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Abstract

The increasing availability of diverse data sources has expanded the potential for modality trans-

lation tasks in artificial intelligence, particularly in converting images into natural language

descriptions. In the clinical domain, particularly in chest X-ray (CXR) analysis, advancing

Computer-Aided Detection (CAD) and Diagnosis (CADx) technologies hold significant promise

for improving patient outcomes and healthcare delivery. This research focuses on improving

medical image representations by leveraging clinically relevant information and tasks to estab-

lish a more robust pipeline for the automated generation of radiology reports. By aligning

with clinical pathways, we aim to generate accurate, contextually relevant reports that reflect

real-world medical practices. This study addresses the limitations of current single-modality

approaches, which often fail to capture complex relationships and complementary information

across different data modalities. The primary objectives of this research are threefold: to

develop efficient multi-input pre-processing mechanisms for diverse data types; to establish ro-

bust frameworks for modality fusion, combining visual, textual, and clinical data into unified

embeddings; and to enhance representation learning capabilities through joint optimisation in

multi-task learning. This thesis proposes novel multi-input multi-stream end-to-end networks

demonstrating significant improvements in text generation accuracy and contextual relevance.

It also includes comprehensive ablation studies, systematic analyses of different architectures,

and the introduction of multi-task learning strategies to optimise feature learning and reduce

hallucination in generated reports. The findings highlight the potential benefits of multi-modal

and multi-task learning in medical applications, suggesting broader implications for other fields

requiring integrated multi-modality. While the research faces challenges such as language vari-

ability, metric inadequacy, and computational demands, it presents a versatile framework with

potential cross-domain applicability and a roadmap for future developments in multi-modal and

cross-modal AI systems.
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Chapter 1

INTRODUCTION

1.1 Background

Advancements in technology have enabled the accumulation and storage of information in dif-

ferent formats, thereby expanding the foundational opportunities for the utilisation of the data

(Gao et al. 2020; Safitra et al. 2024). With the increasing availability of diverse data sources,

modality translation tasks in the field of artificial intelligence and deep learning have gained

significant attention. These tasks aim to convert information from one representation format to

another while bridging the gap between diverse data modalities, such as translating images into

natural language descriptions or generating audio from textual inputs. Image-to-text modality

translation task, in particular, integrates two important aspects of artificial intelligence, com-

puter vision and natural language processing, therefore, it requires a deeper understanding of

the image-text relationship in order to transform one form into another (Stefanini et al. 2022).

These tasks typically involve converting both modalities into compatible representations be-

fore framing the problem as a sequence-to-sequence task, treating modality translation as a

single-modality process. However, this approach fails to capture the complex relationships and

complementary information that exist across different data modalities. This oversight can lead

to incomplete or inaccurate translations due to the under-utilisation of crucial contextual in-

formation. Modality translation necessitates the development of techniques that can effectively

fuse heterogeneous data sources, leveraging their collaborative interactions to produce coherent

and accurate outputs.

1



Background Chapter 1

The significance of effectively managing this multi-modality is particularly evident within the

clinical domain. Computer-Aided Detection (CAD) and Diagnosis (CADx) systems are increas-

ingly recognised for their potential to enhance medical imaging analysis (Chan et al. 2020). The

use of medical imaging is widespread across various branches of health sciences, serving multiple

crucial purposes: diagnosing diseases, developing effective treatment plans, providing patient

care, and predicting disease outcomes.

Radiologists, as key players in this field, are responsible for interpreting these medical images

and creating comprehensive, full-text radiology reports based on their findings, integrating other

relevant clinical data and information. This process, while essential, can be time-consuming and

prone to human error, especially when dealing with large volumes of images.

Focusing on chest X-rays (CXR), in particular, are the most commonly used medical imaging

techniques due to their accessibility, cost-effectiveness, and ability to provide valuable initial

insights into a wide range of lung diseases (Rajpurkar et al. 2017). As such, CXRs are usually

the first step in evaluating patients for various pulmonary conditions, making them a critical

focus for improving diagnostic accuracy and efficiency. Therefore, advancing CAD and CADx

technologies for CXR interpretation holds significant promise for improving patient outcomes

and optimising healthcare delivery.

The reports generated from CXR examinations typically include the radiologists’ observations

and indicate normal and abnormal features in the images. By providing radiologists with a

baseline analysis to validate and amend as needed, automation can reduce repetitive work-

flows. This would allow radiologists to focus their expertise on higher-level clinical thinking

and improve efficiency in the clinical pathway. Moreover, these medical reports serve as cru-

cial documentation in both computational and clinical domains. They provide comprehensive

insights into patients’ conditions, diagnostic findings, and treatment plans (Montagnon et al.

2020). The detailed information in these reports offers many opportunities for various tasks,

connecting computational advances with real-world medical practice.

2



Chapter 1 Rationale

1.2 Rationale

The automated generation of accurate medical reports is often challenging due to the disparate

nature of medical data (Jing et al. 2017). This task is cross-modal and multi-modal in na-

ture, requiring the effective integration and processing of information from multiple sources.

Therefore, generating a narrative text from radiology images presents unique challenges that

highlight the need for a comprehensive multi-modal representation learning approach. (Moon

et al. 2022).

Exclusively training models on medical images and their imaging variations pose significant lim-

itations, as X-ray imaging inherently captures two-dimensional projections of three-dimensional

anatomical structures. Consequently, preserving the entirety of relevant contextual information

within these 2D representations becomes challenging, as vital spatial and contextual details may

be lost during the feature extraction process. Furthermore, in certain instances, while similari-

ties in medical imaging between male and female patients may be nearly identical in terms of

visual patterns, differences in patient demographics can have a noteworthy clinical impact on

the assessment and diagnosis (Sandstede et al. 2000).

Existing literature in automated radiology report generation often neglects to address this multi-

modal complexity. Many approaches treat the task as a natural modality translation problem,

focusing solely on translating medical images into textual reports or relying on limited supple-

mentary data sources. However, medical report generation is a more complex task than natural

modality translation tasks, like image captioning, as (1) most chest X-rays may appear similar

at first glance, but subtle differences can lead to divergent generated reports and (2) generating

coherent and structured paragraphs from medical images requires capturing higher-level seman-

tics and context beyond short image captions. Therefore, such approaches cannot capture the

contextual information that radiologists and clinicians leverage during the report generation

process.

In light of these considerations, the following section outlines the aims and objectives of this

research, focusing on developing techniques to overcome these limitations and improve the

quality of automated radiology report generation.
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1.3 Aims and objectives

The general purpose of this research is to improve image representations by leveraging clinically

relevant information and tasks to establish a more robust pipeline for the automated generation

of radiology reports. By aligning with clinical pathways, we aim to generate accurate, contex-

tually relevant reports that reflect real-world medical practices. Specifically, the objectives of

this research are threefold. First, we aim to develop efficient multi-input pre-processing mecha-

nisms, focusing on creating techniques to effectively ingest and initially process multiple inputs.

This involves designing pre-processing pipelines and input-specific encoders that prepare diverse

data types for further processing in a downstream task. Second, we aim to establish a robust

framework for modality fusion, emphasising the design of fusion methods that combine the

pre-processed inputs from various modalities, including patient demographics and clinical in-

formation. The goal is to produce a unified embedding that optimally represents the integrated

features from all data sources, enhancing the joint processing of diverse data for comprehensive

report generation. Third, we intend to enhance representation learning capabilities by utilising

joint optimisation techniques in multi-task learning to improve the model’s ability to capture

complex relationships between different modalities, leading to better performance in generating

detailed and accurate radiology reports.

These objectives are guided by the two central research questions:

1. How can robust frameworks be established to enhance the utilisation of multiple modali-

ties, and what methods can be employed to ensure seamless integration and joint process-

ing of diverse data?

2. How can the representation learning capabilities of neural network models be improved

through joint optimisation for relevant tasks, and how does this impact the generalisation

and performance of radiology report generation?

In this context, this thesis examines the various methodological approaches I have undertaken

along with the technological advancements in artificial intelligence and deep learning in the

field of radiology report development during this period. Additionally, it explores how these

developments have contributed to improving the accuracy, efficiency, and overall quality of

radiology reports, thereby enhancing clinical decision-making processes.
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1.4 Outline and Contributions

This section outlines the organisation of the chapters and summarises their key contributions.

The theoretical background chapter aims to establish the theoretical and contextual groundwork

for this research. It covers fundamental deep learning concepts like neural networks, encoder-

decoder models, and multi-task learning strategies. It delves into the specifics of medical imaging

and reporting, particularly chest X-ray reports and various medical data modalities. This

chapter also introduces the datasets and the evaluation metrics utilised in the experiments. Its

objective is to provide a comprehensive background with the necessary information to ensure

that the research problem, proposed methodologies, and evaluation approaches can be effectively

conveyed.

Chapter 3 presents key methodologies and advancements in natural image captioning, automatic

radiology reporting, and the application of multi-modal and multi-task learning in medical imag-

ing. It begins by discussing the standard encoder-decoder architecture used in image captioning,

highlighting the integration of computer vision and natural language processing techniques, in-

cluding attention mechanisms. It then explores the evolution of automatic radiology reporting,

from CNN-RNN frameworks to transformer-based architectures, emphasising advancements in

semantic feature integration. It critically analyses recent studies that leverage multi-modal data

and multi-task learning techniques, highlighting their potential to enhance performance in ra-

diology report generation tasks. Throughout this chapter, particular attention is given to how

these existing approaches inform and contrast with the novel multi-modal report generation

methods developed in this thesis.

Chapter 4 proposes attention-based vision encoding and recurrent decoding that use structured

labels to improve the semantic alignment between visual and textual data while emphasising

the need for specialised solutions in the clinical domain. Key contributions include:

1. The development of a novel multi-input, multi-view end-to-end network enriched with

medical ontology terms to bridge the semantic gap between visual and textual represen-

tations.

2. An extensive ablation study uncovers the impact of various model configurations, offering

insights for more accurate clinical text generation.
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Chapter 5 presents a novel multi-modal, data-driven learning framework that integrates comple-

mentary information from diverse data modalities to generate comprehensive and input-specific

radiology reports. It also addresses the limitations observed in the ontology-augmented ap-

proaches by introducing an integrative fusing approach. Key innovations include:

1. A multi-stream encoding pipeline that processes visual, textual, and scalar clinical data

through tailored featurisation modules to derive modality-specific embeddings.

2. A cross-modal attention fusion mechanism that effectively combines the heterogeneous

modality embeddings into a unified, capturing complementary perspectives. This general

multi-modal architecture is extensible beyond radiology to jointly encode and generate

from arbitrary combinations of data modalities.

3. Systematic ablation analysis quantifying the performance contributions of individual modal-

ities and modality groups, demonstrating synergistic effects of multi-modal fusion.

Chapter 6 proposes a novel unified framework for report generation, ordinal and multi-label

classification tasks by leveraging multi-modal data and multi-task learning (MTL) strategies.

The proposed approach aims to improve representation learning capabilities through concurrent

training of the relevant tasks while evaluating the impact of different training strategies. Key

innovations include:

1. Two architectural designs, Cross-Modal Multi-task Learning (CM-MTL) and Balanced-

Attentive Multi-task Learning (BA-MTL), trained using single and multi-task learning

strategies. CM-MTL prioritises the report generation task, while BA-MTL employs a

balanced approach to weight each task to improve the feature learning for all tasks.

2. Demonstration of how multi-task learning enhances image representation for report gen-

eration by jointly optimising related tasks and assessing the impact of diverse training

and weighting configurations on generated reports.

Lastly, Chapter 7 presents a comprehensive overview of the thesis, deriving a set of conclusions

from the research findings. It also examines the inherent limitations of the study and discusses

future directions.
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Chapter 2

THEORETICAL BACKGROUND

This chapter aims to establish a solid foundation for the research by providing relevant theo-

retical concepts, contextual information, and necessary background details. It functions as an

extensive introductory resource, providing the essential information needed to fully understand

the research problem, related works, the suggested techniques and methods, and the criteria

used for assessments - all of which will be explored in detail in the following chapters.

2.1 Deep Learning Concepts

2.1.1 Fundamentals of Neural Networks and Learning Process

Neural networks are a class of machine learning models that are inspired by the structure of

the brain’s neurons. They have been widely adopted and have achieved great success in various

domains, including computer vision, natural language processing, and medical imaging analysis.

y...

w0

x1

xD

y := f(z)

z = w1x1 + w2x2 + . . . + wnxn

y := f(z)

Figure 2.1: Single processing unit
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In this model, the basic building block is called a node. A neural network is composed of layers,

including an input layer, one or hidden layers and an output layer. These layers consist of

interconnected nodes. Each node, in the network, receives inputs (x1, x2, .., xn), from the

preceding layer and assigns them weights (w1, w2, .., wn). It then calculates the sum and

applies an activation function to produce an output (y).

The activation functions are used to introduce non-linearity into the network, allowing it to

model complex relationships. Sigmoid Function, Softmax Function and Rectified Linear Unit

are essential components in neural networks, each serving distinct purposes based on the nature

of the tasks they are applied to.

Sigmoid Function:

σ(z) =
1

1 + e−z
(2.1)

The sigmoid activation function is particularly advantageous in classification tasks due to its

ability to map input values to an output range between 0 and 1. This characteristic makes

it suitable for tasks where probabilities or binary classifications are needed. By compressing

the output to a bounded range, the sigmoid function ensures that each neuron’s output is

interpretable as a probability, which is essential in scenarios requiring clear decision boundaries.

Softmax Function:

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K (2.2)

The softmax activation function is used in tasks that require the prediction of multiple mutually

exclusive classes, such as in attention mechanisms and sequence decoders. Softmax transforms

the input values into a probability distribution over multiple classes, ensuring that the sum of

the output probabilities equals one. This feature is particularly useful for generating sequences

of words or selecting the most probable class in a classification task. By calculating probability

scores, the softmax function allows the network to make decisions based on the highest proba-

bility, facilitating accurate and coherent predictions in complex tasks such as natural language

processing.
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Rectified Linear Unit:

ReLU(z) = max(0, z) (2.3)

The ReLU (Rectified Linear Unit) activation function is widely used due to its simplicity and

effectiveness in mitigating the vanishing gradient problem. ReLU outputs zero for negative

input values and the input value itself for positive inputs, which introduces sparsity and helps

in efficient learning. By allowing gradients to flow more directly through the network, ReLU

facilitates faster convergence during training. It is particularly useful in the hidden layers

of neural networks, where it enables the network to model complex data patterns effectively.

Applying ReLU after normalisation layers ensures that the activations are well-scaled, further

enhancing the training process and overall network performance.

In summary, the sigmoid function is utilised for its probabilistic interpretation in binary and

multi-label classifications, the softmax function for generating probability distributions over

multiple classes, and the ReLU function for its simplicity and efficiency in promoting faster and

more effective learning in neural networks.

The network is then trained on many samples to learn patterns. The learning objective is defined

using a loss function that quantifies the difference between actual and expected outputs. By

minimising this loss value across training iterations, the network parameters are updated to

make progressively better predictions. The most common method used to minimise the loss is

back-propagation combined with gradient-based optimisation techniques like gradient descent.

This is used to adjust the weights between nodes by calculating the error between the predicted

and expected outputs. This error value is then propagated backwards to determine gradients,

adjust the weights and update parameters in the direction that reduces loss.

y
(l)
i

y
(l+1)
1

...

y
(l+1)

m(l+1)

δ
(l+1)
1

δ
(l+1)

m(l+1)

Figure 2.2: The flow of information and the error update process during the training of a neural
network

.
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In Figure 2.2, the notation y
(l)
i represents the output of a neuron in layer l (the current layer),

where the subscript i denotes the specific neuron. Similarly, y
(l+1)
1 , . . . , y

(l+1)

m(l+1) denote the out-

puts of neurons in layer l + 1 (the next layer), with subscripts indicating individual neurons.

The terms δ
(l+1)
1 , . . . , δ

(l+1)

m(l+1) represent the error terms associated with neurons in layer l + 1

during backpropagation. The arrows illustrate connections between neurons, with red arrows

indicating the backpropagation of errors from layer l + 1 to layer l.

In addition to loss functions and weight optimisation, neural networks have various hyperparam-

eters that can be tuned to improve performance, such as the learning rate for gradient descent,

number of hidden layers, number of nodes per layer, type of activation functions between nodes,

and regularization parameters. Finding the right combination of hyperparameters requires ex-

perimenting with different values, tracking evaluation metrics, and tweaking the parameters

accordingly.

2.1.2 Advanced Neural Network Strategies

Convolutional Feature Extraction

Convolutional Neural Network (ConvNet or CNN) is a type of artificial neural network that

was introduced by Yann LeCun in 1998 for a handwritten document recognition task (LeCun

et al. 1998). It was originally designed to process two-dimensional image data; however, its

success has also been demonstrated for image encoding of three-dimensional data. CNNs have

seen widespread application in machine vision tasks such as image classification, recognition,

processing, and captioning.

A traditional CNN architecture consists of two major parts: feature extraction and connection.

In a simple ConvNet, the feature extraction part has a convolutional layer and a pooling layer

(Figure 2.3). The convolutional layer performs convolution operations between a set of inde-

pendent kernels and an array of input by sliding kernels over the image. This operation ensures

that the spatial relationship between pixels is maintained. The output of this layer is called

the “Feature Map”, “Activation Map” or “Convolved Feature”. The pooling layer subsamples

(or downsamples) the activation maps in order to reduce their dimensions while preserving

important information. The pooling layer also helps to reduce computational complexity and

control any overfitting of the network. Different types of pooling (Max, Average and Sum) can

be selected based on model design. In the connection, a fully connected layer, which is basi-
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Figure 2.3: Convolutional Neural Network with one hidden layer

cally a Multi-Layer Perceptron with an activation function, uses extracted high-level features

to conduct a given task. The output can be the desired result and/or an input for a subsequent

network.

In general, most CNN architectures use several feature extraction parts followed by fully con-

nected layers to generate output. The first layers of the network represent the low-level features

of an image that can be easily generalised for similar tasks. On the other hand, the final layers

include high-level features that are more particular to the application of the model. Parameters

such as the number of convolutional and pooling layers, the number of neurons, kernel shape

and number, and the type of activation function are fine-tuned by the researcher according to

the problem definition and network design.

Recurrent Sequence Generation

To effectively process sequential and contextual data, it is important to keep previously learned

information and consider it when generating the following output because the order in which

the information is presented is as significant as the meaning it conveys. On the other hand,

in a feed-forward neural network, data only flows in a single direction, from input to output,

therefore it is only capable of processing current data and does not have a “memory”, as such,

to store such information.

The Recurrent Neural Network (RNN) is an effective algorithm for addressing this problem

since it has internal memory. The loop in RNN models ensures that the output of the preceding

timeframe is fed into the subsequent one. In this context, existing information can be transferred

and used in subsequent steps. Although internal memory allows the network to connect and
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A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Figure 2.4: An unrolled Recurrent Neural Network with input units (x0, x1, . . . , xt), hidden
units (h0, h1, . . . , ht), and a recurrent unit (A).

utilise past information, vanilla RNN still suffers from the vanishing and exploding gradient

problem and short-term memory dependencies. Two types of RNN, Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU), have been developed to overcome these drawbacks.

In contrast to traditional RNNs, LSTM units have a cell state (aka “second state vector” or

Figure 2.5: An illustration of LSTM and GRU units (Phi 2018), including the cell state, hidden
state, input gate, forget gate, input gate, output gate, and associated operations.

“long-term memory—” or “memory cell”) that allows the network to retain information in

memory for a long time. Furthermore, the cell state is regulated by Input, Output, and Forget

gates, which determine what information should be passed through the network, updated, or

forgotten. GRU has also a similar structure to LSTM but only has Reset and Update gates to

control information flow (Figure 2.5).
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Bidirectional Recurrent Neural Networks (RNNs) enhance traditional RNN architectures by

processing data in both forward and backward directions. This bidirectional approach allows

the network to capture dependencies and context from both past and future states simulta-

neously, which is particularly advantageous in tasks requiring a comprehensive understanding

of sequential data. In contrast to traditional RNNs, which process data sequentially from one

direction, bidirectional RNNs, such as bidirectional Gated Recurrent Units (biGRUs), miti-

gate the limitations of unidirectional models by leveraging information from both ends of the

sequence.

In the domain of multi-modal learning, where accurate integration of data from multiple sources,

biGRUs offer distinct advantages. By leveraging bidirectional processing, biGRUs can effectively

align textual descriptions with visual features, ensuring that the generated reports are not only

accurate but also contextually relevant. Moreover, biGRUs address computational efficiency

concerns compared to their LSTM counterparts, making them well-suited for real-time applica-

tions in medical image analysis and report generation. Although the vanishing and exploding

gradient problem has been addressed by this approach to some extent, long-term dependency

continues to be a challenge.

Attention Mechanism

Attention is an effective and prominent strategy designed to improve the performance of the

deep neural network. It was originally proposed for another sequence-to-sequence task, neural

machine translation, however, it has been successfully fine-tuned in various image processing and

natural language processing studies. The main principle behind the algorithm is to dynamically

allocate different weights to different parts of the input sequence during each decoding step. In

other words, it ensures that the prediction of each time step is based on the associated part

rather than the entire input.

The attention mechanism introduces attention weights aij for each pair of input and output

positions (i, j). These weights are computed using a scoring function eij that measures the

relevance of the input at position i to the output at position j. The attention weight aij is

obtained by applying a softmax function to the scores:

aij =
eeij∑T
k=1 e

eik
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The context vector cj for each output position j is then computed as the weighted sum of the

encoder hidden states:

cj =
T∑
i=1

aijhi

where hi represents the hidden state of the encoder at position i.

The attention context vector cj is used in conjunction with the decoder hidden state to generate

the output yj :

yj = Decoder(cj , sj)

where sj is the decoder hidden state at position j.

The attention mechanism allows the model to focus on relevant parts of the input sequence

when generating each element of the output sequence, improving the model’s ability to capture

long-range dependencies and handle variable-length sequences effectively.

Transformer Architecture

The Transformer is a neural network architecture for sequence-to-sequence tasks, intended to

address long-term dependencies while achieving fast training. It uses an encoder-decoder struc-

ture with stacked self-attention and feed-forward layers. Let the input sequence have n tokens,

represented by vector embeddings x1, ..., xn ∈ Rd, where d = dmodel for the base model.

Figure 2.6: Overview of the full Transformer architecture
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The encoder has N identical layers. Each layer has two sub-layers; Multi-Headed Self-Attention

and Feed Forward Network. Input and Output Embeddings are learned embeddings that convert

input and output tokens to vectors of dimension dmodel. The same weight matrix is used for

the input embedding layer and the pre-softmax linear transformation in the output layer.

Multi-Headed Self-Attention allows every token to attend to every other token in the sequence.

This is done by first projecting the embeddings into a query (Q), key (K), and value (V ) vectors

using learned projections WQ, WK , W V ∈ Rd×dk :

Q = XWQ, K = XWK , V = XW V

Where X = [x1, ..., xn] and dk is the key dimension. Self-attention is then calculated using a

scaled dot product:

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V ∈ Rn×dv (2.4)

This is done for h parallel heads, whose outputs are concatenated to get the multi-headed

self-attention output Z ∈ Rn×dhv .

Feed Forward Network is a simple network with two linear transforms and ReLU activation

that operates on each token separately:

FFN(x) = max(0, xW1 + b1)W2 + b2 where W1 ∈ Rd×dff , W2 ∈ Rdff×d.

Each sub-layer in the encoder and decoder employs a residual connection followed by layer

normalisation. The output of each sub-layer is:

LayerNorm(x + Sublayer(x))

where Sublayer(x) is the function implemented by the sub-layer itself.

The decoder also has N identical layers. In addition to the sub-layers in each encoder layer, the

decoder inserts a multi-headed attention sub-layer between the self-attention and feedforward

sub-layers to attend to the output of the encoder: Multi-Headed Attention over Encoder.
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It takes the target token embeddings Y ∈ Rm×d as queries, and encoder output Z ∈ Rn×dv as

keys and values to focus on relevant parts of the input sequence:

Attention(Y,Z, Z) = softmax

(
Y K⊤
√
dk

)
Z

Where K = ZWK and the dimensions are as defined previously.

Since self-attention layers do not have recurrence or convolution, positional information needs

to be injected via encodings PE ∈ Rn×d. These can be constructed using sine and cosine

functions:

PE(pos, i) =


sin
(

pos
100002i/d

)
if i is even,

cos
(

pos
100002i/d

)
if i is odd.

(2.5)

Where pos is the position and i is the dimension. The computed positional embeddings P are

added to the token embeddings X before feeding to the encoder. By incorporating positional

information, the decoder can use the order of sequence tokens. Stacking N decoder layers allows

the modelling of complex relationships in output generation. By stacking such layers that jointly

attend to the full sequence, the Transformer can effectively model long-range dependencies.

In the original paper (Vaswani et al. 2017), the model uses the Adam optimiser with β1 = 0.9,

β2 = 0.98 and ϵ = 10−9. The learning rate varies over training according to:

lrate = d−0.5
model · min(step num−0.5, step num · warmup steps−1.5)

Dropout with a rate of 0.1 is applied to the output of each sub-layer before it is added to the

sub-layer input and normalized. Label smoothing with ϵls = 0.1 is also employed. The base

model has dmodel = 512, dff = 2048, 6 encoder and decoder layers, 8 attention heads, and 65M

parameters. A larger model with dmodel = 1024, dff = 4096, 6 encoder and decoder layers, 16

attention heads, and 213M parameters.
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Data Fusion Strategies

Data fusion refers to the integration of different data modalities that provide separate perspec-

tives on a problem to be addressed, and using multiple modalities has the potential to decrease

the number of errors compared to approaches that only use one type of data (Stahlschmidt et

al. 2022). Deep learning fusion strategies can be broadly classified into three categories: early

fusion, late/decision fusion, and hybrid/joint fusion.

In the process of early fusion, the original or transformed features are combined at the input

level before being fed into a single model that can handle all the information. There are various

methods of joining data, but early fusion commonly involves concatenation or pooling.

Figure 2.7: The figure illustrates fusion strategies using deep learning. The model architecture
varies for each strategy: early fusion (left), joint fusion (middle) and late fusion (right)(Huang
et al. 2020)

In late fusion, the input data is processed independently through separate networks. The out-

puts from these networks are then combined at a later stage to form a joint decision. Late fusion

strategies learn modality-specific features separately and then integrate them downstream in

the model (e.g. just before the prediction/output layer). Lastly, joint fusion involves combining

the features extracted from different modalities at different stages of the network architecture.
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2.1.3 Principles of Deep Encoder-Decoder for Image-to-Text Generation

Encoder-decoder architectures (as illustrated in Figure 2.8) are powerful for deep learning-based

solutions to image-to-text generation owing to their ability to divide the problem into separate

but interlinked subtasks. The encoder portion first extracts visual representations from input

images. Encoders leverage deep neural networks tailored to computer vision feature extraction,

whether convolutional or transformer-based.

Figure 2.8: A Deep Neural Encoder-Decoder Framework for Generating Text Descriptions from
Image Features

Meanwhile, the decoder generates textual sequences auto-regressively using its internal deep

network focused on natural language processing, predicting output tokens conditioned on the

encoder context. Attention mechanisms may optionally connect the two, allowing the decoder

to emphasise encoder features most useful when generating each next word.

Functionally, the segmented encoder-decoder pipeline permits individual optimisation of image

analysis and text synthesis stages. Encoders can integrate innovations in representation learning

and computer vision without needing to balance competing text generation constraints. De-

coders incorporate advances in sequence modelling, language coherence, and context handling

from raw encoder output.

Together, specialised deep encoder-decoder networks coordinate to translate encoded image

concepts into text descriptions accurately capturing visual scan characteristics. Critically, the

modularity of this approach allows for improving the encoder, decoder, and attention mecha-

nisms independently to strengthen overall system performance iteratively.
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2.1.4 Concepts of Image Classification

Image classification is a fundamental problem in computer vision that an algorithm needs to de-

termine the objects or scenes present in a given image and assign the image to its corresponding

class or classes. There are different types of classification tasks based on their desired outputs

or the complexity of the labels. The main types are binary classification (present/absent),

multi-class (one label from many), multi-label (belonging to multiple labels), ordinal(order-

based sorting) and hierarchical classification into nested categories. This section outlines the

specifics of two classification tasks, multi-label and ordinal classification, that are undertaken

in this study.

Multi-label Classification

Multi-label image classification is a problem where an algorithm needs to predict the labels that

represent objects, characteristics, or other elements found within an image. The task is to assign

the given image to multiple labels or categories at the same time. The primary objective of

multi-label classification is to train the network that can accurately predict all the relevant labels

for a given image. This task is more complex and challenging than single-label classification

because the model needs to learn to recognise and identify multiple objects, concepts, or scenes

within the same image.

In multi-label image classification, the goal is to learn a function f that maps an input image

x to a set of relevant labels Y ⊆ {1, 2, ..., L}, where L is the total number of possible labels.

The objective function to be optimised during training can be formulated as follows:

min
f

1

N

N∑
i=1

L(f(xi), Yi)

Here, N is the number of training examples, and L is a suitable loss function that measures the

discrepancy between the predicted labels f(xi) and the true labels Yi for each training example

(xi, Yi).

There are two common methods to solve multi-label classification; transforming the problem into

binary classification or a multi-class classification problem. In the binary classification problem

transformation method, each label is treated as a separate binary classification problem. This

method is useful when there is no correlation between the labels.
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On the other hand, the multi-class classification approach transforms the multi-label problem

into a single multi-class classification task, where each combination of labels represents a unique

class. If there are correlations between the labels or the order of the labels is important, this

method is more suitable. It is important to consider the dataset and the relationships between

the labels when choosing the most appropriate method.

A commonly used loss function for multi-label classification is the binary cross-entropy loss:

L(f(xi), Yi) = −
L∑

j=1

yij log σ(fj(xi)) + (1 − yij) log(1 − σ(fj(xi)))

In this equation, yij is a binary indicator that takes the value 1 if the j-th label is relevant for

the i-th example, and 0 otherwise. σ is the sigmoid function, and fj(xi) is the output of the

model for the j-th label and the i-th input example. The goal is to find the parameters of the

function f that minimise the overall loss across the entire training dataset.

Ordinal Classification

Ordinal image classification is the task of assigning the image or objects identified within the

image to predefined classes/labels that can be used to establish a superiority/preference rela-

tionship with each other. The primary goal of this task is to keep the order of the labels when

training the network and making the prediction.

It can be formulated as Y = {1, 2, . . . ,K} where the input space of images is X , ordinal label

space is Y, and K is the number of ordinal classes or labels. The goal is to learn a function

f : X → Y that maps an input image x ∈ X to an ordinal label y ∈ Y, while preserving the

order/rank of the labels.

The ordinal classification problem can be considered as a constrained optimisation problem,

where the objective is to minimise a loss function L(f(x), y) that takes into account the order

of the labels. The loss function needs to be chosen considering the problem formulation and

dataset characterisation. The objective is to find the function f that minimises the overall loss

while ensuring that the predicted ordinal scores respect the order of the true labels.
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2.1.5 Fundamentals of Deep Multi-Task Learning

Multi-task learning is a method in deep learning that aims to improve the performance of several

related tasks by jointly and simultaneously training a single model to perform multiple tasks. In

MTL, multiple tasks are trained in parallel by sharing features between tasks, which allows more

generalised representations. This contrasts with single-task learning, where separate models are

designed to perform individual specific tasks. MTL also helps reduce overfitting by improving

the regularisation and data efficiency.

Figure 2.9: An Overview Illustration of Multi-Task Framework

Multi-task learning differs from transfer learning, where a model trained on one task is repur-

posed for a second task. In MTL, both the weights and knowledge are transferred and shared

between tasks, whether to use a pre-trained model or not, to find the optimal set of parameters

that works well for all tasks.

The general MTL equation can be defined as:

min
θ

T∑
t=1

λtLt(X
t, Y t; θ)

Where: T is the number of tasks Xt and Y t are the input and output data for task t Lt is

the loss function for task t λt is the weight or importance of task t θ represents the shared

model parameters across tasks. The goal is to find the optimal parameters θ that minimise the

weighted sum of task-specific losses.

Broadly, there are three types of MTL architectures; Hard Parameter Sharing, Soft Parameter

Sharing and Task-Specific Layers. In hard parameter sharing, all tasks share the same set of

parameters θ, except for task-specific output layers W t. The shared representation is denoted

as ϕ(X; θ), and the output for task t is computed as f t(X; θ,W t) = W tϕ(X; θ). The hard

21



Deep Learning Concepts Chapter 2

parameter sharing function can be described as:

min
θ,W 1,...,WT

T∑
t=1

λtLt(f
t(Xt; θ,W t), Y t)

In soft parameter sharing, each task has its own set of parameters θt, but these parameters are

regularised to be similar to each other through a distance metric Ω(θt, θs) between tasks t and

s. The soft parameter sharing function becomes:

min
θ1,...,θT

T∑
t=1

λtLt(f t(Xt; θt), Y t) + γ
∑

t = 1T
T∑

s=t+1

Ω(θt, θs)

Where γ controls the strength of the parameter similarity regularisation.

Task-Specific Layers approach has shared layers ϕ(X; θs) across tasks, as well as task-specific

layers gt(h; θt), where h = ϕ(X; θs) is the shared representation. The objective function can be

calculated as:

min
θs,θ1,...,θT

T∑
t=1

λtLt(g
t(ϕ(Xt; θs); θt), Y

t)

In summary, hard parameter sharing enforces a single set of shared parameters across tasks,

soft parameter sharing encourages parameter similarity through regularisation, and task-specific

layers allow for both shared and task-specific representations.

Furthermore, in order to successfully generalise the representation across all tasks, choosing

appropriate loss functions is an important step in MTL networks. The overall network may

have a joint loss function that combines the losses from all tasks into a single objective while

the model learns to optimise all tasks simultaneously, balancing their contributions during

training. The joint loss function can be calculated as:

Ljoint =
∑

t = 1TλtLt(ft(X; θ), Yt)

Where: T is the number of tasks λt is the weight or importance of task t Lt is the loss function

for task t ft(X; θ) is the model’s output for task t given input X and shared parameters θ Yt

is the ground truth for task t. Another approach is to use task-specific loss where each task
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can have its own loss function decided based on its characteristics. It can be formulated as

Ltask specific =
∑

t = 1TLt(ft(X; θ), Yt)

Where the notations are the same as in the joint loss function, but without task weights λt.

Another way is to use the weighted loss approach by assigning different weights to each task’s

loss. It allows for fine-grained control over the model’s behaviour, prioritising certain tasks over

others based on their significance. The weighted loss function can be expressed as:

Lweighted =
∑

t = 1TwtLt(ft(X; θ), Yt)

Where: wt is the weight assigned to task t. Other notations are the same as in the previous

approaches.

Multi-task learning has been successfully applied to various vision and text-related tasks, demon-

strating its effectiveness in improving model performance and generalisation. In terms of net-

work design, the choice of architectural framework and loss function approaches depends on

the characteristics of the problem definition. Overall, multi-task learning provides a powerful

framework for training deep networks to simultaneously tackle multiple related tasks.

In the field of computer vision, multi-task learning has been applied to simultaneously tackle

multiple image understanding tasks that can jointly handle low, mid, and high-level vision

tasks. For instance, researchers have developed models that can perform boundary detection,

normal estimation, saliency detection, semantic segmentation, and object detection within a

single framework (Kokkinos 2017). Recent works have shown that models can jointly perform

high-level vision tasks, including instance segmentation, panoptic segmentation, surface normal

estimation, depth estimation, 2D keypoint detection and so on, leveraging the interrelated

nature of these tasks to improve overall performance and computational efficiency (Vandenhende

et al. 2021; Bhattacharjee et al. 2022).

The field of Natural Language Processing has seen significant advancements in multi-task learn-

ing, particularly with the rise of large language models. Models have been developed to simul-

taneously perform various language processing tasks such as part-of-speech tagging, chunking,

named entity recognition, and semantic role labelling. By sharing a common representation
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for related tasks, these multi-task models have shown improved performance compared to their

single-task counterparts. Recent research has focused on developing models that can perform

multiple NLP tasks such as sentiment analysis, named entity recognition, and question an-

swering simultaneously, while also being able to generalise to new, unseen tasks with minimal

fine-tuning (Wei et al. 2021).

Multi-task learning also made good progress at the intersection of vision and language tasks.

Visual Question Answering models have been designed to jointly learn visual attention and

question attention, similarly, in image captioning, multi-task approaches have been used to

simultaneously optimise for multiple caption quality metrics, resulting in more accurate and

diverse captions (J. Li, Selvaraju, et al. 2021; P. Wang et al. 2022). These recent advancements

highlight the potential of multi-task learning in vision-text tasks.

2.2 Understanding X-ray reports and Medical Data Modalities

2.2.1 Chest X-ray Reporting

A chest X-ray is a diagnostic imaging procedure that uses a focused beam of radiation to

generate detailed images of the chest’s internal structures. It is commonly to detect and assess

conditions such as pneumonia, emphysema, or Chronic Obstructive Pulmonary Disease(COPD).

X-ray reports typically follow a standardised structure to communicate the findings of an X-ray

test (Figure 2.10).

Figure 2.10: Examples of Chest X-Ray Images with Corresponding Radiologist-Generated Find-
ings (Sirshar et al. 2022)
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The examination results and notes of any irregularities (or other clinically relevant findings) are

described in these reports. Using a consistent format helps ensure all essential clinical details

are included, which can enhance the clarity, precision, and readability of the reports.

Given considerations of conciseness, this section exclusively focuses on the most common sections

observed within standardised chest X-ray reporting. These report elements are, in alignment

with those published in open-source and authorised datasets, making it easier to perform com-

putational analyses that are aligned. However, it’s worth mentioning that real-world clinical

environments may necessitate radiologists to provide specific information based on their profes-

sional judgment to effectively communicate nuanced diagnostic details to referring healthcare

providers.

Standardised X-ray reports are typically semi-structured and consist of multiple sections. Within

many available databases, a single report is often associated with multiple X-ray projections.

The ”Examination” section details the specific X-ray procedure performed, outlining the imag-

ing modality and protocols. The ”Indication” section provides context by explaining the clinical

reasons prompting the X-ray, such as suspected conditions. ”Technique” describes the techni-

cal aspects of the imaging process, including patient positioning and equipment details. The

”Comparison” section, when applicable, contrasts current findings with prior imaging studies

for temporal context. The ”Findings” section offers the radiologist’s observations, detailing any

abnormalities or important features. Lastly, the ”Impression” section summarises the overall

findings and provides a diagnostic conclusion.

This format of X-ray reports provides a structure for computational analysis. The labelled

sections and clinical terminology are used to supply the lexical and ontological framework for

training machine learning models. Computer-aided systems can extract radiological observa-

tions, diagnostic impressions, technical parameters, and patient indications as distinct data

representations. Encoding these standardised semantic segments enables reliable information

extraction as well as generating synthetic reports.

Having large datasets with consistent reporting formats helps in training machine learning mod-

els to automate radiology workflows. Therefore, explaining the common X-ray report structures

provides an important basis for researchers to develop automated systems that can interpret

medical images and generate reports. However, standardised structure alone does not fully

capture the complexities of radiological language. There remains substantial linguistic diversity
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in how observations and impressions are expressed between different practitioners.

2.2.2 Medical Data Modalities

In healthcare, deep learning methods often depend on analysing different types of data, each

providing unique insights, to understand/extract information and guide clinical decision-making.

These modalities, including textual data, imaging data, genomic data and so on, are in different

formats and structures, requiring specialised encoding strategies for meaningful interpretation

within deep learning models.

This section provides a concise overview of three categories of medical data used in this research:

imaging data, structured health records, and unstructured clinical notes and reports.

Imaging Data

Modalities like X-rays, CT scans, and MRIs offer invaluable visual information, but their large

size and inter-scanner variability necessitate specialised processing for meaningful analysis. Fo-

cusing on X-rays, are a form of electromagnetic radiation that can penetrate the body and

produce images of its internal structures. When X-rays are directed at the body, different tis-

sues absorb varying amounts of radiation. Bones, for instance, absorb more X-rays and appear

white on the resulting image, while softer tissues absorb fewer X-rays and appear in shades of

grey. This differential absorption creates a contrast that highlights the structures within the

body, allowing radiologists to diagnose conditions such as fractures, infections, and tumours.

Chest X-rays (CXR) can be categorised into various types based on the views and techniques

used. The most common types are the posteroanterior (PA) and lateral views. The PA view is

taken with the patient standing facing the X-ray film, while the X-ray machine is positioned be-

hind them. This view is considered the standard because it provides a clear image of the lungs,

heart, and chest wall. The lateral view is taken from the side and is often used in conjunction

with the PA view to provide a more comprehensive understanding of the chest’s anatomy. Other

specialised views include the anteroposterior (AP) view, typically used for bedridden patients,

and the decubitus view, which can help in identifying pleural effusions by showing fluid move-

ment when the patient is lying on their side.

Structured Health Records

Electronic Health Records (EHRs) are digital versions of patients’ paper charts and are com-

prehensive records of a patient’s medical history, maintained over time. These records include
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a wide range of data types that are critical for patient care, research, and health management.

They are continuously updated as patients interact with the healthcare system. The acquisition

process begins with patient registration, where basic demographic information is recorded. Dur-

ing clinical encounters, healthcare providers document medical histories, physical examinations,

diagnoses, treatment plans, and outcomes.

EHRs also include laboratory and imaging results, prescriptions, and any interventions per-

formed, mostly in a structured format. As patients receive care from multiple providers and

facilities, their records are aggregated into a unified record that reflects their complete history.

Structured data within EHRs include heart rate, respiratory rate, oxygen saturation, tempera-

ture, level of acuity, gender, ethnicity, diastolic blood pressure (DBP), systolic blood pressure

(SBP), and ICD titles, especially when coded as numeric or categorical values.

Unstructured Clinical Notes and Reports

Clinical notes and reports are essential components of patient records, providing detailed and

contextual information about patient care. Unlike structured data in EHRs, clinical notes are

typically unstructured, written in free text by healthcare providers. Clinical notes are generated

during various points of patient care, starting from the initial patient consultation to follow-

up visits and specialist referrals, including details from imaging reports (examination report)

and patients’ complaints (chief complaint). Physicians, nurses, and other healthcare providers

document their observations, assessments, and plans in these notes.

The unstructured nature of clinical notes captures the richness and complexity of patient care

but presents challenges for analysis due to variations in terminology, writing styles, and doc-

umentation practices. Advanced natural language processing techniques are often required to

extract meaningful information from these texts for use in deep learning models, however, their

unstructured nature, free text variations, and coding inconsistencies pose challenges for deep

learning models.

These different modalities are recorded in various ways, each presenting unique encoding chal-

lenges for analysis. For example, imaging data requires handling of size and pixel values, whereas

EHRs store information in a structured textual format suitable for manipulation with natural

language processing techniques. Clinical notes contain unstructured free text that captures

subtle details, however, lack consistency and structure. Appropriate encoding strategies need

to be developed and applied based on the type, format and structure of each modality.
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2.3 Datasets

2.3.1 Indiana University Chest X-ray Collection

The Indiana University (IU) Chest X-ray collection (Demner-Fushman et al. 2016) is a publicly

available dataset that contains 7,470 chest X-ray images (.png format) taken from frontal and

lateral views. It also includes 3,955 corresponding radiology reports (.XML format) that have

been anonymised. Each report provides findings, impressions, comparisons, and indications for

each patient case and multiple X-ray images can relate to a single report. Additionally, the

dataset has Medical Subject Heading (MeSH) annotations, each MeSH term consists of a pair:

a finding and its corresponding description.

To illustrate examples of the image data, Figure 2.11 shows a random sample of frontal and

lateral chest X-rays from the collection. Figure 2.12 then provides a full report for one patient

case with anonymised information marked as ‘XXXX’. More explanation on the content of the

report sections is available in Section 2.2.

Figure 2.11: Random chest radiographs of 25 different patients from the IU CXR collection.
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Figure 2.12: An example frontal and lateral chest X-ray imaging and corresponding report from
the IU chest X-ray collection.

2.3.2 Medical Information Mart for Intensive Care Database

The MIMIC (Medical Information Mart for Intensive Care) database is a large, freely available

database comprising de-identified health data associated with patients who stayed in care units

of the Beth Israel Deaconess Medical Center between 2001 and 2012. In the MIMIC database,

there are several datasets designed for various applications. The dataset used in this study was

created by using MIMIC-CXR (Johnson, Pollard, et al. 2019), MIMIC-IV (Johnson, Bulgarelli,

et al. 2023), and MIMIC-IV Emergency Department (MIMIC-IV-ED) datasets.

MIMIC-CXR (version 2.0) encompasses a vast collection of 377,110 CXR images captured from

multiple views, together with 227,835 de-identified radiology reports, of 63,473 patients. As

shown in Figure 2.13, each report contains ’examination’, ’indication’, ’technique’, ’compari-

son’, ’findings’, and ’impressions’. Meanwhile, MIMIC-IV (version 2.0) comprises de-identified

patient data, including characteristics like age, gender, ethnicity, and marital status, extracted

from individuals. Furthermore, MIMIC-IV-ED (version 2.2) is an extensive dataset of emer-

gency department (ED) admissions at the BIDMC between 2011 and 2019, which contains

detailed clinical information, including diagnosis, medication, triage, and vital signs.
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Figure 2.13: A sample X-ray report from the MIMIC-CXR database, comprising images cap-
tured from both the frontal and lateral perspectives of the patient.

2.4 Evaluation Metrics

2.4.1 Natural Language Generation Metrics

The quality of the automatically generated reports was evaluated using several metrics to com-

pare the generated text to the reference reports. The first set of metrics utilised was the BLEU

(Bilingual Evaluation Understudy) scores, which measure the N-gram precision between

the candidate and reference texts Papineni et al. 2002. Specifically, BLEU-1 to BLEU-4 scores

were calculated, which assess the precision for unigrams to 4-grams respectively. The BLEU

score is computed as:
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BLEU = BP × exp

(
N∑

n=1

wn log(precisionn)

)

where

BP =


1 if length of generated text > length of reference text

e
(1− length of reference text

length of generated text
)

otherwise

and

precisionn =
Number of n-grams in the generated text that match a reference

Total number of n-grams in the generated text

BP is a brevity penalty that penalises short candidates, precisionn is the modified n-gram

precision which averages the precision for all order n-grams up to length N, wn are positive

weights summing to 1 that allow flexible weighting of the different order n-grams, and N is the

maximum n-gram order. The BLEU scores measure the local word-level similarity between the

generated and reference texts, with higher scores indicating greater similarity using n-grams.

The second metric was the ROUGE L (Recall-Oriented Understudy for Gisting Evalu-

ation) score (C.-Y. Lin 2004), which calculates the longest common subsequence (LCS) between

the generated and reference summaries as:

ROUGE L =
LCS(generated, reference)

length(reference)

The ROUGE L score measures the recall by the ratio of LCS to the length of the reference

summary. It also implicitly measures precision since LCS can be viewed as a sequence of con-

secutive matches between the generated and reference. Thus, the ROUGE L score assesses the

quality of the generated summary by comparing the longest co-occurring in-sequence n-grams

to the reference summary. Higher ROUGE-L scores indicate better-quality text generation.

In our final approach, we additionally compute the METEOR score to facilitate a more com-

prehensive comparison with the existing literature, as it is frequently used in conjunction with

others. METEOR (Metric for Evaluation of Translation with Explicit ORdering)

score (Banerjee and Lavie 2005), which evaluates the quality of generated text by comparing

it to reference texts based on the harmonic mean of unigram precision and recall, with an
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additional alignment step. The METEOR score is calculated as:

METEOR =
10 · P ·R
R + 9 · P

· (1 − c

l
) (2.6)

where P is precision, R is recall, c is the number of chunks, and l is the length of the longest

common subsequence. The METEOR metric considers synonyms, stemming, and word order,

providing a more nuanced assessment of text similarity compared to simple n-gram overlap

metrics. Higher METEOR scores indicate better-quality text generation due to better alignment

with the reference text.

We further also evaluated semantic similarity between the generated report and ground truth

using BERTScore (T. Zhang et al. 2019) and Bio-ClinicalBERT Score (Equation 2.7).

BScore =
1

N

N∑
i=1

(
F1(yi, ŷi) + Suff(yi, ŷi) + Flu(yi, ŷi)

)
(2.7)

Where: N is the number of sentence pairs in the evaluated dataset yi is the ith reference sentence

ŷi is the ith generated sentence F1(yi, ŷi) is the F1 score between yi and ŷi using both BERT

and ClinicalBERT embeddings separately Suff(yi, ŷi) is the sufficiency score between yi and ŷi

Flu(yi, ŷi) is the fluency score between yi and ŷi

These metrics use contextual embeddings from BERT and Bio-ClinicalBERT models to provide

a more nuanced assessment of meaning compared to strict n-gram matching. The BERT-

based metrics were able to capture whether the generated reports conveyed clinically coherent

descriptions despite differing word usage compared to the reference. These automated evaluation

metrics quantified linguistic similarity at word level, sentence level, and semantic meaning levels.

Overall, BLEU scores and ROUGE-L, while commonly used, have limitations as they rely

on exact word matching and do not capture clinical meaning. A report using different but

medically equivalent terms would return a lower score. METEOR performs slightly better as

it considers synonyms and stemming, but still struggles with medical terminology. BERTScore

shows improved correlation due to its contextual embeddings, but isn’t specifically trained for

medical language. BioClinical BERTScore, on the other hand, addresses these limitations by

using models pre-trained on biomedical texts. It is more suitable for capturing domain-specific

semantic similarities and clinical accuracy in radiology reports.
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However, no single metric comprehensively captures all aspects of report quality - a combination

of metrics alongside expert human evaluation remains ideal.

2.4.2 Human Analysis

In addition to the automated metrics, we conducted a human evaluation to analyse the gener-

ated text results. We employed two approaches for this analysis. The first approach involved

comparing the generated text with the corresponding ground truth reports to identify differences

and similarities in grammar, sentence structure, word choice, and the correctness of detecting

medical abnormalities.

Furthermore, for a portion of the thesis, a board-certified radiologist was involved to provide

insights. The radiologist assessed both the generated text and ground truth in three criteria:

language fluency, content selection, and the accuracy of identifying abnormal findings.

2.4.3 Classification Metrics

For evaluating model performance on multi-label classification, several metrics were utilised

including Precision, Recall, F1 Score, Hamming Loss, and Exact Match Ratio.

Precision measures the accuracy of positive label predictions out of all predicted positive labels:

Precision =
TP

(TP + FP )

Whereas Recall calculates the percentage of true positive labels that were correctly predicted:

Recall =
TP

(TP + FN)

Here, TP , FP , and FN are the numbers of true positives, false positives, and false negatives

respectively. The F1 Score provides a balance between Precision and Recall through their

harmonic mean:

F1 = 2 · Precision ·Recall

(Precision + Recall)

33



Evaluation Metrics Chapter 2

Hamming Loss evaluates how many times on average, the model incorrectly predicts labels:

HammingLoss =
1

N

N∑
i=1

|yi∆ŷi|
|L|

Where yi is the true set of labels, ŷi is the predicted set of labels, L is the set of all labels, and

∆ is the symmetric difference between the true and predicted label sets.

Finally, Exact Match Ratio measures how often the model correctly predicts all labels for a

given sample:

ExactMatchRatio =
# samples with all labels correctly predicted

N

Ordinal Classification Accuracy, The Mean Absolute Error and Accuracy-Correlation Hybrid

Metric were used to evaluate model performance on ordinal classification.

Ordinal Classification Accuracy measures the accuracy by computing the percentage of correct

predictions:

OrdinalAccuracy =
1

N

N∑
i=1

1(yi = ŷi)

Where N is the total number of samples, yi is the true ordinal label, ŷi is the predicted ordinal

label for the ith sample, and 1(·) is an indicator function that returns 1 if its argument is true

(correct prediction).

The Mean Absolute Error (MAE) calculates the average magnitude of errors:

MAE =
1

N

N∑
i=1

|yi − ŷi|

Similarly, the Mean Squared Error (MSE) computes the average squared differences between

the true and predicted ordinal values:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

34



Chapter 2 Evaluation Metrics

Finally, the Accuracy-Correlation Hybrid Metric combines an accuracy measure with Spear-

man’s rank correlation coefficient:

ACH = 2 · OrdinalAccuracy · ρs
OrdinalAccuracy + ρs

Where ρs is the Spearman rank correlation between the true ordinals yi and predicted ordinals

ŷi. This metric assesses both accurate prediction and preserving the relative ordering of ordinal

categories.

Together these metrics evaluate model performance on ordinal classification from different as-

pects - accuracy of predictions, error magnitudes, and preserving ordinality relationships. The

metrics provide a comprehensive quantification of the model’s ability to predict ordered values.
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LITERATURE REVIEW

3.1 Foundations of Natural Image Captioning

Image Captioning, also known as Visual Captioning, is the task of automatically generating

a natural language description of a given image. It requires the recognition and detection of

objects located in the image, the identification of attributes, and the determination of their

relationships and interactions. Subsequently, it must generate coherent sentences based on the

features extracted. Since this task entails the incorporation of computer vision and natural lan-

guage processing, it has attracted tremendous attention in the artificial intelligence community.

In only a short period of time, lots of research has been proposed to fulfil this task (Vinyals

et al. 2015; Donahue et al. 2015; Karpathy and Fei-Fei 2015; Mao et al. 2015).

The most common deep learning architecture used by researchers follows a standard encoder-

decoder baseline that consists of two phases. Broadly, the encoder part receives an image and

sends it to the image feature extractor model which is usually pre-trained on large datasets for

classification and recognition tasks. The region-based visual features are extracted and these

high-level image representations are used as input by the text generation decoder to produce a

relevant caption. This framework allows to training of the entire network end-to-end, meaning

that the system can learn all parameters during training. The main differences between the

studies based on this framework are the type of neural network employed and different encoder-

decoder configurations (X. Chen and Lawrence Zitnick 2015).
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One of the prominent studies in image captioning (Vinyals et al. 2015) employs a similar max-

imised probabilistic framework with neural machine translation (NMT) but it makes use of CNN

for encoding while state-of-art NMT models employ RNN-encoder. They proposed an end-to-

end system that is composed of a vision CNN image embedder and an LSTM-based sentence

generator. Donahue et al. 2015 introduced a task-specific Long-term Recurrent Convolutional

Network (LRCN) model for the activity recognition and the generation of images and video de-

scriptions. For the image captioning task, they have used an integrated system consisting of a

single CNN model, based on the Caffe reference model (Jia et al. 2014) which has a very similar

architecture to AlexNet, and LSTM-based language model. Moreover, Karpathy and Fei-Fei

2015 have used a CNN-based visual model and multimodal RNN to propose a visual-semantic

alignment image captioning model that can compute the latent alignment between images and

captions. Mao et al. 2015 have also used a base CNN and RNN image captioning model for

a specific Novel Visual Concept learning from Sentences (NVCS) task. The model adopts a

cumulative concept learning strategy; it can transfer previously learned concepts and expand

the dictionary without start-to-end network training when a new concept is introduced to the

system.

3.2 Advancements in Image Captioning: Attention and Seman-

tic Features

Although RNN-based text generators have achieved noteworthy results, they cannot access all

previous hidden states from the encoder as the sequence gets longer. This is still challenging for

LSTM and GRU networks although they have a longer reference window and more capacity than

simple RNNs. Therefore, even though this powerful approach has yielded promising results, it

had the drawback of having a limited reference window and identifying only one part of the

image while generating the next word. Inspired by the neural machine translation (Bahdanau et

al. 2014), the attention mechanism has been employed by researchers to overcome this problem.

In principle, it can consider the entire sequence, therefore, the decoder can focus on the relevant

part of the image while generating the next word. Adoption of the attention mechanism has

resulted in significant success in many sequence-to-sequence models and has been effectively

included in visual captioning models (Xu et al. 2015; Z. Yang et al. 2016; Lu et al. 2017;

Anderson et al. 2018).
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Xu et al. 2015 presented an image caption generation model by the use of both stochastic and

deterministic attention mechanisms along with convolutional feature extraction and LSTM-

based sentence generation. Z. Yang et al. 2016 developed the Review Network that has an

additional reviewer component to attentive encoder-decoder frameworks. In each review step,

a thought vector is generated by using an attention mechanism and generated vectors are used

by the RNN-decoder. Furthermore, Lu et al. 2017 also improved the neural encoder-decoder

frameworks with adaptive attention by incorporating the sentinel gate and spatial attention into

the system. Anderson et al. 2018 combined both bottom-up and top-down attention mechanism

that allows more attention to the notable objects and regions rather than operating in the

equally-sized image regions.

Considering that image captioning is a multi-modal activity, researchers have introduced se-

mantic features to the network to better capture the relationship between these two modalities.

You et al. 2016 proposed a new attention-based approach by introducing the system of seman-

tic attention. They have used the GoogleNet CNN model (Szegedy, W. Liu, et al. 2015) for

extracting objects’ regions, etc. in addition to the visual representation of the images. The

semantic attention model allows to incorporation of the extracted representations and visual

concepts in the language model for producing the description of the given image. Gan et al. 2017

also considered using the semantic concepts and developed A Semantic Compositional Network

(SCN) that extracts tags from the image and is used in an LSTM-based language model.

3.3 Transformer Architecture

The recurrent-based text generation models have a well-known vanishing and exploding gradi-

ents problem which means that recent input sequence causes a bias as there is limited access

to the previous inputs and there is no direct access to all inputs. Leveraging recent advances

of transformers (Vaswani et al. 2017), which are self-attention-based neural networks, in the

natural language processing (NLP) area, state-of-the-art image captioning architectures have

tended to substitute their model components with the transformers (W. Liu et al. 2021).

The main advantages of the transformers over other architectures are that it does not use

recurrence and is entirely based on an attention mechanism. It takes and executes the input

sequence as a whole, allows more parallelisation, and learns the relationship between words in

the sequences by the use of multi-head attention mechanisms and positional embeddings. Since
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more context is included in the network, the transformer-based architectures can learn faster

and more effectively.

In the wake of this phenomenon, several variants of the transformers were developed for the

image caption generators. The original transformer architecture also inherits an image-text

embedding type framework which consists encoder and decoder. The most commonly adapted

transformer-based encoder-decoder architecture for image captioning has three main compo-

nents; visual feature extraction model, Transformer-based encoder and Transformer-based de-

coder. As in previous studies, pre-trained CNN models are also employed for high-level fea-

ture extraction. However, in this approach, the output of the visual model is used by the

Transformer-based encoder to map the visual features and to generate a sequence of image

representations. Then, the transformer-based decoder receives the encoder’s results to generate

a corresponding caption for the given image.

X. Zhu et al. 2018 presented the Captioning Transformer (CT) model that uses the ResNeXt

CNN model (Xie et al. 2017) as an encoder and Transformer as a decoder. W. Zhang et al. 2019

also used the Transformer model as a decoder along with the ResNet CNN model, additionally,

they have improved the network with a combination of spatial and adaptive attention. G. Li

et al. 2019 enhanced the vanilla Transformer architecture with Entangled Attention (ETA) and

Gated Bilateral Controller (GBC), their proposed model allows to processing of semantic and

visual concepts concurrently.

Moreover, Cornia et al. 2020 introduced a fully-attentive model called Meshed-Memory Trans-

former that consists of a Memory-Augmented Encoder, which has enriched with learnable the

keys and values with a priori information and used a learnable gating mechanism to perform

a mesh connectivity, and Meshed Decoder that performs a meshed connection between all en-

coding layers. On the other hand, W. Liu et al. 2021 proposed a full Transformers network

without having any convolutional operation in the encoder. Different from previous studies,

their model, CaPtion TransformeR (CPTR), uses the raw image and adjusts it according to the

accepted input form of the Transformer-encoder by dividing the original image into N patches.

After reshaping the patches, the obtained patch embedding is incorporated with positional

embedding.
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Despite advancements that come with transformers and semantic features, directly applying

natural image captioning methodologies to radiology report generation remains challenging due

to the nature of the medical data. The following section reviews the literature on radiology

reporting and how current approaches have adapted these methods for the medical domain

while addressing the associated challenges.

3.4 Automatic Radiology Reporting Baselines

In recent years, many studies have had great success in fine-tuning deep neural networks to

generate medical reports. Earlier existing radiology report generation studies adopt image cap-

tioning approaches for medical report generation and leverage the CNN-RNN framework(Jing

et al. 2017; Xue et al. 2018; Yuan et al. 2019; Shaokang Yang et al. 2020; Singh et al. 2021).

Jing et al. 2017 employed a pre-trained VGG-19 model to learn visual features and use the

extracted features to predict relevant tags for any given chest X-ray. The predicted tags are

used as semantic features in the network and both semantic and visual features are fed into

the Co-attention Network. Hierarchical LSTM has used the context vector provided by the

Co-attention Network to generate the topic and description of the given X-ray. Although the

model obtained promising results and achieved great success in its field, the repetitive sentences

in reports and the generation of different results for the same patient undermined its credibility

from both medical and computational perspectives.

Xue et al. 2018 improved the pre-trained Resnet-152 encoder using multi-view content (both

lateral and frontal view) and incorporated them to ensure the consistency of the results. They

also generated a report with a sentence decoder and additionally used the first predicted sentence

as a joint input along with image encoding.

Another major study was proposed by Yuan et al. 2019, who pre-trained their multi-view

encoder from scratch using the CheXpert dataset (Irvin et al. 2019)instead of using ImageNet

pre-trained models. In order to enhance the decoder, they extracted and applied medical

concepts from the reports. Applying medical concepts conveyed the semantics in the content of

the report and they achieved noteworthy results. The idea of using medical concepts was also

employed by Shaokang Yang et al. 2020. While they applied a similar approach in principle,

they proposed a reward term to extract more precise concepts. Although the medical concepts
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obtained were more accurate compared with other studies, they were still not very informative

about the given X-ray.

On the other hand, Singh et al. 2021 argued that the format of the normal and abnormal reports

differs, therefore, a single framework cannot handle both styles accurately. To overcome this

limitation, they followed a slightly different approach and first, they classified the reports as

normal and abnormal. Then, they generated the Findings section and summarised it to acquire

the Impression section for both normal and abnormal reports. They also adopted a pre-trained

CNN model, InceptionV3, for visual feature extraction and used attention-based LSTM for text

generation.

Later studies have taken advantage of Transformer for medical report generation, after its

success for text generation based on non-linguistic representation. Xiong et al. 2019 designed

a hierarchical Transformer model which contains a novel encoder that can extract the regions

of interest from the original image by using a region detector and uses these regions to obtain

visual representations. Moreover, Z. Chen et al. 2020 introduced a medical report generator

via a memory-driven Transformer. They have used a relational memory to keep the knowledge

from the previous case, in this manner, the generator model can remember similar reports when

generating the current report.

Nooralahzadeh et al. 2021 proposed a progressive Transformer-based report generation frame-

work that produces high-level context from the given X-ray and converts them into radiology

reports by employing the Transformer architecture. Their proposed model consists of pre-

trained CNN as a visual backbone, mesh-memory Transformer (Cornia et al. 2020) as a visual

language model and BART ( Lewis et al. 2019) as a language model.

3.5 Multi-modal and Multi-task Learning in Medical Imaging

Within the medical imaging field, the utilisation of multi-modal data has the potential to

enhance performance in addressing complex tasks that exceed the capabilities of a single imaging

modality. Concentrating on chest X-ray modality, multiple tasks such as image classification,

image retrieval, and modality translation have leveraged data fusion strategies.
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X. Wang et al. 2018 introduced a CNN-RNN architecture called the text-image-embedding

network (TieNet) to extract discriminative representations of both chest radiographs and their

accompanying reports by combining visual and textual information through joint fusion. The ex-

perimental results indicate that TieNet’s multimodal approach outperforms its unimodal coun-

terpart in multi-label disease classification. Chauhan et al. 2020 employed a semi-supervised

approach to train the network on chest radiographs and associated radiology reports to evaluate

the severity of pulmonary edema. This study demonstrated that joint learning of image-text rep-

resentations enhances the performance of models designed to predict the severity of pulmonary

edema, compared with supervised models that relied solely on image-derived features.

Alfarghaly et al. 2021 employed a transformer-based language model conditioned on both visual

features from the input medical image and embeddings representing relevant clinical attributes

or findings. The key idea is to guide the report generation process by explicitly providing

condition embeddings that encode specific clinical conditions as additional input, along with

the image features.

Hayat et al. 2022 discussed the challenge of integrating data from different sources in healthcare

due to the asynchronous collection of modalities. They proposed an LSTM-based fusion module,

called MedFuse, that accommodates uni-modal and multi-modal input for mortality prediction

and phenotype classification tasks. In contrast with intricate multi-modal fusion techniques,

MedFuse yields considerably better performance on the fully paired test set, furthermore, it

demonstrates robustness when dealing with the partially paired test set, which includes instances

of missing chest X-ray images.

With increasing interest in this application domain, studies have become more attentive to the

distinctions between image captioning and report generation tasks. As a result, researchers have

begun to develop more knowledge-informed networks tailored specifically to the task of image-

guided radiology report generation. L. Wang et al. 2022 introduced a task-aware framework

that is designed to be adaptable to different imaging types and medical scenarios. It prioritises

understanding specific diagnostic tasks related to various medical conditions, ensuring accurate

and contextually relevant report generation.

Shuxin Yang et al. 2022 highlighted the significance of both input-independent general medical

knowledge and input-dependent specific contextual information in generating accurate chest

radiology reports. They proposed a knowledge-enhanced method that leverages this information
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along with visual features to improve the quality and accuracy of generated reports for chest

X-rays.

F. Liu et al. 2022 utilised a different learning approach, they proposed a method called competence-

based multimodal curriculum learning for improving the generation of medical reports. They

introduced a curriculum learning strategy that incorporates multimodal data, text and images,

to enhance the competence of medical report generation models. The method aims to sequen-

tially expose models to increasingly complex tasks based on their current performance level,

thereby improving their overall competency in generating accurate and comprehensive medical

reports.

Z. Wang et al. 2022 proposed a pure transformer-based model called TransRAD that consists of a

vision transformer encoder for extracting visual features from the input image, and a transformer

decoder. The model adopted multi-task learning, optimising for 1) generating accurate reports,

2) ensuring consistency with expert annotations, and 3) matching radiologists’ writing styles. It

combines cross-entropy loss for report generation, focal loss for finding classification, and cycle-

consistency loss for style preservation. Wu et al. 2023 introduced a technique called multi-modal

contrastive learning, which aims to enhance the synergy between different modalities of data.

By leveraging contrastive learning, the proposed method aligns and embeds visual and textual

representations in a shared space, facilitating the generation of more informative and accurate

radiology reports.

Zhao et al. 2023 introduced a method for generating radiology reports that integrate medical

knowledge and utilise multilevel alignment between medical images and textual reports. The

approach aims to improve the accuracy and relevance of generated reports by aligning specific

regions of interest in images with corresponding descriptive sections in the reports. Experimen-

tal verification demonstrates the effectiveness of the method in enhancing the coherence and

informativeness of generated radiology reports, thereby potentially improving clinical decision-

making processes.

Tanida et al. 2023 proposed an interactive and explainable approach that employs a region-

grounded vision-language model that generates reports grounded on image regions identified by

a region proposal network. The proposed model allows radiologists to interactively refine the

generated reports by providing feedback on the region-text alignments. An explainable module

interprets the model’s decision process by visualising attention maps over the image and text.
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Additionally, a reinforcement learning-based revision module enables the model to iteratively

revise its outputs based on the radiologist’s feedback, promoting more accurate and coherent

report generation. Their approach combines multimodal learning from images and text with

interactive refinement, aiming to improve report quality and provide insights into the model’s

reasoning process.

More recently, Jin et al. 2024 presented a PromptMRG model that employs a pre-trained vision-

language model and generates radiology reports by conditioning it on both the input medical

image and a dynamically constructed prompt. The prompt is designed to guide the model

towards generating reports that are tailored to the specific diagnosis present in the image. The

prompts are automatically constructed using a diagnosis prediction model, which identifies the

most relevant diagnoses from the input image. The generated prompts are then concatenated

with the image embeddings and fed into the vision-language model for report generation.

Performance on downstream tasks can be improved by training text generation models on

multiple objectives simultaneously (Y. Zhang et al. 2019: Su et al. 2021). While multi-task

learning has demonstrated its potential to enhance text generation performance, effectively

training a neural network to produce coherent narrative text from diverse multi-modal and cross-

modal inputs remains a complex and challenging task. Cross-modal learning, which involves

models understanding connections across modalities, presents inherent difficulties. Nonetheless,

multi-task learning can mitigate some of these challenges in cross-modal text generation by

enabling models to jointly learn representations across modalities while optimising multiple

objectives.

More specifically, image-to-narrative language generation in the medical domain is a more chal-

lenging task due to the diversity of objects in medical images, and the requirement for additional

contextual information to analyse and interpret medical images, unlike the relatively straightfor-

ward nature of natural images. While multi-modal approaches have proven valuable in tackling

some of these challenges in various vision language tasks such as visual question answering or

medical report generation, there is a notable gap in exploring diverse multi-modal data and

multi-task learning techniques for radiology report generation.
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MEDICAL

ONTOLOGY-INFORMED

RECURRENCE NETWORK

4.1 Introduction

Medical image captioning has started to attract attention from both natural language processing

(NLP) and computer vision communities, following the success of image captioning. Researchers

have attempted to generate radiology reports autonomously, which have the potential to improve

the way of analysing and interpreting medical images. Traditional methods of image captioning,

such as report retrieval and template-based generation, are limited in their ability to produce

flexible and comprehensive textual descriptions that can be applied to new images. However,

researchers have explored the automatic generation of medical reports using image captioning

methods, which involves the use of deep learning models that can automatically write the

findings and impression parts of medical reports of chest X-rays (CXRs) (Pang et al. 2023;

Akhter et al. 2023).

In the literature, most existing deep learning approaches proposed for radiology report genera-

tion for given CXR images, leverage networks comprising a convolutional encoder and recurrent

decoder, which was originally introduced for the task of image captioning. Although exist-

ing studies have shown promising results, they often treat the task of report generation as a
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captioning problem.

However, report generation differs in several significant respects. Highlighting the similarities

and differences with natural image captioning can help to identify challenges arising in the

medical domain. Furthermore, these insights serve to emphasise key problems and identify

gaps in current research efforts. Presenting the nature of the radiology report generation task

by establishing encoder-decoder models grounded in natural image captioning and language

processing techniques can assist in revealing the challenges involved in generating accurate

reports from medical imaging.

This chapter aims to address the limitations of existing radiology report generation models by

incorporating structured medical knowledge into the image captioning paradigm. By leveraging

the power of medical ontologies, we aim to enhance the semantic representation of medical

images and improve the accuracy of generated radiology reports.

The key contributions of this chapter are:

1. The development of a multi-input, multi-view encoder-decoder architecture enhanced with

medical ontology terms, aiming to bridge the semantic gap between visual and textual

representations. To the best of our knowledge, this is the pioneering study that utilises

Medical Subject Headings (MeSH) indexing and integrates them within a unified frame-

work for radiology report generation.

2. An extensive ablation study to uncover the impact of various model configurations by

evaluating different architectural configurations. This analysis provides valuable insights

to guide the development of more accurate solutions for generating clinical text from

multi-modal inputs.

4.2 Data Preliminary Processing

The IU chest X-ray collection (Demner-Fushman et al. 2016) was used to carry out the ex-

periments and evaluate the proposed approaches. The dataset provides findings, impressions,

comparisons, indications sections for given chest X-rays and a list of labels (MeSH terms) iden-

tified by the Medical Text Indexer (MTI). Both comparison and indication sections cannot be

completed by a radiologist in the absence of previous records, therefore, report generation al-

gorithms are also not able to generate these sections. In addition, there was a lot of missing

46



Chapter 4 Data Preliminary Processing

information in both sections due to the anonymisation of the data. Therefore, the Impression

and Findings sections along with the MeSH terms were primarily used in this phase of the study.

4.2.1 Data Formation

Text Data

To begin, the raw XML data (Figure 4.1) underwent parsing, denoted as P (X), followed by the

extraction of nodes yields the set: E(P (X)) = {A,PI,M}, where A represents the Abstract

node, PI represents the ParentImage node, and M represents the MeSH node.

Figure 4.1: Example of Raw XML Data Structure from the Indiana University Chest X-ray
Collection

The Abstract node encompassed sections such as Comparison, Indication, Findings, and Im-

pression. In contrast, the ParentImage node contained identification names for each report, and

the MeSH node provided a list of mesh terms represented as tags.

Addressing the issues mentioned earlier, the Indication and Comparison sections were removed

from the primary dataset and excluded from the experiment. Furthermore, 104 reports were

eliminated due to the unavailability of relevant X-rays within the collection.
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The data cleaning process started with an initial step, which involved identifying and removing

data points with missing or NaN values within the Impression, Findings, or Mesh sections.

Subsequently, D = {d1, d2, . . . , dn} be the set of n data points in the initial dataset, where each

data point di consists of three components: Findings fi, Impression ii, and Mesh terms mi.

After applying the series of operations using regular expressions, we have f ′
i = regex(fi), i

′
i =

regex(ii), and m′
i = regex(mi) where regex(·) represents the sequence of operations performed

on the input text, including:

1. Converting all characters to lowercase

2. Eliminating punctuation, numbers, and undesired tags (e.g., ”years old,” ”xxxx,” etc.)

3. Expanding contractions (e.g., changing ”won’t” to ”will not”)

The Report variable for further experiments concatenates the Findings and Impression sections.

Let F ′, I ′, and M ′ be the sets of unique Findings, Impression, and Mesh terms, respectively,

F ′ = {f ′
i | i = 1, 2, . . . , n′}, I ′ = {i′i | i = 1, 2, . . . , n′}, M ′ = {m′

i | i = 1, 2, . . . , n′} .

”Report” is ri = f ′
i ⊕ i′i, where ⊕ denotes the concatenation operation. The dataset formation

resulted in the unique numbers of Report and Mesh terms |R′| = 2314, and |M ′| = 1552,

respectively.

As a case in point, the Report derived from the data illustrated in Figure 4.1 was transformed

to ”the cardiac silhouette and mediastinum size are within normal limits there is no pulmonary

edema there is no focal consolidation there are no of a pleural effusion there is no evidence of

pneumothorax normal chest”.

Index Mesh Term Count

1 normal 1124
2 no indexing 68
3 lung hypoinflation 39
4 thoracic vertebrae degenerative mild degenerative change 21
5 spine degenerative mild degenerative change 17
6 thoracic vertebrae degenerative degenerative change 15
7 spine degenerative degenerative change 14
8 granulomatous disease granulomatous disease 12
9 cardiomegaly mild cardiomegaly 10
10 lung hypoinflation markings bronchovascular 8

Table 4.1: Most Frequently Occurring Mesh Terms in the Final Dataset
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Index Report Count

1 no acute disease the heart is normal in size the mediastinum is unremarkable the
lungs are clear

45

2 no active disease the heart and lungs have in the interval both lungs are clear and
expanded heart and mediastinum normal

43

3 no acute cardiopulmonary abnormality the lungs are clear bilaterally specifically no
evidence of focal consolidation pneumothorax or pleural effusion cardio mediastinal
silhouette is unremarkable visualized osseous structures of the thorax are without
acute abnormality

35

4 normal chest heart size normal lungs are clear are normal no pneumonia effusions
edema pneumothorax adenopathy nodules or masses

35

5 no active disease both lungs are clear and expanded heart and mediastinum normal 29

Table 4.2: Top 5 Reports (Impression and Findings Compilation) with Highest Occurrence in
the Final Dataset

Image Data

Throughout the dataset, the number of images associated with a single report ranged from a

minimum of one to a maximum of five, with the most common count being two. These X-rays

exhibited varying shapes and were captured in either lateral or frontal views (please refer to

Figure 2.11). To address this variability, each frontal image was paired with a related lateral

image, creating new data points. However, in cases where no lateral view was available, the

data point(image-report pair) was excluded. As a result, 3532 samples with multi-view X-rays

were generated.

4.2.2 Data Pre-processing

In the text data pre-processing phase, the first step involved tokenisation, breaking the texts

into manageable units. Special ”<start>” and ”<end>” tokens were added to the beginning

and end of each Report sequence. Let S be the input sequence, which consists of n characters.

After tokenisation, S is divided into a sequence of tokens T = {⟨start⟩, t1, t2, . . . , tm, ⟨end⟩},

where each token ti represents a meaningful unit in the context of the application.

S = c1c2 . . . cn → T = {⟨start⟩, t1, t2, . . . , tm, ⟨end⟩}

where ci denotes the i-th character in the input sequence S, and ti represents the i-th token

in the tokenised sequence T . These markers facilitate the decoding process. Additionally,

any out-of-vocabulary words were promptly replaced with ”<unk>” to ensure a consistent and

comprehensible vocabulary. Finally, each Report sequence was padded to a fixed length to meet
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the language model’s requirement for consistent input size. The Mesh terms also underwent

preprocessing steps similar to the Report sequences. They were tokenised, and the resulting

sequences were padded to a fixed length.

Figure 4.2: Example of the final processed text data(with start/end tokens) and input images
for model input

For image processing, all images were resized using interpolation to match CNN’s expected

format of px by px, and each pixel value was normalised by dividing it by 255. Finally, a data

loader object was created to fetch data from the dataset, and it was then fed into the model in

batches.

4.3 Network Configuration

4.3.1 Encoder and Decoder Variants

Several CNN-based deep neural network models were developed and successfully fine-tuned

for various medical image understanding tasks such as classification, segmentation, detection,

localisation, and diagnostic captioning (Sarvamangala and Kulkarni 2022). ImageNet CNN

models are commonly preferred for diagnostic captioning due to their good image encoding and
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feature extraction performance (Pavlopoulos et al. 2022). Although these models are pre-trained

on natural images, they have made significant contributions to medical image captioning tasks.

Considering that, we implemented the two most commonly used ImageNet architectures, along

with one domain-specific and one straightforward CNN architecture:

• A custom CNN with 3 convolutional layers and 2 dense layers, trained from scratch on

our dataset.

• InceptionV3 (Szegedy, Vanhoucke, et al. 2016) - a pre-trained CNN known for efficiency

and modest computational requirements.

• VGG19 (Simonyan and Zisserman 2014)- a pretrained CNN with greater depth and rep-

resentational power.

• ChexNet (Rajpurkar et al. 2017) - an architecture that was pre-trained with the ChestX-

ray14 dataset (Szegedy, Vanhoucke, et al. 2016), which consists of over 112,120 chest

X-rays for the task of pneumonia detection.

For the decoder, we experimented with Bidirectional GRU by the use of visual attention and

pre-trained word embeddings. Bidirectional RNNs allow for capturing context from both past

and future directions. This bidirectional nature enables the model to better understand long-

range dependencies between words in the caption, leading to more consistent descriptions of the

image. Additionally, Bidirectional RNNs are better combined with visual attention mechanisms

and pre-trained word embeddings which provides it with a good starting point for capturing

syntactic relationships between words. Several studies have demonstrated that incorporating

Bidirectional RNNs can lead to improved performance on standard evaluation metrics compared

to using unidirectional RNNs (X. Chen and Lawrence Zitnick 2015; C. Wang et al. 2016).

4.3.2 Multi-view vs. Single View

Radiologists typically generate diagnostic reports by examining X-rays from various angles, as

multiple X-rays can enhance the accuracy and reliability of their findings. In this context,

we investigated three primary strategies: single view, duplication, and multi-view, aiming to

determine the most effective approach.

• Single view: Each X-ray image and the corresponding report was treated independently,

without linkage between different views of the same patient.
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• Duplication: Both views for each patient were combined and presented to the model. In

this approach, the model expects two input points. If the patient has only one X-ray, a

replica of the existing image was created to obtain two data points.

• Multi-view: This approach neglects the single-view X-rays, and each of the frontal views

is assigned as the first input and the lateral view is fed into the model as the final input.

4.4 Medical Ontology-Informed Multi-View Model

The network architecture was developed through experimentation with multiple approaches

mentioned in Section 4.3. To keep it concise, only the final model components (illustrated in

Figure 4.3) are presented with all implementation details.

Figure 4.3: The overall multi-view multi-input recurrence report generation framework

The CNN model functions as the main encoder component for image representation extraction.

Firstly, the pre-trained CheXNet model is loaded and reconstructed to output the activations

of the layer just before the global average pooling layer. It is also configured to freeze all layers

except for the last 10 layers. Both input views, frontal (If ) and lateral (Il), are processed through

the CheXNet model, denoted as fCheXNet(·), to obtain their respective feature representations.
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These features from both views are then concatenated (denoted by ⊕) and passed through

dense layers fdense(·), resulting in the final encoded vector v representing the image features:

v = fdense(fCheXNet(If ) ⊕ fCheXNet(Il)), where v is the final encoded vector representing the

image features.

The resulting vector is then merged with Mesh features into a single vector representation

and normalised using a normalisation function Norm(·) to obtain the mesh-enriched feature

vector fm, where M is associated mesh-terms and m = LSTM(fembedding(M)), given by: fm =

Norm(fdense(m⊕ v)).

The Target Report is first processed by an embedding layer, which converts the tokens into

dense vector representations. These embedded vectors are then fed into the Decoder Block.

A bidirectional GRU layer further processes the embedded input sequence within the Decoder

Block. The output of this bidirectional GRU is concatenated with a context vector obtained

from the attention mechanism.

The attention mechanism, specifically the Multiplicative Attention layer, computes this context

vector. It does so by calculating a weighted sum of the encoder output (fm), where the weights

(attention scores) are determined by the similarity between the current decoder state and each

encoder output.

This context vector provides additional information to the decoder, helping in the generation

of the output sequence. Therefore, it is used as an additional input to the decoder, alongside

the embedded input sequence. The Decoder Block preserves the ground truth sequences, for-

ward and backwards hidden states of the bidirectional GRU, as well as the attention weights

computed by the attention mechanism. It also applies dropout regularisation to the output of

the bidirectional GRU, helping to mitigate overfitting.

Finally, the output logits, representing the predictions for the next token in the sequence, are

obtained by passing the output through a dense layer.

In summary, this end-to-end approach combines; the processing of MeSH terms to provide

semantics, extraction of image representations using CheXNet, and finally, a two-step decoding

process to generate structured, detailed radiology reports from the medical images. The hybrid

combination of components aims to provide both key medical semantics and visual feature

understanding.
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4.5 Experimental Setup

4.5.1 Training and Inference

The training of the proposed model was conducted to optimise its performance on the training

and validation datasets. We followed a systematic approach for the selection of hyperparameters

and implementation of the suitably optimised pipeline. The hyperparameters were tuned to

balance between model complexity and generalisation.

Additionally, teacher forcing was employed during the training process in the text generation

phase. It involves feeding the ground truth output from the previous time step as input to the

model for the next time step in the decoder, rather than the model’s own predicted output.

Let x = (x1, x2, . . . , xT ) be an input sequence of length T , and y = (y1, y2, . . . , yT ) be the

corresponding target output sequence.

P (y|x) =

T∏
t=1

P (yt|y1, . . . , yt−1,x) (4.1)

Specifically, the conditional probability at time step t is computed as:

P (yt|y1, . . . , yt−1,x) = fθ(y1, . . . , yt−1,x) (4.2)

During inference, the model generates the output sequence one step at a time, using its

own predicted output from the previous time step as input for the current time step: ŷt =

argmaxyt P (yt|ŷ1, . . . , ŷt−1,x), where ŷt is the predicted output at time step t. This provides

additional guidance to the model and can help to stabilise training for sequence generation.

For the loss function, we used SparseCategoricalCrossentropy loss, which allowed the model to

effectively learn text patterns in the data. It is calculated as: L(ytrue, ypred) = − log(ypred[ytrue]),

where ytrue is the true word index (label) at the current time step of the sequence, ypred the

predicted probability distribution over the entire vocabulary (output of the softmax function)

at the current time step, and ypred[ytrue] is the predicted probability for the correct word index

at the current time step.
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The key hyperparameters stated below are the final values selected after experimentation with

different values to optimise performance:

• Optimiser and Learning Rate: Adam optimiser with a learning rate of 1e-3 was chosen to

ensure a stable convergence of the model during training.

• Batch Size: A batch size of 32 was employed to optimise computational efficiency.

• Epochs: The model was trained for 50 epochs with an early stop triggering value set to

10, ensuring sufficient exposure to the entire dataset while preventing overfitting.

• Dropout Rate: A dropout rate of 0.2 was applied to all dense layers, contributing to

regularisation and preventing overfitting.

• Maximum Sequence Length: Sequences of a maximum length of 80 were considered during

both the training and validation phases.

• Embedding and Dense Dimension: A dense and embedding dimension of 64 was chosen,

influencing the internal representation of the model.

4.5.2 Evaluation Details

We conducted an ablation study to evaluate the impact of different architectural components

mentioned in Section 4.3. Specifically, we kept the MeSH component and decoder constant

across all experiments, while systematically varying the encoder-decoder variant and input-view

representation.

Then, we assessed the performance with and without incorporating MeSH terms, using the

optimal input and network configuration identified through our experiments. This analysis

provided insights into the importance of architectural selection and the utility of leveraging

domain-specific knowledge through MeSH term integration.

To quantitatively assess the model’s performance and facilitate comparative analysis across

different configurations, we employed BLEU-1 to BLEU-4 scores as the evaluation metrics. This

choice was motivated by the widespread adoption of BLEU scores as the standard evaluation

metric in the domains of report generation and image captioning tasks.

To complement the quantitative evaluation and gain deeper insights into the model’s perfor-

mance, we also conducted a qualitative human analysis on a sample of 50 generated outputs.
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4.6 Component-wise Performance Analysis

As stated in 4.3.2, radiologists create a single report by using different views of X-rays, multiple

X-rays may be required in some cases to obtain more accurate and reliable results. This approach

was mimicked while determining image input points, and three main strategies, single view,

duplication, and multi-view, were implemented to find the most effective result.

Data/Sample Size Input Image Format Average BLEU Score

7470 Single-view 0.267
3978 Multi-view (with duplication) 0.284
3532 Multi-view (without duplication) 0.271

Table 4.3: The average BLEU scores obtained from the five-fold cross-validation results across
different input views.

In the single view approach, each X-ray (without distinction as frontal or lateral) and related

report were treated as independent data. However, in this approach, inconsistent results were

obtained for different X-rays of the same patient. Furthermore, the characteristic differences

in views caused difficulties in training, leading to reduced performance. In order to negate this

issue, both views for each patient were combined and presented to the model. In this case, the

model expects two input points. If the patient has only one X-ray, a replica of the existing image

is created, and two data points are thus obtained. With this duplication method, the problem

of inconsistency between the results has been solved and the model performance increased by

6.5%.

However, since this technique is not accurate from a clinical perspective and does not provide

additional information to the network, it was not used in the final model. The final method,

the multi-view strategy, neglects the single X-rays, and each of the frontal views is assigned as

the first input and the lateral view is fed into the model as the final input.

All hyperparameters were kept constant across all experiments, with only the input view and

sample amount changing accordingly. Table 4.3 displays the average Bleu Score of the five-fold

cross-validation results for each input view shape.
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After exploring different strategies for handling input views, the next focus was on the impact

of different CNN architectures on model performance. Table 4.4 reports the average Bleu n-

gram scores for the baseline CNN model versus pre-trained models, evaluated using three-fold

cross-validation, whereas the simple CNN model was only evaluated in one validation set. The

simple CNN employs an approach of training from scratch, without incorporating any transfer

learning or pre-trained models.

CNN Model B 1 B 2 B 3 B 4

Simple CNN 0.25 0.11 0.09 0.04
InceptionV3 0.31 0.20 0.15 0.10
VGG-19 0.29 0.19 0.14 0.10
CheXNet 0.36 0.25 0.18 0.13

Table 4.4: Comparative Performance Analysis of Baseline and Pretrained Models Using BLEU-
n Scores, with ’B n’ Representing BLEU-n Scores

Among visual feature extraction pre-trained models, CheXNet produced the most consistent

and reliable results, followed by InceptionV3 and VGG-19.

4.7 Qualitative and Quantitative Results

After finalising the model architecture by selecting the input-view and encoder-decoder com-

ponents, the next step explored was incorporating Medical Subject Headings (MeSH) terms

into the training process, to help the model better understand key semantic relationships in

the reports. It was hypothesised that utilising these MESH terms as additional context would

enhance the model’s relevance and accuracy.

B 1 B 2 B 3 B 4

Baseline Model 0.32 0.22 0.17 0.12
Mesh-enriched Model 0.36 0.25 0.18 0.13

Table 4.5: Qualitative Results of Baseline and Mesh-enriched Model Models

Table 4.5 presents the quantitative evaluation results, contrasting the performance of the base-

line model against the proposed MeSH-enriched model. The baseline configuration comprises

the ChexNet vision feature extractor and a multi-view input representation without duplication.

The MeSH-enriched model corresponds to the final proposed architecture (Figure 4.3), which

incorporates the MeSH-generator component into the pipeline.
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The results show that the Mesh-enriched model performed better in all metrics compared to the

baseline model. Therefore, we assessed the statistical significance of the observed performance

improvements by conducting pairwise t-tests for each evaluation metric. The results indicate

that the improvement in BLEU-1 scores achieved by the MeSH-enriched model is statistically

significant, while the differences in other metrics did not show statistical significance.

We further evaluated the Mesh-enriched model by comparing the generated text with the ground

truth. As the model’s predictions were not meaningful for completely abnormal cases and did

not provide useful insights, we excluded those examples from the visual results presented in

Figure 4.4.

The figure demonstrates that some diagnoses were missing or inaccurate in the generated report

or statements that were not in the original report were produced. In the first example displayed,

“the mediastinum is unremarkable” is generated by the model, however, it was not mentioned

in the original report. In the second sample, although the original report has the statement

“The lungs are clear without infiltrate”, the generated report does not contain any information

about the lungs.

Figure 4.4: Illustration of Ground Truths and Example Reports Generated by MeSH-Enriched
Multi-view Model
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Human Analysis

A 50-sample subset of the test data was evaluated through human analysis for each network

configuration. This analysis compared the model-generated text to the ground truth radiology

reports, examining differences and similarities in grammar, sentence structure, word choice, and

the correctness of detecting medical abnormalities.

Notable improvements were not observed between multi-view and single-view approaches, de-

spite evaluation metrics indicating enhancement. Among pre-trained models, a slight improve-

ment in normal cases was observed with the ChexNet model incorporation. However, per-

formance in detecting abnormal or unique cases remained largely similar across all pre-trained

models used. Additionally, semantically identical sentences were formed in structurally different

ways due to linguistic diversity in the training dataset. For instance, “within normal limit” and

“normal” mostly convey equivalent meanings, however, they are represented differently which

resulted in a lower score. Qualitative analysis on a 50-sample subset from the MeSH-enriched

model’s output revealed that 36% of the generated texts matched the corresponding report ex-

actly and 34% exhibited some missing information. The model hallucinated at 30%, resulting in

producing extraneous statements not present in the original reports. Furthermore, as the target

reports become longer, the generated reports exhibit limited context awareness. Among the 32

reports that show missing information or hallucinations, 24 contain long sentence structures.

Based on this analysis, the MeSH-enriched model demonstrated better performance compared

to the image-alone baseline for only normal cases. However, utilising MeSH terms did not

significantly contribute contextual information. This could be because the terms predominantly

consisted of brief descriptive information that already existed in the radiology reports.

4.8 Discussion and Conclusion

This chapter demonstrates several key challenges and insights related to medical image cap-

tioning, especially, compared to natural image captioning. Generating coherent and structured

paragraphs from medical images requires capturing higher-level semantics and context beyond

short image captions. In this context, the choice of decoder architecture becomes crucial to

handle the long sequences effectively. However, recurrent models with memory still suffer from

vanishing and exploding gradients and have limitations on parallel computing. Also, the image

representations are only utilised in the first phase of the decoder, and the further layers do not
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use the visual information.

The distinctions between medical images are subtle and are not as straightforward to deal with

as natural images. Furthermore, while the information needed to describe a natural image is

often embedded within the image itself, additional contextual information is typically required

to effectively analyse and interpret a medical image.

To leverage more visual insights and potentially improve the performance, we have explored the

use of multi-view inputs compared to single-view inputs. Despite observing better quantitative

evaluation metrics with the multi-view approach, the qualitative improvements in the generated

captions were minimal. The integration of pre-trained models like CheXNet yielded only slight

improvements for normal case reporting, while abnormal cases remained challenging.

While incorporating medical ontology information helped provide supplementary context, it did

not offer significantly different knowledge than what was already present in the medical reports

themselves. It is also important to note that most of the Mesh annotations indicated the nor-

mality. The network requires more explicit and descriptive information to fully understand and

interpret the given image input. As evidenced by 30% of the generated reports containing extra-

neous statements, and 34% of them exhibiting some missing information, the model struggled

with comprehensively understanding the key information needed from the images.

The human analysis demonstrates the importance of evaluating AI-generated medical reports,

showing that qualitative assessment can reveal nuances that might be missed by automated

metrics alone. It highlights that improvements in Natural Language Generation (NLG) metrics

don’t necessarily translate to clinically significant improvements. This is an important contri-

bution as it emphasises the need for caution when interpreting automated evaluation metrics

in medical AI applications.

To achieve more accurate and comprehensive medical image captioning, integrating more de-

scriptive domain knowledge sources is required. This could involve leveraging structured medical

knowledge bases, incorporating more detailed visual annotations, or developing techniques to

better fuse multi-modal information from images and text reports. Additionally, advances in

model architectures and training strategies that can effectively capture long-range dependencies

and handle complex multi-modal inputs are necessary.
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MULTI-MODAL INTEGRATIVE

ATTENTION NETWORK

5.1 Introduction

Deep learning techniques have been increasingly employed in clinical medicine over the years,

due to their ability to process significant volumes of medical images, and large datasets, and

guide/assist evaluate the effectiveness of diagnosis and treatment for many important diseases

(Pei et al. 2023). By combining different types of medical data, deep learning models can

efficiently extract and combine salient features from multi-modal sources. This data fusion

approach improves real-world applicability in medical diagnosis and evaluation, enables quan-

titative analysis and informs treatment planning.

However, the majority of current deep learning approaches use methods for CXRs that solely

consider the radiology image as input and disregard the non-imaging information that radiol-

ogists have access to during image interpretation. Only a limited number of studies integrate

additional data into the network such as medical concepts, high-level contexts or categories of

the images/reports. While these methods have shown some level of success, they mainly focus

on enhancing the model with data derived from existing semantics rather than supplementing

the training context with additional data. Furthermore, due to the nature of CXR images as

2D representations of 3D entities, there is a loss of important/relevant information in the data

available for learning by networks or algorithms.
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Therefore, we hypothesised that employing a data-driven learning-based approach, which inte-

grates information from multiple modalities, would provide a more comprehensive representation

of the patient’s clinical condition. By leveraging complementary perspectives from diverse data

sources, this multi-modal approach could mitigate the limitations inherent to relying solely on

visual features extracted from imaging data. Consequently, a holistic representation would al-

low the model to generate more informative and accurate reports compared to using only CXR

images.

5.2 Dataset Formation

The MIMIC database was used to carry out the experiments and evaluate the proposed ap-

proaches. MIMIC-CXR, MIMIC-IV, and MIMIC-IV-ED datasets comprise distinct tables con-

taining varying details related to a patient’s hospitalisation. An individual patient is assigned

a unique identifier, referred to as the subject ID. However, since a single patient might have

multiple hospitalisations, or a single stay may generate several records, linking these databases

using subject ID proved unfeasible.

Moreover, as the aim is to generate an accurate report, it is imperative that non-imaging data

be collected within the same time frame as the chest x-ray. Consequently, we resorted to record

linkage between MIMIC-CXR and MIMIC-IV-ED databases and extracted data only if the

patient was in the ED while the report was being generated and did not leave during that

period.

After performing data cleaning procedures (following the same approaches as described in Sec-

tion 4.2.1), filtering the images to only include anteroposterior and posteroanterior projections,

keeping only one study if there is more than one record, removing replications, the resulting

dataset contains 65813 entries and 11 features including acuity level, oxygen saturation, heart

rate, respiratory rate, systolic blood pressure, diastolic blood pressure, temperature, patient’s

chief complaint, ICD title, gender and ethnicity.

One challenge with the dataset for this task is its biases, particularly, its skewed distribution

towards normal cases and the presence of numerous identical reports for different patients.

To minimise these issues, we selected a subset of 65813 entries, by identifying and cataloguing

unique medical reports, ensuring that each distinct group was represented in the curated dataset

to a similar extent. This subset consisted of 3000 total samples, which we further divided into a
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training set comprising 2100 data points and a validation set comprising 900 data points. 3,000

samples were selected due to computational efficiency, as utilising the full dataset resulted in ex-

cessive training time without yielding significant improvements in the results. Subsequently, we

evaluated the performance of our models on a holdout test set comprising 1173 unseen examples.

As there is currently no comparable comprehensive dataset encompassing similar non-imaging

data, we exclusively employed this specific dataset to train and assess the proposed approach.

5.3 Feature Extraction and Pre-processing

This section describes the pre-processing and encoding of different data modalities used in

this study. The main objective is to align the data used in the study and the data typically

encountered in medical practice while minimising potential biases that may arise.

5.3.1 Image Data

Each image went through resizing to 299 pixels x 299 pixels, followed by min-max normalisation

to scale the intensity values to a range of 0 to 1. The process of obtaining the representation of

each image can be described as a two-step procedure. In the first step, the EfficientNet model

is utilised as the base model to extract the visual features of the image. In the second step, this

feature vector is employed as the input for a transformer-based encoder which extracts higher-

level features and fuses this information with clinical and non-clinical(demographic) data. A

detailed explanation of the fusion process can be found in Section 5.4

5.3.2 Clinical: Non-imaging Data

This study exclusively employed clinical data that clinicians considered during patient evalu-

ations, wherein, a chest X-ray examination was conducted if any disease/abnormalities were

suspected. These data included heart rate, respiratory rate, oxygen saturation, temperature,

level of acuity (severity), primary symptoms or complaints, as well as known or suspected

diseases.

The acuity level of a patient is determined based on the triage assessment, and an integer value,

between 1 and 5, is assigned to each case where 1 indicates the least severe and 5 is the most

severe. The higher acuity levels are typically associated with the presence of abnormalities in

the patient’s case, therefore, utilising the acuity level may assist the network in determining
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normal and abnormal cases while generating the report.

The integer-based variables including oxygen saturation, heart rate, respiratory rate, systolic

blood pressure (sbp), and diastolic blood pressure (dbp) were initially treated to remove outliers.

Subsequently, the values have been normalised within the range of 0 to 1, based on their

respective minimum and maximum values. As for temperature data, a conversion to Fahrenheit

scale was performed, and similar to the integer-based variables, the values were normalised

between 0 and 1.

The text-based variables, namely the chief complaint and ICD title variables, are initially pro-

cessed by converting characters to lowercase and removing unnecessary punctuation, such as

commas, periods, and newline characters, utilising regular expressions. Consecutive periods are

condensed into single spaces, and double periods are substituted with single spaces, contribut-

ing to a more consistent text format. The resultant text undergoes further standardisation by

substituting shorthand phrases or abbreviations with their corresponding full-text counterparts.

For example, ’cp’ is replaced with ’chest pain’, ’sob’ or ’shortness of breath’ is replaced with

’dyspnea’ and so on. Standardisation also includes converting phrases like ”chest pain, dyspnea”

into ”chest pain and dyspnea” as well as fixing typos and pluralisation issues such as changing

”fevers” to ”fever.”

5.3.3 Non-clinical Data

In addition to clinical data, patient records often include non-clinical metadata that can provide

valuable insights. This study concentrates on two commonly collected non-clinical variables:

gender, and ethnicity. These variables have been demonstrated to have an impact on health

outcomes (Aksoy et al. 2023) and are therefore of particular interest in this study.

As the gender data is already in binary format, the only necessary pre-processing step was to

convert the data to a numerical representation by replacing ’Male’ with 0 and ’Female’ with 1.

The ethnicity data was initially categorised into 5 broad groups consisting of the most frequently

occurring values and this initial categorisation slightly improved model performance. The data

was then categorised in a more granular fashion into 9 groups: White, African American, His-

panic/Latino, Black, Asian, White/European, Russian, Other, and Unknown. We hypothesised

that employing these more detailed ethnicity categories would enable more accurate report gen-

eration. Subsequently, the categorical ethnicity data was mapped to integer values and reshaped
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into a 2D array to allow for input into the encoder.

5.4 Multi-modal Fusion Details

This section provides the details of the multi-modal data fusion strategy utilised in our proposed

model. As shown in Figure 5.1, our approach employs a cross-attention mechanism to fuse the

textual, visual, and scalar modalities. The key variables used in the fusion are defined in Table

5.1. Specifically, the scalar patient data, comprising attributes like heart rate, oxygen saturation,

respiratory rate, blood pressure, temperature, acuity level and gender, is concatenated to form

a continuous representation. This continuous data is then passed through a dense layer to

produce a scalar output.

Variable Description

xtext data 2D input tensor of text data indices
Vtext data Vocabulary size of text data
E Embedding dimension
Wemb Embedding weight matrix
fembed Embedding function
Xchief embed Embedded chief complaint data
Xicd embed Embedded ICD title data
Xscalar Processed scalar patient data
Xeth One-hot encoded ethnicity data
Xpatient Unified patient representation
Q Query matrix for attention
K Key matrix for attention
V Value matrix for attention

Table 5.1: List of Variables Used in Multi-Modal Fusion Strategy

Each ethnicity group variable is transformed using the one-hot encoding (Equation 5.1), result-

ing in a matrix where each individual’s ethnicity is represented as a binary vector.

Xeth = [δ(eth, 1), δ(eth, 2), . . . , δ(eth, 9)]. (5.1)

where the function δ(i, j) is defined as

δ(i, j) =


1 if i = j,

0 if i ̸= j.

The chief complaint and ICD title data consist of text sequences with varying lengths and
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vocabulary sizes. Therefore, these data are separately embedded using the following embedding

technique before being further processed through dense layers.

Let,

xtext data ∈ ZN×M — 2D input tensor of indices

Vtext data — vocabulary size

E — embedding dimension

Wemb ∈ RVtext data×E — embedding weight matrix

Then,

fembed(xtext data) ∈ RN×M×E

fembed(xtext data)i,j,k = Wemb[xtext datai,j , k] (5.2)

where

fembed(xtext data)i,j,k—embedding vector for token at position (i, j)

xtext datai,j—integer index of token at position (i, j)

Wemb[xtext datai,j , k]—k-th value from row of Wemb for index xtext datai,j

Xchief embed = fembed(xchief data)

Xicd embed = fembed(xicd data)

Where: xchief data and xicd data are the respective input indices tensors and fembed is the embed-

ding function defined in Equation 5.2.

After feature extraction and transformation of patient data inputs, the representations are

concatenated into a unified patient representation vector. The processed scalar data output

Xscalar ∈ RN×Mscalar , one-hot encoded ethnicity output Xeth ∈ RN×Meth , and embedded chief

complaint and ICD title outputs Xchief embed, Xicd embed ∈ RN×M×E are concatenated for each
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patient giving:

Xpatient = Concatenate(Xscalar, Xeth, Xchief embed, Xicd embed; axis = 1) (5.3)

Where the Concatenate() operation joins the input tensors along the specified dimension, in

this case, axis=1, yielding:

Xpatient =

[
Xscalar Xeth Xchief embed Xicd embed

]
∈ RN×(Mscalar+Meth+2M×E) (5.4)

The resulting Xpatient contains a unified representation of each patient’s data for further use,

combining structured scalar variables, categorical encodings, and semantically rich embedded

features into a single vector. This concatenation enables the joint modelling of heterogeneous

data types into an integrated patient representation.

Figure 5.1: The overall multi-modal data fusion with the cross-attention framework of the
proposed CXR report generation model.

Then, an EfficientNetB0 CNN backbone (Tan and Le 2019), pre-trained on ImageNet, extracts

features from 299x299x3 RGB input images. The choice of EfficientNet was motivated by

its computational efficiency and scalable architecture, which are important considerations in
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medical applications considering that computational resources might be limited or costly.

EfficientNet models maintain computational efficiency through a combination of neural archi-

tecture search and compound scaling techniques (Tan and Le 2019). This is achieved by con-

currently scaling up the resolution, depth, and width of the network, ensuring a good balance

between model size and accuracy. Furthermore, EfficientNet is used because it is capable of

extracting meaningful hierarchical features from images due to its depth and width scaling fac-

tor, which is necessary for generating accurate and descriptive medical reports (Marques et al.

2020).

The CNN outputs N x D image embeddings, where N is batch size and D is the feature di-

mension. This 1280-length visual feature vector is transformed via layer normalisation and a

dense layer to refine the image representation. Before starting to fusion operation, multi-headed

self-attention (Equation 5.6) is then applied to enable the model to jointly focus on different

positions in the image via parallel heads.

The self-attention outputs are then added to the original embedded image via residual connec-

tion, and normalised by a layer norm layer.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (5.5)

where
√
dk is the dimension of the key vector k and query vector q

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (5.6)

where

headi = Attention(QWQ
i ,KWK

i , V W V
i )

The final output image embedding is further contextualised with information from the entire set

of patient data via a cross-attention mechanism. In the cross-attention module, the convention

is to take the image features as the query (Q) and the unified patient representation Xpatient as

the key (K) and value (V ). This allows each part of the encoded image embedding to attend

to relevant semantics from the full patient data:

Q = Image Features ∈ RN×D
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K = V = Xpatient ∈ RN×D

Where N is the batch size and D is the common embedding dimension across modalities.

Multi-headed scaled dot-product attention is again applied between Q and K to obtain attention

weights representing the relevance of each part of the patient data to each part of the image. The

weighted value matrices are concatenated and projected to obtain the cross-attention outputs

allowing the model to condition each part of the image embedding on relevant unified patient

representation. The cross-attention outputs are residually connected and normalised in a similar

manner via element-wise addition with the output image embedding from the previous self-

attention block and layer norm.

We adopt the canonical Transformer decoder architecture as it has proven effective in various

sequence-to-sequence tasks, including image captioning (Vaswani et al. 2017). The decoder

starts by embedding the input sequence using both target (token) embeddings and positional

embeddings. Target embeddings provide the meaning of words, while positional embeddings

provide information about the order of tokens in the sequence.

The initial layer employs self-attention, which is the key component that enables the Transformer

decoder to effectively generate the output sequence. Self-attention allows the decoder to capture

long-range dependencies within the text and ensures the generation of contextually relevant

reports. This is achieved by having each output token attend to previously generated tokens in

the sequence. This auto-regressive nature allows the model to condition on its past predictions.

Importantly, the self-attention in the Transformer decoder is ”masked,” meaning that each

output token can only attend to the tokens that come before it in the sequence. This prevents

the model from attending to future tokens that it has not yet generated.

Next, the decoder performs attention over the encoded cross-modal representation obtained from

the encoder. In this Encoder-Decoder Cross Attention module, the normalised output from the

Masked MHA layer is used as the query (Q), while the encoded cross-modal representation

is used as the key (K) and value (V). This allows each part of the decoder output to attend

to the relevant semantic concepts and modalities from the image, facilitating more effective

fusion and reasoning across the input modalities. The cross-attention mechanism enables the

decoder to condition its generation on the rich visual information, leading to more coherent and

contextually appropriate output sequences.
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5.5 Experiments and Analysis

5.5.1 Experimental Setup

The model undergoes training through a custom loop that involves the following key steps: data

retrieval, image embedding, encoding of clinical and non-clinical data, calculation of loss and

accuracy, computation of gradients, weight updating, and tracker adjustment.

The sequence lengths of text data are standardised as follows:43 tokens for reports, 2 tokens

for chief complaints, and 6 tokens for ICD codes, calculated by averaging across all variables.

The vocabularies contain over 6,000 unique tokens for radiology reports and over 3,000 tokens

each for chief complaints and ICD codes. The vocabulary size and fixed sequence length were

determined based on the complete dataset, not just the balanced subset of 3,000 samples used

for training and validation. Both image features and text tokens are represented using 512-

dimensional embeddings. The Transformer encoder and decoder layers include feed-forward

networks with 512-dimensional units each, and Transformer layers utilise multi-headed attention

with 3 attention heads. During training, a batch size of 64 is employed, and training proceeds

for 100 epochs with early stopping triggered by validation loss stagnation over 5 epochs.

The model’s training employed the Adam optimiser with a learning rate of 3e-4 and linear

warmup for the first 500 steps. After the warm-up phase, the learning rate remains constant,

stabilising training and facilitating effective model fine-tuning. Loss is calculated using the

Sparse Categorical Cross-Entropy loss function defined in Equation 5.7, and accuracy is assessed

by matching predicted tokens with true tokens. Let: ytruei be the ground truth for the radiology

reports. ypredi be the output from our report generation model. The equation for cross-entropy

loss for each report without reduction is given by:

lossi = −
∑

(ytruei · log((ypredi))) (5.7)

Where: i represents the index of the report. ytruei is the ground truth for report i. ypredi is

the generated report for index i. This loss calculation is performed for each report separately,

without any reduction.
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5.5.2 Evaluation Metrics

To evaluate the linguistic quality of the generated radiology reports, we computed several au-

tomatic evaluation metrics comparing the generated text to the reference reports. First, BLEU

scores were calculated to assess n-gram precision for unigrams up to 4 grams. Second, the

ROUGE-L score was used to measure the longest common subsequence, assessing the quality

of the generated text in terms of recall and precision. Additionally, we evaluated semantic

similarity using the BERT Score and Bio-ClinicalBERT Score. These metrics provide a more

nuanced assessment of meaning compared to strict n-gram matching. The BERT-based metrics

can capture whether the generated reports convey clinically coherent descriptions despite dif-

fering word usage compared to the reference. Collectively, these automated evaluation metrics

quantify linguistic similarity at word level, sentence-level, and semantic meaning levels.

Finally, to ensure comprehensive evaluation, a board-certified radiologist examined a represen-

tative subset of the evaluation set, offering a human expert’s assessment to complement and

validate the automated metrics’ analysis.

5.6 Quantitative Results

In this study, we leveraged 11 distinct clinical features along with chest X-rays to generate

more accurate and informed radiology reports. The baseline model only employed chest X-ray

images as input to generate corresponding reports, serving as our benchmark reference where

the sole source of information was the visual data. In order to analyse the contribution of each

distinct data feature to model performance, we conducted an ablation study by incrementally

presenting different features alongside the chest X-ray images.

For a fair comparison, all data features were encoded in the same way across all experiments,

and model hyperparameters, as well as dataset splits remained consistent.

We evaluated four main approaches:

1. The singular model incorporated a single additional feature to show individual perfor-

mance. Oxygen saturation (O2Sat) is chosen for comparison as it demonstrated the

highest performance among the singular models, as illustrated in Table 5.3.

2. The TextFusion model explored fusing textual features of reported primary symptoms
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and ICD diagnostic codes with chest X-rays.

3. The ScalarFusion approach combined multiple predictive scalar features with the images,

including O2Sat, diastolic blood pressure, temperature, patient acuity scores, and gender.

Each of these scalars individually demonstrated performance improvements in singular

models.

4. At the core of our study, the FullFusion model takes a holistic approach by fusing all

available and relevant data points. This multi-modal fusion aims to effectively incorporate

the diverse sources of information at hand, including chest x-ray images, structured clinical

data, and unstructured text notes.

Table 5.2 presents a quantitative comparison based on the performance across multiple evalu-

ation metrics. The metrics utilised for the assessment include BLEU-n (B1 to B4), ROUGE-

L (RL), BERT F1Score (BSF1), and Bio-ClinicalBERT F1Score (Bio-CBSF1). The highest-

performing results are highlighted in bold in the table.

The Singular02Sat method displayed notable improvements across multiple metrics compared

to the baseline, while the TextFusion and ScalarFusion methods showcased marginal increases.

The FullFusion method emerged as the top performer, showing substantial enhancements in

various metrics, and highlighting the benefits of multi-modal fusion.

Method B 1 B 2 B 3 B 4 R L BSF1 Bio-CBSF1

Baseline 0.326 0.205 0.138 0.084 0.301 0.192 0.787
Singular02Sat 0.343 0.222 0.151 0.096 0.321 0.199 0.789
TextFusion 0.326 0.209 0.141 0.086 0.307 0.181 0.784
ScalarFusion 0.343 0.219 0.145 0.090 0.320 0.198 0.786
FullFusion 0.351 0.231 0.162 0.107 0.331 0.218 0.794

Table 5.2: Quantitative Comparison of Fusion Methods: Performance Evaluation Across Mul-
tiple Metrics. B n for BLEU-n, R L for ROUGE-L, BSF1 for BERT Score F1Score and CBSF1

for Bio-ClinicalBERT Score F1Score.

Among the test samples, approximately 33% of them have BLEU-1 scores between 0.1 and 0.3,

around 54% have scores between 0.3 and 0.5, about 11% have scores between 0.5 and 0.7, and

a mere 0.26% have scores between 0.7 and 1, indicating high similarity. Our BLEU-1 results

exhibit strong concordance with existing report generation literature, which has established

scoring norms averaging 0.3 to 0.4 for this metric.
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Singular Model B 1 B 2 BSF1 Bio-CBSF1 R L

ETHNICITY 0.328 0.212 0.174 0.782 0.321
HEARTRATE 0.333 0.213 0.170 0.786 0.295
ICD 0.328 0.207 0.186 0785 0.301
RESPRATE 0.329 0.213 0.185 0.788 0.309
SBP 0.336 0.219 0.197 0.786 0.319
DBP 0.338 0.220 0.188 0.784 0.322
O2SAT 0.343 0.222 0.199 0.789 0.321
ACUITY 0.342 0.222 0.200 0.789 0.309
TEMPERATURE 0.336 0.219 0.199 0.789 0.326
GENDER 0.341 0.224 0.197 0.787 0.331
CHIEF COMPLAINT 0.326 0.212 0.185 0.785 0.302

Table 5.3: Performance Comparison of Singular Data Models

We compared our model against relevant state-of-the-art models with the best results shown

in bold (Table 5.4). In terms of the ROUGE-L score, which indicates the model’s effectiveness

in achieving document-level linguistic coherence, our approach achieved a score of 0.331—the

highest among all models evaluated. This result suggests that our model is particularly strong

in capturing the extended linguistic context required for medical reports.

MODEL B 1 B 2 B 3 B 4 R L

Nooralahzadeh et al. 2021 0.378 0.232 0.154 0.107 0.272
L. Wang et al. 2022 0.395 0.253 0.170 0.121 0.284
Shuxin Yang et al. 2022 0.363 0.228 0.156 0.115 0.284
Z. Wang et al. 2022 0.351 0.223 0.157 0.118 0.287
Wu et al. 2023 0.340 0.212 0.145 0.103 0.270
Jin et al. 2024 0.398 x x 0.112 0.268
Our FullFusion Model 0.351 0.231 0.162 0.107 0.331

Table 5.4: Comparison between our Full Fusion Model and state-of-the-art methods on the
MIMIC-CXR dataset, referencing results from their published literature.

5.7 Qualitative Results

For a better interpretation of the results, we illustrated the samples in Figure 5.2 that showcase

diversity such as accurate prediction, different expressions, missing and false arguments, and

completely false prediction. We compared the ground truth with our FullFusion model, and the

correctly predicted diagnoses highlighted in bold for emphasis.

The results show promise in producing reports that capture many of the key findings described

in the ground truth reports. To begin with, in all cases, the order of findings aligns with the

reports written by the radiologists and the generated reports are structurally correct. The results
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also reveal a generally positive alignment in terms of language and grammar, however, some of

the generated reports exhibit repeated words or phrases, which can affect the overall coherence.

Additionally, the usage of ”and” at the beginning of sentences and concluding paragraphs with

”the” or ”is” reveals grammatical inconsistencies. Furthermore, the FullFusion model accurately

identifies normal cardiac, mediastinal, and hilar contours when present in the ground truth.

It also reliably notes the presence or absence of abnormalities like pulmonary edema, pleural

effusion, focal consolidation, pneumonia, and pneumothorax which are crucial in radiology

analysis. In some cases, the generated reports exhibit a reduced level of detail compared to the

ground truth, omitting certain specific observations.

In the first sample, the model missed the right middle lobe atelectasis that was noted in the

ground truth. In sample 2, the model hallucinated mediastinal clips not present in the ground

truth or image. Sample 3 shows that the model did not fully capture the enlarged cardiac

silhouette and vessels described in the ground truth. In sample 4, the model missed details

about the interval removal of a central venous line and differences in positioning compared to a

prior exam that provided important clinical context.

In sample 5, the model demonstrated enhanced detail compared to the ground truth by providing

additional descriptive findings. Sample 6 shows that the model failed to identify the surgical

clips in the right upper quadrant indicating a prior cholecystectomy that was noted in the

ground truth. The model also incorrectly identified findings suggestive of chronic obstructive

pulmonary edema in the upper quadrant.

Sample 7 had repetitive phrasing about no acute osseous abnormalities and failed to note the

subsegmental atelectasis in the left lung base documented in the ground truth. Otherwise, the

report accurately stated that the heart size was normal, the lungs were clear, and no effusions or

pneumothorax were present. Lastly, in sample 8, the model did not fully capture the moderate

cardiac enlargement and aortic tortuosity described in the ground truth, instead stating mild

cardiac enlargement. The predicted report also repeats “stable mediastinal silhouettes are

stable” incorrectly. However, it accurately notes the lack of pulmonary effusion, pneumothorax

or consolidation similar to the ground truth.

Overall, these qualitative results demonstrate good progress for the radiology report generation

model, with accurate high-level identification of key findings, but also room for improvement
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in capturing more nuanced details and clinical context. While the baseline model was capable

of providing results, it did not exhibit the same level of detail and accuracy as the enhanced

model.

Figure 5.2: GT and GR report from the proposed FullFusion CXR report generation model.

75



Radiologist Evaluation Results Chapter 5

5.8 Radiologist Evaluation Results

We evaluated the model using 158 randomly selected samples from the unseen test set, covering

diverse medical conditions reflecting the full distribution. A board-certified radiologist assessed

three criteria: language fluency, content selection, and correctness of abnormal findings (AF).

For language, the radiologist evaluated sentence structure, terminology, and overall clarity. For

content, they compared the report’s level of detail, key findings, and image coverage to the

true findings. They assessed the accuracy of abnormal findings by comparing them to the true

conditions. The radiologist assigned 1-5 scores and noted preference between reports.

This methodology enabled quantitative and qualitative assessment of language generation, con-

tent selection, and diagnostics. The radiologist also noted that while performing well overall,

some shortcomings were observed.

The model often missed surgical materials like catheters and clips and it fails to capture anomaly

variations when the patient is inclined to the right or left. Sensitivity to bone lesions was

lacking, overlooking non-urgent findings like scoliosis. However, it’s worth noting that these are

not extensively covered in the ground truth as well. For normal X-rays, it occasionally included

non-definitive elements.

While these additions may be accurate, there is a slight possibility that they may not be.

This evaluation methodology provided valuable insights into model strengths and areas needing

improvement.

Language Fluency Content Selection Correctness of AF

4.24 4.12 3.89

Table 5.5: Radiologist Evaluation Results on a 1-5 Scale

5.9 Discussion and Conclusion

This chapter presents a multi-modal data-driven integrative approach to enhance the precision

and clinical relevance of radiology reports generated in conjunction with chest X-ray images. In

the section pertaining to data selection, we ensured temporal alignment between the input data

modalities and the target radiology reports to closely imitate real-world clinical workflows.
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Additionally, we aimed for a balanced representation of each type of report in our sample

selection to mitigate potential biases skewed towards normal cases. Although this approach

resulted in a smaller dataset compared to existing literature, it was a crucial step for preventing

biased results and validating the results in real clinical settings.

Recent literature highlights the potential of multi-modal learning techniques in advancing the

quality of automated radiology report generation. However, a majority of medical report gener-

ation models primarily focus on target reports within specific information or incorporate image

findings as supplementary inputs. Given that Chest X-rays present three-dimensional objects

in a two-dimensional form, some valuable spatial and contextual information is lost, leading to

semantic gaps in the data provided to the network. Furthermore, radiologists possess more data

beyond images during report generation.

To address this limitation, we bridged the semantic gap between vision and language models

by capturing uncodified information essential to the diagnosis process. We achieved this by

introducing an ensemble of 11 supplementary features in conjunction with the chest X-ray

data. These features were thoughtfully selected to enhance both accuracy and clinical insight

in the generated reports. The results indicate that incorporating non-imaging clinical and non-

clinical data positively impacts the quality of the generated reports, as measured by automatic

evaluation metrics and human evaluation studies.

Our ablation study further demonstrates that providing all data simultaneously yields higher

accuracy compared to using individual data components separately. This finding suggests that

introducing data with no significant standalone impact on the model, when combined with

other modalities through attention-based fusion, can lead to improved performance by capturing

complementary information.

However, there are some limitations to our study. While the multi-modal deep neural network

framework holds potential strength, its complexity and resource-intensive nature may pose

challenges. This might hinder its real-time application in medical settings, especially those with

limited resources and hardware accelerators like GPUs. Furthermore, our data solely originates

from databases within a single institution, lacking a comparable comprehensive dataset that

combines imaging and non-imaging data (both clinical and non-clinical) with linked radiology

reports. Enhancing data diversity from various sources could enhance the overall robustness of

the study.
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CROSS-TASK LEARNING

FRAMEWORK

6.1 Introduction

With the development of deep learning techniques, the fields of computer vision and natural

language processing have started to converge, as both images and texts can be represented via

compatible embeddings. This convergence has led to success in the challenging cross-modal

tasks and it has numerous real-world applications, such as image captioning (Stefanini et al.

2022), medical report generation Ramirez-Alonso et al. 2022), and assisting the visually im-

paired (SS et al. 2023).

In such modality translation tasks, the objective is to learn complex non-linear mappings,

typically between visual representations derived from an input image and complementary or

target data in the form of text. This process requires the effective transfer of information across

modalities, preserving as much relevant content as possible.

Within this context, the use of multi-modal data has provided an efficient way to improve the

coherence and accuracy of the generated text conditioned on the given image input. Specifically,

multi-modal deep learning architectures aim to capture and fuse the complementary information

present across heterogeneous data modalities, such as images and structured data (e.g., medical

records, demographic information, or clinical measurements).
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Additionally, multi-task learning, where a single model is trained to perform multiple related

tasks simultaneously, has played an important role in harnessing the full potential of multi-

modal data in image-to-text generation (Bayoudh et al. 2021). It’s important to note that

this approach differs from traditional methods where separate models are trained for individual

tasks. Unlike single-task learning, where models are tailored to a specific job, and transfer

learning, where a pre-trained model is repurposed, multi-task learning takes a unified approach.

In Chapter 5, we took a step forward by combining patient information with medical images

to improve the quality of automatically generated radiology reports. Although this approach

showed promise in creating accurate and coherent reports, there’s room for enhancement, par-

ticularly in capturing all relevant clinical findings.

Building on this groundwork, we explored the impact of multi-task learning on the accuracy and

efficiency of radiology report generation. Chapter 6 introduces a new statistical system for cross-

modal multi-task learning, that is for contemporary learning of various tasks (report generation,

ordinal classification, multi-label classification) from multi-modal data. Our primary objectives

encompass evaluating the model’s performance in all tasks and investigating potential synergies

between these parallel learning processes.

6.2 Problem Formulation

The proposed approach is designed to concurrently perform three tasks: Report Generation,

Ordinal Classification, and Multi-Label Classification. These tasks involve processing various

inputs and producing meaningful outputs while optimising for different loss functions. By

integrating them within a single framework, the overarching objective is to leverage information

and features from the other tasks, ultimately resulting in more precise and context-aware text

generation capabilities.

Given an image I, unified additional features F , ground truth radiology report text sequences Y ,

ground truth ordinal acuity levels T (where T is an integer value between 1 to 5 indicating the

severity of the patient’s condition), and ground truth labels for findings Z (where Z are multi-

label categorical values with 5 possible labels indicating the presence or absence of specific

medical findings), the objective is to learn an encoder-decoder model to minimise the loss for

the three tasks:
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Report Generation (REPGEN), generates a radiology report Ŷ that maximises the proba-

bility of the ground truth text sequence Y given the image I and features F . The loss is defined

as the cross-entropy loss between Ŷ and Y .

Ordinal Classification (OC) predicts ordinal acuity level T̂ given I and F . The loss is defined

as the binary cross-entropy between T̂ and T .

Multi-Label Classification (ML) predicts multiple labels for findings Ẑ given I and F . The

loss is the binary cross-entropy between Ẑ and Z.

Overall Loss Function, denoted as L, is composed of three task-specific loss components, α,

β, and γ are hyperparameters that control the relative weighting of these losses:

L = α · LREPGEN(Ŷ , Y ) + β · LOC(T̂ , T ) + γ · LML(Ẑ, Z)

Where:

LREPGEN(Ŷ , Y ) is the loss function for REPGEN.

LOC(T̂ , T ) is the loss function for OC.

LML(Ẑ, Z) is the loss function for ML.

We also applied gradient clipping during the update of task weights to prevent the exploding

gradient problem. θ denoted as the threshold value for clipping, after computing the gradients

(∇L), the clipped gradients represented as:

∇clipped = clip(∇L,−θ, θ)

The updating of the weights of each task including gradient clipping calculated as:

α = α− lr · ∇clipped[0]

β = β − lr · ∇clipped[1]

γ = γ − lr · ∇clipped[2]
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Where lr represents the learning rate of the optimiser. During the training process, the model’s

encoder-decoder parameters θ are optimised by minimising the overall loss L over the training

dataset using the following objective:

min
θ

L(θ) = min
θ

(
α · LREPGEN(Ŷ , Y ; θ)

+ β · LOC(T̂ , T ; θ)

+ γ · LML(Ẑ, Z; θ)
)

6.3 Experiments and Analysis

6.3.1 Data and Feature Processing

The MIMIC-CXR database also contains structured labels for chest X-ray images generated by

CheXpert (Irvin et al. 2019), an open-source rule-based tool. CheXpert operates in three main

steps: Firstly, it identifies all mentions of a label, and then each mention is classified as positive,

uncertain, or negative based on the local context. Finally, it resolves multiple mentions of the

same label by giving priority to positive mentions, followed by uncertain mentions, and lastly,

negative mentions.

In total, there are 14 structured labels generated by the CheXpert classifier: Atelectasis, Car-

diomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion, Lung

Opacity, Pleural Effusion, Pneumonia, Pneumothorax, Pleural Other, Support Devices, and No

Finding. For each condition, the classifier assigns one of four possible values:

• 1.0: Positive finding (condition is present)

• -1.0: Uncertain finding

• 0.0: Negative finding (condition is absent)

• NAN: No mention (missing data)

To address the class imbalance, we consolidated the original 14 CheXpert conditions into 5

broader classes. A class is marked as present (1) if any associated condition has a label (whether

positive, negative, or uncertain), and absent (0) if completely unlabeled. Specifically:
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• No Finding: Retained as is from the original labels

• Support Devices: Retained as is from the original labels

• Fracture: Retained as is from the original labels

• Lung Opacity: Generated by combining any presence of lung-related conditions (Atelec-

tasis, Consolidation, Edema, Pneumonia, and Lung Lesion)

• Pleural: Generated by combining any presence of pleural-related conditions (Pleural Ef-

fusion, Pleural Other, and Pneumothorax)

After cleaning the missing data, the resulting dataset consisted of 60,933 data points. From

this dataset, we selected a balanced subset of 10,000 samples, with 7,000 for training, 2,000 for

validation, and 1,000 for the test set. The curated dataset consists of image data paired with

findings, as well as clinical and non-clinical data (further detailed in 5.3), structured labels, and

patient acuity level (also referred to as severity level).

Every image was resized and then normalised to ensure uniform intensity levels. Subsequently,

a pre-trained model extracted visual features from the images. The resulting visual feature

vector was then input into a transformer-based encoder to gain a deeper understanding of the

recognised elements in the image.

Numerical variables were initially preprocessed to remove potential outliers based on domain

knowledge and clinical perspectives. The remaining data for each numerical feature was then

standardised to a 0 to 1 range by rescaling based on the minimum and maximum observed values.

Binary variables were converted to numerical representations. Integer values were assigned to

each group in categorical data, followed by one-hot encoding. The encoder expects input data

in matrix form (samples × features), therefore, the processed data was reshaped into a 2D array

where each row represents a sample and each column represents a feature.

Text-based variables were pre-processed by converting to lowercase, removing unnecessary punc-

tuation using regular expressions, and condensing consecutive periods into single spaces. Dou-

ble periods were replaced with single spaces to maintain consistent text formatting. Additional

standardisation involved replacing shorthand phrases or abbreviations with their full-text equiv-

alents, correcting errors, and addressing inconsistencies in pluralisation. This pre-processing

pipeline standardised various data types for input into the model.
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Lastly, acuity levels were encoded using cumulative one-hot representation where ordinal levels

are mapped to binary vectors. Each vector has a length equal to the number of ordinal levels

minus one. The presence of a ’1’ in a specific position within the binary vector indicates the

corresponding ordinal level. This encoding preserves the ordinal relationships between levels.

6.3.2 Evaluation Metrics

Several metrics are used to evaluate model performance on the report generation, multi-label

and ordinal classification tasks. The linguistic and contextual quality of the generated radiol-

ogy reports have been evaluated using BLEU-1 to 4, ROUGE L, METEOR, BERT Score and

BioClinicalBERT Score.

For multi-label classification, the metrics we employed included Precision, Recall, F1 Score,

Hamming Loss, and Exact Match Ratio. Precision and Recall evaluated the accuracy of pre-

dicting positive labels and capturing all true positives respectively. F1 Score provided the

balance between Precision and Recall. Hamming Loss quantified label prediction errors, and

Exact Match Ratio measured how often the model correctly predicted all labels for a given

instance.

For ordinal classification, our metrics consisted of Ordinal Classification Accuracy, Mean Abso-

lute Error, Mean Squared Error, and the Accuracy-Correlation Hybrid Metric. Ordinal Classi-

fication Accuracy measured the accuracy by computing the total number of correct predictions

divided by the total number of predictions. Mean Absolute Error and Mean Squared Error quan-

tified the average magnitude of errors in predicted ordinal values. The Accuracy-Correlation

Hybrid Metric combined aspects of accuracy and correlation to evaluate the preservation of the

ordinal relationship.

6.3.3 Experimental Setup

All models were implemented in TensorFlow 2.3.0 and Keras. Transformer layers implemented

with 3 attention heads, and 256 dimensional feedforward layers.

Each model was trained on 7,000 data using an Adam optimiser with a learning rate warmup

over 10% of steps up to 3e-5 and a batch size of 32. The validation, and test sets consist of 2,000,

and 1,000 data, respectively. Training continued for 100 epochs with early stopping monitoring

the validation loss with patience=10.

83



Architectural Designs and Learning Strategies Chapter 6

For parity in model optimisation, we maintained consistency in the choice of hyperparameters

(e.g. learning rate, batch size, etc.) when training each of the assessed models. All models were

trained on NVIDIA Tesla A100 GPUs with 40GB memory.

6.4 Architectural Designs and Learning Strategies

6.4.1 Cross-modal MTL Approach

Multi-task learning is a promising approach to enhance representation learning; by sharing

information across tasks, it can improve the generalisation of the learned representations. How-

ever, one of the challenges in multi-task learning is determining the appropriate complexity of

the network architecture, especially the decoders for each individual task. Complex decoders

may actually degrade the quality of the learned representations by introducing noise and confu-

sion. In this context, we initially employed a foundational multi-label classifier and an ordinal

classifier.

In our experiments to determine the optimal architecture and loss hyperparameter values, we

explored several approaches. Firstly, we prioritised increasing the accuracy of the main task;

report generation (REPGEN). The other tasks, ordinal classification (OC) and multi-label clas-

sification (MLC) were secondary objectives. The Cross-modal MTL(CM-MTL) model leveraged

multi-task learning to enhance performance primarily for the main task.

As illustrated in 6.1, the ordinal classifier starts with applying a dropout regularisation by ran-

domly setting a fraction of input units to zero during training to prevent overfitting. Then,

batch normalisation is performed to improve the stability and performance of the model during

training. Finally, it passes the output through a fully connected layer with a sigmoid activation

function. The sigmoid activation ensures that the output values are suitable for ordinal clas-

sification tasks with the correct order. The last layer also applies L2 regularisation to prevent

overfitting.
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Figure 6.1: The overall architecture of Cross-modal Multi-Task Learning (CM-MTL) Model

For multi-label classification, the model begins with a dropout layer set at 0.5, which introduces

regularisation by randomly deactivating input units during training to prevent overfitting. Fol-

lowing this, a batch normalisation layer is utilised to normalise activations within each batch.

The model then employs a fully connected layer with five output units, activated using the

sigmoid function. Similar to the ordinal classification, this layer is regularised using L2 regu-

larisation to penalise large weight values, thus preventing overfitting.

The text generator decoder employs causal masking, which is combined with padding masks. It

comprises two consecutive multi-head self-attention layers. The first layer attends exclusively

to the target sequence, while the second layer attends to the encoder outputs using the decoder

inputs as queries. The attended representations are processed through a two-layer position-wise

feed-forward network. Finally, a linear layer produces predictions, which are used as inputs for
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the next time step.

The approach employed two different strategies for handling multiple tasks. The first strategy

treats all tasks equally by assigning them the same weight, while the second strategy prioritises

the loss contribution (α) of the main task, report generation. Despite achieving good results in

report generation, the ordinal classification (OC) and multi-label classification (MLC) models

encountered convergence issues after a few training epochs.

6.4.2 Results

Quantitative Results

We evaluated the performance of the model on three tasks: report generation, ordinal classifica-

tion, and multi-label classification. The CM-MTL model was further trained in two configura-

tions for better assessment: equal weighting across tasks (CM-MTL-EQ) and task prioritisation

for the text generation task (CM-MTL-TP). Then, we compared these CM-MTL models to

single-task learning baselines (STL).

Table 6.1 displays the results for text generation tasks, measured in terms of BLEU scores

(B 1 to B 4), BERT Score F1Score (BSF1), Bio-ClinicalBERT Score F1Score (Bio-CBSF1),

and ROUGE-L (R L). When employing the CM-MTL-EQ approach, the model exhibits slightly

improved performance across most metrics compared to STL.

Method B 1 B 2 B 3 B 4 BSF1 Bio-CBSF1 R L

STL 0.3326 0.2159 0.1488 0.0950 0.2056 0.7857 0.3096
CM-MTL-EQ 0.3352 0.2229 0.1570 0.0983 0.1958 0.7883 0.3235
CM-MTL-TP 0.3424 0.2295 0.1616 0.1035 0.2065 0.7898 0.3366

Table 6.1: Performance comparison of a report generation using different training approaches.
B n for BLEU-n, R L for ROUGE-L, BSF1 for BERT Score F1Score and CBSF1 for Bio-
ClinicalBERT Score F1Score. STL denotes Single Task Learning, CM-MTL-TP represents
Multi-Task Learning with Task Prioritisation for text generation and CM-MTL–EQ indicates
Multi-Task Learning with equal task weights for each task

Notably, the CM-MTL-TP model achieved the best performance, outperforming STL and CM-

MTL-EQ on all metrics. This demonstrates the benefits of multi-task learning with proper task

weighting for improving text generation quality and it also validates the capability to leverage

representations learned across related tasks.

To assess the statistical significance of the improvements achieved by the CM-MTL-TP approach
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B 1 B 2 B 3 B 4 BSF1 Bio-CBSF1 R L

p-value 0.00117 0.00006 0.00035 0.02569 0.83824 0.00611 0.00000

Table 6.2: P-values from pairwise t-test between STL and CM-MTL-TP approaches (rounded
to 5 decimal places)

over the Single-Task Learning (STL) baseline, we conducted a pairwise t-test for each metric.

Table 6.2 presents the p-values from these significance tests, rounded to 5 decimal places.

The small p-values obtained for most metrics, particularly BLEU-2, BLEU-3, and ROUGE-L,

indicate that the improvements in text generation quality are statistically significant. This

analysis focuses on the text generation task, as it was the primary task where substantial

improvements were observed with the CM-MTL-TP approach.

Multi-label classification and Ordinal classification models suffered from overfitting after only a

few epochs. Despite attempts to optimise hyperparameters, STL classification models continued

to overfit within a few epochs. In contrast, multi-task learning approaches helped prevent

overfitting for 5-6 additional epochs compared to STL on this task. So even though computed

multi-label classification metrics show better STL performance(Please refer to Table B.1 and

Table B.2), this overfitting was inevitable with single-task training in this approach.

Qualitative Results

For a better comparison of the results, we have colour-coded the illustrated samples to match

their respective ground truth labels, see Figure 6.2. Ambiguous or repeated expressions are

denoted in italics, while incorrect predictions or expressions not present in the original report

are underlined. If the statement is for both, such as when the expression is repeated and not

in the original report, we used both italics and underlines.

The results indicate promise in generating reports that capture many of the main findings

mentioned in the ground truth. All approaches show a generally positive alignment in terms of

grammar, however, some of the generated reports exhibit repeated words or phrases, which can

affect the overall coherence.

Particularly, The STL approach struggles with unnatural wording like ”[UNK] for comparison”

and hallucinates findings that are not present in either the image or the ground truth. The CM-

MTL-EQ output has disjointed phrasing and repetition indicating a lack of narrative coherence.
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Figure 6.2: Illustrative comparison of generated reports from different learning approaches with
ground truth

In contrast, the CM-MTL-TP generates smooth, logical statements more similar to the ground

truth, with some minor repetition. In the second example, the CM-MTL-TP text exhibits a

clearer structure, with sentences covering distinct findings. It includes details like ”pulmonary

edema”, ”aortic arch is again seen” and ”no acute osseous abnormalities identified ” not in the

original text but present in the image.

Overall, results demonstrate good progress for the radiology report generation model, with

accurate identification of key findings but also room for improvement. The STL model some-

times seems to include extraneous or inaccurate details where the equal-weighted MTL shows

improvements in content quality over STL, but suffers from repetitiveness and disorganised

narratives.

6.4.3 Balanced Attentive MTL Approach

In multi-task learning, there is often a trade-off between the different tasks, and one task may

converge faster than others, leading to imbalanced learning, as evidenced by the results of the

CM-MTL model. Improving the performance across all tasks leads to better representation

learning of each modality.

To address this convergence issue and improve task-specific representation learning capabilities,

we enhanced both classification architectures by integrating separate attention mechanisms.
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These task-specific attention layers allow each classifier (ordinal and multi-label) to dynamically

focus on the most relevant input features for its particular task during training and inference. For

instance, the ordinal classification attention might emphasise features related to severity, while

the multi-label classification attention might focus on features indicative of multiple conditions.

As illustrated in Figure 6.3, the final model comprises two primary blocks: shared layers that

are common to all tasks and task-specific layers tailored to each individual task. The details of

Visual Feature Extractor and Unified Clinical Embedding are presented in 5.4.

The cross-attention block focuses on the Unified Clinical Embedding, utilising the image features

as queries. This allows the network to contextually focus on relevant aspects of the unified data

conditioned on the image content.

The ordinal classification employs an attention module that computes attention weights aw,

which are then used to obtain a weighted representation of the input sequence x. This can be

expressed as z =
∑

i(awi · xi), where z is the attended output. This attended output is passed

through a dense layer W followed by a sigmoid activation to produce probabilities for each

ordinal threshold, which are then averaged across the sequence dimension: yoc = avg(σ(Wz)),

where σ is the sigmoid function.

Meanwhile, the multi-label classification uses an attention module to obtain an attended encod-

ing of the input sequence, A(x). This attended encoding undergoes further processing through

5 parallel fully connected layers with sigmoid activations, each corresponding to a distinct label

in the multi-label task.

The outputs of these sigmoid layers, representing the presence or absence of each label, are then

concatenated to form the overall multi-label probability distribution. This can be represented as

yml = [σ(FC1(A(x))), σ(FC2(A(x))), . . . , σ(FC5(A(x)))], where FCi is the i-th fully-connected

layer, σ is the sigmoid function.
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Figure 6.3: The overall framework of our proposed Balanced Attentive multi-task learning
network

In summary, in this approach, the ordinal classifier uses attention to produce a single distribution

over ordered classes, while the multi-label classifier leverages attention and parallel sigmoid

layers to predict the presence of multiple labels simultaneously. The decoding process of the

text generator follows the same approach as the CM-MTL model.

6.4.4 Results

Quantitative Results

We trained and evaluated the proposed approach by comparing it against single-task learning

results. Initially, each task’s decoders were trained independently, and then they were trained

within a unified framework to assess the improvement brought by multi-task learning for each

task.

Table 6.3 presents the performance comparison between single-task learning and Balanced-

Attentive Multi-task Learning across several NLG metrics. The results demonstrate that multi-
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task learning using the Balanced-Attentive approach significantly enhances the performance of

the report generation model and consistently outperforms the single-task approach across all

metrics.

Method B 1 B 2 B 3 B 4 BSF1 Bio-CBSF1 R L METEOR

STL 0.330 0.215 0.148 0.095 0.201 0.787 0.304 0.157
BA-MTL 0.351 0.235 0.167 0.108 0.216 0.791 0.333 0.168

Table 6.3: Performance comparison of a single task report generation (STL) and Balanced-
Attentive Multi-task Learning (BA-MTL).

The table 6.4 displays p-values resulting from pairwise t-tests comparing results between STL

and BA-MTL approaches across BLEU1-4, BertScore and ROUGE scores. The p-values, rang-

ing from 3.64 × 10−13 to 1.36 × 10−12, indicate highly significant differences between the two

approaches for each metric. In all metrics, except BSF1, the p-values are exceedingly small,

suggesting robust evidence against the null hypothesis. Despite BSF1 having relatively larger

p-values compared to other variables, statistical significance remains evident.

B 1 B 2 B 3 B 4 BSF1 R L

p-value 3.64 × 10−13 3.33 × 10−10 3.66 × 10−8 7.05 × 10−4 3.47 × 10−3 1.36 × 10−12

Table 6.4: P-values from pairwise t-test between STL and BA-MTL approaches

We further assessed our model’s performance alongside state-of-the-art methods in radiology

report generation (detailed methodologies of these models are available in Chapter 3), using

evaluation metrics commonly reported in these studies. Original scores from the respective

papers were used for comparison.

MODEL B 1 B 2 B 3 B 4 R L METEOR

Z. Chen et al. 2020 0.353 0.218 0.145 0.103 0.277 0.142
Nooralahzadeh et al. 2021 0.378 0.232 0.154 0.107 0.272 0.145
F. Liu et al. 2022 0.344 0.217 0.140 0.097 0.281 0.133
L. Wang et al. 2022 0.395 0.253 0.170 0.121 0.284 0.147
Shuxin Yang et al. 2022 0.363 0.228 0.156 0.115 0.284 x
Z. Wang et al. 2022 0.351 0.223 0.157 0.118 0.287 x
Wu et al. 2023 0.340 0.212 0.145 0.103 0.270 0.139
Tanida et al. 2023 0.373 0.249 0.175 0.126 0.264 0.168
Zhao et al. 2023 0.399 0.242 0.158 0.109 0.275 0.152
Jin et al. 2024 0.398 x x 0.112 0.268 0.157
FullFusion Model1 0.351 0.231 0.162 0.107 0.331 0.157
BA MTL Model 0.351 0.235 0.167 0.108 0.333 0.168

Table 6.5: Comparison with state-of-the-art radiology report generation methods on MIMIC-
CXR. The best results are highlighted in bold.
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Table 6.5 displays the natural language metrics of various models evaluated on the MIMIC-CXR

dataset. The metrics used are BLEU scores (B 1, B 2, B 3, B 4), METEOR and ROUGE-L

(R L), which are standard metrics for evaluating natural language generation tasks. While

models such as Zhao et al. 2023 and L. Wang et al. 2022 excel in specific BLEU scores, indicating

strong performance in exact n-gram matching, our proposed BA MTL Model demonstrates

competitive performance across all metrics and notably outperforms in terms of ROUGE-L and

METEOR scores.

This suggests superior overall summary quality and content fidelity. The consistent perfor-

mance of our models across various metrics indicates robustness, although there is room for

improvement in exact phrase matching as reflected by the BLEU scores. Interestingly, different

models show strengths in different areas, with Tanida et al. 2023 leading in B 3 and B 4 scores,

suggesting better performance in longer n-gram matches.

This variability in performance across metrics underscores the complexity of the task and the

different focuses of various approaches. Our BA MTL Model’s strong ROUGE-L score (0.333)

implies that it captures the overall content and structure of the reference reports more effectively

than other models, making it particularly suitable for tasks prioritising comprehensive content

summarisation over exact phrase reproduction.

For the ordinal classification task, using the BA-MTL approach shows a reduction of 2.52% in

accuracy. In terms of Mean Absolute Error (MAE), STL achieved a lower value than achieved

by BA-MTL, this suggests that STL is better at minimising the error between predicted and

actual ordinal values. The combined metric of accuracy and correlation also favoured STL, with

a score of 0.8163 compared to 0.7908 for BA-MTL. Overall, the single-task learning approach

outperformed the balanced attentive multi-task learning approach in all evaluated metrics for

the ordinal classification task.

Method Accuracy MAE ACC+Corr

STL 0.8716 0.1283 0.8163
BA-MTL 0.8497 0.1503 0.7908

Table 6.6: Comparing performance of the ordinal classifier in Single-Task and Balanced Atten-
tive Multi-Task Learning

1Our FullFusion Model presented in Chapter 5
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Table 6.7 demonstrates the performance of the multi-label classification task for the Single-Task

Learning (STL) and Balanced Attentive Multi-Task Learning (BA-MTL) approaches. The BA-

MTL approach outperformed the STL method across all evaluated metrics. Additionally, BA-

MTL exhibited lower Hamming Loss (0.1562 vs. 0.1630) compared to STL, indicating better

overall performance in the multi-label classification task.

Method Precision Recall F1 Score Hamming Loss Exact Match Ratio

STL 0.6410 0.6188 0.6108 0.1630 0.8370
BA-MTL 0.6482 0.6398 0.6278 0.1562 0.8438

Table 6.7: Comparing performance of the multi-label classifier in Single-Task and Balanced
Attentive Multi-Task Learning

It is noteworthy that the classification tasks were successfully trained without encountering

convergence issues noted in the previous approach. Although the BA-MTL approach did not

yield improved results for the ordinal classification task, it considerably enhanced performance

in both report generation and multi-label classification tasks compared to single-task learning

baselines. These outcomes highlight the effectiveness of our approach in improving task-specific

performance within a multi-task learning framework.

Qualitative Results

To provide a qualitative assessment of the generated reports, Figure 6.4 presents a visual com-

parison between the input image, ground truth labels, and reports generated by the STL and

BA-MTL approaches. Corresponding statements across the generated reports and ground truth

have been colour-coded for ease of comparison, enabling the identification of accurate predictions

and discrepancies from the ground truth(GT).

In the first sample, the STL model’s output of ”tissue on the frontal view” and ”the lateral

view is limited due to patient” does not match with the ground truth and shows hallucination

by the model. Additionally, the STL model fails to capture all findings and fails in grammar

and sentence structure. It generated incomplete and incoherent sentences such as ”the lateral

view is limited due to the patient has been interval placement of a right picc line has been

removed.” In contrast, the BA-MTL model’s output is more coherent and closely aligned with

the ground truth. The BA-MTL output correctly identifies all the findings in the ground truth

except ”heart size remains mildly enlarged.” The repetition of ”the right hemidiaphragm is

seen” is an error, but it is less severe compared to the hallucinations seen in the STL model.
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The BA-MTL model also shows better performance on grammatical rules and produces more

complete sentences, although the redundancy suggests a minor mistake in the model’s ability

to generate entirely natural text.

Figure 6.4: Illustrative comparison of generated reports from different learning approaches with
ground truth

In the second sample, the STL model again demonstrates strong hallucinations, incomplete and

disjointed sentence structure, and fails to capture important details. The report generated by

the BA-MTL model aligns more closely with the ground truth but it still shows some omissions

and grammatical errors.

The results from the third sample also show that the STL model includes hallucinations, such

as mentioning a “right chest wall portacath”, and uses poor grammar and structure, like “there
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is a right upper lobe retrocardiac opacity is again seen.” It also incorrectly states the cardiac

silhouette is enlarged. BA-MTL model correctly stated cardiomegaly, however, stated severity

level of cardiomegaly does not align with the ground truth. It also includes “the mediastinal and

hilar contours are normal” which is not presented in GT, but it is important to note that the

generated statement is clinically correct. BA-MTL model’s report is more coherent, however,

it still has some grammar issues.

In the fourth sample, the STL model’s report contains repetitions and non-logical phrasing like

“on the lateral view the the lateral view is a the chest ct chest,”. Despite this, it correctly

identifies clear lungs, no pleural effusion, pneumothorax, or free air, and normal cardiac and

mediastinal contours. The BA-MTL model’s report also includes these findings, however, it also

includes repetitions like “the right hemidiaphragm is seen”. In this sample, we observed that

both models avoid strong hallucinations but suffer from the repetition of irrelevant statements.

The STL model’s report in the last sample discusses “rotation to low lung volumes” and “bron-

chovascular crowding,” which are not mentioned in the GT or exist in the input image. It

correctly identifies no pleural effusion or pneumothorax and normal heart size, however, it fails

to mention the abnormalities noted in the GT. Additionally, it ends with incomplete sentences

like “diaphragms and lower thoracic.” The BA- MTL model’s report is more concise and better

in grammar structure, however, it still has repetitions like “the pulmonary edema the pulmonary

edema”. Most importantly, both models fail to detect the crucial findings presented in the input

image as well as ground truth.

6.5 Discussion and Conclusion

This chapter proposed a novel framework for report generation by leveraging multi-modal data

and a multi-task learning approach. Our proposed models aimed to improve the representation

learning capabilities by optimising the relevant tasks. Ultimately, it bridges the gap between

image understanding and natural language generation by enhancing the quality and coherence

of generated medical reports.

The problem is approached using two architectural designs and all models are trained using

single and multi-task learning strategies. Additionally, multi-modal learning is employed in both

approaches by integrating 10 additional features along with visual data. The first framework,
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CM-MTL, was designed to aim to prioritise the report generation task whereas the second

framework, BA-MTL, employed a balanced approach to improve the performance of all tasks.

The results from CM-MTL demonstrate the benefits of multi-task learning, particularly with

proper task weighting, for improving text generation quality. The multi-task model with text

generation prioritisation (CM-MTL-TP) outperformed single-task learning baselines across all

language generation metrics. While single-task learning achieved better performance on the

auxiliary tasks of ordinal and multi-label classification, it suffered from severe overfitting after

only a few epochs. In contrast, multi-task learning helped prevent overfitting for these tasks

and train for additional epochs.

Qualitative analysis of CM-MTL models also showed that CM-MTL-TP generated more co-

herent narratives that better captured logical relationships between medical findings. The

generated reports exhibited good identification of key findings from the images.

However, the convergence problem of the classification tasks encountered in the CM-MTL mod-

els may be leading to imbalanced learning and preventing better representation learning for data

modalities. BA-MTL model addressed this problem by enhancing the classification decoders

with attention mechanisms and applying gradient clipping. These improvements allow us to

adjust each task’s converge and manage the learning process dynamically instead of trying to

assign the weights manually.

BA-MTL results show that multi-task learning significantly enhances the performance of report

generation and multi-label classifier on all metrics used, while the ordinal classifier demonstrates

a reduction in performance. Visual results from the BA-MTL model also proved that multi-task

learning helps considerably to capture key findings and generate consistent and coherent text. It

also tends to less hallucinate compared to STL models and is better at detecting abnormalities,

however, repeated phrases still remain a challenge in both approaches.

Our proposed approach and findings can inform future research on combining computer vi-

sion and natural language processing for medical applications. Furthermore, our approach’s

success in the medical domain suggests the potential for its generalisation to other domains.

The principles of the integrated learning approach, as demonstrated in our research, can be

applied to a wide range of applications beyond medical image analysis. For example, in image

captioning (Sirisha and Sai Chandana 2022), our model’s ability to understand the visual con-
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tent and generate coherent textual descriptions could significantly enhance the accessibility and

interpretability of images in various fields, including social media, e-commerce, and more.

Moreover, in grounded story generation (Hong et al. 2023), our approach can be extended to

create compelling and contextually relevant narratives based on visual cues, making it suitable

for content generation in the entertainment and creative industries. The integrated learning

approaches, which proved effective in our medical domain application, could play an impor-

tant role in advancing these related domains, improving the quality and relevance of content

generated from visual inputs.

Finally, the synergies between vision and language training could lead to more contextual,

logical, and human-like computer-generated text. Our model, however, still has limitations in

optimising content selection and flow that provide opportunities for improvement. However,

the success demonstrated in this medical application underscores the potential of multi-modal,

multi-task learning for a wide range of domains.
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CONCLUSIONS AND FUTURE

OUTLOOK

7.1 Overview

In this thesis, we investigate the automated generation of integrated and structured radiology re-

ports by leveraging clinically relevant information and tasks to establish a more robust pipeline.

This research is framed by two central research questions. The first research question—how

robust frameworks can be established to enhance the utilisation of multiple modalities and

ensure seamless integration and joint processing of diverse data— is addressed by proposing

two frameworks that are presented in Chapter 4 and Chapter 5. Both frameworks address this

question by introducing innovative approaches to handle multiple inputs simultaneously and

integrate various data types. These frameworks demonstrate how pre-processing pipelines and

input-specific encoders could effectively prepare diverse data for further processing, resulting in

a unified embedding that optimally represents the integrated features from all data sources.

The second research question—how representation learning capabilities of neural network mod-

els can be improved through joint optimisation for relevant tasks, and the impact on generali-

sation and performance of radiology report generation— is addressed by the models presented

in Chapter 6. This framework investigated the potential of multi-task learning paradigms to

improve the model’s ability to capture complex relationships between different modalities and

tasks, ultimately leading to more accurate and contextually rich radiology reports.

98



Chapter 7 Significance and Implications

7.2 Significance and Implications

This research offers a multifaceted contribution to the field of medical report generation. We

introduced a multi-input end-to-end network by incorporating medical ontology information to

enrich image representation. This framework demonstrates how supplementary non-imaging

data can improve the network’s ability to interpret image inputs and the importance of domain

knowledge in image representation.

One of the key findings of this approach is highlighting the importance of case-specific infor-

mation in assisting neural networks to fully comprehend and interpret image inputs. As most

improvements are observed in normal cases, this finding suggests that the network requires more

explicit and domain-specific knowledge beyond imaging data and information already included

(utilised) in the final report.

The development of the FullFusion method represents a substantial improvement forward in

multi-modal data fusion techniques. It simultaneously processes and combines 11 distinct non-

imaging features which are traditionally not included in the final report. These features comprise

information embedded in the images and radiologists’ working patterns. During the typical re-

port generation process, radiologists reference many details observed in the images, which are

not explicitly documented in the reports. Our approach incorporates these previously non-

utilised data points, representing an innovative step not explored in existing literature. FullFu-

sion method outperforms both single and group-based baselines across all evaluated metrics (as

presented in Table 5.2), demonstrating the advancement and efficacy of this feature integration

strategy.

The FullFusion approach is further extended and refined in the cross-task framework presented

in Chapter 6. This framework enhances the joint optimisation process by incorporating multi-

modal fusion strategies. As a result, it achieves a ROUGE-L score of 0.33 which demonstrates

a significant improvement over the typical range of 0.26 to 0.28 reported in the comparative

literature as shown in Table 6.5. An approximate 22% increase underscores the efficacy of our

proposed methodology in advancing the state-of-the-art in this domain.

Importantly, the cross-task framework demonstrates improved coherence in narrative genera-

tion. As illustrated in Figure 6.4, this approach reduces hallucination compared to singular task

baselines, indicating enhanced representation learning and logical relationship capture.
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Furthermore, the strength of our approaches is demonstrated through the extensive ablation

studies and systematic analyses detailed in this thesis. These include (1) a component-wise

analysis demonstrating the impact of different views of the image and various encoder-decoder

variants, (2) an assessment of the contribution of individual modalities and modality groups to

the generated text and (3) an examination of the effect of different weighting approaches on

learned features across various tasks.

From a clinical perspective, this thesis highlights the critical importance of incorporating sup-

plementary data for automated chest X-ray (CXR) report generation. While recent literature

has explored the integration of non-imaging or additional data sources in report generation,

resulting in multi-modal data utilisation emerging as a prominent research direction, our work

stands out in its comprehensive approach to data integration and joint optimisation. To the

best of our knowledge, this study remains the only one to incorporate such a wide array of dis-

parate data types and optimise complex vision tasks in radiology report generation, proposing

a unique architecture specifically designed to handle this multi-modal complexity.

Overall, the proposed approaches not only improve text generation accuracy but also present

a versatile framework applicable to various multi-modal data scenarios. By quantifying the

performance of individual modalities and demonstrating the synergistic effects of multi-modal

fusion, this thesis offers valuable insights and a roadmap for future developments in multi-modal

and cross-modal AI systems.

7.3 Nuances in Multi-Modal Learning

In thoroughly assessing the overall results, this thesis also has yielded several additional find-

ings that have significant implications for multi-modal learning. Comprehending the problem

domain’s boundaries, challenges, and framework limitations within the application area was

crucial for identifying the optimal approach. To start with, evaluating dataset constraints is an

important step in domain-specific modality translation tasks because the network components

necessitate sufficient capacity to process the input and generate meaningful outputs. When

input images are similar and their corresponding reports consist of long sequences rather than

brief indications of normality, the decoder must fully utilise the image representation through-

out the decoding process to understand the context. The selection of the decoder, as well as

utilising the hybrid image representation, helps the model reduce hallucinations in the generated
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reports.

Secondly, in medical applications, particularly in radiology, the approach cannot be a simple

adaptation of the relevant methodology or data handling; the specialised vocabulary used in

reports, the diversity of the report’s language and the critical nature of accuracy in medical

diagnosis all require specialised consideration. It is important to handle the task in accordance

with the working field and the original methodology of the radiologists. We prioritised alignment

with real-world practices over maximising dataset size or NLG performance metrics. This

approach involved excluding duplicated image views and reports that contain historical notes

that cannot be extracted from the current image, ensuring temporal alignment between inputs

and target reports, and balancing report types to prevent bias towards normal cases. While this

resulted in a smaller dataset compared to existing literature, it enhances the clinical relevance

and reliability of our results.

Furthermore, some data that may seem insignificant or did not improve results on its own can

become valuable when combined with other data types. For example, a patient’s complaint

or symptoms alone might not be very informative, but when combined with imaging data and

relevant clinical data, it could provide crucial context for diagnosis. For instance, a patient

reporting chest pain might not offer enough information for a conclusive diagnosis. However,

when this symptom is combined with high blood pressure and imaging data, it provides more

context that can lead to a more accurate diagnosis of conditions like heart disease or pneumonia.

Conversely, data that shows strong statistical significance individually might still reduce model

accuracy if not properly integrated with other types or if it introduces conflicting information.

This is exemplified in Table 5.3, which presents the individual contributions of each data point.

Notably, the ICD title achieved better performance in a singular approach compared to the

text-based approach. However, its performance was still lower than the FullFusion approach.

The ICD title and text-based data may provide conflicting information, and the model might

struggle to reconcile these differences, leading to reduced accuracy. By aggregating diverse data

types, the model can leverage additional context and evidence to make more informed decisions.

This approach helps in compensating for discrepancies between individual data sources, leading

to improved accuracy and robustness. This observation demonstrates the importance of holistic

data integration and the potential limitations of relying on individual data points in isolation,

regardless of their apparent statistical strength.
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Moreover, effectively managing data multi-modality introduces network complexity even for

individual tasks. Balancing this complexity is important when dealing with both multi-modality

and multi-tasking. Networks that are too simple may fail to capture the intricacies of multiple

tasks, while overly complex networks can be difficult to train efficiently. Additionally, a static

approach to task prioritisation, such as always prioritising the task with the highest accuracy,

may not be optimal in all cases. As demonstrated in Section 6.4.4, a dynamic approach that

adjusts task priorities during training resulted in better performance across both clinical and

computational metrics.

7.4 Limitations and Challenges

The research presented in this thesis is subject to several limitations that not only highlight

areas for future research but also demonstrate an understanding of the challenges inherent in

the field of computer-aided radiology report generation.

A primary challenge lies in the inherent variability of radiologists’ language use. Despite our

efforts to normalise and standardise the text data, the diverse terminology used to describe

similar findings (e.g., ”within normal limits”, ”appears to be normal”, ”seems normal” and

”normal”) introduces ambiguity. This linguistic diversity, while reflective of real-world practices,

complicates the training process and leads to inconsistencies in the generated reports.

This language variability issue is closely tied to another critical limitation: the inadequacy of

current evaluation metrics for radiology report generation. Standard metrics fail to capture the

nuanced differences between generated and ground truth reports, particularly in cases where

small changes in wording can have significant clinical implications, such as the distinction be-

tween ”no cardiomegaly” and ”cardiomegaly.”

Some researchers have employed the CheXpert automated labelling tool to categorise both

machine-generated and reference reports into 14 different categories related to thoracic diseases

and support devices to tackle this problem. By comparing the CheXpert-labelled outcomes of

the generated reports with those of the ground truths, they evaluated model performance using

precision, recall, and F1-score. In our efforts to address this problem, we leveraged the BioClin-

ical BERT model for contextual understanding and semantic similarity, which represents a step

forward. While these advancements are promising, there remains a need for more sophisticated
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evaluation methods that can assess content selection, contextual similarity, clinical relevance,

and sentence structure in a manner that aligns with radiological expertise.

The challenges of language diversity and metric inadequacy are further compounded by incon-

sistencies in reporting practices among radiologists. Not all normalities are explicitly stated in

every report, presenting a challenge in evaluating the model’s performance. When the model

generates accurate predictions that are not present in the original report, it becomes difficult to

distinguish between correct inferences and potential errors. This limitation underscores the need

for a more comprehensive approach to ground truth data collection and annotation, possibly

involving multiple expert reviews to create more complete, structured reference reports.

The research is further constrained by the lack of additional, comparable datasets that include all

the relevant multi-modal data, limiting the validation of the proposed methods’ generalisability.

We created balanced subsets from the MIMIC database for each approach. However, since all

the data still originates from a single hospital, this limitation remains unaddressed.

Finally, the computational demands of processing vast amounts of multi-modal data simulta-

neously present a practical limitation to the research. Filtering and limiting data size, due

to restricted access to high-performance computing resources, may have impacted the model’s

potential performance and the scope of experiments conducted.

7.5 Future Directions

The limitations identified in this research open up several avenues for future work, which could

significantly advance the field of computer-aided radiology report generation.

1. Expanding Model Generalisation in Cross-Domain Applicability

Our empirical evaluation provides robust evidence supporting the superiority of our multi-

modal strategy over traditional image-only or single-modal approaches. The successful

implementation of multi-modal and multi-task learning frameworks in radiology not only

advances the field but also suggests promising avenues for application in other medical

domains that necessitate the integration of multi-modal data.

Our network is designed with adaptability in mind, allowing customisation and repro-

ducibility. The principles demonstrated in this thesis can enhance the quality and coher-

ence of generated content in different domains. This cross-domain applicability highlights
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the impact of the proposed methodologies, suggesting a wide range of future research

directions and practical applications. Importantly, the methodologies are not confined

to the specific setup and can be applied more broadly, fostering innovation beyond our

context. They have the potential to enhance existing image-to-text generation models

like BLIP (J. Li, D. Li, et al. 2022) and LLaVA (H. Liu et al. 2024). This underscores

that our research not only stands independently but also holds the potential to advance

current state-of-the-art systems in this field.

2. Enhancing Contextual Adaptability and Reducing Hallucination

Exploring patient history over time and comparing it with previous studies presents op-

portunities to refine our model’s capabilities. By incorporating longitudinal data and

patient-specific factors—such as chronic conditions like smoking history—we can tailor

our approach to better account for relevant clinical features. This direction not only aims

to improve the accuracy of diagnostic assessments but also holds the potential to address

the persistent issue of hallucination in language generation tasks.

Hallucination remains the most prevalent and significant problem in language generation

tasks. While the proposed approaches have mitigated this issue to some extent, its com-

plete elimination remains unsolved. This limitation is particularly concerning in real-life

medical applications, where false information could have serious consequences.

Adopting adversarial training techniques alongside knowledge distillation methods is also

promising to mitigate hallucination. Adversarial training involves training a discrimina-

tor network alongside the generator to distinguish between real and generated outputs,

penalising hallucinated content by aligning generated data closer to real-world patterns.

Knowledge distillation guides models to mimic outputs from more reliable sources or en-

sembles, reducing the generation of unrealistic or improbable outputs.

3. Optimising Large Language Models with Parameter-Efficient Fine-Tuning

Another direction is the integration of Large Language Models (LLMs) as decoders in

our network, coupled with parameter-efficient fine-tuning techniques and soft-prompt en-

gineering. This approach could potentially address some of the current limitations in

language generation and adaptability.

LLMs, pre-trained on vast amounts of text data, have demonstrated remarkable capabil-
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ities in understanding and generating human-like text across various domains. By using

an LLM as a decoder, we can leverage its broad knowledge base and linguistic capabilities

to generate more coherent and contextually appropriate radiology reports. Parameter-

efficient fine-tuning techniques, such as LoRA (Low-Rank Adaptation) or Adapter layers,

allow us to adapt these large models to our specific task without the need to update all

parameters. This approach reduces computational requirements and mitigates the risk of

catastrophic forgetting, where the model loses its general language understanding while

adapting to a specific task.

Soft-prompt engineering involves prepending learnable continuous vectors to the input of

the LLM. These ”soft prompts” can be optimised during fine-tuning to guide the model

towards generating task-specific outputs. In our context, we will design soft prompts that

encode radiological expertise and domain-specific knowledge, potentially improving the

accuracy and relevance of generated reports. This combination of techniques could enable

us to create a more flexible and powerful report generation system that can adapt to the

nuances of radiological language while maintaining the ability to generate coherent and

contextually appropriate text.

4. Exploring Interpretability and Causality for Real-World Deployment

Given the critical nature of medical applications, enhancing the interpretability and causal

understanding of our models is crucial for real-world deployment. Future work will fo-

cus on developing techniques to provide clear explanations for the model’s decisions and

outputs. We plan to investigate methods such as attention visualisation, saliency map-

ping, and concept-based explanations to make the model’s decision-making process more

transparent. This could involve highlighting which parts of the input images or clinical

data most influenced the generated report, helping radiologists understand and verify the

model’s reasoning.

Furthermore, we aim to incorporate causal inference techniques to better understand the

relationships between different input features and the generated outputs. This could

involve developing causal models that capture the underlying mechanisms of disease pro-

gression and manifestation in medical images, leading to more robust and reliable report

generation. These advancements in interpretability and causality will not only improve

the trustworthiness of the system but also potentially provide new insights into radio-
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logical practice, supporting both the model’s adoption and the advancement of medical

knowledge.

5. Expanding to Different Data Sources: Ultrasound Scans in Pregnancy

To further validate and extend our methodology, we are initiating a collaboration with

a local hospital to collect fetal ultrasound scans, particularly focusing on the 12- and

20-week screening scans during pregnancy. This new data source presents an exciting

opportunity to apply our improved methodology to a different but equally critical area of

medical imaging.

The 20-week scan, in particular, involves the sonographer looking for 11 rare conditions.

Our goal is to adapt our multi-modal, multi-task learning approach to this new context.

We aim to generate comprehensive reports for these ultrasound scans, classify the baby’s

development as normal or abnormal, indicate the likelihood of the 11 rare conditions, and

predict the baby’s gender.

This expansion to ultrasound scans will allow us to test the generalisability of our approach

across different imaging modalities and medical contexts. It also presents new challenges,

such as incorporating time-series data from fetal development. By successfully adapting

our methodology to this new domain, we could potentially develop a powerful tool to assist

in prenatal care, providing more accurate and comprehensive information to healthcare

providers and expectant parents.

6. Integrating Computational Models in Clinical Workflows

Acknowledging that Large Language Models (LLMs) have revolutionised text generation

capabilities in recent years, and have increasingly incorporated multi-modal data integra-

tion, generation, and explanations. However, current models like GPT-4V, despite its

prominence, cannot yet generate radiology reports accurately, even though it has far more

parameters than our best model. Recent research (Jiang et al. 2024) challenges the practi-

cality of employing GPT-4V in radiology workflows, highlighting its current limitations in

understanding and generating meaningful radiology reports. Furthermore, it is important

to consider the practical constraints faced by researchers in the healthcare domain from a

computational perspective. Despite the availability of advanced multi-modal LLMs, the

resources required for training or even fine-tuning these models are often prohibitively

large, rendering their practical application challenging in many research projects. From
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a clinical standpoint, and considering the existing infrastructure in most hospitals in the

UK and other developed countries, there is a lack of support for these systems to generate

radiology reports. Effective cloud integration and access to user-friendly cloud resources

within hospitals are essential, but such infrastructure is not yet commonplace. Although

there is significant potential for the use of LLMs in radiology report generation, addressing

this challenge requires tackling the more complex issue of integrating large-scale cloud-

based systems to manage data and train these models effectively. This highlights the need

for future research and development to focus on creating feasible solutions for integrating

advanced computational models within the existing healthcare infrastructure.

These directions represent opportunities to advance further in the field of computer-aided med-

ical imaging analysis and report generation. These efforts aim not only to improve the technical

capabilities of our systems but also to enhance their practical utility and trustworthiness in

real-world clinical settings.

7.6 Final Remarks

In this thesis, we present a comprehensive investigation of deep neural architectures for vision-

language modelling, specifically for the task of CXR report generation. We explore the in-

corporation of multi-modal data to analyse the value that imaging data brings to radiology

report generation. Additionally, we address the real-world challenge of multi-label and ordi-

nal classification for CXR interpretation and report generation through multi-modal cross-task

learning. The findings revealed by this research, combined with methodological contributions

in vision-language modelling, are expected to constitute a road map for future developments in

multi-modal medical reporting and image interpretation systems.
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Appendix A

Integrative Attention Network:

Natural Image Application

A.1 Introduction

In order to validate the proposed concept of enhancing results by providing additional context

and methodology, the experiments were conducted on a natural image dataset. A topic for

each image has been extracted from the entire dataset including test and validation sets using

an unsupervised topic modelling algorithm. The topics extracted were a set of words that are

already placed in the annotations of the given image; therefore, these word collections have not

been used for the experiments. Instead, all topics were manually tagged based on the keywords

they contained, and a descriptive tag that was never seen by the network for each data was

generated. These tags are used along with the image representations in the text generation

process. This section provides the details of our approach to generating text from an image.

Respectively, it briefly introduces the datasets, demonstrates the process of preparing text and

image data for experiments and analyses the data used, provides the architectural design of the

transformer-based network with implementational details, and finally presents results.

A.1.1 Natural Image Datasets

Flickr8K and MS-COCO benchmark datasets are used to demonstrate the effectiveness of the

proposed architecture. The Flickr8K dataset (Hodosh et al. 2013) contains over 8,000 images

with a different shape in JPEG format that is each paired with five different captions at the
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sentence level. Each image has a different shape and format and different sources of descriptions

for the photographs. MS-COCO (Microsoft Common Objects in Context) is a large-scale dataset

(T.-Y. Lin et al. 2014) that consists of over 80,000 images, and each image has five different

sentence-level annotations. The data format used for this task is similar for all three datasets,

and an example image with five corresponding captions from the Flickr8K Dataset is shown in

Figure A.1.

1. A child in a pink dress is climbing up a set
of stairs in an entry way.

2. A girl going into a wooden building.
3. A little girl climbing into a wooden play-

house.
4. A little girl climbing the stairs to her play-

house.
5. A little girl in a pink dress going into a

wooden cabin.

Figure A.1: An example image with different captions from Flickr8K dataset

A.1.2 Data Pre-processing and Dataset Formation

In the text data preparation, firstly, all characters were converted into lowercase, and punctua-

tion, tokens with a number and stop words were removed. As mentioned in Section 3.3.1, each

image is described with five different captions, the second step was to merge all captions into

a five-sentence-long description for each image. The descriptions obtained were processed for

the LDA algorithm by applying the following steps, respectively, 1) lemmatize the words, 2)

create a dictionary and 3) create a bag-of-words corpus. After, the coherence values of the topic

numbers from 1 to 100 at a step size of 10 were calculated to find the optimal topic number.

After a series of experiments, the optimal number of topics was determined to be 21.

Image Name 1000268201 693b08cb0e.jpg

Descriptions A child in a pink dress is climbing up a set of stairs in an entryway.
A girl going into a wooden building.
A little girl climbing into a wooden playhouse.
A little girl climbing the stairs to her playhouse.
A little girl in a pink dress going into a wooden cabin.

Lemmatized child, pink, dress, climbing, set, stair, entry, girl, go, wooden, building, little,
girl, climb, wooden, playhouse, little, girl, climb, stair, playhouse, little, girl,
pink, dress, go, wooden, cabin

Table A.1: A sample of pre-processed text data for LDA model
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In the dataset, each data point consists of the image ID, caption, associated topic and keywords.

It is important to note that, the concatenated captions (Table A.1) were only used in topic

modelling to ensure that all captions associated with an image are assigned the same topic.

After creating the data points, we divide the dataset into training, validation, and testing sets

with the ratio of 80%, 10% and 10%. The image, corresponding captions and topic are used

as input during the training phase. Since we extracted a topic for each image in the entire

dataset before creating the data points, the topic assigned is also used along with the image

during inference for prediction. The details of topic extraction are explained in the Network

Design section. For text parsing, 1) texts are converted to tokens, 2) ¡start¿ and ¡end¿ tokens

are added to the captions to be decoded, and 3) out of vocabulary, words are replaced with

¡unk¿. Next, each text data is padded to a fixed length. In image processing, all images are

resized to 299 x 299, and position and colour augmentation are applied for each image in the

training set. Finally, a data loader object is created, and the data is fetched from the dataset

and fed into the model in batches.

A.1.3 Network Design

The current network architecture was built to demonstrate the feasibility of the proposed

method. The caption generation model has four main components: the convolutional model,

LDA model, stack of transformer-encoder blocks and stack of transformer-decoder blocks. The

image is first processed by the convolutional model and the extracted features are fed into the

transformer-encoder. A new representation of images is calculated by the self-attention layer

and output is sent to the following encoder blocks as an input. Meanwhile, the topic model

assigns a topic number and five keywords for each caption. These keywords are used in the

manual topic tagging process to define a descriptive name for each topic, and 21 manual tags

are formed as a result. To establish an implicit connection between image and captions through

the tags generated, the decoder is conditioned with tags by concatenating the output of the first

encoder block with tag embeddings. On the other hand, each of the five captions corresponding

to the given image is converted into vector representation with positional encoding and fed to

the transformer-decoder one by one along with the semantically-enhanced image representation.
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Figure A.2: An overall framework of using additional context

Implementation Details

In the encoding phase, EfficientNet has been used as a base model to extract visual features

and all parameters are left non-trainable. The pre-trained model receives resized (299x299)

images and generates a 1280-length visual feature vector. After applying layer normalisation,

the vector is passed through the dense layer with the ReLU activation function. The output of

the dense layer is sent to the multi-head self-attention layer followed by the normalisation layer.

Meanwhile, the LDA model was used to extract the topics and keywords of each caption. LDA,

however, generates different topics every time, even when the model is trained on the same

corpus. Therefore, several experiments have been carried out in order to determine the optimal

number of topics and the most relevant set of keywords. As a result, the ideal number was set to

21 and the extracted topics are represented by numbers from 0 to 20. Then, each topic number

was manually assigned a label to describe the scene. For example, the topic that consist of the

keywords “tent, fire, people, cold, play” was given the tag “camping”. The objective is here

to allow the model to better grasp the content of the image by presenting previously unseen

information to the network, as well as to establish an implicit connection to alleviate the impacts

of the semantic gap. The tags are converted to a vector representation using the embedding

layer. A self-attention block that is presented in the original transformer architecture has keys,

queries, and values as demonstrated in Equation 2.4, where softmax is defined in Equation 2.2.
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In our proposed model, the tag embedding has been used as a semantic feature along with the

visual features as shown in Equation A.1 where SSAT stands for Semantic Self-Attention Tag.

SSAT(Q, [Kenc;Ktag], [Venc;Vtag]) = softmax

(
Q[Kenc;Ktag]

⊤
√
dk

)
[Venc;Vtag] ∈ Rn×(dvenc+dvtag )

(A.1)

Where: Kenc is the key matrix from the encoder output

Ktag is the key matrix from the tag vector

Venc is the value matrix from the encoder output

Vtag is the value matrix from the tag vector

[; ] represents the concatenation operation

The concatenated [Kenc;Ktag] and [Venc;Vtag] matrices are used to compute attention weights

and the output.

Furthermore, the captions corresponding to the given image were passed through the embedding

layer. However, the transformer does not implement a loop and all inputs are processed in

parallel. Although this is one of its main advantages over recurrence models, the notion of

the sequence order is lost during this operation. Therefore, positional information is injected

into the output of the embedding layer with the positional encoding (Equation 2.5) of the

input sequence and it is sent to the first layer of the decoder which is a masked multi-head

self-attention layer.

Decoder begins with <start>token, generates the words one by one, and stops the decoding

process when <end>token is generated. Due to its auto-regressive nature, it takes the infor-

mation from the previous iteration to predict the next word. Different from self-attention in

the encoder, the masking method is used here to ensure that the attention mechanism does not

share any information about future tokens. In this way, each token only has access to infor-

mation regarding itself and the previously generated values. The MHA layer is followed by the

normalisation layer and encoder-decoder self-attention layer, respectively.

The second MHA layer is known as the encoder-decoder self-attention layer since it incorporates

information from both the encoder and the decoder. When calculating self-attention, the queries

matrix is created from the previous layer, and the semantically enhanced visual features are used

for the keys and values matrix. In previous self-attention calculations, the sequence was paying

attention to itself, however, the concept here is to ensure the model pays attention to the input
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sequence when generating the target sequence. The output goes through the normalisation layer

followed by the dense layer with the ReLU activation function and the last dense layer takes the

outputs and functions as a classifier. The final output, then, passes through the SoftMax layer,

which calculates probability scores between 0 and 1, and returns the word with the highest

probability score as a predicted word.

The model was trained using the Adam optimiser with a learning rate of 1e-4 and a customised

SparseCategoricalCrossentropy loss function. A batch size of 64, a maximum caption length of

24, a maximum tags length of 3, a caption vocabulary size of 9000, a tags vocabulary size of 33,

a dense dimension of 512, and an embedding dimension of 512 were used during training and

validation.

A.1.4 Results and Discussion

This section first describes the inferences of experiments and presents the results of the models.

The effectiveness of the proposed model has been demonstrated on two benchmark datasets:

Flickr8K, and MS COCO. The results presented below have been conducted on the Flickr8K

dataset due to limited access to GPU. After assigning the optimal components and parameters,

the final model has been evaluated on both Flickr8K and MS COCO datasets. In order to eval-

uate the results of the models, BLEU Score and BERTScore were used. Finally, the limitations

of the proposed model are discussed.

To begin with, as indicated in earlier sections, the adoption of transfer learning improves the

model performance, especially when the dataset size is limited. In this context, the pre-trained

models InceptionV3, VGG-19 and EfficientNet were used to analyse the impact of the different

pre-trained models on the results. We have evaluated the models on 1020 samples of the unseen

test set randomly selected from the Flickr8K dataset. Table A.2 displays the average Bleu -1 to

-4 Score and BERTScore of the three-fold cross-validation results for the different pre-trained

models. EfficientNet yielded better results than InceptionV3 and VGG19 in most metrics,

therefore, EfficientNet was used in the final design to extract visual features from the given

image.

In order to prove that providing additional context to the neural network has a beneficial

impact on model performance, the comparison experiments were conducted with and without

additional context. The identical train-test split was used during training in both models to
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CNN Model B 1 B 2 B 3 B 4 BS P BS R BS F1

EfficientNet 0.55 0.41 0.42 0.48 0.52 0.50 0.50
InceptionV3 0.46 0.37 0.42 0.49 0.51 0.45 0.47
VGG-19 0.48 0.39 0.40 0.48 0.51 0.46 0.48

Table A.2: Performance Summary of EfficientNet, InceptionV3, and VGG-19, with ’B n’ for
BLEU-n Scores and denoting BERTScore as BS with P for Precision, R for Recall, and F1 for
F1 Score

avoid any bias caused by the dataset distribution. Table A.3 and Table A.4 demonstrate the

average scores obtained from 5-set of experiments conducted by both models. Furthermore, we

calculated probability values with a significance level of 0.05 for each metric, and as shown in

Table A.5 the results are statistically significant.

Experiments B 1 B 2 B 3 B 4 BS P BS R BS F1

1-set 0.55 0.42 0.42 0.47 0.54 0.50 0.51
2-set 0.54 0.41 0.42 0.47 0.54 0.49 0.50
3-set 0.55 0.43 0.44 0.49 0.55 0.49 0.50
4-set 0.53 0.41 0.42 0.47 0.54 0.48 0.50
5-set 0.53 0.42 0.41 0.46 0.53 0.49 0.51

Table A.3: Base Captioning Model Performance Across 5 Sets of Experiments

Experiments B 1 B 2 B 3 B 4 BS P BS R BS F1

1-set 0.56 0.43 0.44 0.49 0.56 0.51 0.52
2-set 0.57 0.44 0.45 0.50 0.55 0.50 0.51
3-set 0.57 0.43 0.45 0.51 0.57 0.51 0.52
4-set 0.58 0.44 0.46 0.52 0.57 0.52 0.53
5-set 0.57 0.44 0.45 0.51 0.56 0.51 0.52

Table A.4: Semantically Enhanced Captioning Model Performance Across 5 Sets of Experiments

Metrics B 1 B 2 B 3 B 4 BS P BS R BS F1

p value 0.001 0.005 0.002 0.001 0.002 0.002 0.005

Table A.5: Statistical Significance (p-values) Comparing Evaluation Metrics for Captioning
Models

After concluding that the results generated are not likely to occur randomly, and our proposed

approach provides better results, the semantically-enhanced model was also tested on the MS

COCO dataset. Since the size of the MS COCO dataset is over ten times larger than Flickr8k,

the model was able to learn better and provide higher accuracy (Table A.6).
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Dataset B 1 B 2 B 3 B 4 BS P BS R BS F1

Flickr8K 0.57 0.43 0.45 0.50 0.56 0.51 0.52
MS-COCO 0.61 0.51 0.52 0.55 0.62 0.57 0.55

Table A.6: Image Captioning Performance Analysis: BLEU and BERTscore on Flickr8K and
MSCOCO datasets

Figure A.3: The captions generated from our semantically-enhanced captioning model

Although the current model generates considerable results (Figure A.3), semantic addition in

this experiment did not exactly reflect our proposed approach. Tags assigned may not give

accurate information for each image as they were manually named according to the keywords

they contain. However, this limitation has been tackled in the medical dataset as context has

been extracted from patient records for each medical image.
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Comparative Results of CM-MTL

Model in Classification

Method Accuracy MAE ACC+Corr

STL 0.8790 0.1210 0.8197
CM-MTL EQ 0.8553 0.1447 0.7907
CM-MTL TP 0.8640 0.1360 0.8005

Table B.1: Comparing performance of the ordinal classifier in Single-Task, Task-Prioritised
Multi-Task and Equal-Weight Multi-Task Learning

Method Precision Recall F1 Score Hamming Loss Exact Match Ratio

STL 0.7520 0.6552 0.7005 0.1466 0.8534
CM-MTL EQ 0.6502 0.6641 0.6562 0.1618 0.8382
CM-MTL TP 0.6603 0.6775 0.6694 0.1598 0.8402

Table B.2: Comparing performance of the multi-label classifier in Single-Task, Task-Prioritised
Multi-Task and Equal-Weight Multi-Task Learning
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