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Abstract

Building upon the investigation “A model of interacting quantum neurons with a dy-
namic synapse” by Torres and Manzano (2022) that explored the emergent behaviour
of a two-qubit quantum systems through biologically inspired qubit interaction, our
research introduces a significant extension.

We expand the original model to explore the behaviour of chains of qubits due
to biologically-inspired qubit interactions and integrate the full synaptic theory of
working memory into the quantum model. By analysing a three qubit-chain we show
that it is possible to dynamically modify the period of a chain of qubits originally set
up for perfect-state-transfer, and vary it over orders of magnitudes by using the in-
terplay between “depression” and “facilitation”. This translates into an interplay of
state localisation and delocalisation. We also track quantum correlations’ dynamics
via two different types of entanglement. With single-site entanglement, we investi-
gate how information flow across the chain is supported or impaired by the dynamics
induced by the biologically-inspired interactions; qubit-to-qubit entanglement will
be used to help shed light on the transfer of information between the chain’s ends,
as well as the possibility of creating and/or freezing useful entanglement. We also
expand the 3 qubits system to a chain on N qubits with some preliminary results
introduced in this thesis.

The results demonstrate a novel method for either accelerating or decelerating quan-
tum information transfer across a qubit chain, a very useful functionality in quan-
tum computing and other quantum devices. The different extensions to the original
2-qubits spin model and the parallel with biological systems contribute to the ex-
ploration of the behaviour of more complex chains of qubits, and more in general to
the understanding of quantum information systems.
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Chapter 1

Introduction

1.1 Motivation

I have always been interested in the workings of the human mind. To learn more
I worked towards a PhD in experimental psychology, with a focus on the study of
human memory. It provided me a good understanding of some cognitive processes
and started a passion for neuroscience and computation. Additionally, from a young
age I have been captivated by physics, particularly the quantum world. I now feel
that I can merge my two interests in these fields and help to build connections with
potential practical applications, such as in quantum technologies.

I want to emphasise that my focus does not lie in the exploration of the quantum
brain hypothesis and the topic of consciousness [27], even though a recent study
reveals that networks of tryptophan (Trp), an aromatic amino acid integral to the
construction of neurons, have been found to support robust quantum states in pro-
tein aggregates [7]. This is also an area worth investigating further. Instead, I am
eager to investigate how the knowledge I have acquired from studying the brain and
neuroscience (Fig. 1.1), can be applied to various quantum systems as represented
in Fig. 1.2.

One promising research avenue that has been suggested to me at the start of my
Master by my supervisor is the study of chains of qubits or “spin chains” and their
diverse properties. I am particularly intrigued by the potential for incorporating neu-
ronal properties into these systems and the implications this may have for quantum
information processing. By bridging the gap between neuroscience, computation,
and quantum physics, I hope to contribute some knowledge to these fields and see
how this could lead to practical applications or be tested in a laboratory setting.

1.2 Outline

This thesis is divided into 4 main chapters. Chapter 1 describes the general back-
ground necessary to understand my work, covering aspects of biophysics and quan-
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Figure 1.1: A single neuron (white) shown with 5,600 of the axons (blue) that
connect to it. The synapses that make these connections are shown in green.Credit:
Google Research and Lichtman Lab (Harvard University). Renderings by D. Berger
(Harvard University)

Figure 1.2: Neurons (left) and spin chain of qubits (right)
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tum spin chains and their applications. Chapter 2 looks deeper into analytical
content, for example, the working memory model, spin chains, perfect state transfer
and entanglement. Chapter 3 illustrates how we have replicated the study conducted
by Torres and Manzano[68]. This replication work helped me to build the founda-
tion for my own research. Chapter 4 discusses the contributions we added to their
model, which is the subject of a paper that we will submit to the APL Quantum
Journal. Finally, we mark the beginning of an implementation for a spin chain of N
qubits with preliminary results.

1.3 Biophysics

To contextualise the main theme of this thesis, I would like to explain why ideas
from Working Memory (WM) models are relevant, why a specific type of WM model
has been chosen, and how it will later be applied to the quantum domain.

1.3.1 Working memory definition

Working memory is the cognitive system that allows us to retain and manipulate
information over short periods of time [22]. It is considered a fundamental cognitive
process and is essential for a wide range of tasks, such as language comprehension,
learning, and reasoning.

The synaptic theory of working memory [48] proposes that this temporary storage
of information is accomplished through changes in the synaptic strength between
neurons. This is in contrast to older models [34] of working memory that suggest
that it is accomplished through persistent neuronal activity, see Fig. 1.3.

Figure 1.3: Neuron spikes or transient electrical impulses are represented by vertical
lines. The retrieval cue serves to facilitate the recall. Fuster’s experimental study
[34] provided important insights into the role of Prefrontal Cortex (PFC) neurons
in maintaining working memory across delays. However, the model did not directly
explain the mechanism behind the disrupted firing during the random gap periods
(in red). Hence other WM neural circuit mechanisms have been proposed. Figure
from [34].
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Specifically, the synaptic theory suggests that the activation of a specific mem-
ory trace, such as an image or a word, triggers a temporary strengthening of the
synapses between the neurons involved in that memory trace. This temporary synap-
tic strengthening allows the information to be retained for a short period of time,
even after the initial neuronal activity has ceased. A key advantage of the synaptic
theory is that it provides a mechanism for how working memory can be maintained
even in the face of distractors or other interference. Since the information is stored in
the synaptic weights, it is not easily disrupted by other neural activity. Importantly,
temporary synaptic strengthening is not just a theoretical construct; it is supported
by evidence from studies on synaptic plasticity, particularly in animal models and
neural tissue samples. Although observing this directly in a working human brain is
currently challenging, experimental research has shown that similar processes, such
as short-term potentiation (STP) and long-term potentiation (LTP), can occur in
real synapses [75].

The theory further suggests that the manipulation of information in working memory
is accomplished through the activation of specific patterns of strengthened synapses.
For example, one is asked to remember a list of words and then rearrange them in al-
phabetical order, this would involve first strengthening the synapses associated with
each word (retention) and then activating them in a new pattern (manipulation).

This idea builds on Hebb’s postulate - a theory in neuroscience which states that
if neuron A persistently takes part in firing neuron B, the synapses from A to B
are strengthened [49]. This strengthening of connections between neurons has been
observed to occur in real biological systems at both the cellular and molecular levels
[47].

For example, synaptic efficacy can be increased, which is measurable by an increase
in the amplitude or frequency of postsynaptic potentials in neuron B following presy-
naptic inputs from neuron A. Or structural changes, for example, an increase in the
number of receptor sites or the enlarging of the area of synaptic contact. Finally,
biochemical changes can include an increase in the release of neurotransmitters.
.Thus, the synaptic theory of working memory suggests that short-term memory
can be held in the synapses themselves, rather than through persistent activity.

Finally, it is important to note that the synaptic theory of working memory is a
relatively new theory and is still being researched.Experimental evidence supports
this theory, but more research is needed to fully understand the complexities of
working memory and the role of synaptic changes while other mechanisms are also
proposed [64], [25].

1.3.2 Synaptic transmission

To provide more insight that will lead to a mathematical model, we shall explain
more what is meant by synaptic transmission, as it is a key feature of the working
memory model.

There are two general forms of synaptic plasticity, intrinsic and extrinsic. Intrin-
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S1 S2

(A)

S1 S2

M

(B)

Figure 1.4: Illustration of homosynaptic mechanisms (A) and heterosynaptic (B)
mechanisms. S and M depict neurons.

sic mechanisms, also known as homosynaptic mechanisms, refers to changes in the
strength of a synapse that are brought about by its own activity, (Homo from the
Greek meaning the same). Extrinsic plasticity, or heterosynaptic plasticity, is a
change in the strength of a synapse brought about by activity in another path-
way. For the thesis we are working with homosynaptic mechanisms (facilitation and
depression), see Fig. 1.4.

Depending on the frequency of the stimulation at the pre-synapse the strength of
the synapse can remain the same, weaker or stronger just by changing the frequency
of activity. Networks of interconnected neurons operate will therefore depend on
the level of activity within the circuit.

The transmission of the information encoded in firing patterns of the neurons is
performed by the synapses to postsynaptic neurons through highly non-linear pro-
cesses. These include, among others, the biophysical processes that control the
trafficking and recycling of neurotransmitter molecules at the synapses and which
are responsible for the transmission of the electrical signals among interconnected
neurons.

To focus further there are two types of transmission. Short-term synaptic trans-
mission allows for rapid modulation of neuronal communication, while long-term
synaptic transmission mediates long-lasting changes in synaptic strength, enabling
learning, memory formation, and neural plasticity. Here we are concerned with
short-term synaptic transmission that occurs on a millisecond to minute timescale
[75].

Synaptic transmission at a spike-mediated chemical synapse begins when an action
potential from the presynaptic neuron invades the presynaptic terminal and activates
voltage-dependent calcium (Ca2+) channels, leading to a rise in the concentration
of Ca2+ within the terminal. The process is illustrated in Fig 1.5, this process leads
to a mathematical model described in the chapter 2.

12
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Figure 1.5: Visualisation of synaptic transmission from Simply Psychology,
n.d.(https://www.simplypsychology.org/synapse.html)

1.4 Quantum spin chains

In this section we briefly review the concept of spin chain to help to make the jump
between neuroscience and quantum systems. For detailed information on spin chains
we would recommend the book ”Quantum State Transfer and Network Engineering”
[57], as in-depth review.

1.4.1 Spin chains

Spin chains, which are linear arrays of interacting quantum spins, stand as an impor-
tant model for systems performing quantum information processing. These chains
are renowned for their ability to smoothly transfer quantum information along their
entire length, a key feature for quantum communication [13]. Additionally, Spin
chains are instrumental in generating and distributing quantum entanglement[58],
which plays an important role in quantum technologies [29].

Traditionally, gate-based systems often need complicated control, such as the tog-
gling of connections between qubits. However, spin chains differ because of their
operational simplicity and can bypass such requirements of qubit toggling. Spin
chains can achieve this through the internal dynamics of the system, operating un-
der the system natural Hamiltonian. This approach prevents errors from happening
during frequent switching and reduces complications.

Physical implementations of quantum information processing are diverse, with each
having unique characteristics and applications. Spin chains can be realized through
various solid-state experimental platforms. For instance, quantum dots [46],[19],
which are nanoscale semiconductor particles [23], or ions trapped in electromagnetic
fields [16], can be viewed through the lens of spin chains. Other notable examples
include superconducting qubits [8], used in quantum circuits, and optical wave-
guides [12], which guide light and can be coupled to function as quantum systems.

13
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A B

Figure 1.6: A general linear spin chain acting as a quantum bus between registers
A and B. Here the circle represents the quantum spin, the segments between the
circles represent the interactions. The transfer of a quantum state over a spin chain
implies that the state that sits at one site is reliably transferred to another site of
the chain.

1.4.2 Example of spin chains as quantum buses

Quantum computers, like their classical counterparts, require buses for data transfer
without losing coherence. However, photonics presents challenges for short-range
communication due to the need for conversion between solid-state qubits and light.
Spin chains, originally proposed by Heisenberg [38], have been extensively reviewed
in recent years, for example by Bose [13]. Others offer a promising alternative for
quantum data buses by allowing data transfer with minimal external control and
compatibility with solid-state qubits, mitigating the limitations of photon-based
transmission [51].

The use of solid-state qubit chains as data buses hinges on the ability to transfer
quantum states between sites with minimal external control. Various strategies
focus on achieving what is called ’perfect state transfer’ (PST) [45], exploring its
effectiveness and examining the robustness of spin systems for the transfer of data.
Fig. 1.6 is an example of a spin chain acting as bus between registers. More details
are discussed in chapter 2 on PST and spin chain implementation.

1.5 Quantum systems with biologically-inspired

qubits

Drawing inspiration from the field of neuroscience can significantly enrich quantum
information research. In neuroscience, the modeling of neural systems often involves
binary neurons with simplistic interactions between these units [67], which can be
analogously represented by classical bits in a system. Yet, in classical neural net-
works and biological neural population models, an essential element emerges: the
synapses. These are vital for the transmission of information encoded in the neu-
rons’ firing patterns. The process is highly nonlinear, involving complex biophysical
processes like the trafficking and recycling of neurotransmitter molecules at the
synapses, crucial for electrical signal transmission among interconnected neurons.

To conclude this overview, some literature on similar work where quantum design
is inspired by neuroscience can be highlighted. Specifically chosen for survey are
studies found most relevant to the thesis, assessing the current state of the field.
The article by Torres and Manzano [68], which utilises dynamic synapses in the

14
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implementation of 2 interconnected qubits and serves as an inspiration, is also pre-
sented in more detail during the mathematical model introduction and the study
replication in Chapter 2 and 3, respectively.

A model of interacting quantum neurons with a dynamic synapse [68]

In this study, the authors investigate the behavior of quantum systems with qubit in-
teractions inspired by neuroscience. Using a minimal model of two interacting qubits
and activity-dependent dynamic interplay similar to classical dynamic synapses,
they examine the effects of synaptic depression on the quantum system. Their
findings show that without synaptic depression, the system exhibits typical Rabi
oscillations, which decrease in frequency when synaptic depression is introduced,
allowing excitations to be trapped for extended periods. The presence of synaptic
depression also results in long-term entanglement between the qubits. The authors
propose an experimental setup to validate these findings, suggesting that the results
can be replicated in a laboratory setting. One of their motivations is to apply this
work to Quantum Neural Networks (QNN)[1].

Additional noteworthy research in the intersection of quantum mechanics and neu-
roscience should be acknowledged:

Quantized single-ion-channel Hodgkin-Huxley model for quantum neu-
rons [35]

The Hodgkin-Huxley model represents neuronal cell membrane behavior using elec-
trical circuit elements. A simplified version of this model focuses on the potassium
ion activation channel. By exploring a quantized Hodgkin-Huxley model based
on quantum-memristor formalism, researchers compared membrane voltage and
potassium-channel conductance behavior in both classical and quantum realms. The
study found expected adaptations in channel conductance and discovered quantum
features related to the circuit’s zero-point energy. This research could enable the
development of quantum neuron networks and neuromorphic quantum architectures
for quantum machine learning applications.

An artificial neuron implemented on an actual quantum processor [67]

The study introduces a quantum information-based algorithm implementing a binary-
valued perceptron for artificial neural networks, offering exponential advantage in
storage resources. Researchers tested this model on a small-scale quantum proces-
sor, obtaining results consistent with expectations. The quantum perceptron can be
trained using a hybrid quantum-classical scheme with a modified perceptron update
rule, enabling it to classify simple patterns. This development serves as a first step
towards practical quantum neural networks efficiently implemented on near-term
quantum processing hardware.

An artificial spiking quantum neuron [42]

The study presents an artificial quantum spiking neuron that utilizes the dynamic
evolution of two Hamiltonians and local measurements. This architecture takes
advantage of complex amplitudes and measurement back-action to influence input,
offering benefits when both input and output are quantum states. The approach is
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demonstrated through the classification of Bell pairs. By stacking these elementary
building blocks into larger networks, the spatiotemporal features of a spiking neural
network are combined with non-local quantum correlations across the graph.

Modeling neuronal systems as an open quantum system [66]

A physical model is proposed to study neuron interactions by considering the mate-
rials surrounding neuronal cell bodies, such as dendrites, axons, synapses, and glial
cells. This model is based on a continuous distribution of oscillating modes and uses
the master equation approach from open quantum systems to analyze the dynamics.
The model demonstrates the potential to generate random neuron-neuron interac-
tions and may provide insights into the process of information transmission in the
nervous system.

The papers reviewed represent an interdisciplinary effort to bridge classical neu-
roscience models with quantum mechanics. A central theme is the exploration of
quantum mechanical counterparts or implementations of classical models, such as
the Hodgkin-Huxley model, perceptrons, and spiking neural networks. This al-
lows researchers to investigate the potential advantages and unique features that
the modeling of neuronal systems and neural networks could offer for quantum
systems. While some studies propose theoretical models, there is also a push to-
wards experimentally validating these quantum neuronal systems and demonstrating
their practical implementation, including testing on actual quantum processors [67],
and exploring hybrid quantum-classical training schemes. Additionally, at least one
study explores modeling neuronal systems as open quantum systems [66], taking
into account interactions with the surrounding environment, aiming to capture the
dynamics of information transmission in the nervous system from a quantum per-
spective.
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Chapter 2

Mathematical models

2.1 Synaptic theory - facilitation and depression

This section discusses a minimal phenomenological model developed to mathemati-
cally represent the synaptic processes of depression and facilitation within the same
synapse. There is also a simpler model, still based on the same approach, where
depression or facilitation are described separately [2].

The phenomena of facilitation and depression in the synapses helps to understand
the working memory model discussed previously and how short-term memories can
be maintained without persistent activity.

Fig.2.1 depicts different types of synapses in the prefrontal cortex of a mouse.
Some exhibit fast weakening or synaptic depression (E2a), while others exhibit fast
strengthening or synaptic facilitation (E1b). Most importantly for the depression,
the progressive decrease in spike amplitudes during repeated stimulation, or facili-
tation, the progressive increase in spikes does not disappear immediately; after half
a second, the synapse is regaining its ability to release neurotransmitters effectively
fully or is only partially recovered in some instance (E3b). The timescale of single
seconds is necessary for working memory and his represented on the x axis.

For example, if there is a certain burst of activity in the neuron, even if it terminates
for a certain time, the synapse still carries the information about the event. When
the synapse is probed at a later stage after a new spike at the presynaptic neuron
arrives, the information persists. For the information to disappear, one will need to
wait a longer time.

The seminal paper [48] presents a simple phenomenological model based on these
biophysical principles which fits the evoked postsynaptic responses observed on cor-
tical neurons.

The mathematical model includes two kinetic processes for the same synapse, one
responsible for depression (shown in blue) and another for facilitation (shown in red),
sketched in Fig. 2.2. Depression is mediated by the release of neurotransmitters,
while facilitation is physically mediated by the influx of calcium into the presynaptic
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Figure 2.1: Post-synaptic responses in the cortical neurons of a mouse to a high
frequency pulse of action potentials in the presynaptic neurons. On the x axis is
time. Figure from [72].

terminal. These processes are described by their respective kinetic equations, with
time constants for synaptic facilitation and depression as key parameters. By ma-
nipulating these parameters, the model can reproduce the rich synaptic processes
observed in the brain as depicted in Fig. 2.1.

The synaptic facilitation process is modeled using the dynamic variable u (if u = U is
constant we would only have depression). The release probability of neurotransmit-
ters is increased by the influx of calcium ions into the presynaptic terminal during a
spike, see processes in Fig. 1.5. The dynamic variable u represents the instantaneous
release probability, which increases with calcium influx and then decays over time
with a characteristic time τf . Here, U represents the baseline release probability.

The synaptic depression process is modeled using the dynamic variable r. When
a presynaptic neuron fires a spike, a fraction u of the available neurotransmitter
is released. After release, the neurotransmitter resources are depleted, and they
recover over time with a characteristic time τd, this corresponds to the processes in
Fig. 1.5.

These two competing processes, depression and facilitation, can be adjusted by
manipulating the time constants τd and τf , which influence the behavior of synapses
according to

dr

dt
=

1− r
τd
− urδ(t− tsp) (2.1)

du

dt
=
U − u
τf

+ U(1− u)δ(t− tsp) (2.2)

By solving these equations for r and u, the model can reproduce the richness of
synaptic processes observed in the brain, such as retrieving memory when the model
is part of a neural network [48].

Appendix A provides a derivation of the equations used in this thesis from the
original model presented in [37].

18
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Figure 2.2: Kinetic scheme of the interplay between facilitation (blue) and depression
(red). Here: τf (τd) is the facilitation (depression) characteristic time; u represents
the instantaneous release probability (fraction of resources used after each spike)
represented by the release of neurotransmitters process labeled 6 and 7 in Fig.1.5; r
is the neurotransmitter recovery dynamics illustrated with 2,3,4,5 in Fig.1.5 and U
is the baseline neurotransmitter release probability.

2.1.1 Summary of short-term synaptic plasticity

For a quick overview, the two competing processes of depression and facilitation are
summarised in a table below.

Process Description Key Parameters Role
Synaptic
Depression

Guided by the release of
neurotransmitters. Post-
release, these neurotrans-
mitters cannot be immedi-
ately replenished.

u (Neurotransmitter
utilisation)
τd (Time constant
for depression)

Dictates the pace of
neurotransmitter
replenishment after
release, and also acts
as an indicator of the
depression strength.

Synaptic
Facilitation

Influenced by the calcium
influx into the presynap-
tic terminal. A spike
in the presynaptic neuron
boosts the neurotransmitter
release probability.

u (Neurotransmitter
utilisation)
τf (Time constant for
facilitation)

Augments neurotrans-
mitter usage rate,
thereby amplifying
the neurotransmit-
ter release potential
where elevated Ca2+
levels enhance the
release of neurotrans-
mitters.
Regulates the decay
rate of facilitation
effects post-spike.

Table 2.1: Summary of synaptic depression and facilitation
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2.2 Quantum spin chains - mathematical model

In this section we explain a few important concepts related to working with quantum
mechanics and spin chains. These include descriptions of what is a spin, what a qubit
represents, how to build an Hamiltonian, the concept of entanglement, and finally,
perfect state transfer.

2.2.1 What is a spin?

Spin is a fundamental property of particles, like mass or charge. It describes the in-
trinsic angular momentum of a particle, which is a form of momentum that particles
possess even when they are not moving in space. Unlike other types of angular mo-
mentum, spin does not have a classical analogue; it is a purely quantum mechanical
phenomenon. The concept of spin applied to quantum mechanics was discovered in
1925 by two Dutch physicists, George Uhlenbeck and Samuel Goudsmit [14, p. 37].

Spin is quantized, meaning it can only take certain discrete values. For subatomic
particles like electrons, protons, and neutrons, the spin is 1

2
(in units of the reduced

Planck’s constant ℏ). This quantum number can take two projections along any
axis: +1

2
or −1

2
, commonly referred to as “spin up” and “spin down”.

For enthusiasts of spin dynamics (rotation) in classical mechanics, there is a recently
popular book (2023) titled “The Science of Spin: The Force Behind Everything –
From Falling Cats to Jet Engines” that explores the scientific principles of spin [28].
Even more recently another new book (2024) ”The Wonder of Quantum Spin” is
more focused on the history and the science of quantum spin [62].

2.2.2 What is a qubit?

Bits serve as the fundamental units of information in classical computing, repre-
sented by any two-state device that can signify 0 or 1, positive or negative, true or
false. In each case, a bit is well-defined to one of these two states. Drawing a paral-
lel from biology, neurons function similarly, firing or not firing in a distinct binary
pattern. However, diverging from this binary norm, quantum mechanics introduces
the possibility for a two-level quantum system to exist in a state of superposition, a
linear combination of its two potential states. This unique characteristic forms the
basis of the qubit, the quantum computing counterpart to the classical bit. The term
“qubit” itself is attributed to Benjamin Schumacher, who introduced it in 1995:

“For our elementary coding system we choose the two level spin system,
which we will call a ‘quantum bit’ or qubit. The qubit will be our
fundamental unit of quantum information...” [63, p. 51].

In traditional digital computing, we define the two states of a bit as 0 and 1. Sim-
ilarly, in quantum computing, the states of a qubit are represented as |0⟩ and |1⟩.

20



Qubit chains’ emergent behaviour from biologically-inspired dynamics

These states form what is known as the computational basis, consisting of orthonor-
mal vectors. Any qubit can therefore be described by the equation

|ψ⟩ = α|0⟩+ β|1⟩, (2.3)

where α and β are complex coefficients. The squared magnitudes of these coeffi-
cients, |α|2 and |β|2, correspond to the probabilities of finding the qubit in the state
|0⟩ and |1⟩, respectively. To ensure these probabilities correctly sum to one, the
qubit state must always adhere to the normalization condition

|α|2 + |β|2 = 1. (2.4)

In quantum computing, the spin 1
2
of particles can be used to represent qubits.

There is a mathematical equivalence between a qubit and and a spin 1
2
. The two

spin states
(
+1

2

)
and

(
−1

2

)
along a selected axis (often the z-axis in physics) can

correspond to the qubit states |0⟩ and |1⟩. This makes physical spins, for example
of electrons an excellent physical candidate for implementing qubits in quantum
computers.

The computational basis is fundamental to quantum computing, serving as the
primary framework for representing quantum states, performing calculations, and
measuring qubits. To note that the basis in which one chooses to measure will
depend on the physical system and the protocol one wish to implement. For example,
in quantum algorithms, one might use the Bell basis or the Hadamard basis.

For a single qubit, we have chosen the following basis |1⟩ =
[
0
1

]
and |0⟩ =

[
1
0

]
Where |1⟩ is associated with the“on” or one state, analogous to the classical bit
value of 1 and |0⟩ represents the “off” or zero state in quantum computations. It
corresponds to the classical bit value of 0.

2.2.3 Quantum Hamiltonian

In quantum mechanics, the Hamiltonian H is an operator that encodes the total
energy of a quantum system into its mathematical description. The Hamiltonian can
include kinetic energy, potential energy, and interactions between particles within
the system, depending on the complexity and nature of the system being studied
[14, p. 85].

We consider in this thesis a linear spin chains with nearest-neighbor interactions, as
described by the time-dependent XY-Hamiltonian

HXY =
1

2

N−1∑
i=1

Ωi,i+1(t)
(
σi
xσ

i+1
x + σi

yσ
i+1
y

)
+

N∑
i=1

ϵi
2

(
σi
z + 1

)
, (2.5)
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where N is the total number of spins (qubits) and σi
x , σ

i
y , σ

i
z are the Pauli operators

acting on spin i. With σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
.

Here Ωi,i+1 is the interaction strength between nearby spins and it is time dependent.
The second term on the right hand side represents the energy contributions from the
z-components of the spins across the system, potentially under the influence of an
external field or inherent material heterogeneity. The energy is time independent.

2.2.4 Entanglement

Entanglement stands out as the quintessential “non-classical” characteristic of quan-
tum physics, laying the foundation for a host of innovative quantum applications.
The first theoretical focus was discussed by Albert Einstein, Boris Podolsky, and
Nathan Rosen, commonly referred to as the EPR paper in 1935:

“Thus, by measuring either A or B we are in a position to predict with
certainty, and without in any way disturbing the second system, either
the value of the quantity P (that is pk) or the value of the quantity Q
(that is qr).” [26, p. 780].

It acts as the essential component for teleportation [70], drives the functionality of
measurement-based quantum processing and computing where entanglement serves
as a resource [15], offers methods for secure communications [20], and enhances our
sensing and measurement capabilities beyond the limitations of traditional instru-
ments [32]. On a more entertaining note, entanglement is also depicted in science
fiction programs, for example, in the recent (2023) Netflix hit “The Three-Body
Problem”, where an alien civilisation spies on humans using quantum entanglement
[43].

When discussing entanglement in the context of quantum mechanics, another useful
concept to introduce is the density matrix formalism. In principle, one can calculate
everything in quantum mechanics using state vectors (pure states). However, there
are some quantum experiments for which no single state vector can give a complete
description (e.g. because of randomness or imperfections in experimental device).
Hence a more useful formalism can help in these cases. This is called the density
matrix or density operator formalism. Under this general description, any quantum
system can be described. The formal definition is the sum of the projectors for each
relevant pure state, weighted by their respective probabilities

ρ =
n∑

i=1

pi |ψi⟩ ⟨ψi| , (2.6)

where pi the classical probability of finding the system in the pure state |ψi⟩ and
with the fulfillment of the normalisation condition

∑
j pi = 1.

In this thesis the overall state of the spin chain is a pure state. If the state of the
quantum system is fully known the system is in a pure state (tr (ρ2) = 1). In our

22



Qubit chains’ emergent behaviour from biologically-inspired dynamics

case a bipartite pure state describes a system composed of two subsystems, A and
B. A pure state of the combined system is represented by a vector |ψ⟩ in the tensor
product Hilbert space HA ⊗HB. The state is considered entangled if it cannot be
written as a product of states of the individual subsystems.

We will regard negativity as an indicator of entanglement between tow two subsys-
tems. For an n -qubit system represented by a density matrix ρ, the generalized
negativity [71] N(ρ) is defined as

N(ρ) =
1

2

(∑
i

|λi| − 1

)
, (2.7)

where, λi represent the eigenvalues of the partial transpose ρ
Γ of the density matrix

ρ, with respect to one part of the system [56]. This could be any bipartite division
of the n-qubit system into k qubits and n − k qubits. A non-zero value of N(ρ)
indicates entanglement between the chosen partitions of the system.

Given a chain of qubits it is possible to consider different types of partition and
hence compute different types of entanglement, two of which are detailed below.

Single site entanglement

In this type of bi-partite entanglement, the chain is partitioned into one qubit and
the rest of the chain. When calculating the corresponding negativity for qubit Q,
NQ

ss(ρ) from Eq. (2.7), the density matrix ρ will represents the whole qubit chain
but ρΓ identifies the partition. This partition can be iterated along all qubits in the
chain to observe how this entanglement changes across the chain. In a dynamical
system, the time evolution of the single-site entanglement may help to understand
the quantum correlation flow along the chain, related to the system state evolution
and hence the flow of information.

This entanglement isolates the qubit to be analysed and look at the correlation with
the rest of the qubits, as sketched for a chain of 3 qubits in Fig. 2.3.

Figure 2.3: Bipartite splits for a single site entanglement between the three qubits
Q1, Q2 and Q3.

Qubit-qubit entanglement

Here the degrees of freedome of all qubits except two are traced out. The negativity
Nqq(ρ) between the two remaining qubits is then calculated from Eq.(2.7) using the
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reduced density matrix. In this thesis, we will consider the entanglement between
the two qubits at opposite ends of the chain. This can indicate how the chain dy-
namics either facilitate or hinder the potential for information transfer between the
chain’s extremities. Understanding these dynamics can be used for the optimisation
of short-distance quantum communication protocols [73], creating and/or freezing
useful entanglement [24], two-qubit gating [17], and to enhance the reliability and
efficiency of quantum networks [29]-[59].

2.2.5 Perfect State Transfer

Another key concept explored in this thesis is Perfect State Transfer (PST).

Spin chains and networks hold promise as quantum data buses, but uniform coupling
schemes have scalability limitations for example decay of fidelity (see e.g. [31]). To
address this, various spin chain designs have been developed that enable efficient
state transport over any chain length [6]-[29]-[59]-[30]-[5]-[53]-[45]-[52]-[18]. When
these designs achieve perfect state transfer, meaning the transfer fidelity is per-
fect, they are particularly effective [41]-[4]-[50]. Fidelity is a way for measuring the
proximity between states and is critical for understanding how successfully quan-
tum information is transmitted [9]. It calculates the overlap of an evolved initial
state |ψ(0)⟩ with a desirable state |ψdes⟩ at later time t [6] and is given for time
independent Hamiltonian as

F (t) =
∣∣〈ψdes

∣∣e−iHt
∣∣ψ(0)〉∣∣2 . (2.8)

PST is achieved in a quantum system when a quantum state initially localised at
one site A can be transferred with unit probability to another site B after a certain
time t. Mathematically, this means that the transition amplitude between these two
sites, denoted as FAB(t) =

〈
ψdes

∣∣e−iHt
∣∣ψ(0)〉, should have an absolute value of 1

at some time t, ensuring that the state initially at A is perfectly transferred to B
without any loss of information.

High-fidelity quantum state transfer can be achieved through various engineered
methods. These include applying local magnetic fields [44] or wave-packet encoding
[53]. Additionally, one of the most effective approaches is engineering the inter-
actions between spins to facilitate PST for example vary the coupling strengths
between adjacent spins in the chain [21]-[41].

In this thesis fidelity is not computed and a more extensive overview can be found
in other works [29]. Specifically, the paper [21], investigate the necessary condition
for the problem in the case of graphs with mirror symmetry, and the limitations of
transfer in chains with uniform couplings.

Q1 Q2 Q3 Q4 QN−1 QN

Figure 2.4: Six-qubits chain with excitation on Q1.
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Figure 2.5: Occupation probabilities for the single site on the y axis (PE) vs time
for a spin-chain dynamics of 3 qubits. There is a perfect state transfer between Q1

and Q3. There is mirror symmetry, the graph is identical from the points of view of
Q1 and Q3.

For uniform coupling it has been shown [21] that for N = 2 and N = 3 qubits,
a perfect state transfer is achieved, but not for N ⩾ 4. To achieve perfect state
transfer for N ⩾ 4, one must add a condition proposed in [21] and [50], where the
N − 1 interactions of an N-sites linear chain are defined as

Ωi,i+1 = Ω0

√
i(N − i), (2.9)

with i being the site number. and Ω0 = 2Ωmax/N for even length chains and
Ω0 = 2Ωmax/N

√
1− 1/N2 for odd chains. Ωi+1 is the coupling value between nearby

spins (energy).

In summary, the expressions for FAB(t) for N = 2 and N = 3 described in more
details in [21] demonstrate PST because they can reach an absolute value of 1
at specific times, indicating that a quantum state can be transferred with unit
probability across the chain. For larger chains (N ⩾ 4), achieving such precise
conditions becomes increasingly difficult, leading to the conclusion that PST is not
generally possible without certain conditions. In [21] the authors discussed the
limitations for perfect communication of a uniformly coupled chain and proposed a
proof by contradiction.

This PST condition can also be demonstrated with a simulation, see Fig. 2.5 with a
spin chain for N=3 qubits. If the condition Eq. (2.9) is not implemented there is no
perfect state transfer (Fig. 2.6), the fact that none of the curves remain consistently
at 1 or 0 (indicating perfect transfer) suggests that there is no PST.
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Figure 2.6: Occupation probabilities PE for a spin-chain dynamics of 4 qubits. It
can be noticed that there is no perfect state transfer between Q1 (blue) and Q4

(red), the condition for PST described in Eq. (2.9) is not implemented in this case.
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Chapter 3

Replication of Torres and
Manzano’s results

3.1 Introduction

This chapter discusses how we reproduced relevant results in the paper of Torres,
J.J., Manzano, D.: A model of interacting quantum neurons with a dynamic synapse.
New J. Phys. 24, 073007 (2022).

Inspired by neuroscience, their work investigates the emergent behavior of quantum
systems with biologically-inspired qubit interactions. Using a minimal model of two
interacting qubits with activity-dependent dynamics similar to classical synaptic
depression, they observe that without synaptic depression, the system shows typical
Rabi oscillations. However, when introducing synaptic depression the oscillation
frequency is reduced, allowing excitations to be trapped for extended periods and
creating a population imbalance between the qubits. This imbalance is sustained by
a small energy shift, that leads to long-term entanglement between the qubits. They
also propose an experimental setup, suggesting that the findings are achievable in
a laboratory [68]. Their results do not include synaptic facilitation, which is a key
component of the synaptic theory of working memory described earlier.

3.2 Preliminary results

The first task for this thesis was to replicate the previous study before progressing
to a more complex quantum system. This required learning the analytical and com-
putational aspects of spin chains. Specifically, the initial work was to write a small
program to solve the dynamics of an excitation in a trimer (a 3-site chain). This
involved solving the time evolution of the system governed by the time-dependent
Schrödinger equation, with a focus on using temporal discretization (Euler method)
for time-integration.

This initial step helped in learning and reacquainting with coding and quantum
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physics. Results from the small exercise were replicated using the Runge-Kutta
methods, a family of iterative methods used for the approximate solution of ordinary
differential equations. The fourth-order method (RK4) is most commonly used due
to its good balance between accuracy and computational intensity.

The next step of the journey was to attempt to model a 2-qubit system to compute
the excitation probability of a qubit using the same formalism, as Torres and Man-
zano’s paper. To do so the evolution of the density matrix was tracked, specifically
the diagonal elements which represent the probability of the system being in each
of the site basis states. For example, ρ(t) is obtained through numerical integration
(using the Runge-Kutta 4th order method) of the system’s dynamics, governed by
the Liouville-von Neumann equation.

Finally, the qubit dynamics were integrated into the system with depression only,
using the same paramter values as in the paper.

3.3 Methods

Based on the descriptions in the quantum, section 2.2, and the synaptic theory,
section 2.1, the same Hamiltonian Eq. 4.1 was used with an added time dependency
for the interaction strength between the two-qubits.

Q1 Q2

Figure 3.1: Sketch of a 2 qubits chain with single-qubit excitation on the first qubit
(pink shade). This is the initial state.

Let’s first examine the following time independent Hamiltonian for two non-interacting
qubits without on-site energy contribution

H =
1

2
Ω12

(
σ1
xσ

2
x + σ1

yσ
2
y

)
. (3.1)

One can rewrite the Hamiltonian in a matrix notation, that will be used later for
computational purpose.

Consider the following expressions for the Pauli matrices

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
;

Then, from Eq. (3.1) we have

H =
1

2
Ω12

[(
0 1
1 0

)
⊗
(

0 1
1 0

)
+

(
0 −i
i 0

)
⊗
(

0 −i
i 0

)]
(3.2)
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H =
1

2
Ω12




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




H =
1

2
Ω12


0 0 0 0
0 0 2 0
0 2 0 0
0 0 0 0

 = Ω12


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (3.3)

In the paper [68] they considered the following Hamiltonian with adding the time
dependency

H(t) = ϵ1σ
1
z + ϵ2σ

2
z +

1

2
Ω12r(t)

(
σ1
xσ

2
x + σ1

yσ
2
y

)
, (3.4)

where the time dependency of the hopping parameter is related to the synaptic
depression Eq. (2.1) as

Ωi,i+1(t) = Ωi,i+1r(t). (3.5)

The time dependent Hamiltonian for symmetric and asymmetric case for 2 qubits
can now be written as ϵ1 = 0 and ϵ2 = 0 and ϵ1 = 0 and ϵ2 = 0.1 respectively.

The Hamiltonian is symmetric with respect to the center of the chain (axis of sym-
metry) and has coupling with the same onsite energy, and it reads

H1(t) =


0 0 0 0
0 0 Ω12r(t) 0
0 Ω12r(t) 0 0
0 0 0 0

 . (3.6)

Asymmetry is represented by different onsite energy and symmetric coupling, that
is

H2(t) =


0 0 0 0
0 0.1 Ω12r(t) 0
0 Ω12r(t) −0.1 0
0 0 0 0

 . (3.7)

Here Ωi,i+1 is the interaction strength between nearby spins, and r(t) is the dynamic
applied to the system in the context of depression, Eq. (2.1).

In [68] the authors are interested in how depression only may alter information
transfer between the two qubits. A site-independent on-site energies with ϵi = 0 can
be regarded as the “perfect wire” for quantum data transmission. By randomising
the value of onsite energy ϵ these type of chains are ideal for studying transport
deterioration like Anderson localization [61].
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3.3.1 Quantum version of the Tsodyks–Markrammodel: uni-
tary dynamics

A quantum version of the Tsodyks–Markram model [48] is implemented, where
depression r(t) drive the time-dependent dynamics of the system Hamiltonian.

The equations determining the system dynamics are given by

dρ(t)

dt
= −i[H(t), ρ(t)] (3.8)

dr(t)

dt
=

1− r(t)
τd

− Ur(t)
〈
σ+
1 σ

−
1

〉
(t) (3.9)

Eq. (3.9) mimic the original classical model with the difference that the spikes in
the depression dynamics are now driven by the population of qubit 1,

〈
σ+
1 σ

−
1

〉
.

We consider a qubit to be ’excited’ when it is in state |1⟩ =
[
0
1

]
= | ↑⟩. We then

track the i-th qubit excitation probability using

PE,Qi = ⟨1i|ρ(t)|1i⟩, (3.10)

where |1i⟩ is a shorthand for a state with the i-th qubit in state |1⟩, and all other

qubits in state |0⟩ =
[
1
0

]
= | ↓⟩. The numerical integration of the system’s dynamics

is done using the Runge-Kutta 4th order method.

3.4 Results

In this section, the results of Torres and Manzano are presented using their original
graphics, followed by the replication of occupation probabilities and entanglement.
Our results closely align with their original findings.

The first two figures show the occupation probability. The first figure 3.2 presents
the results from the paper, and the second figure 3.3 shows my simulation results.

The last two figures show the negativity. The figure 3.4 presents the results from
the paper, and the second figure 3.5 shows my simulation results.

3.5 Discussion

In this study, only the results for occupation probability and negativity for both
symmetric and asymmetric cases with the Hamiltonian described in Eq. (3.6) and
Eq. (3.7) were reproduced. However, some mismatches were found. In certain
instances, to achieve the appropriate results presented in the replication study, some
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Figure 3.2: Torres and Manzano’s results for occupation probability. Effect
of dynamic synapses in an ideal two interacting qubits system. From top to bottom
the level of synaptic depression in the system is decreased using, respectively, τd =
500, 100, 10, 0.001. Other parameter values are U = 0.5, Ω = 0.05. In the left
panel it is shown the time dependence of the population (green line) of the first
qubit as well as the Hamiltonian time-dependent parameter r(t) (purple line) for a
symmetric system. In the right panel there is an on-site energy imbalance ϵ1 = 0
and ϵ2 = 0.1. Time given in natural units where ℏ = c = 1. Figures taken from [68],
with permission granted by the author.
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Figure 3.3: Replication of the effect of dynamic synapses in an ideal two interacting
qubits system. From top to bottom the level of synaptic depression in the system
is decreased using, respectively, τd = 500, 100, 10, 0.001. Other parameter values are
U = 0.5, Ω = 0.05, δt = 0.01 and Ω = 0.1 for τd = 100. In the left panel it is shown
the time dependence of the population (green line) of the first qubit as well as the
Hamiltonian time-dependent parameter r(t) (purple line) for a symmetric system.
In the right panel there is an on-site energy imbalance ϵ1 = 0 and ϵ2 = 0.1, but for
τd = 0.001 we have set ϵ2 = 0.05.
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Figure 3.4: Torres and Manzano’s results for negativity: Negativity of the
systems as function of time. From top to bottom the level of synaptic depression in
the system is decreased using, respectively, τd = 500, 100, 10, 0.001. In the left panel
it is shown for a symmetric Hamiltonian. In the right panel there is an on-site energy
imbalance ϵ1 = 0 and ϵ2 = 0.1. Other parameter values are U = 0.5, Ω = 0.05. Be
aware of the different time scales of the plots. Figures taken from [68].

parameters had to be altered. Specifically, for both occupation probability and
negativity, the value of Ω was changed to 0.1 for τd = 100 in both symmetric and
asymmetric cases.

One of the authors of [68] on February 4th, 2023, and May 2nd, 2024 was contacted,
a response was received but there was no mention of the mismatches. Since this
was not the main focus, the issue was not pursued further. Several checks on the
computer code have been run and with the correct Hamiltonian, and no errors were
found. We therefore decided to proceed to expand the study.
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Figure 3.5: Replication: Negativity of the system as a function of time. From
top to bottom the level of synaptic depression in the system is decreased using,
respectively, τd = 500, 100, 10, 0.001. In the left panel it is shown for a symmetric
Hamiltonian for ϵ1 = 0, ϵ2 = 0. In the right panel there is an on-site energy
imbalance ϵ1 = 0 and ϵ2 = 0.1. Other parameter values are U = 0.5, Ω = 0.05 and
Ω = 0.1 for τd = 100, δt = 0.01.
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Chapter 4

Depression and facilitation in a
longer spin chain

In this chapter, we first expand the model to a spin chain of three qubits. We
further explore dynamics and entanglement for depression and symmetric cases.
Importantly, we examine the impact of using the occupation probability of different
qubits to drive non-linear dynamics and adding facilitation to the model. We present
a cohesive series of results exploring the dynamics of a 3-qubit spin chain. Finally,
we present preliminary results for chains of N > 3 qubits.

4.1 Hamiltonian for 3 qubits

Q1 Q2 Q3

Figure 4.1: Three-qubits chain with excitation on Q1 (pink shade).

We choose the XY model to describe the spin chain as

HXY =
1

2

N−1∑
i=1

Ωi,i+1r(t)
(
σi
xσ

i+1
x + σi

yσ
i+1
y

)
, (4.1)

where Ωi,i+1 is the interaction strength between nearby spins and r(t) is the depres-
sion term.

Our focus first begins with the effect of depression dynamics, setting a baseline for
subsequent analyses. We then extend our investigation to single-site entanglement
within the chain, and further, to the entanglement between Q1 and Q3. Comple-
menting this, we explore the impact of measurement in the sense explained in section
4.1.1 on the chain’s dynamics.

Next, we present results on how the parameter U modulates these dynamics with

35



Qubit chains’ emergent behaviour from biologically-inspired dynamics

the depression and facilitation enabled , highlighting its critical role in shaping the
quantum behaviour of the spin chain.

We then look at the interplay between depression and facilitation dynamics, and
their collective contribution to the system’s behaviour. Lastly we present prelimi-
nary results for chains with more than 3 qubits.

4.1.1 Quantum version of the Tsodyks–Markrammodel: non-
linear feedback mechanism

We aim to enhance non-linearity in our approach while maintaining a unitary evo-
lution. To this aim, we have merged the two approaches of Torres and Manzano as
described below.

The equations we use now to determine the system dynamics are given by

dρ(t)

dt
= −i[H(t), ρ(t)] (4.2)

dr(t)

dt
=

1− r(t)
τd

− Ur(t)s(t) (4.3)

Eq. (4.3) mimic the original classical model with the difference that the spikes in
the depression dynamics are now driven by the stochastic variable s.

We implement a non-linear feedback mechanism which reacts to the flow of infor-
mation across the chain in the quantum version of the Tsodyks–Markram model.
In Ref. [68] two approaches are considered, a unitary evolution based on the aver-
age population of the second qubit, and a stochastic approach based on an actual
measurement of that population followed by wave-function collapse. We choose to
follow an intermediate method as explained below.

Like in the paper we use the stochastic variable s, which is updated at times tm =
m∆t where ∆t = 0.01 and depends on the local population of the i-th qubit in the
chain as follows

s(t) = sm for tm ≤ t < tm+1 (4.4)

with

sm =

{
1 if xrand <

〈
σ+
i σ

−
i

〉
0 if xrand >

〈
σ+
i σ

−
i

〉 , (4.5)

and xrand ∈ [0, 1] is a random number from a uniform distribution.

The process in Eq. (4.5) mimics a measurement [68]. However, we do not collapse
the wave function, as there is no necessity for this in a simulation. Instead the result
is fed back through s to affect the dynamics of the depression variable r(t). The
idea is that the resulting simulation dynamics for Ωi,i+1(t) can instead be stored
and used to drive the related physical system in a lab. In this way the dynamics
observed in our simulations could be obtained from a physical system in the lab.

Basically, the simulation can be employed to control a physical system. The benefits
include not disturbing the physical system with measurements and avoiding the use
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of an average over all possible dynamics given by imposing the collapse of the wave
function. Perhaps it is apt to consider our simulation as a generator of chirped
pulses’ shapes to steer the physical system’s dynamics.

4.2 Depression

In the first set of results we only include the effect of depression in the spin chain
dynamics. To do so we use Eqs. (4.2) and (4.3) with U constant.

The results presented in Fig. 4.2 illustrate the impact of dynamic synapses on de-
pression within a three-qubit chain. The figure shows an increasing level of synaptic
depression from top to bottom, corresponding to τd = 0.01, 10, 100 and 500, The
other parameter values are set at U = 0.5 and Ω = 0.05. The couplings are always
the same they do not change with time. Each plot represents the probability of
each qubit being in the |1⟩ state (excitation probability, PE) alongside the level of
applied depression, represented by the r(t) curve (blue curve).

It can be observed that the dynamics remain periodic across all levels of depression,
even though the qubit-qubit coupling parameter undergoes significant dynamical
changes within each period (as shown by the blue curve, for example in the second
panel from the top). However, the period changes dramatically (by over two orders
of magnitude), and the probability of finding at intermediate times, the excitation
at one of the qubits at the end of the chain varies with τd.

The regime where this probability is high for a longer fraction of the period (low
τd’s) is referred as a ’localisation regime’ (LR). This is where the first term on the
rhs of Eq. (4.3) dominates. The opposite regime, where the wave function is spread
across all three qubits for most of the time, is named as a ’delocalisation regime’
(DR, high τd’s). Here the second term on the rhs of Eq. (4.3) dominates. We will
quantify and discuss further these regimes in the next sections.

4.3 Single site entanglement

The analysis covers LR: Localisation Regime and DR: Delocalisation Regime by
examining the time evolution of single-site entanglement.

Fig.4.3 shows the negativity from Eq. (2.7) noted as NQi
ss (t) for i =1, 2 and 3

(top, middle, and bottom panels respectively) for the DR dynamics shown in the
bottom panel of Fig. 4.2 (τd=500). Full localisation of the excitation in one qubit
corresponds to zero negativity for all qubits. However, for the qubit experiencing full
localisation, the corresponding negativity dip is very narrow, showing that the qubit
very rapidly dis- and re-entangles with the rest of the chain. Notably, the almost-
constant high value and very narrow dips in the negativity of Q2 demonstrate that,
in this regime, the wave function is almost always substantially delocalised over at
least two qubits.
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Figure 4.2: Excitation probability for Q1 (green curve), Q2 (orange curve) and Q3

(violet curve) versus time. Blue curves track the dynamic depression coefficient
r(t). Initial state from top to bottom: τd = 0.01, 10, 100, and 500. For all panels:
U = 0.5 = constant, δt = 0.01 and measurement taken on qubit Q2. We plot 2.5
periods for Q1.
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Figure 4.3: Single site entanglement: Negativity versus time for: top: Q1; middle:
Q2; bottom: Q3. For all panels: U = 0.5, τd = 500, and measurement on Q2.

This behaviour is qualitatively different from the corresponding 2-qubit case, where
qubits show low entanglement over a relatively large fraction of the time period.

The single-site entanglement for the LR dynamics (τd = 0.01) is illustrated in Fig.
4.4. It can be observed that, relative to the period length, the regions where all
qubits are disentangled or have low entanglement are significantly wider than those
in Fig. 4.3. For instance, compare the dips at t ≈ 45 in Fig. 4.4 with those at
t ≈ 3000 in Fig. 4.3. This is more inline with the corresponding results for the
2-qubit chain, see Fig. 3.5.

4.4 Entanglement between end qubits

The study also focuses on the entanglement between qubits Q1 and Q3, which mea-
sures their direct quantum correlation, independent of Q2 ’s state.

The entanglement between Q1 and Q3 measures how much Q1 and Q3 are directly
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Figure 4.4: Single site entanglement: Negativity versus time for: top: Q1; middle:
Q2; bottom: Q3. For all panels: U = 0.5, τd = 0.01, and measurement on Q2.
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correlated, i.e. how much they are (quantum) correlated independently from the
value of Q2.

We find that the dynamics of the entanglement as measured by the corresponding
negativity, calculated from Eq. (2.7) is tied to to the occupation probability of Q2

in Fig. 4.5. In both cases of low and high depression the negativity NQ
qq(ρ) for Q1

and Q3 has the same maximum at 0.1.

The entanglement between Q1 and Q3 is qualitatively similar to the single-site en-
tanglement for Q2 , but much smaller. For both cases of low and high depression:
the shape reflects the symmetric role that Q2 has with respect to Q1 and Q3 and the
entanglement goes to zero when the excitation fully localises on one of the qubits
(i.e. occupation of one of the qubits is equal to 1).

4.5 Effect of measurement location

How we choose the measurement location in our protocol is crucial for influencing
the dynamics of the spin chain. Specifically, in a PST chain with static couplings
as described in Eq. (2.9), and with three or more qubits, the excitation probability
dynamics of the inner qubits differ qualitatively from those of the qubits at the ends
of the chain. We will demonstrate how this can be utilised to switch between DR
and LR and to significantly modify the period of the chain.

In Fig. 4.6 we compare the excitation probability dynamics of a 3-qubit chain when
the feedback measurement in the protocol is done on Q1 (upper panel), Q2 (middle
panel) and Q3 (lower panel), with τd = 500 (high depression rate). Measurement
on Q2 induces DR. However, without other changes in parameters, measurement
in Q1 (Q3) localises the excitation on qubit Q1 (Q3) for most of the time, compare
green (violet) curves in top (bottom) and middle panels. In addition, it increases the
period by about 50%. We note that, in all cases, a periodic dynamics is maintained.

Without the need of adding facilitation to the Hamiltonian, feedback measurement
on Q3 facilitates excitation transfer to the chain end: the excitation probability in Q3

rises above 50% at t ≈ 800, compared to t ≈ 2000 for the case of measurement done
on Q2 and t ≈ 4000 for measurement done on Q1. At the same time, by inducing
LR on Q3, feedback measurement on Q3 improves conditions for measuring the
excitation at Q3 or for further transferring it (e.g. via SWAP gate) from there to a
different quantum computational array. We note though that maximum probability
on Q3 is reached at the same time when measuring on Q1 or on Q3.

At the other extreme, without altering depression parameters, measurement on Q1

strongly inhibits transfer by both localizing at most times the excitation in Q1, and
reducing by about 6 times the size of the intervals at which PE,Q3 > 50% with
respect to when measurement is done on Q2 (compare violet curves in top and
middle panels), and by almost 30 times with respect to measurement on Q3. We
note that these effects are linked to the application of a significant depression.

By contrast, when we consider feedback measurement with negligible depression,
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Figure 4.5: In black entanglement between qubits Q1 and Q3 with tracing of Q2.
Blue curve tracks the dynamics depression coefficient r(t). Excitation probability
for Q1 (green curve), Q2 (orange curve) and Q3 (violet curve) From top to bottom:
τd = 0.01 (panels 1,2) and 500 (panels 3,4) . For all panels: U = 0.5, and
measurement taken on Q2. We plot 2.5 periods for Q1.
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Figure 4.6: Excitation probabilities vs time for feedback measurement in different
sites: Top: Q1 (green); middle: Q2 (yellow); Bottom: Q3 (violet). For all panels:
U = 0.5, τd = 500, and δt = 0.01.
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Figure 4.7: Excitation probabilities vs time for feedback measurement in different
sites: Top: Q1 (green); middle: Q2 (orange); Bottom: Q3 (violet). For all panels:
U = 0.5, τd = 0.01, and δt = 0.01.

τd = 0.01, we observe no changes in the dynamics, see Fig. 4.7. In this case, the
time evolution of r(t) is in fact mainly due to the first term on the rhs of Eq. (4.3).

4.6 Impact of the release probability U on occu-

pation probabilities

We also noticed that U can play a role in the dynamics of the system. For instance,
the period’s length tends to increase linearly with U , depending on the values of
τd. This is plotted in Fig. 4.8 where on the Y axis is the Transfer time (Ttr) of
information between Q1 and Q3.

The transfer time can be defined as

Ttr = t (PE,Q3 = 1)− t (PE,Q1 = 1) . (4.6)
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Figure 4.8: Effect of U : Time of transfer (Ttr) (averaged over 3 consecutive
periods) for the expectation between Q1 and Q3 vs U for different τd with
δt = 0.01.

Figure 4.9: Coefficient b from Ttr = a+ bU for various τd with δt = 0.01.

In Fig. 4.8, each point corresponds to the average of difference of Ttr over the first
3 periods. Then, a least-squares polynomial fit of degree 1 (a straight line) method
was used to fit the data, producing the straight lines. For small values of τd, the
transfer time between Q1 and Q3 remains relatively constant. As τd increases, the
transfer time starts to increase rapidly. It shows that large values of τd can lead to
higher transfer times between the qubits.

The release probability U provides another means to control the system’s periodic-
ity. This interplay between U and the influence of different τd values in a three-qubit
chain, either accelerates or decelerates communication across the spin chain, demon-
strating a quantum effect.

In Fig. 4.9 we have plotted the slope (coefficient b), for different τd, of values
Ttr = a+ bU . The figure shows a linear relationship between τd and b.
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Figure 4.10: Average duration of high excitation intervals for Q3 (where
PE,Q3 ≥ 0.9) versus baseline utilisation factor U . Each data point represents the
mean time duration during which PE,Q3 ≥ 90%, averaged over the first 3 periods.
The data is obtained under conditions of synaptic depression with a time constant
τd = 100, δt = 0.01.

Figure 4.11: Normalised (divided by Ttr) average duration of high excitation
intervals for Q3 (where PE,Q3 ≥ 0.9) versus the baseline utilisation factor (U). The
data is obtained under conditions of synaptic depression with a time constant
τd = 100. Each point represents the average over the simulation of the first 3
periods, with δt = 0.01.

4.6.1 Average duration of high excitation intervals and av-
erage fraction of time per period versus baseline util-
isation factor

Fig. 4.10 shows the time ∆t90% in which we have at least 90% probability of mea-
suring the excitation in Q3 with respect to U . We can think of it as localisation time
for that particular qubit, and it can be noticed that the time the excitation can be
measured in Q3 with 90% probability or more over a period is increasing with U .

In Fig. 4.11 we consider the average high excitation per transfer time ∆t90%/Tr with
respect to U , this fraction decreases with U . By comparing results in Fig. 4.11 and
4.10, the fraction of the period spent in high excitation decreases, it suggests that
while the high excitation states are lasting longer, the transfer time (from one peak
to the next) is increasing at a faster rate.

A more intuitive way to visualise the data is to plot the occupation probability
for PE,Q3 versus time for different values of U , see Fig. 4.12. We can observe the
following.
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Figure 4.12: Occupation probability PE,Q3 for Q3 with τd = 100 versus time and
measurement on Q2, δt = 0.01.

When examining the portion of the curve above the 90% mark (dashed curve) for a
single period, the duration of the blue curve is shorter than that of the green curve
(U = 1). Specifically, the time interval above the 90% mark for the green curve
is approximately 1.5 times longer than that for the blue curve. However, for one
period of the green curve, we observe seven periods for the blue curve.

For U = 0.1, the occupation probabilities oscillations are more frequent , i.e they
have shorter periods. The peaks reach above the 90% threshold more often compared
to higher U values. Despite the high frequency, each individual duration of time
spent above the 90% threshold is short. However, over the whole simulation time,
the high frequency compensates for the short duration above the threshold.

For U = 1, the oscillations are the least frequent and have the longest periods. The
peaks above the 90% threshold are much less frequent compared to U = 0.1 and
U = 0.5 (orange curve). However, the time interval spent above the 90% threshold
in each oscillation is longer but not long enough to compensate over the reduced
frequency when considering the whole simulation time.

4.7 Interplay of depression and facilitation

So far only depression was considered. When facilitation is added, the release prob-
ability varies with time and becomes U = u(t). The new Hamiltonian is with the
dependence of Ωi,i+1(t) from the time discussed below.

HXY =
1

2

N−1∑
i=1

Ωi,i+1(t)
(
σi
xσ

i+1
x + σi

yσ
i+1
y

)
. (4.7)

The equations determining the system dynamics are now given by

dρ(t)

dt
= −i[H(t), ρ(t)], (4.8)

dr(t)

dt
=

1− r(t)
τd

− u(t)r(t)s(t), (4.9)

du(t)

dt
=

U − u(t)
τf

+ U(1− u(t))s(t). (4.10)
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We can now explore the form of Ωi,i+1(t) when facilitation is included. The time
dependence for the coupling could take various forms, such as Ω∗r(t), Ω∗u(t)∗r(t),
or Ω ∗ (u(t) + r(t)). It is important to note that we are still keeping both couplings
the same at all times. According to the original classical model, the product of the
two variables u(t) and r(t) should be considered.

However, for the quantum model, we have explored the various forms of coupling
in out Hamiltonian and we only included r(t) in Ωi,i+1(t). Different tests were
conducted to observe the impact of adding u(t) explicitly as discussed below.

According to experimental reports from real neurons, facilitation for excitatory con-
nections occurs when τf ≫ τd, with τf on the order of 1.5 seconds and τd on the
order of 0.2 seconds [48] (we did not used these exact values in the simulations). In
the results we keept U = 0.5 and only varied the time constant for depression and
facilitation.

The graphs Fig. 4.13 and Fig. 4.14, illustrate the occupation probability over time
for different sets of parameters, specifically focusing on the variables r(t) and u(t).

In the plots in Fig. 4.13, we used a more realistic value of τf , following the values
described in the Mongillo study [48]. It can be observed that there is little impact
on the dynamics of the occupations. In the next set of plots Fig. 4.14, we increased
the values of τf and τd to a greater extent. While the shape of the dynamics remains
the same when increasing τf with respect to τd, there appears to be a slight impact
on the periodicity of the occupation probability.

The next set of graphs in Fig. 4.15 shows the influence of how u(t) is integrated
into the Hamiltonian. So far, we have not included u(t) in the coupling and have
only considered Ω ∗ r(t). Now, we present two separate graphs. The first graph is
for Ω∗u(t) · r(t), and the second graph is for Ω∗ (u(t)+ r(t)). The dynamics remain
the same, except that we have doubled the frequency.

If u(t) = 1, it would explain why with r(t) or r(t) ∗ u(t) in the Hamiltonian we
obtain the same dynamics. Adding r(t) + u(t) in the Hamiltonian seems to double
the frequency, so it would suggest r(t) and u(t) are similar and each approximately
1. It also can be noticed that Fig. 4.15 shows that u(t) and r(t) compensate each
other’s dynamics, as they have opposite phase with one peaking when the other has
a minimum, this would need further investigation.

4.8 Discussion

Overall, it is observed that three qubits give a richer quantum correlation landscape
with two different types of entanglement. We discovered that depending on where
one measures a qubit’s occupation, one observes different dynamics, we named it
delocalisation and localisation regimes.

The interplay between qubit dynamics and the depression mechanisms—though fa-
cilitation still needs further exploration—can be used to create prolonged entan-
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(a) Occupation probability. τd = 0.01, τf = 0.01, U = 0.5, Ω = 0.05 and δt = 0.01 and
measurement on Q2.

(b) Occupation probability. τd = 0.01, τf = 10, U = 0.5 ,Ω = 0.05 and δt = 0.01 and
measurement on Q2.

Figure 4.13: Occupation probability versus time with facilitation with τf = τd and
τf ≫ τd. τ .

(a) Occupation probability. τd = 10, τf = 10, U = 0.5, Ω = 0.05 and δt = 0.01 and
measurement on Q2.

(b) Occupation probability. τd = 10, τf = 1000, U = 0.5 and δt = 0.01 and measurement
on Q2.

Figure 4.14: Occupation probability versus time with facilitation with τf = τd and
τf ≫ τd. τ values much increased with respect to biological modelling.
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(a) Occupation probability with r ∗ u in the Hamiltonian. τd = 0.01, τf = 10, U = 0.5,
Ω = 0.05 and δt = 0.01 and measurement on Q2.

(b) Occupation probability with r + u in the Hamiltonian. τd = 0.01, τf = 10, U = 0.5,
Ω = 0.05 and δt = 0.01 and measurement on Q2.

Figure 4.15: Occupation probability vs time with Hamiltonian for r ∗ u (panel a)
and r + u (panel b)

glement in the system, allowing for long-lasting entanglement generation. By ma-
nipulating parameters such as depression, facilitation, and release probability, we
can significantly alter the oscillation period of the chain across different time scales.
Specifically, in certain conditions, just adjusting U can effectively increase the pe-
riod, which may be beneficial.

A critical point to consider is the need to elaborate on how the Hamiltonian has been
modified when facilitation is added in Eq. (4.10) and what facilitation contributes
to. From the different runs when facilitation is added, we do not observe a significant
impact of facilitation. When facilitation dominates (τf ≫ τd), the original dynamics
are recovered, suggesting that facilitation may not play a significant role under these
specific conditions.

However, this observation raises a potential issue: maybe the quantum model, as
it is, is not complete and requires modifications either in the Hamiltonian or the
topology of the spin chain. We have already explored an alternative approach by
adding u(t) in the Hamiltonian, as shown in Fig. 4.15b and Fig. 4.15a. One could
refer back to the classical model to identify any missing elements that might need
to be integrated into the quantum model to observe a better interplay between
facilitation and depression parameters.

Memory and Measurement: One possible solution would be to enable a feedback
mechanism to observe different behaviour from the system, as shown in Fig. 4.16.
This feedback mechanism could replicate the loop present in the phenomenological
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model of synaptic working memory. Fig. 4.17 illustrates this process, where Ion
Injection refers to ions, such as calcium ions (Ca2+), entering the presynaptic neuron
during synaptic transmission. In the classical model, direct feedback loops may be
required to retrieve memory in the biological context presented in this paper.

Q1 Q2 Q3

Figure 4.16: Three-qubits chain with excitation on Q1 and feedback mechanism to
enable facilitation in red and depression in blue.

Figure 4.17: Representation of synaptic transmission highlighting the roles of ion
diffusion and ion injection. In the synapse, the presynaptic neuron releases neuro-
transmitters through a process initiated by ion injection, specifically calcium (Ca2+)
influx, which acts as a feedback loop to facilitate continuous neurotransmitter re-
lease. The released neurotransmitters diffuse across the synaptic cleft (ion diffusion)
to the postsynaptic neuron, generating a new electrical signal. Illustration from [40].

Considering a simple linear chain scenario within a classical neural network, where
three neurons are connected linearly without feedback loops, alternative network
structures such as Synfire Chains [3] might be constructed from our spin chain, as
shown in Fig. 4.18. These are feed-forward networks, with neurons organized across
multiple layers. In a Synfire Chain, neural impulses are transmitted synchronously
from one layer to the next. Though a linear structure might present challenges for
memory capacity [36], it does not make memory retrieval impossible. Residual activ-
ity, even in the absence of recurrent connections, might still help retrieve memories,
especially if retrieval is attempted shortly after encoding [60], [33].

Originally, we discussed that in the classical case, synapses between two neurons can
either facilitate or depress. Facilitation, synonymous with strengthening, can help
maintain information for a short period, with the information held in the synapses
and retrieved at the postsynaptic neuron.

In a network with synaptic facilitation, such as depicted in Fig. 4.19, a set of
excitatory neurons (representing one type of memory, for example, in blue) is linked
as a subnetwork, while a set of inhibitory neurons forms a different subnetwork.
The interplay between these networks (facilitation and depression) will aid memory
retrieval, given an external cue, such as an attention probe.
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a2 b2 c2

a b c

a1 b1 c1

Figure 4.18: Illustration of formed synfire chain, where black arrows represent
synapses, and circle neurons. Illustration from [74].

Figure 4.19: Network architecture. Colored triangles are excitatory neurons that
code for different memories. Black open triangles are nonselective excitatory neu-
rons. Black circles are inhibitory neurons with nonstructured connections to the
entire network. Illustration from [48].
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Q1 Q2 Q3

ϵ1(t)

Figure 4.20: Three-qubits chain with excitation on Q1 and time-depend on-site
energy ϵ1(t).

We now consider how this can be linked to quantum memory in our three-qubit
system. The analogy involves maintaining information from different parts of the
system, such as in Q3, and optimising the conditions for information retention by
either prolonging excitation or increasing its frequency. In this context, facilitation
might not be necessary; instead, only the parameters τ and U may be required to
achieve similar dynamics.

Another important aspect is the location of the measurement. In the working mem-
ory model, we do not have measurements, which could be considered as a mechanism
for facilitation in our case. Referring to Fig. 4.6, in our scheme, the role of facilita-
tion is done by measurement, making it the most effective method of facilitating.

Regarding entanglement, in this scenario, we destroy the entanglement between Q1

and Q3 because we localise all our excitation in one qubit, causing entanglement to
decrease, only when PE,Q = 1; otherwise the excitation is partly also in other qubits.
But could entanglement be a measure of strength between two qubits, analogous to
synaptic strength between two neurons? In our scenario having entanglement before
localisation (time-wise) is connected to transferring information across the chain and
hence between the two qubits.

However, in quantum mechanics, re-excitation is possible even without direct con-
nections. Quantum evolution means that when part of the excitation is in Q2, it
can go both back to Q1 and forward to Q3, so in this respect, Q1 does have the
possibility of getting re-excited, even without a direct connection between 1 and 3.

Another possibility is to include facilitation with a time-dependent local potential,
making one of the on-site energies time-dependent. This can be achieved using
external fields, such as microwaves [11], depending on the physical implementation
of the qubit [10]. This approach involves a different Hamiltonian, as shown in Fig.
4.20.

4.9 Chain with N > 3 qubits

In this section, initial results are presented for a spin chain of N N qubits with
perfect state transfer. For this analysis the code has been modified from the 3 qubit
chains to be able to work with a generic number of qubits like in Fig. 4.21.
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Figure 4.22: Occupation probability for 6 qubits with PST adjustment without
depression. τd = 0.01, U = 0.5 and δt = 0.01 and measurement on Q2. Initial
excitation on Q1.

Q1 Q2 Q3 Q4 Q5 Q6

Figure 4.21: Six-qubits’ chain with excitation on Q1 (pink shade).

The Hamiltonian is of the form

H(t) =
1

2

∑
i,i+1

Ωi,i+1ri,i+1(t)
[
σxi
⊗ σxi+1

+ σyi ⊗ σyi+1

]
, (4.11)

where σxi
⊗ σxi+1

is defined as

σxi
⊗ σxi+1

= I1,i−1 ⊗ σxi
⊗ σxi+1

⊗ Ii+2,N , (4.12)

in this expression, I1,i−1 represents the identity matrix applied to the qubits from 1
to i− 1, and Ii+2,N represents the identity matrix applied to the qubits from i+2 to
N . This ensures that the operation only directly affects qubits i and i+1, with the
rest of the qubits remaining unaffected by this particular interaction term. At any
time, all couplings are rescaled by r(t), such that ri,i+1(t) = r(t) for all i values.

Ωi,i+1 satisfy requirements for PST, and Eq. (2.9) discussed in Chapter 2 is used.

Preliminary results and discussion

Below are some preliminary results for depression only and the impact of depression
values on occupation probability for a longer chain. The coupling values are: Ω0−1 :
0.745; Ω1−2 : 0.942; Ω2−3 : 1.0; Ω3−4 : 0.942; Ω4−5 : 0.745. These values are obtained
with Eq. (2.9).

In the first instance, the results of the simulation for N = 6 qubits, shown in
Fig. 4.22, resemble the probability occupation dynamics observed for three qubits.
We observe periodicity and perfect state transfer between the first and last qubits,
without any depression.
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Figure 4.23: Occupation probability for 6 qubits with PST adjustment, with
depression. τd = 10, U = 0.5 and δt = 0.01 and measurement on Q2. Initial
excitation on Q1.

Figure 4.24: Occupation probability for 6 qubits with PST adjustment for a longer
time. Parameters are set to τd = 10 and δt = 0.01, with measurement on Q2 and
initial excitation on Q1.
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Figure 4.25: Occupation probability for 6 qubits with PST adjustment for a longer
time. Parameters are set to τd = 100, U = 0.5, and δt = 0.01, with measurement
on Q2 and initial excitation on Q1.

Figure 4.26: Zoomed view: Occupation probability for 6 qubits with PST
adjustment for a longer time. Parameters are set to τd = 100, U = 0.5, and
δt = 0.01, with measurement on Q2 and initial excitation on Q1.

However, when we set τd = 10 to introduce depression, a transient period can be
observed. For example, the transient period lasts until approximately t ≈ 15 units
of time, as shown in Fig. 4.23.

The two graphs Fig. 4.24 and Fig. 4.25 demonstrate the impact of chain length
on the transient period and regular periodicity in a 6-qubit spin chain, while the
system still achieves perfect state transfer, ensuring the high-fidelity transfer of
quantum states. Each qubit interacts with its neighbors, and the information must
propagate sequentially through the chain. This sequential propagation introduces a
delay before the entire system reaches a synchronized periodic state. This is made
obvious in Fig. 4.25. The longer transient period observed is due to the increased
time required for information to propagate through the chain. In contrast, shorter
chains would exhibit quicker stabilisation and shorter transient periods due to more
efficient information transfer.

By analysing the graphs for τd = 100 in Fig. 4.25 and Fig. 4.26, we notice that the
transient period lasts until approximately t ≈ 100 units of time. Despite the longer
transient period due to the increased τd, the system eventually achieves regular
periodicity, ensuring high-fidelity transfer of quantum states from one end of the
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chain to the other.
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Chapter 5

Conclusions

Throughout this thesis, we have taken the first steps toward investigating a complex
system, building on previous research. We examined how the addition of increasingly
dynamic elements in the system Hamiltonian, such as adding more qubits, introduc-
ing facilitation, or using different measurements across the chain, can impact the
transfer of information across a linear spin chain.

5.1 Discussion

From our results we can conclude that the excitation requires more time to propagate
through the chain from the first qubit to the last when there is a decrease in activity.
For larger τd values, we have less time with respect to the period length to do precise
measurements due to the time in which the excitation stays localised. The decrease
in activity doesn’t block information transmission; rather, it slows it down, reducing
the probability of accurately measuring the excitation. Therefore, greater care is
needed in these measurements.

One significant finding is that the location of qubit measurement directly influences
the system’s dynamics, particularly affecting the phenomena of localisation and
delocalisation.

Interestingly, increasing depression in the system does not block information trans-
fer, as in the classical case; instead, it slows the transfer down, and by inducing a
delocalisation regime, reduces the likelihood of measuring the transferred excitation.
This calls for more precision in measurement techniques.

The effect of facilitation that was observed in our simulation results is very simi-
lar to the one observed with depression. In the classical working memory model
employed, there is a feedback loop mechanism that could potentially contribute to
facilitation effects. Therefore, it might be beneficial to incorporate this feedback
loop explicitly into the quantum model to investigate whether it leads to a more
substantial facilitation effect.
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5.2 Future direction

The topic of this thesis is not a widely developed area, so there are many avenues
to explore. We should not lose track of the motivation for this research, which is
using our current understanding of neuroscience and examining how well it can be
transferred to the field of quantum technologies.

We have started to look in more depth at a model of short-term synaptic plasticity
using two coupled differential equations and how it can be of use in the transfer of
quantum states. We also noticed that with just a few input variables and additional
network complexity the model can become difficult to understand and may require
different tools or theoretical approaches to explore the model dynamic behavior and
its computational implications [69].

The encouraging results could lead us to further explore the model of synaptic plas-
ticity, expanding it with various network topologies to make it more like a network
of neurons. It is important not to forget the early models of neural networks, such
as the Hopfield network, which is directly inspired by spin glasses [39]. We also have
the capability to add the effects of temperature on the system and use the methods
of quantum thermodynamics to observe its impact.

We could also investigate how memories are stored and retrieved in a classical model
and see how this can be applied to quantum information. Our brain is a noisy
environment, and there is evidence that slender axons where information propagates,
are more susceptible to noise [55], which directly impacts how our cognitive system
operates [54]. To describe this within a quantum system, one could consider disorder
or imperfections in the values of the qubit couplings (Ωi,i+1) and their relative sizes
[61]. Finally, we could potentially collaborate with experimentalists in the future
to implement these ideas and validate that the theory can be applied to real-world
systems.

Additionally, one could simulate techniques such as chirped pulse amplification,
which generates high-intensity, ultrashort pulses capable of producing different fre-
quencies within a single pulse [65]. This simulation could represent various spiking
intervals. For example, Fig. 5.4 in appendix A, illustrates different spiking inter-
vals for the classical model and we could examine how these intervals impact the
quantum version.

By exploring the parallels between neuroscience and quantum systems, we hope to
find improvements and discoveries of new functionalities for quantum technology,
particularly in networks of qubits to advance the capabilities in this field.
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Appendix

5.3 Original phenomenological model of synaptic

depression only

The model presented in this appendix is characterised by three variables and equa-
tions instead of one for the depression model. However the single differential equa-
tion for depression used in this work can be recovered. The facilitation part can also
be added, additional details can be found in [37].

The central concept of the model is that each synaptic connection between neurons,
can be defined by its total ‘resources’, which are divided into three states: active,
inactive, and recovered, see Fig. 5.1.

We will work with our notation, the original paper notation [37] is slightly different.
Let r (x in the original notation) be the fraction of neurotransmitters which is
recovered after a previous arrival of an action potential near the cell membrane, y is
the fraction of neurotransmitters which is released into the synaptic cleft after the
arrival of an action potential and z is fraction of inactive neurotransmitters, this
follows the dynamics.

Recovered
dr

dt
=

z

τrec
− Urδ (t− tsp) . (5.1)

Active
dy

dt
=
−y
τin

+ Urδ (t− tsp) . (5.2)

Inactive
dz

dt
=

y

τrec
− z

τin
. (5.3)

Diagram explanation

• Recovered (r) to Active (y): When a spike occurs, a fraction Urδ(t − tsp) of
the recovered resources becomes active.

• Active (y) to Inactive (z): The active resources decay to the inactive state
with a time constant τin, represented by y

τin
.
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Recovered (r) Active (y) Inactive (z)
Spike Decay: y

τin

Recovery: z
τrec

Figure 5.1: Flow of synaptic resources between states.

• Inactive (z) to Recovered (r) The inactive resources recover to the recovered
state with a time constant τrec, represented by z

τrec
.

• The model assumes total conservation of neurotransmitter resources (normal-
isation condition)

r + y + z = 1. (5.4)

• For constant release probability U , the model describes the basic mechanism
of synaptic depression. If U = u(t) is time dependent the model describes as
well facilitation.

Equation (5.1) can be simplified substantially if one takes into account that real-
istically τin ≪ τrec (about 1s τrec and few milliseconds for τin) and the rate of the
incoming spike train is usually much lower than 1/τin.

Taken together with the normalisation condition z = 1− r− y this allows to reduce
Eq. (5.1) with a single equation for r.

dr

dt
=

1− r
τrec

− y

τrec
− Urδ (t− tsp) . (5.5)

To recover the equation for depression Eq. (2.1) we need to justify why the term −y
τrec

can be neglected.

We know that 1
τrec
≪ 1

τin
and −y

τin
is large and negative, so that it causes y(t) to decay

exponentially very fast in Eq. (5.2) . This can be seen in Fig. 5.2 for y(t). There
we plot the solution of a first-order linear ordinary differential equation

y(t) = Ae
− t

τin , (5.6)

where A is the initial value of y at t = 0. This solution describes exponential decay
of y over time with a decay constant of τin.

The graph Fig. 5.3 illustrates the dynamics of synaptic resource states over time,
with an emphasis on how these states change in response to periodic spikes. The
states include the recovered state (r), the active state (y), and the inactive state
(z). Additionally, the graph shows the average value of the active state (yavg) over
one period.

The initial spike at t = 0 results in an immediate increase in the active state (y) to 0.2
(U). Subsequent spikes show similar behavior, with the active state (y) increasing
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Figure 5.2: y(t) from equation 5.6

Figure 5.3: Dynamics of synaptic decay, with fraction of resources versus time and
U = 0.2 with conservation probability in Eq. 5.4.

by U × r, where r is the fraction of recovered resources available at the time of the
spike. If the active state (y) does not fully decay to zero between spikes, the next
spike will add to the remaining active resources, potentially causing higher peaks.
It can then be noticed that (yavg) over long period is negligible due to the fast decay
in between each spike, this is due to the condition that the rate of the incoming
spike train is usually much lower than 1/τin.

Therefore the dynamics of equation Eq. (5.1) depends on the rate of decay of y(t).
One can then let −y

τrec
goes to 0 (y(t) is small for t big enough).

We recover therefore the equation for depression with τrec = τd

dr

dt
=

1− r
τrec

− Urδ (t− tsp) . (5.7)

In the graph Fig.5.4, we plot the effect of different spiking rates for the fraction of
active resources y(t). This illustrates the condition where the rate of the incoming
spike train is usually much lower than 1/τin, allowing y(t) to decay to zero between
spikes. Conversely, if the spiking rate is too high, we observe the opposite effect.
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Figure 5.4: Fraction of active resources y(t) for U = 0.2 and different spike rate
over time, with 1Hz (spike interval of 1.0 s); high spike rate: 20Hz (spike interval
of 0.05 s). In light blue, a slow spiking train; in red, a faster spiking rate.

5.4 Pseudoalgorithms

The first pseudoalgorithm outlines the overall structure for a 3-qubit spin chain,
with the various functions used to simulate the excitation probability evolution and
the entanglement dynamics evolution. For simplicity, the other detailed calculations
and plots are not included.

The second pseudoalgorithm describes the calculation for single-site entanglement
and entanglement between qubits. Currently, the code only works for three qubits to
compute the entanglment. This needs to be reviewed for an N-qubit implementation.
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Algorithm 1 Example of code for a 3 qubit spin chain

1: Example of parameters: r0 ← 0, τ ← 0.01, dt← 0.01, tmax ← 222, U ← 0.5
2: Define Hamiltonian diagonal elements: diagonal H← [−3,−1,−1, 1,−1, 1, 1, 3]
3: Initialize results dictionaries: results
4: all negativity 1
5: all negativity 2
6: all negativity 3
7: all negativity 4
8: procedure rho derivative(H, ρ)
9: return −1i ·H · ρ+ 1i · ρ ·H
10: end procedure
11: procedure runge kutta 4(rprev, ρprev, Hprev, H func, dt, τ, U, S)
12: Calculate k1 for r and ρ
13: Calculate k2 using mid-point values
14: Calculate k3 using mid-point values
15: Calculate k4 using next values
16: Combine k1, k2, k3, k4 to estimate rnew, ρnew
17: return rnew, ρnew, Hnext

18: end procedure
19: procedure H func(r)
20: return Hamiltonian matrix based on r and diagonal H
21: end procedure
22: procedure integrate equation(r0, τ, U, dt, tmax)
23: Initialize tpoints, r,H, ρ
24: Set initial conditions for ρ
25: Initialize ρ00, ρ11, ρ22, ρ33, ρ44, ρ55, ρ66, ρ77
26: Initialize negativity lists
27: for i ∈ 1 to len(tpoints) do
28: Generate random x and set S
29: Update r[i], ρ[i], H[i] using Runge-Kutta method
30: Normalize ρ[i]
31: Extract diagonal elements of ρ[i]
32: Compute negativity for different partitions of the system
33: end for
34: return tpoints, negativity lists, r, ρelements

35: end procedure
36: for U ∈ U values do
37: Run simulation and store results
38: Print completion message for U
39: end for
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Algorithm 2 Calculation of negativities for single site and between end qubits
entanglement

1: procedure compute negativity 1(ρ)
2: ρ1 ← partial transpose of ρ with respect to system 1|23
3: eigenvalues 1← eigvals(ρ1)
4: negativity 1← 0.5× (

∑
abs(eigenvalues 1)− 1)

5: append negativity 1 to list
6: end procedure
7: procedure compute negativity 3(ρ)
8: ρ3 ← partial transpose of ρ with respect to system 12|3
9: eigenvalues 3← eigvals(ρ3)

10: negativity 3← 0.5× (
∑

abs(eigenvalues 3)− 1)
11: append negativity 3 to list
12: end procedure
13: procedure compute negativity 2(ρ)
14: ρ2 ← partial transpose of ρ with respect to system 13|2
15: eigenvalues 2← eigvals(ρ2)
16: negativity 2← 0.5× (

∑
abs(eigenvalues 2)− 1)

17: append negativity 2 to list
18: end procedure
19: procedure compute negativity 4(ρ)
20: ρ4 ← reduced density matrix of ρ tracing out q2
21: ρPT ← partial transpose of ρ4 with respect to subsystem q1
22: eigenvalues 4← eigvals(ρPT )
23: negativity 4← 0.5× (

∑
abs(eigenvalues 4)− 1)

24: append negativity 4 to list
25: end procedure
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Acronyms

• τd: Time constant for depression

• τf : Time constant for facilitation

• U : Baseline release probability

• u(t): Instantaneous release probability

• r(t): Amount of available resources

• Ω: Qubits interaction strength

• PE: Qubit excitation probability

• ϵ1(t): On-site energy

• LR: Localisation regime

• DR: Delocalisation regime

• Q2: Qubit 2

• NQi
ss (t): Negativity, single site entanglement

• NQi
qq (t): Negativity, qubit to qubit entanglement

• Ttr: Transfer time between 2 qubits (averaged over 3 consecutive periods)

• δt: Time step used for numerical integration
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