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Abstract 

Hydrogen/deuterium exchange (HDX) is a spontaneous process observed in proteins 

exposed to deuterated solvent. The observed rate of exchange of a residue is the ratio 

between its ‘intrinsic exchange rate’, reflecting the chemical properties of its 

environment, and the ‘protection factor’, accounting for structural and dynamic 

properties of the protein. HDX kinetics provide useful insights into protein 

conformational dynamics, complementing static structures from X-ray crystallography, 

NMR or cryo-EM.  

HDX is primarily studied using NMR and mass spectrometry (MS). HDX-NMR offers 

single-residue resolution but is limited to smaller proteins, while HDX-MS can study 

larger systems, though it captures deuteration at peptide-level resolution. While spatial 

resolution in HDX-MS can be enhanced (e.g. with alternative fragmentation 

techniques), achieving NMR-like detail remains challenging. As a result, HDX-MS is 

typically used for differential studies, comparing protein states to qualitatively localize 

perturbations (e.g. binding sites), rather than quantify absolute biophysical properties 

such as protection factors.  

This thesis explores whether single-residue resolution can be inferred from peptide-

level HDX-MS data, despite the inherent underdetermination of the data.  

We critically reviewed the strengths and limitations of various strategies used by 

software tools for analysing HDX-MS data. Building on this, we demonstrated the 

advantages of a method that exploits self-consistency to identify those alternative 

protection factor sets which are compatible with experimental data, cluster them into 

a finite number of solutions, and reduce the degeneracy by incorporating the 

information encoded in isotopic envelopes. Since our method assumed intrinsic 

exchange rates as known constants (under fixed environmental conditions), we tested 

their accuracy by performing millisecond HDX-MS experiments on a mixture of 
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unstructured peptides. Finally, we proposed and tested against NMR data a protection 

factor analysis that addresses the ambiguity of peptide-level data by either performing 

a random search to broadly explore the rugged cost function landscape or 

incorporating an informed initial guess to focus on physically meaningful solutions.  

Overall, our findings show that protection factors can be inferred from peptide-level 

HDX-MS data with sufficient redundancy and temporal sampling, providing insights 

comparable to NMR. These results push the boundaries of HDX-MS toward becoming 

an absolute quantitative experiment rather than a differential qualitative tool.   
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Chapter 1. General Introduction 

1.1 Hydrogen/deuterium exchange: a language to decode protein 

structure, dynamics and function  

Proteins are one of the most important gears in the engine of life. The importance of 

understanding their structure and dynamics became evident in 1962, when Max Perutz 

and John Kendrew were awarded the Nobel prize in Chemistry for their pioneering 

work in determining the structure of globular proteins (Kendrew et al. 1960; Perutz et 

al. 1960). Since then, proteins have led different branches of sciences to wonder how 

their linear sequence folds into a three-dimensional structure (or does not, like 

intrinsically disordered proteins), how they change upon binding, how they maintain 

health and cause disease (Dill and MacCallum 2012). After seeing the structure of 

myoglobin at 6 Å resolution, Kendrew commented: “Perhaps the most remarkable 

features of the molecule are its complexity and its lack of symmetry” (Kendrew et al. 

1960).  

The concept of ‘structure’ should be interpreted broadly. Proteins are not rigid entities: 

they can adapt to their ligands, they can be highly flexible and may exist in random coil 

conformations under physiological conditions; intrinsically disordered proteins, for 

example, can sometimes adopt a permanent structure upon binding, or remain 

biologically active in a disordered state (Serdyuk, Zaccai, and Zaccai 2007).   

In 1972, the Nobel prize in Chemistry was given to Anfinsen for his work on 

ribonuclease. He proposed a ground-breaking postulate for protein folding, known as 

the thermodynamic hypothesis or Anfinsen’s dogma, according to which the native 

state of a protein is determined by its amino acid sequence, at least for globular proteins 

(Anfinsen 1973). Today, his hypothesis can be tested using the Protein Data Bank 
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(Berman et al. 2000), which counts almost 225,000 a experimental structures of 

proteins. Anfinsen’s dogma counts several exceptions: some proteins require other 

proteins (known as chaperones) to fold properly (Ellis 1993); prions are stable 

conformation of proteins which are different from the native state (Prusiner 1998); 

some proteins have multiple native structures, and their folding process changes 

according to external factors (Porter and Looger 2018). These exceptions suggest that 

the sequence of a protein does not uniquely define its structure, and that the dynamics 

of the chain plays a crucial role in determining what conformation the protein assumes. 

The exploration of these limitations led to the discovery and (partial) understanding of 

a whole new class of misfolding diseases, such as Alzheimer’s, Parkinson’s and type II 

Diabetes (Dill and MacCallum 2012).  

The protein folding problem is central to protein biophysics and critical for much of cell 

biology, but despite extensive experimental and theoretical efforts, researchers have 

yet to reach a consensus on a universally accepted folding model (Sosnick and Barrick 

2011). In 1969, Levinthal noted that a polypeptide chain cannot find its native state 

within any reasonable amount of time by a random search through the vast 

conformational space available to them (Levinthal 1968). He estimated that if a protein 

of 100 amino acids were to fold by randomly sampling all possible conformations, it 

would take an astronomically long time (1027 years b), longer than the age of the 

universe. Yet proteins fold in a time range spanning from microseconds to milliseconds. 

While giving a talk at Stanford, Levinthal exclaimed: “So there must be folding 

intermediates!” (Baldwin 2017). He imagined that proteins must fold through some 

programmed structure formation pathway. These intermediates, known as foldons, 

form in a reproducible sequence, building the native protein step by step. If the initial 

 

a 224,004 structures in September 2024 

b The Levinthal’s estimation for the protein folding time is performed with the assumption that each amino acid 

has about three possible conformations (hence a protein formed by N amino acids has 3𝑁 possible 

conformations) and that the protein samples a new conformation every 10−13 seconds (about the time for a 

single molecular vibration). 



23 

 

foldon is sufficiently small, the Levinthal paradox is solved. For example, if the foldon 

consists of 20 amino acids, the random search can be completed in less than a 

millisecond. 

The “energy landscape theory” offers an alternative model for describing protein 

folding, rooted in hypothetical energy landscapes and statistical mechanical principles 

(Dill and Chan 1997; Plotkin and Onuchic 2002). According to this theory, a folding 

protein navigates a rugged energy landscape, with the global minimum representing its 

native state. Unlike the foldon model, which suggests a more linear pathway, the energy 

landscape theory allows for multiple trajectories, with the protein progressively 

moving through various local minima as it folds into its final structure.  

Today, the protein folding problem must be discussed in the light of the artificial 

intelligence (AI) revolution. In 1997, Karplus (Nobel prize in Chemistry in 2013) 

highlighted the existence of two separate ‘protein folding problems’, the first consisting 

in the prediction of the three-dimensional structure of a protein from its primary 

sequence, the second in the kinetics and dynamics of the folding process. “A complete 

solution of the second problem would, of course, simultaneously solve the first. 

However, it is more likely that the prediction of the native structure will be achieved by 

other methods that are based on the analysis of known structures, rather than by 

directly folding a polypeptide chain” (Karplus 1997). He was right: almost 25 years 

later, the unprecedented results of the AlphaFold2 algorithm from DeepMind (Jumper 

et al. 2021; Senior et al. 2020) at the CASP14 c allowed protein science to take a huge 

step towards solving the first protein folding problem. However, the second protein 

folding problem remains an open question: how do proteins fold? As the American 

philosopher Emerson used to say: “It’s not the destination, it’s the journey!”. 

 
c CASP (Critical Assessment of protein Structure Prediction) is a community-wide, 

worldwide experiment for protein structure prediction, taking place every two years since 

1994. 
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In a paper published in 2017, Englander stated that “experimental results provide clear 

evidence for the existence and ubiquity of protein foldons and their determining role in 

constructing well-defined protein folding pathways” (Englander and Mayne 2017). The 

technology that led Englander to this conclusion exploits a natural biophysical process 

that is universally experienced by all proteins when exposed to deuterated solvent: 

hydrogen/deuterium exchange (HDX). The main-chain amide hydrogens of proteins, 

one in every amino acid (except proline) in every protein molecule, spontaneously 

exchange with the deuterium atoms in the solvent. Their rate of exchange depends on 

a variety of environmental (pH, temperature, ionic strength) and protein (primary 

sequence, local- and long-range interactions, conformational changes, dynamics, 

energetics) parameters. In a real sense, “proteins continually emit signals in the 

language of hydrogen exchange, in a nonperturbing way resolved to the level of 

individual residues. We need only receive those signals and understand how to 

interpret them in structural language” (Englander et al. 2016).  

A definitive solution to the protein folding problem remains far beyond the scope of this 

Thesis. The focus here is to highlight the potential of HDX in addressing fundamental 

questions that are central to molecular biology. Today, HDX is primarily used to map 

protein conformational changes under different experimental conditions, but its 

potential applications extend beyond these current uses.  

1.1.1 The exchange of unstructured polypeptides… 

When a peptide is diluted in a solution containing D2O, its hydrogen atoms exchange 

with deuterium atoms from the solvent (Linderstrøm-Lang 1955). The exchangeable 

atoms of the peptides are those bound to heteroatoms such as sulfur, oxygen and 

nitrogen. The heteroatom-bound hydrogens undergo isotopic exchange due to the 

electronegativity of the heteroatom, while carbon-bonded hydrogens do not exchange 

to any measurable extent (Weis 2016). The exchangeable atoms in the side chains 

exchange rapidly and this property makes them invisible to the classic experimental 

techniques used to probe HDX, namely nuclear magnetic resonance (NMR, section 
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1.2.2) and mass spectrometry (MS, section 1.2.3). Note that the exchange of 

exchangeable hydrogens in the side chains can be probed by gas-phase MS (Suckau et 

al. 1993). The backbone amide hydrogens are sensitive and very useful probes of 

protein conformation, as they are distributed along the polypeptide backbone (except 

in prolines) and form the fundamental hydrogen-bonding network of basic secondary 

structures (e.g. alpha helices and beta-sheets). For these reasons and the difficulty of 

measuring the fast exchange of labile hydrogens in the side chains, HDX is modelled as 

a phenomenon occurring at the level of the individual residue, where the only 

exchangeable hydrogen that can be measured is the amide hydrogen of the amino acid.   

The chemical nature of the hydrogen exchange (HX) or hydrogen/deuterium exchange 

(HDX) reactions can be described with the proton transfer model (Hamuro 2021b; Weis 

2016). The initial event in the proton transfer reaction is the diffusion-limited collision 

of a proton donor (AH) with a proton acceptor (B) leading to the formation of a 

hydrogen-bonded complex which is followed by a rapid proton redistribution across 

the hydrogen bond and finally dissociation of the proton donor and acceptor complex: 

Eq. 1.1   AH + B
k1
⇌
k−1

A − H⋯B
k2
⇌
k−2

A⋯H − B
ka
⇌
k−1

A + HB  

The proton transfer is successful when the proton is transferred to the proton acceptor 

(dissociation to the right) and unsuccessful if the proton remains with the proton donor 

(dissociation to the left). The overall forward rate constant for the proton transfer 

reaction ktr is given by: 

Eq. 1.2  ktr = k1 (
10ΔpK

10ΔpK+1
) = kint,cat  

where k1 is the collisional rate and ΔpK is the difference in pK between the acceptor 

and the donor. Thus, the proton transfer rate ktr is the rate of collisions multiplied by 

the fraction of successful collisions (Englander and Kallenbach 1983). Amide HX can be 

acid (H3O
+), base (OH−) or water (H2O) catalyzed. Thus, for each specific proton 
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transfer reaction, ktr is equal to an intrinsic exchange rate constant kint,cat defined for 

the given catalyst of the reaction, that is the proton acceptor (OH−, H3O
+ or H2O) and 

the proton donor (amide NH).   

The effect of pH on the rate of exchange in an unstructured polypeptide can be written 

as a linear combination of the proton transfer rates for acid-, base- and water-reactions, 

regulated by rates ktr,acid, ktr,base and  ktr,water, respectively:  

Eq. 1.3  kint = ktr,acid[H
+] + ktr,base[OH

−] + ktr,water[H2O] 

The transfer rates were determined by Bai et al (Bai et al. 1993) for a poly-DL-alanine 

(PDLA) peptide at temperature 20°C and at low salt concentrations. In Chapter 4, we 

show that PDLA peptides are not an unstructured reference as a small number of 

alanine amino acids is sufficient to form double (or even triple) helical bundles. We also 

suggest that a three-alanine (3-Ala) peptide should be used as unstructured reference. 

The proton transfer rates for 3-Ala (still at temperature 20°C and low salt 

concentration) are ktr,acid = 1.09 × 10
2 M−1min−1, ktr,base = 2.29 × 10

10 M−1min−1 

and ktr,water = 3.16 × 10
−2 M−1min−1. The dependence of the intrinsic exchange rate 

kint on pH (Eq. 1.3) has a V-shaped curve with a characteristic minimum at pH 2.5-3.0 

(Figure 1.1A).  
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Figure 1.1. Profile of the intrinsic exchange rate dependence on pH and temperature.  

(A) Intrinsic exchange rate dependence on pH as dictated by Eq. 1.3 for an unfolded peptide with 

sequence AAA at temperature 25°C and pH varying from 0 to 8. (B) Intrinsic exchange rate dependence 

on temperature as shown in Eq. 1.4 for an unfolded peptide with sequence AAA at pH 7 and varying 

temperature from 0 to 30°C. Calculations performed using a python script available at 

https://github.com/pacilab/exPfact.  

The exchange rate is also dependent on the temperature at which the labelling is 

performed. This is primarily due to the fact that an increase in temperature alters the 

water ionization constant, consequently increasing the concentration of OH−. The 

dependence of the intrinsic exchange rate 𝑘𝑖𝑛𝑡 on temperature can be expressed with 

an Arrhenius equation, which has an exponential behavior (Figure 1.1B): 

Eq. 1.4  kint(T) = kint(293)exp (−
Ea

R
[
1

T
−

1

293
]) 

Here, kint(293) is the reference rate constant (ktr,acid, ktr,base and  ktr,water) at 

temperature 293 K; Ea is the activation energy for acid-, base- or water-catalyzed 

exchange (Ea,acid = 14 kcal mol
−1, Ea,base = 17 kcal mol

−1 and Ea,water =

19 kcal mol−1); R is the gas constant (R = 8.134 J mol−1 K−1). The Arrhenius equation 

(Eq. 1.4) is valid for relatively low temperatures (0-60 °C), provided that the protein 
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remains stable, while it needs to be adjusted at higher temperatures (Tajoddin and 

Konermann 2020). 

Molday (Molday, Englander, and Kallen 1972) noted that the exchange rate of a residue 

surrounded by two isoleucines was much slower (up to 20 times depending on pH) than 

the rate of the same residue when surrounded by two alanines. This suggested that the 

intrinsic exchange rate of a residue in an unfolded peptide depends on the side chains 

of the neighboring amino acids. The effect of the different side chains on the exchange 

of a residue was systematically studied and tabulated by Bai (Bai et al. 1993). Assuming 

that the effect is significant only for the sidechains of the first neighbors, these empirical 

side-chain specific factors allow to rewrite the intrinsic exchange rate (Eq. 1.3) as 

Eq. 1.5  kint = ktr,acid(Al ∙ Ar)[H
+] + ktr,base(Bl ∙ Br)[OH

−] 

+ ktr,water(Bl ∙ Br)[H2O] 

where 𝐴𝑙 , 𝐴𝑟 , 𝐵𝑙 and 𝐵𝑟 are the acid (A) or base (B) factor for the residue on the left (l) 

or right (r) of the central residue. 

These considerations on the effect of pH, temperature and neighboring side chains on 

the exchange rate of a residue in a completely unfolded structure allow the prediction 

of the intrinsic exchange of a residue. We show in Chapter 4 that these predictions are 

accurate (when a 3-Ala peptide is used as unstructured reference instead of extended 

PDLA peptides, which retain some residual structure), and that some additional 

dependences, such as the ionic strength of the buffer, can affect the intrinsic exchange 

rate of a residue. An accurate prediction of the intrinsic exchange rate allows the 

deconvolution of the effect of the chemical environment on the experimental rate of a 

folded protein from the (more significant) effect of structural and dynamic properties 

of the protein.  
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1.1.2 … and the exchange of folded proteins 

While the exchange of unstructured polypeptides (section 1.1.1) occurs in 

milliseconds, the exchange of folded proteins occurs in minutes, hours or even days 

(Weis 2016). Amide hydrogens are exchange competent when they are surface exposed 

and not engaged in secondary structure (when they are not hydrogen-bonding other 

than to water). Some residues are structurally protected against exchange, but local 

fluctuations, global and sub-global folding events can momentarily disrupt internal 

amide hydrogen bonding, exposing them to the solvent and enabling deuteration 

(Englander et al. 2016). Referring to these collective dynamic fluctuations as “breathing 

motions”, which allow the protein to “open” (with rate 𝑘𝑜𝑝) or “close” (with rate 𝑘𝑐𝑙) to 

the exchange, Linderstrøm-Lang modelled hydrogen/deuterium exchange of each 

residue of a protein as a two-step process (Linderstrøm-Lang 1955): 

Eq. 1.6  NHcl

kop
⇌
kcl

NHop

kint
→
 
ND   

where NHcl, NHop and ND represent the amide hydrogen in a closed state (or exchange 

incompetent), opened state (exchange competent) and the deuterated state.   

The exact analytical solution for the model in Eq. 1.6 is double exponential (Hvidt and 

Nielsen 1966). However, under the so-called native approximation (𝑘𝑜𝑝 ≪ 𝑘𝑐𝑙 , i.e. 

mostly folded) and the EX2 regime (𝑘𝑖𝑛𝑡 ≪ 𝑘𝑐𝑙 , i.e. 𝑘𝑖𝑛𝑡 is the rate-limiting step), the 

deuteration of a residue can be approximated as a single exponential 

Eq. 1.7  d(t) = 1 − e−
kint
P
t 

where the pseudo-(pre)equilibrium constant 𝑃 ≡ 𝑘𝑐𝑙 𝑘𝑜𝑝⁄  is known as protection 

factor.  A protection factor P = 1 corresponds to a fully unstructured polypeptide, while 

higher values of P describe an increasing protection of the amide against exchange. The 
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protection factor can be written in terms of Gibb’s free energy of opening ∆𝐺𝑜𝑝 (Figure 

1.2A) (Hamuro 2021b): 

Eq. 1.8  ∆Gop = RTln(P) 

where R is the universal gas constant and T is the temperature.  

While the EX2 regime described above is the most common, in rare cases the residue 

may follow the EX1 regime, where the opposite relation between the intrinsic and 

closing rate holds (i.e., kint ≫ kcl). In this case, the deuteration of a single residue can 

be written as  

Eq. 1.9  dEX1(t) = 1 − e
−kopt 

In this second case, the energetic diagram for the reaction is different (Figure 1.2B), 

and the opening rate can be expressed as proportional to the Gibb’s free energy of 

activation ∆𝐺0
‡ (rather than the Gibb’s free energy of opening in the EX2 regime) via the 

Eyring equation (Eyring 1935): 

Eq. 1.10  kop =
kBT

h
exp (−

∆G0
‡

RT
) 

 

 

Figure 1.2. Energy diagrams for hydrogen/deuterium exchange reactions. 
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Energy reaction diagrams for hydrogen/deuterium exchange reactions in the EX2 (A) and EX1 (B) 

regime. The rate constants 𝒌𝒐𝒑, 𝒌𝒄𝒍 and 𝒌𝒊𝒏𝒕 correspond to the activation free energies ∆𝑮𝒐𝒑
‡ , ∆𝑮𝒄𝒍

‡  and 

∆𝑮𝒊𝒏𝒕
‡  via the Eyring equation (Eq. 1.10). Adapted with permission from Hamuro, “Tutorial: Chemistry of 

Hydrogen/Deuterium Exchange Mass Spectrometry”, 2021, Journal of the American Society for Mass 

Spectrometry, Copyright © 2021 American Chemical Society. 

1.1.3 What is a protection factor? 

The Linderstrøm-Lang model provides an energetic interpretation of the protection 

factor as the Gibb’s free energy of opening (Eq. 1.8). This interpretation is exclusive to 

residues following the EX2 regime. A complete characterization of the HDX kinetics of 

a residue requires the knowledge of the opening and closing rates. However, theoretical 

models trying to determine these rates are missing, and the experimental techniques 

used today to probe HDX (section 1.2) are far from providing direct measurements of 

such parameters. Hence, the protection factor remains the finest parameter (i.e. at the 

highest resolution) that can be extracted from experimental data. Several microscopic 

models have tried to explain the protection factors of a protein in terms of its structural 

properties (Devaurs, Antunes, and Borysik 2022). The importance of the protection 

factors in describing the exchange kinetics of proteins is supported by the fact that the 

vast majority of proteins follows the EX2 regime. The EX1 kinetics, where the protection 

factor is not a well-defined parameter, is limited to rare cases (Fang et al. 2011).  

The first (and still most used) model to describe the protection factors of a protein 

starting from its structure was developed in the early 2000s by Best, Paci and 

Vendruscolo (Best and Vendruscolo 2006; Vendruscolo et al. 2003). The model 

describes the protection factor of a residue for a protein in conformation X as the linear 

combination of the number of heavy contacts 𝑁𝑐 (i.e. the number of atoms in the 

proximity of the amide hydrogen not belonging to neighbouring residues in the primary 

sequence) and hydrogen bonds 𝑁ℎ in which the amino acid is involved: 

Eq. 1.11 ln(P) = βhNh(X)+βcNc(X) 
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The model was initially tested against a dataset containing seven proteins with known 

protection factors (measured with NMR, see section 1.2.2), providing coefficients 𝛽ℎ =

2.00 and 𝛽𝑐 = 0.35 (Best and Vendruscolo 2006). The value of the parameters suggest 

a strong influence of dynamic parameters (hydrogen-bonding) on the protection 

against exchange rather than structural parameters (heavy contact) (Hamuro 2024).    

Alternative models have been developed to connect the structure of a protein to its 

protection factors, without remarkably improving the correlation with experimental 

data found by the Best-Vendruscolo model (Eq. 1.11). These alternatives can be 

classified in five groups depending on the structural property exploited (Devaurs et al. 

2022):  

i) Models based on solvent accessibility only (Petruk et al. 2013; Shan et al. 

2013; Truhlar et al. 2006): they provide an intuitive structural interpretation 

of the protection factors as dependent only on the number of heavy contact 

but show poor correlation with experimental data. 

ii) Models based on hydrogen-bonding only (McAllister and Konermann 2015; 

Skinner et al. 2012, 2014): they describe the protection factor of a residue 

using only the number of hydrogen bonds formed by the residue, they 

provide a good correlation with experimental data, suggesting that 

hydrogen-bonding is the main factor driving protection against exchange, 

but this is not enough to completely characterize the exchange.  

iii) Electrostatic calculations (Abdolvahabi et al. 2014; Hernández, Anderson, 

and LeMaster 2009; LeMaster, Anderson, and Hernández 2009): they can 

explain the protection against exchange for residues that are not involved in 

hydrogen-bonding, but they are force-field dependent and computationally 

intensive.  

iv) Combination of molecular features (Brand et al. 2007; Sljoka and Wilson 

2013; Sowole et al. 2013): they are linear combinations of structural and 

nonstructural properties of the residue within the protein (such as bond 
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order or hydrophobicity), but they tend to increase the model complexity 

without significantly improving the correlation with experimental data.  

v) Knowledge-based predictions (Claesen and Politis 2019; Tartaglia, Cavalli, 

and Vendruscolo 2007; Wang et al. 2018): they attempt to estimate the 

protection factors directly from the sequence of the protein but show poor 

correlation with experimental data.      

Estimating the protection factors of a protein is the ultimate goal of any HDX 

experiment, as they allow to quantitatively connect the Linderstrøm-Lang theory with 

structural and dynamic properties of the protein.  

1.2 Detecting hydrogen/deuterium exchange: a technical challenge 

1.2.1 The dawn of HDX  

The history of hydrogen/deuterium exchange begins in 1932 with the discovery of 

deuterium (Urey, Brickwedde, and Murphy 1932), which awarded Urey the Nobel prize 

in Chemistry and made the production of D2O possible. The first studies probing 

proteins’ secondary structure exploiting hydrogen/deuterium exchange were 

performed in the 1950s by Linderstrøm-Lang and coworkers at the Carlsberg 

Laboratory in Denmark (Baldwin 2011). In a world where the first protein structure 

had yet to be discovered, Linderstrøm-Lang was motivated to discover hydrogen-

bonded structures in proteins. He knew that amide hydrogens of proteins undergo 

exchange with solvent water and that a density gradient column could measure density 

differences of 1 × 10−6 g/cm3. He hypothesized that internally bonded amide 

hydrogens would exchange more slowly than free amide hydrogens, and that he could 

count the exact number of free amides. He applied his method for free peptides and 

insulin. He was indeed able to count the number of free amides, but their HDX kinetics 

resulted in a more complex picture than expected (Hvidt and Linderstrøm-Lang 1954). 

The question on how to disentangle the contribution of individual amides to the 

overlapping kinetic curves discouraged further studies, also because in the meantime 
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X-ray crystallography made it possible to obtain protein structures experimentally 

(Perutz et al. 1960).  

However, on the opposite side of the world, in New Hampshire, Englander wanted to 

answer the question whether hydrogen bonding could explain the stable helical 

conformation of polyproline II. He knew about the technique developed by 

Linderstrøm-Lang, but he had one problem: polyproline II was exchanging too fast. 

Therefore, he developed a 3H-gel filtration method, which was faster, more sensible and 

more accurate than the density gradient method (Englander 1963).  

This gave a new boost to research around HDX, but the method was still not able to 

provide information about the exchange of individual amides. It was not until the 

advent of two-dimensional NMR that significant attention was drawn to the 

phenomenon. The coupling with mass spectrometry further propelled its impact, 

sparking widespread interest as testified by the exponential increase of scientific 

papers published on the topic (Figure 1.3). 

 

Figure 1.3. Number of publications on hydrogen/deuterium exchange in time.  
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Number of scientific papers about hydrogen/deuterium exchange published every two years. Vertical 

lines indicate key years in technological development. Source: google scholar; search terms: “hydrogen 

deuterium exchange”.   

1.2.2 Nuclear Magnetic Resonance  

The advent of two-dimensional NMR has sparked renewed interest in studying the HDX 

of proteins, as it addressed a key limitation of previous technologies: the ability to 

monitor the exchange at the level of individual residues (Dempsey 2001). When a 

peptide chain or a protein is diluted in D2O, the amide signals in the NMR spectrum 

decrease in intensity as the exchange occurs. This decrease in intensity is due to the 

distinct magnetic properties of hydrogen and deuterium: hydrogen has a spin of ½, 

while deuterium has a spin of 1. Additionally, their resonating frequencies differ, with 

hydrogen resonating at 400 MHz and deuterium at 61.4 MHz. Since NMR spectrometers 

operate over a narrow frequency range, they can only detect one isotope at a time. If 

the spectrometer is calibrated on the 1H resonating frequency, 2H (D) is invisible, and 

the deuteration of a residue results in a decreasing signal over time. 

The ability to measure exchange rates for individual residues depends primarily on the 

resolution and assignment of amide signals or cross peaks in multidimensional spectra, 

as well as the time resolution of NMR acquisition (Dempsey 2001). The optimal 

approach for monitoring HDX kinetics in proteins involves acquiring HSQC spectra 

from uniformly 15N-labelled proteins. These spectra offer good resolution in the 15N 

dimension, can be obtained relatively quickly (within 15-30 minutes or faster 

depending on the protein concentration) (Andrec, Hill, and Prestegard 1995), allowing 

to study the slow exchange of folded proteins at physiological pH as well as of 

unstructured peptides at lower pH. In cases where a 15N-labelled protein is unavailable, 

alternative methods (such as NOESY or HOHAHA spectra) may be employed (Dempsey 

2001), though with reduced signal resolution, sensitivity, and time resolution. Other 

techniques may be used to track fast exchange processes (with exchange rates of 0.1 −

50 s−1) instead of HSQC spectra, e.g. exploiting magnetization transfer (Wójcik et al. 

1999).  
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NMR experiments were the first to enable the measurement of exchange rates at the 

level of individual residues. The pioneering work of the Englander group, which 

examined the dependence of exchange rates for unstructured polypeptides on factors 

such as pH, temperature, and neighboring side chains (section 1.1.1), was conducted 

using NMR (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972). HDX-NMR 

experiments allowed for the first time the estimation of protection factors of residues 

in a folded structure. Indeed, today Start2Fold (Pancsa et al. 2016), a database 

containing protection factors of different proteins d, is available. The microscopic 

models discussed in section 1.1.3 were also optimized on NMR experimental data. 

However, NMR is primarily suited to studying relatively small protein systems, with a 

size limit of around 50 kDa (Yu 1999), As molecular weight increases, NMR spectra 

become more complex, leading to overlapping amide peaks that are difficult to 

distinguish and assign.  

1.2.3 Mass Spectrometry  

In 2002, Fenn was awarded the Nobel prize for the development of electrospray 

ionization (ESI), a breakthrough that revolutionized the analysis of large biomolecules 

through mass spectrometry. As Fenn famously remarked during his Nobel lecture, “We 

made molecular elephants fly” (Fenn 2003). The integration of ESI with mass 

spectrometry expanded the scope of analyzable biomolecular systems, ranging from 

small from small molecules to big complexes (up to the megadalton scale (Heck and van 

den Heuvel 2004)), thereby addressing the limitations inherent in NMR spectroscopy.   

A fundamental requirement for mass spectrometric analysis is the conversion of 

analytes into gaseous charged ions (Serdyuk et al. 2007). ESI achieves this by producing 

multiply charged species, typically in the form of [M + zH]z+ ions, where the charge 

state is considerably greater than one (𝑧 ≫ 1). These high charge states facilitate ion 

dissociation in tandem MS experiments, therefore providing an optimal ground to 

 
d Start2Fold contains protection factors of 57 proteins (September 2024) 
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couple ESI with liquid chromatography (LC). In ESI, the analyte solution is introduced 

into a metal capillary, to which a high voltage (of several kV) is applied (Figure 1.4A) 

(Konermann et al. 2013). The tip of the capillary is distorted to create a Taylor cone that 

emits a fine spray of droplets (with radii in the micrometer range). In positive ion mode, 

the droplets acquire a positive charge due to the presence of excess cations (such as 

H+, NH4
+, Na+, K+) and the generation of protons at the metal/solution interface. As 

solvent evaporation causes the droplets to shrink, their charge density increases until 

the Rayleigh limit is reached, i.e. the point at which the surface tension of the droplet is 

balanced by the Coulombic repulsion (Rayleigh 1882). At this critical limit, the droplets 

fragment into smaller, highly charged particles through one of three distinct 

mechanisms Figure 1.4B:  

i) Ion evaporation model (IEM) (Iribarne and Thomson 1976): low molecular 

weight species are emitted when the electric field at the surface of a 

Rayleigh-charged droplet becomes sufficiently strong to eject solvated ions 

directly from the droplet.  

ii) Charged residue model (CRM) (Iavarone and Williams 2003; Kebarle and 

Verkerk 2009): for larger, globular species, the droplet continues to 

evaporate until only the analyte remains. When the last solvent layer 

disappears, the remaining charge on the droplet is transferred to the analyte 

molecule. 

iii) Chain ejection model (CEM) (Ahadi and Konermann 2011; Konermann, 

Rodriguez, and Liu 2012): unfolded proteins or peptides, characterized by 

disordered conformations with exposed nonpolar residues, migrate toward 

the droplet surface due to their hydrophobicity. At the surface, one chain 

terminus is ejected, followed by a stepwise sequential ejection of the whole 

chain.  
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Figure 1.4. Schematic representation of the working principles of electrospray ionisation (ESI). 

A) Schematic representation of ESI source in positive mode. B) Alternative ESI mechanisms: ion 

evaporation model (IEM) for small analytes, charged residue model (CRM) for globular proteins, chain 

ejection model (CEM) for unfolded proteins. Adapted with permission from Konermann et al., 

“Unraveling the Mechanism of Electrospray Ionization”, Analytical Chemistry, Copyright © 2013 

American Chemical Society. 

These highly charged ions (with final radii in the nanometer range) enter the mass 

spectrometer, which functions as a molecular scale by measuring their mass-to-charge 

ratio (m/z) (Serdyuk et al. 2007). The ion, with mass 𝑚 and charge state 𝑧, is accelerated 

by an applied voltage 𝑉, acquiring kinetic energy Ek according to the following 

equation: 
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Eq. 1.12 Ek =
1

2
mv2 = zeV 

where v represents the velocity of the ion and e is the elementary charge (𝑒 =

1.6 × 10−19 C). In a “time of flight” (ToF) mass spectrometer, the principle of operation 

is relatively simple (Figure 1.5) (Boesl 2017). If a detector is placed at a distance 𝑑 from 

the exit point of the accelerating source, the time t it takes for the ion to reach the 

detector depends on its m/z ratio: 

Eq. 1.13 t = √
d2

2Ve
√
m

z
  

 

Figure 1.5. Schematic working principle of a “time of flight” (ToF) mass spectrometer.  

The mass resolution of a basic ToF instrument is limited by the fact that ions are not at 

rest prior to acceleration and they are also spatially spread out and might not all start 

at the same time. Instead, they possess an initial velocity which follows a Boltzmann 

distribution. The horizontal component of this initial velocity adds to the velocity 

imparted by the accelerating voltage, meaning that ions of the same mass, but with 

different initial velocities, will arrive at the detector at slightly different times, reducing 

resolution. To address this limitation, ToF instruments are commonly equipped with a 

“reflectron”, a series of metal plates with increasing voltage potential designed to reflect 

the ion trajectories. This correction compensates for variation in kinetic energy: ions 
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with higher kinetic energy travel longer paths, while those with lower energy follow 

shorter trajectories. As a result, ions of the same mass, regardless of their initial energy, 

are timed to arrive at the detector simultaneously, thereby improving the m/z 

resolution. 

Since the invention of the first mass spectrometer by Thompson in 1912, technological 

advancements have led mass spectrometry to become one of the most used technique 

in molecular biology (Griffiths 2008). Over time, a variety of mass analyzers have been 

developed, including sector mass spectrometer, quadrupole mass spectrometer, 

quadrupole ion trap mass spectrometer, Fourier transform ion cyclotron resonance 

(FTICR) mass spectrometer, and Orbitrap mass spectrometer (Hoffmann and Stroobant 

2007). The versatility of mass spectrometry in analyzing proteins of various sizes, 

combined with its lower associated costs compared to NMR spectroscopy, has made it 

an attractive method for investigating protein HDX (Verma et al. 1986). HDX-MS 

experiments leverage the mass difference between hydrogen and deuterium atoms. 

When a polypeptide chain is introduced into D2O, its overall mass increases due to the 

exchange of backbone hydrogen atoms and solvent deuterium atoms. Although HDX-

MS provides valuable insights into protein dynamics, its resolution is generally at the 

peptide level (typically covering tens of amino acids), rather than at the individual 

residue level as in NMR. A detailed explanation of the experimental workflow of HDX-

MS experiments is provided in section 1.3.1.       

1.3 Hydrogen/deuterium exchange mass spectrometry 

Today, MS and NMR are the main alternative techniques to study the HDX of proteins 

or unfolded peptides. Of these, MS is generally preferred due to its broader applicability 

to proteins of varying sizes, simpler sample preparation (no need of 15N-labelled 

protein) and lower costs. While NMR provides site-specific data, allowing the direct 

study of individual amino acids, MS offers insights at the peptide level, typically for 

sequences composed of tens of residues. This section outlines the HDX-MS workflow, 

the advantages and drawbacks of the experiment with respect to the alternative 
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labelling techniques in the context of structural mass spectrometry, and introduces the 

central research question of this Thesis: can single-residue information (protection 

factors) be inferred from peptide-level HDX-MS data? A detailed discussion on data 

analysis and interpretation follows in Chapter 2. The section ends with a discussion 

about the versatility of HDX-MS experiments and listing two examples where obtaining 

single-residue information could be beneficial.  

1.3.1 Labelling techniques in structural mass spectrometry 

Structural biology has been dominated by X-ray crystallography, NMR spectroscopy 

and, more recently, cryo-EM. These techniques provide high-resolution protein 

structures, but they are limited in their use because of the relatively small range of 

molecular sizes they can analyse. NMR and X-ray crystallography are limited to small 

sizes (< 50 kDa), while cryo-EM to bigger systems (> 120-150 kDa) (Figure 1.6). Only 

in the last two decades, mass spectrometry (MS) has emerged as a powerful alternative 

(Kaur et al. 2019). Beyond the wider range of molecular sizes, MS has the great 

advantage of requiring small amounts of protein (μg). The advent of MS in the field of 

structural biology was favoured by the advent of electrospray ionization (ESI) and 

matrix-assisted laser desorption ionization (MALDI), which demonstrated that 

noncovalent interactions are preserved in the gas phase (Liko et al. 2016). Today, MS 

methods in structural biology can be grouped into two main families: “native” and 

“labelling” methods (Lermyte 2020).  
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Figure 1.6. Resolution of different biophysical techniques.  

NMR and cryo-EM are mainly applicable to macromolecules. MS has a flexible dynamic range providing 

structures informations from tissues to macromolecules. Reprinted with permission from U. Kaur, D. T. 

Johnson, E. E. Cheat et al. (2019), “Evolution of structural biology through the lens of mass spectrometry”, 

Analytical Chemistry, © 2019 American Chemical Society. 

In native MS methods, the sample is kept under near-native conditions, both during ESI 

and inside the mass spectrometer, and higher-order structural properties are 

preserved (Lermyte 2020). A mass spectrum shows the intensity of molecules present 

in solution with a specific mass to charge ratio m/z. The information contained in the 

raw data is convoluted: proteins and/or peptides are present with different charge 

states, with increasing charge values for unfolded proteins (Kafader et al. 2020); 

moreover, each charge state is represented by multiple peaks depending on the natural 

distribution of elements. The mass distribution of a peptide is called isotopic envelope.  

The two dimensions of the mass spectrum (m/z and intensity) can be coupled to a third 

dimension, namely the drift time, thanks to ion mobility spectrometry (IMS) 

(Konijnenberg, Butterer, and Sobott 2013). Traditional drift time measures the time it 

takes for an ion to migrate through a buffer gas in presence of a low intensity electric 
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field. Under low-field conditions, the velocity of the ion is directly proportional to the 

electric field, and the proportionality constant can be written as a function of the 

collisional cross-section (CCS) of the ion (Kanu et al. 2008). Therefore, IMS provides 

additional information on the size of the analyte.  

In labelling MS methods, mass labels are attached to the native structure in solution, 

which can be then denatured and/or digested to read out labelling sites and therefore 

obtain structural information (Lermyte 2020). We here discuss two labelling methods, 

namely limited proteolysis (LiP) and fast photo-oxidation of proteins (FPOP) before 

delving into hydrogen/deuterium exchange (HDX).  

Limited proteolysis (LiP) has been recently coupled to mass spectrometry to measure 

protein conformational changes on a proteome-wide scale (Schopper et al. 2017). 

However, the idea of probing structural properties of proteins exploiting enzymatic 

digestion has been developed in the last two decades (Fontana et al. 2004). In a typical 

LiP-MS experiment, proteins are directly extracted from cells or tissues under native 

conditions, and each proteome extract is split into a control sample and a LiP sample. 

The LiP sample is first subjected to proteolysis under native conditions by the action of 

a broad-specificity enzyme like proteinase K; second, the sample is denatured and fully 

digested with a specific enzyme (such as LysC or trypsin). The control sample is only 

subjected to the second step of (specific) digestion. The peptide mixture, which contains 

fully tryptic peptides and half-tryptic peptides (i.e. deriving from the LiP step), is then 

studied with MS. While specific digestion is site-dependent, the usage of enzymes with 

broader specificity in the LiP step aims to identify structure-specific peptide fragments 

(Schopper et al. 2017). LiP-MS counts a vast number of applications, from the analysis 

of protein structural changes upon specific environmental perturbations to the 

identification of protein functional alterations from whole proteomes (Cappelletti et al. 

2021). 

Fast photochemical oxidation of proteins (FPOP) relies on the irreversible labelling of 

solvent-exposed amino acid side chains by hydroxyl radicals (Johnson, Di Stefano, and 
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Jones 2019), which can modify 19 of 20 amino acids with a dominant shift in mass of 

+16 Da (many other modifications can occur). The advantage of FPOP over HDX and LiP 

is that the data obtained provide residue-level resolution of protein structures and 

interactions on the microsecond scale. Moreover, labels are permanent, giving more 

scope for working with complex samples and in vivo. Applications range from epitope 

mapping to the identification of lipid-interacting regions in membrane proteins, and its 

potential for de novo modelling of protein structures has already been demonstrated 

(Aprahamian et al. 2018). In a typical FPOP experimental setup, a solution of protein 

and H2O2 is irradiated by an excimer laser at 248 nm to generate hydroxyl radicals. A 

system of lenses focuses the laser beam on the flow tubing, which is made by silica and 

has an inner diameter of 150-450 μm. The sample is irradiated through a transparent 

window exposed on the coated silica tubing. The flow rate and laser frequency are 

coordinated so that each protein molecule is irradiated only once. After irradiation, the 

sample is collected into a tube containing catalase and free methionine in buffer to 

quench H2O2 and OH radicals, respectively, thus preventing post-footprinting oxidation 

artifacts from any remaining reactive species. To correct for the background oxidation, 

protein control samples are introduced into the flow system without laser irradiation. 

Performing FPOP under constant flow limits over-oxidation, which could lead to 

protein unfolding. A radical scavenger, most commonly glutamine, is also added to the 

sample as another experimental control to prevent over-oxidation. Based on the 

reactivity of glutamine with OH, FPOP labels proteins on the microsecond timescale and 

ensures the labelling of the native state of proteins.  

Another labelling technique that is worth mentioning is chemical cross-linking (Back et 

al. 2003; Leitner et al. 2010). The basic principle of a cross-linking MS experiment is 

that neighbouring residues can be cross-linked and after digestion those cross-linked 

protein residues can be identified, revealing proximity in the original sample (Lee and 

O’Reilly 2023).  
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1.3.2 HDX-MS experimental workflow 

When a polypeptide chain is diluted in D2O, the backbone amide hydrogens 

spontaneously exchange with deuterium in solution, and the consequent increase in 

mass can be detected with mass spectrometry. The stock protein solution is typically 

diluted in D2O generating a final 80-95% deuterated buffer. The deuterium percentage 

depends mostly on the desired intensity of the analyte (in other words, on its 

concentration): if the signal of the analyte is too low in the mass spectrum, the final 

deuterium percentage should be decreased. Note that the Linderstrøm-Lang model (Eq. 

1.6) is valid under the assumption of a 100% deuterated buffer, hence a lower 

deuterium concentration will affect the validity of the model, giving rise to a 

phenomenon that is referred to as back-exchange (i.e. the exchange of deuterium 

incorporated in the protein with residual hydrogens in solution).  

The workflow of HDX-MS experiments can be highly automated thanks to the 

implementation of liquid handling robots. Commercial instruments allow to monitor 

the exchange of proteins for labelling times in a range that goes from 20-30 seconds to 

hours (provided that the protein is stable in the autosampler kept at 4°C) (Burkitt and 

O’Connor 2008). This time range is generally optimal to monitor the exchange of folded 

proteins under physiological conditions (Weis 2016). However, when the system of 

interest is an unstructured peptide or an unfolded or disordered protein, the exchange 

happens in the millisecond regime (Al-Naqshabandi and Weis 2017). To monitor the 

exchange of such molecules, the pH at which the labelling is performed can be 

decreased to slow down the exchange (Goswami et al. 2013); however, this might not 

be sufficient to rescale the exchange time to the time window detectable by a traditional 

instrument. Moreover, a protein is not guaranteed to assume the same conformation at 

lower pH values (Li et al. 2014). Using a microfluidic system that adjusts the length of 

capillary tubes and the flow rate of the protein solution, Phillips et al. were able to 

develop a prototype that enables the measurement of fast (millisecond) HDX (Kish et 
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al. 2023; Seetaloo and Phillips 2022). Alternative setups to acquire millisecond HDX 

data were developed by different groups (Lento and Wilson 2022).  

If the solution is injected into the mass spectrometer right after deuterium labelling, i.e. 

when the protein (or the peptide) is still intact, we speak about ‘global’ analysis (Möller 

et al. 2020). Despite not being the traditional approach to an HDX-MS experiment, this 

type of analysis is useful to study the exchange of small systems, such as unfolded 

peptides (Al-Naqshabandi and Weis 2017) or oligonucleotides (Largy and Gabelica 

2020), as it avoids several drawbacks that characterize the traditional workflow, such 

as quenching optimization and back-exchange (see below). However, this global 

analysis has a low spatial resolution as it detects information only on the exchange of 

the whole system.  

To increase the resolution and obtain information about the exchange of more localized 

areas of a protein, the labelling reaction needs to be stopped (quenching). This can be 

done exploiting the dependence of the exchange on the pH and temperature of the 

solution (as described in section 1.1.1). Indeed, the exchange is generally quenched by 

lowering the pH near the minimum pH 2.5-3.0 and the temperature to approximately 

0°C (Figure 1.1) (Masson et al. 2019). After quenching the exchange reaction, the 

protein is digested (either offline or with an online column) by an enzyme, generally 

pepsin because it is still active at such acidic conditions. Other enzymes have been 

proposed as alternatives to pepsin, such as fungal proteases XIII and XVIII (Cravello, 

Lascoux, and Forest 2003), nepenthesin (Kenji et al. 2005), Aspergillus niger prolyn 

endoprotease (Tsiatsiani et al. 2017), rice field eel pepsin and aspergillopepsin (Ahn et 

al. 2013). Note that the quenching step often contains denaturants besides being acid. 

This facilitates the unfolding of the protein, and therefore its digestion. These enzymes 

are non-specific; hence they cleave the protein in a non-predictable yet reproducible 

pattern of overlapping peptides.  

The combination of quenching and digestion conditions generates a number of 

proteolytic peptides that are then separated by liquid chromatography and eluted into 



47 

 

the mass spectrum. These peptides can be visualized alongside the primary sequence 

of a protein in a coverage map (see for instance Figure 2.2, Figure 3.1 or Figure 5.3) 

and the data quality achieved can be defined mainly by two parameters: the sequence 

coverage (i.e. the percentage of amino acids covered by at least one proteolytic peptide) 

and the redundancy (i.e. the average number of proteolytic peptides covering a residue, 

in other words the degree of overlap between peptides) (Masson et al. 2019). 

Optimizing the quenching and digestion conditions to maximize the sequence coverage 

and redundancy can be extremely challenging and highly protein dependent, especially 

for complex systems such as integral membrane proteins (Martens and Politis 2020). 

For example, the shift towards low pH is sometimes not sufficient to unfold a stable 

protein, and the addition of denaturant in the quench buffer (typically urea or GuHCl) 

can yield a significantly higher number of peptides (Hamuro and Coales 2018).   

We have already mentioned the possibility for deuterium incorporated in the protein 

backbone to back-exchange into hydrogen. There are several steps in the experimental 

workflow where back-exchange can occur: 

i) During labelling: we call this form of back-exchange “reverse-exchange” to 

differentiate it from back-exchange occurring for technical reasons. 

Reverse-exchange occurs at the level of the native protein. 

ii) From quench onwards (Sheff, Rey, and Schriemer 2013): the quench buffer 

is water-based, and the labelling buffer is typically mixed with the quench 

buffer at a 1:1 ratio. The low pH and temperature in the quench can slow 

down, yet not completely stop, forward-exchange (H to D) and back-

exchange (D to H), which are competing mechanisms occurring at the 

protein level from quench to digestion and at the peptide level afterwards 

(these steps take typically 10-20 minutes).  

iii) During ionization (Guttman et al. 2016): additional back-exchange can occur 

at the peptide level during electrospray ionization.  
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Back-exchange can be minimized but cannot be completely removed from the 

experimental workflow. More details on how to treat back-exchange (experimentally 

or during data analysis) are provided in section 2.4.2. 

HDX-MS experiments monitor the exchange of proteolytic peptides of the protein, 

which are generally 5-25 residue long. While this resolution can be sufficient to localize 

binding sites in a differential experiment (e.g. when the apo and holo conformers of the 

protein are compared), it does not provide direct information at the level of the single 

residue and is therefore challenging to connect with the Linderstrøm-Lang theory and, 

consequently, to dynamic properties of the protein and molecular modelling. The 

resolution of HDX-MS data can be further increased experimentally by coupling the 

workflow described so far with fragmentation techniques (Sobott 2020). The 

proteolytic peptides can be further fragmented using suitable gas-phase dissociation 

techniques, such as collision-induced dissociation (CID), electro-capture dissociation 

(ECD), electron-transfer dissociation (ETD) or ultraviolet photodissociation (UVPD) 

(Mistarz et al. 2018). An issue that may arise while using these fragmentation 

techniques is that of H/D scrambling (Boyd and Somogyi 2010), i.e. gas-phase 

randomization of the solution deuterium label. H/D scrambling can be measured for 

model polypeptides for which the deuterium incorporation pattern is known (Zehl et 

al. 2008). For example, in a HHHHHHIIKIIK sequence (Figure 1.7), the first (histidine-

based) part of the sequence exchanges much faster than the second (formed by 

isoleucines and lysines). At a labelling time of around 1 minute, the first half of the 

model peptide is completely exchanged, while the second half has not exchanged yet. 

H/D scrambling can be measured by looking at the deuterium incorporation of the 

fragments of the peptide model: if there is no scrambling, only fragments coming from 

the first half of the peptide will have exchanged. Extensive research has shown that ECD, 

ETD and UVPD induce minimal H/D scrambling (if properly tuned), and can therefore 

be coupled to HDX-MS experiments to experimentally increase the spatial resolution 

(Rand, Zehl, and Jørgensen 2014). With this strategy, a 2-amino acid resolution has 

been achieved by Pan (Pan et al. 2009).  
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Figure 1.7. Model polypeptide with sequence HHHHHHIIKIIK used for measuring H/D scrambling. 

A) Intrinsic exchange rates for the model peptide, calculated at pH 4 and temperature 20°C. B) Deuterium 

uptake curve for the model polypeptide. Intrinsic exchange rate calculations were performed using a 

python script available at: https://github.com/pacilab/exPfact/blob/master/python/kint.py. 

Alternative labelling techniques in structural mass spectrometry provide 

complementary information. Indeed, while HDX-MS informs on the solvent 

accessibility, dynamics and hydrogen bonding of backbone amides (Devaurs et al. 

2022), FPOP-MS informs on solvent accessible amino acid side chains (Cornwell et al. 

2018) and LiP-MS on the overall flexibility of the protein (Fontana et al. 2004). 

Compared to LiP and FPOP (described in section 1.3.1), HDX offers several advantages 

(Mitra 2021). While FPOP can achieve single-residue resolution, this is generally 

limited to a small number of residues, resulting in lower overall sequence coverage 

compared to HDX-MS. LiP, on the other hand, can provide broader sequence coverage 

and higher redundancy by employing a cocktail of unspecific proteases, although it 

remains limited to peptide-level resolution. However, LiP has the advantage of being 

applicable to complex systems in vivo (Cappelletti et al. 2021), whereas HDX is only 

beginning to extend to these environments (Lin et al. 2022). Additionally, state-of-the-

art HDX-MS experiments have the unique feature to provide a continuous kinetic 

measurement, allowing deuteration to be monitored over time rather than observing a 

static before/after labelling snapshot (Hamuro 2021a). In principle, FPOP and LiP can 

https://github.com/pacilab/exPfact/blob/master/python/kint.py
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also be adapted for kinetic measurements by adjusting the laser intensity or exposure 

(in FPOP) or the digestion time (in LiP). However, a significant limitation of HDX 

relative to LiP and FPOP is the reversibility of hydrogen/deuterium exchange, which 

omplicates data analysis due to challenging back-exchange corrections (see section 

2.4.2).  

1.3.3 Single-residue resolution from peptide-level data: an underdetermined 

problem 

HDX-MS experiments monitor the deuterium uptake of a protein via its proteolytic 

peptides (or their fragments if a fragmentation technique is used) (Masson et al. 2019). 

The Linderstrøm-Lang model (Eq. 1.6) can be used to write the deuterium uptake of a 

peptide D(t) as the sum of the contributions of its N exchangeable residues: 

Eq. 1.14 D(t, {P}) =
1

N
∑ (1 − e

−
kint,i
Pi

t
)N

i=1  

where 𝑘𝑖𝑛𝑡,𝑖 and 𝑃𝑖  represent the intrinsic exchange rate and the protection factor of 

residue 𝑖, respectively. The ultimate goal of any HDX experiment is to estimate the 

protection factors of the protein, which allow to quantitatively connect the 

experimental data with the Linderstrøm-Lang theory as well as to structural and 

dynamic properties of the protein (Englander et al. 2016). The search for single-residue 

resolution has first motivated the HDX field to move from density gradient 3H-gel 

filtration methods to NMR (section 1.2.1). Then, the need to study a broader range of 

biological systems dictated the move from NMR to MS, at the cost of a lower (peptide 

level) resolution. Is it possible to use computational strategies and advance statistical 

methods to retrieve single-residue information from peptide-level (or fragment-level) 

data? 

One of the problems of extracting protection factors from peptide-level (or fragment-

level) HDX-MS data is ‘underdetermination’ (Skinner et al. 2019). A problem is 

underdetermined when the number of parameters that must be estimated is higher 
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than the number of experimental points. A trivial example is given by the following 

problem: suppose that in a closed basket there are N apples and M oranges, for a total 

of 5 fruits; how many apples and oranges are there? The problem is underdetermined 

as the number of the required parameters (two: N apples and M oranges) is higher than 

the number of experimental points (one: 5 fruits). The consequence of 

underdetermination is that there exist alternative solutions that are equally in 

agreement with experimental data: in the example, (𝑁 = 1,𝑀 = 4), (𝑁 = 2,𝑀 = 3), 

(𝑁 = 3,𝑀 = 2) and (𝑁 = 4,𝑀 = 1) are all possible solutions. Of course, when we open 

the basket, we realize that only one of these solutions is the true one. 

Analogously, HDX-MS data are affected by underdetermination (Stofella et al. 2022). In 

the case of the isolated deuterium uptake curve of a peptide formed by N residues, the 

number of parameters to be extracted (N) can be higher or lower than the number of 

experimental time points available (M). If 𝑁 < 𝑀, the problem is underdetermined by 

definition, hence there exist multiple patterns of protection factors that are equally in 

agreement with the experimental data. Even when 𝑁 > 𝑀 (when the peptide is small 

or when the number of labelling time points is high), multiple solutions are equally 

consistent with experimental data because Eq. 1.14 does not contain information on 

the relative contribution of the exchange rates. For example, a peptide formed by three 

amino acids with three different exchange rates yields the same deuterium uptake 

curve independently of the assignment of a specific rate to a specific residue.   

The degree of underdetermination can be decreased by looking simultaneously at the 

information contained in the deuterium uptake curve of overlapping peptides and is 

solved in the case of an ideal dataset where all peptides differ by exactly one amino acid 

(Kan et al. 2013). 

Overcoming underdetermination can be achieved by splitting the question into two 

separate problems: i) calculating all solutions in agreement with experimental data and 

ii) finding a way to select the true one. Throughout this work, we assume that the true 
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value of a protection factor (or the closer we can get to it) is given by the experimental 

value extracted by NMR.    

1.3.4 Applications of HDX-MS: two examples 

The versatility of HDX-MS, with its ability to study a wide range of protein systems and 

provide structural and dynamic information complementary to other techniques like X-

ray crystallography, NMR spectroscopy and cryo-EM, has driven its rapid growth in 

both industry and academia. In its most common applications, HDX-MS has been used 

to (Narang, Lento, and J. Wilson 2020): i) compare different protein conformers; ii) 

localize protein-small molecule binding sites while monitoring potential orthosteric 

and allosteric changes in the protein (Masson, Jenkins, and Burke 2017); iii) map 

antibody epitopes (Deng, Lento, and Wilson 2016; Wei et al. 2014); iv) characterize 

large or multi-protein complexes, which are a challenging target for X-ray 

crystallography and NMR spectroscopy; v) study intrinsically disordered proteins 

(IDPs) that adopt multiple conformations in their native state and are difficult to 

crystallize; vi) analyzing the conformational dynamics of membrane proteins, a key 

focus in drug discovery (Martens and Politis 2020).  

In most published studies, HDX-MS experiments are performed at the peptide 

resolution, revealing differences in deuterium uptake between two conditions (e.g. 

different conformers or ligand-bound/unbound states). In this Thesis, we propose 

methods that allow to infer quantitative single-residue information from peptide-level 

data. This increase in resolution can be powerful to draw more precise structural 

insights that can drive deeper conclusions about protein systems than peptide-level 

data alone. We provide two examples.  

HDX-MS has been applied to understand prion diseases, where single-residue changes 

can have a profound impact on protein behavior. A known mutation, A116V, in the 

prion protein (PrP) enhances the formation of a neurotoxic transmembrane form, 

which induces neural death (Hegde et al. 1998). By comparing deuterium uptake curves 
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between wild-type and mutant, Sabareesan and Udgaonkar identified that the peptide 

109-132, which is responsible for membrane insertion, becomes more solvent-

protected in the mutant (Narang et al. 2020; Sabareesan et al. 2016). Single-residue 

resolution in this context provides a clear structural advantage by pinpointing precise 

mutation-induced changes.  

HDX-MS is also valuable for studying proteins in different buffer conditions, such as 

assessing temperature- or pH-dependent conformational changes (Tajoddin and 

Konermann 2020, 2022). In such cases, differentiating structural changes from buffer-

driven effects is essential for accurate conclusions. A traditional differential analysis 

might confound these factors, but retrieving single-residue information can help 

discriminating the role played by the buffer (section 1.1.1) from that of structure 

(section 1.1.2). For example, α-synuclein, an IDP, shows conformation changes in 

different in vivo environments; IM-MS studies have shown it adopts a more compact 

form in the presence of metal ions (Byrd et al. 2023). HDX-MS could ideally localize such 

changes, although the risk of a traditional peptide-level analysis is the misclassification 

of buffer effects for structural shifts.    

1.4 Aims and structure of the thesis 

The research question leading to the development of this Thesis is whether it is possible 

to infer single-residue resolution (protection factors) from peptide-level HDX-MS data. 

In a broader sense, this work aims to show that HDX-MS experiments have the potential 

to draw quantitative conclusions on the dynamics of a protein system, rather than only 

qualitatively localize difference in the uptake of different experimental conditions.   

The importance of the Linderstrøm-Lang model in describing the HDX of proteins, and 

the key role played by the protection factors in connecting experimental data with 

structural modelling is the focus of Chapter 1. We also introduced the different 

techniques developed during the years to study HDX, with a major focus on the working 

principles of mass spectrometry. We have described in detail the experimental 
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workflow of traditional and alternative HDX-MS experiments, introducing 

underdetermination, i.e. the statistical problem that characterizes HDX-MS data and 

does not allow a straightforward extraction of single-residue information.  

In Chapter 2, “Computational tools for hydrogen/deuterium exchange mass 

spectrometry data analysis”, we present a software review that describes and critically 

evaluates the state-of-the-art tools to analyse HDX-MS data. The section describes the 

importance of choosing an appropriate statistical test when performing a differential 

experiment (i.e. when comparing two or more protein states), as well as alternative 

methods to deal with multimodal analysis of protein spectra and to computationally 

increase the spatial resolution of peptide-level data. 

In Chapter 3, “High resolution hydrogen-deuterium protection factors from sparse 

mass spectrometry data validated by nuclear magnetic resonance”, we propose a 

computational method to estimate the alternative patterns of protection factors in 

agreement with experimental HDX-MS data. We show how the additional information 

encoded in the isotopic envelope of the peptides can be exploited to rank the alternative 

solutions from best to worst. The outcomes are compared with HDX-NMR data probing 

the same protein under the same experimental conditions, showing a satisfying 

correlation. The promising results reported by this method, ExPfact, represented the 

foundation for further studies.  

In Chapter 4, “Recalibrating protection factors using millisecond hydrogen/deuterium 

exchange mass spectrometry”, we studied the fast HDX of a mixture of peptides to test 

the validity of the predictions provided by the Englander group (described in section 

1.1.1), on which ExPfact relies. Our results show that these predictions are more 

accurate when a three-alanine peptide is used as unstructured reference instead of 

poly-DL-alanine (PDLA), and that this is due to the fact that PDLA has high structural 

propensity as the chain length increases.  
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In Chapter 5, “Inferring residue-level resolution from peptide-level 

hydrogen/deuterium exchange mass spectrometry data”, we expand the method 

presented in Chapter 3 to exploit structural information of the protein (when 

available). We acquired both HDX-MS and HDX-NMR data for two test proteins to show 

that the protection factors extracted by HDX-MS data only provide reliable estimates. 

The quality of the predictions depends on the quality of the dataset, namely on the 

redundancy provided by the peptides and by the number, type and spread of time 

points available. The strengths and limitations of our approach are discussed. 

In Chapter 6, we present a general discussion linking the different chapters in the light 

of the main research question: can single-residue resolution be inferred from peptide-

level HDX-MS data? We provide a chronological perspective on how we tried to 

overcome the problem of underdetermination and discuss future directions of the field.    
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Chapter 2. Computational Tools For 
Hydrogen/Deuterium Exchange Mass 
Spectrometry Data Analysis 

Submitted and accepted with minor corrections as: M Stofella, A Grimaldi, JH Smit, J 

Claesen, E Paci and F Sobott, “Computational tools for hydrogen/deuterium exchange 

mass spectrometry data analysis”, Chem Rev, 2024 

2.1 Abstract  

Hydrogen/deuterium exchange (HDX) has become a pivotal method for investigating 

the structural and dynamic properties of proteins. The versatility and sensitivity of 

mass spectrometry (MS) made the technique the ideal companion for HDX, and today 

HDX-MS is addressing a growing number of applications in both academic research and 

industrial settings. The prolific generation of experimental data has spurred the 

concurrent development of numerous computational tools, designed to automate parts 

of the workflow while employing different strategies to achieve common objectives. 

Various computational methods are available to perform automated peptide searches 

and identification; different statistical tests have been implemented to quantify 

differences in the exchange pattern between two or more experimental conditions; 

alternative strategies have been developed to deconvolve and analyse peptides 

showing multimodal behaviour; and different algorithms have been proposed to 

computationally increase the resolution of HDX-MS data, with the ultimate aim to 

provide information at the level of the single residue. This review delves into a 

comprehensive examination of the merits and drawbacks associated with the diverse 

strategies implemented by software tools for the analysis of HDX-MS data.  
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2.2 Introduction 

Proteins are the most important gears in the engine of life. Since the seminal work by 

Anfinsen in 1960, scientists have wondered how their linear sequence of amino acids 

folds into a defined three-dimensional structure, how these structures change upon 

binding, and how they maintain health and cause disease. High-resolution snapshots of 

protein structures can be captured by X-ray crystallography, NMR spectroscopy or 

electron microscopy (EM), while their dynamic behaviour in solution is harder to probe. 

Hydrogen bonding is one of the defining aspects of a protein’s structure (or lack 

thereof), but equally important for how it interacts with the surrounding solvent. One 

unique feature of proteins is the exchange of their amide hydrogens with hydrogens in 

solution (Linderstrøm-Lang 1955). “Proteins continuously emit signals in the language 

of hydrogen exchange” (Englander et al. 2016), and understanding how to detect and 

interpret these signals is a unique opportunity to harness protein design. 

When diluted into a deuterated buffer, the amide hydrogens of the protein 

spontaneously exchange with deuterium in solution (Linderstrøm-Lang 1955). The 

phenomenon is referred to as hydrogen-deuterium exchange (HDX). In the case of fully 

unstructured proteins, the rate of exchange depends on chemical properties of the 

buffer (pH, temperature, ionic strength) on one side, and on the amino acid’s effective 

pKa (determined by its side chain and its direct neighbours). When a protein acquires 

its native structure, hydrogen bonding and solvent accessibility lower the rate of 

exchange by means of ‘protection’, and HDX measures this perturbed rate of exchange, 

thereby informing on the protein’s structural and dynamic properties (Englander et al. 

2016). Measuring the isotopic exchange in proteins posed a technical challenge. In its 

early years, HDX was measured using an ultracentrifugation procedure (Hvidt and 

Linderstrøm-Lang 1954); later, by infrared (Osborne and Nabedryk-Viala 1978) or UV 

(Englander, Calhoun, and Englander 1979) spectroscopy. These techniques have low 

“spatial resolution”: they cannot monitor the exchange at a residue-level, but only the 

global exchange of the protein (i.e. the summed exchange of labile sites); yet they cannot 
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determine the overall extent of deuterium incorporation very accurately either. The 

popularity of HDX increased with the advent of two-dimensional NMR (Englander and 

Mayne 1992). Hydrogen and deuterium have different spins (hydrogen has spin ½, 

while deuterium has spin 1); leveraging the decrease of 1H-NMR signal upon 

deuteration in an HSQC spectrum (Kleckner and Foster 2011), HDX-NMR can monitor 

the exchange of individual labelled residues (high spatial resolution) but is limited to 

the study of small proteins (< 50 kDa) (Dempsey 2001) and requires larger amounts of 

sample as well as 15N labelling. In the last 30 years, HDX coupled with mass 

spectrometry (MS) has been established as a viable alternative (Masson et al. 2019). 

The versatility of the technique (Trabjerg, Nazari, and Rand 2018) and recent 

technological advancements (Engen et al. 2021) led to the generation of large amounts 

of data, and today the technique needs computational tools for an automated analysis 

and for retrieving more detailed and statistically accurate information from the raw 

data (Claesen and Burzykowski 2017). 

HDX-MS measures the mass increase of a protein caused by deuteration (Figure 2.1) 

(Masson et al. 2019; Vinciauskaite and Masson 2023). The protein (or complex) is first 

equilibrated in a suitable biochemical buffer at desired pH, ionic strength and 

temperature. Continuous H/D exchange starts with dilution into deuterated buffer, 

with a final deuteration percentage that typically ranges from 80 to 95%, and labelling 

occurs for a variable amount of time. Labelling times generally range from 10s of 

seconds to hours, but recent technological developments gave access to the millisecond 

scale (Kish et al. 2023; Seetaloo and Phillips 2022; Svejdal et al. 2019), which is crucial 

to probe the fast exchange of highly dynamic regions and intrinsically disordered 

proteins (Seetaloo and Phillips 2022), as well as unstructured peptides (Al-

Naqshabandi and Weis 2017) (these are highly valuable for fundamental studies, e.g. to 

study how H/D exchange is dependent on the buffer conditions). HDX can be monitored 

at the level of the intact protein (global HDX); it is worth noting here that global HDX-

MS has been applied to study structured oligonucleotides (Largy and Gabelica 2020) 

and a software, OligoR (not reviewed here), has been developed to analyse these data 
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(Largy and Ranz 2023). In order to obtain higher spatial resolution (local HDX), a 

“bottom-up” approach is generally implemented: the protein is digested, and the mass 

spectra of the proteolytic peptides are acquired. While measuring the mass shifts of the 

intact peptides yields data on the incorporation of deuterium per peptide, MS/MS 

fragmentation using collision-induced dissociation (CID) is used to confirm the 

sequence of the peptide without deuteration, but it scrambles hydrogen and deuterium 

within peptides and is therefore not useful for determining of exchange sites at the 

single amino acid (residue) level. Before digestion, the exchange must be quenched at 

low pH (~ 2.5) and temperature (~ 0°C) to minimize back-exchange, which corresponds 

to a partial loss of deuterium label. Pepsin is the most used enzyme for protein digestion 

in HDX-MS experiments because it is active at acidic pH, although other enzymes have 

been used (such as the fungal proteases XIII and XVIII (Cravello et al. 2003), 

nepenthesin (Kenji et al. 2005), Aspergillus niger prolyn endoprotease (Tsiatsiani et al. 

2017), rice field eel pepsin and aspergillopepsin (Ahn et al. 2013)). These enzymes 

cleave the protein into peptides, producing non-predictable yet reproducible patterns 

of overlapping peptides; the use of multiple enzymes can increase the spatial resolution, 

which is determined by the digestion pattern. The proteolytic peptides are separated 

by rapid reversed-phase liquid chromatography (LC) with a gradient time of ~10 

minutes (possibly holding the column close to 0°C), ionized with electrospray 

ionization (ESI), and eluted into the mass spectrometer. Alternative experimental 

setups for local HDX-MS, not covered in this review, include the fragmentation of the 

intact labelled protein (“top-down”) or of the proteolytic peptides (“middle-down”) 

using electron capture dissociation (ECD), electron transfer dissociation (ETD) 

(Wollenberg et al. 2020) or ultraviolet photo-dissociation (UVPD) (Mistarz et al. 2018).   
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Figure 2.1. Typical experimental workflow of an HDX-MS experiment. 

Typical experimental workflow of an HDX-MS experiment: 1) labelling: the undeuterated protein (blue) 

is diluted in a 80-95% deuterated buffer where the HDX occurs at the protein level for times ranging from 

milliseconds to hours; deuterated residues are shown in red; 2) quench: the exchange, still occurring at 

the protein level, is minimized by lowering the temperature (to ~0°C) and the pH (to ~2.5), back-

exchange can occur at the protein level (blue/red beads); 3) digestion: the protein is digested, from this 

point forward-exchange and back-exchange (red-blue circles) occur at the peptide level; 4) ionization: 

the proteolytic peptides are ionized and eluted in the mass spectrometer.  
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The raw data of the peptide-level experiment comprises the time evolution of the mass 

spectra of proteolytic peptides of the protein, i.e. their mass shifts. A comprehensive 

tool for HDX-MS data analysis would 1) identify a list of proteolytic peptides assigned 

to mass spectra in the raw control (undeuterated) data, 2) assign peaks in the labelled 

(deuterated) raw spectra of the identified peptides, 3) identify peptides showing a 

bimodal spectrum (see section 2.5.3), 4) calculate the mass increase of each peptide, 

5) correct for back-exchange, 6) increase the spatial resolution, ideally to residue level 

(protection factor analysis), and 7) localize and quantify statistically significant 

difference in the uptake pattern of two (or more) experimental conditions (differential 

analysis). Steps 1, 2 and 4 are generally conducted using vendor-specific software tools 

(namely PLGS and DynamX for Waters instruments, BioPharma Finder and 

HDExaminer for Thermo Fisher Scientific instruments), and the results are then 

exported to perform further analysis.  Back in 2006, HX-Express (Weis, Engen, and Kass 

2006) was one of the first software tools for HDX-MS data analysis. Since then, several 

platforms have been developed, such as HDX workbench (Pascal et al. 2012), Hydra 

(Slysz et al. 2009), Hexicon (Lindner et al. 2014), and ExMS (Kan et al. 2011) that have 

been previously reviewed (Claesen and Burzykowski 2017). In response to the 

recommendations for performing, interpreting and reporting HDX-MS experiments 

published by the international community in 2019 (Masson et al. 2019), several 

methods have been implemented with the goal of providing a standard and 

comprehensive framework for data visualization and differential analysis. Moreover, 

stand-alone computational methods have been developed to tackle the most common 

challenges provided by HDX-MS data, such as corrections for back-exchange, 

deconvolution of EX1/EX2 kinetics and protection factor analysis. 

The purpose of this paper is to review the recent tools (both commercial and open-

source) available for the analysis of continuous labelling, local HDX-MS data. First, we 

evaluate the capability of comprehensive software (by comprehensive, we mean a tool 

ideally able to cover all 7 points mentioned above) of providing a standardized 

framework for qualitative data visualization and quantitative data analysis for 
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differential experiments (when two or more experimental conditions are compared). 

Most biochemical experiments have this differential nature, as they compare two or 

more states of a protein (e.g. mutation, ligand binding or free against complex). In this 

common scenario, the data analysis workflow is divided into two parts: a commercial 

instrument-dependent software is first used to pre-process the experimental data, then 

a third-party open-source software is used for statistical data analysis. In most 

scenarios, this analysis is sufficient to answer the research question. Here, we 

particularly focus on more advanced tools where much more information contained in 

the data can be extracted. We review and discuss stand-alone programs implementing 

unique features for ‘non-standard’ analysis, such as automated peptide search (section 

2.5.1), multimodal analysis (section 2.5.3), and protection factor analysis (section 

2.5.4). The software and methods reviewed in this paper are listed in Table 2.1. Note 

that the Figures in this paper have not been created by one of the reviewed methods 

but by our own Python scripts.       

Table 2.1. List of software tools and methods reviewed in this paper.  

An updated list of software, publications and other resources for HDX-MS data analysis is available at the 

following link: https://github.com/hadexversum/HDX-MS-resources. 

Software 

Access to raw data   

Automated 
Peptide 
Search 

(section 2.5.1) 

Multimodal  
Analysis 

 
(section 2.5.2) 

Differential 
Analysis 

 
(section 2.5.3) 

High 
Resolution 

HDX-MS 
(section 2.5.4) 

Claesen et al.  
(Claesen et al. 2021) 

  ✓  

DECA  
(Lumpkin and Komives 
2019) 

  
✓ ✓ 

deMix  
(Na et al. 2019) 

✓ ✓   

Deuteros 2.0  
(Lau et al. 2020a) 

  
✓  

ExMS2  
(Kan et al. 2013, 2019)  

✓ ✓  
✓ 

ExPfact  
(Skinner et al. 2019; 
Stofella et al. 2022) 

   
✓ 

HaDeX  
(Puchała et al. 2020) 

  
✓  

HD-eXplosion  
(Zhang et al. 2021) 

  
✓  

https://github.com/hadexversum/HDX-MS-resources
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HX-Express  
(Guttman et al. 2013) 

✓ ✓   

Hdflex  
(Seetaloo, Kish, and 
Phillips 2022) 

  
✓ ✓ 

HDXAnalyzer  
(Liu et al. 2011) 

  
✓  

HDXModeller  
(Salmas and Borysik 2021) 

   
✓ 

Hdxstats  
(Crook, Chung, and Deane 
2022) 

  
✓ ✓ 

HR-HDXMS  
(Gessner et al. 2017) 

   
✓ 

Mass Spec Studio  
(Filandr et al. 2024; Raval 
et al. 2021; Rey et al. 2014; 
Ziemianowicz et al. 2020) 

✓ ✓ ✓  

MEMHDX  
(Hourdel et al. 2016) 

  
✓  

PyHDX  
(Smit et al. 2020) 

   
✓ 

ReX  
(Crook et al. 2024) 

  ✓ ✓ 

Saltzberg et al.  
(Saltzberg et al. 2017) 

   
✓ 

2.3 Theoretical background 

When a protein is diluted in a solution containing deuterium oxide (D2O), its amide 

hydrogens spontaneously exchange with deuterium (D). It is fair to say that all the 

hydrogens (H) of the protein are exchanging. However, the labelling timescales that can 

be probed with a typical HDX-MS experiment range from milliseconds to hours. In the 

light of this, carbon-bound aliphatic and aromatic hydrogens exchange far too slowly to 

be detected, while side chain acidic and basic hydrogens and polar –OH, –SH and –NH2 

groups exchange too fast, and therefore they rapidly back-exchange into hydrogen 

during the LC-MS analysis and are lost before detection (Englander et al. 1996; Hamuro 

2021b).  

Amide hydrogens are fully “exchange competent” (“open” state NHop) when they are 

surface exposed and not engaged in secondary structure (i.e., they do not form 

hydrogen bonds other than with water). Some residues are structurally protected 

against exchange (“closed” state NHcl), but local fluctuations (defined by the opening 
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and closing rates kop and kcl) can expose them to solvent-enabled deuteration and 

subsequently undergo exchange to form the deuterated state (ND) (Englander et al. 

2016). As a consequence, HDX of a single amide hydrogen can be modelled as a two-

step process (Linderstrøm-Lang model) (Linderstrøm-Lang 1955): 

Eq. 2.1  NHcl

kop
⇌
kcl

NHop
kint
→  NDop

kcl
⇌
kop

NDcl 

The intrinsic exchange rate kint corresponds to the exchange rate of the residue in a 

completely unfolded structure. It depends on chemical properties of the buffer (pH, 

temperature and ionic strength) as well as the amino acid itself and the neighbouring 

residues (Al-Naqshabandi and Weis 2017; Bai et al. 1993; Connelly et al. 1993; Molday 

et al. 1972). HDX-MS is a kinetic experiment, with the ultimate goal of determining the 

rates of exchange defined in Eq. 2.1.  

The exact analytical solution for the model in Eq. 2.1 is a double exponential (Hvidt and 

Nielsen 1966). Under the so-called native approximation for a mostly folded peptide 

backbone (kop ≪ kcl, i.e. the amide residue is mostly in the closed, protected state) and 

the EX2 regime (kint ≪ kcl, i.e. the exchange is slow compared to the local structural 

dynamics), the deuteration of a single residue (d) – considering the deuterated residue 

either in the NDop or NDcl state – can be approximated as a single exponential: 

Eq. 2.2  d(t) = 1 − e−
kint
P
t 

The pseudo (pre)equilibrium constant P ≡ kcl kop⁄  is known as protection factor and 

encodes dynamic properties of the protein (Hamuro 2024): several microscopic models 

have been developed aiming to connect the structure of a protein to its protection 

factors; the most known model, often addressed as ‘phenomenological model’, 

describes the protection factor of a residue as the linear combination of heavy contacts 

(i.e. the number of atoms in the proximity of the amide not belonging to neighbouring 

residues in the primary sequence) and hydrogen bonds (Best and Vendruscolo 2006; 
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Vendruscolo et al. 2003). These models have already been reviewed by Devaurs et al. 

(Devaurs et al. 2022) and will not be discussed here.  

Under denaturing conditions and for intrinsically disordered proteins, the amide 

backbone is largely exposed and the exchange kinetics may follow the so-called EX1 

regime (occurring when kcl ≪ kint) (Weis, Wales, et al. 2006). The deuterium uptake of 

a single residue can be approximated to occur in a single step with a rate kop: 

Eq. 2.3  d(t) = 1 − e−kopt 

The presence of EX1 or EX2 kinetics (or their coexistence, known as EXX kinetics) can 

be discriminated in the raw HDX-MS data by the emergence of a bimodal pattern of the 

isotopic distribution in the mass spectrum of the peptide (see section 2.5.3) (Ferraro, 

Lazo, and Robertson 2004). However, this bimodal pattern is not guaranteed to occur 

in EX1 conditions. Indeed, when EX1 conditions are met, the exact analytical solution of 

the Linderstrøm-Lang model (Eq. 2.1) provides a fast-exchange kinetics per residue but 

no explanation for the bimodal pattern for the peptide. The explanation of the bimodal 

pattern stands in the cooperativity between residues, which is exclusive to peptide-

level HDX-MS data and cannot be monitored by NMR experiments: under EX1 

conditions, the probabilities of closing (kcl) and exchanging (kint) are such that, if 

subsets of residues open cooperatively, it is likely that most of (or all) the residues 

exchange, forming the second, fully exchanged population of the distribution (Zhang 

2020).  Other factors, discussed in section 2.5.3, may also lead to a bimodal pattern.      

2.4 Connecting theory and HDX-MS data 

HDX-MS experiments usually detect the deuterium uptake of a protein through its 

proteolytic peptides. Before performing any kind of analysis, pre-processing of the raw 

mass spectra is required to identify these peptides from the LC-MS/MS runs. This 

peptide search is performed on a digested control sample (without deuterium 

labelling). Identification of proteolytic peptides follows similar procedures as bottom-
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up proteomics, albeit for non-tryptic peptides in the case of HDX and is generally 

performed using commercial software included with the instrument: PLGS and DynamX 

for Waters instruments, BioPharma Finder and HDExaminer for Thermo Fisher 

Scientific/Trajan (section 2.4.7). Next, the quality of the isotopic envelopes of each 

peptide (and charge state) is checked manually to verify assignments and eliminate 

false identifications. The major drawbacks of the semi-automated peptide search 

provided by these software and alternative strategies are discussed in section 2.5.1. 

The peptide list is generally reported in a coverage map (Figure 2.2), where peptides 

are depicted as horizontal bars and visualized across the sequence of the protein. The 

quality of the dataset can be quantified mainly with 3 parameters: the number of 

peptides, the sequence coverage (the percentage of residues of the protein covered by 

the proteolytic peptides) and the redundancy (the “overlap”, defined as average 

number of proteolytic peptides available per covered residue).       

 

Figure 2.2. Example of a typical coverage map.  
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Horizontal bars represent proteolytic peptides localized along the sequence of the protein. Number of 

peptides, sequence coverage, redundancy, and average length (number of amino acids) are reported. 

Data showing the proteolytic pattern of cholera toxing B acquired by the author.  

2.4.1 Absolute and fractional uptake 

After the generation of a peptide list and the manual or automated assignment of 

isotopic envelopes at different labelling times, the intensity-weighted average m/z of 

the isotopic envelope of the peptide is recorded as a function of time (Figure 2.3).  

 

Figure 2.3. Isotopic envelopes of proteolytic peptides for different experimental conditions under 

analysis (simulated data).  

Data shown for visualization purposes only for one peptide under two arbitrary experimental conditions: 

condition 1 (orange) and condition 2 (purple). At increasing labelling times, the isotopic envelope shifts 

towards higher values of m/z. The centroid of the isotopic envelope, i.e. the intensity-weighted average, 

is monitored. The absolute uptake (right) is defined as the difference between the centroid of the 

envelope at a specific time and the centroid of the control (fully protonated) envelope. The absolute 

uptake of different conditions is compared.    

The measured m/z value (mz) at a specific charge state z is converted into a mass scale 

(m) using the following formula:  

Eq. 2.4  m = mz × z − z 
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The mass increase (or absolute uptake) is defined as the difference of the mass of the 

peptide at labelling time t (m(t)) and the mass of the peptide in the control sample (m0): 

Eq. 2.5  Absolute Uptake (Da) = m(t) − m0 

If the mass of the fully deuterated peptide (mFD) is measured (Peterle, Wales, and Engen 

2022), the absolute uptake is commonly converted to the fractional deuterium uptake 

(DFrac): 

Eq. 2.6  DFrac =
m(t)−m0

mFD−m0
 

The measured fully deuterated sample often does not match the theoretical fully 

deuterated mass, which corresponds to the number of exchangeable amides (i.e. 

excluding prolines and the first/second residues (Hamuro 2021b)). This discrepancy 

arises because back-exchange (i.e. deuterium loss) can happen at different stages along 

the experimental workflow (section 2.4.2). When a fully deuterated sample is 

available, the fractional uptake in Eq. 2.6 represents the conventional back-exchange 

correction. 

2.4.2 Back-exchange 

The Linderstrøm-Lang model (Eq. 2.1) considers “forward” HDX (i.e. H to D) to be an 

irreversible process, which is true only during the labelling phase (before quenching), 

when the protonated protein is exchanging within a 100% deuterated buffer, and when 

further processing steps from the quench onwards are neglected. This is not the case in 

typical HDX-MS experiments, where the protein is diluted resulting in an 80-95% 

deuterated buffer. While higher dilution factors could reduce reverse exchange and 

more closely align with the theoretical model, they are often impractical because the 

resulting protein concentrations might fall below the detection limit of the mass 

spectrometer. During the HDX-MS experimental workflow, there are several steps at 

which back-exchange, i.e. partial loss of deuterium label, can occur (Figure 2.1). The 

deuterium labelling is performed in a highly (yet not purely) deuterated buffer (80-
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95%), and therefore reverse exchange (D to H, deuterium/hydrogen exchange) is 

occurring at the native protein level (e.g. with a 5% probability in a 95% deuterated 

buffer). From the quench onwards, the deuterated solution is mixed with a water-based 

quench buffer (generally at a 1:1 ratio): forward exchange and back-exchange are 

competing mechanisms occurring at the protein level from quench to digestion and at 

the peptide level afterwards. Additional back-exchange can occur during ionization and 

in the gas phase before detection in the mass spectrometer. To minimize back-exchange 

after the labelling phase, the temperature of the solution should be decreased (even 

below 0 °C ) by placing the reversed-phase column for peptide separation in a 

refrigerated unit; but the digestion unit is usually kept at higher temperature to ensure 

efficient digestion (Wales et al. 2017). However minimized, it is not possible to 

completely remove back-exchange from the HDX-MS workflow, and therefore a proper 

quantification of back-exchange levels and consequent data normalization are highly 

desirable, but currently still lacking.  

Most differential studies (i.e. where two or more experimental conditions of the protein 

are compared) do not perform any back-exchange correction and instead compare the 

absolute uptake (Eq. 2.5) of the same proteolytic peptides derived from different 

biological states of the protein, under the same experimental (technical) conditions. 

This procedure is correct only under the assumption that the extent of back-exchange 

is the same in the two experimental conditions, such that the denatured intact protein 

(from quench to digestion) and the peptides (from digestion onwards) are fully 

unstructured or retain similar residual structure. The validity of this assumption is not 

straightforward: for example, Sheff et al (Sheff et al. 2013) have shown that proteolytic 

peptides can retain residual structure in the LC column, hence different protein 

conformations may induce different back-exchange levels. Beyond differential studies, 

a proper back-exchange correction is essential if absolute and quantitative biophysical 

properties are required (such as exchange rates or protection factors, see section 

2.5.4). 
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When implemented, the standard approach to correct for back-exchange is the 

acquisition of a fully deuterated sample and the normalization of absolute uptake 

values into fractional uptake (Eq. 2.6). There exist different protocols to acquire fully 

deuterated samples. For example, a fully deuterated control can be acquired by leaving 

the protein to deuterate for a time that is long enough to see the plateau in the kinetic 

uptake curves (e.g. for 12 hours). In many settings, researchers decide to avoid this 

strategy because many proteins are unstable for such long times (their partial 

denaturation resulted in lower intensities in the chromatogram, or their aggregation 

causes false protection), and in rare cases membrane proteins retain regions so 

protected that their exchange after 12 hours is negligible. A second strategy to acquire 

a fully deuterated control consists of diluting the protein in a deuterated buffer 

containing high levels of denaturant (e.g. 4 M urea) and leaving it overnight to exchange. 

A third strategy consists in performing offline digestion and deuteration of the 

proteolytic peptides. In the absence of a published study which systematically 

compares the results of the different strategies to acquire a fully deuterated sample, we 

recommend either of the latter two approaches.   

As an alternative to the standard approach, the software DECA (Lumpkin and Komives 

2019) was implemented around the need for developing a back-exchange correction. 

The authors identified two distinct forms of back-exchange that can influence 

deuteration (Figure 2.4): they called these “global back-exchange” that occurs at the 

level of the intact, but denatured protein (from quench to digestion on the pepsin 

column), and “local back-exchange” that acts at the level of the peptide (from digestion 

to the point of injection into the mass spectrometer) (Zhang, Zhang, and Xiao 2012). 

Back-exchange causes the deuterium uptake curve to plateau at a value lower than the 

theoretical fully deuterated mass. 

The authors of DECA (Lumpkin and Komives 2019) also identify a “long exposure 

effect”, which causes later time points to slowly deviate from the fully deuterated 

plateau. There are a number of possible reasons which can cause such effects, the most 
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obvious being related to the stability of the protein at longer time points where 

aggregation could lead to apparent protection against exchange. In addition, ambient 

moisture can also lead to deuterium loss in the sample causing a drop from the 

deuterated plateau. During a multi-day series of time points and replicates, protein 

samples may end up being kept at 0 °C for several days in the autosampler; but issues 

arising from this can be addressed by careful experimental design (e.g. mixing 

replicates of different time points randomly, or regularly replacing the protein sample 

with fresh aliquots). Protein stability tests done prior to HDX analysis are also helpful. 

In addition, the DECA paper describes an experimental artefact which can be 

misinterpreted as an additional form of back-exchange, caused by different liquid 

handling procedures at short and long time points. For example, when a LEAP robot is 

used for time points below 2 minutes, the mixing syringes skip a step, and this results 

in a slightly lower back-exchange. DECA allows to correct for global and local back-

exchange by the application of a scaling factor, as well as accounting for this long 

exposure effect by the application of a universal, linear correction to all peptides. A 

recent paper by Wrigley et al. (Wrigley et al. 2024) expanded on the subject, confirming 

that automated liquid handling procedures can indeed introduce a large variability to 

the measured deuteration. While liquid handlers provide excellent efficiency with 

respect to manual pipetting, the number of steps involving syringe operations with 

small liquid volumes that occur during an HDX-MS experiment can be source for 

volumetric errors, which can cause minor differences in the final deuterium 

concentration or in pH, and in turn can be sufficient to cause significant differences in 

the uptake curves of peptides. These robot-related issues can be resolved by tracking 

the performances of the liquid handler over the different operations performed during 

the workflow and consequently optimizing the robot methods (e.g. changing the needle 

position or depth) to reduce the variability in the measured deuteration.  
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Figure 2.4. Back-exchange correction applied by the software DECA (Lumpkin and Komives 

2019).  

The global and local back-exchange correction (red) produces a peptide-dependent plateau, resulting 

from both protein-dependent back-exchange (occurring from sample dilution into labelling buffer to 

digestion) and peptide-dependent back-exchange (occurring from digestion to detection in the mass 

spectrometer). The long exposure effect is an apparent back-exchange correction suggested by DECA 

which consists of a linear correction that is universally applied to all peptides. Adapted with permission 

from data published by the authors of DECA (Lumpkin and Komives 2019).  

The corrections for back-exchange mentioned in this section underscore our limited 

knowledge of the phenomenon, and several questions remain unsolved: what is the best 

strategy to acquire a fully deuterated sample? What percentage of forward- and back-

exchange is occurring during deuterium labelling, during the quench procedure, during 

digestion and in the gas phase, respectively? Can we reduce or eliminate any of these 

contributions, or at least control them so that they can be quantified accurately? 

Fundamental studies are needed to systematically answer these questions, for example 

studying the behaviour of model proteins while varying the deuterium percentages in 



73 

 

the quench buffer, or by replacing the water-based LC solutions with deuterium-based 

equivalents. While a proper back-exchange correction offers minor advantages for 

differential studies, it becomes crucial when integrating experimental data with 

modelling (i.e. for the methods described in section 2.5.4) as the standard back-

exchange correction may yield inaccuracies in that it assumes all resides in a peptide 

back-exchange to the same extent.   

2.4.3 Replicates 

The reported mass increase (Eq. 2.5) or fractional uptake (Eq. 2.6) is averaged over the 

available number of replicates, generally limited to 3 or 4. The main factor limiting the 

number of replicates in HDX-MS experiments is the cost associated with additional 

sample consumption and instrument runs. The error associated with the experimental 

measure is either the standard deviation or the standard error (standard deviation 

divided by the square root of the number of replicates). Replication allows to assess 

whether the observed differences are likely to occur by chance or not (Vaux, Fidler, and 

Cumming 2012), and to ensure the reliability of the conclusions drawn from the 

observed data. Increasing the number of replicates results in a more precise inference 

regarding differences between groups (Oberg and Vitek 2009).  

Not all replicates are equivalent. In the context of HDX-MS experiments (as well as 

proteomics and other biophysical techniques), replicates can be divided into two 

categories (Engen and Wales 2015): biological replicates, which can derive from i) 

independent protein expression or isolation from source tissue and ii) steps prior to 

the addition of deuterium (e.g. incubation with a ligand or membrane), and technical 

replicates, which can be in turn subdivided into three subcategories: i) labelling 

replicates, corresponding to independent deuterium additions to the same protein 

stock material, testing sample conditions during labelling (timing, pH, temperature) 

and LC-MS parameters, ii) analysis replicates, which are repeated LC-MS injections of 

the identically labelled sample, testing the variables from the point of injection into the 
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LC-MS system, and iii) processing replicates, that are software-based replicates on the 

same set of data that test the computational parameters and data processing reliability.  

These types of replicates have a well-defined hierarchy: inferences drawn from 

biological replicates are more powerful than inferences made from technical replicates 

(Moroco and Engen 2015). Currently available software are not able to account for 

these differences. Multiple approaches are being used to account for technical and 

biological replicates. A commonly applied approach is averaging the deuteration values 

of the technical replicates within each biological replicate. This strategy yields 

consistent estimates, but gives incorrect uncertainty estimates, leading in a differential 

study to a higher number of false findings. Another approach is to analyse each 

biological replicate separately. Such an approach ignores the dependencies of the 

technical replicates within a biological replicate and ignores relevant biological 

variation, limiting generalization and replication of results. Both approaches should be 

avoided as they do not properly acknowledge the data structure. A third approach is 

the use of statistical models and tests that account for the level of replication 

(technical/biological), such as linear mixed models, which are described in more detail 

in section 2.5.2.3. It is worth mentioning that most published studies report only 

technical replicates. As a general recommendation, biological replicates should be 

prioritized over technical replicates whenever possible. When the number of biological 

replicates is limited (e.g. when there are only two), collecting data from both biological 

replicates, along with multiple technical replicates, allows for more robust inferences 

than relying on technical replicates alone. In the latter case, implementing a mixed 

effects model is essential to appropriately account for the level of replication.   

2.4.4 Charge state effect 

Many peptides can be found in electrospray ionization mass spectra with more than 

one charge state, and the apparent deuterium uptake behaviour of the same peptide at 

different charge states can show systematic differences. This is a well-known but rarely 

reported effect (Salisbury, Liu, and Agar 2014), and is caused by back-exchange post-
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ionization in the electrospray source and gas phase of the mass spectrometer. Guttman 

et al (Guttman et al. 2016) demonstrated that this charge state offset, which occurs to 

different extents on different instruments, is due to non-uniform gas-phase exchange 

with water vapour within the ion optics of the instrument. For example, such back-

exchange in a Waters Synapt G2-Si can be eliminated by adjusting the settings of the 

StepWave ion guide (mainly DC offset potential and the travelling wave height and 

velocity). There are two policies implemented by the available software packages: 1) 

the mass increase (or fractional uptake) is reported as an average over the available 

charge states of a peptide; 2) only the mass increase (or fractional uptake) of the most 

intense charge state is reported. We note here that neither option is ideal as the first 

one is not able to account for the possible systematic difference in deuterium loss 

between charge states, and the second introduces a selection bias in the analysis. A third 

alternative, which probably represents the best option, is to analyse different charge 

states individually and check that the results are consistent across the different charge 

states; in this latter strategy replication may be a problem as not all charge states are 

found for each replicate or condition.  

2.4.5 Linderstrøm-Lang model for peptide-level data 

The Linderstrøm-Lang model (Eq. 2.1) describes HDX at the level of the single amino 

acid. However, most HDX-MS experiments detect the deuterium uptake of a protein via 

its proteolytic peptides. For this reason, HDX-MS data are coarse-grained: they monitor 

the behaviour of entities (peptides) that are smaller than the whole system (protein) 

but bigger than the smallest resolvable unit (amino acid).  

For a peptide with N exchangeable residues (i.e. excluding prolines), the deuterium 

uptake (D) of the proteolytic peptide can be written, using the Linderstrøm-Lang model, 

as the sum of the uptake 𝑑𝑖 of its residues: 

Eq. 2.7  D(t) = ∑ di
N
i=2 = ∑ (1 − e

−
kint,i
Pi
t
)N

i=2  
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The first amino acid (𝑖 = 1) is excluded from the contributing residues because its 

amide hydrogen is lost upon digestion. Sometimes, depending on the sequence of the 

proteolytic peptide, also the second residue should be excluded, assuming it rapidly 

back-exchanges during the quench step and the deuteration is lost (Walters et al. 2012). 

In certain sequences, such as those containing histidines, the back-exchange rate for 

even a middle amide can be so fast that all deuterium will be nearly lost by the time the 

peptide is analysed, and therefore the amide will not contribute to the overall 

deuterium measurement. A paper by Hamuro nicely summarized the expected 

deuterium loss for different sequence contexts (Hamuro 2021b).  

One of the challenges for the analysis of HDX-MS data is to retrieve single residue 

information (i.e., the individual protection factors) from peptide-level data. In statistics, 

this problem is defined as underdetermined: the number of parameters to be estimated 

is greater than the number of experimental data points (Stofella et al. 2022). In the case 

of an isolated peptide formed by N residues, whose exchange has been monitored at K 

time points, we can distinguish two scenarios (assuming for simplicity that 

experimental error is negligible): i) when 𝑁 >  𝐾 (which is the most common case as 

the average peptide length is ~ 10 amino acids and the HDX is generally detected at 

between 3 to 5 time points), the consequence of under-determination is that there are 

multiple solutions (i.e. patterns of protection factors) in agreement with experimental 

data; ii) when 𝑁 < 𝐾, there is one only solution in agreement with experimental data, 

but the extracted protection factors cannot be assigned to a specific residue (indeed, 

Eq. 2.7 does not account for the order of the residues). Using the complementary 

information contained in overlapping peptides helps reducing the multiplicity of the 

solutions, up to the point that single residue information can be in principle obtained in 

an ideal dataset where all peptides differ by one amino acid only (Kan et al. 2013). This 

is usually not the case, and other approaches have been used instead. Different methods 

aiming to extract protection factors from HDX-MS data are discussed in detail in section 

2.5.4.     
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2.4.6 Visualization of pre-processed data for one condition 

Pre-processed data are generally visualized through uptake curves (Figure 2.5A), 

reporting either the (average) mass increase (Eq. 2.5, in Da) or the (average) fractional 

uptake (Eq. 2.6, in % of the maximum) at different labelling times of proteolytic 

peptides. Heat maps (Figure 2.5B) can be generated to visualize the time evolution of 

the uptake at a pseudo-residue resolution along the sequence of the protein. Generally, 

the deuterium uptake of a residue at a specific labelling time is calculated as an equal 

fraction of the average over the mass increase (or fractional uptake) of the peptides 

covering the amino acid position. However, this calculation varies from software to 

software. For example, DECA (Lumpkin and Komives 2019) generates heat maps by 

assigning residues to the most representative peptide available (i.e. the shortest). An 

alternative approach uses weighted averaging, where peptide uptake values are 

weighted by the inverse of the peptide’s length (Keppel and Weis 2015). If the structure 

of the protein is available, the pseudo-residue uptake provided by the heat map can be 

mapped onto a 3D structure (Figure 2.5C). Many pieces of software provide a PyMol 

script to generate these plots. HDX-Viewer (Bouyssié et al. 2019) is an online tool that 

was developed to provide an easy-to-use interface to visualize deuteration within the 

structure of the protein. It is worth stressing that these representations are useful tools 

to map experimental data onto protein models, but they can be misleading as the high 

resolution achieved is artificial.    
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Figure 2.5. Visualization of pre-processed data for one condition.  

(A) The uptake curve shoes the fractional uptake as a function of the labelling time. Average and standard 

deviation are displayed. (B) The heat map shows the fractional uptake as a function of the labelling time 

along the sequence of the protein. The fractional uptake of each residue is the equal fraction of the 

average fractional uptake of the proteolytic peptides covering that specific amino acid position. (C) The 

heat map is projected onto the protein structure at labelling time 1 hour. Data showing the HDX of cholera 

toxin B acquired by the author.  

Alternative visualization tools involving multivariate analysis, such as principal 

component analysis (PCA) or spectral mixture analysis (SMA), can be used to check the 

quality of the data (e.g. to see if samples from the same condition or time group 

together) (Claesen et al. 2021), and have been proven useful to show whether 
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compounds with similar in vivo properties were forming statistically distinct clusters 

(Belorusova et al. 2019).  

2.4.7 Pre-processing data with commercial software 

It is needless to say that a correct pre-processing of data is a crucial step in the data 

analysis workflow of HDX-MS experiments as poorly curated data can lead to incorrect 

biological conclusions. In the context of HDX-MS data, we define as data “pre-

processing” the steps of the data analysis workflow that start from the raw data and a 

list of potential peptides, and lead to the generation of deuterium uptake curves. Most 

HDX-MS publications utilize commercial software to pre-process raw data, namely 

DynamX for Waters instruments and HDExaminer for Thermo Scientific/Trajan. These 

two programmes share common features: they require knowledge of the protein 

sequence, in the form of a peptide list (whose generation is later discussed in section 

2.5.1), and the raw HDX-MS data as inputs. They enable the identification and 

assignment of the undeuterated and labelled isotopic envelopes, to calculate the 

absolute uptake of peptides, to visualize the data through coverage maps, uptake plots 

and heat maps; and they return a spreadsheet containing the information about the 

uptake of peptides over time. They mostly differ on how the user can interact with the 

isotopic envelopes identified by the software and edit them manually. They also share 

the same limitations: they do not perform statistical analysis, back-exchange correction 

or fully deuterated normalization, which must be done using third-party software 

packages. While these commercial software packages are critical for pre-processing 

raw data, they must be integrated with other software packages to achieve 

comprehensive and publishable results.  

2.5 Computational tools for HDX-MS data analysis 

2.5.1 Automated peptide search and identification 

At the beginning of the data analysis pipeline, it is necessary to identify peptides and 

assign peaks in the raw mass spectra. As already mentioned, the identification of 
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proteolytic peptides is generally performed using commercial software included with 

the instrument, and the quality of the isotopic envelopes of each peptide is then checked 

manually. Peptides showing saturation (the intensity of the peptide signal exceeds the 

instrument’s dynamic range, altering the shape of the isotopic envelope), multimodal 

behaviour which can be due to EX1 or EXX kinetics (see section 2.5.3), carryover 

(peptides retained on the fluidics system from the previous sample injection) or 

ambiguous assignment (e.g. due to the presence of different envelopes in the same m/z 

range) can be kept or rejected depending on the practitioner. There are no clear 

guidelines on how to perform these assignments, and policies vary from group to group. 

Consequently, this pre-processing step is time-consuming and user dependent. 

Moreover, a major disadvantage of commercial software packages is that they do not 

allow to export the isotopic envelopes but only the average m/z values, making it hard 

to retrieve information about the detailed characteristics of the assigned mass spectra 

of the peptides. 

Tools have been developed to tackle the drawbacks mentioned above. ExMS2 (Kan et 

al. 2019) proposes an automated peptide validation pipeline to speed up the peptide 

quality checks. This requires as input a peptide list generated by SEQUEST/Bioworks 

(alternatively Proteome Discoverer or MassLynx) from the control sample 

(undeuterated, all-H protein). Each peptide is associated with its chromatographic 

retention time (RT) and its m/z value. For each peptide in the list, ExMS2 selects the MS 

scans within the known RT window and compares the experimental spectra with 

calculable mass spectrometric information, such as monoisotopic mass, charge state, 

and isotopic peak positions. The process is repeated for each sample at the different 

time points available. ExMS2 records m/z values and relative intensities for each 

isotopic peak to define the shape of the isotopic envelope. The recorded peptides are 

validated through 12 quality tests (six performed on a peptide level and six on a multi-

peptide level), for example checking if the overall peak intensity is above a certain 

threshold or if the peak is within the possible m/z range for a peptide in the list. 

Peptides failing one or more tests are flagged and can be manually inspected.  
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Mass Spec Studio (Raval et al. 2021; Rey et al. 2014; Ziemianowicz et al. 2020) first 

proposed HXpipe (peptide identification and peptide evaluation) as a tool for 

automated peptide search and validation. Two searches are performed independently: 

i) an MS/MS search, which looks for peptides in the LC-MS/MS files using one of two 

available search engines (MS-GF+ or OMSSA+); ii) an MS search, which uses a peak 

picker that scans within the LC-MS/MS data to create a library of chromatographic 

features, which are then compared with theoretical isotopic distributions calculated 

using Senko’s Averagine model (Senko, Beu, and McLaffertycor 1995) for peptides. The 

results from the two searches are then combined together. A new module, named 

AutoHX (Filandr et al. 2024), has been implemented into Mass Spec Studio, to facilitate 

(and ideally remove) the manual inspection of the peptide search. AutoHX leverages the 

information contained in the deuterated fragment peptides to i) validate the identity of 

the peptide and ii) confirm the deuteration level of the precursor peptide by checking 

that the deuterium content of the peptide fragments has a linear relationship with the 

fragment length. This automatic authentication and validation, which exploits MS/MS 

data and uses deuterium-scrambled CID or HCD fragments as surrogates that confirm 

the identity and the deuteration value of any given peptide, yields objective results with 

known certainty, rather than biased results with unknown certainty provided by a 

traditional approach, which uses MS data only and is followed by laborious manual (i.e. 

user dependent) validation.   

In the previous paragraphs, we reviewed different software packages designed for 

automated peptide search and identification from raw LC-MS data. These tools bridge 

the gap between researchers and raw data, facilitating the pre-processing and 

validating peptide-peak assignments along with deuteration values at specific labelling 

time points. While they serve as a viable alternative to the commercial software 

described in section 2.4.7, their adoption is limited mostly due to a lack of know-how 

outside of the group of researchers which generated them. Although their 

documentation is generally robust, we believe that additional tutorials and workshops 

for HDX users would help with their broader adoption in the community, and this has 
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also been suggested at the recent conference of the International Society of HDX-MS in 

April 2024 in Monterey (California, USA). Among the software reviewed, Mass Spec 

Studio stands out as the most comprehensive; integrating automated peptide search 

and identification with subsequent workflow steps, such as differential analysis 

(section 2.5.2) and multimodal analysis (section 2.5.3). It is crucial for software 

developers to consider the integration of diverse data types (e.g. tools for analysing ExD 

or UVPD fragment data) and ensure easy access to processed data (e.g., straightforward 

export of processed isotopic envelopes). Likewise, instrument manufacturers should be 

encouraged to enable the export of HDX-MS datasets with key information such as the 

isotope patterns and charge states of peptides.    

2.5.2 Differential analysis 

The analysis of HDX-MS data generally relies on a side-by-side comparison of two (or 

more) conditions (e.g. a protein in absence or presence of a ligand). For each proteolytic 

peptide, the difference in deuterium content obtained from the different experimental 

conditions is classified as significant, or not, using thresholding and/or statistical tests 

and models. Differences in the uptake pattern of peptides highlight regions of the 

protein where a structural perturbation has occurred (binding site, allosteric change, 

etc.). There are two strategies to analyse differential HDX-MS data. The first (and most 

used) looks at the difference in deuterium content at a given time point: manual 

thresholding (section 2.5.2.1), simple hypothesis tests (section 2.5.2.2), or linear 

models (section 2.5.2.3). The second approach compares deuterium uptake curves 

(section 2.5.2.5). These two strategies, summarized in Table 2.2, are described in this 

section.  

Table 2.2. List of software to analysis differential HDX-MS data.  

Differential Analysis 
Name Approach 

DECA (Lumpkin and Komives 2019) T-test 

Deuteros 2.0 (Lau et al. 2020a) Linear Model 

HaDeX (Puchała et al. 2020) T-test 
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HD-eXplosion (Zhang et al. 2021) T-test 

HDflex (Seetaloo et al. 2022) T-test 

HDXAnalyzer (Liu et al. 2011) Linear Model 

Hdxstats (Crook et al. 2022) Functional analysis 
Mass Spec Studio (Raval et al. 2021; Rey et al. 2014; 
Ziemianowicz et al. 2020) T-test 

MEMHDX (Hourdel et al. 2016) Mixed model 
 

2.5.2.1 Manual thresholding 

One approach used to analyse differential HDX-MS data consists of defining a manual 

threshold for the difference in deuterium content between conditions (Iacob et al. 2013; 

Ständer et al. 2021; Wei et al. 2012). This threshold is set to a predefined value 

(generally 0.5 Da (Houde, Berkowitz, and Engen 2011)) or based on the standard 

deviation of the data (e.g. using the pooled standard deviation (Hageman and Weis 

2019)). If the difference in deuterium content at a specific time point exceeds this 

threshold, the peptide is classified as different. This approach ignores the variability of 

the peptide-deuteration levels and can therefore lead to false findings (Claesen et al. 

2021; Hageman and Weis 2019). For example, defining a strict threshold to reduce the 

number of false positives leads to ignoring small yet biologically relevant differences in 

deuteration (i.e. false negatives), while a generous threshold limits the number of false 

negatives, but results in many false positives. We therefore advise against manual 

thresholding approaches and advocate the use of statistical methods to test for 

differences, as they account for the variability of measured deuterium levels and thus 

control the number of false findings. 

2.5.2.2 Simple hypothesis testing   

In simple hypothesis testing, a null hypothesis (H0) is compared against an alternative 

hypothesis (Ha). In differential HDX-MS, the null hypothesis commonly states that there 

is no difference in the deuterium content of a peptide between two or more conditions, 

while the alternative hypothesis claims that there is a difference. Statistical tests are 

used to test the null hypothesis, i.e., to reject or not to reject the null hypothesis, by 



84 

 

calculating a test statistic. Student’s t-test is commonly used when one wants to 

compare the means between conditions/groups. Student’s t-test is in essence a signal-

to-noise ratio test, where the difference in the average deuterium content is divided by 

a nuisance parameter, which is a function of the variability of the data. The larger this 

ratio, the more likely the null hypothesis can be rejected in favour of the alternative 

hypothesis. The exact value (critical value) required to reject the null hypothesis 

depends on the number of observations and the specified significance level (α). 

Generally, a p-value is reported instead of the critical value. If this p-value is smaller or 

equal than α, the null hypothesis can be rejected. When more than two conditions have 

to be compared, an F-test which tests if at least one mean is different from the others. 

Student’s t-test and the F-test both assume that the data is normally distributed. If this 

is not the case, non-parametric alternatives, i.e. the Wilcoxon signed-rank test or Mann-

Whitney U-test and the Kruskal-Wallis test can be used. Note that when the underlying 

assumptions of the parametric tests are true, the non-parametric test statistics are less 

powerful than their parametric counterparts, i.e. they identify less differences in 

deuteration that are truly different as statistically significant.  

Differential HDX-MS experiments are generally done with a limited number of 

replicates. As a consequence, the variability of the deuterium content of a peptide is 

harder to estimate accurately. This can potentially lead to more false findings, i.e., more 

false positives and/or false negatives. Claesen et al. (Claesen et al. 2021) proposed using 

moderated t- and F-statistics instead of Student’s t-test and F-statistics. These test 

statistics borrow information from other peptides with similar deuteration values to 

reliably estimate the standard error of the mean, resulting in a lower number of false 

findings. 

2.5.2.3 Linear regression models  

Although simple hypothesis testing is a convenient way to test for differential 

hydrogen/deuterium exchange (per peptide), uniting all hypothesis tests in a linear 

regression model allows to directly estimate differences between the different groups 
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or conditions (protein states). Additionally, it allows to correct for other factors 

(confounders) that could have an effect on the deuteration.  

In a linear regression model, the response variable or dependent variable (y) is a linear 

function of one or more explanatory or independent variables (X): 

Eq. 2.8  𝐲 = 𝛃𝐱 + 𝛆 

where 𝜀 is the residual error and follows a normal distribution (𝛆 ~ N(μ = 0, σ2)), and 

𝛃 are regression coefficients that are derived from the data and express the effect of the 

explanatory variables. The reader would be familiar with the simplest case of a straight 

line with slope m and intercept q: y = m𝑥 + q, which is equivalent to Eq. 2.8 in the case 

𝐱 =  (
1
𝑥
) and 𝛃 =  (

q
m
). In the latter case, a linear regression model fits a line to the 

data and allows to evaluate the effect (m) of the explanatory variable x on the response 

variable (y). The same linear regression model in Eq. 2.8 to compare means of different 

groups and check whether they are significant different from each other by testing the 

estimates for β with a t-test. The advantage of a linear model over a t-test is that it can 

account for more than one explanatory variable at a time.   

Deuteros 2.0 (Lau et al. 2020a) and HDX-Analyzer (Liu et al. 2011) implemented the 

following multiple regression-model, where the absolute deuteration of a peptide 𝐃 is 

modelled as a function of the explanatory variables 𝐓𝐢𝐦𝐞 (labelling time) and 𝐒𝐭𝐚𝐭𝐞 

(biological state of the protein):  

Eq. 2.9  𝐃 = 𝛂 +  𝛃 × 𝐓𝐢𝐦𝐞 +  𝛅 × 𝐒𝐭𝐚𝐭𝐞 +  𝛄 × (𝐓𝐢𝐦𝐞 × 𝐒𝐭𝐚𝐭𝐞) +  𝛆 

where 𝜶 represent the intercepts of the model, β the regression coefficients for the 

labelling timepoints, 𝛿 the regression coefficients for the different conditions/states, 𝛾 

the regression coefficients for the interaction of state and time, and 𝜀 the residual errors 

of the model. In this model, 𝐓𝐢𝐦𝐞 and 𝐒𝐭𝐚𝐭𝐞 are categorical variables, i.e., 

characteristics that are not quantifiable. In other words, if we have three time points, 

they are treated as time point number one, two and three (rather than, for example, 30 
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seconds, 5 minutes and 1 hour) – as a consequence, interchanging the time points would 

not affect the results. This regression model can be used to test whether changes in the 

deuterium-uptake of a peptide are associated to changes in state and/or time, and the 

interaction between state and time. Note that including the labelling time points as a 

continuous variable (rather than categorical variables) is possible, but time would have 

to be transformed to account for the non-linear relationship between labelling time and 

deuteration uptake, or a non-linear regression model would be required. The proposed 

multiple regression model can also be extended by adding other (categorical) variables, 

for example, charge state. 

Depending on the experimental design, HDX-MS data can have correlated and/or 

repeated measures, for example, when an experiment is run in different batches or 

when both technical and biological replicates are acquired (see section 2.4.3). In the 

latter case, for example, we expect data from within the same biological replicate to be 

more similar to data between different biological replicates. The linear model, as 

defined in (Eq. 2.8 and Eq. 2.9), can be updated to a linear mixed effects model to 

account for the correlation present in the data:   

Eq. 2.10 𝐲 =   𝐗𝛃 + 𝐙𝐮 +  𝛆 

where 𝜺 represent the residual error of the model and follows a normal distribution 

(𝜺 ~ 𝑁(0, 𝜎𝜀
2)), u is an unknown vector of random effects and also follows a normal 

distribution (𝒖 ~ 𝑁(0, 𝜎𝑢
2)), and Z is a design matrix for the random effects. The random 

effects, u, account for the correlation that is present in the data. 

To clarify the content of Eq. 2.10, we now provide two examples where using a mixed 

model is advisable in the context of HDX-MS experiments.  

Suppose we performed an experiment with 3 biological replicates, and 3 technical 

replicates per biological replicate (i.e. 9 experiments). The design matrix Z in Eq. 2.10 

indicates which observations come from which biological replicate. For a peptide 𝑖 at 

time point 𝑗, we can assign 𝒖𝒁𝑖𝑗 = 1 for all technical replicates of the first biological 
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replicate and similarly 𝒖𝒁𝑖𝑗 = 2 and 𝒖𝒁𝑖𝑗 = 3 for the technical replicates acquired from 

the second and third biological replicate).  

Alternatively, suppose that the same protein was studied under different experimental 

conditions in three different laboratories, and we wanted to combine all measurements 

into a single dataset to perform a separate meta-analysis. The different protocols 

implemented by the different groups (for sample handling, automation of the LEAP 

robot, different parameters for the LC-MS gradient, etc.) introduce random fluctuations 

to the deuterium uptake value of the same peptide under the same experimental 

condition. Differences in uptake between conditions (for the same peptide at the same 

time point) are systematic and should be visible, but combining the results from the 

different laboratories without considering this as a source of random effects might 

introduce a bias into the outcomes of the experiment. For example, a peptide with 

significant differences correctly detected (i.e. a true positive) by the three different 

laboratories might be misclassified as non-significant if all measurements were 

combined (Figure 2.6). A mixed model can deconvolve the effect of the standard 

deviation of the different laboratories on the standard deviation of the combined 

dataset.  
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Figure 2.6. Example of random effects affecting the outcomes of an analysis (simulated data).  

The absolute uptake of a proteolytic peptide of a protein has been measured at labelling time 2 minutes 

under two different experimental conditions (Condition1, blue; Condition 2, red) in three different 

laboratories. Each laboratory classifies the difference in uptake to be significant for the peptide (p-values 

are 0.0066 for Lab1, 0.0048 for Lab2, 0.0005 for Lab3). When the results are combined together into a 

single dataset, the peptide is no longer significant (p-value = 0.0183). 

MEMHDX (Hourdel et al. 2016) is the only software that implements a mixed model for 

the analysis of HDX-MS data. Here, time and experimental condition represent fixed 

effects and the replicated or repeated measures are considered as a random effect, 

meaning that each technical replicate is assigned to a different random effect. The GUI 

version of the software only allows the user to perform a traditional differential 

analysis, and it does not allow the cross-experiment statistics described in the 

experiments above, which can however be performed using the multiple statistical 

packages in R, such as nlme (Pinheiro, Bates, and R Core Team 2022).  
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2.5.2.4 Multiple testing or multiplicity 

Hypothesis tests (such as the t-test) are prone to false positive results when multiple 

comparisons are performed simultaneously, i.e., comparing peptides across conditions 

at each time-point separately. In order to control the probability of finding false 

positives, several multiple testing or multiplicity correction approaches have been 

proposed that adjust the p-value (Dudoit and Laan 2008). The best-known multiple 

testing correction method is the Bonferroni correction, which divides the significant 

threshold α by the number of comparisons 𝑚, therefore the adjusted significance 

threshold reads α∗ = α/𝑚. However, the Bonferroni method is very conservative 

(Claesen et al. 2021), i.e. it leads to a very high number of false negatives. Another well-

known approach is the Benjamini-Hochberg procedure(Benjamini et al. 2001), which 

is less conservative than the Bonferroni approach. Hageman and Weis proposed a 

hybrid approach that combines t-tests with manual thresholding to correct for 

multiplicity (Hageman and Weis 2019): the difference in deuterium content between 

two conditions is classified as statistically significant if two conditions are met 

simultaneously: i) the p-value returned by the t-test is smaller than the significance 

level (α) and ii) the difference in deuteration is greater than a pre-defined threshold. 

This hybrid approach is implemented in HaDeX (Puchała et al. 2020), HD-eXplosion 

(Zhang et al. 2021) and Mass Spec Studio (Rey et al. 2014). 

2.5.2.5 Comparing deuterium uptake curves 

Crook et al. introduced a novel approach to the analysis of HDX-MS data in the 

framework of functional analysis (Crook et al. 2022). Experimental uptake curves of 

peptides are fitted with a Weibull model (also referred to as stretched exponential) of 

the form: 

Eq. 2.11 D(t) = a(1 − e−bt
q
) + d 

where the parameter d represents the mass at time 0 (no exchange; undeuterated), 

which is inferred from the data; 𝑎 controls the value at which the exchange reaches a 



90 

 

plateau (maximum incorporation); 𝑏, the exchange rate constant, which models the 

exchange kinetics; 𝑞 refers to additional factors that are deflecting the uptake curve 

from a single exponential behaviour. The stretched exponential in Eq. 2.11 

approximates the multi-exponential behaviour derived from the Linderstrøm-Lang 

model (Eq. 2.7). 

The Weibull model (Eq. 2.11) is fitted with experimental data from two conditions and 

tools of functional analysis are implemented to assess whether the curves are 

significantly different. The underlying null hypothesis of functional analysis is that the 

same parameters can fit experimental curves from both conditions. The alternative 

hypothesis is that two independent models describe better the data. P-values are 

returned by an F test, and multiple testing corrections (see section 2.5.2.4) can be 

applied (as for t-tests, linear models and mixed models).  

When using a linear model, time is modelled as a categorical variable: changing the 

order of time points does not affect the results of the analysis. With a mixed model, the 

random effect can account for the correlation present between time points for a given 

peptide. The major advantage of the functional model implemented is the possibility of 

explicitly modelling the deuterium content as a function of time, which allows to 

incorporate intrinsic exchange rates of the residues forming a peptide. This comes at 

the cost of acquiring a relatively large number of informative time points (early/late, 

spacing) to properly sample the uptake curve of each peptide.  

2.5.2.6 Visualization of differential analysis 

The tools to visualize data for a single condition (uptake plots, heat maps and 3D 

structure visualization, see section 2.4.6) can also be used to qualitatively visualize the 

results of a differential analysis (Figure 2.7).  Differential heat maps show the 

difference in uptake between 2 conditions rather than the mass increase of a single 

condition. These differences are often mapped onto a 3D protein structure, with a 

colour scheme showing regions in white without significant differences, in blue those 
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that are more protected in the target condition and in red regions that are less 

protected. 

 

Figure 2.7. Qualitative visualization of HDX-MS differential analysis.  

(A) Uptake plots for peptides covering residues 25-38 and 49-76 are shown for two different 

experimental conditions. Differing curves highlight structural changes in this area of the protein. (B) 

Differential heat maps show the difference in uptake between two conditions as a function of the labelling 

time and along the sequence of the protein. Blue regions identify areas where Condition 2 is more 

protected than Condition 1; red regions correspond to areas where Condition 2 is less protected than 

Condition 1. (C) The differential heat map is mapped onto the 3D structure of the protein at labelling time 

5 minutes. Data showing the HDX of cholera toxing B in presence/absence of sugar GM1os (acquired by 

the author).    
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The plots in Figure 2.7 do not show the results provided by the statistical test used. 

The results of a differential analysis are generally reported in publications using Woods 

plots: proteolytic peptides are visualized across the sequence of the protein with 

horizontal bars and positioned along the y-axis according to the difference in uptake 

between two conditions; peptides showing statistically significant differences are 

highlighted (in blue or red). The statistical significance can be defined either by a single 

threshold on the p-value (pvalue < α) or by a double threshold on the p-value and on 

the difference in uptake. If a t-test, a linear model or a mixed model is used, each time 

point will be visualized on a different Woods plot; if functional analysis is implemented, 

the results of the whole time-course will be displayed in a single Woods plot. 

The volcano plot is an alternative tool to visualize the results of a differential analysis. 

Each proteolytic peptide is a point in the plot: the horizontal axis represents the 

difference in uptake between conditions; the vertical axis shows − log(p − value), 

which can be considered a measure of the statistical significance (the p-value depends 

on the statistical test implemented) : the higher the differences between conditions, the 

lower the p-value, and therefore the higher − log(p − value). The volcano plot is ideal 

to visualize statistically significant peptides using the double threshold (on the p-value 

and on the difference in uptake), but it does not visualize the location of the peptide 

along the protein sequence.  

The Manhattan plot is another alternative tool to directly visualize the p-values 

returned by the chosen statistical test along the sequence of the protein. In this plot, the 

horizontal axis represents the peptide index, while the vertical axis shows the statistical 

significance (− log(pvalue)). Alternatively, as shown in Figure 2.8, peptides can be 

visualized as horizontal bars positioned along the sequence of the protein.  

Woods plots, volcano plots and Manhattan plots (examples are shown in Figure 2.8) 

are all valid options to show the results of a differential analysis. We find the Woods 

plots to be more complete as they show directly the difference in uptake and the 

position of the perturbation, and indirectly the statistical significance. Volcano plots 



93 

 

show the difference in uptake and the statistical significance but fail to directly localize 

changes along the sequence of the protein; Manhattan plots can localize the differences 

and show the statistical significance but fail to show the difference in uptake.  

 

Figure 2.8. Quantitative visualization of the results of differential analysis (simulated data). 

Quantitative visualization of the results of differential analysis on the same dataset using Woods plots, 

Volcano plots and Manhattan plots. See main text for plot description.  

2.5.2.7 Which statistical test to choose? 

In section 2.5.2, we reviewed several strategies implemented in software to analyse 

differential HDX-MS data: i) manual thresholding, ii) simple hypothesis testing (t-test), 

iii) linear regression model, iv) mixed models, and iv) functional analysis-based 

strategies. We strongly suggest avoiding manual thresholding as it fails to control for 

false positives. While simple hypothesis testing is not inherently flawed, it can be easily 

generalized into a linear regression model. A t-test is limited to comparing one 
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explanatory variable at a time, whereas a linear model can account for multiple 

variables – such as labelling time, experimental condition, and charge state – making it 

more suitable for HDX-MS data. The choice between linear models, mixed models or 

functional analysis-based strategies depends on the dataset available and on the 

specific research question. Mixed models are ideal in cases where data are not 

independent, such as when both biological and technical replicates are available, when 

meta-analysis of datasets from different research groups needs to be performed, or 

when newly acquired data on one variant of a protein have to be compared with older 

data, possibly collected by different researchers but using the same instrument. In most 

scenarios, a linear model is the most pragmatic solution to assess statistically 

significant differences between two conditions. The function analysis-based strategies, 

on the other hand, are powerful when kinetic information is needed, but require an 

informed selection of time points to accurately estimate the underlying deuterium 

uptake curve.   

2.5.3 Multimodal analysis 

Sometimes the presence of EX1, mixed EX1/EX2 (also known as EXX) behavior, or the 

coexistence of multiple conformational states of a protein, can cause the isotopic 

envelope to assume a multimodal shape (Figure 2.9). Pure EX1 kinetics can produce 

two isotopic envelopes with fixed m/z values (the fully protonated and fully 

deuterated) but with variable intensities (the intensity of the fully deuterated envelope 

increases and the undeuterated one decreases accordingly over time). The coexistence 

of EX1 and EX2 kinetics (EXX) is also characterized by the presence of bimodal isotopic 

envelopes, with the first population gradually shifting towards higher m/z values (as in 

the EX2 regime) and the second associated to the fully deuterated spectrum (as in a 

pure EX1 kinetics); in this mixed regime, an intensity shift to the higher-deuterated 

state is observed. It is also common to find a multimodal behavior with two populations 

that can both undergo EX2 kinetics, which is associated with two distinct conformations 

of the protein that are not inter-exchanging (James et al. 2022; Oganesyan, Lento, and 
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Wilson 2018). In such cases, the modes of the bimodal spectrum should be deconvolved 

before comparing the intensity-weighted average of the individual populations with the 

statistical models described in section 2.5.2. In other words, two values of deuterium 

uptake are needed to fit the isotopic distribution properly and to quantify the fraction 

of molecules following EX1 or EX2 behavior (or, analogously, the population in either 

conformational state). Note that EX1 kinetics is a rare phenomenon and should not be 

confused with carryover (Fang et al. 2011).  

To perform a multimodal analysis, the raw mass spectra of the proteolytic peptides are 

needed in order to obtain the full isotopic distributions. We note here that retrieving 

such raw spectra is not trivial: the majority of the tools described here require the csv 

output files generated by DynamX (for Waters instruments) or HDExaminer (for 

Thermo Fisher Scientific), which only contain information on the intensity-weighted 

average of the isotopic envelope that have been automatically assigned and manually 

curated. Manually analyzing raw data is very time-consuming and error prone, even for 

a dataset with a limited number of samples. One can also use tools from MS-based 

proteomics and/or MS-based metabolomics to extract the needed information from the 

raw spectra. However, these tools cannot be used out-of-the-box and are therefore not 

very user-friendly for the inexperienced user. A third option is to implement a method 

from scratch that takes as input the raw files, implements a peptide search, carries out 

automated or manual mass spectrum assignments, and stores information on the shape 

of the isotopic envelopes. The latter strategy has been developed by several groups 

which, being able to interface with raw data, have developed methods to study the 

bimodal behaviour caused by EXX kinetics or by the coexistence of multiple 

conformations.  
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Figure 2.9. Multimodal behaviour from two coexisting conformations (simulated data).  

(A) The time evolution of the isotopic envelope of a peptide with bimodal behaviour is shown. Both 

populations follow an EX2 kinetics, and therefore identify two distinct conformations of the protein that 

are not inter-exchanging. The bimodal distribution is fitted with two binomial distributions, and the mass 

increase and ratio of the two populations is recorded. (B) The mass increase of the two populations is 

shown as a function of time. The size of the scatter points is proportional to the fraction of molecules 

following the specific population.   

Mass Spec Studio (Raval et al. 2021) and HX-Express (Guttman et al. 2013), for example, 

can identify peptides showing bimodal behavior in the isotopic distribution. These 

software packages allow fitting experimental spectra with a double binomial 

distribution and to extract the associated parameters, namely the center of mass of the 

two sub-distributions and their relative intensities.  

ExMS2 (Kan et al. 2019) can detect peptides showing multimodal behavior through a 

“unimodality check” introduced in the latest version of the software to assess the 

quality of peptide selection. These peptides are flagged and can be further studied by a 
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module named “Multimodal analysis”. The isotopic envelope of the peptide can be fitted 

with several functions (varied binomials, uniform binomial and gaussian(s), gaussians, 

or reference shapes – in case a control sample displaying the pure sub-spectrum of one 

population is available). The multimodal behavior can be detected, and the parameters 

extracted through the fitting procedure can be used to determine the fraction of sample 

following EX1 or EX2 regime.  

deMix (Na et al. 2019) is a recent method aiming to tackle the issue of discriminating 

different populations when a bimodal distribution appears due to mixed EX1 and EX2 

behavior in HDX-MS data. The deuterated isotopic distribution (of every peptide and at 

every time point) is fitted with a separate binomial distribution. An optimal value for 

deuteration dA is calculated. If the deuterated distribution is not explained enough by 

dA, then bimodal analysis is performed. The top two-scoring deuteration values dA and 

dB are calculated. The resulting bimodal distribution is fitted with experimental data to 

determine how each species is populated. deMix reports two values of deuteration only 

if the error of the bimodal distribution is significantly improved and if the weight factor 

for the least abundant species is greater than 10%. 

Here we presented various strategies for analyzing HDX-MS data of peptides exhibiting 

multimodal behavior, which can arise from several factors, including carryover, 

coexistence of different non-interacting protein conformations, EX1 kinetics, or mixed 

EXX kinetics. The methods discussed here enable robust deconvolution of the extent of 

deuteration of each population, but they do not inform the user per se about what 

causes the bimodal behaviour. If bimodality is known to be due to carryover, these 

methods allow for its correction (rather than redoing the experiment). In the case of 

coexisting protein conformations (both following EX2 kinetics), they help determining 

the fraction of molecules in each conformation. When the relative intensities of both 

populations are sufficiently high, this enables the study of the exchange kinetics of both 

conformations. In the rare instances of pure EX1 kinetics or mixed EX1/EX2 kinetics, 

these methods allow determination of the fraction of fast- and slow-exchanging 



98 

 

molecules. The weakness in the latter scenario is the unclear application of this 

information. Indeed, peptides showing EX1 or EXX kinetics are generally excluded from 

differential analysis. Sometimes, for example, standard EX2 kinetics might be observed 

for one protein state, while pure EX1 kinetics is observed for another. It is true that the 

emergence of EX1 or mixed EXX kinetics can qualitatively assess protein disorder, but 

quantitatively assess statistically significant differences between different states and 

integrating these data into modelling remain unresolved challenges.   

2.5.4 Protection factor analysis 

The Linderstrøm-Lang model (Eq. 2.1) describes HDX as a phenomenon occurring at 

the level of the single residue. The exchange kinetics follows an exponential law with 

an exponent that, in the EX2 limit, depends on the intrinsic exchange rate and on the 

protection factor (Eq. 2.2). The intrinsic exchange rate represents the rate that the 

same type of residue (amino acid) has in a completely unfolded structure. The 

protection factor of the residue depends on the local structure of the protein 

surrounding the residue. Retrieving protection factors from HDX-MS data would enable 

to connect the experimental data with microscopic properties that can be inferred from 

atomistic modelling and MD simulations. Indeed, protection factors can be measured 

for labelled residues of a protein through HDX-NMR (Dempsey 2001). However, the 

information provided by HDX-MS is coarse-grained to the peptide level and 

underdetermined (see section 2.4.5), and extracting protection factors (or exchange 

rates) at the resolution of the single amide from HDX-MS data is not trivial.  

The spatial resolution of HDX-MS data can be increased experimentally. On one hand, 

different proteases (Ahn et al. 2013; Cravello et al. 2003; Kenji et al. 2005; Tsiatsiani et 

al. 2017) or multi-enzyme strategies have shown to be beneficial in increasing peptide 

overlaps (Sobott 2020). On the other hand, MS/MS fragment data can be exploited. 

Among the fragmentation techniques available, collision induced dissociation (CID) has 

the drawback of favoring H/D scrambling within the peptide (protons and deuterium 

atoms are mobile within the peptide). Alternative dissociation techniques, such as 
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ECD/ETD (more generally ExD) and UVPD, have been proven to increase spatial 

resolution while minimizing H/D scrambling (Mistarz et al. 2018; Wollenberg et al. 

2020). However, reaching single residue resolution for the whole protein with these 

fragmentation techniques is still challenging, mainly for two reasons: sensitivity (the 

intensity of peptides and fragments vary significantly due to the broad specificity of 

pepsin, the fragmentation and ESI efficiencies) and protein size (the proportion of inter-

residue cleavages decreases with the protein size) (Rand et al. 2014).  

Advanced data analysis strategies can be used to computationally increase spatial 

resolution of peptide-level HDX-MS data or to estimate protection factors 

(computational tools for such purpose are listed in Table 2.3). 

To increase resolution, DECA (Lumpkin and Komives 2019) implements a 

computational method named Overlapping Peptide Segmentation (OPS). OPS exploits 

the overlapping of peptides to assign better-resolved uptake values to non-overlapping 

areas (Figure 2.10). When two peptides have a common terminus (e.g. peptide A 

covering residues 10-15 and peptide B covering residues 10-19), the absolute uptake 

of a smaller peptide defined by the non-overlapping residues of the observed peptides 

(i.e. an artificial peptide C covering residues 16-19) is calculated as the difference in 

absolute uptake of the bigger peptides (if peptide A has absolute uptake 3.5 Da and 

peptide B 5.5 Da, the uptake of peptide C is set to 5.5 – 3.5 = 2.0 Da). Because of error 

propagation, the error associated with the uptake of these artificial peptides is bigger 

than the original. For this reason, OPS should not be repeated more than once.  
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Figure 2.10. Example of Overlapping Peptide Segmentation. 

Example of Overlapping Peptide Segmentation (OPS) for two peptides A and B, covering respectively 

residues 10-15 and 10-19 and with absolute uptake 3.5 and 5.5 Da. OPS generates an artificial peptide C 

covering residues 15-19 with absolute uptake 2.0 Da.   

HDfleX (Seetaloo et al. 2022) and hdxstats (Crook et al. 2022) fit peptide level data with 

a stretched exponential (Eq. 2.11). The fit returns a peptide-level exchange rate that 

can be used to obtain a pseudo (peptide-level) protection factor.  HDflex (Seetaloo et al. 

2022) has the unique capability of analyzing peptide- and ETD fragment- level data 

simultaneously. The uptake curve of the peptide/fragment is divided by the number of 

exchangeable sites, so that the uptake curve of a residue is an average over the available 

peptides and fragments covering that specific residue. The combination of ETD data 

and this “data flattening” procedure thus allows an improvement in spatial resolution 

beyond the peptide level.   

ExMS2 (Kan et al. 2019) contains a module named HDSite to extract protection factors. 

Here, the estimation of amide exchange rates can be performed using two different 

strategies. In the envelope-based method, the isotopic envelopes calculated by ExMS2 

are fitted at each time point to calculate the deuteration of the residues, exploiting the 

overlapping of peptides. The uptake of each residue is then fitted with a single 
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exponential (Eq. 2.2) to extract the exchange rate of the single amide. Alternatively, 

HDSite attempts to directly fit the amide exchange rates for a whole set of peptides and 

exchange times. These two methods provide better results depending on the dataset.  

ExPfact (Skinner et al. 2019) is a computational method aiming to extract protection 

factors at the resolution of the single amide and relies on the information encoded in 

the intensity-weighted average of the isotopic envelopes. The time-dependent uptake 

of each peptide is fitted simultaneously with Eq. 2.7 and the values of the protection 

factors are adjusted to minimize the difference between predicted and experimental 

values (i.e. a cost function). Because of underdetermination, the solution is not unique 

(the existence of a multiplicity of solutions is known as ‘degeneracy’): different sets of 

protection factors have the same agreement with experimental data. To attenuate the 

degeneracy of the solutions, the fitting algorithm is coupled to a regularizer, i.e. an 

additional term in the cost function that favors the finding of smooth patterns of 

protection factors (this can be interpreted as an assumption that adjacent residues do 

not “jump” in protection). ExPfact calculates alternative sets of protection factors, 

where each set is the result of a minimization procedure starting from a randomized 

initial guess. To further reduce the degeneracy of the solutions, a clustering algorithm 

(based on a mixture of multi-variate Gaussian distributions) is applied and ExPfact 

returns a discrete number of families of solutions. Each element of each family is a set 

of protection factors in agreement with experimental data. The additional information 

contained in the isotopic distribution can be used a posteriori to rank sets of protection 

factors (Stofella et al. 2022). HDSite and ExPfact have been cross-validated with HDX-

NMR data. 

HDXModeller (Salmas and Borysik 2021) implements a strategy very similar to ExPfact: 

a minimization procedure is repeated multiple times starting from a random initial 

guess; the software introduces a correlation matrix as an auto-validation tool to 

estimate the accuracy of the modelled protection factor of individual amino acids.   
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PyHDX (Smit et al. 2020) uses a machine learning framework to perform the fitting 

directly in a free energy landscape (the connection between the protection factor and 

the free energy is: P = e∆G/RT, where ∆G represents the difference in free energy 

between the open and closed states); the problem of underdetermination is mitigated 

because one specific initial guess is selected and the (stochastic) fitting algorithm is 

coupled with a regularizer.  

Also HR-HDXMS (Gessner et al. 2017) implements non-linear programming to estimate 

HDX exchange rates at single amino acid resolution. The degeneracy is moderated by 

choosing a data-oriented initial guess for the exchange rates: Overlapping Peptide 

Segmentation (OPS) is used to artificially increase spatial resolution and the 

deuteration of subpeptides is fitted with an exponential model to obtain a rate constant. 

This rate constant is used as initial guess for all the residues belonging to the subpeptide 

considered.  

A Bayesian framework to estimate protection factors from HDX-MS data was first 

proposed by Saltzberg et al. (Saltzberg et al. 2017). The Bayesian approach estimates 

the probability of a particular model, given all the information about the modelled 

system, including prior knowledge of the system, experimental data on the system and 

models of experimental noise. In other words, the output of a Bayesian approach is the 

probability distribution of an exchange rate is calculated, not a specific value. The 

problem of selecting an initial guess is translated into selecting an initial probability 

distribution. An uninformative Jeffrey’s prior (which corresponds to a uniform 

probability distribution) is applied to each individual exchange rate constant to 

represent a lack of information on the bounds and distribution of the parameter. Best 

scoring solutions are clustered, and mean values and standard deviations are reported.  

ReX (Crook et al. 2024) is a new strategy, proposed by the same authors of Hdxstats 

(Crook et al. 2022), to infer residue-level rates from HDX-MS data. “ReX combines a 

likelihood model, which models the deuterium per residue, with a prior change-point 

model that permits correlations or jumps between the parameters of adjacent residues” 
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(Crook et al. 2024). HDX is modelled as a latent process (i.e., unobserved) occurring at 

the level of the single amino acid. The exchange of each residue is modelled as a mixture 

of a stretched exponential (Eq. 2.11) and a standard exponential (Eq. 2.2) – the 

proportion of the mixture is learned during the inference process. If every residue was 

considered as a separate entity, the model would have too many parameters to be fitted 

to experimental data. To overcome this issue, a change-point model (Fearnhead 2006; 

Green 1995) is implemented, which allows the parameters between segments of 

residues be either similar or discontinuous (jump). The number of change points 

(where the jump occurs) is determined via a specific Markov Chain Monte Carlo (MCMC) 

algorithm, known as Reverse Jump Markov Chain Monte Carlo (RJMCMC) (Green 1995), 

that allows the number of change points to be variable (i.e. not fixed a priori).  

Table 2.3. List of software packages for high-resolution HDX-MS data analysis at the peptide level. 

High resolution HDX-MS 
Name Strategy 

DECA (Lumpkin and Komives 2019) Overlapping Peptide Segmentation 

HDflex (Seetaloo et al. 2022) Stretched exponential 

Hdxstats (Crook et al. 2022) Stretched exponential 

ExMS2 (Kan et al. 2013, 2019) Isotopic envelope fitting 

ExPfact (Skinner et al. 2019; Stofella et al. 
2022) Intensity-weighted average fitting 

pyHDX (Smit et al. 2020) Intensity-weighted average fitting 

HDXModeller (Salmas and Borysik 2021) Intensity-weighted average fitting 

Saltzberg et al. (Saltzberg et al. 2017) Intensity-weighted average fitting 

HR-HDXMS (Gessner et al. 2017) Intensity-weighted average fitting 

ReX (Crook et al. 2024) Change-point model 

Protection factor analysis requires knowledge of the contributions of each amide to the 

overall, observed deuterium incorporation into a peptide. In this section, we reviewed 

various strategies developed to increase spatial resolution from peptide-level HDX-MS 

data, which can be grouped into five classes (Table 2.3): i) overlapping peptide 

segmentation, ii) stretched exponential, iii) isotopic envelope fitting, iv) intensity-

weighted average fitting, v) change-point model. We discourage the use of overlapping 

peptide segmentation as it has been shown that subtractive methods for improving 
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spatial resolution in HDX-MS data often yield inaccurate predictions as they neglect 

different levels of back-exchange for peptides of different lengths (Sheff et al. 2013). 

Fitting individual uptake curves with a stretched exponential can be useful to obtain a 

qualitative parameter describing the kinetics of a specific peptide, but this parameter 

is barely connected with the parameters of the Linderstrøm-Lang model 

(opening/closing rate or protection factor). The same limitation applies to the change-

point model. We believe the most effective strategies to achieve single-residue 

resolution from peptide-level experimental data are the isotopic envelope fitting 

provided by ExMS2 and the intensity-weighted average fitting provided by ExPfact. 

These are the only two methods that have been cross-validated with NMR experiments, 

demonstrating a strong correlation between the protection factors derived from both 

techniques. A reference dataset analysing the HDX of a model protein with both NMR 

and MS would significantly aid the development of these methods. The main drawback 

associated to these strategies is that the results are highly dependent on the quality of 

the HDX-MS dataset, which is determined by the number of peptides and redundancy 

provided by the coverage map, as well as by the number and distribution of labelling 

time points. Additionally, the limited understanding of back-exchange and of EX1/EXX 

kinetics are holding back the development of these methods, which remain an active 

area of research. While they have shown promising results in inferring single residue 

resolution from peptide level data, a protocol to perform a ‘protection factor analysis’ 

for HDX-MS data has yet to be established. To encourage the use of the tools described 

here across the community, software developers should prioritize the creation of user-

friendly graphical interfaces, comprehensive documentation, and tutorials.  

2.6 Concluding remarks 

The growing popularity of HDX-MS spurred the recent development of several data 

analysis tools, which are described here alongside more basic (commercial) software. 

We took the different steps of the data analysis workflow of HDX-MS as a guide and 

discussed how the pre-processing of raw data, which is generally performed with 
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commercial software, can be now performed with alternative open source platforms, 

allowing the user to better interact with the raw data. The curation of HDX-MS is 

however still lacking in some aspects of a complete theoretical understanding, for 

example in a proper correction for back-exchange.   

We discussed differential experiments, where HDX-MS enables the relative and 

qualitative comparison of exchange patterns under different experimental conditions 

to pinpoint perturbations along a protein's sequence. While statistical analysis and data 

visualization for differential HDX-MS experiments are now well-established, there are 

still some nuanced aspects that warrant attention. First and foremost is the critical 

choice of an appropriate statistical test for comparing exchange curves across different 

states. We advocate for the use of statistical tests (t-tests, functional analysis, linear 

models, or mixed models) over manual thresholding. The rationale behind this choice 

is that the latter approach provides no control over false positives and false negatives. 

Additionally, we encourage the use of multiple testing corrections. The selection of the 

most appropriate statistical test is contingent upon the experimental design's 

architecture. For experiments encompassing both technical and biological replicates, 

mixed models emerge as the optimal choice. Conversely, if only one type of replication 

is available and no specific information about the average exchange rate is required, 

then the linear model represents the simplest and most pragmatic alternative. 

Functional analysis offers the advantage of modelling the time variable and providing 

quantitative insights into exchange kinetics at the cost of needing many time points to 

model the non-linear relation adequately. Second, it is worth noting the well-

established observation that the deuteration of a peptide can be influenced by its charge 

state. This phenomenon, which arises from back-exchange occurring during the gas 

phase, remains incompletely understood, and necessitates a careful treatment of 

different charge states to avert spurious discoveries. When performing a differential 

analysis, it is important to compare the same charge state for the different experimental 

conditions available. When multiple charge states have been detected, it is important to 

check that the same results (protection/deprotection) are consistent among the 
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different charge states. This can relatively easily be tackled by adding an extra variable 

(the charge state) to the linear model implemented in Eq. 2.9.  

We discussed how conventional differential analysis approaches should be coupled 

with deconvolution tools when dealing with peptides exhibiting EX1 or EXX kinetics. 

Several methodologies have been devised to address these scenarios, enabling the 

analysis of the bimodal behaviour of isotopic envelopes and the extraction of 

information regarding deuteration and the fractions of the two modes involved. 

However, it is important to acknowledge that such analysis hinges on the availability of 

raw mass spectra, which can be challenging to obtain. Moreover, it remains unclear how 

the information derived from bimodal distributions can be interpreted and integrated 

with protein modelling, and care should be taken when coming across such complex 

peptide spectra, and their precise cause established. We also discussed how HDX-MS 

holds promise beyond its utility in differential experiments. It affords the opportunity 

to delve into exchange kinetics at the single-residue level, making it an ideal candidate 

for validating ab-initio models or predictions of protein structure. Numerous 

techniques have been proposed for extracting protection factors from HDX-MS data, but 

a universally accepted standard for protection factor analysis has yet to be established.  

What should ideal HDX-MS software look like in five years’ time? Ultimately, the goal of 

HDX-MS software development is to enable researchers to obtain a deeper 

understanding of protein dynamics, functions and interactions. Therefore, the software 

should remove HDX-MS experimental idiosyncrasies and express the information 

contained in the data in the form of more physical descriptions of protein dynamics. 

These physical descriptors can take many forms, for example as outputs which are 

already established, such as protection factors or Gibbs free energies. Due to the 

richness of HDX-MS datasets we anticipate that future software development can give 

more detailed insights into hydrogen-bond networks and protein allostery, identify 

regions of local cooperative unfolding, or generalize functional patterns from series of 

protein mutations. These physical descriptions of protein dynamics could then function 



107 

 

as input for downstream bioinformatics methods, in the form of constraints for 

molecular dynamics simulations or as training data for predictive artificial intelligence 

(AI), taking deep learning approaches such as Alphafold (Jumper et al. 2021) beyond 

static predictions of protein structure and instead offer functional information based 

on protein dynamics. For example, predictive AI models could learn from HDX-MS data 

how to identify allosteric regulation in de novo designed proteins.  

In general, while it is important that software serves the direct needs of the HDX-MS 

community itself, in the form of statistical testing and dataset quality validation, we 

envision that future software development will facilitate dissemination of novel 

insights towards broader audiences and allow for increased interfacing with 

neighbouring fields.  

To work towards these goals, the software should perform the following basic steps. 

The software would accept the protein sequence and undeuterated raw data as input, 

performing robust peptide search and identification to generate a coverage map. This 

search would support not only peptide-level data but also fragment-level data from CID, 

ExD, or UVPD fragmentation. In the next step, the software would process the 

deuterated raw data, automatically detecting the isotopic envelopes of previously 

identified peptides. Since a large body of user-annotated peptides datasets are readily 

available, we anticipate that AI models can be trained on these data and provide further 

automation and validation in this critical step, increasing both throughput and 

accuracy. The identified peptides could then be exported in a single operation as 

isotopic envelopes in a standardized format. It would also perform accurate back-

exchange correction (or the best available correction based on future research), 

showing users how the correction modifies raw input data and provide feedback on 

confidence and potential experimental artifacts. The software would deconvolute 

peptide spectra exhibiting multimodal behaviour, enabling researchers to export 

results for further analysis of EX1/EXX kinetics.  
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In "Differential Analysis" mode, researchers could select the most appropriate 

statistical test for their experimental design and research question. The software would 

then generate publication-quality Woods plots, Manhattan plots, and volcano plots to 

highlight statistically significant changes across the protein sequence. Protein 

structural information could be uploaded to the software, either obtained from 

experimental methods or Alphafold predictions. The software could feature one or 

multiple modelling options or fitting strategies, such as “Protection Factor Analysis”, 

where users are guided through steps and various modelling parameters, and the 

software would evaluate the dataset’s quality and providing a confidence level for the 

final predictions. The estimated pattern of protection factors or other modelling output 

could then be mapped onto the uploaded protein structure and presented as an 

integrative structural and functional output. There should be a strong focus on 

accessibility, providing comprehensive documentation and a user-friendly graphical 

user interface. Data processing best-practice and the effect of user-configurable settings 

and tuneable parameters such as thresholds and how they influence output and 

confidence should be clearly explained through tutorials or other forms of 

documentation. Publication of source code under a permissive license is required for 

other researchers to validate and review the processing pipelines as well collaborate 

and iterate on published works.  

Experimental researchers would focus on the experiment, and the software would 

provide real-time results and suggestions to guide their decisions, while computational 

researchers would be able to download online datasets from a standardized repository, 

rapidly perform the same analysis performed in published papers, and easily and 

exhaustively export all the information they need to improve the implemented methods 

or to propose alternative solutions to tackle the remaining challenges.  
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Chapter 3. High Resolution Hydrogen-Deuterium 
Protection Factors From Sparse MS Data Validated 
By NMR Measurements 

Published as: M Stofella, SP Skinner, F Sobott, J Houwing-Duistermaat and E Paci, “High-

Resolution Hydrogen-Deuterium Protection Factors from Sparse Mass Spectrometry 

Data Validated by Nuclear Magnetic Resonance Measurements”, J Am Soc Mass 

Spectrom, 2022, 33, 5, 813-822, doi: https://doi.org/10.1021/jasms.2c00005 

3.1 Abstract 

Experimental measurement of time-dependent spontaneous exchange of amide 

protons with deuterium of the solvent provides information on the structure and 

dynamical structural variation in proteins. Two experimental techniques are used to 

probe exchange: NMR, which relies on different magnetic properties of hydrogen and 

deuterium, and MS, which exploits the change in mass due to deuteration. NMR 

provides residue-specific information, that is the rate of exchange or, analogously, the 

protection factor, i.e. the unit-less ratio between the rate of exchange for a completely 

unstructured state and the observed rate. MS provides information that is specific to 

peptides obtained by proteolytic digestion. The spatial resolution of HDX-MS 

measurements depends on the proteolytic pattern of the protein, the fragmentation 

method used, and the overlap between peptides. Different computational approaches 

have been proposed to extract residue-specific information from peptide-level HDX-MS 

measurements. Here we demonstrate the advantages of a method recently proposed 

that exploits self-consistency and classifies the possible sets of protection factors into a 

finite number of alternative solutions compatible with experimental data. The 

degeneracy of the solutions can be reduced (or completely removed) exploiting the 

additional information encoded in the shape of the isotopic envelopes. We show how 

sparse and noisy MS data can provide high resolution protection factors that correlate 

with NMR measurements probing the same protein under the same conditions. 

https://doi.org/10.1021/jasms.2c00005


110 

 

3.2 Introduction 

Hydrogen-deuterium exchange (HDX) is the spontaneous exchange of covalently 

bonded hydrogens of a protein with deuterium in solution (Englander et al. 2016). In 

his pioneering work, Lindestrøm-Lang probed the phenomenon through density 

gradient tubes (Linderstrøm-Lang 1955). Since then, nuclear magnetic resonance 

(NMR) has been the leading technique to probe HDX until the early 2000s (Dempsey 

2001), when mass spectrometry (MS) has emerged as an alternative with many 

advantages (no sample size limitations, no labelling required, low protein 

concentration, low costs, highly automated processing), counting an increasing number 

of applications in fundamental biophysics and applied biotechnology  (Deng et al. 2016; 

James et al. 2021; Masson et al. 2019). With both NMR and MS, only the exchange of 

amide hydrogens can be observed because other hydrogens exchange either too fast 

(side chain acidic and basic hydrogens and polar groups) or too slowly (carbon-bonded 

hydrogens as well as side chain aliphatic and aromatic hydrogens) to be detected. 

Hence, in principle, both techniques probe properties of single amino acids (Hamuro 

2021b). 

NMR exploits the different magnetic properties of hydrogen and deuterium to 

determine the rate of exchange of individual residues. Their measurement is limited by 

the resolution of the amide signals themselves, or of cross peaks in homo- or hetero-

nuclear multidimensional NMR spectra (Dempsey 2001). MS measures directly the 

mass variation as a function of exchange time of peptides obtained by proteolytic 

digestion (Masson et al. 2019). The spatial resolution of HDX-MS measurements 

depends on the digestion pattern of the protein, the overlap between peptides, and the 

MS/MS fragmentation methods used (Hamuro 2021a). Most current approaches use 

collision-induced dissociation (CID) for MS/MS fragmentation of peptides, but due to 

H/D scrambling during collisional activation no information is gained on the exact 

location of deuterium labels within the peptides. Instead, such MS/MS data merely 

serve to unambiguously identify peptides by their sequence tags. Different approaches 
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have been proposed to increase spatial resolution, including the use of alternative 

MS/MS methods which minimize H/D scrambling during fragmentation (Mistarz et al. 

2018; Pan et al. 2009; Pan, Han, and Borchers 2012).  

Several computational strategies have been proposed to extract single-residue 

protection factors from peptide-level HDX-MS data (Babić, Kazazić, and Smith 2019; 

Gessner et al. 2017; Kan et al. 2013; Salmas and Borysik 2021; Saltzberg et al. 2017; 

Smit et al. 2020; Zhang 2020; Zhang et al. 2012). Here we demonstrate the advantages 

of a method recently proposed (Skinner et al. 2019) that exploits self-consistency (i.e., 

data consistency among overlapping peptides) and finds alternative sets of protection 

factors equally consistent with experimental data. These solutions can be classified into 

a finite number of clusters, whose degeneracy can be further reduced exploiting the 

additional information contained in the shape of the isotopic envelope. We show how 

sparse and noisy MS data can provide high resolution protection factors that correlate 

with NMR measurements probing the same protein at the same conditions. 

The exchange kinetics of an amide proton is highly dependent on the environment, 

hence a unique probe of structure and dynamics of proteins. Since the seminal work 

from Linderstrøm-Lang (Linderstrøm-Lang 1955), HDX has been modelled as a two-

step process. The deuteration of a residue in a D2O solution is possible if a local opening 

of the structure occurs: 

Eq. 3.1  NHcl

kc
⇋
ko

NHop

kint
→
D20

ND   

Here ko and kc are referred as opening and closing rates, respectively, which let the 

residue switch from an exchange-incompetent state (i.e., in a closed or folded state 

NHcl) to an exchange-competent state (i.e., in an open or unfolded state NHop). The 

intrinsic exchange rate kint is the exchange rate of the residue in a completely 

unstructured protein and depends on pH, temperature of the solution and side chains 
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of the two adjacent amino acids (Bai et al. 1993; Connelly et al. 1993; Englander et al. 

1996; Molday et al. 1972; Nguyen, Mayne, Phillips, and Englander 2018). 

Since for a folded protein kc ≫ ko (native state approximation), the observed exchange 

rate can be written as 

Eq. 3.2  kobs =
kintko

kint+kc
  

This expression suggests two limiting cases depending on the relative size of kint and 

kc. If  kint ≪ kc (EX2 regime), the deuteration of a single residue is 

Eq. 3.3  d(t, P) = 1 − e−
kint
P
t   

where the opening equilibrium constant P ≡
kc
ko
⁄ , known as protection factor, is 

linked to dynamic properties of the residue by definition; moreover, several studies 

have shown a correlation between the protection factors of a protein and its structure 

(Best and Vendruscolo 2006; Vendruscolo et al. 2003). If instead kc ≪ kint (EX1 

regime), kobs = ko. Under physiological conditions, the EX2 regime dominates the 

exchange kinetics in natively folded proteins (Ferraro et al. 2004).  

In HDX-NMR experiments, the proton signal decays exponentially as deuteration occurs 

because deuterium is 1H-NMR silent, and the experimental curves can be fitted with a 

Eq. 3.3 to obtain P (Barnes et al. 2019; Fitzkee, Torchia, and Bax 2011).  

On the other hand, HDX-MS measures the exchange of proteolytic peptides, with 

experimental curves resulting in a sum of exponentials. The fractional deuterium 

uptake at time t of a peptide of N exchangeable residues (i.e. excluding prolines and the 

N terminus) is 

Eq. 3.4  D(t, {Pi}) =
1

N
∑ (1 − e

−
kint,i
Pi

t
)N

i=1   
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where Pi and kint,i are the protection factor and the intrinsic exchange rate of the 

residue i. If exchange rates (or, equivalently, protection factors) are known for each 

residue, the exchange kinetics of peptides is uniquely defined, but not vice versa 

(Skinner et al. 2019). 

The possibility of estimating individual protection factors from HDX-MS data depends 

on four factors (Hamuro 2021a): (i) peptide overlap, (ii) time point resolution, (iii) time 

window coverage, (iv) experimental error. (i) The protection factor of an individual 

amino acid can be in principle extracted only if two proteolytic peptides differ by 

exactly one amino acid. When multiple peptides partly overlapping are available, 

protection factors are ambiguous, with the ambiguity decreasing with an increase in 

number of overlapping peptides (Kan et al. 2013; Skinner et al. 2019). In the case of 

“exact” measurements (i.e., not affected by experimental error), the problem is 

combinatorial: for an isolated peptide formed by N residues, there are N! possible 

solutions (Supplementary Figure 3.1A); for two overlapping peptides formed by N1 

and N2 residues, respectively, and with Nc residues in common, there are (N1 − Nc)! ∙

(N2 − Nc)! ∙ Nc! alternative solutions (Supplementary Figure 3.1B). Reporting a 

solution in terms of observed rates (kobs = kint/P) or protection factors yields 

equivalent results with different numerical values arising from the different intrinsic 

exchange rates between residues (Supplementary Figure 3.1C). While the observed 

rates span several orders of magnitude depending on experimental conditions (pH, 

temperature), protection factor can be restricted to the boundaries 0 < ln (P) ≤ 20, 

facilitating the convergence of fitting algorithms. (ii) The fractional uptake of a peptide 

(Eq. 3.4) is measured for a discrete set of times (Ntimes); if these are fewer than the 

exchangeable amino acids in the peptide (Nres), the individual residues’ protection 

factor is underdetermined: multiple solutions are equally consistent with experimental 

data. Even for small peptides, though, where in principle the number of time points is 

sufficient to extract all the exchange rates (Nres ≪ Ntimes), the solutions are degenerate 

because Eq. 3.4 does not contain information on the relative contribution of the fitting 

parameters (protection factors). A necessary condition albeit not sufficient is that the 
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number of experimental points should be no less than some multiple Q (quality factor) 

of the number of adaptive parameters in the model (Bishop 2006): Nexp ≈ QNres, where 

Nexp = Ntimes for an isolated peptide. (iii) To properly sample the multi-exponential 

uptake of a peptide (Eq. 3.4), these exchange times should follow a log-uniform 

distribution between the beginning and the end of the exchange process, which can be 

deduced from the exchange of the whole protein (i.e. without digestion). Typical HDX-

MS measurements report time-resolved exchange between tens of seconds and hours. 

The detection of exchange at shorter times (e.g. sub-second) is now possible, with 

recent developments giving access to millisecond timescales (Kish et al. 2019; Rob et 

al. 2012; Svejdal et al. 2019). A simultaneous fitting of the information encoded in 

multiple overlapping peptides reduces the degeneracy on the rate-to-residue 

assignment by adding local information. Moreover, it increases the number of 

experimental points Nexp: for a region formed by Nres residues and covered by Npep 

peptides, Nexp = Ntimes × Npep. Experimentally, the overlap of peptides depends on the 

choice of the protease, which is limited due to the acidic conditions needed to quench 

the exchange. (iv) The presence of experimental uncertainties affects the accuracy on 

the final predictions. The law of large numbers ensures that the average value among 

independent measurements (replicates) tends to the mean of the measurements, i.e. the 

true value of the estimated quantity in the limit of an infinite number or replicates. The 

number of replicates provided in HDX-MS experiments (generally three) limits the 

accuracy of the measured quantity (i.e., the fractional uptake), and consequently of the 

estimated protection factor.  

Two computational approaches aim to extract protection factors at the highest 

resolution possible from HDX-MS datasets. HDSite (Kan et al. 2013, 2019) uses the 

isotopic envelopes to derive the extent of deuteration of each residue of the peptide at 

different exchange times (0 ≤ d ≤ 1), and the obtained curve can be further fitted with 

a single exponential (Eq. 3.3) to obtain the protection factor. An initial guess on the 

deuteration of each residue is refined to reproduce the isotopic pattern. The probability 

of exchange for a residue follows a binomial distribution where the “success 
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probability” is given by the deuteration of the residue and is therefore a function of time. 

Hence, the isotopic pattern can be calculated as the product of binomial probability 

distributions (one per amino acid) further convoluted with the natural abundance of 

elements. In practice, HDSite derives single residue protection factors only when the 

uptake of a residue can be calculated as the difference in uptake of two peptides, 

otherwise an averaged value is returned. Therefore, the method strongly depends on 

the dataset and prediction is limited by the number of peptides available and their 

overlap.  Analogously to HDSite, there are other methods aiming to extract single 

residue information from HDX-MS data by fitting the isotopic envelopes of peptides 

(Babić et al. 2019; Zhang 2020; Zhang et al. 2012). A method more recently proposed 

(ExPfact) (Skinner et al. 2019) simultaneously fits the uptake curves of contiguous 

overlapping peptides with multi-exponential curves (Eq. 3.4), determining all 

alternative patterns of protection factors compatible with experimental data. This 

method can be applied to any dataset, and the ambiguity on the predicted protection 

factors provides a measurement of the degree of underdetermination of single residue 

properties. A similar approach has been implemented by pyHDX (Smit et al. 2020), 

HDXModeller (Salmas and Borysik 2021), HR-HDXMS (Gessner et al. 2017) and HDX 

Workbench (Saltzberg et al. 2017).  

In this paper, we analyse a dataset previously published (Moulick, Das, and Udgaonkar 

2015), containing sparse HDX data from  MS and NMR measurements under the same 

experimental conditions, for the small monomeric mouse prion protein (103 amino 

acids). Using ExPfact (Skinner et al. 2019), we show that a discrete number of sets of 

protection factors can be extracted from sparse HDX-MS data, that the ambiguity on the 

estimate can be reduced when a proper temporal sampling is coupled with minimal 

overlap, and completely removed exploiting the additional information contained in the 

isotopic envelopes a posteriori. The extracted protection factors correlate with NMR 

measurements, with discrepancies providing insights on the compatibility between the 

two techniques as well as strengths and limitations of the statistical approach 

implemented. 



116 

 

3.3 Methods and Materials 

3.3.1 Dataset 

The measurements analysed here were previously published (Moulick et al. 2015) and 

probed the 103 residues mouse prion protein at pH 4 and temperature 25°C at different 

urea concentrations (see section 3.6.1 for experimental details). To ensure the validity 

of the EX2 approximation (and thus of Eq. 3.3 and Eq. 3.4), we focused on the exchange 

of the protein in its native state (i.e., in the absence of urea). In the HDX-MS experiment, 

the exchange was quenched at pH 2.4 and temperature 0°C and the protein was digested 

by pepsin, providing a dataset (Figure 3.1) which includes 14 peptides covering most 

of the sequence (75/103 residues were covered) but with marginal overlap. Six regions 

covered by contiguous overlapping peptides were identified. The exchange was 

monitored at 15 exchange times ranging from five seconds to 24 hours, and the 

experiment was conducted in triplicate.  
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Figure 3.1. The HDX-MS dataset previously published in (Moulick et al. 2015).  

A) The coverage map localizes the 14 peptides identified after pepsin digestion. The six regions covered 

by isolated (grey) or contiguous overlapping peptides are separated by vertical dotted lines. B, C) The 

fractional uptake of peptides 4 (B) and 8 (C) – highlighted in red in the peptide map – is shown at 15 time 

points.

The fractional deuterium uptake of a peptide D was calculated as the intensity-weighted 

average (centroid) of the isotopic envelope at a specific time Dt and was normalized 

using the centroid of the experimentally fully deuterated sample DFD (which was lower 

than the theoretical, fully deuterated centroid because of back-exchange) and the 

centroid of the fully protonated D0% sample: 

Eq. 3.5  D =
Dt−D0%

DFD−D0%
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The fractional uptake was then averaged over the three replicates.  

HDX was also measured by NMR under the same experimental conditions and exchange 

rates were derived for 34 amino acids. A subset of 27 residues was covered by both 

datasets. Since NMR experiments were performed only once, we assumed that the 

protection factors provided by NMR represent their true values.  

3.3.2 Prediction of protection factors 

ExPfact is a computational method aiming to extract protection factors at the resolution 

of the single amide (Skinner et al. 2019). Considering regions covered by contiguous 

overlapping peptides one by one, the method finds the multiple solutions of a system of 

equations (the size of which depends on the number of overlapping peptides in each 

region, and each equation has the functional form in Eq. 3.3), and then clusters these, 

reducing the degeneracy and providing a discrete number of alternative averaged 

solutions.  

To find one possible solution, we performed a best fit on the experimental data. The 

experimental fractional uptake Dj
exp

 was simultaneously fitted for every peptide j at 

every time point 𝑡𝑘 with Eq. 3.3 (Dj
pred

) and the set of protection factors {Pi} was 

adjusted to minimize the cost function  

Eq. 3.6  

C(λ, {Pi}) = ∑ ∑ wjk [Dj
pred(tk, {Pi}) − Dj

exp(tk)]
2

kj⏟                        
SSR

+ λ∑ (ln (P)i−1 − 2ln (P)i + ln (P)i+1)
2

i⏟                        
Penalty term

 

The cost function in Eq. 3.6 consists in a regular term, the sum of squared residuals 

(SSR), which depends on the experimental data, and on a penalty term, which was 

introduced to avoid overfitting and, given the correlation between exchange rates and 

structure of the protein (Best and Vendruscolo 2006; Vendruscolo et al. 2003), to 

disfavor large variations in the protection factors of adjacent residues. Gaps between 
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peptides and prolines do not influence the penalty term, which is set to 0 unless ln Pi−1, 

ln Pi and ln Pi+1 are simultaneously greater than 0 (ln(P) is set to -1 for prolines and for 

any residue not covered by peptides).The penalty constant was set to λ = 10−8 after 

cross validation (Supplementary Figure 3.2). Following the recommendations for the 

propagation of error in HDX-MS data (Weis 2021), a pooled standard deviation can be 

associated to each measure, therefore the weights 𝑤𝑗𝑘 are all equal. When reliable error 

estimates are available – which is unlikely the case when the number of replicates is 

limited to 3 – then it is more accurate to consider the weights as the inverse of the 

standard deviation. The cost function in Eq. 3.6 represents a rough fitting landscape 

and, depending on the initial guess for the set {Pi}, the minimization algorithm 

converges to different local minima. When not specified, the initial guess is chosen 

through a random search: 10,000 sets of protection factors are randomly initialized 

with the constraint 0 < ln (P) ≤ 20 and the set with the best agreement with 

experimental data (i.e., with the lowest cost function) is selected as initial guess for a 

least-squares minimization. To explore alternative local minima in the fitting landscape, 

and thus to calculate several possible solutions, this minimization procedure is repeated 

5,000 times. To reduce the degeneracy of the sets of protection factors, we applied a 

clustering algorithm based on Gaussian mixture models (GMM), implemented in the R 

package mclust (Scrucca et al. 2016). The histograms of the predicted protection 

factors, which are often multimodal (Figure 3.2), are combined into an M-dimensional 

probability distribution (M being the length of the region covered by overlapping 

peptides), which is fitted with a mixture of Gaussians with variable means and 

covariances (Supplementary Figure 3.3). The clustering algorithm returns a finite 

number of clusters of sets of {Pi}, each one in agreement with HDX-MS experimental 

data. The final number of identified clusters is determined by BIC (Bayesian information 

criterion). The minimization procedure is repeated until the addition of new solutions 

does not alter the outcomes of the clustering algorithm. 
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Figure 3.2. Histograms of protection factors predicted for selected residues. 

Histograms of protection factors predicted for residues 5 (left), 29 (centre) and 79 (right) from 5,000 

minimizations. In most cases, histograms are multimodal distributions: 3 modes can be identified for 

residue 5; 4 modes for residue 29. 

3.3.3 Performances 

One minimization procedure requires on average 12.7 seconds on the dataset here 

analysed (processor: Intel® Xeon® W-1290P 3.7GHz) using the default tolerance 

parameter (--tol), which controls the convergence of the algorithm. To speed up the 

process, the code was parallelized to run on multiple cores (parameter --ncores). 

Splitting the calculations over 4 cores is sufficient to complete 5,000 minimizations in 

less than 5 hours. We recommend running ExPfact overnight, setting up the number of 

minimizations and the tolerance parameter according to the computational power 

available. 

3.3.4 Prediction of isotopic envelopes 

For a peptide, the fractional deuterium uptake at time t (Figure 3.1B-C) is the mean of 

the centroids of the isotopic envelopes of different replicates. However, the same 

centroid value corresponds to different isotopic envelopes depending on the deuterium 

uptake of individual amino acids. Isotopic envelopes estimated from a predicted set of 
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protection factors provide additional information to select the correct solution among 

all those that fit the time evolution of the centroid of each isotopic envelope.  

To simulate the time evolution of the isotopic envelope of a peptide formed by n 

exchangeable residues, we need to calculate the probability that k residues have 

exchanged at time t: 

Eq. 3.7  Π(k, t) = ∑ ∏ di(t)i∈A ∏ (1 − dj(t))j∈{1,…,n}\AA⊂{1,…,n}

|A|=k

  

Eq. 3.7 can be build following these considerations: (i) the probability of a residue to 

exchange is a function of time and is given by Eq. 3.3; (ii) the probability of k residues 

to have exchanged is the product of their individual probabilities (assuming they are 

independent events); (iii) the probability that only k residues of a n-residue peptide 

have exchanged is given by the probability that k residues have exchanged times the 

probability that n-k residues have not exchanged; (iv) the calculations in points (i)-(iii) 

must be summed over all possible combinations of k residues in the n-residue peptide.  

The isotopic envelope of a peptide can be calculated by applying the evolution in Eq. 3.7 

to the fully protonated envelope of the peptide (calculated using the python library 

pyOpenMS (Röst et al. 2014)). Given the intensity of the fully protonated envelope πi for 

a species with isotope number i, the simulated intensity of the isotopic envelope at time 

t is given by πiΠ(k = 0, t) + πi−1Π(k = 1, t) + ⋯+ πi−NΠ(k = N, t) = ∑ πi−jΠ(j, t)
N
j=0 , 

where the species i-N corresponds to the monoisotopic mass of the peptide.  

To calculate the shape of the isotopic envelope at time t from a set of {Pi}, the evolution 

in Eq. 3.7 was applied until deuteration time t, i.e. towards higher m/z values, using the 

intrinsic exchange rates calculated at temperature 25°C and pH 4, the conditions at 

which the experiment was performed, for a protonated protein in a deuterated buffer. 

However, the predicted envelope always appeared at higher m/z values with respect to 

the experimental one because the deuteration in Eq. 3.7 does not account for back-

exchange. Back-exchange occurs at the protein level in the labelling buffer, which is 
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never 100% deuterated (generally 90-95% D2O), and in the quench buffer before 

injection into the pepsin column, after which back-exchange also occurs at the peptide 

level. To reproduce the shape of the isotopic envelope, we applied the evolution in Eq. 

3.7 towards protonation, i.e. towards lower m/z values, using the same set of {Pi} and 

the intrinsic exchange rates calculated at temperature 0°C and pH 2.4 for a deuterated 

protein in a protonated buffer. This back-exchange correction was applied for an 

“effective back-exchange time” 𝜏 minimizing the difference between the predicted and 

the experimental shape. The underlying assumption is that back-exchange can be 

modelled analogously to in-exchange (i.e., using the multi-exponential in Eq. 3.4). We 

used the predicted envelopes to discriminate whether some pattern of protection 

factors was able to better reproduce the shape of the isotopic envelope; the agreement 

was evaluated with R2. The procedure for the prediction of isotopic envelopes is 

summarized in Figure 3.3.  

 

Figure 3.3. Schematic representation of the calculations for the reproduction of the experimental 

isotopic envelope.  

The fully protonated envelope can be calculated from the knowledge of the peptide sequence. The 

isotopic envelope at time t is evaluated applying the evolution in Eq. 3.7 to the fully protonated envelope, 

using a specific pattern of protection factors {𝑷𝒊} and the intrinsic “forward” exchange rates 𝒌𝒊
𝒇
 calculated 

at pH 4 and temperature 25°C for a protonated protein in a deuterated buffer. The in-exchange predicts 
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an envelope (black) which lies at higher m/z values with respect to the experimental spectrum (red); 

vertical dashed lines indicate the centroid of the envelopes. To correct for back-exchange, the evolution 

in Eq. 3.7 is applied towards protonation, using the same {𝑷𝒊} and the intrinsic “back” exchange rates 𝒌𝒊
𝒃 

calculated under quenching conditions (pH 2.4 and temperature 0°C) for a deuterated protein in water. 

The back-exchange evolution is applied for an effective back exchange time τ which maximizes the 

agreement between the predicted and the experimental envelope (insert). 

3.4 Results 

The protection factors derived from HDX-MS measurements probing the mouse prion 

protein in its native state are shown in Figure 3.4A with their associated error. The 

value(s) and the error(s) associated to protection factors derived from MS 

measurements are the mean(s) and standard deviation(s) of the Gaussian cluster(s). 

For most of the sequence, a single cluster is found (i.e., all possible solutions correspond 

to a single cluster, see Methods), while multiple clusters are found in the two regions 

(residues 5-9 and 27-30) in which proteolytic peptides do not overlap (Figure 3.4B-C). 

In both regions, the NMR protection factors fall within 1σ (one standard deviation) of 

the MS estimation. The predicted profiles of protection factors reflect known structural 

properties of the protein. Indeed, higher protection against exchange is observed at 

helices α1 (residues 21-30) and α3 (residues 77-101), with completely unprotected 

residues surrounding Cys91, which forms a disulphide bond with Cys56. Lower 

protection is also observed in the loop between α2 and α3 (residues 72-76).  
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Figure 3.4. Estimated protection factors of the mouse prion protein. 

A) Protection factors corresponding to cluster means of 5,000 least square solutions obtained by 

minimizing the cost function in Eq. 3.6. Vertical dashed lines show regions covered by isolated (grey) or 

overlapping peptides (compare with Figure 3.1). Dots and error bars represent the mean and standard 

deviation of the estimated clusters. In regions where multiple clusters are identified, different clusters 

are shown with different colours. B-C) Comparison of the estimated clusters with protection factors from 

NMR (red diamonds) in the regions where multiple clusters are identified; clusters compatible with NMR 

measurements, namely clusters 1 and 13 in the regions covered by residues 5-9 and 27-30, respectively, 

are highlighted. 
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The shape of the experimental isotopic envelope can be exploited to define the quality 

of each cluster of solutions. We show the results for peptide 1 (residues 4-9, Figure 3.1), 

where the clustering algorithm identified seven clusters (Figure 3.4). We randomly 

select a set of {Pi} from each cluster and predict the isotopic envelope as discussed in 

the Methods section. The outcomes (Figure 3.5) show that the solutions belonging to 

cluster 1, which was the only cluster compatible with NMR measurements, can 

reproduce the shape of the experimental isotopic envelope better than any other cluster. 

This proves that the isotopic envelopes encode a greater amount of information relative 

to centroided data, and that this information can be used a posteriori to reduce the 

ambiguity on the estimated value of protection factors. 

 

Figure 3.5. Prediction of isotopic envelopes.  

Starting from the fully protonated envelope of peptide 1 (sequence YMLGSA), the evolution in Eq. 3.7 is 

applied towards deuteration at times 1 minute (column 1), 1 hour (column 2), 24 hours (column 3) and 

infinite time (column 4) using intrinsic exchange rates calculated at pH 4 and temperature 25°C and a set 

of protection factors belonging to cluster C1 (row 1), C4 (row 2) and C7 (row 3). A back-exchange 

correction is performed applying Eq. 3.7 towards protonation, using intrinsic exchange rates calculated 

at pH 2.4 and temperature 25°C and the same set of protection factors. The isotopic envelope predicted 
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using protection factors from Cluster1 (black dots), Cluster4 (black diamonds) and Cluster7 (black stars) 

is compared with the experimental envelopes (red lines). The agreement is evaluated using the 𝑹𝟐.  

Protection factors for 27 residues covered by the MS dataset are also available from 

NMR measurements. We were able to extract single residue protection factors from MS 

centroided data for all but two regions (Figure 3.4). Moreover, we were able to assess 

the quality of different solutions in one of these regions, therefore deriving one “top-

scoring” pattern of protection factors (Figure 3.5). The region covered by peptide 4 

(Figure 3.1) remains underdetermined (Figure 3.4C) because the experimental 

isotopic envelopes for this peptide were not available. In this region, we selected cluster 

13 as final pattern of protection factors because it showed compatibility with NMR 

measurements. The comparison between protection factors extracted by MS and NMR 

(Figure 3.6A-B) showed a high degree of compatibility between the protection factors 

extracted by the two techniques, with 23/27 values compatible with at most 2σ, and a 

correlation coefficient ρ = 0.71 (Figure 3.6D) when the outlier residues 25, 91 and 94 

(which are not compatible within 3σ) are not considered. 
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Figure 3.6. Comparison of protection factors from HDX-MS and HDX-NMR experiments.  

A) Clusters of protection factors extracted from HDX-MS data (black dots with error bars) are compared 

with NMR measurements (red diamonds) for every amino acid covered by both datasets. B) Residuals of 

protection factors from HDX-MS and HDX-NMR experiments. C) Marginal probability distribution of 

protection factors derived from 5,000 minimization procedures for residues 25, 91, 94 and 96. D) 
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Correlation between protection factors extracted by NMR and MS; Pearson’s correlation coefficient 𝝆 =

𝟎. 𝟕𝟏 excluding outliers (red). 

3.4 Discussion 

Despite the only partial coverage provided by the MS dataset (Figure 3.1), we showed 

how alternative patterns of protection factors with similar agreement with 

experimental data can be accurately derived at the resolution of single amino acid 

(Figure 3.4A). Moreover, the solutions can be clustered, providing a discrete number of 

alternative solutions for {Pi}. In most regions, one unique cluster was identified. Two 

regions still present an ambiguity on the final estimate of the protection factors, but at 

least one of the clusters identified in these regions is compatible with protection factors 

derived from NMR measurements (Figure 3.4B-C). Nonetheless, the ambiguity could 

be completely removed for one of these two regions exploiting the supplementary 

information contained in the shape of the experimental isotopic envelope (Figure 3.5). 

Therefore, the method used here estimates protection factors from MS data alone (with 

the exception of the region covered by residues 27-30, where the experimental isotopic 

envelope was not available).  

A comparison of the protection factors estimated from MS with measures from NMR 

showed a high degree of compatibility (Figure 3.6), validating the method. The four 

discrepancies shown by residues 25, 91, 94 and 96 provide insight into the limitations 

of the datasets and the computational approach. The protection factor of residue 25 is 

compatible within 3σ with the NMR measurement. Interestingly, the marginal 

probability distribution of the protection factors estimated for residues 91 and 94 is 

bimodal, with one of the modes similar to NMR measures (Figure 3.6C). The GMM 

clustering algorithm selects the final number of components based on the minimum 

BIC= k ln(n) − 2 ln(L̂), where n is the number of data points, 𝐿̂ the maximized value of 

the likelihood function of the model and k the number of parameters estimated by the 

model. Therefore, the BIC tends to favour models with fewer parameters. Considering 

the low-intensity peaks as outliers of the main distribution leads to a lower BIC than 
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considering them as separate modes of a multimodal distribution. This artefact is even 

more evident when we look at protection factors of residue 94, which has a multimodal 

probability distribution with 4 modes; moreover, one of the modes is compatible with 

the NMR measure. Even in this case, the BIC is lower when the projected multimodal 

distribution is merged into one component. 

A univariate clustering approach (i.e., a clustering algorithm considering one residue at 

a time instead of regions covered by contiguous overlapping peptides, Supplementary 

Figure 3.3) would find the low-intensity peaks approaching NMR measures shown in 

Figure 3.6C for residues 91, 94 and 96. However, a multivariate approach is statistically 

and physically more rigorous because the protection factor of a residue depends on its 

neighbours. Indeed, there is not a single pattern of {Pi} found by the minimization 

procedure containing simultaneously all those three values (black dotted lines in 

Figure 3.6C show the subset of solution with 4 < ln(𝑃91) < 6 or 2.5 < ln(𝑃94) < 5). 

Moreover, a set of {Pi} with protection factors of residues 91, 94 and 96 equal to NMR 

measures did not fit the uptake curves of the HDX-MS dataset. To prove this, we 

constrained protection factors in the region 75-101 to their NMR value (when available) 

during the least-squares minimization, while the remaining protection factors are 

adjusted to minimize the cost function in Eq. 3.6. For peptide 12, which contains 

residues 91, 94 and 96, a best fit provides a prediction in deuterium uptake which is not 

compatible with MS measurements (Figure 3.7). The analysis of these discrepancies 

suggests that an estimation of the same quantity (i.e., the protection factor) from two 

different techniques is not possible here because the error is either unknown (in the 

NMR dataset) or too large (in the MS dataset). The disagreement is however localized 

in a specific region of the protein and could be therefore caused by artifacts either in 

the NMR or MS experiment. In the absence of additional measurements, these results 

cannot be interpreted further.  



130 

 

 

Figure 3.7. Deuterium uptake prediction for peptide 12 using an optimized set of protection 

factors with constrained NMR values.  

In the region covering residues 76-101, the protection factor of 11 residues was measured by NMR. These 

values are fixed, while the remaining protection factors are optimized to minimize the cost function in 

Eq. 3.6. The resulting prediction (red line) is not compatible with MS data. 

3.5 Conclusions 

In this paper, we applied ExPfact (Skinner et al. 2019) to a previously published dataset 

probing the HDX of the same protein under the same experimental conditions by both 

MS and NMR (Moulick et al. 2015). The novelties introduced with respect to the 

previous publications are (i) the validation of the method via a comparison with NMR 

data, which is often neglected in related papers (Babić et al. 2019; Gessner et al. 2017; 

Kan et al. 2013; Salmas and Borysik 2021; Saltzberg et al. 2017; Smit et al. 2020; Zhang 

2020; Zhang et al. 2012); (ii) the prediction of the experimental isotopic envelope of 

peptides (via the back-exchange correction) as a further tool to assess the quality of 

alternative solutions; (iii) several upgrades to the code (introduction of the penalty 

term, parallelization of the code, additional scripts and tests, extended documentation).   
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The approach demonstrated here enables the quantitative analysis of any HDX-MS 

dataset (in the EX2 regime), providing protection factors at the resolution of the single 

amino acid. We note that the protection factor is a well-defined quantity only when both 

the native and EX2 approximations are valid. When EX1 kinetics (or mixed EX1/EX2 

kinetics) emerges from the isotopic distribution of peptides, single residue information 

can be extracted via other methods (Na et al. 2019; Zhang 2020). The information 

extracted in the two regimes is different. For the exchange in EX2 conditions, a 

protection factor can be exctracted: this is a unit-less quantity that can be expressed 

with Gibb’s free energy of opening: ∆Gop = RT ln P (where R is the universal gas 

constant and T is the temperature) (Englander et al. 2016). In the case of EX1 kinetics, 

the exchange of a single residue is dEX1(t) = 1 − e
−kot; therefore, it is possible (in 

principle) to extract the opening rate ko of a residue, which has the units of [time]−1 

and can be expressed through the Eyring equation (Eyring 1935) as proportional to 

Gibb’s free energy of activation: ko = (kBT/h)exp (−
∆Go

‡

RT
) (where kB is the Boltzmann 

constant and h is the Planck’s constant) (Hamuro 2021b). ExPfact aims to extract 

protection factors from HDX-MS because they encode structural information of the 

protein, and is consequently limited to the study of datasets with peptides showing EX2 

behaviour.  

HDX-MS is a promising technique for high-throughput and low-cost characterization of 

proteins’ structural and dynamic properties. The principal drawback of the technique 

is its spatial resolution, providing data at the peptide level, which so far are mostly 

interpreted qualitatively. The implementation of alternative MS/MS fragmentation 

methods not affected by H/D scrambling – such as electron capture/transfer 

dissociation (ExD) and UV photo-dissociation (UVPD) (Mistarz et al. 2018; Pan et al. 

2009, 2012) – would be a valuable addition to experimentally increase spatial 

resolution. However, we believe that single residue resolution will be hardly achieved 

for the whole sequence of the protein. Therefore, computational methods aiming to 

extract information at higher resolution will remain essential. The efforts made by the 
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HDX-MS community to acquire higher quality data (Kish et al. 2019; Rob et al. 2012; 

Svejdal et al. 2019) combined with a unified computational approach encompassing the 

knowledge acquired in the last decade (Kan et al. 2013; Salmas and Borysik 2021; 

Skinner et al. 2019; Smit et al. 2020) will enable HDX-MS data analysis to overcome the 

obstacle of limited spatial resolution, providing a unique “quick and cheap” 

experimental validation to assess models from ab initio structure determination 

methods such as AlphaFold (Jumper et al. 2021). 
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3.6 Supplementary Material 

3.6.1 Experimental details 

This section aims to provide experimental procedures adopted by the authors who first 

published the dataset. The text is adapted with permission from R. Moulick, R. Das and 

J. B. Udgaonkar (2015) “Partially unfolded forms of the prion protein populated under 

misfolding-promoting conditions”, Journal of Biological Chemistry.   

Protein expression and purification. The full-length recombinant mouse prion 

protein, moPrP(23-231), encoded in the pET-17b(+) plasmid was expressed in 

Escherichia coli BL21(DE3) CodonPlus (Stratagene) cells and purified as described 

previously (Jain and Udgaonkar 2008). The protein was lyophilized and stored at −20 

°C. The concentration of the protein was determined by absorbance measurements at 

280 nm using an extinction coefficient of 62,160 M−1 cm−1. The recombinant moPrP(23–

231) lacks the first 22-residue signal sequence that is cleaved off in the formation of 

mature protein in vivo. 

Chemicals and buffers. All the experiments utilized buffers containing 20 mM sodium 

acetate and variable concentrations of urea (obtained from USB Corp.) in the range 0–

2 M. Urea was deuterated by dissolving it in D2O, flash freezing the solution, and 

lyophilizing it. This cycle was repeated three times to ensure complete deuteration of 

the urea. The deuteration or exchange buffer consisted of 20 mM sodium acetate 

dissolved in D2O adjusted to pD 4 (pD = pDread + 0.4) using DCl. All solutions were 

filtered using 0.22-μm Millipore syringe filters before use. The concentrations of urea 

stock solutions were determined prior to use by refractive index measurements using 

an Abbe refractometer. All chemicals used were obtained from Sigma (unless 

mentioned otherwise). 

Peptide Map of moPrP. Lyophilized protein was dissolved in Milli-Q water at pH 2.5 

to a final concentration of 3.5 μM. This sample was injected into the HDX module 

(Waters) where the sample was digested by pepsin (at a 50 μl/min flow rate), and the 
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peptic fragments were separated on a C18 reverse phase chromatography column using 

a gradient of 3–40% acetonitrile before being fed into a Waters Synapt G2 HD mass 

spectrometer. All columns were kept at 4 °C, and the mobile phases were chilled on ice. 

The fragments were identified using Protein Global Lynx software. The fragments 

obtained corresponded to all structured parts of the protein including the loops 

connecting the secondary structures. However, no peptide could be obtained for a 

stretch of 14 residues (168–181) corresponding to the N-terminal segment of α2. 

Deuteration of moPrP. Lyophilized protein was dissolved in deuteration buffer (20 

mM sodium acetate dissolved in D2O at pD 4) to a final concentration of ∼20 μM. This 

stock solution was heated to 65 °C for 10 min to unfold and deuterate the protein, 

immediately kept on ice for 15 min for refolding, and then kept at room temperature. 

The stock solution was concentrated using a 10-kDa Centricon filter unit from Millipore 

to 180 μM. The mass of the deuterated protein was checked using a Synapt G2 HD mass 

spectrometer, and the protein was found to be completely deuterated. 

HDX-MS of moPrP. Lyophilized protein was dissolved in 20 mM sodium acetate, pH 4 

to a final concentration of 20 μM. To initiate exchange, 25 μl of protonated protein were 

mixed with 475 μl of deuteration buffer in the presence of 0–2 M urea for varying 

lengths of time, at 25 °C. The reaction was quenched by mixing with ice-cold 500 mM 

glycine, pH 2.4, and the solution was desalted into ice-cold water, pH 2.5 using a 

Sephadex G-25 HiTrap desalting column in conjunction with an ÄKTA Basic HPLC. The 

desalted samples were injected into the HDX module (Waters) coupled to a 

nanoACQUITY UPLC. A gradient of 3–40% acetonitrile (0.1% HCOOH) at a flow rate of 

40 μl/min was used for elution of the protein from an analytical C18 reverse phase 

chromatography column in 10 min. The extent of exchange was determined by 

measuring the increase in the mass of the protein in the Synapt G2 HD mass 

spectrometer. 

For experiments in which HDX was followed by pepsin digestion, the protein was 

dissolved to a final concentration of 180 μM in 20 mM sodium acetate, pH 4. For online 
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pepsin digestion, a flow rate of 50 μl/min of water (0.05% HCOOH) was used. The 

peptides eluted were collected using a peptide trap column, washed to remove salt, and 

eluted as above. All columns were kept at 4 °C in the cold chamber of the HDX module. 

The peptides separated on the column were detected using the Synapt G2 HD mass 

spectrometer. The mass spectrometer parameters were set as follows: source 

temperature, 35 °C; desolvation temperature, 100 °C; capillary voltage, 2.8 kV. To 

determine the number of exchanged deuteriums that are lost due to back-exchange 

during sample processing after quenching of the exchange reaction, 25 μl of completely 

deuterated protein were diluted in 475 μl of deuteration buffer, the reaction was 

quenched as above, and the sample was then processed in an identical way. 

Sequential backbone assignment of the NMR spectrum of moPrP. Two-

dimensional 15N heteronuclear single quantum coherence, HNCO, HNCA, HNCACO, 

HNCOCACB, and HNCACB resonance experiments were carried out on 300 μM moPrP 

in 20 mM sodium acetate at pH 4 (in the presence of 5% D2O) for the backbone 

assignment. Data were processed using NMRPipe, and the assignment was done using 

the NMR data visualization and assignment software Sparky. The NMR spectrum of the 

protein collected at pH 4 in this study is indistinguishable from that collected at pH 4.5. 

HDX-NMR. A 1H-15N two-dimensional selective optimized flip angle short transient 

heteronuclear multiple quantum coherence spectrum was collected as the reference 

unexchanged sample spectrum by dissolving lyophilized protein in 20 mM sodium 

acetate, pH 4, 95% H2O, 5% D2O buffer to a final concentration of 300 μM. To monitor 

exchange, lyophilized protein was dissolved in 20 mM sodium acetate (95% D2O), pD 4 

to a final concentration of 300 μM (exchange sample). A series of 1H-15N two-

dimensional selective optimized flip angle short transient heteronuclear multiple 

quantum coherence spectra of the exchange sample were collected up to 40 days 

following an initial dead time of 10 min. The two-dimensional spectra were collected 

on a Bruker 800-MHz spectrometer with 1024 × 256 (t1 × t2) time points totaling up to 

an acquisition time of 5 min and processed using NMRPipe and Sparky. The NMR 
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spectrum of the unexchanged sample was corrected for intensity differences arising 

due to differences in matching, tuning, and shimming by multiplying with the ratio of 

the intensity of the Cys213 amide (an isolated peak that exchanges on a 1-month time 

scale) in the unexchanged spectrum to that of the Cys213 amide at 10 min of exchange. 

This was the intensity-corrected unexchanged spectrum. The signal intensity for each 

residue in all exchange spectra was normalized with the signal intensity of that residue 

in the intensity-corrected unexchanged spectrum. The resulting decrease in the 

normalized signal intensity with increasing time of exchange was converted into a 

percent hydrogen occupancy versus t plot and fit to an exponential decay equation to 

yield an observed exchange rate. This rate was used to calculate the free energy of 

opening of structure to exchange using the equation ∆Gop = RTln(
kint

kobs
⁄ ). The 

intrinsic rates of exchange for individual residues were obtained as described 

elsewhere (Bai et al. 1993). 
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Supplementary Figure 3.1. When measurements are not affected by experimental error, 

estimating protection factors is a combinatorial problem.  

A) For an isolated peptide of N residues, the uptake curve is a sum of N exponentials and there are N! 

possible patterns of protection factors. For N=3, a best fit always extract three rates R1, R2 and R3, 

however these rates cannot be assigned to specific residues, therefore all the N!=6 assignments (i) to (vi) 

are possible. B) For two overlapping peptides formed by N1=N2=3 residues with Nc=1 common residue 

as shown, it is possible to unambiguously assign the rate of residue 3, say R3. However, it is not possible 

to assign rates R1 and R2 to residues 1 and 2 and, analogously, rates R4 and R5 to residues 4 and 5. There 

are (N1-Nc)!(N2-Nc)!Nc!=4 possible patterns of protection factors, namely options (i) to (iv).  C) 

Assignment of rates does not yield to the same result in terms of protection factors. For an isolated 

peptide of N=2 residues, a best fit always provides rates R1 and R2, e.g. 𝑹𝟏 = 𝟏𝒔−𝟏 and 𝑹𝟏 = 𝟏𝟎𝒔−𝟏. In 

terms of rates, the N!=2 alternative solutions are {𝑹𝟏, 𝑹𝟐} = {𝟏, 𝟏𝟎} and  {𝑹𝟐, 𝑹𝟏} = {𝟏𝟎, 𝟏}. If the amino 

acids corresponding to residues 1 and 2 are different, they have different intrinsic exchange rates, e.g. 

𝒌𝒊𝒏𝒕
𝟏 = 𝟏𝟎𝒔−𝟏 and 𝒌𝒊𝒏𝒕

𝟐 = 𝟏𝟎𝟎𝒔−𝟏. In terms of protection factors, the 2 alternative solutions are {
𝟏𝟎

𝟏
,
𝟏𝟎𝟎

𝟏𝟎
} =

{𝟏𝟎, 𝟏𝟎} and {
𝟏𝟎

𝟏𝟎
,
𝟏𝟎𝟎

𝟏
} = {𝟏, 𝟏𝟎𝟎}. 
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Supplementary Figure 3.2. The penalized cost function and leave-one-out cross validation. 

Protection factors are adjusted to minimize the cost function (Eq. 3.6 in main text): 

𝐂(𝛌, {𝐏𝐢}) = ∑∑𝐰𝐣𝐤[𝐃𝐣
𝐩𝐫𝐞𝐝(𝐭𝐤, {𝐏𝐢}) − 𝐃𝐣

𝐞𝐱𝐩(𝐭𝐤)]
𝟐

𝐤𝐣⏟                          
𝐒𝐒𝐑

+ 𝛌∑(𝐥𝐧 (𝐏)𝐢−𝟏 − 𝟐𝐥𝐧 (𝐏)𝐢 + 𝐥𝐧 (𝐏)𝐢+𝟏)
𝟐

𝐢⏟                          
𝐏𝐞𝐧𝐚𝐥𝐭𝐲 𝐭𝐞𝐫𝐦

 

The cost function consists in a regular term, i.e. the sum of squared residuals (SSR), which depends on 

the experimental data, and a penalty term, which depends on the estimated parameters (i.e., the 

protection factors). The penalty term is built to minimize variations between protection factors of 

neighbouring residues (the functional form in the penalty term is the Newton approximation of the 

second derivative of a discrete function: 
𝐝𝟐𝐱

𝐝𝐭𝟐
≈ 𝐱𝐢−𝟏 − 𝟐𝐱𝐢 + 𝐱𝐢+𝟏). The relative contribution of the penalty 

term with respect to the regular term is determined by penalty constant λ.  

We applied leave-one-out cross-validation (CV) to determine the penalty constant λ. The MS dataset was 

divided into a training dataset formed by 14 of the 15 time points available (for all peptides) and a test 

dataset composed by the remaining time point. This splitting procedure was repeated by leaving out one 

time point at a time; as a result, 15 training (and, analogously, test) datasets were generated (A). Starting 

from an initial guess on the protection factors (to ensure the reproducibility of the results, the protection 

factor of every residue except prolines was initialized to 1), the cost function was minimized for each 

training dataset. The minimized value of the cost function and the estimated set of protection factors was 

recorded; the sum of the cost function over all training datasets (𝐂𝐕𝐭𝐫𝐚𝐢𝐧) was evaluated. The estimated 

set of protection factors was used to predict the fractional deuterium uptake of the test dataset (i.e., the 

remaining time points), and the cost function was calculated for every test dataset. The sum of the cost 

function over all test datasets (𝐂𝐕𝐭𝐞𝐬𝐭) was evaluated. The CV error 𝐂𝐕𝐞𝐫𝐫𝐨𝐫(𝛌) = 𝐂𝐕𝐭𝐫𝐚𝐢𝐧(𝛌) + 𝐂𝐕𝐭𝐞𝐬𝐭(𝛌) 

was calculated for λ ranging from 𝟏𝟎−𝟏𝟓 to 𝟏𝟎−𝟏. The value of λ corresponding to the minimum CV error 

was selected: 𝛌 = 𝟏 × 𝟏𝟎−𝟖 (B). 
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Supplementary Figure 3.3. Visual representation of the clustering algorithm in 2 dimensions (i.e. 

for a 2-residue peptide).  

The histograms of the protection factors that fit deuterium uptake curves (not shown) are shown in panel 

A. The application of a univariate clustering algorithm would identify two components per amino acid 

(panel C). The univariate approach provides four approximate solutions for which each amino acid 

assumes protection factors ~3 and ~7 (namely {𝟑, 𝟑}, {𝟕, 𝟑}, {𝟑, 𝟕}, {𝟕, 𝟕}). The multivariate algorithm 

identifies two clusters (panel B), showing that solutions {𝟑, 𝟑} and {𝟕, 𝟕} are not possible. The clustering 

algorithm fits a mixture of 1 to 99 2-dimensional Gaussians to the 2-dimensional probability distribution 

(panel D) and calculates the BIC (Bayesian Information Criterion) associated to a specific number of 

Gaussian components (insert in panel D). The number of components with highest BIC is 2. Therefore, 

while the solution is underdetermined, the multivariate approach is less underdetermined than the 

univariate.  
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Chapter 4. Recalibrating Protection Factors Using 
Millisecond Hydrogen/Deuterium Exchange Mass 
Spectrometry  

Submitted as: M Stofella, N Seetaloo, AN St John, E Paci, JJ Phillips and F Sobott, 

“Recalibrating protection factors using millisecond hydrogen/deuterium exchange 

mass spectrometry”, Anal Chem, 2024 

4.1 Abstract  

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a powerful technique 

to interrogate protein structure and dynamics. With the ability to study almost any 

protein without size limit, including intrinsically disordered ones, HDX-MS has shown 

fast growing importance as a complement to structural elucidation techniques. Current 

experiments compare two or more related conditions (sequences, interaction partners, 

excipients, conformational states etc.) to determine statistically significant differences 

at a number of fixed time points and highlight areas of changed structural dynamics in 

the protein. The work presented here builds on the fundamental research performed in 

the early days of the technique, and points towards establishing HDX-MS as an absolute 

and quantitative, rather than relative and qualitative, measurement. We performed 

millisecond HDX-MS experiments on a mixture of three unstructured peptides 

(angiotensin, bradykinin and atrial natriuretic peptide amide rat). We compared 

experimental deuterium uptake curves with theoretical ones predicted using 

established exchange rate calculations, which for an unstructured peptide depend on 

its primary sequence and on the pH and temperature at which the labelling was 

performed. Our aim was to uncover issues with the commonly used reference 

compound and suggest an alternative: we show that exchange rate calculations are 

more accurate when tri-alanine peptide is used as a reference instead of longer and 

partially structured poly-DL-alanine (PDLA). Through molecular dynamics (MD) 

simulations, we confirmed the high helical propensity of PDLA peptides, which need as 
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few as 15 residues to form one (or more) stable helix. The change of reference 

compound largely explains discrepancies between predictions and experiments 

previously reported. An accurate recalibration of intrinsic exchange rate calculations is 

crucial to enable kinetic modelling of the exchange process and to ultimately allow 

HDX-MS to move towards a direct link with atomistic structural models. 

4.2 Introduction 

Protein structural dynamics and order-disorder transitions play an important, but 

often overlooked role in the human proteome, with approximately one third of proteins 

being partly or fully disordered (Deiana et al. 2019). Well-studied examples include the 

important tumour suppressor p53 and the abundant, Parkinson’s disease-related 

protein α-synuclein, which are known to undergo conformational transitions when 

interacting with DNA sequences and lipid bilayers, respectively. Moreover, the 

structural and functional behaviour of intrinsically disordered proteins (IDPs) and their 

interactions in the crowded cellular environment often depend on biophysical 

parameters such as pH, dielectric properties, ion concentrations and macromolecular 

crowding (Theillet et al. 2014). For example, IDPs can undergo conformational changes 

(Wohl, Jakubowski, and Zheng 2021) and even liquid-liquid phase separation (Wang et 

al. 2021) at different salt concentrations. In vivo, proteins are solvated in diverse 

environments which can vary considerably within and between cells, e.g. with high 

intracellular concentrations of specific metal ions (up to 20 mM for Mg2+) and pH 

ranging from neutral in cytosol (6.8-7.2) to acidic conditions in endosomes and 

lysosomes (as low as 4.5).  

While high-resolution structural techniques such as x-ray crystallography and cryo-

electron microscopy can capture very detailed images of individual molecular states, 

the characterisation of structural dynamics and intrinsic disorder under near-

physiological conditions remain challenging. Over the last decade, 

hydrogen/deuterium exchange mass spectrometry (HDX-MS) has emerged as a 

powerful technique to fingerprint structural and dynamic properties of proteins (Engen 
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et al. 2021; Englander et al. 2016; Masson et al. 2019; Trabjerg et al. 2018; Vinciauskaite 

and Masson 2023) in different solvent environments. HDX-MS utilizes the spontaneous 

exchange between amide backbone hydrogen atoms and deuterium in the solvent, 

which increases the mass of the protein and can be monitored by mass spectrometry to 

detect changes in the degree of hydrogen bonding per amino acid and determine local 

structural dynamics. HDX-MS data retain information about the exchange of a protein 

at peptide-level resolution (5-10 amino acids). The same phenomenon (HDX) can be 

monitored at the level of the single residue using nuclear magnetic resonance (NMR) 

spectroscopy (Dempsey 2001). Traditional HDX-NMR experiments probe exchange 

time scales of seconds/minutes (Chu and Pielak 2023; Kuwata et al. 2003; Olofsson et 

al. 2009) but can be pushed down to a sub-millisecond range (Kateb, Pelupessy, and 

Bodenhausen 2007). However, HDX-MS is more versatile, allowing the study of small 

molecules (Damont et al. 2021) as well as MDa complexes (Raval et al. 2021), it requires 

lower amounts of sample and is compatible with many buffers and solution conditions, 

therefore enabling studies in different chemical environments such as integral 

membrane proteins in lipid nanodiscs (Martens and Politis 2020) and biotherapeutics 

in formulations with added excipients (Wood et al. 2020). There is now fast growing 

interest in HDX-MS in the biopharma industry for the characterization of biotherapeutic 

molecules (Masson et al. 2017) and epitope mapping (Sun et al. 2021). More recently, 

fast (millisecond) HDX-MS has emerged as a key technique (Al-Naqshabandi and Weis 

2017; Kish et al. 2023; Svejdal et al. 2019) to study weak (or fast cycling) binding 

interactions, allosteric effects, and dynamics of unstructured sequences in intrinsically 

disordered proteins (IDPs) (Seetaloo and Phillips 2022) that are associated with cancer 

and amyloid-related neurodegenerative diseases. It is desirable in such cases to map 

out conformational landscapes rather than just determining individual structures, and 

to understand the factors (which might be environmental rather than intrinsic to the 

sequence itself) which govern transitions between different states; a formidable 

challenge which is well addressed by fast HDX-MS approaches aided by ensemble 

calculations using advanced computational methods (Jia et al. 2023; Salmas, Harris, and 

Borysik 2023).   
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In HDX-MS, the backbone amide hydrogen-exchange rate is an important and highly 

sensitive measure of a protein’s structural dynamics (Linderstrøm-Lang 1955). To 

accurately assess differences in the exchange kinetics, it is necessary to distinguish the 

impact of the chemical environment from that of the protein itself and its structural 

changes. The kinetics of exchange depends on the acidity/basicity of the respective 

amide protons which is determined by the sequence, i.e. the nature of each amino acid 

and its nearest neighbours (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; 

Nguyen, Mayne, Phillips, and Walter Englander 2018), as well as on structural 

properties of the protein which define the 3D microenvironment of an amino acid – 

mainly dictated by hydrogen bonding, electrostatics and solvent accessibility (Devaurs 

et al. 2022). Exchange rates also depend on chemical properties of the solvent which 

determine the mobility and activity of protons (H+/D+), which in turn is intimately 

linked with the availability of hydroxide ions as the actual catalytic agents initiating 

HDX (pH/pD, temperature and ionic strength). While effects of pH and temperature on 

OH-/OD+ activity can in principle be predicted by calculations, salt effects are usually 

not explicitly considered. An approach adopting an empirical buffer correction has been 

recently proposed, where a reporter peptide is used to detect differences in exchange 

cause by the introduction of additives in the buffer (Toth et al. 2017). A theoretical 

framework enabling the prediction of intrinsic exchange rates as a function of salt type 

and concentration is however lacking. Published empirical calculations of intrinsic 

exchange rates, which refer to the exchange rate of a residue in a completely unfolded 

chain, take some of these factors into account, and they are usually calibrated based on 

what is assumed to be a fully unstructured sequence. Current practice in HDX-MS relies 

on relative measurements of two or more states in direct comparison, and it interprets 

the differential exchange pattern at the peptide level qualitatively, based on statistical 

significance. This falls well short of what the method could in principle achieve with 

proper calibration. If true and correctly calibrated intrinsic rates were available which 

take salt effects and accurate back-exchange estimations into account, “absolute” H/D 

exchange levels could be measured directly instead of differences between conditions. 

With such knowledge of quantitatively correct exchange rates, sets of protection factors 
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could be determined which are meaningful across separate experiments and different 

solvent environments. That would in turn then also facilitate the use of such 

information in integrative structural modelling approaches, with the ultimate goal to 

combine HDX-MS and molecular dynamics (MD) for elucidation of protein structural 

ensembles. Here, we make some key steps towards this goal.  

In this work, we performed millisecond HDX-MS experiments on a mixture of 

unstructured peptides to test the validity of the commonly used intrinsic exchange rate 

estimates provided by the Englander group (Bai et al. 1993; Connelly et al. 1993; 

Molday et al. 1972; Nguyen, Mayne, Phillips, and Walter Englander 2018), with the aim 

to determine an appropriate unstructured reference sequence. The assumption that the 

peptides are unstructured was validated by circular dichroism (CD) spectroscopy. The 

exchange of unstructured peptides is too fast to be detected in a ‘standard’ HDX-MS 

instrument, where the minimum acquisition time is 20-30s. The access to the 

millisecond time scale is proven here to be crucial to determine correct intrinsic 

exchange rates and how they are influenced by the presence of salt. Our findings 

revealed that intrinsic exchange calculations are more accurate when a three-alanine 

peptide (3-Ala) reference is used instead of the standard poly-DL-alanine (PDLA), 

which retains some residual structure. We used MD simulations to confirm the high 

structural propensity of PDLA peptides, which had already been reported by several 

computational and experimental studies (Chakrabartty, Kortemme, and Baldwin 1994; 

Hinck 2022; Ingwall et al. 1968; Kuczera et al. 2021; López-Llano, Campos, and Sancho 

2006; Rohl, Fiori, and Baldwin 1999). Therefore, our results corroborate the validity of 

the established intrinsic exchange rate calculations when recalibrated using a proper 

unstructured reference such as 3-Ala.  
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4.3 Methods 

4.3.1 Theoretical framework 

In principle, HDX provides information at the resolution of the single amino acid. 

Indeed, the Linderstrøm-Lang model (Linderstrøm-Lang 1955) describes the exchange 

of each residue as a two-step process, the first guided by local fluctuations of the 

protein, the second by the chemistry of the individual residue and the surrounding 

solvent. The observed rate of exchange  

Eq. 4.1  𝑘𝑜𝑏𝑠 =
𝑘𝑖𝑛𝑡

𝑃
 

is defined as the ratio between the intrinsic exchange rate 𝑘𝑖𝑛𝑡, representing the 

exchange rate of the amino acid in a completely unfolded chain, and the protection 

factor P, which can be interpreted as the “degree of protection” of the residue induced 

by the structure of the protein. Intrinsic exchange rates have been studied in the early 

days of HDX and their dependence on pH, temperature (Scrosati, Yin, and Konermann 

2021; Tajoddin and Konermann 2022) and side chains of the neighbouring residues is 

widely accepted (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; Nguyen, 

Mayne, Phillips, and Walter Englander 2018). On the other hand, the protection factor 

encodes structural properties of the residue within the protein (Englander et al. 2016): 

several microscopic models have been developed to link the structure of a protein with 

its protection factors, with satisfying outcomes (Devaurs et al. 2022). Retrieving a well-

defined biophysical parameter, such as the protection factor, from HDX-MS 

experiments allows linking data with atomistic models of protein structure and 

dynamics obtained from complementary techniques, such as NMR, cryo-EM or 

molecular dynamics (MD) simulations. Differential (i.e. relative and qualitative ) HDX-

MS data are extremely useful to locate the effect of a perturbation, but they make 

predictions of structural properties and correlation with other experiments rather 

challenging (Hamuro 2021a). 



146 

 

Isolating the effect of chemistry (𝑘𝑖𝑛𝑡) is crucial to derive absolute structural 

information (P) from the observed data (𝑘𝑜𝑏𝑠). Even in differential studies, omitting the 

deconvolution of these two effects can introduce a bias in the results or, worse, can lead 

to the wrong conclusions, mostly when studying conformational changes of proteins 

under different buffer conditions, e.g. when dealing with temperature- or pH-driven 

conformational changes (Li et al. 2014; Tajoddin and Konermann 2020). Consider that 

a minor change in pH can cause differences in the uptake curves that can be 

misclassified as significant structural changes. For example, we used the Englander 

intrinsic exchange rates to calculate that a difference in pH of 0.1 is sufficient to 

generate differences > 0.5 Da in the uptake curve of an unstructured peptide with 

sequence AAAAAAAAAA at temperature 300 K (Supplementary Figure 4.1).    

One of the main challenges associated with deriving quantitative information (such as 

the absolute protection factors, rather than their relative differences) from HDX-MS 

data is the deconvolution of the peptide level data provided by the experiment into 

single residue information (Kan et al. 2013). We have recently developed a 

computational method that exploits the additional information contained in the 

isotopic envelope to extract (most of) the protection factors of a protein from HDX-MS 

data (Skinner et al. 2019), and have shown that our estimates correlate well with NMR 

measurements (Stofella et al. 2022). Our method relies on the accuracy of the intrinsic 

exchange rates, which we assumed to be correct and constant (for a given sequence at 

a fixed pH and temperature), following the empirical estimates developed by the 

Englander group (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; Nguyen, 

Mayne, Phillips, and Walter Englander 2018). We decided to further challenge our 

assumption by studying the exchange of unstructured peptides, taking advantage of the 

recent developments in the acquisition of millisecond HDX-MS data (Kish et al. 2023; 

Seetaloo and Phillips 2022).  

The intrinsic exchange rate estimates from the Englander group assume that the 

exchange rate of a residue in a completely unfolded structure depends mainly on three 
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factors: i) temperature, ii) pD of the labelling buffer and iii) side chains of the 

neighbouring residues (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; Nguyen, 

Mayne, Phillips, and Walter Englander 2018). Additional factors, such as the reported 

dependency of the intrinsic exchange rate on salt concentration (Kim and Baldwin 

1982), are neglected. The temperature dependence follows the Arrhenius law, which is 

valid within the range of temperatures 0-60 °C provided that the protein structure 

remains stable, while it needs to be adjusted for higher temperatures (Tajoddin and 

Konermann 2020). The dependence of the intrinsic exchange rate on the pD (pD =

pHread + 0.4) has a V-shaped curve, with a minimum at pD 2.55 (this value is averaged 

over all amino acids). The dependence of the intrinsic rate on the neighbouring side 

chains was empirically determined by studying all 20 naturally occurring amino acids 

with dipeptide models and comparing their exchange rates with polyalanine models 

(Connelly et al. 1993). In their original paper (Bai et al. 1993), Bai et al. used NMR to 

determine the reference values for the left (L) and right (R) isomers of an alanine 

dipeptide (N-Ac-Ala-N’MA), for the internal NH of a blocked alanine tripeptide (N-Ac-

Ala-Ala-Ala-N’MA) and for a racemic poly-DL-alanine (PDLA) with degree of 

polymerization 28 (which represented the average length of the polypeptides). The 

reference rates were measured in presence of 0.5 M KCl and then extrapolated to “low 

salt concentration” (Bai et al. 1993). In a follow-up study, the Englander group adjusted 

the reference values for PDLA (at low salt concentration) by a factor of 1.35, after 

comparing the exchange of PDLA peptides of different lengths with apolipoprotein C3, 

which was assumed to be completely unstructured (Nguyen, Mayne, Phillips, and 

Walter Englander 2018). However, several studies have criticised the validity of these 

calculations because they could not match the predictions with experimental data: the 

experimental uptake was found to be faster than the predicted one, which for a fully 

unstructured reference should be the fastest exchange possible on that amino acid (at 

a fixed pH and temperature) (Al-Naqshabandi and Weis 2017; Del Mar et al. 2005; 

Keppel and Weis 2013; Mori, van Zijl, and Shortle 1997; Zhang et al. 2012).   
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4.3.2 Materials 

Deuterium oxide (99.9% D2O) was purchased from Goss Scientific (catalogue number: 

DLM-4). The peptide mixture (Supplementary Table 4.1) contained three peptides 

(10 µM each): angiotensin (A9202, Sigma Aldrich), bradykinin (90834, Sigma Aldrich) 

and ANP (atrial natriuretic peptide) Amide Rat (SCP0022, Sigma Aldrich). We 

performed circular dichroism (CD) spectroscopy experiments to validate the 

assumption that the peptides are completely unfolded (Supplementary Figure 4.2).  

4.3.3 Hydrogen/deuterium exchange experiments 

Hydrogen-deuterium exchange (HDX) was performed using a fully-automated, 

millisecond HDX labelling and online quench-flow instrument, ms2min (Applied 

Photophysics, UK) (Kish et al. 2023; Seetaloo and Phillips 2022), connected to an HDX 

manager (Waters, USA). The peptide mixture (Supplementary Table 4.1) in the 

equilibrium buffer (20 mM Tris, pH 7.40) was delivered into the labelling mixer and 

diluted 20-fold with labelling buffer (20 mM Tris, pHread 7.00) at 20˚C, initiating HDX 

at 95% deuteration. The labelling times depended on the varying length of mixing loops 

in the sample chamber and the flow rate of the carrier buffer. The peptides were 

labelled for a range of times from 50 ms to 5 min. Immediately post-labelling, the 

sample was mixed 1:1 with quench buffer (100 mM Tris, pH = 2.55 for the mixture of 

equilibration and quench buffer) in the quench mixer to minimize any further exchange. 

The sample was loaded into the HPLC injection loop of the ms2min and sent to the HDX 

manager. The peptides were trapped on a VanGuard 2.1 x 5 mm ACQUITY BEH C18 

column (Waters, USA) for 3 minutes at 7000-9000 psi and separated on a 1 × 100 mm 

ACQUITY BEH 1.7 μm C18 column (Waters, USA) with a 4 min. linear gradient of 

acetonitrile (15-40%) supplemented with 0.1% formic acid. The eluted peptides were 

analysed on a Synapt G2-Si mass spectrometer (Waters, Wilmslow, UK). An MS-only 

method with a low collisional activation energy was used: fragmentation was not 

needed as we wanted to study the exchange of intact peptides with known sequence. 



149 

 

Up to 4 technical replicates were collected. Deuterium incorporation into the peptides 

was measured in DynamX 3.0 (Waters, USA). 

4.3.4 Data processing and analysis 

The evolution of the isotopic envelope of the three peptides was monitored as a 

function of time. We calculated the experimental fractional deuterium uptake as 

Eq. 4.2  DFrac
Exp (t) =

D(t)−D0

DMax−D0
 

where D(t) is the centroid (intensity-weighted average) of the isotopic envelope of the 

peptide at time t, D0 is the centroid of the fully protonated envelope (no exchange) and 

DMax is calculated as the centroid of the maximally deuterated envelope (after 5 minutes 

labelling when the uptake reached a plateau). The experimental fractional uptake was 

averaged over the replicates available, with the error associated with experimental 

measurements as the pooled standard deviation (Supplementary Figure 4.3). 

The theoretical fractional uptake was calculated using a sum of exponentials: 

Eq. 4.3  DFrac
Theor(t) =

1

N−1
∑ (1 − e−kint,it)N
i=2  

where N is the number of exchangeable residues in the peptide (prolines are excluded) 

and 𝑘𝑖𝑛𝑡,𝑖 is the intrinsic exchange rate of residue i. Note that the first residue is 

excluded from the sum because of the lack of an amide at the N terminus. To calculate 

the intrinsic exchange rate, we used a Python script (available at 

https://github.com/pacilab/exPfact)(Skinner et al. 2019) adapted from the spreadsheet of 

the Englander Lab (https://hx2.med.upenn.edu/download.html). The intrinsic exchange 

rate of one residue can be predicted from the knowledge of temperature, pH and side 

chains of the neighbouring residues (Bai et al. 1993; Connelly et al. 1993; Molday et al. 

1972; Nguyen, Mayne, Phillips, and Walter Englander 2018), and was calculated using 

either polyalanine (PDLA) or the internal amide hydrogen of an alanine tri-peptide (3-

Ala) as references (Table 4.1). 

https://github.com/pacilab/exPfact
https://hx2.med.upenn.edu/download.html


150 

 

Table 4.1. Hydrogen/deuterium (HD) and deuterium/hydrogen (DH) exchange rate constants for 

alanine-based reference molecules at 293 K.  

The values were empirically determined in previous work(Bai et al. 1993; Connelly et al. 1993; 

Molday et al. 1972; Nguyen, Mayne, Phillips, and Walter Englander 2018) by fitting experimental 

curves depicting the V-shaped dependence of the exchange rate of these reference molecules on the pD 

with the equation: 𝒌𝒆𝒙 = 𝒌𝑨𝟏𝟎
−𝒑𝑫 + 𝒌𝑩𝟏𝟎

(𝒑𝑫−𝒑𝒌𝑫) + 𝒌𝑾. Reference parameters for PDLA are available 

for forward (H to D) and reverse (D to H) exchange; the reference parameters for 3-Ala are available for 

forward exchange only. 

Name Exchange 𝐥𝐨𝐠(𝐤𝐀) 
(M-1 min-1) 

𝐥𝐨𝐠(𝐤𝐁) 
(M-1 min-1) 

𝐥𝐨𝐠(𝐤𝑾) 
(min-1) 

3-Ala HD 2.04 10.36 -1.5 

PDLA HD 1.62 10.05 -1.5 

PDLA DH 1.40 10.00 -1.6 

The agreement between experimental (Eq. 4.2) and predicted (Eq. 4.3) fractional 

uptake was evaluated using the sum of squared residuals (SSR) over the J time points 

available: 

Eq. 4.4  SSR = ∑ (DFrac
Theor(t𝑗) − DFrac

Exp
(t𝑗))

2𝐽
j=1  

4.3.5 Molecular Dynamics Simulations 

Racemic poly-alanine peptides (50% D-alanine, 50% L-alanine, alternated) were 

constructed in PyMOL version 2.5.2. Acetyl and amide caps were added to neutralise 

each terminal charge. D-alanine residues were introduced manually by exchanging the 

Hα and methyl group (containing the Cβ, Hβ1, Hβ2 and Hβ3 atoms). Parameter and 

topology files were obtained using Tleap (Case et al. 2022); the ff19SB (Tian et al. 2020) 

and TIP3P force-fields for peptide and water molecules, respectively. Each peptide was 

solvated with a water box extending at least 12.0 Å away from any peptide atom. 

Potassium and chloride ions were added to obtain a concentration of 0.5 M KCl 

(Machado and Pantano 2020). Hydrogen mass repartitioning was carried out with 

ParmEd (Case et al. 2022) to facilitate a time-step of 4 fs. Each system was minimised 

using AMBER with 2500 steps of the steepest descent followed by 2500 steps of the 

conjugate gradient algorithm, or until convergence. A harmonic restraint was applied 
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to peptide atoms during minimisation and a 9 Å non-bonded interaction cut off distance 

was used. After minimisation, equilibration molecular dynamics (MD) was carried out 

using pmemd (Salomon-Ferrer et al. 2013) with a 1 fs time-step in the NVT ensemble, 

during which the temperature was slowly increased from 0 K to 293 K for 125 ps using 

Langevin dynamics with a collision frequency of 1 ps-1. All bonds apart from those 

containing hydrogen were constrained using the SHAKE algorithm (Ryckaert, Ciccotti, 

and Berendsen 1977). Production runs followed equilibration dynamics for 200 ns 

using an increased time-step of 4 fs in the NPT ensemble where a 1 atm pressure was 

maintained using a Monte Carlo barostat. Snapshots were saved every 100 ps during 

the production runs and secondary structure propensity was calculated as an average 

over the snapshots using the DSSP algorithm (Kabsch and Sander 1983). 

4.4 Results 

4.4.1 Intrinsic exchange rate predictions are more accurate when 3-Ala is used 

as a reference 

Experimental data showing the fractional uptake (Eq. 4.2) of angiotensin, bradykinin 

and ANP, assumed to be unstructured following CD experiments (Supplementary 

Figure 4.2), in absence of salt are shown in Figure 4.1. We predicted the fractional 

uptake (Eq. 4.3) of the peptides using the intrinsic exchange rates calculations by 

Englander (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; Nguyen, Mayne, 

Phillips, and Walter Englander 2018), using either 3-Ala or PDLA as reference. The 

monoisotopic mass detected for ANP (Supplementary Table 4.1) reflects the 

formation of a disulfide bond between residues C4 and C15, so the parameters for cystine 

(and not reduced cysteine) were used in the intrinsic exchange rate calculations. To 

reproduce the uptake of bradykinin, we had to make some assumptions on the 

configuration of the prolines. Prolines do not exchange because they do not have an 

amide hydrogen, but their cis/trans isomerisation affects the exchange rate constants 

of neighbouring residues. Indeed, different parameters are tabulated in the intrinsic 

exchange rate calculations for trans or cis proline. The deuterium uptake curves 
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predicted by alternative bradykinin conformations are shown in Supplementary 

Figure 4.4. Ion mobility studies have shown that the most probable conformation 

corresponds to trans-Pro2, trans-Pro3, cis-Pro7 (Supplementary Table 4.2) (Pierson et 

al. 2013). The deuterium uptake predicted for this conformation is shown in Figure 4.1. 

The predictions were compared with experimental data and the agreement was 

evaluated using the Sum of Squared Residuals (SSR, Eq. 4.4). The SSR was 0.092 for 

angiotensin, 0.096 for trans-trans-cis bradykinin and 0.067 for ANP when PDLA was 

used as reference. Switching the reference from PDLA to 3-Ala reduced the SSR by 

approximately one order of magnitude: 0.011 for angiotensin, 0.022 for bradykinin and 

0.010 for ANP, values compatible with the pooled standard deviation σpooled = 0.041. 

Our experimental measurements showed a faster exchange than the theoretical 

exchange of fully unstructured peptides when PDLA was used as reference, while they 

matched the predictions much better when 3-Ala was used as reference.     

 

Figure 4.1. Hydrogen-deuterium exchange of angiotensin, bradykinin and ANP.  

The experimental fractional uptake curves (black) are compared with theoretical deuterium uptake 

calculated using the intrinsic exchange rates calculations from Englander using 3-Ala (green) or PDLA 

(red) as reference. The error associated to the experimental measurements is the pooled standard 

deviation.   
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4.4.2 3-Ala rather than PDLA is a suitable unstructured reference 

Molecular dynamics simulations of racemic PDLA (50% L-alanine, 50% D-alanine, 

alternated) highlighted its structural propensity. To replicate the experimental 

conditions used by Bai et al. (Bai et al. 1993), we simulated the behaviour of PDLA in 

presence of 0.5 M KCl. We performed simulations for PDLA peptides of increasing 

lengths (from 4 to 40 amino acids, with steps of 4) and measured the secondary 

structure propensity using the DSSP algorithm (Kabsch and Sander 1983). The average 

helical propensity per amino acid over the simulation time is reported in 

Supplementary Figure 4.5. The results in Figure 4.2 show the helical propensity 

averaged over the amino acids as a function of the peptide length. The simulations 

highlight that a few alanine residues are sufficient to form helical conformations, with 

double (Figure 4.2B) or triple helical bundles (Figure 4.2C) forming at increasing 

peptide lengths. These results confirm our hypothesis, already supported by several 

experimental and computational findings (Chakrabartty et al. 1994; Hinck 2022; 

Ingwall et al. 1968; Kuczera et al. 2021; López-Llano et al. 2006; Rohl et al. 1999), that 

PDLA is not a suitable unstructured reference. 
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Figure 4.2. Structural propensity of PDLA peptides of increasing length from Molecular Dynamics 

simulations.  

A) The helical propensity, calculated using the DSSP algorithm and averaged over the amino acids of the 

peptide, is shown as a function of the peptide length. The error bars associated to the helical propensity 

are the standard deviations. Snapshots were taken every 100 ps of simulation. B-C) Snapshots of a double 

helical bundle from the simulations of PDLA with 24 residues (B) and a triple helical bundle for PDLA 

with 32 residues (C). Simulations were performed by Dr Alex St John and analysed by the author.    

Using PDLA as reference, several studies have observed that the intrinsic exchange rate 

calculations predicted an exchange slower than the experimental exchange of 

unstructured peptides or proteins (Del Mar et al. 2005; Keppel and Weis 2013; Mori et 

al. 1997; Zhang et al. 2012). This is in principle not possible because intrinsic exchange 

rates should describe the exchange of a fully unstructured peptide, i.e. the fastest 

exchange possible for a given amino acid sequence at a given temperature and pH. 

However, the calculations used in these studies i) used PDLA as reference instead of 3-

Ala, and ii) did not account for minor corrections in the reference parameters that were 

introduced later (Nguyen, Mayne, Phillips, and Walter Englander 2018). For example, 

Al-Naqshabandi and Weis showed that intrinsic exchange rate calculations were not 
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able to reproduce the experimental curves for model peptides or unstructured 

proteolytic peptides of intrinsically disordered proteins (Al-Naqshabandi and Weis 

2017). We compared the experimental exchange of a subset of these peptides with the 

deuterium uptake calculated using either PDLA or 3-Ala as reference (Figure 4.3). The 

exchange kinetics predicted using PDLA as reference (red curve) were either equal or 

slower than the experimental exchange, even after introducing the corrections 

implemented by Nguyen et al. (Nguyen, Mayne, Phillips, and Walter Englander 2018) 

for the intrinsic exchange rate calculations. When we predicted the exchange using 3-

Ala as reference (green curve), the predicted mass increase was either equal or faster 

than the experimental data. This strengthened the fact that intrinsic exchange rate 

calculations are more accurate when 3-Ala is used as a reference instead of PDLA.  

 

Figure 4.3. Experimental and predicted HDX data of unstructured peptides previously published. 
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Experimental HD exchange data of unstructured peptides (black) previously published by Al-

Naqshabandi and Weis (Al-Naqshabandi and Weis 2017) is compared with the deuterium uptake 

calculated by us, using PDLA (red) or 3-Ala (green) as reference and accounting for the corrections 

published by Nguyen et al. (Nguyen, Mayne, Phillips, and Walter Englander 2018). Data points were 

extracted from figures published in (Al-Naqshabandi and Weis 2017) using a plot digitizer, and a 

default error of ±𝟎. 𝟏 Da was assigned to experimental measurements. Mass increase is shown instead 

of fractional uptake to facilitate direct comparison with the original paper. The cis-Pro assumption is 

required for peptide FKPGI.  

4.4.3 The intrinsic exchange rate depends on the ionic strength of the buffer 

The results in Figure 4.3 show that the predicted exchange (with 3-Ala as the correct 

reference, green) is always faster than the experimental uptake for these unstructured 

peptides. But why is the observed exchange slower than the prediction? We suggest that 

this can be explained by the presence of salt in the buffer used in these experiments 

(100 mM NaCl) (Al-Naqshabandi and Weis 2017). The dependence of the intrinsic 

exchange rate on the salt type and concentration had already been reported (Kim and 

Baldwin 1982). Bai et al. measured the 𝑘𝑖𝑛𝑡 for all amino acids in presence of 0.5 M KCl 

“to shield possible charge effects” (Bai et al. 1993) and they extrapolated the values at 

“low salt concentration” by comparing their results with data previously published in 

absence of salt (Molday et al. 1972). Only the parameters at low salt concentration were 

reported in the well-known spreadsheet used for intrinsic exchange rate calculations 

(https://hx2.med.upenn.edu/download.html) and used in the follow-up study by Nguyen et 

al. (Nguyen, Mayne, Phillips, and Walter Englander 2018). Moreover, in a recent paper 

Toth et al. proposed the use of a reporter peptide to experimentally evaluate the effect 

of different buffer conditions on the exchange (Toth et al. 2017). We confirm here this 

additional dependence of the intrinsic exchange rate on the concentration (i.e. the ionic 

strength) of the salts in the labelling buffer. We measured the exchange of angiotensin, 

bradykinin and ANP in presence of 150 mM NaCl (Figure 4.4). The experimental curves 

were fitted with a stretched exponential (DFrac = 1 − e
−kobst

q
) and showed that the 

introduction of salt in the buffers slows down the exchange (subtly, yet significantly) of 

the peptides. 

https://hx2.med.upenn.edu/download.html
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Figure 4.4. Fractional uptake of angiotensin, bradykinin and ANP in absence or presence of salt.  

Fractional uptake of angiotensin, bradykinin and ANP in absence (black) or presence of 150 mM NaCl 

(blue). The error associated to experimental measurements is the pooled standard deviation. 

Experimental data are fitted with a stretched exponential model and the observed rates 𝒌𝒐𝒃𝒔 are 

reported.  

4.5 Discussion 

HDX-MS measures an observable (deuterium incorporation) that is related to 

structural properties of the protein (Devaurs et al. 2022; Marzolf, Seffernick, and 

Lindert 2021; Peacock and Komives 2021) and it has been proven powerful in deriving 

data-driven structural models in combination with reweighting techniques and 

computational modelling (Calvaresi et al. 2024; Jia et al. 2023; Salmas et al. 2023). To 

achieve this goal, it is crucial to separate the effect of the buffer on the exchange pattern 

from that of the structure of the protein. Here we take key steps towards establishing a 

framework for a quantitative, “absolute” analysis of H/D exchange rates, which would 
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ultimately enable a direct connection between the HDX-MS dataset and the 3D protein 

model. We identify the fully unstructured tri-alanine peptide (3-Ala) as a more suitable 

reference peptide for intrinsic exchange rate calculations than the commonly used 

racemic poly-DL-alanine peptide (PDLA; Figure 4.1 and Figure 4.3). Both references 

were already published in the original paper by Bai et al. (Bai et al. 1993), but only PDLA 

has been used in later studies. We show that PDLA is partially structured (Figure 4.2) 

and therefore cannot be used as a fully unprotected reference. After switching to a 

suitable reference (3-Ala), the observed exchange is either compatible with or slower 

(but never faster) than predicted, for the peptides in our mixture and for a set of 

disordered peptides previously published (Al-Naqshabandi and Weis 2017). We 

further confirm that intrinsic exchange rates have a subtle additional dependence on 

salt concentration which has so far not been considered in the theoretical 𝑘𝑖𝑛𝑡 

predictions. The addition of salts slows down the exchange, which can explain the 

remaining discrepancy that the experimental curves sometimes show slower (and not 

equal) exchange than predicted. 

PDLA cannot be used as a fully unstructured reference because it displays slower 

exchange than 3-Ala as well as some other peptides, and we show that this is due to it 

having a high helical propensity above a length of ca. 10-15 amino acids (Figure 4.2). 

PDLA has been used as a standard at different temperatures and different pH in a 

publication by Linderstrøm-Lang et al. more than 65 years ago (Berger and 

Linderstrøm-Lang 1957). At the time, the authors remarked that “the slow exchange 

may be explained by a stabilization of the helix due to internal nonpolar bonds between 

the methyl groups of the side chains”. Hence, we are actually not surprised that PDLA 

turned out to be unsuitable for exchange rate calculations, as it retains some protection 

despite its mixed D/L stereochemistry. Even Bai et al. in their original paper stated that 

“the NH and CαH resonances of the PDLA sample showed some substructure, 

apparently intrinsic to interactions of the D and L residues” (Bai et al. 1993). The 

structural propensity of PDLA was also reported by Frushour and Koenig using Raman 

spectroscopy: “When PDLA is dissolved in water, the spectra suggest that short α-



159 

 

helical segments are formed upon dissolution” (Frushour and Koenig 1975). PDLA has 

probably been preferred to 3-Ala in the context of HDX-MS experiments because the 

exchange of 3-Ala is too fast to be detected with a “standard”, i.e. manual or robotic 

workflow which is generally able to detect time points at or above 20-30 s. This 

highlights the importance of the millisecond timescale for fundamental studies of HDX. 

As a side technical note, PDLA peptides exhibit high hydrophobicity, making their 

purification quite challenging. This reinforces the argument that PDLA is not a good 

reference model. 

4.6 Conclusions 

HDX-MS has the potential ability to retrieve absolute structural information of a 

protein, in principle at the resolution of the single amide – either experimentally 

(Sobott 2020) or via an approach we described earlier (Stofella et al. 2022) – which is 

critical to get a robust correlation between HDX data and atomistic models of protein 

structure and dynamics. To achieve this goal, it is essential to separate the effect of 

solution chemistry from the effects of sequence and structure on the HDX pattern, and 

to use a correct, fully unstructured reference. Taken together these considerations 

enable us to obtain an accurate and precise estimate of the intrinsic exchange rate 𝑘𝑖𝑛𝑡.  

The empirical predictions for the intrinsic exchange rate developed by the Englander 

Lab have proven useful since their first publication in 1993, but their validity has been 

questioned by several studies probing the HDX of intrinsically disordered proteins, 

with some observed rates exceeding the supposedly fastest possible rate based on 

calibration with PDLA. We showed that these 𝑘𝑖𝑛𝑡 calculations are more accurate when 

a tri-alanine peptide (3-Ala) is used as a reference instead of PDLA, because the latter 

is not a completely unstructured peptide. To perform these calculations, we therefore 

suggest to use the rate constants for 3-Ala (reported in Table 4.1) in the Englander 

spreadsheet (https://hx2.med.upenn.edu/download.html) or, alternatively, to use our 

Python script available on GitHub (https://github.com/pacilab/exPfact).  

https://hx2.med.upenn.edu/download.html
https://github.com/pacilab/exPfact
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The exchange kinetics of unstructured peptides is also a function of ionic strength. The 

presence of salt (NaCl) at 150 mM slows down the exchange, and therefore the 

predictions mentioned above are not necessarily accurate when salt is present. In any 

case, the exchange predicted by the intrinsic rate should represent the fastest exchange 

possible for a given amino acid sequence at a given temperature and pH. We plan to 

further investigate such effects to determine a salt correction factor. Thus, we envisage 

in future that a combined correction for temperature, pH and salts will be possible, 

which will also allow to define intrinsic rates for forward exchange more stringently as 

amide exchange rates of an individual amino acid within a given sequence, under 

standardized conditions of pH, temperature and salt. This will serve to robustly 

deconvolve the true intrinsic rate of the covalent chemical structure, as determined by 

the protein sequence, from the extrinsic environmental conditions and from the effects 

of protein structural dynamics – the information that we ultimately want to reveal. 
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4.7 Supplementary Material 

Supplementary Figure 4.1. Calculations showing that a minor change in pH can cause differences 

in the uptake curves that can be misclassified as significant.  

We used intrinsic Englander’s exchange rate calculations to determine the exchange rates of a completely 

unfolded poly-alanine peptide (sequence: AAAAAAAAAA) at temperature 300 K and at pH 7.0 (blue line) 

and pH 6.9 (orange line). The absolute uptake curves are calculated using Equation 2 (without 

normalization). The difference between the two curves is evaluated and is found to be > 0.5 Da for time 

scales ranging from ~72 ms to ~360 ms. 
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Supplementary Figure 4.2. Circular dichroism spectra of the peptides in the peptide mixture.  

Circular dichroism (CD) spectra of peptides in the peptide mixture (Supplementary Table 4.1). CD 

experiments were performed on an Applied Photophysics Chirascan instrument (temperature 5°C), 

acquiring wavelengths in the range 180-250 nm. Wavelengths associated with voltages above 700V were 

cropped as they are not reliable (there are not enough photons to have a statistically relevant measure). 

All spectra show a minimum at around 200 nm, which indicates that the primary behaviour of all peptides 

is that of a random coil. ANP does not have additional peaks, suggesting that it is the most unstructured 

peptide in the mixture (despite being the longest). The spectrum of bradykinin resembles poly-proline II 

in a conformation that “maximizes favourable interactions with the solvent” (Rucker and Creamer 2002). 

The spectrum of angiotensin has a second minimum at 218 nm which generally represents a beta-like 

structure; given the length of the angiotensin peptide (7 residues), this second peak most probably 

indicates a couple of residues with beta-like psi/phi angles preferences. It is not uncommon to find 

“conformational preferences” in unstructured peptides (Smith et al. 1996). 
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Supplementary Figure 4.3. Distribution of standard deviations. 

Distribution of standard deviations of the fractional uptake from the entire dataset, i.e. considering 

measurements from all replicates, time points and conditions. The red vertical dashed line represents 

the pooled standard deviation σpooled = 0.041 
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Supplementary Figure 4.4. The effect of proline conformations on the H/D exchange of 

bradykinin.  

The fractional uptake calculated using 3-Ala as reference for different combinations of trans (PT) or cis 

(PC) prolines in the sequence of bradykinin. The table on the right summarizes the agreement with the 

experimental data shown in Figure 4.1 via the sum of squared residuals (SSR). Independently of the 

conformation chosen, the SSR decreases when 3-Ala is used as reference instead of PDLA. The 

conformation depicted in Figure 4.1 is highlighted in red. 

 

  



165 

 

Supplementary Figure 4.5. Structural propensity of PDLA peptides of increasing lengths from 

Molecular Dynamics simulations.  

Snapshots were acquired every 100 ps of simulation and the secondary structural propensity of the 

peptide was calculated using the DSSP algorithm (Kabsch and Sander 1983). Average values are 

reported for helical propensity as a function of the amino acid index. Note that the residues at the first 

and last index corresponds to the acetyl and amide caps of the peptide. 
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Supplementary Table 4.1. Peptide mixture.  

The peptide mixture was formed by three peptides: angiotensin, bradykinin and ANP 4-23 Amide rat. 

The sequences of the peptides and the measured monoisotopic mass are reported together with the 

Sigma Aldrich code. No information on the proline configuration of bradykinin is provided by the 

supplier. The monoisotopic mass detected for ANP (C-terminal amide) differs by -2 Da from the sequence 

mass (1595.75 Da), reflecting the formation of a disulfide bond between residues C4 and C15. 

Peptide Sequence 
Experimental 
Monoisotopic 

Mass (Da) 

Sigma 
Aldrich 

Code 
Angiotensin DRVYIHP 889.455 A9202 

Bradykinin RPPGFSPFR 1059.550 90834 

ANP 
RSSCFGGRIDRIGAC-NH2 

[Cys4-Cys15] 
1593.750 SCP0022 
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Supplementary Table 4.2. Main conformations of bradykinin as determined by IM-MS. 

Main conformations of bradykinin as determined by ion mobility-mass spectrometry (IM-MS) (Pierson, 

Valentine, and Clemmer 2010). While it is not possible to derive the stereochemistry of prolines from 

HDX-MS data, the effect of prolines on neighbouring residues is a secondary yet important element to be 

considered when dealing with intrinsic exchange rate calculations (Supplementary Figure 4.4). 

Although the trans configuration of prolines is usually considered to be more stable, the assumption of 

cis-prolines in unstructured peptides is not unrealistic (Kienlein, Zacharias, and Reif 2024). Indeed, it 

was reported that “the cis-peptidyl-prolyl (cis-Pro) conformations in unfolded polypeptide chains are 

populated to significantly higher levels [with respect to folded proteins]” (Alderson et al. 2018). Using 

IM-MS, Pierson et al. have shown that multiple (up to 10) bradykinin conformers can coexist (Pierson et 

al. 2011) with different combinations of cis/trans prolines (Pierson et al. 2013). Among the most 

abundant isomers, named A, B and C, the C state accounts for ~80% of the population (Pierson et al. 

2010). The C conformation corresponds to the bradykinin isomer trans-Pro2, trans-Pro3, cis-Pro7 

(Pierson et al. 2013), which we assumed for the curve depicted in Figure 4.1. While a mixture of 

conformers is likely to exist in solution, it is realistic to assume that the HDX-MS data would capture the 

exchange of the most abundant conformer. Nevertheless, other conformations of bradykinin still provide 

good agreement with the experimental fractional uptake of bradykinin (Supplementary Figure 4.4). 

Importantly, the use of 3-Ala as reference instead of PDLA improves the agreement with experimental 

data regardless of the bradykinin conformation considered. 

Bradykinin 
Configuration 

Pro2 Pro3 Pro7 
Abundance 

(quasi-
equilibrium) 

a cis cis cis 2 % 
b cis trans trans 16 % 
c trans trans cis 80 % 
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Chapter 5. Inferring Single-Residue Resolution 
From Peptide-Level Hydrogen/Deuterium 
Exchange Mass Spectrometry Data 

Drafted as: M Stofella, A Grimaldi, M Batchelor, R Bayliss, B Schiffrin, A Zhuravleva, E 

Paci and F Sobott, “Inferring single-residue resolution from peptide-level 

hydrogen/deuterium exchange mass spectrometry data”, 2024 

5.1 Abstract 

Hydrogen/deuterium exchange (HDX) is a spontaneous process in which amide 

hydrogens of proteins are replaced with deuterium in solution, providing insights into 

protein structure and dynamics. HDX can be probed at single-residue resolution by 

nuclear magnetic resonance (NMR) experiments, though this technique is limited to 

smaller proteins (< 50 kDa). Mass spectrometry (MS) extends HDX studies to larger 

proteins but offers lower peptide-level resolution. The challenge of extracting single-

residue information (such as protection factors) from HDX-MS data can be framed as 

an optimization problem, where the goal is to find the minima of a rugged cost function 

landscape. We conducted a comparative study of HDX kinetics on two proteins – 

ubiquitin, a well-structured model protein, and GB1-TACC3, which contains disordered 

regions – under identical experimental conditions, using both MS and NMR. We show 

that single-residue resolution can be inferred from peptide-level HDX-MS data, with a 

strong correlation to NMR-derived protection factors, considered the reference 

standard. We propose a protection factor analysis that addresses the inherent 

ambiguity of peptide-level data either by performing a random search to broadly 

explore the rugged cost function landscape or by incorporating an informed initial 

guess into the optimization process, thus focusing on physically meaningful minima. We 

also show that dataset quality, particularly redundancy, is critical to achieving reliable 
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single-residue resolution, with higher redundancy yielding more precise predictions. 

Our findings show that peptide-level HDX-MS, when supported by sufficient data 

redundancy and temporal sampling, can effectively provide single-residue insights 

comparable to NMR, expanding the applicability of HDX-MS to absolute quantitative 

studies of both structured and disordered proteins.  

5.2 Introduction 

Hydrogen/deuterium exchange (HDX) is a spontaneous phenomenon that occurs in 

proteins when they are in a solution containing deuterium oxide (Englander et al. 2016; 

Hamuro 2021b; Linderstrøm-Lang 1955). The amide hydrogen of each residue (except 

proline) exchanges with deuterium in solution, with a rate that depends on the chemical 

environment (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; Nguyen, Mayne, 

Phillips, and Englander 2018) (pH, temperature, ionic strength of the solution and side 

chains of the neighbouring amino acid) as well as on structural and dynamical 

properties of the protein (mainly dictated by the amount of hydrogen bonding and 

heavy contacts that the amide hydrogen forms with surrounding residues) (Best and 

Vendruscolo 2006; Hamuro 2024; Radou et al. 2014; Vendruscolo et al. 2003).  

Historically, the characterization of the HDX of proteins goes back several decades but 

received a boost in the 1990s and early 2000s thanks to the pioneering work of the 

Englander group (Englander 2023) and the advent of 2D nuclear magnetic resonance 

(NMR) (Dempsey 2001; Englander and Mayne 2014). In HDX-NMR experiments, a 

protein bearing 1H is exposed to a solvent containing deuterium. As the exchangeable 

hydrogen atoms on the protein are replaced with (non-observable) 2D atoms from 

solvent, the intensity of the observable 1H signals decays over time (Kleckner and 

Foster 2011). The measurement of individual pseudo-first order exchange rate 

constants is limited only by the resolution of the amide signals themselves, i.e. the 

ability to uniquely assign all non-overlapping resonances or cross peaks in 

multidimensional NMR spectra (Dempsey 2001). The exchange kinetics time scale that 

HDX-NMR can measure goes typically from minutes to hours, but can be as short as 
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microseconds (Kateb et al. 2007). HDX-NMR has been mainly used to study protein 

folding intermediates (Englander 2000). Applications of HDX-NMR are hampered by 

limitations in protein size (< 50 kDa) and the costs associated with expressing and 

purifying 15N labelled proteins. With its ability to overcome these limitations, mass 

spectrometry (MS) rose as a valid alternative to study the HDX of proteins, leveraging 

the increase in mass of the protein due to the exchange of protein hydrogens with 

deuterium in solution. In a typical HDX-MS experiment (Masson et al. 2019), a protein 

sample is diluted into a solution containing deuterium oxide and left for an increasing 

amount of time, until the exchange is quenched (by lowering the pH and temperature 

of the buffer). The protein is then digested by an acid protease, peptides are separated 

rapidly by liquid chromatography (LC) and injected into the mass spectrometer. MS has 

widened the range of biological systems for which HDX can be studied: today, relatively 

large systems such as integral membrane proteins are routinely analysed (Martens and 

Politis 2020), and studies have been performed to investigate the HDX of ribosomal 

nascent chains (Wales et al. 2022). Typical HDX-MS experiments cover time scales 

ranging from seconds to hours, with recent developments giving access to the 

millisecond timescale (Kish et al. 2023; Rob and Wilson 2009; Seetaloo and Phillips 

2022; Svejdal et al. 2019; Wilson and Konermann 2003). The main drawback of HDX-

MS experiments over HDX-NMR is spatial resolution: HDX-NMR probes the exchange of 

the protein at the level of the single residue, while HDX-MS measures deuterium 

incorporation at the level of the proteolytic peptides (typically 5-20 amino acids), 

making it challenging to connect the experimental data with molecular models or to 

cross-compare it with other experimental techniques (Jia et al. 2023; Kan et al. 2013; 

Lau et al. 2020b; Skinner et al. 2019; Stofella et al. 2022).          

The Linderstrøm-Lang model (Linderstrøm-Lang 1955) describes the HDX of a residue 

as a two-step process, where local and global fluctuations, governed by opening/closing 

rates 𝑘𝑜𝑝/𝑘𝑐𝑙, allow the amide hydrogen to switch from a closed state 𝑁𝐻𝑐𝑙 to an open 

state 𝑁𝐻𝑜𝑝, where deuteration occurs with intrinsic exchange 𝑘𝑖𝑛𝑡: 
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Eq. 5.1  NHcl

kop
⇄
kcl

NHop

kint
⟶
 
ND 

Under the native (𝑘𝑐𝑙 ≫ 𝑘𝑜𝑝) and EX2 (𝑘𝑖𝑛𝑡 ≪ 𝑘𝑐𝑙) approximations, which hold for most 

residues and proteins, the deuterium uptake of each residue 𝑑(𝑡) can be modelled as a 

single exponential  

Eq. 5.2  d(t) = 1 − e−kobst 

with exchange rate  

Eq. 5.3  kobs =
kint

P
 

The intrinsic exchange rate 𝑘𝑖𝑛𝑡 depends on the nature of the amino acid and the 

chemical environment surrounding the residue, and can be predicted if the sequence of 

the protein is known together with the pH and temperature at which the labelling is 

performed (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; Nguyen, Mayne, 

Phillips, and Englander 2018). The protection factor P in the Linderstrøm-Lang model 

is the ratio of the opening and close rates (𝑃 ≡ 𝑘𝑐𝑙/𝑘𝑜𝑝). Attempts to predict NMR 

measured protection factors from the knowledge of the folded structure of a protein 

and the chemical environment of each exchanging amide hydrogen have been 

moderately successful. For example, estimations based on counting the heavy contacts 

and hydrogen bonds made by the amide (Best-Vendruscolo model) correlate relatively 

well with the experiment: for example, residues that are deeply buried inside the 

protein generally have larger protection factors, exposed residues show lower values. 

As HDX-NMR experiments monitor the decrease in 1H signal (SNMR) upon deuteration 

of individual residues, the raw data can be fitted with an exponential decay analogous 

to Eq. 5.2: SNMR(t) = e
−kobst. Using Eq. 5.3, the protection factor of the residue 𝑃 can 

be obtained by dividing the intrinsic rate 𝑘𝑖𝑛𝑡, which can be predicted, with the 

observed rate 𝑘𝑜𝑏𝑠.  
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HDX-MS experiments monitor the deuterium uptake of a protein via its proteolytic 

peptides. The deuterium uptake D(t) of a peptide can be written as the sum of the 

contributions of its n exchangeable residues (i.e. excluding prolines and the first 

residue) 

Eq. 5.4  D(t, {Pi}) =
1

n
∑ (1 − e

−
kint,i
Pi
t
)i  

where 𝑘𝑖𝑛𝑡,𝑖 and 𝑃𝑖  are the intrinsic exchange rate and the protection factors of residue 

i. In the ideal scenario of a 2-residue long peptide, Eq. 5.4 is equivalent to Eq. 5.2 (as 

the first residue is non-observable), and a protection factor can be easily derived. For 

this reason, several approaches have been proposed to experimentally increase the 

spatial resolution of HDX-MS data: the combination of multiple proteases (active at 

quench conditions, i.e. at low pH) can increase the digestion efficiency (Cravello et al. 

2003; Kenji et al. 2005; Tsiatsiani et al. 2017), and the integration of fragmentation 

techniques that avoid H/D scrambling (such as ECD or ETD) has been proved useful to 

obtain sub-peptide resolution (Rand et al. 2014; Sobott 2020; Wollenberg et al. 2020).  

However, typical HDX-MS experiments report peptides formed by 5-20 residues, hence 

obtaining protection factors from HDX-MS data by fitting Eq. 5.4 to the experimental 

deuterium uptake of peptides is an underdetermined problem. In statistics, a problem 

is underdetermined when the number of parameters to be estimated is greater than the 

number of experimental data points. The consequence of underdetermination is 

degeneracy, i.e. the existence of multiple different solutions (i.e. patterns of protection 

factors) equally in agreement with experimental data. If we fit one peptide at a time, 

there is an infinite number of solutions in agreement with experimental data. If all 

peptides are fitted simultaneously, the degeneracy is reduced, i.e. there is a smaller 

infinity of solutions in agreement with experimental data (Skinner et al. 2019; Stofella 

et al. 2022).  
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These alternative solutions (sets of protection factors in agreement with experimental 

HDX-MS data) can be found by finding the minima of the cost function 𝜒 

Eq. 5.5  χ({Pi}) = ∑ ∑ [Dj
pred(tk, {Pi}) − Dj

exp
(tk)]

2

kj   

where the index j runs over all peptides and k over all time points, 𝐷𝑗
𝑒𝑥𝑝(𝑡𝑘) is the 

experimental uptake of peptide j at time 𝑡𝑘 , 𝐷𝑗
𝑝𝑟𝑒𝑑(𝑡𝑘, {𝑃𝑖}) is the deuterium uptake of 

peptide i at time 𝑡𝑘 predicted using a set of protection factors {𝑃𝑖} in Eq. 5.4.  

The cost function 𝜒({𝑃𝑖}) is a function of the protection factors which is zero when the 

measured peptide kinetics is exactly reproduced by the predicted uptake calculating 

using {𝑃𝑖}. In the case of error-free data, the zeros of such cost function exist. Since HDX-

MS data are affected by experimental errors, the solutions to our problem, i.e. the sets 

of protection factors in agreement with experimental HDX-MS data, correspond to the 

minima (rather than the zeros) of the cost function. Of course, only one minimum 

corresponds to the true set of protection factors of the protein.   

The minimum of a function can be identified with the implementation of minimization 

algorithms, such as least-squares. If more minima are present, as in the case of the cost 

function in Eq. 5.5, the minimization can be repeated multiple times, starting from 

different initial guesses, to explore the different minima (Figure 5.1). We have recently 

developed a method, ExPfact, which simultaneously fits the information contained in 

the deuterium uptake curves of overlapping peptides to explore the different minima 

of the cost function in Eq. 5.5. Starting only from the knowledge of the uptake curves, 

the sequence of the protein, the temperature and pH at which the deuterium labelling 

was performed, ExPfact returns all possible patters in agreement with experimental 

HDX-MS data.  
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Figure 5.1. Schematic representation of a minimization procedure. 

Schematic representation of a minimization procedure when different initial guesses are selected when 

one minimum (A) or multiple minima (B) are present. 

Once the different minima have been identified, the problem translates into finding the 

true one (which does not necessarily correspond to the global minimum): the reliability 

of a prediction of protection factors from HDX-MS data relies on the availability of a 

reference benchmark NMR dataset. Here, we report on the measurement of two 

proteins by MS and NMR, keeping the experimental conditions the same as similar as 

possible. Two proteins were chosen for this study:  ubiquitin, a well-characterized 

model protein (76 residues) that is known to exchange on a timescale that can be easily 

probed by both HDX-MS and NMR experiments (Bougault et al. 2004), and an original 

GB1-TACC3 complex (91 residues) which fuses the small model protein GB1 (59 

residues) with a short disordered peptide sequence TACC3 (32 residues). 

In this paper, we show that ambiguous protection factors can be inferred from peptide-

level HDX-MS data by minimizing a cost function. The reliability of the predictions 

depends on the quality of the HDX-MS dataset, which can be defined by its redundancy 

(i.e. the average number of peptides covering each residue) and adaptive temporal 
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sampling (i.e. the number, spread and value of the labelling time points). The ambiguity 

of the prediction can be dramatically reduced if the search of the minima of the cost 

function is performed using an informed guess based on a known or a model structure. 

In this way the search of the minima of the cost function 𝜒 disfavors “unphysical” 

solutions (i.e. the search is biased against buried residues having low P or exposed 

residues having a high 𝑃).   

5.3 Materials and methods 

5.3.1 Materials 

15-N labelled ubiquitin was purchased from UBPBio (product code: E1130), while 

unlabelled ubiquitin was purchased from Sigma Aldrich (product code: U6253). GB1-

TACC3 was expressed and purified (see section 5.3.2). Deuterium oxide (99.8% D, 

product code: 1003690110) and d4-urea (product code: 176087) were purchased from 

Sigma Aldrich. 15NH4Cl (99%, NLM-467) and 13C D-glucose (99%, CLM-1396) were 

purchased from Goss Scientific. All other chemicals were of analytical grade or higher. 

Minimal media for 15N/13C expression of GB1-TACC3 consisted of 2 g/L of 15NH4Cl and 

4 g/L of 13C D-glucose in 50 mM Na2HPO4, 25 mM KH2PO4, 20 mM NaCl, 2 mM MgSO4, 

0.2 mM CaCl2, 0.01 mM FeSO4, supplemented with micronutrients and vitamins (BME 

vitamins, Sigma-Aldrich). The solution was syringe filtered (0.2 μm) prior to use. 

5.3.2 Expression and purification of GB1-TACC3  

The expression and purification of GB1-TACC3, as well as the NMR peak assignments 

(section 5.3.3) were performed by Dr Matthew Batchelor.  

GB1-TACC3 is the small ‘model’ protein GB1 (Huth et al. 1997) fused to a short, 

disordered peptide sequence from human TACC3 (Uniprot: Q9Y6A5, residues Gly545 

to Arg573). This hybrid sequence was cloned into a pETM6T1 vector which contains a 

TEV protease-cleavable N-terminal His-NusA tag. GB1-TACC3 was expressed in BL21 

(DE3) RIL Escherichia coli cells. Cells were transformed using the heat-shock method. 
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50 μg/mL kanamycin was used to select and maintain the pET vector; 35 μg/mL 

chloramphenicol was used for routine maintenance of the RIL vector. A single colony 

was grown overnight in 50 mL of LB at 37 °C. This starter culture was used to seed 1 L 

of LB media. Cells were grown to an OD of ~0.6. For unlabelled expression, cells were 

then induced by addition of 1 mM ITPG and incubated overnight at 20 °C. For NMR-

labelled proteins, LB cultures were grown to an OD ~ 0.6, cells were pelleted at 2500g, 

resuspended in PBS buffer to remove residual LB, pelleted again and resuspended in 

250 mL of minimal media. After transferral to an autoclaved 2.5 L flask, cells were 

incubated at 20 °C for a further 2 h at 200 rpm and then overnight expression was 

induced with 1 mM IPTG. Cells were harvested by centrifugation and pellets stored at -

80 °C. 

Cell pellets were thawed and resuspended in TBS (20 mM tris, 150 mM NaCl, 2 mM b-

mercaptoethanol, pH 8) supplemented with a c0mpleteTM Mini EDTA-free Protease 

Inhibitor Cocktail tablet (Roche). Cells were lysed by sonication and then clarified by 

centrifugation at 40,000g for 45 min. Protein was purified from the lysate using Ni-

affinity chromatography with a HisTrap column; eluting from the column using a 0–500 

mM gradient of imidazole. Two aliquots (~ 1 mg) of a solution of His-tagged wild type 

TEV protease (~ 28.5 kDa) stored in 50% glycerol were added to the collected NusA-

His-(TEV)-GB1-TACC3 fractions (with an estimated 0.035:1 molar ratio of 

TEV:protein), and the solution was dialysed in TBS buffer at 4 °C overnight. The solution 

was subjected to Ni-affinity subtraction step to remove the cleaved His-NusA tag and 

His-tagged TEV protease. GB1-TACC3 protein was further purified and buffer-

exchanged using size-exclusion chromatography (SEC) with a Superdex 16/600 S75 

column (GE Healthcare). The final size exclusion buffer contained 20 mM (K/H)3PO4, 

150 mM NaCl, pH 6.5. GB1-TACC3 was concentrated, flash frozen in liquid nitrogen and 

stored at -80 °C. 
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5.3.3 NMR peak assignments 

Peak assignments for ubiquitin were available at 20°C. Spectra for assignment of GB1-

TACC3 were recorded on a 600 MHz Oxford Instruments spectrometer equipped with 

a 5 mm Bruker QCI-P cryoprobe and a Bruker Avance III HD console, with data 

acquisition achieved using Topspin. Spectra were recorded using a 0.8 mM sample of 

15N/13C-labelled GB1-TACC3 sample (20 mM (K/H)3PO4, 150 mM NaCl, 5% D2O, pH 6.5) 

at 10 °C. HNCO, HNcaCO, HNCA, HNcoCA, HNcaCB and HNcocaCB (HNC) triple-

resonance assignment spectra and a HBHAcoNH and 1H–13C HSQC spectrum were 

recorded. Spectra were generated through processing data with NMRPipe/NMRDraw 

(Delaglio et al. 1995). CCPNmr Analysis v2.5 (Vranken et al. 2005) was used for peak 

assignments. Full ab initio assignment of the 1H–15N HSQC spectrum was achieved; the 

GB1 assignment subsequently being cross-referenced with known assignments. For 

both ubiquitin and GB1-TACC3, peak positions were manually tracked to transfer 

assignments to HSQC spectra recorded at 4 °C (temperature at which the HDX 

experiments were performed). 

5.3.4 HDX-NMR experiments 

To acquire the control sample (non-deuterated), 300 µL of protein solution (ubiquitin 

or GB1-TACC3) at concentration ~300 µM in equilibration buffer (20 mM tris, pH 7.0) 

was placed into an NMR tube. For the deuterated samples, 500 µL of protein solution 

(ubiquitin or GB1-TACC3) at concentration ~300 µM were concentrated up to ~3 mM 

by centrifugation at 14,000g for 20 min using Amicon® Ultra-0.5 3K centrifugal filter 

devices (Millipore, product code: UFC5003BK). 50 µL of sample were then diluted into 

450 µl of labelling buffer (20 mM tris, pD 7.0) inside an NMR tube. The NMR tube was 

then transferred into a 950 MHz Bruker Ascend Aeon ™ NMR spectrometer. For the 

deuterated sample, 2D 1H-15N HSQC spectra were acquired as follows: 20 spectra were 

acquired for 4 scans (short acquisition: 4 min 34 s each), followed by 30 spectra 

acquired for 16 scans (medium acquisition: 17 min 30 s each), followed by 10 spectra 

acquired for 64 scans (long acquisition: 1 h 9 min 12 s each). Between the dilution of 
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labelling buffer in the protein solution and the beginning of the first acquisition a dead 

time of 21 min 39 s occurred for ubiquitin and 16 min 43 s for GB1-TACC3; this was 

caused by the time required to manual inject the sample and the labelling buffer into 

the NMR tube, manual transferring to the cooled sample changer, automatic transfer 

from the sample changer to the spectrometer, calibration and tuning of the 

spectrometer.  The intensities as a function of labelling time were extracted using the 

Relaxation Analysis module in CCPNmr (Skinner et al. 2016).  

5.3.5 HDX-MS experiments 

HDX-MS experiments were carried out using an automated HDX robot (LEAP 

Technologies, Fort Lauderdale, FL, USA) coupled to an M-Class Acquity LC and HDX 

manager (Waters Ltd., Wilmslow, Manchester, UK). 6 μL of protein solution containing 

~20 μM protein in equilibration buffer (20 mM tris, pH 7.0) was added to 54 μL 

deuterated buffer (20 mM tris in D2O, pD 7.0) and incubated at 4 °C for 0.5, 1, 2, 5, 10, 

30, 60, 120, 300 and 480 min. Following the labelling reaction, samples were quenched 

by adding 40 μL quench buffer (100 mM tris, 2 M urea) to 40 μL of the labelled solution 

giving a final quench pH = 2.5. 60 μL of quenched sample was passed through an 

immobilised ethylene-bridged hybrid (BEH) pepsin column (Waters Ltd., Wilmslow, 

Manchester, UK) at 200 μL min−1 (20 °C) and a VanGuard Pre-column Acquity UPLC 

BEH C18 (1.7 μm, 2.1 mm × 5 mm, Waters Ltd., Wilmslow, Manchester, UK) for 3 min. 

The resulting peptic peptides were transferred to a C18 column (75 μm × 150 mm, 

Waters Ltd., Wilmslow, Manchester, UK) and separated by gradient elution of 0–40% 

MeCN (0.1% v/v formic acid) in H2O (0.3% v/v formic acid) over 12 min at 40 μL min−1. 

Trapping and gradient elution of peptides were performed at 0°C. The HDX system was 

interfaced to a Synapt G2Si mass spectrometer (Waters Ltd., Wilmslow, Manchester, 

UK). HDMSE and dynamic range extension modes (data independent analysis (DIA) 

coupled with ion mobility separation) were used to separate peptides prior to CID 

fragmentation in the transfer cell. Fully deuterated samples were acquired as follows: 

30 µL of protein sample at ~20 µM was dried in a vacuum concentrator for 15 min; the 
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protein was then reconstituted in a fully deuterated buffer (same as the labelling buffer, 

but with addition of 4M D4-urea); the solution was vortexed for 30 s and left to incubate 

overnight on ice before injection into the mass spectrometer via the robot (using the 

same procedure described earlier). Experiments were replicated up to 4 times. HDX 

data were analysed using PLGS (v3.0.2) and DynamX (v3.0.0) software supplied with 

the mass spectrometer. The fractional uptake of peptides was calculated: 

Eq. 5.6  D(t) =
M(t)−M(0)

M(FD)−M(0)
 

where M(t) is the mass of the peptide at labelling time t, M(0) is the mass of the peptide 

in the control sample (without deuteration), and M(FD) is the mass of the peptide in 

the fully deuterated control.  

5.3.6 Estimating protection factors from HDX-MS data 

Protection factor analysis was performed using ExPfact (Skinner et al. 2019; Stofella et 

al. 2022). According to the Linderstrøm-Lang model (Linderstrøm-Lang 1955), the 

deuterium uptake D(t) of a peptide formed by N exchangeable residues (i.e. excluding 

the first residue of the peptide and all prolines), can be written as a sum of single 

exponentials (Eq. 5.4).  In analogy to the HDX-NMR data analysis, intrinsic exchange 

rates were calculated using Englander’s predictions (Bai et al. 1993; Connelly et al. 

1993; Molday et al. 1972; Nguyen, Mayne, Phillips, and Englander 2018). ExPfact 

implements a non-linear fitting algorithm that simultaneously fits the multiexponential 

in Eq. 5.4 to the fractional uptake (Eq. 5.6) of all peptides and adjusts the protection 

factors of the protein to minimize a cost function (squared difference between 

predicted and experimental data).  

Inferring single-residue resolution from peptide-level HDX-MS data is an 

underdetermined problem (the number of parameters to be estimated is greater than 

the number of experimental points available), and this causes ExPfact to return 

ambiguous solutions (yet equally in agreement with experimental data) depending on 
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the starting point selected for the minimization algorithm. Different initial guesses were 

used as a starting point for the fitting algorithm: 

i) Random search (Salmas and Borysik 2021; Skinner et al. 2019): 10,000 sets 

of protection factors were randomly generated with the constraint 0 ≤

ln (P) ≤ 20 and the best one (i.e. the one with lowest cost function   χ) was 

used as initial guess for the fitting algorithm. This random search is repeated 

100 times and returned ambiguous sets of protection factors in agreement 

with experimental HDX-MS data. Average values and standard deviations 

were reported.   

ii) Structurally driven: the initial guess was extracted from a protein structure, 

either a PDB structure (Berman et al. 2000) or an AlphaFold model (Jumper 

et al. 2021), using the phenomenological model (Best and Vendruscolo 2006; 

Radou et al. 2014; Vendruscolo et al. 2003) (see section 5.3.7). 100 sets of 

protection factors are generated in the surroundings of the calculated set of 

protection factors by allowing a Gaussian fluctuation on the estimated ln (𝑃𝑖) 

(~𝑁(𝜇 = ln (𝑃𝑖), 𝜎 = 0.5)). A minimization was performed starting from 

each of these sets. Average values and standard deviations were reported.  

iii) Unstructured (Smit et al. 2020): all protection factors were initially set to 1, 

which corresponded to the hypothesis that the protein is completely 

unstructured. Analogously to the structurally driven initial guess, 100 sets of 

protection factors were generated in the surroundings of the set of 

protection factors by allowing a Gaussian fluctuation on the estimated value 

and a minimization was performed starting from each of these sets. Average 

values and standard deviations were reported.  

iv) Data driven (Gessner et al. 2017): the deuterium uptake curves of peptides 

were individually fitted with a single exponential model. The extracted rate 

was used as initial guess for all the residues belonging to the peptide. An 

average rate was considered when a residue was covered by multiple 

peptides. Analogously to the structurally driven and unstructured initial 
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guesses, 100 sets of protection factors were generated in the surroundings 

of the set of protection factors by allowing a Gaussian fluctuation on the 

estimated value and a minimization was performed starting from each of 

these sets. Average values and standard deviations were reported. 

6.3.7 Comparing protection factors from MS and NMR 

Protection factors estimated by HDX-MS experiments (using either strategy) were 

compared with the reference set of protection factors obtained from NMR using 

Pearson’s correlation coefficient (Kirch 2008). To account for the error bars in the 

protection factor estimates from MS, which arise from multiple minimizations, 

correlation coefficients were calculated for the individual runs and an average value 

was reported. Alternatively, a weighted correlation coefficient could be calculated 

considering the inverse of the standard deviation as weight for the individual 

protection factor. Following the traditional approach to interpret correlation 

coefficients (Schober, Boer, and Schwarte 2018), we classify 𝜌 > 0.9 as “very strong 

correlation”, 0.7 < 𝜌 ≤ 0.9 as “strong correlation”, 0.4 < 𝜌 ≤ 0.7 as “moderate 

correlation”, 0.1 < 𝜌 ≤ 0.4 as “weak correlation”, and 𝜌 ≤ 0.1 as “negligible 

correlation”.  The expected correlation between protection factors extracted from the 

two experiments is strong rather than very strong. This is partly due to differences in 

the time ranges each technique probes: HDX-MS captures exchange over a period from 

30 s to 8 h, while HDX-NMR covers exchange from approximately 20 minutes (dead 

time) up to 48 h. Moreover, the experimental data suffer different levels of back-

exchange: HDX-NMR experiments are only affected by back-exchange during the 

labelling phase, whereas HDX-MS experiments have additional back-exchange 

occurring at the protein level from quench to digestion and at the peptide level from 

digestion onwards. While these experimental differences might introduce a bias in the 

absolute value of the estimated protection factors, similar patterns should be 

consistently identified by both experiments (for instance, both techniques should 

indicate higher protection factors in structured regions).    
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5.3.8 Protection factors from PDB structure 

The structure used for ubiquitin was acquired by x-ray diffraction (PDB code: 1UBQ) 

(Vijay-Kumar, Bugg, and Cook 1987), while the structure for GB1-TACC3 was predicted 

using AlphaFold (Jumper et al. 2021). The protection factor of residue 𝑖 in protein 

conformation 𝑋 can be estimated using the Best-Vendruscolo model (Best and 

Vendruscolo 2006; Radou et al. 2014; Vendruscolo et al. 2003): 

Eq. 5.7  ln 𝑃𝑖
𝑠𝑖𝑚(𝑋) = 𝛽𝑐𝑁𝑖

𝑐(𝑋) + 𝛽ℎ𝑁𝑖
ℎ(𝑋) 

where 𝑁𝑖
𝑐  and 𝑁𝑖

ℎ  represent the number of contacts with heavy atoms (i.e. non 

hydrogens) and hydrogen bonds residue 𝑖 is involved in. The parameters 𝛽𝑐 = 0.35 and 

𝛽ℎ = 2 were previously optimized on a dataset of 7 proteins for which experimental 

protection factors were available (Best and Vendruscolo 2006).  

5.4 Results 

5.4.1 Reference protection factors from NMR 

The NMR spectra show a decrease of the residue peak intensities as a function of the 

labelling time (Figure 5.2A). Experimental data were fitted with a single exponential 

model (Figure 5.2B). The Linderstrøm-Lang model (Linderstrøm-Lang 1955) 

expresses the extracted rate kobs as the ratio of the intrinsic exchange rate kint and the 

protection factor Pi (Eq. 5.3). The intrinsic exchange rate was calculated using 

Englander’s predictions (Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; 

Nguyen, Mayne, Phillips, and Englander 2018), and the protection factors of the 

assigned residues were extracted from the experimental rates (Figure 5.2B and 

Supplementary Figure 5.2). The protection factor pattern extracted for ubiquitin 

correlates qualitatively well with the secondary structure of the protein (Figure 5.2C): 

higher protection factors are associated with beta sheets and alpha helices, while lower 

protection factors are associated with loops. For ubiquitin, we checked that the 

extracted protection factors agreed with previously published NMR data (Bougault et 
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al. 2004), finding a correlation coefficient ρ = 0.88 (Supplementary Figure 5.3). 

Protection factors for GB1-TACC3 were obtained analogously (Supplementary Figure 

5.4 and Supplementary Figure 5.5). Protection factors from HDX-NMR were used as 

reference to benchmark protection factors extracted from HDX-MS data.  

 

Figure 5.2. Results for HDX-NMR for ubiquitin.  

(A) Top panel: Raw NMR data: 2D HSQC spectra shown for the control sample (no deuteration), and after 

20 min and 200 min of incubation with labelling buffer. The assignments for LYS6, GLU34 and GLU64 are 

highlighted. (B) Intensities extracted from the raw NMR data for LYS6 (slow exchanging), GLU34 

(medium exchanging) and GLU64 (fast exchanging) are shown as a function of the labelling time. The 

curve is fitted with a single exponential model (red line). (C) Protection factors extracted from HDX-NMR 

data compared with helices (pink) and sheets (yellow). 

5.4.2 Peptide-level HDX-MS 

The HDX-MS experiments provided the coverage maps reported in Figure 5.3 for the 

two proteins, reporting an average redundancy of 10.9 for ubiquitin and 13.4 for GB1-
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TACC3. Fractional uptake curves of all peptides are shown for ubiquitin 

(Supplementary Figure 5.6) and GB1-TACC3 (Supplementary Figure 5.7). 

 

Figure 5.3. Coverage map and per-residue redundancy provided by the HDX-MS experiments. 

Coverage map and per-residue redundancy provided by HDX-MS experiments for ubiquitin (left) and 

GB1-TACC3 (right). For ubiquitin, 58 peptides were identified, with a coverage of 100% and an average 

redundancy of 10.9; for GB1-TACC3, 96 peptides were identified, with a coverage of 100% and an average 

redundancy of 13.4.  

5.4.3 Compatibility between MS and NMR 

We evaluated the overall compatibility between MS and NMR experiments. To do so, 

we used the protection factors extracted by NMR as initial guess for the minimization 

algorithm, obtaining a correlation coefficient 𝜌 = 0.82 for ubiquitin and 𝜌 = 0.90 for 

GB1-TACC3 (Supplementary Figure 5.8). We compared this cross-technique 

correlation obtained for ubiquitin (𝜌 = 0.82) with the cross-laboratory correlation 

obtained by comparing our NMR protection factors with the ones obtained by Bougault 

et al (Bougault et al. 2004), which yielded 𝜌 = 0.88 (Supplementary Figure 5.3). 

Ideally, one would expect a perfect correlation coefficient (𝜌 ~ 1.00), but experimental 

errors lower this value. Thus, these correlation coefficients (𝜌 = 0.82 for ubiquitin and 
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𝜌 = 0.90 for GB1-TACC3) serve as a ‘maximum correlation reference’, i.e what quality 

of prediction to expect in a best-case scenario. 

5.4.4 Agreement between Best-Vendruscolo model and NMR  

We assessed the agreement between the protection factors estimated using the 

phenomenological approximation (Eq. 5.7) and the reference NMR measurements. The 

results (Supplementary Figure 5.9) reported a correlation coefficient 𝜌 = 0.61 for 

ubiquitin and 𝜌 = 0.75 for GB1-TACC3. These relatively low values are consistent with 

previously reported studies (Claesen and Politis 2019) which have underscored the 

limitations of the phenomenological approximation in accurately interpreting the 

physical meaning of the protection factors of a protein.  

5.4.5 Strategy 1: random search 

We performed the protection factor analysis for HDX-MS data using no prior 

information. The results in Figure 5.4 show that the minimization, initialized with 

different random initial guesses, converged to ambiguous sets of protection factors 

(grey lines). The minimization was repeated 100 times and average protection factors 

were reported with their standard deviations (black line). The standard deviations 

represent a measure of the underdetermination of the problem: the more ambiguous 

the protection factor, the higher the standard deviation. The protection factors obtained 

by HDX-MS data using this random search strategy were compared with protection 

factors extracted by NMR (red line), reporting a strong correlation in both cases: 𝜌 =

0.78 for ubiquitin and 𝜌 = 0.88 for GB1-TACC3.  
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Figure 5.4. Protection factors estimated from HDX-MS data using a random initial guess. 

Protection factors estimated from HDX-MS data using a random initial guess (black) are compared with 

protection factors extracted from NMR data (red). The fitting procedure was repeated 100 times (grey 

lines), and average values and standard deviation are reported. On the right, a correlation plot shows a 

correlation coefficient 𝝆 = 𝟎. 𝟕𝟖 for ubiquitin (top) and 𝝆 = 𝟎. 𝟖𝟖 for GB1-TACC3 (bottom). 

5.4.6 Strategy 2: structurally driven initial guess 

Starting from a 3D structure of the protein, we estimated the protection factors of the 

protein using the Best-Vendruscolo model (Eq. 5.7). Allowing a Gaussian error on the 

estimated protection factor ln (𝑃𝑖) (~ 𝑁(ln (𝑃𝑖), 𝜎 = 0.5)), we randomly sampled 20 

initial guesses in the surrounding of the set estimated by the protein structure. These 

initial estimates were then optimized on the HDX-MS data, and average and standard 
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deviations were reported (Figure 5.5). The standard deviations associated with the 

protection factors estimated from HDX-MS data using the structurally driven initial 

guess are smaller than the ones provided by the random search shown in Figure 5.4, 

showing that the choice of an initial guess helps avoiding unphysical minima, hence 

reducing the ambiguity on the estimated pattern of protection factors. The protection 

factors extracted by HDX-MS data using the structurally driven initial guess were 

compared with protection factors from NMR, reporting a correlation coefficient ρ =

0.82 for ubiquitin and ρ = 0.83 for GB1-TACC3. The choice of an initial guess reduces 

the ambiguity on the optimized pattern of protection factors (grey lines).  

  

 

Figure 5.5. Protection factors estimated from HDX-MS data using a structure driven initial guess. 
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Protection factors estimated from HDX-MS data using a structurally driven initial guess (black) are 

compared with protection factors extracted from NMR data (red). The fitting procedure was repeated 20 

times (grey lines), allowing a ±𝟎. 𝟓 Gaussian error on the estimated provided by the phenomenological 

approximation, and average values and standard deviation are reported. On the right, a correlation plot 

shows a correlation coefficient 𝝆 = 𝟎. 𝟖𝟐 for ubiquitin (top) and 𝝆 = 𝟎. 𝟖𝟑 for GB1-TACC3 (bottom). 

5.4.7 Strategy 3 and 4: unstructured and data-driven initial guess  

We tested the behaviour of the algorithm when starting from two additional initial 

guesses: the unstructured initial guess and the data-driven initial guess (see section 

5.3.6). By comparison with reference NMR data, the unstructured initial guess reported 

a correlation coefficient 𝜌 = 0.78 for ubiquitin and 𝜌 = 0.81 for GB1-TACC3, while the 

data-driven initial guess showed 𝜌 = 0.78 for ubiquitin and 𝜌 = 0.76 for GB1-TACC3. 

The results from the four strategies reported in all cases a strong correlation with NMR 

data. 

The distribution of the cost function 𝜒 (Eq. 5.5) before and after the minimization for 

the four different approaches is reported in Figure 5.6. The shape of the distribution 

after minimization shows the choice of an initial guess reduces the ambiguity on the 

final solution provided by the minimization algorithm by exploring a more localized 

area of the landscape of the cost function, with the sharpest peak provided by the 

structurally driven initial guess.  
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Figure 5.6. Frequency distribution of the cost function 𝝌 before and after minimization. 

Frequency distribution of the cost function 𝝌 (Eq. 5.5) before and after minimization using four the four 

different approaches to evaluate an initial guess described in Methods: random (blue), structurally 

driven (red), unstructured (green) and data driven (grey).   

5.4.8 The structurally driven initial guess provides robust estimates 

We tested which of the four approaches was more robust with respect to the quality of 

the HDX-MS dataset. To vary the quality of the HDX-MS dataset, we removed peptides 

while maintaining the average length of peptides within a maximum variation of one 

amino acid. This allowed to generate several sub-datasets, containing 20, 40, 60 and 

80% of the peptides of the full datasets of ubiquitin and GB1-TACC3. The protection 

factors extracted from the different sub-datasets using the four approaches were then 

compared with NMR data (Figure 5.7).  

The results (Supplementary Figure 5.10) showed that the approach that best 

correlated with NMR data is the structurally driven initial guess (average correlation 

coefficient over the sub-datasets: 𝜌̅ = 0.78), followed by the random search (𝜌̅ = 0.75). 

The data-driven initial guess and the unstructured initial guess (𝜌̅ = 0.69 for both) 

provided less robust results upon peptide removal. As expected, the correlation 

between protection factors obtained from HDX-MS data and reference NMR protection 

factors generally improves with the number of peptides available (Figure 5.7A). We 

converted the percentage of peptides into a redundancy scale and plotted the 

correlation coefficients for both proteins in every sub-dataset (Figure 5.7B). We used 

a linear model to fit the results and concluded that a redundancy of 4 is sufficient to 

have a correlation coefficient greater than 0.70. 
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Figure 5.7. Comparison of protection factors extracted by HDX-MS data against reference NMR 

protection factors as a function of the peptide map quality.  

(A) Correlation coefficients obtained from HDX-MS data using 20/40/60/80/100% peptides of the 

dataset (grey-scale) are shown while varying the initial guess on the protection factors (random search, 

structurally driven, unstructured, data driven). Results are shown for ubiquitin (compare with 

Supplementary Figure 5.9). (B) The correlation coefficients are shown as a function of the redundancy of 

the sub-dataset considered. Results for both proteins are combined and fitted with a linear model (red 

line).  

5.4.9 Benchmarking against the number of time points 

In analogy to the previous section, we analysed the outcomes as a function of the 

number of time points available. Starting from a rich dataset with 10 timepoints, we 

generated several sub-datasets where time points were dropped (first one at a time, 

then two at a time, then three, up to 8). The redundancy was preserved by using 

datasets with all overlapping peptides for these timepoints. We applied the 

minimization using the structurally driven initial guess and we compared the extracted 

protection factors with the NMR reference. The results for ubiquitin showed that the 

average correlation over the combinations increased with the number of time points 

considered (as expected), and 4 time points were sufficient to have a correlation 
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coefficient > 0.75 (Figure 5.8A). Which time points are more important? To show this, 

we calculated the average correlation coefficient over all possible combinations 

removing at least that specific point (Figure 5.8B). The results for ubiquitin show that 

the correlation coefficient significantly decreases when the longer time points are 

removed. What part of the protein’s sequence is more affected by omitting earlier/later 

time points? We selected two scenarios: i) removing the first 5 time points, ii) removing 

the last 5 time points, and we calculated the difference between the protection factors 

extracted using the full dataset or the sub-dataset in either scenario. For ubiquitin 

(Figure 5.8C), the structured parts of the proteins, especially the α-helix covering 

residues 23-34 and the β-sheet covering residues 40-45, were the most affected when 

later time points were removed (scenario ii). The removal of the earlier timepoints 

(scenario i) does not have much influence on the predictions.    

 

Figure 5.8. Dependence of the quality of protection factor predictions from HDX-MS data for 

ubiquitin as a function of the number and type of time points in the dataset.  

The structure driven initial guess was used with the full dataset (100% peptides). (A) The correlation 

coefficient is shown as a function of the number of dropped time points. The average value is calculated 
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over all possible combinations dropping that specific number of time points. (B) The correlation 

coefficient is depicted as a function of the specific dropped time point. The value is averaged over all 

combinations containing the dropped time point. (C) The difference between the extracted protection 

factors using the full dataset (10 time points) and two scenarios is shown: i) first five time points removed 

(blue), ii) last five time points removed (green).   

As testified by the results for GB1-TACC3 (Supplementary Figure 5.11), the choice of 

the optimal set of time points is highly protein/structure dependent. For example, the 

disordered part of GB1-TACC3 (covering residues 63-91) has already completely 

exchanged after the earliest time point collected by the HDX-MS experiment (30 s) and 

is therefore not properly sampled. The Best-Vendruscolo model (Eq. 5.7) can be used 

prior to the experiment to guide the decision on the labelling time points to be collected, 

for example to predict the optimal shortest time point. Using the protection factors 

calculated from the protein structure and the intrinsic exchange rates predicted using 

Englander’s calculations, the deuterium uptake curve of each residue can be predicted, 

and a 𝑡0.3 (i.e. the time at which the residue deuteration reaches 0.3) can be estimated 

(Figure 5.9). We showed the 𝑡0.3 (rather than a 𝑡0.5) as this choice of minimal time point 

would allow to properly sample ~2/3 of the uptake curve (rather than 1/2). For 

ubiquitin, approximately 60% of the residues reach their 𝑡0.3 within the time range 

sampled by our HDX-MS experiment (with 10 time points between 30 s and 8 h), and 

only one residue (namely Ala46) has a t0.3 lower than 30 s. For GB1-TACC3, the 

predictions show that approximately one third of the protein (the disordered region 

covering residues 63-91) has a 𝑡0.3 lower than 30 s, and therefore millisecond HDX is 

required to properly sample the behaviour of this specific protein region.  
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Figure 5.9. Optimum time point predictions.  

The deuterium uptake curve for each residue is calculated using the protection factors extracted by the 

protein structure using the Best-Vendruscolo model (Eq. 5.7) and Englander’s intrinsic exchange rate 

calculations. The 𝒕𝟎.𝟑, i.e. the time at which the uptake curve reaches 0.3, is shown as a function of the 

residue index for ubiquitin (top) and GB1-TACC3 (bottom). A Gaussian error of ±𝟎. 𝟓 units on the 

protection factors extracted by the protein structure is allowed. The time range sampled by the HDX-MS 

experiments performed in this paper is shown with red dashed lines.  
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5.4.10 Example of single residue resolution 

We show that the strategy provided to acquire protection factors from HDX-MS data is 

capable of highlighting residue-level differences such as jumps in the protection factors 

along the peptide sequence, in agreement with NMR. The deuterium uptake curve of a 

single proteolytic peptide may contain information about the dynamical properties of 

that specific amino acid sequence within the protein. In the example peptide taken from 

the ubiquitin dataset and shown in Figure 5.10A, the measured fractional uptake 

increases from 54% at 30 s to 64% at 8 h,, which suggests that ~ 50% of the residues 

exchange fast (before 30 s) and ~ 40% exchange slow (after 8 h). The hypothesis is 

compatible with the location of the peptide within the structure of ubiquitin (Figure 

5.10B), as it covers a loop (fast exchanging) and parts of two β-sheets (slow 

exchanging). A simultaneous fitting of all peptides, as implemented here using the 

structure driven approach, is able to capture sub-peptide features: residue level jumps 

in the protection factors can be identified, as for residues 13-15, or swapped, e.g. 

residues 10 and 11 (Figure 5.10C).  

 

Figure 5.10. Example of sub-peptide resolution intrinsically contained in HDX-MS data.  

(A) A sample peptide, covering residues 4-15 of ubiquitin, has a fractional uptake of 0.54 after 30 s, which 

increases to 0.64 after 8 h, suggesting that there is a subset of fast-exchanging residues and a subset that 

is slow-exchanging. The sequence of the peptide is shown, with HDX-NMR fast-exchanging residues 

highlighted in blue, slow-exchanging residues in red, medium-exchanging residues highlighted in black. 

(B) Structurally, the peptide (orange) covers a loop (fast-exchanging) and two sheets (slow-exchanging). 
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(C) Protection factors for residues 4-15 extracted from HDX-MS data using a structure driven initial guess 

(black) are compared with protection factors extracted by NMR (red).  

5.5 Discussion 

We have studied the HDX kinetics of two related proteins, well-structured ubiquitin and 

GB1-TACC3 with a disordered sequence, under identical experimental conditions (pH 

7.0 and temperature 4°C) and cross-compared the results obtained from peptide-level 

MS data with residue-level NMR data. We performed a protection factor analysis that 

we had previously published (Skinner et al. 2019; Stofella et al. 2022) to robustly show 

that single residue information can be inferred from peptide-level HDX-MS data. The 

protection factors obtained from HDX-MS data were found to be equivalent to (i.e. with 

a strong correlation with) those derived from NMR experiments (which we consider to 

be the “true” reference). Obtaining single residue information from peptide level data 

is inherently an underdetermined problem, and our method provides the alternative 

ambiguous solutions that align with experimental data. We showed that the 

introduction of an informal initial guess into the minimization algorithm can reduce this 

ambiguity, and that the accuracy and precision of the predictions are influenced by the 

quality of the dataset, which is mainly defined by its redundancy and its capacity to 

effectively sample the uptake curves of peptides – a property we refer to as “adaptive 

sampling”.  

The problem of extracting protection factors from HDX-MS data translates into finding 

the minima of the cost function in Eq. 5.5. The redundancy provided by the HDX-MS 

experiments is sufficiently high to extract a unique pattern of protection factors, 

reporting a strong correlation (𝜌 > 0.75) when compared to NMR data, independently 

of the starting point of the minimization procedure. Indeed, we tested four different 

initial guesses (random, structure driven, unstructured and data-driven, see section 

5.3.6).  For ubiquitin, we found a correlation coefficient 𝜌 = 0.78 for the random search, 

the unstructured initial guess and the data-driven initial guess, and 𝜌 = 0.82 for the 

structurally informed initial guess. For GB1-TACC3, 𝜌 = 0.88 for the random search, 
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𝜌 = 0.83 for the structurally informed guess, 𝜌 = 0.76 for the unstructured initial 

guess, and 𝜌 = 0.81 for the data-driven initial guess. The strong agreement and its 

independence on the initial guess are due to the high redundancies of the HDX-MS 

datasets (Figure 5.3): the more overlapping peptides are available, the more the cost 

function landscape assumes a single funnel shape (Figure 5.1A and Figure 5.6). 

With lower redundancies, the different initial guesses are not equivalent. We checked 

how gradually removing peptides from the coverage maps of the two proteins 

influenced the outcomes of these four strategies. The results (Figure 5.7 and 

Supplementary Figure 5.10) showed that the structurally driven initial guess and the 

random search strategies provided more robust predictions than the other two 

approaches. The fewer peptides are available, the more rugged the cost function 

landscape becomes (Figure 5.1B). The presence of multiple minima might force a 

specific initial guess to converge to a local minimum which does not correspond to the 

true NMR reference. The random search and the structure driven initial guess provide 

better agreement with NMR data because the former is able to widely sample the cost 

function landscape, while the latter samples a physically meaningful local minimum. 

Hence, we showed that it is possible to infer single-residue information from peptide-

level HDX-MS data. However, these predictions depend on the quality of the dataset 

available. But how can we define the quality of an HDX-MS dataset? In other words, 

when should the results of such analysis be considered robust? For the two proteins 

available, we quantified that a redundancy > 4 was required to achieve a strong 

correlation (𝜌 > 0.70) between MS and NMR data (Figure 5.7B). As the sequences of 

our two test proteins contained many common structural motifs including an extended 

disordered region, we are confident that we can generalize this statement. We 

recommend to limit this kind of analysis to datasets with redundancy > 4, or to those 

regions of the protein with redundancy > 4. This poses some limitations on the 

biological systems for which single residue resolution can be extracted from peptide 

level data. For example, high redundancy can routinely be achieved with relatively 
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small yet intriguing systems such as intrinsically disordered proteins (Keppel and Weis 

2015; Parson, Jenkins, and Burke 2022; Seetaloo and Phillips 2022; Stephens et al. 

2020; Zhu et al. 2015) or recombinant antigens (Calvaresi et al. 2024), and protection 

factors can be used to derive dynamic models from experiments. At the same time, 

many current and challenging HDX studies probe the exchange of large systems such as 

integral membrane proteins (Martens and Politis 2020) or ribosomes (Wales et al. 

2022), for which it is not easy to meet the threshold on redundancy. In these cases, 

single residue resolution is most likely to be either inconclusive or limited to well-

covered subregions of the protein. The adoption of novel, more efficient acid proteases 

for digestion and the integration of alternative fragmentation techniques into the 

experimental HDX-MS workflow are however likely to help with the challenge of 

achieving routine, high-resolution data in more complicated systems (Trabjerg et al. 

2018).   

It is well understood that longer time points are more valuable for characterisation of 

secondary structure elements in proteins such as α-helices and β-sheets, whereas short 

time points are essential for loops and disordered regions, which potentially even 

require msec timepoints (Seetaloo and Phillips 2022). Adaptive temporal sampling, i.e. 

the use of well-matched time points for the system under investigation, is a promising 

approach to high-quality data and more efficient experimental workflows. We used the 

opportunity here to check how the results are influenced by the number, spread and 

type (early/late) of time points available in the dataset (Figure 5.8). For the ubiquitin 

dataset, where most of the peptides’ uptake curves were properly sampled, we showed 

that 4 time points were sufficient to achieve a strong correlation with NMR data. Rather 

than the number of time points alone, the quality of the dataset is defined by the choice 

of the appropriate time points, and this is protein (structure) dependent: later time 

points were found to be more important for ubiquitin, while earlier time points for GB1-

TACC3 (Supplementary Figure 5.11) – in agreement with the more disordered nature 

of the latter. One advantage of the structurally informed approach is that the protection 

factors estimated using the Best-Vendruscolo model (Eq. 5.7) can be used to calculate 
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an expected minimal time of exchange (Figure 5.9). The labelling time points can be 

chosen in the light of these predictions: for example, the C-terminal disordered region 

of GB1-TACC3 has completely exchanged after 30 s (the earliest time point acquired 

here), and the exchange time predictions suggest that millisecond HDX-MS data are 

needed (Kish et al. 2023; Rob et al. 2012; Svejdal et al. 2019) to properly sample this 

area of the protein.  

Given the high coverage provided both in the ordered and disordered regions, the GB1-

TACC3 complex proves to be an ideal reference for the study of disordered areas with 

fast HDX-MS instruments. The exchange time predictions depend – obviously - on the 

intrinsic exchange rates, which are amongst others a function of pH and temperature. 

These two parameters can be optimized a priori, within the stable conformational range 

of the protein, to accelerate or decelerate the exchange kinetics of a specific region of 

interest so that it fits into the monitored time range.   

The data treatment performed here assumes that all residues of the protein follow the 

EX2 regime. The alternative scenario, known as EX1, is extremely rare and prone to 

misinterpretation (Fang et al. 2011; Hodge, Benhaim, and Lee 2020). However, it has 

been observed for intrinsically disordered proteins, and we cannot exclude that GB1-

TACC3 might follow such regime on the millisecond time scale. The observed exchange 

rate for a residue in the EX1 regime is the opening exchange rate 𝑘𝑜𝑝 (Eq. 5.1), hence 

the protection factor is not a well-defined quantity (Hamuro 2021b). An integration of 

EX1 and EX2 kinetic information is possible only when moving the focus from 

protection factors to even finer (i.e. at higher resolution) parameters: the opening, 

closing and intrinsic exchange rates. However, experimental techniques are far from 

achieving such resolution and also computational studies are limited on this account 

(Craig et al. 2011; Park et al. 2015; Persson and Halle 2015).     

The fact that single residue resolution can be achieved from HDX-MS experiments does 

not diminish the importance of HDX-NMR experiments for fundamental understanding 

of the HDX mechanism. For example, the Englander intrinsic exchange rate predictions 
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(Bai et al. 1993; Connelly et al. 1993; Molday et al. 1972; Nguyen, Mayne, Phillips, and 

Englander 2018), which predict the exchange rate of a residue in a completely unfolded 

structure at a given pH and temperature, do not account for the effect of the ionic 

strength on the exchange. Predicting the dependence of the intrinsic exchange rate on 

the salt type and concentration would help the deconvolution of chemical and 

structural effects in experiments probing conformational changes of the same protein 

in different environments (Toth et al. 2017). HDX-NMR, more than MS, is the ideal 

candidate to study such dependence. As a second example, the Best-Vendruscolo model 

(Eq. 5.7) is only one of several models that have been developed to connect the 

structure of a protein to its protection factors (Devaurs et al. 2022). These models have 

been optimized over datasets containing a relatively small number of proteins, seven 

in the case of the phenomenological approximation. The largest dataset available, 

Start2Fold, contains the protection factors of 38 proteins (Pancsa et al. 2016). The 

acquisition of a larger dataset containing the protection factors of hundreds of proteins 

would shed light on how other factors, such as electrostatics, affect the protection 

against exchange. Moreover, a larger dataset would enable the use of machine learning 

tools to predict protection factors from the structure of a protein. Even in this second 

case, HDX-NMR, more than MS, would be the ideal candidate.     

5.6 Conclusions 

We showed that it is possible to retrieve single residue information (protection factors) 

from peptide level HDX-MS data that has a strong correlation (𝜌 > 0.75) with NMR data 

studying the same protein under the same conditions.  

In the light of our results, we propose two strategies to perform a protection factor 

analysis for HDX-MS data. If a protein structure model is available, protection factors 

can be estimated and used as informed initial guess to fit experimental data; if the 

structure is not known, a random search can be performed.  
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The accuracy of these predictions depends on the quality of the HDX-MS dataset, and 

we recommend performing such analysis only for the parts of the protein where the 

redundancy is higher than 4. As for the number of time points, the importance rests in 

their ability to properly sample the uptake curves of peptides rather than in their 

number. If the structure of the protein is available, we showed how the choice of the 

labelling time points can be guided by the protection factors predicted by the 

phenomenological approximation.  

We hope that the dataset published here, which probes the exchange kinetics of two 

different proteins with both HDX-MS and HDX-NMR experiments under the same 

experimental conditions, will become a reference for all researchers aiming to publish 

methods to extract protection factors from HDX-MS data. The dataset is available in the 

PRIDE database 5.  

There are still several areas that need improvements to enhance the quantitative 

analysis of HDX-MS, such as the integration of molecular dynamics (MD) simulations 

into the workflow – more than isolated structures – or the incorporation of EX1 kinetics 

analysis, which has not been considered here. Additionally, there are barriers in the 

fundamental understanding of the phenomenon (HDX) that are hindering the 

development and widespread use of single-residue resolution methods, such as the 

limited understanding of back-exchange and the restricted access to the isotopic 

distribution of peptides.  

  

 
5 At the writing time of this Thesis (September 2024), the dataset is not available yet on 

PRIDE. 
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5.7 Supplementary Material 

Supplementary Figure 5.1. Protein sequences.  
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Supplementary Figure 5.2. HDX-NMR curves for ubiquitin.  

Intensities extracted from 2D HSQC spectra shown as a function of the labelling time for every assigned 

residue in the control spectrum of ubiquitin. Experimental data are fitted with a single exponential model 

(red line).   

5
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Supplementary Figure 5.3. Comparison of ubiquitin protection factors from HDX-NMR data with 

literature. 

A) Ubiquitin protection factors extracted from HDX-NMR data (orange line) at pH 7.0 and temperature 

4°C are compared with protection factors estimated by Bougault et al. (2004) at pH 6.2 and temperature 

25°C (green light). B) Correlation plot, showing a correlation coefficient 𝝆 = 𝟎. 𝟖𝟖.   
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Supplementary Figure 5.4. HDX-NMR curves for GB1-TACC3.  

Intensities extracted from 2D HSQC spectra shown as a function of the labelling time for every assigned 

residue in the control spectrum of ubiquitin. Experimental data are fitted with a single exponential model 

(red line). 
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Supplementary Figure 5.5. Protection factors extracted for GB1-TACC3 from HDX-NMR data. 

Protection factors extracted for GB1-TACC3 from HDX-NMR data and used as reference for the MS/NMR 

comparison. 
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Supplementary Figure 5.6. Fractional uptake for all peptides identified by the HDX-MS 

experiments for ubiquitin.  

The error associated to experimental measurements is the pooled standard deviation 𝛔 = 𝟎. 𝟎𝟐𝟓.  
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Supplementary Figure 5.7. Fractional uptake for all peptides identified by the HDX-MS 

experiments for GB1-TACC3.  

The error associated to experimental measurements is the pooled standard deviation 𝝈 = 𝟎. 𝟎𝟐𝟓. 
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Supplementary Figure 5.8. Protection factors extracted by HDX-MS data using the reference NMR 

protection factors as initial guess. 

Protection factors extracted by HDX-MS data (black) using the reference NMR protection factors as initial 

guess are compared with the NMR protection factors themselves (red). Results are shown for ubiquitin 

(top) and GB1-TACC3 (bottom). Correlation plots show a correlation coefficient 𝛒 = 𝟎. 𝟖𝟐 for ubiquitin 

and 𝛒 = 𝟎. 𝟗𝟎 for GB1-TACC3. 
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Supplementary Figure 5.9. Protection factors extracted from HDX-MS data using the structure 

driven initial guess. 

Comparison between protection factors estimated using the Best-Vendrucolo model in Eq. 5.7 (black) 

and the protection factors derived from NMR measurements (red) for ubiquitin (top) and GB1-TACC3 

(bottom). Correlation plots report a correlation coefficient 𝛒 = 𝟎. 𝟔𝟏 for ubiquitin and 𝛒 = 𝟎. 𝟕𝟓 for GB1-

TACC3. 
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Supplementary Figure 5.10. Dependence of the correlation coefficients between protection 

factors extracted by NMR and MS on the number of peptides available. 

Correlation coefficients between protection factors from NMR and protection factors extracted from 

HDX-MS data using four different approaches (structure driven initial guess, random search, data driven 

initial guess and unstructured initial guess) for different sub-datasets, containing 20, 40, 60, 80 and 100% 

of the peptides identified for ubiquitin and GB1-TACC3.  
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Supplementary Figure 5.11. Dependence of the protection factor analysis of HDX-MS data for GB1-

TACC3 as a function of the number of time points in the dataset.  

The structure driven initial guess was used, and the full dataset (100% peptides) was used. (A) The 

correlation coefficient is shown as a function of the number of dropped time points. The average value is 

calculated over all possible combinations dropping that specific number of time points. (B) The 

correlation coefficient is depicted as a function of the dropped time point. The value is averaged over all 

combinations containing the dropped time point.  
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Chapter 6. General Discussion 

6.1 From physics to molecular biology: an unexpected meeting 

I heard about hydrogen/deuterium exchange mass spectrometry for the first time in 

September 2018. At the time, I had just finished my BSc in Physics at the University of 

Trieste with a dissertation about Molecular Dynamics simulations, where I 

implemented a small old school (it was written in FORTRAN) software to perform 

simulations of constrained particles interacting through a Lennard-Jones potential. In 

the final section of the dissertation, I cited the work of a certain Prof Emanuele Paci, 

who was explaining Atomic Force Microscopy (AFM) experiments (Bustamante and 

Yan 2022; Hughes and Dougan 2016; Petrosyan, Narayan, and Woodside 2021) (the 

first biophysical technique I fell in love with) with Molecular Dynamics simulations 

(Best et al. 2003; Neelov et al. 2006; Paci and Karplus 2000). To my surprise, during the 

first week of my MSc in Applied Physics at the University of Bologna, a talk by that 

professor Paci was announced. During his lecture, he spoke about his work trying to 

predict the protection factors of a protein from a known structure (Radou et al. 2014; 

Vendruscolo et al. 2003), and his ideas on how to estimate protection factors from 

sparse and underdetermined mass spectrometry data.  

One year later, I was working with him at the University of Leeds. Thanks to an Erasmus 

scholarship, I was able to write my MSc dissertation. Emanuele gave me a paper that he 

had recently published (Skinner et al. 2019), which proposed a method, ExPfact, to 

estimate the alternative patterns of protection factors in agreement with experimental 

HDX-MS data. The paper mostly focused on synthetic data and showed that even with 

ideal error free data, it is not possible to estimate a unique set of protection factors from 

peptide-level HDX-MS data, but it is possible to reduce the number of possible solutions 

to a finite number of sets. My main objective was to master the code (written by Simon 

Skinner) and the method, and applying it to a real-world dataset probing glycogen 
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phosphorylase that had previously been acquired by Dr Jonathan Phillips in Exeter 

(Kish et al. 2019).  

In November 2019, Emanuele asked me to follow him in a meeting with a researcher 

who had asked his opinion on limited proteolysis (LiP) mass spectrometry data 

(Cappelletti et al. 2021; Fontana et al. 2004; Schopper et al. 2017). That was my first 

meeting with Prof Frank Sobott. Frank showed us some data acquired by Dr Rani 

Moons (at the time PhD student at the University of Antwerp), where they were 

monitoring the unspecific digestion of α-synuclein by proteinase K as a function of 

digestion time. The question that Rani and Frank had was how to identify statistically 

significant changes in the cleavage pattern of α-synuclein in its monomeric, oligomeric 

(with addition of EGCG or DA) or fibrillar state. Emanuele saw an interesting analogy 

with HDX-MS data, where the deuteration of the proteolytic peptides is replaced by 

their label-free quantification (LFQ) intensity (Cox et al. 2014; Tyanova, Temu, and Cox 

2016). My task was to implement a pair-wise comparison of conditions to provide a list 

of peptides with statistically significant changes. After selecting the subset of peptides 

present in both conditions under analysis, we compared the intensities with a Welch’s 

t-test. To reduce the false discovery rate, we used a hybrid significant testing approach 

implemented in the context of HDX-MS data (Hageman and Weis 2019). We visualized 

the results via volcano plots (Figure 6.1), where a significant threshold 𝛼 is applied on 

the p-value (𝛼 = 0.01) and on the difference in LFQ intensity (greater than the pooled 

standard deviation). Using this strategy, we were able to identify and localize within the 

sequence of α-synuclein statistically significant changes concerning the oligomeric 

states with respect to the monomeric state, while the cleavage pattern of the 

monomeric and fibrillar state was similar.  
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Figure 6.1. LiP-MS of α-synuclein.  

Volcano plots identifying significant peptides in a pair-wise comparison of four different experimental 

conditions: monomeric (ASMon), fibrillar (ASFib) and two oligomeric states with addition of EGCG 

(ASFig+EGCG) or DA (ASFib+DA). LFQ intensities of peptides identified in both conditions under analysis 

were compared with a Welch’s t-test. The difference in intensity is plotted against the p-value (returned 

by the t-test). A significance threshold was set at 𝜶 = 𝟎. 𝟎𝟏. To correct for false discovery rate, we set a 

significance threshold on the difference in intensity (horizontal axis) at the value of the pooled standard 

deviation. Data acquired by Dr Rani Moons and analysed by the author.  

I was blessed by the fact that Frank and Emanuele had an open shared PhD position to 

work on these same topics. I finished my MSc degree, applied for the position, and in 

October 2020 I moved to Leeds to officially start my PhD.  



233 

 

6.2 Validating ExPfact between lockdown and a connection with 

India 

When I started the PhD, I was already mastering the computational method 

implemented by Simon and Emanuele to estimate protection factors from HDX-MS data 

(Skinner et al. 2019). Starting from any HDX-MS dataset, we were able to extract 

alternative patterns of protection factors in agreement with experimental data. The 

first question that Emanuele asked me to answer was straightforward: are we 

extracting the true protection factors or meaningless random numbers? Knowing that 

NMR was able to detect the HDX of proteins at the level of individual residues, I started 

an extensive literature search: I was looking for a published dataset containing HDX 

data for the same protein with both NMR and MS experiments. In my mind, I already 

had the idea to acquire such a specific dataset myself, but the pandemic kept me from 

accessing any laboratory during the first year of the PhD.  

I was able to find only one dataset, acquired by Dr Roumita Moulick at the Tata 

Institute for Fundamental Research (Bengaluru, India), that was probing the HDX of the 

mouse prion protein using both experiments (Moulick et al. 2015). I contacted the 

authors, which were very keen on sharing their data. Chapter 3 is the result of this 

exchange. The HDX-MS dataset had a scarce overlap (or redundancy, see Figure 3.1), 

indeed the authors were originally using NMR experiments to retrieve information 

about areas of the protein not covered by mass spectrometry (and vice versa). 

Nonetheless, we applied ExPfact to estimate the different patterns of protection factors 

in agreement with HDX-MS data (Figure 3.4). We found that at least one of the solutions 

was in agreement with NMR data. Where multiple solutions were available, we needed 

to find a way to select the best solution. To do so, we decided to exploit the additional 

information contained in the shape of the isotopic envelope of the peptide (rather than 

the intensity-weighted average only). Simulating the time evolution of the isotopic 

envelope starting from the alternative sets of protection factors (with the protocol 

described in section 3.3.4), we found that some sets provided a better prediction of the 
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isotopic envelope than others (Figure 3.5). We therefore proposed this two-step 

strategy to estimate protection factors from HDX-MS data: i) calculate the alternative 

solutions in agreement with experimental data; ii) rank these alterative patterns based 

on their ability to predict the isotopic envelope of the peptide. Using this strategy, we 

found a promising (yet not outstanding) correlation coefficient 𝜌 = 0.71 between our 

protection factors estimated from HDX-MS data and NMR experiments (Figure 3.6).  

I make a jump ahead in time, but it is worth mentioning here that I managed to present 

the results of this project at the International HDX-MS conference (April 2022, London) 

through a flash oral presentation and a poster. I was so surprised by the interest elicited 

by our research that the idea of acquiring an ad-hoc high-quality dataset for testing our 

protection factor analysis method (as well as others) became stronger in my mind. I 

wanted to provide the HDX-MS community with a dataset probing one (or possibly 

more) proteins with both MS and NMR that could be used to test the computational 

methods aiming to extract single-residue information from peptide-level HDX-MS data 

against true NMR data. It was during the same conference that several conversations 

led me to believe that the only way to extract accurate protection factors from HDX-MS 

data was to combine this data type with an alternative technique, and I immediately 

thought about Molecular Dynamics simulations. Can we overcome the 

underdetermination of HDX-MS data by integrating the results of MD simulations?    

6.3 Into the laboratory 

Going back to my first academic year in Leeds (2020/2021), while waiting for Covid 

restrictions to decline and allow me to start some activity in the laboratory, I focused 

on extensively reviewing the theory and data analysis tools of HDX-MS experiments. 

That is when I started writing the comprehensive review of the state-of-the-art tools to 

analyse HDX-MS data now contained in Chapter 2. 

It was only in October 2021, more than one year into my PhD, that I was finally able to 

access the laboratory and perform some HDX-MS experiments. A premise is due here: 
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as a physicist, I had never used a pipette, performed a dilution or made a buffer before. 

This is why I decided to dedicate my first week on the instrument (Waters Synapt G2-

Si) to study the HDX of a model protein (myoglobin) by repeating the procedures for 

sample and buffer preparation. I acquired a dataset with a total of 18 replicates: 6 

technical replicates from 3 manipulation replicates (see section 2.4.3). Using 

traditional HDX-MS tools for data analysis, namely DynamX and Deuteros 2.0 (Lau et al. 

2020a), I expected to find no differences between the different manipulation replicates. 

Surprisingly, this was not the case: several false positives had been identified. At first, I 

strongly doubted my experimental skills, but I decided to speak with Dr Jeanine 

Houwing-Duistermaat (then at the Departments of Statistics, School of Mathematics, 

University of Leeds) about my problem, and she suggested to try and use linear mixed 

models to model the different sample procedures as random effects (Pinheiro et al. 

2022). Surprisingly for me, unsurprisingly for her, this solved the issue. Different types 

of replicates introduce different kinds of errors.  

I think that my first experimental week taught me something unexpected yet important. 

I wanted to learn basic laboratory skills; I turned out to learn new statistical tools. This 

project led to the birth of the statistical section in Chapter 2 (section 2.5.2): I wanted 

to learn more about the statistics needed to analyse HDX-MS, and in particular how the 

appropriate statistical test should be chosen depending on the experimental design 

implemented. This focus of my project on statistical aspects was also boosted by a 

collaboration with Dr Rene Frank, who asked Frank’s opinion about and help on the 

statistical meta-analysis of proteomics data (Andrews et al. 2022).   

6.4 Testing intrinsic exchange rates with millisecond HDX  

During the literature review that led to Chapter 2, I read several papers that were 

criticizing the intrinsic exchange predictions described in section 1.1.1 (Al-

Naqshabandi and Weis 2017; Del Mar et al. 2005; Keppel and Weis 2013; Mori et al. 

1997; Zhang et al. 2012). The ability of our method (ExPfact) to extract protection 

factors from HDX-MS data highly depends on the accuracy of these predictions, as they 
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are modelled as known constants. Therefore, we decided to test this hypothesis by 

studying the HDX of unstructured peptides. However, peptides exchange in the 

millisecond regime, and we did not have the capability to perform fast HDX experiments 

in the facility. Frank managed to organize a meeting with Dr Jonathan Phillips and Dr 

Neeleema Seetaloo at the University of Exeter, who kindly hosted me as a visitor in 

July 2022.  

This collaboration yielded the results discussed in Chapter 4. We decided to “create” a 

mixture of peptides with increasing sequence length (Supplementary Table 4.1) and 

we studied their HDX behaviour in absence of salt. We compared the experimental 

curves with the theoretical ones obtained using the intrinsic exchange rate calculations 

provided by the Englander group (section 1.1.1), obtaining the results shown by the 

red curve in Figure 4.1. The results were consistent with the criticisms raised by the 

above-mentioned papers: the experimental deuterium uptake curve exchanged 

(slightly) faster than the predicted one. In principle, this should be impossible, as the 

intrinsic exchange rate should represent the rate of a residue in a completely unfolded 

structure. I had to read the original paper by Bai et al. (1993) several times before 

realizing that they had originally measured the reference exchange rate constants 

(Table 4.1) for two unstructured model systems: a three-alanine (3-Ala) peptide and a 

poly-DL-alanine (PDLA) peptide. In our version of the Englander spreadsheet, we were 

only considering the reference values of PDLA. I tried to switch the reference from PDLA 

to 3-Ala and re-calculated the predicted uptake curves, finding the green curve in 

Figure 4.1. The predictions were better when using the 3-Ala reference instead of 

PDLA. Why? Did we have a rationale to suggest using 3-Ala instead of PDLA? 

The PDLA model used by Bai et al. (1993) had a degree of polymerization dp = 28, 

which means that the authors had studied an alanine-based peptide mixture with an 

average length of 28 residues. Emanuele mentioned some unpublished simulation 

studies that he had performed on poly-valine peptides where he could see that after a 

certain number of residues (around 50) the system tended to form β-sheets instead of 
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α-helices. We questioned whether the PDLA model with such numbers of residues 

would retain some residual structure, which would be responsible for the slower 

exchange. I asked Dr Alex St John to run some short simulations of poly-alanine peptides 

at increasing length and calculate their secondary structure propensity. These results, 

shown in Figure 4.2, validated our hypothesis: 8-12 alanine residues are enough to 

form α-helices. This results were supported by several experimental and simulation 

studies that we found in literature (Chakrabartty et al. 1994; Hinck 2022; Ingwall et al. 

1968; Kuczera et al. 2021; López-Llano et al. 2006; Rohl et al. 1999). We tried to order 

some PDLA peptides (with a length of approximately 28 residues), but all peptide 

synthesis companies replied saying the peptide was too hydrophobic to be produced. 

To us, this was a further red flag that PDLA was probably not the best choice as an 

unstructured reference for HDX experiments. To further test our hypothesis, we asked 

Prof David Weis if he could share with us some data he had recently published about 

the exchange of unstructured or disordered peptides (Al-Naqshabandi and Weis 2017). 

He kindly sent us the deuterium uptake curves of several peptides, which we compared 

with the theoretical predictions, using either 3-Ala or PDLA as reference. The results 

(Figure 4.3) showed that the predicted curves either matched or were faster than the 

experimental ones. This confirmed our hypothesis that 3-Ala is a better unstructured 

reference than PDLA because the latter retains some residual structure. However, it 

raised a further question: why was the predicted uptake faster than the experimental 

one? 

During the time spent in Exeter, we managed to perform some experiments probing the 

exchange of the peptide mixture under different salt concentrations (150, 500 and 1000 

mM NaCl and CsCl), and we noticed that the introduction of salt in the buffer slowed 

down the exchange (Figure 4.4). In their work, Al-Naqshabandi and Weis (2017) 

performed HDX-MS experiments in a buffer containing 100 mM NaCl. We suggested 

that this could be the answer: the experimental exchange in Figure 4.3 is slower than 

the predicted one because the presence of salt in the experimental buffer is slowing 

down the exchange. It was hard to quantify whether the discrepancy was completely 
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explained by this factor as the dependence of the intrinsic exchange rate on salt is not 

well studied and cannot be predicted. We show here the dependence of HDX kinetics of 

bradykinin (one of the peptides in the mixture) on the concentration of CsCl (Figure 

6.2). Our data suggest that high salt concentrations (≥ 150 𝑚𝑀) slow down the 

exchange (Figure 6.2A), reducing the observed exchange rate of the peptide by 

approximately 50% (Figure 6.2B). A differential analysis (using the buffer with no salt 

as reference state) showed that the differences in deuteration introduced by varying 

salt concentrations are minor yet statistically significant (Figure 6.2C-E), especially at 

shorter time points (i.e. before the plateau is reached). Similar observations were made 

for the other peptides. These findings motivated us to further study this salt 

dependence, especially in the range between 0 and 150 mM. We planned a second visit 

to the University of Exeter in February 2024, but technical issues with the instrument 

prevented us from acquiring a conclusive dataset.   
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Figure 6.2. The intrinsic exchange rate’s dependence on salt concentration for bradykinin in CsCl.  

A) Experimental data showing the fractional uptake of bradykinin in absence of salt (black) or in 

presence of 150 mM (yellow), 500 mM (orange) or 1 M (red) CsCl. Experimental data are fitted with a 

stretched exponential 𝟏 − 𝒆−(𝒌𝒐𝒃𝒔𝒕)
𝜷

. Error bars are not shown for visualization purposes. B) The fitted 
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𝒌𝒐𝒃𝒔 are shown as a function of concentration. The dashed line shows the results of a best fit with a 

parabolic curve. C) Volcano plot: the horizontal axis shows the difference between the fractional uptake 

of a data point – at a specific concentration (150 mM CsCl – circles; 500 mM CsCl – crosses; 1 M CsCl – 

squares) and a specific time (different colours show different times, darkest points are longest time 

points) – and the fractional uptake of the same time in absence of salt. The vertical axis shows the 

negative logarithm of the p-value returned by the linear model in Equation 4and adjusted with false 

discovery rate (FDR) correction. Differences are considered significant when |∆𝑫𝑭𝒓𝒂𝒄| > 𝟓% (vertical 

dashed lines) and p-value < 0.01 (horizontal dashed line). D-E) Projection of the volcano plot on the 

horizontal axis (D) or the vertical axis (E). Differences are shown as a function of time (horizontal axis) 

for different concentrations (150 mM – yellow; 500 mM – orange; 1 M – red) either in terms of ∆𝑫𝑭𝒓𝒂𝒄 

(D) or –log(p-value) (E). Thresholds (horizontal dashed lines) are analogous to (C). 

6.5 Building up experience with HDX-MS projects  

The third year of my PhD was characterized by several side projects that helped me 

building up experience with HDX-MS experiments (also thanks to the endless nights 

spent troubleshooting the instrument). In collaboration with Prof Bruce Turnbull, Dr 

James Ross and Dr Alex St John, we performed HDX-MS experiments on Cholera Toxin 

B (CTB) to check the binding site of different sugars (GM1os, Lewis-x and lactosyl azide) 

to the protein (Au et al. 2024; Ross et al. 2019). In collaboration with Dr Qian Wu and 

Tiago Moreira, we performed HDX-MS experiments on BRCT, the C terminus domain 

of BRCA1, a DNA-repair protein that serves as a marker of breast cancer susceptibility 

(Wu 2020). In collaboration with Dr Julian Streit and Prof John Christodoulou from 

UCL (London, UK), we attempted to study the HDX kinetics of ribosomal nascent chains 

(Burridge et al. 2021; Wales et al. 2022). In collaboration with Prof Andrew Quigley 

and Dr Peter Harrison at the Diamond Light Source Ltd (Oxford, UK), we performed 

HDX-MS experiments with the aim of mapping nanobody binding epitopes on integral 

membrane proteins (IMPs) (Martens and Politis 2020). 

During the latter project, I had some time to test the idea that I had in mind since the 

HDX-MS conference in London: combining HDX-MS data and MD simulations to achieve 

single residue resolution. The idea was relatively simple: perform a short fully atomistic 

MD simulation of the membrane protein (PglL, Figure 6.3A), use the Best-Vendruscolo 
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model (Eq. 1.11) to calculate its protection factors, and use that estimate as initial guess 

to fit experimental HDX-MS data using ExPfact. I managed to calculate an optimized set 

of protection factors for the protein alone and the protein bound to a nanobody (NB32). 

I then performed a residue-level differential analysis, simply subtracting the protection 

factors of the bound state to those of the unbound state (Figure 6.3C). Major 

differences (∆ln (P) > 2) were identified in the region between residues 260-300 

(corresponding to the nanobody binding site). Qualitatively, the results correlated well 

with the results provided by a Woods plot, obtained using Deuteros 2.0 (Figure 6.3B).  

 

Figure 6.3. Protection factor analysis for membrane protein PglL provides results consistent with 

traditional differential analysis.  

A) The structure of the protein PglL, studied with HDX-MS experiments and fully atomistic MD 

simulations. HDX-MS experiments were performed for the protein alone and the protein bound to a 

nanobody (NB32). B) Woods plot obtained by a traditional differential analysis of HDX-MS data, 

identifying the binding site within residues 260-300. C) Differential analysis performed by subtracting 

the protection factors obtained by ExPact for the bound/unbound state, providing similar results to the 
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traditional approach (at least qualitatively). The protein was purified by Dr Peter Harrison, data were 

acquired and analysed by the author.  

6.6 Our protection factor analysis for HDX-MS data 

The promising results provided by the protection factor analysis performed on PglL, 

which at an initial stage was only another test of our methodology in a real-world 

scenario, gave a boost to the idea that the underdetermination of HDX-MS data could 

be overcome by combining the experimental data with MD simulations. In September 

2023, after a discussion with Dr Anastasia Zhuravleva, we finally decided to acquire 

a dataset probing the HDX of two proteins with both MS and NMR. Our ultimate goal 

was to test our methodology, highlighting its strengths and weaknesses in deriving 

protection factors from HDX-MS data. The results of this collaboration are outlined in 

Chapter 5. We tested ExPfact in different scenarios, the most relevant being i) absence 

of prior information on the protein, and ii) availability of known protein structure.  

In the absence of information on the protein, we run ExPfact as already presented in 

Chapter 3. A minimization procedure is repeated multiple times, allowing to estimate 

the alternative patterns of protection factors in agreement with HDX-MS data. If the 

peptide overlap is high enough, the underdetermination is solved, the average 

protection factors can be reported as final estimates, providing a strong correlation 

with NMR data (Figure 5.4). Instead, if the overlap is not sufficient to overcome 

underdetermination and multiple solutions are identified, these can be ranked 

exploiting the information encoded in the isotopic envelopes of the peptides (as 

described in section 3.3.4). 

If a protein structure is known, we can initialize the minimization procedure using a 

physical guess provided by the Best-Vendruscolo model (Eq. 1.11). This allows to 

explore only a local minimum of the cost function landscape (Figure 5.1 and Figure 

5.6) and to avoid the finding of unphysical solutions (e.g. assigning high protection 

factors to residues in a loop). If the overlap is high enough, the estimated protection 
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factors show a strong correlation coefficient with NMR data, similar to the one provided 

by the random search (Figure 5.5). The real advantage of this structure driven 

approach with respect to the random search is that it is more robust upon peptide 

removal: the correlation with NMR data is less dependent on the number of peptides 

available in the HDX-MS dataset (Figure 5.7). In the world of AlphaFold (Jumper et al. 

2021), this approach can be achieved using a protein model rather than an 

experimental structure.  

These two approaches represent my answer to the research question of this Thesis: can 

we infer single-residue resolution (i.e. protection factors) from peptide-level HDX-MS 

data? The answer is: yes, with limitations. “Yes” because we have shown that from a 

high-quality HDX-MS dataset (high redundancy, high number of spread time points) we 

can estimate protection factors with a strong correlation with NMR. “With limitations” 

because the final estimates still depend on parameters that need further research to be 

addressed, as described in the following section 6.7.  

6.7 Open challenges in HDX-MS  

The ability of extracting accurate protection factors from HDX-MS data is limited by a 

number of factors that could be addressed by additional fundamental research on the 

phenomenon and the technique.  

6.7.1 Controlling redundancy 

The digestion pattern can be optimized, e.g. by using a cocktail of different proteases or 

optimizing the composition of the quench buffer, but there is no guarantee to reach 

100% coverage with a sufficiently high redundancy. The integration of fragmentation 

techniques that avoid H/D scrambling, such as ECD, ETD or UVPD, has been proven 

useful to increase the spatial resolution (hence the redundancy) of HDX-MS data, 

especially for studying some areas of interest of the protein system at high resolution 

(Rand 2013). However, this will not completely solve the problem of deriving single-

residue resolution information, especially when studying larger protein complexes, 
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because the proportion of cleavage sites decreases with the protein size (Rand et al. 

2014), which translates into limited spatial resolution. Building on the methods 

proposed in this Thesis, single-residue information obtained directly from 

fragmentation techniques can be easily integrated in the workflow. Protection factors 

extracted from ECD/ETD/UVPD data, even when available only for a limited number of 

residues, can serve as additional constraints in the minimization procedure, limiting 

the search to those patterns of protection factors that are consistent with both peptide-

level and fragment-level experimental data.   

6.7.2 Adaptive temporal sampling 

The number and spread of time points available depends on the materials available 

(protein, buffers etc.), on the experimental time available on the instrument (in other 

words, the budget available) as well as on the instrument itself, whether it is a 

traditional instrument or a millisecond setup. Ideally, one should be able to sample the 

whole deuterium uptake curve of every peptide for a quantitative analysis. More than 

how many time points are needed, the question is what time points are needed. In an 

attempt to answer this question, we have provided a tool to estimate the exchange time 

range for a protein (Figure 5.9), which could be used to guide the choice of the labelling 

time points.   

6.7.3 Validity of the intrinsic exchange rate predictions 

To extract protection factors from experimental HDX-MS data (as well as HDX-NMR 

data), it is important to deconvolve the effect that the buffer (pH, temperature, ionic 

strength, viscosity etc.) has on the exchange from that of the protein structure. In other 

words, the intrinsic exchange rates need to be known. We have shown that the 𝑘𝑖𝑛𝑡 

predictions are reliable in absence of salt. The more complex the buffer composition, 

the more these predictions need further testing. With HDX-MS applications tending to 

probe more and more complex systems – there are studies attempting to understand 
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the behaviour of proteins in-vivo (Lin et al. 2022) – the effect of the intrinsic exchange 

rate becomes more and more crucial even for differential studies.   

6.7.4 Availability of isotopic envelopes 

We have shown that the time evolution of the isotopic envelope contains more 

information than the intensity-weighted average, but this information is generally 

difficult to export from commercial software. Open-source software packages such as 

Mass Spec Studio (section 2.5.1) started to provide direct access to the raw data. 

6.7.5 Back-exchange 

Another important assumption of our method (ExPfact) is that a normalization of the 

intensity-weighted average with a fully deuterated sample is sufficient to correct for 

back-exchange. However, back-exchange occurs at the residue level, and the same 

residue in different proteolytic peptides may have different back-exchange levels (Sheff 

et al. 2013).  

We have attempted to model back-exchange using the dataset probing the millisecond 

HDX of unstructured peptides (Chapter 4). We simulated the time evolution of the 

isotopic envelope using a procedure similar to the one described in section 3.3.4: i) we 

calculated the fully protonated envelope (Figure 6.4A); ii) we predicted the shape of 

the isotopic envelope at experimental time 𝑡 (𝑡 = 500 𝑚𝑠 is shown in Figure 6.4B) 

under labelling buffer conditions (𝑝𝐷 = 7.0, 𝑇 = 20 °𝐶); iii) we adjusted the shape of 

the isotopic envelope for reverse-exchange occurring during labelling because 

experiments were performed in a 95% deuterated buffer (Figure 6.4C); iv) we 

calculated the shape of the isotopic envelope for an effective back-exchange time 

ranging from 0 to 50 minutes; v) we compared the predicted envelope with the 

experimental one using 𝑅2 (Figure 6.4E) and we recorded the effective back-exchange 

time with best agreement 𝜏 (Figure 6.4D).  
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We estimated the effective back-exchange time 𝜏 for the three peptides in our mixture 

from all experimental labelling timepoints (Figure 6.4F). Assuming that it is 

independent of labelling time, the average 𝜏 (red line in Figure 6.4F) was 7.98 ± 1.59 

minutes for angiotensin, 9.77 ± 0.46 minutes for bradykinin and 7.73 ± 0.84 minutes 

for ANP. The effective back-exchange time of the peptides should in principle be the 

sum of the trapping time (3 minutes) and their experimentally determined, peptide-

specific retention times (blue lines in Figure 6.4F) which are defined as the period after 

trapping up to MS detection. The average back-exchange observed is greater than 

expected in all cases, by between approximately 1.5 to 3 minutes. This discrepancy can 

be due to i) inaccuracy of the reference exchange rate constants for reverse exchange 

(the reference constants of 3-Ala for back-exchange are not available, see Table 4.1), 

ii) experimental uncertainty on the intensities of the experimental isotopic envelopes 

(here averaged across the replicates), iii) experimental uncertainty on the retention 

time (retention time tolerance was set to 0.5 minutes in DynamX) iv) additional dead 

times from quench/mixing and v) back-exchange occurring during ionization and in the 

gas-phase. Reducing these discrepancies would more accurately reproduce the time 

evolution of the isotopic envelope of an unstructured peptide from the knowledge of 

sequence and retention time of the peptide together with pH, temperature and ionic 

strength of the buffer. Nevertheless, we showed that within current limitations, it is in 

principle possible to produce a forward model for peptide level exchange that can then 

be used to isolate the ‘labelling phase’ kinetics of the protein ensemble from the 

‘analysis phase’ kinetics of protein and peptide ensembles.  
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Figure 6.4. Isotopic envelope calculations to estimate the effective back-exchange time.  

Insert: example of isotopic envelope calculations for angiotensin at time t = 500 ms. A) The fully 

protonated envelope (black) is calculated. B) The fully protonated envelope (black) evolves towards 

deuteration under labelling conditions (pD 7.0, T=20˚C) for a labelling time t (purple). C) The resulting 

isotopic envelope (purple) evolves towards protonation under the same labelling conditions because the 

experiment was performed in 95% deuterated solution. D) The resulting envelope evolves towards 

protonation under quench conditions (pH = 2.55, T = 0.5 ˚C) for an effective time 𝝉. The predicted isotopic 

envelope (black) is compared with the experimental one (red) E) The agreement between the predicted 

and measured isotopic envelope is evaluated with 𝑹𝟐 and recorded for 𝝉 ranging from 0 to 50 minutes. 

The dashed line represents 𝑹𝟐 = 𝟎. 𝟗𝟓. F) Effective back-exchange times for angiotensin, bradykinin and 

ANP estimated from all labelling times available. The black dot represents the 𝝉 maximizing the 𝑹𝟐; error 

bars represent the interval of 𝝉 in which 𝑹𝟐 > 𝟎. 𝟗𝟓. The average estimated 𝝉 (red dashed line) are 

compared with the expected back-exchange times (blue line) calculated as the sum of the trapping time 

(3 minutes) and the retention times of the peptides. 
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In several discussions with Dr Jonathan Phillips (University of Exeter) and Dr Jochem 

Smit (KU Leuven, Belgium), we agreed that systematic studies are needed to 

understand what percentage of forward- and back-exchange is occurring during the 

different stages of the experimental workflow (labelling, quench, digestion, gas-phase). 

He proposed experiments on unfolded peptides and model proteins where the back-

exchange levels are tested by varying the deuterium percentage in the quench buffer, 

or by replacing the water-based LC solutions with deuterium-based equivalents. 

6.7.6 Integration of EX1 information 

Protection factors are a well-defined quantity only in the EX2 regime. Despite being a 

rare phenomenon, some protein systems (especially intrinsically disordered proteins) 

show a multimodal behaviour, characteristic of EX1 (or mixed EXX) kinetics (section 

2.5.3). I had a minor encounter with these type of data in a collaboration with Dr Alice 

Colyer and Dr Anton Calabrese. They showed me the isotopic envelopes of a peptide 

which was following EX2 kinetics in one experimental condition and EXX kinetics in a 

second state. They asked me if I could extract some information out of these data, and I 

used the methods described in section 2.5.3 to quantify the fractions of population 

belonging to the two different modes of the isotopic envelope.  

The problem with this analysis is that it is an end in itself. We have discussed how the 

exchange rates that can be extracted from EX1 or EX2 kinetics have different meanings 

(section 1.1.2). Apart from stating that a specific peptide follows EX1 (or mixed EXX) 

kinetics, there is no straightforward way to connect this result with the level of 

protection of the rest of the protein. It might be evidence of the presence of a disordered 

region of the protein, but how does the protection of this region relate to that of 

adjacent regions? The information that we extract are different quantities: we cannot 

compare apples and oranges. The only option (that I personally see) is to integrate 

information from EX1 (or mixed EXX) kinetics with EX2 kinetics is by determining the 

closing, opening and intrinsic rates for each residue (Eq. 1.6). Although obtaining these 

rates is not feasible with HDX-MS data and is at least challenging with HDX-NMR 
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experiments, MD simulations may offer some valuable insights (Craig et al. 2011; Park 

et al. 2015; Persson and Halle 2015).  

6.7.7 Integration with alternative labelling techniques 

As mentioned in section 1.3, HDX is only one of several labelling techniques that can 

be coupled with mass spectrometry, with LiP (Fontana et al. 2004), FPOP (Johnson et 

al. 2019) and chemical cross-linking (Leitner et al. 2010) as main alternative 

approaches. Each of these methods offers insights on features such as protein dynamics, 

surface accessibility, flexibility and molecular dimension (Mitra 2021). Adopting a more 

integrated approach that combines multiple MS labelling methods could enable a 

deeper investigation of protein systems, yielding a more comprehensive understanding 

both locally and globally, and providing a more accurate structural characterization 

(Cornwell et al. 2018; Li et al. 2019; Oliva 2024; Zhang et al. 2019).    

6.7.8 Integration with modelling 

High resolution protein structures can be experimentally determined using X-ray 

christallography, cryogenic electron microscopy and nuclear magnetic resonance. 

However, these techniques provide only a snapshot of the protein, which instead is a 

dynamic entity. The power of HDX-MS experiments is to complement this structural 

information with dynamic information of the protein system (Hamuro 2024). 

We have discussed (section 1.1.3) and shown (Chapter 5) that information extracted 

from HDX-MS data can be linked to MD simulations (or structural information of the 

protein) via the Best-Vendruscolo model (or similar approaches). The potential of this 

integrative method has been highlighted by implementing ensemble-reweighting 

strategies at both peptide-level resolution (Jia et al. 2023) and single-residue resolution 

(Kihn et al. 2024). We believe that the method presented in this Thesis for estimating 

protection factors from peptide-level data (along with the alternative approaches 

described in section 2.5.4) will help advance HDX-MS from a differential qualitative 

experiment to an absolute quantitative one. Ultimately, this shift will enable HDX-MS to 
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address the key biological questions it was originally designed to answer. While we do 

not focus on the utility of differential HDX-MS experiments for localizing binding sites 

or detecting conformational changes, we hope to have convinced the reader that HDX-

MS has far greater potential than is commonly appreciated.  

6.8 HDX and artificial intelligence: a controversial opinion 

Throughout my PhD journey, I have often been asked: “Have you considered applying 

machine learning to your problem?”. My response has always been (perhaps 

stubbornly), “Yes, but it is not something I am particularly passionate about.”  

Let me explain. 

I fully recognize that the next frontier of HDX, like most of modern science, is entangled 

with machine learning and artificial intelligence. These technologies are undeniably 

powerful. Indeed, I have applied them in this very work – using a clustering algorithm 

in Chapter 3, AlphaFold in Chapter 5, and even turning to ChatGPT for proof-reading 

parts of this thesis. I acknowledge that AI is not just revolutionizing science; it is 

transforming every facet of life – sometimes for the better, as in healthcare, education 

and transportation, and at times with more concerning effects, as seen in privacy, 

warfare and disinformation. While the impact of these changes may be subject to 

debate, the magnitude of this transformation is undeniable. 

Yet, my fascination with science was never rooted in the ability to predict outcomes 

with perfect accuracy. What drew me in, and what continues to captivate me, is the 

pursuit of understanding why something happens. That is a question artificial 

intelligence cannot fully answer (yet?). I can confidently predict that in the coming 

years, we will see publications leveraging machine learning algorithms to extract 

protection factors from HDX-MS data, most likely achieving much stronger correlations 

with NMR data than the methods described here. In fact, with enough NMR data on 

hundreds or thousands of proteins, we could train a neural network to map the 
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relationship between protein structure and its protection against exchange, giving us 

near-perfect accuracy. 

But even then, the essential question will remain: why? Why does this particular 

conformation confer protection? What is the underlying mechanism? Theories like the 

Linderstrøm-Lang model or the Best-Vendruscolo phenomenological approximation, 

despite their limitations, attempt to provide some of these answers, offering a glimpse 

into the underlying reasons behind structural protection. From a scientific perspective, 

I would rather understand 50% of why something is happening than predict 100% of 

what will happen without any insight into the cause. For me, the joy of science lies in 

the journey toward understanding, not just in arriving at predictions.  
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