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Summary

Extreme events although very rare can have very large, and very unwelcome effects.
To obtain some reassurance that people are highly protected from such harm some
understanding is needed as to the size and likelihood of extremes. But because extreme
events are very rare, so is direct evidence of their likelihood. A particular extreme may
never have been observed. And yet, we still wish to understand its likelihood so that
we can protect ourselves from its effects.

A very beautiful theorem of probability theory appears to offer a way of assessing the
probability of the occurrence of events well beyond the data that have been observed.
Although its preconditions set an ideal that rarely if ever has been met, a wider theory
has been developed that is directly applicable to practical problems. But there is still a
catch: the forecasts of extremes are subject to huge uncertainty, sometimes rendering
them practically useless.

One way of tightening the estimates of extremes that has been increasingly recognised
over the past 30 years or so is to use the Bayesian paradigm for inference about extremes
to bring into account informative priors, especially those obtained by elicitation from
experts. That way specific observations of the quantity of interest are supplemented by
other data.

Elicitation is a complex process that needs to be conducted according to strict protocols
to yield from experts both valid estimates of quantities and of the uncertainty of those
estimates. Typically only a small number of quantiles can be produced for each quantity.
But for Bayesian inference the priors need to be full probability distributions.

This thesis examines options for stretching, so to speak, a small number of elicited
quantiles into a full distribution. It points to the disadvantages of fitting quantiles to a
parametric textbook distribution. It presents a new way of obtaining a wide variety of
distributions defined as Gaussian processes over series of knots. It also considers the
use of minimal distributions in the sense that a bare minimum of assumptions is made.
Finally it reports the results of an elicitation exercise based on these principles.
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Chapter 1

Introduction

Extreme events are rare, by definition, but they can give rise to extreme consequences 1
that are highly unwelcome, not to say catastrophic. There is a worldwide interest in
understanding the size and likelihood of extreme events. The motivation for wishing to
study extremes is to provide a high degree of protection against some calamity. To do
that necessarily requires statistical methods: typically what is needed is the estimation
of quantiles.

In this thesis we mainly consider the univariate case such as the occurrence of extremes 2
at a particular location. We discuss bringing in relevant information to supplement
specific, maybe site-specific, observations, and some of that information will be derived
from experience at other sites. We do not consider formal multivariate models although
some of our conclusions will be relevant to those models.

Formally, the interest is in quantiles of the form xp , known as the 1/p years return 3
level satisfying F (xp) < 1 − p , where p is a very small annual probability and F is
a typically unknown distribution function. The period 1/p is known as the return
period. For example, in considering how high the sea dikes of Holland need to be, the
Netherlands government set p = 0.0001 (de Haan, 1990). Any attempt to estimate the
corresponding xp must clearly involve extrapolation well beyond any historical data.

1



2

That in itself rules out use of methods based solely on the empirical distribution of the
variable of interest.

Although the focus of this thesis is univariate extreme value theory it is worth referring4
to the practical applications of the theory. As the Netherlands example above shows,
one class of application is to give assurance that a given protection against a catastrophe
is highly unlikely to be overwhelmed. In addition to coastal sea surges, extreme value
modelling is used in connection with all kinds of extreme weather events such as rainfall,
flooding, and deep ocean structures such as oil rigs. The theory has been applied to the
study of earthquakes, and to the maintenance and operation of nuclear installations.
In the world of finance extreme value modelling is central to insurance companies’
management of re-insurance risk. It has also been applied in the wider context of
portfolio management.

§ 1.1 Extreme value theory

The core theory, known as Extreme Value Theory (EVT), that can be applied to5
provide such estimates of extreme behaviour is a branch of the theory of probability that
is concerned with extremes of very long sequences of random variables, {Xn} . In classical
EVT it is assumed that the {Xn} are independent and identically distributed (and
therefore form stationary sequences). By contrast, in practical statistical applications
it is common for the available data to exhibit dependency, non-stationarity and for
the sequences of data to be relatively short. Developments of the theory have dealt
successively with relaxing the classical conditions to enable modelling to address practical
problems relating to extreme behaviour.

One of the principal results of EVT is that in a wide range of circumstances there6
is a class of limiting distributions that apply asymptotically to extremes irrespective
of the underlying, but unknown, distributions of the data. Even the extremes of the
observational data are likely to be far away from the asymptote, so the key to making
use of the theory in practice therefore lies in finding ways to process the data in such
a way that the conditions of the extreme value theorems apply reasonably closely.
The major issue in this task is to determine in each case the threshold above which
EVT might be considered to apply closely enough. Below that threshold it is accepted
that observations will not necessarily, indeed will very likely not, be governed by the
probability distributions from EVT and that such observations will not be directly
relevant to estimating extreme behaviour. There is therefore a continuing tension
between on the one hand ensuring that only relevant data are used and, on the other
hand, minimising the variance of the results by using as much data as possible. Many
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of the elaborations of EVT have been driven by the need to find ways of resolving that
tension.

Whatever the means, the result in any case is that the data to which EVT is to be applied 7
are likely to be disappointingly meagre. It therefore makes sense to use legitimate means
to add relevant information to the analysis. Bayesian inference, with its requirement for
prior distributions that could encode expert knowledge to supplement the information
contained in the observations, is a perhaps obvious choice. Nevertheless, it has in
practice come surprisingly late to the world of extremes. Even now it is not unusual
for engineers to work with point estimates of 10000 year return levels, and the relevant
international standard for offshore oil and gas installations (International Organization
for Standardization, 2015) refers to the possibility [my emphasis] of assessing the
uncertainty of such estimates (using confidence intervals - a non-Bayesian concept) but
does not demand any such assessment.

In work I undertook in collaboration with a prominent hydrodynamicist before beginning 8
the research reported in this thesis, Bayesian methods were used to examine extreme wave
heights at a specific deep sea location (Rainey and Colman, 2014). That work showed
how using priors that encoded even quite basic expert knowledge could substantially
reduce the uncertainty in estimates of return levels. It was (independently) consistent
with earlier findings (Egozcue, Pawlowsky-Glahn and Ortego, 2005).

The work presented in this thesis is based on the point of view that the Bayesian 9
approach using informative priors is likely to provide better quality inference about
extremes than other methods. On that assumption, the immediate question is how
to construct appropriate informative priors. There is a substantial literature on the
elicitation of expert opinion for use in Bayesian inference quite generally. It is seen as a
means of moving away from inappropriately non-informative or minimally informative
priors. The idea is that experts in the subject matter of the inference can bring into the
inference relevant sector knowledge that is independent of the source of observational
data being analysed.

§ 1.2 Contribution to the field

This thesis examines options for the construction of informative priors based on expert 10
elicitation. We show that using informative priors can be expected to reduce quantified
uncertainty in the resultant estimates, but that established extreme value methods are
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subject to unquantified and, we argue, unrecognised uncertainty arising from failure to
make full enough use of prior knowledge. In particular, one further source of uncertainty
arises from what might be characterised as “inappropriately informative priors”, that is,
the use of reasonable seeming but arbitrary assumptions or restrictions in setting up
the Bayesian model.

We develop a method for defining priors using a Gaussian process (GP) model. To do so11
we show how a PDF and its corresponding CDF can both be constructed by constraining
GPs to meet the specific requirements of density and distribution functions.

We show, further, how the distribution function can be constrained to comply with12
quantiles elicited from experts. We show that by using the GP model there is no limit
to the number of probability functions that are all compliant with the experts’ data.
The implication is a full analysis of uncertainty in the forecasts of extremes needs to
take into account the wide range of compliant distributions that might be used as the
basis for priors.

Although our work here is exclusively in the field of inference about extremes, our13
methods for quantifying uncertainty are applicable more widely, in any application in
which priors had hitherto assumed a particular parametric form in the absence of clear
evidence of that form’s applicability to the particular case.

The GP-based priors can be computationally demanding limiting their use in face-to-face14
elicitation. To seek a much quicker method we examine the use of a minimal PDF and
show how it can practicably be used in an elicitation.

§ 1.3 Structure of the thesis

The thesis is structured as follows:15

• Chapter 2 is a review of the literature on EVT
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• Chapter 3 discusses the use of Bayesian methods and particularly the case for
using informative priors in Bayesian inference about extremes.

• Chapter 4 discusses the use of elicitation as a means to provide informative priors
relevant to extremes;

• Chapter 5 describes the approach used in an important paper (Coles and Tawn
(1996)) that applied Bayesian methods including priors derived from elicitation.
We show a worked example of that approach using similar data.

• In Chapter 6 we review how previous authors have used Gaussian processes to
generate wide ranges of prior distributions to reflect information elicited from
experts. We show that the methods used there have some disadvantages, and
we then suggest that some methods developed in a different context could be
developed to attack our problem.

• Chapter 7 presents the new method that we have developed accordingly, showing
how an unlimited number of valid priors can be constructed to encapsulate fully
information elicited from an expert.

• Chapter 8 applies the methods developed in Chapter 7 to an example in which the
modelling is restricted to observations above a high threshold. Those observations
are assumed to be suitable for modelling using EVT. The case chosen for illustration
is that of rainfall data that heavily overlaps that used in Coles and Tawn (1996)
but is not exactly the same.

• Chapter 9 examines a much simpler approach than the method described in the
previous chapter based on fitting a density defined on a small number of knots to
tertiles and to a mode. It is much faster to compute and is therefore easier to use
in face-to-face elicitation.
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• In Chapter 10, we report an experiment in using elicitation to examine wave
heights at a specific location. We report the results of using priors based on a
specific parametric distribution and compare them with those using the simpler
prior constructed as described in Chapter 9.



Chapter 2

Extreme Value Theory

This chapter summarises the principal theorems of EVT drawing attention to the sources 16
of bias and uncertainty to which they give rise when applied to statistical problems.
Much of the theory was originally developed at a time when the use of Bayesian methods
was uncommon. In recent years the development of Bayesian methods in the context of
extremes has been more marked. In this chapter we refer to the literature on Bayesian
methods but our major discussion of Bayesian methods is in Chapter 3.

A major source of both bias and uncertainty is the fact that however large the number of 17
observations of the phenomenon of interest, the set of those directly relevant to inference
about extremes is unavoidably small. Datasets recording observations for as long as 100
years are very rare, yet there is a demand for estimates of 1000- and 10000-year events.
It is not uncommon, or surprising, for there to be literally no actual observations of
1000-year or higher extremes in a given dataset. And even if the observations include
such extremes, as sometimes they might, the observer cannot easily determine that such
extremes are present in the data.

Bayesian inference, using informative priors, offers a way to bring into the inference 18
expert knowledge beyond that contained in the observational data. It is to be expected
that the results, in the form of posterior distributions (posteriors) will be tighter
than inference based only on sparse data. We refer in this chapter to an influential

7
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paper, (Coles and Tawn, 1996), which we examine in more detail in Chapter 5 and
use its methods to construct a worked example using similar data. We discuss there a
comparison between Bayesian and frequentist methods that suggests that the former
bring advantages particularly in respect of forecasts of extremes beyond the range of
the observational data. Likewise we postpone to Chapter 4 discussion of the literature
on the use of elicitation of prior knowledge from experts both in the context of extreme
value estimates and more widely.

§ 2.1 Distribution of maxima

Classical EVT considers the behaviour of the maxima of sequences of independent19
identically distributed (iid) random variables (X1, . . . , Xn) each subject to the same
distribution function, F (·). It examines whether and, if so, under what conditions the
distribution of Mn = max{X1, . . . , Xn} might converge as n → ∞ .

It is straightforward to write down the distribution function of Mn :20

P (Mn ≤ x) =
n∏

i=1

P (Xi ≤ x) = Fn(x). (2.1)

As it stands, however, there are two problems with this representation. First, it leads to
degenerate functions in the limit: for all x , as n → ∞ , Fn(x) → 0, unless F (x) = 1.
Secondly, the scale and location of the Fn may both vary as n increases, rendering
comparisons difficult. A normalisation of scale and location potentially deals with
both of these problems. Accordingly, EVT examines the conditions under which there
exist sequences of real numbers {an > 0} and {bn} such that (Mn − bn)/an has a
non-degenerate limit distribution as n → ∞ , so that

lim
n→∞

Fn(anx+ bn) = G(x) (2.2)

(Gnedenko, 1943).

Definition 1. Such a function G is known as an extreme value distribution.

The central theorem of classical EVT is as follows:21
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Theorem 2. (Fisher and Tippett, 1928) The class of extreme value distributions is
Gξ(αx+ β) with α > 0, β real, where

Gξ(x) = exp
(
−(1 + ξx)−1/ξ

)
, 1 + ξx > 0. (2.3)

Definition 3. Gξ is known as the Generalised Extreme Value (GEV) distri-
bution with extreme value index ξ (also known as the shape parameter of the
distribution).

Definition 4. The underlying distribution, F , is said to belong to the maximum
domain of attraction (MDA) of Gξ , written F ∈ MDA(Gξ).

MDAs are closed under affine transformations. That has the consequence that in 22
fitting the asymptotic distribution, G , to the data it is not necessary to make separate
estimates of either the {an > 0} and {bn} which are in effect bundled into the estimates
of the three parameters of the distribution.

The class of extreme value distributions therefore forms a simple one-parameter family 23
apart from scale and location parameters. Including scale and location, the density of
the generalised extreme value distribution is as follows:

Gξ(x) = exp

[
−
(
1 + ξ

(
x− µ

σ

))−1/ξ
]
, 1 + ξ

(
x− µ

σ

)
> 0. (2.4)

Although the single Equation 2.4 completely describes a single distribution function, 24
historically extreme value distributions were seen as belonging to three classes depending
on the value of the extreme value index ξ as follows:

(i) For ξ > 0, use Gξ((x− 1)/ξ) and set γ = 1/ξ > 0 then

Φγ(x) :=

{
0, if x ≤ 0;

exp(−x−γ), if x > 0
(2.5)
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is usually called the Fréchet distribution class. It is unbounded above in support.

(ii) With ξ < 0 use Gξ(−(1 + x)/ξ) and set γ = −1/ξ then

Ψγ(x) :=

{
exp(−(−x)γ), if x < 0

1, if x ≥ 0
(2.6)

is usually known in the context of EVT as the Weibull distribution class.
(Properly, it is the reverse of the Weibull distribution as used in, for example,
survival time analysis.) The support for the Weibull distribution has a finite upper
bound, as does that of all distributions in its MDA. For that reason the Weibull
distribution has been commonly used to model extremes when it is known e.g. for
physical reasons that the phenomenon being modelled must be bounded.

(iii) With ξ = 0,
Λ(x) := exp(−e−x) (2.7)

is called the Gumbel distribution. Many commonly used distributions, such
as normal, log-normal and gamma, are in the MDA of the Gumbel distribution,
including distributions with finite upper bounds and those which are unbounded
in support. For these reasons it has been common to model extreme values using
the Gumbel distribution alone. Apart from concern about the weakness of that
argument for restricting modelling to just one of the three feasible classes, Cohen
points out that even if the data are known to be from a distribution in the MDA
of the Gumbel distribution, a quicker and better approximation may be derived
by modelling with either of the other classes and that therefore a preference for
modelling with a Gumbel distribution may be misguided (Cohen, 1982) .

The three classes of extreme value distribution are shown as densities in a standard25
form in Figure 2.1.

Fréchet : Φ(x) =

{
0, x ≤ 0

exp(−x), x > 0

Weibull : Ψ(x) =

{
exp(x), x ≤ 0

1, x > 0

Gumbel : Λ(x) = exp(e−x) x ∈ R.



CHAPTER 2. EXTREME VALUE THEORY 11

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
p

Fréchet

Gumbel

Weibull

Figure 2.1: The three extreme value distributions as densities in standard form

Gnedenko established necessary and sufficient conditions (which we do not state here) 26
for a distribution function to belong to each class. Their force is that the behaviour
of a distribution function away from its right-hand tail is irrelevant to whether it is
in an MDA, and, if so, in which (Gnedenko, 1943). Note that this theoretical point is
not the same as the more practical point made above relating to the exclusion from
the analysis, in particular cases, of data that are unrelated to the physical processes
underlying extremal behaviour.

The irrelevance of non-extreme data to the behaviour of the right-hand tail appears to 27
justify analysing extremes by looking solely at observations that lie above some high
threshold. We shall see in Section 2.5 that such an approach is well-established in
practice. Nevertheless, the difficulty of defining just how high the threshold needs to
be has led to a number of approaches in which the whole dataset of observations (or,
sometimes, all observations above a low threshold) is modelled using mixture models,
as we shall see in Subsection 2.7.3.

§ 2.2 Analysis of block maxima

Historically the application of the theory outlined above was based on the idea that 28
assuming that an asymptotic distribution, G , say, exists then it might be reasonable
to model the situation on the basis that distribution of the maxima of long blocks of
observations, Mk,n = max{Xk,1, . . . , Xk,n} , where k = 1, . . . , r and n is large, actually
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is G (Gumbel, 1958). In practice, it is often convenient, especially if the data show
seasonal variability, to take the blocks as whole years.

Although this approach is well established, it is subject to serious, even obvious, problems,29
including, in particular:

(i) The assumption that the distribution of the observed block maxima is close to the
asymptotic distribution may be questionable because the rate of convergence of
the Fn(anx+ bn) to the limiting form can be extremely slow (Hall, 1979);

(ii) by taking only one datapoint per year the number of observations used may be
relatively small, leading to large sampling error in the results;

(iii) for the same reason, vast amounts of potentially informative data are unused
(Thom, 1954); and, specifically,

(iv) in a year with a particularly high maximum no account will be taken of secondary
maxima in that year, even if they are higher than the annual maxima in other
years. That is an important omission as it potentially introduces a downward bias
of large, but unknown, size into the model.

§ 2.3 Distribution of set of highest values

One way of improving on the block maxima method is based on the observation that30
the information about the tail that is provided by r block maxima cannot be greater,
and may well be less, than that provided by the r highest order statistics of the same
{Xi| i = 1 . . . N} . If F is in the MDA of the extreme value distribution G , then the
limiting distribution of the r largest {Xi| i = 1 . . . N} can be derived straightforwardly
in terms of G, see, for example, Embrechts et al. (2013).

In addition to the idea that the r largest observations might provide more information31
than r block maxima, a second idea is to use the s highest observations from each block,
yielding rs observations. That approach literally multiplies the number of data points
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being used, addressing one of the problems of the block maxima approach. But it also
potentially creates or increases another problem: that the data points may no longer
reasonably be regarded as being drawn from an iid sequence, as the theory requires. In
many practical applications, high observations close in time of the variable of interest
have a common cause (for example, a single storm at sea will create very many high
waves). If that happens several of the r highest in a given period may be strongly
correlated. To address that problem of clustering a number of approaches have been
developed based on the idea of identifying clusters and treating each cluster separately,
perhaps by choosing a single observation from each cluster that is presumed to be
independent of its counterpart in the other clusters.

§ 2.4 Making adjustment for dependence

As in all of the classical EVT, it is assumed that the {Xi} are independent and so the 32
exceedances used need to be independent too. In many practical applications, however,
the raw exceedances are known to be dependent (for example, wave heights during a
single storm (see Section 2.3)). A common adjustment to deal with that situation is
to examine the data for the existence of clusters of high values and to use only the
maximum of each cluster (the peak) for what is therefore known as the Peaks Over
Threshold (POT) method. Clusters may be identified by inspection, by knowledge
of the physical circumstances (for example, in marine applications, when storms were
known to have occurred), or by the application of some rule which might define a cluster,
for example, as a period in which the observed variable has exceeded some threshold for
a certain number of consecutive observations and then fallen below that threshold for a
further stated number of consecutive observations (Davison and Smith, 1990).

Just as with the block maxima method, the use in the POT method of just one 33
observation in each cluster makes no use of whatever information is contained in all the
other exceedances in that cluster, leading to unnecessarily high variance in its estimates.
Fawcett and Walshaw argue that, even worse, it may introduce large biases, particularly
into the estimates of return levels that are often of importance in practical applications.
To overcome the problem of biased estimates of return levels, Fawcett and Walshaw
(2007) describe a method to adjusting the standard errors of the parameters of the
Generalised Pareto Distribution (GPD) along the following lines:

(i) the set of all exceedances is modelled with the GPD, ignoring dependence between
exceedances, to produce maximum likelihood estimates of the parameters, σ and
ξ , of the GPD and of the information matrix H ;
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(ii) the covariance matrix, still ignoring dependence, is then approximately equal to
H−1 ;

(iii) an adjustment as proposed in Smith (1990) is then made replacing that approx-
imation with H−1VH−1 where V is the covariance matrix of the likelihood
gradient vector.V can be estimated as the empirical covariance matrix of the
annual components of the log-likelihood sum.

In Fawcett and Walshaw (2006) the same authors propose another method for capturing34
the information from all exceedances whilst dealing with the issues raised by dependence.
Examining hourly gust maximum wind speeds at a location in the Pennines, they find
marked seasonal variation. They adopt a modelling approach based on 12 seasons
corresponding to the calendar months and fit a GPD to each such season. In addition
to seasonal variation they find that there is substantial short-term serial correlation in
the hourly figures. To deal with that, they examine Markov chain models. They find
that a second-order Markov chain model performs better than a first-order model in
the analysis of clustering behaviour, but that if the quantity of interest is return level
estimation then the simpler first order model would be adequate.

§ 2.5 Exceedances over a high threshold

As an alternative to looking at maxima or order statistics as such, hydrologists for many35
years have used empirical study of exceedances, that is {Xi|Xi > u} , where u is a
threshold chosen empirically. Theoretical work leading to more soundly based statistical
methods was undertaken by, for example, Todorovic and Rousselle (1971) and Todorovic
and Zelenhasic (1970). Subsequently, and relevantly to the work described in this thesis,
analysis based on thresholds has formed the basis of many applications of Bayesian
methods to the study of extremes.

A major advance over the empirical work of hydrologists was the proof by Pickands36
that if the underlying distribution F of the {Xi} was in the MDA of an extreme
value distribution G , then for a sufficiently high threshold u , the distribution of the
exceedances {Xi|Xi > u} would be in the family he identified as the GPD with
the parameters directly related to the corresponding G , and conversely (Pickands,
1975).That idea was developed into a modelling framework by Davison and Smith that
has been widely used especially in hydrology (Davison and Smith, 1990). It depends
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on the following theorem, sometimes known as the Second Fundamental Theorem of
EVT

Theorem 5. (Embrechts et al., 2013, Theorem 3.4.5) The following assertions are
equivalent:

(i)
F ∈ MDA(Gξ); (2.8)

(ii) There exists a positive measurable function a(·) such that for 1 + ξx > 0,

lim
u↑xF

F (u+ a(u)x)

F (u)
=

{
(1 + ξx)−1/ξ, if ξ ̸= 0

e−x, if ξ = 0,
(2.9)

where xF = inf(x : F (x) = 1) and F (·) = 1− F (·);

(iii) for x, y > 0, y ̸= 1,

lim
s→∞

U(sx)− U(s)

U(sy)− U(y)
=


xξ − 1

yξ − 1
if ξ ̸= 0,

log x

log y
if ξ = 0,

(2.10)

where U(t) = F−1(1− t−1).

The right hand side of Equation (2.9) defines the tail of a GPD. In its most general
form the GPD is given by

Gξ,σ(x) = 1−
(
1 + ξ

x− µ

σ

)−1/ξ

, (2.11)

where µ is the location parameter and σ is the scale parameter.
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The left hand side of equation (2.9) is equivalent to

lim
u↑xF

P

(
X − u

a(u)
> x | X > u

)
(2.12)

that is, the limiting probability that X exceeds x , given that X exceeds u . So the
theorem gives the asymptotic distribution of scaled exceedances over a given (high)
threshold, u , with a(u) the scaling factor.

Although the question as to how high to set u is crucial, it applies equally to the subject37
of Section 2.6, so we will deal with it below in the following Section 2.7.

§ 2.6 Poisson point process

Closely related to the POT method is the idea of modelling the occurrence of extremes38
as a point process: the timing of occurrences is modelled as a Poisson point process
(PPP) and the magnitude by an extreme value distribution. It turns out that this idea
leads to a representation of extremes from which the results of the classical theory may
all be derived.

Suppose Equation(2.2) holds. Then n{1− F (anx+ bn)} → − logG(x). If X1, . . . , Xn39
is a random sample from F then let Yn,i =

Xi−bn
an

. A point process Pn can then be

defined on R2with points at ( i
n+1 , Yn,i). It can then be shown that in a subset of R2

(corresponding to values of X over a high threshold, u) Pn converges as n → ∞ to a
process P with an intensity function

λ(x) =
1

σ

{
1 + ξ

(
x− µ

σ

)}− ξ+1
ξ

+

, (2.13)

where z+ = max(z, 0), which is precisely the GEV distribution of Equation(2.3) with
scale and location parameters included (Smith, 1989).

Figure 2.2 illustrates Pn of a lognormal density for n = 104 .40
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Figure 2.2: Poisson point process: {Pn : n = 10000} lies within the red lines

§ 2.7 Setting the height of the threshold

There is a bias/variance trade-off in setting the height of the threshold u whether for 41
the POT or the PPP approach: too low and the extreme value theorem does not apply;
too high and there may be so few exceedances that the variance of the results may be
impracticably high. A wide variety of approaches to that question have been reported
which can be grouped into the categories described below (adapted from Scarrott and
MacDonald (2012)):

(i) judgement aided by graphical diagnostics of the data;

(ii) rules of thumb, such as setting u to the 90% quantile of the observations;

(iii) mixture models to draw on non-extreme information to account for uncertainty in
the choice of threshold.
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2.7.1 Graphical diagnoses

Data visualisation can help inform judgment on threshold selection. Many graphical42
methods have been used. We shall see below (Chapter 5) an example of the use of a
graphical method. But there are problems in relying on such approaches because they
depend on personal interpretation of the plot, and some plots can be open to a wide
range of interpretations.

One common approach is to choose u by inspection of the plot of estimates of43
e(u) := E(X − u | X > u) which is known as the mean excess function of X .
It can be shown that if the observations are truly iid, for u < xF , e(u) is linear in u
for all sufficiently high values of u . A starting point for the POT analysis can then
be chosen as a value of u above which the plot appears to be linear. In practice the
judgement as to where that point lies can be open to considerable uncertainty and
therefore subjectivity. As can be seen in Figure 2.3, which is a plot of mean excess
significant rainfall at a location in south-west England. (This figure is used in Chapter
5 as part of the detailed description of Coles and Tawn (1996).) It should be noted that
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Figure 2.3: Example of a mean residual life plot

Figure 2.3 has been produced using R code written as part of the work on this thesis,
and therefore without using functions supplied as part of an R package. Such functions
often include error bars automatically calculated based on frequentist confidence interval
calculations. We do not use them as they do not fit with the Bayesian ethos of this
thesis.
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There are several reasons for this effect: 44

(i) since u is high, the number of observations {X|X > u} will generally be low
giving a high variance to estimates of E(X − u|X > u);

(ii) the data points are unlikely to be exactly iid; and

(iii) may include the effects of more than one generative process.

These problems with using graphical methods are compounded if the inherent uncertainty 45
in the choice of u is ignored in subsequent analysis. At the very least it is necessary to
test the eventual results for their sensitivity to the choice of u .

2.7.2 Rules of thumb

The idea of the rules of thumb in this context is that if the distribution of observations 46
lies in the domain of attraction of an extreme value distribution then, given a sample
{X1, . . . , Xn} of size n , there is a function of n that determines the order statistic k
such that X(1) ≥ · · · ≥ X(k) ≥ · · · ≥ X(n) to define the threshold to be used. For that
idea to work well some well-founded assumption needs to be made as to the extreme
value distribution applying to the observations. In practice, rules are sometimes used,
such as the simple statistic that k should correspond to the 90% quantile of the {Xi}
(DuMouchel (1983)), despite a lack of theoretical justification. And even when there is a
theoretical justification the choice of k may not be straightforward. Graphical methods
may be needed to explore the range of options.

2.7.3 Mixture models

As shown above, there appear to be good reasons when analysing extremes for ignoring 47
non-extreme data, including the fact that non-extreme events are often the result of
physically different processes from those generating extremes, and that classical extreme
value theory does not apply to non-extreme events. In practice the point at which events
become, or cease to be, extreme may be far from obvious. As we mentioned in Section
2.1, a number of approaches have therefore been developed in which all observations
(or perhaps above a low threshold) are modelled using a mixed distribution. That
distribution would be chosen so that for high observations (that is, for the tail) some
kind of extreme value distribution would dominate. And for lower observations (the
bulk) some other kind of distribution would dominate.
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Although these approaches have much in common, it is convenient here to examine48
them under three headings:

(i) parametric bulk models;

(ii) semi-parametric bulk models; and

(iii) nonparametric bulk models.

These headings are roughly drawn, different authors having differing views on which
category particular models should inhabit.

2.7.4 Parametric bulk models

The idea here is that the mixture comprises a parametric distribution for the bulk49
below the threshold, and a tail model, the GPD, for example, for those above the
threshold, which is itself a parameter to be estimated. That avoids the subjectivity
involved in using graphical methods to choose the value of the threshold. If a Bayesian
approach is being used, it also permits multiple choices of threshold to be handled
straightforwardly.

Behrens et al. (2004) is an example of such a Bayesian approach. They use a gamma50
distribution to define the priors in the cases described in the paper and find that when,
instead, a Weibull distribution is used as the basis for the priors the inferences about
extreme values were unaffected. They recognise that a more thorough study of the effect
of other distributions below the threshold would be helpful.

An example of an approach that was not Bayesian, although it did depend on simulation,51
is Frigessi et al. (2002). It was an early attempt to define a mixture model with a
continuous transition between bulk and tail models (assuming that there was a lower
bound on the support). Instead of defining a threshold with one bulk distribution
modelling to the left and a tail distribution modelling to the right, both distributions are
defined on the whole support, the relative weights attached to each being determined by
a transition function that varies continuously. The Weibull distribution was suggested
as the basis for the leftmost modelling, in part because it has a light tail. The rightmost
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part would be modelled by the GPD. The transition function, p(·), could be a CDF.
The approach could be seen as a generalisation of that in Behrens et al. (2004) with the
transition function a simple step

p(x, θ) =

{
0, if x < θ;

1, if x ≥ θ,
(2.14)

where θ is a parameter defining the threshold.

Scarrott and MacDonald (2012) point out that the definition of left and right distributions 52
over the whole range may in practice give too much weight

(i) to the tail distribution in the bulk because the GPD reaches its pole at zero, and

(ii) to the bulk distribution in the tail because the weight given to the bulk distribution
tends to zero only asymptotically.

2.7.5 Semiparametric bulk models

Carreau and Bengio (2009) construct a hybrid Pareto model for asymmetric fat-tailed 53
data. It comprises a mixture of m hybrid Pareto distributions that are themselves
mixture distributions. Each of these components is built by stitching a GPD tail (with
parameters α, β and ξ ) to a Gaussian (with parameters µ and σ ), so that at their
junction the resulting density and its derivative are continuous. Those two constraints
reduce the number of free parameters to three, chosen as ξ, µ and σ . The remaining
two parameters, α and β , are then functions of the three free parameters.

Using a mixture of m hybrid Paretos does not require a threshold to be either set 54
or estimated. It has been shown that the tail behaviour of the mixture of m hybrid
Pareto distributions is determined by the component that has the heaviest tail (the
tail dominant distribution) (Kang and Serfozo (1999)). So, if a threshold is required
to be stated it is suggested that the junction between the Gaussian and GPD in the
tail dominant distribution be chosen. The other components in the mixture of hybrid
Paretos were shown to out-perform a mixture of Gaussians and one hybrid Pareto at
modelling the target distribution away from the tail.

do Nascimento et al. (2012) propose a mixture comprising a bulk distribution for 55
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observations below the threshold, u , made up of a weighted mixture of k gamma
densities and a tail distribution, for observations above u as a single GPD. Inference is
performed using Markov chain Monte Carlo (MCMC) methods. The resulting predictive
density gets naturally smoothed out taking into account all possible values of the
threshold irrespective of any discontinuities at the threshold, u , of any individual
mixture density.

2.7.6 Nonparametric bulk models

Tancredi et al. (2006) argue that if the aim is to give a single estimate of the return56
level corresponding to a given return period, and to attach a measure of uncertainty to
the estimate, then the threshold, u(x), should depend on the data, x , and is part of the
estimation procedure. They model the whole set of observations (above a low threshold)
with a mixed distribution comprising a set of uniform distributions for the bulk of
the observations below the threshold u = u(x), and an extreme value distribution
for the tail. The arrangements are illustrated in Figure 2.4. The image shows that
the bulk distribution is a mix of uniform distributions whilst the tail is an extreme
value distribution. The bulk distribution is therefore nonparametric and its CDF is a
piecewise linear approximation. The widths and the number of uniform distributions are
allowed to vary. That bulk distribution is then combined with a PPP distribution for
the tail (thus avoiding the awkwardness of the dependence of the GPD scale parameter).

low threshold threshold

Figure 2.4: Example of mixture model proposed by Tancredi et al. (2006)

MacDonald et al. (2011) also propose a model in which the threshold is a parameter to57
be estimated rather than a constant to be determined in advance. Below the threshold,



CHAPTER 2. EXTREME VALUE THEORY 23

observations are assumed to follow a non-parametric density. Above it either a GPD or a
PPP applies. The authors point to the potentially simpler computation of their proposed
model compared with that of Tancredi et al. (2006). As with the method proposed by
do Nascimento et al. (2012), the possible discontinuity at the threshold in any individual
mixture model density does not translate to a discontinuity in the estimated posterior
predictive density obtained through MCMC sampling: any individual discontinuities
are, in effect, integrated out.

The mixture model in MacDonald et al. (2011) is compared with the then more usual 58
model with a threshold determined in advance. It is found, unsurprisingly, that the
credibility intervals with the mixture model are wider than the credibility intervals with
the threshold fixed. The comparison also shows that the return levels are estimated
more robustly with the mixture model compared to the fixed threshold approach, despite
the fact that the thresholds are sensitive to the choice of prior. The paper concludes
that the mixture model gives a more reliable uncertainty assessment to attach to the
return level point estimate.

Northrop et al. (2017) use Bayesian cross-validation to address the bias-variance trade- 59
off in choosing the threshold in the context of prediction of future extremes. Rather
than choosing a single threshold, the idea is to treat different thresholds as providing
competing models for extreme prediction, and rank each model for its predictive ability.
Predictions of extremes are then obtained by averaging over all the models, weighted by
their individual ranks.

§ 2.8 Dependent Sequences

Various authors have examined the scope for relaxing the condition that the sequence 60
X1, . . . , Xn of random variables with common distribution F must be independent.
Loynes showed that if the assumption of independence is replaced by the requirement
that the sequence {Xi} be a stationary stochastic process then similar results to the
classical theory would hold at least if Xi and Xj are nearly independent when |j − i|
is large (Loynes, 1965). The concept of being “nearly independent” is formally defined
as the sequence {Xi} being uniformly mixing:

Definition 6. Let {Xn} be a sequence of independent iid random variables and let
g(k) be a function such that g(k) → 0 as k → ∞. Suppose A ∈ B(X1, . . . , Xm) and
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B ∈ B(Xm+k+1, . . . , Xm+k+n), for some m, then the sequence {Xn} is uniformly
mixing if

|P (A ∩B)− P (A)P (B)| < g(k) (2.15)

where B denotes the σ -field generated by the random variables indicated.

Considering the case in which the {Xi} are a stationary normal sequence, Berman61
showed that the distribution of the maxima would be in the same MDA as that of a
sequence of independent normal random variables provided certain simple correlation
restrictions on the sequence were satisfied (Berman, 1964).

Leadbetter et al. (1983) generalised these results by defining a weaker mixing condition62
than that used by Loynes (1965), denoted as D(un), that makes precise the loose
concept of the stationary sequence {Xi} being “not too dependent”. The definition of
D(un) relates to the joint distribution functions Fi1...in(xi1 , . . . , xin) of sets of random
variables ξi1 , . . . , ξin . For brevity, we write Fi1...in(u) for Fi1...in(u, . . . , u).

Definition 7. The condition D(un) will then be said to hold if for any integers63
i1 < · · · < ip and j1 < · · · < jp′ for which j1 − ip ≥ l , and any real u,

|Fi1,...,ip,j1,...,jp′ (un)− Fi1,...,ip(un)Fj1,...,jp′ (un)| ≤ αn,l,

where αn,ln → 0 as n → ∞ for some sequence ln = o(n).

The following theorem, stronger than that in (Berman, 1964), was then proved, where
Mn = max(ξ1, . . . , ξn):

Theorem 8. (Leadbetter et al., 1983, Theorem 3.3.3) Let {Xi} be a stationary sequence
and an > 0 and bn given constants such that P{an(Mn − bn) ≤ x} converges to a non-
degenerate distribution function G(x) . Suppose that D(un) is satisfied for un = x

an
+ bn

for each real x. Then G(x) has one of the three standard extreme value forms (as
described in Section 2.1).
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§ 2.9 Trends and seasonality

As noted above, classical EVT does not apply if the data are subject to a trend 64
or to seasonal variation about a stationary position. Various approaches have been
described aimed at overcoming such problems in individual cases. There are well known
techniques for de-trending and for smoothing data. What they have in common is that
they introduce into the eventual estimates further uncertainty deriving from uncertainty
about the choices of de-trending or smoothing technique that are made. Any thorough
quantification of the uncertainty in the estimates needs to account for that added by
such adjustments.

§ 2.10 Conclusions

We have seen that classical EVT was derived to fit an ideal world. We have described 65
subsequent developments that extend its validity to more realistic scenarios but as is
usual in statistical modelling it cannot be expected that even these later models will
describe the real world exactly. When these models are used to forecast extreme events
we must expect them to be very uncertain.
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Chapter 3

Bayesian methods: choice of
priors

The main theme of this thesis is the use of the Bayesian paradigm in applying the 66
theorems of extreme value theory summarised in Chapter 2. Bayesian inference de-
pends upon making use of prior information: it requires the analyst to express prior
information in the form of a probability distribution. The word “prior” does not nec-
essarily mean earlier in time: Jaynes (2003, Section(4.1)) states that “any additional
information beyond the immediate data ... of the current problem is by definition prior
information”.

Although Bayesian methods have been known for very many years, until the late 67
twentieth century their use was severely constrained by computational problems because
purely analytical methods were usually not feasible for the problems arising in practice,
so that computationally heavy numerical methods were required. That situation has
been transformed by two developments: first, the enormous increase in the speed,
capacity and availability of computers, and secondly, by the development of theoretical
advances in simulation models and specialised software enabling users to write the
simulation models that Bayesian methods require.

In this chapter we consider the choice of priors and why it is especially important to 68
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use informative priors when estimating extremes.

§ 3.1 Importance of priors in analysis of extremes

In many applications of Bayesian methods, the volume of data is so great that the69
information it contains swamps any reasonable prior the analyst may choose, so that
very flat, uninformative priors may be used. But, as noted above, in extreme value
problems the data that is most relevant to estimating extremes is usually very scarce.
For example, in my earlier work on extreme wave heights referred to in Chapter 1, and
summarised below, the dataset comprised over 350000 observations of wave heights
made over a total of 45 years at the location in question. That meant that in the method
of annual maxima (see Section 2.2) only 45 of them could be used. Even using the POT
method (see Section 2.4), fewer than 200 observations were realistically available for
use. And within these very sparse datasets the observations that were most relevant to
estimating extremes were inevitably the even sparser set of extremes of the observations.
(Rainey and Colman, 2014)

In such cases the choice of prior distribution is likely to have a great effect on the70
results of the analysis, and the justification for using non-informative priors becomes
highly questionable. The formulation of priors also takes on great importance as it
provides the means for bringing into account relevant information that is not present
in the direct experimental data. Sources of knowledge independent of the data are
frequently available, such as known physical constraints, understanding of the generative
mechanism of the quantities of interest, and information from other locations (Coles and
Tawn, 1996). It therefore makes sense to use as much valid prior information as can be
obtained. An important specific source of information that goes beyond well-established
knowledge is the judgement of experts.

§ 3.2 Non-informative priors

Many of the papers that examine Bayesian approaches to extremes focus on modelling71
issues rather than the particular data or results, and for simplicity use non-informative
priors. Engelund and Rackwitz (1992) consider the effect on inference of various choices
of non-informative priors, conclude that some well known non-informative priors can
give rise to nonsensical results in inference about extremes and propose some minimally
informative priors to avoid that problem, but the priors they suggest are not based on
the specific science of the phenomenon of interest. In parallel, in the related field of
survival analysis, several authors described schemes for eliciting priors for parameters
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in the relevant distributions: Berger and Sun (1993); Singpurwalla (1988); Singpurwalla
and Song (1989).

The focus of Smith and Naylor (1987) is also on a modelling issue, namely, a comparison 72
between the Bayesian and maximum likelihood approaches for estimation of a Weibull
distribution. In their Bayesian approach, two priors are used, one at least of which
might have been based on relevant scientific knowledge. Although the authors advocate
trying to incorporate any available physical information in priors, they make clear that
their two priors are not intended to represent real physical information.

§ 3.3 Minimally informative priors

The idea of basing priors on very general scientific knowledge is also described by 73
de Zea Bermudez et al. (2001), who propose constructing separate models depending on
each of the three classes of extreme value distribution based on what they describe as
a very careful elicitation of the extreme value index ξ (de Zea Bermudez et al., 2001;
de Zea Bermudez and Turkman, 2003). By that they mean expert prior knowledge
of the likely lightness or heaviness of the tail of the underlying distribution. Similar
approaches are taken by, for example, Cooley (2005), Ortego et al. (2010), and Renard
et al. (2006).

In 2014 I was approached by a leading hydrodynamicist, Professor Rod Rainey FREng, 74
with a problem about forecasting extreme wave heights at a specific location in the
North Sea in the context of the design of oil rigs. One of the regulatory requirements
that must be met before the design for an ocean oil rig can be approved is that it must
be shown to be safe in the event of 10000-year waves, that is, waves of a height that
might be expected to occur in any year with a probability lower than 1 in 10000. One
major risk that faces an oil rig is that the crest of a wave might catch the deck of the rig
and knock the rig over. It follows that the estimate of the 10000-year wave determines
the minimum height of the deck, and is a very strong influence on the cost of the whole
rig.

Rainey had been provided with a report by a consultant that offered a variety of ways 75
of calculating the 10000-year wave height as a single figure at a specific location west of
Shetland and then took the arithmetic mean of the results again presented as a single
figure. Rainey doubted the validity of some of the methods the consultant used. He
was not convinced that it was reasonable for those results to be taken into the mean.
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He was looking for a more rational approach. That led us to consider ways of applying
EVT to wave heights at the west of Shetland location.

In ocean hydrology a standard approach to forecasting the height of extreme wave crests76
is to begin by forecasting what is known as the significant wave height, denoted
by the symbol Hs . Significant wave height was originally defined as the mean of the
highest one-third of the waves, as measured from the trough to the crest of the waves
but is now formally defined as Hs = 4

√
m0 where m0 is the variance of the wave heights

observed during a given period. In practice wave heights are not measured directly but
are calculated from measurements of the vertical acceleration of the measuring device.
Significant wave height is thus a statistical description of individual wave heights rather
than measurement of any individual wave during the period of measurement.

The length of the period over which variance is measured may vary according to the77
use to be made of the data. In the offshore oil industry a period of 20 minutes is used.
For other uses longer periods may be used. The length of the period has an effect on
the height and volatility of the Hs measurements. In a short period high individual
waves have a greater impact on the variance than in a long period. So a short period
will give rise to more volatile values of Hs than a long period and will permit higher
values of Hs to be attained.

In our elicitation exercise discussed in Chapter 10, and for reasons explained there, we78
shall not be using forecasts of individual wave heights. For completeness, however, we
record here that where such forecasts are required there is a second stage that makes
use of a probability distribution of individual wave heights and wave crests for given
significant wave heights. The current practice in the oil industry is to use the Forristall
distribution which is based on Stokes’s second order theory. Its distribution function
is:

F (h) = 1− exp

[
−2.263

(
h

Hs

)2.126
]

(3.1)

where h denotes individual wave height. The distribution is a refinement of the Rayleigh
distribution which is derived from theoretical analysis (Longuet-Higgins, 1953):

F (h) = 1− exp

[
−2

(
h

Hs

)2
]

(3.2)

and was obtained with the parameters estimated from measurements of hurricanes in
the Gulf of Mexico (Forristall, 1978). In a study of the Northern North Sea, Kvingedal
et al. (2018) state that the Forristall distributions for individual wave height and crest
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heights in long-crested seas “are considered to provide the most appropriate descriptions”
of these measured wave data.

Looking now at the specific west Shetland location, we noticed that although the 79
data available about significant wave heights there comprised some 350000 data points
covering 45 years, only a very small number of these were relevant to forecasting
extremes. Our first model was an analysis of annual maxima as described in Section
2.2 using just the 45 corresponding data points. We fitted the generalised extreme
value distribution, Equation 2.4, using (MCMC) methods with the modelling language
OpenBUGS, obtaining posterior densities for the three parameters: the location, µ , the
size, σ , and the shape, ξ .

Initially we had thought that we lacked prior information about all three parameters and 80
therefore based our simulation on very flat priors for each of them. When we calculated
the return levels implied by our posterior estimates of the parameters, however, we
realised immediately that the results were impossibly pessimistic. For instance, the
forecast 1000-year significant wave height, Hs , fell in a 95 % credible range that extended
as far as over 40 metres. Holliday et al. (2006) suggest that the highest value of Hs

ever recorded by scientific instruments (near Rockall, west of Scotland) was 18.5 metres
and figures of around 18 metres have been recorded in severe hurricanes.

A simple way to prevent the forecast extreme waves from reaching physically implausible 81
values was to note that the shape parameter ξ yields unbounded forecasts if ξ > 0. We
therefore re-ran the simulation with the prior ξ ≤ 0. The results of that simulation
were no longer physically implausible.

Our work was intended only to show that a simple Bayesian model was capable of 82
yielding plausible estimates of extreme values. It would, of course, be possible to add
complications to the model. For instance, wave heights are always constrained by the
depth of the water. We could therefore reasonably have used a prior that limited
the estimated extremes to the depth of the sea at the location in question, 135 metres.
We could also take into account such aspects of dependance, seasonality, clusters and
thresholds as described above. To do so would not lead to an especially complex MCMC
model.

Another, earlier, example of the use of more detailed priors in a study of extreme coastal 83
waves is given by Egozcue et al. (2005). Modelling the occurrence of storms as PPP, and
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maximum wave height exceedances per storm with the generalised Pareto distribution,
they develop a joint prior for the shape parameter ξ and the scale parameter β of the
Pareto distribution to give effect to constraints on wave height that they consider, a
priori, to apply. These constraints relate to:

(i) known bound to wave height (depth of the sea at the specific location),

(ii) the probabilities of maximum wave height exceeding a given high level, falling
below a given low level, and attaining a given middle level;

(iii) the rate of decline of the density of excesses. That is obtained by setting a minimum
value for the extreme value index ξ .

§ 3.4 Conclusion

The cases just described show that when using Bayesian methods to forecast extremes,84
even simply constructed semi-informative priors can improve the tightness of the results.
The question that obviously arises is how to develop more fully informative priors in
such circumstances. In the next chapter we describe how elicitation of information from
experts can help with that task.



Chapter 4

Use of expert elicitation in
Bayesian analysis of extremes

We have seen that in Bayesian analysis of extremes the choice of prior can be expected 85
to be very important and that informative priors can encapsulate important information
not available in the data being analysed. Sometimes there exists relevant empirical
evidence that can be used to produce informative priors, but where that is not existent or
where its scope is limited, expert judgement may be usable. A formalised, documented
procedure (Colson and Cooke, 2018) by which the judgement of an expert or experts is
obtained is known as elicitation.1 In this chapter we use the term to refer specifically
to elicitation in a form that provides probability distributions that may be used as
priors in Bayesian analysis of extremes. The broad idea is that the expert is questioned
by a person, whom we describe as the analyst, with the aim of producing numerical
opinions which the analyst can then use to produce a full probability distribution over
the sample space X , say {f(x) : x ∈ X} , that can be used as a prior. We shall see that
there are various differing protocols for managing the elicitation process.

§ 4.1 Relevant literature

Despite its apparently restrictive title, the 278-page European Food Safety Agency 86

1For simplicity we may refer freely in this thesis to ‘expert’ in the singular or to ‘experts’ in the plural
without implying either that there should be only one expert or that multiple experts are required.
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(2014) is a very full review of the theory and practical application of elicitation to risk
assessment in sectors not restricted to food and feed safety. It sees elicitation as one of
the means of providing a quantitative assessment of risk in the areas where judgement
is required rather than just factual knowledge. The experts used need to be skilled in
estimation but also able to give realistic judgements as to the accuracy of their estimates.
Elicitation therefore involves uncertainty expressed as probabilities.

The paper goes on to describe in detail three specific but differing approaches to87
elicitation:

(i) the Sheffield protocol (Oakley and O’Hagan, 2019). The paper draws attention
specifically to the behavioural methods used for aggregating potentially differing
opinions at a meeting of the experts;

(ii) the Cooke protocol (Cooke (1991)), in which the experts do not provide their
opinions collectively, and do not meet to do so, their opinions being aggregated
mathematically based on their individual performance with trial or seed questions;

(iii) a Delphi protocol (Helmer, 1968), in which written opinions are sought remotely
and then revised in the light of feedback about the opinions of the other experts.

In Bojke et al. (2021), and Bojke et al. (2022), the focus of the work was to develop88
standardised principles, referred to as a reference case, for the use of elicitation in a
specific context, health care decision-making (HCD). The earlier unpublished paper sets
out in greater detail the material described in the later paper. To do that, the paper
reviews 16 existing guidelines on elicitation, five of which were generic, the others being
specific to particular domains. The paper reports some experiments to test various
aspects of the guidelines. A set of nine principles for judging the suitability of choices
available for elicitation is developed, as follows:

(i) Transparency. Making available details of how an elicitation has been conducted is
argued to improve the validity of expert judgements and to permit peer assessment
of elicitation.
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(ii) Fitness for purpose. The information that is elicited should be suitable for use in
further analysis.

(iii) Consistency, but respecting the constraints of the decision-making context. In the
specific case of HCD elicitation will potentially be used by a wide variety of types
of user, some with considerable resources others with much less. The reference
case for HCD needs to be usable by all such user bodies.

(iv) Reflecting uncertainty at the individual expert level. Uncertainty of knowledge of
individual experts should be specifically elicited.

(v) Recognising and acting on biases. Elicitation tasks need to be designed and
conducted to minimise the effect of the many heuristics and biases that are known
to be used when experts are asked for complex judgements.

(vi) Suitability for experts who possess substantive skills, who are less likely to possess
normative skills. The elicitation task needs to be suitable for experts who are not
necessarily skilled in probability and statistics.

(vii) Recognising where adaptive skills are required. The elicitation task should recognise
where experts need to adapt their specialised knowledge to related areas in which
they may not be expert.

(viii) Recognising and act on between-expert variation. Where different experts give
different judgements, the reasons for such differences should be understood and
their effect on the eventual decision be explored.

(ix) Promoting high performance. Different experts may bring different levels of
subject-matter expertise, and different levels of skills in, for example, probability
and statistics. Elicitation needs to be able to encourage experts with differing
levels of skills to best express their beliefs about a quantity of interest.
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Examining existing guidelines in elicitation, the paper concludes that they contain many89
choices for which there is no empirical support, and where the principles do not present
a clear basis for preferring one set of choices over another. In consequence, it is argued
that the specific constraints of the chosen application (in this case HCD) may best
determine the choices to be made.

O’Hagan et al. (2006) is an extensive combination of literature review, commentary90
and synthesis about the field of elicitation. It is aimed at a diverse target audience
including decision-makers as well as researchers in many fields. It collects a series
of findings about best practice in elicitation. The Sheffield Elicitation Framework
(SHELF) (https://shelf.sites.sheffield.ac.uk), which is a specific protocol for conducting
elicitations, was developed in parallel with this book. In our own work using elicitation
described in Chapter 10 we shall draw very much on the methods O’Hagan et al. (2006)
describe.

§ 4.2 Difficulties in elicitation

As shown by the references cited above, a great deal of attention has been paid to91
the development of protocols for elicitation: the process of elicitation is far from
straightforward. Many authors have pointed to difficulties from a number of sources
that appear to be inherent in the process:

(i) heuristics and biases: the effect of irrelevant or partially relevant influences on
the judgements elicited from the experts;

(ii) imprecision and (dramatically) incomplete information: the desired output
{f(x) : x ∈ X} is a function defined at an uncountable infinity of points in a
sample space X , such that:

0 ≤ f(x) ≤ 1, ∀x ∈ X∫
x∈X

f(x) = 1.
(4.1)

and yet only a small number of judgements can be elicited from the experts;



CHAPTER 4. USE OF EXPERT ELICITATION IN BAYESIAN
ANALYSIS OF EXTREMES 37

(iii) uncertain calibration: how far an individual expert’s opinions can be validated
as reflecting reality when their opinions are about matters that are unknown.

4.2.1 Heuristics and biases

Throughout the whole process of elicitation major risks arise from the unnoticed use 92
by the experts of instinctive processes, known as heuristics, used by people making
judgements under uncertainty. O’Hagan et al. (2006, Section 3.4) discuss the effect of
three heuristics:

(i) availability - judgements are based on the instances that come most easily to
mind

The risk is that the judgements ignore the effect of relevant instances that did not
come to mind;

(ii) representativeness - judgements about an event A are based on those relating
to another event B according to the similarity between A and B.

The risk is that A is also influenced by events that are not similar to it, so ignoring
such events would give rise to erroneous judgements;

(iii) anchor-and-adjustment - judgements are based on an initial estimate (known
as an anchor) that is then adjusted up or down.

The risk is that the anchor is given excessive weight and the adjustments made
are insufficient. Experiments have shown that such an effect can arise when the
anchor is not a relevant estimate, and is even known by the expert not to be.
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Experts have been shown to be at risk of the effects of all these heuristics. There is some93
evidence that very experienced experts are able to avoid them when making judgements
in their own area of expertise, but in an elicitation project the experts are being asked to
make judgements not so much about matters in which they are expert but rather about
probabilities relating to such matters. If the experts have little or no previous experience
in probability and statistics, some training might well be desirable. And even then, it
may be that specific thought would need to be given to structuring the elicitation in a
way that experts lacking such skills can still contribute effectively, as Bojke et al. (2022)
point out (see above) going on to suggest that questions should be posed in a manner
consistent with how experts express their knowledge. For example, they suggest that
elicitation tasks should specify observable quantities, such as probabilities (expressed as
proportions or frequencies), rather than more complex quantities such as odds ratios or
variances.

The elicitation process needs to be structured paying attention to these biases that can94
occur in judgement under uncertainty. The facilitator, and, often, the experts need to
be aware of them and take them into account throughout the facilitation exercise.

4.2.2 Imprecision and incomplete information

The desired output from elicitation is a complete probability distribution. And yet it95
can only be obtained from a (small) finite number of judgements by the experts, and
each expert will inevitably be limited in the precision with which they can express the
numbers that they state. (We leave for discussion below the issue of calibration, so here
we are assuming that the experts’ judgements are all well calibrated.)

Although some authors (Lindley et al., 1979; O’Hagan, 1988) see the expert having96
a “true” probability distribution that elicitation cannot, however, ever fully obtain,
others (such as, for example, Winkler (1967); O’Hagan et al. (2006)) regard the experts’
assessments as necessarily uncertain, so that an expert might well be satisfied that each
of a variety of different distributions represented their view. In practice, whichever
view is taken it is clear “that the expert’s elicited probabilities must be treated as
imprecise”(O’Hagan et al., 2006). There does not appear to be consensus on the best
way of dealing with this issue.

As to the number of judgements the expert may be asked to make to define their97
probability distribution, the practical limit arises through tiredness and the risk that the
expert becomes anchored to previously given judgements. Beyond some point, eliciting
more judgements provides no extra information and may even introduce biases. In
practice very small numbers of judgements are commonly used. For example, in the
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case considered in Coles and Tawn (1996), which is described in more detail in Chapter
5, the expert provided twelve quantified judgements relating to quantiles used in the
analysis, and of these only six judgements were used directly.

4.2.3 Calibration

There is a very large literature on calibration, the question of how closely a source’s 98
probability judgements correspond with the relative frequency with which events are
observed. A source may be an individual, a group of individuals, or some kind of
prediction model. In an elicitation the expert is generally being asked to give judgements
about matters that are unknown, so it is difficult to check the calibration of such
judgements. But an expert’s calibration can be tested by, for example, using calibration
questions, which are items from the expert’s field that are, however, uncertain to the
expert (i.e., the expert does not know the true values or does not have the true values
readily accessible), but are either known to the analysts at the time of the elicitation or
will be known during the analysis period.

A perfectly calibrated source would make judgements that coincided with the frequencies 99
of occurrence of the events in question. Over-confidence would result in judged
probabilities being higher than the corresponding actual frequencies of occurrence;
under-confidence would be the reverse. Calibration might be compromised without
any consistent pattern off over- or under-confidence: O’Hagan et al. (2006) define one
such pattern, where the judged probability of low-frequency events is even lower, and
the judged frequency of high-frequency events is even higher, as over-extremity. They
identify another potential defect in a source’s calibration as poor discrimination, that
is a tendency for the source to assign similar probability judgements to events with
different frequencies of occurrence.

§ 4.3 Processes for elicitation

We have referred in Section 4.1 to the numerous elicitation protocols examined in the 100
literature. One such model is described in(O’Hagan et al., 2006, Section 2.2.2). It has
been developed into a very full package for elicitation, SHELF (Oakley and O’Hagan,
2019). It proceeds through the following stages:

(i) Background and preparation
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It is not necessarily straightforward to identify the variables for which expert
assessment is needed. The choice will depend on the statistical model that is to
be used and on the structure of the data. At this stage too the statistician or
facilitator needs to acquire the technical expertise needed to communicate with
the experts. Background briefing for the experts needs to be created during this
first stage.

(ii) Identify and recruit experts

Experts used in elicitation projects may need to be more than available individuals
who have a high degree of subject-matter knowledge. If the results of the elici-
tation exercise are to be convincing to third parties, evidence of and reputation
for expertise will be needed. High reputation alone is not necessarily enough:
O’Hagan et al. (2006, Section 3.3.1) point out the important distinction between a
professional and an expert. It is possible that not all professionals employed in a
particular subject area, especially very senior professionals, do in fact possess the
degree of expertise required for a particular elicitation.

(iii) Motivating and training the experts

We noted above that it is likely that some at least of the experts will not be
highly familiar with expressing their opinions in probabilistic terms. In addition to
explaining to the experts how the process of elicitation will work, therefore, it may
well be necessary to train the experts in probability, in how their judgements could
be undermined by common biases and shortcuts in thinking. Practice elicitation
sessions might well be helpful.

(iv) Structuring and decomposition

The variables that are the subject of the elicitation do not exist in isolation; there
is some kind of structure that relates them to each other and to other variables
that may be well known. The experts themselves are likely to have opinions about
such interrelationships. Identifying such structure is relevant to reviewing with
the experts the evidence on which they will draw in making their judgements.
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(v) The elicitation

A cyclical process is used: from the experts’ judgments a probability distribution
is fitted and presented to the experts. If they do not consider it to be adequate the
process is repeated. For a function to be a valid probability distribution function
or probability density it must be highly constrained. As well as complying with the
experts’ judgements, it must also satisfy Equations 4.1. It will be capable of being
described by numerous descriptive measures known generally as summaries, such
as mean, variance, quantiles, moments etc. And in many cases, it will be smooth
and well-behaved (having only one or two modes, for example). We have already
noted, however, that in the specific context of extreme value analysis, results can
be highly sensitive to the specific distribution function that is chosen to represent
the expert’s judgements.

§ 4.4 Conclusion

We conclude that the effective use of elicitation requires the use of a well-designed 101
protocol. Without it, the results are likely to be fatally compromised in numerous
ways. But, as to the choice of protocol, numerous options have been presented in the
literature with some authors (eg Bojke et al. (2022) finding the evidential basis for
choosing between them rather lacking.
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Chapter 5

Coles and Tawn on elicitation

Coles and Tawn (1996) is an influential paper describing an approach to expert elicitation 102
in predicting extreme rainfall at a specific location in south-west England. In this chapter
we discuss their approach, and illustrate it by working through their methods with an
example data set.

§ 5.1 Constructing the Coles and Tawn approach

The problem to be addressed is that when studying extreme phenomena, that is, 103
phenomena that might occur on average as rarely as once in 1000 or 10000 years, relevant
observational data will be very scarce. The basic idea is that properly elicited expert
opinion, independent of the observational data, can be taken into account alongside the
observational data and thus increase the precision and reduce the uncertainty pertaining
to forecasts of extreme behaviour.

The observational data used had been recorded at one rain gauge site spanning the 104
period 1932-88. Although there were known to be some seasonal characteristics, the
temporal dependence at extreme levels had been found to be extremely weak. Expert
information was provided by Dr Duncan Reed, an acknowledged expert in hydrological
science with specialised knowledge of rainfall in the region. Computationally, an MCMC
method was used.

43



44

Working backwards, we can describe the Bayesian mechanism Coles and Tawn used for105
taking elicited expert opinion into account as follows:

(i) forecasts of extremes are derived from posterior samples from a parametric proba-
bilistic model;

(ii) the parameters of the model are fitted to a subset of the observational data that
excludes observations judged too low to be relevant to extreme behaviour;

(iii) during the fitting process parameters are drawn as samples from prior distributions
defined by hyperparameters;

(iv) the hyperparameters are fitted to quantiles elicited from the expert.

It follows that as analysts Coles and Tawn needed to make a series of decisions:106

(i) what parametric model to choose;

(ii) how to exclude irrelevant observations;

(iii) how to define the prior distributions;

(iv) how to convert the expert’s quantiles into parameters of the prior distributions.
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§ 5.2 The choice of parametric model

Coles and Tawn examined the merits of choices made in earlier work. They recognised 107
that the annual maxima approach (see Section 2.2) would not be an efficient use of the
data. They also saw a disadvantage in the GPD model as used by Pickands (see Section
2.5). That method used the potentially helpful relation, for all thresholds ũ > u :

p(Xi − ũ ≤ y|Xi > u) = 1−
(
1 +

ξy

σ̃

)1/ξ

+

(5.1)

where σ̃ = σ + ξ(ũ− µ). Coles and Tawn found, however, that using the GPD model
seemed restrictive since the scale parameter σ̃ is dependent on the choice of ũ so a
single uninformative prior cannot be chosen that is valid at all thresholds.

They therefore worked explicitly with the point process model (see Section 2.6) in which 108
the parameters would be independent of the threshold level. That model was based on
a point process characterisation of extremes {Xi : i = 1, . . . , n} over a high threshold u .
Accordingly the set {Xi : i = 1, . . . , n} viewed on the interval [u,∞) is approximately
a non-homogeneous PPP with intensity function:

λ(x) =
1

σ

{
1 + ξ

(
x− µ

σ

)}
+

(5.2)

where z+ = max(z, 0) and where µ, σ, ξ are the location, size and shape parameters
respectively of the GEV distribution.

5.2.1 Excluding irrelevant observations

We have just seen that the PPP model depends on the selection of a high threshold, 109
u , below which the observational data is discarded. The analysis therefore required a
decision on the level to be used for u . Coles and Tawn followed the method described
above (see Subsection 2.7.1), namely inspection of the empirical plot of mean residual
life (MRL). Although the exact dataset used by Coles and Tawn cannot be traced, a
nearly identical set has been provided as data in the R package evdbayes. That dataset
covers almost the same period as used by Coles and Tawn but contains slightly fewer
observations: 19,667 rather than 19,725. The evdbayes dataset enables us to produce
a very similar MRL plot, see Figure 2.3. It shows clearly the complication caused by
increased variability at large values of rainfall. Nevertheless, Coles and Tawn discerned
evidence of linearity above a threshold of about 40mm. They proceeded on that basis
but examined later the sensitivity of the results to other choices of u .
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5.2.2 Defining the prior distributions

As can be seen in Equation 5.2, the three parameters of the PPP are: (i) location, µ ,110
(ii) size, σ , and (iii) shape, ξ . Coles and Tawn argued, however, that it would not
be satisfactory to use these parameters directly because there would be likely to be a
negative dependence between σ and ξ . That dependence arises from the fact that the
weight of the tail of the distribution would be increased by increasing either σ or ξ .

To avoid such dependence, use was to be made of quantiles (in this context known as111
return levels):

qi = µ+
σ
[
{− log(1− pi)}−ξ − 1

]
ξ

(5.3)

for three values of p : p1 > p2 > p3 . But since the qi are not independent the authors
worked with the differences

q̃1 = q1 − e1

q̃2 = q2 − q1

q̃3 = q3 − q2,

(5.4)

where e1 is the physical lower limit of the process. In this case, rainfall, it is obvious
that e1 = 0.

We note that if we combine Equations 5.3 and 5.4, we obtain:112

q̃1 = µ+
σ
[
{− log(1− p1)}−ξ − 1

]
ξ

q̃2 =
σ

ξ

[
{log(1− p1)}−ξ} − {log(1− p2)}−ξ}

]
q̃2 =

σ

ξ

[
{log(1− p2)}−ξ} − {log(1− p3)}−ξ}

]
,

(5.5)

It follows that the priors for the size parameter, σ , and the shape parameter, ξ , are
determined by those for q̃2 and q̃3 , and that the prior for the location parameter, µ , is
determined by that for q̃1 , conditional on the values of σ and ξ .

As to the prior distribution to which the elicited quantities were to be fitted, Coles113
and Tawn chose the gamma distribution for each q̃i with the PDF fi(·) being given
by

fi(x) =
βαi
i

Γ(αi)
xαi−1e−βix x ∈ (0,∞) (5.6)
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where Γ(·) is the gamma function. They assumed that the three distributions were
independent.

The gamma distribution has support on the positive real line but no further detailed rea- 114
sons were given for that choice of distribution. Because the elicitation would be working
with the differences q̃i : i = 1, 2, 3, the implied distributions of the underlying qi would
be one gamma distribution, the sum of two, and the sum of three gamma distributions
respectively, a situation the authors describe as having a sense of arbitrariness.

5.2.3 Converting the expert’s quantiles into parameters of the Poisson
point process

The expert was to be asked for his estimated median and 90% quantiles of each of the 115
q̃i , from which the values of αi and βi could then be calculated. The joint prior for the
qpi is then to be obtained from Equations 5.4 and 5.6 as:

f(qp1 , qp2 , qp3) ∝ q̃α1−1
p1 exp(−β1q̃p1)

3∏
i=2

q̃pi exp{−βiq̃pi}

= qα1−1
p1 exp(−β1qp1)

3∏
i=2

(qpi − qpi−1) exp{−βi(qpi − qpi−1)} (5.6)

on 0 ≤ qp1 ≤ qp2 ≤ qp3 .

The posterior, π((µ, σ, ξ)|x), is derived using Equation 5.3 and the Jacobian of the 116
transformation (qp1 , qp2 , qp3) 7→ (µ, σ, ξ).

Explicit analytical calculation of the marginal distributions of π((µ, σ, ξ)|x) being 117
impossible, a Markov chain Monte Carlo method based on the Gibbs sampler was used.
It successively updated the individual parameters µ, σ , and ξ conditionally on the
current values of the other parameters.

§ 5.3 Results

The expert took account of the general rainfall climate over the region containing the 118
specific location as well as particular characteristics of the site, such as altitude and
average annual rainfall. He did not, however, refer to the data available from the site.
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pi Median (mm) 90% quantile αi βi
0.1 59 72 38.9 0.67
0.01 43 70 7.1 0.16
0.001 100 120 47.0 0.39

Table 5.1: Elicited prior medians and 90% quantiles for distributions of q̃i with associated
gamma parameters for the prior distribution

The expert’s three pairs of quantiles were fitted to gamma distributions, yielding
parameters αi, βi : i = 1, 2, 3. The results were given as shown in Table 5.1.

The Gibbs sampler converged and after a burn-in of 2000 iterations provided material for119
analysis based on the subsequent 8000 iterations. The results are presented graphically
in two ways:

(i) Showing a range of estimates of the return level for each period of years together
with 2.5% and 97.5% quantiles and the medians. These ranges are based on the
fact that for each draw of the three parameters, µ, σ, ξ , the implied return level
can be calculated for any chosen period of years. Figure 5.1 shows the resulting
distributions for each return period from 10 to 10000 years.

(ii) Univariate marginals are shown (Figure 5.2 of the prior (red) and posterior (black)
distributions of each GEV parameter.1

The authors examine the relative merits of their Bayesian approach and frequentist120
methods. They compare their results for the quantity qp , namely the 1− p quantile
of the annual maximum distribution to a version of qp calculated from the Maximum
likelihood estimate (MLE)s. They find that the Bayesian approach gives both a more
sharply rising curve and one that passes more closely to the empirical return levels of
the observations than the MLE method. They suggest that the shape of the MLE curve
may be over-influenced by less extreme data.

Comparison of the results with those obtained with a set of uninformative priors121
(independent Gaussian or log-Gaussian priors with large variance) showed that within

1Both Figures are derived using the evdbayes dataset rather than the slightly different dataset used
in the original paper.
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Figure 5.1: Implied return levels by return period: median and 2.5% and 97.5% quantiles

the range of the data the two posteriors were very similar, whereas, for longer return
periods the informative priors produce posteriors with higher means and much lower
variance than with the uninformative priors (such priors would give results that would
be consistent with frequentist methods). We show a similar comparison graphically
below in Section 5.5. The conclusion was that use of informative, but not site-specific,
prior knowledge led to improved precision of the estimates beyond the range of the
data.

§ 5.4 Discussion

Coles and Tawn (1996) was one of the earliest papers in which informative priors based 122
on elicitation were used to analyse extremes. There are a number of aspects of the work
which might nowadays be handled differently:

(i) Because it obtains priors for the three parameters by a one-to-one transformation
of variables

(q1, q2, q3) 7→ (µ, σ, ξ) (5.7)

the method is restricted to making use of only three pairs of elicited quantiles.
Although six pairs of quantiles were elicited, three of them could not be used in
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(a) Location, µ

(b) Scale, σ

(c) Shape, ξ

Figure 5.2: Univariate marginals by parameter:
Posteriors: black. Priors: red
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estimation, but only as a cross-check. And the choice of which three of the six
pairs to use in estimation would have affected the results.

(ii) Working with differences between quantiles ostensibly requires the expert to
estimate the median and 90% quantile of differences between quantiles of the
underlying distribution without estimating the quantiles themselves. That seems
likely to be a difficult task without risking the required independence of the three
quantities.

(iii) the reasonable-seeming choice of the gamma distribution to model the differences
in quantiles is nevertheless arbitrary.

(iv) the effects of the assumption that a gamma distribution is appropriate are not
examined.

The analysis concludes that with high probability the shape parameter, ξ , is positive. 123
Using the GEV distribution, such a value of ξ implies that some at least of the return
levels for daily rainfall implied by the Hamiltonian Monte Carlo (HMC) simulation might
be unbounded above. While noting that fact, the paper does not discuss the realism
of such a finding. There are, nevertheless, some arguments in favour of permitting the
parameter ξ to exceed zero, particularly in a study of rainfall, as we shall discuss in
more detail below (see Section 8.1).

§ 5.5 Worked example of the Coles and Tawn approach

To present a fuller understanding of the methods used by Coles and Tawn we apply 124
them to an artificial data set as set out in the following paragraphs. It is convenient at
this point to describe the approach we have taken to computation both in this chapter
and throughout this thesis. All the work has been done using the languages R (R
Core Team, 2024) and Stan (Stan Development Team, 2024). R is a language and
environment for statistical computing and graphics and includes a very large number
of packages of software for specific tasks. Stan is a platform for statistical modelling
and high-performance statistical computation. In our work we have primarily used the
facilities Stan provides for MCMC modelling, making use of interfaces between Stan
and R that have been provided as R packages (initially rstan and, later, cmdstanr).
Although we are aware that R packages exist for the analysis of extremes, we have
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Figure 5.3: A rainfall dataset

developed our own R code for our analysis. Likewise, we have created Stan code specific
to extremes rather than using any pre-written code that may exist. (At the outset of
this research there was little or no such code. We have not particularly followed any
subsequent development that there might have been.)

It is convenient to use the rainfall dataset in the R package evdbayes. The full dataset125
is shown in Figure 5.3. Because that dataset is remarkably similar to that used by
Coles and Tawn, it seems reasonable to use the same expert data that were elicited
by Coles and Tawn, comprising medians and 90% quantiles q̃1, q̃2, q̃3 of the differences
between rainfall corresponding to three probabilities, namely 0.1, 0.01 and 0.001. For
each probability we fit the data to a gamma distribution with results shown in Table
5.2. The three pairs of parameters of the gamma distributions define the elicited prior,
π((µ, σ, ξ)|x).
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pi Median (mm) 90% quantile αi βi
0.1 59 72 39.0 0.66
0.01 43 70 6.1 0.13
0.001 100 120 46.7 0.46

Table 5.2: Elicited prior medians and 90% quantiles for distributions of q̃i with associated
gamma parameters for the prior distribution

It is now necessary to choose a high threshold to restrict the analysis to observations 126
for which the GEV model is most likely to be appropriate. Coles and Tawn did so by
inspection of the MRL plot. The plot for the dataset we are using was shown above
as Figure 2.3. As noted there, it is certainly not obvious what the choice of threshold
should be. The aim is to find a high threshold above which the plot is reasonably linear
(until the sparsity of observations gives rise to large variances). By inspection the lowest
high threshold appears to be around 37mm and possibly a figure as high as 50mm
might be chosen, corresponding, respectively, to 132 and 26 observations. We will work
initially with a threshold of 40 (86 observations) and then explore the effect of using
lower or higher figures for the threshold.

We are now able to carry out an MCMC simulation to estimate the posterior distributions 127
based on the given priors, the threshold and the observational data. The simulation is
performed using code we have written in the language Stan (Stan Development Team,
2024) and processed using the R package cmdstanr.

Before examining the results of the simulation we can carry out a cross-check on the 128
simulation using the additional quantiles elicited from the expert. These correspond
to 30-, 300- and 3000-year return periods. The results are shown in Table 5.3. As was
observed in Coles and Tawn (1996)[Section 3], the 30-year and 300-year derived prior
values are very close to those elicited from the expert but there is a discrepancy in the
3000-year quantiles.

Table 5.3: Comparison of elicited and derived prior estimates for statistics of return
values associated with a range of return periods

Return period Elicited prior values(mm) Derived prior values (mm)
(years) Median 90% quantile Median 90% quantile

30 75 95 76.7 95.7
300 140 170 140.2 175.8
3000 260 300 296.2 354.1
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As it happens, the discrepancy is not so large in our case as in the original paper: their129
derived prior values at 3000 years were as high as 350.7 and 419.3. Nevertheless a conflict
between the opinion of Dr Reed, the expert, and the simulated results requires further
examination. The expert’s response as reported in Coles and Tawn (1996)[Section 3]
was that he doubted the validity of extrapolations based on the GEV model at very
extreme levels. Amplifying this view in recent correspondence with us Dr Reed stated
that his doubts related not just to the GEV model but to any model, and not only
at very extreme levels. He commented that he would not trust “a single-site analysis
beyond return periods of say twice the record length. 30 years fine, 300 years not. 300
years: you simply must do some kind of pooling to exploit data from other sites. 3000
years a lot of pooling” (Reed, 2023). Dr Reed’s recent statement confirms that the
difference between his opinions of the 3000-year rainfall and the results of the modelling
exercise is attributable to his disbelief in any likelihood model, including the specific
model used by Coles and Tawn, rather than any incoherency in the prior. We therefore
proceed, as did they, on the basis of the original prior but maintain caution about the
validity of the analysis at extreme levels.

The univariate marginals of prior and posterior distributions of each parameter were130
shown above in Figure 5.2. The posterior distributions are clearly much more precise
than the priors but consistent with them.

The simulation proceeds in four independent chains with different starting points. There131
were 1000 warmup iterations in each chain and 1000 post-warmup iterations making two
sets of 4000 each in total. At each iteration of the simulation in each chain, a triplet of
the GEV parameters, µ, σ, ξ , is generated defining an extreme value distribution.

The results of the simulation are summarised in Table 5.4. That table includes values of132
two diagnostics: R̂ , which is a measure of the convergence achieved in the simulation; and
neff which is a measure of the effective sample size taking account of the autocorrelation
between successive iterations. The unit in which neff is measured is the number of
effective samples. It may be compared with the actual number of samples taken in the
simulation, in this case 4000. It can be shown that in a simulation with n (effective)
iterations limn→∞ R̂ = 1, so the values of R̂ give some comfort that reasonable
convergence has been achieved, and that is supported by inspection of the trace plots
for the three parameters µ, σ, ξ (Figure 5.4). As to autocorrelation, inspection of the
autocorrelation plots of each parameter give rise to no concern, as can be seen, for
example, in the plot shown as Figure 5.5.
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Parameter R̂ neff mean sd 2.5% 50% 97.5%

qtilde1 1.007 1178 69.478 3.355 63.457 69.379 76.692
qtilde2 1.008 1038 50.093 4.828 41.122 50.000 59.847
qtilde3 1.004 1190 96.677 13.569 72.103 95.896 125.578
mu 1.003 1920 43.367 0.968 41.559 43.332 45.373
nu 1.002 1476 1.926 0.149 1.647 1.922 2.236
xi 1.002 1486 0.283 0.034 0.217 0.284 0.350
sigma 1.005 1344 8.063 1.046 6.232 8.023 10.271
log-posterior 1.003 1066 -19.275 1.228 -22.527 -18.950 -17.872

Table 5.4: Summarised results of the simulation using u = 40
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Figure 5.4: Traceplot plot for GPD parameters

The range of forecasts of return values that flow from the individual extreme value 133
distributions is shown graphically in Figure 5.6. In each graph, we summarise the
resulting distributions in terms of estimated quantiles of rainfall for a full range of return
periods. We also show in red the empirical return values of the data. The effect of using
elicited priors is clearly shown by comparing Figure 5.6a with the equivalent produced
using uninformative priors, Figure 5.6b. It is clear that the use of elicited priors vastly
improves the precision of the estimates of extreme return levels. It is also notable that
the mean forecast is consistently higher in the elicited case than in the uninformative
case, as can be seen in Figure 5.7 where the two sets of results are presented together.
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Figure 5.5: Autocorrelation plot for parameter µ

100

200

300

400

500

1 10 100 1000 10000
years

D
ai

ly
 r

ai
nf

al
l (

m
m

)

(a) Elicited priors

0

500

1000

1500

1 10 100 1000 10000
years

D
ai

ly
 r

ai
nf

al
l (

m
m

)

(b) Uninformative priors

Figure 5.6: Forecast return levels for range of periods with different priors:
Key: medians (black), and 2.5% to 97.5% quantile range (grey), empirical return periods
of data (red)

Coles and Tawn (1996) tested the 30-, 300- and 3000-year quantiles that they had134
elicited from their expert. We can do the same: Figure 5.8 shows that the expert’s
quantiles are slightly lower than the return levels generated by the model.

To test the sensitivity of the results to the choice of high threshold, u , we additionally135
ran the simulation for the cases u = 35 and u = 50. In Table 5.5 the results of the
simulations are presented showing for each threshold an indication of the spread of the
estimates of extreme values for three different periods. The results for u = 35 and
u = 40 are very similar at all return periods. The notable feature of the results for
u = 50 are the greater spread of the figures. That is an unsurprising consequence of the
small size of the sample of observations exceeding 50mm.
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Figure 5.7: Comparison of results using elicited and uninformative priors
Key: Elicited priors: black line and dark shading. Uninformative priors: dashed blue
line and light shading. Empirical return levels of data: red dots.

§ 5.6 Practical use of posterior distributions

In our reproduction, above, of the Coles and Tawn methodology we have followed the 136
authors in not addressing how the results might be used in practice. The posterior
distribution of their forecasts of a particular extreme value, the 10000-year return level,
for instance, does not immediately enable an engineer to decide a specific physical
structure that would resist such an extreme: ideally a single figure would need to be
derived. The Bayesian approach can produce such a figure. If the quantity of interest is
a random variable X whose value depends on a parameter θ , then the quantity

p(X) =

∫
p(X|θ)p(θ) (5.8)

describes the distribution of X taking account of uncertainty about the values of θ and
the uncertainty about the value of X once θ is known. It follows that the expected
posterior predictive value,

E(X) =

∫
xp(X = x)dx, (5.9)

is a point estimate summarising the combined effect of all the uncertainty underlying
the forecast.
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Comparison of model with extra elicited quantiles
40mm threshold
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Figure 5.8: Testing additional elicited quantiles using the 40mm model.
blue = 90% quantiles, green = median quantiles

Although the point estimate yielded by Equation 5.9 is the best summary of the Bayesian137
modelling taking into account all uncertainties, care needs to be taken in its use. It
would not make sense to calculate the figure until being satisfied that the posterior
predictive distribution does indeed take into account all relevant uncertainty and that it
excludes irrelevant material. It would be possible to calculate an expectation based on
the predictions in Figure 5.6b, and such a point estimate would hide that fact that the
underlying posterior failed to make use of relevant information, namely that underlying
the informative priors that produce the much tighter estimates in Figure 5.6a.

§ 5.7 Conclusions

We have described in some detail the work of Coles and Tawn (1996). We have138
drawn attention in Section 5.4 to some respects in which the approach taken might
be questioned, nevertheless we have shown (using a very similar dataset) that it is
reproducible and, of course, using modern software its computation is very fast.
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Threshold
(mm) 110-year 1050-year 1000-year

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

35 113 126 141 182 218 260 293 383 500
40 108 122 138 184 218 259 305 401 527
50 98 115 135 178 213 255 309 421 570

Table 5.5: Effect of changing the threshold on forecast extreme return values
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Chapter 6

Gaussian process models for prior
distributions from elicited
quantiles

We have seen (for example, in Figure 5.6) that information elicited by an analyst from an 139
expert can (depending on the skill of the expert) lead to improved inference particularly
in circumstances where the relevant data points are sparse, as is generally the case in
extreme value statistics. To be used in Bayesian inference, the information the expert
provides must be put into the form of a probability distribution, and we note that to
insist that that distribution take any particular parametric form, a gamma distribution,
or lognormal, say, may well be an unwarranted assumption. We therefore consider how
non-parametric methods may be used.

A non-trivial problem that arises when using non-parametric methods for this purpose is 140
the need for the resultant probability functions not only to match the quantiles elicited
from the expert but also to satisfy constraints (such as monotonicity) that apply across
the distributions’ whole support. Any successful method must provide a solution to
that problem.

There is a literature dating over many years on density estimation, both parametric and 141

61
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non-parametric and both Bayesian and frequentist. That literature addresses a problem
that is, however, subtly different from ours in that its aim is to identify the best fit of
density to possibly extensive data whereas for our purposes we wish to understand the
full range of densities that are compatible with typically sparse data. The literature on
the emulation of complex models is also relevant despite being aimed at a rather more
general problem.

This chapter argues that:142

(i) to obtain a proper understanding of the uncertainty arising from the necessarily
limited information that the expert can provide, it is necessary to use for inference a
full range of distributions that would be compatible with the expert’s information;

(ii) a GP model provides a very flexible and comprehensive non-parametric approach
to the elicitation problem in general; but,

(iii) that flexibility of the GP model can give rise to realisations that meet the constraints
but are not valid distributions, because, for example, they give rise to negative
“probabilities”. That reduces, potentially severely, the efficiency of the modelling
process.

§ 6.1 The need to generate a range of probability distributions

It is important to note that we use the plural word “distributions”. We do so because143
where the expert has supplied quantiles, there are countless probability distributions
that could be fitted. As Gosling points out: “We must also take into account all the
distributions that we believe to be consistent with the judgements provided by the
expert”(Gosling, 2005, Section 2.5 ). To account fully for the uncertainty in the resulting
estimates of extremes it is necessary to consider a full range of feasible distributions; to
choose just one distribution will lead to assessments of uncertainty that are subject to
biases of which the size and direction are both unknown.

In contrast to the view that a full range of distributions should be taken into account,144
however, some authors, notably Jaynes (2003), argue that the choice of prior distribution
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should always be as conservative as possible and they express conservatism in terms of
the entropy, H[p] , of the probability density, p :

H[p] = −
∫ ∞

−∞
p(x) log p(x) dx (6.1)

(in the univariate case). From that point of view, the most conservative prior distribution
is that which maximises H[p] subject to whatever constraints apply. For example,
if we wish to find the univariate density, p , that maximises H[p] subject to being
constrained to a given variance, σ2 , and given mean µ , it must satisfy three constraints,
as follows: ∫ ∞

−∞
p(x) dx = 1∫ ∞

−∞
xp(x) dx = µ µ ∈ R,∫ ∞

−∞
x2p(x) dx = σ2 σ ∈ R.

(6.2)

Using straightforward calculus of variations it is easy to show that the only function
p(x) that satisfies all three constraints is

p(x) =
1√
2πσ2

exp−
{
1

2

(x− µ)2

σ2

}
, (6.3)

namely the normal density.

It is not always possible to derive a maximum entropy distribution: where the constraints 145
comprise quantiles of a distribution function with unbounded support, the maximum
entropy distribution is indeterminate. With bounded support, however, where, for
example, X ∼ [a, b] where a, b are both finite and the given quantiles qi : i = 1, . . . , n
are at points vi , the PDF, f(x) : x ∈ [a, b] , of the maximum entropy distribution can
be stated, as follows:
let

pi ≡ P (vi−1 < X ≤ vi) = qi − qi−1 i = 1, . . . , n

where v0 = a and vn+1 = b . Then

f(x) =

n+1∑
i=1

qi − qi−1

vi − vi−1
1(vi−1,vi](x) (6.4)

where for convenience we have set q0 = a and qn+1 = b and the operator 1(x) is defined
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thus:

1(a,b)(x) =

{
1 if x ∈ (a, b)

0 otherwise
(6.5)

We do not pursue this method any further here. We note that the explicit assumption146
in the use of the maximum entropy distribution is that the given qi : i = 0, . . . , n+ 1
comprise the totality of information about the situation. In the context of expert
elicitation with a very small number of quantiles, we judge that experts are unlikely to
agree that their beliefs about the distribution are truly so limited. In particular, the
sharp drops in the value of f(x) as x ↓ a and x ↑ b seem likely to be unwelcome in
many cases.

§ 6.2 Gaussian process models

In this section we describe briefly what GPs are and review the literature on their use147
in defining priors in the context of elicitation.

GP models have been used, sometimes under quite different names and varying defini-148
tions, for a wide range of purposes. As Rasmussen and Williams (2006, Preface) make
clear, GP models are mathematically equivalent to many well known models and in the
statistics community (alone) have been discussed many times. We use the following
definition:

Definition 9. A GP is a collection of random variables, any finite number of which
have a joint Gaussian distribution.(Rasmussen and Williams, 2006)

A GP is therefore a generalisation of the Gaussian probability distribution whereby149
a sample (usually known in this context as a realisation) drawn from a GP is a
function (or, more precisely, comprises the values of that function at a finite number of
points).

In the general context the basic idea is that the problem to be solved is one in which150
inferences are to be drawn about a given function by combining data (in the form of
the values taken by the function at a finite number of points) with prior beliefs. In the
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Bayesian paradigm the prior beliefs are represented as probability distributions and the
inferences are posterior distributions.

The GP approach to defining priors and extracting posterior distributions is capable of 151
great flexibility. That very flexibility does, however, present some potential difficulties.
Constraints on a function, such that it must be non-negative or monotone can be difficult
to model with a GP (O’Hagan and Forster, 1994, paragraph 13.50). That is precisely
the situation in the typical case we face here, as we seek to fit a bounded, non-negative,
monotone non-decreasing function (all of which a CDF must be) to small number of
quantiles supplied by the expert, whilst ensuring that it attains its lower bound of zero
and its upper bound of exactly unity.

Typically the expert’s prior expectations will also impose further constraints that arise 152
from qualitative aspects such as whether the density could be multimodal, or how
smooth a function it might be. (We shall assume for the purposes of illustration, and
not unrealistically, that the expert has asserted that the density is unimodal and very
smooth). So each simulated density, f(·), and corresponding distribution function, F (·),
say, must comply with a number of constraints:

(i) f(·) must be a valid probability density function:∫ +∞

−∞
f(x) dx = 1

f(x) ≥ 0 ∀x ∈ R

(6.6)

(ii) equivalently, F (·) must be non-negative, monotonic non-decreasing,
F (−∞) = 0 and F (∞) = 1

(iii) the quantiles of F (·) must comply with those defined by the expert:

F (xi) = yi i = 1, . . . , n (6.7)
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(iv) or, equivalently, ∫ xi

−∞
f(x) dx = yi i = 1, 2, . . . , n (6.8)

(v) f(·) must be unimodal: ∃x0 ∈ R with all the following properties:

x ̸= x0 ⇒ f(x0) > f(x)

x0 < x1 < x2 ⇒ f(x0) > f(x1) ≥ f(x2)

x1 < x2 < x0 ⇒ f(x0) > f(x2) ≥ f(x1)

(6.9)

We shall see below that the definition of “unimodal” can be widened slightly to
include the plateau case: ∃x0 < x1 ∈ R with all the following properties:

x ∈ [x0, x1] ⇒ f(x) = f(x0)

x1 < x2 < x3 ⇒ f(x1) > f(x2) ≥ f(x3)

x2 < x3 < x0 ⇒ f(x0) > f(x3) ≥ f(x2)

(6.10)

It can be seen that some of the constraints apply to the density alone, and others apply
(with obvious modification) to the corresponding distribution function as well..

In the following subsections we review the literature on using non-parametric methods153
based on GPs in prior elicitations and examine how authors have dealt with the problem
of constraining the GP so that its realisations are valid probability distributions and
densities.

6.2.1 Oakley and O’Hagan (2007)

Oakley and O’Hagan (2007) address an essentially similar problem to that considered154
here, namely a non-parametric approach to construct a distribution from a small number,
n , of statements,{(xi, yi), i = 1, . . . , n}, that have been elicited by an analyst from an
expert. Formally, they seek a density function f(θ) representing the analyst’s beliefs
about the expert’s density function consistently with data D, which are taken to include
the requirement

∫∞
−∞ f(θ) dθ = 1.

They assume that the analyst’s prior beliefs about f(θ) can be represented by a GP with155
a mean function and covariance function that are modelled hierarchically in terms of a
vector α of hyperparameters. For the mean function, they choose E{f(θ|α} = g(θ|u)
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that is a member of a suitable parametric family with parameters u ∈ α , arguing that
the GP model is sufficiently flexible that a parametric choice of mean function allows
the true f(θ) to have any form at all.

As to the choice of covariance function, they argue that the analyst would expect the 156
variance of f(x) to be smaller where f(x) is small. To reflect that expectation, a
covariance function (denoted a scaled stationary covariance function) of the form

Cov (f(θ), f(φ)|α) = g(θ|u)g(φ|u)σ2 exp

{
− 1

2vb∗
(θ − φ)2

}
(6.11)

is chosen.

Oakley and O’Hagan work primarily in terms of the density function and therefore to 157
incorporate the quantile constraints they evaluate covariances between percentiles of
the distribution function F in terms of the mean and covariance functions of the GP
they constructed for the density as described below in Subsection 6.2.6. In the case they
choose to exemplify, in which g(θ|u) ∼ N (µ, v), that is the normal density with mean µ
and variance v , the covariances involving percentiles can be given in closed form.

An informative prior is set for b∗ to reflect the prior belief that the ratio f(θ)/g(θ) should 158
not fluctuate excessively but neither should it be expected to be constant. Minimally
informative priors are set for the other hyperparameters.

The posterior for the density function of f(·) can then be derived, as follows. Let the 159
data comprise a vector D with mean H and variance-covariance matrix σ2A , and if the
covariance between D and f(θ) is σ2t , where A and t(θ) are functions of m, v and b∗ .
(Note that the notation t(θ) is not intended to refer to the t- distribution.) Then the
joint distribution of D and any finite set of points on the function f(θ) is multivariate
normal, as is the distribution of f(θ)|D,µ, v, b, σ2 , which is a GP defined by:

E (f(θ)|α) = g(θ) + t(θ)TA−1(D −H)

Cov (f(θ), f(φ)|α) = σ2
(
g(θ|u)g(φ|u)c(θ, φ)− t(θ)TA−1t(φ)

) (6.12)

The posterior distribution on α follows from the multivariate normal likelihood for
D|α , and, by integrating out σ2 the joint posterior of the parameters µ, v, b∗ can be
found:

p(µ, v, b∗|D) ∝ 1

vb∗σn+2
|A|−1/2 exp

(
−1

2
(log b∗)2

)
(6.13)
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Using MCMC methods, tripartite samples of values of {µ, v, b∗} may be drawn from this
joint posterior. Finally, each tripartite sample can then be used to sample the density
function,f(x), from the posterior, p (f(·)|D,µ, v, b∗) , at a finite number of values of
x.

There are two practical difficulties in applying Oakley and O’Hagan’s approach as it160
stands to the rainfall case considered by Coles and Tawn. The first is that the natural
choice of mean function m(·|u) would be the density of the gamma distribution fitted
to the given quantiles, but in that case the covariances involving the percentiles cannot
be given in closed form. The second difficulty is the low acceptance rate required to
ensure that f(x) ≥ 0 ∀x , so the process can become very inefficient.

In addition, Gosling et al. (2007) identify two further difficulties:161

(i) the use of a normal distribution as the mean function of the GP might understate
the analyst’s uncertainty about the tail of the density function; and

(ii) in some circumstances, when the underlying distribution perfectly matches the
expert’s judgements, the method might yield results implying that the analyst
knows the true density with no uncertainty at all.

6.2.2 Gosling, Oakley, and O’Hagan (2007)

In Gosling et al. (2007) the the authors follow an approach that is very similar to that162
in Oakley and O’Hagan (2007) in that the facilitator’s beliefs about the density function
f(θ) are represented by a GP that is updated in the light of information elicited from
the expert 1. But to address the problems they see with the method described in the
earlier paper, they base the GP on an underlying t-distribution rather than the normal
distribution.

The facilitator’s objective is to develop beliefs about the expert’s density function163
f(θ), assumed to be smooth and infinitely differentiable everywhere. The facilitator
represents f(θ) as a GP and updates that representation in the light of information
elicited from the expert. The initial form of the GP encompasses the facilitator’s prior

1For convenience the facilitator is denoted as male and the expert as female
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beliefs and is defined by a prior expectation function, a prior covariance and a correlation
function.

In the following paragraphs we describe: 164

(i) the construction of priors for the GP;

(ii) how the priors are updated in the light of judgements from the expert about
quantiles of the distribution f(·);

(iii) making use of information about derivatives;

(iv) incorporating sign information.

The facilitator’s prior expectation of f(θ) is of the form 165

E
[
f(θ)|m, v, d, b∗, σ2

]
= t(θ|m.v, d) (6.14)

where the hyperparameters comprise, first, the location, scale and degrees of freedom
parameters w = (m, v, d) of the t-distribution, and, secondly, the quantities σ2, b∗

which respectively indicate the closeness of the simulated functions to the underlying
t-function and the smoothness of the simulated functions.

The facilitator’s prior covariance between f(θ) and f(φ) is given by: 166

Cov
[
f(θ), f(φ)|w, b∗, σ2

]
= σ2t(φ|w)t(θ|w)c(θ, φ|w, b∗) (6.15)

in which the correlation function c(·, ·) takes the value 1 at θ = φ and is a decreasing
function of |θ − φ| . The paper uses

c(θ, φ|w, b∗) = exp

{
− 1

2vb∗
(θ − φ)2

}
(6.16)
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Before the GP thus constructed can be updated in the light of information elicited from167
the expert, priors need to be defined for the five hyperparameters. The paper deals
with priors for m, v and d separately from those for b∗ and σ2 .

As regards m, v and d , the facilitator has only vague prior beliefs about m and v .168
He believes that d needs to cover a range up to a near-normal density but he has no
grounds for preferring any point on that range over any other. A uniform distribution
is therefore chosen for d leading to the following priors:

d ∼ U[0,40]

p(m, v, d) ∝ v−1
(6.17)

The priors σ2 and b∗ need to take into account beliefs the facilitator has about f(·).169
He will also wish to make choices that improve the efficiency of the sampling process.
These criteria can be expressed in graphical terms in the plane defined by σ2 and b∗ ,
such that sampling will be concentrated on a central region of the plane. That region
is defined by four lines, as shown in Figure 6.1. The joint prior density of (b∗, σ2) is
shown as contours in the figure and has been calculated by reference to the regions
defined by the lines. The regions have the following characteristics:

(i) The f(·) derived from draws of (b∗, σ2) from within the region will not focus too
much on f(·) that are very close to the underlying t-density. The lower sloping
line marks the top of a region in which the maximum absolute difference between
the f(·) and the underlying t-density is less than 0.25.

(ii) The f(·) will not include too many multimodal cases. The left vertical line marks
the leftmost boundary of a region in which fewer than 20% of draws of f(·) will
have three or more modes.

(iii) The f(·) will not include too many cases which are not valid densities as a result
of f(θ) < 0 for some θ . The upper sloping line marks the lower boundary of a
region in which the proportion of points that are negative exceeds 0.1.

(iv) The correlation matrix will be invertible without numerical problems. The numer-
ical problems arise more frequently to the right of the vertical line b∗ = 5
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Figure 6.1: Joint prior density of (b∗, σ2) calculated from linear criteria

If the expert expresses her judgements in terms of quantiles of the distribution for θ , 170
the vector of judgements D is of the form:

DT =

(∫ x1

x0

f(x)dx, . . . ,

∫ xn

xn−1

f(x)dx

)
= (Px0,x1 , . . . , Pxn−1,xn)

(6.18)

The expectation of D is then

E[D|w]T =

(∫ x1

x0

g(x|w)dx, . . . ,

∫ xn

xn−1

g(x|w)dx

)
= HT

(6.19)

The facilitator’s beliefs about f(·) now conditional on D as well as on w, b∗, σ2 is also
a GP constructed using

Cov(f(θ), Pxi,xj |w, b∗, σ2) = σ2g(θ|w)

∫ xj

xi

g(x|w)c(θ, x|b∗, v)dx

Cov(Pxi,xj , Pyi,yj ) = σ2

∫ yj

yi

∫ xj

xi

g(x|w)g(y|w)c(x, y|b∗, v)dx dy
(6.20)

giving rise to a mean

E[f(θ|D,w, b∗, σ2] = g(θ|w) + t(θ|w, b∗, σ2)TA−1(D −H). (6.21)
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and a covariance

Cov(f(θ), f(φ)|D,w, b∗, σ2) = σ2(g(θ|w)g(φ|w)c(θ, φ|b∗, v)
− t(θ|w, b∗, σ2)TA−1t(φ|w, b∗, σ2)T , (6.22)

where, in each equation,

t(θ|w, b∗, σ2)T =
(
Cov(f(θ), Px0,x1 |w, b∗, σ2), . . . ,Cov(f(θ), Pxn−1,xn |w, b∗, σ2)

)
.

(6.23)

Although it is not regarded as feasible to ask the expert to give values of the derivative171
of f(·) for different values of θ , the authors see scope for asking the expert for some
simple judgements. For example, the expert could be asked to give the mode M of the
distribution, where df(M)/dθ = 0. The paper shows how the data vector D given in
Equation 6.18 is changed to

DT =

(∫ x1

x0

f(x)dx, . . . ,

∫ xn

xn−1

f(x)dx

)
= (Px0,x1 , . . . , Pxn−1,xn , 0),

(6.24)

the facilitator’s prior expectation Equation 6.19 becomes

E[DT |w] = HT

=

(∫ x1

x0

g(x|w)dx, . . . ,

∫ xn

xn−1

g(x|w)dx,
dg(M |w

dθ

)
.

(6.25)

It is then straightforward to construct a GP incorporating this information.

Similarly, it is shown how the covariances and the facilitator’s prior expectation may be172
amended to permit information from the expert about the sign of certain quantities to
be incorporated in the analysis. That is helpful when the expert has been asked to give
the mode of the distribution because without the condition

d2f(M)

dθ2
< 0 (6.26)

modes cannot be distinguished from anti-modes. The paper shows how information
about the sign of the second derivative can be included in the construction of the
GP.
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Generalising from the idea of using information from the expert about the sign of the 173
second derivative of f(·), the paper then shows how to incorporate sign judgements for
any order of derivative of f(·) and for f(·) itself. The latter facility helps address one of
the problems with using a GP to represent a probability density, namely that realisations
of the GP may not be valid densities because they include negative values of f(θ) for
some θ . The remedy, that prevents the posterior density being negative “too often” is
to include the judgement that f(θi) > 0 for a set of values {θi : i = 1, . . . ,m} .

6.2.3 Finite-dimensional Gaussian approximation

The method described above (Subsection 6.2.2) reduces but does not eliminate the 174
disadvantage (shared with the method in Subsection 6.2.1) that realisations of the GPs
to which they give rise may not all be valid probability density or distribution functions.
That means that a further stage of rejection is required to obtain valid results. Such a
stage is a source of inefficiency in using the methods that it would be good, if possible,
to avoid. We now describe some methods that were devised in a rather different context
but which can be modified for our purposes. These methods bring the advantage that
GPs may be produced such that all of them satisfy the requirements of consistency with
probability densities or distributions.

The context of the work we describe here arises particularly in the construction of 175
emulators for computer experiments. Such an emulator is a statistical surrogate that
is very much cheaper to run than some large scale computer model and where the
differences between the emulator’s outputs and those of the large model can be estimated
statistically. The methods presented in the papers we describe below have in common
the use of GPs defined at a finite set of knots to approximate the modelling of a given
function that is in principle known but in practice prohibitively expensive to calculate,
and that is subject to known linear inequality constraints.

Maatouk and Bay (2017) consider the case in which the function to be approximated is 176
f : [0, 1]d → R , where d is the number of dimensions, and we are given the value of f
at n distinct locations:

f(x(i)) = yi i = 1, ..., n. (6.27)

(For consistency with subsequent notation we have changed Maatouk and Bay (2017)
indexing generally to start at unity rather than zero, as in the paper.)

Let (Y (x))x∈[0,1]d be a zero-mean GP with covariance function K , and let C0([0, 1]d) 177

be the space of continuous functions on [0, 1]d . Then let the C ⊂ C0 be the subspace of
continuous functions that comply with the given set of linear inequality constraints.The
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interpolation conditions and inequality constraints to which Y is subject are, there-
fore:

Y
(
x(i)
)
= yi

Y ∈ C

The aim is to derive approximations to the infinite-dimensional GP Y of the form:

Y N (x) :=
N∑
j=1

ξjφj(x) x ∈ Rd, (6.28)

where
ξ = (ξ1, . . . , ξN )T (6.29)

is a realisation of a d-dimensional zero-mean GP with covariance matrix ΓN , and
φ = (φ1, . . . , φN )T is a vector of basis functions constructed as described below By this
construction, Y N is a zero-mean GP with covariance function

KN (x,x′) = φ(x)Γφ(x′). (6.30)

With such a structure the task of simulating an infinite-dimensional GP is reduced178
to the simulation of a finite-dimensional ξ subject to the interpolation condi-
tions,YN (x(i)) ≡

∑N
j=1 ξjφj(x

(i)) = yi (i = 1, . . . , n), and to YN ∈ E , where E
denotes the desired set of inequality conditions.

With the sequence of knots, {ui : 0 < u1 < · · · < uN < 1} where uN < inf(x : F (x) = 1)179
we can then define for j ∈ [2, N−1] a sequence of individual basis functions φj(x) = hj(x)
each derived from the “witch’s hat” function

h(x) =

{
1− |x| |x| < 1

0 otherwise,
(6.31)

and with support on the range [uj−1, uj+1] .

It is shown that Y N is then indeed a finite-dimensional GP that converges uniformly path-180
wise to Y with unit probability as N → ∞ . Similarly, it is then shown that monotonicity
constraints can be applied, in the one-dimensional case with which we are concerned,
by using basis functions of the form φj(x) :=

∫ x
0 hj(t)dt where x ∈ [0, 1].
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López-Lopera et al. (2017) generalise the approach in Maatouk and Bay (2017) to 181
permit a wider range of constraints to be applied. The aim is to provide a method for
calculating a finite-dimensional GP of the form

Ym(x) =
m∑
j=1

ξjφj(x), s.t.

{
Ym(xi) = yi i = 1, . . . , N

Ym ∈ E .
(6.32)

Focussing on the case in which the inequality constraints may be expressed in the matrix
form l ≤ Λξ ≤ u , the situation is expressed as follows:

ξ ∼ N (0,Γ) s.t.

{
Φξ = y (interpolation conditions)

l ≤ Λξ ≤ u (inequality conditions).
(6.33)

The authors note that provided the number, q, of constraints is not exceeded by the
number, m, of knots then Λ is injective and that Λξ = η has a unique solution when
η is in the image space of Λ .

An algorithm is presented for sampling from the finite-dimensional GP with linear 182
inequality constraints. We describe a slightly amended version of that algorithm below
(Algorithm 1) in the direct context of the problem we address in this thesis but, in short,
the posterior distribution of Equation (6.33) is obtained from

ξ|{Φξ = y, l ≤ Λξ ≤ u} ∼ T N (Λµ,ΛΣΛT , l,u) (6.34)

where
µ = ΓΦT [ΦΓΦT ]−1y, and Σ = Γ− ΓΦT [ΦΓΦT ]−1ΦΓ (6.35)

and the notation T N (µ,Σ, l,u) denotes a truncated multivariate normal distribution
with mean µ , variance matrix Σ , lower limit vector l , and upper limit vector u .

6.2.4 Notation

We will use the notation adopted in Rasmussen and Williams (2006). 183

A real GP, f(x), is determined by its mean function, m(x) : x ∈ Rd , and its covariance 184
function k(x,x′):

m(x) = E[f(x)],
k(x,x′) = E[(f(x)−m(x′))(f(x′)−m(x′))]

(6.36)

written
f(x) ∼ GP(m(x), k(x,x′)). (6.37)
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By varying the choice of covariance function, and, in particular, by making use of185
the fact that linear combinations of positive-definite functions are positive-definite, an
extremely wide range of functions can be modelled as GPs (Rasmussen and Williams,
2006, ch.4).

If we have two vectors X = (xi : i = 1, . . . ,m)T , X ′ = (x′
j : j = 1, . . . , n)T then we186

write

K(X,X ′) =

k(x1,x
′
1) . . . k(x1,x

′
n)

...
. . .

...
k(xm,x′

1) . . . k(xm,x′
n)

 (6.38)

We have training data comprising a set of pairs {(xi, yi) : i = 1, . . . , n} . The {xi} are187
denoted the design inputs and written X . The {yi} , written f , are the corresponding
training outputs. For clarity of exposition in this chapter, we present the noise-free
case, so yi = f(xi) ∀i .

6.2.5 Representing an unknown function as a Gaussian process

The definition of a GP refers to the joint distribution of a finite number of random188
variables. We represent a single function by treating each of those random variables
as the value taken by the function at a single point. So a single draw from their joint
distribution forms a (finite) set of value pairs for a single function. Our task is, therefore,
to find the conditional distribution of f∗ , namely of the values of f(·) at n∗ test points
X∗ = {x∗j : j = 1, . . . , n∗} , that is to find f∗|X∗, X,f .

Theorem 10. (Rasmussen and Williams, 2006, Equation 2.19) The distribution of

f∗|X∗, X,f . (6.39)

is multivariate normal with mean

f̄∗ = K(X∗, X)K(X,X)−1f (6.40)

and variance
Σ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) (6.41)
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Proof. The joint distribution of f and f∗ is given by:[
f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(6.42)

corresponding to a joint probability distribution of the form

p(y) = (2π)−
n+n∗

2 |Σ|−
1
2 exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
(6.43)

where

y =

[
f
f∗

]
µ =

[
0
f̄∗

]
(6.44)

and

Σ =

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]
(6.45)

For ease of reading we write

K(X,X) = A11

K(X,X∗) = A12

K(X∗, X) = A21

K(X∗, X∗) = A22,

(6.46)

then we have

Σ =

[
A11 A12

A21 A22

]
and we write

Σ−1 =

[
B11 B12

B21 B22

]
so that [

B11 B12

B21 B22

] [
A11 A12

A21 A22

]
=

[
In 0
0 In∗

]
whence

B11A11 +B12A21 = In

B11A12 +B12A22 = 0.

B21A12 +B22A22 = In∗

B21A11 +B22A21 = 0.

(6.47)

Now, the joint probability distribution (Equation 6.43) may be written in terms of the
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two components of y , namely f , and f∗ and the exponential term would become:

−1

2

{
(f∗ − f̄∗)

TB22(f∗ − f̄∗) + 2(f∗ − f̄∗)
TB12f + fTB11f

}
(6.48)

which is seen to be a quadratic form in f∗ given f . Completing the square, we see that
the exponential term in the probability distribution of f∗|f is proportional to the form

− 1

2

{
(f∗ − f̄∗)

TB22(f∗ − f̄∗) + 2f∗
TB21f

}
=

− 1

2

{
f∗ − f̄∗ +B−1

22 B21f
}T

B22

{
f∗ − f̄∗ +B−1

22 B21f
}
+K (6.49)

where K denotes a constant not involving f∗ . The density of f∗|f is therefore:

f∗|f ∼ N (f̄∗ −B−1
22 B21f , B22)

= N (f̄∗ +A21A11f , A11 −A12A
−1
22 A21)

(6.50)

Returning to our original notation, we have thus shown that f∗|f has a multivariate
normal distribution with mean

f̄∗ +K(X,X∗)K(X,X)−1f

and variance
K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

It follows that the corresponding density is189

p(y|X∗, X,f) = (2π)−
n∗
2 |Σ|−

1
2 exp

{
−1

2
(y − f̄∗)

TΣ−1(y − f̄∗)

}
. (6.51)

6.2.6 Integrals or derivatives as training inputs

In arriving at Theorem 10 we assumed that our data comprise a set of training outputs190
{yi} taken by the function f at the design inputs{xi} . In some contexts, including,
in particular, the case where f is a probability density or distribution, the data might
instead comprise or include derivatives or integrals of f at the design inputs. Both
cases can generally be dealt with as GPs by modifying the covariances and means in
equations 6.40, and 6.41.

In the case of differentiation, suppose that our training data comprise n sets of value191
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pairs
f ′

j = {(xij , ωi
j)} j = 1, . . . , n, i = 1, . . . , d, (6.52)

each f ′
j corresponding to the n points of the jth partial derivative of the function f ,

that is:

ωi
j =

∂f(x)

∂xj

∣∣∣∣
x=xi

j

i = 1, . . . , d (6.53)

Then, provided the covariance function k(·, ·) is at least twice differentiable, the covari- 192
ances between function values and partial derivatives and between partial derivatives
and partial derivatives are:

Cov(ωi
j , yk) =

∂

∂xj
k(xi,xk) , Cov(ωi

j , ω
m
l ) =

∂2

∂xj∂xl
k(xi,xm). (6.54)

And provided the mean function m(·) is differentiable

E
[
∂f

∂xi

]
=

∂m

∂xi
i = 1, . . . , d. (6.55)

Similarly, where the training outputs comprise integrals (and, for illustration, showing 193
only the univariate case)

F j =

{(
xj ,

∫ xj

−∞
f(θ) dθ

)}
j = 1, . . . , n (6.56)

then the covariances are

Cov

(∫ xi

−∞
f(θ) dθ, yj

)
=

∫ xi

−∞
k(φ, θ) dφ

Cov

(∫ xi

−∞
f(θ) dθ,

∫ xj

−∞
f(θ) dθ

)
=

∫ xi

−∞

∫ xj

−∞
k(φ, θ) dφ dθ

(6.57)

and

E
[∫ xi

−∞
f(θ) dθ

]
=

∫ xi

−∞
m(x) dx i = 1, . . . , n. (6.58)

See Oakley and O’Hagan (2007, Appendix) for an example of these integral derivations
in a particular case.
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§ 6.3 Conclusions

We have described approaches that have been taken to using GPs to model proba-194
bility distributions or densities based on elicitation from experts for use as priors in
Bayesian analysis. Although the methods proposed are workable they are subject to
some inefficiencies. In the next chapter we present an approach to overcome these
problems.



Chapter 7

Efficient simulation of probability
functions from Gaussian
processes

We have seen that earlier work on using non-parametric means to incorporate the results 195
of expert elicitation into Bayesian inference is potentially inefficient in that functions
are simulated that cannot possibly be appropriate probability densities or distributions.
In this chapter we present a new method that is a development of that work that also
draws on some of the ideas presented in the previous chapter to avoid the potential
inefficiencies. In the next chapter we apply this new method to the generation of valid
solutions of the rainfall problem examined by Coles and Tawn (1996).

§ 7.1 Preliminaries

We assume that we are given a number of quantiles (that may be as small as one or 196
two) and wish to simulate a full range of unimodal probability densities f(x) that are
consistent with those quantiles. We also seek densities that are infinitely differentiable
everywhere except at no more than a finite number of points. In what follows we will
loosely use the term “infinitely differentiable” to include such cases. Following Maatouk
and Bay (2017), we may also assume for convenience and without loss of generality
that the densities have support only on the interval [0, 1] (transforming the data inputs
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correspondingly). It is also convenient to proceed by simulating the corresponding
distribution functions, F (x), such that F ′(x) = f(x), and then to derive densities by
differentiation.

Let the given quantiles be as follows:197

F (xi) = yi : i = 1, . . . , n (7.1)

which we can write as a vector of cases as

F (x) = y. (7.2)

We then also have to satisfy the following for F (x) to be a valid distribution func-
tion:

F (0) = 0, F (1) = 1, x < x′ ⇒ F (x) ≤ F (x′) x, x′ ∈ [0, 1]. (7.3)

It follows that the requirements, F (x) = y, F (0) = 0, F (1) = 1, are the interpolation
constraints.

Our task then is to simulate F (x) subject to those constraints and to the further198
requirements stemming from our assumptions that F (x) must be infinitely differentiable
and that f(x) must be unimodal.We describe below an approach in which all the
conditions are met by an appropriate choice of finite-dimensional parameters.

§ 7.2 Finite Linear Sums of Basis functions

We create a zero-mean1 finite-dimensional GP with a given covariance function such199
that each realisation, ξ = (ξ0, . . . , ξN ), may be used with sets of basis functions
{hj(·) : j = 0, . . . , N}, {φj(·) : j = 0, . . . , N} to define two functions, as follows:

f(x) =
N∑
j=0

ξjhj(x)

F (x) =

N∑
j=0

ξjφj(x)

1Setting the mean of the GP to be zero implies nothing about the mean of any realisation of the GP.
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where f is a valid PDF and F is the corresponding CDF and where all the interpolation
constraints are complied with. The choice of covariance function does not affect the
results described in this section but in making use of this structure we shall use the
following covariance function:

k(x, x′) = σ2 exp

(
−(x− x′)2

2θ2

)
(7.4)

with parameters σ , and θ to be chosen.

Although we use exactly the same methods as Maatouk and Bay (2017) and López- 200
Lopera et al. (2017), to construct a GP, each realisation of which is a set of parameters,
ξ , defining a function2, it is important to understand that we are not seeking to
approximate some unknown function. Each realisation of our GP generates a pair
comprising a valid PDF and a valid CDF that are consistent with the interpolation
constraints.

To achieve the smoothness in the PDF required by our assumptions about the probability 201
density we replace as basis function the simple witch’s hat function as defined by equation
(6.31) with the following smooth and infinitely differentiable function:

h(x) =
1

2
− 1

2
cos(π(1 + x)). (7.5)

We can then define the individual basis functions centred on a sequence of knots, 202
{ui : 0 < u1 < · · · < uN < 1} where uN < inf(x : F (x) = 1) and for j ∈ [2, N−1]

hj(x) =



0 x < uj−1

1
2

[
1− cos

(
π

x−uj−1

uj−uj−1

)]
x ∈ [uj−1, uj ]

1
2

[
1 + cos

(
π

x−uj

uj+1−uj

)]
x ∈ [uj , uj+1]

0 x > uj+1

(7.6)

with obvious adjustments for the cases j = 1 and j = N .

It is important to note that these new basis functions satisfy what is in Maatouk and 203

2Actually in our method it defines two functions
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Bay (2017) the crucial requirement

hj(ui) = δij ,

where

δij =

{
1 if i = j

0 if i ̸= j
(7.7)

and that then the following two theorems stated in Maatouk and Bay (2017) remain
true:

Theorem 11. FN (x) :=
∑N

j=0 F
′(uj)hj(x) converges uniformly pathwise to F (x) when

N tends to infinity.

As to the requirement for monotonicity, we have:

Theorem 12. With a choice of basis function φj(x) =
∫ x
0 hj(t) dt the approximation

FN (x) :=
∑N

j=0 ξjφj(x) is monotonic increasing if and only if the parameters {ξj} are
all non-negative.

In that event ξi = F ′(ui) : i = 0, . . . , N. In consequence, we see that the vector ξ204
may be viewed as a realisation of the GP (F ′(x)), namely the derivative of a GP with
covariance function K . It follows that the covariance matrix, Γ of ξ viewed as a GP is
given by:

Γij = Cov(ξi, ξj) =
∂2K

∂ξi ∂ξj
. (7.8)

The proofs of these propositions do not depend on the exact form of the hat functions205
used in the generation of the PDF, but only on the requirement that hj(ui) = δij .
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§ 7.3 Differentiability, Monotonicity and Unimodality

We now show that in satisfying the interpolation constraints we also obtain well-behaved 206
distribution functions and densities. Note that by construction we have also ensured
that F (0) = 0. In the following, we will assume that F (1) = 1 is included in the
interpolation constraint F (x) = y . It follows immediately from Theorem 12 and from
the definition of φj(·) that FN (x) :=

∑N
j=0 ξjφj(x) will be monotonic increasing and

everywhere infinitely differentiable provided ξj ≥ 0 : j = 0, . . . , N.

We turn now to the conditions for the unimodality of f(x). Because hj(ui) = δij , 207
f(ui) = ξi , and then, since f(x) is monotonic between any two adjacent knots, the
condition for f(ui) to be a local mode is

ξi−1 < ξi > ξi+1

The condition for f(x) to possess a single mode over [0, 1] at x = ui is

ξ0 ≤ ξ1 ≤ · · · ≤ ξi−1 < ξi > ξi+1 ≥ · · · ≥ ξN . (7.9)

If, further,
0 ≤ ξ0 ≤ ξ1 ≤ · · · ≤ ξi−1 < ξi > ξi+1 ≥ · · · ≥ ξN ≥ 0 (7.10)

the conditions of both Equation(7.3) and Equation( 7.9) are satisfied, so that F (x)
will then be monotonic and f(x) will be unimodal.

It will be seen below that we can test for the feasibility of a single mode of f(x) at each 208
knot. If there is a mode at ui , say, we are not too concerned if there is a plateau rather
than a peak, that is, if f(ui−1) = f(ui) or f(ui) = f(ui+1). We can therefore relax the
strict inequalities in equation 7.10 to obtain

0 ≤ ξ0 ≤ ξ1 ≤ · · · ≤ ξi−1 ≤ ξi ≥ ξi+1 ≥ · · · ≥ ξN ≥ 0, (7.11)

which is a condition that would also permit plateaux below the peak density.

It is helpful to express the above in terms of matrices. We can define the matrix 209
Φi,j = φj(xi) and then write:

yi =

N∑
j=0

ξjφj(xi) i = 1, . . . , n
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as
Φξ = x.

The conditions on ξ in Equation(7.11) may be expressed in the form

l ≤ Λξ ≤ u

where l and u are vectors of lower and upper bounds. In what follows we shall
sometimes write these inequality conditions in the form:

Λξ − l ≥ 0

−Λξ + u ≥ 0.
(7.12)

It follows, comparably to Equation(6.33), that we can restate our problem as that of210
sampling from

ξ|{Φξ, l ≤ Λξ ≤ u}, where ξ ∼ N (0,Γ). (7.13)

§ 7.4 The Sampling Algorithm

As noted above (Subsection 6.2.3), we slightly adapt the sampling algorithm211
from López-Lopera et al. (2017)[Algorithm 1] as set out in (our) Algorithm 1:
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Algorithm 1: Sampling from GP with linear inequality constraints

1 Procedure: Sampling from ξ|{Φξ = y, l ≤ Λξ ≤ u, } where ξ ∼ N (0,Γ);
2 Input: y,Γ ∈ Rn×N ,Φ ∈ Rn×N , C ;
3 Compute conditional mean and covariance of ξ|{Φξ = y} :

µ = ΓΦT (ΦΓΦT )−1

Σ = Γ− ΓΦT (ΦΓΦT )−1ΦΓ

4 Find start for Monte Carlo simulation by solving:

µ∗
ξ = min

ξ∈RN
{ξTΓ−1

ξ|Φξ = y, l ≤ Λξ ≤ u}

Start is then solution of νξ
∗ = Λµξ

∗ ;
5 Sample from the truncated multinormal distribution

Λξ|{Φξ = y, l ≤ Λξ ≤ u} ∼ T N (Λµ,ΛΣΛT , l,u)

Set η = Λξ ;
Result: ξ is solution of η = Λξ

§ 7.5 Hamiltonian Monte Carlo

López-Lopera et al. (2017) review and test various methods of sampling from a truncated 212
multivariate normal distribution in the context of their work. Their tests showed that
an approach based on HMC that had been introduced by Pakman and Paninski (2014)
was clearly the fastest method, and in terms of a measure of effective sample size was
also clearly the most efficient when applied to a test case of monotonicity.

As introduced by Metropolis et al. (1953), MCMC in its original form was a simple 213
random walk of a parameter x ∈ RN where N denotes the number of coordinates.
A well-known problem emerges if the constraints impose high correlations on the
coordinates. Then, an extremely large number of steps may well be required to explore
the probability space of the target distribution effectively. That problem arises because
if the random walk is composed of large steps then the acceptance probability tends to
be low, but when the steps are small then successive states of the system tend to be
strongly correlated.

HMC provides a way of improving upon the simple random walk. The idea is to derive 214
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proposed states in terms of the vector x = (x1, . . . , xN ) through random draws of a
second parameter vector S = (s1, . . . , sN ) in such a way that small steps in S need
not lead to small steps in x . A state for x proposed in this way can therefore be
distant from the current state but nevertheless have a high probability of acceptance
(Neal, 2011). The relationship between x and S is defined by visualising the sampling
process as the unforced movement of a notional (Newtonian) physical system where x
describes the position and S the momentum of its N components. The total energy of
the system, the Hamiltonian H(S,x), is conserved:

H(S,x) = U(x) +K(S) = constant (7.14)

where U(x) denotes the potential energy of the system and K(S) its kinetic energy.
Since x and S are independent and H is constant, we can derive samples of x by
sampling S . The case we are interested in is where x is a draw from the desired
posterior distribution so we can set

U(x) = − log (π(x)L(x|D)) (7.15)

where the π(x) is the prior and L(x|D) the likelihood given the data D . We are free
to choose the form of the kinetic energy. A common choice is

K(S) =

N∑
i=1

s2i
2mi

(7.16)

where each mi is the chosen variance of the corresponding si .

The HMC algorithm proceeds in two steps:215

(i) draw new values of S from its distribution, Equation 7.16. This step sets a new
value for H(S,x) which can be substantially different from its previous value.

(ii) make a Metropolis update starting from the new S -state and the corresponding
x-state. In this second step the value of H(S,x) is conserved (or nearly so, as a
result of rounding).

The Pakman and Paninski (2014) sampling algorithm is for linear and quadratic216
constraints and therefore is certainly applicable to our situation in which the constraints
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are all linear. Without loss of generality (Li and Ghosh 2015) it is sufficient to consider
sampling from

log p(x) = −1

2
x · x+ constant (7.17)

subject to
F j · x+ gj ≥ 0 j = 1, . . . , n. (7.18)

In the Pakman and Paninski (2014) approach the notional physical system may be 217
thought of as a particle moving in N -dimensional space so that x = (x1, . . . , xN ) are
the physical coordinates of its location. The Hamiltonian is given by

H =
1

2
x · x+

1

2
S · S (7.19)

such that the joint distribution is p(x,S) = exp(−H).

The solution of the equations of motion following from Equation(7.19) is 218

xi(t) = ai sin t+ bi cos t i = 1, . . . , N (7.20)

where the constants ai, bi can be expressed in terms of the initial conditions as

ai = si(0)

bi = xi(0)
(7.21)

The two stages of the HMC are then:
1. Sample S from N (0, IN );
2. Use this S and the last position vector x as initial conditions and let the particle
move for a time T after which the position and momentum have values x∗ and S∗ .
Pakman and Paninski (2014) show that the value x∗ belongs to a Markov chain with
equilibrium distribution p(x).

If before expiry of the time T the particle hits a wall, that is if one of the m constraints 219
becomes active, it is reflected elastically, its new momentum vector being calculated
accordingly.

After a time T the position of the particle, and its position x∗ recorded as a sample 220
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from the target distribution, that position becomes the starting point for the next cycle
beginning again with Step 1.

§ 7.6 Finding a Starting Point for Sampling

To start sampling from T N (Λµ,ΛΣΛ, l,u) it is necessary to use a point that lies in221
the feasible space. Such a point may be found by solving a quadratic problem

µ∗
ξ = min

ξ∈RN
{ξΓξ−1|Φξ, l ≤ Λξ ≤ u}, (7.22)

and then using Λµ∗
ξ as the starting point(López-Lopera et al., 2017).

Another option is to use Phase-I of the Phase-I/Phase-II approach to solving linear222
programming problems as described in Nocedal and Wright (1999, Chapter 16). That
proceeds by defining a new linear program as described in the following paragraphs.

The interpolation and inequality constraints may be written:223

aTi η = bi i ∈ E
aTi η ≥ bi i ∈ I

(7.23)

where the bi correspond to the values of y, u, l collectively and the ai are the corre-
sponding rows of Φ,−Λ,Λ (with the latter matrix appearing twice because we are
treating l and u separately as in Equation(7.12)).

We then define a linear program224

min
η,z

Ikz

aTi η + γiz = bi i ∈ E
aTi η + γiz ≥ bi i ∈ I

z ≥ 0

(7.24)

where

γi =

{
−sign(aTi − bi) i ∈ E

1 i ∈ I
(7.25)
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This linear program has an easily found feasible point from which it can always be
solved. Loosely speaking, the new variable z measures how far any given η is from
feasibility in the original problem. If η is feasible for the original problem then (η, 0) is
optimal in the new problem.

It is a helpful consequence of using this method to find a starting point, that in the 225
event that no feasible starting point exists, then the expense of Monte Carlo simulation
is avoided. That contrasts with other methods in which unsatisfactory GPs are rejected
only after they have been simulated.

It is also necessary to select the parameter T that governs the intervals at which the 226
position of the particle is taken. As part of the research presented in this thesis, the
Algorithm 1 from López-Lopera et al. (2017), modified by the use of the Phase-I program,
and including Pakman and Paninski’s HMC algorithm, was encoded in an R package.
In testing that package, it was observed that T needs to be chosen with some care. In
particular, it must not be too short in relation to the interior dimensions of the feasible
space. In that case, successive positions will tend to be correlated and HMC will fail to
overcome the very problem which it was intended to solve. If T is too long, then the
simulation will take an unnecessarily long time. Between the extremes of too long and
too short, the precise choice of T does not appear to affect the validity of the result.
There is scope for further research to examine in more detail how best to choose T . In
the absence of such research it was sufficient in our work to choose T empirically.

§ 7.7 Sampling

The process described above generates a vector η = Λξ . The final, straightforward, 227
stage is to solve the linear system η = Λξ to obtain a draw of ξ as desired.

The desired portfolio of probability distribution functions that represent a full range of 228
those that satisfy the model’s constraints can now be generated easily: after the usual
warm up phase of the HMC, each successive draw of ξ will yield a compliant probability
distribution function.
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§ 7.8 Choice of knots

We have shown above that by sampling it is possible to generate limitless examples of229
probability distribution functions and densities all satisfying the necessary constraints,
including, of course, compliance with the opinions elicited from the expert. Each of
these functions is defined as a realisation of a GP defined on a finite series of knots.
Before we can proceed with a practical demonstration of the method it is necessary to
decide both on the number, N , of knots and on their location.

In the context of the problem addressed by López-Lopera et al. (2017) and Maatouk230
and Bay (2017), it is clear that N should be large because their aim is to obtain a good
approximation to a target function. (One can envisage tests to determine how large N
needs to be to achieve a desired degree of closeness to the approximation). But as noted
above in Section 7.2, in our case we are not seeking to approximate a target function,
merely to generate compliant functions and there are certainly practical disadvantages
in working with large values of N , especially in the context of a live elicitation session
in which long computation times would be unacceptable. It is, of course, true that the
larger the value of N the greater is the coverage of the space of consistent distributions.
So, in practice it would be wise to choose a value of N that is as large as possible
without rendering computation times excessive.

An additional feature of using a large number of knots is that the plots of the resultant231
densities will be smoother the larger the value of N . (The plots of the distribution
functions will be smooth anyway, as a result of integration.) It is worth considering,
however, whether this feature, smooth densities, is a real advantage in practice or not,
and that will depend upon its influence or otherwise on the experts.

As to the location of the knots, there is a clear advantage in placing knots at the points232
corresponding to each of the quantities elicited from the experts: the minimum, the
maximum, the tertiles and the mode, as it might be, for example. Additional knots
could, in principle, be placed anywhere without destroying the validity of the resultant
densities and distribution functions.

§ 7.9 Conclusions

We have presented a method using GPs for generating priors based on elicited quantities.233
It aims to overcome the potential problems with earlier approaches, specifically it ensures
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that all the functions that are generated are valid probability densities or distributions.
Through the use of a number of parameters the resulting priors are very tunable to the
specific circumstances in which the model is to be used. Since each prior is generated as
the result of a draw, and there is no theoretical limit to the number of draws that can be
made, the method described is capable of furnishing a very wide range of priors.
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Chapter 8

Results of applying the Gaussian
Process model to rainfall data

In this chapter we set out the rationale for and summarise the construction of the GP 234
model described in Chapters 6 and 7 so that it can be applied to rainfall data.

In outline there are three stages: 235

(i) to define each of the three pairs of GPs to be used in terms of their knots, their
covariance functions and other parameters;

(ii) to construct an HMC model that can define priors for the three quantities q̃1, q̃2
and q̃3 as GPs; and

(iii) using those priors to carry out an MCMC simulation to fit a generalised PPP
distribution to the observations of daily rainfall that exceed a high threshold.

95
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We consider these in turn.

§ 8.1 Defining the Gaussian process model

It should be noted that the simulation model provides a very wide range of choices. In236
addition to the number and location of knots, the user needs to choose the covariance
function and its parameters. In addition there are parameters that govern the operation
of the HMC simulation. All these parameters may interfere with each other and some
combinations of the parameters do not give rise to workable models in the sense that no
valid set of weights ξ exists.

Our approach to obtaining workable models has been to examine a large number of237
combinations of the parameters. For each such combination, we test the workability of
the potential model by seeing if a starting point for the HMC simulation exists. We
thus generate a portfolio of workable models comprising sets of models for each of the
three elicited quantiles.

Each prior is defined on a set of knots. Two GPs are then constructed, one for generating238
the PDFs and the other for the corresponding CDFs such that any realisation of the
CDF GP provides a CDF that fits the elicited quantiles of the three q̃i . In this case
all the q̃i are non-negative. As to whether we can define a maximum value, we follow
Coles and Tawn (1996) in not setting any such figure. Part of the justification for
that assumption is specific to rainfall. There is evidence that exceptionally extreme
rainfall can occur at individual locations, certainly as much as three times any historical
local precedent. See, for example, Coles et al. (2003), which attempts an extreme value
analysis of a catastrophic rainfall event in Venezuela in 1999. In addition, the option
of setting the constraint ξ < 0, which would certainly rule out unbounded results,
might, however, overweight upper bounds that were too low, and thus lead to biased
results.

Use could be made of more sophisticated methods of constructing the priors. In 3.3239
we saw priors being defined to reflect prior opinions on aspects of the distribution of
wave heights. The concept of probable maximum precipitation (PMP), defined
by the World Meteorological Organisation as“the greatest depth of precipitation for a
given duration meteorologically possible for a design watershed or a given storm area at
a particular location at a particular time of year”, could be reflected in the priors. A
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complication is that PMP is defined for an area not for a specific point location, which
is the basis we have used throughout our work here.

One disadvantage of not defining a maximum value is that it is computationally 240
inconvenient to work with variables that are unbounded. To avoid that problem, we will
transform all the rainfall figures into the range [0, 1) using t : x 7→ x

x+1 , constructing
the model to work with those transformed data, and then reversing the transformation
at the end of the simulation.

8.1.1 Covariance function

We work with the well known exponential covariance function: 241

k(x, x′) = σ2

[
exp

(
−(x− x′)2

2θ2

)]
. (8.1)

Any covariance function will generate realisations of the GPs that are probability 242
distributions fitting the elicited data. The only requirement is that they need to be
acceptable to the expert. By appropriate choice of the two parameters, θ and σ the
exponential covariance function is capable of producing a very wide range of distributions.
It therefore seems a reasonably appropriate choice.

Table 8.1: Elicited data: q̃i : i = 1 : 3

Probability Median 90% quantile Mode

0.100 0.59 0.72 0.631
0.010 0.43 0.70 0.510
0.001 1.00 1.20 1.075

8.1.2 Rainfall data

As before, we use the dataset obtained from the R package evdbayes which is nearly 243
identical to that used in Coles and Tawn (1996), as noted in Subsection 5.2.1. We
decided that that close similarity enabled us to use the same quantiles as elicited from
the expert in that earlier work. In addition, as our method requires an elicited mode,
we chose one empirically for each of the three priors. The elicited data, including our
chosen modes, are set out in Table 8.1.

The empirical choice of mode in the case, as here, of unimodality is not completely 244
straightforward as the sets of constraints that need to be satisfied depend on the position
of the mode relative to the quantiles being used. An example of the different conditions
that might apply depending on the relative position of the mode can be seen in Chapter 9.
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In the case described in this chapter we decided that the mode would be located strictly
between the two quantiles. To use our GP approach whilst avoiding that complication
would require Equation 7.11 to be dropped, with a corresponding amendment to the
matrix Λ . The sampling method could then proceed. Such an approach would, however,
generate complications of its own if the expert held the view that the density was
unimodal.)

8.1.3 Knots

We described in Section 7.8 the considerations to be kept in view when deciding on the245
number and location of the knots. In addition to those points, we found in practice
that computation time, unsurprisingly, increases with the number of knots. That led
us to the idea of minimal knots, discussed in Chapter 9. But in this chapter we try
to use as many knots as possible subject to computation time remaining feasible for a
face-to-face elicitation meeting. The potential advantage of using more knots is that
the resulting PDFs will have greater flexibility than in the minimal knots approach to
fit the elicited data. The PDFs might also appear smoother than piecewise linear PDFs
when displayed graphically but, as we shall see, they will still look rather different from
textbook parametric density functions.

It seemed convenient to define the knots to include in each case the two quantiles and246
the mode we had chosen. Those numbers are transformed to d1, d2 and w , respectively,
to lie in [0, 1). The additional knots were defined as follows:

(i) for each prior, choose a number p for the total number of knots.

(ii) choose numbers p1, p2, p3 such that p = p1 + p2 + p3 and that the knots t are
defined thus (expressed as R code)

t = c(

seq(1/p, d1 - 1/p, length.out = p1),

seq(d1, d2, length.out = p2),

seq(d2 + 1/p, 0.75, length.out = p3)

)
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The choice of the parameters p1, p2, p3, θ and σ is very wide but is not unconstrained. It 247
appears possible to choose the parameters in such a way that computation fails. Step 4
of the sampling algorithm (Subsection 7.4) requires the solution of

µ∗
ξ = min

ξ∈RN
{ξTΓ−1

ξ|Φξ = y, l ≤ Λξ ≤ u} (8.2)

which cannot be found if Γ−1 is reported as not being positive definite1. That calculation
also appears to be very sensitive to the choice of which of the pi is the mode of the
density. The chosen values of the pi are shown in Table 8.2.

Table 8.2: Numbers of knots for each simulation and location of mode

Probability p1 p2 p3 w

0.100 6 4 4 8
0.010 6 4 4 8
0.001 18 6 8 21

The parameters having been selected, the next steps are to construct the matrices used 248
in the sampling algorithm, namely Φ,Λ,Γ and Σ, and then to find an initial value as
the starting point for the HMC process.

§ 8.2 Hamiltonian Monte Carlo outputs

Each of the three runs of the HMC draws 100 samples from the truncated multi-normal 249
distribution set out in Equation 6.34 but repeated here for convenience:

Λξ|{Φξ = y, l ≤ Λξ ≤ u} ∼ T N (Λµ,ΛΣΛT , l,u). (8.3)

Each of the samples drawn, ξ , comprises a set of weights equal in number to the 250
number, N , of basis functions, hj(x), each of which corresponds to a knot. As shown
in Chapter 7, each sample defines a CDF:

F (x) :=
N∑
j=0

ξjφj(x) (8.4)

and a PDF

f(x) :=

N∑
j=0

ξjhj(x) (8.5)

where φj(x) =
∫ x
0 hj(t) dt .

1Γ−1 is defined mathematically to be positive-definite but due to rounding errors computationally
may not be.
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We show in Figure 8.1 and Figure 8.2 some examples of the pairs of PDFs and CDFs251
that emerge from the simulation.

(a) PDF on transformed space

(b) pdf on untransformed space

We show a diagnostic summary of the run of the Stan program in Table 8.3. As before,252
the values of R̂ and of neff give some assurance that the simulation has converged.

The return level graph at Figure 8.3 shows that the GP-based priors have led to results253
that are consistent with those based on gamma distributions shown in Figure 5.8.
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(c) cdf on transformed space

Figure 8.1: Example 1 of probability distribution and density resulting from the
simulation. The red dots show the elicited tertiles and the point at which the cumulative
density reaches unity.

Table 8.3: Diagnostic summary of results of simulation

Parameter R̂ neff mean sd 2.5% 50% 97.5%

log-posterior 1.001 1731 75.974 1.276 72.659 76.343 77.376
qtilde1 1.001 1896 0.674 0.024 0.627 0.676 0.718
qtilde2 1.002 1417 0.484 0.042 0.410 0.481 0.575
qtilde3 1.001 1719 0.959 0.134 0.743 0.945 1.267
mu 1.001 3609 0.429 0.008 0.414 0.429 0.445
xi 1.001 2328 0.295 0.032 0.237 0.294 0.358
sigma 1.001 2380 0.075 0.008 0.059 0.075 0.090
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(a) PDF on transformed space

(b) pdf on untransformed space
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(c) cdf on transformed space

Figure 8.2: Example 2 of probability distribution and density resulting from the
simulation. The red dots show the elicited tertiles and the point at which the cumulative
density reaches unity.
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Figure 8.3: Implied return levels using Gaussian process priors compared with additional
elicited quantiles
Key: red = observational data; black = median; grey shading = 95% credible range;
blue = 90% additional quantiles, green = median additional quantiles
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Chapter 9

Minimal knots

In practice, we find that the fitting of a probability distribution defined as a GP can 254
be computationally demanding and therefore slow, even to the extent that the flow of
a face-to-face elicitation meeting would be disrupted. Because of the clear practical
advantage in live elicitation of being able quickly to derive densities and distributions
from the experts’ evidence, in this chapter we examine an approach based on fitting a
very simply described probability distribution to what might be a minimal set of knots.
To do this we will need to relax our requirement that the density must be infinitely
differentiable.

§ 9.1 Elicitation plan using minimal knots

To provide a specific example we assume that we are using an elicitation plan to ask 255
the expert for the following five quantities:

(i) The minimum the quantity of interest can be, denoted by the scalar a .

(ii) The maximum, denoted by the scalar b .

105
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(iii) The two tertiles, denoted by t1, t2 .

(iv) The mode, denoted by w .

For simplicity we make it a requirement that all five of these elicited figures are
distinct.

It would be possible to fit a PDF to these five elicited quantities provided we used a256
parametric probability distribution with at least five parameters. It would certainly
be possible to fit GP-based distributions as described in Chapter 7. Instead, we
examine the effect of using a very simply constructed PDF, as described in the following
paragraphs.

The context in which we developed this minimal knots model was an elicitation in which257
the expert was confident in specifying the minima and maxima of the quantities of
interest. That justified the decision to set the densities corresponding to the quantities
a and b both to zero. If it was thought possible that the expert’s idea of the minimum
and maximum risked being too conservative, one approach might be to set the densities
at a and b to small amounts, to permit the resultant prior to contain lower or higher
figures than the expert’s minimum and maximum.

Alternatively, to avoid the need to add two extra knots, the analyst could debate258
with the expert about decreasing a and increasing b . Another situation in which the
maximum or minimum might be attained with non-zero probability is when there is
some physical limit that is known to be attainable. For example, a study of water levels
in a reservoir might well assign a non-zero probability to the risk that the water might
over-top the dam. Another example of an attainable maximum would be a study of
wave heights in coastal waters, where, as we have stated in Section 3.3, wave heights
cannot exceed the depth of the sea.

Let the densities corresponding to t1, t2, w be T1, T2,W respectively. Consistently with259
our view that the densities at the end-points a and b are both zero, the assumption
then is that the desired PDF to be fitted to the given knots is defined graphically by
straight lines joining the points (a, 0), (b, 0), (t1, T1), (t2, T2), (w,W ) arranged with their
abscissae in order of magnitude. The distribution function can be obtained from the
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PDF by integration. Because, in this case, the PDF is defined so simply, the integration
can be performed analytically if desired, although in practical application numerical
integration might well be used.

The quantities T1, T2,W do not need to be elicited because they can be calculated. The 260
details of calculating the densities at the knots depend on the location of the mode in
relation to the two tertiles, giving rise to three cases, as follows:

(i) Case 1: w < t1

(ii) Case 2: t1 < w < t2

(iii) Case 3: t2 < w

§ 9.2 Case 1: Mode less than lower tertile

A B C D

T1

T2

W

0

1

2

3

a w t1 t2 b
x

y

Figure 9.1: Minimal knots Case 1: w < t1

Let 261
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A = t1 − a

B = t1 − w

C = t2 − t1

D = b− t2

(9.1)

Note that, by definition, the quantities A,B,C,D are all strictly positive. A sim-
ilar condition holds for the corresponding quantities in the other two cases set out
below.

The two tertiles define three regions all of area equal to 1/3. Whence we get three262
equations:

1

3
=

1

2
T2(b− t2) =

1

2
T2B

1

3
=

1

2
(T1 + T2)(t2 − t1) =

1

2
(T1 + T2)C

1

3
=

1

2
W (t1 − a) +

1

2
T1(t1 − w) =

1

2
W (A+B) +

1

2
T1B

(9.2)

Solving these equations produces:263

T2 =
2

3

1

D

T1 =
2

3

(
1

C
− 1

D

)
W =

2

3A

(
1− B

C
+

B

D

) (9.3)

§ 9.3 Case 2: Mode between lower and upper tertiles

In this case we define:264
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A B C D
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a t1 w t2 b
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Figure 9.2: Minimal knots Case 2: t1 < w < t2

A = t1 − a

B = w − t1

C = t2 − w

D = b− t2

(9.4)

By similarly constructing equations for the area of each of the thirds into which the 265
tertiles divide the PDF, we obtain the following:

T1 =
2

3

1

A

T2 =
2

3

1

D

W =
2

3

1

B + C

(
1− B

A
− C

D

) (9.5)

§ 9.4 Case 3: Mode greater than upper tertile

In this case we define: 266
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Figure 9.3: Minimal knots Case 3: t2 < w

A = b− w

B = w − t2

C = t2 − t1

D = t1 − a

(9.6)

By an argument on similar lines to the above two cases we then obtain267

T1 =
2

3

(
1

C
− 1

D

)
T2 =

2

3

1

D

W =
2

3

1

A+B

(
1− B

C
+

B

D

) (9.7)

There are further conditions in each case that must be enforced because the calculations268
described above do not take into account the requirements (a) that the PDF be unimodal
and (b) that the calculated density, W, at the mode, w , is indeed the maximum of the
density across the whole of the support [a, b] . The further conditions are as follows:
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(i) Case 1: W > T1 > T2

That is equivalent to:

(A+ 2B)

(
1

C
− 1

D

)
< 1

D > 2C

(9.8)

(ii) Case 2:

W > T1

W > T2
(9.9)

That is equivalent to 269

AD −BD − CA > (B + C)max(A,D) (9.10)

(iii) Case 3: W > T2 > T1

That is equivalent to: 270

(A+ 2B)

(
1

C
− 1

D

)
< 1

2D > C

(9.11)

The equations above permit PDF and distribution functions to be calculated very 271
rapidly for review by the expert and possible revision. In a later chapter we will describe
an experiment using these minimal knots to fit a PDF to elicited data. The practical
question is whether the relatively tight constraints of the minimal set of knots inhibit
the expert’s choice.
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Another approach to minimal knots, which we do not pursue here, would be to define a272
GP CDF F so that the following would hold:

0 = F (a) < F (t1) < F (t2) < F (b) = 1 (9.12)

as well as exactly one of the following:

F (a) < F (w) < F (t1)

F (t1) < F (w) < F (t2)

F (t2) < F (w) < 1.

(9.13)

Although some kind of probability distribution could be fitted to any choice the expert273
might wish to make for the two tertiles, the expert might well be unhappy with some
distributions even if they do fit the quantiles. We shall see below, for example, (Section
10.3) that as simple a requirement from the expert that the density should approach
zero near the elicited maximum and minimum imposes quite strict constraints on the
choice of tertiles. And even if the expert is content with the distribution fitted to
chosen tertiles, the range of admissible values of the location of the mode may well be
limited.

It is worth considering the contrast between priors fitted with minimal knots and those274
fitted to a given parametric probability distribution. Both kinds of prior are very likely
to be “wrong” in some sense because real physical phenomena can only rarely be sure
to fit any particular distribution. Both are simplifications: minimal knots because of, in
particular, the assumption that the PDF is piecewise linear; the parametric because,
in particular, it is only one of very many parametric distributions that could be fitted.
For many people, their earliest encounters as students with probability theory will have
exposed them to textbook examples of smooth continuous PDFs, so it is possible that
the spiky picture presented by the minimal knots PDF might be at first off-putting to an
expert with that kind of education. But it is true that there is no reason to suppose that
probability distributions outside the textbook world should always be smooth.

In physical measurements in practice, the smoothness with which PDFs can be estimated275
is affected by the sensitivity with which observations may be measured. In many cases
measurement may be so precise that the estimated PDFs would be effectively smooth.
But that is not true in all cases. Although rainfall obviously varies continuously over a
range of values, in practice it can only be measured at discrete intervals. In a standard
tipping bucket rain-gauge as used by the Meteorological Office, for example, an event is
recorded each time a rainfall increment of 0.2 mm is detected.



Chapter 10

Estimating extreme values using
elicited priors

In this chapter we present the results of a specific elicitation exercise conducted in 276
two parts held some 20 months apart. The focus of the exercise was the estimation
of extreme wave heights at a specific deep-sea location at which a measuring device,
mounted on a discus buoy, is located. It records, amongst other data, wave heights at
hourly intervals. The analysis of the data was to be based on priors generated from
a small number of quantiles given by an expert. Two different methods were used to
define the priors. In addition to presenting the results we make some observations on
the effectiveness of the elicitation process followed.

§ 10.1 The selected location

The location is a 3-meter discus buoy, Station 46085, owned and managed by the 277
United States National Data Buoy Center. It is located in the Gulf of Alaska in the
north-eastern Pacific at 55◦52′42′′N 142◦52′32′′W where the water depth is 3745 metres.
Figure 10.1 shows a similar discus buoy.

Station 46085 has been collecting hourly readings of significant wave height, Hs , since 278
5 May 2007 but with some large gaps, as can be seen in Figure 10.2. By inspection it

113
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Figure 10.1: A discus buoy similar that at Station 46085

is obvious that the data are subject to annual seasonal variation but there appears to
be no obvious trend. For the purposes of this exercise focussed on the defining priors
based on expert elicitation we will ignore the seasonal variation and therefore will use
the dataset without any further adjustment.

We shall use the POT method (see Section 2.4) and define the high threshold u by279
inspection of the MRL plot, as described in Section 2.7.1. The plot in this case is shown
at Figure 10.3. As usual, the interpretation of the plot is debatable but it appears to us
to become linear at a little below 8 metres. We set u = 7.7 as shown in red in Figure
10.2.

§ 10.2 The First Elicitation Exercise

The first elicitation meeting was held on 29 May 2022 at which the expert was Rod280
Rainey, an eminent offshore engineer and recognised expert on extreme waves, and I
acted as facilitator. Rainey was asked to give his opinion about extreme waves at the
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Figure 10.2: Observations of significant wave height at Station 46085

selected location in the North East Pacific Ocean. He has no particular knowledge of
the Pacific and none about the specific location.

Rainey was informed of the location and water depth. He considered that a comparable 281
Atlantic Ocean location would be off the coast of Donegal where, in the absence of
specific meteorological information, he assumed the winds would be comparable to
similar latitudes in the Gulf of Alaska. He was also assuming that for this exercise
weather trends due, for example, to global warming, were to be disregarded.

Before proceeding with the elicitation exercise it was necessary to agree how wave heights 282
would be defined. Rainey’s view was that without doubt the appropriate measure should
be significant wave height (as defined in Section 3.3). The use of that measure was very
much a standard in oceanography. If forecasts of individual wave heights were required
then the methods mentioned in that Section could be applied to Hs forecasts.

The focus of the elicitation followed that of Coles and Tawn (Chapter 5): the questions 283
aimed to gather data from which probability distributions of three independent variables
could be constructed that would be satisfactory to the expert. The three variables
were:
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Figure 10.3: Mean residual life plot of Hs at Station 46085

(i) the 10-year wave (that is the significant wave height whose probability of being
exceeded in any year would be 0.1 (1/10).

(ii) the difference between the 100-year wave and the 10-year wave.

(iii) the difference between the 1000-year wave and the 10-year wave.

The questions asked about each were not the same as used by Coles and Tawn but284
drew on the guidance in SHELF (Oakley and O’Hagan, 2019). That guidance describes
approaches based on eliciting quartiles and on eliciting tertiles but does not recommend
one of these approaches over the other. There is very little literature on the use of
tertiles, so it was decided to use that method and see if any conclusions could be drawn
on its merits. The questions that were to be asked were, accordingly:

(i) what is the minimum figure that the variable could never fall below?

(ii) what is the maximum above which it could not rise?
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(iii) what is the lower tertile of the distribution?

(iv) what is the upper tertile?

Rainey quickly answered these questions about the 10-year wave but considerable 285
discussion was required before he could answer those questions relating to the second
variable. In the light of that discussion the facilitator rephrased his description of what
was required along the following lines:

(i) The terms 10-, 100- and 1000-year wave (“the n-year wave”) refer in each case to
the a significant wave height, a single number, associated with a single probability.
In practice, however, there do not exist observations over sufficiently numerous
cycles to reveal the single number.

(ii) At best, a probability distribution of estimates of these values might be based
on specific local data. Even then the distribution of the 10-year wave might be
possible but specific data for estimating a distribution for 100-year waves are very
thin, if they exist at all. And that is even more so in the case of 1000-year waves.

(iii) The aim of using elicitation is to construct priors for use in a Bayesian approach
to analysing the (thin) data for the chosen location leading to a probability
distribution of the n-year wave from which a central estimate of its size could be
derived.

(iv) When we ask an opinion about an n-year wave, it is an opinion about that central
estimate, not about individual observations over periods of n years. So, for
example, if we ask for an opinion about the minimum of the 10-year wave we
mean the lowest possible value the central estimate could take, not the lowest
wave height observed during a number, even a large number, of 10-year periods.

(v) And similarly when we ask about the difference between the 100-year wave, or the
1000-year wave, and the 10-year wave it is the difference in each case between the
two (unknown) central estimates that interest us.
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The data elicited from Rainey are shown in Table 10.1

p Minimum Lower tertile Upper tertile Maximum

0.100 13.0 17.0 21.0 25
0.010 0.5 1.0 2.0 3.0
0.001 1.0 2.0 4.0 6.0

Table 10.1: Figures elicited in first elicitation exercise

The elicited figures were fitted to beta distributions, as shown in Figure 10.4 (The286
distributions for q̃2 and q̃3 being the same, only one image is shown for those priors).
The vertical red lines indicate the elicited tertiles and the vertical blue lines are the
calculated modes of the fitted beta distributions.

q̃1 : α = 1.38, β = 1.4 q̃i : i = {2, 3}. α = 1.01, β = 1.4

Figure 10.4: First elicitation. Beta distributions for the three q̃i : i = 1, . . . , 3

§ 10.3 The Second Elicitation Exercise

On reflexion, it was considered a weakness of the chosen elicitation method that the287
modes were calculated and might therefore not be close to the expert’s idea of where
the modes should be. Accordingly a second elicitation session was arranged in which for
each of the three return levels of interest the following five quantities would be elicited
in the order shown:
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(i) the minimum, a ;

(ii) the maximum, b ;

(iii) the lower tertile, t1 ;

(iv) the upper tertile, t2 ; and

(v) the mode w .

A further change was that the elicited figures would be fitted to minimal knots probability 288
distributions as defined in Chapter 9.

The second elicitation session took place on 30 January 2024. Rainey had not reminded 289
himself of the opinions he had given in the first session some 20 months earlier, and
indeed he had not kept any record of what he had said. Before any figures were asked
for, Rainey discussed the likely behaviour of waves at the location of the coast of
Donegal that he considered comparable to the Gulf of Alaska location. By stating his
understanding of the sea conditions there he was setting the scene for him to give his
opinions on the figures.

As before, the 10-year return level was covered first. Rainey gave minimum and 290
maximum figures of a = 13 and b = 19 metres respectively. Then he gave tertiles of
t1 = 15 and t2 = 17 metres and a mode of w = 16. Quick analysis showed that such
values were incompatible with the minimal knots distribution. We know from Equation
9.10 that

AD −BD − CA > (B + C)max(A,D) (10.1)

where, in the case of the quantities given by Rainey,

A = 2 B = 1 C = 1 D = 2. (10.2)

But AD−BD−CA = 4−2−2 = 0 whereas (B+C)max(A,D) = 4, so Equation 9.10
cannot be satisfied using the elicited quantities. Even worse, as Rainey himself worked
out, no unimodal density f(·) with its mode located between the tertiles t1, t2 could
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work, for the following reasons. The tertiles at t1 = 15, t2 = 17 divide the area under
the curve into thirds, so we must have:

1

3
=

∫ t2

t1

f(x) dx

1

3
=

∫ t1

a
f(x) dx

1

3
=

∫ b

t2

f(x) dx

(10.3)

If f(x) is unimodal with a mode W = f(w) at w between t1 and t2 , then

1

3
=

∫ t2

t1

f(x) dx >
1

2
(T1 + T2)W (10.4)

where Ti = f(ti) and the inequality is strict because the inequality W > max(T1, T2)
must also be strict. But we have

1

3
=

∫ t1

a
f(x) dx < T1(t1 − a) = 2f(t1)

1

3
=

∫ b

t2

f(x) dx < T2(b− t2) = 2f(t2)

(10.5)

where both inequalities are also strict, and hence the contradiction

1

3
< f(t1) + f(t2) < f(t1) + f(t2) <

∫ t2

t1

f(x) dx =
1

3
. (10.6)

Rainey revised his tertiles to t1 = 15.5, t2 = 16.5, which were now consistent with the291
other three figures. He stated that the choice of a symmetrical PDF was deliberate. In
subsequent discussion, Rainey said that symmetry struck him as a neutral way to deal
with the fact that he saw no reason for the mode to be to the left or the right of the
distribution. For him to provide an asymmetric PDF would be, he thought, claiming
more knowledge than he had. Likewise, he was unwilling to give opinions on a finer
scale than the two tertiles. The fitted PDF and CDF are shown in Figures 10.5a and
10.5b.

Proceeding to the elicitation of figures for the 100-year difference and the 1000-year292
difference, after some discussion Rainey concluded that the same distribution would
apply to both: a = 1, b = 3, t1 = 15

6 , t2 = 21
6 , w = 2. The common PDF and CDF are

shown in Figures 10.6a and 10.6b
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(a)

(b)

Figure 10.5: Second elicitation: 10-year return level (a) fitted PDF, (b) fitted CDF,
using a = 13, b = 19, t1 = 15.5, t2 = 16.5, w = 16

§ 10.4 Reflections on the elicitation exercise

The course of any elicitation exercise will vary depending on the personal characteristics, 293
skills and weaknesses of the expert. Rainey has worked for over 40 years as a professional
hydrologist in the context of the oil industry. Somewhat unusually for an engineer his
first degree included two years of full-time study of mathematics. This study included
probability theory so it was not necessary to explain, for example, what PDF andCDF
were, or what is meant by tertiles.

Nevertheless, during the elicitation, as noted above, we were able very quickly to detect 294
that Rainey’s first ideas about the tertiles were impossible. He commented that his
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(a)

(b)

Figure 10.6: Second elicitation: differences between 100-year and 1000-year re-
turn levels and the 10-year return levels: (a) fitted PDF, (b) fitted CDF, using
a = 1, b = 3, t1 = 15

6 , t2 = 21
6 , w = 2

unfamiliarity with using tertiles rather than quartiles might have led him into that error.
It might have been worthwhile spending a little time before the elicitation in talking
generally about tertiles, the constraints to which they are subject, and how they are
related to the mode. The material for such a conversation was to hand: it is included
in Chapter 9 and had been used in writing the code that was being used to process
the elicited figures. In addition, a trial run using illustrative figures would have been
helpful.

The elicitation plan sought to obtain Rainey’s figures in a very particular order so as to295
reduce the risk that his ideas might become unhelpfully anchored too early. In the light
of his experience giving impossible tertiles, Rainey in effect refused to comply fully with
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the elicitation plan. He would give the minimum and maximum figures, following the
plan, but then insisted on discussing the mode and then the tertiles. He commented
that his error had taught him that it was necessary for him to keep in mind the whole
picture.

The software being used quickly produced both the PDF and CDF corresponding to 296
the elicited figures. It was obvious that Rainey quickly examined the PDF image to
check that it corresponded to what he thought it should be. He looked at the CDF
image only cursorily and did not refer to or appear to make any use of it. When asked
whether the unusual appearance of the PDF, piecewise linear, with sharp corners, had
hindered his interpretation of it, Rainey said that it caused no difficulty at all. He
commented that he doubted that any engineer would have difficulty with the appearance
of the PDF.

Rainey said that he had found the second elicitation exercise challenging. The questions 297
asked had forced him to probe the edge of his knowledge.

§ 10.5 Inference about extremes

The quantities elicited from Rainey were used to construct the probability distributions 298
and fitted to a PPP in a Stan program. The output from that program in tabular
form is shown in Table 10.2 in which each row gives information about the posterior
distribution of the individual parameters. The elicited quantities were the q̃i and in
simulating their posterior distributions the program also calculated the corresponding
distributions of the parameters, µ, σ and ξ of the PPP extreme value function. The
posteriors of these parameters are shown in graphical form in Figure 10.7. The values of
R̂ all close to unity and the high values of neff give some assurance that the simulation
has converged.

0

1

2

3

10.75 11.00 11.25 11.50 11.75

(a) Location: µ

0.0

2.5

5.0

7.5

10.0

0.85 0.90 0.95 1.00 1.05 1.10

(b) Size: σ

0

5

10

15

20

25

−0.06 −0.03 0.00 0.03 0.06

(c) Shape: ξ

Figure 10.7: Posterior distributions of parameters of the PPP
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Parameter R̂ neff mean sd 2.5% 50% 97.5%

log-posterior 1.004 1931 775.361 1.399 771.655 775.754 776.884
qtilde1 1.002 2540 13.377 0.196 13.070 13.355 13.814
qtilde2 1.002 1830 2.312 0.184 1.962 2.322 2.634
qtilde3 1.002 1849 2.411 0.272 1.898 2.423 2.890
mu 1.003 3524 11.157 0.129 10.929 11.148 11.432
nu 1.003 2102 1.040 0.038 0.963 1.043 1.105
xi 1.003 2117 0.017 0.016 -0.016 0.018 0.044
sigma 1.001 2199 0.945 0.036 0.883 0.943 1.023

Table 10.2: Summary of results of fitting the 2nd set of priors

As previously, we can now plot the forecast return levels over a range of periods (Figure299
10.8). It is noticeable that the plot of the medians is very nearly a straight line and
that the spread between the 2.5% and 97.5% quantiles is remarkably tight. Looking at
Table 10.2, it is clear that the forecast of the median of the shape parameter, ξ , is very
close to zero: that is the condition for the return level graph to be linear. The tightness
of the forecasts appears to be a consequence of the tightness of the priors, and that, as
we saw from the contradiction in Equation 10.6, is a consequence of the combination of
hard upper and lower limits a and b with the assumption of unimodality. Such tight
credibility bands raise the possibility that the expert had an unrealistically optimistic
view of his own certainty.

§ 10.6 Parametric priors

In this case it so happens that the expert has chosen symmetrical densities around the300
mode, which is then equal to the mean. That means that we could easily fit the expert’s
quantiles to a very well-known distribution: the normal distribution. By comparing
the results of the two different types of distribution, namely the minimal knots type
and the normal, we obtain a cross check on our earlier results. In addition, because
the normal densities are non-zero at the minima and maxima, a and b we can test the
effect of the adjustment we referred to in Section 9.1 of permitting the density to take
small values at those points.

By easy trial and error for each of the three q̃i , we can find the value of σ2 to give301
one-third and two-thirds quantiles to a normal distribution N (w, σ2) at the points t1
and t2 whose mode/mean is w . We show in Figure 10.9 an example of such a density.
The image shows that the densities at the points a and b are indeed small.
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Figure 10.8: Forecast return levels over a range of periods: minimal knots priors
Key: black = means; grey shading = 95% credible range; red: empirical return levels of
observations
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Figure 10.9: Normal densities fitted to elicited quantiles
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Parameter Rhat n eff mean sd 2.5% 50% 97.5%

log-posterior 1.0019 2533 782.4688 1.2610 779.2838 782.7840 783.8670
qtilde1 1.0003 2597 13.1875 0.2653 12.6788 13.1814 13.7245
qtilde2 1.0008 2016 2.1875 0.1990 1.8051 2.1849 2.5807
qtilde3 1.0009 2059 2.2530 0.2794 1.7341 2.2472 2.8212
mu 1.0003 3275 11.0607 0.1630 10.7534 11.0584 11.3975
nu 1.0012 2519 1.0270 0.0380 0.9536 1.0272 1.1013
xi 1.0012 2511 0.0113 0.0161 -0.0206 0.0117 0.0419
sigma 1.0003 2315 0.9111 0.0470 0.8219 0.9105 1.0045

Table 10.3: Fit using normal priors

Using these normal priors in place of the minimal knots priors used before we can302
similarly produce forecasts of extremes. The summary of results is shown in Table 10.3.
It is obvious that the results are very similar to those obtained before, as can be seen
also in the graph of forecast return levels by return period (Figure 10.10).
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Figure 10.10: Forecast return levels over a range of periods: normal priors
Key: black = means; grey shading = 95% credible range; red: empirical return levels of
observations

§ 10.7 Conclusions

Using quantities elicited from the expert we have calculated priors based on a minimal303
set of knots and then simulated forecasts of extreme significant wave heights. The speed
of computation was very fast and the elicitation session ran briskly without long waits
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for results to be calculated. Because the expert happened to give tertiles symmetrically
placed round the mode, we were able to fit normal distributions to the elicited data
and using those as priors we could recalculate the forecasts of extreme values. The fact
that the results of the two methods were extremely close gave some assurance that the
minimal knots approach, though apparently crude, was not necessarily a poorer method
than the use of parametric distributions as priors. It also showed that the device of
allowing minima below and maxima above the elicited values of a and b might not
affect the results in a big way.
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Chapter 11

Concluding remarks

We have shown that EVT in its modern developed state provides sophisticated models 304
that can be used to forecast the size and likelihood of extreme events. It can take into
account dependency in observations and clustering, as well as trends. The Bayesian
paradigm brings clear advantages to the task of modelling extremes particularly if
informative priors are derived from expert elicitation.

Where forecasts of extremes are to be used as a basis for important decisions, such as 305
the height of sea defences, it is necessary, however, to pay attention to the uncertainty
surrounding the forecasts. A particular source of uncertainty arises from the choice of
priors. We have seen that if conducted properly, and rigorously in compliance with
established elicitation protocols, elicitation can produce no more than a few numbers
relating to each of the quantities of interest. We have shown that those numbers are
consistent with countless probability distributions, and we have presented a method by
which such distributions can be generated. There appears to be no reason to believe
that all of those distributions will lead to identical or even similar posteriors in the
Bayesian analysis. It follows that estimating the uncertainty of forecasts of extremes,
particularly the most extreme extremes, needs to take account of the uncertainty that
exists in the choice of priors.

Given the possibility of generating vast numbers of alternative priors, it would not be 306
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straightforward to examine each potential prior and quantify its effects on the forecasts
of extremes. We suggest that workers in this field should instead examine the range
of broad options, light tail or heavy tail, minimal knots or many knots and test their
likely effect on the forecasts.

It is striking that although very differently derived priors may indeed give different307
results, we have been able to show examples where such priors do yield very similar
results despite the sparsity of observations. That prompts the thought that, just as a
MDA might contain many very different probability distributions (Theorem 2), so a
given small set of observations may define a wide class of priors. There is scope for
research on ways to classify GP priors.
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Acronyms

CDF Cumulative Distribution Function. xii, 4, 21,
22, 65, 83, 96, 99, 100, 112, 120, 121, 122, 123

EVT Extreme Value Theory. 2, 3, 4, 5, 7, 8, 10, 13,
15, 25, 30, 129

GEV Generalised Extreme Value. 9, 16, 45, 48, 51,
53, 54

GP Gaussian process. 4, 62, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 78, 80, 82, 83, 84,
91, 92, 95, 96, 97, 98, 100, 105, 106, 112, 130

GPD Generalised Pareto Distribution. 13, 14, 15,
20, 21, 22, 23, 45

HCD health care decision-making. 34, 35, 36
HMC Hamiltonian Monte Carlo. 51, 87, 88, 89, 91,

95, 96, 99

iid independent identically distributed. 8, 13, 18,
19

MCMC Markov chain Monte Carlo. 22, 23, 31, 43, 51,
53, 68, 87, 95

MDA maximum domain of attraction. 9, 10, 11, 12,
14, 15, 24, 130

MLE Maximum likelihood estimate. 48
MRL mean residual life. 45, 53, 114

PDF Probability Density Function. xii, 4, 46, 63,
83, 84, 96, 98, 99, 100, 102, 106, 107, 109, 110,
111, 112, 120, 121, 122, 123

POT Peaks Over Threshold. 13, 16, 17, 18, 114
PPP Poisson point process. xii, 16, 17, 22, 23, 31,

45, 46, 95, 123

SHELF Sheffield Elicitation Framework. 36, 39



Definitions

significant wave height Originally defined as the mean of the highest
one-third of the waves, as measured from the
trough to the crest of the waves but now for-
mally defined as Hs = 4

√
m0 where m0 is the

variance of the wave heights observed during
a given period . xii, 30, 31, 113, 115, 116, 117,
126

return level The quantile of a quantity corresponding to a
particular probability in a given time period.
1, 46

return period The reciprocal of the probability that a quan-
tity will exceed a given quantile in a given
period.. 1

extreme value distribution The limit distribution of properly normalised
maxima of a sequence of independent and iden-
tically distributed random variables. 8, 9, 12,
14, 16, 29

extreme value index The parameter of the Generalised Extreme
Value distribution that determines the shape
of the density function. 9, 29, 32

shape parameter The parameter of the Generalised Extreme
Value distribution that determines the shape
of the density function. Also known as the
extreme value index. 9, 45

Fréchet An extreme value distribution with a positive
shape parameter, consistent with no upper
bound to the values that might be attained..
10
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Weibull An extreme value distribution with a nega-
tive shape parameter, possessing therefore an
upper bound to the values that might be at-
tained.. 10

Gumbel An extreme value distribution with a zero
shape parameter, consistent with no upper
bound to the values that might be attained..
10

exceedances The cases in which a scalar random number
exceeds some given threshold . 14

mean excess function The mean of those values of a random variable
that exceed a given threshold . 18

Markov chain Monte Carlo A class of algorithms for sampling from a prob-
ability distribution by constructing a Markov
chain that has the desired distribution as its
equilibrium distribution.. 47

realisation A single sample drawn from a Gaussian pro-
cess, comprising a set of values at a finite
number of points. . 64, 73, 74, 84

scaled stationary covariance function A covariance function to represent the expec-
tation that the smaller the values of a function
the smaller its variance is likely to be. . 67

emulator In computing, an emulator is hardware or soft-
ware that enables one computer system to
behave like another computer system.. 73

inequality The state of being unequal. 73, 74, 75, 86, 90
interpolation Setting fixed values for a function to take at

certain points in its support.. 74, 75, 82, 85,
90

training data a set of examples used to fit the parameters
of a model.. 76
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