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Abstract

The T2K and Hyper-Kamiokande experiments are current and future long baseline off-
axis neutrino oscillation experiments located in Japan. They monitor a primarily (−)

ν µ

at two points, one 280 m from the beam source and the other 295 km from the source
allowing for the measurement of the flavour content of the neutrino beam over a long
distance. The Bayesian results from the T2K experiment using the data set from runs
1–11 are presented in this thesis. In addition this thesis presents future sensitivities
studies from the Hyper-Kamiokande experiment and improvements to the Bayesian
fitter.

When fitting with only T2K data for run 1–11 the best-fit oscillation parameters
are sin2 θ23 = 0.48+0.014

−0.077, ∆m2
32 = 2.51 × 10−3 eV2 [2.44, 2.57] ∪ [−2.59,−2.51], sin2 θ13 =

0.024+0.006
−0.003, δCP = −1.84+1.15

−0.92. The 95.45% credible interval for δCP excludes [0.25, 2.51]
and the 90% credible interval excludes [−0.13, 2.89].

When fitting with T2K data with the PDG 2020 reactor constraint [1] on sin2 θ13

for run 1–11 the best-fit oscillation parameters are sin2 θ23 = 0.552+0.022
−0.053, ∆m2

32 =
2.51×10−3 eV2 [2.42, 2.58]∪[−2.56,−2.54], sin2 θ13 = 0.0220±0.0007, δCP = −1.59+0.65

−0.98.
The 95.45% credible interval for δCP excludes [−0.25, 3.02] and the 90% credible interval
excludes [−3.14,−3.02] ∪ [−0.44, 3.14].
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Chapter 1

Introduction and Neutrino Physics

Overview

1.1 Proposal, Discovery, and The Solar Neutrino

Problem

1.1.1 Early Neutrino History

The existence of neutrinos was first proposed by Wolfgang Pauli in his now famous

1930 letter [3] as a response to anomalous seeming electron energy measurements seen

in beta-decay experiments [4]. Beta-decay electrons were found to be emitted with

continuous energy spectra [Fig. 1.1] rather than the expected delta-like peak required

for 4-momentum conservation. Neutrinos were thus proposed as a “ghost-like” spin-

1/2 fermion that can simultaneously carry away excess momentum and be completely

invisible to the standard equipment of the time. This hypothesis was given further

credibility by Fermi’s theory of the weak interaction [5] which requires neutrinos.

Pauli’s hypothesis was finally confirmed 26 years later by Cowan and Reines [6]

using a liquid scintillator-based detector. By capturing neutrinos produced from the

1
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Figure 1.1: Plot showing the expected distribution of beta-decay electron energies in
a universe without νe (Blue) and the measured distribution of energies. Notably the
true energy spectrum is strictly less than the expected spectrum due to conservation
of energy. The expected electron energy spectrum is dependent on the nucleus atomic
nucleus with a Ee O(1 MeV) [2]

Savannah River nuclear reactor1 through ν̄ep → e+n, it was possible to generate a

unique neutrino signal as can be seen in figure 1.2. Firstly, the emitted e+ annihilates

with electrons in the water tank producing two photons; these can be immediately

observed in the liquid scintillator. Secondly, dissolved CdCl2 in the tank was used to

absorb the neutron. This resulted in the Cd nucleus entering a meta-stable excited

state. The de-excitation out of this meta-stable state resulted in a photon cascade

which could be detected in the liquid scintillator a short time after the initial photons

produced from the aforementioned annihilation event. Combined these two signals

create a unique neutrino signature thus allowing for the first observation of these elusive

particles. A second experiment located at BNL used non-detection of neutrino capture

on Chlorine, Cl37 + ν → e−+Ar37 to determine that neutrinos and anti-neutrinos are

different particles [8]. Following the discovery of ν̄e, a team located at Brookhaven

National Laboratory [9] used the fact that pion decays do not produce e± to deduce

the existence of muon neutrinos [Fig. 1.3].

1The quite frankly insane first proposal was to use nuclear bombs as the neutrino source [7]
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Figure 1.2: (Left) “Club sandwich” structure of Reines and Cowan’s seminal experi-
ment. The tanks (labelled 1,2,3) are filled with liquid scintillator which is observed
by a set of photomultiplier tubes (PMTs). The CdCl tanks are arranged in layers and
a sketch of a neutrino event is depicted (right). This diagram shows the annihilation
event and metastable cadmium de-excitation. Figures adopted from [8] and [10]

.

Figure 1.3: Sketch of the experimental setup used by Lederman, Steinberger, and
Schwartz to detect the existence of multiple flavours of neutrino. Figure adopted from
[9]

.
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Figure 1.4: Diagram of the Homestake experimental setup taken from [11]. The main
detector mass is the 390,000 L tank containing petrochloroethylene (C2Cl4). The argon
created from neutrino interactions is then extracted by circulating helium through the
tank every few minutes. Argon is then separated from the petrochloroethylene via
a combination of condensation and molecular sieving resulting in ≈95% of the argon
produced in the experiment being collected.

1.1.2 Homestake and the Solar Neutrino Problem

Commencing operation in 1970, the Homestake experiment [11] produced a result that

has come to define the field of neutrino physics, the νe solar deficit. Homestake aimed

to measure the solar neutrino flux through νe+37Cl→37Ar+ + e−. The argon atoms

produced by this interaction could then be counted and the number of argon argon

atoms was then used to deduce the total solar νe flux. After several years of careful

experimentation, the experiment found ≈60% of the expected νe flux was missing. The

solution lay in a proposal by Pontecorvo [12] and later by Maki, Nakagawa, and Sakata

[13], neutrino oscillations.
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1.2 Neutrino Oscillations

1.2.1 A Mathematical basis for Neutrino Oscillations

Neutrino oscillations are phenomena whereby the measured weak flavour states of neu-

trinos change as a function of neutrino energy and distance propagated through space.

Since only νe and ν̄e were known, Pontecorvo proposed oscillations of the form νe ↔ ν̄e

[12] similar to neutral meson mixing described in [14]. This was later modified by Maki,

Nakagawa, and Sakata [13] after the discovery of νµ to instead describe weak flavour

changing neutrino oscillations. This only predicted a deficit of 1/2 and could not fully

explain the solar neutrino deficit, but, after the discovery of the τ -lepton [15] it was de-

termined that a 3rd flavour of neutrino existed (this was directly detected by DONUT

in 2000 [16]).

In order to understand 3-flavour neutrino oscillation it helps to consider the case for

2 neutrino flavours first [17]. Neutrino flavour states, νe, νµ and mass states ν1, ν2 are

related in the following way:

|νe⟩

|νµ⟩

 =

 cos(θ) sin(θ)

−sin(θ) cos(θ)


|ν1⟩

|ν1⟩

 . (1.1)

Where the matrix is required to be unitary to conserve transition probability, hence

the choice of representation by real-valued angles using a parameter θ. In order to see

exactly why this results in energy/propagation distance dependent oscillations, consider

the following scenario. Firstly, explicitly write the flavour states in terms of mass states.

For |νe⟩ this is,

|νe⟩ = cos(θ) |ν1⟩ + sin(θ) |ν2⟩ (1.2)

Similarly, the expression for νµ in terms of flavour states is

|νµ⟩ = − sin(θ) |ν1⟩ + cos(θ) |ν2⟩ (1.3)
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Now, consider a neutrino with space-time dependent wavefunction |x, t⟩ with initial

state |0, 0⟩ = |νe⟩. If we consider the mass-states to be solutions to the Schrödinger

equation, this yields

|ψ(x, t)⟩ = cos(θ) |ν1⟩ eiϕ1 + sin(θ) |ν2⟩ eiϕ2 (1.4)

where ϕi = pµ,ix
µ
i is a real-valued 4-momentum and 4-position dependent phase. Now,

converting this back to the flavour basis yields

|ψ(x, t)⟩ = [cos2(θ)eiϕ1 + sin2(θ)e−iϕ2 ] |νe⟩

+sin(θ)cos(θ)[−eiϕ1 + eiϕ2 ] |νµ⟩
(1.5)

Two assumptions can now be made:

• Neutrinos move linearly along the x-axis

• Neutrino masses are small hence the 3-momenta can be shown to satisfy ∥p⃗1∥ =

∥p⃗2∥ = p ≪ 1. Furthermore, the small mass assumption ensures that neutrino

speeds are close to c hence, for a neutrino that’s travelled a distance L in time t,

L = t.

Hence, ϕi = Eit− px. These simplifications ensure that ∆ϕ12 = (ϕ1 − ϕ2) = ∆E12t.

In general for variables x1, x2, the notation ∆x12 = x1−x2 will be used. Using Einstein’s

famous energy/momentum relationship it can be shown that

∆E12 =
(√

p2 +m2
1 −

√
p2 +m2

2

)
(1.6)

Under the assumption of small p,

Ei =
√
p2 +m2

i = p

√√√√1 + m2
i

p2 ≈ p

(
1 + m2

i

2p2

)
(1.7)
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From this approximation, it follows that

∆ϕ12 = ∆E12t = ∆m2
12

2p t. (1.8)

Now using the 3 assumptions above, this allows the phase difference to be reformulated

as (for a neutrino with energy E and propagation distance L)

∆ϕ12 = ∆m2
12

2E L. (1.9)

Consider a neutrino starting in state |ψ(0, 0)⟩ = |νe⟩ at time T having propagated a

distance L. The probability of the neutrino having transitioned to a state |νµ⟩ is given

by

P (νe → νµ) = | ⟨νµ|ψ(L, T )⟩ |2 (1.10)

Expanding into the full form from equation 1.5 yields 2

P (νe → νµ) = | ⟨νµ| (sin (θ) cos (θ) |νµ⟩ [−eiϕ1 + eiϕ2 ]) |νe⟩ |2 (1.11)

Simplifying again yields,

P (νe → νµ) = sin2(2θ) sin2
(

∆m2
12

4E L

)
(1.12)

crucially, the existence of neutrino oscillations requires that there is at least one massive

neutrino.

Extending this to the 3 neutrino case, the PMNS representation becomes U(3). The

most commonly used parametrisation of this has three real mixing angles (θ12, θ13, θ23)

2note that the neutrino flavour basis is orthonormal so ⟨να|νβ⟩ = δαβ
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and a complex phase (δCP ). This is then represented in the following way [18]:

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 (1.13)

where cij = cos(θij), sij = sin(θij). Oscillation probabilities can then be calculated in

the same way as the two-neutrino case. The key behavioural difference to the 2 neutrino

case is the addition of a complex phase as it allows for CP violation in neutrino oscil-

lations. If neutrinos are Majorana particles i.e. neutrino flavour and anti-flavour states

are the same, additional complex phases can also be introduced into the oscillation

calculation [19].

1.2.2 CP Violation and 3-Flavour Oscillations

It can be shown that, for 3-neutrino oscillations [20],

p(νµ/ν̄µ → νe/ν̄e) = sin2(2θ13) sin2(θ23) sin2
(

∆m2
32L

2E

)
(1.14)

∓ 8JCP sin2
(

∆m2
31L

4E

)
sin2

(
∆m2

21L

4E

)
(1.15)

where JCP is a constant known as the Jarlskog invariant,

JCP = 1
8 sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δCP (1.16)

As a result, provided JCP ̸= 0, neutrino and anti-neutrino oscillation probabilities can

differ. This difference violates CP symmetry, the transformation required to change a

particle state into an antiparticle state3. In order for CP violation to occur the complex

component of the PMNS matrix is required to be non-zero.

3This will be discussed in greater detail in section 1.4
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Figure 1.5: Diagrammatic View of mass ordering showing normal (left) and inverted
(right) ordering. The mass states mi are arranged vertically in order of increasing mass
(bottom to top) and the mass difference ∆m32 is shown.

1.2.3 Degeneracies in Neutrino Oscillations

A key feature of the neutrino oscillation calculation is that many of the terms are

“masked” by sin2 or cos2 which hides information about the sign of parameters and

can lead to multiple “correct” values due to the cyclical nature of trigonometric func-

tions. As a result vacuum oscillations lead to several degeneracies when attempting to

measure θij and resolve the ordering of neutrino masses. Two degeneracies, ∆m2
21 > 0

and sin2(θ12) < 0.5 have been lifted through solar neutrino measurements. In addition,

sin2(θ13) has been well constrained by both reactor and accelerator neutrino experi-

ments. Two remaining degeneracies are yet to be resolved, the mass ordering and the

octant of θ23. The mass ordering problem arises from the fact that all terms including

∆m2
32 are of the form f(∆m2

32) where f is some symmetric function about 0. This means

that, in a vacuum, it is impossible from oscillations alone to determine if m2 < m3 (nor-

mal ordering) or m3 < m2 (inverted ordering) [Fig. 1.5]. Similarly, the neutrino octant

problem merges from terms of the form f(θ32); typically this is posed as sin2(θ32) > 0.5

(upper octant), sin2(θ32) < 0.5 (lower octant) or sin2(θ32) = 0.5 (so-called “maximal

mixing”). Thankfully for experimentalists, neutrino interactions with matter lift these

degeneracies. This allows for the determination of mass ordering and octant in future

experiments.
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1.2.4 Oscillations in Matter

Vacuum neutrino oscillations alone cannot fully explain the solar neutrino problem.

Nuclear fusion can only produce sufficient energy per reaction to produce electrons and

hence the initial solar neutrino flux is entirely νe [21]. Since vacuum oscillations are

dependent on L/E and the distance between the Earth and the Sun is variable, the pure

vacuum oscillation prediction would result in seasonal changes in neutrino oscillation

probability. This result is incompatible with the observed constant 30% survival rate

seen in solar neutrino experiments such as Super-Kamiokande [22]. The solution comes

from interactions between neutrinos and matter. By considering matter interactions

as a perturbation to the vacuum Hamiltonian i.e. H = Hvacuum + δHmatter, the total

Hamiltonian becomes non-diagonal. Hence mass states evolve in the following way [23],

ν̇i = −i
∑
ij

Hijνj (1.17)

This results in off-diagonal terms in the Hamiltonian mass states that are allowed to

mix generating mass-state oscillations; this is called the MSW effect. This is dependent

on the electron number density of a material4. As a result, neutrinos travelling through

the sun oscillate rapidly into pure-mass states and thus have very little oscillation when

travelling from the surface of the sun to the earth.

In accelerator neutrino experiments, MSW can allow for additional degeneracies to

be lifted [24]. Unlike solar neutrinos, the electron number density in these experiments

constant to a very good approximation. This means that there is no resonance effect

and the mass states don’t “oscillate” as seen in the previous example. In the vacuum

case, discerning the mass ordering from oscillation probabilities is impossible due to the

symmetries in the calculation. MSW lifts this and thus it becomes possible to observe

the true hierarchy using long baseline oscillation experiments. Figure 1.6 shows the

expected bi-probability plot on the Hyper-Kamiokande (HK) experiment. In particular,

4This is an approximation given that there is no large block of matter containing heavier leptons.
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Figure 1.6: Bi-probability plot for the Hyper-Kamiokande experiment Best fit contours
are drawn assuming true normal ordering and maximal CP violation. The plot shows
the asymmetry in oscillation probability for neutrinos vs anti-neutrinos.

when the true ordering is normal (∆m2
32 > 0) and CP-violation is maximal (δcp = −π

2 ),

the degeneracy lifts almost completely at the HK baseline and thus the true ordering

can be determined in this case.

1.3 Observations of Oscillation

1.3.1 Atmospheric Oscillations and Super-Kamiokande

The first direct observation of neutrino oscillations came from the Super-Kamiokande

(SK) experiment in Japan [25]. SK is a 50 kt water Cherenkov detector that observes

particles using the Cherenkov radiation emitted when they travel faster than light

through water [26]. The photons emitted form the light cone that can then be recorded
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Figure 1.7: Flux of νµ and ντ vs νe flux observed at SNO with 1σ error bands for each
interaction channel. Dashed lines are from the standard solar model prediction. Figure
from [27].

using photo-multiplier tubes that line the interior and exterior of the detector with

the interior PMTs facing inwards towards the center of the tank and exterior facing

outwards. Neutrinos interacting in the tank are then identifiable since they will not

produce final state particles that generate Cherenkov rings in the outward-facing PMTs

first. Furthermore, νµ-like and νe-like signals can be further distinguished using the

“fuzziness” of the resultant Cherenkov ring. Further details about this experiment can

be found in section 2.1.9.

The 1997 Atmospheric oscillation result [25] used the deficit in upward going νµ-like

events relative to downward going events and the zenith-angle distribution to show that

neutrinos exhibited flavour changing behaviour consistent with PMNS-like oscillations.
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Since the number of events without oscillation was expected to be roughly the same

for up and down-going neutrinos, the observed ratio of νup/νdown = 0.5 showed there

was an oscillation-like mechanism present for neutrinos. Whilst this result was vital

in proving neutrino oscillations are occurring, the final proof for neutrino oscillations

came from the SNO experiment.

1.3.2 Solar Oscillations and SNO

SNO, like SK, used Cherenkov radiation to detect neutrinos; unlike SK it was filled with

heavy water rather than simply using ultrapure water [27]. Whilst individual flavour

could not be trivially identified through Cherenkov rings in this medium, interactions

could be discriminated by one of three interaction channels:

• The neutral current channel, ν + d → n+ p+ ν

• The charged current channel νe + d → p+ p+ e−

• The electron scattering channel ν + e− → ν + e−

Since only νe can interact through the CC at the solar neutrino energy scale, the νe

flux could be measured simultaneously with the total neutrino flux. In 2001 SNO mea-

sured a total neutrino flux of 5.44×106 cm2 s−1 and a νe flux of 1.75±0.07(stat.)0.12
−0.11(sys.)

±0.05(theor.) × 106 cm2 s−1. This agreed with both the prediction from the solar model

[Fig. 1.7] and results from the Homestake experiment, and provided concrete evidence

for neutrino oscillations.

1.4 Neutrino Mass

1.4.1 The Weak Interaction

A key consequence of neutrino oscillations is that they require non-zero neutrino mass.

To understand why this contradicts the Standard Model (SM), it is important to first
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look at the structure of the weak interaction. The weak interaction current was shown

by Marshak and Sudarshan to have a V −A structure [28]. This means it is the linear

composition of a vector current V = γµ and an axial current A = γµγ5, where γµ can

be represented by the Dirac gamma matrices and γ5 = iγ0γ1γ2γ3. Fermion spinors ψ

are commonly described in terms of left and right-chiral states [29]

ψL = 1
2(1 − γ5)ψ (1.18)

ψR = 1
2(1 + γ5)ψ (1.19)

ψ = ψL + ψR (1.20)

Consider the weak interaction in terms of these chiral states,

γµ(1 − γ5)ψ = γµ(1 − γ5)(ψL + ψR) (1.21)

(1.22)

Since (1 − γ5)(1 + γ5) = 0,

γµ(1 − γ5)ψ = γµ(1 − γ5)ψL (1.23)

For antiparticles, consider ψ̄ which, through a similar process, yields

ψ̄γµ(1 − γ5) = ψ̄Rγ
µ(1 − γ5) (1.24)

As a result, the weak interaction can only “see” left-chiral particle and right-chiral

antiparticle states. Since SM neutrinos can only be produced from weak interactions,

it immediately follows that only left-chiral neutrinos (and right-chiral anti-neutrinos)

are permitted within the SM. From this, it follows that in order for the weak force to

transform particle and antiparticle states a CP transformation is required [30].
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1.4.2 Chirality and the Higgs Mechanism

The Higgs mechanism generates mass within the SM. The mass Lagrangian can be

considered to be a mixing of left and right-chiral states [31]

−Lmass = mDψ̄RψL + h.c (1.25)

where mD is the Dirac mass and can be obtained directly from the Higgs mechanism

[32]

mD = Gν
⟨h⟩√

2
(1.26)

where ⟨h⟩ is the Higgs vacuum expectation value and Gν the neutrino-Higgs coupling

strength. The immediate consequence of this is that, due to their uni-chiral nature,

neutrinos cannot have mass within the SM.

1.4.3 Alternative Mechanisms for Neutrino Mass Generation

The simplest way to generate neutrino mass is by introducing right-chiral particle and

left-chiral antiparticle states for neutrinos. In order to agree with current observations

of the universe, these additional neutrinos must be ‘sterile’, that is to say they can only

couple with the Higgs field.

Another method of introducing neutrino mass is by allowing them to be Majorana

particles. A Majorana fermion is unique in that its particle state is conserved by Ĉ

symmetry i.e. Ĉψ 7→ ψ. As a result, it is possible to construct a mass term using only

left-handed particle states:

−Lmass,Maj = −1
2mM ψ̄

c
LψL + h.c. (1.27)

where mM is the Majorana mass and ψc = Ĉψ̄T the particle spinor after charge con-

jugation. This has two notable features. Firstly there is an additional contribution to
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the PMNS matrix [19] which can be parametrised in terms of two phases, α1, α2

UPMNS,Maj = UPMNS


eiα1 0 0

0 eiα2 0

0 0 1

 (1.28)

As this is an additional complex component it leads to further terms similar to the

Jarlskog invariant and hence allows for additional CP-symmetry violating properties in

neutrinos. The second, slightly more subtle, feature is that Majorana and Dirac masses

are not mutually exclusive. This results in true neutrino mass states being a linear

combination of Dirac and Majorana mass states [33].

1.5 Modern Neutrino Physics

1.5.1 What’s Left to Discover?

In previous sections, mechanisms for oscillation and neutrino mass generation have been

discussed/ However, many of the relevant properties have either not been measured to

enough precision to remove degeneracies or have not been observed at all. The following

non-exhaustive list details the remaining known unknowns in the field:

• Does δCP exclude CP-conserving values?

• Which octant does θ23 lie in?

• Is the mass ordering inverted or normal?

• What are the individual neutrino masses?

• Are neutrinos Majorana?

• Do sterile (right-handed) neutrinos exist at low mass scales?

• Are there additional left-handed states beyond the 3 observed weak flavour states?
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There are currently several experiments both running and under construction that aim

to answer these questions.

1.5.2 Reactor Experiments

Since SK and SNO’s initial results, neutrino physics has rapidly progressed. Modern

neutrino oscillation experiments can be broadly classified into four groups: reactor, low

and high energy astrophysical, and accelerator. Reactor experiments follow the same

principles as Reines and Cowan’s original detector, using the large antineutrino flux

generated by nuclear fission to observe short (<1 km) and medium (<100 km) baseline

neutrino oscillations. Recent reactor experiments include Daya Bay, RENO, and Double

Chooz [34]. The survival probability for ν̄e is given by

P (ν̄e → ν̄e) ≈ 1 − cos4(θ13) sin2(2θ12) sin2(∆21) − sin2(2θ13) sin2 ∆3ℓ (1.29)

Where ∆ij = 1.27∆m2
ijL/E and ∆3ℓ = ∆32 ≈ ∆31 is used to simplify this expression.

It is clear from this that reactor experiments are sensitive to θ12, θ12, ∆m2
31 and ∆m2

21.

The eventual exclusion of sin2(θ13) = 0 was given in 2012 by Daya Bay which presented

a value of sin2(θ13) = 0.092 ± 0.016(stat) ± 0.005(syst) [35]. This is particularly vital

for neutrino physics as the Jarlskog invariant [Eqn. 1.16], which enables neutrino CP

violation, requires all mixing angles to be non-zero. Future experiments in this field

include JUNO, based in Jiangmen, China. In addition to improving the precision of

previous reactor results, this experiment will use a much larger (∼ 50 km) baseline to

measure ∆m2
32 and determine the mass ordering [36].

1.5.3 Astrophysical Experiments

Astrophysical neutrinos have a wide energy range from sub-eV relic neutrinos [37] to

ultra-high energy PeV and above objects produced in violent cosmological events [38]

allowing for observations of a large range of neutrino energy spectra. In order to observe



CHAPTER 1. INTRODUCTION AND NEUTRINO PHYSICS OVERVIEW 18

the full spectrum of astrophysical neutrino energies many techniques are required. The

largest5 currently running neutrino observatory is IceCube, located in Antarctica [39].

By using an array of photo-multiplier tubes (PMTs) inside of digital optical modules

over a ≈ 1 km3 region, the detector can observe Cherenkov radiation produced by

particles travelling through the ice sheet.

On a smaller scale, experiments such as Super-Kamiokande (SK) and its upgrade

Hyper-Kamiokande (HK) also use Cherenkov radiation produced by the products of

neutrino interactions. In this case, this is done through liquid water rather than ice

and will be discussed in more detail in 2.1 and 2.2.

Combined together the array of neutrino detectors become part of the Supernova

Early Warning System (SNEWS) [40]. 99% of the energy produced in a core-collapse

supernova is carried away by neutrinos. Since neutrinos have very small cross-sections

relative to photons and travel very close to the speed of light they can escape the

supernova faster than photons and hence, the neutrino pulse can arrive at Earth first

[41]. This means that, by passively observing the neutrino background, astronomers

can be alerted to the position of a supernova before light reaches Earth. This positional

information can be obtained both from the incoming neutrino direction via elastically

scattered νe and from triangulation using the full set of SNEWS detectors.

Alongside astrophysics, these experiments can be used to measure atmospheric neu-

trino properties. As was discussed earlier, Super-Kamiokande provided the first evi-

dence of oscillations using atmospheric neutrinos. This sector is particularly sensitive to

neutrino mass ordering and future experiments such as Hyper-Kamiokande and DUNE

aim to combine atmospheric and accelerator neutrino data to exclude the incorrect

ordering [42].

5and coolest...badum tst
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1.5.4 Accelerator Experiments

Accelerator experiments are the primary method for measuring neutrino CP violation

and are the main focus of this thesis. Generally speaking, accelerator experiments

produce neutrinos using the method described by Figure 1.8. This allows for control

of both the neutrino energy distribution and whether the beam produces primarily

neutrinos or anti-neutrinos. This class of experiments can be further separated into

on-axis and off-axis. On-axis experiments place all detectors on the central axis of the

beam which results in a maximised neutrino flux and a large range of neutrino energies.

Off-axis experiments exploit conservation of momentum in to produce a narrower range

of neutrino energies. This results in an increased flux for the desired peak oscillation

energy but will have a reduced overall flux relative to an on-axis experiment with the

same neutrino source. This helps to increase the number of neutrinos with L/E close

to the value for maximal oscillation.

Detector distance also plays a factor in these experiments; nearby detectors, such

as ND280 [43], MiniBOONE [44], and LSNd [45] can be used to search for short base-

line oscillations since the value of L/E picked has minimal oscillation. In order to

efficiently measure oscillation properties it is common to place further detectors at

oscillation maxima [where P (νµ → νµ) is minimised]. The experiments allow for preci-

sions measurements of sin2(θ23), sin2(θ13), ∆m2
32 and, since they can use both neutrino

and antineutrino beams, can also measure δcp to a very high precision.

The next generation of accelerator neutrino experiments are being led by DUNE [46]

and Hyper-Kamiokande (HK) [47], which aim to provide ultra-high precision measure-

ments of PMNS parameters. Both experiments are aiming to remove the mass-hierarchy

degeneracy6 and constrain δCP . DUNE uses the MSW effect to “automatically” lift the

degeneracy and will only observe a single mass ordering. For HK the resolution is

dependent on the value of δcp which will be discussed in greater detail in chapter 5.

6This may hav been achieved by JUNO by the time HK and DUNE switch on [48]
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Figure 1.8: Basic Diagram of an accelerator experiment setup. A target is bombarded
by an accelerated proton source. Magnetic horns are used to select either positively
or negatively charged particles and the selected particles are allowed to decay. Since
the most common particles produced are pions and pions primarily decay through
π± → µ±(−)

ν µ, this results in a large number of neutrinos in the final state. Finally, the
non-neutrino particles are absorbed by the beam dump resulting in a neutrino beam.

1.5.5 Non-Oscillation Experiments

Along with experiments measuring neutrino oscillation, there is also a rich ecosystem of

non-oscillation experiments aiming to determine further properties of neutrinos. These

include KATRIN, which uses β-decay of tritium to determine the mass of ν̄e [49].

In addition, several experiments such as LEGEND [50] and KamLAND-Zen [51] are

investigating neutrino mass generation mechanisms and, in particular whether or not

neutrinos are Majorana. This is primarily done by looking for neutrino-less double

β-decays [52]. This is a process whereby neutrons can decay into two electrons without

requiring a outgoing neutrino.

Neutrino cross-sections are another area of the field under rigorous investigation,

detectors such as MIνERVa [53], NINJA [54], and ND280 are used to measure neutrino

interactions with minimal oscillation. Understanding this area is vital for all neutrino

experiments as understanding systematics related to neutrino/matter interaction im-

proves sensitivity in all detectors.
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1.5.6 Current Best Fit Values

The current global PDG best-fit values for neutrino oscillation parameters are as listed

in table 1.1. Note that the convention for δcp in the PDG is [0, 2π], T2K uses [−π, π]

which will be the convention for most plots in this thesis.

Parameter True Inverted Ordering True Normal Ordering
sin2(θ12) 0.307 ± 0.013 0.307 ± 0.013
sin2(θ23) 0.534+0.021

−0.024 0.537+0.018
0.024

∆m2
21 (7.53 ± 0.18) × 10−5 eV2 (7.53 ± 0.18) × 10−5 eV2

∆m2
32 (−2.519 ± 0.033) × 10−3 eV2 (2.437 ± 0.033) × 10−3 eV2

sin2(θ13) (2.20 ± 0.07) × 10−2 (2.20 ± 0.07) × 10−2

δcp (1.23 ± 0.21)π rad (1.23 ± 0.21)π rad

Table 1.1: PDG best-fit values for PMNS parameters [55]

1.6 Description of Thesis Structure

Now that the history of neutrino physics has been explored and the theory detailed,

the rest of the thesis will describe the specifics of performing a Bayesian oscillation

analysis. Chapter 2 will detail the T2K and Hyper-Kamiokande detectors. Chapter 3

discusses Bayesian statistics with particular focus on the Markov chain Monte Carlo

(MCMC) methods used in this thesis. Chapter 4 will present the result of the 2023

T2K oscillation analysis which were produced in collaboration with the P-Theta fitting

group. Chapter 5 is an overview of the early stages of the Hyper-Kamiokande Bayesian

fit and includes validations produced with the VALOR and P-Theta groups as well as

work from Andrés Lopez Moreno. Penultimately, chapter 6 will detail the introduction

of novel MCMC techniques to the MaCh3 fitter used in all analyses in this thesis.

Finally, chapter 7 will contain some concluding remarks.



Chapter 2

T2K and Hyper-Kamiokande

2.1 The T2K Experiment

2.1.1 Overview of T2K

T2K is a long-baseline off-axis accelerator neutrino experiment that uses two detector

complexes, separated by 295 km, to probe neutrino oscillations [Fig. 2.1]. Whilst the

method used to generate the neutrino beam is shown schematically in figure 1.8 it is

important to understand the specifics. The J-PARC synchrotron [56] is used to generate

a 30 GeV proton beam; this then bombards a graphite target to produce a large number

of mesons, most of which are charged pions [57] [58].

Figure 2.1: Cross-sectional view of the T2K experiment layout. Figure acquired from
[43].

22
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Pions can then be selected by charge using magnetic focusing horns [59] to remove

either π+ or π−; the remaining pions then primarily decay through either

π+ → νµ + µ+ (2.1)

or

π− → ν̄µ + µ− (2.2)

This process occurs in the 96m long decay pipe before the remaining particles collide

with the beam dump (a large wall of graphite and sandstone) [60] removing most non-

neutrino particles, thus resulting in a neutrino beam. The near detector complex [61],

located 280 m from the beam target, consists of four detectors, WAGASCI/babyMIND,

INGRID, and ND280. These use the high neutrino flux to constrain beam properties

and measure neutrino cross-sections. The oscillation group currently only uses data

from ND280.

The final detector, located 295 km away is, Super-Kamiokande [26], a 40 kt water

Cherenkov detector located under Mount Ikena. This is located at the first oscillation

maximum for L/E = 295 km/0.625 GeV and hence sees the maximal number of νe from

oscillation.

This setup allows for precision measurements of neutrino oscillation parameters [62];

T2K is primarily sensitive to δCP , ∆m2
32, sin(θ13) and sin(θ23). In addition, the physics

program also includes cross-section measurements and searches for exotic physics at the

near detector.

2.1.2 The J-PARC Beamline

J-PARC’s proton accelerator uses a 3-stage process to produce the 30 GeV proton beam

required by T2K [63]. Firstly, a linear accelerator [64] boosts a proton beam to 400 MeV.

This beam then enters the Rapid Cycling Synchrotron (RCS) [65] in which electrons

are stripped from the ion beam which results in a pure proton beam. The RCS boosts
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Figure 2.2: Diagram showing the secondary T2K beamline. Protons from the J-PARC
main ring (MR) are propelled through the primary beamline towards the graphite
target. The resulting shower of particles is focused by the 3 beam horns and allowed
to decay in the beam dump. The surviving particles then travel through the decay
volume and non-neutrino particles are absorbed by the beam dump. Figure taken from
an internally produced diagram.

the beam energy up to 3 GeV at a periodicity of 25 Hz. Four beam pulses or bunches

are injected into the RCS per cycle; 5% of these are then injected into the main ring

(MR) [66] every 40 ms resulting in 8 bunches of protons in the MR at a time. The MR

accelerates these bunches up to 30 GeV at a cycling rate of 0.5 Hz. protons are then

extracted from the MR using a series of kicker magnets. These are the sent into the

T2K beamline.

2.1.3 T2K Beamline, Target, Decay Pipe and Magnets

The T2K beamline [Fig. 2.2] [43] aims the proton beam at the target in two stages.

Firstly, the beam is bent by ≈80◦; this points it such that Super-Kamiokande is 2.5◦

away from the central beam axis. It then curves downwards in order to be at the correct

angle to impinge onto the beam target producing primarily pions. The target itself is a

graphite rod surrounded by a layer of titanium. Helium gas cooling is used to dissipate

the heat produced from high-energy proton collisions.

The particles are then focused using 320 kA magnetic focussing horns. The horn

current direction will collimate either negatively (reverse horn current) or positively

(forward horn current) charged pions into decay volume resulting in a primarily ν̄ or ν

neutrino beam [67]. As mentioned above, the pions then almost all entirely decay to
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produce νµ/ν̄µ and the corresponding (anti-)muon [68]. As can be seen in figure 2.3,

the neutrino beam is significantly purer than the anti-neutrino beam The decay volume

then terminates at the beam dump, a large wall of sandstone and graphite that absorbs

most particles produced in the decay pipe aside from the neutrinos and muons with

energies > 5 GeV. These high-energy muons are then monitored by MUMON which

gives constraints on the beam direction and intensity.

2.1.4 Why Off-Axis?

Before discussing the neutrino detectors, it is useful to understand the reasoning behind

the off-axis configuration. By positioning the detectors off of the main beamline axis,

T2K can observe a much narrower spectrum of neutrino energies; this can be seen in

figure 2.4. In particular, by using an off-axis angle of 2.5◦, the neutrino energy spectrum

will sharply peak at 0.625 GeV. To understand this phenomenon, consider the decay

process π → ν + µ. By following the method in [71], it can be shown that the neutrino

energy, Eν , is related to off-axis beam angle (θ) way. 4-momentum conservation requires

pα
µ = pα

π − pα
ν (2.3)

Where pα
µ,ν,π are the 4-momenta of the muon, pion and neutrino involved in the decay.

If this is then “squared”,

pα
µpµ,α = pα

πpπ,α − 2pα
πpν,α + pα

ν pν,α (2.4)

Since pα
i pα,i = m2

i where mi is the mass of the particle, this expression can be further

simplified to

m2
µ = m2

π − 2pα
πpν,α (2.5)

Where m2
ν has been removed as it negligible relative to the other terms in the equation.

In addition, the “mixed” particle term can be written in terms of energy (Ei) and
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Figure 2.3: The T2K beam flux prediction at Super-Kamiokande (SK) (top) and ND280
(bottom) including additional tuning from the NA61-SHINE experiment [69]. The
ν beam mode prediction (left) is notable purer than the ν̄-mode (right) prediction,
particularly at large beam energies. Taken from [70].
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3-momentum (p⃗i) components,

pα
ν pπ,α = EνEπ − p⃗ν ◦ p⃗π (2.6)

Using the small neutrino mass approximation, |p⃗ν | ≈ Eν and the simple dot product

formula, p⃗π ◦ p⃗ν = |p⃗π||p⃗ν | cos(θ) where θ is the angle between incoming pion and the

outgoing ν directions it can be shown that

pα
πpν,α = EνEπ − |p⃗π|Eν cos(θ) (2.7)

Hence, the following expression can be obtained

m2
µ = m2

π − 2Eν [Eπ − |p⃗π| cos(θ)] (2.8)

This can then be rearranged to

Eν =
∆m2

πµ

2[Eπ − |p⃗π| cos(θ)] (2.9)

where ∆m2
πµ is the difference between squares of pion and muon masses. The maximum

neutrino energy can then be calculated in the following way

∂Eν

∂Eπ

= −
∆m2

πµ

2

(
2

(Eπ − |p⃗π| cos(θ))2

)(
1 − Eπ

|p⃗π|
cos(θ)

)
(2.10)

Setting ∂Eν/∂Eπ = 0 yields that Eν is maximised when |p⃗π| = Eπ cos(θ). Using the

mass-energy-momentum relationship, it can then be shown that, at this maximal value

of Eν ,

m2
π = E2

π − |p⃗π|2 ⇒ m2
π = E2

π − E2
π cos2(θ) (2.11)
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And hence mπ = Eπ sin(θ). As a result, the maximal value of Eν can be written in

purely terms of particles masses and the outgoing pion angle in the form,

Eν,max =
∆m2

πµ

2mπ sin(θ) (2.12)

The result is a narrower band of neutrino energies with a distinct peak at the maximal

energy. In T2K θ is tuned so Eν peaks at the maximal oscillation probability. This

maximises the number of observed νe at the far detector.

2.1.5 Muon Monitor

Located downstream of the beam dump, the T2K Muon Monitor (MUMON) monitors

the neutrino beam direction and intensity using the muons produced in the decay

volume and beam dump [Fig. 2.5] [73]. It is capable of measuring the position of the

beam central axis to a precision of 3 cm (0.25 mrad) and can use the muon data to

constrain the neutrino beam stability to a precision of 3% or better.

2.1.6 Near Detectors

Whilst the main body of this thesis is primarily concerned with neutrino oscillations

using data from the far detector, the near detectors are vital for constraining beam flux

properties and neutrino cross-section parameters. All detectors are located ≈ 280 m

from the beam target with WAGASCI/babyMIND and ND280 located off-axis and

INGRID located on the main beam axis.

2.1.6.1 WAGASCI/babyMIND

WAGASCI (WAter Grid And SCIntillator) and babyMIND (baby Magnetised Iron

Neutrino Detector) form an experiment aiming to constrain the differences between

neutrino cross-sections on water and liquid scintillator (LS). This is particularly useful

since ND280 and INGRID are primarily made of iron and carbon-based detectors which
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Figure 2.4: (Top, middle) Neutrino oscillation probability plotted against neutrino flux
for a detector located at 295 km away with a range of neutrino energies. (Bottom)
Neutrino energy spectra at SK at 3 angles relative to the main beamline. Figure
adopted from [72]

makes scaling cross-section for the water-based far detector somewhat non-trivial.

WAGASCI is comprises two water tanks sandwiched between two hydrocarbon-filled

(HC) tanks. The structure containers a grid structure made of scintillator bars that

pass through these tanks. Scintillator light is then detected using Multi-Pixel Pho-

ton Counters (MPPCs). In addition, the detector uses exterior muon range detectors

(MRDs) on either side to measure outgoing muon kinematics to aid with internal event
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Figure 2.5: Diagram showing a side on view of MUMON. Figure taken from [73].

reconstruction. The babyMIND detector is used to improve the charge and momentum

measurements for muons produced within WAGASCI. This detector consists of mag-

netised iron plates interleaved between scintillator planes. Currently neither of these

detectors is used within the oscillation group; for further information see [74] and [75].

2.1.7 INGRID

INGRID (Interactive Neutrino GRID) [Fig. 2.6] is the only on-axis detector used by

T2K to measure beam direction and intensity. It consists of modules [Fig. 2.6] which

are made up of iron plates interleaved with plastic scintillator planes [78]. The modules

are arranged in a cross-shape which allows the detector to measure beam direction and

intensity along an x-y plane. Scintillator light is then readout by MPPCs which allows

for event reconstruction. INGRID is primarily sensitive to muons and detects charged-

current neutrino events via outgoing muons. In addition to the modules in the cross,
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Figure 2.6: (Left) Schematic view of the INGRID detector showing the arrangement
of INGRID modules, the detector cross-shaped and embedded into the side of the ND
pit. (Right) An INGRID module, with 9 iron planes and 11 scintillator planes can be
seen. (Figures obtained from [76] and [77], resp.)

INGRID contains a proton module [79] located at the central point of the detector,

upstream of a standard module. This aims to observe additional interactions, primarily

CC0π, however it has been used in addition cross-section analyses for example, CC1π+

events with a proton in the final state topology which are not well constrained by the

regular INGRID modules.

2.1.8 ND280

ND280 is a large off-axis detector composed of multiple sub-detectors. Figure 2.7 shows

two detector configurations. The configuration used in chapter 4 contains the PØD in

the upstream section whilst all future analyses use the ND280-upgrade configuration

containing the time of flight (TOF) detector, super fine grain detector (SFGD) and

the high-angle TPCs (HA-TPCs). As with all the near detectors, the primary aims of

ND280 are to constrain beam properties such as the neutrino energy spectrum and to

measure neutrino interaction cross-sections. The entire detector is encased in a 0.2 T

magnet to enable measurements of the sign of the charge and momentum of parti-
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Figure 2.7: (Left) An exploded diagram of the configuration of ND280 with the PØD
configuration. (Right) Diagram of the ND280 upgrade, the P0D has been replaced with
the Super-FGD and high-angle TPCs. The magnet and time of flight (TOF) detector
are not shown. [Figures obtained from [43] and [80]]

cles. Currently, ND280 is the only near detector from which data is used in oscillation

analysis.

2.1.8.1 Electromagnetic Calorimiters

ND280 is surrounded by three large electromagnetic calorimeters (ECALs) [81]: the

P0D ECAL surrounds the region formerly occupied by the PØD, the Barrel ECAL

surrounds the TPCs and FGDs, and the downstream ECAL caps the end of the detec-

tor. The ECALs have three purposes: firstly the barrel and downstream ECALs are

designed to complement the TPCs by measuring the energy of neutral particles pro-

duced within the downstream end of the detector. Since the PØD performed shower

reconstruction internally, the PØD ECal is designed to just monitor events that were

not fully contained in the PØD. Each ECAL is made up of a total of 13 modules, with

each module consisting of several layers of lead plate along with a grid of scintillator

bars.
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2.1.8.2 Fine Grained Detectors

ND280 contains two Fine Grain Detectors (FGDs) [82] located in between the time

projection chambers (TPCs) which act as the target mass for the downstream TPCs.

These detectors are also used to measure tracks from charged-current (CC) interactions,

particularly from backwards-going and short-lived particles. The detector itself is made

of 192 scintillator bars which are arranged in a grid shape. These bars then have a

wavelength-shifting fibre passed through them which passes scintillator light from the

detector to an MPPC. FGD2 consists of 7 double layers of scintillator and 6 layers of

water.

2.1.8.3 Time Projection Chambers

ND280 contains three TPCs which are used to provide particle path reconstruction [83].

The T2K TPCs are argon-based gas-filled detectors with a constant electric potential

applied through them by a large cathode plate. Particle interactions generate electrons

which are repelled from the cathode towards 12 MicroMegas (Micro-Mesh Gaseous

Structure) detectors [84]. The MicroMegas modules use a wire mesh to locate the

y-z position of the emitted electrons whilst the constant electrical current allows for

an exact reconstruction of the particle’s x-position. This x-position reconstruction is

possible from timing information obtained by the FGDs. The electrons produced from

these events will travel at a constant velocity towards the MicroMegas and, since the

interaction time and incoming direction is already known, the positional information

can be reconstructed from this information. In addition, since the entire ND280 is

magnetised, the particle charge can be calculated using the curvature of particle tracks.

2.1.8.4 Side Muon Ranging Detector

As its name suggests, the side muon ranging detector (SMRD) [85] is used to measure

the momenta of muons penetrating the sides of ND280. This serves two purposes:

• Measurement of muons produced by events within the detector that manage to
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penetrate the exterior.

• Detection of muons created by cosmic events within the magnet and exterior of

ND280.

The SMRD consists of plastic scintillator layers sandwiched between the iron plates

around the magnet and readout by MPPCs. This detector is used to veto events gener-

ated by muons entering the detector from the sides as well as providing measurements

of muons that escape the internal detectors.

The Pi-Zero Detector (PØD) was a large detector that filled most of the upstream

region of ND280 [86]. The primary goal of the PØD was to measure pions produced by

νµ +N → νµ + π0 +X +N ′ (2.13)

This forms a particularly important background since NCπ0 events can be mischarac-

terised as electron events in SK if only one outgoing photon is detected. The detector

consisted of 40 modules (PØDules) consisting of 134 horizontal and 126 vertical scintil-

lator bars. As with many of the other detectors, scintillator light is passed to an MPPC

via and WLS fibre. The central region of the detector consists of a repeating water,

brass, scintillator structure as shown in figure 2.8. The end caps were used as ECALs

which used lead sheets rather than brass and did not contained water. This allowed for

the measurement of events in water in order to better constrain errors when the same

interactions are measured in the far detector target.

2.1.8.5 PØD

2.1.8.6 ND280 Upgrade

In 2023 ND280 was reconfigured; this new configuration aims to improve the angular

coverage of the detector to 4π. In order to do this, the PØD was removed and replaced

with three new detectors [Fig. 2.7]. The first of these is the super fine-grain detector

(SFGD) [87]. Unlike the older FGDs, the SGFD consists of 2 million 1×1×1 cm3 plastic
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Figure 2.8: Diagram of the P0D, The water/scintillator layering and surrounding
ECALs can be seen. Figure obtained from [86]

scintillator cubes arranged in a 192×192×56 grid. Each cube is coated with a thin layer

of polystyrene to insulate it and has two holes through which WLS fibres are threaded.

The SFGD aims to improve upon the existing FGDs by allowing for the acceptance

of backward-going and high angle particle tracks as well as providing a much higher

granularity.

The SFGD is sandwiched between two high-angle time projection chambers (HA-

TPCs) [88]. The design of these TPCs is similar to those used in the older configuration

with the largest difference being the use of resistive MicroMegas [89] and a thinner field

cage. The thin cage allows for a larger fiducial volume within the TPCs which increases

the capabilities of the detector. The HA-TPCs will allow for the measurements of high-

angle charged particles, which were not measured in the previous configuration.

The final piece of the upgrade is the time of flight detector (TOF) [90]. The TOF

consists of a series of large plastic scintillator bars surrounding the SFGD, HA-TPCs,

and upstream ECal and aims to provide timing information for charged particles leaving
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Figure 2.9: Diagrammatic view of the Super-Kamiokande detector. The ID/OD struc-
ture can be seen with the Tyvek® separator laying between the scaffolding and the
PMTs

and entering the detector. The scintillator signal is readout by a series of MPPCs.

2.1.9 Super-Kamiokande

Super-Kamiokande (SK) is the far detector for the T2K experiment [Fig. 2.9]. As men-

tioned previously, SK is a 50 kt water Cherenkov detector with 1 km rock overburden

to minimise cosmic background interactions. The detector has two distinct regions sep-

arated by a wall of Tyvek® [91]. The inner detector (ID) is monitored by 11,146 50 cm

PMTs and is used for neutrino event reconstruction. The outer detector (OD), contain-

ing 1885 20 cm PMTs [92] is used as a veto region to detect charged particles produced

outside the water tank. This improves background rejection since particles produced

through neutrino interactions within the ID will not have a preceding OD signal. De-

tected particles can be identified based on the “fuzziness” of Cherenkov rings seen on

the PMTs [93]. Electrons produce “fuzzier” rings as a result of multiple scattering which

may induce electromagnetic showers.
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Figure 2.10: Diagrammatic view of the production of Cherenkov radiation. For a parti-
cle p, the Cherenkov photons are emitted at characteristic angle given by equation 2.14.

2.1.9.1 Cherenkov Radiation

Cherenkov radiation is produced when particles travel through a medium faster than

c/n where n is the refractive index of the material and c the speed of light in a vacuum

[Fig. 2.10] [94]. Particles travelling at speed β emit a cone of light analogous to a “sonic

boom” which travels in a cone with characteristic angle

θ = cos−1
(

1
nβ

)
(2.14)

The geometry of Cherenkov cones can be used to both identify particles and measure

their velocity with lighter particles producing fuzzier cones. As can be seen in fig-

ure 2.11, this leads to clear visual differences between muons and electrons produced

within the detector. The SK event discrimination for single-ring events is shown on

figure 2.12. Since the addition of gadolinium via Gd2(SO4)3 in 2022 [95], SK also has

the ability to discriminate between final state particles by charge through neutron cap-

ture. This can be used to discriminate incoming neutrino flavour in simple interactions

with few final state particles, for example the CCQE interaction ν̄p → l̄n results in a

final state neutron whilst νn → lp does not. This process uses large neutron capture
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Figure 2.11: Two SK event displays. Both are identifiable as neutrino events by a
lack of events in the outer detector (top right) observed to have occurred before the
interactions in the inner detector. Flavour can be distinguished from the “fuzziness”
of the rings. The left plot shows a µ-like event with a relatively sharp ring whilst the
right shows an e-like event with a notably fuzzier image.

Partice ID parameter
-10 -8 -6 -4 -2 0 2 4 6 8 100

50

100

150

200

250

300

350

Super Kamiokande IV 2166.5 days : Monitoring

   e-like      muon-like 

N
um

be
r o

f e
ve

nt
s

Figure 2.12: Event discrimination for single-ring µ and e like events in SK. The bi-
modal distribution from event reconstruction demonstrates the ability of the SK event
reconstruction algorithm to separate neutrino flavours.
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cross-section of Gd to absorb neutrons produced from neutrino interactions. The Gd is

excited into a meta-stable excited state which produces a characteristic 8 MeV photon

cascade when it de-excites. This allows the outgoing nucleon, present in many neutrino

interactions, to be identified and thus for discrimination of outgoing lepton charge.

Primarily this technology is being used for low energy inverse-beta decay (ν̄p → l+n)

events but there are plans to use it for T2K beam energy events in the future.

2.2 Hyper-Kamiokande

Hyper-Kamiokande (HK) is the successor experiment to T2K and SK [47]. HK will use

the same near detector complex and beamline as T2K. The experiment is expected to

observe roughly 100× more neutrinos at its far detector than its predecessors [96]. In

order to do this the experiment has several notable upgrades. Firstly the J-PARC beam

power is being increased to 1.3 MW [63]; this will result in an order of magnitude more

neutrinos being observed throughout both the near and far detectors. Work on this

has already commenced and, as of March 2024, the beam power has been successfully

increased to 750 kW.

Currently, the near detector complex is not expected to differ from that used by

T2K. The largest difference is the addition of the IWCD [97]. Located approximately

1 km from the beam target, the Intermediate Water Cherenkov Detector (IWCD) is

a planned 10 m×10 m cylindrical Water Cherenkov detector instrumented with 3000

20 cm PMTs filled with 300 t of water. In addition to being a large water target, the

detector is allowed to move vertically which allows it to change off-axis angle from 1◦

to 4◦. This will allow it to measure a range of neutrino energy distributions and, as

a result, provide a far greater constraint on cross-section parameters than is currently

possible with only the T2K ND complex and the HK far detector.

Finally, the far detector (HK-FD)1[98]. The detector is 258 kt with a fiducial volume

1The names “Hyper-Kamiokande” and “Hyper-Kamiokande far detector” are often used inter-
changeably, this thesis will use Hyper-Kamiokande to refer to the full long-baseline program and
Hyper-Kamiokande far detector when referring to the far detector itself.
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8.31 times that of SK. The HK-FD is expected to contain ≈20,000 PMTs and 800 multi-

PMTs in the inner detector and 3000 20 cm PMTs in the OD. Construction is expected

to finish in 2027.



Chapter 3

Bayesian MCMC

3.1 What is Probability?

The nature of probability has been a source of contention in mathematics for cen-

turies [99]. Formally, probability is defined as a measure P on a space E that satisfies

the Kolmogorov axioms [100]. These state the following, for all sets A, B ⊆ E :

• P (E) = 1: The space (E) defines the set of all events that could ever occur, hence

something must always happen.

• A ⊆ B ⇒ P (A) ≤ P (B): If a set of events contains all the events in another set,

it is at least as likely to happen.

• P (E\A) = 1 − P (A): The probability of an event not occurring is equal to 1−the

probability of it occurring. Note that since P (E) = 1 ⇒ P (∅) = P (E\E) = 0. 1

This description, however, does not provide an interpretation of probability. Broadly

speaking, statisticians have decided on two mutually exclusive interpretations of prob-

ability: frequentist and Bayesian [101]. Frequentists interpret probability as a fixed

property of a system given by the ratio of the number of times a particular event occurs

to the total number of events in a given system [102]. Bayesians, on the other hand,
1To clarify notation, A\B is the set of elements in A which are not in B

41
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treat probability as mutable [103]. In the Bayesian interpretation, probability is the

“degree of belief” that a particular event will occur and can be updated to account for

new evidence. This thesis will primarily focus on the Bayesian approach.

3.2 Bayes Theorem and Bayesian Inference

In Bayesian statistics, probability is a quantity that can be constantly updated. To

do this systematically, Bayes’ Theorem [104] is utilised in a technique called Bayesian

inference [105]. For a data set D and hypothesis θ, Bayes’ theorem states that

P (θ|D) = P (D|θ)P (θ)
P (D) (3.1)

where P (θ|D) is known as the posterior, P (D|θ) the likelihood P (θ) the prior, and P (D)

the marginal likelihood. More intuitively, the prior contains the set of assumptions

about the hypothesis, the likelihood describes how well the model suits the data, and

the posterior is the updated prior with new evidence. Typically the marginal likelihood

is treated as a normalisation constant and often is not computed. Even though this

formula appears simple, in reality, the calculation can be complex [106]. In particular,

the evaluation of the likelihood is often non-trivial and numerical techniques are required

to integrate over the full likelihood space.

3.3 Practical Probability

3.3.1 Introduction

Since the explanation for probability thus far has been very theoretical, this next section

will detail the practical differences between Bayesian and frequentist approaches. The

canonical example for this is to consider an experiment to determine whether a coin is

biased; in this experiment, a coin is flipped 100 times and lands on heads (H) 61 times.

The approaches and questions asked by frequentists and Bayesians differ but will end
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up reaching similar conclusions.

3.3.2 Frequentist Approach

Let’s first consider the frequentist approach to this problem. In order to perform a

frequentist hypothesis test we need to propose some hypotheses. For simplicity these

will be:

• Null Hypothesis (H0): The coin is unbiased

• Alternative Hypothesis (H1): The coin is biased towards landing on heads

A p-value is then assigned. This gives a maximum likelihood under, below which we

reject the null hypothesis; for simplicity we’ll set this to be pC = 0.05. In order to

evaluate the likelihood of the coin being biased, the frequentist approach looks at the

likelihood of a coin being flipped at least 61 times. Since coin flips are distributed

binomially, we can find that the probability of coin landing on heads at least as often

as observed is:

P (h ≥ 61 | p0 = 0.5, N = 100) =
100∑

k=61

(
k

100

)
0.5k(1 − 0.5)100−k = 0.018 (3.2)

where h is the number of flipped heads, p0 the probability of flipping heads under the

null hypotheses and N the total number of coin flips. Since 0.018<0.05, we deem the

null hypotheses to be unlikely and hence we reject the null hypotheses in favour of the

alternative. More philosophically, the frequentist interpretation of this is that if this

test was repeated, only 1.8% of experiments using an unbiased coin would see the coin

land on heads at least 61 times.

3.3.3 Bayesian Approach

In Bayesian stats, rather than focusing on a single hypothesis, the focus instead is on

the distribution of probabilities of the coin landing on heads. As shown already in
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Figure 3.1: Two posteriors are shown for the probability of a coin having a particular
bias in the probability of flipping heads (P (h)) given 61 coins out of 100 have landed
on heads already. On the left is the posterior with a flat prior whilst the right has
the posterior with a Gaussian prior centred on p(h) = 0.5 with a width of 0.01. The
former case excludes the coin being unbiased (P (h) = 0.5) at the 95% credible interval
whilst coin being unbiased lies within the 60% credible interval of the latter. The highly
constraining Gaussian prior is a good example of how priors can potentially bias results
since it heavily biases the posterior.

equation 3.1, this distribution can be calculated using Bayes’ theorem. In the case of

biased coin flips, this can be written as:

P (h | H = 61, N = 100) ∝ P (H = 61, N = 100 | h)P (h) (3.3)

Where h is a free variable corresponding to the probability of a given coin landing on

heads. In order to understand this, we can first consider the likelihood term, P (H =

61, N = 100 | h). This is given by

P (H = 61, N = 100 | h) =
(

61
100

)
h61(1 − h)100−61 (3.4)

Secondly the prior term is designed to encapsulate all reasonably trusted knowledge

about biased coins. In this example we consider two priors. Firstly, a relatively unin-

formed prior, P (h) = 1 which just assumes no previous knowledge about coins. Sec-

ondly, a Gaussian prior with deviation of 0.01 is picked i.e. P (h) ∼ G(0.5, 0.01). This

might correspond to a case where this coin has been randomly picked out of circulation
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and there is information from the national mint about coin bias.

The posteriors, which have been normalised such that

∫
P (h | H = 61, N = 100)dh = 1 (3.5)

are displayed in figure 3.1. Credible intervals have been drawn in both figures, these

correspond to regions where there is a probability of X% that P (h) lies within them.

This means that, in the case of the flat prior, there is at least a 95% chance that the

coin is biased whereas, in the more constrained case the coin has a less than 60% chance

of being biased.

3.3.4 Comparison of Methods

At this point it is worth considering a comparison of these two techniques. In the case

of flat priors both analyses come to essentially identical conclusions i.e. that there is a

less than 5% chance that the coin is unbiased. The key difference lies in the questions

asked by both schools of thought. Frequentists ask the question “Given a number of

experiments, how likely am I to see this result?” whilst the Bayesian approach is to

ask “Given I’ve seen this result,how much do I believe it?”. The rest of this thesis will

be primarily concerned with Bayesian analyses and the numerical techniques used to

perform them.

3.4 Monte Carlo Methods

Unlike the above example, most instances of Bayesian inference do not have “nice”

likelihoods which are simple to calculate analytically. For example many physics simu-

lations may require substantial computational time per likelihood calculation. Instead

the distribution must be sampled numerically. Many techniques can be used for this, the

most popular class of which are Monte Carlo methods [107]. These use pseudo-random

number generation to sample the phase space of a distribution and then apply an
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accept/reject condition to perform integration over the space. Standard accept/reject

Monte Carlo samples a sequence of independent and identically distributed (IID) points

across the phase space. The ratio of sampled points within the distribution to the total

number of sampled points is then calculated and this will approach the true integral as

Npoints → ∞.

This method is very efficient when sampling low dimensional spaces, but becomes

increasingly inefficient as the number of dimensions gets larger [108]. In order to demon-

strate this, consider an N-sphere of unit radius. The volume of the N-sphere decreases

rapidly as the spatial dimension gets large [fig. 3.2] [109]. This directly correlates to

a decreased number of accepted samples when doing accept/reject Monte Carlo and

thus greatly increased run times when attempting to perform integration over high-

dimensional spaces. To combat this, more alternative methods need to be applied. One

such class of methods is known as Markov Chain Monte Carlo (MCMC) [110].

3.5 Markov Chains

3.5.1 Overview of Convergent Markov Chains

Unlike standard Monte Carlo, where samples are IID, Markov Chain Monte Carlo

(MCMC) requires samples to be Markovian [111]. A sequence of samples {X0, . . . , XN}

is said to be Markovian if, for all steps t,

P (Xt|Xt−1) = P (Xt|Xt−1, Xt−2, . . . , X0) (3.6)

That is, each sample is dependent on the previous sample in the sequence but, crucially,

not on any other samples. Such a sequence is also called a Markov chain. If a Markov

chain also satisfies the following conditions:

1. Aperiodicity – the chain has no inescapable loops

2. Recurrence – any possible state can be accessed in finite time,
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Figure 3.2: Plot showing the volume of anN -dimensional sphere of radius 1 as a function
of spatial dimension (N). The volume of the sphere decreases rapidly as N becomes
large. As a result, when trying to integrate this object numerically with independent
and identically distributed Monte-Carlo throws, the number of accepted throws will
decrease correspondingly. This slows the convergence of these methods and is known
as the curse of dimensionality.
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then the chain is said to be ergodic and the Markov chain process will eventually

converge on some stationary distribution [112]. Bayesian inference exploits this property

by performing MCMC with the posterior as the final stationary distribution.

3.5.2 Stationary Distributions

Before looking at the practical uses of MCMC, it is informative to look briefly at the

properties of Markov chains in general. As stated in the previous section, ergodic

Markov chains will converge to a stationary distribution. That is to say that for a

Markov process M(Xt) = Xt+1, there is some probability distribution π such that

Xt ∼ π produces an equivalent distribution of samples (under the law of large numbers)

to the Markov process and vice versa. π is known as the stationary distribution of the

chain.

3.5.3 Markov Chain Central Limit Theorem

As with IID processes, convergent (ergodic) Markov chains have a central limit theorem

(CLT). The proofs for the following statements can be found in [113]. For a Markov

chain {Xk}∞
k=0 such that Xi ∈ X and has stationary distribution π the following holds,

∀ f : X → (−∞,∞):

f̄n = 1
n

n∑
i=1

f(Xi) (3.7)

Since the chain is ergodic, Xi ∼ π and hence,

lim
n→∞

f̄n = Eπ[f ] =
∫
X
f(x)π(dx) (3.8)
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i.e. the expected value of f integrated over the full parameter space “weighted” by the

stationary distribution2. The CLT then states the following

lim
n→∞

[√
n(f̄n − Eπ)

]
→ G(0, σ2

f ) (3.9)

where

σ2
f = varπf(X0) + 2

∞∑
k=0

covπ[f(X0), f(Xk)] (3.10)

Where varπ(◦) and covπ(◦, ◦) are the variance and covariance of f “weighted” by π and

G is the normal distribution. Concretely this means that, eventually, Markov Chains

can be shown to display normally distributed mixing behaviour which is incredibly

useful for evaluating errors as a result of MCMC non-convergence.

3.6 Markov Chain Monte Carlo

3.6.1 Metropolis Hastings

Algorithm 1 Metropolis Hastings Algorithm
Input: Initial point x0, proposal function Q(◦, ◦), total number of step to run for
Nsteps and likelihood function L(◦). Let t=0 for the first step.
while t < Nsteps do

Propose y ∼ Q(xt, .)
Evaluate α = min(1, L(y)Q(y|xt)

L(xt)Q(xt|y))
Generate u ∼ U(0, 1)
if α > u then

xt+1 = y
else

xt+1 = xt

t = t+ 1

One of the simplest implementations of MCMC is a technique known as the Metropolis-

Hastings (MH) algorithm [Alg. 1] [115]. Conceptually, this method can be thought
2More precisely this is the integral under the probability measure of π. An understanding of

measure theory is unnecessary for this thesis, for a comprehensive introduction to this field please
see [114]
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of as a random walk across the likelihood space where new steps, y, are proposed

using some probability distribution (dependent on the previous step), Q(xt, .), and are

accepted/rejected with a probability

α = min
(

1, L(y)Q(y|xt)
L(xt)Q(xt|y)

)
(3.11)

where xt is the current step, Q(., .) the proposal function, and L(.) the likelihood. There

is a considerable amount of freedom allowed when choosing the proposal function, but,

the typical choice is to pick a Gaussian centred on xt. Not only is this simple to evaluate,

but it has the additional property that Q(xt|y) = Q(y|xt). The acceptance ratio can

thus be reduced to

α = min
(

1, L(y)
L(xt)

)
(3.12)

MH with this condition is commonly referred to as Metropolis rather than Metropolis-

Hastings. In addition to choosing the class of proposal function, there are often hyper-

parameters associated with the class which can affect the convergence speed of the

MCMC algorithm. In the case of Gaussian proposal functions, the covariance matrix

of the proposal Gaussian is a free variable and is referred to as the step size [116].

3.6.2 Adaptive Metropolis Hastings

The step size chosen in Metropolis-Hastings can have a drastic effect on the rate of con-

vergence, with poorly tuned hyper-parameters potentially generating incorrect results

due to the large convergence times. Though step sizes can be chosen manually through

trial and error, for most “well-behaved” posteriors the optimal proposal function co-

variance is proportional to the covariance of the posterior [117]. Whilst this cannot

be calculated exactly, the covariance of the MCMC will eventually converge on this

matrix; as a result, the proposal function can be updated iteratively to be proportional

to this [Alg. 2] [118]. The scaling factor of 2.382

d
is chosen to optimise this algorithm for

Gaussian proposals targetting Gaussian posterior distributions [117]. It turns out that
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this optimisation is sufficient to ensure convergence for most well-behaved posteriors.

Algorithm 2 Adaptive Metropolis-Hastings
Input: Initial point x0, proposal function Q(◦, ◦), total number of step to run for
Nsteps and likelihood function L(◦). Let t = 0 for the first step.
while t < Nsteps do

Propose y ∼ G(xt,
2.382

d
Σt) where Σt = cov(x0, . . . , xt) and d = dim Σt

Evaluate α = min
(

1, L(y)Q(y|xt)
L(xt)Q(xt|y)

)
Generate u ∼ U(0, 1)
if α > u then

xt+1 = y
else

xt+1 = xt

Calculate Σt+1
t = t+ 1

This implementation is effective in many cases but does not guarantee convergence

since the updated covariance can remove the ergodic property from the fit [117]. It is

possible to mitigate this with a few modifications to the adaption process. The first and

simplest is to not adapt every step. Instead, while the covariance is calculated every

step, the matrix used for step proposals is only updated every Nupdate steps [Alg. 3]

which results in the chain “remembering” fewer previous steps and thus being allowed

more freedom to explore the space.

Additionally, the following modification can be made to the proposal function; in-

stead of proposing purely from a single Gaussian, the proposal function can be changed

to

(1 − β)G
(
xt,

2.382

d

)
+ βΣnG(0, σ2) (3.13)

where σ and β are some small user inputted real numbers [117]. The primary motivation

for this modification is to account for the error caused by the current matrix not being

fully converged to the true posterior covariance. Alternatively, as proposed by Haario,
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Algorithm 3 Adaptive Metropolis-Hastings with Delayed Covariance Updates
Input: Initial point x0, proposal function Q(., .), total number of step to run for
Nsteps, likelihood function L(.), number of steps between updates Nupdate. Let t =
n = 0 for the first step.
while t < Nsteps do

Propose y ∼ G(xt,
2.382

d
Σt) where Σt = cov(x0, . . . , xt) and d = dim Σt

Evaluate α = min
(

1, L(y)Q(y|xt)
L(xt)Q(xt|y)

)
Generate u ∼ U(0, 1)
if α > u then

xt+1 = y
else

xt+1 = xt

Calculate Σt+1
if t|Nupdate then

Σn+1 = Σt+1 Update the proposal covariance matrix
n = n+ 1

t = t+ 1

Saksman, and Tamminen [118], the matrix can be updated in such a way that

y ∼ G
(
xt,

2.382

d
Σt + ϵId

)
(3.14)

where ϵ is some small positive number and Id the d× d identity matrix. This constant

contribution, whilst not as good an error approximation, still prevents the matrix from

becoming singular and hence is often sufficient to ensure convergence. In either case,

there are still several potential issues that may lead to this technique producing erro-

neous results [119]. The most common issue is a posterior distribution having multiple

disconnected modes. In this instance the proposal function may adapt to one mode

and prevent the chain exploring the others. These issues may lead to the adaptive

chain being non-ergodic and thus not converging to the expected stationary state i.e.

the posterior.
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3.6.3 Jumping Adaptive Metropolis Sampler

The Jumping Adaptive Metropolis Sampler (JAMS) [120] is an extension to the stan-

dard adaptive Metropolis-Hastings algorithm which aims to handle convergence issues

encountered as a result of multi-modal posterior distributions. The full algorithm is

complex but the basic implementation can be summarised in the following way (we

assume Gaussian proposal functions for local steps)

• Modes are identified using a simple maximum likelihood fit.

• For each mode, a burn-in chain is run with that mode fixed. This chain uses the

adaptive Metropolis-Hastings algorithm [Alg. 2].

• A new chain is run using the step proposal in equation 3.15 for jump steps and

adaptive Metropolis Hastings for local steps.

• The probability of a chain performing a jump step is a fixed number pJ . This

means that each step has a probability pJ of proposing a move into another mode.

In order to propose steps in different modes (jump steps) to regions of equivalent like-

lihood, the following proposal function is used:

y = µk + ΛkΛ−1
i (xt − µi) (3.15)

where y is in mode k which has central value µi and xt in mode i. The matrix Λk is

the (non-unique) matrix that satisfies the following relationship

Σk = ΛkΛT
k (3.16)

where Σi is the covariance matrix used for throws in the Markov Chain. In all instances

where this algorithm is used, Λk is the Cholesky decomposition of Σk; since all covari-

ance matrices are trivially real valued this satisfies the required condition. Since this
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is non-random a different step acceptance function is also required. In this case, jump

steps from xt in mode i to y in mode k are accepted with probability

P (accept) = min
[
1, L(y)G(µi,Σi)P (k → i)

√
det Σk

L(xt)G(µk,Σk)P (k → i)
√

det Σi

]
(3.17)

where G(µi,Σi) is a normal distribution with variance given by the covariance of the

chain in mode i which has central value µi. Note that this is simply the proposal

function for a given state. Secondly the transition probability of p(i → k) is just the

probability transitioning between two states.

The initial paper that proposes JAMS [120] also suggests updating distributions

to prevent proposing steps in the incorrect mode. This has been omitted since the

main use case for JAMS within MaCh3 is for highly disjoint bi-modal distributions, for

example ∆m2
32.

Algorithm 4 JAMS Algorithm
Input Parameters: Current step position and mode (Xt,m), list of modes, proba-
bilities to jump into each mode and covariance matrices for each mode (µi, p(µi),Σi),
probability of proposing a jump step, pJ and list of posteriors covariance matrices for
each mode
Generate a random number uJ ∼ U [0, 1]
if uJ > PJ then

Propose Local Step:
Propose and accept standard adaptive Metropolis Hastings step [Alg. 2]

else
Propose Jump Step:
Propose a new mode where a mode µi has probability p(µi) of being selected
Propose a new step using equation 3.15
Accept step with probability calculated from 3.17

This algorithm is considerably more computationally expensive than other adaptive

regimes but has the advantage of improved efficiency on multi-modal spaces which

standard adaptive MCMC may struggle with.
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3.7 Markov Chain Convergence Metrics

3.7.1 Trace and Acceptance Rate

MCMC convergence is highly dependent on the choice of hyper-parameters (step size,

number of steps, etc.). This can lead to slow convergence or, in extreme cases, a suffi-

ciently poorly tuned chain will lose its ergodicity entirely and hence not have guaranteed

convergence to the correct target distribution. As a result, it is insufficient to claim

convergence without closely monitoring the fit. The simplest metric available is to look

at the step acceptance rate. For high-dimensional MCMC, it can be shown that the

most efficient sampling rate is 23.4% [121]. In practice, this is hard to achieve but

acceptance rates that deviate significantly from this are indicative of a poorly tuned

fit for example a rate of 1% would indicate that the chain is not exploring the space

effectively.

The Markov chain’s exploration of parameter space can be examined directly using

a trace plot [122]. The trace is a plot of a parameter value at each step of the chain.

Figure 3.3 shows the traces of two Markov chains, one of which is well-tuned and the

other poorly tuned; as a result, the differences in parameter space exploration between

these two fits are stark. The poorly tuned chain has very low local variance and explores

the space very slowly, whereas the well-tuned chain can be seen rapidly exploring the

entire space. Although trace is a useful indicator of convergence, a well-behaved trace

plot is not a guarantee that the chain is properly exploring the space: for example,

parameters stuck in local minima can generate well-behaved trace plots. In order to

minimise the impact of this, additional metrics are also required. The most commonly

used metric is autocorrelation, which measures how correlated steps in the chain are

with each other.
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3.7.2 Autocorrelation

Recall from section 3.5.1 that MCMC convergence is guaranteed if the fit is an ergodic

Markov chain [123]. Since the dependence of each step on the previous steps in the

chain is partly dependent on the tuning of hyper-parameters in the fitter, poorly tuned

fits are often not fully Markovian. Correlations between steps in the same chain can be

measured using autocorrelation. This can calculated through

fA(l) = 1
N

N∑
k=l

¯A(k, k − l) (3.18)

Where A(k, k− l) is simply the average correlation between steps k and k− l across all

steps. An example of the autocorrelation function for both a well behaved and poorly

chain can be seen in figure 3.3.

3.7.3 Burn-in

MCMC fits require some time to converge on the optimal starting location; this re-

quires the chain to traverse many low-likelihood regions before converging on the true

stationary distribution. This stage of the fit is commonly referred to as burn-in. The

characteristic burn-in length can be measured [116] by looking at the stability of con-

tours generated by the fit and proposed likelihoods around steps. Once these variations

are deemed sufficiently small, all earlier steps are discarded. Whilst this is standard

practice for many MCMC fitters, there exist methods to avoid it, for example by cal-

culating regeneration times [124] or similar metrics.
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Figure 3.3: Trace (left) and autocorrelation (right) plots for well-tuned (top) and poorly-
tuned (bottom) parameters in an MCMC fit. The well-tuned autocorrelation rapidly
tends towards 0 autocorrelation while the poorly-tuned parameter maintains a large
autocorrelation even at large values of lag. The trace for the well-tuned parameter
varies rapidly but statically about the best-fit value (red line) while the poorly-tuned
trace has very little variation and obvious trends are visible.

3.8 Analysis of MCMC Fits

3.8.1 Point Estimates and Posteriors

Bayesian results are usually presented in terms of credible intervals [125], the region of

the posterior containing a specified percentage of the MCMC steps. Calculation of this

for MCMC simply requires counting the number of MCMC steps in a given region of



CHAPTER 3. BAYESIAN MCMC 58

space. Of course, picking a random region of space with 90% of the MCMC will not

correspond to any useful interpretation of this result. Instead, posterior calculation has

to be done systematically. For an N-dimensional posterior, the mean (central) value

can be found by integrating over the full posterior. X% credible intervals are then

constructed by selecting bins with the largest the number entries which contain X% of

the data. The Bayesian interpretation of this is that events within the credible interval

have an X% chance of occurring. The central value is known as the point estimate.

Although evaluating posterior credible intervals over the full posterior can be useful,

it is often more practical to reduce the dimension of the space in order to both visualise

posteriors graphically and remove nuisance parameters, i.e. parameters that are impor-

tant to the fit but not to the final result.3 This is done by integrating over the posterior

to “average” away nuisance parameters in a process called marginalisation, i.e.

P (θmarg | D) =
∫
P (θmarg; θnuis | D)dθnuis (3.19)

These marginalised posteriors can then be treated identically to the full posterior and

used to obtain point estimates and credible intervals.

3.8.2 Bayes Factors

Unlike frequentist statistics, which requires a complicated hypothesis testing apparatus

[102], the basic Bayesian hypothesis test is relatively simple. For two hypotheses θ1 and

θ2 with equal priors, the Bayes factor B is just the ratio of the posteriors [126]

B = P (θ1|D)
P (θ2|D) (3.20)

Whilst an exact mapping from Bayes factor to particle physics-like σ value does not

exist, table 3.1 shows the mapping used within T2K and T2K+NOvA. In statistics it

is more common to use the Jeffrey’s scale [127], but since the 5σ discovery threshold
3Typically all systematic parameters and any physics parameters that are not being directly anal-

ysed



CHAPTER 3. BAYESIAN MCMC 59

Particle Physics Value Bayes Factor Ratio
2σ 20.74
3σ 369.4
4σ 15800
5σ 1745000

Table 3.1: Table showing the equivalent value of equation 3.20 required for a given
hypothesis to be preferred to the same degree as a standard particle physics σ value.
This will be referred to as Kaboth-Dunne Scale to follow T2K convention. Table taken
from internal technical note 435 [128].

corresponds to a Bayes factor of 1745000 and the maximum evidence in the Jeffrey’s

scale is given by a Bayes factor greater than 100 (≈ 3σ) this more standard scale has

limited use.

Bayes factors can be obtained from a Markov chain by counting the number of steps

that correspond to a given hypothesis and two hypotheses can be compared by looking

at the ratio of steps of two distinct hypotheses. For example, the Bayes factor for mass

ordering can be obtained through

BMO = #steps in NO
#steps in IO (3.21)

3.8.3 Uncertainties

Since a Markov Chain is a stochastic process, it is important to understand the uncer-

tainties generated by the algorithm itself. The simplest measure of error is the Markov

Chain Standard Error (MCSE) [110],

σ2
MCSE = 1

N

∑
tr (Σ)2 (3.22)

where Σ is the covariance of the chain and N is the number of steps. This is done under

the assumption that the Markov Chain central limit theorem holds [113], which it does

for almost all instances of MCMC. This provides a useful metric for the convergence of

the chain as a whole, but it is often the case that the chain incorrectly fits individual
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parameters. In order to assess this, in addition to using the metrics mentioned above

(trace, autocorrelation etc.), the uncertainty can be quantified using effective sample

size (ESS) [129]. ESS is a measure of sample size given that there is uncertainty within

the chain generated by autocorrelations. It can be calculated through

Neff = N∑N
l=0 fA(l)

(3.23)

i.e. the sum over the autocorrelation function fA(l). The error can then be expressed

in terms of the effective sample size instead of the true sample size

σ2
eff = 1

Neff

∑
tr (Σ)2. (3.24)

3.8.3.1 Goodness of Fit

Once a fit has been performed, it is essential to understand how well the Markov chain

fits the data. Several techniques exist to evaluate this; MaCh3 uses posterior-predictive

p-values and compares the Monte Carlo-generated model to the true data with the

null hypotheses corresponding to good model/data agreement. In order to generate

a Bayesian p-value, N steps are chosen at random from the chain and the model is

evaluated at these points. The p-value is then calculated using the technique from [116]

p ≈ 1
N

N∑
i=1

I
[
T (model) > T (Data)

]
(3.25)

where T is a test statistic and I the indicator function, which is 1 if the condition is true

and 0 if it is false. If the model and data match perfectly, it is expected that p = 0.5

since it would be expected that T (model) > T (data) half the time on average. To

understand this more concretely, it is helpful to consider the MaCh3 implementation of

this technique. As with the general technique, N steps are selected from the chain. The

model predictions are then the MC spectrum for each sample re-weighted to the value of

the chain at each of these randomly generated points. Initially, a sub-sample of events
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Figure 3.4: Rate+Shape goodness of fit plot for a T2K far detector sample. The
distribution of ∆χ2 for data and fake data are expected to be evenly distributed about
y = x (red) for a well behaved model.

is drawn from the model spectra; the total number of events is given by the Poisson

distribution Ndraw ∼ P (
∫

spectrum). This then forms a fake test spectrum. The test is

given by a ∆χ2 comparison between the model spectrum and data spectrum. ∆χ2 can

be calculated in two ways: firstly, by the difference between the total number of events

in each spectrum can be calculated; this is known as the rate information. Secondly,

the data, model and fake MC can be binned and the total ∆χ2 difference for each bin

is used instead; this is known as rate+shape. In either case, the total p-value is then

given by

p ≈ 1
N

N∑
i=1

I
[
∆χ2(model − fake) > ∆χ2(data − fake)

]
(3.26)

In addition to the p-value, it is also useful to plot ∆χ2(data) against ∆χ2(model) as

seen in figure 3.4. This gives a clear distribution of points which, for a good fit, should

be distributed evenly about y = x.



Chapter 4

Oscillation Analyses at T2K

4.1 Overview of the T2K Oscillation Program

The T2K oscillation analysis program is led by two key analyses:

• Near Detector (ND) only: Focuses on constraining systematics related to

fluxes, cross-sections and the near detector within the fit

• Far + Near Detector (FD+ND): Focuses on constraining neutrino oscillation

parameters using far+near detector constraints

The rest of this chapter will focus on the latter. The FD+ND fit consists of two

fitters, PTheta, a frequentist fitter which performs fits using far detector data and

has an ND constraint provided from the ND-only fit, and MaCh3 which fits FD+ND

data simultaneously using Markov chain Monte Carlo (MCMC). This group structure

allows for two semi-independent analyses to be performed and the results compared

to ensure consistency. In addition, since the groups use radically different approaches,

an agreement between frequentist likelihoods and Bayesian posteriors enhances the

robustness of the result.

This chapter will detail the full FD+ND fit pipeline from implementation validations

to the final T2K oscillation result.

62
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4.2 Data Inputs

4.2.1 Far Detector Inputs

4.2.1.1 Overview

The far detector fits 6 ‘samples’ based on Cherenkov rings seen in Super-Kamiokande

(SK). These are split into µ-like samples and e-like samples. The µ-like configuration

has two samples correspond to events with a single muon-like Cherenkov ring in both

the ν-mode and ν̄-mode beam as well as a sample corresponding to events with multiple

Cherenkov ring. This final sample corresponds to two possible event topologies as can be

seen in figure 4.1 and is used to quantify CC1π events. The e-like also samples consist of

two samples which represent events with 1 electron-like Cherenkov ring in the final state

and a third 1Re1 decay e sample which represents events with a two electron-like rings

produced through CC-pion production. All single ring samples are assumed to produce

their final state lepton through charged-current quasi-elastic (CCQE) scattering.

Whilst the data is simply split into one of these 6 samples, the Monte Carlo-

generated model samples are also split into 6 oscillation channels (expected start and

end states for each neutrino): νµ → νµ, ν̄µ → ν̄µ, νe → νe, ν̄e → ν̄e, νµ → νe and

ν̄µ → ν̄e. These represent neutrinos that start in an initial state νi and oscillate to

a new state νj which is observed in the far detector. Each µ-like sample is binned in

terms of true energy (Etrue) and reconstructed energy (Erec) whilst the e-like samples

are also binned in terms of outgoing lepton angle. Binning varies depending on both

the sample flavour and its oscillation channel. The reconstructed energy calculation

varies depending on sample; for the 1Re/µ, the interaction is assumed to be CCQE,

hence,

Erec =
m2

p − (mn − Eb)2 +m2
l + 2(mn − Eb)2El

2
[
mn − Eb − El + pl cos(θl)

] (4.1)

where mp, mn and ml correspond to the proton, neutron, and outgoing lepton masses,

Eb the nuclear binding energy, and pl and θl the outgoing lepton momentum and angle.
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Figure 4.1: Diagram showing a νµCC1π event. The incoming νµ generates a ∆ resonance
(not in diagram) through CC deep inelastic scattering. The produced µ− will decay
to produce two rings, one from µ− and a secondary ring from the decay electron. In
addition the π+ may produce between 1 and 2 rings dependent on its energy, with the
intermediate µ+ assumed to be below the Cherenkov threshold. This naturally creates
two samples separated by the number of decay electrons. Plots taken from an internal
technical note [130]

The 1Re1d.e sample assumes the electron is generated through charged current pion

production via a ∆++ resonance and thus can contain final state pions. The recon-

structed energy for this sample can be given by

Erec = 2mnEe +m2
∆++ −m2

n −m2
e

2[mn − Ee + pe cos(θe)]
(4.2)

Unlike the other samples, the νµCC1π selection consists of several sub-samples split

by the number of decay electrons in the final state. The diagram in figure 4.1 shows the

possible topologies considered for these events. As with the 1Re1d.e. sample, fiTQun

assumes that these events are generated through CC interaction with a ∆-baryon res-

onance [131]. As this hypothesis is the same is the 1Re1d.e. case, the reconstructed

energy calculation is nearly identical,

Erec = 2mnEµ +m2
∆++ −m2

n −m2
π

2[mn − Eµ + pµ cos(θµ)] (4.3)

The two major differences are the primary outgoing lepton which is a µ− and the
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Parameter Nominal
sin2(θ12) 0.307
sin2(θ23) 0.561
sin2(θ12) 0.0220

∆m2
21 7.53×10−5 eV2

∆m2
32 2.494×10−3 eV2

δcp −1.601 rad

Table 4.1: The Asimov A22 parameter set.

inclusion of the π+ mass in the calculation.

4.2.1.2 Aside on Jargon

In order to make explanations more compact the following jargon will be used. Firstly,

when discussing the nominal values of cross-section parameters, three configurations

are used:

• Generated Values: Systematic nominal set to best fit value given by the event

generator, this results in no changes to the input MC model.

• pre-BANFF Values: Systematic Nominal set to a suggested value given by the

Neutrino Interaction Working Group (NIWG) rather than the generator. This

can differ from the generated value and will result in systematic re-weighting for

some parameters.

• post-BANFF Values: Nominal value is now determined by the ND fit best-fit

value. This will change the value of all cross-section systematic parameters.

Where BANFF here refers to the T2K ND-only fitter which provides the best-fit value.

Secondly, the configuration of oscillation parameters will be referred to as Asimov A22

which corresponds to the global PDG best-fit values [55] assuming normal ordering.

These are listed in table 4.1.
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4.2.1.3 Event Selection

Event reconstruction is performed by the T2K+SK group using the fiTQun reconstruc-

tion toolkit. All samples have a fiducial volume cut that ensures the event occurred

within the fiducial volume of the SK inner detector. In addition, the 1Re, 1Rµ and

1Re1d.e. samples have cuts ensuring that the Cherenkov ring is the correct flavour. The

e-like samples are further selected in the following way

• The visible energy (total energy of reconstructed final state particles) is larger

than 100 MeV.

• The reconstructed neutrino energy is less than 1.25 GeV.

• Events do not contain a π0.

The 1Re and 1Re1de samples are then distinguished via the reconstruction of a single

decay electron caused by π+ decay such that the 1Re samples do not contain this

electron. The single ring µ-like samples have a similar set of selection cuts to the 1Re

samples with the following differences:

• Reconstructed µ momentum >200 MeV/c.

• Fewer than two decay electrons.

• The reconstructed energy cut is replaced by a cut at 30 GeV.

• Rather than not containing π0 events are selected to not include π+ decays.

The 30 GeV Erec cut exists effectively as an upper bound at +∞ and is there to prevent

the model re-weighting large numbers of events far outside the expected data energy

range for T2K beam data. The νµCC1π sample has cuts dependent on the final state

topology of events contained in the sample:

• Events are fully contained in the fiducial volume of the detector.

• The reconstructed energy cut is the same as the 1Rµ samples.
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• Total energy of final state particles (visible energy) is less than 30 MeV.

• If the the sample only has a single ring there is an additional cut based on the

missing energy of 300 MeV.

The energy of final state particles varies by event and full details can be found in [132].

Since events can migrate between energy bins, events with energies slightly outside

these boundaries are included in the processed MC and excluded at run time during

the fit.

The full data spectra for these samples are shown in figure 4.2 and the total number

of events for each sample summarised in table 4.2. The MC spectra split by interac-

tion mode are shown in figures 4.3, 4.4 and 4.5 and have been re-weighted assuming

oscillation parameters have true values given by the Asimov A22 parameter set and all

cross-section systematics are at post-BANFF values. These definitions are summarised

in section 4.5.2.1.

Selection Run 1-11 POT Events in Data
ν-mode 1Rµ

21.428 × 1020

357
ν-mode νµCC1π 140
ν-mode 1Re 102

ν-mode 1Re1d.e 15
ν̄-mode 1Rµ 16.34556 × 1020 137
ν̄-mode 1Re 16

Table 4.2: The total number of data events for each SK selection for runs 1-11 split by
T2K horn current direction.

4.2.2 Near Detector Inputs

As in the far detector, the near detector data is split into samples based on the ex-

pected final state topology. The samples used in this analysis are briefly summarised

in table 4.3. Each ND sample is binned in terms of outgoing muon momentum and

outgoing muon angle.
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Figure 4.2: SK run 1-11 Data used in this analysis shown for SK event selection. The
binning used is the same as in the MC selections. Data corresponds to ν-mode 1Rµ (top
left), ν̄-mode 1Rµ (top right), ν-mode 1Re (middle left), ν̄-mode 1Re (middle right),
ν-mode νµCC1π (bottom left), ν-mode 1Re1d.e. (bottom right).
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Figure 4.3: Oscillated event rate spectra in reconstructed energy for single Cherenkov
ring µ-like far detector samples for ν-mode (top) and ν̄-mode (bottom). Plots are
broken down by true interaction mode Plots use AsimovA22 oscillation parameter set
and post-BANFF configuration.
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Figure 4.4: Oscillated event rate spectra in reconstructed energy for single Cherenkov
ring e-like far detector samples broken down by true interaction mode for ν-mode (top)
and ν̄-mode (bottom). Plots use AsimovA22 oscillation parameter set and post-BANFF
configuration.
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Figure 4.5: Oscillated event rate spectra in reconstructed energy for multi-ring ν-mode
νµ CC1π (top) and ν-mode 1Re1d.e (bottom) samples broken down by true interaction
mode. Plots use AsimovA22 oscillation parameter set and post-BANFF configuration.
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Sample Topology Neutrino Flavour Description
CC0π0p νµ, ν̄µ CC interaction with only muon tracks

in the final state
CC1π+ νµ, ν̄µ CC interaction with single final state

pion track and single muon track
CC0πNp νµ, ν̄µ CC interaction with at least one final

state proton
CCγ νµ Charged current interaction with final

state photons
CC other νµ, ν̄µ Used to classify events that don’t fit

into the above categories, typically with
many final state pions

Table 4.3: Table containing description for near detector samples. Each sample is split
by detector (FGD1 and FGD2) and by incoming neutrino flavour. ν̄µ samples also
include an additional background sample to account for ν̄µ produced outside of ND280,
for example in the sand surrounding the detector.

The bin edges for each sample are non-uniform and implemented in such a way that,

for each bin, there is a single data event and ≈20 MC events. In addition, bin width

is also limited by detector resolution so it is often not possible to only contain a single

data event per bin. Event selection in the near detector is omitted from this thesis as

the analyses are concerned with implementing the far detector data and systematics,

with the ND implementation being performed separately. More details on this process

as it pertains to the T2K oscillation analysis can be found in [133] and the full details

of the selections used are detailed in an internal T2K technical note [134].

4.3 Systematics

4.3.1 Cross-Section Model

A full summary of the cross-section systematics can be found in Appendix A. This set

of systematics has the effect of re-weighting the cross-section for each MC event used

in the T2K model. For a far detector sample, an event with cross-section Φ has a



CHAPTER 4. OSCILLATION ANALYSES AT T2K 73

re-weighted cross-section of

Φre−weight = Φ
Nsyst∏
i=1

wi(b) (4.4)

where wi(b) are the weights for each systematic and b the bin the event lies in. Cal-

culation of the weight is non-trivial but can be achieved through several mechanisms.

The simplest set of parameters use normalisation-based re-weighting. Here the weight

is just linear based on the value of the systematic variable in the fit. As this is applied

uniformly to all events in the model it is generally used for systematics that change the

total expect number of events for a given sample.

Cubic splines approximate functions by evaluating the function at set points (knots)

and interpolating between each knot with a cubic polynomial and are commonly used

when the systematic response varies depending on the kinematics of each event. For a

systematic with full response S(x) and N knots at {xi}N
i=1, the spline consists of N − 1

bounded cubic polynomials {Pi}N−1
i=1 with Pi(x) = 0 if x /∈ [xi, xi+1] which satisfy the

following conditions:

• for each knot, i Pi(xi) = S(xi), Pi(xi+1) = S(xi+1);

• ignoring the first and final knots, P ′
i (xi+1) = P ′

i+1(xi+1);

• ignoring the first and final knots, P ′′
i (xi+1) = P ′′

i+1(xi+1).

For far detector cross-section systematics, the spline response for each bin in the ana-

lysis is evaluated by varying the value of the systematic to pre-defined knot locations,

typically intervals of the prior error. This can be seen in figure 4.6. The near detector

uses a slightly different spline treatment and instead assigns each event in the sample

a spline and can thus apply weights to each event rather than to bins.

The final systematic implementation is functional systematic. Unlike splines, the

exact functional form of the systematic is known and, as a result the modification to the

cross-section can be calculated without needing interpolative methods. All functional
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Figure 4.6: An example of a cross-section systematic spline with 7 knots. The nominal
knot has been circled and represents the generator expected value for a given systematic.
Whilst most knots are at integer multiples of the prior error (i.e. nominal+1kσ), the
knot position at 0 is enforced by a physical bound on this parameter.

systematics are calculated on an event-by-event basis rather than by bin. Currently,

MaCh3 uses this for calculating the Coulomb correction and the binding energy (Eb)

for each event.

4.3.2 Improving the Cross-Section Spline Implementation

One of the major bottlenecks within MaCh3 prior to this analysis was caused by an inef-

ficient implementation of the spline re-weighting algorithm for far detector cross-section

splines. Previously splines were split by oscillation channel and stored in a struct acces-

sible through a large nested vector. This implementation was both memory inefficient

since the stored spline objects required far more space than was really necessary for

the fitter and slow both due to the oscillation channel split limiting parallelisation and

increasing function calls, and through a non-contiguous data-structure which increased

lookup times.

In order to improve this a “monolithic” approach was used instead. All spline
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Figure 4.7: Improvement is MCMC step times as a result of the change in spline storage
configuration using both single threaded MaCh3 and multi-threading. The previous
structure has been labelled as “develop” due to this being the stable branch of MaCh3
during the development process.

coefficients1 and knot values (x) are stored in a single 1 dimensional array, of the form

[x11, a11, b11, c11, ...], where xij is the jth knot of the ith spline parameter. This allows

for far more efficient parallelisation when looking up spline coefficients and, since it is

stored in a single 1D vector, all events are contiguous in memory. As a result of these

efficiency improvements, there is roughly a factor 2 improvement in overall step time

for the MaCh3 MCMC algorithm [Fig. 4.7].

4.3.3 Flux Systematics

The neutrino flux model consists of 100 parameters which are provided based on data

from the T2K beam group and simulation using a replica target at NA61-SHINE [135].

These parameters quantify the uncertainty on the flux of each neutrino at the near and

far detectors split by neutrino energy. This flux model MC is generated using several

event generators due to the large range of energies required for the reconstruction.
1Coefficients for a cubic spline are the values a, b, c, d for each polynomial y = ax3 + bx2 + cx + d.
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Uncertainties for each neutrino energy, for example on the beam direction or effects

from hadron FSI, are then quantified into a total uncertainty for each bin. MaCh3

implements these systematics as part of the cross-section model and treats them all as

normalisation parameters.

4.3.4 Detector Uncertainties

4.3.4.1 Near Detector Systematic Errors

The ND280 systematics model assigns an uncertainty to each ND sample bin. These

uncertainties include both detector systematics and errors inherent to event reconstruc-

tion. This is the largest component of the T2K analysis model, accounting for over 500

of the ≈760 systematic dials present in the full analysis2. All parameters are roughly

Gaussian and thus this is a relatively good prior approximation of the posterior covari-

ance. As will be seen later, this makes step size tuning relatively manageable even for

this large parameter set.

In addition to the uncertainty model, due to the large number of events observed in

ND280, the full ND280 data+error likelihood calculation also includes a Barlow-Beeston

likelihood [136]. This extra addition to the (statistical) likelihood is given by

Lb = (β2
i − 1)2

2σ2
βi

(4.5)

where σ2
βi

is the relative error on the bin calculated using a simple error calculation

based on the number weight (wi) given to each MC event

σ2
βi

=

√∑
w2

i

Nevents,MC
(4.6)

and βi is a scaling parameter. If each bin is assumed to be Gaussian, βi can be calculated

2This lowered bin number occurs due to “bin merging” which reduces the number of energy bins
actually used for each sample. To do this bins with similar systematic responses are combined cutting
the total number of bins down by around 90%.
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iteratively through

β2
i + (µσ2

βi
− 1)βi − nσ2

βi
= 0 (4.7)

where n is the number of data events in each bin and µ the number of simulated events

in the bin. This additional condition quantifies how likely data events are to be a

statistical fluctuation of the MC and how much MC events are likely to be fluctuations

of MC if the simulation was allowed to run indefinitely. Full details of this can be found

in the original paper by Barlow and Beeston [136].

4.3.4.2 Far Detector Systematic Errors

The final source of error present in the T2K systematics model comes from Super-

Kamiokande (SK). SK errors are used to account for mischaracterisation of Cherenkov

rings seen in the far detector. In this analysis SK systematic errors are treated as

normalisation parameters. Systematic errors are applied for each sample which, as

with ND280, is split into energy bins. The initial matrix is generated using a fit from

the T2K+SK group using data from Super-Kamiokande atmospherics analyses. This fit

does not account for FSI information, secondary interactions (SI) of pions and photo-

nuclear (PN) effects. FSI information is well constrained by the near detector and so

not incorporated, however, a secondary matrix is created to include SI+PN effects. The

final matrix is then generated through

CSK,full = CSK,fit ⊕ CSK,SI+PN (4.8)

where ⊕ indicates the matrices have been summed in quadrature.

The analysis presented in this chapter includes a new treatment for the SK detector

matrix. In this matrix correlations between single and multi-ring samples are correlated,

whereas in previous analyses the correlation was assumed to be 0 and a combined matrix

was used instead with the assumption that these samples have 0 prior correlation. In

addition this new matrix was generated using atmospheric events as these have far
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higher statistics and a larger energy range than beam events in T2K. The impact of

this matrix on the bin-by-bin uncertainties for each sample are shown in figures 4.8, 4.9

and 4.10.

4.4 MaCh3 MCMC Implementation

MaCh3 uses a modified version of the Metropolis-Hastings algorithm [Alg. 1] using

the binned log-likelihood calculation in algorithm 5 to evaluate the likelihood of each

MCMC step. In the full T2K model, near and far detector data are fitted simultane-

ously; due to the high statistics, a non-zero Barlow-Beeston correction is applied to each

ND bin when calculating model likelihood. The systematics model consists of 4 param-

eter sets: Super-Kamiokande detector uncertainties, ND280 uncertainties, cross-section

model, and the oscillation parameters. MaCh3 uses a re-weighting scheme to calculate

the value of each event in the Monte-Carlo model at any given set of parameter values

where the total weight contribution from each is the product of the weights obtained

from each systematic.

4.5 2023 T2K Statistical Update

4.5.1 Overview

The rest of this chapter will detail the T2K “statistical” update from its 2023 oscilla-

tion analysis (OA2023). This analysis differs from previous oscillation analyses in the

following ways:

• Approximately 10% increase in ν-mode protons on target (POT) from 19.664 ×

1020 POT to 21.428 × 1020 POT from the 11th T2K run.

• Improved flux prediction using this new data.
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Figure 4.8: The change on uncertainties between the SK detector matrix on MC data
between the previous analysis (red) and the current analysis (blue) for single ring µ-like
samples split by ν-mode (top) and ν̄-mode (bottom). There is a slight tightening of
errors at low reconstructed energy values.
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Figure 4.9: The change on uncertainties between the SK detector matrix on MC data
between the previous analysis (red) and the current analysis (blue) for single ring e-like
samples split by ν-mode (top) and ν̄-mode (bottom). There is a slight tightening of
errors at low reconstructed energy values.
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Figure 4.10: The change on uncertainties between the SK detector matrix on MC
data between the previous analysis (red) and the current analysis (blue) for multi-ring
samples split by νµCC1π (top) and 1Re 1d.e. (bottom). There is a slight tightening of
errors across the full energy spectrum.
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Algorithm 5 MaCh3 Log-Likelihood Calculation
Inputs: Prior Covariance Matrices for parameter sets (Cpar), current and prior-
nominal value for each parameter (Xpar, Xpar,nom), input data (D), and a set of model-
generated samples (S). Data and model samples should have the same binning. High
statistics detectors require Barlow-Beeston corrections on each bin parametrised by
(β, σβ) (At low statistics, β = σβ = 1 for all bins).

Set initial (negative) log-likelihood: L = 0
Evaluate Parameter Penalty Terms:
for p in parameters do

if Gaussian prior then
Calculate Penalty: Lp = 1

2(Xp −Xp,nom)TC−1
p (Xp −Xp,nom)

else
Assume flat prior Lp = 0

L = L + Lp

if L > 1 × 109 then
End calculation and output −L since a subset of parameters are outside their
physical boundaries

Calculate Model Likelihood
for s, d in S, D do

Get the model prediction s(Xpars) for all parameter sets
Ls = 0
Loop over sample bins
for i in sbins do

Calculate Poisson Difference: Ls = Ls + si −
[

log
(

di

si

)
− 1

]
di

Apply Barlow-Beeston Correction: Ls = Ls + (βi−1)2

2σ2
βi

L = L + Ls

Output: −L

• Inclusion of far detector data that uses Gadolinium with a new momentum-based

decay electron cut in this data.

• The SK detector matrix now combines single-ring and multi-ring uncertainties.

The analysis data selection and systematics have been described above [Sec. 4.2] so the

remaining chapter will detail the analysis validation procedure and the results of fits.
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4.5.2 Validation

4.5.2.1 Event Rate Validation

The bulk of time in the analysis is spent validating that systematics models have been

implemented in the same way in both the frequentist fitter (PTheta) and MaCh3. The

first step is to validate that both analyses produce the correct event rates. That is

to say, when the systematics model is set to the same values for both fitters, is the

integral of model spectra consistent? This is primarily a test of cross-section model

implementation and, as a result, the groups only change the values of cross-section

parameters. There are three configurations that are currently tested are summarised

in section sec:jargon. All validations and Asimov Fits used in this analysis used the

AsimovA22 oscillation parameter set which is discussed in the same section. Event

rates are expected to have a difference of at most O(0.1%) in all interaction modes

within each sample. For this analysis it was found that generated tune provided good

agreement, but, both pre and post-BANFF there were significant differences present in

the νµCC1π sample in several modes, particularly NCπ0 [Sec 4.5.2.3].

4.5.2.2 Sigma Variations

In addition to examining the event rates for samples, both fitters also perform so-called

‘σ-variations’. This method of validation varies each cross-section and far detector

systematic by multiples of the prior error and looks at the relative change in each

bin of the MC model spectrum. These changes are compared between fitters to further

determine if the interaction model produces near identical responses. Figure 4.11 shows

an example of σ-variation for MA
res where there is clear agreement between both fitters.

As will be seen below, validation that this sample has the same response for both fitters

is vital in understanding the major differences seen between expected event rates for

this analysis.



CHAPTER 4. OSCILLATION ANALYSES AT T2K 84

Figure 4.11: Figure showing the MaCh3 and PTheta σ-variation comparisons for the
resonant axial mass cross-section parameter with the nominal set to its generated value
in the ν-mode νµCC1π FD sample. By varying the systematic by ±1σ and ±3σ the
spline response can be measured between both fitters. The small level of disagreement
seen at the 3σ variation is expected and has been seen on all previous analyses using
this parameter

4.5.2.3 Assessing the νµCC1π Event Rate Bug

When preparing for this analysis it was found that there were significant differences

between MaCh3 and PTheta’s expected event rates for several modes in the νµCC1π

sample at pre and post-BANFF tunes. The differences in event rates at post-BANFF

tune are detailed in table 4.4. As explained above, the key feature of pre/post-BANFF

tuning is that the nominal values for systematics are moved away from the generator

predicted nominal value. In order to assess the cause of this in the fitters, event rates

were generated with all systematics weights disabled. Initial testing was done to ensure

that it was purely a fault within the systematics re-weighting by disabling all weightings

within the fitters beyond even the systematics weights, for example POT weighting and

oscillation weighting. The first is a multiplicative weight which multiplies the expected
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Interaction Mode MaCh3 PTheta Relative Difference
CCQE 16.87561 16.88758 0.07%
CC1π0 3.75661 3.71598 -1.08%
CC1π± 59.76295 59.56966 -0.32%
CCcoh 1.93179 1.93359 0.09%
2p2h 1.90862 1.93452 1.36%

CCDIS 8.7856 8.79105 0.06%
CCMpi 24.36831 24.36797 0.00%
CCMisc 1.70302 1.69308 -0.58%
NCπ0 0.07492 0.05988 -20.07%

NC1π± 0.80476 0.76772 -4.60%
NCcoh 0 0 0.00%
NCoth 4.08743 4.06912 -0.45%
NC1γ 0 0 0.00%
Total 124.05961 123.79 -0.22%

Table 4.4: Comparison of MaCh3 and PTheta post-BANFF event rates for the ν-mode
νµCC1π sample. The NCπ0 row has been highlighted as it is the largest source of dif-
ference between the two fitters. The interaction column links to the various interaction
modes used in T2K. More information on the interaction modes listed can be found in
[137].

number of events in the spectrum by POT/1020 and the second modifies the spectrum

to have the distribution expected from the inputted set of oscillation parameter values

(AsimovA22). As the differences were only seen after all systematics were enabled +

pre/post-BANFF fits were run it was concluded that this was purely a cross-section

systematics issue.

The next stage of validation was to disable re-weighting for all sets of cross-section

parameters and then systematically enable them based on re-weighting type i.e. nor-

malisation, splined and functional. It was found that the largest differences occurred

when spline parameters were re-enabled and hence the largest effort was spent inves-

tigating these. Initial investigation looked at directly comparing MaCh3 and PTheta

spline implementations. As can be seen in figure 4.12, the differences in splines were

negligible and it was found that knot positions were identical between fitters. In ad-

dition both fitters were found to be able to reproduce the inputs used in the previous

oscillation analysis using the current implementation of the software. It was found
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Figure 4.12: Small selection of cross-section spline comparisons for MaCh3 and PTheta
splines form the νµCC1π mode. As can be seen the fitters agree at the weights for each
spline knot. The spline interpolation between is knots is not shown, however, since both
fitters use the ROOT TSpline3 implementation, this was not thought to be important.

that the largest impact on event rates came from splined final state interaction (FSI)

parameters. Table 4.5 illustrates that this was driven almost entirely by resonant pion

systematics.

The investigation into pion production systematics looked at two areas. Firstly

sigma variations were produced and compared between fitters. Due to the low number

of expected events in the problematic mode, these plots were susceptible to statistical

noise and, as a result, were inconclusive. The second method was to repeat the above

process but, rather than enabling systematics in groups, to instead enable each pion

production systematic individually. The results of this study are detailed in table 4.6.

Whilst these studies demonstrated there were substantial differences between fitter

implementations, both the spline treatment analysis and the fitters’ abilities to repro-

duce the previous years analysis made finding the source of these differences tricky. It

was decided that, due to the time constraints of the analysis, the log-likelihood scans for

both fitters should be compared. These evaluate the impact of individual systematics

on the total log-likelihood by varying each individual systematic over a range of values
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Mode No Spline Weights Non-Pion Systematics Resonant Pions CCMπ (All)
CCQE 0.16% 0.19% 0.18% 0.18%
CC1π0 0.03% -0.39% -0.67% -0.67%
CC1π± -0.01% -0.02% -0.16% -0.16%
CCcoh 0.13% 0.13% 0.13% 0.13%
2p2h -0.09% 0.10% 1.35% 1.35%

CCDIS 0.06% 0.03% 0.03% 0.15%
CCMπ -0.04% 0.00% 0.00% -0.02%
CCMisc -0.01% -0.19% -0.19% -0.19%
NC1π0 -0.10% 2.97% -19.74% -19.74%
NC1π± -0.03% -0.05% -3.96% -3.96%
NCcoh 0.00% 0.00% 0.00% 0.00%
NCoth -0.05% -0.22% -0.22% -0.22%
NC1γ 0.00% 0.00% 0.00% 0.00%
Total 0.01% 0.00% -0.10% -0.09%

Table 4.5: Table showing the relative differences between PTheta and MaCh3 post-
BANFF events rates when enabling splined systematic weights by expected interaction
mode. These weights are enabled sequentially so each column also has the weights in
the previous column enabled. Somewhat expectedly the largest different comes from
systematics that directly affect pion production. More information on the interaction
modes used can be found in [137]

Mode CA5 MA
res Non-Res I 1

2 Non-Res I 1
2 , low Res Eb, ν Res Eb, ν̄ Pion Ejection

CCQE 0.18% 0.18% 0.18% 0.18% 0.18% 0.18% 0.18%
CC1π0 -0.57% -0.97% -0.97% -0.89% -0.91% -0.91% -0.91%
CC1π± -0.02% -0.10% -0.10% -0.11% -0.23% -0.23% -0.23%
CCcoh 0.13% 0.13% 0.13% 0.13% 0.13% 0.13% 0.13%
2p2h 1.35% 1.35% 1.35% 1.35% 1.35% 1.35% 1.35%

CCDIS 0.15% 0.15% 0.15% 0.15% 0.15% 0.15% 0.15%
CCMπ -0.02% -0.02% -0.02% -0.02% -0.02% -0.02% -0.02%
CCMisc -0.19% -0.19% -0.19% -0.19% -0.19% -0.19% -0.19%
NC1π0 -8.18% -21.96% -21.96% -20.12% -20.12% -20.12% -20.12%
NC1π± -2.58% -5.18% -5.18% -4.22% -4.22% -4.22% -4.22%
NCcoh 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
NCoth -0.22% -0.22% -0.22% -0.22% -0.22% -0.22% -0.22%
NC1γ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Total -0.01% -0.08% -0.08% -0.08% -0.13% -0.13% -0.13%

Table 4.6: Table showing the relative difference between post-BANFF PTheta and
MaCh3 event rates for the νµCC1π sample when (resonant) pion production systematics
are enabled sequentially. Each column shows the difference in event rates when both
the systematic in the header of the column and all preceding columns are enabled. The
largest difference comes for the resonant axial mass (MA

res). More information on the
neutrino interaction modes listed can be found in [137].
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Figure 4.13: Log-Likelihood scans for MA
res for PTheta and MaCh3 are compared across

all samples. It can be seen that, when the full systematics model is accounted for, the
MaCh3 and PTheta sample likelihood calculations produce the almost same result.

[Fig. 4.13]. As the LLH scans were in good agreement and due to the relatively small

contribution of NC1π0 to the total νµCC1π sample (0.0604% of expected events), it

was decided that the impact of this bug on the analysis would be negligible and thus

this error was left unresolved.

4.6 Asimov Fits

4.6.1 Introduction

The first set of fits run in this analysis are Asimov fits. These fits use Asimov “data”

generated by re-weighting the MC prediction to some fixed set of systematic values.

This tests the fitter robustness in several ways: firstly, the results of these fits can be

compared between groups and internally and used to examine cross-fitter agreement

and self-consistency between analyses. The second, MCMC specific, use is to tune the

Markov Chain step sizes to suit the systematics model for a particular analysis. All

Asimov fits reported in this section use real ND280 data. The Asimov data presented
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in this section uses the post-BANFF cross-section parameter configuration and the

Asimov A22 [Tab.4.1] oscillation parameter set. The ND and FD nominals are set to

their priors which can be found in appendix A. All fits present in this chapter have two

configurations determined by the “reactor constraint” (RC). This is a prior constraint

on sin2(θ13) which constrains the space using a Gaussian centred on 2.2 × 10−2 with

width 7 × 10−4 [138]. This is a prior based on data from reactor experiments and is

applied to the posteriors post-fit. The results are also split into three categories based

on mass ordering (NO, IO and both). The fit is run such that steps are allowed to

enter both hierarchies and ordering is determined post-fit based on the values of ∆m2
32

at each step. The following posteriors are produced by running an MCMC chain for

124 × 106 steps using the systematics configuration detailed above. There are some

small statistical fluctuations at larger credible intervals; this is due to the low number

of steps in this region and the effect can be reduced by running longer chains. For

Asimov fits the requirement is only to have smooth contours up to the 90% credible

interval since running MCMC is both computationally expensive and time-consuming.

4.6.2 Asimov Fit Posteriors

There are three sets of posteriors shown (with and without RC), figure 4.14 shows the

1D δCP posterior whilst figures 4.16 and 4.15 show 2D contours. These are produced by

marginalising over all parameters in the chain not present in the final plot. Furthermore,

two sets of credible intervals are shown. The motivation for this is one of convention

with percentage-based credible intervals being a more traditional Bayesian metric for

creating credible intervals than particle physics-like σ values.

In all 2D plots the best fit value shown is the 2D marginalised best fit value. As

discussed in section 3.8.1, marginalisation can modify the best fit value and hence this

may not be identical to the Asimov point. In addition, in figure 4.15 the best fit point

without RC does not lie in the same octant as the Asimov point in both the fit with

both orderings and NO only fit. This is a feature present in previous T2K analyses and
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is due to the geometry of the sin2(θ23) space.

4.6.3 Comparisons with PTheta

Figures 4.17, 4.14, 4.19 and 4.20 show comparisons between the PTheta and MaCh3

Asimov fits. Figures 4.17 and 4.14 show comparisons without RC, and 4.19 and 4.20

with RC. Unsurprisingly, by constraining θ13 with the RC, the appearance contours

(sin2(θ13) vs δCP ) agree far better between fitters. The differences in contour shape are

a well-understood feature [139] and a result of small analysis differences between fitters.

In particular, PTheta and MaCh3 use slightly different far-detector sample binning and

a different near-detector constraint, with MaCh3 fitting ND+FD simultaneously and

PTheta requiring an external input. As will be seen in the data fits (below), when

PTheta do use a “MaCh3-like” setup, these differences vanish. It was decided that this

was unnecessary for the Asimov fits due to both the time required to perform extra

analyses and the fact that this effect is well understood.

4.7 Data Fits

This section details the results of simultaneously fitting ND280 run 2–9 and SK run

1–11 data. This corresponds to 21.428×1020 protons on target (POT) in ν-mode mode

and 16.346 × 1020 POT in ν̄-mode at SK, and for the ND 11.531 × 1020 POT in ν-mode

and 8.336 × 1020 POT in ν̄ beam mode. Model validation diagnostics will be shown

first before a discussion of the results.

4.7.1 Model Validation

4.7.1.1 Posterior Predictive

The posterior predictive can be thought of as the “mean” prediction from the fit.

Analysing the value of the model at each step of the chain is inefficient. Instead, the

finished chain is sampled randomly at a 5000 points and the MC spectra is evaluated
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Figure 4.14: 1D credible interval for δCP from the Asimov A22 parameter fit with
(right) and without (left) reactor constraint showing the 68%, 90%, and 99% credible
intervals. Fits are displayed marginalised over normal ordering (top), inverted ordering
(middle), without ordering marginalisation (bottom).
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Figure 4.15: 2D sin2 θ23-∆m2
32 contours from the Asimov A22 fit with (right) and

without (left) reactor constraint showing the 68%, 90%, and 99% credible intervals.

at each of those points. Figures 4.21, 4.22 and 4.23 show the post-fit distribution and

the 1σ error band for the number of events in each sample bin. The data used for the

analysis are overlaid on top. Whilst higher energy data events exist, the ranges chosen

in the plot correspond to the oscillation ‘dip’ which corresponds to the region of the

reconstructed energy spectra most affected by neutrino oscillation as this is the area

the has the largest impact on the posterior distributions.

4.7.1.2 Goodness of Fit

As discussed in section 3.8.3.1, MaCh3 performs a goodness of fit test by comparing MC

and data to fake spectra. The results of this test are shown in table 4.7. The critical

P-Value used by MaCh3 for a single sample is α = 0.05, but, when multiple tests are

compared the probability of rejecting the null hypothesis increases. This is known as

the family-wise error rate (FWER). For n statistical tests, the FWER is given by

FWER = 1 − (1 − α)n = 1 − (1 − 0.05)6 = 26.5% (4.9)

where the factor of 6 comes from the 6 samples used in the MaCh3 far detector. In

addition to this extra error, the size of the parameter space explored can increase

the likelihood of apparently statistically significant events occurring. This is known
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Figure 4.16: 2D sin2 θ13-δCP contours from the Asimov A22 fit with (right) and without
(left) reactor constraint showing the 68%, 90%, and 99% credible intervals. Fits are
displayed marginalised over normal ordering (top), inverted ordering (middle), without
ordering marginalisation (bottom).
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Figure 4.17: Comparison of oscillation parameter contours from the Asimov A22 fits
of MaCh3 and PTheta without applying the reactor constraint. (Top) disappearance
contours (bottom) appearance contours (left) normal hierarchy (right) inverted hierar-
chy.
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Figure 4.18: Comparison of 1D δCP ∆χ2 between the MaCh3 and PTheta Asimov A22
fits without the reactor constraint. (Left) normal hierarchy (right) inverted hierarchy.

Sample / p-value Shape-based Total Rate-based
ν-mode 1Rµ 0.3254 0.0206
ν̄-mode 1Rµ 0.8426 0.5782

ν-mode νµCC1π 0.4168 0.2526
ν-mode 1Re 0.1210 0.4826
ν̄-mode 1Re 0.6378 0.4774

ν-mode 1Re1d.e. 0.7272 0.1142
Total 0.5064 0.0626

Table 4.7: Breakdown of goodness-of-fit p-values, quoted separately for bin-by-bin
(Shape-based) and total rate (Total Rate-based) based χ2 calculation, used as a test
for the compatibility between the best-fit model and the data, using T2K-only fit.

as the look elsewhere effect (LEE). In order to account for this, for each sample, the

Bonferroni corrected significance level [140], αB, is used instead of the critical p-value.

This is simple to calculate,

αB = α

n
= 0.05

6 = 0.008 (4.10)

As can be seen in table 4.7, all samples have p-values above this significance level.

In order to ensure the robustness of MaCh3 fits, it was deemed necessary to inves-

tigate the lower rate-based p-values (difference in the total predicted number of events



CHAPTER 4. OSCILLATION ANALYSES AT T2K 96

0.4 0.45 0.5 0.55 0.6 0.65

23θ2sin

2.3

2.4

2.5

2.7

2.8
3−10×]2

 [
eV

322
 m∆

90% MaCh3

68% PTheta

Best Fit

0.4 0.45 0.5 0.55 0.6 0.65

23θ2sin

2.8−

2.5−

2.3−

2−

1.8−
3−10×]2

 [
eV

322
 m∆

90% MaCh3

68% P-Theta

Best Fit

0.01 0.024 0.037 0.051 0.065

13θ2sin

3−

2−

1−

0

1

2

3C
P

δ

90% MaCh3

68% PTheta

Best Fit

0.02 0.021 0.022 0.023 0.024

13θ2sin

3−

2−

1−

0

1

2

3C
P

δ

90% MaCh3

68% P-Theta

Best Fit

Figure 4.19: Comparison of oscillation parameter contours from the Asimov A22 fits of
MaCh3 and PTheta with the reactor constraint. (Top) disappearance contours (bot-
tom) appearance contours (left) normal hierarchy (right) inverted hierarchy. The rough-
ness seen in the disappearance contours is a result of the relatively lower number of
steps after applying the reactor contraint.
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Figure 4.20: Comparison of 1D δCP ∆χ2 between the MaCh3 and PTheta Asimov A22
fits with the reactor constraint; (Left) normal hierarchy (right) inverted hierarchy. The
instability in the MaCh3 fit at larger values of ∆χ2 is due to the reactor constraint
moving steps outside of this region. Note that in figure 4.18, the maximum value of
∆χ2 is much lower than that seen after application of the RC. This is due to the reactor
constraint heavily restricting the range of appearance parameters. The large statistical
noise at the higher values of ∆χ2 seen in the inverted hierarchy plot is simply due to
the low number of steps in this region made more evident by the RC weighting down
many of the steps seen in figure 4.18.
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Figure 4.21: Plot shows the post-fit posterior predictive distribution (blue) generated
by tuning the MC spectra to 5000 random throws from the FD+ND Markov Chain for
the 1Rµ SK samples. The ν-mode sample is displayed at the top and ν̄-mode at the
bottom. The 1 sigma error (red band) and data (black) used for these selections are
overlaid.
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Figure 4.22: Plot shows the post-fit posterior predictive distribution (blue) generated
by tuning the MC spectra to 5000 random throws from the FD+ND Markov Chain for
the 1Re SK samples. The ν-mode sample is displayed at the top and ν̄-mode at the
bottom. The 1 sigma error (red band) and data (black) used for these selections are
overlaid.
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Figure 4.23: Plot shows the post-fit posterior predictive distribution (blue) generated
by tuning the MC spectra to 5000 random throws from the FD+ND Markov Chain for
the multi-ring SK samples. The ν-mode 1Re1d.e. sample is displayed at the top and
ν-mode νµCC1π at the bottom. The 1 sigma error (red band) and data (black) used
for these selections are overlaid.
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between samples). It was found that this low value was primarily driven by the 1Rµ

sample. Figure 4.24 shows the distribution of the number of MC events for several

intervals of reconstructed energy. In particular, whilst the model and data are in rela-

tively good agreement for the oscillation dip range [0.0, 0.9] GeV, the two higher energy

ranges, [0.9, 2.0) GeV and [2.0, 10] GeV predict very different results to the spectra.

Since the bulk of the data for this sample lie in this oscillation dip region and the fit is

not a rate-only fit (the likelihood assessment is bin based and hence shape+rate infor-

mation is used), it was decided that this low rate-based p-value was acceptable for this

analysis.

4.7.2 MaCh3 Posteriors

As in section 4.6.2, the posteriors are presented with and without reactor constraint

(RC). All posteriors are shown with marginalisation over normal ordering, inverted

ordering and without ordering-based marginalisation.

4.7.2.1 1D Posteriors

Figures 4.27, 4.26, 4.28, and 4.28 show the 1D posterior distributions for the oscillation

parameters. The first notable conclusion of this analysis is that CP conserving values of

δCP (δCP ∈ {kπ : k ∈ Z}) are excluded at the 90% confidence interval when the reactor

constraint is applied; this can be seen more clearly in figure 4.29. In addition, the

reactor constraint also changes the octant of the best fit point [Fig. 4.25] and increases

the preference for normal ordering [Fig. 4.26]. The impact of this constraint on sin2(θ13)

can be seen in figure 4.28 with phase space being limited to a far smaller range of values.

The proportion of MCMC steps in each octant and hierarchy are displayed in tables 4.8

(without RC) and 4.9 (with RC).
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Figure 4.24: Distribution of the expected number of events for 2500 model generated
spectra at parameter values sampled from the 2023 data fit (black) within fixed energy
bins is compared to to observed number of data events (red) in those bins in the ν-
mode 1Rµ sample. Poor agreement is seen for energy ranges outside the “oscillation
dip” ([0.9, 2.0] GeV and [2.0, 10.0] GeV) but the MC re-weight agrees relatively well
within the oscillation dip region [0, 0.9] GeV.
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sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum

NH (∆m2
32 > 0) 0.27 0.37 0.63

IH (∆m2
32 < 0) 0.17 0.20 0.37

Sum 0.43 0.57 1.000

Table 4.8: Proportion of steps in the normal and inverted hierarchies, as well as upper
and lower octants, from the posterior without RC.

sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum

NH (∆m2
32 > 0) 0.23 0.54 0.77

IH (∆m2
32 < 0) 0.05 0.18 0.23

Sum 0.28 0.72 1.00

Table 4.9: Proportion of steps in the normal and inverted hierarchies, as well as upper
and lower octants, from the posterior with RC.

4.7.2.2 2D Posteriors

2D disappearance and appearance contours are shown in figures 4.30 and 4.31 respec-

tively. As is expected from the Asimov fit the application of the reactor constraint

results in a change of octant preference in the 2D marginalised posterior [Fig 4.30].

Application of the reactor constraint [Fig. 4.32] significantly limits the phase space of

the appearance contours resulting in far more values of δCP being excluded.

4.7.3 The Jarlskog Invariant

A key feature of MCMC is that individual parameters from the chain can be combined

to examine composite parameters. The additional key parameter interest in oscillation

analysis which is not directly fitted by MaCh3 is the Jarlskog invariant [Eqn. 1.16].

JCP ̸= 0 is the full condition required for PMNS CP violation, thus, it is convenient to

consider it as well as non-CP conserving values of δCP . The plots in figure 4.33 show the
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Figure 4.25: 1D 60%, 90%, and 99% credible intervals for sin2 θ23 from the run 1-11 data
fit with (right) and without (left) reactor constraint showing the 68%, 90%, and 99%
credible intervals. Fits are displayed marginalised over normal ordering (top), inverted
ordering (middle), without ordering marginalisation (bottom).
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Figure 4.26: 1D 60%, 90%, and 99% credible intervals for ∆m2
32 from the run 1-11 data

fit with (right) and without (left) reactor constraint showing the 68%, 90%, and 99%
credible intervals. Fits are displayed marginalised over both orderings

posteriors of the Jarlskog invariant under two different choices of prior. The flat sin δCP

prior was achieved by re-weighting a chain post-fit. In the normal ordering only and

non-marginalised posteriors choice of prior also has an effect on the physics conclusions.

In particular under the flat δCP prior, JCP = 0 is excluded at the 2σ credible interval

in both the normal ordering and the non-marginalised posteriors. By changing prior to

one that is flat in sin(δCP ), the credible intervals shift to include JCP = 0 within this

credible interval. This illustrates the importance of good prior justification alluded to

in chapter 3 as it can and does alter physics conclusions. This effect is also shown in

the 2D posteriors in figure 4.34 which shows JCP plotted against sin2(θ23) for the same

choice of priors. The choice of sin2(θ23) is driven by T2K sensitivities since, alongside

δCP , it is the parameter present in the Jarlskog invariant that T2K is most sensitive to.

As in the 1D case changing priors also moves the credible intervals to include/exclude

CP conservation at the 2σ credible interval.

4.7.4 Comparisons to Previous Analyses

This section compares the data fits from this analysis to the previous T2K analysis.

The major differences between these analyses are an increase in POT and the new SK
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Figure 4.27: 1D 60%, 90%, and 99% credible intervals for δCP from the run 1-11 data
fit with (right) and without (left) reactor constraint showing the 68%, 90%, and 99%
credible intervals. Fits are displayed marginalised over normal ordering (top), inverted
ordering (middle), without ordering marginalisation (bottom).



CHAPTER 4. OSCILLATION ANALYSES AT T2K 107

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

13θ2sin

po
st

er
io

r 
pr

ob
ab

ili
ty

68% credible interval

90% credible interval

99% credible interval

0.019 0.02 0.021 0.022 0.023 0.024 0.025

13θ2sin

po
st

er
io

r 
pr

ob
ab

ili
ty

68% credible interval

90% credible interval

99% credible interval

Figure 4.28: 1D 60%, 90%, and 99% credible intervals for sin2 θ13 from the run 1-11 data
fit with (right) and without (left) reactor constraint showing the 68%, 90%, and 99%
credible intervals. Fits are displayed marginalised over normal ordering (top), inverted
ordering (middle), without ordering marginalisation (bottom).
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Figure 4.29: Comparison of 1D δCP posterior probability projections and 1 and 2σ
credible intervals between data fits with and without the reactor constraint. (Left)
normal hierarchy (right) inverted hierarchy.
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Figure 4.30: 2D sin2 θ23-∆m2
32 contours from the run 1-11 data fit with (right) and

without (left) reactor constraint showing the 68%, 90%, and 99% credible intervals.

detector uncertainty model. The near detector and cross-section systematics models

have remained unchanged. As would be expected from this small POT increase and

minor systematics change the differences are relatively minor with no changes to physics

conclusions. More positively, a small tightening in constraints for all parameters can

be seen and the δCP constraint is moving towards rejecting CP conservation at the 2σ

CI (≈95%).

4.7.5 Comparisons to PTheta

Figure 4.37 shows 2D contours from reactor constrained MaCh3 data fit compared

to those from PTheta. Figure 4.38 shows a corresponding comparison of the 1D

marginalised posterior distribution for δCP and sin2 θ23. Comparisons without the re-

actor constraint are omitted for brevity.

Here we show two PTheta contours: the black contours show the results from a

standard PTheta fit, and the blue contours, labelled ‘PTheta, MaCh3-like’ are results

from a PTheta fit using the MaCh3 SK sample binning constraints from a MaCh3 ND

fit.

Only small differences in the 1D ∆χ2 of δCP can be seen in Figure 4.38. Further, χ2

values above 9 (3σ) are not meant to be included in the report of this analysis. This is
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Figure 4.31: 2D sin2 θ13-δCP contours from the run 1-11 data fit without reactor con-
straint. (Left) 68/90/99% credible intervals, (right) 1/2/3σ credible intervals. (Top)
normal hierarchy (middle) inverted hierarchy (bottom) marginalized over both hierar-
chies.
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Figure 4.32: Comparison of oscillation parameter contours from the data fits of MaCh3
with and without the reactor constraint. (Top) disappearance contours (bottom) ap-
pearance contours; (left) normal hierarchy; (right) inverted hierarchy.
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Figure 4.33: Comparison of 1D Jarlskog posterior distributions from priors that are flat
in either (i) δCP or (ii) sin δCP . Plots broken up by hierarchy [NH top left, IH top right,
both bottom].
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Figure 4.34: Comparison of 2D Jarlskog posterior distributions against sin2(θ23) from
priors that are flat in either (i) δCP or (ii) sin δCP

marginalised over the normal hierarchy (top left), inverted hierarchy (top right) or
without hierarchy marginalisation (bottom).
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Figure 4.35: Comparison of 1D sin2 θ23 and ∆m2
32 posterior probability projections

between the data fits, with the reactor constraint, of MaCh3 from the previous analysis
(orange) and current analyses (blue). (Left) normal hierarchy (right) inverted hierarchy.
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Figure 4.36: Comparison of 1D δCP posterior probability projections between MaCh3
data fits with the reactor constraint between the previous analysis [139] (orange) and
current analyses (blue). (Left) normal hierarchy (right) inverted hierarchy.

a heavily disfavoured region of phase space, and to properly sample this region MaCh3

would require additional steps in the Markov chain. Further, there are small disagree-

ments in the lower octant in the 2D sin2 θ23 ∆χ2, shown in Figure 4.37. Crucially, the

choice of PTheta analysis does not meaningfully change the final physics conclusions

and, as a result, it was concluded that PTheta and MaCh3 provide a valid analysis of

T2K data.

4.8 Summary of Data Fits

The T2K data fit pipeline is a rigorous statistical examination of the experiment’s

oscillation program requiring very different approaches to statistical analysis to produce

near-identical results. The final best-fit results with reactor constraint are displayed

in table 4.10 and show the best fit point and 1σ credible interval marginalised over

the disappearance and appearance parameters respectively. This result represents the

first to use SK with Gd and paves the way for future analyses using this data. Further

results from this analysis are displayed in appendix B.
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Figure 4.37: Comparison of oscillation parameter contours from the data fits of MaCh3
and PTheta applying the reactor constraint. (Top) disappearance contours (bottom)
appearance contours (left) normal hierarchy (right) inverted hierarchy.

sin2 θ23 ∆m2
32(×10−3)eV2 sin2 θ13 δCP

2D best fit 0.540 2.50 0.022 −1.85
68% C.I. (1σ) range 0.49 – 0.56 -2.63 – -2.47 ∪ 2.38 – 2.62 0.021 – 0.023 −2.60 – −1.01

Table 4.10: Best-fit values for disappearance oscillation parameters, with reactor con-
straint applied. The 2D best-fit values are taken from the mode of the 2D marginal
posterior distributions in sin2 θ23 − ∆m2

32 space for disappearance parameters and
sin2 θ13 − δCP space for appearance parameters. The 1D 68% credible intervals cor-
respond to the 1σ central area of the marginalised posterior distributions.
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Figure 4.38: Comparison of 1D δCP posterior probability projections between the
MaCh3 and PTheta data fits with the reactor constraint. (Left) normal hierarchy
(right) inverted hierarchy.
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Chapter 5

Sensitivity Studies for

Hyper-Kamiokande

5.1 Overview

The Hyper-Kamiokande (HK) experiment is the next step in long-baseline Water-

Cherenkov based accelerator neutrino experiments. Although it is due to be constructed

in 2027, systematics studies are being performed now in order to both analyse expected

physics results and ensure that analyses can correctly converge given the large increase

in statistics present at HK.

The HK systematics group currently bases analyses on previous T2K fits. In order

to make these sensitivity studies more “HK-like”, the following changes are made to

MaCh3:

• 10 year run time is assumed with a total of 2.7×1022 protons on target

• POT is split into a 3:1 ν̄:ν-beam ratio

• The detector fiducial volume is scaled by a factor of 8.31 and the surface area by

3.56

The analysis inputs are then simply those used in previous T2K analyses. The two fits

117
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Parameter Nominal
sin2(θ12) 0.307
sin2(θ23) 0.528
sin2(θ12) 0.0218

∆m2
21 7.53×10−5 eV2

∆m2
32 2.509×10−3 eV2

Table 5.1: The AsimovA20 parameter set, note that δCP is omitted as it is varied on a
fit-by-fit basis.

presented in this chapter use inputs from the 2018 and 2020 T2K oscillation analyses

with the change in analysis occurring due to technical difficulties maintaining and run-

ning substantially older versions of the code. Regardless of analysis version all fits use

the AsimovA20 oscillation parameter set [Tab. 5.1] with varying values of δCP .

This section will detail the early stages of developing a fitter as well as the conver-

gence issues encountered when attempting to run these fits.

5.2 Fits using the 2018 T2K Model

5.2.1 Overview of the 2018 Model

The T2K 2018 model is, in many respects, very similar to the analysis presented in the

previous chapter. The most notable differences for these fits are the lack of the νµCC1π

sample and a substantially smaller number of cross-section parameters. In addition

there are several major code differences within MaCh3 which lead to far slower step

times in this version of the code. These include separated class objects for each far

detector sample and a different spline treatment.

5.2.2 Validation

Validation was performed with the frequentist VALOR [141] fitter using the same event

rate comparison seen in T2K analyses. In order to check self consistency, MaCh3 first

applied each scaling step sequentially. For 2018 fits additional flux tuning was available



CHAPTER 5. SENSITIVITY STUDIES FOR HYPER-KAMIOKANDE 119

Sample Valor MaCh3 %Difference
ν-mode 1Rµ 9349.3 9345.52886 0.0403442
ν-mode 1Re 2739.76 2739.07106 0.02514916

ν-mode 1Re1.d.e 257.63 257.43359 0.07626631
ν̄ 1Rµ 12375.02 12365.37756 0.07794895
ν̄ 1Re 1623.97 1622.66617 0.08031882

Table 5.2: Table showing final OA2018 validations between MaCh3 and VALOR using
the AsimovA20 parameter set at post-BANFF tune.
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Figure 5.1: Appearance (left) and disappearance (right) contours for a HK Asimov fit
using the 2018 systematics model. Oscillation parameters are set to the AsimovA20
nominal values [Tab. 5.1] with δCP = −π/2. The disappearance contour has been
marginalised over the normal hierarchy as there are almost no steps in the inverted
hierarchy.

to account for the differences in expected neutrino flux at SK vs HK and allows for the

fit to account for the extra beam power planned for HK. Practically speaking this is the

scaled MC spectra by the ratio of the the expected HK flux to the ratio of the expected

SK flux for each energy bin. The event rate comparison with VALOR after flux tuning

has been applied is shown in table 5.2. In addition sigma variation comparisons showed

good agreement.
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Figure 5.2: Comparison of fit results for MaCh3, VALOR and Osc3++ for multiple
fits. (Left) Shows a comparison between all 3 fitters using the 2018 T2K Systematics
model; notably MaCh3 predicts a very different shape to the other two fitters. This
was later thought to be caused by the incorrect application of the reactor constraint
within MaCh3. (Right) Shows a comparison between the 2018 and 2020 MaCh3 models
with VALOR for a fixed normal hierarchy fit assuming δCP = 0. Whilst VALOR and
2018 MaCh3 are in relatively good agreement, it is clear there are some substantial
differences between these two fits and 2020 MaCh3.

5.2.3 Initial Fits

Early sensitivity studies were performed with two sets of oscillation parameters, these

used the Asimov A20 set detailed table 5.1 but with δCP = 0 and δCP = −π
2 as these are

values that show minimal/maximal CP violation. In addition, these fits were performed

without varying the values systematics in order to test the “statistics-only” capabilities

of the model. Since the oscillation parameter likelihood space has a different geometry

to the T2K space, significant effort was spent tuning the step sizes of the oscillation

parameters. This primarily involved running several fits with a variety of step scales

and examining traces, autocorrelations and acceptance rates [for more information on

this see section 3.5.1]. The first full fits were run and resulted in the contours seen in

figure 5.1. Somewhat confusingly, this resulted in almost no steps being accepted in the

inverted hierarchy when for the parameter set with δCP = −π
2 . In order to understand

this properly it helps to consider the HK bi-probability plot.
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5.2.4 Bi-probability Plot in HK

The bi-probability plot used in neutrino physics plots the probability of νe appearance

against ν̄e appearance, with P (νµ → νe) = P (ν̄µ → ν̄e) indicating no CP violation is

present. This plot has already been shown in figure 1.6 and was discussed in some

detail in section 1.2.4. In particular, it can be seen that the region with Asimov A22

+ δCP = −π
2 (the maximal CP violating region with normal ordering), there is no

degeneracy. It was, however, expected that fits with δCP = 0 would explore this region.

5.2.5 Initial HK Convergence Issues

In order to assess the capabilities of the MaCh3 HK fitter to produce posteriors that

are consistent with other HK fitters (VALOR and Osc3++), comparisons were made

using the 2018 T2K model as a baseline with systematic variations disabled. It was

found that, whilst the frequentist HK fitters agreed relatively well, there were significant

discrepancies between them and MaCh3. This is most evident in the sin2(θ23) plot where

the frequentist fitters obtain a very different final result to MaCh3. Whilst differences in

analysis choice (similar to the PTheta “MaCh3-like” binning in the previous chapter)

and the use of marginalisation in MaCh3 vs likelihood profiling in the other fitters

were discussed, due to the presence of the several known analysis bugs and the lack of

maintainability for this version of MaCh3, it was decided that MaCh3 should move to

using a newer version of the codebase.

5.3 Fits using the 2020 T2K Model

5.3.1 Initial Validation

As with the 2018 T2K model, initial validations were performed to ensure self-consis-

tency within MaCh3, the fitter was scaled in steps and event rates were compared to

a numerically scaled set of T2K event rates. Unlike the previous analysis, flux scaling
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Sample MaCh3 PTheta Relative Difference
ν-mode 1Rµ 8850.40216 8826.46 0.27%

ν̄ 1Rµ 12019.2137 12016.4 0.02%
ν-mode 1Re 2486.6921 2482.81 0.16%

ν̄ 1Re 1546.5219 1545.58 0.06%
ν-mode 1Re1.d.e 313.64378 311.424 0.71%

Table 5.3: Pre-BANFF event rate comparison for MaCh3 and PTheta. Event rates for
each sample and the relative differences are shown. The agreement condition was set
to be slightly looser (at most 1% difference) than that used for T2K analyses due to
the code development required for HK analyses.
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Figure 5.3: Predicted HK event rate spectra for the ν-mode (left) and ν̄-mode (right)
1Rµ samples at HK statistics compared between MaCh3 and PTheta. Small differences
are seen in the ν-mode event rate spectra but these were deemed to be acceptable for
the purposes of sensitivities and studies.

for T2K-OA2020 does not exist, and due to binning differences in between the 2018

and 2020 analyses it was deemed to be an unnecessary addition, particularly since the

initial aim was to validate that MaCh3 could both converge and explore both hierarchies

effectively. A summary of pre-BANFF event rate differences for each sample is shown

in table 5.3 and shows good initial agreement between MaCh3 and PTheta. In addition

the MaCh3 and PTheta MC event rate spectra were compared and found to be in very

good agreement [Fig 5.3]

5.3.2 Fits with Assumed CP Conservation

The most interesting fits from this analysis at present are those with δCP = 0. At

first glance figure 5.5 seems to be fairly reasonable based on the bi-probability plot
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[Fig. 1.6] with steps in both mass orderings. However, upon closer inspection of the

trace plot 5.4 it can be seen that the fit has not truthfully explored both mass orderings

simultaneously and instead each chain has become stuck in a single ordering. As the

Asimov point and true value of δCP are 0 in the normal ordering, it is expected that the

posterior would be maximal here, but clearly this has not happened. The most likely

explanation for this is that it is the result of a poorly formed “ordering flip” within

MaCh3. As can be seen in figure 1.5, ∆m2
32 in one mass ordering can be calculated

from the its value in the alternative ordering through

∆m2
32,NO = −∆m2

32,IO − ∆m2
21 (5.1)

In the T2K version of MaCh3, −∆m2
21 is much smaller than the width of the ∆m2

32

posterior and, as a result, is an unnecessary correction. This lets T2K-MaCh3 propose

steps in the other hierarchy as described in algorithm 6. This allows for both sides of

this very bimodal space to be explored; however, it makes the assumption that there

are no other parameters that have strong correlations with the mass hierarchy. This is

not true for HK fits: instead δCP will in general become a disjoint bimodal distribution.

This will in general mean that a second δCP flip is required in tandem when the mass

hierarchy changes. The following plots created by Andrés Lopez Moreno using the

pyExotics library [142] demonstrate that this flip depends on the true value of δCP and

thus implementation of this feature is non-trivial [Fig. 5.6].

Algorithm 6 T2K-MaCh3 Mass Ordering Proposal Function
Propose step using step proposal in algorithm 1

Generate random number s ∼ U(0, 1)

if s > 0.5 then

step(∆m2
32) = -step(∆m2

32)

Continue MCMC procedure

The suggested implementation of this additional flipping is shown in algorithm 7,



CHAPTER 5. SENSITIVITY STUDIES FOR HYPER-KAMIOKANDE 124

Figure 5.4: Diagnostics for an OA2020 HK fit with using the AsimovA20 parameter
set with δCP = 0 without an explicit δCP flip. The diagnostics are for ∆m2

32 (top) and
δCP (bottom) and show the chain has become ‘stuck’ with normal ordering. Combined
result for multiple chains with this characteristic result in the posterior in figure 5.5.
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Figure 5.5: δCP posterior from an OA2020 fit with using the AsimovA20 parameter
set with δCP = 0 without an explicit δCP flip. Despite the Asimov point lying in the
normal ordering, the best fit point is stuck in the inverted ordering. This is due to a
high proportion of chains used to create it not entering the normal ordering.

Figure 5.6: Plot showing the shift in the value of δCP required to find the mode in the
opposite mass ordering dependent on the true value of δCP at HK, assuming 10 years
of run time. For regions with no flip the degeneracy in mass ordering is lifted Plots
produced by Andres Lopez Moreno using pyExotics [142].
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Figure 5.7: Early results from a very short JAMS chain with δCP = 0 + the AsimovA20
parameter set. Whilst the chain shown is very short, it is not expected to explore the
entire parameter space which can be seen here. Steps to the majority of points in this
region are expected to be rejected at a far higher rate than is seen and not accepted at
a roughly equal rate. This is likely the result of an incorrectly implemented jump step
acceptance method.

Algorithm 7 HK-MaCh3 Mass Ordering Proposal Function
Propose step using step proposal in algorithm 1

Generate random number s ∼ U(0, 1)

if s > 0.5 then

Perform mass flip in full

step(∆m2
32) = −step(∆m2

32) − ∆m2
21,nominal

step(δCP ) = step(δCP ) + flip from lookup table

Continue MCMC procedure

This case is fine if the true ordering and value of δCP are known, but, the imple-

mentation for fits where both of these are unknown, i.e. data fits, is less trivial. It was

suggested that an alternative algorithm could be utilised, for example JAMS [Alg. 4],

but implementation of this is still in the exploratory phase. The results of early fits

using this algorithm clearly demonstrate that this requires substantial validation, as

can be seen in figure 5.7.
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Figure 5.8: Figure overlaying the marginalised appearance parameter posterior from an
OA2020 AsimovA20, δCP = 0 chain onto a 2D log-likelihood scan of the two parameters.
It can clearly be see than both parameters lie slightly outside the expected maximal
log-likelihood region. Whilst this is expected in the case of δCP due to its ordering
dependent bi-modality, sin2(θ13) has minimal ordering dependence and as a result, the
fit would be expected to be centred closer to the Asimov point at sin2(θ13) = 0.022.

5.3.3 Alternative Hypotheses for Non-Convergence

Before examining a converged fit, it is important to assess other potential reasons for

non-convergence, in part because the flipping behaviour has not been confirmed to be a

true cause and because a substantial amount of effort has been expended attempting to

rule out these causes. The first is simply poor step size tuning. In order to remove this

issue statistics only fits were used, which meant that only the oscillation parameters

required tuning. As can be seen in figure 5.4, these parameters are very well tuned and

hence unlikely to be the cause of the convergence issues.

The second cause is that the chain is potentially stuck in a “deep” local mini-

mum. By overlaying the 2D MCMC posterior on top of a likelihood scan for the

non-marginalised parameters, it is clear that it is not converging to the region of maxi-

mum likelihood in the 2D space. This is indicative of a local minimum but investigating

these issues with MCMC is somewhat tricky.
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Finally, this issue could be caused by a previously unknown bug within the MaCh3

fitter. The HK software was based on a frozen version of the 2020 MaCh3 analysis

toolkit which had been modified to include several quality of life features, for example

the using a single handler object for all samples rather than each sample requiring

separate objects, and speed improvements. This version was not rigorously validated

and the next fully validated version changed many components of the analysis and fixed

several known bugs in this version. It is unclear currently if a bug was causing these

non-convergence issues and it was hoped that the HK analysis would move to a new

refactored version of MaCh3 within the timeline of this thesis. Further evidence for

this potential bug can be seen in figure 5.2 whereby the OA2018 and VALOR fits agree

well whilst the 2020 fit seems to converge to a slightly different value of δCP .

5.3.4 Fits with Fixed Mass Hierarchy

The following fits were run using MaCh3 with fixed inverted/normal ordering. These

are oscillation parameter only fits and have no systematic variation. As a result the

constraints are somewhat tighter than would be expected from a full HK fit. This was

done in order to minimise the amount of step size tuning required and to improve the

convergence rate for the fit. Fits were run with δCP = 0 and to demonstrate the fitter

is capable of converging if there are no “jumps”. The fit contains 60M steps, which

results in stable contours up to 3σ. Running MaCh3 fits with stable contours up to 5σ

is prohibitively slow and would take several years of continuous computing time.

The 1D posteriors (with no external constraints) are shown in figure 5.9 and demon-

strate the capabilities of HK relative to T2K. For all parameters shown in figure 5.10,

the HK contours are unsurprisingly tighter than those seen in chapter 4. This is most

evident in the δCP contour which now excludes a substantially larger region of the

available phase space to the 99% CI.

In addition, if the external constraint from reactor experiments (Gaussian prior

with central value 0.022 and error 0.0007) is applied, HK gains preference for the upper



CHAPTER 5. SENSITIVITY STUDIES FOR HYPER-KAMIOKANDE 129

sin2th_12
0.26 0.28 0.3 0.32 0.34 0.36

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

68% Credible Interval

90% Credible Interval

99% Credible Interval

 = 0.01σx = 0.31 , 
Prior

sin2th_23
0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0

0.005

0.01

0.015

0.02

0.025 68% Credible Interval

90% Credible Interval

99% Credible Interval

 = 0.09σx = 0.53 , 
Prior

sin2th_13
0.02 0.021 0.022 0.023 0.024 0.025 0.026

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

68% Credible Interval

90% Credible Interval

99% Credible Interval

 = 0.00σx = 0.02 , 
Prior

delm2_12
68 70 72 74 76 78 80 82

6−10×

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0

0.01

0.02

0.03

0.04

0.05

0.06 68% Credible Interval

90% Credible Interval

99% Credible Interval

 = 0.00σx = 0.00 , 
Prior

delm2_23
2.48 2.49 2.5 2.51 2.52 2.53 2.54

3−10×

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0

0.01

0.02

0.03

0.04

0.05

0.06

68% Credible Interval

90% Credible Interval

99% Credible Interval

 = 0.00σx = 0.00 , 
Prior

delta_cp
0.4− 0.2− 0 0.2 0.4

P
os

te
rio

r 
P

ro
ba

bi
lit

y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
68% Credible Interval

90% Credible Interval

99% Credible Interval

 = 6.28σx = -1.60 , 
Prior

Figure 5.9: Posteriors for a fixed normal ordering MaCh3 HK chain including solar
parameters with δCP = 0. Credible intervals are stable up to the 99% credible interval.
The central point for the prior used for each parameter is shown on each plot
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Figure 5.10: Triangle plot showing 2D contours for a MaCh3 HK chain in fixed normal
ordering with δCP = 0. The solar parameters, sin2(θ12) and ∆m2

21, are omitted from
this plot for readability.
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Figure 5.11: Comparison of sin2(θ23) between fits with and with the reactor constraint
applied. The reactor constraint results in a shift in preference for the upper octant with
the Bayes factor increasing from 2.10 to 6.15.

octant with the Bayes factor (UO/LO) increasing from 2.10 to 6.15 [Fig. 5.11]. On

the Kaboth-Dunne scale [Tab. 3.1] this corresponds to less than 1σ but it is significant

improvement with respect to the T2K result presented previously. In addition, this fit

has been compared with PTheta and shows relatively good agreement [Fig. 5.12].

5.4 Future Analyses

Due to the time constraints from both the T2K analysis and timeline of this thesis

and delays in the introduction of a refactored version of MaCh3 which is planned to be

used across multiple experiments, this chapter is not a complete HK analysis. As the

convergence bug was thought to be due to an issue within the 2020 MaCh3 package, all

HK work was paused whilst waiting for the refactored version of MaCh3. This meant

that many planned studies were put on hold including:

• further validations with the PTheta group;
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Figure 5.12: Comparison of PTheta and MaCh3 δCP distributions. Agreement is rel-
atively good at low values of ∆χ2 but becomes worse at larger values. This is simply
a result of the lower number of steps in the MaCh3 chain at these values resulting in
larger uncertainties

• HK fits run with increasing POT in order to see the impact of HK run lifetime

on oscillation parameter sensitivities;

• proper introduction of the JAMS algorithm into the HK fitter to allow multi-

modal adaption;

• analyses with a wider range of values of δCP ;

• studies into the impact of systematics on uncertainties.

Whilst many of these have been presented in an unfinished state, they are currently

not complete enough to draw full conclusions from.



Chapter 6

MCMC Convergence

As detailed in section 3.6.2, Metropolis-Hastings requires step-size tuning in order to

be utilised effectively. The adaptive mechanisms detailed in Alg. 2 and Alg. 3 can

be highly effective but will often fail. This chapter will detail both the successes and

potential pitfalls that can be encountered when using these methods.

6.1 Adaptive MCMC

6.1.1 Re-Introduction to Adaptive MCMC

MaCh3 currently performs MCMC throws using the prior covariance. For each param-

eter, i, the proposed new step yi is given by

yi ∼ G

(
X t

i , si
2.642

N
σprior

)
(6.1)

where N is the number of parameters, and s is a vector of individual step sizes for each

parameter that has been chosen manually. As was discussed in section 3.6.2, this is not

necessarily the most efficient proposal function and it is often more efficient to use

yi ∼ G

(
X t

i , si
2.642

N
σchain,γ

)
(6.2)

133
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Figure 6.1: The trace (right) of a cross-section parameter when adaption was enabled
for all parameters. Adaption is enabled from step 10,000 and the fit is totally un-tuned
initially. Whilst the trace plot appears relatively well-behaved, showing a high degree
of variance, this is slightly misleading. As can be seen from the autocorrelation (left)
convergence is actually relatively slow with the autocorrelation only dropping to near
0 at relatively large values of lag. In addition, the expected range of this parameter is
[0.8, 1.2] indicating that it has not converged on the true posterior.

where σchain,γ is the covariance of the chain so far and γ indicates the iteration number

of the proposal function since it may only be updated every few steps.

6.2 Implementation in MaCh3

6.2.1 Implementation Procedure

The implementation procedure is relatively straight forward. Initial testing using adap-

tion on the full parameter space [Fig. 6.1] indicated that substantial validation was

required in order to ensure that adaptive fits converge to the correct posteriors. In ad-

dition, it was also found that a small subset of parameters are unsuitable for adaption.

In order to test this, initial chains were run using a small subset of parameters and then

gradually increasing the number of parameters used. The software implementation is

relatively simple and roughly follows the steps in algorithm 3. The fit hyper-parameters
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i.e. number of steps between adaptions, number of steps to adapt for, which parameters

are adapting, etc. are configured via an external configuration file for ease of use. At

low step counts the small numerical fluctuations, particularly from floating point cal-

culations, may cause the matrix to become non-positive definite which is required for

all ‘true’ covariance matrices. Two fixes can be used within MaCh3. The first simply

adds a small correction to the diagonal repeatedly and checks if this has made the

matrix positive definite. If this fails to work a more in-depth procedure is used. It

can be shown that, for any non-positive definite matrix, C, the closest positive-definite

symmetric matrix, CP under the Frobenius norm (∥C∥2
F = ∑

(i,j) C
2
ij) can be computed

through a relatively simple procedure, the full details of which can be found in [143].

6.2.2 Code Considerations

MaCh3 assigns each set of systematics in its own “covariance” object, all of which

inherits some basic properties from a covariance base class. It was determined that

the simplest method for implementing the adaptive scheme was to inject it into the

covariance base class. This setup, controlled by a configuration file allows the user to

specify the following

• Systematics that use adaption

• Whether an external matrix is to be used. This allows chains to use a “frozen”

covariance matrix from a converged Markov Chain rather than needing to begin

adaption from that start

• Number of steps before the adaptive covariance matrix is frozen

• Number of steps before throws are performed using the adaptive matrix

• Number of steps between proposal function updates

• “Burn-in” length. An initial set of steps where no steps are included in the

covariance calculation. This allows for early numerical instability in the chain to
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be ignored.

In addition, prior to the implementation of these methods the likelihood calculation for

each systematic, whilst identical in all cases, was not included in the base class. By

moving it to the base-class the adaptive step proposal could then be performed through:

1. Propose new step

2. Check parameter boundaries

3. Accept/reject new step

4. Update Covariance Matrix to include new information

The boundary check is a virtual method in the base-class and a concrete implementation

in the derived systematics objects. This allowed for much easier code maintenance and

hence made testing and bug-fixing substantially simpler.

6.3 Exploratory Fits

6.3.1 Analysis Strategy

In all tests listed below the following analysis procedure was applied:

1. Adaptive and non-adaptive fits were run using the same initial step sizes

2. The adaptive fit was run with slightly un-tuned step sizes

3. If this fit convergences correctly a “nightmare” fit was run with step sizes set to

well beyond their manually tuned values

This allowed for the assessment of the convergence properties of the chain with decreas-

ing amounts of manual input.
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6.3.2 Fit with Limited Systematics

As a proof of concept, adaptive style fits were run with a reduced systematics set. The

spectral function cross-section systematics [144] were selected as they have uncorrelated

priors but are known to be correlated post-fit resulting in a potential improvement from

the adaptive method. As can be seen in figure 6.5 adaption has the effect of tuning

these parameters rapidly as the length of the chain increases. In practice, this means

that the fit will converge far faster than a manually tuned fit. Further “nightmare”

studies were performed on this parameter by allowing the initial pre-adaptive step sizes

to be semi-randomized and thus highly inefficient. The effect of adaption on this space

is very clear from the aforementioned trace plot which shows that the adaption results

in a clear and immediate improvement in MCMC efficiency [Fig. 6.3]. In addition the

acceptance rate rapidly trends towards the optimal 23.4% expected acceptance rate

which is normally very tricky to obtain in MaCh3 using manual tuning [Fig. 6.2].

The addition of highly correlated systematics resulted in clear and immediate issues

[Fig. 6.4]. The CC Coherent normalization parameters on carbon and oxygen have a

highly correlated prior (0.9999).1 It has been observed that, when step size tuning

manually, highly correlated systematics require identical step sizes in order to converge

effectively. Adaption often causes the step sizes to deviate for these parameters and

hence results in poorly performing adaptive step size tuning. This effect can be min-

imised by simply increasing the number of parameters with uncorrelated priors. The

exact reasons for this are not well understood but it seems that the additional con-

tributions from non-correlated systematics have a dampening effect on these problem

parameters.

The final test of this regime was the comparison of a limited systematics chain with

a non-adaptive chain [Fig. 6.6].The result was a dramatic improvement in both trace

and auto-correlation diagnostics after adaption was applied. In addition the effective

sample size [Eqn. 3.24] (weighted by the number of steps in both fits) was compared

1The decision not to merge these parameters is primarily historic.
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Figure 6.2: The acceptance probability for a Markov chain with an initial well tuned
start. Adaption is enabled at step 10,000 which can be seen by a trend towards the
optimal acceptance rate of 23.4%.
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Figure 6.3: Effective sample size (ESS) for Markov chains without adaptive tuning (left)
and with adaptive tuning (right) for a small selection of cross-section parameters. The
adaptive tune results in an at least order of magnitude increase in effective sample size
improvement in the adaptive chain.
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Figure 6.4: Trace from a cross-section parameter from a fit using the initial reduced
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Figure 6.5: (Left) The trace of a parameter from a limited systematics fit with “night-
mare” initial step sizes. The adaptive process can be seen from the increase in the range
the chain explores. (Right) Autocorrelation for the same parameter. Notably, the au-
tocorrelation approaches 0 very quickly indicating that the chain is highly Markovian.
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Figure 6.6: Comparison of the traces for a short adaptive chain (black) vs a non-
adaptive chain (red) which has been manually step-size tuned. It is clear that the
adaptive chain reaches an autocorrelation of 0 far faster than the non-adaptive chain
and has much more rapid variance. The difference in parameter ranges for low step
numbers is a result of the early exploration of the space required by adaptive MCMC
before it convergences on the “true” covariance matrix. The horizontal red lines are
an artifact of the plotting software showing best fit for each chain, unfortunately the
chains required for these plots have long since vanished at the time of writing and so
removal of these lines is no longer possible.

and, as can be seen in figure 6.7, the adaptive chain provides a larger effective sample

size for most parameters. This is an overall encouraging result and shows that adaption

is at least as effective as manual tuning for MaCh3 cross-section parameters even with

these correlated parameters limiting its effectiveness.

6.3.3 PCA

It was thought that prior-based principal component analysis (PCA)2 would be an

effective method for minimising correlations and thus allow the adaptive algorithm to

converge faster. However, the current implementation of PCA in MaCh3 does not

normalise the input covariance matrix and is thus dominated by a small subset of

parameters; this results in parameters that are thrown in PCA space being moved

2performing PCA on the input covariance matrix
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Figure 6.7: Effective sample size (ESS) for each parameter in the cross-section model.
The x-axis refers to the internal index with MaCh3 assigned to each cross-section param-
eter. As can be seen in the figure there is a general improvement for most cross-section
parameters after adaption.

towards their physical boundaries and hence results in a poor acceptance rate [Fig. 6.8]

since steps with parameters outside of their allowed range are automatically rejected.

Due to time constraints, a reimplementation of the PCA algorithm to normalise these

parameters was not feasible.

6.3.4 Block Matrix Approach

As discussed in [117] adaption often takes longer to converge for larger matrices with

multiple sets of relatively uncorrelated parameters. This can be seen clearly when fits

are run using the full cross-section and flux model. As discussed in section 4.3, MaCh3

combines the cross-section and flux uncertainties into a single matrix. Adaptive fits

run using correlations between both sets of parameters tend to result in low acceptance

rates and can converge to local minima rather than the true posterior. The simple

solution to this is to throw from a block matrix instead, where each block represents a

particular parameter set, for example flux and cross-section.
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Figure 6.8: Distribution of acceptance probabilities for a short adaptive chain with
PCA applied. The high proportion of steps with 0 acceptance probability indicates the
chain is proposing a large number of steps to a highly improbable region of space.

6.3.5 ND Only fits

The natural next step when introducing adaption to MaCh3 was to see how effective it

is when applied to an near detector (ND) only fit. Recall from section 4.1 that MaCh3

performs two kinds of T2K-only fit, ND and ND+far detector (FD). This first fit only

requires the near detector and cross-section systematics models. Due to their relatively

Gaussian nature, ND systematics parameters are a natural candidate for adaption.

In order to produce these fits efficiently, ND data was taken from runs 2a and 9b.

This choice was somewhat arbitrary and simply used the “reduced ND280 dataset”

recommended in the MaCh3 configuration file. The cross-section/flux matrix used the

block-matrix approach whilst the ND detector matrix was left as a single matrix. Initial

tests were done using the block matrix method on the ND detector matrix with each

block corresponding to a different oscillation channel, but, due to significant post-fit

correlations between oscillation channels this was found to be ineffective.

Fits with ND280 parameters were run in several configurations:

• Non-adaptive;
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Figure 6.9: Diagnostics for a variety of adaptive MCMC chains from an ND only fit.
From top to bottom these are non-adaptive, adaption from the star and, adaption
starting at step 10000 with a well tuned start
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Figure 6.10: Diagnostics for a variety of adaptive MCMC chains from an ND only fit.
Both chains have “nightmare” starts with adaption staring after step 1000 (top) and
step 10000 (bottom).
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Figure 6.11: The acceptance probability (ratio of likelihood of proposed:current step)
for each step in a Markov Chain with adaption enabled for all parameters is shown.
Adaptive throws are enabled at step 1000 and is marked by a stark rise in states with
acceptance probabilities outside of {≈0,1}.

• Adaptive with adaption starting immediately;

• Well tuned fit with adaptive starting from step 10000;

• Nightmare start Adaptive with adaption starting from step 1000;

• Nightmare start Adaptive with adaption starting from step 10000.

The MCMC diagnostics for the multi-pion axial Bodak-Yang correction parameter for

each of these fits are shown in figures 6.9 and 6.10.3 These fits are illustrative of some

general trends seen when developing this technique. The first is that adaption from step

0 consistently seems to drive fits away from the “true” nominal. Since these fits are

Asimov the expected value for each parameter is known, and in the case of this dial it

should converge to a posterior centred at 0. The other adaptive chains seem to perform

comparatively well, with the initially well tuned chain having a slightly better auto-

correlation than the nightmare parameters. This effect may be amplified by the early

low acceptance region in the nightmare fits combined with the lower number of steps

in the non-nightmare chain and future studies should account for this when generating

auto-correlations.

3A cross section parameter was chosen over an ND parameter since the ND fit has been really well
tuned manually and thus the impact of adaption isn’t as visible.
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Figure 6.12: The expected posterior for an oscillation parameter in the case that all
parameters including oscillation are allowed to adapt, when adaption is only enabled
for systematics (cross-section, ND, FD) or when no adaption is enabled. The result
is that the fits seem to converge to different distributions. Not only does remove the
“nice” convergence seen in the ND-only fit, it shows that FD+Oscillation parameters
may require different tuning when adaptive is applied.

6.3.6 Problematic Parameters

The final set of parameters that need to be added are those related to oscillation and

far detector systematics. As can be seen in figure 6.12, running a full FD+ND fit with

adaption switched on for all parameter sets including/excluding oscillation results in

convergence to final posteriors that differ from the non-adaptive chain and from each

other. This appears to be due to two features of the oscillation posterior:

• the multi-modality of ∆m2
32;
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• the cyclical boundaries for δCP .

The first is a known issue with MCMC convergence since the posterior at each mode

of ∆m2
32 will, in general, have a different geometry. As a result, both modes will have

a different covariance matrix and hence the current method of finding an adaptive

matrix is untenable since it simply obtains the average covariance across both modes

(weighted by the likelihood of accepting steps between each mode). Several algorithms

exist that claim to combat this, from the relatively mundane locally adaptive MCMC

(simply have a covariance matrix for each mode), to the far more in-depth like JAMS

(Jumping Adaptive Metropolis Sampler) which modifies Metropolis-Hastings to use

multiple proposal functions. More positively, the effectiveness of this method opposed

to poor tuning, even on this problematic space, can be seen in figure 6.11. The transition

between adaption and non-tuned steps can be seen at step 100,000 with a stark rise in

steps that aren’t being immediately rejected.

6.4 Summary and Future Prospects

Adaptive MCMC is an extremely useful tool that can outperform manual step size

tuning in many instances. As seen with the oscillation and FD parameters, it is not

a ‘silver bullet’ that will fix all MCMC convergence issues, but, it can remove a lot of

the manual effort previously required to tune the fitter. In addition the efficiency gains

from these methods due to the relatively lower autocorrelations reduce the required

number of steps to produce a fit. This is vital for future experiments (HK, DUNE)

hoping to reach 5σ credible intervals since the required number of steps to do this is

several orders of magnitude larger than the current number used at T2K.



Chapter 7

Summary

Markov Chain Monte Carlo provides a powerful and uniquely precise way to analyse

complex statistical likelihoods. The analyses and techniques presented in this thesis

show the current and future analyses that use this technique to provide new and exciting

results in the field. The primary analysis represents the latest result from the T2K

experiment. The key improvements to this analysis are the increase in ν-mode POT

from 19.664×1020 to 21.428×1020 and new SK detector covariance matrix.

When fitting with the reactor constraint, CP-conserving values of δCP are excluded

at the 90% credible interval. Mild preference for the upper octant and normal hierarchy

is shown, although the Bayes factors for these preferences do not reach the level where

this is a significant result (see Table 4.9). When fitting with a flat prior in δCP , we

exclude a Jarlskog invariant of 0 (implying CP-conservation) at the 2σ credible interval,

however, this statement does not hold when using a prior flat in sin δCP , so the statement

on CP-conservation exclusion from the Jarlskog invariant is also at the 90% level.

The Hyper-Kamiokande sensitivity studies demonstrate the limits of MCMC tech-

niques currently being used and provide information on the limitations of MCMC as a

technique. The very limited studies performed show that high statistics fits are possible

with heavy restrictions applied to the analysis. Significant work is required to run full

sensitivity studies within MaCh3, but this early work has found many of the potential

148
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problems.

Finally new MCMC techniques have been trialled which aim to fix many of the con-

vergence issues seen in current and future oscillation analyses. These techniques are now

useable in some limited analyses and potential issues with regards to implementation

in MaCh3 are now beginning to be understood.
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[88] D. Attié et al. “Analysis of test beam data taken with a prototype of TPC with
resistive Micromegas for the T2K Near Detector upgrade”. In: Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 1052 (2023), p. 168248.

https://doi.org/https://doi.org/10.1016/j.nima.2012.03.023
https://doi.org/https://doi.org/10.1016/j.nima.2012.03.023
https://arxiv.org/abs/1901.03750


BIBLIOGRAPHY 156
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targeting multimodal distributions”. In: (2020).
[121] J.S. Rosenthal et al. “Optimal proposal distributions and adaptive MCMC”. In:

Handbook of Markov Chain Monte Carlo 4.10.1201 (2011).

http://www.jstor.org/stable/2957673
http://www.jstor.org/stable/2957673


BIBLIOGRAPHY 158

[122] M.K. Cowles and B.P. Carlin. “Markov chain Monte Carlo convergence diagnos-
tics: a comparative review”. In: Journal of the American Statistical Association
91.434 (1996), pp. 883–904.

[123] P. Dellaportas and G.O. Roberts. “An introduction to MCMC”. In: Spatial statis-
tics and computational methods. Springer, 2003, pp. 1–41.

[124] A.E. Brockwell and J.B. Kadane. “Identification of Regeneration Times in
MCMC Simulation, with Application to Adaptive Schemes”. In: Journal
of Computational and Graphical Statistics 14.2 (2005), pp. 436–458. issn:
10618600.

[125] L. Hespanhol et al. “Understanding and interpreting confidence and credible
intervals around effect estimates”. In: Brazilian journal of physical therapy 23.4
(2019), pp. 290–301.

[126] J.M. Bernardo and R. Rueda. “Bayesian hypothesis testing: A reference ap-
proach”. In: International Statistical Review 70.3 (2002), pp. 351–372.

[127] B. Efron et al. “Scales of evidence for model selection: Fisher versus Jeffreys”.
In: Lecture Notes-Monograph Series (2001), pp. 208–256.

[128] E. Atkin et al. Measuring PMNS parameters in a joint T2K-NOvA analysis;
Fitting workstream. Tech. rep. TN-435. T2K-NOvA, 2023. eprint: https://
t2k.org/docs/technotes/435.

[129] C.J. Geyer. “Introduction to Markov chain monte carlo”. In: Handbook of Markov
chain monte carlo 20116022 (2011), p. 45.

[130] R.Wendell T. Yoshida M. Wilking and K. Okumura. A study of νµCC1π+ events
at Super-Kamiokande. Tech. rep. TN-388. T2K, 2020. eprint: https://t2k.org/
docs/technotes/388.

[131] A.D. Missert, T2K Collaboration, et al. “Improving the T2K oscillation anal-
ysis with fiTQun: a new maximum-likelihood event reconstruction for Super-
Kamiokande”. In: Journal of Physics: Conference Series. Vol. 888. 1. IOP Pub-
lishing. 2017, p. 012066.

[132] R. Wendell et al. Super-Kamiokande νµ multi-ring samples for the 2021 Oscil-
lation Analysis. Tech. rep. T2K, 2023.

[133] L. Haegel. T2K near detector constraints for oscillation results. 2017. arXiv:
1701.02559 [hep-ex].

[134] C. Riccio et al. Constraining the flux and cross section models for the 2023
oscillation analysis using ND280 data. Tech. rep. T2K, 2023.

[135] T. Vladisavljevic. “Constraining The T2K Neutrino Flux Prediction With 2009
Na61/Shine Replica-Target Data”. In: (2018). doi: 10.5281/ZENODO.1300546.
url: https://zenodo.org/record/1300546.

[136] R. Barlow and C. Beeston. “Fitting using finite Monte Carlo samples”. In: Com-
puter Physics Communications 77.2 (1993), pp. 219–228.

https://t2k.org/docs/technotes/435
https://t2k.org/docs/technotes/435
https://t2k.org/docs/technotes/388
https://t2k.org/docs/technotes/388
https://arxiv.org/abs/1701.02559
https://doi.org/10.5281/ZENODO.1300546
https://zenodo.org/record/1300546


BIBLIOGRAPHY 159

[137] K Abe et al. “Measurement of neutrino and antineutrino oscillations by the
T2K experiment including a new additional sample of ν e interactions at the far
detector”. In: Physical Review D 96.9 (2017), p. 092006.

[138] Particle Data Group et al. “Review of Particle Physics”. In: Progress of The-
oretical and Experimental Physics 2020.8 (Aug. 2020), p. 083C01. issn: 2050-
3911. doi: 10.1093/ptep/ptaa104. eprint: https://academic.oup.com/
ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf. url: https:
//doi.org/10.1093/ptep/ptaa104.

[139] T. Holvey et al. MaCh3 2021 Run 1-10 Analysis and including Mutli-Ring Sam-
ple. Tech. rep. T2K, 2024.

[140] P. Sedgwick. “Multiple significance tests: the Bonferroni correction”. In: Bmj
344 (2012).

[141] F. Bench. Study of v and ν Oscillations in the Three-flavour PMNS Paradigm at
the T2K Experiment: Determination of the CP-Violating Phase and the search
for ν µ→ ν e Oscillations. The University of Liverpool (United Kingdom), 2021.

[142] A.L. Moreno. PyExotics. 2023. url: https://github.com/ALopezMoreno/
pyExotics.

[143] N.J. Higham. “Computing a nearest symmetric positive semidefinite matrix”. In:
Linear Algebra and its Applications 103 (1988), pp. 103–118. issn: 0024-3795.
doi: https://doi .org/10.1016/0024- 3795(88)90223- 6. url: https:
//www.sciencedirect.com/science/article/pii/0024379588902236.

[144] O. Benhar et al. “Spectral function of finite nuclei and scattering of GeV elec-
trons”. In: Nuclear Physics A 579.3 (1994), pp. 493–517. issn: 0375-9474.

https://doi.org/10.1093/ptep/ptaa104
https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://github.com/ALopezMoreno/pyExotics
https://github.com/ALopezMoreno/pyExotics
https://doi.org/https://doi.org/10.1016/0024-3795(88)90223-6
https://www.sciencedirect.com/science/article/pii/0024379588902236
https://www.sciencedirect.com/science/article/pii/0024379588902236


Appendices

160



Appendix A

T2K Cross-Section Systematics
Model

Overview
The T2K cross-section (neutrino interaction) model used in the oscillation analysis
consists of 75 parameters which are binned in either outgoing lepton momentum (p)
or p+outgoing lepton angle (θ). Systematics treatment is then further split in the
following way:

• Splines: Systematic response is controlled by spline interpolation

• Normalisation: Same shift is applied regardless of sample bin

• Function Shift: Parameter is allowed to shift events between bins. Response
for each bin is a function of individual event kinematics.

The treatment of each systematic is detailed in table A.1.

Systematic Type Generator Nominal Prior Range
CCQE

MQE
A Spline 1.21 N (1.03, 0.06) (0,∞)

Q2 supp. 0.25 – 0.50 GeV2 Norm 1 N (1, 0.11) (0,∞)
Q2 supp. 0.5 – 1.0 GeV2 Norm 1 N (1, 0.18) (0,∞)

Q2 supp. > 1.0 GeV2 Norm 1 N (1, 0.4) (0,∞)
Spectral Function

PShell MF Norm (C) Spline 0 N (0, 0.2) (−1,∞)
SShell MF Norm (C) Spline 0 N (0, 0.45) (−1,∞)

SRC Norm (C) Spline 1 N (1, 2) (0,∞)
PShell MF P–Miss Shape (C) Spline 0 N (0, 1) (−∞,∞)
SShell MF P–MissShape (C) Spline 0 N (0, 1) (−∞,∞)

P3 2Shell MF Norm (O) Spline 0 N (0, 0.2) (−1,∞)
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Systematic Type Generator Nominal Prior Range
P1 2Shell MF Norm (O) Spline 0 N (0, 0.45) (−1,∞)

SShell MF Norm (O) Spline 0 N (0, 0.75) (−1,∞)
SRC Norm (O) Spline 1 N (1, 2) (0,∞)

P1 2Shell MF P–Miss Shape (O) Spline 0 N (0, 1) (−∞,∞)
P3 2Shell MF P–Miss Shape (O) Spline 0 N (0, 1) (−∞,∞)

SShell MF P–Miss Shape (O) Spline 0 N (0, 1) (−∞,∞)
Optical Potential (C) Spline 0 Flat (0, 1)
Optical Potential (O) Spline 0 Flat (0, 1)

Pauli Blocking
Pauli Blocking (C, ν) Spline 0 N (0, 1) (−∞,∞)
Pauli Blocking (O, ν) Spline 0 N (0, 1) (−∞,∞)
Pauli Blocking (C, ν̄) Spline 0 N (0, 1) (−∞,∞)
Pauli Blocking (O, ν̄) Spline 0 N (0, 1) (−∞,∞)

2p2h and MEC
2p2h norm ν Norm 1 Flat (0,∞)
2p2h norm ν̄ Norm 1 Flat (0,∞)

2p2h norm C→O Norm 1 N (1, 0.2) (0,∞)
2p2h Edep low Eν Spline 1 Flat (0, 1)
2p2h Edep high Eν Spline 1 Flat (0, 1)
2p2h Edep low Eν̄ Spline 1 Flat (0, 1)
2p2h Edep high Eν̄ Spline 1 Flat (0, 1)

PNNN Shape Spline 0 N (0, 0.33) (−1, 1)
2p2h shape np (C) Spline 0 N (0, 3) (−1, 1)
2p2h shape NN (C) Spline 0 N (0, 3) (−1, 1)
2p2h shape np (O) Spline 0 N (0, 3) (−1, 1)
2p2h shape NN (O) Spline 0 N (0, 3) (−1, 1)

Single π Production
C5

A Spline 1.01 N (1.06, 0.1) (0,∞)
MRes

A Spline 0.95 N (1.3, 1.3) (0,∞)
Non-resonant I-1

2 bkg., low Pπ Spline 1.3 N (1.3, 1.3) (0,∞)
Non-resonant I-1

2 bkg. Spline 1.3 N (1.21, 0.27) (0,∞)
SPP π0 Norm νµ Norm 1 N (1, 0.3) (0,∞)
SPP π0 Norm ν̄µ Norm 1 N (1, 0.3) (0,∞)

Resonant π Production
RES Eb (C, νµ) Spline 0 N (25, 25) (0, 50)
RES Eb (O, νµ) Spline 0 N (25, 25) (0, 50)
RES Eb (C, ν̄µ) Spline 0 N (25, 25) (0, 50)
RES Eb (O, ν̄µ) Spline 0 N (25, 25) (0, 50)

Final State Interaction
π-FSI Quasi-Elastic Spline 1.069 N (1.069, 0.313) (0,∞)

π-FSI Quasi-Elastic, high Spline 1.824 N (1.069, 0.313) (0,∞)
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Systematic Type Generator Nominal Prior Range
π-FSI Inelastic Spline 1.002 N (1.002, 1.101) (0,∞)
π-FSI absorption Spline 1.404 N (1.404, 0.432) (0,∞)

π-FSI charge exchange Spline 0.697 N (0.697, 0.305) (0,∞)
π-FSI charge exchange, high Spline 1.8 N (1.8, 0) (0,∞)

Nucleon FSI Spline 0 N (0, 0.3) (−1, 1)
CC Coherent

CC Coh. Normalisation (C) Norm 1 N (1, 0.3) (0,∞)
CC Coh. Normalisation (O) Norm 1 N (1, 0.3) (0,∞)

CC Multi-π
Multi-π Multi TotXSec Spline 0 N (0, 0.3) (−∞,∞)

Multi-π BY Vector Spline 0 N (0, 0.3) (−∞,∞)
Multi-π BY Axial Spline 0 N (0, 0.3) (−∞,∞)

Multi-π Multi Shape Spline 0 N (0, 0.3) (−∞,∞)
CC BY DIS Spline 0 N (0, 1.0) (−∞,∞)

CC DIS Mult-π Norm ν Norm 1 N (1, 0.35) (0,∞)
CC DIS Mult-π Norm ν̄ Norm 1 N (1, 0.65) (0,∞)

CC Misc. Norms
CC Misc Norm 1 N (1, 1) (0,∞)

NC Norms
NC Coh. Norm 1 N (1, 1) (0,∞)
NC 1γ Norm 1 N (1, 1) (0,∞)

NC other near Norm 1 N (1, 0.3) (0,∞)
NC other far Norm 1 N (1, 0.3) (0,∞)

Coulomb Corrections
CC norm ν Norm 1 N (1, 0.02) (0,∞)
CC norm ν̄ Norm 1 N (1, 0.01) (0,∞)

Nue/Numu Uncertainty
νe νµ Norm 1 N (1, 0.0283) (0,∞)
ν̄e ν̄µ Norm 1 N (1, 0.0283) (0,∞)

Eb Systematics
EB dial (C, ν) Shift 0 N (2, 6.0) (−10, 15)
EB dial (C, ν̄) Shift 0 N (0, 6.0) (−10, 15)
EB dial (O, ν) Shift 0 N (4, 6.0) (−10, 15)
EB dial (O, ν̄) Shift 0 N (0, 6.0) (−10, 15)

α− q3 Shift 0 N (0, 1.0) (0, 1)

Table A.1: Summary table of cross-section systematic parameters grouped by interac-
tion type. Priors are either flat (the identity everywhere) or a normal distribution with
mean µ and error σ [N (µ, σ)]. And parameter responses are either functional (shift),
spline-based or normalisation-based.



Appendix B

T2K-only OA2023 data fit results

Overview
This section contains the remaining T2K only plots (no reactor constraint) from the
data fit detailed in chapter 4.

The following figures [Figs. B.2, B.1, B.3] detail the 1D posteriors from the T2K
only data fit. The 2D appearance and disappearance contours are shown in figures B.4
and B.5 respectively.
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Figure B.1: T2K-only data fit posteriors for ∆m2
32 (left) and sin2(θ13) (right).
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Figure B.2: T2K-only data fit showing δCP contour marginalised over normal ordering
(top left), inverted ordering (top right) and including steps in both orderings (bottom)
. In addition the PTheta MaCh3-Like contours are shown. These use the same sample

binning scheme as MaCh3 and are expected to agree far better than the standard
scheme.
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Figure B.3: T2K-only data fit showing sin2(θ23) contour marginalised over normal or-
dering (top left), inverted ordering (top right) and including steps in both orderings
(bottom)
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Figure B.4: Appearance contours from the T2K-only data fit marginalised over normal
ordering (top left), inverted ordering (top right) and without ordering based marginal-
isation (bottom)
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Figure B.5: Disappearance contours from the T2K-only data fit marginalised over
normal ordering (top left), inverted ordering (top right) and without ordering based
marginalisation (bottom)


	Declaration
	Introduction and Neutrino Physics Overview
	Proposal, Discovery, and The Solar Neutrino Problem
	Early Neutrino History
	Homestake and the Solar Neutrino Problem

	Neutrino Oscillations
	A Mathematical basis for Neutrino Oscillations
	CP Violation and 3-Flavour Oscillations
	Degeneracies in Neutrino Oscillations
	Oscillations in Matter

	Observations of Oscillation
	Atmospheric Oscillations and Super-Kamiokande
	Solar Oscillations and SNO

	Neutrino Mass
	The Weak Interaction
	Chirality and the Higgs Mechanism
	Alternative Mechanisms for Neutrino Mass Generation

	Modern Neutrino Physics
	What's Left to Discover?
	Reactor Experiments
	Astrophysical Experiments
	Accelerator Experiments
	Non-Oscillation Experiments
	Current Best Fit Values

	Description of Thesis Structure

	T2K and Hyper-Kamiokande
	The T2K Experiment
	Overview of T2K
	The J-PARC Beamline
	T2K Beamline, Target, Decay Pipe and Magnets
	Why Off-Axis?
	Muon Monitor
	Near Detectors
	INGRID
	ND280
	Super-Kamiokande

	Hyper-Kamiokande

	Bayesian MCMC
	What is Probability?
	Bayes Theorem and Bayesian Inference
	Practical Probability
	Introduction
	Frequentist Approach
	Bayesian Approach
	Comparison of Methods

	Monte Carlo Methods
	Markov Chains
	Overview of Convergent Markov Chains
	Stationary Distributions
	Markov Chain Central Limit Theorem

	Markov Chain Monte Carlo
	Metropolis Hastings
	Adaptive Metropolis Hastings
	Jumping Adaptive Metropolis Sampler

	Markov Chain Convergence Metrics
	Trace and Acceptance Rate
	Autocorrelation
	Burn-in

	Analysis of MCMC Fits
	Point Estimates and Posteriors
	Bayes Factors
	Uncertainties


	Oscillation Analyses at T2K
	Overview of the T2K Oscillation Program
	Data Inputs
	Far Detector Inputs
	Near Detector Inputs

	Systematics
	Cross-Section Model
	Improving the Cross-Section Spline Implementation
	Flux Systematics
	Detector Uncertainties

	MaCh3 MCMC Implementation
	2023 T2K Statistical Update
	Overview
	Validation

	Asimov Fits
	Introduction
	Asimov Fit Posteriors
	Comparisons with PTheta

	Data Fits
	Model Validation
	MaCh3 Posteriors
	The Jarlskog Invariant
	Comparisons to Previous Analyses
	Comparisons to PTheta

	Summary of Data Fits

	Sensitivity Studies for Hyper-Kamiokande
	Overview
	Fits using the 2018 T2K Model
	Overview of the 2018 Model
	Validation
	Initial Fits
	Bi-probability Plot in HK
	Initial HK Convergence Issues

	Fits using the 2020 T2K Model
	Initial Validation
	Fits with Assumed CP Conservation
	Alternative Hypotheses for Non-Convergence
	Fits with Fixed Mass Hierarchy

	Future Analyses

	MCMC Convergence
	Adaptive MCMC
	Re-Introduction to Adaptive MCMC

	Implementation in MaCh3
	Implementation Procedure
	Code Considerations

	Exploratory Fits
	Analysis Strategy
	Fit with Limited Systematics
	PCA
	Block Matrix Approach
	ND Only fits
	Problematic Parameters

	Summary and Future Prospects

	Summary
	Appendices
	T2K Cross-Section Systematics Model
	T2K-only OA2023 data fit results

