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Abstract

In this work we take a theoretical modelling approach to cell mechanics. The
mechanical properties we focus on are the elastic reshaping and force generation
by the cell. From the membrane lipid bilayer to the nucleus and cortex we
explore how they can play a role in affecting two important processes for cells:
endocytosis in its diverse forms and constriction crossing. The first process
we consider is the take up of a solid particle and consider the influence of
curvature and size on the ability of completing engulfment to discuss the optimal
configuration as suggested in experiments and simulation. Then we focus on the
time evolution of engulfment starting with an already formed cup we propose a
model based on fluid mechanics to explain the time evolution observed. Finally
we study the nucleus in the context of constriction crossing. We consider its
elasticity combined to the constriction size with static friction and how they end
up determining the possibility of crossing or not. Moreover we build a model to
get the probability of crossing with constriction size that can be compared to
experimental observation for discussion.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Key elements

To describe the diversity observed in nature the living systems are often classi-
fied in groups and subgroups called the phylogenic tree. This tree goes back to
more primordial organisms. The living organisms have in common the cell as
a fundamental element at the microscale storing the information and playing a
first role in determining the phenotype of the organism. When looking at the
microscopic scale we can observe the cell performing different tasks like process-
ing the information stored in the DNA, replication or defending from pathogens
that want to invade the organism. To move and deform in its environment the
cell interacts with the environment. A macrophage for example requires move-
ment in order to track a moving target like a bacteria or any pathogen. On the
other hand the cell needs a signalling to be guided in the near environment. The
signal through a spatial gradient directs the velocity vector to track a target.
The cell operates with its environment through the interaction with chemicals
triggering the cell. The barrier between the inside and the outside is a thin
membrane layer with a thickness of few nanometres. The cell has a diameter
of 15 µm [1] and composed of many elements in interaction and coupled. We
introduce the key elements that we will meet in the following sections to have
a better understanding of this biological machinery:

1. The plasma membrane is constituted of two layers of lipid molecules called
the lipid bilayer (see fig.1). The bilayer is made of lipid molecules ordered
and forming the building blocks of the membrane. Those molecules can
be represented with a head and tail structure. The head is hydrophilic
and tends to prefer interaction with water. On the other hand the tail
of the molecule is hydrophobic. They tend to self organise in water with
head oriented to the outside and tails to the inside of the bilayer. The
thickness of the plasma membrane is estimated to be around 5nm[1].
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Hydrophylic

Hydrophobic

Figure 1.1: Two lipid molecules with hydrophobic tails pointing to each other
and the hydrophylic heads facing water molecules. It creates a double layer of
lipids commonly called the lipid bilayer.

2. The cytoplasm is the fluid present between the cell membrane and the
nucleus. Its viscosity is estimated to be between 2 and 20 mPa.s [18]
which is few times higher compared to water.

3. The nucleus is a few microns in diameters and delimited by the nuclear
envelope and lamina. Inside the nucleus we find the DNA structured
within the chromatin. Its stiffer than the cell membrane and cytoplasm.

4. The cytoskeleton (see fig.1.2) is the combination of three main compo-
nents: Actin filaments, microtubules and intermediate filament. It gener-
ates the force needed for the cell to complete different processes maintain-
ing and adapting cell shape to the situation, cell division or migration. It
is the active part of the cell generating motion.

1.1.2 Introducing endocytosis

We distinguish two size dependent processes: phagocytosis for relatively large
targets (usually > 0.5µm) and other endocytosis process. The main difference
lies in the way the membrane reshapes to engulf the particle. Clathrin-mediated
(a coating on the vesicle) endocytosis goes through a deformation of the mem-
brane by binding with the target to the interior of the cell. Pinocytosis is a
cell drinking process accompagnied by macromolecules for larger volumes we
talk about macropinocytosis and will come back on this later in section 1.3.3.
Phagocytosis is assumed to occur for sizes above 0.5µm but no theoretical rule
exists on this value. Phagocytosis requires the formation of a phagocytic cup
fuelled by the active forces of actin to be able to engulf the target. It requires
the cell to move towards the bead with extensions called pseudopods working
like cell extensions with the help of actin. The process may also require adhesion
with a surface coating. From the observation of large deformation to engulf the
bead we are required to understand how the membrane is structured in order to
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have the best description to model it in theoretical and numerical work. Models
for phagocytosis include usually the effect of adhesion between the target and
the membrane to ensure the engulfment with the progression of the phagocyto-
sis. Under the lipid bilayer membrane the cortex, made of actin, is supposed to
generate enough force to complete the engulfment of the membrane around the
target.

1.2 Introduction to cell structure

1.2.1 Lipid bilayer membrane

In order to complete phagocytosis the target must be encapsulated in a phago-
some. Experimentally cells are able to take up targets with a size close to its
own diameter. This obviously requires an extension of the initial surface of the
plasma membrane and a significant reshaping of the cell. Despite the fact that
the complete mechanism seems unresolved some hints may be given on the way
the cell works to handle the situation. The membrane can curve out of its orig-
inal curvature which requires energy that can come from Brownian motion and
energy from the cell using ATP. The cortex with actin filaments is the active
material under the membrane involved in phagocytosis and macropinocytosis for
example. The lipid bilayer is stretchable to a maximum of few extra percents
(reviewed in [30]). The membrane being wrinkled we can expect a contribution
from this part leading to a ”smoother” surface during high extensions. Passing
a given threshold the force increases exponentially indicating perhaps that af-
ter using the maximum surface available to generate more surface the plasma
may start to stretch and reduce the number of wrinkles to optimise the surface.
Different from stretching, exocytosis can increase the total surface of a cell and
plays the role of a membrane reservoir by expelling small vesicles from the cell
and at the same time increasing the total surface by adding small patches when
fusing with the membrane. The mechanical properties of the lipid bilayer de-
pends on the lipid phase, for example the Young’s modulus can go from 19.3
MPa in a liquid phase and 28.1 MPa in a gel phase [27].

1.2.2 Actin from monomers to filaments

Actin monomers are composed of 375 amino acids and have a molecular weight
of 43 kDa [19]. Actin filaments, made of actin monomers, can represent up
to 10% of the total number of proteins especially in skeletal muscle cells that
generate more force. From the actin filaments we end up with a gel forming a
network that has viscoelastic properties and at the same time is active with the
polymerysation generating force and myosin, a motor protein generating force,
for cortical tension. F-actin or actin filaments in the cytoskeleton are the result
of the polymerisation (see fig.1.3) of monomers called G-actin into longer fila-
ments with a persistence length lp of 15µm and 6−8nm in diameter [19]. Actin
polymerisation fuelled by ATP hydrolysis is regulated by actin-binding proteins.
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Nucleus

Cortex

Lipid bilayer membrane

Cytoskeleton

Cytoplasm

Figure 1.2: Diagram of the cell and its main elements defining the mechanical
properties: elasticity and force generation.

Each protein group exhibits different properties, for example ADF/cofilin cut-
ting filaments and profilin binding monomers [22]. Changing the length and
density of filaments end up determining the gel phase on a macroscale with the
viscoelastic properties of the assembly. Depending on the difference between
the two rates k+ for polymerisation rate and k− corresponding to the depoly-
merisation rate, the actin filament can through treadmilling , when k+ = k−,
appear to move by polymerising on one pole of the filament and depolymerising
on the other pole without changing the total length of the filament. The per-
sistence length is a way to describe the type of polymer by comparing it with
the length of the polymer. If the persistence length lp is very large compared
to the total length of the polymer l we will expect a very constant shape of
the polymer like a straight line. On the other hand the case where lp << l
the polymer can be described as a disjointed chain or a random walk with a
constant step size. Flexible and semi-flexible can be distinguish by the way they
are described. A flexible polymer can be depicted as a random walk. On the
other side a semi-flexible will be more rigid and the introduction of an elasticity
can be more realistic.

The overall properties of the structure depends on the density and nature of
actin filaments. We can distinguish different types of macromelucar polymers.
The temperature and elasticity of a semi flexible polymer can be found in the
formula of the persistence length

lp =
K

kbT
(1.1)
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with K the bending stiffness, kb the Boltzmann constant and T the temperature
in Kelvin.

Polymerisation k+ Depolymerisation k-

G

G

G

GG

Actin filament

Figure 1.3: Representation of an actin filament with a schematic representation
of the actin monomers G-Actin represented by the letter G. The rates k+ and
k− on both ends represent the faster end (or barbed) and the slower end (or
pointed) respectively.

1.2.3 Cytoskeleton

The cytoskeleton as the name may suggest corresponds to the essential ”rigid”
structure of the cell built like a network of the different actin filament struc-
tures giving it the capacity to withstand external forces. The cytoskeleton has
as building blocks elements different filaments and proteins connected into a
network giving rise to its mechanical properties like cell stiffness and viscous
properties. The most commonly found in literature are actin filaments, mi-
crotubules and intermediate filaments. The cytoskeleton is fundamental for
migration and defining cell shape. A fundamental structure in cell membrane
reshaping is the cortex with a higher density of actin filaments compared to
other regions of the cytoskeleton in the cell.

1.2.4 Cortex

Under the lipid bilayer membrane is the cortex (see fig.1.2). It is the regulator of
the shape through force generation and its active properties. The thickness and
density are subject to change for example the formation of blebs can momen-
tarily increase the cortex thickness or even have an inhomogeneous thickness
transversely (reviewed in [8]). From there we should keep in mind when in-
terpreting results and consider a range of possible values or averages instead
since that depending on the situation things can be very different as the cell has
adaptation capacities. To describe the elasticity of the membrane we have to
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lp>>l    lp<<l    lp=l    

Figure 1.4: General description on how a polymer can be described depending
on the bending stiffness KB . We go from a straight line for lp >> l on the left
to the other extreme on the right lp << l.

define what we mean by membrane. In general it consists on the lipid bilayer
with a thickness of few nanometres described in section 1.2.1. In addition to the
lipid bilayer and its properties we have to consider the actomyosin cortex as a
main element of the total new membrane lipid bilayer and cortex. In fact both
are connected. The ezrin from the ERM group (Ezrin-Radixin-Moesin) [25] at-
taching the membrane to the cortex and playing a role in the blebs formation
when the cortex is more detached from the plasma membrane.

The cortex structure is far more complex in terms of composition and geo-
metrical structure than the lipid bilayer which makes it difficult to physically
describe. Models like the one developed by Satcher and Dewey for example (re-
viwed in [22]) consider the mesh size being 100 nm and the cortex as a meshwork
of connected rods forming a porous medium. This meshsize is also reviewed in
[8] in more recent work. Despite the attempt to estimate Young’s modulus to
characterise the elasticity of the cortex it is still an active material that adapts
to its environment and function that is why talking about a fixed value of the
modulus may be misleading. Techniques like Atomic Force Microscopy where
a cantilever is used to scan the cell surface and record the elastic response can
be ambiguous to interpret since we don’t know what is responding to the mem-
brane lipid bilayer. The response can be from an active process and mimic a
higher elasticity. The cortex has physical properties that we can list:

1. Viscoelasticity depending on the frequency or timescale. Considered as
an elastic solid under 1 min and a viscous fluid otherwise[8]. An order of
magnitude close to 10 kPa can be found in the literature regarding cortex
stiffness [11] [21].

2. Cortex tension. Resulting from the actomyosin network with the actin
filament attached by crosslinkers.
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3. Frictional forces from the interaction with the membrane.

4. Stiffness especially in the more solid phase.

Those physical properties are determined by different proteins regulating the
larger scale behaviour of the cortex. We can classify main ones as follow:

1. Nucleators creating new branches of filaments.

2. Regulators of the assembly clustering filaments.

3. Crosslinkers and bundlers attaching filaments. Bundles tend to produce
less random or more organised networks of actin filaments than crosslink-
ers.

The cortex being under the plasma membrane we expect some friction re-
sulting from the attachment of the cortex to the lipid bilayer. The viscoelasticity
is described more elastic for short timescales (<1 min) and more like a viscous
flow for larger timescales. The description of the cortex depends on the force
applied at different frequencies.

1.2.5 Membrane ruffles

Ruffles are membrane folds looking structures initiated by actin filament poly-
merisation and participate in cell active processes. They can be seen as a pro-
longation of the cell to move or catch objects in phagocytosis for example. The
actin by polymerising under the lipid membrane bilayer. Those actin driven
ruffles have an estimated thickness of a few hundred nanometres and different
distributions [5]. Lamellipodia appears to have a more distributed size on the
contrary filopodia and ridges have a lower spread of the thickness values.

1.3 Endocytosis and channel diffusion

The first observations of microorganisms were made by Leeuwenhoek in the 17th
century using a microscope but it is in the early 20th century that Ilya Metch-
nikov was awarded the Nobel Prize in Physiology or Medicine in 1908 for his
work on immunity and more precisely phagocytosis [16]. We distinguish endo-
cytosis processes involving actin like phagocytosis (reviewed in [38])(reviewed in
[38]), macropinocytosis and others like clathrin-mediated or caveolin mediated
endocytosis.

1.3.1 Phagocytosis

The way a cell can absorb from its environment elements can differ depending on
the characteristics of the target. This leads to a variety of processes performed
by the cell and involving more or less a large reshaping of the cell membrane
through signaling pathways. For rigid targets under 0.5µm endocytosis receptor
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mediated and translocation are commonly observed. On the other hand larger
targets requiring more energy and deformations will go through more elaborated
mechanisms with an initial step of cup formation and the pseudopod extension
all around the target. The process is active and requires the help of the actin
cytoskeleton to close the bag wrapping the target called phagosome.

1.3.2 Clathrin and caveolae mediated endocytosis

Clathrin and caveole mediated endocytosis use an invagination by the membrane
to the inside of the cell and require the mediation of a protein coated on the
vesicle. Caveolae mediated endocytosis creates vesicles of 50−60nm and 120nm
for clathrin mediated endocytosis (reviewed in[15]).

1.3.3 Macropinocytosis

Macropinocytosis consists in the uptake of fluid where other tiny particles can
be present inside a macropinosome. Macropinocytosis shares with phagocytosis
the actin dependency but does not require any coating, obviously for a fluid, that
are usually present in pahgocytosis with antibody coating or clathrin mediated
endocytosis (reviewed in [32]). A mechanism proposed as an archaic version of
phagocytosis where osmosis reducing the volume of the cell for a constant mem-
brane surface would increase the number of ruffles and with random fluctuations
of the shape engulfs a volume of fluid. The difference with macropinocytosis is
the actin role creating ruffles making it an active process.

1.3.4 Active and passive diffusion

For tiny particles with a given concentration in the surrounding of the membrane
can occur in a passive way following the gradient of concentration from more
concentrated to less concentrated creating a flux following Fick’s law. Another
type of diffusion is through channels in the membrane requiring energy making
it an active process and selecting the molecules to cross the membrane. The
scale of the molecules or particles concerned by diffusion are not at the centre
of our work.

1.3.5 Target shape, size and rigidity influence on endocy-
tosis

The way phagocytosis takes place is observed to change based on the geometrical
and elastic properties of the target. IgG (an antibody) coating is commonly
used in experiments on the targets to make the macrophage engage engulfment.
Outside of coating the size plays a role in the way a target is engulfed. A bead
that is equivalent in size to the macrophage may be impossible to engulf or
rarely and we would rather see the phagocytic cup unable to form completely.
In terms of mechanosensitivity the cell reacts differently with elasticity of the
target. Too rigid targets (> 10 MPa) are believed to be too stiff to indent
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Table 1.1: Table of the estimated outcome for bead size related to the highest
uptake.

Reference Preferred radius estimation (µm)
[36] 0.75
[7] 1.25
[23] No preferred size
[5] 0.5

(reviewed in [38]). Too soft materials would be too soft to be ”felt” by the cell
and create the necessary signalling. The curvature plays a role too based on
the speed of internalisation and phagocytic cup formation when we point the
highest curvature point of an ellipsoid shape object first instead of a spreading
when the flatter surface is faced[6]. Highly curved area of a target seem to help
in the phagocytic cup formation and success in engulfment compared to sphere
or more regularly curved shapes (smooth) (reviewed by [15]). Even if there is
enough evidence to notice an influence of shape, size and stiffness it is much
more complicated to isolate the effect of each one separately but a size increase
appears to have more impact in reducing internalisation compared to decreasing
stiffness [13]. We also point out that in the case of a sphere size and shape are
simply related: increasing the size reduces the curvature and vice versa.

1.4 Observations from the literature

Experiments from the literature (given in Table 1.1) have studied the internal-
isation of beads by a population of macrophages to count the number of beads
internalised by macrophage for different sizes of beads. It appears that for a
certain range size we have a higher intake of beads per macrophage suggesting
an easier process of internalisation that we can understand as physicist as a
lower amount of energy needed for the uptake. This will naturally lead us to
investigate the energy associated with membrane reshaping. As said earlier in
this introduction the size is not the only parameter determining the outcome of
an engulfment and its success rate (see section 1.3.5). Outside of considering
a single event intake we have the probability of contact between a bead and a
macrophage since it is an experiment involving a population of cells surrounded
by beads. The combination of all those potential parameters requires some
caution when discussing and comparing our results with the experiments.

1.5 Overview on the next chapters

We can now introduce the next chapters where we model three different cases.
In chapter 2 we study the engulfment of a bead and the size effect on the
deformation energy of the membrane. We will consider a minimum of energy as
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a preferred size. The cortex will be also a point of interest for high curvature
case. We also combine probabilities between probability of contact and single
engulfment probability with thermal fluctuations. Finally we open a discussion
on the results obtained accompanied by elements from the literature. Chapter 3
is dedicated to the time evolution of engulfment. A feedback model is proposed
for the phagocytosis last half of engulfment for a spherical target including
viscous properties and force generated by actin around the sphere. After that,
chapter 4 is about nucleus migration or constriction crossing and the outcome
of it depending on geometrical parameters like nucleus and constriction size to
elastic and force generation properties. The idea is to be able to estimate the
possible success or not of crossing given the input conditions. Finally we will
summarise the results obtained and give possible outlooks for each chapter.

TARGET CELL

MacropinocytosisPhagocytosis

Caveolin or
Clathrin

 Mediated
Process

Actin dependant

● Size
● Elasticity
● Coating

● Curvature

● Size
● Membrane 
elastic properties

● Receptors
● Force generation

No endocytosis or 
different process

Contact

Figure 1.5: Possible outcomes based on the initial cell and target characteristics.
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Chapter 2

Phagocytosis: Energy and
take up probability

In this first section we aim to describe the membrane in terms of energy vari-
ations after reshaping. The most common energy formulation used is the one
derived by Helfrich in 1973[17]. It is very close to the thin plate energy bending
formulation for the bending term given in [20]. We can make the derivation from
a microscopic description of the membrane[31]. Once we are able to describe the
energy of a deformation we investigate the possibility of an ideal configuration
of size and shape as suggested by other works [14][26][5]. In a second time we
focus on the cortex and a possible limitation in bending from excluded volume
interaction giving rise to an ideal size of bead that we discuss further. Finally we
end this chapter with the combination of a contact probability between cell and
target with the probability of reaching halfway of engulfment. We will conclude
by summarising all the approaches considered and discussing them with results
from the literature.
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2.1 Lipid bilayer deformation energy

The lipid bilayer is represented as two layers of self assembled lipids interacting
and at an equilibrium phase. The membrane can be stretched or bent leading
to an increasing of energy.

To describe the bending of a surface in a 3D space we have two main curva-
tures. We need to introduce two scalars: the Gaussian curvature and the mean
curvature respectively to calculate the energy associated with a bending .

The integrated curvature energy per surface area is given by eq.2.1[25]:

E =

∫
(2κ(H −H0)

2 + γ + kGK)dA+

∫
∆PdV. (2.1)

1. κ is the bending modulus that has the dimension of an energy.

2. H = c1+c2
2 and H0 are respectively the average curvature and the sponta-

neous curvature. The spontaneous curvature can be different from zero.

3. γ is the surface tension constant with the dimension of energy per surface
area.

4. K is the Gaussian curvature i.e. K = c1c2.

5. ∆P is the difference in pressure between the two sides of the membrane.
We assume that during phagocytosis the difference of pressure before clos-
ing of the phagosome can be neglected and that we have an equilibrium.

We have the following energy per unit of surface isolating the contribution
from bending

eb =
kb
2
(H −H0)

2. (2.2)

The curvature may be negative or positive depending on which side is bent
which is a matter of convention. The most important is to keep the same
convention through calculations. To illustrate the curvatures we can give few
examples of 2d surfaces with their respective curvatures (see fig.2.1).

1. The simplest one being the plane with zero curvatures: c1 = c2 = 0

2. The sphere of radius R with c1 = c2 = ± 1
R

3. The cylinder with two different main curvatures. On the longitudinal axis
z we have c1 = 0 and c2 = ± 1

R with R the radius of the cylinder.

4. Another shape is the catenoid with c1 = −c2. The interesting fact is that
it gives H = 0 which is the same mean curvature as the plane in terms of
bending energy.
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C1

C2Cylinder C1 = 0

Cylinder C2= 0
Sphere C1= C2

 Catenoid C1= -C2

Plan (0,0)

Figure 2.1: Possible shapes for a given set of value (c1,c2) as the two main
curvatures.

2.2 Helfrich energy for different deformations

In order to describe the energy changes we need to explain first the representa-
tion of the cell we consider. Experimentally the cell has no regular shape and
we can only estimate a volume based on frames taken. For the next parts of
our work we consider the cell as a sphere to simplify the situation and because
it is the closest ideal shape we can consider. In case we would have to refer to
the experiments where the volume is given we may use an estimated radius of
the cell

R0 =

(
3

4π

) 1
3

V
1
3
0 . (2.3)

We start by calculating the squared term contribution involving the curva-
ture which is defined by

E1 = 2κ

∫
dA (H −H0)

2
(2.4)

with H the average curvature

H =
c1 + c2

2
. (2.5)
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c1 and c2 are the main curvatures of the surface and for a sphere of radius
R0 the mean curvature is

H0 =
2

2R0
=

1

R0
. (2.6)

We consider the engulfment of a sphere with radius R by a macrophage of
radius R0 represented as a sphere (see fig.2.2).

Figure 2.2: 2D representation of the sphere with radius R engulfed by the
membrane. In red the undeformed shape. The blue section is a 2d view of the
torus with a small radius e and R for the larger radius (R)

2.2.1 Sphere. Part 1

We calculate the total energy for the curvature in purple forming the cup fitting
the bead (see fig.2.2) that corresponds in absolute value to 1

R since we consider
that it follows the shape of the sphere until the point of phagocytosis

EB1 = 2κ2πR2

(
1

R
+

1

R0

)2

= 4πκ

(
1 +

R

R0

)2

. (2.7)

We introduce a nondimensional parameter r = R
R0

that characterises the
ratio between the macrophage and the target and make it easier to manipulate
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for any macrophage size. We limit our study to R < R0, i.e. r < 1. The energy
can be rewritten as

EB1(r) = 4πκ (1 + r)
2
. (2.8)

The eq.2.8 has no minimum for r > 0 (see fig.2.3) that is irrelevant in terms
of physics. The smallest bead we consider must be larger in radius than the
thickness of the lipid bilayer to keep the validity of the equations.

0.0 0.2 0.4 0.6 0.8 1.0
r

5

10

15

EB1 (r)

πκ

Figure 2.3: Increasing energy in units of πκ for the spherical shape with r. It
is a monotonous increasing energy when increasing size r.

2.2.2 Cylinder. Part 2.

The average curvature for the cylinder in green (fig.2.2) can be written

H =
c1 + c2

2
=

1

2(R+ 2e)
, (2.9)

where the variable e is the radius of the the circle in blue corresponding to a
cut of the torus on fig.2.2. In the case where R >> 2e the average curvature
tends to H → 1

2R we have

EB2 = πκ (1− 2r)
2
. (2.10)

The curvature of the cylinder is positive following the convention H0 = 1
R0

. The
result is shown in fig.2.4.

2.2.3 Energy for the torus. Part 3.

The torus [24] has a constant curvature c1 on one direction corresponding to 1
e

and a changing curvature for c2 given by

c2 =
cosu

Rt + e cosu
, (2.11)
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Figure 2.4: Increasing energy in units of πκ for the cylinder shape with r. It
has a minimum for r = 0.5.

with u the angle on the circle of the cross section of the torus. We have to
be careful with the large radius Rt defined in the torus of revolution as it
corresponds to R+ e in our case. By introducing Rt = R+ e we have

c2 =
cosu

R+ e(1 + cosu)
. (2.12)

The surface of half a torus can be expressed as

ST = 2π2Re (2.13)

and the average curvature H is given by

H =
c1 + c2

2
=

1

2

(
1

e
+

cosu

R+ e(1 + cosu)

)
. (2.14)

Case e << R.

In the case where e is very small compared to R and R0 we approximate H as

HTorus ≈
1

2e
, (2.15)

we want to minimise the energy with respect to e. The bending energy contri-
bution for the half torus and the cylinder from equation 2.10 are the expressions
showing explicitly e. We start by giving the curvature term for the torus

EB3 = 2κ
1

4e2
2π2eR = π2κ

R

e
(2.16)

and the contribution from the surface tension

ES2 = γS2 = γ2π2Re. (2.17)
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The energy contribution from the cylinder may be neglected since e << R.
The radius of the cylinder is approximated as R+2e ≈ R. We can finally write
the total energy with terms showing e explicitly

ES2 + EB2 = 2π2γRe+ π2κ
R

e
, (2.18)

the derivative of eq.2.18 with respect to e gives

∂(EB2 + ES2)

∂e
= π2R(2γ − κ

e2
) = 0. (2.19)

We finally deduce an expression for e given by eq.2.20.

e∗ =

√
κ

2γ
, (2.20)

in terms of membrane folding space of the pseudopod surrounding the target it
is the diameter 2e given by

2e∗ =

√
2κ

γ
. (2.21)

We notice that a similar result for eq.2.21 is given by [40] for the minimum
radius size of the spherical target to trigger endocytosis. We can give an estimate
of the spacing 2e∗ using values of κ and γ from the literature. The value of κ
seems to change from 4 × 10−20J (or 10kT ) to 16.10−20J (or 40kT ). A good
review on the estimations of the bending modulus can be found in [3]. The
measured surface tension is estimated to be around 2.07mN.m−1. Using those
values we have

2e∗ ≈ 2

√
16.10−20

4.10−3
≈ 12nm, (2.22)

as a point of comparison protrusions are around few hundred nanometres which
seems an order of magnitude higher compared to the result in eq.2.22.

The bending modulus seems to be hard to determine since the estimated
values of κ change depending on the measurement method i.e. numerical, ex-
perimental or theoretical. The value of κ and γ are not completely uncorrelated.

A possible origin to this difference is the fact that the view of a perfectly
organised lipid bilayer in practice for a cell is wrong. The proteins interacting
with the membrane and inhomogeneous element added could change the physical
properties of the membrane bilayer in vivo. Taking into account ”defects” in
the bilayer structure may give a higher estimate of the bending modulus and
surface tension.

Moreover κ and γ are two parameters that are indirectly related and can
change both at the same time meaning that they are not completely indepen-
dent. Since we have a ratio of both parameters one can expect a possible simpler
expression of e∗. Knowing also that estimations are made for ideal situations
where the lipid bilayer is described as pure and contrasts with the cell mem-
brane including the attached cortex under it changes the response and makes it
potentially more difficult to bend giving an effective κeff > κ.
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Following the thin plate or shell theory the bending modulus is given by

κ =
Eh3

24(1− ν2)
(2.23)

with the following parameters:

• E: Young modulus.

• ν: Poisson’s ratio describing the compressibility.

• h: The thickness of the shell or plate.

The expression shows how the bending modulus is affected by the thickness
h. Taking a value of h ten times higher will multiply the bending modulus
by a factor 103. Referring to eq.2.20 we take the square root (

√
1000 ≈ 32).

This increases the previous value of 2e to 2e ≈ 384nm which is larger than the
previous estimation and closer to estimated thicknesses of protrusion measured
in experiment [5].

Total energy for the sphere

We can finally sum the three contributions for the halfway configuration (see
fig.2.2) in order to compare it with the nearly full engulfment. We assume that
R+ e ≈ R and have

Ehalf = 2κ

(
2π

(
1 +

R

R0

)2

+ π2R

e
+

π

4

(
1− 2R

R0

)2
)
+γ(2π2Re+2πR2+2πR2),

(2.24)
this energy is to compare with the energy at nearly full engulfment where we
close with a catenoid before the fusion of the membrane. By removing the torus
and adding the two spherical part fully covering the bead we obtain

Efull = 2κ

(
4π

(
1 +

R

R0

)2

+
π

4

(
1 +

2R

R0

)2

+ 2π

(
1− R

R0

)2
)
+γ(4πR2+2πR2+2πR2).

(2.25)
We give the expression of the difference between the energy of full engulfment

and half way engulfment ∆E = Efull − Ehalf with eq.2.26.

∆E = 2κ

(
2π

(
1− R

R0

)2

− π2R

e

)
+ γ(4πR2 − 2π2Re) (2.26)

∆E = 2πκ

(
2 (1− r)

2 − π
R

e

)
+ 4πγR2(1− π

e

2R
) (2.27)

Taking the assumption from eq.2.22 the term πR
e dominates since r < 1.

Taking also πe
2R << 1 gives

∆E = 4πγR2 − 2π2κ
R

e
, (2.28)
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taking the situation for which ∆E = 0

R =
πκ

2γe
. (2.29)

Using result from eq.2.20 we have the radius R∆ for which ∆E = 0 and changes
sign. For R > R∆ we have ∆E > 0 and ∆E < 0 in the case R < R∆

R∆ = π

√
2κ

γ
. (2.30)

The expression given by eq.2.30 gives the minimum radius bead for which full
engulfment has a higher energy in terms of curvature energy and surface tension
combined. It means that for a radius R < R∆ the configuration of full engulf-
ment, just before the closing of the engulfment cup wrapping the target, has
a lower energy than the configuration before. The extra energy between half
engulfment and full engulfment, when R < R∆, can possibly be released in the
form of thermal energy for example.

2.3 Bending energy around a spherocylinder

After the sphere shape we investigate a more complex structure to the changes
we can expect from a shape with different symmetries. We can think of the
initial sphere that we cut in half and introduce a cylinder of length L to connect
them. We end up with a spherocylinder or a pill shape (see fig.2.5) that the
macrophages will engulf. We can identify two shapes:

• The cylinder in the middle with radius R at the basis and length L. The
two principal curvatures of a cylinder in absolute value will be 0 and 1

R .

• Two semi-spheres in order to have a close surface with radius R too. For
the sphere we have two same main curvatures 1/R in absolute value.

This shape ensures the closed of the surface around the boundary between
the spherical shape and the cylinder. The first derivative is also continuous.
One of the main curvatures won’t be continuous jumping from 0 to 1

R . The
area of the cylinder is given by

S1 = 2πRL, (2.31)

knowing the two main curvatures we can calculate the energy related to the
average curvature

H =
c1 + c2

2
=

1

2

(
0− 1

R

)
= − 1

2R
. (2.32)

The total energy may be split into two separate contributions. The one from
the cylinder and twice the energy of the hemisphere

E = ECylinder + EHemisphere, (2.33)
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Figure 2.5: 2d representation of a spherocylinder

we calculate the contribution from the cylinder

ECylinder = 2κ

[
2πRL

(
1

2R
+

1

R0

)2
]
= πκ

L

R

(
1 +

2R

R0

)2

(2.34)

and give the bending energy for the hemispheres

EHemisphere = 8πκ

(
1 +

R

R0

)2

. (2.35)

By summing the two energies we have the total energy corresponding to the
bending. We introduce r = R

R0
and l = L

R0
the total energy

E = πκ

[
8 (1 + r)

2
+

l

r
(1 + 2r)

2

]
︸ ︷︷ ︸

f(r,l)

. (2.36)

The figure 2.6 shows the function f(r, l) for different values of l showing the
evolution and position of the minimum.

Derivation of the minimum

From the previous section we differentiate the function f(r, l) to find the position
r∗(l) of the minimum. We start from f(r, l) given by

f(r, l) =

[
l

r
(1 + 2r)

2
+ 8 (1 + r)

2

]
, (2.37)
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Figure 2.6: Function f (see eq.2.36) for different values of l. We can see a
minimum r > 0 showing up for l > 0.

we differentiate with respect to r eq.2.37 to obtain

df

dr
= 16(1 + r)− l

r2
(1 + 4r2 + 4r) + 4

l

r
(1 + 2r) (2.38)

and set the equation df
dr = 0 to solve

16(1 + r)− l(4 +
4

r
+

1

r2
) + 4l(2 +

1

r
) = 0. (2.39)

We end up with a polynomial to solve

16r3 + (4l + 16)r2 − l = 0, (2.40)

the solution r∗(l) for eq.2.40 is solved using Mathematica and showed in fig.2.7.
The limit l >> 1 from this model says that for any length L of the spherocylinder
the radius minimising the bending energy will always be r∗ < 0.5 because
of the limit when r∗(l >> 1) → 0.5. A potential comparison with existing
spherocylindrical shape in the biological world is with bacteria like E.coli.

2.4 Cortex model

Experimentally the available data and observations from [36][6] indicates a
higher intake of beads by macrophages when exposed to a population of beads
with in a certain range size of few hundred nanometres. Until now we have used
the Helfrich bending energy of a lipid bilayer to quantify the energy needed for
the reshaping necessary for engulfment. This approach neglects the possible
effect from the cortex contribution positioned under the lipid bilayer and the
fact that the range we look at is close to the thickness of the membrane lipid
bilayer and cortex combined. The cortex thickness is of the order of few 100nm
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Figure 2.7: Evolution of r∗ minimising the energy of bending with respect to
the length l. We have r∗(l → ∞) → 1

2 .

and the range of size of bead radius is the same.

We propose in the following section a description of the cortex energy con-
tribution to the bending. It is a way to highlight the possible important role of
the cortex in the size and/or shape effect on phagocytosis.
We aim for a simple representation of the cortex composed of interacting ele-
ments (actin filaments, proteins,...) with an average spacing. From there we
find the effect of the curvature on the average spacing.
In a second time we introduce an energy potential that describes an interaction
of unknown nature with free parameters that we discuss later.

In the following section we focus on the small range beads that we are inter-
ested in which means in the range of few 100nm in radius.

We represent the cortex as a structured network under the membrane lipid
bilayer (see fig.2.8) with average distance h between the solid elements in it like
the filaments and a cortex thickness w. The bending follows a curvature 1

R with
R the radius of the bead. Another supposition is that the deformation doesn’t
change noticeably h.
We aim to find d (see fig.2.9) the new average distance as we bend change the
curvature with different bead radii R as a function of the other geometrical
parameters R, w and h. d is the shortest distance that we take as the most
relevant along the transversal axis of the cortex that we use to quantify the
energy. Since we consider an excluded volume type interaction the smaller the
distance d the higher will be the energy.

We draw a circle representing the spherical target in 2d and larger one with
a radius R+ w

2 . We take two lines separated by a distance h as shown in fig.2.9.
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Figure 2.8: Representation of the lipid bilayer with the cortex just under.

We have
d

2R
=

h

2(R+ w
2 )

(2.41)

and deduce d(h,w,R) given by

d =
h

1 + w
2R

. (2.42)

We notice that for beads of large size compared to the thickness of the membrane-
cortex elastic sheet d = h which leads to the flat case but for our study we remain
in our case where the the size of the bead is of the same order as the thickness of
the cortex. We should mention also that we can keep in mind the possible gap
between the cortex and the lipid bilayer. The following transformation can be
done to include this gap. In practice it like a new effective radius (see eq.2.43).
It is like having a larger radius in the calculation

R → R+ a, (2.43)

the consequence when reading the data would be to keep in mind that results
may be shifted. The estimation of this gap experimentally (reviewed in [8])
indicates that one should be aware that any result regarding R may be shifted
by the size of this gap a(see fig.2.8).

2.4.1 Excluded volume interaction.

We assume a general form of an interaction between the cortex elements de-
scribing the excluded volume given by

E(d) =
A

dν
, (2.44)
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Figure 2.9: Representation of the membrane-cortex complex surrounding the
spherical bead. w is the total thickness. R the radius of the bead. h is the
average spacing between the elements of the cortex.

we consider mainly the leading order of this interaction since one could in a
general case write down the sum of all the powers as a serie of all negative
powers. We define A as a constant that can depend on different parameters in
the actin network like a random process (temperature) for example, chemical
reactions or even concentrations. We will see later that for our purpose and
without stretching or surface tension from the membrane it is not relevant for
our final result. The range of the interaction associated with ν is more complex
to link with an experimental parameter than the thickness of the cortex that is
an observable which can be estimated. Replacing the distance with eq.2.42 in
eq.2.44 we obtain

Es(R) =
A(1 + w

2R )ν

hν
. (2.45)

For a single element of surface dS we have 4 interactions for a square lattice
on the surface. We integrate over the surface corresponding to the spherical
bead engulfed by the cell. We have the energy given by

E(R) =
16πR2A(1 + w

2R )ν

hν
, (2.46)

the expression in eq.2.46 without adding any other term to the total energy has
a minimum that we investigate in the next section.

27



0.00 0.05 0.10 0.15 0.20
r

0.05

0.10

0.15

0.20

fE

ν=3

ν=5

ν=7

Figure 2.10: Minimum position for fE = R2 (1+ w
2R )ν

hν changing with ν and w
R0

=
0.02.

2.4.2 Minimum energy

We start from the expression in eq.2.46 and introduce the parameter given by

ϵ =
w

R0
, (2.47)

to simplify we introduce a new constant C = 24πA
hν and the set of variables (r, ϵ).

We can rewrite eq.2.46 into (see fig.2.10 and fig.2.11)

E1(r) = Cr2
(
1 +

ϵ

2r

)ν
. (2.48)

We differentiate eq.2.48

dE1

dr
=

2r(
1− ϵ

r

)ν − νϵ(
1− ϵ

r

)ν+1 = 0, (2.49)

with respect to r to find the minimum of energy. We notice that the only
physical parameters affecting the position of the minimum r∗ are ν and w. We
simplify eq.2.49

2r + ϵ− ϵν

2
= 0 (2.50)

to find the expression of r∗ given by

r∗ =
ϵ

2

(ν
2
− 1
)
. (2.51)

In our model e is the thickness of our cortex. For higher values of ν we expect
a higher value of R∗ = R0r

∗. We notice also that the minimum of energy or
maximum of take-up is expected to be always greater than e meaning that the
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Figure 2.11: Minimum position changing for different ϵ and ν = 7.

thickness of the cortex should always be smaller than the maximum of uptake
corresponding radius following this model. Assuming that ν is an integer we
deduce that to have a solution we need

ν ≥ 3. (2.52)

Since we are working in a 3d system it means that the short range interaction
is necessary to have a solution and see this effect.

2.4.3 Effect from stretching energy and surface tension

In the following section we aim to study the potential effect of tension and
stretching on the curvature energy and the location of a minimum.

Surface tension

As an example we take the result from section 2.4.2 to show how surface tension
can influence the location of the minimum. We give the sum of both energies
including surface tension

E = Cr2
(
1 +

ϵ

2r

)ν
+ 4πγR2, (2.53)

we can rewrite the surface tension term and eq.2.53 into

E = Cr2
(
1 +

ϵ

2r

)ν
+ 4πγR2

0r
2. (2.54)

To compare the bending energy and surface tension energy contribution we
introduce a dimensionless parameter

ω1 =
4πγR2

0

C
(2.55)
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and we introduce EC = E
C in

EC(r, ϵ, ν, ω1) = r2
(
1 +

ϵ

2r

)ν
+ ω1r

2, (2.56)

the effect of w1 can be seen in fig.2.12 and how the position of the minimum to
the left of the r-axis. The addition of surface tension is changing the location
to the left of the r-axis (see fig.2.12).
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Figure 2.12: Effect of surface tension on the location of the minimum for different
values of ω1.

Stretching

Knowing the extra surface needed and the maximum stretchability we can es-
timate the potential engulfment possible without any extra patches of surface.
We have

4πR2 = 4πkR2
0, (2.57)

k is the proportion of maximum stretching. For example 4% is k = 0.04. We
estimate the maximum value of R possible with pure stretching

Rmax =
√
kR0, (2.58)

in another form in terms of ratio we have

Rmax

R0
= rmax =

√
k. (2.59)

The stretching energy with ∆A the extra area required and A0 the initial
area

E =
Ks

2

∆A2

A0
, (2.60)
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Figure 2.13: Maximum radius with pure stretching.

we have the following total energy

E = Cr2
(
1 +

ϵ

2r

)ν
+

Ks

2

∆A2

A0
. (2.61)

Written as a function of R with ∆A = 4πR2

E(R) = Cr2
(
1 +

ϵ

2r

)ν
+

2πKs

R2
0

R4, (2.62)

we introduce ω2 =
2πKsR

2
0

C1
and EC2

= E
C and obtain (see fig.2.14)

EC2
= r2

(
1 +

ϵ

2r

)ν
+ ω2r

4. (2.63)

2.5 Probability of contact combined with en-
gulfment

In this section we include the probability of contact between a macrophage
and a spherical bead combined with the probability of forming a phagocytosis
cup with Helfrich energy. We assume that we have NM macrophages and N
spherical targets in a given volume V0. We make the following assumptions:

• The density of beads is larger than the number of macrophages or we
assume that we have a reservoir keeping the density unchanged.

• The targets are small enough to neglect the targets already internalised
by the macrophages. It is to avoid the fact that after many internalisation
the macrophage may be limited by the surface and volume availability to
engulf.
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Figure 2.14: Effect of stretching on the minimum for different values of w2. As
we increase the stretching modulus through ω2 we observe that the location of
the minimum become smaller and tends to the left of the r-axis.

• We exclude too extreme curvatures like a flat surface or spikes in terms
of curvatures. This is to assume that anytime a macrophage encounters a
targets a phagocytic cup is formed.

• The bead is small enough that it does not require stretching or a negligible
amount compared to the bending energy.

We assume that a macrophage during the experiment has a volume V with
N targets available around it and the distribution of targets and macrophages
uniform. R is the radius of the target and R0 the radius of the cell. The
probability to find a target is given by

P1 =
Volume occupied by the targets

V0
=

N4πR3

3V0
(2.64)

and introducing the concentration of beads c = N
V and the variable r we have

for the probability

P1(r) =
4π

3
cR3

0r
3. (2.65)

During phagocytosis after cup formation the membrane needs to cover half
of the spherical bead to run the second stage of engulfment. It appears from
[41] (cited in [29]) that cup sizes are distributed mainly around half cup and
full engulfment. We consider half engulfment position as critical to complete
engulfment, we assume that when the cup get to half engulfment the macrophage
is able to complete the process. We see the energy required to get halfway as
a barrier of energy to cross. We have the energy dE(θ) for the phagocytic cup
for each increment using eq.2.2.1:

dE(θ) = 2κ2πR2

(
R+R0

R

)2

sin(θ)dθ, (2.66)
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we integrate the spherical coordinate θ between 0 and π
2 to obtain the ∆E

required to get cover half engulfment given by

∆E = 4πκ(1 + r)2. (2.67)

We have introduced the nondimensional variable R
R0

and κ is the bending
modulus. The probability in terms of Boltzmann distribution to cross the energy
barrier is guven by

P2 ∝ e−β∆E ∝ e−βκ4π(1+r)2 , (2.68)

we introduce µ = 4πβκ and give the total probability combining the two events:
the contact between the macrophage with a target and the barrier of energy to
form a cup covering half of the bead. The product of the two probabilities is
given by(see fig.2.15)

P (r) ∝ 4πNP0R
3
0

3V0
r3e−µ(1+r)2 . (2.69)
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Figure 2.15: Probability distribution for different values of µ.

There is a maximum in this model in terms of a statistical event and not in
terms of a single event. We differentiate eq.2.69 with respect to r given by

∂P

∂r
=

4πNP0R
3
0

3V0
e−µ(1+r)2

(
3r2 − 2µr3(1 + r)

)
= 0. (2.70)

This leads to solving the polynomial in eq.2.71

−2µr2 − 2µr + 3 = 0, (2.71)
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the solution for r∗ is given by eq.2.72

r∗ =
2µ±

√
4µ2 + 24µ

−4µ
, (2.72)

by simplifying we obtain r∗(µ) given by

r∗(µ) =
1

2

(√
1 +

6

µ
− 1

)
. (2.73)
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Figure 2.16: Plot describing how the location of the peak changes with µ

From experiments (table 1.1) we estimate r∗. We have also µ(r∗) using
eq.2.72

µ(r∗) =
6

4(r∗ + 1
2 )

2 − 1
. (2.74)
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Figure 2.17: Location of the peak r∗(µ) and two lines showing the range of r∗

based on estimation from table 1.1.

Since we have the location of the peak from previous experiments [36][6]
shown in fig.2.17 it is possible to estimate the value of µ. We have the estimated
range for the peak given by

0.05 < r < 0.1, (2.75)

we estimate the corresponding value of µ around 15. This leads to the estimate
for κ given by

κ ≈ kbT . (2.76)

In practice the literature shows values of κ of about ten kbT . Our estimate
showing a less rigid membrane maybe explained by the fact that we are not
considering the energy and/or adhesion or even actin helping to reduce the
energy needed to fuel the process. This would allow the possibility of a more
rigid membrane closer to values from the literature. The requirement for a softer
membrane may indicate that the thermal fluctuations are not enough to have a
realistic probability to engulf the target. Phagocytosis take up process requires
active forces from actin and adhesion helping the membrane to reshape. Relying
only on thermal fluctuation does not appear sufficient. With extra energy we
could expect a stiffer membrane in our situation. It is an argument that take
up processes are active and the case of an inert cell is very unlikely to lead to a
take up.

2.6 Considering an extra source of energy

In this section the goal is to implement another source of energy that helps
during the reshaping of the cell membrane. We consider a general energy per
unit of surface form (see eq.2.77). This from has been used for adhesion to
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study the energy profile of the nanoparticle wrapping [2] but in theory it could
be the formulation of any other source of force in practice like from actin filament
polymerisation. We will first see the new total energy of the system and secondly
study the new probability to discuss the results

Ea = −UA, (2.77)

U corresponds to an energy per surface area and A the area covered introduced
by eq.2.77. Since it has the same form as surface tension Etension = γA we can
see also U as an effective energy per surface area Ueff = γ − U . In the case of
our spherical bead the halfway engulfment by a phagocytic cup would give

Ea(2πR
2) = −2πUR2. (2.78)

Using r = R
R0

we rewrite eq.2.78 into

Ea(r) = −2πUR2
0r

2, (2.79)

we now have a formulation for the energy helping for membrane reshaping. The
total energy E = ∆E + Ea and the expression is given by

E = Ea + 4πκ(1 + r)2 = 4πκ(1 + r)2 − 2πUR2
0r

2. (2.80)

Adding the adhesion may give a threshold for U to be have a chance to
engulf the bead. We have the new non-dimensional parameter f defined by

f =
UR2

0

κ
, (2.81)

we rewrite eq.2.80 with f in

E = 4πκ

(
(1 + r)2 − f

2
r2
)

(2.82)

and (
1− f

2

)
r2 + 2r + 1 > 0. (2.83)

When this energy is negative the adhesion is sufficient to balance the cur-
vature energy and consequently the shape fitting the bead. It brings a second
parameter to determine. We are interested in the case where E > 0 (condition
given by eq.2.83) in order to estimate the probability associated. It leads to a
condition on f knowing that 0 < r < 1. The polynomial is zero for the value of
r given by

r± =
±
√
2f − 2

2(1− f
2 )

. (2.84)

Considering f > 0 and 0 < r < 1 we exclude r+ to keep r− giving positive
values of r

r− =
2 +

√
2f

2( f2 − 1)
. (2.85)
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We know from eq.2.85 the value of r for which eq.2.83 is zero. Since we
consider r < 1 we can deduce for which value of f we have r− = 1 using eq.2.85√

2f + 4 = f, (2.86)

the solution of this equality is given by f = 8. We have two cases:

• f < 8: All the values for 0 < r < 1 lead to a positive value of the energy.
The total energy given by eq.2.82 acts as a barrier of energy. We can
express the probability associated to the crossing of this barrier, since
adhesion is not sufficient to balance bending, with thermal contribution
to the process can help.

• f > 8: An interesting case is when a solution is for in the range 0 < r < 1
because we can have both a positive and negative energy. As we increase
f above 8 we end up having values of r > r− for which the energy in
eq.2.82 is negative. Which means that we expect an engulfment since Ea

in eq.2.79 is greater than the energy to form the cup given by eq.2.67, the
energy barrier is not present anymore with a total energy being negative.
For values of r < r− the energy barrier is positive and we have a similar
situation to f < 8.
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Figure 2.18: Energy from eq.2.82 in units of 4πκ for 0 < r < 1. We notice for
f > 8 the negative energy possible for r > r−.

We have the probability associated to the energy in eq.2.82

Pf ∝ r3e−µ((1+r)2− f
2 r

2), (2.87)

we use the derivative
dPf

dr to find the maximum of probability

dPf

dr
= −µr3(2(1 + r)− fr)e−µ((1+r)2− f

2 r
2) + 3r2e−µ((1+r)2− f

2 r
2) = 0, (2.88)
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since we take r ̸= 0 we consider the solution for which

(f − 2µ)r2 − 2µr + 3 = 0. (2.89)

The solution is given by

r± =
2µ±

√
4µ2 − 12(f − 2µ)

2(f − 2µ)
. (2.90)
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Figure 2.19: Probability Pf (r) for different values of f .

Writing the solution from eq.2.90 in a simpler form verifying that when f = 0
we recover the result given by eq.2.73 (see fig.2.20)

r∗(µ, f) =
1±

√
1− 6

µ (
f
2µ − 1)

2( f
2µ − 1)

, (2.91)

we notice a condition on µ to have a positive term in the square root which
leads to the inequality

1− 6

µ

(
f

2µ
− 1

)
> 0. (2.92)

The condition turns out to be a minimum value for µ as shown in

µ > 3

(√
1 +

f

3
− 1

)
. (2.93)

For f = 0, µ has to be larger than µmin to consider a probability any value of
µ < µmin will have an adhesion high enough to engulf the bead.

38



0 10 20 30 40 50
μ

0.02

0.04

0.06

0.08

0.10

0.12

0.14

r
*

f=0

f=150

f=350

Figure 2.20: Location of the optimum size r∗ with µ for different values of f .

From the result in fig.2.20 we can comment on the value of f(r) and µ(r).
From there we see that for the same location of the maximum of probability we
can expect a higher value of µ for a higher f . It means that physically we can
allow a stiffer membrane for the same r∗ in the case with f since it is reducing
the total energy of the system.

2.6.1 Surface tension case

We take the crossover length given in [2] as

lcrossover =

√
κ

γ
, (2.94)

to estimate the lengthscale for which surface tension energy dominates. The
estimation given by [2] is about 100 to 200 nm where surface tension is taken
from [33]. We want to study this possibility where surface tension dominates
and can be written

Eeff = (γ − U)A = UeffA (2.95)

We write down the probability using eq.2.95

Peff ∝ r3e−2πR2
0βUeffr

2

, (2.96)

the derivative equal to zero gives

dPeff

dr
= 3r2 − 4rπR2

0βUeffr
3 = 0. (2.97)

The solution for r is given by

r∗eff =

√
3

4πR2
0βUeff

. (2.98)
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Knowing from table 1.1 that we expect R∗
eff = r∗effR0 to be around 0.5µm

we estimate Ueff

Ueff =
3

4πβR∗2
eff

≈ 10−6J/m2, (2.99)

this estimate is close to the values of surface tension γ, used in [2] to estimate
eq.2.94.

2.6.2 Pseudopod energy

Another possible way to describe the energy is to take the energy term of related
to the pseudopods engulfing the target instead of the cup from eq.2.24 keeping
the term 2π2κR

e that we can write as

Ppseudo = P1Pe ∝ r3e−β(2π2κ
R0
e r) (2.100)

Differentiating eq.2.100 we have eq.2.101.

3r2 − 2π2βκ
R0

e
r4 = 0 (2.101)

Ignoring the solution r = 0 we have the solution given by eq.2.102.

r∗ =
3

2π2βR0

√
2γκ

(2.102)

The size R = 3kbT
2π2

√
2γκ

can be estimated by taking values of γ and κ used by

[2] and taken from [33]. We find R ≈ 10−7m and is in the range of values given
in table.1.1.

2.7 Target orientation

The target is considered being a closed surface with an average curvature de-
scribing the local shape at different points of the surface. The local curvature
seems to be an important factor to determine the capacity of the cell to complete
the take up of the target. We suppose that the target is oriented in a random
way at the point of contact with the cell. Knowing the shape one can estimate
the probability to encounter a given curvature H at that point. The simplest
case is the sphere since the curvature is the same on the entire surface of the
target PH = 1. A more interesting case is the spherocylinder where we have
two possible curvature HSphere =

1
R and HCylinder = 1

2R . The two probabilities
(see fig.2.21) associated are given by eq.2.105 and eq.2.106 defined by

PSphere =
SSphere

STotal
(2.103)

and

PCylinder =
SCylinder

STotal
. (2.104)
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Figure 2.21: Probability associated to the curvature that can randomly be
in contact with the cell. It shows how the shape changes the curvature a
macrophage may encounter when finding a target. It has an impact on the
probability of engulfment.

Replacing with the surface of the sphere and cylinder we obtain

PSphere =
4πR2

4πR2 + 2πRL
=

1

1 + L
2R

(2.105)

and

PCylinder =
2πRL

4πR2 + 2πRL
=

1

1 + 2R
L

. (2.106)

Introducing x = 2R
L we have

PCylinder(x) =
1

1 + x
(2.107)

and

PSphere(x) =
1

1 + 1
x

. (2.108)

2.8 Discussion

Taking the previous results we now open the discussion by comparing with
results from the literature. We start first by commenting on the existence of
a peak in bead intake by a macrophage. The general approach of considering
the Helfrich energy with its bending term in particular involving curvature. It
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appears that no sphere radius R ̸= 0 minimises the energy. We have next
considered the wrapping of a spherocylinder finding a way to minimise the
bending energy with a relationship between the cylinder length and hemispheres
radius.

As the results from table 1.1 were performed with spheres we investigated
another model in section 2.4. The result obtained shows a coupling between
cortex thickness and range of the interaction representing the repulsion from
volume exclusion. If we take a range for R the optimum size from table 1.1 and
cortex thickness from [5] we can give an estimate using eq.2.51

γ = 2

(
2R

e
+ 1

)
, (2.109)

taking R = 0.5µm and e = 0.350µm in eq.2.109 the value of γ ≈ 7.7. The
value of γ is sensitive to the estimate e. The determination of cortex thickness
seems to be challenging partly due to light scattering at that scale and the active
specificity of the cortex which means that the thickness can change depending on
the situation if more force is required for example especially in actin dependant
processes like phagocytosis and macropinocytosis. A last remark is that even if
we calculated a radius size we could also interpret it as an optimum curvature
for a sphere.

Another aspect we highlighted in section 2.5 is the the probability of contact.
In fact the results obtained in the experiments (see table1.1) consider in practice
a population of macrophages and beads. Before getting to the intake process
the cell has to be in contact with a bead which itself is not guaranteed which
leads us to see it as a probability of contact. This probability is combined then
with a probability to take the engulfment cup at half of the process. We found a
value of for the bending modulus with a lower value compared to the literature
but with the addition of an energy per unit of surface it allows to increase the
bending modulus value bringing it closer to estimated values in the literature
(used to estimate eq.2.22). This indicates the necessity of an energy to run the
engulfment.

2.9 Summary

As a conclusion we summarise the work done in this chapter. We first used
Helfrich formulation energy to quantify the energy associated with a deformed
curved surface for a sphere and spherocylinder. The sphere case has not been
able to reproduce the observed preferred size suggested by works from the lit-
erature. So we looked for other approaches aiming to find a model that could
explain the observations. The second model introduces a simple model for the
cortex with an excluded volume effect that highlights the role of thickness cor-
tex with interactions in an optimum of energy. We concluded the chapter with
a last model combining probability for the macrophage to make contact with a
bead with the probability of reaching half engulfment showing a higher intake
for a particular bead size.
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Chapter 3

Phagocytosis: Dynamical
aspects of engulfment

This part is oriented towards the time evolution of engulfment. The aim is to
propose a model describing the potential mechanisms behind cup growth around
a spherical bead during the take up. To interpret and quantify the observation
(see [29][28]) we take a parameter that is suited to indicate the progression. It
is mostly the length around the bead that the membrane is running through. A
simple parameter in the case of a spherical object is the angle θc(t) from spherical
coordinates that can be used to simplify the parametrisation of the problem.
Their analysis of the observation with video tracking of the engulfment can be
found in [29][28]. From this starting point we take the different phases during
the progression represented in fig.3.1 and focus on the fastest phase before the
closure of the cup. If phase II is modelled as a diffusive process, that we explain
in section 3.1, the next phase requires an addition of a term to the equation
to observe a faster progression. The model we propose does not involve the
presence of any diffusion of receptor or signalling molecules (reviewed in [28])
on the surface of the membrane but is a fluid model not involving signalling.
Since our model is not involving the surface of the target it will be interesting
to discuss it in the context of macropinocytosis.
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Figure 3.1: Schematic representation of the different steps in the phagocytosis
taken from [28][29]. In our work we focus on the step III by giving a possible
mechanism to explain it.

3.1 The challenge of modelling engulfment

Engulfment performed by a cell or macrophages specialised in endocytosis after
being observed has been at the centre of models aiming to explain the mech-
anisms behind to predict the outcome of an engulfment given the parameters
of the problem like size and shape of the target. The model given by [12] uses
diffusive model receptors with ligands on the surface of the membrane on one
side and the target on the other, to give a time evolution of the phagocytic cup
progression. Sizes studied go up to few hundreds of nanometres and highlights
the optimal size to obtain the lowest engulfment time. The model does not
require the implication of the cortex on the contrary of the more recent work
from [39] that describes the engulfment of the membrane using actin ratcheting
and ligand-receptor adhesion. In the last case it appears that the actin concen-
tration is not sensitive to the size of the bead. The numerical model in 2d given
in [4] implementing actin filaments,bending and membrane tension investigates
the engulfment time for different bead sizes. Despite a possible optimal size for
time engulfment more work would be required for more statistical relevance.
We note also that what is meant by optimal size can refer to time optimisation
or the number of beads per cell when the experiment is performed on a large
group of cells and beads. The parallel of an optimum size that would be the
same for both cases does not seem obvious to us and it would be more cautious
to distinguish time optimisation and higher rate of endocytosis when counting
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on a large group of cells experiment.

3.2 Feedback model

In the following sections we introduce our model offering a possible explanation
for the observation made above. The different steps require fluid mechanics and
pressure forces we introduce the fig.3.2 and 3.3 to visualise the feedback and
describe each one after.

The process requires few assumptions to start:

1. The phagocytic cup is formed.

2. The target has a spherical shape.

3. The cell has engulfed at least half of the sphere.

The process requires a flow surrounding the upper part of the spherical
target. The flow is supposed to carry actomyosin or actin alone generating the
force required to engage the process. In order to observe a flow we need a spatial
gradient of pressure.

The pressure difference needed comes from the difference between the bottom
of the sphere where the phagocytic cup holds the bead in place and the upper
part where the fluid is progressing. The flow is assumed to carry more actin
on top of the target creating a difference of pressure due to the force exerted.
Since we neglect elastic forces of the membrane, we are in a case of a small bead
under few 100 nm for which above surface tension may become more significant
(see [2]). Once the pressure difference is established with the flow going around
the target the feedback becomes possible. To explore this loop we describe each
step. From the pressure description to the fluid flow. For the next sections we
define θc(t) as the progress of the engulfment so that θc(t = 0) = π

2 which is the
starting point of the second stage for a sphere.

3.2.1 Pressure

In this section we calculate the expression of the pressure from the bead on the
fluid on the bottom. We remind the element of surface for a sphere with Rb the
radius of the bead

dA = R2
bsin(θ)dθdϕ, (3.1)

the force from the actin pushing on the surface generated by actin filament
polymerisation with a component of the force normal to the surface on dA. The
total force is the sum in eq.3.2 of all the elements i

F⃗ =
∑
i

f⃗i. (3.2)
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Figure 3.2: Schematic representation of the process. The element 1 represents
the fluid flow speed. The element 2 the force exerted toward the cell and element
3 shows the increase of pressure P .
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Figure 3.3: Feedback loop representation.
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The continuous form of the force can be written with the introduction of
ρactin(r⃗) the density of actin covering the membrane on the surface of the bead

F = fi

∫
dA(r⃗)ρ(r⃗), (3.3)

we supposed the force of each filaments producing the same normal force to the
surface. If the density of actin is homogeneous on the surface the equation can
be simplified with S the surface considered and ρactin the density of actin on S

F = fiρactinS. (3.4)

The radial pressure is given by

P0 = fiρactin (3.5)

and the total force produced given in eq.3.6 following the z-axis can be given
by multiplying by the surface increasingly covering the upper part of the bead.
This means that the more the engulfment is progressing the higher the force
from the bead on the fluid will increase. The projection on the z-axis of this
pressure on the fluid of the macrophage gives

Fz = πR2P0 cos θc. (3.6)

On another hand we keep the radial component with the surface on the lower
part 0 < θ < π

2 . Leading to

F = πR2P0 cos θc cos θ, (3.7)

dividing by the element of surface we finally obtain the pressure on the bottom
of the bead as a function of the variables (θc, θ), θc being the angle of the cup
progression and θ the spherical coordinates parameter

P (θc, θ) = −P0 cos(θc(t)) cos θ . (3.8)

3.2.2 Fluid flow

The difference of pressure coming from P has to be linked with the flux going
around the bead. We can expect in general that the flux or the speed going from
the bottom side to the upper side of the bead is a function of the difference of
pressure ∆P and viscosity of the fluid µ.

With a non zero flow going to the top of the bead the angle θc will be
increasing. Since we consider an incompressible fluid we can relate the flux of
volume to the increase angle. We first write down the flux Q that goes from
bottom to top of the bead through the cross sectional area S at θ = π

2 in eq.3.9
introducing v the speed of the flow through the section S

Q⃗ = Sv⃗, (3.9)
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the surface S corresponds to the macrophage protrusion located halfway (θ = π
2 )

of the bead. We have in eq.3.10 the expression of the surface at that point with
ϵ the thickness of the cup leading the engulfment around the bead

S = π
(
(Rb + ϵ)2 −R2

b

)
= π

(
ϵ2 + 2ϵRB

)
. (3.10)

Combining eq.3.9 and eq.3.10 we can deduce

Q = 2πvϵRb

(
1 +

ϵ

2Rb

)
, (3.11)

in the case where Rb >> ϵ eq.3.11 can be simplified to

Q = 2πvϵRb. (3.12)

We introduce the element of volume dV added by the flux Q given by

dV = 2πR2
bϵsin(θc)dθc (3.13)

and integrate dϕ and dr keeping dθc to express dV with θc in spherical coordinate

dV = 2πdθc sin (θc)

[
r3

3

]Rb+ϵ

Rb

. (3.14)

We divide by dt eq.3.13 to obtain

dV

dt
= Q = 2πR2

bϵsin(θc)θ
′
c(t) (3.15)

and by establishing the equality between 3.12 and 3.15 we have

2πR2
bϵ sin(θc)θ

′
c(t) = 2πvϵRb, (3.16)

This finally leads to the following differential equation in

θ′c(t) =
v(θc(t))

Rb sin(θc(t))
. (3.17)

3.3 Solutions

In the following section we propose possible solutions by establishing the ex-
pression of v(θc(t)). To find this expression we have to choose a model for the
fluid dynamics. We start with Darcy’s law that includes porosity and finally an
approximation based on Stokes flow neglecting inertial forces.
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Case 1: Darcy’s law

We introduce Darcy’s law, describing a viscous flow through a porous envi-
ronment, expression in eq.3.18. k is the permeability of the media and η the
dynamical viscosity

q⃗ = −k

η
∇⃗P (θ), (3.18)

with q the speed of the flow. We use the expression of eq.3.8 to calculate the
gradient of pressure in

∇⃗P =
P0

Rb
sin θ cos θce⃗θ, (3.19)

we deduce from eq.3.18 and eq.3.19 the equation on the flow

q⃗ = −kP0

ηRb
sin θ cos θce⃗θ. (3.20)

We are interested in a steady state flow localised around θ = π
2 . We end up

with differential equation

tan θcθ
′
c = − kP0

ηR2
b

, (3.21)

we identify the parameter τ =
ηR2

b

kP0
the characteristic time of the process. We

write eq.3.21 in a simpler form with

tan θcθ
′
c = −1

τ
. (3.22)

The characteristic time is defined as

τ =
ηR2

b

kP0
. (3.23)

The integration of eq.3.22 gives the solution using the initial time as t = 0 and
θ(0) = θ0 the initial condition

ln
cos θ0
cos θc

= − t

τ
. (3.24)

To have a solution we need to consider θ0 > π
2 . The expression of θc(t) is

finally given by eq.3.25 (see fig.3.4)

θc(t) = arccos
(
cos θ0e

t
τ

)
. (3.25)

We deduce from the solution that the duration of the last part of the phago-
cytosis which means the phase III to close the cup is t∗ given in eq.3.26 and
represented in fig.3.5

t∗ = −τ ln (− cos θ0). (3.26)
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Figure 3.4: Evolution of engulfment of the upper side of the bead through θc(t),
that goes from π

2 to π i our case. We show the evolution for different values of
τ .
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Figure 3.5: Effect of the initial condition θc(0) = θ0 for different τ .
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Case 2: Stokes flow

Taking the creeping flow around a sphere commonly called Stokes flow given
by eq.3.27. The equation is valid considering we neglect inertial forces in a
situation of low Reynolds number (Re << 1) [34]

F = 6πηRbv. (3.27)

• F corresponds to the force pushing our bead.

• Rb the radius of the sphere.

• η is the viscosity of the fluid.

• v is the speed of the flow around the sphere.

We take the expression of the speed v using eq.3.27

v =
F

6πηRb
, (3.28)

we take the maximum of pressure at the bottom which corresponds to θ = 0.
The force is expressed by

F = πR2
bP0 cos θc(t). (3.29)

Replacing eq.3.29 in eq.3.28 we have the expression of v given by

v =
πR2

bP0 cos θc(t)

6πηRb
=

P0Rb cos θc(t)

6η
, (3.30)

the differential equation is

sin(θc)θ
′
c(t) =

P0

6η
cos θc. (3.31)

We end up with eq.3.22 as the same equation to solve with τ given by eq.3.22.
In that case the τ has a different expression compared to the case with porosity

τ =
6η

P0
. (3.32)

3.4 Estimation of the characteristic time τ

Energy fluctuation corresponding to the smallest increment of dθ for θ = π
2 from

the bending term in Helfrich energy in eq.2.2 for the phagocytic cup gives

dθ =
dE

4πκ(1 + r)2
, (3.33)
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for a thermal fluctuation we replace dE by kT

dθ =
kT

4πκ(1 + r)2
. (3.34)

We end up with the following θ0 as an initial condition for the angle

θ0 =
π

2
+ dθ, (3.35)

we can write the cosine of eq.3.35

cos

(
π

2
+

kT

4πκ(1 + r)2

)
= − sin

kT

4πκ(1 + r)2
. (3.36)

Replacing in eq.3.26 the expression in eq.3.36 gives

t∗ = −τ ln

(
sin

kT

4πκ(1 + r)2

)
. (3.37)

We can write a simpler form assuming that κ is large compared to kT (see
Chapter 2). We expand sinx ≈ x and (1 + r)2 ≈ 1 meaning that the bead size
is small compared to the macrophages. We end up with

t∗ = τ ln
4πκ

kT
, (3.38)

condition 4πκ >> kT must be true in order to keep the approximation of the
sine valid. We use the ratio 4πκ

kT as µ and have t
τ describing how the factor lnµ

can change the time of engulfment.
The characteristic time of engulfment is multiplied by the logarithmic factor

in eq.3.38. Taking κ ≈ 10kT gives a value of µ ≈ 100. The logarithm increases
slowly despite the large values of µ. In the case where µ ≈ 100 we have ln(100) ≈
4.6. The evolution of t∗

τ with µ is dumped by the logarithm function. We see a
large increase until µ ≈ 50 and a slowly increasing time with µ (see fig.3.6)

t∗(µ = 100) ≈ 4.6τ. (3.39)

To estimate τ one may need the value of the pressure P0 applied by the actin
on the surface with the viscosity µ and the permeability k in the case of Darcy’s
law.An actin filament is able to generate few piconewton in terms of force. To
estimate the pressure that the cortex is able to produce we need the surface s
on which this force is applied. We can consider a minimum surface s too in a
very packed configuration where s tends to the thickness of the actin filament
of around 7 nm [19].

We can give the following range for the smallest surface and the associated
maximum pressure applied

smin = 50nm2 (3.40)
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Figure 3.6: Evolution of time engulfment t∗(µ) for phase III in units of τ .

and

Pmax =
10−12

5.10−17
= 20kPa. (3.41)

We have now two values two values of τ to estimate. In practice phase III
is estimated to last t∗ ≈ 2s. We can take this value and deduce in the case of
Stokes flow with eq.3.32 an estimate of η. In addition to that we use eq.3.39 to
estimate τ as τ = t∗

4.6 ≈ 0.4

η =
P0τ

6
=

20.103τ

6
≈ 103Pa.s. (3.42)

In the case of the time estimation using Darcy’s law we propose an estimate of
the permeability k based on the viscosity found in eq.3.42. Using eq.3.23 the
permeability is estimated

k =
ηR2

b

τP0
≈ 10310−12

2.20 ∗ 103
≈ 10−14m2. (3.43)

It suggests a pore size of 100 nm which is close to values mentioned in section
1.2.4.

3.5 Summary

In this section we have presented a model requiring only a feedback loop us-
ing fluid mechanics and requiring the participation of actin pushing from the
top feeding the process in energy. This process does not require ligands or the
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diffusion of a mobile receptor but does not exclude it also. Interestingly since
not requiring receptor-ligand adhesion could be also used for pinocytosis where
we have only the fluid to drink and so no adhesion is possible. After establish-
ing the differential equation we used two different formulations to establish a
relationship between pressure or force and the speed flow. The noticeable dif-
ference is the dependency with Rb the radius of the bead. Darcy’s formulation
with permeability parameter k is proportional to R2

b but using the Stokes flow
relationship the time is independent from Rb. The time we estimated is only
for phase III meaning that it concerns only the quick stage of engulfment of the
last half of the bead.
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Chapter 4

Nucleus: Deformation and
constriction crossing

The following chapter aims to understand the conditions and mechanisms of
cell crossing a narrow constriction, which can occur during cell migration. The
nucleus being stiffer than the rest of the cell we take the nucleus as the limiting
elastic element of the cell. This means that if the nucleus crosses the constriction
the whole cell can cross. To perform successfully the crossing the nucleus needs
a reshaping to fit in the tunnel after the entrance. An external force to the
nucleus but internal to the cell. The force will exert a pressure on the back of
the nucleus to get it through the smaller constriction and cross the channel. The
pressure generated on the nucleus, or pressure, is not limited to any biological
process but actin polymerisation is considered as a good candidate, therefore
we will use the force generated by actin filament as a good candidate when
approximating the value of the pressure. For experiments we refer to [37] and
for numerical work to [10]. Our results will be compared with results from the
literature and open the discussion on how a theoretical model combined with
experiments could be useful for a better understanding of the cell structure
and mechanisms that may be challenging to obtain experimentally. The first
sections will focus on static friction at the entrance of the constriction and 2d
models showing how a condition on crossing can be obtained. We will conclude
with a model giving a probability of crossing that we compare with results from
[37] and [35].
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4.1 Nucleus through the channel

We introduce a model for the nucleus and consider the limitation to enter from
the static friction between the nucleus membrane and its environment that we
define as µ. We start from a state where the nucleus can move freely i.e. not
bounded on the lateral sides, to a channel with a smaller section compared to
the nucleus. The nucleus is considered having a spherical shape with the front
side surface in contact with the constriction of radius a being

S = π
(
R2

0 − a2
)
. (4.1)

For the simplicity of the calculation we consider a circular constriction which
means that the 3d structure is a cylinder. We use surface S for static friction
force and pressure P to give the expression of the static force

Ff = −µsPS. (4.2)

On the other hand we have the force coming from the cell itself pushing
inside the constriction on the nucleus coming from the cell itself, the force does
not come from any external element, given by

Fa = PSa = πa2P. (4.3)

The sum of the two forces should be positive to expect a possible movement
towards the constriction and overcome the static friction and is given by

Fa + Ff > 0. (4.4)

This leads to the condition on a to allow the nucleus to move into the con-
striction given by

Pa2π − µsπP (R2
0 − a2) > 0. (4.5)

Simplifying P as we consider that P ̸= 0 we deduce a condition on the size
of the entrance given by

a >

√
µs

1 + µs
R0 . (4.6)

We introduce α = a
R0

to write eq.4.6 into (see fig.4.1)

α >

√
µs

1 + µs
. (4.7)

The static friction coefficient being rarely greater than 1 for most materials
we can estimate a value of α that should be large enough for any material

α(µs = 1) =
1√
2
≈ 0.7 . (4.8)
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Figure 4.1: Evolution of α with the static friction coefficient µs.

The absence of the pressure P in the result of the condition to allow the
movement of the nucleus toward the constriction does not ultimately mean that
it is not relevant during the dynamics and inside the constriction. It is a nec-
essary condition but not sufficient since that it does not take into account the
tunnel after the constriction that we see in section 4.2. Knowing experimentally
the minimum radius amin required to start the movement through the constric-
tion we can estimate the value of the static friction coefficient with fig.4.1

µs =
α2
min

1− α2
min

. (4.9)

It means that experimentally if we know the value of αmin for which the
nucleus can move into the constriction we can deduce an estimated value of µs

(see fig.4.2).

4.2 2d model of the nucleus for the elastic sheet

In this section we introduce a model to describe the progression of the nucleus in
the channel (see fig.4.3).We consider a force from actomyosin applied on the back
of the nucleus all along the segment in 2d (for a 3d model it will be a surface).
The nucleus is described as a 2d shell structure with the nuclear envelop. This
implies that instead of a 2d closed surface we have a 1d elastic rope representing
the shell. To build the model we translate the different biological elements to
forces and we simplify the shape of the undeformed nucleus to a square initially
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Figure 4.2: Value of µs with the minimum value of α = αmin to observe a
possible crossing.
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Figure 4.3: Drawing of the nucleus representation entering a constriction of size
2a.
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of size 2R0. We consider that during the process the nucleus follows the shape
of the channel . We have two forces: a force resulting from the pressure, from
the force generated by the actomyosin in the cell, pushing toward the entrance
and an elastic resistance because the nucleus tends to keep its initial shape. The
state of equilibrium of forces is reached when the following equation is true

F⃗elastic + F⃗pressure = 0⃗. (4.10)

The elastic force comes from the elasticity of the nucleus membrane We
consider the membrane as an elastic rope with a negligible thickness compared
to the nucleus radius. We use a 1d model shell to describe the elasticity of the
envelope with k the elastic constant

Felastic = −k(2x1 + 2x2 + 4R0 − 8R0). (4.11)

The force pushing toward the constriction and deforming the nucleus comes
from the actomyosin network pushing toward the entrance as shown in [37].
The total force at the back of the nucleus can be written in a discrete way by
summing the contribution of each discrete element representing the actomyosin.
These mathematical elements are not strictly limited to any specific molecule
or filament

Factin = Σif⃗i. (4.12)

From the expression of the force we get the expression of the pressure P

P =
F

S
. (4.13)

In the 2d case the element of surface becomes an element of length d⃗S → d⃗l.
The force fi corresponds to the single element of force and we introduce nactin

as a linear density. The discrete sum can be replaced by

P = finactin. (4.14)

We suppose the pressure pushing to the entrance as uniform. The equilib-
rium of forces gives us

2Pa− k(2x1 + 2x2 + 4R0 − 8R0) = 0. (4.15)

We assume that the nucleus is incompressible, which means that the total
volume is constant when reshaping [10], this leads us to say that the surface
in 2d remains constant A = 4R2

0. This allows us to establish a relationship
between x1 and x2 with

4R2
0 = 2R0x1 + 2ax2, (4.16)

which leads to an expression x1

x1 = 2R0 −
a

2R0
x2. (4.17)
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To model the static friction between the membrane and the surface of the
channel we introduce µ that gives the friction force proportional to the normal
force from the pressure. In section 4.2.1 we establish a condition without friction
and in section 4.2.2 we add friction and discuss the results.

4.2.1 Without friction

Using eq.4.15 with eq.4.17 we have the expression of x2 corresponding to the
advancement inside the channel

x2 =
βα

2(1− α)
2R0, (4.18)

we introduce also β = P
k (see fig.4.3). We establish α = a

R0
being the ratio

between the constriction size and nucleus size R0. The nucleus is fully inside
when x1 = 0. It gives us the condition on x2 when the process is completed

x2max =
2R0

α
, (4.19)

combining eq.4.18 and eq.4.19 we obtain the equality

4

α
=

βα

2(1− α)
. (4.20)

The eq.4.20 can be written in a polynomial form

βα2 + 2α− 2 = 0, (4.21)

the solution is given by

α =

√
1 + 2β − 1

β
. (4.22)

The variable α gives the boundary between two phases (see fig.4.4). A phase
where the nucleus is able to cross for a given (α, β) and not in the opposite phase
under the curve. We remind that 0 < α < 1. We notice that for large values of
β that the minimum value of α as shown in fig.4.4. In the case where α → 1
in eq.4.4 any value of β > 0 is sufficient to cross since we have no constriction.
As the constriction gets smaller and smaller we need a greater pressure to be in
the phase allowing the passage of the nucleus.

4.2.2 With static friction

We add to the model presented in section 4.2.1 a static friction force to depict
a more general model especially at the interface. We show the presence of a
critical value of µs for which no crossing is possible whatever the values of β is
and α < 1. Biologically this could lead in a real experiment to the rejection of
the nucleus or the breaking of the membrane if the pressure exceeds the elastic
and plastic regime. We start with the static friction force expression given by
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Figure 4.4: The blue area corresponds to the condition (α = a
R0

,β = P
k ) where

the crossing is possible following our assumption. The larger the value of β the
smaller can be the constriction.

Ffriction = −2µsP (x1 + x2 +R0 − a), (4.23)

we obtain the new sum of forces

Pa = k(x1 + x2 − 2R0) + µsP (x1 + x2 +R0 − a). (4.24)

We deduce x2 with the same method as in section 4.2.1

x2 = β
αR0 − µs(3R0 − a)

(1− α)(1 + µs)
(4.25)

and isolate α = α(µs, β) taking the condition x2 = 2R0

α

2R0

α
= β

αR0 − µ(3R0 − a)

(1− α)(1 + µs)
. (4.26)

After simplification we end up with the polynomial

β(1 + µs)α
2 + (2µs + 2− 3µsβ)α− 2(1 + µs) = 0, (4.27)

and solution

α± =
−(2µs + 2− 3µsβ)±

√
(2µs − 3µsβ + 2)2 + 8β(1 + µs)2

2β(1 + µs)
. (4.28)
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Figure 4.5: α(β) for different values of µs the coefficient of static friction. As
we increase µs we need higher values of β for the the same value of α.

Keeping the physical value where 0 < α < 1 gives

α(β, µs) =

√
(2µs − 3µsβ + 2)2 + 8β(1 + µs)2 − (2µs + 2− 3µsβ)

2β(1 + µs)
, (4.29)

and for µ = 0 we recover the result from section 4.2.1 in eq.4.22. The solution
in eq.4.29 (see fig.4.5) has a limit for eq.4.29 when β → ∞.

α(β, µs) →
3µs

(1 + µs)
. (4.30)

4.3 Probability of crossing

4.3.1 Maximum elastic extension

Experimentally the crossing of a constriction with a given size entrance is not
always totally deterministic in fact biological systems tend to be stochastic
processes involving diffusion, temperature dependent chemical reactions and a
variability in terms of size and shape. We observe that for a same size entrance
2a a different outcomes represented by a statistic. In this section we propose
a model explaining predicting the probability of crossing with constriction size
and statistics obtained experimentally [37]. We start first with a an elastic force
model of the nucleus and in a second time the pressure generated by a density
of single elements of force that we propose to be actin filament. It is from this
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last element of the model that we introduce a random element that generates
a probability. We start first with an observation of elastic force and pressure
pushing. We can write the elastic force in a 1d form with K the elastic constant
and x the position from equilibrium

Fel = −Kx, (4.31)

x is the deformation of the nucleus in the tunnel. The force pushing to the
inside of the tunnel coming from the pressure is

FP = Pπa2 (4.32)

and in order to be able to stay inside the tunnel the force pushing must be
equal or greater than the elastic force

Pa2 ≥ Kx (4.33)

keeping the nucleus from moving inside. We reach the maximum elongation
when the equality is satisfied between elastic force and pressure force for

xeq =
Pa2

K
. (4.34)

4.3.2 Elastic model

We assume that the elasticity K may depend on the characteristic size of the
object for a shell type configuration. In the case of shell type nucleus with a very
thin membrane with a thickness h << a the constant K may scale following
only the perimeter of the entrance with Ks the modulus of elasticity with 2πa
the characteristic size of the elastic piece concerned by the deformation

K(a) = 2πaKs. (4.35)

Replacing in eq.4.34 the eq.4.35 gives the equilibrium length for the linear den-
sity case

xeql =
Pa

2πKs
. (4.36)

It indicates that the larger the entrance a of the constriction leads to a higher
estimate of xeql in the channel.

4.3.3 Condition on the pressure P

In the following part we aim to establish the probability of crossing. To do so we
search for condition to keep the nucleus in the tunnel after the constriction. Once
we establish the condition we can introduce the scenario when the condition is
not verified and leads to a failure in crossing. We have a first condition at
the entrance found in section 4.1 with eq.4.7. On another hand the nucleus is
filling the tunnel and we assume that the walls are pressing against the cell and
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nucleus. In order to stay in the tunnel we suppose that the friction to balance
the elastic force trying to bring back the nucleus out of the constriction. Taking
an extension length of δ and K the elastic spring constant we have

Fel = −Kδ. (4.37)

The friction from the pressure pushing from inside to the outside of the
nucleus and the wall. This force is related to a static friction (see fig.4.6).

Fel Ff

Nucleus P

Figure 4.6: Nucleus in the channel against the walls with the two forces: Fel

and Ff .

Ff = 2πaδµsP. (4.38)

Using eq.4.37 and eq.4.38 we can write the condition on static friction

2πµsPaδ > Kδ, (4.39)

This leads to a condition on µs

µs >
Ks

P
, (4.40)

we now combine eq.4.7 with eq.4.40 to obtain a range for µ given by

Ks

P
< µs <

α2

1− α2
. (4.41)

The lower boundary is purely intrinsic to the cell with its mechanical and
force generation capacity. The softer and higher the capacity of the cell to
generate pressure the easier it is to get into the constriction. For the upper
boundary it is geometrical and the larger is the entrance the wider is the range
for µs. The condition where the range is no longer possible corresponds to when
the upper bound is equal to the lower bound or more as shown by

α2

1− α2
<

Ks

P
, (4.42)

the three variables (R0,Ks, P ) are completely determined by the cell approach-
ing the constriction. For the following sections we take the minimum pressure
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P > Pmin as a minimum to make the the nucleus able to stay in the tunnel
after crossing the entrance given by eq.4.43

P > Ks
1− α2

α2
. (4.43)

4.3.4 Distributed pressure

In the following section we assume that the pressure generated by the force from
the cell is not fixed but rather distributed based on a heterogeneous density of
filaments or any other single element generating force. In fact the model could
be used for any force element. When needing values for force we may take the
force and size and actin filaments.

Figure 4.7: Element of surface decomposed into filament slots. Red squares
indicate the presence of actin and white squares are empty. This illustrates the
density fluctuation since the occupation of a site depends on probability p.

We assume that the density of actin during the process generates a pres-
sure to push the nucleus in the constriction. The pressure follows a normal
distribution with an average P0 and a standard deviation σP

p(P ) =
1

σP

√
2π

e
− (P−P0)2

2σ2
P , (4.44)

the condition to maintain the nucleus in the constriction for the nucleus requires
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a minimum pressure Pmin

Pmin = Ks
1− α2

α2
. (4.45)

In the case where P >> 1 and σP < P0 we can approximate the integral on P
following ∫ ∞

−∞
p(P )dP ≈

∫ ∞

0

p(P )dP. (4.46)

Based on the distribution in eq.4.46 we can establish the probability to have
a pressure P under Pmin by integrating to obtain the probability associated

p(P < Pmin) = 1−
∫ ∞

Pmin

p(P )dP, (4.47)

we can substitute eq.4.44 and taking f as the force of an element of force that
can occupy a site (see fig.4.7) in eq.4.47 we obtain

p(P < Pmin) = 1−
∫ ∞

Pmin

1

fσρ

√
2π

e
− (P−P0)2

2f2σ2
ρ dP. (4.48)

Integration gives pfailure, the probability to fail crossing

pfailure = 1− 1

2

[
erf

(
P − P0√
2fσρ

)]∞
Pmin

, (4.49)

pfailure = 1− 1

2

(
1 + erf

(
P0 − Pmin√

2σP

))
. (4.50)

Using the expression in eq.4.51 and eq.4.50 we give the probability of crossing

pcrossing = 1− pfailure, (4.51)

pcrossing =
1

2

(
1 + erf

[
P0 − Pmin√

2σP

])
. (4.52)

We introduce for a better understanding the two following non-dimensional
parameters:

• ϕ = Pmin

P0
. The parameter ϕ is the ratio between the pressure Pmin neces-

sary to maintain the crossing and P0 the average pressure.

• x = σP

P0
. x corresponds to the ratio between the standard deviation and

the average also called the coefficient of variation.

With the introduction of the two previous parameters we have can rewrite
eq.4.52 (see fig.4.8)

pcrossing(x, ϕ) =
1

2

(
1 + erf

[
1− ϕ

x
√
2

])
. (4.53)
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Figure 4.8: We consider in this figure a range for x between 0 and 0.5 for different
values of ϕ = Pmin

P0
.

We plot also the evolution of this probability with ϕ for different values of
x in fig.4.9. A higher the value of ϕ means that Pminis higher than the average
pressure P0 of the cell on the nucleus.
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Evolution of the probability crossing for different values of x

Figure 4.9: We consider here different values of x the coefficient of variation
related to the fluctuation of the density.

Constriction size effect. From the two parameters x and ϕ we can relate
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them to the constriction size a and taking P0 = fρ0. We have for x

x =
σρ

P0
=

fσρ

fρ0
, (4.54)

taking σρ = 1
2
√
πal

and ρ0 = 1
2l2 that we replace in eq.4.54 which gives

x =
l

a
√
π
. (4.55)

The result means that the smaller is a and closer in magnitude to the size of a
filament site the larger will be the coefficient of variation. We except a scenario
when we reduce the size of the entrance a higher pressure Pmin needed and a
higher fluctuation of the force pushing to the inside of the tunnel.

We have ϕ that we can express as a function of a if we take Pmin =

Ks

(
1−α2

α2

)
. We introduce g = P0

Ks
and have ϕ

ϕ =
1− α2

gα2
, (4.56)

taking this value of ϕ we can write p(x, α)

pcrossing(x, α) =
1

2

1 + erf

1− (1−α2)
gα2

x
√
2

 . (4.57)

We consider in the following the probability p(α) for different values of g
and x to observe the effect of each one on p(α) using the expression(see fig.4.10
and fig.4.11)

pcrossing(a, x) =
1

2

(
1 + erf

[
1− 1

g (
1−α2

α2 )

x
√
2

])
. (4.58)
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Figure 4.10: Changing g which corresponds to the ratio between average pres-
sure and elasticity parameter Ks changes the value of the average pressure. We
notice that when we have a larger pressure in green compared to the blue the
minimum constriction size to have a realistic probability to cross can be smaller.
The value of g changes the transition point between p → 0 and p → 1.
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Figure 4.11: When x << 1 the probability increases sharply like a step function.
By increasing the value of x we have a smoother transition.

σρ as a function of a.
We add parameters to express our equations with physical parameters like a

to the model by expressing σρ with other parameters through the probability to
occupy a site. In that case the size of the constriction is not explicitly present
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since we consider that the first condition is always valid. Each force element
from actin filaments or other possible sources like contraction is called f which
is the force of a single element. The average density ρ0 can be associated with a
fluctuation following the average assuming a fluctuation in the force generated
between each filament. Having the density ρ we have the total force given by
eq.4.59.

F = πρ0a
2f (4.59)

From the total force we deduce P in eq.4.60.

P = fρ (4.60)

The probability p(P ) is obtained by changing the variable

p(P ) = p(ρ)
dρ

dP
. (4.61)

From the standard deviation σρ we deduce the standard deviation σP on
pressure

σP = fσρ. (4.62)

We take the value of σρ as an expression of a and l. The variable l is the
thickness of an actin filament for example or any element generating force. Each
space of area l2 can be empty or occupied as shown in fig.4.7. If we associate
to a random variable i can take the value 0 or 1. The total number of filaments
on the surface Sa = πa2 is given by M in eq.4.63.

M = i1 + ...+ iN (4.63)

We sum over the N boxes that we can calculate knowing l given by eq.4.64.

N =
Sa

l2
(4.64)

For a circular entrance we take Sa = πa2. The density ρ is given by eq.4.65
which is the number of elements M divided by the total area Sa.

ρ =
M

Sa
(4.65)

We have for V ar(ρ):

V ar(ρ) =
1

S2
a

V ar(M) =
V ar(i1 + ...+ iN )

S2
a

=
NV ar(i)

S2
a

(4.66)

By replacing the total number of emplacements N = Sa

l2 and V ar(i) =
p1(1− p1) with p1 the probability to occupy an emplacement.

V ar(ρ) =
p1(1− p1)

Sal2
(4.67)
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Taking the expression Sa = πa2 and V arρ = σ2
ρ we obtain the standard

deviation for the density ρ to use it in section 4.3.5 for x

σρ =

√
p1(1− p1)√

πal
(4.68)

4.3.5 Probability and variance with temperature and en-
ergy.

We aim to express the parameters in the probability of crossing with physical
parameters like constriction size, force for example and energy. We consider
that to occupy a space on the surface we need an energy U , once the site is
occupied we consider the force, and that two states are possible:

• State 1: Occupied emplacement with an energy U and a probability p1.

• State 0: Empty state that doesn’t require energy since it is the initial
state of all sites with a probability p0.

Taking a Boltzmann probability distribution to describe the probability re-
lated to both states and the respective energy associated E = U and E = 0
(See fig.4.12)

p0 =
e0β

1 + e−βU
=

1

1 + e−βU
, (4.69)

p1 =
e−βU

1 + e−βU
. (4.70)

0 2 4 6 8 10
U(kT)

0.2

0.4

0.6

0.8

1.0

p(U)

p1

p0

Figure 4.12: Evolution of the probability with U in unit of kT . The higher is
the energy cost U to add an element of force the lower is the probability p1 to
find an occupied site.
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We replace the expression of p1 of eq.4.70 in eq.4.68 we can deduce the
standard deviation σP = fσρ

σP =
f√
πal

√
e−βU

1 + e−βU

(
1− e−βU

1 + e−βU

)
=

f

al
√
π

e−βU/2

1 + e−βU
, (4.71)

and given the average pressure

P0 =
Np1f

πa2
=

πa2p1f

l2πa2
=

p1f

l2
(4.72)

we can finally give x = σP

P0
using eq.4.71 and eq.4.72

x =
l

a
√
πp1

e−βU/2

1 + e−βU
. (4.73)

Replacing p1 by eq.4.70 gives the final expression for x

x =
l

a
√
π
eβU/2 =

l

R0α
√
π
eβU/2 . (4.74)

We define λ = l
R0

. We replace now x in eq.4.58 to obtain eq.4.75

pcrossing(α) =
1

2

1 + erf

√π

2

αe−u/2(1− (1−α2)
gα2 )

λ

 (4.75)

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.4

0.6

0.8

1.0

pcrossing

p3(α, 5, 0.002)

p3(α, 5, 0.005)

p3(α, 5, 0.01)

p3(α, 5, 0.02)

Evolution of the probability crossing p(α,g,j) for g=5

Figure 4.13: Evolution of the probability for different values of j = e−u/2 and
g = 5 with u = Uβ.

Expressing P0 the average pressure with p1.
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We can rewrite the parameter g using

g =
P0

Ks
=

f

Ksl2
p1, (4.76)

we introduce δ and replace p1 in eq.4.76

δ =
f

Ksl2
, (4.77)

g = δ
e−u

1 + e−u
. (4.78)

The obtained equation

pcrossing(α, δ, j) =
1

2

(
1 + erf

[√
π

2

α

λ
e−u/2

(
1− (1 + eu)(1− α2)

δα2

)])
(4.79)

can be rewritten using j = e−u/2 to finally the expression of the probability
with (see fig.4.14 and fig.4.15)

pcrossing(α, δ, j) =
1

2

(
1 + erf

[√
π

2

α

λ
j

(
1−

(1 + 1
j2 )(1− α2)

δα2

)])
. (4.80)

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.4

0.6

0.8

1.0

pcrossing

p4(α, 500000, 0.002)

p4(α, 500000, 0.003)

p4(α, 500000, 0.004)

Evolution of the probability crossing p(α,δ,j) for δ=5.103 and different values of j

Figure 4.14: Evolution of the probability for different values of j = e−u/2 and
g = 5 with u = Uβ. λ = 10−3.
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pcrossing
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Evolution of the probability crossing p(α,δ,j) for j=0.002 and different values of δ

Figure 4.15: Evolution of the probability for different values of j = e−u/2 and
g = 5 with u = Uβ. λ = 10−3.

4.3.6 Data fitting

Taking the value for the percentage of crossing given by [37] we perform a fit
with the expression of the probability of crossing given by eq.4.80. We let j
and δ as free parameters to estimate with the curve fit. The result is given by
fig.4.16.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p(
)

Fit curve
 j = 0.0031015185658940765+/-0.0005636028260228712
 delta = 1660755.55477589+/-402559.36809875886
data

Figure 4.16: Curve fitting the data taken from [37] and representing the statis-
tic of crossing nucleus with the probability p(α) as we change the size of the
constriction α.
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Given the estimation of j ≈ 0.003 and the expression

u = −2 ln j, (4.81)

we can deduce the value for u in

u ≈ 11.6. (4.82)

In units of kT
U ≈ 11.6kT. (4.83)

The standard deviation is derived from

du = −2

j
dj (4.84)

and gives an expression for u with the associated error

u = 11.6± 0.4 . (4.85)

The value of δ given by eq.4.77 is used to estimate K considering the estimate
of δ ≈ 106

K ≈ 2π10−610−11

10610−18
≈ 6× 10−5N/m . (4.86)

The value when compared to the value measured in [35] and is discussed in the
summary. We took a = 10−6m, the force f = 10−11N and l = 10−9m.

4.4 Summary

We have started this chapter with a 2d model to predict the possible configu-
rations allowing a crossing into a constriction. The parameters that we high-
lighted as crucial for crossing are geometrical like nucleus and constriction sizes
and on another hand we have the pressure and elasticity that are mechanical.
It appeared also that there is an ideal value for µ allowing crossing. Then we
introduced a model requiring a minimum pressure to maintain the crossing and
defined the condition of a failure for the nucleus to keep migrating in the tun-
nel. Having a minimum pressure required and pressure distribution pushing the
nucleus introduces a probability of failure or success. We finally related to the
distribution the key parameters of our problem and associated each force ele-
ment generating the pressure to an energy cost with its probability of presence
to depict an inhomogeneous density giving rise to a distributed pressure that
changes with the constriction size. To that result we have been able to compare
our theory with observations given in [37]. The elasticity estimated was also
compared with [35] and was lower but it is important to point that the elas-
ticity is non-linear which is a property that we didn’t take into account in our
model. Moreover [10] showed a that the shell structure of the nucleus is closer
to reality than a full body. The addition of normal forces to the movement that
can help introduce the cell in the constriction were not added and could allow
a stiffer nucleus.
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Chapter 5

Conclusion

We started the present work by presenting first the cell and its main compo-
nents with a central role in its mechanical properties. We identified the nucleus,
lipid bilayer and cortex as the main elastic materials during deformations. Cell
reshaping is necessary for endocytosis process and cell migration in constric-
tions and we were motivated by the impact of elastic properties and the force
generated by the cell. Observations from experiments appeared to indicate a
particular size preferred for internalisation when counting the total number of
beads internalised. The interpretation given to this result was that the energy
may show a minimum with target size facilitating the uptake by the cell. Even
if this assumption may be tempting and straightforward it may not be as easy
as it seems. We took first the case of phagocytosis and the energy required
to reshape the lipid bilayer membrane using Helfrich formulation for bending
energy in the case of a sphere but it did not appear to us that the energy had a
minimum for bead radius R ̸= 0. On the contrary of spherocylinder wrapping
showing a minimum dependent on the length for the bending energy deforma-
tion. We have next presented an approach taking the cortex under the lipid
bilayer with an excluded volume interaction in a case of high curvature. In fact
the thickness of the cortex (few hundred nanometres) is very close to the bead
size of interest (see table 1.1). The result obtained (see section 2.4.2) revealed a
central role of cortex thickness and the range of the interaction obtained. This
points out the role of the cortex during reshaping and the necessity to better
understand endocytosis processes. Another observation on cortex thickness is
that if we assume more force required to bend a target with a high curvature
this would mean a thicker cortex and as we have seen in section 2.4.2 moves the
minimum. We can expect a limit between a cortex thick enough to generate
force and not too thick which would increase the position of the minimum of
energy and smaller targets would be missed. Experiments around cortex struc-
ture and interaction with the lipid bilayer, like spacing [9] (reviewed in [8]), will
help to make better predictions on that aspect.Finally we built a model based
on two probabilities: the probability of finding bead and the probability to cross
the energy barrier to form the phagocytic cup leading to full engulfment (see
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section 2.5). We showed the existence of a size maximising the probability of
uptake. The model revealed also the necessity of adding a source of energy
helping the reshaping and engulfment that increases with the size of the bead
to allow a more consistent estimate of the bending modulus with the literature.
Regarding target shape, prolate shape exhibits a preferred curvature when they
encounter a macrophage making it easier to take up but too highly curved or a
too flat shapes and it reduces the take up capacity of the cell.The two models
are not excluding and could be considered at the same time.

In chapter 3 we proposed a dynamical model that introduces a feedback
loop to the final stage of engulfment that has been observed as much faster
compared to the first step of engulfment in the case of a spherical target. We
aimed to show that an approach not requiring diffusion and drift for receptors
binding the target and the membrane (see [12] [29] [28]) to show a different
possibility that can be investigated further. The process includes the viscous
property of the cortex combined to the pressure generated by the actomyosin
on the target to take up. The two properties of the cortex: force generation
and viscosity are the limiting factors to the phagocytosis rate concerning the
second phase of engulfment. Moreover this mechanism can be used for the
description of an incompressible fluid i.e. the case of macropinocytosis (see
section 1.3.3) since it doesn’t require a hard body with any coating on it to take
place. The contribution from thermal fluctuation, the element of energy kbT
from the environment to the cell to any form of energy (chemical or Brownian
motion), plays a role following our model to break the symmetry of the initial
condition and give the initial ”kick” to start the process. Two main assumptions
have been made to get an analytical solution. The first is that the bead is large
compared to the phagocytic pseudopod forming the cup surrounding the bead.
The second assumption was to take the flow as not explicitly time dependent
which means that we go from a stationary state to another stationary state as
the pressure changes with the progression of the engulfment.

In chapter 4 we focused on the nucleus which is the stiffer element of the cell
in a situation of constriction crossing. A situation that can be encountered dur-
ing cell migration, for example when moving through constrictions like pores or
small capillaries, with a complete crossing requiring a reshaping of the nucleus.
Getting over the elastic energy barrier and the friction around the nucleus are
the main obstacles to the movement in order to enter the constriction. In our
model we assumed a friction and an elasticity from the nucleus in the migration
as the main limiting object in the cell being stiffer. A first condition to move
forward based on static friction (eq.4.6) and on another hand we have assumed
the friction to be necessary to keep the elastic nucleus in the tunnel and avoid
a pull back which we consider as a failure to cross (eq.4.40). We established a
range on the value of µ, the static friction, leading to a condition on the pressure
applied on the nucleus to move in the constriction. We used a pressure that
follows a Gaussian distribution (see eq.4.44) with an average and variance cal-
culated from the force elements (see fig.4.7). Since the total force on the surface
pushing is not predictable we end up with a probability for the pressure hence
the distribution of the possible values of P . We pictured the surface density
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of force elements into small elements of surface that can be occupied with an
energy cost and thermal fluctuations. The straightforward possibility is to see
it as an actin filament but in theory other scenarios could be considered. We
ended up with a crossing probability that can be compared to results from [37]
to estimate the parameters left unknown: the energy cost in the density model
with the elasticity of the nucleus. The result obtained for the energy seemed
reasonable for a process at that scale i.e. few kT . Regarding the nucleus elastic-
ity our result indicated a softer object but can be explained by the lack of extra
forces especially on the lateral sides [10] of the nucleus. Another effect that our
model is not able to catch is from non linear elastic response or heterogeneous
nucleus with a rigid lamina and a softer chromatin for example. Possible further
work will be explored in the outlook. We also give an updated version of fig.1.5
in fig.5.

TARGET CELL

Macropinocytosis
(Fluid)

Phagocytosis
(Surface coated)

Caveolin or
Clathrin

 Mediated
Process

Actin dependant

● Size
● Elasticity
● Coating
● Curvature
● Concentration

● Size
● Membrane + 

Cortex elastic 
properties

● Receptors
● Concentration
● Force generation

No endocytosis or 
different process

Contact 
with a 

probability

No 
contact

Orientation: 
Curvature too 
high or too low 

(flat)

No coating
 

<0.5 μm
 

 >0.5 μm

Figure 5.1: Updated diagram(see fig.1.5). The red boxes describe the failure
of the cell to perform a complete engulfment. The green boxes indicates the
successful outcomes leading to internalisation.
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Chapter 6

Outlook

We give in this chapter some further ideas to explore for each chapter.

6.1 Considering more cases with phagocytosis

We can take into account the extra pieces of membrane that can be added
through exocytosis. A possibility is to associate with each vesicle generated
for exocytosis an energy cost or by considering a limited reservoir of vesicles
for example. The difficulty will come from the formulation of the energy. A
possibility would be to evaluate the energy for each vesicle with a fixed size.
Concerning the shape of the target to take up more complex shapes which means
less symmetric than a sphere or a spherocylinder. For example oblate or prolate
objects which may require combining numerical work and orientation to see
the influence of the local curvature when it is in contact with the macrophage
making it even harder to predict since the curvature changes on the surface.
The calculation method for the spherocylinder in section 2.7 can be used as a
starting point for other shapes.

Concerning the excluded volume (see section2.4) we took a very simple model
to describe the energy associated. It would be more realistic to consider the in-
teraction for the whole volume of the cortex. A better knowledge on the cortex
structure can help and requires better imaging. For section 2.5 we considered in
our case that after a successful phagocytosis we don’t distinguish between the
cells and assume that R0 is the same even after a large number of beads. Fur-
thermore having a decreasing number of beads would change the concentration
and the probability to find a bead. Lastly we notice that since phagocytosis and
macropinocytosis are both actin mediated, it would be interesting to state on
the distribution of vesicle sizes formed by phagocytosis. In fact since that there
is no coating needed it would be possible to know if there is also a preferred size
vesicle when the engulfment is not bound by a coated surface to follow. It may
give a better understanding on the role of the cortex with target size.
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6.2 Taking the model further with a numerical
work

We can propose a numerical model to solve the fluid dynamics around a sphere
or even a less symmetrical object like a spherocylinder that takes into account
the coupling with the pressure in a time dependant equation. This would allow
us to have a better idea of the influence from eccentricity on the time needed to
close the phagosome. The pressure may change, as we close the cup, differently
compared to the sphere because the geometry is different. The pressure could
increase quicker at the starting point for an oblate than a prolate. Our flow
model doesn’t exclude another process in parallel like a diffusion process for
receptor ligand model(see [12][29][28]) and consequently the combination of both
models could be tried.Another aspect of the engulfment that we neglected would
be the elasticity of the membrane and would be more realistic especially for
larger beads with a radius close to the cell size.

6.3 Adding non linear elasticity to the model

Taking a non-linear elastic force to describe the nucleus in chapter 4 would be
interesting for example and see how it affects the possibility of crossing. For
example taking an increasing elastic constant as we deform the nucleus and
even adding a rupture point where the elastic force drops. Depending on the
modelling of the nucleus we may expect a different shape deformation. Consid-
ering the chromatin in the nucleus as viscoelastic object with a relaxation time
instead of a pure elastic object can be a way to get a more sophisticated model
by catching the viscous effect with a relaxation time. The elastic properties of
chromatin could be based on a model representing the DNA as multiple poly-
mers with elastic properties. Moreover modelling the nucleus with two distinct
value (as suggested in [35]) of elasticity as we pull the nucleus could reveal other
unexpected behaviours during crossing.
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