial cofibrations and removing some fibrations [Hir09, Prop.
3.3.3]. Hence, in our eventual model structures defining (∞, 2)-categories and
(∞, 1)-categories, levelwise weak equivalences will still be weak equivalences.
Note also that fibrations in the localization will be Reedy fibrations, but the
other way around will no longer be the case in general.

The particular significance of C-local objects in left Bousfield localizations
goes past merely characterizing the weak equivalences: they are precisely the
fibrant objects in such model structures.

Proposition 2.2.61 ([Hir09, Prop. 3.4.1 (1)]). Let M be a left proper model
category and C be a class of maps in M . Then the fibrant objects in LCM , if
this model structure exists, are precisely the C-local objects in M .

Existence of left Bousfield localizations will be guaranteed inductively by
the following results acting in tandem:

Proposition 2.2.62 ([Hir09, Theorem 13.1.13] [Hir09, Proposition 12.1.4]).
sSet is proper and cellular.

Proposition 2.2.63. The Reedy model structure on sSpacen is proper and
cellular.

Proof. These model structures can be seen to be Reedy on the underlying
model category sSet, which is proper. By [Hir09, Theorem 15.3.4(2)], this
means the Reedy model structure on sSpacen is proper. A similar story holds
for cellularity using [Hir09, Theorem 15.7.6].

Proposition 2.2.64. The projective model structure on sSpacen is proper and
cellular.
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Proof. Cellularity is given by [Hir09, Prop. 12.1.5] and Proposition 2.2.62.
Properness is proven by [Hir09, Thm. 13.1.14].

Theorem 2.2.65 ([Hir09, Thm. 4.1.1]). Let M be a left proper and cellular
model category and let C be a class of maps in M . Then LCM exists and is
moreover left proper and cellular.

It will be useful to us to organize our sets of maps to localize by with the
following data structure:

Definition 2.2.66 ([JS17, Def. A.3]). A presentation (C,M) consists of a
small category C and a set of maps M in sSetC.

We will only care for presentations of the form (∆op,M) and ((∆op)2, N).
The upshot for us is the ability to construct instances of the latter from the
former:

Definition 2.2.67 ([JS17, Prop. A.9]). Let (C,M) and (D,N) be presenta-
tions. Define a new presentation (C,M) ⊠ (D,N) whose underlying category
is the product of categories C × D and whose set of distinguished maps in
sSetC×D is the set

M ⊠N := {m⊠ 1z(d)}(m,d)∈M×D ∪ {1y(c) ⊠ n}(c,n)∈C×N

where y : C → SetC and z : D → SetD are the Yoneda embeddings and
⊠ : sSetC×sSetD → sSetC×D denotes the functor sending a pair of presheaves
(A,B) to the presheaf (A⊠B) : (x, y) 7→ A(x)×B(y).

Let C be a Reedy category. For us, to localize with respect to a presentation
(C,M) simply means to localize the Reedy model structure on sSetC with
respect to the maps M , namely to take the model category LMsSetC . We will
also do this with the projective model structure on sSetC , as is done in [JS17,
App. A] to obtain projective fibrant complete n-fold Segal spaces.

We will also have need for a few natural results about fibrations and weak
equivalences involving localizations:

Proposition 2.2.68 ([Hir09, Thm. 3.2.13 (1)]). Suppose M is a model cate-
gory and C is a class of maps in M . If X and Y are C-local and f : X → Y
is a C-local equivalence, then f is a weak equivalence in M .

Proposition 2.2.69 ([Hir09, Prop. 3.3.16 (1)]). Suppose M is a model cate-
gory and C is a class of maps in M . If X and Y are C-local objects in M ,
then a map f : X → Y is a fibration in LCM if and only if it is one in M .
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2.2.5 Homotopy Pullbacks and Path Spaces

We will have need for a suitable notion of homotopy pullback for cospans of
simplicial sets. We begin with a consideration of general path spaces in a
model category:

Definition 2.2.70 ([DS95, pg. 22]). Let M be a model category and C ∈M .
A path object for C is a factorization

C
d−→ P(C) p−→ C × C

of the diagonal map C → C × C such that d is a weak equivalence. It is a
good path object if p is a fibration and a very good path object if, moreover,
d is a trivial cofibration.

The purpose of path objects is often to obtain right homotopies, a notion
of homotopy amenable to model categories:

Definition 2.2.71 ([DS95, pg. 22]). A right homotopy H from f to g for
f, g : C → D in a model category M is a map

H : C → P(D)

for some path object P(D) of D such that the two compositions C → P(D)→
D result in f and g respectively. It is called a good or very good right homo-
topy if P(D) is a good or very good path object, respectively.

We will encounter so-called left homotopies later in this thesis, which are
somehow dual to right homotopies.

There are two path objects we will take an interest in for sSet, neither of
which we claim originality for. The first of these appears for instance in [RV22,
Def. 1.1.23]. Before we present it, we need a quick definition:

Definition 2.2.72. Let I[n] be the groupoid whose object set is [n] and with
all hom-sets singletons.

For some topological connection to this object, consider the following stan-
dard construction:

Definition 2.2.73 ([May99, ch. 2]). The fundamental groupoid functor Π1 :
Top→ Grpd sends a topological space X to the groupoid Π1(X) whose objects
are points in X and whose morphisms are homotopy classes of paths relative
to start and end points.

Then, in particular, one might notice that I[n] is isomorphic to a full sub-
category of the fundamental groupoid Π1(∆t[n]) of the n-simplex whose objects
are the ‘corners’ of ∆t[n], namely those points (x0, · · · , xn) where some xi = 1.
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This is equivalent to the entirety of Π1(∆t[n]) along the inclusion functor, a
fact quickly proven by the n-simplex being contractible. We might therefore
consider I[1] as a finite model for a contractible homotopy type with two points
and I[n] similarly for n+ 1 points.

The extension of these ideas to simplicial sets for us will be the space
nerve(I[1]):

Definition 2.2.74. Suppose X ∈ sSet is a Kan complex. Then define I :=
nerve(I[1]) and in turn XI to be the space

X
cX−→ XI := Xnerve(I[1]) ⟨sX ,tX⟩−−−−→ X ×X

where the maps cX : X → XI and sX , tX : XI → X are given by applying
Xnerve(−) to the natural maps

∗ ⊔ ∗ → I[1]→ ∗

in Cat. We will refer to cX as the constant path map, sX as the source map
and tX as the target map.

Our second path object is built upon the pushout of the natural span
nerve(I[1])← ∗ → nerve(I[1]), where the leftmost map identifies the object
1 while the rightmost map identifies 0:

Definition 2.2.75. Suppose X ∈ sSet is a Kan complex. Then define Λ :=
nerve(I[1]) ⊔∗ nerve(I[1]) and in turn XΛ to be the space

X
λX−→ XΛ := Xnerve(I[1])⊔∗nerve(I[1]) ⟨σX ,τX⟩−−−−→ X ×X

where the maps λX : X → XΛ and σX , τX : XΛ → X are given by the natural
maps

∗ ⊔ ∗ → nerve(I[1]) ⊔∗ nerve(I[1])→ ∗

in sSet. We will refer to λX as the constant path map, σX as the source map
and τX as the target map.

Note thatXΛ does not result from some diagram in Cat; indeed, appending
two copies of I[1] along ∗ in Cat would yield I[2] instead, rather than the above
simplicial set. We can see Λ as a ‘horn’ of sorts, though where each 1-simplex
has an inverse.

Proposition 2.2.76. If X is a Kan complex, then XI is a very good path
object for X.
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Proof. The map XI → X ×X being a fibration follows from the inclusion of
objects ∗ ⊔ ∗ ↪→ nerve(I[1]) being a cofibration and either Corollary 2.2.47 in
the case n = 0 or [Hir09, Ex. 9.1.13], which states that sSet has a natural
simplicial model structure.

The map X → XI is clearly a cofibration. To show it is a weak equivalence,
note that each map ∗ → nerve(I[1]) is a trivial cofibration, so that the two
maps XI → X are trivial fibrations. The composites X → XI → X are the
identity, so by 2-out-of-3 we have a trivial cofibration as needed.

Proposition 2.2.77. If X is a Kan complex, then XΛ is a very good path
object for X.

Proof. The proof is similar to XI . Again, XΛ → X × X is a fibration since
∗ ⊔ ∗ ↪→ Λ is a cofibration. Moreover, the constant path map X → XΛ is
immediately a cofibration. For it to be trivial, it again suffices to show the two
maps ∗ → Λ are trivial cofibrations. Considering the pushout diagram

∗

∗ nerve(I[1])

∗ nerve(I[1]) Λ

k

i j

we see that since i is a trivial cofibration, j must be one too. Since k is a trivial
cofibration, the composite jk is a trivial cofibration as needed. A similar story
holds for the horizontal maps.

We will perhaps take a slightly unusual definition of ‘homotopy pullback’ in
sSet, electing to use Λ rather than I. We do not require much specific insight
into homotopy limits; for those interested, one may consult [Hir09, ch. 18-19]
or [Rie14, ch. 5].

Definition 2.2.78. Suppose f : X → Y ← Z : g is a cospan of Kan complexes
in sSet. Define the homotopy pullback of this cospan to be

X ×hY Z := X ×Y Y Λ ×Y Z,

where the limit is taken over the diagram

X
f−→ Y

σY←− Y Λ τY−→ Y
g←− Z.

A more standard definition would perhaps be X ×Y Y I ×Y Z or something
analogous, such as X ×Y Y Sing([0,1])×Y Z, which are both perfectly serviceable

80



Chapter 2: 2.2. MODEL CATEGORY THEORY

in the scenario of Kan complexes. All of these differ solely by the choice of
path object used. We employ the above as it will be the easiest to cohere with
the results of our upcoming computations.

As a show of good faith, we should prove this is indeed a reasonable no-
tion of homotopy pullback. We will first need a result about factorizing maps
between Kan complexes that will prove crucial in our work on Reedy fibrant
replacement later. This result is entirely standard; for instance, both its state-
ment and much of its proof are a special case of the factorization lemma in
[Bro73]. Brown states in the proof thereof that this derives from standard
methods in homotopy theory.

Lemma 2.2.79. Suppose f : X → Y is a map in sSet between Kan complexes
X and Y . Then the induced map

X ×Y Y nerve(I[1]) → Y

by the uppermost horizontal maps in the diagram

X ×Y Y nerve(I[1]) Y nerve(I[1]) Y

X Y

⌟

tY

sY

f

is a fibration. Moreover, the map X → X ×Y Y nerve(I[1]), given by 1X and
X

f−→ Y
cY−→ Y nerve(I[1]), is a trivial cofibration.

Proof. Consider the diagram

X ×Y Y nerve(I[1]) (X × Y )×Y×Y Y
nerve(I[1]) Y nerve(I[1])

X × Y Y × Y

Y

f×1Y

∼=

⌜

t

By Proposition 2.2.76, the rightmost vertical map is a fibration, so the pull-
back map is a fibration. Projections from products of fibrant objects are also
fibrations, meaning the map t is a fibration as needed.

Note then that the composite map X → X ×Y Y nerve(I[1]) → X is 1X .
Because the map X×Y Y nerve(I[1]) → X is a trivial fibration, by 2-out-of-3 the
map X → X ×Y Y nerve(I[1]) is a weak equivalence. That it is a cofibration is
immediate.

Proposition 2.2.80. Let f : X → Y ← Z : g be a cospan of Kan complexes
in sSet. Then X ×hY Z is a homotopy pullback of this cospan.
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Proof. It suffices to prove that the cospan

X ×Y Y I → Y ← Y I ×Y Z

is injective fibrant as a diagram K → sSet, where K is the natural cospan
diagram.

Note that K may be interpreted as a Reedy category a → b ← c, where
deg(a) = deg(c) = 1 and deg(b) = 0. As there are no maps of positive
degree, the Reedy cofibrations in sSetK are injective cofibrations, so Reedy
and injective fibrancy coincide. It thus suffices to prove that the maps X ×Y
Y I → Y and Y I ×Y Z → Y are fibrations, which is immediate by Lemma
2.2.79.

2.3 Complete n-fold Segal Spaces

We are now ready to begin discussing complete n-fold Segal spaces, our model
of choice for (∞, n)-categories. We will first consider the Reedy fibrant case of
n = 1, then move on to n = 2. Finally, we will turn to the projective fibrant
case, as this demands special care.

2.3.1 Complete Segal Spaces

Complete Segal spaces were first developed by Rezk as a model for (∞, 1)-
categories in [Rez00]. Though his intention was moreso to use complete Segal
spaces as models for homotopy theories akin to model categories, it soon be-
came apparent that his construction could be iterated to obtain a definition of
(∞, n)-category, called complete n-fold Segal spaces. These objects are studied
for instance in [Lur09a], [BR20] and [JS17]. For us, the case n = 2 will suffice.

We draw from the intuitions given in [Lur09b]. Our aim is to construct a
model for an (∞, 1)-categoryX. A reasonable place to commence this endeavor
is the homotopy hypothesis, as considered originally by Grothendieck in [Gro],
which amounts to the declaration that the theory of∞-groupoids is equivalent
to the homotopy theory of CW complexes. From this perspective, we may
infer that Kan complexes are a suitable model for ∞-groupoids, allowing us
to at least concretely specify the ‘underlying ∞-groupoid’ X0 ∈ sSet of X.
Intuitively, X0 should represent the result of stripping away from X all non-
invertible higher morphisms.

Our next obstacle is then to obtain these non-invertible morphisms in X
which X0 omits. Consider that a morphism should be represented by an ‘∞-
functor’ [1] → X, from the poset category [1] = {0 → 1} to X. We may
then be inclined to imagine the ‘∞-groupoid of such functors’ as another Kan
complex X1 ∈ sSet. One might note that X0 could similarly be interpreted as

82



Chapter 2: 2.3. COMPLETE n-FOLD SEGAL SPACES

the ∞-groupoid of functors [0] → X, where [0] is the discrete category with
one object.

We immediately consider there to be maps s, t : X1 → X0 obtained by
‘precomposing’ with the two functors [0]→ [1], each extracting the source and
target of a 1-morphism respectively. Moreover, s and t should be accompanied
by a map i : X0 → X1 induced by the projection [1]→ [0], which we interpret
as supplying the identity 1-morphism of an object.

Given a sequence of 1-morphisms in X, we must now provide some means
to identify their composite. This challenge may be addressed by considering
a new ‘∞-groupoid’ X2 ∈ sSet of ‘∞-functors’ [2] → X, where in general [n]
is the poset category {0 < · · · < n} for n ≥ 0. Such a functor identifies a
chain of two morphisms x f→ y

g→ z and a third morphism x
g◦f→ z such that

said maps commute up to some higher equivalence. Indeed, a weak functor
between higher categories need not strictly respect composition of morphisms.
There are clearly two maps X1 → X2 given by inserting identities on the left
or right of the chain, along with three maps X2 → X1 given by extracting f, g
or g ◦ f .

Being able to take unique specified compositions of morphisms now reduces
to demanding that the induced Segal map

γ2 : X2 → X1 ×t,X0,s X1

is invertible. Then, we have a path X1 ×t,X0,s X1 → X2 → X1 sending (f, g)
to g ◦ f .

The next and final quantum of information necessary to fully model an
∞-category X becomes a specification of coherence conditions. For a hypo-
thetical∞-category, we should imagine an unending tower of higher and higher
coherence morphisms, with associators and unitors between composites, pen-
tagonators between diagrams of associators, ad infinitum. To surmount this
combinatorial barrier to describing X, we take a similar approach to quasi-
categories and abstain from choosing a particular composite for a sequence of
morphisms. Instead, we will only ask that there is a ‘contractible space of
options’ for composites of two maps. More formally, we will ask that γ2 is a
mere weak equivalence of simplicial sets rather than an isomorphism. In fact,
we will go further and assert it is a trivial fibration; if everything is in fact
a Kan complex as we have thus far assumed, one would find for each pair of
composable morphisms (f, g) ∈ X1 ×X0 X1 that the fiber γ−1

2 ((f, g)) ⊆ X2 of
‘composites’ of f and g is a contractible Kan complex, as desired.

To ensure this perspective does in fact guarantee coherence conditions such
as weak associativity, we will include spaces Xn of ‘∞-functors’ [n] → X,
representing chains of length n and all possible unbiased composites. Maps
between these spaces are given by functors [m] → [n]. We will then demand
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that all the remaining Segal maps

γn : Xn → X1 ×X0 · · · ×X0 X1

are trivial fibrations. The result of this discussion is a functor X : ∆op → sSet
known as a Segal space.

Definition 2.3.1 ([Rez00, pg. 11]). A Reedy fibrant Segal space is a Reedy
fibrant simplicial space X : ∆op → sSet such that the Segal maps,

γn : Xn → X1 ×X0 · · · ×X0 X1,

are weak equivalences for all n ≥ 2.

We have importantly specified the prefix of ‘Reedy fibrant’ in the above
definition. In due course, we will define projective fibrant Segal spaces. Once
we have done so, when we write ‘Segal space’ without specifying Reedy fi-
brancy, we will mean projective fibrancy, as this will necessarily include both
the projective and Reedy fibrant cases.

Definition 2.3.2. Let SeSpinj be the full subcategory of sSpace whose objects
are the Reedy fibrant Segal spaces.

Note that, given a Reedy fibrant Segal space X, the spaces X0 and X1

are Kan complexes and the maps s := X⟨0⟩ = Xd11
and t := X⟨1⟩ = Xd01

must both be Kan fibrations. Hence, as noted in [Rez00, pg. 11], the space
X1×X0 · · ·×X0X1 is actually a homotopy limit. In particular, this implies that
the natural map

X1 ×X0 · · · ×X0 X1 → X1 ×hX0
· · · ×hX0

X1

is a weak equivalence.
Note also that the maps γn are necessarily trivial fibrations [Rez00, pg. 11],

a fact we must introduce more notation to explain. Recall the n-spine from
Definition 2.1.11.

Definition 2.3.3. For n ≥ 1, let gn : Sp(n) ↪→ ∆[n] be the inclusion ⟨0, 1⟩n⊔⟨1⟩n
· · · ⊔⟨n−1⟩n ⟨n− 1, n⟩n. For n = 0, let g0 = 1∆[0].

We can clearly see then that γn is just Map0
1(F

0
1 (gn), X); indeed, recall that

Map0
1 is the natural enrichment of sSpace by sSet and that for all n ≥ 0, we

have a natural isomorphism

Map0
1(F

0
1 (n), X) ∼= Xn.

Moreover, F 0
1 preserves colimits and Map0

1(−, X) sends colimits to limits. In
the case that n < 2, γn is just an identity. The map F 0

1 (gn) is clearly a Reedy
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cofibration by Proposition 2.2.27, so γn is a Reedy fibration by Corollary 2.2.48
as needed.

An example is now in order. One of the classic litmus tests for any new
definition of higher category is whether it supports a notion of fundamental
higher groupoid of a topological space. This structure should encode all the
weak homotopy theory of the space in question. The means we present to
accomplish this in the (∞, 1) and later (∞, 2) cases are by no means novel,
though an explicit reference in the literature remains elusive.

Definition 2.3.4. Let SingsS : Top → sSpace be the functor sending any
X ∈ Top to the space SingsS(X), defined levelwise such that

SingsS(X)n := Sing(X∆t[n])

with simplicial maps induced by precomposition.

We find that

SingsS(X)n,m ∼= HomTop(∆t[n]×∆t[m], X).

Again, by Proposition 2.1.18, this has a left adjoint |•|sS given by a certain
coend. We do not take a great deal of interest in this adjoint, so we will not
discuss it further.

It would be prudent for us to evaluate how the intuitions that led us to
defining Segal spaces apply to this example. Given a spaceX, the Kan complex
SingsS(X)0 is just Sing(X), which is indeed the prototypical example of an
∞-groupoid, namely the fundamental∞-groupoid of a topological space. This
will be the underlying ∞-groupoid of our (∞, 1)-category.

The space SingsS(X)1 is then the fundamental ∞-groupoid of the space
X∆t[1] of paths in X. As we may hope, the 1-morphisms in our (∞, 1)-category
will therefore be paths in our topological space, with the source and target
of a path p : [0, 1] → X given by p(0) and p(1), respectively. Looking at
SingsS(X)n reveals in general that the n-simplices will simply be the topolog-
ical n-simplices in X.

Our attention now turns to the Segal maps γn. Starting with the simplest
non-trivial case of n = 2, the Segal map γ2 on SingsS(X) sends a 2-simplex
ϕ : ∆t[2]→ X to the restriction ϕ||Sp(2)| : |Sp(2)| → X. That the Segal map is a
weak equivalence is immediate: there is a deformation retract ∆t[2]→ |Sp(2)|
of the spine inclusion, which induces a deformation retract of the Segal map
itself by precomposition. Thus, given a chain of two 1-morphisms f and g
in SingsS(X)1, a composite g ◦ f may be obtained thereof by applying this
deformation retract to obtain a new 1-morphism in SingsS(X). One may in
general compose such a chain of length n by doing the same with ∆t[n] and
|Sp(n)|.
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Proposition 2.3.5. Suppose X ∈ Top. Then SingsS(X) is a Reedy fibrant
Segal space.

Proof. By the above reasoning, the Segal maps in SingsS(X) are weak equiv-
alences. We are thus left with proving Reedy fibrancy. Consider the matching
object

MnSingsS(X) ∼= lim
[k]∈∂(∆op↓[n])

SingsS(X)k ∼= lim
k∈∂∆[n]

Sing(X∆t[k])

∼= Sing(Xcolimk∈∂∆[n]∆t[k])

∼= Sing(X∂∆t[n])

where ∂∆t[n] := |∂∆[n]|. The map ∂∆[n] ↪→ ∆[n] is a cofibration, so is sent
to a cofibration in Top as |·| is left Quillen. Thus, the maps

X∆t[n] → X∂∆t[n]

are Serre fibrations. Sing is right Quillen, so then sends these maps to fibra-
tions, implying the matching maps are fibrations as needed.

One might expect some notion of a ‘mapping space’ in a definition of ∞-
category, namely an ∞-groupoid of higher morphisms between two fixed ob-
jects. This is easily obtained with Reedy fibrant Segal spaces:

Definition 2.3.6 ([Ber18, pg. 10]). Let X be a Reedy fibrant Segal space and
x, y ∈ X0,0. The mapping space between x and y, written here as X(x, y), is
defined to be the pullback

X(x, y) X1

{(x, y)} X0 ×X0

⌟

in sSet.

Note that since X is Reedy fibrant, the mapping spaces X(x, y) are once
again given by homotopy pullbacks [Ber18, pg. 16]. Moreover, each such
mapping space is clearly fibrant, as fibrations are preserved under pullback
and the discrete space {(x, y)} is necessarily fibrant, as noted in [Ber18, pg.
16]. This will however not be guaranteed for projective fibrant Segal spaces,
as the rightmost vertical map may then not be a fibration.

Henceforth, we will employ the following notation:

Notation 2.3.7. Let X ∈ sSpacek. Let x1, · · · , xn ∈ (X0,··· ,0)0. Then write
(−)x1,··· ,xn : (sSpacek−1)/(X0)n → sSpacek−1 be the functor sending A→ (X0)

n

to the pullback
Ax1,x2,··· ,xn := {(x1, · · · , xn)} ×(X0)n A.
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For instance, X(a, b) = Xa,b
1 , where we regard X1 as an object in the

category sSpace0/(X0)2 via the natural map X1 → X0×X0. We will similarly
start writing

X(a0, · · · , an) :=
(
X1 ×X0 · · · ×X0 X1

)a0,··· ,an .
We should interpret this as the space of chains of n morphisms between the
objects a0, · · · , an. Moreover, we have Segal maps on fibers

γa0,··· ,ann : Xa0,··· ,an
n → X(a0, · · · , an).

In [Rez00, pg. 12], the domain is written as mapX(x0, · · · , xn), with the
codomain decomposed as mapX(x0, x1)× · · · ×mapX(xn−1, xn).

That the map γa0,··· ,ann even exists is because γn commutes with the natural
maps to (X0)

n+1 from both its domain and its codomain. We would like a
convenient term for when this condition holds more generally:

Definition 2.3.8. Consider a cospan A → (X0)
m ← B in sSpacek. A map

f : A→ B is object-fibered with respect to this cospan if f commutes with the
cospan. If the cospan is evident, simply say f is object-fibered.

Note from [Hir09, Thm. 7.6.5 (2)] that given a model category M and an
object A ∈M , there is a natural model structure on M/A whose cofibrations,
fibrations and weak equivalences are those morphisms whose underlying maps
in M are as such. Thus, (sSpacek)/(X0)n admits two natural model structures,
from sSpaceinjk and sSpaceprojk respectively. We may use this to prove for
instance that the maps γx0,··· ,xnn are trivial fibrations. That these maps are
indeed trivial fibrations is noted in [Rez00, pg. 12].

Proposition 2.3.9. (−)x1,··· ,xn preserves fibrations and trivial fibrations in
sSpaceinjk and sSpaceprojk .

Proof. Consider a (trivial) fibration f : A → B in (sSpacek)/(X0)n , given
by the model structure induced either by the injective or projective model
structures on sSpacek. We have a collection of pullback diagrams

Ax1,··· ,xn A

Bx1,··· ,xn B

{(x1, · · · , xn)} (X0)
n

fx1,··· ,xn
⌜

f

⌜

where the outermost and bottom squares are pullback diagrams. Thus, the
uppermost square is also a pullback diagram, so the upper left vertical map is
the pullback of a (trivial) fibration, as needed.
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The maps γa0,··· ,ann are then pullbacks of trivial fibrations of the form

Xa0,··· ,an
n Xn

X(a0, · · · , an) X1 ×X0 · · · ×X0 X1

γnγ
a0,··· ,an
n

⌟

A useful operation on (∞, 1)-categories, and indeed one which underpins
the central objective of this thesis, is the homotopy category construction,
which ‘collapses’ such an (∞, 1)-category X down to a mere 1-category h1(X).
The resulting category should have the same objects as X but now retain only
the path components of the original mapping spaces as its morphisms.

In the case of Reedy fibrant Segal spaces, this procedure is not at all dif-
ficult to formalize. Note that the below definition, while generally following
the approach of [JS17, Def. 2.2], is slightly modified to suit Reedy fibrancy:
the mapping spaces are given by strict pullbacks rather than more general
homotopy pullbacks, as is also the case with the codomain of the Segal map
γ2. We will return to the projective fibrant case studied by Johnson-Freyd
and Scheimbauer, which their definition of homotopy category is catered to, in
due course. Another definition is given by Rezk in [Rez00, pg. 12-13], which
agrees precisely with the definition below. We choose to follow Johnson-Freyd
and Scheimbauer instead, as it is their description of homotopy bicategories
we wish to eventually approach.

Definition 2.3.10 ([JS17, Def. 2.2]). Let X be a Reedy fibrant Segal space.
The homotopy category h1(X) ∈ Cat is the category whose objects are the
elements of the set (X0)0 and whose hom-sets are of the form

Homh1(X)(x, y) := π0(X(x, y))

with identities given by the degeneracies and composition by applying π0 to the
zig-zag diagram

X(x, y)×X(y, z) ∼= X(x, y, z) ↪→ (X1 ×X0 X1)
x,z

γx,z2←−− Xx,z
2

Xx,z

d12−−→ X(x, z).

Because γx,z2 is a trivial fibration and thus a weak equivalence of simplicial
sets, the map π0(γx,z2 ) is a bijection. Therefore, after applying π0, we will have
a single function from the first object in the zig-zag to the last.
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Note that since the Segal maps γx,z2 are trivial fibrations, we have a lifting
problem of the form

Xx,z
2 X(x, z)

X(x, y)×X(y, z) (X1 ×X0 X1)
x,z (X1 ×X0 X1)

x,z

γx,z2

µx,z2

which admits the solution µx,z2 . Taking π0 of this chain of morphisms induces
the same composition map as above. Rezk and Rasekh make a similar observa-
tion in [Rez00] and [Ras18] respectively, though instead work pointwise; each
notes that since γx,z2 is a trivial fibration, any element of (X1 ×X0 X1)

x,z can
be lifted to an element of Xx,z

2 , with any two such liftings residing in the same
path component. All of these approaches yield the same category. We will
make explicit use of the approach of solving the entire lifting problem when
we discuss homotopy bicategories.

Proposition 2.3.11 ([Rez00, Prop. 5.4]). Let X be a Segal space. Then
h1(X) is a category.

One may also prove that any map X → Y between Segal spaces induces
a functor h1(X) → h1(Y ) in a functorial manner, due to commutativity with
Segal maps and degeneracy maps. This results in a functor

h1 : SeSpinj → Cat.

It is perhaps useful to cement our intuitions by studying how h1 acts on an
example Reedy fibrant Segal space. To this end, we consider SingsS(X) for
X ∈ Top.

Recall the fundamental groupoid functor Π1 : Top→ Cat from Definition
2.2.73.

Proposition 2.3.12. There is a natural isomorphism

h1 ◦ SingsS
∼= Π1.

Proof. Consider a topological spaceX and take the category C := h1(SingsS(X)).
The objects of this category are given by the underlying set of Sing1(X)0,
which is just the underlying set of X. Hence, there is a clear bijection from
the objects of C to those of Π1(X).

Now, let x, y ∈ X. Recall that SingsS is right adjoint and thus commutes
with limits. This observation, together with Proposition 2.1.26, implies that

HomC(x, y) = π0(SingsS(X)(x, y)) ∼= πt0({(x, y)} ×X2 X∆t[1]).
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It therefore suffices to construct a natural bijection

πt0({(x, y)} ×X2 X∆t[1])→ HomΠ1(X)(x, y).

Note that two paths ∆t[1] ∼= [0, 1]→ X from x to y are identified in Π1(X) if
and only if there is a path [0, 1]→ X∆t[1] between these paths that is constant
on source and target. This happens if and only if they are in the same path
component of πt0({(x, y)} ×X2 X∆t[1]), so there is a natural bijection between
these sets sending [γ] to [γ] for any path γ from x to y in X.

That these bijections respect composition and identities is evident.

One may construct a model structure for Segal spaces, using the following
presentation:

Definition 2.3.13. The Segal presentation (∆op, C) is given by the set C of
maps in sSet∆

op

= sSpace consisting of the Segal maps

F 0
1 (gn) : F

0
1 (Sp(n)) ↪→ F 0

1 (n)

for all n ≥ 2.

Our name for this presentation is not standard in the literature, as far as
we are aware.

Theorem 2.3.14 ([Rez00, Theorem 7.1]). There is a model structure obtained
as a left Bousfield localization of the Reedy model structure on sSpace, which
we will write as SeSpinj, whose fibrant objects are the Reedy fibrant Segal
spaces.

The above model structure is simply the localization of sSpaceinj by the
Segal presentation. This is equivalent to the localization Rezk uses in [Rez00,
Sec. 10] to obtain this model category; he localizes with respect to the single
map obtained as the coproduct of all the Segal maps together.

Despite the evident intuitiveness and efficacy of Segal spaces as a model
of (∞, 1)-categories, they remain somewhat incomplete. One final addition is
necessary to ensure that the ‘homotopical’ data of a Reedy fibrant Segal space’s
underlying∞-groupoid and the ‘categorical’ data, displayed for instance in the
homotopy category, are in mutual agreement. Resolving this will allow for a
more elegant description of the equivalences between such (∞, 1)-categories,
reminiscent of how equivalences between categories are often defined.

Definition 2.3.15 ([Rez00, pg. 14]). Let X be a Reedy fibrant Segal space.
Then Xheq ⊆ X1 ∈ sSet, the space of homotopy equivalences of X, is the sub-
space of path components of X1 whose 0-simplices are mapped to isomorphisms
in h1(X).
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It is clear that the degeneracy map X0 → X1 factors through Xheq, as
identity maps are indeed isomorphisms [Rez00, pg. 14].

Definition 2.3.16 ([Rez00, pg. 14]). A Reedy fibrant complete Segal space
X is a Reedy fibrant Segal space such that the map X0 → Xheq is a weak
equivalence.

Notation 2.3.17. Write CSSPinj for the full subcategory of sSpace whose
objects are the Reedy fibrant complete Segal spaces.

Once again, it is worthwhile checking what happens to singular spaces.

Proposition 2.3.18. Let X ∈ Top. Then SingsS(X) is a Reedy fibrant
complete Segal space.

Proof. We know that h1(SingsS(X)) ∼= Π1(X) is a groupoid. Hence, SingsS(X)heq =
SingsS(X)1, so we need only show that the map

X∆t[0] → X∆t[1]

induced by the degeneracy ∆t[1]→ ∆t[0] is a weak equivalence. This is indeed
the case, as the degeneracy map is a homotopy equivalence.

One may tighten the model structure SeSpinj by adding further maps to
localize against to produce a sensible homotopy theory for complete Segal
spaces. In doing so, the weak equivalences between the fibrant objects, and in
fact more generally between Segal spaces, will obtain an alternative description
analogous to equivalences of categories:

Definition 2.3.19 ([Rez00, pg. 16]). A map f : X → Y between Reedy fibrant
Segal spaces is a Dwyer-Kan equivalence if and only if the following conditions
hold:

1. The induced functor h1(f) : h1(X) → h1(Y ) is an equivalence of cate-
gories.

2. For every x, y ∈ X0,0, the induced map X(x, y) → Y (f(x), f(y)) is a
weak equivalence.

This is much more akin to the usual ‘fully faithful and essentially surjec-
tive’ definition of an equivalence of categories. The second condition is the
extension of full faithfulness to what we might expect of an equivalence of
(∞, 1)-categories, inducing weak equivalences on mapping spaces rather than
bijections on hom-sets. Without it, the first condition implies only bijections
of path components.
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Theorem 2.3.20 ([Rez00, Thm. 7.2] [Rez00, Thm. 7.7] [Rez00, pg. 28]).
There is a closed model structure obtained as a left Bousfield localization of
the Reedy model structure on sSpace, which we will write as CSSP inj, whose
fibrant objects are the complete Segal spaces and whose weak equivalences be-
tween Segal spaces are the Dwyer-Kan equivalences.

The left Bousfield localization on sSpaceinj in question may be done with
respect to the following presentation, a superset of the Segal presentation, to
obtain the desired model structure:

Definition 2.3.21 ([JS17, pg. 55-56]). The Rezk presentation (∆op, S) is
given by the set S of maps in sSet∆

op

= sSpace consisting of:

1. The Segal maps F 0
1 (gn) : F

0
1 (Sp(n)) ↪→ F 0

1 (n).

2. The completeness map

F 0
1 (0)⊔F 0

1 (⟨0,0⟩0),F 0
1 (1),F

0
1 (⟨0,2⟩3) F

0
1 (3)⊔F 0

1 (⟨1,3⟩3),F 0
1 (1),F

0
1 (⟨0,0⟩0) F

0
1 (0)→ F 0

1 (0)

given by the maps 1F 0
1 (0)

and F 0
1 (⟨0, 0, 0, 0⟩0).

We thus find that a weak equivalence between Reedy fibrant Segal spaces
in SeSpinj is always a Dwyer-Kan equivalence [Rez00, Thm. 7.7].

Note that the above presentation is not precisely the same as the one given
in [Rez00], though will induce the same model structure. Indeed, it is shown
by Rezk in [Rez10, Sec. 10] that locality with respect to the completeness map
above induces precisely the completeness condition on Segal spaces. This is
due to the following result on the matter:

Proposition 2.3.22 ([Rez10, Prop. 10.1]). For X ∈ SeSpinj, the natural
map

Map0
1

(
F 0
1 (∆[0] ⊔⟨0,0⟩,∆[1],⟨0,2⟩ ∆[3] ⊔⟨1,3⟩,∆[1],⟨0,0⟩ ∆[0]), X

)
→ X1

determined by ⟨1, 2⟩3 : ∆[1]→ ∆[3] factors through Xheq. Moreover, the core-
striction to Xheq is a weak equivalence.

2.3.2 Complete 2-fold Segal Spaces

We are now ready to begin our foray into the world of (∞, 2)-categories. Our
model of choice will be complete 2-fold Segal spaces, which will be assembled
from complete Segal spaces in a similar way to how complete Segal spaces were
built out of Kan complexes.

In order to facilitate the structure of an (∞, 2)-category X, we should
consider both horizontal and vertical composition. Hence, for each n,m ≥ 0,
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we will now have an ∞-groupoid Xn,m of ‘grids’ of 2-morphisms of horizontal
length n and vertical length m, which we will write as Xn,m. We could see this
as the ∞-groupoid of ∞-functors [n] ⊠ [m] → X, where we might imagine ⊠
as a ‘Gray tensor product’ of ∞-categories.

This should, for a fixed n ≥ 0, induce a complete Segal space Xn,• where
composition is vertical. In the special case n = 1, we have what we might
call the (∞, 1)-category of 1-morphisms X1,•, whose objects f ∈ (X1,0)0 are
1-morphisms in X, whose morphisms α ∈ (X1,1)0 are 2-morphisms in X and
whose higher morphisms provide vertical composites of 2-morphisms in X. We
then have (∞, 1)-categories X•,n whose compositions are instead horizontal in
X.

A starting point to formalize this intuition is as follows:

Definition 2.3.23 ([Ber18, Def. 6.1]). A Reedy fibrant double Segal space is
a Reedy fibrant bisimplicial space such that the Segal maps

γn,• : Xn,• → X1,• ×X0,• · · · ×X0,• X1,•,

γ•,n : X•,n → X•,1 ×X•,0 · · · ×X•,0 X•,1,

are weak equivalences for all n ≥ 2, so X•,k and Xk,• are Reedy fibrant Segal
spaces for all k ≥ 0.

There is a model structure on sSpace2 such that these are the fibrant
objects, obtained by localizing sSpaceinj2 with respect to the following presen-
tation, a subset of one of the Lurie presentations in [JS17, pg. 56] that we will
return to later:

Definition 2.3.24. The 2-uple Segal presentation is the presentation (∆op, C)⊠
(∆op, C).

Definition 2.3.25. Let SSpinj2 be the model structure on sSpace2 obtained by
localizing sSpaceinj2 with respect to the 2-uple Segal presentation.

Definition 2.3.26. Let SSpinj2 be the full subcategory of sSpace2 whose objects
are the Reedy fibrant double Segal spaces.

It is clear that SSpinj2 is the full subcategory of fibrant objects in the model
structure SSpinj2 on sSpace2.

One might begin to notice an analogy with how complete Segal spaces are
constructed from an assortment of∞-groupoids. At each level, a Reedy fibrant
double Segal space X will be a Reedy fibrant Segal space. We could indeed
choose to see X0 as the ‘underlying (∞, 1)-category’ of X, containing only
the invertible 2-morphisms. More generally, Xn will be a Reedy fibrant Segal
space, which we could choose to interpret as the (∞, 1)-category of (∞, 2)-
functors [n] → X. Precomposition yields a functor from ∆op to SeSpinj,
which is a Reedy fibrant bisimplicial space satisfying a Segal condition valued
in (∞, 1)-categories instead of ∞-groupoids. This can be made more precise:
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Proposition 2.3.27 ([Ber18, Prop. 6.3]). A bisimplicial space X is a Reedy
fibrant double Segal space if and only if it is Reedy fibrant as a functor ∆op →
SeSpinj and is such that the Segal maps for all n ≥ 2

γn : Xn → X1 ×X0 · · · ×X0 X1

are weak equivalences in SeSpinj.

Proof. Recall that (trivial) fibrations between local objects in a left Bous-
field localization are simply (trivial) fibrations in the original model structure.
Hence, by [Hir09, Cor. 15.3.12], X is Reedy fibrant in SeSpinj if and only if it
is Reedy fibrant in sSpaceinj and is levelwise a Reedy fibrant Segal space.

The maps γn are then fibrations in SeSpinj. Thus, since Reedy trivial
fibrations and trivial fibrations in SeSpinj are the same [Hir09, Prop. 3.3.3],
the maps γn are weak equivalences in SeSpinj if and only if they are weak
equivalences levelwise. This means that for each m ≥ 0, the map

γn,m : Xn,m → X1,m ×X0,m · · · ×X0,m X1,m

is a weak equivalence, which is precisely the first case of Segal maps for a
double Segal space. The second case is then given if and only if each Xn is a
Segal space, which is guaranteed by Reedy fibrancy in SeSpinj.

One may note that this is precisely the notion of 2-fold Segal space in
[Ber12, Def. 3.4] minus ‘essential constancy’, a property we will return to
later.

A useful construction pertaining to Reedy fibrant double Segal spaces will
be an analogue of the mapping spaces defined previously for Reedy fibrant
Segal spaces. To this end, recall that for a bisimplicial space X, for n ≥ 0 the
notation Xn denotes the simplicial space Xn,•.

Definition 2.3.28 ([Ber18, Def. 6.6]). Let X be a Reedy fibrant double Segal
space. Let x, y ∈ (X0,0)0. Then the mapping space X(x, y) is defined to be the
pullback in sSpace of the form

X(x, y) X1

{(x, y)} X0 ×X0.

⌟

In [Ber18, Def. 6.6], this construct is referred to as the mapping object of
X and is denoted as map

X
(x, y). We could alternatively write it as Xx,y

1,• or
Xx,y

1 using Notation 2.3.7.
One particular fact about Reedy fibrant double Segal spaces is important

for us to establish presently:
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Proposition 2.3.29. Let X be a Reedy fibrant double Segal space. Then the
Segal maps

γn : Xn → X1 ×X0 · · · ×X0 X1

are trivial fibrations in CSSP inj, SeSpinj and sSpaceinj.

Proof. That X is a Reedy fibrant double Segal space implies it is a Reedy fi-
brant functor ∆op → sSpaceinj. Thus, the Segal maps γn are Reedy fibrations
of simplicial spaces. We also have by definition that the maps γn are level-
wise weak equivalences in sSet. This implies that each γn is a Reedy trivial
fibration, meaning it is as such in SeSpinj and CSSP inj; indeed, by [Hir09,
Prop. 3.3.3], left Bousfield localizations of a given model structure have the
same trivial fibrations as the model structure being localized.

We henceforth employ the notation Aa1,··· ,an and X(a1, · · · , an) similarly to
for simplicial spaces. Again, note that the fibers of the Segal maps γa1,··· ,ann for
a Reedy fibrant double Segal space are trivial fibrations in sSpaceinj, SeSpinj
and CSSP inj.

As detailed in [Ber18, pg. 15], Reedy fibrant double Segal spaces alone
should not be expected to accurately model (∞, 2)-category theory. If we
choose to continue following our intuitions for Reedy fibrant double Segal
spaces developed thus far, we should then consider the Kan complex X1,1

to represent the ∞-groupoid of 2-morphisms in a Reedy fibrant double Segal
space X. We might interpret the face maps X1,1 → X1,0 as retrieving the
source and target 1-morphisms of a given 2-morphism. However, there are
now four possible source and target objects, given by the four distinct maps
X1,1 → X0,0. These do not have to equate to each other to give a ‘globular
picture’ of 2-morphisms, as per the following illustration:

• •

Instead, we must contend with the ‘vertical’ 1-morphisms in X0,1 which we
have thus far neglected. We discover a ‘cubical’ picture of 2-morphisms, which
we may visualize as follows:

• •

• •

More explicitly, given some f ∈ (X1,1)0, we could identify the parts of this
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diagram as

X(d11,d
1
1)
(f) ∈ X0,0 X(d11,d

0
1)
(f) ∈ X0,0

X(d01,d
1
1)
(f) ∈ X0,0 X(d01,d

0
1)
(f) ∈ X0,0

X
(d11,id)

(f)∈X1,0

X
(id,d11)

(f)∈X0,1

X
(d11,id)

(f)∈X1,0

X
(id,d01)

(f)∈X0,1f∈X1,1

In general, we consider the globular case to be closer to our expectations of
higher category theory, better resembling both bicategories and the higher cat-
egories of manifolds and cobordisms explored in [Sch14b] and [MP23]. Hence,
the (∞, 1)-category of vertical 1-morphisms X0,• will have to be brushed under
the rug in some natural manner.

A suitable requirement would be forX0,• to in fact represent an∞-groupoid,
so that all vertical morphisms are equivalences. We will realize this intuition
by demanding X0,• is essentially constant :

Definition 2.3.30 ([CS19, Def. 2.3] [JS17, Def. 2.7]). A simplicial space
X is essentially constant if and only if the natural map q : ι01(X0) → X,
defined levelwise such that qn : X0 → Xn is induced by the terminal map
⟨0, · · · , 0⟩n : [n]→ [0] in ∆, is a levelwise weak equivalence.

The map q is of course simply the map induced by 1X0 : X0 → ρ01(X) = X0

under the adjunction with ι01.
It will be beneficial for us to establish a running example of an (∞, 2)-

category. This will be done in much the same way as with Reedy fibrant
complete Segal spaces:

Definition 2.3.31. Suppose X ∈ Top. Then define SingssS(X) to be the
bisimplicial space such that, for all n ≥ 0,

SingssS(X)n := SingsS(X
∆t[n]).

Note then that

(SingssS(X)a,b)c ∼= HomTop(∆t[a]×∆t[b]×∆t[c], X).

It is evident that SingssS(X) is a Reedy fibrant double Segal space for all X ∈
Top. Indeed, we have that SingssS(X)•,k ∼= SingssS(X)k,• = SingsS(X

∆t[k]),
which is in fact a Reedy fibrant complete Segal space. Reedy fibrancy of
SingssS(X) overall may be established by an extension of the proof for Propo-
sition 2.3.5.

We should establish that SingssS(X) aligns with our intuitions for Reedy
fibrant double Segal spaces. The notion that SingssS(X)0 should be seen as the
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underlying (∞, 1)-category of SingssS(X) somewhat immediately applies by
definition. Moreover, the interpretation of SingssS(X)1 as the (∞, 1)-category
of morphisms also applies rather directly. The intuition carries on for higher
levels as needed.

Now, consider the cubical picture for 2-morphisms in a Reedy fibrant double
Segal space we have previously identified. Whether by coincidence or not, the
space SingssS(X)1,1 is quite literally Sing(X∆t[1]×∆t[1]), the space of squares
inside X. The natural simplicial maps to SingssS(X)1,0, SingssS(X)0,1 and
SingssS(X)0,0 identify the edges and corners of this square. With the Segal
maps, we can compose these squares either horizontally or vertically by aligning
edges.

Note also that the vertical maps are in fact ‘essentially constant’; they are
paths, which can be contracted so the square is essentially ‘pinched’ into a
globular picture, up to homotopy. Hence, the vertical data is rather negligible.
Of course, in this example the horizontal data is also as such since SingssS(X)
is really an ∞-groupoid in disguise, but more general examples of (∞, 2)-
categories are not so simple.

We will begin our strengthening of Reedy fibrant double Segal spaces by
first introducing essential constancy to our definitions:

Definition 2.3.32 ([Ber12, Def. 3.4]). A Reedy fibrant 2-fold Segal space X
is a Reedy fibrant double Segal space such that X0 is essentially constant.

There is a model structure on sSpace2 for which the Reedy fibrant 2-fold
Segal spaces are the fibrant objects. This is given by the following presentation,
again a subset of one of the Lurie presentations in [JS17, pg. 56]:

Definition 2.3.33. The 2-fold Segal presentation is the 2-uple Segal presen-
tation (∆op, C)⊠ (∆op, C) together with the following maps:

1. The essential constancy maps, for each m ≥ 0, of the form

F 0
2 (⟨0, · · · , 0⟩0︸ ︷︷ ︸

m

, ⟨0⟩0) : F 0
2 (m, 0)→ F 0

2 (0, 0).

Definition 2.3.34. Let SeSpinj2 be the model structure on sSpace2 obtained
by localizing sSpaceinj2 with respect to the 2-fold Segal presentation.

Definition 2.3.35. Let SeSpinj2 be the full subcategory of sSpace2 whose ob-
jects are the Reedy fibrant 2-fold Segal spaces.

While Reedy fibrant 2-fold Segal spaces are an improvement on Reedy
fibrant double Segal spaces, they are still incomplete as a model of (∞, 2)-
categories. In particular, we should expect such an (∞, 2)-category X to yield
genuine (∞, 1)-categories Xn,• and X•,n for all n ≥ 0. Currently, we can only
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guarantee these to be Segal spaces rather than complete Segal spaces. It is
this shortcoming we must somehow rectify.

For us, a complete 2-fold Segal space will be equivalent to a Reedy fibrant
rendition of the definition given in [JS17, Def. 2.7], shifting explicitly from
levelwise Segal spaces to levelwise complete Segal spaces in both coordinates.
We make this decision to ensure our work remains as close as possible to efforts
establishing (∞, n)-categories of cobordisms, such as in [JS17] and [CS19].
When we come to studying projective fibrant complete 2-fold Segal spaces, our
definitions will then precisely align with these sources.

Definition 2.3.36. A Reedy fibrant complete 2-fold Segal space X is a Reedy
fibrant 2-fold Segal space such that Xk,• and X•,k are both Reedy fibrant com-
plete Segal spaces for all k ≥ 0.

Proposition 2.3.37. There is a model category structure on sSpace2, which
we will denote by CSSP inj

2 , obtained as a left Bousfield localization of sSpaceinj2 ,
whose fibrant objects are precisely the Reedy fibrant complete 2-fold Segal spaces.

Bergner and Rezk in [BR20, Theorem 5.6] make a similar statement, albeit
with respect to a different definition of Reedy fibrant complete 2-fold Segal
space.

Recall that the Rezk presentation (∆op, S) obtains the model structure
CSSP inj whose fibrant objects are the complete Segal spaces. With this in
mind, following [JS17, pg. 55-56] though building upon sSpaceinj2 rather than
sSpaceproj2 , our model structure is the left Bousfield localization of sSpaceinj2

with regards to the following presentation:

Definition 2.3.38. The 2-fold Lurie presentation is the presentation (∆op, S)⊠
(∆op, S) together with the essential constancy maps of the 2-fold Segal presen-
tation.

This can be generalized to all sSpacen to obtain the Lurie presentations
in [JS17, pg. 56].

There is a clear example of a Reedy fibrant complete 2-fold Segal space
already available to us:

Proposition 2.3.39. Let X ∈ Top. Then SingssS(X) is a Reedy fibrant
complete 2-fold Segal space.

2.3.3 Projective Fibrant Complete n-Fold Segal Spaces

The theories of Reedy fibrant complete Segal spaces and Reedy fibrant com-
plete 2-fold Segal spaces seem reasonably straightforward to define in nature:
one considers a model structure on sSpacen for n = 1, 2 and localizes with
respect to some relevant presentation. It seems then that there should be
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no obstacle to obtaining a projective fibrant analogue to these constructions,
where one starts with sSpaceprojn rather than sSpaceinjn . We begin investi-
gating this insight in the case n = 1, reproducing the definition of projective
fibrant Segal space found in [JS17, Def. 2.1] and the relevant model structure
by the same localization:

Definition 2.3.40. Let SeSpproj be the model structure on sSpace obtained
by localizing sSpaceproj with respect to the Segal presentation.

A projective fibrant Segal space X is a fibrant object in the model structure
SeSpproj.

Let SeSpproj be the full subcategory of sSpace whose objects are the pro-
jective fibrant Segal spaces.

Due to the evident similarities between how projective and Reedy fibrant
Segal spaces are defined, one might instinctively expect a projective fibrant
Segal space to be a projective fibrant functor X : ∆op → sSet, meaning one
where each Xn is a Kan complex, such that the Segal maps

Xn → X1 ×X0 · · · ×X0 X1

are weak equivalences in sSet. However, technical issues begin to arise if we
inspect this suggestion further. All we may guarantee of X is that it is local
with respect to the Segal maps F 0

1 (Sp(n)) → F 0
1 (n), which only tells us that

the maps of homotopy function complexes

map(F 0
1 (n), X)→map(F 0

1 (Sp(n)), X)

are weak equivalences. Recall that Map0
n(−,−) was proven to be a model for

homotopy function complexes only in the Reedy fibrant case; this relied on the
fact that all objects in sSpaceinjn are cofibrant. We cannot depend upon such
a crutch anymore in sSpaceprojn , where cofibrancy is not so straightforward to
guarantee. Instead, we only have by Proposition 2.2.57 that the maps

Map0
1

(
Q(F 0

1 (n)), X
)
→Map0

1

(
Q(F 0

1 (Sp(n))), X
)

are weak equivalences, for some projective cofibrant replacement functor Q.
Note that by Proposition 2.2.36, the spaces F 0

1 (n) are projective cofibrant.
Hence, by [Hir09, Prop. 17.1.6], we have for each n ≥ 2 that the map
Map0

1(F
0
1 (n), X)→Map0

1(Q(F
0
1 (n)), X) induced by precomposition with the

cofibrant replacement map Q(F 0
1 (n)) → F 0

1 (n) is a weak equivalence. Thus,
for a projective fibrant Segal space X, the composite maps

Xn → X1 ×X0 · · · ×X0 X1 →Map0
1

(
Q(F 0

1 (Sp(n))), X
)

are weak equivalences. To proceed further would require us to identify a pro-
jective cofibrant replacement of F 0

1 (Sp(n)).
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Thankfully, we will not have to define such a replacement presently: the
nuances of projective fibrant Segal spaces have been addressed by Horel in
[Hor15], where a rather straightforward alternative condition is identified.

Proposition 2.3.41 ([Hor15, Prop. 2.3]). A projective fibrant object X :
∆op → sSet in sSpaceproj is fibrant in SeSpproj if and only if, for all m,n ≥ 0,
the maps

Xm+n → Xm ×X0 Xn → Xm ×hX0
Xn

given by ⟨0, · · · ,m⟩m+n : [m]→ [m+n] and ⟨m, · · · ,m+n⟩m+n : [n]→ [m+n]
in ∆ are weak equivalences.

Calaque and Scheimbauer note in [CS19, Rem. 1.5] that this holds if and
only if the maps

Xn → X1 ×X0 · · · ×X0 X1 → X1 ×hX0
· · · ×hX0

X1

are weak equivalences for all n ≥ 2.
It should be noted that Johnson-Freyd and Scheimbauer in [JS17, Def. 2.1]

use this latter property as their definition of a projective fibrant Segal space,
though without enforcing any particular model of homotopy pullback. Horel
also makes no assertion of which model of homotopy pullback is used; indeed,
any model of homotopy pullbacks will yield the same result. In particular, if X
is Reedy fibrant, we may use the strict pullback as a model of homotopy pull-
back to show directly that every Reedy fibrant Segal space is also a projective
fibrant Segal space. One may alternatively use [Hor15, Prop. 2.3 (6)].

We now consider a similar definition for projective fibrant complete Segal
spaces, whose model structure is obtained in precisely the same manner as in
[JS17]. We will prove that the fibrant objects of this model structure are as
described in [JS17, Def. 2.3] once we have studied Reedy fibrant replacement
functors. It should be noted that our proof will be by no means novel; a similar
proof can be obtained via [JS17, Lemma 2.5].

Definition 2.3.42. Let CSSP proj be the model structure on sSpace obtained
by localizing sSpaceproj with respect to the Rezk presentation.

A projective fibrant complete Segal space X is a simplicial space that is
fibrant in the model structure CSSP proj.

Let CSSPproj be the subcategory of sSpace whose objects are the projective
fibrant complete Segal spaces.

Note that the fibrant objects of this model structure will always be pro-
jective fibrant Segal spaces. It is moreover evident that every Reedy fibrant
complete Segal space is also a projective fibrant such object; being local with
respect to some class of maps is independent of the choice of homotopy function
complex, as is noted by Hirschhorn in [Hir09, Def. 3.1.4 (1a)].
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We can now establish the projective fibrant analogues of Reedy fibrant
double Segal spaces, Reedy fibrant 2-fold Segal spaces and Reedy fibrant com-
plete 2-fold Segal spaces. Once more, the model structures and fibrant objects
presented here are identical to those considered in [JS17], with the model
structures defined in the same manner.

Definition 2.3.43. Let SSpproj2 be the model structure on sSpace2 obtained
by localizing sSpaceproj2 with respect to the 2-uple Segal presentation.

A projective fibrant 2-uple Segal space is a fibrant object in SSpproj2 .
Let SSpproj2 be the category of projective fibrant 2-uple Segal spaces.

We may extract from this a characterization of projective fibrant 2-uple Se-
gal spaces identical to the definition given by Johnson-Freyd and Scheimbauer
in [JS17, Def. 2.6], though specifying the model of homotopy pullback:

Proposition 2.3.44. Suppose X : (∆op)2 → sSet is a projective fibrant object
in sSpaceproj2 . Then X is fibrant in SSpproj2 if and only if for all n ≥ 2 and
k ≥ 0, the maps

Xn,k → X1,k ×hX0,k
· · · ×hX0,k

X1,k

Xk,n → Xk,1 ×hXk,0
· · · ×hXk,0

Xk,1

are weak equivalences. That is to say, Xk,• and X•,k must both be projective
fibrant Segal spaces for all k ≥ 0.

Proof. We proceed by a modified version of the proof of [Hor15, Prop. 2.3].
Note that locality is invariant under levelwise weak equivalences of projective
fibrant bisimplicial spaces, by [Hir09, Lemma 3.2.1]. To show the postulated
condition is invariant under levelwise weak equivalences as well, we employ a
modified version of the proof of [Hor15, Prop. 1.11]. Consider a levelwise weak
equivalence X → Y of bisimplicial spaces. Let n ≥ 2 and k ≥ 0. Then we
have a natural diagram in sSet of the form

Xn,k X1,k ×X0,k
· · · ×X0,k

X1,k X1,k ×hX0,k
· · · ×hX0,k

X1,k

Yn,k Y1,k ×Y0,k · · · ×Y0,k Y1,k Y1,k ×hY0,k · · · ×
h
Y0,k

Y1,k

where the leftmost and rightmost vertical maps are weak equivalences. Thus,
the uppermost composite of horizontal maps is a weak equivalence if and only
if the lowermost composite is as such. A similar diagram handles the other
maps in the condition. This completes the required modified version of the
proof of [Hor15, Prop. 1.11].
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Thus, it suffices to prove these conditions are equivalent in the case that
X is in fact a Reedy fibrant bisimplicial space. If this is so, the homotopy
pullbacks X1,k×hX0,k

· · ·×hX0,k
X1,k and Xk,1×hXk,0

· · ·×hXk,0
Xk,1 may be modelled

by strict pullbacks. Hence, X will be local with respect to the 2-uple Segal
presentation if and only if it is a Reedy fibrant 2-uple Segal space, which
completes the proof.

We now turn to the projective fibrant analogues of Reedy fibrant 2-fold
Segal spaces and Reedy fibrant complete 2-fold Segal spaces:

Definition 2.3.45. Let SeSpproj2 be the model structure on sSpace2 obtained
by localizing sSpaceproj2 with respect to the 2-fold Segal presentation.

A projective fibrant 2-fold Segal space is a fibrant object in SeSpproj2 .
Let SeSpproj2 be the category of projective fibrant 2-fold Segal spaces.

Proposition 2.3.46. A projective fibrant object X : (∆op)2 → sSet in sSpaceproj2

is fibrant in SeSpproj2 if and only if it is a projective fibrant 2-uple Segal space
and such that X0 is essentially constant.

Proof. The essential constancy maps’ domains and codomains are all projective
cofibrant by Proposition 2.2.36, so the concrete effect of locality with respect
to these maps is the same as for the Reedy fibrant case, by using the homotopy
function complex in Proposition 2.2.57.

Thus, the definition we have provided for projective fibrant 2-fold Segal
spaces is the same as in [JS17, Def. 2.7], though again now specifying the
model of homotopy pullback.

Definition 2.3.47. Let CSSP proj
2 be the model structure on sSpace2 obtained

by localizing sSpaceproj2 with respect to the 2-fold Lurie presentation.
A projective fibrant complete 2-fold Segal space is a fibrant object in CSSP proj

2 .
Let CSSPproj

2 be the category of projective fibrant complete 2-fold Segal
spaces.

Proposition 2.3.48. A projective fibrant object X : (∆op)2 → sSet in sSpaceproj2

is fibrant in CSSP proj
2 if and only if it is a projective fibrant 2-fold Segal space

and such that X•,k and Xk,• are local with respect to the completeness map for
all k ≥ 0.

Proof. A similar proof to Proposition 2.3.44 is in order. Again, locality is
invariant under levelwise weak equivalence between projective fibrant bisim-
plicial spaces, so we may assume X is Reedy fibrant. Then locality holds if
and only if X is a Reedy fibrant complete 2-fold Segal space, which is true if
and only if it is a projective fibrant 2-fold Segal space such that X•,k and Xk,•
are local with respect to the completeness map.
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This is precisely the definition of a projective fibrant complete 2-fold Segal
space given in [JS17, Def. 2.7], though again now specifying models of homo-
topy pullback. We will not be so bold as to claim our proofs characterizing the
fibrant objects in SSpproj2 , SeSpproj2 or CSSP proj

2 are novel; an alternative set
of proofs is stated to be possible by Johson-Freyd and Scheimbauer in [JS17,
pg. 55-56] by using [JS17, Prop. A.9], though we were unable to verify this
directly ourselves. We have instead simply recycled the tactic Horel uses in
[Hor15] to prove Proposition 2.3.41 in various localized model structures.

At this point, we have established that the above notions of projective
fibrant Segal space, 2-uple Segal space, 2-fold Segal space and complete 2-
fold Segal space all agree on the nose with the definitions given in [JS17,
Sec. 2]. They also agree at the level of model structures with the model
categories posed in [JS17, App. A], a fact that holds for CSSP proj as well;
though Johnson-Freyd and Scheimbauer only explicitly declare presentations
of model structures for projective fibrant complete Segal spaces, ‘projective
fibrant complete 2-uple Segal spaces’ and projective fibrant complete 2-fold
Segal spaces in this article, it is straightforward to obtain the other model
structures we discuss from their work by simply removing the completeness
maps.

Similarly to Reedy and projective fibrant Segal spaces, it is easily seen that
a Reedy fibrant complete Segal space, 2-uple Segal space, 2-fold Segal space
or complete 2-fold Segal space is necessarily a projective fibrant such object.
Thus, henceforth, when we write ‘Segal space’, ‘complete Segal space’, ‘2-uple
Segal space’, ‘2-fold Segal space’ or ‘complete 2-fold Segal space’, we will mean
the projective fibrant cases unless stated otherwise.

It should be noted that Horel in [Hor15, Sec. 2.5] provides an explicit
characterization of completeness for projective fibrant Segal spaces; we will
not use this description here, opting to leave the issue until we can address it
ourselves in a different manner. This will be done in tandem with obtaining
homotopy categories of projective fibrant Segal spaces, which we will consider
in depth after we begin studying Reedy fibrant replacement functors, result-
ing in a description identical to that of [JS17, Def. 2.3] obtained by related
methods.

2.4 Biased and Unbiased Bicategories

Armed with a reasonable understanding of the domain of our homotopy bicat-
egory construction, we are now ready to consider the codomain. Our first goal
in this regard is to extend the principles of the homotopy category functor h1
from Reedy fibrant Segal spaces to a homotopy bicategory functor for Reedy
fibrant 2-fold Segal spaces. It would seem sensible then that the codomain of
our functor should be a category of bicategories of some description.
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We believe that a more natural target may be unbiased bicategories. In-
deed, consider the nature of composition in a complete 2-fold Segal space X;
the spaces Xn allow us to humor composites of chains of n morphisms rather
than just binary composition. Such a situation would be most faithfully repre-
sented by an ‘unbiased’ construction, which for each n accommodates a distinct
operation for composing n morphisms at once.

In the below definitions and throughout this thesis, we take the convention
that for natural isomorphisms ϕ : F ⇒ G, ψ : G⇒ H and θ : Q⇒ R, vertical
composition is written ψϕ : F ⇒ H and horizontal is θ ◦ ϕ : Q ◦ F ⇒ R ◦G.

Definition 2.4.1 ([Lei00, Def. 1.2.1]). An unbiased bicategory B consists of
the following data:

1. A collection of objects ob(B);

2. For each pair of objects x and y, a category HomB(x, y) of 1-morphisms
x→ y and 2-morphisms f ⇒ g between them;

3. For each tuple of objects X = (x0, · · · , xn) for n ∈ Z>0, a functor

◦X : HomB(x0, x1)× · · · ×HomB(xn−1, xn)→ HomB(x0, xn)

which we alternatively write as

(f1, · · · , fn) 7→ (fn ◦ · · · ◦ f1) =⃝n
i=1fi

for fi ∈ HomB(xi−1, xi) all 1-morphisms or all 2-morphisms;

4. For each object x, a functor ◦x : ∗ → HomB(x, x) from the discrete
singleton category, identifying a 1-morphism we denote as () : x→ x;

5. For each n ∈ Z>0 and k1, · · · , kn ∈ Z≥0, for each sequence of tuples
Xi = (xi0, · · · , xiki) such that xiki = xi+1

0 for all 1 ≤ i < n, setting

X := (X1, · · · , Xn)

Y := (x10, · · · , x1k1 , x
2
1, · · · , x2k2 , · · · , x

n
1 , · · · , xnkn)

Z := (x10, x
1
k1
, x2k2 , · · · , x

n
kn)

a natural isomorphism

γX : ◦Z ◦ (◦X1 × ◦X2 × · · · × ◦Xn)⇒ ◦Y

between ((fnkn ◦ · · · ◦ f
n
1 ) ◦ · · · ◦ (f 1

k1
◦ · · · ◦ f 1

1 )) and (fnkn ◦ · · · ◦ f
1
1 ), written

levelwise as

γ((f11 ,··· ,f1k1 ),··· ,(f
n
1 ,··· ,fnkn ))

:⃝n
i=1(⃝

ki
j=1f

i
j)→⃝n

i=1⃝
ki
j=1 f

i
j ;
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6. For each pair of objects x and y, a natural isomorphism ιx,y : 1HomB(x,y) ⇒
◦x,y between f and (f), written levelwise as ιf : f → (f),

such that:

1. (associativity) for any n,m1, · · · ,mn ∈ Z>0, integers k11, · · · , knmn
∈

Z≥0 and thrice-nested sequence of objects (((xp,q,r)
kpq
r=0)

mp

q=1)
n
p=1 such that

xp,q,kpq = xp,q+1,0 for q < mp and xp,mp,k
p
mp

= xp+1,1,0 for p < n, to-
gether with any sequence of 1-morphisms fp,q,r ∈ HomB(xp,q,r−1, xp,q,r)
for p, q, r ≥ 1, the diagram

⃝n
p=1(⃝

mp

q=1(⃝
kpq
r=1fp,q,r))

⃝n
p=1(⃝

mp

q=1⃝
kpq
r=1 fp,q,r) ⃝n

p=1⃝
mp

q=1 (⃝
kpq
r=1fp,q,r)

⃝n
p=1⃝

mp

q=1⃝
kpq
r=1fp,q,r

⃝n
p=1γDp

γE

γD

γF

commutes, where

(a) Dp = ((fp,q,r)
kpq
r=1)

mp

q=1;

(b) D = ((⃝kpq
r=1fp,q,r)

mq

q=1)
n
p=1;

(c) E = ((fp,q,r)
kpq ,mp

r=1,q=1)
n
p=1;

(d) F = ((fp,q,r)
kpq
r=1)

mq ,n
q=1,p=1;

2. (unitality) for any sequence of objects x0, · · · , xn ∈ ob(B) and 1-morphisms
fi ∈ HomB(xi−1, xi), the diagram

⃝n
i=1fi

(⃝n
i=1fi) ⃝n

i=1(fi)

⃝n
i=1fi

ι⃝n
i=1

fi

γ((f1,··· ,fn))

⃝n
i=1ιfi

γ((f1),··· ,(fn))

1⃝n
i=1

fi

commutes.

Note the existence of object identities given by the 1-morphisms (). The
unitality condition on these is now implicit in what we will refer to as the
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associators γX , rather than what we refer to henceforth as the unitors ιx,y,
which take a role closer to the unit of a monad rather than a monoid. Indeed,
the analogous notion of a (small) unbiased monoidal category is explained in
[Lei04, pg. 69-70] to be a weak algebra for a certain strict 2-monad. In [Lei00,
Def. 1.2.1], Leinster absorbs the identities () into the collection of composition
operations by allowing n = 0, so that X = (x0). It should also be noted that
we have made the addition of indexing the objects in the associators γX and
associativity conditions, along with declaring when indices are allowed to equal
zero or not.

It will be necessary for us to possess some notion of pseudofunctor between
these unbiased bicategories. We establish a suitable such definition presently:

Definition 2.4.2 ([Lei00, Def. 1.2.3]). Let B and C be unbiased bicategories.
Write the composition functors in B as ◦x0,··· ,xnB and the same functors in C
as ◦y0,··· ,ynC , for objects x0, · · · , xn in B and y0, · · · , yn in C .

An unbiased pseudofunctor or unbiased weak functor P : B → C between
B and C then consists of the following collection of data:

1. A mapping of objects ob(B)→ ob(C ), mapping x 7→ P (x);

2. For each pair of objects x and y in B, a functor

Px,y : HomB(x, y)→ HomC (P (x), P (y));

3. For each n ∈ Z>0 and objects x0, · · · , xn, a natural isomorphism

πx0,··· ,xn : ◦P (x0),··· ,P (xn)
C ◦ (Px0,x1 × · · · × Pxn−1,xn)⇒ Px0,xn ◦ ◦

x0,··· ,xn
B

which is levelwise a morphism π(f1,··· ,fn) :⃝n
i=1Pxi−1,xi(fi)→ Px0,xn(⃝n

i=1fi)
for fi ∈ HomB(xi−1, xi);

4. A natural isomorphism πx : ◦P (x)
C ⇒ Px,x ◦ ◦xB of the form ()→ P (()),

such that:

1. For any n > 0, integers k1, · · · , kn ∈ Z≥0 and nested sequence of objects
((xij)

ki
j=0)

n
i=1 in B such that xiki = xi+1

0 for i < n, along with morphisms
f ij ∈ HomB(x

i
j−1, x

i
j) for 1 ≤ i ≤ n and 1 ≤ j ≤ ki, the diagram

⃝n
i=1(⃝

ki
j=1Pxij−1,x

i
j
(f ij)) ⃝n

i=1⃝
ki
j=1 Pxij−1,x

i
j
(f ij)

⃝n
i=1Pxi0,xiki

(⃝ki
j=1f

i
j)

Px10,xnkn
(⃝n

i=1(⃝
ki
j=1f

i
j)) Px10,xnkn

(⃝n
i=1⃝

ki
j=1 f

i
j)

⃝n
i=1π(fi1,··· ,f

i
ki

)

π
(⃝k1

j=1
f1
j
,··· ,⃝kn

j=1
fn
j
)

π
(f11 ,··· ,fn

kn
)

γD

P
x10,x

n
kn

(γD′ )
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commutes, where:

(a) D = ((Pxij−1,x
i
j
(f ij))

ki
j=1)

n
i=1;

(b) D′ = ((f ij)
ki
j=1)

n
i=1;

2. For each x, y ∈ ob(B) and f ∈ HomB(x, y), the diagram

Px,y(f) (Px,y(f))

Px,y((f))

Px,y(ιf )

ιPx,y(f)

π(f)

commutes.

Note again the subtle insertion of () here, with πx0 : () → Px0,x0(()). This
is absorbed in [Lei00, Def. 1.2.3] by allowing n = 0 in the definition of what we
will refer to as the compositors πx0,··· ,xn . We also note that in [Lei00], Leinster
only establishes the terminology of ‘unbiased weak functor’ to refer to instances
of the above construction. We will use the term ‘unbiased pseudofunctor’ for
them instead in this thesis.

The codomain of our homotopy bicategory functor should then be a cat-
egory UBicat of small unbiased bicategories, namely those unbiased bicat-
egories whose collections of objects are sets, with unbiased pseudofunctors
between them. To construct this category, we must first define the composite
of two unbiased pseudofunctors:

Definition 2.4.3 ([Lei00, pg. 7-8]). Let B,C and D be unbiased bicategories.
Let P : B → C and Q : C → D be unbiased pseudofunctors, with compos-
itors π and θ, respectively. Then define Q ◦ P : B → D to be the unbiased
pseudofunctor with:

1. Objects mapping as x 7→ Q(P (x));

2. (Q ◦ P )x,y := QP (x),P (y) ◦ Px,y for x, y ∈ ob(B);

3. For x0, · · · , xn ∈ ob(B), natural isomorphisms

ψx0,··· ,xn :=
(
QP (x0),P (xn)◦πx0,··· ,xn

)(
θP (x0),··· ,P (xn)◦(Px0,x1×· · ·×Pxn−1,xn)

)
which are thus levelwise, for fi ∈ HomB(xi−1, xi), of the form

⃝n
i=1QP (xi−1),P (xi)(Pxi−1,xi(fi))→ QP (x0),P (xn)(Px0,xn(⃝n

i=1fi));

4. For x ∈ ob(B), natural isomorphisms ψx :=
(
Qx,x ◦ πx

)
θP (x).
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Again, in [Lei00, pg. 7-8], the natural isomorphisms ψx are handled as a
special case of the more general ψx0,··· ,xn .

That this procedure defines a genuine unbiased pseudofunctor is routine.
One may also check that the induced composition operation for unbiased
pseudofunctors is associative and unital, with identity unbiased pseudofunc-
tors being identities on objects and hom-categories with trivial natural isomor-
phisms, as noted in [Lei00, pg. 8]. Thus, we have the following:

Proposition 2.4.4 ([Lei00, pg. 8]). There is a category UBicat, whose objects
are small unbiased bicategories and whose morphisms are unbiased pseudofunc-
tors, with composition defined as in Definition 2.4.3.

In [Lei00], Leinster denotes this category as UBicatwk, though we have
added the assumption of smallness.

2.4.1 Classical Versus Unbiased Bicategories

One might balk at the definition of an unbiased bicategory. Why make use of
such a definition when classical bicategories are better understood and more
widely used? They have existed since Bénabou’s definition in [Bén67] and
remain one of the oldest and best-understood instances of a higher category.

Such questions can be answered with the insight that nothing has truly been
lost. Unbiased bicategories can be converted into bicategories easily enough:

Definition 2.4.5 ([Lei00, pg. 10]). Let B be an unbiased bicategory. The
underlying bicategory B̃ is the classical bicategory given by the following data:

1. Objects and hom-categories are as in B;

2. The composition functors ◦x,y,z : HomB̃(x, y)×HomB̃(y, z)→ HomB̃(x, z)

for x, y, z ∈ ob(B̃) are the binary composition functors in B;

3. Identity functors 1x : ∗ → HomB̃(x, x) for all x ∈ ob(B̃) are given by
the functors ◦x in B;

4. The associators γw,x,y,z for w, x, y, z ∈ ob(B̃) are given by the tuples
X1 := ((w, x), (x, y, z)) and X2 := ((w, x, y), (y, z)), along with the com-
posites

αw,x,y,z :=
(
1◦w,y,z ◦ (1◦x,y,z × ι−1

y,z)
)
γ−1
X2
γX1

(
1◦w,x,z ◦ (ιw,x × 1◦x,y,z)

)
of domain ◦w,x,z ◦ (1HomB̃(w,x) × ◦x,y,z) and codomain ◦w,y,z ◦ (◦w,x,y ×
1HomB̃(y,z));
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5. The unitors λx,y and ρx,y for x, y ∈ ob(B̃) are given by the natural
isomorphisms

ρx,y := ι−1
x,yγ(x),(x,y)

(
1◦x,x,y◦(1◦x×ιx,y)

)
: ◦x,x,y◦(◦x×1HomB̃(x,y))⇒ 1HomB̃(x,y)

and

λx,y := ι−1
x,yγ(x,y),(y)

(
1◦x,y,y◦(ιx,y×1◦y)

)
: ◦x,y,y◦(1HomB̃(x,y)×◦y)⇒ 1HomB̃(x,y).

The pentagon and triangle axioms may be checked to hold from the axioms
of an unbiased bicategory. Indeed, the pentagon axiom intuitively follows from
pondering the following diagram:

((fg)h)k

(f(gh))k (fgh)k fghk (fg)hk (fg)(hk)

f(gh)k f(ghk) fg(hk)

f((gh)k) f(g(hk))

The dotted arrows are the newly constructed associators in the supposed
biased bicategory, while the dashed and solid arrows are associators in the
original unbiased bicategory. Commutativity now follows from all the five tri-
angles and quadrilaterals in the pentagon’s interior commuting. The triangles
commute by definition, while the quadrilaterals are each an instance of the
associativity condition of an unbiased bicategory. We should thus not be sur-
prised to obtain a bicategory from Definition 2.4.5. Note that this reasoning
is not entirely rigorous, due to some subtle unitors lurking in the dashed and
solid arrows. Moreover, this approach does not appear to be used by Leinster
to prove that the above construction yields a bicategory in [Lei00, App. A].
We are at present unaware of its existence elsewhere in the literature.

One may also construct a pseudofunctor between classical bicategories
from an unbiased pseudofunctor, by restricting to binary composition and
inducing the natural isomorphisms in a similar manner [Lei00, pg. 11]. The
laws of a pseudofunctor are then induced. This conversion induces a functor
•̃ : UBicat→ Bicat, to the category of bicategories and pseudofunctors:

Theorem 2.4.6 ([Lei00, Thm. 1.3.1, Cor. 1.3.2]). For any bicategory B, B̃ is
a bicategory. Moreover, •̃ sends unbiased pseudofunctors to pseudofunctors and
defines a genuine functor from UBicat to the category Bicat of bicategories
and pseudofunctors. This functor is fully faithful and essentially surjective.

109



Towards Algebraic n-Categories of Manifolds and Cobordisms

It is clear however that there is no ‘canonical’ inverse to the functor •̃.
There are many ways to obtain an unbiased bicategory from a biased one,
with an infinite number of choices resulting just from building the unbiased
compositions out of different nestings of binary composition operations. We
will not explore this issue further here; that an inverse exists will suffice for
our needs.

We finish our exposition on unbiased bicategories with a consideration of
equivalences. There is a natural notion of equivalence between unbiased bi-
categories; we are unaware if this notion has been considered before or defined
in the literature, though it is hardly profound or novel enough for us to claim
originality for rigorously defining it here. Indeed, it is simply a pseudofunctor
whose image under •̃ is an equivalence of bicategories:

Definition 2.4.7. An equivalence of unbiased bicategories is an unbiased
pseudofunctor F : C → D that satisfies the following two properties:

1. Full faithfulness: The functors on hom-categories

HomC (x, y)→ HomD(F (x), F (y))

are all equivalences of categories;

2. Essential surjectivity: For all y ∈ ob(D), there exists some x ∈ ob(C )
and an internal equivalence F (x) ≃ y in D .

We will make use of this notion when we come to characterizing weak equiv-
alences between complete 2-fold Segal spaces using our homotopy bicategory
constructions.
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Chapter 3

Homotopy Bicategories of 2-fold
Segal Spaces

We now turn to the problem of obtaining the homotopy bicategory h2(X)
of a 2-fold Segal space X. We will first consider the case of Reedy fibrant
2-fold Segal spaces, as these admit a more immediate method to construct
composition operations, associators and higher coherence conditions.

We begin by investigating a more standard approach to obtaining homo-
topy bicategories, built upon existing approaches to related problems in the
literature. This will involve composition operations being chosen after trun-
cation of hom-categories rather than before. We discuss our complaints with
this strategy and proceed to constructing our proposed method, which obtains
composition operations, coherence isomorphisms and coherence conditions in
the original (∞, 2)-category before truncation.

In short, our proposed homotopy bicategory for a Reedy fibrant 2-fold Segal
spaceX will have as objects the elements of the set (X0,0)0 of 0-simplices and as
hom-categories the categories h1(X(x, y)) for x, y ∈ (X0,0)0, while composition
operations will be induced by chosen solutions µn to lifting problems

Xn X1

X1 ×X0 · · · ×X0 X1 X1 ×X0 · · · ×X0 X1id

γn
µn

X⟨0,n⟩

then fibered over objects x0, · · · , xn and converted to functors by applying
h1. Associators will be given by naturally induced homotopies between nested
composition operations, while coherence conditions will be in turn given by 2-
homotopies between composites of these homotopies. The precise definitions
of all of these notions will be established in due course.

Our construction goes farther than just obtaining bicategories. Indeed,
it functorially obtains weak pseudofunctors from maps X → Y in SeSpinj2

111



Towards Algebraic n-Categories of Manifolds and Cobordisms

between the corresponding homotopy bicategories by similar methods. We
believe that this calculus of inductively obtaining higher homotopies between
homotopies should extend to constructions of homotopy n-category functors
for more general (∞, n)-categories, as well as to other higher structures, like
homotopy symmetric monoidal bicategories of symmetric monoidal (∞, 2)-
categories. These topics are beyond the scope of this thesis and are left to
future work.

For the remainder of this chapter, we assume 2-fold Segal spaces and Segal
spaces are Reedy fibrant unless otherwise stated. Moreover, we introduce
some new notation for mapping spaces defined by a k-uple simplicial space of
dimension k < 2, in an effort to simplify our forthcoming notation:

Notation 3.0.1. Suppose X ∈ sSpacek. Let 0 ≤ m < k. Write

X• : (sSpacem)
op → sSpacek−m−1

for the functor Mapk−m−1
k (Fm

k (•), X), sending

K 7→ XK := Mapk−m−1
k (Fm

k (K), X).

For instance, we have for X ∈ sSpacek that

X∆[n]
∼= Xn = Xn,•,··· ,•

XSp(n)
∼= X1 ×X0 · · · ×X0 X1

= X1,•,··· ,• ×X0,•,··· ,• · · · ×X0,•,··· ,• X1,•,··· ,•

X∂∆[n]
∼= MnX

X∂∆[ik,··· ,i1]
∼= M([ik],··· ,[i1])X.

It is clear that if j : K → L is a Reedy cofibration of m-uple simplicial
spaces, the map j∗ = Xj : XL → XK is a Reedy fibration of (k −m− 1)-uple
simplicial spaces.

In particular, setting k = 2 and m = 0 will give us, for X ∈ sSpace2 and
K1, K2 ∈ sSet, a simplicial space XK1 and a simplicial set XK1,K2 := (XK1)K2 .
Moreover, if Q ∈ sSpace, we get a simplicial set XQ.

3.1 A 2-Truncated Construction

Before all else, we consider the approach outlined by Johson-Freyd and Sche-
imbauer in [JS17, Def. 2.12], modified to suit the case of Reedy fibrant 2-fold
Segal spaces rather than projective fibrancy. We will cohere this conjectured
construction by making use of the techniques presented by Lack and Paoli in
[LP08, Sec. 7], which are applied to obtaining a concrete bicategory from a
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given Tamsamani 2-category. We will modify these methods to better accord
with the task at hand.

Consider some 2-fold Segal space X. We wish for our homotopy bicategory
h2(X) to have as its objects the elements of the set (X0,0)0, while its morphisms
should be obtained from the categories h1(X(x, y)) for all x, y ∈ (X0,0)0. To
obtain horizontal composition operations in h2(X), recall first the notation
(−)x0,··· ,xn in Notation 2.3.7. Consider some x0, · · · , xn ∈ (X0,0)0. As h1
commutes with products up to natural isomorphism, a fact we will prove in
Lemma 3.3.1, we then note that the morphisms

h1(γ
x0,··· ,xn
n ) : h1(X

x0,··· ,xn
n )→ h1(X

x0,··· ,xn
Sp(n) ) ∼= h1(X(x0, x1))×· · ·×h1(X(xn−1, xn))

are the images of trivial fibrations γx0,··· ,xnn and as such are equivalences of
categories. Taking inspiration from Lack and Paoli in [LP08, pg. 16], com-
position operations may thus be obtained using what we term fillers for the
Segal maps, which are simply a matter of notational convenience:

Definition 3.1.1. Consider a span of categories C
g←− D

f−→ E such that f
is an equivalence. Then a lax filler for this span is a pair (h, η) of a functor
h : E → C and natural transformation η : g ⇒ h ◦ f making the diagram

D E

C

f

g
h

η

commute. It is called a filler if η is a natural isomorphism.

Proposition 3.1.2. Let C
g←− D

f−→ E be a span of categories such that f is
an equivalence. Then there exists a filler for this span.

Proof. Set h := g ◦ f , for some inverse f : E → D of f . With this inverse is
associated some natural isomorphism β : 1D ⇒ f ◦f . Thus, the pair (h, 1g ◦β)
constitutes a filler for the span as needed.

Consider then the span in SeSpinj of the form

X(x0, xn)
X

x0,xn
⟨0,n⟩←−−−− Xx0,xn

n ←↩ Xx0,··· ,xn
n

γ
x0,··· ,xn
n−−−−−→ Xx0,··· ,xn

Sp(n)
∼=

n∏
i=1

X(xi−1, xi).

It is indeed the case that this is a span in SeSpinj, as (−)a0,··· ,ak preserves
fibrations and thus fibrancy in any model structure on sSpace.

As we have noted earlier, by Proposition 2.3.29, the right-facing map is a
Reedy trivial fibration and thus weak equivalence of Segal spaces in CSSP inj.
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Therefore, it is a Dwyer-Kan equivalence and will be sent by h1 to an equiva-
lence of categories.

By Proposition 3.1.2, we may thus immediately obtain a filler for the image
of the above span under h1. This amounts to a functor •x0,··· ,xn and natural
isomorphism ηx0,··· ,xn making the diagram

h1(X
x0,··· ,xn
n ) h1(X(x0, x1))× · · · × h1(X(xn−1, xn))

h1(X
x0,xn
n )

h1(X(x0, xn))

h1(γ
x0,··· ,xn
n )

•x0,··· ,xn

h1(X
x0,xn
⟨0,n⟩ )

ηx0,··· ,xn

commute.
We immediately package the above choices into a single structure:

Definition 3.1.3. Let X ∈ SeSpinj2 . A choice of 2-truncated compositions is a
choice, for each n ≥ 0 and x0, · · · , xn ∈ (X0,0)0, of one filler (•x0,··· ,xn , ηx0,··· ,xn)
for each span

h1(X(x0, xn))← h1(X
x0,··· ,xn
n )→

n∏
i=1

h1(X(xi−1, xi)).

We write these choices collectively as (•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0
n≥0 .

Proposition 3.1.4. Suppose X ∈ SeSpinj2 . Then there exists a choice of
2-truncated compositions for X.

It should be noted that our construction now differs from the approach of
Lack and Paoli for Tamsamani 2-categories in [LP08, Sec. 7], beyond just be-
ing tailored to 2-fold Segal spaces and unbiased bicategories: the identity maps
•x will not necessarily be given by degeneracies as Lack and Paoli specify for
Tamsamani 2-categories, but rather by any possible filler for the appropriate
span of categories. When we come to defining homotopy bicategories before
truncation to hom-categories, we will turn to obtaining identities from degen-
eracy maps in this manner as well.

Choices of 2-truncated compositions paired with 2-fold Segal spaces can be
neatly arranged to form a category:

Definition 3.1.5. Define SeSp2comp
2 to be the category whose objects are pairs

(X, (•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0
n≥0 ) where X ∈ SeSpinj2 and

(•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0
n≥0
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is a choice of 2-truncated compositions for X, and whose morphisms

(X, (•x0,··· ,xnX , ηx0,··· ,xnX )
x0,··· ,xn∈(X0,0)0
n≥0 )→ (Y, (•y0,··· ,ynY , ηy0,··· ,ynY )

y0,··· ,yn∈(Y0,0)0
n≥0 )

are maps X → Y in SeSpinj2 .

We seek a homotopy bicategory functor that yields bicategories determined
by choices of 2-truncated compositions. Our discussion of unbiased bicategories
leads us to more precisely seek a homotopy unbiased bicategory functor, of the
form

htr2 : SeSp2comp
2 → UBicat.

Our definition for choices of 2-truncated compositions was designed with the
codomain UBicat in mind; each •x0,··· ,xn in such a choice determines the n-ary
composition functor we will use between the relevant hom-categories.

We write htr2 for our desired functor rather than simply h2 to emphasize
the use of choices of 2-truncated compositions. We save the term h2 for later,
when we establish how to choose composition operations and coherence iso-
morphisms within the original 2-fold Segal space X directly.

Note that we can easily remove the decoration of 2-truncated compositions
if we prefer:

Proposition 3.1.6. The forgetful functor SeSp2comp
2 → SeSpinj2 is an equiv-

alence of categories.

Proof. Essential surjectivity is immediate, while full faithfulness is by inspec-
tion of the definition of a morphism in SeSp2comp

2 .

Thus, there exists an inverse to this functor which we can precompose with
to obtain an alternative functor

h′2 : SeSpinj2 → UBicat

where the choices of compositions are left up to mere existence.
Let us return to the construction of the homotopy bicategory of some 2-

fold Segal space X equipped with a choice (•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0
n≥0 of

2-truncated compositions. The coherence isomorphisms and coherence condi-
tions stem from some standard facts about categories, which we were inspired
to consider by Lack and Paoli’s construction of associators and unitors from
Tamsamani 2-categories in [LP08, pg. 17-18]:

Definition 3.1.7. Suppose C
g←− D

f−→ E is a span of categories such that f
is an equivalence. Let (h, η) and (k, ϵ) be lax fillers for this span.

A morphism of lax fillers ϕ : (h, η) → (k, ϵ) is a natural transformation
ϕ : h⇒ k such that

ϵ = (ϕ ◦ 1f )η.
It is a morphism of fillers if both lax fillers are in fact fillers.
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Proposition 3.1.8. Let C
g←− D

f−→ E be a span of categories such that f is
an equivalence. Suppose (h, η) is a filler and (k, ϵ) a lax filler for this span.
Then there exists a unique morphism of lax fillers from (h, η) to (k, ϵ).

Proof. For existence, note that since f is an equivalence there is some functor
f : E → D and a natural isomorphism β : f ◦ f ⇒ 1E . We then obtain a
natural isomorphism

h
1h◦β−1

====⇒ h ◦ f ◦ f
(ϵη−1)◦1f
======⇒ k ◦ f ◦ f 1k◦β===⇒ k.

For uniqueness, consider two such morphisms ϕ, ψ : (h, η) → (k, ϵ). We have
immediately that

ϕ ◦ 1f = ϵη−1 = ψ ◦ 1f .

This in particular induces a natural isomorphism

ϕ ◦ β = (1h ◦ β)(ϕ ◦ 1f ◦ 1f ) = (1h ◦ β)(ψ ◦ 1f ◦ 1f ) = ψ ◦ β.

Thus, we have

ϕ = (ϕ ◦ β)(1h ◦ β−1) = (ψ ◦ β)(1h ◦ β−1) = ψ

as needed.

This implies in particular that a filler (h, η) for the above span is precisely
a left Kan extension of g along an equivalence of categories f , as defined for
instance in [Rie14, Def. 1.1.1]. A similar proof shows such a filler must be
a right Kan extension as well. Thus, a choice of 2-truncated composition
operations is precisely a choice of Kan extensions of the ‘target morphism’
maps h1(Xx0,xn

⟨0,n⟩ ) along the Segal maps h1(γx0,··· ,xnn ).
Proposition 3.1.8 relies heavily on the choice of natural isomorphism η

in a filler (h, η). Without this choice being specified and the commutativity
property being demanded of morphisms between fillers, there could exist many
such natural isomorphisms. Consider for instance the category SetZ/2Z of
functors from the group Z/2Z seen as a category into Set. This is precisely
the category of sets S equipped with an involution p : S → S, meaning p2 = 1,
together with functions equivariant under these involutions. Then the span

SetZ/2Z id←− SetZ/2Z id−→ SetZ/2Z

is such that fillers (h, η) may be defined, as the right-facing map is an equiv-
alence. Consider h := id : SetZ/2Z → SetZ/2Z. The functor h then admits
two natural automorphisms, given by 1id : id ⇒ id and the automorphism
P : id⇒ id given by the involutions. However, P is not a morphism of fillers
from (id, 1id) to (id, 1id) as it fails the commutativity requirement with 1id.
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Likewise, 1id fails the commutativity requirement to be a morphism of fillers
from (id, 1id) to (id, P ). The unique morphism in the former case is 1id, while
it is P in the latter case.

We may now package fillers and morphisms thereof into a category, with
compositions and identities being given in an evident manner:

Definition 3.1.9. Let C
g←− D

f−→ E be a span of categories such that f is
an equivalence. Then define Fill(g, f) be the category whose objects are fillers
(h, η) of this span and whose morphisms (h, η) → (h′, η′) are morphisms of
fillers.

Note that this is a subcategory of g/(C
D), consisting solely of the morphisms

η : g ⇒ h ◦ f which are moreover isomorphisms. By Proposition 3.1.8, this is
a rather simple subcategory:

Corollary 3.1.10. Fill(g, f) is a contractible groupoid.

This implies in particular that every morphism of fillers is given by a natural
isomorphism.

We now have sufficient infrastructure to construct associators and uni-
tors for our homotopy bicategories htr2 (X), following the approach of [LP08]
though adapted instead to the unbiased setting. Consider some n ∈ Z>0 and
k1, · · · , kn ∈ Z≥0. Let each Ti := (xi0, · · · , xiki) be a tuple of elements of (X0,0)0
such that for all i < n we have xiki = xi+1

0 . Set T := (T1, · · · , Tn) and define

S := (x10, · · · , x1k1 , x
2
1, · · · , x2k2 , · · · , x

n
1 , · · · , xnkn).

Let the elements of S be enumerated as x0, · · · , xr. Moreover, consider the
tuple R = (x10, x

1
ki
, x2k2 , · · · , x

n
kn
). We then have that the span

h1(X(x0, xr))← h1(X
x0,··· ,xr
r )→

r∏
i=1

h1(X(xi−1, xi))

has two natural fillers, given by the diagrams

h1(X
S
r )

∏n
i=1 h1(X

Ti
ki
)

∏r
i=1 h1(X(xi−1, xi))

h1(X
R
n )

∏n
i=1 h1(X(xi0, x

i
ki
))

h1(X(x0, xr))

≃ ≃

∏n
i=1 •Ti

≃

•R

∏n
i=1 η

Ti

ηR
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and

h1(X
S
r ) h1(X(x0, x1))× · · · × h1(X(xr−1, xr))

h1(X(x0, xr))

≃

•S
ηS

Thus, there must be a unique morphism of fillers

γT : •R ◦
n∏
i=1

•Ti ⇒ •S

between them. The resulting natural isomorphisms γT will be our associators.
For the unitors, note for any x, y ∈ (X0,0)0 that we have a diagram

h1(X(x, y)) h1(X(x, y))

h1(X(x, y))

id

id
id

id

so that there is a unique induced morphism of fillers

ιx,y : id⇒ •x,y.

To prove the unitality axiom, consider some n ≥ 0 and sequence of objects
x0, · · · , xn ∈ (X0,0)0. We have that the three relevant natural isomorphisms
are all induced by morphisms of fillers between the filler

h1(X
x0,··· ,xn
n ) h1(X(x0, x1))× · · · × h1(X(xn−1, xn))

h1(X(x0, xn))

•x0,··· ,xn

ηx0,··· ,xn

and itself again. Hence, all three composites must be equal by Corollary 3.1.10.
For associativity, consider as required some n,m1, · · · ,mn > 0 and some

sequence k11, · · · , knmn
≥ 0. Consider some sequence of tuples of elements of

(X0,0)0

Rp,q := (xp,q,r)
kpq
r=0
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for 1 ≤ p ≤ n and 1 ≤ q ≤ mp; we demand that xp,q,kpq = xp,q+1,0 for q < mp

and xp,mp,k
p
mp

= xp+1,1,0 for p < n. Set each list

Qp := (xp,1,0, · · · , xp,1,kp1 , xp,2,1, · · · , xp,mp,k
p
mp
)

to be alternatively written as (xp,0, · · · , xp,sp); these are the flattened versions
of the nested lists (Rp,1, · · · , Rp,mp) for each 1 ≤ p ≤ n. Next, set

P := (x1,0, · · · , x1,s1 , x2,1, · · · , xn,sn)

to be alternatively written as (x0, · · · , xr), which is the flattened version of the
list (Q1, · · · , Qn). Then, for each 1 ≤ p ≤ n write

Mp := (xp,1,0, xp,1,kp1 , xp,2,k
p
2
, · · · , xp,mp,k

p
mp
)

and write

M := (x1,1,0, x1,1,k11 , · · · , x1,m1,k1m1
, x2,1,k21 , · · · , xn,mn,knmn

).

This is the flattened version of the nested list (M1, · · · ,Mn). Finally, write

N := (x1,0, x1,s1 , x2,s2 , · · · , xn,sn).

We have that the two paths in the desired commutative diagram of natural
isomorphisms constitute two induced morphisms of fillers from the induced
filler

h1(X
P
r )

∏n
p=1 h1(X

Qp
sp )

∏n,mp

p,q=1 h1(X
Rp,q

kpq
)

∏r
i=1 h1(X(xi−1, xi))

h1(X
M∑n

p=1mp
)

∏n
p=1 h1(X

Mp
mp )

∏n,mp

p,q=1 h1(X(xp,q,0, xp,q,kpq ))

h1(X
N
n )

∏n
p=1 h1(X(xp,0, xp,sp))

h1(X(x0, xr))

∏n,mp
p,q=1 •

Rp,q

∏n
p=1 •

Mp

•N

to the filler

h1(X
P
r ) h1(X(x0, x1))× · · · × h1(X(x0, xr))

h1(X(x0, xr))

•P

ηP

so that they must be equal, by Corollary 3.1.10.
These insights culminate in the following result:
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Theorem 3.1.11. Suppose X is a Reedy fibrant 2-fold Segal space, with a
choice of 2-truncated compositions (•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0

n≥0 . Then the
following data constitutes a bicategory

htr2
(
X, (•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0

n≥0

)
alternatively shortened to htr2 (X) when the choice of 2-truncated compositions
is evident:

1. The object set (X0,0)0;

2. Hom-categories h1(X(x, y)) for each x, y ∈ (X0,0)0;

3. Composition operations given by the choices •x0,··· ,xn of 2-truncated com-
positions;

4. Functors •x : ∗ ∼= h1(X
x
0 ) → h1(X(x, x)) induced by the choice of 2-

truncated compositions;

5. Associators and unitors induced by the unique morphisms of fillers be-
tween the relevant fillers.

A similar story to homotopy bicategories may be obtained for unbiased
pseudofunctors. We believe our approach to this particular problem to be
novel, as no analogous construction seems to have been explicitly established
for Tamsamani 2-categories in for instance [LP08]. However, we suspect a sim-
ilar such construction is implicit in the left biadjoint functor from Tamsamani
2-categories to bicategories Lack and Paoli study in this paper.

Consider a morphism in SeSp2comp
2

f : (X, (•x0,··· ,xnX , ηx0,··· ,xnX )
x0,··· ,xn∈(X0,0)0
n≥0 )→ (Y, (•y0,··· ,ynY , ηy0,··· ,ynY )

y0,··· ,yn∈(Y0,0)0
n≥0 ).

We seek some induced pseudofunctor between the homotopy bicategories of the
domain and codomain of f . To this end, we first identify a natural mapping
of objects (f0,0)0 : (X0,0)0 → (Y0,0)0. As a matter of convenience, for each
x, y ∈ (X0,0)0 we introduce the notation

fx,y1 : X(x, y) ↪→ X1 ×Y 2
0
{(f(x), f(y))}

f
f(x),f(y)
1−−−−−→ Y (f(x), f(y))

so as to obtain natural functors h1(fx,y1 ) : h1(X(x, y)) → h1(Y (f(x), f(y)))
between hom-categories.
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For compositors, let n ≥ 0 and x0, · · · , xn ∈ (X0,0)0. We consider the
natural span of categories

h1(X
x0,··· ,xn
n ) h1(X

x0,··· ,xn
Sp(n) ) ∼=

∏n
i=1 h1(X(xi−1, xi))

h1(X
x0,xn
n )

h1(Y (f(x0), f(xn)))

h1(γ
x0,··· ,xn
n )

h1(f
x0,xn
n ◦Xx0,xn

⟨0,n⟩ )

which admits two fillers, given by the diagrams

h1(X
x0,··· ,xn
n )

∏n
i=1 h1(X(xi−1, xi))

h1(Y
f(x0),··· ,f(xn)
n )

∏n
i=1 h1(Y (f(xi−1), f(xi)))

h1(Y (f(x0), f(xn)))

≃

•f(x0),··· ,f(xn)
Y

η
f(x0),··· ,f(xn)
Y

and
h1(X

x0,··· ,xn
n )

∏n
i=1 h1(X(xi−1, xi))

h1(X(x0, xn))

h1(Y (f(x0), f(xn)))

≃

•x0,··· ,xnX

η
x0,··· ,xn
X

Our compositor for the objects x0, · · · , xn will then be the natural isomorphism

πx0,··· ,xn : •f(x0),··· ,f(xn)Y ◦
n∏
i=1

h1(f
xi−1,xi
1 )⇒ h1(f

x0,xn
1 ) ◦ •x0,··· ,xnX

induced by the unique morphism of fillers between the fillers above.
To verify the coherence conditions involved for pseudofunctors, consider

some n > 0 and k1, · · · , kn ≥ 0. Consider some sequence of tuples Si =
(xi0, · · · , xiki) for 1 ≤ i ≤ n of objects xij ∈ (X0,0)0 for all i and j, such that
xiki = xi+1

0 for i < n. Set T := (X1, · · · , Xn) and

Q := (x10, · · · , x1k1 , x
2
1, · · · , xnkn)
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which we alternatively write as (x0, · · · , xr). This is the flattened version of
the nested tuple (S1, · · · , Sn).

Note that in the required commuting diagram, the two paths of natural
isomorphisms are given by morphisms of fillers between the two fillers

h1(X
x0,··· ,xr
r )

∏n
i=1 h1(X

Si
ki
)

∏r
i=1 h1(X(xi−1, xi))

h1(Y
f(x0),··· ,f(xr)
r )

∏n
i=1 h1(Y

f(Si)
ki

)
∏r

i=1 h1(Y (f(xi−1), f(xi)))

h1(Y
f(x10),f(x

1
k1

),··· ,f(xnkn )
n )

∏n
i=1 h1(Y (f(xi0), f(x

i
ki
)))

h1(Y (f(x0), f(xr)))

∏n
i=1 •

f(Si)
Y

•
f(x10),f(x

1
k1

),··· ,f(xnkn )

Y

and

h1(X
x0,··· ,xr
r )

∏n
i=1 h1(X

Si
ki
)

∏r
i=1 h1(X(xi−1, xi))

h1(X
x10,x

1
k1
,··· ,xnkn

n )
∏n

i=1 h1(X(xi0, x
i
ki
))

h1(X(x0, xr))

h1(Y (f(x0), f(xr)))

∏n
i=1 •

Si
X

•
x10,x

1
k1

,··· ,xnkn
X

so is implied by Corollary 3.1.10. The second condition to be a pseudofunctor
amounts to two sequences of natural isomorphisms between the two fillers

h1(X(x, y)) h1(X(x, y)) h1(X(x, y)) h1(X(x, y))

h1(X(x, y)) h1(X(x, y))

h1(Y (f(x), f(y))) h1(Y (f(x), f(y)))

id •x,yX

id ηx,yX

so is similarly induced. This discussion results in the construction of a valid un-
biased pseudofunctor from a morphism f in SeSp2comp

2 , mapping between the
homotopy bicategories of its source and target. We formalize this observation
with the following theorem:
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Theorem 3.1.12. Suppose

f : (X, (•x0,··· ,xnX , ηx0,··· ,xnX )
x0,··· ,xn∈(X0,0)0
n≥0 )→ (Y, (•y0,··· ,ynY , ηy0,··· ,ynY )

y0,··· ,yn∈(Y0,0)0
n≥0 )

is a morphism in SeSp2comp
2 . Then the following data defines an unbiased

pseudofunctor htr2 (f) : htr2 (X)→ htr2 (Y ):

1. The mapping of objects (f0,0)0 : (X0,0)0 → (Y0,0)0;

2. The functors on hom-categories

h1(f
x,y
1 ) : h1(X(x, y))→ h1(Y (f(x), f(y)));

3. Natural isomorphisms πx0,··· ,xn induced by the unique morphisms of fillers
between the relevant fillers.

We would like to establish functoriality for the unbiased homotopy bicat-
egory and unbiased homotopy pseudofunctor constructions in Theorem 3.1.11
and Theorem 3.1.12, respectively. This is handled by the following results:

Proposition 3.1.13. Suppose X f−→ Y
g−→ Z is a chain in SeSp2comp

2 . Then

htr2 (g) ◦ htr2 (f) = htr2 (g ◦ f).

Proof. We will write X, Y, Z ∈ SeSpinj2 for the underlying 2-fold Segal spaces
of the corresponding objects in SeSp2comp

2 . Moreover, we will write πha0,··· ,an
for h ∈ {f, g, g ◦ f} to denote the compositors of htr2 (h).

For objects, we have that the left hand side and right hand side are given
by the mappings (g0,0)0 ◦ (f0,0)0 and ((g ◦ f)0,0)0, respectively, which are evi-
dently equal. For hom-categories, it suffices to note that we have a commuting
diagram for each x, y ∈ (X0,0)0 of the form

X(x, y) Y (f(x), f(y))

Z
(
(g ◦ f)(x), (g ◦ f)(y)

)

fx,y1

(g◦f)x,y1

g
f(x),f(y)
1

which is quickly proven by inspection.
We must now prove that the coherence isomorphisms agree. In the case of

htr2 (g)◦htr2 (f), all coherence isomorphisms are, for some n ≥ 0 and x0, · · · , xn ∈
(X0,0)0, of the form

ψx0,··· ,xn :=
(
h1(g

f(x0),f(xn)
1 ) ◦ πfx0,··· ,xn

)(
πgf(x0),··· ,f(xn) ◦

n∏
i=1

h1(f
xi−1,xi
1 )

)
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where the product is set to the identity functor if n = 0. Note however
that such natural isomorphisms induce morphisms of fillers between the fillers
defining πg◦fx0,··· ,xn . Thus, by Corollary 3.1.10, these natural isomorphisms must
be equal as needed.

Proposition 3.1.14. Suppose X ∈ SeSp2comp
2 . Then htr2 (1X) = 1htr2 (X).

Proof. The behavior on objects and hom-categories is immediately as needed.
The compositors are then forced to be identities as well, by inspection of the
relevant fillers.

This is enough to define a homotopy bicategory functor:

Definition 3.1.15. Define htr2 : SeSp2comp
2 → UBicat to be the functor send-

ing objects
(X, (•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0

n≥0 )

to htr2 (X) and morphisms f to htr2 (f).

Though htr2 does depend upon choices of 2-truncated compositions, we have
rather immediately that these choices are quite irrelevant up to isomorphism
in UBicat:

Corollary 3.1.16. Suppose X ∈ SeSpinj2 , with two choices of 2-truncated
compositions of the form

(•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0
n≥0

and
(⊗x0,··· ,xn , ϵx0,··· ,xn)x0,··· ,xn∈(X0,0)0

n≥0 .

Then there is an isomorphism in UBicat

htr2
(
X, (•x0,··· ,xn , ηx0,··· ,xn)x0,··· ,xn∈(X0,0)0

n≥0

)
→ htr2

(
X, (⊗x0,··· ,xn , ϵx0,··· ,xn)x0,··· ,xn∈(X0,0)0

n≥0

)
that moreover acts as the identity on objects and hom-categories.

3.1.1 The Issue of Premature Truncation

It would appear at a first glance that htr2 is a perfectly admissible notion of
bicategory, even without a complete comparison with known constructions like
in [Mos21] and [Cam20]. Moreover, it seems perfectly usable for the purposes
of obtaining specific homotopy bicategories of 2-fold Segal spaces.

Issues do however begin to arise as we commence the computation of exam-
ple homotopy bicategories. For instance, consider some T ∈ Top. We would
imagine that, for some choice of 2-truncated compositions, the homotopy bi-
category htr2 (SingssS(T )) should be a reasonable model for the fundamental
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bigroupoid of T , similar to the work of [HKK01]. It would seem that such a
computation is a reasonable starting point on the path to homotopy bicate-
gories of (∞, 2)-categories of manifolds and cobordisms, as these are usually
rather topological themselves; see [Lur09b] and [CS19] for examples of such
constructions.

The objects and hom-categories of Πtr
2 (T ) := htr2 (SingssS(T )) seem reason-

able; indeed, ob(Πtr
2 (T )) is evidently the set of points in T , while, adopting

the notation
T (x, y) := {(x, y)} ×T×T T [0,1]

for convenience, we have by Proposition 2.3.12 that

HomΠtr
2 (T )(x, y) ∼= Π1(T (x, y)).

We then turn to the issue of choices of horizontal compositions. We seek fillers
for the cospans

Π1(T (x0, xn))← Π1({(x0, · · · , xn)} ×Tn T∆t[n])→
n∏
i=1

Π1(T (xi−1, xi)).

It is at this point that problems may arise in explicit constructions. We have
the following result:

Proposition 3.1.17. Suppose T is 2-connected. For any x, y ∈ T , the groupoid
Π1(T (x, y)) is contractible.

Proof. Consider two objects in Π1(T (x, y)), namely paths f, g : [0, 1]→ T such
that f(0) = x = g(0) and f(1) = y = g(1). These define a loop S1 → T , for
which there must be a filler D2 → T by T having trivial fundamental groups.
Thus, every two objects in the above groupoid have at least one morphism
between them.

Consider then two such morphisms between f and g, given by homotopies

H1, H2 : [0, 1]× [0, 1]→ T

such that

H1(−, 0) = x = H2(−, 0)
H1(−, 1) = y = H2(−, 1)
H1(0,−) = f = H2(0,−)
H1(1,−) = g = H2(1,−).

Then H1 and H2 together define a continuous map S2 → T . We have that T
has trivial second homotopy groups, so that there must exist a filler D3 → T ,
which determines a homotopy between H1 and H2 suitably fixed on x and
y. This proves that any two objects in the above groupoid have at most one
morphism between them.
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This implies that all three categories in the above span are contractible;
for the middle category, the fact that the right-facing map is fully faithful into
a contractible category implies contractibility. Thus, for example, given any
x, y, z ∈ S2, any choice of function

ob(Π1(S
2(x, y)))× ob(Π1(S

2(y, z)))→ ob(Π1(S
2(x, z)))

will uniquely yield a filler that restricts to this choice of mapping on object sets.
In general, given n ≥ 0 and x0, · · · , xn ∈ T , consider a path f : [0, n]→ T with
f(i) = xi for 0 ≤ i ≤ n. We may choose to send f to quite literally any path
F : [0, 1] → T with F (0) = x0 and F (1) = xn as its ‘composite’ path, should
T have trivial fundamental and second homotopy groups. There is moreover
no need for this choice to vary continuously with f .

One might claim these oddities to present no real issue; in the case of
2-connectedness, T is trivial in the dimensions relevant to fundamental bi-
groupoids. It is however somewhat unnatural to allow such strange choices
of composition operations on Πtr

2 (T ). If we ever wished to work with this
bigroupoid directly, we may find it difficult to perform calculations owing to
the potentially highly unusual composition operations. More generally, it is
possible that Πtr

2 (U) for any general space U may admit strange composition
operations that have no clear foundation in U , with their idiosyncrasies written
off as being isomorphic to whatever more natural definition might exist.

The particularly cynical reader may even object to the bigroupoid Πtr
2 (T )

having anything to do with T at all. Indeed, the choices of composition opera-
tions, associators and unitors are made entirely at the level of categories rather
than within the topological space T itself, so could be argued to be nothing
more than artefacts of the truncation to fundamental groupoids and of abstract
category theory. It would be enlightening to develop all of the relevant data at
the level of T itself, rather than after truncation, to justify this construction
of fundamental bigroupoid. More generally, obtaining composition operations,
associators, unitors and coherence conditions for homotopy bicategories htr2 (X)
at the level of X may help justify our approach to homotopy bicategories, as
well as other related such constructions.

One may further object to the dependence upon category-theoretic argu-
ments by noting the difficulty of extending the techniques discussed thus far
to the computation of ‘homotopy n-groupoids’ Πn(T ) for higher n. In general,
we should hope to extract from a Reedy fibrant n-fold Segal space X, as de-
fined for instance in [CS19], its ‘homotopy n-category’ hn(X), an instance of
some algebraic model of n-categories. Our over-reliance on properties of the
2-category Cat of categories, functors and natural transformations to obtain
coherence conditions does not obviously extend to algebraic models of more
general n-categories. This is in part due to the theory of n-categories for gen-
eral n being somewhat more sparse than that of (∞, n)-categories, owing to
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models of the latter generally having model structures to work with, which
models of the former presently lack. For this reason, it may be best to try and
use model-category-theoretic methods to obtain as much algebraic structure
on an (∞, n)-category as possible before passing to some chosen model of n-
category. Doing so in the case n = 2 should serve as an enlightening first step
in this direction.

3.2 Simplicial Composition Diagrams
It would seem that the natural next step in analyzing our homotopy bicategory
functor htr2 is to adapt it such that composition operations, coherence isomor-
phisms and coherence conditions are identified within the original 2-fold Segal
space X, rather than being obtained after collapsing to the level of categories.
Henceforth, we will speak of the imagined homotopy bicategory constructed
from X in this way as h2(X), to distinguish it from htr2 (X).

Our first step to constructing h2(X) is lifting the choice of 2-truncated
compositions from categories to Segal spaces. In the spirit of our intuition for
Reedy fibrant 2-fold Segal spaces, constructing a binary composition functor
should for instance proceed by solving a lifting problem in SeSpinj of the form

X2 X1

X1 ×X0 X1 X1 ×X0 X1id

γ2
µ2

X⟨0,2⟩

then fibering the map X⟨0,2⟩ ◦ µ2 over some pair {(x, z)} ∈ ((X0 × X0)0)0
and finally precomposing with the inclusion of X(x, y) × X(y, z) for some
y ∈ (X0,0)0 to obtain a map

◦x,y,z : X(x, y)×X(y, z) ↪→ (X1 ×X0 X1)
x,z µx,z2−−→ Xx,z

2

Xx,z
⟨0,2⟩−−−→ X(x, z).

We should think of this as binary composition on the hom-spaces X(x, y) and
X(y, z). In general, we can take any sequence of objects x0, · · · , xn ∈ (X0,0)0
and solve a lifting problem

Xn X1

X1 ×X0 · · · ×X0 X1 X1 ×X0 · · · ×X0 X1id

γn
µn

X⟨0,n⟩

to obtain a composition map

◦x0,··· ,xn :
n∏
i=1

X(xi−1, xi) ↪→ Xx0,xn
Sp(n)

µ
x0,xn
n−−−−→ Xx0,xn

n

X
x0,xn
⟨0,n⟩−−−−→ X(x0, xn).
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Note that µn must be object-fibered with respect to the cospan

Xn

X⟨0⟩×···×X⟨n⟩−−−−−−−−→ (X0)
n+1

(X⟨0⟩×X⟨1⟩)×1X0
···×1X0

(X⟨0⟩×X⟨1⟩)

←−−−−−−−−−−−−−−−−−−−−−− X1 ×X0 · · · ×X0 X1

as defined in Definition 2.3.8 by the following result:

Proposition 3.2.1. Let X be a 2-fold Segal space. Consider a solution g to a
lifting problem in SeSpinj

A B

C D

p

t

gi

s

where every morphism besides g is object-fibered over some maps to (X0)
n+1.

Then g is object-fibered and for any x0, · · · , xn ∈ (X0,0)0, the diagram1

Ax0,··· ,xn Bx0,··· ,xn

Cx0,··· ,xn Dx0,··· ,xn

px0,··· ,xn

tx0,··· ,xn

gx0,··· ,xnix0,··· ,xn

sx0,··· ,xn

commutes.

Proof. Consider the chosen maps fZ : Z → (X0)
n+1 for Z ∈ {A,B,C,D}.

Then
fC = fD ◦ t = fD ◦ (p ◦ g) = (fD ◦ p) ◦ g = fB ◦ g

and so g is object-fibered. Commutativity then follows from functoriality of
(−)x0,··· ,xn .

The map ◦x0,··· ,xn is then ‘unbiased composition,’ taking a sequence of 1-
morphisms in X

x0
f1−→ x1

f2−→ · · · fn−1−−→ xn−1
fn−→ xn

and composing them into a single map fn ◦ · · · ◦ f1 at once. These operations
amount to horizontal composition in our (∞, 2)-category, while the Segal maps
in each Segal space Xn induce vertical composition. We package this into a
definition, which will serve as our extension of 2-truncated compositions to
(∞, 1)-categories:

1Note that this may no longer be a lifting problem, as ix0,··· ,xn may not be a (trivial)
cofibration. For us, usually A = ∅ and all objects are cofibrant when we want a lifting
problem, so this doesn’t matter.
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Definition 3.2.2. Let X be a 2-fold Segal space. Then a choice of horizontal
compositions is a sequence of maps µn : X1 ×X0 · · · ×X0 X1 → Xn for n ≥ 2
solving the lifting problems in SeSpinj of the form

Xn

X1 ×X0 · · · ×X0 X1 X1 ×X0 · · · ×X0 X1id

γn
µn

Notation 3.2.3. Given a choice of horizontal composition maps µn for n ≥ 2,
write µ1 = 1X1 and µ0 = 1X0.

Recall that since γ1 : X1 → X1 and γ0 : X0 → X0 are just identities, the
maps µ1 and µ0 are solutions of similar lifting problems. In fact, they are the
only solutions of their respective lifting problems.

With horizontal compositions now available to us, we choose to construct
a domain for our homotopy bicategory functor as follows:

Definition 3.2.4. Let SeSpcomp2 be the category whose objects (X, (µn)n≥0)
are pairs of Reedy fibrant 2-fold Segal spaces with a choice of horizontal com-
position and whose morphisms (X, (µn)n≥0) → (Y, (νn)n≥0) are maps X → Y
in SeSpinj2 .

Note how the morphisms do not account for the choice of horizontal com-
positions in either the domain or codomain, much like for SeSp2comp

2 .
We hence seek a functor

h2 : SeSpcomp2 → UBicat.

Obtaining composition operations will be accomplished by applying h1 to the
maps ◦x0,··· ,xn . which we will explore in greater depth when more machinery
has been developed to this end. This homotopy bicategory construction will
ideally factor through htr2 by a natural ‘truncation’ functor

Tr : SeSpcomp2 → SeSp2comp
2

though we will not be able to fully define Tr until we have explored how to
obtain natural isomorphisms from applying h1 to homotopies, which we will
study in due course.

Notation 3.2.5. For a 2-fold Segal space X, given n > 0 and x0, · · · , xn ∈
(X0,0)0, along with a choice of horizontal compositions (µn)n≥0, write ◦x0,··· ,xn :∏n

i=1X(xi−1, xi) → X(x0, xn) for the map described above. If n = 0, write
◦x0 = Xx0,x0

s00
: ∗ ∼= {x0} ↪→ X(x0, x0).
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Note we did not need to separately specify ◦x0 , as if n = 0 then
n∏
i=1

X(xi−1, xi) ∼= ∗.

We do so simply for clarity; in future, the n = 0 case will be implicitly covered
in this manner.

Note also that there is almost never a unique choice of horizontal compo-
sitions; in general, there are a multitude of possible solutions to the relevant
lifting problems. We will see in time that these choices, while not necessarily
equal, are in fact always equivalent in a way we will make precise later.

One might wonder how more complex ‘nested’ composition operations look,
for instance composing a chain of 1-morphisms in X of the form v

f−→ w
g−→ x

h−→
y

k−→ z into the composite (k ◦ h) ◦ (g ◦ f). This is of course merely a matter of
applying our operations ◦x0,··· ,xn in sequence, yet a more direct interpretation
is also possible, one which will be of immense importance in developing our
homotopy bicategories.

Note that everything we have written can be rephrased using Notation
3.0.1:

Xn X1

XSp(n) XSp(n)id

γn
µn

X⟨0,n⟩

The composition operation (−◦−) ◦ (−◦−) can now be constructed from the
solutions to the sequence of two lifting problems

X2 X1

XSp(2)

X∆[2]⊔∆[0]∆[2]

XSp(4) XSp(4)id

γ2×1X0
γ2µ2×1X0

µ2

X⟨0,2⟩×1X0
X⟨0,2⟩

γ2

X⟨0,2⟩

µ2◦(X⟨0,2⟩×1X0
X⟨0,2⟩)◦(µ2×1X0

µ2)

The overall map is then, for v, w, x, y, z ∈ (X0,0)0, the composite

X(v, w)×X(w, x)×X(x, y)×X(y, z) Xv,z
Sp(4)

X(v, z)

Xv,z
⟨0,2⟩◦(µ2◦(X⟨0,2⟩×1X0

X⟨0,2⟩)◦(µ2×1X0
µ2))v,z
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We can reinterpret this algebraic monstrosity in a more geometric light. Con-
sider how the cospan

X2
γ2−→ XSp(2)

X⟨0,2⟩×1X0
X⟨0,2⟩

←−−−−−−−−−− X∆[2]⊔∆[0]∆[2]

appears in the above lifting problem. The two lifts can be combined into a
single lift to the pullback of the cospan

X∆[2]⊔∆[0]∆[2] ×XSp(2)
X2

which, since F 0
2 preserves colimits and Map1

2(−, X) sends colimits to limits,
we can rephrase as

X(∆[2]⊔∆[0]∆[2])⊔Sp(2)∆[2]

to obtain a new diagram

X(∆[2]⊔∆[0]∆[2])⊔Sp(2)∆[2] X1

XSp(4) XSp(4)id

ι∗µ

τ∗

where ι∗ and τ ∗ are induced by the maps ι and τ in the cospan in sSet

Sp(4)
ι
↪−→ (∆[2] ⊔∆[0] ∆[2]) ⊔Sp(2) ∆[2]

τ←−↩ ∆[1].

The domain of the map µ is well-understood to us by this point: it is simply
the∞-category of chains of length four in X. The codomain, however, is new.
We should interpret it as the ∞-category of diagrams in X of the form

w y

x

v z

f

g h

k

q r

p

α β

γ

where α, β, γ ∈ (X2,0)0 are compositions, f, g, h, k, q, r, p ∈ (X1,0)0 are 1-
morphisms and v, w, x, y, z ∈ (X0,0)0 are objects in our (∞, 2)-category.

The morphism µ can now be seen as taking a chain v
f−→ w

g−→ x
h−→ y

k−→ z
and extending it to a diagram as above, choosing α, β, γ, q, r and p. The shape
of this diagram can in fact tell us directly what the composition operation in
question is, as p is a composite of q with r, which are in turn composites of f
with g and h with k respectively.
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The general shape of such ‘composition diagrams’ is evident by an induc-
tion. In the below definition, write

s, t : ∆[0]→ Sp(n)

for the maps in sSet identifying the first and last objects.

Definition 3.2.6. A simplicial composition diagram is a cospan Sp(n)
ι−→

K
τ←− ∆[1] defined inductively such that either:

1. K = ∆[n], ι = gn : Sp(n) ↪→ ∆[n] and τ = ⟨0, n⟩ : ∆[1] ↪→ ∆[n] for
some n ≥ 0;

2. K = (K1 ⊔∆[0] · · · ⊔∆[0] Kd) ⊔Sp(d) ∆[d] for some d > 1, where Sp(ki)
ιi−→

Ki
τi←− ∆[1] are simplicial composition diagrams for 1 ≤ i ≤ d and the

pushouts are taken over the diagrams

K1
ι1◦t←−− ∆[0]

ι2◦s−−→ · · · ιd−1◦t←−−− ∆[0]
ιd◦s−−→ Kd

and
(K1 ⊔∆[0] · · · ⊔∆[0] Kd)

τ1⊔1∆[0]
···⊔1∆[0]

τd
←−−−−−−−−−− Sp(d) ↪→ ∆[d].

The maps are then ι as in the diagram

Sp(n) Sp(k1 + · · ·+ kd) Sp(k1) ⊔∆[0] · · · ⊔∆[0] Sp(kd)

K1 ⊔∆[0] · · · ⊔∆[0] Kd

K

∼=
ι1⊔1∆[0]

···⊔1∆[0]
ιd

ι

=

and τ : ∆[1]
⟨0,d⟩−−→ ∆[d] ↪→ K.

We will say the arity of the composition diagram K is n. Its depth is either 1
if K = ∆[n] or 1 + max1≤i≤d di otherwise, where di is the depth of Ki.

Note the inclusion of ∆[0]
id−→ ∆[0]

X⟨0,0⟩←−−− ∆[1], which amounts to the
problem of taking identities. Note also that it is entirely unambiguous to refer
to a simplicial composition diagram solely by the space K; there is only one
possibility for the maps ι and τ .

A similar notion to these diagrams is to be found in the membranes ob-
tained from polygonal decompositions of convex (n + 1)-gons used to define
2-Segal spaces in [DK19]. They also strongly resemble the opetopes of [BD98].
Alternatively, one might note a simplicial composition diagram is simply a
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series of necklaces as in [DS11] stacked upon one another. Making these con-
nections precise and exploring their full influence will be future work.

The space of composition diagrams in question will be XK for a 2-fold Segal
space X and a simplicial composition diagram K. It is the case that these are
always Segal spaces:

Proposition 3.2.7. Let X be a 2-fold Segal space. Suppose K is a simplicial
composition diagram. Then XK is a Segal space.

Proof. It suffices to prove that XK is fibrant in the model structure SeSpinj.
We proceed by induction on the depth of K. The result is clear if K = ∆[n],
as X∆[n]

∼= Xn. Now, suppose the depth is greater than 1, so K = (K1 ⊔∆[0]

· · · ⊔∆[0] Kn) ⊔Sp(n) ∆[n]. This implies that XK is isomorphic to the pullback

XK (XK1 ×X0 · · · ×X0 XKn)×XSp(n)
Xn Xn

XK1 ×X0 · · · ×X0 XKn XSp(n)

∼=

⌟

γn

Since the Segal map γn is a trivial fibration in SeSpinj, the induced map by
the pullback

XK → XK1 ×X0 · · · ×X0 XKn

is a trivial fibration in SeSpinj. By induction, each XKi
is fibrant in SeSpinj,

so the maps XKi
→ X0 are Reedy fibrations between fibrant objects in SeSpinj

and thus fibrations in this model structure. Therefore, the codomain XK1 ×X0

· · · ×X0 XKn is fibrant in SeSpinj, implying the space XK is also fibrant as
desired.

Moreover, the map ι always induces a trivial fibration:

Proposition 3.2.8. Let X be a 2-fold Segal space. Suppose Sp(n) ι−→ K
τ←−

∆[1] is a simplicial composition diagram. Then the map ι∗ : XK → XSp(n)

induced by ι is a trivial fibration in SeSpinj.

Proof. If K = ∆[n], then ι∗ = γn and the result is immediate. Suppose then
that K = (K1 ⊔∆[0] · · · ⊔∆[0]Kr)⊔Sp(r) ∆[r]. Then ι∗ is given by the composite
map

XK → XK1 ×X0 · · · ×X0 XKr

ι∗K1
×1X0

···×1X0
ι∗Kr−−−−−−−−−−−→ XSp(n).

The first of these maps is a trivial fibration in SeSpinj, as shown in the proof
of Proposition 3.2.7. It thus suffices to prove the latter is as such.
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Assume by induction on the depth of K that all the maps ι∗Ki
: XKi

→
XSp(ki) are trivial fibrations in SeSpinj, where Ki has arity ki for all i. Then
we have a natural pullback diagram

XK1 ×X0 · · · ×X0 XKr

∏r
i=1Xki

XSp(n)

∏r
i=1XSp(ki)

⌟ ∏r
i=1 ι

∗
Ki

where the bottom horizontal map is induced by the natural map

Sp(k1)⊔· · ·⊔Sp(kr)→ Sp(k1)⊔∆[0] · · ·⊔∆[0]Sp(kr) ∼= Sp(k1+· · ·+kr) = Sp(n).

Thus, since products of trivial fibrations are themselves trivial fibrations [Hir09,
Prop. 7.2.5], the rightmost vertical map must be a trivial fibration as needed.

Note also that the maps ι∗ are tautologically object-fibered with respect
to the maps induced by ∆[0] ↪→ Sp(n)

ι−→ K. The same can be said for
τ ∗ : XK → X1 with respect to the maps ∆[0] ↪→ ∆[1]

τ−→ K. These two maps
also agree with the two endpoint inclusions of the spine composed with ι.

Simplicial composition diagrams can be used to nest existing composition
operations in an evident way, a natural extension of our example:

Definition 3.2.9. Let X be a 2-fold Segal space with a choice of horizontal
compositions (µn)n≥0. Let Sp(n) ι−→ K

τ←− ∆[1] be a simplicial composition
diagram. Then the induced composition on K is the map µK solving the
lifting problem

XK X1

XSp(n) XSp(n)id

ι∗µK

τ∗

where ι∗ and τ ∗ are induced by ι and τ respectively, such that:

1. If K = ∆[n] then µK = µn;

2. If K = (K1⊔∆[0] · · · ⊔∆[0]Kr)⊔Sp(r)∆[r] where each Ki has arity ki, then
µK is the pullback map induced by (µK1 ×1X0

· · · ×1X0
µKr) and

µr ◦ (τ ∗1 ×1X0
· · · ×1X0

τ ∗r ) ◦ (µK1 ×1X0
· · · ×1X0

µKr)

where τ ∗i is induced by the map τi : ∆[1]→ Ki for 1 ≤ i ≤ r.
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It is not hard to see how µK , by induction, defines a nesting of composition
operations described in the structure of K. In particular, if K = (K1 ⊔∆[0]

· · · ⊔∆[0]Kr) ⊔Sp(r) ∆[r], then the composition operation in question composes
the first k1 morphisms by µK1 , the second k2 morphisms by µK2 and so on up
to µKr , then composes the resulting chain of n morphisms by µr. This can be
generalized:

Proposition 3.2.10. Suppose K = (K1⊔∆[0] · · ·⊔∆[0]Kr)⊔Sp(r)K0 is a simpli-
cial composition diagram of arity n for diagrams ∆[ki]

ιi−→ Ki
τi←− ∆[1], where

k0 = r. Then µK is the pullback map induced by (µK1 ×1X0
· · · ×1X0

µKr) and

Q := µK0 ◦ (τ ∗1 ×1X0
· · · ×1X0

τ ∗r ) ◦ (µK1 ×1X0
· · · ×1X0

µKr).

Proof. The proof is by induction on the depth of K0. Either K0 = ∆[n],
for which the proof is trivial, or K0 = (K1

0 ⊔∆[0] · · · ⊔∆[0] K
p
0 ) ⊔Sp(p) ∆[p] for

simplicial composition diagrams ∆[hj]
ι0j−→ Kj

0

τ0j←− ∆[1]. Suppose we are in the
latter case. We have that

K = (K ′
1 ⊔∆[0] · · · ⊔∆[0] K

′
p) ⊔Sp(p) ∆[p]

for simplicial composition diagrams ∆[qj]
ι′j−→ K ′

j

τ ′j←− ∆[1]. We have moreover
for each 1 ≤ j ≤ p that K ′

j = (Hj
1 ⊔∆[0] · · · ⊔∆[0] H

j
hj
) ⊔Sp(hj) K

j
0 for simplicial

composition diagrams ∆[sj,r]
ιj,r−−→ Hj

r

τj,r←−− ∆[1]. The spaces Hj
r are clearly just

the spaces Ki.

We wish to show that the induced pullback map

XSp(n)

XK XK1⊔∆[0]···⊔∆[0]Kr

XK0 XSp(r)ι∗0

τ∗1×1X0
···×1X0

τ∗r

⌜µK0
◦(τ∗1×1X0

···×1X0
τ∗r )◦(µK1

×1X0
···×1X0

µKr )

µK1
×1X0

···×1X0
µKr
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is µK . Our strategy is to consider the diagram

XSp(n)

XK XK′
1⊔∆[0]···⊔∆[0]K

′
p

XK1⊔∆[0]···⊔∆[0]Kr

Xp XSp(p)

XK0 XSp(r)ι∗0

((τ01 )
∗×1X0

···×1X0
(τ0p )

∗)×1Sp(p)
1Xp

Q

γp

⌜
R

µK1
×1X0

···×1X0
µKr

where

R := 1XK1⊔∆[0]···⊔∆[0]Kr
×1XSp(r)

(µK1
0
×1X0

· · · ×1X0
µKp

0
)

and show that the induced morphisms XSp(n) → XK′
1⊔∆[0]···⊔∆[0]K

′
p

and XSp(n) →
Xp are (µK′

1
×1X0

· · · ×1X0
µK′

p
) and

µp ◦ ((τ ′1)∗ ×1X0
· · · ×1X0

(τ ′p)
∗) ◦ (µK′

1
×1X0

· · · ×1X0
µK′

p
)

respectively. This will imply the induced pullback map is µK by the inner
pullback square.

Note first that, for each 1 ≤ j ≤ p, by induction on depth we have that the
diagram

XSp(qj)

XHj
1⊔∆[0]···⊔∆[0]H

j
hj

XK′
j1X

H
j
1⊔∆[0]···⊔∆[0]H

j
hj

×1XSp(hj)
µ
K

j
0

µ
H

j
1
×1X0

···×1X0
µ
H

j
1

µK′
j

commutes. Thus, by taking a pullback of these maps, the first morphism is as
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required. For Q, it will suffice to show that the diagram

XSp(n)

XK′
1⊔∆[0]···⊔∆[0]K

′
p

XK1⊔∆[0]···⊔∆[0]Kr

XK1
0⊔∆[0]···⊔∆[0]K

p
0

XSp(r)

XSp(p)

Xp XK0

µp

τ∗1×1X0
···×1X0

τ∗r

(τ10 )
∗×1X0

···×1X0
(τp0 )

∗

µ
K1

0
×1X0

···×1X0
µ
K

p
0

((τ01 )
∗×1X0

···×1X0
(τ0p )

∗)×1Sp(p)
1Xp

µK0

µK1
×1X0

···×1X0
µKr

commutes, where the map XSp(n) → Xp is induced by the other morphisms.
The leftmost pentagon commutes by definition, while the bottom right pen-
tagon commutes by the definition of µK0 and the fact that the lowest horizontal
map is simply the projection map from the pullback defining XK0 in terms of
Xp and the spaces XKj

0
.

For the uppermost pentagon, we consider each K ′
j and repective K0

j in turn
for varying j. The respective diagram will commute in each case by induction.
Thus, the whole pentagon commutes and the leftmost vertical map is indeed
the map we seek.

We can package the nested nature of µK into a genuine statement about
composition operations analogous to the maps ◦x0,··· ,xn :

Notation 3.2.11. Let X be a 2-fold Segal space and Sp(n)
ι−→ K

τ←− ∆[1] a
simplicial composition diagram. Let x0, · · · , xn ∈ (X0,0)0. Then define

∏n
i=1X(xi−1, xi) Xx0,xn

Sp(n) Xx0,xn
K

X(x0, xn)

µ
x0,xn
K

(τ∗)x0,xn

◦x0,··· ,xnK

Note again that if n = 0, the domain of ◦xK is the terminal object ∗ ∼= {x}.

Theorem 3.2.12. Suppose X is a 2-fold Segal space and Sp(ki)
ιi−→ Ki

τi←− ∆[1]
are simplicial composition diagrams for 0 ≤ i ≤ n, with k0 = n ≥ 1. Let
r =

∑
i ki. Suppose

Y = ((x10, · · · , x1k1), · · · , (x
n
0 , · · · , xnkn))
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is a nested list of elements of (X0,0)0 such that xiki = xi+1
0 for i < n. Let

(x0, · · · , xr) be the flattened version of this list where all xiki have been removed
for i < n.

Then, setting K := (K1 ⊔∆[0] · · · ⊔∆[0] Kn) ⊔Sp(n) K0, we have that

◦x0,··· ,xrK = ◦x
1
0,x

2
0,··· ,xn0 ,xnkn

K0
◦ (◦

x10,··· ,x1k1
K1

× · · · × ◦x
n
0 ,··· ,xnkn
Kn

).

Before we can prove this theorem, we need some notation for compactness:

Notation 3.2.13. For a series of spans X0 ← Ai → X0 with 1 ≤ i ≤ n and
n > 0, write

1≤i≤n∏
X0

Ai := A1 ×X0 · · · ×X0 An.

If n = 0, set this to be the terminal object ∗.

Proof. By Proposition 3.2.10, it will suffice to prove that the diagram∏n
i=1

∏ki
j=1X(xij−1, x

i
j)

∏r
i=1X(xi−1, xi)

∏n
i=1(
∏1≤i≤ki

X0
X1)

xi0,x
i
ki (

∏1≤i≤r
X0

X1)
x0,xr

∏n
i=1X

xi0,x
i
ki

Ki
Xx0,xr
K1⊔∆[0]···⊔∆[0]Kn

∏n
i=1X(xi0, x

i
ki
) Xx0,xr

Sp(n)

Xx0,xr
K0

X(x0, xr)

∏n
i=1 µ

xi0,x
i
ki

Ki
(µK1

×1X0
···×1X0

µKn )
x0,xr

∼=

∏n
i=1(τ

∗
i )

xi0,x
i
ki (τ∗1×1X0

···×1X0
τ∗n)

x0,xr

µ
x0,xr
K0

(τ∗0 )
x0,xr

commutes, where the inclusions are in general of the form A×X0 {x}×X0B ↪→
A×X0 B, where A→ X0 ← B is a cospan of simplicial spaces and x ∈ (X0,0)0.

One can reduce the problem to checking each of the three squares in the
diagram commutes. The first square is immediate, as the two paths are simply
a matter of removing objects xi in different orders. The second two squares
commute trivially; it is a matter of applying the inclusion before or after the
vertical morphisms, which has no effect. Hence, the result is immediate, as the
two maps being equated are both paths in this diagram.
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When we come to define homotopy bicategories, our hom-categories will
be h1(X(x, y)) with composition functors h1(◦x0,··· ,xn). To obtain coherence
isomorphisms like associators, we need an essential technical property of these
maps with respect to maps between simplicial composition diagrams :

Definition 3.2.14. A map of simplicial composition diagrams is a map f :
K1 → K2 in sSet for simplicial composition diagrams ∆[n]

ιi−→ Ki
τi←− ∆[1] for

i = {1, 2}, such that f ◦ ι1 = ι2 and f ◦ τ1 = τ2.

Note that these maps do not necessarily respect some given inductive pre-
sentation of K1 and K2 as simplicial composition diagrams built out of smaller
such diagrams. For the purposes of this thesis, it will suffice to not make
such specifications. However, if we should for instance desire uniqueness of
such morphisms, such considerations may then be of interest. We leave these
quandaries to future work.

Definition 3.2.15. Let SCDn be the category whose objects are simplicial
composition diagrams of arity n and whose morphisms are maps of simplicial
composition diagrams.

Proposition 3.2.16. Let Sp(n) ιi−→ Ki
τi←− ∆[1] for i ∈ {1, 2} be two simplicial

composition diagrams of arity n ≥ 0 with f : K1 → K2 a map in SCDn

between them. Let X be a 2-fold Segal space with some choice of horizontal
compositions (µn)n≥0.

Then the map
µ′
K2

: XSp(n)

µK2−−→ XK2

f∗−→ XK1

is naturally object-fibered and solves the same lifting problem as µK1, namely
giving a commutative diagram

XK1

XSp(n) XSp(n)id

ι∗1

µ′K2

such that for any x0, · · · , xn ∈ (X0,0)0, the diagram

∏n
i=1X(xi−1, xi) Xx0,xn

Sp(n) Xx0,xn
K1

X(x0, xn)

(µ′K2
)x0,xn

(τ∗1 )
x0,xn

◦x0,··· ,xnK2

commutes.
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Proof. We have that µ′
K2

is object-fibered, as f ∗’s commutativity with the
maps ι∗i implies it is object-fibered. It is then clear that this is a solution to
the lifting problem, since ι∗1 ◦ µ′

K2
= (f ◦ ι1)∗ ◦ µK2 = ι∗2 ◦ µK2 = id. Moreover,

the second diagram commutes, since τ ∗1 ◦ f ∗ = (f ◦ τ1)∗ = τ ∗2 and we obtain
the original definition of ◦x0,··· ,xnK2

.

The consequence of this result we need is that, for any f : K1 → K2

as above, the maps ◦x0,··· ,xnKi
are of the form β ◦ µ(i) ◦ α, where the two µ(i)

for i ∈ {1, 2} are solutions to the same lifting problem. We will find that this
implies there is a homotopy between the two ◦x0,··· ,xnKi

, which will descend under
h1 to our associator.

A final object we should define is the following functor:

Definition 3.2.17. Let n > 0 and k1, · · · , kn ≥ 0. Define the functor

Gnk1,··· ,kn : SCDn ×
n∏
i=1

SCDki → SCDk1+···+kn

by sending

(K,K1, · · · , Kn) 7→ (K1 ⊔∆[0] · · · ⊔∆[0] Kn) ⊔Sp(n) K

with similar behavior for maps.

One might note that this creates a (nonsymmetric) operad SCD•valued in
Cat. We will not need this fact particularly so we omit a proof, but this same
structure will reappear later.

3.3 Homotopies and Globular 2-Homotopies
It is now time for us to address the question of coherence isomorphisms. These
will be achieved by a certain notion of homotopy between maps f, g : X → Y
in SeSpinj. In general, it is our aim to show that, for a given 2-fold Segal space
X with some choice of horizontal compositions (µn)n≥0, maps f : K1 → K2

of simplicial composition diagrams induce homotopies from µK1 to f ∗ ◦ µK2 ,
which will in turn induce homotopies between ◦x0,··· ,xnK1

and ◦x0,··· ,xnK2
for all

x0, · · · , xn ∈ (X0,0)0.
The payoff of this result is in the images of these homotopies under h1. We

will design our notion of homotopy to be such that the image of any homotopy
under h1 is a natural isomorphism between functors. Moreover, we will show
that, under certain conditions, any two homotopies between the same two
functors will be related by a higher ‘homotopy between homotopies’, which
we will refer to as a globular 2-homotopy. The image of such a 2-homotopy
under h1 will be an equality between natural isomorphisms. Our coherence
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isomorphisms will then be the images of certain homotopies between composi-
tion operations ◦x0,··· ,xnK under h1, which will satisfy the coherence conditions
because of the existence of certain globular 2-homotopies.

The main concrete result of this section is an enrichment of h1 by Kan
complexes, whose domain SeSpinj will be such that the hom-space from A to B
will be the Kan complex of ‘higher homotopies’ between maps A→ B. The 1-
simplices will be homotopies, while the 2-simplices will be some generalization
of globular 2-homotopies to a simplicial context. Moreover, the codomain Cat
will be enriched by natural isomorphisms between functors. We will also give
a more abstract justification for globular 2-homotopies, proving they exist in
a general model category and that their presence between certain homotopies
is not specific to simplicial spaces or Segal spaces.

3.3.1 Homotopy Categories of Segal Spaces

Before we can proceed further, we will need a natural extension of the fact that
π0 preserves products to h1. We do not claim originality for this elementary
observation as it is noted in [Rez00, pg. 31]. However, we have not yet found
a proof in the literature, so we provide one here:

Lemma 3.3.1. h1 preserves products up to natural isomorphism of categories.

Proof. Let X and Y be Segal spaces. We seek to specify an isomorphism in
Cat of the form p : h1(X × Y ) → h1(X) × h1(Y ), which is natural in X and
Y .

On objects, there is an evident natural bijection ob(h1(X×Y ))→ ob(h1(X)×
h1(Y )). For morphisms, note that

(X × Y )((x1, y1), (x2, y2)) := {(x1, y1)} ×X0×Y0 (X1 × Y1)×X0×Y0 {(x2, y2)}
∼= ({x1} ×X0 X1 ×X0 {x2})× ({y1} ×Y0 Y1 ×Y1 {y2})
= X(x1, x2)× Y (x2, y2).

Hence, there are natural bijections

Homh1(X×Y )((x1, y1), (x2, y2))→ HomX(x1, x2)×HomY (y1, y2)

induced by π0 preserving products. That these respect identities and compo-
sition is easily verified.

With this out of the way, the current aim for us is to show that h1 sends
some notion of homotopies to natural isomorphisms. To understand what
this means in a precise sense, we will devise a suitable interpretation of the
categories SeSpinj and Cat as sSet-enriched categories that h1 respects, where
SeSpinj is enriched via homotopies between maps and Cat is enriched via
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natural isomorphisms between functors. The latter is classical, though we will
need a modification of it suitable for our methods. Recall the definition of I[n]
in Definition 2.2.72.

Definition 3.3.2. Define Iso : Cat → Grpd to be the functor sending C to
the maximal subgroupoid Iso(C ) of C .

Note that Iso is right adjoint to the natural inclusion ι : Grpd → Cat,
which itself evidently preserves finite products and terminal objects. Thus,
the functors Iso, ι and the right adjoint functor nerve : Cat → sSet are
all monoidal under the monoidal structures on Cat,Grpd and sSet given by
Cartesian products. This implies the functor

nerve ◦ ι ◦ Iso : Cat→ sSet

is monoidal under this structure on Cat and sSet.
Note moreover that Cat is naturally enriched over itself by considering cat-

egories Fun(−,−) of functors and natural transformations. Thus, by [Rie14,
Lemma 3.4.3], applying nerve ◦ ι ◦ Iso to this enrichment allows us to obtain
the following enrichment of Cat by simplicial sets:

Definition 3.3.3. Let Cats be the sSet-enriched category of small categories
with hom-spaces of the form

HomCats(C ,D) := nerve(Iso(Fun(C ,D))).

The set of n-simplices for this simplicial set may be written as

HomCats(C ,D)n ∼= HomCat(C × I[n],D).

There is a clear cosimplicial object I[•] : ∆ → Grpd sending each [n]
to I[n], defining the simplicial maps here. To see how the above description
of natural isomorphisms applies, note that a natural isomorphism F ∼= G of
functors F,G : C → D can be alternatively be written as a functor C ×I[1]→
D .

3.3.2 Cosimplicial Resolutions

The story for Segal spaces demands some more advanced technology. We
could certainly state that SeSpinj is enriched in sSet almost immediately,
using Map0

1(−,−). This is however not the structure we seek. Our wish is for
the 1-simplices in our enrichment to represent homotopies of some description,
which should be sent by h1 to natural isomorphisms. More precisely, we wish to
have a notion of homotopy between maps f, g : X → Y in SeSpinj of the form
H : X ×M → Y for some fixed M ∈ SeSpinj such that h1(M) ∼= I[1]. If this
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condition is satisfied, then we may apply h1 to obtain a natural isomorphism
from H between h1(f) and h1(g) of the form

h1(X)× I[1] ∼= h1(X)× h1(M) ∼= h1(X ×M)
h1(H)−−−→ h1(Y ).

We would moreover like these maps X ×M → Y to be the 1-simplices in our
enrichment of SeSpinj and in turn h1.

LetX, Y ∈ SeSpinj. A 1-simplex in Map0
1(X, Y ) is a morphismX□0

1∆[1]→
Y . It is at this point we notice a fundamental obstruction: the constant bisim-
plicial set ι01∆[1] is not Reedy fibrant, so is not an object in SeSpinj. For in-
stance, the demand that the map Map0

1(F
0
1 (1), ι

0
1∆[1])→Map0

1(∂F
0
1 (1), ι

0
1∆[1])

is a fibration in sSet is asking for the diagonal map (id, id) : ∆[1]→ ∆[1]×∆[1]
to be a fibration in sSet. This is clearly not the case, as we can set up a horn
lifting problem

∆[0] ∆[1]

∆[1] ∆[1]×∆[1]

(id,id)⟨0⟩

⟨0⟩

(id,⟨0,0⟩)

which has no solution. Moreover, the simplicial set ∆[1] is itself not a Kan
complex - the map

⟨0, 1⟩ ⊔⟨0⟩ ⟨0, 0⟩ : ∆[1] ⊔⟨0⟩,∆[0],⟨0⟩ ∆[1] ∼= Λ2
0 → ∆[1]

has no filler to ∆[2] → ∆[1], so the level 0 condition for Reedy fibrancy also
fails. We might interpret this failure as the fact that the poset category of
two objects and one morphism between them is not an ∞-groupoid, as this
one morphism has no inverse. This observation also implies that ι01∆[1] is not
projective fibrant, so cannot possibly be a projective fibrant Segal space either.

There is another potential enrichment of SeSpinj we could turn to, where
the mapping space from X to Y is of the form

MapF (X, Y ) := ((Y X)•)0.

The n-simplices are now of the form f : X × F 0
1 (n) → Y . Notably, F 0

1 (n)
is Reedy fibrant as it is levelwise discrete, as noted more generally in [Rez00,
pg. 6]. Moreover, it is evidently a Segal space; indeed, the Segal maps in this
case are bijections. Thus, we may apply h1 to such a 1-simplex f and obtain
a functor

h1(f) : h1(X)× h1(F 0
1 (1))

∼= h1(X)× [1]→ h1(Y ).

This is precisely a natural transformation between functors. However, we are
interested only in natural isomorphisms, as all of the coherence 2-morphisms
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we wish to construct for our homotopy bicategories must be as such. Hence,
though one could likely proceed with the above enrichment, we it will be
beneficial for us to instead pick an enrichment of SeSpinj whose 1-simplices
are guaranteed to be sent by h1 to natural isomorphisms on the nose.

A sensible path forwards is to identify some deeper mechanism which gives
rise to the appearance of ∆[1] in our theory and consider whether ∆[1] can be
thus substituted for something more well-behaved, while continuing to reap all
the benefits said mechanism provided. The correct such structure is that of a
homotopy function complex and the underlying cosimplicial resolution, as de-
fined in Definition 2.2.50. The reason to think about these is that cosimplicial
resolutions are closely tied to notions of left homotopy, always exhibiting valid
cylinder objects:

Definition 3.3.4 ([DS95, Def. 4.2]). Let M be a model category and C an
object in M . A cylinder object of C is a factorization

C ⊔ C i−→ C ∧ I p−→ C

of the map C ⊔ C → C such that p is a weak equivalence. The cylinder object
is a good cylinder object if i is a cofibration and a very good cylinder object
if it is good and p is a trivial fibration.

Definition 3.3.5 ([DS95, pg. 19]). Let M be a model category and f, g : C →
D be morphisms in M . Suppose C ⊔ C i−→ C ∧ I p−→ C is a cylinder object for
C. A left homotopy H : C ∧ I → D from f to g is a map H such that H ◦ i
is the map f + g : C ⊔ C → D.

The map H is moreover a good left homotopy if C ∧ I is a good cylinder
object and a very good left homotopy if C ∧ I is a very good cylinder object.

Proposition 3.3.6 ([Hir09, Prop. 16.1.6]). Let M be a model category. If X̃
is a cosimplicial resolution of X in M , then

X̃0 ⊔ X̃0

X̃⟨0⟩⊔X̃⟨1⟩−−−−−−→ X̃1

X̃⟨0,0⟩−−−→ X̃0

is a good cylinder object of X̃0.

Recall from Corollary 2.2.53 that Map0
1(−,−) is a left homotopy function

complex induced by a cosimplicial resolution whose cylinder objects are of
the form X ⊔ X → X□0

1∆[1] → X. It seems reasonable then that replacing
this cosimplicial resolution is the correct way to replace ∆[1]. We should
choose the resolution so that the resulting cylinder objects are of the form
X ⊔X → X×K → X for some K such that h1(K) ∼= I[1]. This will imply we
obtain an enrichment in homotopy function complexes whose 1-simplices are
sent by h1 to natural isomorphisms. We will find that this indeed leads to the
enrichment we seek.
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Another advantage to this approach to building an enrichment is that our
mapping spaces will always be Kan complexes:

Proposition 3.3.7 ([Hir09, Prop. 17.1.3]). Suppose M is a model category
and X and Y are objects of M . Then a left homotopy function complex is a
Kan complex.

This will later let us compose our left homotopies vertically.
Our chosen cosimplicial resolution involves the classifying diagram functor.

Recall that Iso(C ) for a category C is its maximal subgroupoid. Moreover,
recall that Iso : Cat→ Grpd is right adjoint to the inclusion Grpd→ Cat.

Definition 3.3.8 ([Rez00, pg. 8]). The classifying diagram functor N :
Cat→ sSpace is defined such that for any category C and n ≥ 0,

NCn := nerve(Iso(C [n]))

with the evident simplicial maps and behavior on functors.

Proposition 3.3.9 ([Rez00, Prop. 6.1]). Let C ∈ Cat. Then NC is a
complete Segal space.

Proposition 3.3.10 ([Rez00, Thm. 3.7]). Let C ,D ∈ Cat. Then N(C×D) ∼=
N(C )×N(D).

Proposition 3.3.11 ([Rez00, pg. 13]). There is a canonical natural isomor-
phism h1 ◦N ∼= 1Cat.

Proof. The objects of h1(NC ) are the elements of the set (NC0)0, which are
the 0-simplices of nerve(Iso(C )), namely the objects of C . Hence, the object
sets are the same. For morphisms, we note both nerve : Cat → sSet and
Iso : Cat → Grpd are right adjoints. Thus, they commute with pullbacks,
meaning for any objects x and y of C ,

nerve(Iso(C [1]))×(nerve(Iso(C )))2 {(x, y)} ∼= nerve(Iso(C [1] ×C 2 {(x, y)}))

Note that C [1] ×C 2 {(x, y)} is always discrete as a category - indeed, all mor-
phisms are squares whose objects are x and y and whose vertical maps are
identities. Hence, the entire nerve is discrete, so the hom-sets of h1(NC ) are
path components of discrete spaces, and so are just the original hom-sets as
needed.

Identities are also clearly the same, as is composition. Hence, h1(NC ) ∼=
C as needed. Functors share a similar fate by inspection, so the proof is
complete.
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As noted in [Rez00, pg. 13], the identifications of objects and hom-sets
of h1(N(C )) for some category C with those of C itself are already stated
in [Rez00, Rem. 5.2], which are in many ways the core components of this
proof. We claim no originality for the above proof, having simply added some
intermediate working for the reader’s benefit.

For a Segal space X, we take our cosimplicial resolution to be X̃ := X ×
(N ◦ I[•]), so that X̃n := X ×N(I[n]).

Proposition 3.3.12. Suppose X ∈ SeSpinj. Then the functor X × N(I[•]),
sending [n] 7→ X ×N(I[n]), defines a cosimplicial resolution of X in SeSpinj.

Proof. We need to prove that the natural map X × N(I[•]) → cc∗(X) is a
levelwise weak equivalence. This is in fact a trivial fibration levelwise; each
map X × N(I[n]) → X is a pullback map for the cospan X → ∗ ← N(I[1]).
Note that since N has its image in CSSPinj by Proposition 3.3.9, the map
N(I[1])→ ∗ is a fibration in SeSpinj. It is moreover a weak equivalence since
I[1]→ ∗ is an equivalence of categories and N sends equivalences to levelwise
weak equivalences of simplicial spaces [Rez00, Thm. 3.7], which are thus weak
equivalences in SeSpinj.

It now suffices to prove that X ×N(I[•]) is Reedy cofibrant. In particular,
we must prove that the latching maps for all n ≥ 0 of the form

colimk∈∂∆[n]

(
X ×N(I[k])

) ∼= X ×
(
colimk∈∂∆[n]N(I[k])

)
→ X ×N(I[n])

are cofibrations in SeSpinj, namely monomorphisms, for which it is sufficient
to prove that the maps

L(n) := colimk∈∂∆[n]N(I[k])→ N(I[n])

are monomorphisms. Thus, we are tasked with proving that the cosimplicial
object N(I[•]) : ∆→ SeSpinj is Reedy cofibrant.

Let m ≥ 0. Note that the above maps are monomorphisms if and only if
they are levelwise, namely if and only if each map

L(n)m ∼= colimk∈∂∆[n]N(I[k])m = Ln(N(I[•])m)→ N(I[n])m

is a cofibration in sSet. Hence, it suffices to prove that the cosimplicial sim-
plicial sets N(I[•])m : ∆→ sSet are Reedy cofibrant.

These cosimplicial simplicial sets are, for n ≥ 0, of the form

N(I[n])m ∼= nerve(Iso(I[n][m])) = nerve(I[n][m]).

By [Hir09, Cor. 15.9.10], a cosimplicial simplicial set X : ∆→ sSet is Reedy
cofibrant if and only if the equalizer of the map

X(0) ⊔X(0)→ X(1)
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is empty. However, this is clearly the case above; the two maps nerve(I[0]m)→
nerve(I[1][m]) send a k-simplex [k] × [m] → I[0] to a map [k] × [m] → I[1]
with constant image in either the object 0 or 1, respectively. Hence, each
N(I[•])m is a Reedy cofibrant cosimplicial simplicial set, implying N(I[•]) is
Reedy cofibrant in (SeSpinj)∆, as needed.

Hence, since Segal spaces are fibrant in the model structure SeSpinj, we
can build a Kan complex MapIsS(X, Y ) for any Segal spaces X and Y , which
at level k is the set of maps X × N(I[k]) → Y , given by the left homotopy
function complex induced by our cosimplicial resolution.

Proposition 3.3.13. MapIsS(−,−) : (SeSpinj)op × SeSpinj → sSet defines
an enrichment of SeSpinj in Kan complexes.

Proof. Suppose X, Y and Z are Segal spaces and let k ≥ 0. Let f : X ×
N(I[k])→ Y and g : Y ×N(I[k])→ Z. Then we have a natural map

X ×N(I[k])
1X×Dk−−−−→ X ×N(I[k])×N(I[k])

f×1N(I[k])−−−−−−→ Y ×N(I[k])
g−→ Z

where the map Dk : N(I[k])→ N(I[k])×N(I[k]) is the diagonal map.We will
use this as our composite of g and f .

The resulting operations are compatible with the simplicial structure on
MapIsS(−,−), giving an operation

◦ : MapIsS(X, Y )×MapIsS(Y, Z)→MapIsS(X,Z).

Identities are given by X ×N(I[1])→ X ×N(I[0]) ∼= X
1X−→ X. Associativity

and identity laws are routine.

Note that there is a more conceptual reason for the existence of this enrich-
ment. Consider the functor N ◦ I[•] : ∆ → sSpace. By Proposition 2.1.18,
this induces a right adjoint functor

I ′ : sSpace→ sSet

sending X to the simplicial set I ′(X) such that

I ′(X)n := HomsSpace(N(I[n]), X).

Since I ′ is a right adjoint, it is monoidal under the monoidal structures on
sSpace and sSet given by Cartesian products. Thus, by [Rie14, Lemma 3.4.3],
this induces an sSet-enrichment on sSpace, by change-of-base on the natural
sSpace-enrichment of sSpace given by internal hom’s. This can then be
restricted to the full subcategory SeSpinj.
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Explicitly, we have that the induced mapping space fromX to Y in SeSpinj

is levelwise of the form

I ′(Y X)n := HomsSpace(N(I[n]), Y X) ∼= HomSeSpinj(N(I[n])×X, Y )

as needed.
We thus obtain our sSet-enrichment for SeSpinj. Moreover, the enrich-

ment of h1 is now immediate: there is an evident simplicial map for Segal
spaces X, Y of the form

MapIsS(X, Y )→ nerve(Iso(Fun(h1(X), h1(Y ))))

sending f : X ×N(I[k])→ Y to

h1(X)× I[k] ∼= h1(X)× h1(N(I[k])) ∼= h1(X ×N(I[k]))

h1(f)−−−→ h1(Y ).

Proposition 3.3.14. By the above mapping, h1 extends to an sSet-enriched
functor.

Proof. It is clear that identities are preserved, so we are left to show the same
for composition. However, one notes that if a natural isomorphism α : F ⇒
G between functors F,G : C → D is written in the form C × I[1] → D ,
then horizontal composition is exactly as stated for MapIsS at all levels of
nerve(Iso(Fun(C ,D))). Hence, composition is preserved as needed.

We now have the desired simplicial set enrichment. We also have that the 1-
simplices in MapIsS(X, Y ) are valid left homotopies, asX×N(I[1]) is a cylinder
object for X owing to it being part of a cosimplicial resolution. We thus have
established how h1 can transmit left homotopies to natural isomorphisms in
an ‘∞-groupoidal’ manner.

Notation 3.3.15. Suppose H : X × N(I[1]) → Y is a left homotopy from f
to g, where f, g : X → Y are maps in SeSpinj. Then write h1(H) : h1(X) ×
I[1]→ h1(Y ) to refer to the natural isomorphism

h1(X)× I[1] ∼= h1(X)× h1(N(I[1])) ∼= h1(X ×N(I[1]))
h1(H)−−−→ h1(Y )

from h1(f) to h1(g).

A useful consequence of this particular choice of cylinder is that it is in fact
a very good cylinder object:

Proposition 3.3.16. Let X be a simplicial space. Then X×N(I[1]) is a very
good cylinder object for X in SeSpinj.
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Proof. By Proposition 3.3.6 and Proposition 3.3.12, we have a good cylinder
object. As stated in the proof of Proposition 3.3.12, the object N(I[1]) is
fibrant in SeSpinj, so that the map X ×N(I[1])→ X is moreover a fibration
as needed.

One final fact we will need about left homotopies is their capacity to be
composed. That left homotopies can be composed in general is classical; by
[Hir09, Def. 7.4.3], given two good cylinder objects X ∧ I and X ∧ I ′ of
a cofibrant object X in a model category M , one may explicitly produce a
‘composite’ of any two good left homotopies H : X ∧I → Y and H ′ : X ∧I ′ →
Y in M by using the pushout

(X ∧ I) ⊔X (X ∧ I ′)

as a new good cylinder object. We provide the details for our case, which
concretely shows moreover how we may continue to use precisely the same
kind of cylinder objects as we have before:

Definition 3.3.17. Consider a lifting problem of Segal spaces

B

C D

p

where p is a trivial fibration. Suppose f, g, h : C → B are solutions, with
left homotopies H,K : C × N(I[1]) → B over D, from f to g and from g
to h respectively. Then a composite of H and K is a left homotopy KH :
C ×N(I[1])→ B over D from f to h defined by the composition Q ◦ i in the
diagram

C ⊔ C ⊔ C

C × (N(I[1]) ⊔∗ N(I[1])) B

C ×N(I[1]) C ×N(I[2]) D

f⊔g⊔h

pj

H⊔gK

Q

i

where i is the image of ⟨0, 2⟩ : ∆[1] → ∆[2] in the cosimplicial object C ×
N(I[•]), while j on each component C ×N(I[1]) in its domain is the image of
the maps ⟨0, 1⟩ and ⟨1, 2⟩ respectively.

Note that Q need not be unique in the above definition; in general, there
may be many candidate composites for two given homotopies.

A trivial result is then immediate:
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Proposition 3.3.18. In the situation of Definition 3.3.17, the map Q is a
horn filler for the 2-horn Λ2

1 →MapIsS(C,B) defined by H and K on each of
its respective 1-simplices. The homotopy KH represents the edge ⟨0, 2⟩ of Q.

Hence, it is reasonable to see KH as a valid composite of H and K in the
Kan complex MapIsS(C,B). Of course, KH is not at all unique. This will not
matter when we come to need this result.

3.3.3 Globular 2-Homotopies

We are in need of some result that establishes when h1 sends two left homo-
topies K,H : X × N(I[1]) → Y between the same maps f, g : X → Y to
the same natural isomorphism. A suitable such criterion is the existence of a
globular 2-homotopy between K and H:

Definition 3.3.19. Let X, Y ∈ SeSpinj. Let f, g : X → Y and let K,H :
X × N(I[1]) → Y be two left homotopies from f to g. Then a globular 2-
homotopy α : K ⇒ H is a left homotopy from K to H, namely a functor
X × N(I[1]) × N(I[1]) → Y , such that the restrictions to X × {0} × N(I[1])
and X × {1} ×N(I[1]) are constantly f and g respectively.

Globular 2-homotopies are notably similar to the correspondences of [Qui67,
pg. 23, Def. 2], for our particular model category and cylinder objects. The
two are not precisely equal, though we believe they should be equivalent in
some suitable sense. We find no need to explore such a comparison further
here, as we are not concerned with manipulating globular 2-homotopies so
much as we are with establishing their mere existence.

Globular 2-homotopies are, in spirit, homotopies between two homotopies
of maps of Segal spaces. They moreover enjoy a place in our enrichment of
SeSpinj by supposed Kan complexes of ‘higher homotopies’, helping to justify
this interpretation thereof. Consider the two maps

A,B : I[2]→ I[1]× I[1]

sending 0 7→ (0, 0) and 2 7→ (1, 1), where A sends 1 to (0, 1) while B sends 1
to (1, 0). Then for a globular 2-homotopy α : X ×N(I[1])×N(I[1])→ Y , we
obtain two maps

X ×N(I[2])→ X ×N(I[1]× I[1]) ∼= X ×N(I[1])×N(I[1])→ Y.

In our enrichment of SeSpinj by MapIsS(−,−), these correspond precisely to
those 2-simplices α ∈ MapIsS(X, Y )2 such that either the 1-simplex of the
form MapIsS(X, Y )⟨0,1⟩(α) or the 1-simplex of the form MapIsS(X, Y )⟨1,2⟩(α) is
degenerate. We may thus interpret globular 2-homotopies as the 2-morphisms
in each ∞-groupoid MapIsS(X, Y ).
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A particularly appealing aspect of our specific definition for globular 2-
homotopies is that, upon an application of h1, a globular 2-homotopy between
two homotopies H and K will explicitly identify the natural isomorphisms
h1(H) and h1(K):

Proposition 3.3.20. Let X, Y, f, g,K,H be as above. Suppose α : K ⇒ H
is a globular 2-homotopy from K to H. Then the two natural isomorphisms,
denoted by h1(H) and h1(K), of the form

h1(X)× I[1] ∼= h1(X)× h1(N(I[1])) ∼= h1(X ×N(I[1]))
h1(K),h1(H)−−−−−−−→ h1(Y )

are equal.

Proof. This is a matter of unwinding definitions. We find that the map, which
we denote by h1(α), of the form

h1(X)× I[1]× I[1] ∼= h1(X)× h1(N(I[1]))× h1(N(I[1]))
∼= h1(X ×N(I[1])×N(I[1]))

h1(α)−−−→ h1(Y )

reduces to h1(f) on h1(X) × {0} × I[1] and h1(g) on h1(X) × {1} × I[1].
Moreover, it restricts to h1(K) and h1(H) on the other evident restrictions. It
is then clear that h1(K) = h1(H) as needed.

An important consequence to this proposition for us lies in comparing solu-
tions of lifting problems. Consider a lifting problem with two possible solutions

A B

C D

f

g

pi
δ

ϵ

where i is a cofibration and p a trivial fibration. We have the following useful
result:

Proposition 3.3.21 ([Hir09, Prop. 7.6.13]). Let M be a model category.
Consider the above solid arrow diagram, where adding in either δ or ϵ alone
still makes the diagram commute. Then there is a left homotopy from δ to ϵ
in the model category (A ↓M ↓ D).

It will be important for us to understand how this is proven.
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Proof. There is a model structure on (A ↓ M ↓ D) given in [Hir09, Thm.
7.6.5], where weak equivalences, fibrations and cofibrations are those which
restrict to such maps in M .

Now, factor the map C ⊔A C → C as C ⊔A C
j→ C ∧ I r→ C as a good

cylinder object, so j is a cofibration and r a weak equivalence. Consider the
solid arrow diagram

C ⊔A C B

C ∧ I C D

δ⊔f ϵ

pj
H

r g

where j is a cofibration and p is a trivial fibration. Thus, there is a dotted
arrow H making the diagram commute, which makes H a left homotopy from
δ to ϵ in (A ↓M ↓ D) as needed.

A side result should be noted with regards to these homotopies and taking
fibers:

Proposition 3.3.22. Suppose M = SeSpinj in the above lifting problem, X is
a 2-fold Segal space and that f, i, p, g, δ and ϵ are all object-fibered over (X0)

n+1.
Then the induced homotopy H will also be object-fibered, with respect to the
vertex maps C ∧ I → C → (X0)

n+1. Moreover, for any x0, · · · , xn ∈ (X0,0)0,
the map Hx0,··· ,xn : (C ∧ I)x0,··· ,xn → Bx0,··· ,xn is a left homotopy from δx0,··· ,xn

to ϵx0,··· ,xn.

Proof. The map j is clearly object-fibered, by the naturally induced map from
the pushout C ⊔A C → (X0)

n+1. The map δ ⊔f ϵ must also be object-fibered,
while p and g are by assumption. Thus, by Proposition 3.2.1, the solution H
of the lifting problem must also be object-fibered such that commutativity of
the diagram is preserved after taking a fiber.

Note that r is object-fibered. Moreover, rx0,··· ,xn is a trivial fibration and
thus a weak equivalence, so (C ∧ I)x0,··· ,xn is a cylinder object, though perhaps
not a good or very good one anymore. Hence, Hx0,··· ,xn is a valid left homotopy
as claimed.

Note that in the case C ∧ I = C ×N(I[1]), the homotopy will in fact stay
a very good left homotopy.

If A = ∅ is the initial object, the cylinder object in question is also a
cylinder object in (M ↓ D), as well as in M , yielding a lifting problem of the
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form
C ⊔ C B

C ∧ I D

δ⊔ϵ

g

pi
H

which we encapsulate in the following corollary:

Corollary 3.3.23. Given a model category M and a diagram

B

C Dg

p
δ

ϵ

where C is cofibrant, p : B → D is a trivial fibration and δ and ϵ are each
solutions to the lifting problem, then there is a left homotopy in (M ↓ D) from
δ to ϵ.

We can then compare two such left homotopies H,K : C ∧ I → B. As per
the proof of Proposition 3.3.21, these are two solutions to a new lifting problem,
letting us inductively apply the proposition to obtain a left homotopy Γ from
H to K in (C ⊔ C ↓ M ↓ D). Of course, the cylinder object this homotopy
will be defined with respect to is not guaranteed to be such that, for instance,
we precisely obtain a globular 2-homotopy in the case of Segal spaces. We
will show how to resolve this situation in the most general context possible, as
the structure of a globular 2-homotopy between homotopies of solutions to a
lifting problem may be of interest in other model categories.

We should spend some time understanding precisely what such a left ho-
motopy is in our use case. Consider, for f : X → Z a map of simplicial spaces
and p : Y → Z a trivial fibration in sSpace with the model structure SeSpinj,
two solutions α and β of the lifting problem of the form

Y

X Z
f

pα
β

Then consider two left homotopies H,K : α ⇒ β induced as solutions to
the lifting problem
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X ⊔X Y

X ×N(I[1]) Z
f◦(1X×!)

pH
K

α⊔β

Then there is an induced left homotopy Γ in (X ⊔X ↓ sSpace ↓ Z) from
H to K. We need a suitable cylinder object in this model category to be able
to write down Γ directly. One may produce a general such cylinder object.
Before we do so, a technical lemma is needed for the construction:

Lemma 3.3.24. Suppose C ⊔ C i−→ C ∧ I p−→ C is a very good cylinder object
for C in a model category M . Then there is a very good cylinder object

(C ∧ I) ⊔ (C ∧ I) h−→ C ∧ I ∧ I r−→ C ∧ I

for C ∧ I and a cofibration v that solves the lifting problem

(C ⊔ C) ⊔ (C ⊔ C) (C ∧ I) ⊔ (C ∧ I) C ∧ I ∧ I

(C ⊔ C) ⊔ (C ⊔ C)

(C ∧ I) ⊔ (C ∧ I) C ⊔ C C ∧ I

i⊔i

τ

i⊔i

h

r
v

p⊔p i

where τ : (C⊔C)⊔ (C⊔C)→ (C⊔C)⊔ (C⊔C) is the isomorphism permuting
the C’s by the permutation (1324)2.

Proof. Consider the pushout diagram

(C ⊔ C) ⊔ (C ⊔ C) (C ∧ I) ⊔ (C ∧ I)

(C ⊔ C) ⊔ (C ⊔ C)

(C ∧ I) ⊔ (C ∧ I) C ∧□

τ

i⊔i

i⊔i

h′

v′

⌜

We note that h′ and v′ are both cofibrations, by preservation along pushouts.
Now, a universal map f : C ∧□→ C ∧ I is obtained from the pushout by the

2Read this as the map (a1a2a3a4) sending i 7→ ai, rather than the cyclic permutation.
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diagram

(C ⊔ C) ⊔ (C ⊔ C) (C ∧ I) ⊔ (C ∧ I)

(C ⊔ C) ⊔ (C ⊔ C)

(C ∧ I) ⊔ (C ∧ I) C ∧□

C ⊔ C C ∧ I

τ

i⊔i

i⊔i

h′

v′

⌜

f
p⊔p

i

Factorize this into a cofibration followed by a trivial fibration C∧□ ι−→ C∧I ∧
I

r−→ C ∧ I. The map h is then defined to be ι◦h′, concluding the construction
of the very good cylinder object. The map v is then set to be ι ◦ v′. This is
clearly a cofibration and solves the required lifting problem by commutativity
of the pushout diagram.

Note that for us, given M = SeSpinj, some Segal space X and using the
cylinder object X × N(I[1]), Lemma 3.3.24’s induced cylinder object can be
set to be X × N(I[1]) × N(I[1]), while v is given by the evident inclusion of
the ‘vertical’ isomorphisms.

Lemma 3.3.25. Suppose C ⊔ C i−→ C ∧ I p−→ C is a very good cylinder object
for a cofibrant object C in a left proper model category M . Let h, r, C ∧ I ∧ I
and v be as in Lemma 3.3.24.

Then there is a cylinder object for C ∧ I in (C ⊔ C ↓M ) of the form

(C ∧ I) ⊔C⊔C (C ∧ I) b−→ C ∧B z−→ C ∧ I

where C ∧B is the pushout

(C ∧ I) ⊔ (C ∧ I) C ⊔ C

C ∧ I ∧ I C ∧B.

v

p⊔p

k

s

⌜

Proof. We need to define the two maps b and z. It will then be sufficient to
show that z is a weak equivalence and that zb is the appropriate projection
map

(C ∧ I) ⊔C⊔C (C ∧ I)→ C ∧ I

induced by the pushout.
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The map z is easiest, so we start here: it is simply given by the universal
map from the pushout, induced by the maps i : C ⊔ C → C ∧ I and r :
C ∧ I ∧ I → C ∧ I. That these commute is due to the lifting problem v is a
solution for.

As an intermediate step, note that p⊔ p is a weak equivalence. Indeed, the
two maps C → C ⊔ C i−→ C ∧ I are weak equivalences by 2-out-of-3. As C is
cofibrant, these are moreover trivial cofibrations. Then, note that the map

C ⊔ C ↪→ (C ⊔ C) ⊔ (C ⊔ C) i⊔i−→ (C ∧ I) ⊔ (C ∧ I) p⊔p−−→ C ⊔ C

is simply the identity. The composite of the first two maps is a coproduct
of trivial cofibrations so is itself a trivial cofibration [Hir09, Prop. 7.2.5 (2)].
Hence, p ⊔ p is a weak equivalence by 2-out-of-3.

Note then that k is a weak equivalence, as M is left proper, v is a cofibration
and p ⊔ p is a weak equivalence. This implies by 2-out-of-3 with r that z is a
weak equivalence, as needed.

Now we turn to b. Consider the two morphisms i1, i2 : C ⊔ C → (C ∧ I) ⊔
(C ∧ I). It will suffice to show that khi1 = khi2, as this will induce a pushout
map to C ∧ B. Extending the pushout diagram defining C ∧ B reveals two
larger commutative diagrams, for j ∈ {1, 2}, of the form

C ⊔ C (C ∧ I) ⊔ (C ∧ I) C ⊔ C

(C ∧ I) ⊔ (C ∧ I) C ∧ I ∧ I C ∧B

ij

h k

p⊔p

sv ⌜

αj

where α1 and α2 are induced by the lifting problem defining v. Commutativity
is given by this same lifting problem. It thus suffices to show that s(p⊔p)α1 =
s(p ⊔ p)α2. However, (p ⊔ p)α1 and (p ⊔ p)α2 give the identity on C ⊔ C, so
they are equal as needed, in turn defining b.

We finally need to show that b and z satisfy the requirements of a cylinder
object, namely that z ◦ b is the projection map from the pushout. This is a
matter of a quick diagram chase and an application of the same property of h
and r. Indeed, if q : (C ∧ I) ⊔ (C ∧ I) → (C ∧ I) ⊔C⊔C (C ∧ I) is the natural
map, then zbq = zkh = rh by inspection, which is the required projection.

Note that we did not prove this to be a very good cylinder object, as
this is not needed for our purposes. We have not even proven it to be a good
cylinder object. Regardless, though this cylinder object is a useful intermediate
construction, we will never need to work with it directly:

Lemma 3.3.26. Suppose, in the situation of Lemma 3.3.25, we have D ∈M
and two homotopies H,K : C ∧ I → D, both between maps f, g : C → D.
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Then there is a left homotopy from H to K in (C ⊔ C ↓M ) if and only if
there is a left homotopy

Γ : C ∧ I ∧ I → D

from H to K in M such that Γ ◦ v = (f ◦ p) + (g ◦ p).

Proof. Suppose the map Γ exists. The property it satisfies corresponds exactly
to having a map to D from the span which C ∧ B is the pushout of. Thus, a
left homotopy Γ′ : C ∧B → D is induced by universality of the pushout.

Now, suppose κ : C ∧B′ → D is a left homotopy in (C ⊔C ↓M ), for some
good cylinder object

(C ∧ I) ⊔C⊔C (C ∧ I) b′−→ C ∧B′ z′−→ C ∧ I.

Some work is needed to obtain a left homotopy using the cylinder object C∧B
itself, as we have not proven it to be a good cylinder object. For now, take
any factorization of b

(C ∧ I) ⊔C⊔C (C ∧ I) γ−→ C ∧ β ω−→ C ∧B

into a cofibration γ followed by a trivial fibration ω. C ∧ β will serve just fine
as a good cylinder object. Hence, we can assume C ∧B′ = C ∧ β.

Now, take a lift

(C ∧ I) ⊔ (C ∧ I) C ⊔ C (C ∧ I) ⊔C⊔C (C ∧ I) C ∧ β

C ∧ I ∧ I C ∧B
k

ωv

γ

κ

p⊔p

The map κ, together with the natural map C ⊔ C → C ∧ β given by γ,
induces a map by universality of the pushout e : C ∧ B → C ∧ β. Since k
and ω are weak equivalences, κ is a weak equivalence. Thus, since κ and k
are weak equivalences, e must be a weak equivalence. Note that e commutes
with the maps C ⊔ C → C ∧ β and s : C ⊔ C → C ∧ B, since e is induced
by the pushout’s universal property. Precomposing with e thus gives the left
homotopy C ∧B → D in (C ⊔C ↓M ) desired, which when precomposed with
k gives Γ.

In particular, we find the following:

Corollary 3.3.27. Consider the lifting problem in Corollary 3.3.23, along with
the data given in Lemma 3.3.25. Any two left homotopies H,K : C ∧ I → B
over D between δ and ϵ induced as in the corollary’s methods will be related by
a left homotopy over D

Γ : C ∧ I ∧ I → B

such that Γ ◦ v = (δ ◦ p) + (ϵ ◦ p).
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Proof. H and K are solutions of the same lifting problem. Thus, by Propo-
sition 3.3.21, there is a left homotopy between them in (C ⊔ C ↓ M ↓ D) =
(C ⊔ C ↓ (M ↓ D)), implying the result by Lemma 3.3.26.

Note then that Γ, in our use case, is exactly the definition of a globular
2-homotopy. Thus, we have the following result:

Theorem 3.3.28. Consider a lifting problem

B

C Dg

p

in SeSpinj, where C is cofibrant and p is a trivial fibration. Any two solutions
will be related by a left homotopy in (SeSpinj ↓ D) using the cylinder object
C × N(I[1]), while any two such left homotopies will be related by a globular
2-homotopy.

Corollary 3.3.29. Let f, g : C → B be two solutions to the lifting problem
above. Let H,K : C × N(I[1]) → B be two left homotopies over D between
them. Then the enrichment of h1 in Kan complexes sends H and K to the
same natural isomorphism h1(C)× I[1]→ h1(D).

As an aside, a consequence of our approach to left homotopies that now
deserves mentioning is that h1 will send a section of a trivial fibration to its
inverse:

Proposition 3.3.30. Consider a lifting problem of Segal spaces

A

B B
id

f
g

with solution g and a trivial fibration f . Then h1(g) is a categorical inverse to
h1(f).

Proof. We have that h1(f) ◦ h1(g) = 1h1(B). Moreover, by the 2-out-of-3 prop-
erty of weak equivalences, we have that g is a Dwyer-Kan equivalence and thus
h1(g) is an equivalence.

The proof will be complete if we produce a left homotopy H : A×N([I])→
A from g ◦ f to 1A, as hc1 will send this to the necessary natural isomorphism.
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Such a left homotopy can be produced by noting that g ◦ f and 1A are both
solutions to the lifting problem

A

A B
f

f

g◦f

id

completing the proof.

Our results also make it possible to prove directly that composition of left
homotopies and natural isomorphisms coincide, without needing the simplicial
enrichment of h1. Recall our convention of identifying h1(X × N(I[1])) with
h1(X)× I[1] for some Segal space X.

Proposition 3.3.31. In the situation of Definition 3.3.17, the vertical com-
posite of natural isomorphisms h1(K)h1(H) : h1(C)× I[1]→ h1(B) is equal to
h1(KH) : h1(C)× I[1]→ h1(B) for any composite KH : C ×N(I[1])→ B.

Proof. Let Q be as in Proposition 3.3.17. The composite of h1(K) and h1(H)
amounts to considering the induced functor

F : h1(C)× I[2]→ h1(B)

which restricts to h1(H) and h1(K). There is precisely one such functor.
However, h1(Q) : h1(C) × I[2] ∼= h1(C × N(I[2])) → h1(B) also shares this
property, so h1(Q) = F . Hence, restriction yields h1(KH) for any KH as
needed.

3.4 Homotopy Unbiased Bicategories
Let X ∈ SeSpinj2 be a 2-fold Segal space. We wish to define an unbiased
bicategory h2(X). As we will soon find, it will not be reasonable to expect
such a bicategory to exist without additional data. This will take the form of
a choice of horizontal compositions.

We set ob(h2(X)) := (X0,0)0, for consistency with h1. We also define

Homh2(X)(x, y) := h1(X(x, y)) = h1((X1,•)
x,y).

We then take a choice of horizontal compositions (µn)n≥0 for X as in Definition
3.2.2. Composition functors, for n ≥ 0 and x0, · · · , xn ∈ ob(h2(X)), will then
be the maps

•x0,··· ,xn :
n∏
i=1

Homh2(X)(xi−1, xi) ∼= h1(
n∏
i=1

X(xi−1, xi))
h1(◦x0,··· ,xn )−−−−−−−→ Homh2(X)(x0, xn).
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In general, for a simplicial composition diagram K of arity n, write

•x0,··· ,xnK :
n∏
i=1

Homh2(X)(xi−1, xi) ∼= h1(
n∏
i=1

X(xi−1, xi))
h1(◦

x0,··· ,xn
K )

−−−−−−−→ Homh2(X)(x0, xn).

Note the domain is ∗ ∼= {x0} if n = 0, as with ◦x0 .

3.4.1 Truncated Compositions

Our first attempt will be to induce h2 from htr2 . We now have the technology to
obtain choices of 2-truncated compositions from choices of horizontal compo-
sitions, as we can now construct the relevant natural isomorphisms. Suppose
(X, (µn)n≥0) ∈ SeSpcomp2 . We seek to construct fillers

h1(X
x0,··· ,xn
n )

∏n
i=1 h1(X(xi−1, xi))

h1(X(x0, xn))

•x0,··· ,xn

ηx0,··· ,xn

for each x0, · · · , xn ∈ (X0,0)0.
Note first that the composition

Xx0,··· ,xn
n

γ
x0,··· ,xn
n−−−−−→ Xx0,··· ,xn

Sp(n)

µ
x0,··· ,xn
n−−−−−→ Xx0,··· ,xn

n

is a weak equivalence by 2-out-of-3. Moreover, since both the source and target
of this map are both fibrant and cofibrant, we have that this map admits a
homotopy inverse:

Proposition 3.4.1 ([DS95, Lemma 4.24]). Suppose f : X → Y is a morphism
in a model category M where X and Y are both fibrant and cofibrant. Then f
is a weak equivalence if and only if it has a homotopy inverse, namely a map
g : Y → X together with (left or right) homotopies f ◦ g ∼ 1Y and g ◦ f ∼ 1X .

We modify the definition of homotopy inverse to include the homotopies
as data.

As a matter of fact, we do not even need this more general result: we have
a natural lifting problem in SeSpinj with two distinct solutions

Xn

Xn XSp(n)

1Xn

µn◦γn
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so that there must exist a left homotopy between them. Moreover, this left
homotopy will be fibered over objects. Thus, we have the following:

Proposition 3.4.2. Suppose X ∈ SeSpinj2 with a choice of horizontal compo-
sitions (µn)n≥0. Then for every n ≥ 0 and x0, · · · , xn ∈ (X0,0)0, there exists a
left homotopy Kn : Xn × N(I[1]) → Xn from the composition µn ◦ γn to 1Xn

that is fibered over objects in X0 and is constant on postcomposition with γn.
Moreover, setting

Hx0,··· ,xn
n : Xx0,··· ,xn

n ×N(I[1])
K

x0,··· ,xn
n−−−−−→ Xx0,··· ,xn

n ↪→ Xx0,xn
n

X
x0,xn
⟨0,n⟩−−−−→ X(x0, xn)

we have that all such left homotopies Kn induce the same filler

h1(X
x0,··· ,xn
n )

∏n
i=1 h1(X(xi−1, xi))

h1(X(x0, xn))

•x0,··· ,xn

h1(H
x0,··· ,xn
n )

for the span h1(X(x0, xn))← h1(X
x0,··· ,xn
n )→

∏n
i=1 h1(X(xi−1, xi)).

Proof. The left homotopy Kn is induced between two solutions to the same
lifting problem, so the required properties are satisfied on the nose. Moreover,
any two Kn and K ′

n will be related by a globular 2-homotopy, which will in
turn be fibered over objects. Thus, any Hn and H ′

n will be related by such a
globular 2-homotopy, proving uniqueness of the filler.

This gives us the required conversion from horizontal compositions to 2-
truncated compositions:

Definition 3.4.3. Define the functor

Tr : SeSpcomp2 → SeSp2comp
2

to send (X, (µn)n≥0) to the pair

(X, (h1(◦x0,··· ,xn), h1(Hx0,··· ,xn
n ))

x0,··· ,xn∈(X0,0)0
n≥0 )

and to send maps to the same underlying maps.

That this is functorial is trivial, due to morphisms ignoring the choices of
horizontal or 2-truncated compositions.
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Note that Tr only identifies 2-truncated compositions that are identities
on unary composition and that are given by degeneracy maps on nullary com-
position. Thus, the composite

SeSpcomp2 → SeSp2comp
2

htr2−→ UBicat

has in its image only those unbiased bicategories where the unitors ιx,y are
identities and identity 1-morphisms are given by degeneracy maps. Moreover,
Tr identifies only those truncated composition operations that admit some
description as compositions in X itself.

3.4.2 Coherence Isomorphisms

It is somewhat unenlightening to define h2 by factoring through htr2 ; there is
no clear reason that associators, unitors or the coherence conditions should
exist. We would like to demonstrate that all of this data exists intrinsically
in X itself, as we expect such results to better lend themselves to computing
homotopy n-categories for higher n in the future.

Our first order of business is to provide the associators and unitors. We
will in fact provide much more general machinery here, which will be needed to
work with functors as well. For associators, let n ∈ Z>0 and k1, · · · , kn ∈ Z≥0,
with r =

∑n
i=1 ki. Consider any n-tuple of tuples of elements of (X0,0)0

Y := ((x10, x
1
1, · · · , x1k1), · · · , (x

n
0 , · · · , xnkn))

such that xiki = xi+1
0 for every i < n. Let (x0, · · · , xr) be the flattened tuple

after removing each xiki for i < n.

Proposition 3.4.4. Let Y be as above. Let Sp(r) ι−→ K
τ←− ∆[1] be a simplicial

composition diagram where K = (K1 ⊔∆[0] · · · ⊔∆[0] Kn) ⊔Sp(n) K0, with each
diagram Ki of arity ki where k0 = n. Then

•x0,··· ,xrK = •x
1
0,··· ,xn0 ,xnkn
K0

◦ (•
x10,··· ,x1k1
K1

× · · · × •x
n
0 ,··· ,xnkn
Kn

).

Proof. We have by Theorem 3.2.12 that the diagram∏r
i=1 Homh2(X)(xi−1, xi) h1(

∏r
i=1X(xi−1, xi))

∏n
i=1 h1(

∏ki
j=1X(xij−1, x

i
j))

∏n
i=1 Homh2(X)(x

i
0, x

i
ki
)

h1(
∏n

i=1X(xi0, x
i
ki
)) Homh2(X)(x0, xr)

h1(◦
x0,··· ,xr
K )

∼=

∼=

∏n
i=1 h1(◦

xi0,··· ,x
i
ki

Ki
)

∼=

h1(◦
x10,··· ,x

n
0 ,xnkn

K0
)

∼=

h1(◦
x10,··· ,x

1
k1

K1
×···×◦

xn0 ,··· ,xnkn
Kn

)
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commutes. The result follows.

Let Sp(n)
ιKi−−→ Ki

τKi←−− ∆[1], for i ∈ {1, 2}, be simplicial composition
diagrams of arity n. Consider a map f : K1 → K2 in SCDn, as in Definition
3.2.14. We have as in Proposition 3.2.16 the map µ′

K2
:= f ∗ ◦ µK2 . The two

maps µK1 and µ′
K2

both solve the lifting problem

XK1 X1

XSp(n) XSp(n)

τ∗K1

µ′K2

µK1

and thus admit an induced left homotopy βf : XSp(n)×N(I[1])→ XK1 between
them. This left homotopy is object-fibered and is constant on postcomposition
with ι∗K1

: XK1 → XSp(n). We will write βf for a left homotopy induced by a
map f in SCDn in this manner. We will in general speak of an ‘induced left
homotopy’ when a left homotopy is produced from two maps being solutions
to the same lifting problem.

Recall that even though βf is not in general unique, any two induced left
homotopies βf and β′

f by a map f will have a globular 2-homotopy α : XSp(n)×
N(I[1])×N(I[1])→ XK1 between them, by Theorem 3.3.28. It is this property
that asserts functoriality of the following construction:

Definition 3.4.5. Let X be a 2-fold Segal space with a choice of horizontal
compositions (µn)n≥0. Let x, y ∈ (X0,0)0 and set n ≥ 0. Define the functor

ωx,y(X,(µn)n≥0)
: SCDn → Fun

(
h1(X

x,y
Sp(n)), h1(X(x, y))

)
to send K 7→ h1((τ

∗
K)

x,y ◦ µx,yK ) and f : K1 → K2 to the natural isomorphism

h1((τ
∗
K1
)x,y ◦ βx,yf ) : h1(X

x,y
Sp(n))× I[1]

h1(β
x,y
f )

−−−−→ h1(X
x,y
K1

)
h1((τ∗K1

)x,y)

−−−−−−−→ h1(X(x, y))

for an induced left homotopy βf : XSp(n) ×N(I[1])→ XK1 from µK1 to µ′
K2

.

Proposition 3.4.6. ωx,y(X,(µn)n≥0)
is a functor.

Proof. By the above discussion, ωx,y(X,(µn)n≥0)
(f) is well-defined for any morphism

f in SCDn.
Suppose K1

f−→ K2
g−→ K3 is a diagram in SCDn for simplicial composition

diagrams ∆[n]
ιi−→ Ki

τi←− ∆[1]. We wish to show that

ωx,y(X,(µn)n≥0)
(g)ωx,y(X,(µn)n≥0)

(f) = ωx,y(X,(µn)n≥0)
(g ◦ f).
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These three natural isomorphisms can be rewritten as

ωx,y(X,(µn)n≥0)
(f) = (τ ∗1 )

x,y ◦ βx,yf
ωx,y(X,(µn)n≥0)

(g) = (τ ∗1 )
x,y ◦ (f ∗ ◦ βg)x,y

ωx,y(X,(µn)n≥0)
(g ◦ f) = (τ ∗1 )

x,y ◦ βx,yg◦f

for left homotopies βx,yf , (f ∗ ◦ βg)x,y and βx,yg◦f induced between µx,yK1
and (f ∗ ◦

µK2)
x,y, (f ∗ ◦ µK2)

x,y and (f ∗ ◦ g∗ ◦ µK3)
x,y and µx,yK1

and (f ∗ ◦ g∗ ◦ µK3)
x,y

respectively, all induced by the maps µK1 , (f
∗ ◦ µK2) and (f ∗ ◦ g∗ ◦ µK3) being

solutions to the lifting problem of the form

XK1

XSp(n) XSp(n)

ι∗K1

(f∗◦g∗◦µK3
)

µK1

(f∗◦µK2
)

We may therefore take a composite C = ((f ∗ ◦βg)x,y)(βx,yf ) as in Definition
3.3.17, which is a left homotopy from µx,yK1

to (f ∗ ◦ g∗ ◦µK3)
x,y. By Proposition

3.3.31, we have that h1(C) is the composite of h1((f ∗ ◦ βg)x,y) and h1(βx,yf ).
Note however that C and βx,yg◦f are both left homotopies induced between the

same solutions of a lifting problem. Hence, by Corollary 3.3.29, we have that
h1(β

x,y
g◦f ) = h1(C) is the composite of the natural isomorphisms h1((f ∗ ◦βg)x,y)

and h1(βx,yf ), as needed.
Now, suppose K is a simplicial composition diagram of arity n. We wish

to show that
ωx,y(X,(µn)n≥0)

(1K) = 1h1((τ∗K)x,y◦µx,yK ).

The left homotopy β1K can be set to be a constant left homotopy, as its source
and target are equal. Since any choice of β1K will yield the same natural
isomorphism, the result is evident.

Definition 3.4.7. Let X be a 2-fold Segal space with a choice of horizontal
compositions (µn)n≥0. Let x0, · · · , xn ∈ (X0,0)0. Then define the map

ϕx0,··· ,xn(X,(µn)n≥0)
: Fun

(
h1(X

x0,xn
Sp(n)), h1(X(x0, xn))

)
→ Fun

( n∏
i=1

h1(X(xi−1, xi)), h1(X(x0, xn))
)

to be the functor given by precomposition with the inclusion

Fx0,··· ,xn :
n∏
i=1

h1(X(xi−1, xi)) ∼= h1(
n∏
i=1

X(xi−1, xi)) ↪→ h1(X
x0,xn
Sp(n)).
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Write Φx0,··· ,xn
(X,(µn)n≥0)

:= ϕx0,··· ,xn(X,(µn)n≥0)
◦ ωx0,xn(X,(µn)n≥0)

.

For our given Y , let K = (∆[k1]⊔∆[0] · · ·⊔∆[0]∆[kn])⊔Sp(n)∆[n] and take the
map fk1,··· ,kn : K → ∆[r] in SCDr to be the map restricting to the morphisms

⟨
i−1∑
j=1

kj, · · · ,
i−1∑
j=1

kj + ki⟩ : ∆[ki]→ ∆[r]

⟨0, k1, k1 + k2, · · · ,
n∑
j=1

kj⟩ : ∆[n]→ ∆[r].

Our associators for h2(X) will be the natural isomorphisms

Φx0,··· ,xr
(X,(µn)n≥0)

(fk1,··· ,kn) : •x
1
0,··· ,xn0 ,xnkn ◦ (•x

1
0,··· ,x1k1 × · · · × •xn0 ,··· ,xnkn )⇒ •x0,··· ,xr .

Unitors for us will be trivial; we choose to set them to be identities. We
are thus now ready to declare the definition of our unbiased bicategory in full:

Definition 3.4.8. Let X be a 2-fold Segal space. Let (µn)n≥0 be a choice of
horizontal compositions.

Then the unbiased homotopy bicategory h2(X, (µn)n≥0) of X, written as
h2(X) if the µn are known, is the unbiased bicategory defined such that:

1. ob(h2(X)) := (X0,0)0;

2. Homh2(X)(x, y) := h1(X(x, y)) for all x, y ∈ (X0,0)0;

3. For each n > 0 and x0, · · · , xn ∈ (X0,0)0, composition is given by the
functor •x0,··· ,xn;

4. For each x ∈ (X0,0)0, identities are given by the functor •x;

5. Let n > 0 and k1, · · · , kn ∈ Z≥0 with r =
∑

i ki. Consider any n-tuple of
tuples of elements of (X0,0)0

Y := ((x10, x
1
1, · · · , x1k1), · · · , (x

n
0 , · · · , xnkn))

such that xiki = xi+1
0 for every i < n. Let (x0, · · · , xr) be the flattened

tuple after removing each xiki for i < n. Then the natural isomorphism
γY is defined to be

Φx0,··· ,xr
(X,(µn)n≥0)

(fk1,··· ,kn);

6. For each x, y ∈ (X0,0)0, the natural isomorphism

ιx,y : 1Homh2(X)(x,x) ⇒ 1Homh2(X)(x,x) = •
x,x

is an identity.
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We can now prove that the data in Definition 3.4.8, excluding the associa-
tors, indeed agrees with our first attempt at homotopy bicategories:

Proposition 3.4.9. The data for h2(X, (µn)n≥0), excluding the associators, is
equal to that specifying the unbiased bicategory htr2 (Tr(X, (µn)n≥0)).

Proof. Equality on objects, hom-categories, identities and composition is ev-
ident. Moreover, equality on the natural isomorphisms ιx,y is immediate, as
these are identities in both cases.

We leave the associators for future work, which we conjecture to be equal in
both cases so that h2(X, (µn)n≥0) = htr2 (Tr(X, (µn)n≥0)) for all (X, (µn)n≥0) ∈
SeSpcomp.

3.4.3 Coherence Conditions

We now come to proving the coherence conditions on our proposed data for an
unbiased bicategory. Though a possible line of inquiry, it is unenlightening to
reduce a proof of these coherence conditions on our homotopy bicategories to a
comparison with htr2 . If our goal is indeed to understand how all the algebraic
data of a bicategory appears in a 2-fold Segal space, we should seek to prove
the coherence conditions by instead identifying globular 2-homotopies between
the relevant left homotopies.

We will go further than this; our final proof of coherence will be to establish
an ‘operadic’ action of SCD• via Φ

(−)
(X,(µn)n≥0)

on our hom-categories and func-
tors between them. This construction will rely on identifying and composing
left homotopies in a suitably ‘operadic’ manner. A technical lemma is first
required:

Lemma 3.4.10. Consider a diagram in a model category M

E F Z

A B G H

C D

uh

f g

k

q

t

r

s

δ

ϵ

w

where the two squares define lifting problems with solutions δ and ϵ, such that
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g and r are trivial fibrations. Then the square in the diagram

A B ×H F F Z

B

C D

f

k

h×tuhϵuh

δ×tuδϵuδ

g

w

is also a lifting problem in M with the given solution. Moreover, the map
C → B ×H F → F → Z in this diagram is equal to wϵuδ.

Proof. It is clear that the rightmost vertical map will be a trivial fibration if
g and r are as such. Thus, the diagram is a valid lifting problem. The last
equality is easily checked by the definition of the chosen lift.

The following lemma is what allows us to compose left homotopies hori-
zontally in an ‘operadic’ manner, which forms the foundations of our proof of
coherence conditions:

Lemma 3.4.11. Let X be a Segal space and set n ≥ 1 and k1, · · · , kn ≥ 0.
Take Segal spaces Aji for 1 ≤ i ≤ n and 1 ≤ j ≤ ki, Segal spaces Bi and B′

i

for 1 ≤ i ≤ n and some Segal space C, all fibered over X ×X. Take between
these a set of maps in SeSpinj for 1 ≤ i ≤ n of the form

fi, gi :

1≤j≤ki∏
X

Aji → Bi

ti : Bi → B′
i

ϕ, ψ :

1≤i≤n∏
X

B′
i → C.

Consider a finite collection of left homotopies in SeSpinj emerging from lifting
problems in commutative diagrams fibered over X ×X∏1≤j≤ki

X Aji ⊔
∏1≤j≤ki

X Aji Bi B′
i

∏1≤j≤ki
X Aji ×N(I[1])

∏1≤j≤ki
X Aji

Hi

fi⊔gi ti

for 1 ≤ i ≤ n where the right vertical map is a trivial fibration and∏1≤i≤n
X B′

i ⊔
∏1≤i≤n

X B′
i C

∏1≤i≤n
X B′

i ×N(I[1])
∏1≤i≤n

X B′
i

ψ⊔ϕ

K
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where again the right vertical map is a trivial fibration. For all k ≥ 1, set
Dk :

∏i,j
X Aji ×N(I[1])→

∏i,j
X Aji ×N(I[1])k to be the diagonal map.

Then the left homotopy

Q := K ◦
((

(

1≤i≤n∏
X

ti ◦Hi) ◦Dn

)
× 1N(I[1])

)
◦D2

is equal to p ◦ F , where p and F are fibered naturally over X ×X and fit into
a lifting problem in SeSpinj

∏i,j
X Aji ⊔

∏i,j
X Aji

∏i
X Bi ×∏i

X B′
i
C C

∏i
X Bi

∏i,j
X Aji ×N(I[1])

∏i,j
X Aji

ι

F

p

such that p is the pullback projection and ι is induced by the maps

i,j∏
X

Aji ⊔
i,j∏
X

Aji

∏i
X fi⊔

∏i
X gi−−−−−−−−→

i∏
X

Bi

and

i,j∏
X

Aji ⊔
i,j∏
X

Aji

∏i
X fi+

∏i
X gi−−−−−−−−→

i∏
X

Bi ⊔
i∏
X

Bi

∏i
X ti+

∏i
X ti−−−−−−−→

i∏
X

B′
i ⊔

i∏
X

B′
i

ψ⊔ϕ−−→ C.

Proof. Define

q :

i,j∏
X

Aji ⊔
i,j∏
X

Aji ↪→
1≤i≤n∏
X

(

j∏
X

Aji ⊔
j∏
X

Aji )
∼=

2n⊔
k=1

i,j∏
X

Aji

to be the pullback map induced by the n maps ρi ⊔ ρi for 1 ≤ i ≤ n, where
ρi :

∏i,j
X Aji →

∏j
X A

j
i is the projection to the ith coordinate. This is implicitly

an inclusion.
We have that (

∏i
X Hi) ◦Dn is a solution of the lifting problem defined by
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the outermost square of the diagram

∏i,j
X Aji ⊔

∏i,j
X Aji

∏1≤i≤n
X (

∏j
X A

j
i ⊔
∏j

X A
j
i )

∏1≤i≤n
X Bi

∏1≤i≤n
X (

∏j
X A

j
i ×N(I[1]))

∏i,j
X Aji

∏i,j
X Aji ×N(I[1])

∏1≤i≤n
X Hi

∏1≤i≤n
X (fi⊔gi)

q

∏1≤i≤n
X fi⊔

∏1≤i≤n
X gi

which demonstrates (
∏i

X Hi) ◦Dn is an induced left homotopy from
∏i

X fi to∏i
X gi.

We now have a commutative diagram of the form

∏1≤i≤n
X B′

i ⊔
∏1≤i≤n

X B′
i C

∏1≤i≤n
X B′

i ×N(I[1])
∏1≤i≤n

X B′
i

(
∏i,j

X Aji ⊔
∏i,j

X Aji )×N(I[1])
∏1≤i≤n

X Bi ×N(I[1])

∏i,j
X Aji ×N(I[1])n+1

∏i,j
X Aji ×N(I[1])

∏i,j
X Aji ×N(I[1])2

ψ⊔ϕ

K

∏i
X ti×1N(I[1])

(
∏i

X fi⊔
∏i

X gi)×1N(I[1])

(
∏i

X Hi)×1N(I[1])

which, by Lemma 3.4.10, produces a single lifting problem with solution F ′
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within the diagram

∏i,j
X Aji ⊔

∏i,j
X Aji C

(
∏i,j

X Aji ⊔
∏i,j

X Aji )×N(I[1])
(∏i

X Bi ×N(I[1])
)
×∏i

X B′
i
C

∏i
X Bi ×∏i

X B′
i
C

∏i,j
X Aji ×N(I[1])2

∏i,j
X Aji ×N(I[1])

∏i,j
X Aji ×N(I[1])

∏i,j
X Aji

ι′

F ′

(id,⟨0⟩)+(id,⟨1⟩)

R

p

where the maps ⟨0⟩, ⟨1⟩ : ∗ → N(I[1]) identify the two objects of I[1] and R
is induced by the projection forgetting N(I[1]). The outermost square of this
diagram is another lifting problem, solved by F := R ◦F ′ ◦D2. It is clear then
that p ◦ F = Q by design. Moreover, since the diagram

∏i,j
X Aji ⊔

∏i,j
X Aji

∏i
X Bi ⊔

∏i
X Bi

(∏i,j
X Aji ⊔

∏i,j
X Aji

)
×N(I[1])

∏i
X B

′
i ⊔
∏i

X B
′
i

(∏i
X Bi

)
×N(I[1])

(∏i
X B

′
i

)
×N(I[1]) C

∏i
X fi+

∏i
X gi

∏i
X ti+

∏i
X ti

ψ⊔ϕ

K

(
∏i

X ti)×1N(I[1])

(id,⟨0⟩)+(id,⟨1⟩)

(
∏i

X fi⊔
∏i

X gi)×1N(I[1])

commutes, setting ι := R ◦ ι′ completes the proof.

A crucial and nontrivial lemma is now needed, which carries a remarkably
operadic flavor to it. We will not explore any subtle appearances of operads
in this thesis; such concerns will be left to future work. One could argue this
lemma is the reason we have coherence:

Lemma 3.4.12. Let X and the list Y be as above, with some choice of hori-
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zontal compositions (µn)n≥0. Consider the functor (−) · (−) of the form

Fun
( n∏
i=1

h1(X(xi0, x
i
ki
)), h1(X(x0, xr))

)
× Fun

( r∏
i=1

h1(X(xi−1, xi)),
n∏
i=1

h1(X(xi0, x
i
ki
))
)

Fun
( r∏
i=1

h1(X(xi−1, xi)), h1(X(x0, xr))
)(−)·(−)

defined by horizontal composition. Then

Φ
x10,··· ,xn0 ,xnkn
(X,(µn)n≥0)

·
( n∏
i=1

Φ
xi0,··· ,xiki
(X,(µn)n≥0)

)
= Φx0,··· ,xr

(X,(µn)n≥0)
◦ Gnk1,··· ,kn .

Proof. That this equivalence holds on objects is by construction and Propo-
sition 3.4.4. For morphisms, consider for 0 ≤ i ≤ n a collection of maps

fi : Ki → K ′
i in SCDki , where Sp(ki)

ιi−→ Ki
τi←− ∆[1] and Sp(ki)

ι′i−→ K ′
i

τ ′i←− ∆[1]
are simplicial composition diagrams and k0 = n. Then we have an induced
map f : K → K ′, where

K := (K1 ⊔∆[0] · · · ⊔∆[0] Kn) ⊔Sp(n) K0

K ′ := (K ′
1 ⊔∆[0] · · · ⊔∆[0] K

′
n) ⊔Sp(n) K ′

0

with maps Sp(r) ι−→ K
τ←− ∆[1] and Sp(r)

ι′−→ K ′ τ ′←− ∆[1]. We wish to show
that

Φ
x10,··· ,xn0 ,xnkn
(X,(µn)n≥0)

(f0) ◦
n∏
i=1

Φ
xi0,··· ,xiki
(X,(µn)n≥0)

(fi) = Φx0,··· ,xr
(X,(µn)n≥0)

(f).

The left hand side of this equality can be expanded out as

h1((τ
∗
0 )
x10,x

n
kn )◦h1(β

x10,x
n
kn

f0
)◦Fx10,··· ,xn0 ,xnkn◦

( n∏
i=1

h1((τ
∗
i )
xi0,x

i
ki )◦h1(β

xi0,x
i
ki

fi
)◦Fxi0,··· ,xiki

)
where each βfi is a left homotopy induced between µKi

and µ′
K′

i
. The right

hand side can then be expanded out as

h1((τ
∗)x0,xr) ◦ h1(βx0,xrf ) ◦ Fx0,··· ,xr .

If we can show that the left hand side is also of the form h1((τ
∗)x

1
0,x

n
kn ) ◦

h1(H
x0,xr) ◦ Fx0,··· ,xr for some left homotopy H induced between µK and µ′

K′ ,
the proof will be complete, as these will then have to be identified by Corollary
3.3.29.
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We should note that, if we are to treat these natural isomorphisms as
functors of the form C × I[1]→ D , we will have to rewrite the left-hand side
as

h1((τ
∗
0 )
x10,x

n
kn◦βx

1
0,x

n
kn

f0
)◦F ′

x10,··· ,xn0 ,xnkn
◦

(( n∏
i=1

h1((τ
∗
i )
xi0,x

i
ki◦β

xi0,x
i
ki

fi
)◦F ′

xi0,··· ,xiki
◦D′

n

)
×1I[1]

)
◦D′

2

where we now have the inclusion

F ′
a0,··· ,ak :

k∏
i=1

h1(X(ai−1, ai))× I[1] ↪→ h1(X
a0,ak
Sp(k) ×N(I[1]))

and D′
k :
∏r

i=1 Homh2(X)(xi−1, xi) × I[1] →
∏r

i=1 Homh2(X)(xi−1, xi) × I[1]k

the diagonal map for all k > 0.
Using naturality of the isomorphism h1(−) × h1(−) ∼= h1(− × −), we can

convert this into a map h1((τ ∗0 )
x10,x

n
kn ◦ P ), where

P := β
x10,x

n
kn

f0
◦Fx10,··· ,xn0 ,xnkn◦

(( n∏
i=1

(τ ∗i )
xi0,x

i
ki◦β

xi0,x
i
ki

fi
◦Fxi0,··· ,xiki◦D

x0,··· ,xr
n

)
×1N(I[1])

)
◦Dx0,··· ,xr

2

with the inclusions

Fa0,··· ,ak :
k∏
i=1

X(ai−1, ai)→ Xa0,ak
Sp(k)

and the diagonal maps Dk : XSp(r) ×N(I[1])→ XSp(r) ×N([1])k on N(I[1]).
Note that the maps Fa0,··· ,ak form part of a more general natural transfor-

mation (−)a0,··· ,ak ⇒ (−)a0,ak . Using this naturality, we can prove that P is in
fact equal to a map Qx0,xr ◦ Fx0,··· ,xr such that

Q := βf0 ◦

((
(

1≤i≤n∏
X0

τ ∗i ◦ βfi) ◦Dn

)
× 1N(I[1])

)
◦D2.

This precisely places us in the situation of Lemma 3.4.11. Note however that
the resulting induced left homotopy is of the form

H : XSp(r) ×N(I[1])→ XK

and maps from µK to µ′
K′ by Proposition 3.2.10. Moreover, given the inclusion

b : K0 ↪→ K, it is such that b∗ ◦H = Q. Since τ ∗0 ◦ b∗ = τ ∗, we have our left
homotopy H such that our original natural isomorphism is of the form

h1(τ
x0,xr) ◦ h1(Hx0,xr) ◦ Fx0,··· ,xr .

This confirms by Corollary 3.3.29 that the equality holds.
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Theorem 3.4.13. Let X be a 2-fold Segal space and (µn)n≥0 a choice of hor-
izontal compositions. Then h2(X, (µn)n≥0) is an unbiased bicategory.

Proof. We begin by dealing with associativity conditions. Let n,m1, · · · ,mn ∈
Z>0 and k11, · · · , kmn

n ∈ Z≥0. Take a thrice-nested tuple of elements of (X0,0)0
of the form

L = (Lp)
n
p=1 = ((Lp,q)

mp

q=1)
n
p=1 = (((xp,q,s)

kqp
s=0)

mp

q=1)
n
p=1

where xp,q,kqp = xp,q+1,0 if q < mp and xp,mp,k
mp
p

= xp+1,1,0 if p < n. Let
tp =

∑mp

q=1 k
q
p and r =

∑n
p=1 tp. Set (x0, · · · , xr) to be the flattened version of

L after removing the elements xp,q,kqp , not including xn,mn,k
mn
n

. Let (xp0, · · · , x
p
tp)

be the flattened version of Lp after removing each xp,q,kqp not including xp,mp,k
mp
p

.
We take an interest in the four composition operations •x0,··· ,xrQi

for i ∈
{1, 2, 3, 4}, where the four simplicial composition diagrams Qi are as follows:

Q1 :=
(
Q11 ⊔∆[0] · · · ⊔∆[0] Q1n

)
⊔Sp(n) ∆[n]

Q2 :=
(
∆[t1] ⊔∆[0] · · · ⊔∆[0] ∆[tn]

)
⊔Sp(n) ∆[n]

Q3 :=
(
∆[k11] ⊔∆[0] · · · ⊔∆[0] ∆[kmn

n ]
)
⊔Sp(∑n

i=1mi) ∆[
n∑
i=1

mi]

Q4 :=∆[r]

where, for 1 ≤ p ≤ n,

Q1p := (∆[k1p] ⊔∆[0] · · · ⊔∆[0] ∆[kmp
p ]) ⊔Sp(mp) ∆[mp].

There is a clear commutative diagram in SCDr

Q1

Q2 Q3

Q4

ι12

ι24

ι13

ι34

An example of such a diagram is found in Figure 1.4. We wish to show that
this induces the diagram of natural isomorphisms

•x0,··· ,xrQ1

•x0,··· ,xrQ2
•x0,··· ,xrQ3

•x0,··· ,xrQ4

α12

α24

α13

α34
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that we seek to prove commutes, where

α12 := 1•
x1,1,0,··· ,xn,1,0,xn,mn,k

mn
n
◦

n∏
p=1

Φ
xp0,··· ,x

p
tp

(X,(µn)n≥0)
(fkp1 ,··· ,k

p
mp
)

α13 := Φ
x1,1,0,··· ,xn,1,0,xn,mn,k

mn
n

(X,(µn)n≥0)
(fm1,··· ,mn) ◦

n∏
p=1

1(
•
x
p
0 ,··· ,x

p
tp

Q1p

)
α24 := Φx0,··· ,xr

(X,(µn)n≥0)
(ft1,··· ,tn)

α34 := Φx0,··· ,xr
(X,(µn)n≥0)

(fk11 ,··· ,k
mn
n

).

Using Lemma 3.4.12, it is straightforward to identify each αij with the cor-
responding Φx0,··· ,xr

(X,(µn)n≥0)
(ιij). Thus, by functoriality, the diagram commutes as

needed.
The conditions on unitors is then trivial, since all involved natural isomor-

phisms are identities. Indeed, the relevant associators are Φx0,··· ,xn
(X,(µn)n≥0)

(f1,··· ,1),
which are constant as f1,··· ,1 = 1∆[n].

3.5 Homotopy Unbiased Pseudofunctors
In order for h2 to be a genuine functor, we need to demonstrate how to convert
a map f : (X, (µn)n≥0)→ (Y, (νn)n≥0) in SeSpcomp2 into a pseudofunctor

h2(f) : h2(X, (µn)n≥0)→ (Y, (νn)n≥0).

Before we can do so, a great deal of the technology we developed for h2’s
behavior on objects now needs to be extended to handle maps X → Y of
2-fold Segal spaces.

We will first need to extend the notion of being object-fibered to a map
between 2-fold Segal spaces:

Proposition 3.5.1. Let F : X → Y be a map in sSpacek. Consider two
commutative diagrams in sSpacek−1

A K A K

(X0)
n (Y0)

n (X0)
n (Y0)

n

B L B L

(F0)n

FB

FA

f

FA

(F0)n
g

FB

for some chosen maps FA and FB, so that f and g are object-fibered. Let
x0, · · · , xn ∈ (X0,··· ,0)0.
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Then, defining F x0,··· ,xn
B to be the map

Bx0,··· ,xn LF (x0),··· ,F (xn)

BF (x0),··· ,F (xn)

F
x0,··· ,xn
B

F
F (x0),··· ,F (xn)
B

and similarly for F x0,··· ,xn
A , we have that

F x0,··· ,xn
B ◦ fx0,··· ,xn = (FB ◦ f)f(x0),··· ,f(xn) ◦ IF,Ax0,··· ,xn ,

where IF,Ax0,··· ,xn : Ax0,··· ,xn ↪→ Af(x0),··· ,f(xn) is the inclusion. Similarly, we have

gf(x0),··· ,f(xn) ◦ F x0,··· ,xn
A = (g ◦ FA)f(x0),··· ,f(xn) ◦ IF,Ax0,··· ,xn .

Proof. Diagram chases show both statements to be true.

The central idea controlling our composition, coherence isomorphisms and
coherence conditions was the collections of functors Φx0,··· ,xn

(X,(µn)n≥0)
for all x0, · · · , xn ∈

(X0,0)0 and n ≥ 0. The flavor of results we will need to prove for pseudofunc-
tors are similar, so we seek an augmented version of this construct.

In essence, what Φx0,··· ,xn
(X,(µn)n≥0)

accomplished was to convert diagrams in
SCDn into commutative diagrams of coherence isomorphisms. A reasonable
extension of this category for the purposes of pseudofunctors is SCDn × [1],
with the morphisms (1K , 0 < 1) representing a homotopy from composition in
the codomain to the domain:

Definition 3.5.2. Let f : (X, (µn)n≥0)→ (Y, (νn)n≥0) be a map in SeSpcomp2 .
Let x, y ∈ (X0,0)0. Then define the functor

ωx,yf : SCDn × [1]→ Fun
(
h1(X

x,y
Sp(n)), h1(Y (x, y))

)
to be the functor sending

(K, 0) 7→ h1((τ
∗
K)

f(x),f(y) ◦ νf(x),f(y)K ◦ fx,ySp(n))

(K, 1) 7→ h1((τ
∗
K)

f(x),f(y) ◦ fx,yK ◦ µ
x,y
K )

and sending a morphism to the map generated by the following cases:

1. (g, 10) 7→ ω
f(x),f(y)
(Y,(νn)n≥0)

(g) ◦ h1(fx,ySp(n)), where g : K1 → K2;

2. (g, 11) 7→ h1(f
x,y
1 ) ◦ ωx,y(X,(µn)n≥0)

(g), where g is as above;
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3. (1K , 0 < 1) 7→ h1((τ
∗
K)

f(x),f(y)) ◦ h1(ηf(x),f(y)K ) ◦ h1(I
f,XSp(n)
x,y ), where ηK is

an induced left homotopy from νK ◦fSp(n) to fK ◦µK by the lifting problem

XK YK

XSp(n) YSp(n)

fK

µK

νK◦fSp(n)

Proposition 3.5.3. ωx,yf is a functor.

Proof. Functoriality on the subcategory SCDn×{0, 1} is clear. We need only
prove that, for a map g : K1 → K2,

ωx,yf (g, 11)ω
x,y
f (1K1 , 0 < 1) = ωx,yf (1K2 , 0 < 1)ωx,yf (g, 10).

Expanding out terms, we have that

ωx,yf (g, 10) = h1

(
(τ ∗K1

)f(x),f(y) ◦ αf(x),f(y)g ◦ (fSp(n) × 1N(I[1]))
f(x),f(y) ◦ If,XSp(n)×N(I[1])

x,y

)
ωx,yf (1K1 , 0 < 1) = h1

(
(τ ∗K1

)f(x),f(y) ◦ ηf(x),f(y)K1
◦ If,XSp(n)×N(I[1])

x,y

)
ωx,yf (1K2 , 0 < 1) = h1

(
(τ ∗K2

)f(x),f(y) ◦ ηf(x),f(y)K2
◦ If,XSp(n)×N(I[1])

x,y

)
ωx,yf (g, 11) = h1

(
f
f(x),f(y)
1 ◦ (τ ∗K1

)f(x),f(y) ◦ βf(x),f(y)g ◦ If,XSp(n)×N(I[1])
x,y

)
for induced left homotopies αg from νK1 to ν ′K2

and βg from µK1 to µ′
K2

.
We are able to produce the two compositions (f f(x),f(y)K1

◦βf(x),f(y)g )(η
f(x),f(y)
K1

)

and ((g∗)f(x),f(y) ◦ ηf(x),f(y)K2
)
(
α
f(x),f(y)
g ◦ (f f(x),f(y)Sp(n) × 1N(I[1]))

)
, which yield the

same natural isomorphisms as before. As these compositions are left homo-
topies induced between the same solutions to the same lifting problem, the
equality holds.

Definition 3.5.4. Let f : (X, (µn)n≥0)→ (Y, (νn)n≥0) be a map in SeSpcomp2 .
Let x0, · · · , xn ∈ (X0,0)0. Then define the map

ϕx0,··· ,xnf : Fun
(
h1(X

x0,xn
Sp(n)), h1(Y (x0, xn))

)
→ Fun

( n∏
i=1

h1(X(xi−1, xi)), h1(Y (x0, xn))
)

to be precomposition with the inclusion

Fx0,··· ,xn :
n∏
i=1

h1(X(xi−1, xi)) ∼= h1(
n∏
i=1

X(xi−1, xi)) ↪→ h1(X
x0,xn
Sp(n)).

Write Φx0,··· ,xn
f := ϕx0,··· ,xnf ◦ ωx0,xnf .
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Henceforth, for a map f : (X, (µn)n≥0) → (Y, (νn)n≥0), write •x0,··· ,xnA or
•x0,··· ,xnK,A for A ∈ {X, Y } to distinguish the composition operations in each of
these spaces.

The ‘operadic’ flavor of Φx0,··· ,xn
(X,(µn)n≥0)

is admittedly somewhat diluted in the
following lemma concerning Φx0,··· ,xn

f . Future work will include seeking out a
perhaps more natural category than SCDn × [1], which appears too ‘coarse’
in the following results to lend itself to such an interpretation. Nonetheless,
some operadic color still shines through, at least enough for us to prove what
we need:

Lemma 3.5.5. Let f : (X, (µn)n≥0)→ (Y, (νn)n≥0) be a map in SeSpcomp2 . Let
n > 0 and choose integers k1, · · · , kn ∈ Z≥0 and a nested sequence of elements
((xij)

ki
j=0)

n
i=1 of (X0,0)0 such that xiki = xi+1

0 for i < n. Let (x0, · · · , xr) be the
flattened version of the sequence with all xiki removed for i < n. Set K to be
the simplicial composition diagram

K = (K1 ⊔∆[0] · · · ⊔∆[0] Kn) ⊔Sp(n) K0

such that Ki has arity ki and k0 = n. Then the diagram

•f(x0),··· ,f(xr)K,Y ◦ h1(fx0,··· ,xrSp(r) )

•f(x
1
0),··· ,f(xn0 ),f(xnkn )

K0,Y
◦ h1(f

x10,··· ,xn0 ,xnkn
Sp(n) ) ◦

n∏
i=1

•
xi0,··· ,xiki
K0,X

h1(f
x0,xr
1 ) ◦ •x0,··· ,xrK,X

Φ
x10,··· ,x

n
0 ,xnkn

f (1K0
,0<1)◦

n∏
i=1

1

•
xi0,··· ,x

i
ki

Ki,X

1
•
f(x10),··· ,f(x

n
0 ),f(xn

kn
)

K0,Y

◦
n∏

i=1
Φ

xi0,··· ,x
i
ki

f (1Ki
,0<1)

Φ
x0,··· ,xr
f (1K ,0<1)

commutes.

Proof. The proof is similar to that of Lemma 3.4.12. Expanding out all the
terms, we obtain the expressions

R := h1((τ
∗
K)

f(x0),f(xr)) ◦ h1(ηf(x0),f(xr)K ) ◦ h1(If,Xx0,xr) ◦ Fx0,··· ,xr

S := •f(x
1
0),··· ,f(xn0 ),f(xnkn )

K0,Y
◦

n∏
i=1

h1((τ
∗
Ki
)f(x

i
0),f(x

i
ki
)) ◦ h1(η

f(xi0),f(x
i
ki
)

Ki
) ◦ h1(If,Xxi0,xiki

) ◦ Fxi0,··· ,xiki

T := h1((τ
∗
K0
)f(x0),f(xr)) ◦ h1(ηf(x0),f(xr)K ) ◦ h1(If,Xx0,xr) ◦ Fx10,··· ,xn0 ,xnkn ◦

n∏
i=1

•
f(xi0),··· ,f(xiki )
K0,Y
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If we can show both S and T to be of the form

h1((τ
∗
K)

f(x0),f(xr)) ◦ h1(QA) ◦ h1(If,Xx0,xr) ◦ Fx0,··· ,xr

for some suitable induced left homotopies QA where A ∈ {S, T}, then we will
be done.

Set Dk : XSp(r) × N(I[1]) → XSp(r) × N(I[1])k to the diagonal. For A ∈
{X, Y }, define the map

FAa0,··· ,ak :
k∏
i=1

A(ai−1, ai)→ Aa0,akSp(k)

to be the evident inclusion. Define IK,X to be the identity homotopy from µK
to itself and IK,Y to be as such for νK .

Similarly to the proof of Lemma 3.4.12, we have that S = h1((τ
∗
K0
)f(x0),f(xr))◦

h1(S), where S is the map

(I
f(x0),f(xr)
K0,Y

) ◦ FYf(x10),··· ,f(xn0 ),f(xnkn ) ◦

(( n∏
i=1

Qi ◦Dx0,··· ,xr
n

)
× 1N(I[1])

)
◦Dx0,··· ,xr

2

where
Qi := (τ ∗Ki

◦ ηKi
)f(x

i
0),f(x

i
ki
) ◦ If,XSp(ki)

×N(I[1])

xi0,x
i
ki

◦ FXxi0,··· ,xiki
and that T = h1((τ

∗
K0
)f(x0),f(xr)) ◦ h1(T ), where T is the map

η
f(x0),f(xr)
K ◦If,XSp(n)×N(I[1])

x0,xr ◦FXx10,··· ,xn0 ,xnkn◦

(( n∏
i=1

Wi◦Dx0,··· ,xr
n

)
×1N(I[1])

)
◦Dx0,··· ,xr

2

where
Wi := (τ ∗Ki

)x
i
0,x

i
ki ◦ I

xi0,x
i
ki

Ki,X
◦ FXxi0,··· ,xiki

.

By similar manipulations to those in Lemma 3.4.12, we can reduce each of
these further such that S = Q

f(x0),f(xr)
S ◦ If,Xx0,xr ◦ F

X
x0,··· ,xr where

QS := IK0,Y ◦

(( n∏
i=1

(τ ∗Ki
◦ ηKi

) ◦Dn

)
× 1N(I[1])

)
◦D2

and such that T = Q
f(x0),f(xr)
T ◦ If,Xx0,xr ◦ F

X
x0,··· ,xr where

QT := ηK ◦

(( n∏
i=1

(τ ∗Ki
◦ IKi,X) ◦Dn

)
× 1N(I[1])

)
◦D2.

Both of these are of suitable form for application of Lemma 3.4.11, the resulting
homotopies from which are both of the form XSp(r) × N(I[1]) → YK and can
be composed to complete the proof.
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Armed with these results, we are able to finally declare our definition of
h2(f) and prove its correctness.

Definition 3.5.6. Let f : (X, (µn)n≥0) → (Y, (νn)n≥0) be a morphism in
SeSpcomp2 . Then define

h2(f) : h2(X, (µn)n≥0)→ h2(Y, (νn)n≥0)

to be the pseudofunctor defined such that:

1. For every x ∈ (X0,0)0, h2(f)(x) = (f0,0)0(x);

2. For every x, y ∈ (X0,0)0, h2(f)x,y = h1(f
x,y
1 ) : h1(X(x, y))→ h1(Y (f(x), f(y)));

3. For every n ∈ Z>0 and x0, · · · , xn ∈ (X0,0)0, the natural isomorphism

πx0,··· ,xn := Φx0,··· ,xn
f (1∆[n], 0 < 1);

4. For every x ∈ (X0,0)0, the natural isomorphism πx is the identity.

Theorem 3.5.7. Let f : (X, (µn)n≥0)→ (Y, (νn)n≥0) be a morphism in SeSpcomp2 .
Then h2(f) is a pseudofunctor.

Proof. Let n ∈ Z>0 and k1, · · · , kn ∈ Z≥0, with r =
∑n

i=1 ki. Consider any
n-tuple of tuples of elements of (X0,0)0

Y := ((x10, x
1
1, · · · , x1k1), · · · , (x

n
0 , · · · , xnkn))

such that xiki = xi+1
0 for every i < n. Let (x0, · · · , xr) be the flattened tuple

after removing each xiki for i < n.
Consider moreover the composition diagram

K := (∆[k1] ⊔∆[0] · · · ⊔∆[0] ∆[kn]) ⊔Sp(n) ∆[n].

We are tasked with showing that the diagram

•f(x0),··· ,f(xr)K,Y ◦ h1(fx0,··· ,xrSp(r) ) •x0,··· ,xrY ◦ h1(fx0,··· ,xrSp(r) )

•f(x
1
0),··· ,f(xn0 ),f(xnkn )

Y ◦ h1(f
x10,··· ,xn0 ,xnkn
Sp(n) ) ◦

∏n
i=1 •

xi0,··· ,xiki
X

h1(f
x0,xr
1 ) ◦ •x0,··· ,xrK,X h1(f

x0,xr
1 ) ◦ •x0,··· ,xrX

Φ
x0,··· ,xr
f (fk1,··· ,kn ,10)

1
•
f(x10),··· ,f(x

n
0 ),f(xn

kn
)

Y

◦
∏n

i=1 Φ
xi0,··· ,x

i
ki

f (1∆[ki]
,0<1)

Φ
x10,··· ,x

n
0 ,xnkn

f (1∆[n],0<1)◦
∏n

i=1 1

•
xi0,··· ,x

i
ki

X

Φ
x0,··· ,xr
f (fk1,··· ,kn ,11)

Φ
x0,··· ,xr
f (1∆[r],0<1)
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commutes. This, however, must hold, by Lemma 3.5.5 and functoriality of
Φx0,··· ,xr
f . The other commuting diagram is trivial, as all involved natural iso-

morphisms are identities.

We now need to show that h2, given the behavior on objects from Definition
3.4.8 and morphisms from Definition 3.5.6, defines a valid functor into UBicat:

Theorem 3.5.8. Let

(X, (µn)n≥0)
f−→ (Y, (νn)n≥0)

g−→ (Z, (ωn)n≥0)

be a chain of morphisms in SeSpcomp2 . Then h2(g ◦ f) = h2(g) ◦ h2(f).

Proof. The equivalence is evident on the object mapping and behavior on hom-
categories. For the compositors, let the isomorphisms for g be labelled as θ
and for f be π. The ones ψ for g ◦ f must be proven to be such that

ψx0,··· ,xn =
(
h1(g

f(x0),f(xn)
1 ) ◦ (πx0,··· ,xn)

)(
θf(x0),··· ,f(xn) ◦ h1(f

x0,··· ,xn
Sp(n) )

)
.

Expanding out all of these terms gives us that

πx0,··· ,xn = h1(Y
f(x0),f(xn)
⟨0,n⟩ ) ◦ h1(ηf(x0),f(xn)n ) ◦ h1(I

f,XSp(n)
x0,xn ) ◦ FX

x0,··· ,xn

θf(x0),··· ,f(xn) = h1(Z
gf(x0),gf(xn)
⟨0,n⟩ ) ◦ h1(κgf(x0),gf(xn)n ) ◦ h1(I

g,YSp(n)

f(x0),f(xn)
) ◦ F Y

f(x0),··· ,f(xn)

ψx0,··· ,xn = h1(Z
gf(x0),gf(xn)
⟨0,n⟩ ) ◦ h1(ζgf(x0),gf(xn)n ) ◦ h1(I

gf,XSp(n)
x0,xn ) ◦ FX

x0,··· ,xn

where FA
a0,··· ,an is the map Fa0,··· ,an adjusted in the obvious way for A ∈ {X, Y }

and the left homotopies ηn, κn and ζn are respectively from νn◦fSp(n) to fn◦µn,
from ωn ◦ gSp(n) to gn ◦ νn and from ωn ◦ gSp(n) ◦ fSp(n) to gn ◦ fn ◦ µn.

Note that θf(x0),··· ,f(xn) ◦ h1(f
x0,··· ,xn
Sp(n) ) is equal to

h1(Z
gf(x0),gf(xn)
⟨0,n⟩ )◦h1((κn◦(fSp(n)×1N(I[1])))

gf(x0),gf(xn))◦h1(I
gf,XSp(n)
x0,xn )◦FX

x0,··· ,xn

while similarly h1(g
f(x0),f(xn)
1 ) ◦ (πx0,··· ,xn) is equal to

h1(g
f(x0),f(xn)
1 ) ◦ h1(Y f(x0),f(xn)

⟨0,n⟩ ) ◦ h1(ηf(x0),f(xn)n ) ◦ h1(I
f,XSp(n)
x0,xn ) ◦ FX

x0,··· ,xn

which is then equal to

h1(Z
gf(x0),gf(xn)
⟨0,n⟩ ) ◦ h1((gn ◦ ηn)f(x0),f(xn)) ◦ h1(I

f,XSp(n)
x0,xn ) ◦ FX

x0,··· ,xn .

All of these three cases are now of the form h1(Z
gf(x0),gf(xn)
⟨0,n⟩ ) ◦h1(Γf(x0),f(xn)) ◦

h1(I
f,XSp(n)
x0,xn ) ◦ FX

x0,··· ,xn for induced left homotopies Γ. We find that the left
homotopies gn ◦ ηn and κn ◦ (fSp(n) × 1N(I[1])) are now readily composable, so
by Proposition 3.3.31 and Corollary 3.3.29 the equality holds.
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Theorem 3.5.9. Let (X, (µn)n≥0) be an object in SeSpcomp2 . Then h2(1X) =
1h2(X,(µn)n≥0).

Proof. The behavior on objects and hom-categories is self-evident. Moreover,

Φx0,··· ,xn
1X

(1∆[n], 0 < 1)

is built of a left homotopy with the same domain and codomain, so can be
assumed to be constant, making the natural isomorphisms trivial.

We are finally able to state what we consider to be the central definition
of this thesis:

Definition 3.5.10. Define

h2 : SeSpcomp2 → UBicat

to be the functor that sends (X, (µn)n≥0) to h2(X, (µn)n≥0) and a morphism f
to h2(f).

A useful consequence of functoriality is that we may finally show how all
choices of horizontal compositions made in a 2-fold Segal space X ultimately
have no real consequence in the homotopy bicategory:

Corollary 3.5.11. Let X be a 2-fold Segal space. Let (µn)n≥0 and (νn)n≥0 be
two choices of horizontal compositions for X. Then there is a pseudofunctor
h2(X, (µn)n≥0)→ h2(X, (νn)n≥0) which is an isomorphism in UBicat and acts
as the identity on objects and hom-categories.

3.5.1 Factoring Through htr2

We have that h2 and htr2 ◦ Tr agree precisely on objects, excluding perhaps
associators. We now wish to show a similar result holds for morphisms, for
which the proof is similiar to that of objects:

Proposition 3.5.12. Suppose f : (X, (µn)n≥0) → (Y, (νn)n≥0) is a morphism
in SeSpcomp2 . Then h2(f) and htr2 (Tr(f)) agree on all data excluding compos-
itors.

Proof. That equality holds on objects and hom-categories is immediate. More-
over, equality on the natural isomorphisms πx is trivial, as these are identi-
ties.

We leave a full comparison of compositors to future work. We believe an
equality of compositors should also hold, so that h2 is indeed equal to htr2 ◦Tr.

Note that h2 and htr2 ◦ Tr are necessarily not full. In fact, the image under
h2 and thus under htr2 ◦ Tr of any map will be a normal homomorphism, as
described in [LP08]:
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Definition 3.5.13 ([LP08, pg. 1]). A normal homomorphism F : C → D is
a pseudofunctor between bicategories that strictly preserves identities.

This is similar to the bifunctor from Tamsamani 2-categories to the 2-
category NHom of bicategories, normal homomorphisms and certain pseudo-
natural natural transformations defined by Lack and Paoli in [LP08]. We
suspect our definition of h2, if extended to incorporate pseudonatural trans-
formations, may factor through this construction at least up to equivalence.
We leave such investigations to future work.
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Chapter 4

Reedy Fibrant Replacement

In the realm of topological quantum field theories, Reedy fibrancy seems in
general more of a suggestion than an assertion. Several constructions of (∞, n)-
category of manifolds and cobordisms, such as those of [CS19] and [Lur09b],
build upon a foundation of projective fibrant n-fold Segal spaces rather than
injective fibrant, or equivalently Reedy fibrant. This apparent lack of Reedy
fibrancy means that our construction of homotopy bicategory may not be im-
mediately applicable to many known (∞, 2)-categorical constructions of topo-
logical quantum field theories.

A few possible solutions present themselves. One is to completely revise our
homotopy bicategory functor h2 to accommodate projective fibrant 2-fold Segal
spaces from the start. Obtaining such a construction lies beyond the scope of
this thesis. Indeed, if X ∈ SeSpproj2 then the projective fibrant analogue to
our usual lifting problem

X2,•

XSp(2),•

X1,• ×hX0,•
X1,• X1,• ×hX0,•

X1,•

γ2

id

is no longer in general a lifting problem. It fails on both possible fronts: cofi-
brancy in the projective model structure cannot be so easily assumed, while
the right vertical map is merely a weak equivalence. Thus, there is no guaran-
tee of sections existing for the projective fibrant analogues of the Segal maps
Xn,• → X1,• ×hX0,•

· · · ×hX0,•
X1,•.

The situation is even worse than a lack of sections: it is not even guaranteed
for the Segal maps to have homotopy inverses, as in Proposition 3.4.1. While
fibrancy is assured, a lack of cofibrancy implies we may not even have this
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weaker alternative to a section of the Segal maps. However, upon applying
h1, weak equivalences are converted to equivalences of categories, so an inverse
may be found in the homotopy categories at least. Such inverses potentially
would not reflect any data originally in the overarching (∞, 2)-category due
to the lack of homotopy inverse, but this is perhaps still acceptable in many
circumstances. Such lines of reasoning follows from the suggested approach
of [JS17], which if employed to extend the definition of htr2 to the projective
fibrant case may lead to a suitable construction. We leave this to future work.

Another solution is to try and handle the case of 2-fold Segal space where
the Segal maps have a homotopy inverse of some sort. In the case of the
(∞, n)-category of cobordisms Bordn defined in [CS19], the Segal maps are
proven to be weak equivalences by exhibiting levelwise deformation retracts
thereof, which if proven to commute would identify such an inverse. One may
then proceed with an extension of our construction under such assumptions.
This is also left to future work.

Yet another approach to this issue would be to start with an (∞, n)-
category of manifolds and cobordisms that is Reedy fibrant a priori. This
is an ongoing project of the author that did not reach its completion within
the time constraints of the thesis, so will be left to future work as well. One
could also turn to the constructions of Grady and Pavlov [GP22a], which seem
by nature to circumvent the pathological case outlined in the introduction vio-
lating Reedy fibrancy. These higher categories of cobordisms have thus far not
yet been proven to be Reedy fibrant in the literature as far as we are aware,
though it is indeed possible that they are suitable for our needs.

A final tactic, which we will investigate in this chapter, is to convert a
general projective fibrant 2-fold Segal space X into an equivalent Reedy fibrant
one. Such an object would be described as a Reedy fibrant replacement R(X)
of X. Reedy fibrant replacements have been computed in particular instances
[DFT22] [Ste19, Lemma 6.4.1], though it appears that there is no fully explicit
general construction of such an operation in the literature not based upon the
small object argument at present, such as in [Rie14, ch. 12]. This is not in
general an issue, as it often suffices to simply know a fibrant replacement must
exist, with functoriality being an occasional required property. Indeed, one
may simply perform a factorization

X → R(X)→ ∗

of the terminal map X → ∗ into a trivial cofibration and fibration in sequence.
If one knows a functorial factorization system for the Reedy model structure
in question, then this will induce a functorial Reedy fibrant replacement.

For us, the precise contents of R(X) are important and will be scrutinized
in detail when taking a homotopy bicategory, so we will need to introduce a
precise definition of R(X) that appends as little data to X as possible. For
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this reason, methods involving the small object argument are not suitable
for our purposes. Of course, this is by no means a shortcoming specific to
the small object argument; fibrant replacement should in general be expected
to introduce an unmanageable amount of new data, much like an injective
resolution of a chain complex. Regardless, such resolutions are often necessary
to perform computations of algebraic structure. One might draw a rather
direct analogy between X and an object in an abelian category, between R(X)
and an injective resolution thereof, and between h2(R(X)) and homology.

Our construction applies generally for any Reedy category together with
the target model category M = sSet. It is a direct application of the natural
method to factorize maps in a Reedy model structure, as described in [Hir09,
pg. 293]. We recall this method presently. Consider some Reedy category C
and model category M . Suppose f : X → Y is a morphism in M C . We wish
to obtain a factorization

X
q−→ Z

p−→ Y

where q is a Reedy trivial cofibration and p is a Reedy fibration. One first
considers each c ∈ C with deg(c) = 0 and chooses a factorization

X(c)
qc−→ Z(c)

pc−→ Y (c)

of the map fc : X(c) → Y (c) into trivial cofibrations and fibrations. Starting
with these choices, one then proceeds by induction in degree: if c ∈ C and all
qd and pd have been defined for deg(d) < deg(c), then this suffices to define
the object

Z<deg(c) : C <deg(c) →M

and factorizations

LcX
Lcq−−→ LcZ

Lcp−−→ LcY McX
Mcq−−→McZ

Mcp−−→McY

of the maps Lcf : LcX → LcY and Mcf :McX →McY .
As discussed in [Hir09, pg. 293], it then suffices to produce a factorization

X(c) ⊔LcX LcZ → Z(c)→ Y (c)×McY McZ

of the map X(c) ×LcX LcZ → Y (c) ×McY McZ into a trivial cofibration and
fibration in M . Moreover, the fact that the former map is a trivial cofibration
is enough by [Hir09, Thm. 15.3.15] to ensure that q will be a trivial cofibration,
while p is a Reedy fibration by definition. In this manner, one may inductively
construct Z, p and q levelwise.

Capitalizing upon the existence of this known algorithm, we may set Y = ∗
to obtain Reedy fibrant replacements of X. In particular, if we assume that X
is already levelwise fibrant, we may set Z(c) := X(c) and then factorize maps

X(c) ⊔LcX LcZ → Z(c)→McZ

185



Towards Algebraic n-Categories of Manifolds and Cobordisms

inductively in the degree of c. We will present a particular choice of this
factorization when M = sSet. The goal with this construction is to produce
R(X) = Z when C = (∆op)2 and X ∈ SeSpproj2 such that R(X) ∈ SeSpinj2

and the resulting homotopy bicategory h2(R(X)) is tractable.
In total, what we seek is a functor, for n ∈ {1, 2}, of the form

R : SeSpprojn → SeSpprojn

such that R(X) ∈ SeSpinjn , together with a natural transformation κ : id⇒ R
such that κX : X → R(X) is a trivial cofibration in SeSpinjn . Note once again
that many potential such functors may exist; we have chosen one for our needs.

The functor that we will construct relies on Lemma 2.2.79, which asserts
that, for a map f : X → Y between two Kan complexes X and Y , there is a
natural factorization

X
i−→ X ×Y Y nerve(I[1]) p−→ Y

where the middle object has as its 0-simplices pairs (x ∈ X0, q : nerve(I[1])→
Y ) such that q(0) = f(x). On 0-simplices, i sends x ∈ X0 to the pair (x, cf(x))
where cf(x) : nerve(I[1]) → Y is the constant path on f(x), while p is the
‘target map’ sending (x, p) 7→ p(1). What is key is that i is always a trivial
cofibration, while p is always a fibration.

Now, suppose X : C → sSet is some projective fibrant functor from a
Reedy category C . In order to obtain our Reedy fibrant replacement R(X),
we have established the need to define R(X)(c) inductively as a factorization

X(c) ⊔LcX LcR(X)→ R(X)(c)→McR(X).

Our proposal is to set R(X)(c) to be the pullback

R(X)(c) (McR(X))nerve(I[1])

X(c) McX McR(X)

⌟

which is the factorization of the map X(c)→McR(X), a map we assume to be
between two Kan complexes by induction. The induced map X(c)→ R(X)(c)
by both 1X(c) and the inductively defined map

X(c)→McX →McR(X)→ (McR(X))nerve(I[1])

forms the levels of the levelwise trival cofibration κX . It is then by design that
the matching maps R(X)(c)→McR(X) are fibrations, so that we have Reedy
fibrancy.
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Of course, this is not sufficient to induce a valid Reedy fibrant replace-
ment: we require a latching map LcR(X) → R(X)(c) that commutes with
X(c) → R(X)(c) on LcX. It is this last step that underpins the majority
of the infrastructure behind our construction. In essence, we produce an in-
ductive series of degenerate homotopies that allow for a suitable latching map
defined by setting the new paths in R(X)(c) not present in LcR(X) to be
constant.

As a simple example of R in action, consider a levelwise fibrant functor

A : ∆op
≤1 → sSet

where ∆≤1 is the full subcategory of ∆ consisting only of objects of degree
≤ 1. Thus, A may be interpreted as a 1-skeletal simplicial space.

The case of R(A)(0) is straightforward: we simply set this to be A(0). For
the case of R(A)(1), we have that M1R(A) ∼= A(0)2, so that

R(A)(1) := A(1)×A(0)2 (A(0)2)nerve(I[1]).

A typical 0-simplex in this space is a triple (p, f, q), where f ∈ A(1)0 and p, q :
nerve(I[1]) → A(0) are such that p(0) = A(⟨0⟩)(f) and q(0) = A(⟨1⟩)(f).
Considering A as the truncation of what may be a Segal space, we might
interpret such a triple as a 1-morphism f with paths p and q out of its source
and target objects. Should we have completeness, we could interpret these
paths as equivalences appended onto f on either side.

We could visualize such a triple (p, f, q) as follows, where the true direction
of p has been inverted to induce a single direction of arrows:

x′ x y y′
p f q

The two face maps R(A)(1)→ R(A)(0) then send (p, f, q) to either p(1) or q(1)
respectively. As for the degeneracy map R(A)(0) → R(A)(1), our approach
will result in a map sending x to (cx, A⟨0,0⟩(x), cx), where cx is the constant
path on x. This could be visualized as simply an arrow of the form

x y
f

The data of this Reedy fibrant replacement functor becomes inductively more
and more complicated in higher dimensions as more paths of paths are ap-
pended at each level, an issue we will explore in due course. For instance, if we
were to consider extending A to ∆op

≤2, we would have that a typical 0-simplex
of R(A)(2) would consist of a pair (α, p) of a 0-simplex α of A(2) and a path
p in M2R(A) such that p(0) agrees with the boundary of α. We can visualize
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such an object as follows:

y′′′

y′ y′′

x′′ y z′′

x z

x′′′ x′ z′ z′′′

g′f ′

gf

h

h′

α

If we should then extend A further to ∆op
≤3, a full description of R(A)(3) will

turn out to be somewhat intractable, requiring several pages to naïvely unravel
the induction in full. We hope to eventually produce a simpler description of R
that is not inductive at all; indeed, we believe for a Reedy category C , object
c ∈ C and X : C → sSet projective fibrant that R(X)(c) is in fact a homotopy
limit over the diagram (c ↓ C −), due to similarities with the construction of
homotopy limits in [Hir09, Def. 18.1.8] and for reasons we will discuss in due
course. We leave this analysis to future work.

Thankfully, in many cases this complexity can be ignored; in the case
of projective fibrant 2-fold Segal spaces, we will find that one may replace
the resulting infinite number of higher paths with a much simpler structure,
yielding an elegant description of the resulting homotopy bicategory of the
Reedy fibrant replacement.

A necessary and appealing consequence of our construction R for obtain-
ing homotopy bicategories is that R will always preserve locality. Thus, for
instance, our functor will transmit a projective fibrant 2-fold Segal space to
a Reedy fibrant 2-fold Segal space and will similarly preserve completeness.
Its generality implies immediate extension to other models of (∞, n)-category,
such as Θn-spaces [Rez10]. We do not explore these connections here. More-
over, we have that R preserves finite products and weak equivalences.

It should be noted finally that while it appears Reedy fibrant replacement
functors have not been defined more generally in a fully explicit manner with-
out the small object argument, a general Reedy cofibrant replacement functor
where the underlying model category is sSet has been defined by Horel in
[Hor15, Sec. 6.3]. The approach Horel uses seems rather different from our
construction in nature and we do not know how the two relate to one another
at present, or if there is a dual fibrant replacement functor one may obtain
from Horel’s aproach. Such considerations will be left as future work.
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4.1 Paths in Path Spaces
For the purposes of this chapter, we will find utility in a few minor construc-
tions worth establishing before we proceed further. In particular, we will need
a standard homotopy of path spaces that retracts a path down to its source.
We visualize this homotopy as, given a path p : nerve(I[1]) → X, producing
a path of paths DX(p) : nerve(I[1])→ Xnerve(I[1]) of the form

p(1)

p(0) p(0)

p

More formally, this can be given by a map

nerve(I[1])× nerve(I[1]) ∼= nerve(I[1]× I[1]) nerve(Q)−−−−−→ nerve(I[1]) p−→ X

where Q : I[1]× I[1]→ I[1] is the map sending (i, j) 7→ i× j for i, j ∈ {0, 1} =
ob(I[1]). Visually, if we depict I[1]× I[1] as the category

(0, 0) (1, 0)

(0, 1) (1, 1)

∼=

∼= ∼=

∼=

then its image under Q corresponds to the diagram in I[1] of the form

0 0

0 1

10

10 ∼=

∼=

This evidently induces the desired homotopy of paths; the image of the leftmost
vertical map under postcomposition with p will be the constant path on p(0),
while the image of the rightmost will be p itself.

We formalize this discussion as follows:

Definition 4.1.1. Suppose B ∈ sSet. Then define

DB : Bnerve(I[1]) →
(
Bnerve(I[1]))nerve(I[1])
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to be the map defined by precomposing the isomorphism

Bnerve(I[1]×I[1]) ∼=
(
Bnerve(I[1]))nerve(I[1])

with Bnerve(Q), where Q : I[1]× I[1]→ I[1] is the map defined such that

Q(i, j) := i× j

for i, j ∈ {0, 1} = ob(I[1]).

Proposition 4.1.2. DB defines a very good right homotopy to 1Bnerve(I[1]) from
the map

Bnerve(I[1]) sB−→ B
cB−→ Bnerve(I[1]).

Proof. We consider the two projections

Bnerve(I[1]) DB−−→
(
Bnerve(I[1]))nerve(I[1]) → Bnerve(I[1])

in turn, where the latter map is set either to sBnerve(I[1]) or tBnerve(I[1]) . They
are each given by precomposition with functors

I[1]→ I[1]× I[1] Q−→ I[1]

where the first functor is either of the form id×{0} or id×{1}. It is clear then
that the first map sends i 7→ 0, while the second sends i 7→ i, as needed.

We will make use of this homotopy repeatedly to prove that the constant
maps X → R(X) given by constant paths are weak equivalences; in fact, we
will construct a partial deformation retract thereof. Returning to the visual
depiction of a 0-simplex (p, f, q) in R(A)(1) for A : ∆op

≤1 → sSet projective
fibrant of the form

x′ x y y′
p f q

we will produce a map R(A)(1) → A(1) sending (p, f, q) 7→ f and a homo-
topy built from D• that deforms R(A)(1) → A(1) → R(A)(1) to 1R(A)(1), by
gradually extending the paths p and q to their full lengths.

Another fact about D• is also necessary:

Proposition 4.1.3. The map

B
cB−→ Bnerve(I[1]) DB−−→

(
Bnerve(I[1])

)nerve(I[1])

is a constant homotopy from cB to cB.

Proof. Unwinding the definitions of cB and DB reveals this map is induced by
the terminal map

I[1]× I[1]→ I[1]→ ∗.
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4.2 Reedy Fibrant Replacement Functors
Our goal in this section is to construct the Reedy fibrant replacement of a
general levelwise fibrant functor

X : C → sSet

for some Reedy category C . That is to say, we seek a new functor R(X) :
C → sSet such that for all c ∈ C , the map R(X)(c)→McR(X) is a fibration
of simplicial sets, together with a levelwise weak equivalence κX : X → R(X).

In total, we will obtain a functor

R : (sSetC )proj → (sSetC )proj

where the domain and codomain are the full subcategories of projective, namely
levelwise, fibrant functors, such that R(X) is Reedy fibrant for all X. We
will also find a natural transformation κ : id ⇒ R such that for each X,
κX : X → R(X) is levelwise a weak equivalence.

Moreover, setting R+ to be the postcomposition with the functor i∗ defined
by precomposition with i : C + ↪→ C of the form

(sSetC )proj (sSetC )proj

(sSetC+

)proj

R

R+
i∗

and κ+ : i∗ ⇒ R+ to be the whiskering

(sSetC )proj (sSetC )proj (sSetC+

)proj

id

R

i∗
κ

we will then devise a natural transformation α : R+ ⇒ i∗ such that ακ+ = 1i∗ .
For instance, if C = ∆op, we have that the restriction of a simplicial space X
to C + forgets the face maps and leaves us with only degeneracies, so that R+,
α and κ+ would act on this restricted object.

While we will not necessarily have conversely that κ+α = 1R+ , we will
construct a natural transformation

H : R+ ⇒ (−)nerve(I[1]) ◦R+

which yields for each X ∈ (sSetC )proj and each c ∈ C a right homotopy

(HX)(c) : (κ
+
X)(c) ◦ (αX)(c) ∼ 1R+(X)(c).
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We will later specialize our construction to the case C = (∆op)n for n ∈
{1, 2} in order to take Reedy fibrant replacements of projective fibrant n-fold
Segal spaces.

The entirety of our construction largely hinges on Lemma 2.2.79. We will
repeatedly apply this factorization in higher and higher degrees to force maps
to matching objects to be fibrations. This alone does not explain how we will
obtain maps from latching objects; to do so, we require α and H.

Notation 4.2.1. Write C ≤n for the full subcategory of a Reedy category C
whose objects are those of degree less than or equal to n.

In particular, note that C ≤0 is a discrete category [Hir09, Ex. 15.1.23].
We will henceforth write as a minor abuse of notation i∗ : (sSetC≤n

)proj →
(sSet(C

≤n)+)proj for all n.

Notation 4.2.2. Suppose X : C → sSet is functor from some category C .
Write Xnerve(I[1]) : C → sSet for the evident functor such that

c 7→ X(c)nerve(I[1])

with maps induced by postcomposition.

For the rest of this section, assume that C is some fixed Reedy category.

Notation 4.2.3. Write X+ for the restriction of X : C → sSet along the
inclusion C + ⊆ C . Similarly, write γ+ : X+ ⇒ Y + for the whiskering of a
natural transformation γ : X ⇒ Y between such functors with this inclusion.

We first construct R, κ, α and H for objects of degree 0:

Definition 4.2.4. Suppose X : C ≤0 → sSet is levelwise fibrant. Let c ∈ C ≤0.
Define:

• R≤0(X)(c) := X(c);

• (κ≤0
X )(c) : X(c)→ R≤0(X)(c) to be the identity;

• (α≤0
X )(c) : R≤0(X)+(c)→ X+(c) to be the identity;

• (H≤0
X )(c) : (κ≤0

X )+(c) ◦ (α≤0
X )(c) ∼ 1R≤0(X)+(c) to be the trivial homotopy.

These together define

R≤0 := 1
(sSetC≤0

)proj
: (sSetC

≤0

)proj → (sSetC
≤0

)proj

and κ≤0
X : id⇒ R≤0, α≤0

X : (R≤0)+ ⇒ i∗ and H≤0
X : (κ≤0

X )+α≤0
X ∼ 1R≤0(X)+.
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It is clear that these are all valid functors and natural transformations, as
C ≤0 is discrete. Moreover, α≤0

X (κ≤0
X )+ = id by definition.

Before we can proceed to the inductive case, we need to establish a few
constructions:

Notation 4.2.5. Suppose X : C ≤n → sSet is levelwise fibrant, where n > 0.
Suppose that, writing X to also mean X≤n−1 : C ≤n−1 → sSet, the functor and
maps

R≤n−1(X) : C ≤n−1 → sSet

κ≤n−1
X : X≤n−1 ⇒ R≤n−1(X)

α≤n−1
X : R≤n−1(X)+ ⇒ (X+)≤n−1

H≤n−1
X : (κ≤n−1

X )+α≤n−1
X ∼ 1R≤n−1(X)+

are all defined to be natural in X and such that α≤n−1
X (κ≤n−1

X )+ = 1(X+)≤n−1.
Suppose c ∈ C such that deg(c) = n.

Then write

Mcκ
≤n−1
X :McX =McX

≤n−1 →McR
≤n−1(X)

Lcκ
≤n−1
X : LcX = LcX

≤n−1 → LcR
≤n−1(X)

for the natural maps defined via κ≤n−1
X .

Note that this notation is not just an application of the functors Mc, Lc :
sSetC≤n → sSet, as R≤n−1(X) and κ≤n−1

X are not defined on all of C ≤n.
Indeed, we find that Mc and Lc can be instead defined on the domain category
sSetC≤n−1

.
We will need to be more careful with inducing maps on latching objects via

α and H, as these are moreover only defined on (C +)≤n−1. We will write Lc

instead of Lc in these cases, to remind ourselves there is no map R≤n−1(X)→
X≤n−1 nor homotopy R≤n−1(X)→ R≤n−1(X)nerve(I[1]) we are starting with.

Definition 4.2.6. Suppose C is a Reedy category with c ∈ C such that
deg(c) = n. Then define

Lc : sSet(C
+)≤n−1 → sSet

to send X 7→ colim∂(C+↓c)X.

This is indeed well-defined, as the categories ∂(C + ↓ c) are entirely con-
tained within (C +)≤n−1.
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Proposition 4.2.7. Suppose C is a Reedy category with c ∈ C such that
deg(c) = n. Then the diagram

sSetC
≤n

sSet

sSet(C
≤n−1)+

Lc

Lc

commutes.

Proof. This is by definition.

We immediately obtain the following:

Proposition 4.2.8. Assume the conditions of Notation 4.2.5. Then there is
a natural map

Lcα
≤n−1
X : LcR

≤n−1(X)→ LcX
≤n−1 = LcX

induced by α≤n−1
X .

Proposition 4.2.9. Assume the conditions of Notation 4.2.5. Then there is
a natural map

LcH
≤n−1
X : LcR

≤n−1(X)→ Lc(R
≤n−1(X)nerve(I[1]))

induced by H≤n−1
X .

Proof. H≤n−1 is defined as a natural transformation of functors

(sSet(C
≤n−1)+)proj (sSet(C

≤n−1)+)proj

((R≤n−1)+)nerve(I[1])

(R≤n−1)+

H≤n−1

and so is sufficient to define a map on latching objects as stated.

Proposition 4.2.10. Assume the conditions of Notation 4.2.5. Then

Lcκ
≤n−1
X ◦Lcα

≤n−1
X = Lc

(
(κ≤n−1

X )+α≤n−1
X

)
Lcα

≤n−1
X ◦ Lcκ≤n−1

X = Lc

(
α≤n−1
X (κ≤n−1

X )+
)
.

Proof. We have that Lcκ≤n−1
X = Lc(κ

≤n−1
X )+. The result then follows.

We will need a particular homotopy induced by these maps. Note im-
portantly that since Mc(R

≤n−1(X)nerve(I[1])) is defined as a limit, we have a
natural isomorphism

Mc(R
≤n−1(X)nerve(I[1])) ∼= Mc(R

≤n−1(X))nerve(I[1]).
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Notation 4.2.11. Assume the conditions of Notation 4.2.5. Then write

Lc(sR≤n−1(X)), Lc(tR≤n−1(X)) : Lc(R
≤n−1(X)nerve(I[1]))→ Lc(R

≤n−1(X))

Mc(sR≤n−1(X)),Mc(tR≤n−1(X)) :Mc(R
≤n−1(X)nerve(I[1]))→Mc(R

≤n−1(X))

for the maps induced by sR≤n−1(X) and tR≤n−1(X), respectively.

Proposition 4.2.12. Assume the conditions of Notation 4.2.5. Then, letting
g0, g1, g2, g3 be latching-matching maps for appropriate functors, the diagram

LcX LcR
≤n−1(X) LcR

≤n−1(X)

McX LcR
≤n−1(X) Lc(R

≤n−1(X)nerve(I[1])) LcR
≤n−1(X)

Mc(R
≤n−1(X)) Mc(R

≤n−1(X)nerve(I[1])) Mc(R
≤n−1(X))

Mc(R
≤n−1(X)) (McR

≤n−1(X))nerve(I[1]) Mc(R
≤n−1(X))

g0
Lcκ

≤n−1
X

Lα≤n−1
X id

LcH
≤n−1
X id

Mcκ
≤n−1
X

g1

Lc(sR≤n−1(X)
) Lc(tR≤n−1(X)

)

g2 g3

id

Mc(sR≤n−1(X)
) Mc(tR≤n−1(X)

)

∼= id

s
McR≤n−1(X) t

McR≤n−1(X)

commutes. Moreover, this diagram is natural in X.

Proof. This is a matter of checking definitions.

We are now ready to commence the inductive step to constructing our
Reedy fibrant replacement functor:

Definition 4.2.13. Assume the conditions of Notation 4.2.5. Then define
R≤n|C≤n−1 := R≤n−1. This is thus sufficient to build McR

≤n(X) and a map
McX →McR

≤n(X) via Mcκ
≤n−1
X . Hence, define R≤n(X)(c) to be the pullback

R≤n(X)(c) X(c)

McX

(McR
≤n(X))nerve(I[1]) McR

≤n(X)

⌜

Mcκ
≤n−1
X

s
McR≤n(X)

Moreover, we have a natural map

R≤n(X)(c)→ (McR
≤n(X))nerve(I[1])

t
McR≤n(X)−−−−−−→McR

≤n(X)
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where the first map is pullback projection. Note moreover that LcR≤n(X) is
already defined. Then, consider the diagram

LcR
≤n(X) LcX

X(c)×McR≤n(X) (McR
≤n(X))nerve(I[1]) X(c)

Lc(R
≤n(X)nerve(I[1])) McX

Mc(R
≤n(X)nerve(I[1])) (McR

≤n(X))nerve(I[1]) McR
≤n(X)

Lcα≤n−1

LcH
≤n−1
X

Mcκ
≤n−1
X

∼= s
McR≤n(X)

This commutes by Proposition 4.2.12, so yields a map from the latching object.
As the map

LcR
≤n(X)

LcH
≤n−1
X−−−−−−→ Lc(R

≤n(X)nerve(I[1]))→Mc(R
≤n(X)nerve(I[1]))

→ (McR
≤n(X))nerve(I[1])

t
McR≤n(X)−−−−−−→McR

≤n(X)

is precisely the latching-matching map by Proposition 4.2.12, we have that the
composition

LcR
≤n(X)→ R≤n(X)(c)→McR

≤n(X)

is precisely the latching-matching map. This is thus sufficient by Proposition
2.2.12 to define R≤n(X).

A natural definition of R≤n(f) for f : X → Y results in the functor

R≤n : (sSetC
≤n

)proj → (sSetC
≤n

)proj.

The fact that R≤n is functorial is due to Proposition 4.2.12, in particular the
fact that the diagram in question is natural in X. This allows us to construct
morphisms R≤n(f) using Proposition 2.2.13.

Before we proceed further, note that we will not be able to prove our
inductive definition of κ≤nX is a natural transformation until we have established
the corresponding inductive definition of H≤n

X . However, we are able to define
its levels without yet having naturality:

Definition 4.2.14. Assume the conditions of Notation 4.2.5. Then define
(κ≤nX )(c) : X(c)→ R≤n(X)(c) by the identity on X(c) together with the map

X(c)→McX
Mcκ

≤n−1
X−−−−−→McR

≤n(X)
c
McR≤n(X)−−−−−−→ (McR

≤n(X))nerve(I[1]).

Moreover, define (κ≤nX )(d) := (κ≤n−1
X )(d) for deg(d) ≤ n− 1.

196



Chapter 4: 4.2. REEDY FIBRANT REPLACEMENT FUNCTORS

Definition 4.2.15. Assume the conditions of Notation 4.2.5. Then define
(α≤n

X )(c) : R≤n(X)(c) → X(c) by the pullback projection to X(c). Moreover,
define (α≤n

X )(d) := (α≤n−1
X )(d) for deg(d) ≤ n− 1.

Some explanation is likely needed for why αX is only defined on C + rather
than all of C . We should indeed not expect a retract R(X) → X of κX for
all of X, as such a map would imply that the matching maps X(c) → McX
would be retracts of the maps R(X)(c) → McR(X). Indeed, we would have
diagrams of the form

X(c) R(X)(c) X(c)

McX McR(X) McX

κX(c)

id

αX(c)

McκX

id

McαX

As fibrations are closed under retract, this would imply that X was already
Reedy fibrant, which is not generally the case. Thus, it must not be possible
in general to define McαX and therefore to define αX on C −. Regardless, it is
perfectly reasonable to define αX on C + as we will prove later, which is more
than sufficient for our purposes.

Note that in the case of C = (∆op)n, the category C + consists of solely the
degeneracy maps.

We now turn to defining our homotopies. Note that (R(X)≤n(c))nerve(I[1])

may alternatively be written as

X(c)nerve(I[1]) ×(McR≤n(X))nerve(I[1])
(
(McR

≤n(X))nerve(I[1]))nerve(I[1])
.

Definition 4.2.16. Assume the conditions of Notation 4.2.5. Then define
(H≤n

X )(c) : R≤n(X)(c) → (R≤n(X)(c))nerve(I[1]) to be induced by the map of
cospans

(McR
≤n(X))nerve(I[1]) McR

≤n(X) X(c)

(
(McR

≤n(X))nerve(I[1])
)nerve(I[1])

(McR
≤n(X))nerve(I[1]) X(c)nerve(I[1])

D
McR≤n(X) c

McR≤n(X) cX(c)

Moreover, define (H≤n
X )(d) := (H≤n−1

X )(d) for deg(d) ≤ n− 1.

We now must prove that κ≤n, α≤n and H≤n are natural in C and in
(sSetC )proj. Before we do so, a result is needed:
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Proposition 4.2.17. Assume the conditions of Notation 4.2.5. Then the map
(H≤n

X )(c) ◦ (κ≤nX )+(c) is the constant homotopy on (κ≤nX )+(c).

Proof. We have that this map is defined by the pullback of the two composite
maps

X(c)
(κ≤n

X )+(c)
−−−−−−→ X(c)×McR≤n(X)(McR

≤n(X))nerve(I[1]) → X(c)
cX(c)−−−→ X(c)nerve(I[1])

and

X(c)
(κ≤n

X )+(c)
−−−−−−→ X(c)×McR≤n(X) (McR

≤n(X))nerve(I[1])

→ (McR
≤n(X))nerve(I[1])

D
McR≤n(X)−−−−−−−→

(
(McR

≤n(X))nerve(I[1]))nerve(I[1])
.

The former of these maps is evidently just cX . The latter is then the map

X(c)→McX
Mcκ

≤n−1
X−−−−−→McR

≤n(X)
c
McR≤n(X)−−−−−−→ (McR

≤n(X))nerve(I[1])

D
McR≤n(X)−−−−−−−→

(
(McR

≤n(X))nerve(I[1]))nerve(I[1])

which by Proposition 4.1.3 is the map

X(c)→McX →McR
≤n(X)

c
McR≤n(X)−−−−−−→ (McR

≤n(X))nerve(I[1])

c
(McR≤n(X))nerve(I[1])
−−−−−−−−−−−−−→

(
(McR

≤n(X))nerve(I[1]))nerve(I[1])
.

Thus, we have a commutative diagram

X(c) X(c)

R≤n(X)(c)

McX R≤n(X)(c)nerve(I[1]) X(c)nerve(I[1])

McR
≤n(X)

(McR
≤n(X))nerve(I[1])

(
(McR

≤n(X))nerve(I[1])
)nerve(I[1])

(McR
≤n(X))nerve(I[1])

id

(κ≤n
X )+(c)

cX(c)

(H≤n
X )(c)

Mcκ
≤n−1
X ⌟

c
McR≤n(X)

c
(McR≤n(X))nerve(I[1])

which means the composite (H≤n
X )(c) ◦ (κ≤nX )+(c) is the constant homotopy on

(κ≤nX )+(c), as needed.
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Proposition 4.2.18. Assume the conditions of Notation 4.2.5. Then κ≤nX :
X → R≤n(X) is a valid morphism.

Proof. By Proposition 2.2.13, it suffices to show that the diagram

LcX
≤n X(c) McX

LcR
≤n(X) R≤n(X)(c) McR

≤n(X)

Lcκ
≤n
X (κ≤n

X )(c) Mcκ
≤n
X

commutes. It is immediate that the right-hand square commutes. For the
left-hand side, it suffices to show that the two diagrams

LcX X(c)

LcR
≤n(X)

LcX X(c)

Lcκ
≤n
X

id

Lcα
≤n
X

and
LcX X(c)

LcR
≤n(X) McX

Lc(R
≤n(X)nerve(I[1])) McR

≤n(X)

Mc(R
≤n(X)nerve(I[1])) (McR

≤n(X))nerve(I[1])

Lcκ
≤n
X

LcH
≤n
X

Mcκ
≤n
X

∼=

commute. The former commutes because α≤n−1
X (κ≤n−1

X )+ = 1(X+)≤n−1 by in-
duction, while the latter commutes because

H≤n−1
X (κ≤n−1

X )+ : (κ≤n−1
X )+ ∼ (κ≤n−1

X )+

is levelwise the trivial homotopy by induction with Proposition 4.2.17.

Proposition 4.2.19. Assume the conditions of Notation 4.2.5. Then α≤n
X :

R≤n(X)+ → (X≤n)+ is a valid morphism.
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Proof. By Proposition 2.2.13 and the fact that (C +)≤n exhibits trivial match-
ing objects, defining such a functor requires only a commutative diagram

LcR(X)≤n R(X)≤n(c)

LcX
≤n X≤n(c)

Lcα
≤n
X α≤n

X (c)

Note however that by the definition of the uppermost horizontal map, this
commutativity is trivial.

To prove naturality of H≤n
X , we will need an intermediate result:

Proposition 4.2.20. Assume the conditions of Notation 4.2.5. Then

(H≤n
X )(c)nerve(I[1]) ◦ (H≤n

X )(c) = DR≤n(X)(c) ◦ (H≤n
X )(c).

Proof. Unwinding definitions, we have that (H≤n
X )(c)nerve(I[1]) ◦ (H≤n

X )(c) is
given by the map of cospans

(McR
≤n(X))nerve(I[1]) McR

≤n(X) X(c)

(McR
≤n(X))nerve(I[1]×I[1]) (McR

≤n(X))nerve(I[1]) X(c)nerve(I[1])

(McR
≤n(X))nerve(I[1]×I[1]×I[1]) (McR

≤n(X))nerve(I[1]×I[1]) X(c)nerve(I[1]×I[1])

D
McR≤n(X)

c
McR≤n(X) cX(c)

D
nerve(I[1])
(McR≤n(X))

c
nerve(I[1])
(McR≤n(X))

c
nerve(I[1])
X(c)

so that the three vertical composites are given by the map I[1]3 → I[1] sending
(i, j, k) 7→ ijk and the map I[1]2 → ∗. We then see that the map DR≤n(X)(c) ◦
(H≤n

X )(c) is given in turn by the composite

(McR
≤n(X))nerve(I[1]) McR

≤n(X) X(c)

(McR
≤n(X))nerve(I[1]×I[1]) (McR

≤n(X))nerve(I[1]) X(c)nerve(I[1])

(McR
≤n(X))nerve(I[1]×I[1]×I[1]) (McR

≤n(X))nerve(I[1]×I[1]) X(c)nerve(I[1]×I[1])

D
McR≤n(X)

c
McR≤n(X) cX(c)

D
(McR≤n(X))nerve(I[1]) D

McR≤n(X) DX(c)

which is given by precisely the same maps, as needed.

Proposition 4.2.21. Assume the conditions of Notation 4.2.5. Then H≤n
X :

R≤n(X)+ → (R≤n(X)+)nerve(I[1]) is a valid morphism.
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Proof. Again, it suffices to show that the diagram

LcR
≤n(X) R≤n(X)(c)

Lc(R
≤n(X)nerve(I[1])) R≤n(X)(c)nerve(I[1])

LcH
≤n
X H≤n

X (c)

commutes.
We subdivide this question by splitting up (R≤n(X)(c))nerve(I[1]) intoX(c)nerve(I[1])

and
(
(McR

≤n(X))nerve(I[1])
)nerve(I[1]). It suffices then to check that the maps

into these two objects induce commutative diagrams.
One may then first check that the diagram

LcR
≤n(X) R≤n(X)(c)

Lc(R
≤n(X)nerve(I[1])) R≤n(X)(c)nerve(I[1]) X(c)

Lc(X
nerve(I[1])) X(c)nerve(I[1])

LcH
≤n
X α≤n

X (c)

Lc((α
≤n
X )nerve(I[1]))

α≤n
X (c)nerve(I[1])

cX(c)

commutes, by unwinding the definition of H≤n
X inductively and checking first

the bottom-left square and then the upper-right commuting diagram.
It then suffices to prove that the diagram

LcR
≤n(X) R≤n(X)(c)

Lc(R
≤n(X)nerve(I[1])) Lc(R

≤n(X)nerve(I[1])) (McR
≤n(X))nerve(I[1])

Lc
(
(R≤n(X)nerve(I[1]))nerve(I[1])

) (
(McR

≤n(X))nerve(I[1])
)nerve(I[1])

LcH
≤n
X

LcH
≤n
X

Lc((H
≤n
X )nerve(I[1]))

LcDR≤n(X)(•)
D

McR≤n(X)

commutes. By Proposition 4.2.20, we have that the leftmost polygon com-
mutes, while the remaining two are by inspection.

That this diagram suffices is because one may show that the diagram

Lc(R
≤n(X)nerve(I[1])) R≤n(X)(c)nerve(I[1])

Lc((R
≤n(X)nerve(I[1]))nerve(I[1])) Mc((R

≤n(X)nerve(I[1]))nerve(I[1]))

LcH
≤n
X

commutes.
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Proposition 4.2.22. Assume the conditions of Notation 4.2.5. Then H≤n
X , κ≤nX

and α≤n
X are all natural in X.

Proof. All involved constructions to define these natural transformations are
themselves natural in X, so the result inductively holds in n by inspection.

We complete our induction by proving all the necessary results about
κ≤n, α≤n and H≤n for the next inductive step in n.

Proposition 4.2.23. Assume the conditions of Notation 4.2.5. Then

α≤n
X (κ≤nX )+ = 1(X+)≤n .

Proof. This is by definition.

Proposition 4.2.24. Assume the conditions of Notation 4.2.5. Then (H≤n
X )(c)

is a right homotopy from (κ≤nX )+(c) ◦ (α≤n
X )(c) to 1R≤n(X)+(c).

Proof. Consider, for some c ∈ C , the composite morphism

R≤n(X)(c)
H≤n

X (c)
−−−−→ R≤n(X)(c)nerve(I[1]) → R≤n(X)(c)

where the final map is either the source or target map. Looking at the com-
ponents of this map, we have the two maps of the form

X(c)
cX(c)−−−→ X(c)nerve(I[1]) → X(c)

which are both identities, along with the two maps of the form

(McR
≤n(X))nerve(I[1])

D
McR≤n(X)−−−−−−−→ ((McR

≤n(X))nerve(I[1]))nerve(I[1])

→ (McR
≤n(X))nerve(I[1]).

If the last map in this chain of morphisms is the source map, then the overall
map R≤n(X)(c)→ R≤n(X)(c) is given by the map of cospans

X(c) McX McR
≤n(X) (McR

≤n(X))nerve(I[1])

X(c) McX McR
≤n(X) McR

≤n(X)

X(c) McX McR
≤n(X) (McR

≤n(X))nerve(I[1])

id

Mcκ
≤n
X

id id

s
McR≤n(X)

s
McR≤n(X)

id

Mcκ
≤n
X

id id

id

c
McR≤n(X)

Mcκ
≤n
X

s
McR≤n(X)

It is clear that the first of these maps is (α≤n
X )(c) by the isomorphism X(c) ∼=

X(c)×McR≤n(X)McR
≤n(X), so that the induced map of pullbacksR≤n(X)(c)→
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R≤n(X)(c) is precisely the result of applying (κ≤nX )+(c) ◦ (α≤n
X )(c). If instead

the final map in the composite is the target map, we have that the induced
map R≤n(X)(c) → R≤n(X)(c) the identity. Thus, the homotopy (H≤n

X )(c) is
between the correct morphisms as desired.

With all of these inductive pieces in place, we are able to continue the
induction to all n and obtain our construction in full:

Definition 4.2.25. Suppose X : C → sSet is levelwise fibrant. Define R(X)
such that R(X)|C≤n = R≤n(X). Do similarly for κX , αX and HX . This defines
R, κ, α and H in their entirety.

This completes the definition of R. We must now prove that we have indeed
obtained a valid Reedy fibrant replacement:

Proposition 4.2.26. κX : X → R(X) is a levelwise trivial cofibration.

Proof. Consider some c ∈ C with deg(c) = n. It will suffice to prove that

κ≤nX (c) : X(c)→ X(c)×McR≤n(X) (McR
≤n(X))nerve(I[1])

is a trivial cofibration in sSet.
Note that the existence of α≤n

X (c) implies that this is a levelwise inclusion,
hence a cofibration. Moreover, H≤n

X (c) exhibits κ≤nX (c) as a weak equivalence
in the model structure in sSet; indeed, applying geometric realization to the
induced map R≤n(X)(c)× nerve(I[1])→ R≤n(X)(c) gives a homotopy

|R≤n(X)(c)| × [0, 1] ∼= |R≤n(X)(c)| × |∆[1]|
→ |R≤n(X)(c)| × |nerve(I[1])|
→ |R≤n(X)(c)|

as geometric realization commutes with products and by the map ∆[1] →
nerve(I[1]) identifying the morphism 0 → 1 in I[1]. This homotopy is from
|κ≤nX (c)| ◦ |α≤n

X (c)| to the identity, which together with the fact that |α≤n
X (c)| ◦

|κ≤nX (c)| = id shows we have a weak equivalence of simplicial sets and therefore
a trivial cofibration as needed.

Note by 2-out-of-3 that αX is also a levelwise weak equivalence. Moreover,
note that we have not shown that κX is in general a Reedy trivial cofibration,
only a weak equivalence and levelwise cofibration. However, in the case of
elegant Reedy categories, we do in fact have a Reedy trivial cofibration. This
will be the only case we have need for in this thesis.

In order to prove that R(X) is Reedy fibrant, we will need an intermediate
result on Reedy model categories:
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Proposition 4.2.27 ([Hir09, Cor. 15.3.12]). Let C be a Reedy category and
M a model category. Suppose X ∈ M C is Reedy fibrant and x ∈ C . Then
MxX is fibrant in M .

Proposition 4.2.28. Suppose X is projective fibrant. Then R(X) is Reedy
fibrant.

Proof. We prove this by induction. Suppose c ∈ C has deg(c) = 0. Then
R(X)(c) = X(c), so we have Reedy fibrancy at c so that R≤0(X) is Reedy
fibrant.

For the inductive step, suppose R≤n−1(X) is Reedy fibrant. Then, following
the methods in [Hir09, pg. 293], for every d ∈ C of degree n we can factorize
the map X(d) ⊔LdX LdR

≤n−1(X) → MdR
≤n−1(X) into a trivial cofibration

followed by a fibration. This yields a Reedy fibrant functor

Q(X) : C ≤n → sSet

where Q(X)|C≤n−1 = R≤n−1(X). Then we have that McQ(X) =McR
≤n−1(X)

is a Kan complex by Proposition 4.2.27. Thus, we have a map (κX)(c) :
X(c)→ McR(X) = McR

≤n−1(X) between Kan complexes, which induces the
map

R(X)(c) = X(c)×McR(X) (McR(X))nerve(I[1]) →McR(X)

as a fibration by Lemma 2.2.79.

One final result will be crucial for our construction, which we have not
discussed yet: the preservation of locality with respect to some class of mor-
phisms. This will in particular imply that projective fibrant n-fold Segal spaces
will be sent to their Reedy fibrant counterparts.

Proposition 4.2.29. Suppose X is levelwise fibrant and C-local with respect
to some collection of morphisms C. Then R(X) is also C-local.

Proof. Note that κX is a levelwise weak equivalence between fibrant objects
X and R(X) in the projective model structure on sSetC . Hence, the result
holds by [Hir09, Lemma 3.2.1].

Armed with these results, we may now specialize our situation to n-fold
Segal spaces, which for us is restricted to the cases n ∈ {1, 2}:

Definition 4.2.30. Let R : SeSpprojn → SeSpinjn be the functor R applied
to the case C = (∆op)n and restricted in domain to n-fold Segal spaces for
n ∈ {1, 2}. Define κ similarly.

Corollary 4.2.31. κ is a levelwise cofibration in the Reedy model structure.

Proof. Cofibrations in the injective model structure are levelwise and (∆op)n

is an elegant Reedy category.
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We know already that the matching objects for an n-uple simplicial space
are of the form M([in],··· ,[i1])X

∼= X∂∆[in,··· ,i1]. Hence, we have that for a projec-
tive fibrant n-uple simplicial space X,

R(X)i1,··· ,in
∼= Xi1,··· ,in ×R(X)∂∆[in,··· ,i1]

R(X)
nerve(I[1])
∂∆[in,··· ,i1].

We will also have use for a few particular properties of R:

Proposition 4.2.32. f : X → Y is a levelwise weak equivalence in (sSetC )proj
if and only if R(f) is a levelwise weak equivalence.

Proof. For any c ∈ C , we have a natural diagram

X(c) Y (c)

X(c)×McX (McX)nerve(I[1]) Y (c)×McY (McY )nerve(I[1])

fc

(κX)c (κY )c

R(f)c

where all but the horizontal maps are weak equivalences. By 2-out-of-3, the
result holds.

Proposition 4.2.33. R preserves finite products up to natural isomorphism.

Proof. It is evident that there is a levelwise isomorphism

R(X × Y )(c) ∼= R(X)(c)×R(Y )(c)

and that this commutes with matching object maps. For latching object maps,
one may assume by induction that the latching objects of R(X) × R(Y ) and
R(X × Y ) are isomorphic. Then one quickly checks that the same latching
maps are induced in both instances.

We suspect that R should have more powerful properties than these, but
we will only need these results for the purposes of this chapter.

4.2.1 Taking Examples to the (Homotopy) Limit

The fact that R may be applied to Reedy categories other than (∆op)n suggests
an opportunity to expand our intuitions for R’s behavior by studying other
diagram categories. A trivial example is given by C being discrete, on which
R does nothing. More generally, any Reedy category C such that C − is dis-
crete will have trivial Reedy fibrant replacements. These are not particularly
enlightening demonstrations of our constructions in action, so we ignore them
henceforth.
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The simplest non-trivial categories to examine are those Reedy categories
C such that C + is discrete. In this case, the latching objects and thus latching
maps are all trivial, so we can entirely focus on the matching objects. An
interesting consequence of this fact is that the Reedy cofibrations in sSetC are
precisely the levelwise cofibrations, meaning the Reedy and injective model
structures agree. Our construction therefore necessarily obtains a model of
homotopy limit over such diagrams.

Consider, for instance, the cospan diagram C := {x → y ← z}, where
deg(x) = deg(z) = 1 and deg(y) = 0. A projective fibrant functor F : C →
sSet then amounts to a cospan of simplicial sets

Cx → Cy ← Cz

where Cx, Cy and Cz are all Kan complexes. The Reedy fibrant replacement
R(F ) is then easily checked to be the cospan

Cx ×Cy C
nerve(I[1])
y → Cy ← Cnerve(I[1])

y ×Cy Cz.

If one were to take a pullback of this cospan, one immediately obtains our
chosen definition of homotopy pullback Cx ×hCy

Cz in terms of Λ.
Another example comes from the diagram for equalizers, namely E :=

{x ⇒ y}, with deg(x) = 1 and deg(y) = 0. Then we have, for a functor
G : E → sSet, that R(G) is the diagram

Ey ×E2
x
(E2

x)
nerve(I[1]) ⇒ Ex.

The limit of this diagram is similarly a reasonable model of homotopy-coherent
equalizer, whose 0-simplices are triples (p, e, q), where e ∈ (Ey)0 and p, q :
nerve(I[1]) → Ey are paths such that p(1) = q(0) = e and the image of p(0)
under the first map Ex → Ey is equal to the image of q(1) under the second
map.

For an infinite example, consider the poset category M := {· · · → 3 →
2→ 1→ 0}, whose objects are the elements of Z≥0 with a morphism a→ b if
and only if b ≤ a. This is a Reedy category where deg(x) = x for all objects
x ∈M . For a levelwise fibrant functor J :M → sSet, we then have that R(J)
is the functor

J0 ← J1×J0 J
nerve(I[1])
0 ← J2×J1×J0

J
nerve(I[1])
0

(J1×J0 J
nerve(I[1])
0 )nerve(I[1]) ← · · ·

Writing down R(J)n without recursively referring to R≤n−1(J) would appear
to be difficult; naively ‘flattening out’ the definition produces an exponen-
tially growing expression of nested pullbacks. There is however a simpler
non-inductive way to write down this functor, taking inspiration from the con-
struction of homotopy limits in [Hir09, Def. 18.1.8]; indeed, if we restrict J to
M≤n, then we have that limM≤n R(J) ∼= R(J)n, so each R(J)n should be an
inductively growing model of homotopy limit:
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Proposition 4.2.34. Suppose J :M → sSet is as above. Then for any n ≥ 0,
we have

R(J)n ∼= eq
( n∏
i=0

J
nerve(I[n−i])
i ⇒

n−1∏
j=0

J
nerve(I[n−j−1])
j

)
where the first map acts by precomposition with nerve(I[n−j−1])→ nerve(I[n−
j]) sending i 7→ i on objects, while the second map acts by postcomposition with
Jj → Jj−1 if j > 0 and the terminal map J0 → ∗.

Moreover, the maps R(J)n → R(J)n−1 are given by commutative diagrams∏n
i=0 J

nerve(I[n−i])
i

∏n−1
j=0 J

nerve(I[n−j−1])
j

∏n−1
i=0 J

nerve(I[n−i−1])
i

∏n−2
j=0 J

nerve(I[n−j−2])
j

where the leftmost vertical map is given on J
nerve(I[n−i])
i for i < n by precom-

position with maps I[n− i− 1]→ I[n− i] sending j 7→ j + 1 for objects j and
on Jn by the terminal map Jn → ∗. The rightmost vertical map is similar.

Finally, the maps (κJ)(n) : Jn → R(J)n are given by the maps

Jn → Ji → J
nerve(I[n−i])
i .

Proof. The case n = 0 is trivial. Suppose then that the result holds for
R(J)n−1. We have that R(J)n is isomorphic to the limit of the diagram

Jn×
eq

(∏n−1
i=0 J

nerve(I[n−i−1])
i ⇒

∏n−2
j=0 J

nerve(I[n−j−2])
j

)
eq
( n−1∏
i=0

J
nerve(I[n−i−1])
i ⇒

n−2∏
j=0

J
nerve(I[n−j−2])
j

)nerve(I[1])

∼=Jn×
eq

(∏n−1
i=0 J

nerve(I[n−i−1])
i ⇒

∏n−2
j=0 J

nerve(I[n−j−2])
j

)
eq
( n−1∏
i=0

J
nerve(I[n−i−1]×I[1])
i ⇒

n−2∏
j=0

J
nerve(I[n−j−2]×I[1])
j

)
.

Note that

Jn ∼= eq
( n∏
i=0

Ji ⇒
n−1∏
j=0

Jj

)
where the two maps are induced by the diagrams

Jn Jn−1 · · · J1 J0

∗ Jn−1 · · · J1 J0

id id id
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and
Jn Jn−1 · · · J1 J0

Jn−1 · · · J1 J0 ∗

Thus, since limits commute, we may reinterpret R(J)n as the equalizer

eq
(
Jn ×

n−1∏
i=0

Ji ×Jnerve(I[n−i−1])
i

J
nerve(I[n−i−1]×I[1])
i

⇒Jn−1 ×
n−2∏
i=0

Ji ×Jnerve(I[n−i−2])
i

J
nerve(I[n−i−2]×I[1])
i

)
The induction now holds, by the isomorphisms

J
nerve(I[n−i])
i

∼= Ji ×Jnerve(I[n−i−1])
i

J
nerve(I[n−i−1]×I[1])
i

given by the maps I[n− i]→ ∗ and by I[n− i]→ I[n− i− 1]× I[1] sending
0 7→ (0, 0) and j 7→ (j − 1, 1) for 0 < j ≤ n− i. The maps R(J)n → R(J)n−1

are as needed by inspection, as are the maps (κJ)n : Jn → R(J)n; indeed, the
matching object MnR

≤n−1(J) is just R(J)n−1.

We have that the 0-simplices of R(J)n correspond naturally to tuples

(pn ∈ Jn, pn−1 : nerve(I[1])→ Jn−1, · · · , p0 : nerve(I[n])→ J0)

of maps pi : nerve(I[n− i])→ Ji, where pi|nerve(I[n−i−1]), restricted under the
map nerve(I[n−i−1])→ nerve(I[n−i]) sending j 7→ j for all j ∈ I[n−i−1],
is equal to the composition

nerve(I[n− i− 1])
pi+1−−→ Ji+1 → Ji

for all i < n. That is to say, a 0-simplex corresponds to a commutative diagram

∗ nerve(I[0]) nerve(I[1]) · · · nerve(I[n− 1]) nerve(I[n])

Jn Jn−1 · · · J1 J0

∼=

pn pn−1 p1 p0

Taking the limit limM R(J) in turn yields a Kan complex whose 0-simplices
are infinite sequences of finite tuples

((p00), (p
1
0, p

1
1), (p

2
0, p

2
1, p

2
2), (p

3
0, p

3
1, p

3
2, p

3
3), · · · )

such that pii ∈ (Ji)0 for all i ≥ 0, while the maps

pij : nerve(I[i− j])→ Jj
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restrict along the maps ψij : I[i − j − 1] → I[i − j] sending k 7→ k for k ∈
I[i− j − 1] to pij+1 composed with the map Jj+1 → Jj. Moreover, considering
the maps ϕij : I[i − j − 1] → I[i − j] sending k 7→ k + 1, we have that the
diagrams

nerve(I[i− j − 1]) nerve(I[i− j])

Jj

nerve(ϕij)

pi−1
j

pij

commute.
What we have then is, for each i ≥ 0, a commutative diagram of the form

nerve(I[0]) nerve(I[1]) nerve(I[2]) · · ·

Ji

nerve(ϕi+1
i )

pii

nerve(ϕi+2
i )

pi+1
i

pi+2
i

Let Z≥0 be equipped with the natural poset category structure. Considering
the functor ϕi : Z≥0 → Cat sending [n] 7→ I[n] and the morphism a ≤ a + 1
for a ∈ Z≥0 to ϕi+ai , we could alternatively represent this as a map

pi : colimZ≥0
nerve(ϕi)→ Ji.

The object colimZ≥0
nerve(ϕi) is naturally identified with the nerve nerve(I[∞])

of the contractible groupoid I[∞] whose objects are the elements of Z≥0. The
maps I[n]→ I[∞] then send k 7→ n− k for all n ≥ 0.

Consider then the map ψ : nerve(I[∞]) → nerve(I[∞]) induced by the
maps ψij. Concretely, this map sends n 7→ n + 1 for all n ∈ Z≥0. By the first
commutativity condition, we have that a 0-simplex of limM R(J) precisely
corresponds to a commutative diagram of the form

nerve(I[∞]) nerve(I[∞]) nerve(I[∞]) · · ·

J0 J1 J2 · · ·

p0

ψ

p1

ψ

p2

This seems analogous to another description of homotopy limits along the
same diagram M , though with target category Top, in [Rie14, Ex. 6.5.6];
here, Riehl explains that the homotopy limit of a functor M → Top where
the maps Ji+1 → Ji are inclusions can be described by a map f : [0,∞)→ J0
such that f([n,∞)) ⊆ Jn for all n ≥ 0.

The case of C = M seems in particular to suggest that, given a levelwise
fibrant functor X : C → sSet, the replacement R(X)(x) for each x ∈ C
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should be at least strongly related to homotopy limits of X over each cat-
egory (x ↓ C −). Indeed, note that for any x ∈ C , the natural restriction
R(X)|(x↓C−) is in fact a Reedy fibrant replacement for X|(x↓C−) and thus an
injective fibrant replacement. Hence, R(X)x must be a homotopy limit of the
diagramX|(x↓C−). This suggests that what we have really constructed levelwise
for R(X) is a series of inductively defined homotopy limits over finite-degree
Reedy categories.

It would be of interest to move past this inductive definition to see R(X)
explicitly at each level. We have not yet been able to establish such a con-
struction in general, so we are left to handle the cases of ∆op and (∆op)2 by
hand, as we shall do for 1-fold and 2-fold Segal spaces.

4.3 Homotopy Categories via Reedy Fibrant Re-
placement

As a demonstration of the utility of our Reedy fibrant replacement functor, we
consider the challenge of obtaining the homotopy category hp1(X) of a projective
fibrant Segal space X. Our construction will in the end be an instance of the
approach given by Johnson-Freyd and Scheimbauer in [JS17, Def. 2.2], in
particular with a chosen model of homotopy pullback. This section serves to
elucidate how our construction of Reedy fibrant replacement suffices to obtain
other standard constructions from projective fibrant situations directly.

Definition 4.3.1. Suppose X ∈ sSpace. Let x1, · · · , xn ∈ (X0)0. Define the
homotopy fiber functor

(−)x1,··· ,xnh : sSet/(X0)n → sSet

to be the functor sending Y → (X0)
n to the pullback

Y x1,··· ,xn
h Y ×(X0)n (X

nerve(I[1])
0 )n

{(x1, · · · , xn)} (X0)
n

⌟

Recall that if M is a model category, then for any x ∈M there is a natural
model structure on M/x where cofibrations, fibrations and weak equivalences
are those maps whose underlying maps in M are cofibrations, fibrations or
weak equivalences respectively. This is proven to give a model structure in
[Hir09, Thm. 7.6.5].
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Proposition 4.3.2. (−)x1,··· ,xnh preserves weak equivalences and fibrancy.

Proof. Consider a weak equivalence Y → Z commuting with maps Y → (X0)
n

and Z → (X0)
n. Note that the pullbacks Y ×(X0)n (X

nerve(I[1])
0 )n and Z ×(X0)n

(X
nerve(I[1])
0 )n are homotopy pullbacks by Proposition [Lur08, Rem. A.2.4.5],

as sSet is proper and the map (X
nerve(I[1])
0 )n → (X0)

n is a fibration. Thus,
the map

Y ×(X0)n (X
nerve(I[1])
0 )n → Z ×(X0)n (X

nerve(I[1])
0 )n

is a weak equivalence.
We then have a natural induced diagram of weak equivalences levelwise

between cospans

Y ×(X0)n (X
nerve(I[1])
0 )n (X0)

n {(x1, · · · , xn)}

Z ×(X0)n (X
nerve(I[1])
0 )n (X0)

n {(x1, · · · , xn)}

∼ ∼ ∼

By [Lur08, Rem. A.2.4.5], we have that the pullbacks of both the upper and
lower cospans are in fact homotopy pullbacks, so the weak equivalences induce
a weak equivalence of homotopy pullbacks as needed.

Fibrancy of Y x1,··· ,xn
h for Y ∈ sSet a Kan complex is induced by the map

Y ×(X0)n (X
nerve(I[1])
0 )n → Xn

0 being a fibration, implying the pullback projec-
tion Y x1,··· ,xn

h → {(x1, · · · , xn)} is a fibration.

Lemma 4.3.3. Suppose Y → (X0)
n is a fibration. Then there is a natural

weak equivalence
Y x1,··· ,xn → Y x1,··· ,xn

h .

Proof. There is a natural weak equivalence

Y → Y ×(X0)n (X
nerve(I[1])
0 )n

given by constant path maps. Then consider the diagram

Y (X0)
n {(x1, · · · , xn)}

Y ×(X0)n (X
nerve(I[1])
0 )n (X0)

n {(x1, · · · , xn)}

∼ ∼ ∼

By [Lur08, Rem. A.2.4.5], we have that the pullbacks of both the upper and
lower cospans are in fact homotopy pullbacks. Thus, we have an induced weak
equivalence between pullbacks as needed.
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Notation 4.3.4. For a projective fibrant Segal space X with x, y ∈ (X0)0, we
will write

Xh(x, y) := (X1)
x,y
h

for the homotopy mapping space of X from x to y.

Note that if X is projective fibrant then Xh(x, y) is in fact a Kan complex
now. We may interpret this space as the∞-groupoid whose objects are triples
(p, f, q), where f : x′ → y′ is a 1-morphism and p, q : nerve(I[1]) → X0 are
paths in X0 from x to x′ and from y′ to y, respectively.

Lemma 4.3.5. Suppose X is a Reedy fibrant Segal space. Then there is a
natural weak equivalence

X(x, y)→ Xh(x, y)

for all x, y ∈ (X0)0.

Proof. The map X1 → X0 ×X0 is a fibration.

Using this fact, we can quickly prove that the following defines a category,
using again a mild modification of [JS17, Def. 2.2] and [CS19, Def. 1.9]:

Definition 4.3.6 ([CS19, Def. 1.9]). Let X be a projective fibrant Segal space.
Then the projective homotopy category hp1(X) is defined to be the category
whose objects are the elements of the set (X0)0, whose hom-sets are of the
form

Homhp1(X)(x, y) := π0(X
h(x, y))

with identities given by the degeneracies and composition by applying π0 to the
zig-zag diagram

Xh(x, y)×Xh(y, z)→ (X1 ×hX0
X1)

x,z
h ← (X1 ×X0 X1)

x,z
h

← (X2)
x,z
h

→ Xh(x, z)

and simply inverting all resulting bijections.

Before we prove this is a category, we introduce a new useful simplicial set:

Definition 4.3.7. The n-wheel Wh(n) ∈ sSet is the simplicial set

Wh(n) := Sp(n) ⊔∆[0]⊔∆[0] ∆[1]

where the map ∆[0]⊔∆[0]→ Sp(n) is such that composing with Sp(n) ↪→ ∆[n]
gives the 0-simplices ⟨0⟩ and ⟨n⟩.
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We can visualize the n-wheel as a diagram (which perhaps more resembles
a flat car tire)

1 · · · n− 1

0 n

There is an evident map Wh(n) ↪→ ∆[n] that the inclusion of the n-spine
factors through, which is itself an inclusion if n ≥ 2. There is moreover an
evident map Wh(n) ↪→ K for any simplicial composition diagram K of arity
n.

Proposition 4.3.8. Suppose X is a projective fibrant Segal space. Then hp1(X)
is a category.

Proof. Note that the Reedy fibrant replacement R(X) will have a homotopy
category h1(R(X)) isomorphic to hp1(X) in objects and hom-sets, as the sets
of objects are equal and by Proposition 4.3.5 we have a natural bijection for
each x, y ∈ ob(h1(R(X)))

π0(X(x, y)) ∼= π0(X
h(x, y)).

These bijections on hom-sets respect identities by inspection. Moreover, we
may prove these bijections to naturally respect the composition operations on
hp1(X) and h1(R(X)). To do so, note that there is an isomorphism

R(X)Wh(2)
∼= ((X1 ×hX0

X1)×X2
0
(X2

0 )
nerve(I[1]))×X2

0
(X1 ×X2

0
(X2

0 )
nerve(I[1]))

given by unwinding definitions. Moreover, we have a natural map from X2×X2
0

(X2
0 )

nerve(I[1]) into R(X)Wh(2) given by the composite map

X2 → X1 ×X0 X1 → X1 ×hX0
X1 → (X1 ×hX0

X1)×X2
0
(X2

0 )
nerve(I[1])

and by the map

X2

X⟨0,2⟩−−−→ X1 → X1 ×X2
0
(X2

0 )
nerve(I[1]).

Using this resultant map, upon solving the lifting problem

X2 R(X)2

X2 ×X2
0
(X2

0 )
nerve(I[1]) R(X)Wh(2)

((X1 ×hX0
X1)×X2

0
(X2

0 )
nerve(I[1]))×X2

0
(X1 ×X2

0
(X2

0 )
nerve(I[1]))

(κX)2

∼
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whose solution is naturally a weak equivalence by 2-out-of-3, there is a com-
mutative diagram

Xh(x, y)×Xh(y, z) R(X)(x, y)×R(X)(y, z)

(X1 ×hX0
X1)

x,z
h R(X)x,zSp(2)

(X1 ×X0 X1)
x,z
h

(X2)
x,z
h R(X)x,z2

Xh(x, z) R(X)(x, y)

∼=

∼=

∼=

where all horizontal maps are weak equivalences. This implies that the hor-
izontal maps upon applying π0 are bijections, which means that composition
operations are identified. Thus, associativity and identity laws are induced on
hp1(X), making it a category as needed.

We can similarly see that hp1 and h1 ◦R will agree precisely on morphisms.
Thus, we have that hp1 defines a valid functor SeSpproj → Cat. This is not
a new result at all; both [CS19] and [JS17] define this construction, without
employing R or any other Reedy fibrant replacement functor. However, the
method of using this particular Reedy fibrant replacement functor to prove
coherence and functoriality seems to be novel in this context.

Note that we have an agreement between the notions of homotopy category
for Reedy and projective fibrancy respectively:

Proposition 4.3.9. Suppose X ∈ SeSpinj. Then hp1(X) ∼= h1(X).

Proof. There is an equality of objects and a natural bijection on hom-sets.
Moreover, this defines a valid functor by an analogous proof to that of Propo-
sition 4.3.8.

Some more results are in order, which are standard enough that we will
not claim originality:

Proposition 4.3.10. There is a natural isomorphism hp1(X × Y ) ∼= hp1(X)×
hp1(Y ) for all X, Y ∈ SeSpproj.

Proof. This is given by the fact that h1 and R both preserve products.
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Proposition 4.3.11. hp1 preserves weak equivalences between projective fibrant
Segal spaces.

Proof. This is given by the fact that R preserves weak equivalences.

We expect this latter proposition could alternatively be proven by using
[Hor15, Prop. 2.11].

We also finally have a more standard characterization of completeness using
hp1:

Proposition 4.3.12. Suppose X is a projective fibrant Segal space. Then X
is complete if and only if the natural map

X0 → R(X)heq ⊆ X1 ×X2
0
(X2

0 )
I

is a weak equivalence.

Proof. X will be local with respect to the completeness map if and only if
R(X) is.

Note that there is a natural factorization

X0 → Xheq → R(X)heq

where Xheq for a projective fibrant complete Segal space X is the subspace
of X1 of path components of those f ∈ (X1)0 whose image in R(X)1 lies in
R(X)heq. That is, these are the morphisms f : x → y such that (cx, f, cy) is
invertible in hp1(X), where cx and cy are the constant paths on x, y ∈ (X0)0
respectively.

It is evident that the latter map above is a weak equivalence; indeed,
(HX)1 : R(X)1 → R(X)

nerve(I[1])
1 defines paths from each (p, f, q) ∈ R(X)heq

to (cX⟨0⟩(f), f, cX⟨1⟩(f)) ∈ R(X)heq, implying that f ∈ Xheq. This means (αX)1 :
R(X)1 → X1, sending (p, f, q) 7→ f on 0-simplices, restricts and corestricts on
the path components defining Xheq and R(X)heq to a map R(X)heq → Xheq,
which is a homotopy inverse of the inclusion Xheq → R(X)heq. Thus, we have
the following:

Proposition 4.3.13. Suppose X is a projective fibrant Segal space. Then X
is complete if and only if the natural map

X0 → Xheq

is a weak equivalence.

215



Towards Algebraic n-Categories of Manifolds and Cobordisms

A similar characterization is now possible of projective fibrant complete
2-fold Segal spaces, giving us precisely the definition of a projective fibrant
complete 2-fold Segal space in [JS17, Def. 2.7].

Note again that these characterizations are certainly not new; we believe
the descriptions of completeness for projective fibrant Segal spaces by Horel
in [Hor15, Prop. 2.6] should be equivalent to our own. Moreover, Proposition
4.3.13 is precisely the definition of completeness employed by Johson-Freyd
and Scheimbauer in [JS17, Def. 2.3]. We suspect all of these approaches to
be little more than different masks on the same beast, inevitably reducing to
similar techniques to prove correctness. A complete comparison will be left to
future work.

4.4 Homotopy Bicategories of Projective Fibrant
2-fold Segal Spaces

We now turn to the challenge of constructing the homotopy bicategory of
a projective fibrant 2-fold Segal space X. It seems as though this task is
somewhat complete already; we may compose for instance h′2 : SeSpinj2 →
UBicat with R : SeSpproj2 → SeSpinj2 to retrieve an unbiased bicategory
h′2(R(X)) functorially from any X ∈ SeSpproj2 .

While plausibly correct as a model of homotopy bicategory, this approach
quickly presents challenges if we wish to study the contents of the resulting
unbiased bicategory directly. Much of the problem is with Reedy fibrant re-
placement: while R does produce for us Reedy fibrant analogues of any projec-
tive fibrant 2-fold Segal space X, a price must be paid in complexity. Indeed,
R(X)n,m inductively builds upon R(X)a,b for all a ≤ n and b ≤ m. We may
therefore find it rather difficult to work with R(X) given only concrete knowl-
edge of X. For example, the standard lifting problems we should be expected
to solve to obtain a choice of horizontal compositions, such as

R(X)2

R(X)Sp(2) R(X)Sp(2)id

rely on simplicial spaces such as R(X)2, which implicitly contains an infinite
amount of new structure in the form of each simplicial set R(X)2,n.

It is the goal of this section to try and mitigate this complexity to only
those parts that are absolutely necessary. First, we will investigate what
explicitly are the objects, morphisms and 2-morphisms of such an unbiased
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bicategory. After this is done, we will consider methods to simplify the hom-
categories of this bicategory and in doing so obtain a more straightforward
description of potential composition operations. This discussion will result in
what may be considered in many ways an analogue to htr2 in the projective
fibrant case, whose consistency is proven by the Reedy fibrant case’s correct-
ness and which precisely agrees with the definition of homotopy bicategory
described by Johnson-Freyd and Scheimbauer in [JS17, Def. 2.12], albeit with
some chosen models of homotopy pullbacks.

For the rest of this chapter, we will resume the conventions of writing

I := nerve(I[1])
Λ := nerve(I[1]) ⊔∗ nerve(I[1]).

Let X ∈ SeSpproj2 . Fix some choice of horizontal compositions (µn)n≥0 for
R(X) ∈ SeSpinj2 . Our precise interest is in understanding the bicategory

B := h2(R(X), (µn)n≥0)

along with potentially some other unbiased bicategories isomorphic in UBicat
to B and obtained by tractable methods. We cannot expect to explicitly de-
scribe all R(X)n,m nor all µn,m in service of this goal at present; without a
non-inductive description of R, the description for each of these will bound-
lessly grow in complexity as n+m increases. Instead, we should try to obtain
only the data necessary to construct B. Our first port of call in this regard is
to understand the objects and higher morphisms.

The collection of objects of B is straightforward to understand, as this is
just

ob(B) = (R(X)0,0)0 = (X0,0)0.

The hom-categories for x, y ∈ (X0,0)0 are then of the form

HomB(x, y) = h1(R(X)(x, y)).

The 1-morphisms of B from x to y are thus elements of the set

(R(X)(x, y)0)0 ∼= ({x} ×X0,0 X
I
0,0 ×X0,0 X1,0 ×X0,0 X

I
0,0 ×X0,0 {y})0

meaning they are tuples (p, f, q), where f ∈ (X1,0)0 and p, q : I → X0,0 are
paths from X⟨0⟩,0(f) to x and from X⟨1⟩,0(f) to y, respectively. These tuples
may be visualized as diagrams of the form

x X⟨0⟩,0(f) X⟨1⟩,0(f) y
p f q

We could then envision a choice of horizontal composition µ2 as taking a chain
of two such diagrams of the form

x X⟨0⟩,0(f) X⟨1⟩,0(f) y X⟨0⟩,0(g) X⟨1⟩,0(g) z
p f q r g s
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and producing a path of such diagrams to the spine of some 2-simplex γ ∈
(X2,0)0, retracting the inner two paths q and r to constant paths in doing so,
then yielding the remaining edge X⟨0,1⟩,0(γ) of γ of the form

x X⟨0⟩,0(f) X⟨1⟩,0(g) z
p′ g◦f s′

as the composite, for new paths p′ and s′. Note that in general, while x and z
are preserved in such a composite, the outermost paths p and s may not be.

The 2-morphisms are slightly more complex, as these are now defined to
be path components in certain subspaces of the simplicial set R(X)(x, y)1. We
must therefore now understand both 0-simplices and 1-simplices in this space.
Building again upon the fact that

R(X)1,1 = X1,1 ×R(X)∂∆[1,1]
R(X)I∂∆[1,1]

we find that R(X)1,1 is precisely the limit of a diagram

XΛ×I
0,0 XI

0,0 XI
1,0 XI

0,0 XΛ×I
0,0

XI
0,0 XΛ

0,0 X0,0 X1,0 X0,0 XΛ
0,0 XI

0,0

X0,0 X0,0 X0,0 X0,0

XI
0,1 X0,1 X1,1 X0,1 XI

0,1

X0,0 X0,0 X0,0 X0,0

XI
0,0 XΛ

0,0 X0,0 X1,0 X0,0 XΛ
0,0 XI

0,0

XΛ×I
0,0 XI

0,0 XI
1,0 XI

0,0 XΛ×I
0,0

We can thus visualize a 0-simplex in this space, for some α ∈ (X1,1)0, as a
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diagram of the form

• • • •

• • • •

• • • •

• • • •

s1 s2

s3 s4

v1

w1
α

w2

v2

More precisely, a typical 0-simplex is then a pair (α, r) where α ∈ (X1,1)0
and r : nerve(I[1]) → R(X)∂∆[1,1]. This means r reduces to paths w1, w2 :
nerve(I[1])→ X0,1, maps

s1, s2, s3, s4 : Λ× I ∼= nerve(I[1]2) ⊔nerve(I[1]) nerve(I[1]2)→ X0,0

and paths v1, v2 : nerve(I[1])→ X1,0. These maps are all constrained to agree
appropriately on endpoints as per the requirements of the pullbacks. Thus, a
typical 0-simplex is the tuple (α, v1, v2, s1, s2, s3, s4, w1, w2).

A typical 1-simplex is, then, a tuple

(β, V1, V2, S1, . . . , S4,W1,W2)

where β ∈ (X1,1)1 and the remaining elements take the forms

V1, V2 : nerve(I[1])×∆[1]→ X1,0

S1, . . . , S4 :
(
nerve(I[1]2)×nerve(I[1]) nerve(I[1]2)

)
×∆[1]→ X0,0

W1,W2 : nerve(I[1])×∆[1]→ X0,1.

Again, these are constrained to agree on endpoints appropriately.
The elements of HomB(x, y)((p1, f, p2), (q1, g, q2)) are therefore equivalence

classes of tuples
[(α, v1, v2, s1, s2, s3, s4, w1, w2)]

where w1 and w2 are required to terminate at x and y respectively, s1, v1
and s2 must together terminate at (p1, f, p2) and s3, v2 and s4 must together
terminate at (q1, g, q2). The equivalence relation is given by 1-simplices that
similarly restrict constantly to x, y, (p1, f, p2) and (q1, g, q2). A 2-morphism
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can thus be visualized as an equivalence class of far more ‘globular’ diagrams,
of the form

• •

• •

x y

• •

• •

f

p1 p2

q1

g

q2

v1

w1

s1

α

s2

w2

s3

v2

s4

The equivalence relation in question is then paths of such diagrams relative to
the boundary. Note that no globularity is required of the internal 2-simplex
α. However, essential constancy of X guarantees that every α ∈ (X1,1)0 may
be realized in such a diagram, so appears as a 2-morphism in B.

One could in turn imagine horizontal and vertical composition similarly to
the discussion of composition for 1-morphisms, albeit by concatenation of such
diagrams either vertically or horizontally. By the equivalence relation, such
compositions will be uniquely defined relative to the boundary 1-morphisms.

4.4.1 Path Objects and Homotopy Pullbacks of Simpli-
cial Spaces

In a bid to at least simplify the homotopy categories somewhat, we will intro-
duce some methods to extend our approach to homotopy categories to more
general simplicial spaces. We first require a suitable notion of path space and
homotopy pullback in sSpaceproj. We will simply apply the (−)nerve(I[1]) op-
eration levelwise to do so, using the cotensor construction we established for
sSpace by sSet:

Definition 4.4.1. Suppose X ∈ sSpace. Then define

XI := X ι01(nerve(I[1])).

We will sometimes omit ι01 if it is clear from context.
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Proposition 4.4.2. Suppose X ∈ sSpace is levelwise fibrant. Then

X → XI := Xnerve(I[1]) → X ×X

where the latter map is given by ⟨0⟩ + ⟨1⟩ : ∗ ⊔ ∗ → I[1] and the former by
I[1]→ ∗, is a good path object for X in the projective model structure.

Proof. We need to prove that the latter map is a levelwise fibration and the
former is a levelwise weak equivalence. Both of these are evident, as for each
n ≥ 0 the diagram

Xn → (Xn)
I → Xn ×Xn

defines a very good path object for Xn.

We can then use this approach to obtain a reasonable notion of homotopy
pullback, given levelwise by Λ:

Proposition 4.4.3. For X ∈ sSpace projective fibrant, the maps

X → XΛ → X ×X

given levelwise by Λ define a good path object in sSpaceproj.

Proof. The proof is identical to that of XI .

Definition 4.4.4. For a cospan X → Y ← Z of projective fibrant Segal spaces,
define the homotopy pullback to be the space

X ×hY Z := X ×Y Y Λ ×Y Z.

This is again a valid notion of homotopy pullback in sSpaceproj, though
we care little for the details of this fact here.

4.4.2 Simplifying the Hom-Categories

Our hope is to directly extend our approach to hp1 to obtain a tractable de-
scription of a functor hp2 from some category of projective fibrant 2-fold Segal
spaces to UBicat. We begin with a simpler description of the mapping (∞, 1)-
categories in terms of our new path objects:

Definition 4.4.5. Suppose X ∈ SeSpproj2 , with x, y ∈ (X0,0)0. Then define

Xh(x, y) := {x} ×X0 X
I
0 ×X0 X1 ×X0 X

I
0 ×X0 {y}.
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Proposition 4.4.6. Suppose X ∈ SeSpproj2 . Then there is a natural levelwise
weak equivalence

qX : X1 ×X2
0
(X2

0 )
I → R(X)1

that is fibered over X0. Moreover, the diagram

X1 R(X)1

X1 ×X2
0
(X2

0 )
I

(κX)1

qX

commutes, where the bottom left map is induced by the constant path map.

Proof. We seek a weak equivalence in sSet for each n ≥ 0 of the form

XI
0,n ×X0,n X1,n ×X0,n X

I
0,n → R(X)1,n = X1,n ×R(X)∂∆[n,1]

R(X)I∂∆[n,1].

We will obtain this map levelwise by induction on n, constructing for each
n ≥ 0 a pair of maps αn and βn making the diagram

X1,n ×X2
0,n

(XI
0,n)

2

R(X)1,n X1,n

R(X)I∂∆[n,1] R(X)∂∆[n,1]

αn

βn ⌜

commute.
The map αn is simply a pullback projection to X1,n. The latter map is

given by induction. For n = 0, we have that ∂∆[0, 1] ∼= ∆[0, 0] ⊔ ∆[0, 0].
Hence, β0 may simply be given by the pullback projection

X1,0 ×X2
0,0

(XI
0,0)

2 → (XI
0,0)

2.

Now, assume we have defined αn−1 and βn−1. To obtain βn, we note first that

R(X)I∂∆[n,1]
∼= R(X)I1,∂∆[n] ×(R(X)2

0,∂∆[n]
)I (R(X)20,n)

I

so obtaining a map into R(X)I∂∆[n,1] amounts to considering maps to the two
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components. Hence, we seek maps ϕn, ψn making the diagram

X1,n ×X2
0,n

(XI
0,n)

2

R(X)I∂∆[n,1] R(X)I1,∂∆[n]

(R(X)20,n)
I (R(X)20,∂∆[n])

I

ϕn

ψn ⌜

commute.
The map ψn to (R(X)20,n)

I is given by ((κX)
2
0,n)

I . For ϕn, we have induc-
tively in n a map

X1,n ×X2
0,n

(X2
0,n)

I → X1,∂∆[n] ×X2
0,∂∆[n]

(X2
0,∂∆[n])

I → R(X)1,∂∆[n].

We obtain from this a homotopy

X1,n ×X2
0,n

(X2
0,n)

I →
(
X1,n ×X2

0,n
(X2

0,n)
I
)I
→ R(X)I1,∂∆[n]

where the first map is given by a constant homotopy in X1,n and by the ho-
motopy DX2

0,n
.

One may check that the resulting maps commute enough to establish a
map to R(X)1,n, while the resulting map is natural in n. The map then clearly
factors through (κX)1 as needed. That it is a weak equivalence is induced by
2-out-of-3.

Note moreover that the above map is natural in X itself.

Proposition 4.4.7. Suppose X ∈ SeSpproj2 . Then for any x, y ∈ (X0,0)0,
Xh(x, y) ∈ SeSpproj1 . Moreover, there is a natural isomorphism of categories

hp1((qX)
x,y) : hp1(X

h(x, y)) ∼= h1(R(X)(x, y)).

Proof. Consider the map (qX)
x,y : Xh(x, y)→ R(X)(x, y). Levelwise, we have

that this is induced by a diagram

{(x, y)} X2
0,m X1,m ×X2

0,m
(X2

0,m)
I

{(x, y)} R(X)20,m R(X)1,m

≃ ≃ ≃
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for all m ≥ 0. This is a diagram in sSet, where the two rightmost horizontal
maps are both fibrations. By right properness of sSet and the characterization
of homotopy pullbacks related by Lurie in [Lur08, Rem. A.2.4.5], we have that
Xh(x, y)m and R(X)(x, y)m are homotopy pullbacks of simplicial sets for all
m ≥ 0. Thus, the above levelwise weak equivalence of cospans induces a weak
equivalence Xh(x, y)m → R(X)(x, y)m and thus a levelwise weak equivalence
Xh(x, y)→ R(X)(x, y). It is evident that Xh(x, y) is projective fibrant. More-
over, the levelwise weak equivalence Xh(x, y)→ R(X)(x, y) implies Xh(x, y) ∈
SeSpproj1 by [Hir09, Lemma 3.2.1 (1)], as R(X)(x, y) ∈ SeSpproj1 . Hence, this
levelwise weak equivalence is transported by hp1 to an equivalence of categories.

Note moreover that the map is an identity on objects. Indeed, at level 0
we have a map

X1,0 ×X2
0,0

(X2
0,0)

I → X1,0 ×X2
0,0

(X2
0,0)

I

that acts as the identity map. Therefore, the above functor is an equivalence
of categories that is bijective on objects, so it is in fact an isomorphism of
categories.

One could argue that this immediately obtains a simpler description of the
homotopy bicategory B of a projective fibrant 2-fold Segal space X, in partic-
ular simplifying the vertical composition. However, it does not yet elucidate
the nature of horizontal composition, let alone the coherence isomorphisms.
Though we do not yet have a complete description of these homotopy bicate-
gories that makes no reference to the Reedy fibrant replacement, we provide
some insights that may yield more detail in future work.

For a 2-fold Segal space X and each n ≥ 2, we may consider a lifting
problem in sSpaceinj of the form

Xn R(X)n

Xn ×Xn+1
0

(Xn+1
0 )I R(X)Wh(n)

((X1 ×hX0
· · · ×hX0

X1)×X2
0
(X2

0 )
I)×X2

0
(X1 ×X2

0
(X2

0 )
I)

(κX)n

∼

where the bottom-left vertical map is given by the pullback of the n maps for
1 ≤ i ≤ n of the form

mi : Xn ×Xn+1
0

(Xn+1
0 )I → X1 ×X2

0
(X2

0 )
I
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given by the mapX⟨i−1,i⟩ : Xn → X1 and the projection (pri−1,pri) : (X
n+1
0 )I →

(X2
0 )
I . Note that this induces a commutative diagram of the form

Xn ×Xn+1
0

(Xn+1
0 )I

(X1 ×hX0
· · · ×hX0

X1)×X2
0
(X2

0 )
I

XSp(n) ×Xn+1
0

(Xn+1
0 )I

γn×1
Xn+1

0

1
(Xn+1

0 )I

The solutions to the above lifting problem then each amount to a levelwise
weak equivalence

ωn : Xn ×Xn+1
0

(Xn+1
0 )I → R(X)n

by 2-out-of-3. Moreover, each of these maps are fibered over Xn+1
0 . Armed

with this data, we may consider diagrams

(X1 ×hX0
· · · ×hX0

X1)×X2
0
(X2

0 )
I R(X)Sp(n)

Xn ×Xn+1
0

(Xn+1
0 )I R(X)n

X1 ×X2
0
(X2

0 )
I R(X)1

∼

∼

∼

This picture can be fibered over objects x0, · · · , xn ∈ (X0,0)0 while preserv-
ing all weak equivalences, as all the resulting pullbacks will necessarily be
homotopy pullbacks by an analysis similar to the proof of Proposition 4.4.7.
Moreover, upon applying hp1 everywhere, we obtain diagrams where the ver-
tical upwards maps are equivalences of categories, as are all horizontal maps,
while the uppermost and lowermost horizontal maps are isomorphisms.

We may thus obtain, given some choice of 2-truncated compositions for
R(X)

(•x0,··· ,xnR , ηx0,··· ,xnR )
x0,··· ,xn∈(X0,0)0
n≥0

a particular filler for the cospan

hp1(X
h(x0, xn))← hp1((Xn)

x0,xn
h )← hp1((Xn)

x0,··· ,xn
h )

≃−→
n∏
i=1

hp1(X
h(xi−1, xi))
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of the form

hp1((Xn)
x0,··· ,xn
h )

∏n
i=1 h

p
1(X

h(xi−1, xi))

h1(R(X)x0,··· ,xnn )
∏n

i=1 h1(R(X)(xi−1, xi))

hp1((Xn)
x0,xn
h ) h1(R(X)x0,xnn )

hp1(X
h(x0, xn)) h1(R(X)(x0, xn))

≃

hp1(ω
x0,··· ,xn
n )

∼=

≃

•x0,··· ,xnR

∼=

η
x0,··· ,xn
R

In particular, we may induce such 2-truncated compositions by applying the
functor Tr : SeSpcomp2 → SeSp2comp

2 to the pair (R(X), (µn)n≥0).
Note moreover that any other filler of the above cospan (Cx0,··· ,xn , ιx0,··· ,xn)

will induce a unique morphism of fillers

ϵx0,··· ,xn : Cx0,··· ,xn ⇒ •x0,··· ,xnR .

We may show this to be sufficient to establish an unbiased homotopy bicate-
gory, with composition operations given by Cx0,··· ,xn , by the following result:

Lemma 4.4.8. Suppose B is an unbiased bicategory with composition oper-
ations ◦x0,··· ,xn, associators γX for nested tuples X and unitors ιx,y. Suppose,
for every n ≥ 0 and x0, · · · , xn ∈ ob(B), we have some functor

Cx0,··· ,xn :
n∏
i=1

HomB(xi−1, xi)→ HomB(x0, xn)

together with a natural isomorphism ηx0,··· ,xn : Cx0,··· ,xn ⇒ ◦x0,··· ,xn. Suppose
moreover that ηx and ηx,y are identities for all x, y ∈ ob(B).

Then there is an unbiased bicategory BC,η, whose objects, hom-categories,
identities and unitors ιx,y are the same as in B, whose composition functors
are the functors Cx0,··· ,xn and whose associators χY , for nested tuples of objects
in B

Y = ((x10, · · · , x1k1), · · · , (x
n
0 , · · · , xnkn))

with xiki = xi+1
0 for i < n and flattened versions (x0, · · · , xr) with xiki removed

for i < n, are given by

χY := (ηx0,··· ,xr)−1γY
(
ηx

1
0,x

1
k1
,··· ,xnkn ◦

n∏
i=1

ηx
i
0,··· ,xiki

)
.

226



Chapter 4: 4.4. HOMOTOPY BICATEGORIES OF PROJECTIVE
FIBRANT 2-FOLD SEGAL SPACES

Proof. For the associators, we consider some n,m1, · · · ,mn ∈ Z>0, integers
k11, · · · , knmn

∈ Z≥0 and thrice-nested sequence of objects (((xr,q,p)
kpq
r=0)

mp

q=1)
n
p=1

such that xkpq ,q,p = x0,q+1,p for q < mp and xkpmp ,mp,p = x0,1,p+1 for p < n. Then
define

1. Dp = ((xr,q,p)
kpq
r=0)

mp

q=1;

2. D = ((x0,0,p, xkp0 ,0,p, xk
p
1 ,1,p

, · · · , xkpmp ,mp,p))
n
p=1;

3. E = ((xr,q,p)
kpq ,mp

r=0,q=1)
n
p=1;

4. F = ((xr,q,p)
kpq
r=0)

mp,n
q=1,p=1;

We wish to show that the diagrams

∏n
p=1

∏mp

q=1

∏kpq
r=0 HomB(xr−1,q,p, xr,q,p)

∏n
p=1

∏mp

q=1 HomB(x0,q,p, xkpq ,q,p)

∏n
p=1 HomB(x0,1,p, xkpmp ,mp,p)

HomB(x0, xr)

χF
χD

and

∏n
p=1

∏mp

q=1

∏kpq
r=0 HomB(xr−1,q,p, xr,q,p)

∏n
p=1

∏mp

q=1 HomB(x0,q,p, xkpq ,q,p)

∏n
p=1 HomB(x0,1,p, xkpmp ,mp,p)

HomB(x0, xr)

χE

∏
p χDp

commute with each other.
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Note however that, omitting some indices, the latter diagram is equivalent
to a diagram of the form

∏n
p=1

∏mp

q=1

∏kpq
r=0 HomB(xr−1,q,p, xr,q,p)

∏n
p=1

∏mp

q=1 HomB(x0,q,p, xkpq ,q,p)

∏n
p=1 HomB(x0,1,p, xkpmp ,mp,p)

HomB(x0, xr)

∏
p

∏
q η

∏
p η(η

−1)
γE η−1

∏
p γDp

∏
p η

η

while the former is equivalent to one of the form

∏n
p=1

∏mp

q=1

∏kpq
r=0 HomB(xr−1,q,p, xr,q,p)

∏n
p=1

∏mp

q=1 HomB(x0,q,p, xkpq ,q,p)

∏n
p=1 HomB(x0,1,p, xkpmp ,mp,p)

HomB(x0, xr)

∏
p

∏
q η

η−1
∏

p η
γF

η(η−1)

η

γD

Removing the instances of ηη−1 = id shows that the two diagrams commute
with one another, as B is a bicategory and the same condition holds of the
associators γ.

For the unitors, consider some n ≥ 0 and x0, · · · , xn ∈ ob(B). Note that
the required commuting diagram may be split into checking two given natural
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isomorphisms Cx0,··· ,xn ⇒ Cx0,··· ,xn are equal to 1Cx0,··· ,xn , one of the form∏n
i=1 HomB(xi−1, xi)

∏n
i=1 HomB(xi−1, xi)

HomB(x0, xn)

id

Cx0,··· ,xn

Cx0,··· ,xn

∏n
i=1 η

xi−1,xi ιxi−1,xi

(ηx0,··· ,xn )−1

ηx0,··· ,xn

γ((x0,x1),··· ,(xn−1,xn))

which is as needed since ηx,y is the identity and B satisfies the unitality con-
dition, and another of the form ∏n

i=1 HomB(xi−1, xi)

HomB(x0, xn)

HomB(x0, xn)

Cx0,··· ,xn

Cx0,··· ,xn

id

ηx0,··· ,xn

(ηx0,··· ,xn )−1

ηx0,xn ιx0,xn

γ((x0,··· ,xn))

which is as needed for similar reasons. Thus, BC,η is a bicategory.

We are unaware of a proof of the above lemma or its statement in the
literature, either as written for unbiased bicategories or in some analogous
form for bicategories. However, it seems elementary enough that it is likely
well-known; all we have shown is that new unbiased bicategorical structures
can be induced by conjugation of given coherence isomorphisms.

We claim in general that there is an isomorphism F : B → BC,η in UBicat
that is an identity on objects and hom-categories, with compositors given by
ηx0,··· ,xn . We leave this to future work.

This immediately suggests an unbiased bicategory structure, with natural
coherence isomorphisms, for any choice of horizontal compositions on R(X):

Theorem 4.4.9. Suppose X ∈ SeSpproj2 and consider the following data, ex-
cluding the associators γY , for an unbiased bicategory:
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1. A set of objects (X0,0)0;

2. For each x, y ∈ (X0,0)0, hom-categories hp1(Xh(x, y));

3. For each n > 0 and x0, · · · , xn ∈ (X0,0)0, a composition functor ◦x0,··· ,xn
given by choosing a filler (◦x0,··· ,xn , ψx0,··· ,xn) for the cospan

hp1(X
h(x0, xn))← hp1((Xn)

x0,xn
h )← hp1((Xn)

x0,··· ,xn
h )

≃−→
n∏
i=1

hp1(X
h(xi−1, xi))

such that the choice for n = 1 and any x0, x1 ∈ (X0,0)0 is the identity
◦x0,x1 = 1hp1(Xh(x0,x1)) coupled with the identity natural isomorphism;

4. For each x ∈ (X0,0)0, a functor

◦x : ∗ ∼= hp1(X
x,x
0 )→ hp1((X0)

x,x
h )→ hp1(X

h(x, x))

where the second map is given by constant paths;

5. For each x, y ∈ (X0,0)0, a natural isomorphism ιx,y : 1hp1(Xh(x,y)) → ◦x,y
given by the identity, as these two functors are equal.

Then there exists some choice of associators γY making the above data an
unbiased bicategory.

We suspect there is a characterization of the natural isomorphisms γY
that is independent of R(X) and is uniquely determined by the choices of
fillers. Moreover, we claim this unbiased bicategory is isomorphic in UBicat
to h2(R(X), (µn)n≥0) for some choice of horizontal compositions (µn)n≥0 for
R(X). We leave such considerations to future work. We also leave the dis-
cussion of induced pseudofunctors making the above construction functorial
to future work; it is of course functorial if one chooses composition functors to
be given by the Reedy fibrant replacement, but more general choices demand
further inspection.

Henceforth, we will write our homotopy bicategories of projective fibrant
2-fold Segal spaces as follows, keeping the above potential simpler description
thereof in mind:

Definition 4.4.10. Fix some inverse λ to the projection SeSpcomp2 → SeSpinj2 .
Write

hproj2 : SeSpproj2 → UBicat

for the composite functor of the form

SeSpproj2
R−→ SeSpinj2

λ−→ SeSpcomp2
h2−→ UBicat.

Note that hproj2 is uniquely defined up to natural isomorphism, as any two
inverses to an equivalence of categories have a natural isomorphism between
them.
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Chapter 5

Applications and Examples

We now have a means to obtain the homotopy bicategory of both a Reedy
fibrant 2-fold Segal space and a projective fibrant 2-fold Segal space. Armed
with these constructions, we now proceed to some applications and examples.

Our first order of business is to extend Π1 to the fundamental bigroupoid
of a topological space; the entirety of the section explaining this construction
is copied from the author’s preprint [Rom23] verbatim, though tweaked to ac-
commodate that h2 now supports Reedy fibrant 2-fold Segal spaces that are
not complete, along with other minor modifications and corrections. Our con-
struction has the advantage of providing complete control over the composition
operations and giving explicit descriptions of the associators and (trivial) un-
itors. In doing so, we establish that our construction can be expected to have
the correct behavior on the special case of ∞-groupoids.

A few simple applications are then explored, in particular those pertaining
to characterizing and understanding completeness of 2-fold Segal spaces. As a
part of this effort, we establish a description of equivalences between complete
2-fold Segal spaces that forms an (∞, 2)-categorical analogue to Dwyer-Kan
equivalences between complete Segal spaces, which holds in both the Reedy
fibrant and projective fibrant cases. We finally conclude this thesis by consid-
ering a definition of completeness for Reedy fibrant 2-fold Segal spaces that
relies upon h2 more explicitly.

5.1 Fundamental Bigroupoids

To take stock of our progress in defining homotopy bicategories, we now con-
sider the effect of h2 on the case of S := SingssS(U) for some given U ∈ Top.
We will find this yields a sensible notion of fundamental bigroupoid of a topolog-
ical space, similar in nature to [HKK01] though with differences in horizontal
composition.

To begin, we have a set of objects ob(h2(S)) equal to the set of points in
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U , along with hom-categories of the form

Homh2(S)(x, y)
∼= Π1({(x, y)} ×U×U U

∆t[1])

which is precisely what we should expect.
For composition, we observe that SingsS commutes with limits, since it is

a right adjoint. Hence,

1≤i≤n∏
S0

S1
∼= SingsS(U

Spt(n))

where Spt(n) := ∆t[1] ⊔∆t[0] · · · ⊔∆t[0] ∆t[1]. Thus, a choice of horizontal com-
positions for S actually reduces to solving lifting problems of the form

SingsS(U
∆t[n])

SingsS(U
Spt(n)) SingsS(U

Spt(n))
id

SingsS(U
|gn|)µn

where |gn| : Spt(n) ↪→ ∆t[n] is the topological spine inclusion.
Note that the map |gn| is a trivial Hurewicz cofibration; it is the inclusion of

a subcomplex and is moreover a homotopy equivalence. This in turn implies
that U∆t[n] → USpt(n) is a trivial Hurewicz fibration. Hence, solutions to
this lifting problem can be obtained from any of the sections of U |gn|, which
necessarily exist. We can obtain a simple example of such a section by finding
a retract Rn : ∆t[n] ↠ Spt[n] of |gn|: if we understand that Spt(n) ⊆ ∆t[n]
and define ei ∈ ∆t[n] such that ei’s ith entry is 1, we choose to map ei 7→
(n−i
n
, 0, · · · , 0, i

n
), inducing linearly a retraction rn to the edge from e0 to en in

∆t[n] that sends

(x0, · · · , xn) 7→ (
n∑
i=0

xi
n− i
n

, 0, · · · , 0,
n∑
i=0

xi
i

n
).

Composing this with a map sn to Spt(n) that sends

(1− xn, 0, · · · , 0, xn) 7→ ((i+ 1)− nxn)ei + (nxn − i)ei+1,
i

n
≤ xn ≤

i+ 1

n

gives us a final retraction Rn = sn ◦ rn : ∆t[n]→ Spt(n), sending

(x0, · · · , xn) 7→
(
(i+ 1)−

n∑
j=0

jxj
)
ei +

( n∑
j=0

jxj − i
)
ei+1, i ≤

n∑
j=0

jxj ≤ i+ 1
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We should show that this is the identity on Spt(n). Indeed, consider some
(x0, · · · , xn) = (1 − t)ei + tei+1 = (0, · · · , 0, 1 − t, t, 0, · · · , 0) for 0 ≤ t ≤ 1.
Then

n∑
j=0

jxj = i(1− t) + (i+ 1)t = i− it+ it+ t = i+ t

which ranges from i to i+ 1 with t.
Applying Rn then gives us

Rn(0, · · · , 0, 1−t, t, 0, · · · , 0) = ((i+1)−(i+t))ei+(i+t−i)ei+1 = (1−t)ei+tei+1

which confirms that the inclusion |gn| : Spt(n) ⊆ ∆t[n] is a section of Rn, as
needed.

We now have our composition map, which by using the identification

Homh2(S)(x0, x1)×· · ·×Homh2(S)(xn−1, xn) ∼= Π1({x0, · · · , xn}×Un+1 USpt(n))

can be phrased in the form

Π1({x0, · · · , xn} ×Un+1 USpt(n))

Π1({x0, xn} ×U×U U
Spt(n)) Π1({x0, xn} ×U×U U

∆t[n])

Π1({x0, xn} ×U×U U
∆t[1])

Π1(1{x0,xn}×1
U2U

Rn )

which, in the end, amounts to composing a sequence of n paths in a topological
space into one path. This composition, by the way Rn was defined, is ‘unbiased’
- the composite path [0, 1] → U sends the interval [ i

n
, i+1
n
] to the ith path in

the chain by the map x 7→ nx− i.
We should note that this is but one possible choice of composition oper-

ation. In our approach, we established that choice of composition could be
built upon a choice of retract for the inclusion Spt(n) ↪→ ∆t[n]. There are in
fact an uncountably infinite number of such retracts. For instance, if n = 2,
choosing any t ∈ (0, 1) induces a distinct retract ft : ∆t[2]→ Spt(2) sending

(a, b, c) 7→

{
(1− bt+c

t
, bt+c

t
, 0) bt+ c < t

(0, 1− bt+c−t
1−t ,

bt+c−t
1−t ) bt+ c ≥ t.

This results in a composition of paths which, as before, concatenates the paths
in an affine manner, but differs in the parameterization of the concatenation.
More precisely, the parameter t specifies the point in [0, 1] where the first
path ends and the second begins in the composite. We can generalize this
phenomenon to all ∆t[n] in a straightforward way.
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Of course, the space of all retracts ∆t[n] → Spt[n] of |gn| need not con-
tain only piecewise linear elements or even only smooth ones. Moreover, our
particular construction of the homotopy bicategory of S may have used these
retracts, but there is certainly no need to rely on these to obtain the necessary
lifts at all. Any section of U |gn| : U∆t[n] → USpt(n) will do. One could go
further and say the section need not result from a map on these underlying
topological spaces - it need only be defined on the resulting Segal spaces, so
behavior levelwise could potentially vary drastically.

We now turn to associators in h2(S), as unitors are of course trivial. In
order to work within Top efficiently, we need to show that one may convert
from homotopies defined using the interval [0, 1] to ones defined using N(I[1]).

Proposition 5.1.1. There is a weak equivalence of Segal spaces τ : N(I[1])→
SingsS([0, 1]) such that the diagram

∗ ⊔ ∗ SingsS([0, 1])

N(I[1]) ∗

S

commutes.

Proof. Note that this is a valid lifting problem in SeSpinj, since SingsS(−)
preserves weak equivalences levelwise and has its image in SeSpinj, so that
the rightmost vertical map is a trivial fibration in SeSpinj. Thus, the map S
is simply a solution of a lifting problem, so will exist. Moreover, it must be a
weak equivalence by 2-out-of-3.

One can concretely define S levelwise. Let n,m ≥ 0. Recall that

N(I[1])n,m ∼= HomCat([n]× [m], I[1]).

Note that [n] × [m] ∼= Ho(∆[n] ×∆[m]), where Ho : sSet → Cat is the left
adjoint to nerve : Cat→ sSet [RV22, pg. 6-7]. Thus, we have that

N(I[1])n,m ∼= HomsSet(∆[n]×∆[m],nerve(I[1])).

Applying |·| : sSet→ Top then gives a map

N(I[1])n,m → HomTop(∆t[n]×∆t[m], |nerve(I[1])|).

This induces a map1 N(I[1]) → SingsS(|nerve(I[1])|) in SeSpinj. Now, we
seek a map |nerve(I[1])| → [0, 1] in Top, as postcomposition with this will
yield our desired morphism. By adjunction, it will suffice to find a map q :
nerve(I[1])→ Sing([0, 1]).

1Note that this is not levelwise a bijection.
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This map can be defined levelwise. q0 is a map from a two-element set; we
send one element to 0 and the other to 1. The two nondegenerate 1-simplices
are then sent by q1 to the maps ∆t[1] → [0, 1] sending t 7→ t and t 7→ 1 − t
respectively. This clearly respects degeneracy and face maps at level 0 and 1.
Now, since nerve(I[1]) is a nerve, the maps

nerve(I[1])n → nerve(I[1])1 ×nerve(I[1])0 · · · ×nerve(I[1])0 nerve(I[1])1

are bijections for all n ≥ 2, so every such qn is uniquely induced in a way
commuting immediately with face and degeneracy maps. This completes the
construction of q and therefore S. Since S solves the above lifting problem, by
2-out-of-3 S is again a weak equivalence.

Another way to understand q is to notice, as noted by Rezk in [Rez00,
pg. 24] analogously in the case of F 0

1 (nerve(I[1])), that the elements of
nerve(I[1])n can be identified with sequences (wi)0≤i≤n where wi ∈ {0, 1} for
all i, with face and degeneracy maps given by copying or removing elements
of the sequence. Indeed, an element of nerve(I[1])n is a chain of morphisms
of length n in I[1], which is uniquely identified by the sequence of objects
in the chain. The image of such a sequence is then the unique affine map
∆t[n] → [0, 1] sending ei 7→ wi. This is precisely the notion of a thick 1-
simplex given by Getzler in [Get13], who notes this has previously been called
E(1) by Rezk in [Rez00] and ∆′[1] by Joyal and Tierney in [JT07].

This means, given we specify our homotopies classically in Top, we can
transmit them by SingsS and precomposition with S to the format of left
homotopy we have built h2 upon.

Suppose then we have chosen sections pn : USpt(n) → U∆t[n] of U |gn|. It will
suffice, for each n > 0 and k1, · · · , kn ≥ 0 with r :=

∑
i ki, to find a homotopy

USpt(r) × [0, 1]→ U (∆t[k1]⊔∆t[0]
···⊔∆t[0]

∆t[kn])⊔Spt(n)∆t[n]

from U |fk1,··· ,kn | ◦ pr to(
(1U∆t[k1] ×1U · · · ×1U 1U∆t[kn])×1

USpt(n)
pn
)
◦
(
pk1 ×1U · · · ×1U pkn

)
that is constant on postcomposition with the natural map to USpt(r). Both
of these maps are again sections of a trivial Hurewicz fibration, so there will
necessarily be a homotopy between them.

In the simple case that pn := URn , our challenge shrinks to the problem of
finding a homotopy from U |fk1,··· ,kn |◦URr to U (id⊔id···⊔idid)⊔idRn◦U (Rk1

⊔id···⊔idRkn ).
It then suffices to construct a homotopy of the form(

(∆t[k1] ⊔∆t[0] · · · ⊔∆t[0] ∆t[kn]) ⊔Spt(n) ∆t[n]
)
× [0, 1]→ Spt(r)
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from Rr ◦ |fk1,··· ,kn| to (Rk1 ⊔id · · · ⊔id Rkn) ◦ (id⊔id Rn). We choose to identify
Spt(r) with [0, r] in the evident way, sending ei 7→ i, and set our homotopy to
be linear interpolation.

To understand more concretely what our homotopy does, consider the case
n = 2 and k1 = 1, k2 = 2. The homotopy is from the composition map
((− ◦−) ◦ −) to (− ◦− ◦−). We have reduced this to a homotopy of retracts(

(∆t[1] ⊔∆t[0] ∆t[2]) ⊔Spt(2) ∆t[2]
)
× [0, 1]→ [0, 3] ∼= Spt(3).

The important behavior of the homotopy is on the unit square ∆t[1]× [0, 1] in
the domain, identified by the inclusion

∆t[1]
|⟨0,2⟩|−−−→ ∆t[2] ∼= (∅ ⊔∅ ∅) ⊔∅ ∆t[2] ↪→

(
(∆t[1] ⊔∆t[0] ∆t[2]) ⊔Spt(2) ∆t[2]

)
as the image of this path is the end result of the composition operation. We
find that R3 ◦ |f1,2| acts on this interval as the morphism [0, 1]→ [0, 3] sending
x 7→ 3x, while (R1⊔idR2)◦(id⊔idR2) is the piecewise linear map sending 0 7→ 0,
1
2
7→ 1, 3

4
7→ 2 and 1 7→ 3. Our associator is a piecewise linear interpolation

between these two maps.
As we might expect, there are many possible choices of homotopy to exhibit

the associators in h2(S). Linear interpolation is but one option; a suitable ho-
motopy may be only polynomial, smooth or merely continuous. However, all of
these will produce identical associators, as the induced natural isomorphisms
will levelwise be homotopic paths. In order to generate truly distinct asso-
ciators, they must be given as natural isomorphisms that are levelwise paths
which are not homotopic, which is not possible by the given approach nor
indeed by any method within the confines of our constructions of homotopy
bicategories.

Now we consider the production of pseudofunctors. We add the following
definition:

Definition 5.1.2. Let Topcomp be the category of pairs (T, (pn)n≥0) where
T ∈ Top and pn : T Spt(n) → T∆t[n] is a section of the map T |gn|, together with
maps (T, pn)→ (U, qn) given by continuous maps T → U in Top.

We now have a functor

SingcompssS : Topcomp → SeSpcomp2

that extends SingssS by inducing horizontal compositions from the maps pn.
Consider a continuous map f : (T, pn) → (U, qn) in Top. Let ST :=

SingssS(T ) and SU := SingssS(U). We already have specified horizontal com-
positions in SU and ST . Write µn for the horizontal compositions induced by
pn and likewise νn for those from qn. We thus obtain a map

F := SingssS(f) : (ST , µn)→ (SU , νn).
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We will write F for the underlying map ST → SU as well.
The pseudofunctor h2(F ) : h2(ST , (µn)n≥0) → h2(SU , (νn)n≥0) evidently

sends x 7→ f(x) for objects x ∈ T . On hom-categories, for x, y ∈ T , we have
the induced functor

Π1({(x, y)} × f∆t[1]) : Π1({(x, y)} × T∆t[1])→ Π1({(f(x), f(y))} × U∆t[1])

which sends a 1-morphism p : [0, 1] → T from x to y to the path f ◦ p.
Moreover, it sends a homotopy class of paths [H] for H : [0, 1]× [0, 1]→ T to
[f ◦H].

Vertical composition is respected on the nose. For horizontal composition,
we must understand the compositors πx0,··· ,xn . It suffices to find a homotopy

T Spt(n) × [0, 1]→ U∆t[n]

from f∆t[n]◦pn to qn◦fSpt(n) that is constant on the vertices. Such a homotopy
will necessarily exist, as both are solutions to the same lifting problem

U∆t[n]

T Spt(n) USpt(n)

f∆t[n]◦pn

qn◦fSpt(n)

in the Hurewicz model structure on Top, as defined for instance in [MP12,
Sec. 17.1]. Any two such homotopies will by Corollary 3.5.11 induce the same
natural isomorphism, so the pseudofunctor h2(F ) is specified entirely.

In the special case that pn = TRn and qn = URn , this is much simpler.
In fact, the two maps being homotoped between are equal, so the natural
isomorphisms πx0,··· ,xn are all identities.

Now, suppose one introduced a different set of deformation retracts R′
n :

∆t[n] → Spt(n). These induce a different choice of horizontal compositions
(ηn)n≥0 on ST . We thus have by Corollary 3.5.11 that there is a canonical
pseudofunctor P : h2(ST , (µn)n≥0) → h2(ST , (ηn)n≥0) that is the identity on
objects and hom-categories. Indeed, P is induced by the identity morphism
1T : T → T .

The only interesting aspect of this pseudofunctor’s structure is in the nat-
ural isomorphisms πx0,··· ,xn . These will be induced by homotopies

T Spt(n) × [0, 1]→ T∆t[n]

from URn to UR′
n . For such purposes, it suffices to find a left homotopy

∆t[n]× [0, 1]→ Spt(n)
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from Rn to R′
n that preserves Spt(n). We may choose our left homotopy to

be linear interpolation pointwise, choosing to interpret Spt(n) ∼= [0, n]. We
find thus that, for a sequence of paths x0

f1−→ x1 · · ·
fn−→ xn, the 2-morphism

π(f1,··· ,fn) is the homotopy class [H] of the map H : [0, 1] → U [0,1] such that
0 7→ (f0 ⊔∗ · · · ⊔∗ fn) ◦ Rn and 1 7→ (f0 ⊔∗ · · · ⊔∗ fn) ◦ R′

n, with all other
points defined by the linear interpolation between Rn and R′

n. Any other
homotopy will yield the same natural isomorphism, so this description covers
all possibilities.

In the end, composing SingcompssS and h2 yields a ‘fundamental bigroupoid’
functor

Πcomp
2 : Topcomp → UBicat.

Using some coherent choice of maps pn, for instance those induced by Rn,
allows us to make the domain Top. This then yields a functor

Π2 : Top→ UBicat.

5.2 Completeness and Equivalences
We have not yet compared our constructions of homotopy bicategories with
other approaches in the literature explicitly; we leave this task to future work.
For the time being, there are other means available to help convince our-
selves that htr2 , h2 and hproj2 all deserve the title of ‘homotopy bicategory’. For
instance, we may establish a characterization of weak equivalences between
Reedy fibrant complete 2-fold Segal spaces in CSSP inj

2 :

Definition 5.2.1. A map F : X → Y in CSSPinj
2 is a Dwyer-Kan biequiva-

lence if and only if the following properties hold:

1. For every x, y ∈ (X0,0)0 and f, g ∈ (X(x, y)0)0, the map

X(x, y)(f, g)→ Y (F (x), F (y))(F (f), F (g))

is a weak equivalence in sSet;

2. The functor
h2(F ) : h2(X)→ h2(Y )

is an equivalence of unbiased bicategories.

Note that we have omitted a choice of horizontal compositions for X and
Y in taking their homotopy bicategories. Any choices will yield the same end
result, as they will produce isomorphic unbiased bicategories.

Theorem 5.2.2. Suppose f : X → Y is a map in CSSPinj
2 . Then f is a weak

equivalence in CSSP inj
2 if and only if it is a Dwyer-Kan biequivalence.
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The reason we might have to believe such a fact is an alternative charac-
terization of equivalences between Reedy fibrant complete 2-fold Segal spaces
due to Bergner and Rezk:

Theorem 5.2.3 ([BR20, Thm. 8.18]). A map f : X → Y in CSSPinj
2 is a

weak equivalence in CSSP inj
2 if and only if the following hold:

1. For every x, y ∈ (X0,0)0, the maps

fx,y1 : X(x, y)→ Y (f(x), f(y))

are weak equivalences in CSSP inj;

2. The functor
h1(f•,0) : h1(X•,0)→ h1(Y•,0)

is an equivalence of categories.

Note that Bergner and Rezk’s statement of the above theorem applies to
more general objects than Reedy fibrant complete 2-fold Segal spaces. In
particular, they state it for Segal objects in Θn-spaces, as defined in [BR20,
Def. 5.1]. We will only need the case of Reedy fibrant complete 2-fold Segal
spaces presently.

Bergner and Rezk call a map satisfying the conditions above a Dwyer-
Kan equivalence, so we avoid overloading this terminology by using the name
biequivalence instead.

We will need a few intermediate results about equivalences in homotopy
bicategories. First, we need the analogous notion of a homotopy category for
unbiased bicategories:

Notation 5.2.4. Let [•] : UBicat→ Cat be the functor sending an unbiased
bicategory B to the category [B] whose objects are the elements of the set
ob(B) and whose hom-sets Hom[B](x, y) are the sets of isomorphism classes
for each HomB(x, y).

It is indeed acceptable to refer to sets of isomorphism classes, rather than
classes thereof or some other notion of large collection; much like Cat, we
assert that all unbiased bicategories in UBicat are necessarily small.

Lemma 5.2.5. Suppose X ∈ CSSPinj
2 . Then there is an isomorphism in Cat

h1(X•,0) ∼= [h2(X)].

Proof. We have for any x, y ∈ (X0,0)0 by [Rez00, Cor. 6.5] that π0(X•,0(x, y)) =
π0(X(x, y)0) ∼= h1(X(x, y))/ ∼=, where∼= is the isomorphism relation in h1(X(x, y)).
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Now, consider some x, y, z ∈ (X0,0)0. We have a natural diagram

π0(X(x, y)0)× π0(X(y, z)0)
(
h1(X(x, y))/ ∼=

)
×
(
h1(X(y, z))/ ∼=

)

π0(X
x,z
Sp(2),0) h1(X

x,z
Sp(2))/

∼=

π0(X
x,z
2,0 ) h1(X

x,z
2 )/ ∼=

π0(X(x, z)0) h1(X(x, z))/ ∼=

∼=

∼=

∼=
∼=

∼=

∼=

so that the composition operations in h1(X•,0) and [h2(X)] are the same. For
identities, we have a natural diagram

∗ ∗

π0(X
x,x
0,0 ) h1(X

x,x
0 )/ ∼=

π0(X(x, x)0) h1(X(x, x))/ ∼=

∼= ∼=
∼=

∼=

These two diagrams establish functoriality of the map h1(X•,0) → [h2(X)]
acting as the identity on objects and by the isomorphisms π0(X(x, y)0) ∼=
h1(X(x, y))/ ∼= on hom-sets. This map is both fully faithful and bijective on
objects, so is invertible.

We now introduce the notation ≃ to refer to internal equivalence in a given
bicategory or unbiased bicategory.

Corollary 5.2.6. Suppose X ∈ CSSPinj
2 . If x, y ∈ (X0,0)0, then x ∼= y in

h1(X•,0) if and only if x ≃ y in h2(X).

Proof of Theorem 5.2.2. First, suppose that f is an equivalence in CSSP inj
2 .

We have for every x, y ∈ (X0,0)0 that the map X(x, y) → Y (f(x), f(y)) is a
Dwyer-Kan equivalence, so that for every h, k ∈ (X(x, y)0)0 the map

(fx,y1 )h,k1 : X(x, y)(h, k)→ Y (f(x), f(y))(f(h), f(k))

is a weak equivalence as needed. Moreover, the maps

h1(X(x, y))→ h1(Y (f(x), f(y)))
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are equivalences for all x, y, giving full faithfulness of h2(f). Note that the
converses of all of these implications also hold, so we have that h2(f) is fully
faithful and the maps (fx,y1 )f,g1 are weak equivalences of simplicial sets if and
only if the maps fx,y1 are equivalences of Reedy fibrant complete Segal spaces.
Note this implies that h1(f•,0) is itself fully faithful, as it implies that the maps
π0(f

x,y
1,0 ) are bijections.

For essential surjectivity, consider that the functor h1(f•,0) is essentially
surjective. This implies that, for any y ∈ (Y0,0)0, there exists some x ∈ (X0,0)0
such that f(x) ∼= y. This holds if and only if f(x) is equivalent to y in h2(X),
so the functor h1(f•,0) is essentially surjective if and only if h2(f) is essentially
surjective.

This implies in particular that h2 sends weak equivalences in CSSP inj
2

between Reedy fibrant complete 2-fold Segal spaces to equivalences of unbiased
bicategories. We leave the case of non-completeness to future work.

These results may be extended to the projective fibrant case:

Proposition 5.2.7. Suppose X ∈ CSSPproj
2 . Then there is an isomorphism

in Cat
hp1(X•,0) ∼= [hproj2 (X)].

Proof. We have a chain of isomorphisms

[hproj2 (X)] = [h2(R(X))] ∼= h1(R(X)•,0) ∼= hp1(X•,0).

Definition 5.2.8. Suppose F : X → Y ∈ CSSPproj
2 . Then F is a projective

Dwyer-Kan biequivalence if and only if the following hold:

1. For every x, y ∈ (X0,0)0 and f, g ∈ (Xh(x, y)0)0, the map

Xh(x, y)h(f, g)→ Y h(F (x), F (y))h(F (f), F (g))

is a weak equivalence in sSet;

2. The functor
hproj2 (F ) : hproj2 (X)→ hproj2 (Y )

is an equivalence of unbiased bicategories.

Theorem 5.2.9. Suppose f : X → Y is a map in CSSPproj
2 . Then f is

a weak equivalence in CSSP proj
2 if and only if it is a projective Dwyer-Kan

biequivalence.

241



Towards Algebraic n-Categories of Manifolds and Cobordisms

Proof. The result follows from the fact that R preserves and reflects weak
equivalences.

Indeed, it suffices to observe that F will be a projective Dwyer-Kan biequiv-
alence if and only if R(F ) : R(X) → R(Y ) is a Dwyer-Kan biequivalence.
Then F will be a projective fibrant Dwyer-Kan biequivalence if and only if
R(F ) is a levelwise weak equivalence, which holds if and only if F is a level-
wise weak equivalence between projective fibrant complete 2-fold Segal spaces
as needed.

We also have an alternative characterization of completeness for 2-fold Segal
spaces. This requires a formalization of a result in [JS17], which depended upon
the conjectured existence of homotopy bicategories for projective fibrant 2-fold
Segal spaces. As we now have such a construction that is isomorphic to theirs,
we may now precisely state the following result:

Lemma 5.2.10 ([JS17, Lemma 2.8]). Suppose X ∈ SeSpproj2 . Then X ∈
CSSPproj

2 if and only if X•,0 is complete and every Xk,• is complete for k ≥ 0.

We may specialize this result to the Reedy fibrant case very easily:

Corollary 5.2.11. Suppose X ∈ SeSpinj2 . Then X ∈ CSSPinj
2 if and only if

X•,0 is complete and every Xk,• is complete for k ≥ 0.

We were made aware of this characterization by the discussion in [Ber18,
Rem. 6.10]. In fact, one does not even require that every Xk,• is complete; it
is sufficient to demand that each X(x, y) is complete instead, as is done in the
definition for complete Segal objects given in [BR20, Def. 5.3]:

Proposition 5.2.12 ([BR20, Def. 5.3]). Suppose X ∈ SeSpinj2 . Then X ∈
CSSPinj

2 if and only if X•,0 is complete and for all x, y ∈ (X0,0)0, the Segal
space X(x, y) is complete.

We do not explore the proof of this fact here, though we do take an interest
in a resulting characterization of completeness:

Definition 5.2.13. Suppose X ∈ SeSpinj2 . Define Xheq2 ⊆ X1,0 to be the
subobject consisting of the union of the path components of 1-morphisms that
are equivalences in h2(X).

Note that Xheq2 = (X•,0)heq. Thus, we immediately have the following:

Corollary 5.2.14. Suppose X ∈ SeSpinj2 . Then X ∈ CSSPinj
2 if and only if:

1. The morphism X0,0 → Xheq2 is a weak equivalence;
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2. For all x, y ∈ (X0,0)0, the morphisms

X(x, y)0 → X(x, y)heq

are weak equivalences.

Note then that ifX ∈ CSSPinj
2 , two objects x, y ∈ h2(X) will be equivalent

if and only if there is a path in X0,0 from x to y. This is a reasonable extension
of the case of complete Segal spaces, where for Y ∈ CSSPinj we had that Y0
was a moduli space of objects whose paths corresponded to isomorphisms in
h1(Y ).
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Conclusion

In summary, we have constructed two functorial means to obtain the unbiased
homotopy bicategory of a Reedy fibrant 2-fold Segal space X, one involving
choices of 2-truncated compositions and another via some choice of horizontal
compositions µn for n ≥ 2. Moreover, in both cases, we have constructed
homotopy pseudofunctors of maps between Reedy fibrant 2-fold Segal spaces
decorated with such choices. We have demonstrated that these constructions
largely agree with one another, in that the latter factors through the former
up to potential disagreement on certain coherence isomorphisms, which we
conjecture to be equal regardless. Furthermore, we have extended our work to
the case of projective fibrancy by the construction of a general Reedy fibrant
replacement functor for projective fibrant functors C → sSet, where C is a
Reedy category. Finally, we have considered the behavior of our construc-
tions on singular bisimplicial spaces to obtain fundamental bigroupoids and
proven the applicability of our homotopy bicategories to characterizing both
completeness of 2-fold Segal spaces and equivalences between such complete
2-fold Segal spaces, in both the Reedy and projective fibrant scenarios.

A number of intermediate constructions have been introduced in this work
that may be of independent interest, such as simplicial composition diagrams
and their Cat-valued nonsymmetric operad, globular left 2-homotopies, the
means to compose globular left homotopies of simplicial spaces vertically and
horizontally and the usage of higher homotopies to establish coherence condi-
tions. Moreover, our Reedy fibrant replacement functor may be of interest on
its own, as it is perfectly applicable to other notions of (∞, n)-category, like
Θn-spaces. Investigating this functor further and proving more properties of
it would potentially be a useful future endeavor.

It is our belief that h2 should not only provide a large number of bicategories
of manifolds and cobordisms, by for instance considering (∞, 2)-categories of
n-manifolds and higher cobordisms for any n ≥ 0 and considering various
appended data like framings and orientations, but also eventually lead to a
natural homotopy symmetric monoidal bicategory by similar methods, namely
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by solving some natural family of lifting problems. We also suspect that results
such as the cobordism hypothesis and its proof sketch by Lurie in [Lur09b] or
the geometric cobordism hypothesis of Grady and Pavlov in [GP22b] may
be transmitted to these bicategories, extending the results of Schommer-Pries
in [Sch14b] and Pstrągowski in [Pst14]. Moreover, the methodology used to
obtain h2 should provide useful insights in the task of constructing homotopy
n-categories of more general (∞, n)-categories, using models such as those
of Trimble or Batanin and Leinster. Such work may elucidate connections
between ‘homotopy-theoretic’ and ‘algebraic’ models of higher category.

6.1 Future Work
A number of future projects naturally branch from the results in this thesis.
The foremost is to apply h2 to some suitable (∞, 2)-category of manifolds and
cobordisms. While it is possible to do so with projective fibrant constructions,
we believe it would be more suitable to choose some 2-fold Segal space of cobor-
disms that is Reedy fibrant on the nose. It appears that the work of Grady
and Pavlov in [GP22b] should perhaps fit this criterion, though a complete
proof appears to be pending in the literature at present. Alternatively, a new
construction of such an (∞, 2)-category could prove useful in and of itself.

Another goal is to extend h2 to accommodate symmetric monoidal struc-
tures. One approach to defining a symmetric monoidal complete 2-fold Segal
space, given in [CS19], is to consider a functor

A : Γ→ CSSPproj
2

where Γ is the category of finite pointed sets

⟨n⟩ := {0, · · · , n}

with pointed maps
f : ⟨n⟩ → ⟨m⟩, f(0) = 0

between them, such that for all n ≥ 0 the natural map

A⟨n⟩ → (A⟨1⟩)n

is a weak equivalence. We could consider a version of this definition where
instead we have a functor

A′ : Γ→ CSSPinj
2

such that the above maps are trivial Reedy fibrations. Such a structure would
perhaps introduce suitable lifting problems whose solutions would obtain nat-
urally a symmetric monoidal bicategory structure on h2(A⟨1⟩). For instance,
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one would obtain a natural product on objects and hom-categories by consid-
ering solutions to the lifting problem

A⟨2⟩ A⟨1⟩

A⟨1⟩ × A⟨1⟩ A⟨1⟩ × A⟨1⟩

∼

and restricting to levels 0 and 1. It should be noted that Γ, while not a
Reedy category per se, is in fact a generalized Reedy category as defined in
[BM10], so our Reedy fibrant replacement functor could perhaps be extended
to this situation to handle the general case of the above maps being mere weak
equivalences. We leave this to future work.

Before one gets too eager however, it is prudent to check that h2 does behave
as we should expect. For instance, identifying that h2 is equivalent to other
known constructions of homotopy bicategory in the literature, such as those of
[Mos21] and [Cam20], would be a useful verification that h2 indeed implements
the expected notion of a ‘homotopy bicategory’. Moreover, finding a nerve
functor that is (Quillen) right adjoint to h2 would be a useful feat. Producing
a Quillen adjunction would require a model structure on UBicat or perhaps
Bicat, though no such model structure seems to have yet been constructed
in the literature. Model structures exist instead on bicategories with strict 2-
functors [Lac04] and on bigroupoids with weak 2-functors [Bes18], the former
of which was sufficient to establish the Quillen adjunction in [Cam20], though
it may instead be prudent to wait for such a model structure to be introduced.

There is reason to suspect that our notion of h2 will not admit a right ad-
joint per se, but perhaps something weaker such as a right biadjoint. Indeed,
the possibility that h2 factors through htr2 suggests some agreement with the
work of Lack and Paoli in [LP08] on Tamsamani 2-categories and bicategories.
For instance, h2 identifies only the normal homomorphisms, as is the case with
Lack and Paoli’s realization functor from Tamsamani 2-categories to bicate-
gories. If this should be the case, then Lack and Paoli’s construction of a
biadjoint rather than a strict adjoint suggests we should seek such a structure
instead, under some suitable extension of SeSpinj2 to a bicategory or perhaps
simplicial category.

Some other basic results would be of use barring the more powerful ones
listed thus far, such as demonstrating how to obtain from h2 pseudonatural
transformations and modifications. This requires a suitable notion of pseudo-
natural transformation of 2-fold Segal spaces, perhaps using the work on such
structures in [JS17].

Looking beyond bicategories, it would be of great interest to construct
extensions of h2 to more general homotopy n-category functors hn from (∞, n)-
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categories to some suitable algebraic notion of n-category, such as Trimble
n-categories or Batanin-Leinster n-categories. Such constructions may yield
greater advancements in the world of algebraic n-categories, allowing perhaps
for the transmission of model structures from the (∞, n)-categorical world
down to models of n-category, as well as establishing lifting problems whose
solutions naturally obtain algebraic higher-categorical data from models such
as those of complete n-fold Segal spaces. There may moreover be situations
where it is advantageous to work with algebraic n-categories, such as using
computads to present higher categories in these models.

Having such homotopy n-category functors may moreover allow one to
instantiate topological quantum field theories in the algebraic models of n-
category, where the algebraic structure may more immediately permit pre-
sentations of higher categories of cobordisms by generators and relations in
a similar style to [Sch14b]. Such advantages depend on progress in algebraic
models of higher category, a task that may in and of itself be expedited by
constructions like hn. Until further results are obtained in this direction, the
complete impact algebraic n-categories shall have on TQFTs will likely remain
unknown.
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