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Abstract
This thesis investigates the determinants of social contact selection in leisure

activities, integrating traditional discrete choice models (DCM) with machine
learning (ML) techniques to enhance model specification and explanatory power.
The research utilises a dataset collected through snowball sampling in Switzer-
land, capturing a wide range of respondents’ characteristics and the characteris-
tics of their social network members. Employing multinomial logit models, the
study reveals how dyadic variables such as age homophily, gender homophily, re-
lationship duration and so on influence leisure activity choices with various social
contacts. Furthermore, the incorporation of machine learning techniques, partic-
ularly Shapley Additive explanations (SHAP), enriches the model. SHAP high-
lights predictors that might otherwise be overlooked. It also provides insight into
the direction and impact of these predictors, facilitating their interpretation be-
fore running a choice model. The findings extend the current understanding of
social interaction patterns, advocating for consideration of social networks in data
collection and modelling of who people interact with. This thesis also uses ma-
chine learning to assist choice modelling, offering an additional tool for analysing
social contact preferences in leisure contexts, which implies an additional set (po-
tentially large) of explanatory variables where machine learning models could be
useful.
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Chapter 1

Introduction

1.1 Background

People’s daily activities often involve interactions with others, necessitating sev-
eral key decisions such as activity type (Calastri, Hess, Daly, & Carrasco, 2017),
location of social interaction (van den Berg et al., 2010), travel distance for social
interaction (Moore et al., 2013), activity duration (van den Berg et al., 2012a),
travel mode for social activity (Sharmeen & Timmermans, 2014), and who to in-
volve in these activities (Habib et al., 2008). The social dimension thus emerges
as a fundamental factor influencing choice behaviour.

Social networks are social structures comprising a set of actors (nodes) and
the relationships (ties) that connect them (Tindall & Wellman, 2001). These ac-
tors can be individuals, groups, organisations, or even nation-states, and the re-
lationships encompass various types of interactions and exchanges, such as flows
of resources, information, or support. Social network analysis focuses on under-
standing how these structures facilitate and constrain opportunities, behaviours,
and cognitions. By examining the patterns of relationships, social network an-
alysts aim to explain the effects of these structures on individual and collective
outcomes.

These networks significantly influence decision-making processes, impacting
choices not only based on individual characteristics and the attributes of alterna-
tives but also through the influence of social network members. Understanding
the role of social networks is crucial for comprehensively modelling human be-
haviour, especially in the context of activity-travel decisions.

In transportation research, the social dimension of decision-making has gar-
nered attention as a core determinant of various choices (Kim et al., 2018; Maness
et al., 2015). Various statistical methods have been employed to explore the re-
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lationship between social networks and different facets of social activity-travel
decisions. These methods generally follow an ego-centric approach (Kim et al.,
2018), focusing on the individual’s (ego’s) network that consists of the ego and
their social contacts (alters). This approach considers three types of characteris-
tics: ego-level (decision-maker’s characteristics), ego-alter-level (characteristics
of alters and their relationships with the ego), and ego-network-level (characteris-
tics of the network itself, such as size). Discrete choice modelling is a common
method used in this literature to consider the social dimension or social networks
in choice behaviour. Discrete choice models are statistical models used to explain
and forecast individuals’ choice behaviour. They can be derived from utility the-
ory, where each choice among a set of alternatives is associated with a utility, and
a rational decision-maker would choose the alternative that maximises their util-
ity (Train, 2009). The functional form of the utility for each alternative comprises
a deterministic part and a random part. The deterministic part includes observ-
able variables that determine the choices, while the random part represents the
uncertainty of the modeller (i.e., other factors can explain the choice behaviour of
interest but are not observed or available in the data).

One crucial aspect of activity-travel decisions is the “with whom” choice – de-
ciding who to involve in an activity. Research has demonstrated that social context
plays a significant role in scheduling activities. For instance, Habib et al. (2008)
found that the decision of “with whom” to participate influences the start time
and duration of activities. Social activities involving multiple household members
tend to start later due to coordination constraints, while those with friends or non-
household family members have longer durations compared to those involving
only household members. Similarly, Habib and Carrasco (2011) confirmed the
importance of the “with whom” variable in understanding the timing and length
of social activities, highlighting the interdependencies between social interactions
and temporal activity patterns.

Furthermore, social networks significantly affect travel decisions, such as mode
choice, travel time, and activity selection. For example, Axhausen (2005) noted
that social interactions are a primary driver for travel, particularly leisure travel
aimed at meeting friends, relatives, and acquaintances. The spatial distribution
of social contacts influences travel patterns, with longer distances leading to in-
creased travel frequency and different mode choices. Additionally, Arentze &
Timmermans (2008) developed models predicting activity participation and travel
behaviour, considering the presence of companions, which greatly influence both
the decision to participate in activities and the choice of travel modes.

Research also underscores the importance of incorporating social factors into
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models of travel behaviour to capture the complex dynamics of social interac-
tions and activity participation. For instance, Kim et al. (2018) concluded that
the presence and composition of social networks significantly influence travel de-
cisions, such as travel mode choices and activity durations. Similarly, Carrasco
& Miller (2009) showed that the characteristics of “with whom” social activities
are performed play a crucial role, intertwined with the individual’s characteris-
tics. Their multilevel personal networks model demonstrated that individuals are
more likely to frequently engage in social activities with close friends and family
members, and the spatial distribution of these social contacts affects social activity
frequency.

In summary, decision-making processes in the context of activity-travel choices
are complex and influenced by a range of factors that extend beyond individual
characteristics to include ego-alter-level and network-level characteristics. Un-
derstanding these processes, particularly the selection of social contacts in leisure
activities provides valuable insights into human behaviour.

While discrete choice techniques remain the key analytical tool for under-
standing travel behaviour, there is increasing interest in the use of machine learn-
ing tools. If one considers the choice variable (e.g., who to interact with) in dis-
crete choice modelling a label associated with observations labels, the question
can be thought of as a machine learning problem. Machine learning (ML) is part
of artificial intelligence (AI) that employs algorithms and models to learn from
data and improve task performance without using explicit instructions. The goal
is to provide a computer with vast data to discern patterns, make predictions,
or gain insights about the data. There has been increasing interest in synergies
between machine learning and choice modelling (Hillel et al., 2021; van Cranen-
burgh et al., 2022)). Indeed, in the choice modelling community, the integration
of machine learning (ML) and choice modelling (CM) has been explored from
various perspectives, often highlighting the strengths and limitations of each ap-
proach. The following subsections review key studies in this domain, focusing on
three main themes: using ML as an alternative to CM, combining the strengths of
both ML and CM and employing ML to assist in CM specification.

1.1.1 Machine Learning as an Alternative to Choice Models

One approach in the existing literature is using ML as an alternative to traditional
choice models for choice behaviour analysis. Scholars have found that ML models
often outperform traditional choice models in terms of predictive accuracy (see

4



reviews by Hillel et al. (2021) and van Cranenburgh et al. (2022)). These studies
emphasise the potential of ML techniques to offer valuable insights into mode
choice modelling and improve model specification and estimation time. However,
there is still some hesitation in fully embracing ML due to misconceptions about
its applications and benefits.

van Cranenburgh & Alwosheel (2019) suggest using an Artificial Neural Net-
work (ANN) as an alternative to the traditional Latent Class discrete choice mod-
elling approach to investigate decision rule heterogeneity. Their ANN-based ap-
proach can recognise patterns in travellers’ choices that traditional methods might
overlook, handling large, complex datasets and uncovering nuanced insights into
decision-making processes. Empirical validation against traditional models con-
firmed the ANN’s effectiveness in studying decision rule heterogeneity.

Efforts have also been made to enhance the interpretability of ML models. Al-
wosheel et al. (2019) introduced the use of prototypical examples from computer
vision to help modellers assess learned relationships in an ANN, thereby improv-
ing trust in its predictions. This methodology, applied to a Revealed Preference
mode choice dataset, allows analysts to evaluate the fundamental relationships
learned by the ANN and build trust in well-functioning models.

Similarly, Golshani et al. (2018) estimated the relative importance of each
explanatory variable in a neural network and conducted sensitivity analyses to un-
derstand their impacts on choices. Using Garson’s method to calculate the relative
importance of input variables, they improved the interpretability of neural network
models and enhanced the understanding of factors driving travel behaviour.

Wang, Wang, & Zhao (2020) proposed a variant of deep neural networks
(DNN) that bridges the gap between predictive performance and interpretability.
Their study demonstrates that DNNs can provide economic information as com-
plete as classical discrete choice models (DCMs), including various economic
indicators. This approach was validated with datasets from Singapore and Lon-
don, showing that DNNs can learn utility functions and reveal behavioural pat-
terns without prespecification by domain experts. However, challenges such as
high sensitivity to hyperparameters, model non-identification, and local irregular-
ity were noted.

Despite these advancements, ML models still face limitations in behavioural
and economic analysis due to their less structured approach compared to tradi-
tional choice models.
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1.1.2 Take the best of both worlds? CM to ML

Given that choice models impose a structured framework on the data, leading to
high interpretability, and machine learning models achieve better predictive per-
formance by learning the structure from data, researchers have proposed integrat-
ing both approaches to leverage their respective strengths.

One direction of this integration is using choice modelling principles to assist
machine learning. For example, Wang, Mo, & Zhao (2020) suggested imposing
the Independence of Irrelevant Alternatives (IIA) constraint on a deep neural net-
work to improve its interpretability without significantly compromising predictive
accuracy. They developed a novel DNN architecture called alternative-specific
utility DNN (ASU-DNN), which uses behavioural knowledge to guide the de-
sign of the network. Empirical results demonstrated that ASU-DNN outperforms
fully connected DNNs (F-DNN) and other classifiers, achieving higher prediction
accuracy and providing more intuitive choice probability functions. Other stud-
ies have incorporated matrix factorization methods from recommender systems
into random utility models (Athey et al., 2018), thereby enhancing the ability to
predict consumer preferences while maintaining a solid theoretical foundation.
Athey et al. (2018)) show that matrix factorization can reduce the dimensionality
of consumer preference data, making it easier to model complex interactions and
price sensitivities. This approach allows for personalized predictions and provides
deeper economic insights into consumer behavior by identifying latent character-
istics and preferences.

1.1.3 Take the best of both worlds? ML to CM

Another promising direction is using machine learning techniques to assist in the
specification of choice models. Wong et al. (2018) employed machine learning to
represent latent behavioural variables, serving as an alternative to the Integrated
Choice and Latent Variable (ICLV) model when attitudinal indicators are absent.
They proposed using restricted Boltzmann machines (RBMs) to model latent be-
havioural factors by analyzing the relationships between observed choices and
explanatory variables. This approach addresses the limitations of ICLV models,
such as the reliance on subjective attitudinal data, by inferring latent variables di-
rectly from choice data. Sfeir et al. (2021, 2022) proposed using machine learning
alternatives for the class membership component of Latent Class Choice Models
(LCCM), achieving better prediction accuracy without undermining economic in-
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terpretability. In the 2021 study, they introduced a semi-nonparametric LCCM
using mixture models, a machine learning approach, to improve the flexibility
and accuracy of class membership estimations. The 2022 paper extended this
approach by proposing the Gaussian Process Latent Class Choice Model (GP-
LCCM), which employs Gaussian Processes to assign individuals to latent classes
probabilistically. Tsoleridis et al. (2019) explored integrating clustering tech-
niques, specifically Gaussian Mixture Models (GMMs), within the Latent Class
Choice Model (LCCM) framework. Their study found that while traditional LC-
CMs generally outperformed machine learning methods in prediction accuracy,
ML methods provided computational efficiencies, particularly valuable in han-
dling large datasets and complex models.

Both Wong & Farooq (2021) and Sifringer et al. (2020) suggested models
where systematic utility is divided into a knowledge-driven part and a data-driven
part, enabling the capture of complex patterns while retaining interpretability.
Wong & Farooq (2021)’s ResLogit model integrates a deep neural network with
a multinomial logit model, capturing non-linear cross-effects and unobserved het-
erogeneity through residual layers and skip connections. Sifringer et al. (2020)’s
approach augments traditional discrete choice models with a neural network com-
ponent, leading to the Learning Multinomial Logit (L-MNL) and Learning Nested
Logit (L-NL) models, which improve predictive performance and parameter esti-
mation accuracy while maintaining interpretability.

1.2 Research Gaps

Research Gap1: Despite the extensive literature on activity-travel behaviour, the
determinants of who people interact with remain underexplored. Most studies
have focused on how social networks influence the choice of activity or start time,
with limited attention to the factors driving the selection of social contacts for
various activities, particularly the variables on the ego-alter level. In the liter-
ature, incorporating ego-alter level variables has been shown to enhance model
performance in various contexts. For example, Sharmeen & Timmermans (2014)
demonstrated that including ego-alter variables significantly improved the predic-
tion of interaction frequency between network members, while van den Berg et
al. (2012a) found that relationship characteristics (e.g., relationship type and tie
strength) enhanced the modelling of activity duration. Kowald et al. (2013) further
showed that integrating these variables led to a better understanding of the dis-
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tance patterns of social contacts; for example, people tend to keep long-distance
relationships with alters of similar age.

However, the existing models often treat social contacts as several aggregated
categories, potentially missing out on behavioural nuances. By disaggregating so-
cial contact choices for leisure activities into ego-alter level, the proposed social-
contact choice models can provide a more detailed understanding of how specific
activity types are associated with different social network members. For instance,
engaging in sports with a social network member may be influenced more by age
and gender homophily, whereas cultural activities with a social network mem-
ber may be more influenced by education level and relationship duration. This
enables a richer representation of the social contact choice in leisure activity, po-
tentially improving model performance and offering deeper insights compared to
state-of-the-art models that rely on broad categories of social contacts.

Understanding these determinants is crucial for developing more comprehen-
sive models of human behaviour, which can provide deeper insights into the mech-
anisms underlying social interactions and activity participation. The primary use-
fulness of this research lies in enhancing our understanding and knowledge of how
individuals make decisions in this specific context, rather than serving an imme-
diate practical application. Engaging in activities with someone from one’s social
network often involves travel, and the usefulness of this research may depend on
other related choices. Thus, while the current model might not have direct stan-
dalone applications, it can play an important role in joint modelling approaches,
such as those explored in the work of Habib et al. (2008) and Habib and Car-
rasco (2011). Furthermore, these findings can serve as valuable inputs for sim-
ulation models. Furthermore, our insights into the role of distance, for instance,
can aid transport planning by highlighting the extent to which individuals engage
in activities with their social network members within a specific distance. This
understanding can help planners focus on particular transport corridors, such as
between two cities, where social interactions are more likely to occur.

Research Gap2: Machine learning is often known as the “black box” model,
lacking the interpretations backed by theory. However, it is also known for its
performance. Following the stream of “Take the best of both worlds? ML to
CM,” one identified research opportunity is leveraging machine learning to assist
in choice model specification, particularly in the context of social networks. This
approach aims to enhance model performance and provide further insights into
the factors driving decision-making processes.
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1.3 Objectives

This thesis aims to fill this gap by investigating the determinants of social contact
selection in leisure activities. Specifically, it seeks to:

1. Identify key factors influencing the “with whom” choice in different social
contexts. Develop and validate models that account for these factors, en-
hancing the explanatory power of activity-travel behaviour models.

2. Integrating machine learning techniques with traditional choice modelling
to improve model specification and performance, particularly in the context
of social network analysis.

1.4 Thesis Outline

The thesis is structured into a chapter on the data, two main chapters, followed by
a conclusion and discussion:

• Chapter 2: This chapter describes the data that is used in both Chapter 3 and
Chapter 4

• Chapter 3: This chapter focuses on the selection of social contacts in leisure
activities, exploring how individual and contextual factors influence these
choices. It utilises data collected through snowball sampling to analyse the
patterns and determinants of social contact selection

• Chapter 4: This chapter integrates machine learning techniques with tra-
ditional choice modelling to enhance the specification and performance of
models predicting social contact selection. It demonstrates the application
of Shapley Additive exPlanations (SHAP) in the context of social network
analysis.

• Chapter 5: The final chapter summarises the key findings, discusses their
implications for theory and practice, and suggests directions for future re-
search.
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Chapter 2

Data

This chapter introduces the dataset that underpins the analysis of social contact
selection within the context of activity-travel behaviour. This dataset is integral to
exploring how individuals make choices regarding their leisure activities and the
social contacts they involve. The same dataset will be utilised in both Chapter 3
and Chapter 4.

In Chapter 3, the dataset will be used to investigate the factors influencing
the selection of social contacts for various leisure activities. This will provide
insights into the social dynamics and patterns of activity participation, focusing
on explaining the ”with whom” decision-making process. Chapter 4 will extend
this analysis by integrating machine learning techniques with traditional choice
modelling to enhance model specification and performance. This approach aims
to uncover hidden patterns and improve the interpretability of behavioural models,
thereby contributing to a deeper understanding of social network influences on
activity-travel behaviour.

The data used in the study was collected in Switzerland by the Institute for
Transport Planning and Systems (IVT) of ETH Zurich between January 2009 and
March 2011 (Kowald & Axhausen, 2014). It was collected to gain a better un-
derstanding of leisure activity engagement. The data was collected through a
snowball sample. The rationale of snowball sampling is to conduct the survey
with people named by the respondents who are already in the sample. With each
iteration, more respondents are recruited, hence the name snowball sampling. An
example of the process is demonstrated in Figure 2.1. An ego is a respondent, and
social contacts named by the respondents are alters. An initial ego reported four
alters. The alters reported by the initial ego in the first iteration (Alter1, Alter2,
and Alter4) became egos themselves as they were contacted and successfully re-
cruited into the survey (indicated in blue). Alter3 did not respond (indicated in
red). Each new ego in iteration 1 then reported their own alters, leading to the
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formation of iteration 2.

Figure 2.1: Snowball sampling with three iteration levels. Source: Calastri,

Hess, Daly, Maness, et al. (2017)

While snowball sampling is effective for studying network structures and un-
derstanding the dynamics of social interactions, it comes with several disadvan-
tages. Firstly, it does not meet the criteria for random sampling, leading to selec-
tion bias as respondents are selected based on their social connections rather than
randomly from the target population. This results in unequally distributed prob-
abilities for individuals to become part of the sample. Secondly, the method can
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suffer from homophily bias, where the recruited sample tends to be homogeneous
because people are more likely to nominate others who are similar to themselves
in behaviour, characteristics and shared preferences. Lastly, there is degree bias,
meaning individuals with larger social networks are more likely to be included in
the sample multiple times, leading to overrepresenting well-connected individu-
als. Despite these disadvantages, snowball sampling is particularly suitable for
our study because it effectively captures the complex network of social interac-
tions and relationships, which is crucial for examining social contact selection
in leisure activities. Moreover, the dataset provides comprehensive insights into
the social context and the nature of relationships between respondents, making it
invaluable for modelling and understanding activity-travel behaviour. Further de-
tails on these disadvantages and the rationale for using this sampling method can
be found in Kowald (2013).

The survey utilized two key components: a name generator and a sociogram.
The name generator component asked respondents to list their social network con-
tacts (see Figure 2.2). For each of these contacts, respondents provided key infor-
mation. The sociogram component then asked respondents to mention activities
they do with their social contacts and to list the social contacts that regularly join
each activity. The social contacts they listed in the sociogram were limited to
those identified in the name generator.

Figure 2.3 is an empirical example of sociogram data. In this example, the
ego O named 14 social contacts A-N. Four leisure activity groups exist (group 1
to group 4). Members within the same leisure activity group are fully connected.
Alter I join two different leisure activity groups (group 3 and group 4) and thus
create an overlap between them. D and alter N do not participate in any leisure
activity group (they are known as the isolates).
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Figure 2.2: The name generators. Source: Kowald (2013)

14



Figure 2.3: An example of sociogram data. The red node in the middle is the

ego, and the green dots are the alters. Source: Kowald (2013)
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2.1 Data descriptives

Respondents who reported no social contacts or one social contact are excluded
from the analysis because there is no choice process in either case. The sample
is further reduced, excluding egos who reported 0 activities because there is no
other way to know the activities that the egos and alters conduct together. The
final sample is made of 639 egos and 14,009 alters. On average, each person
reports 22 social contacts. Most people reported more than 5 social contacts, and
this is true for over 98% of egos in the sample.

The datasets have many potential explanatory variables (more than 70, exclud-
ing identification variables such as iterations in snowball sampling) as displayed
in Table 2.1.

Type of variables Variable
Variables on ego level

Civil status
Education level
Age
Sex
Car availability
Mobility characteristics
Status of employment
Household Income
Number of persons in household
Driver license
Birth county
Citizenship
Second Citizenship
Number of main residencies an ego had in course of life
Number of working people in household
Number of education places
Number of years in education
Internet access
Mobile phone possession

Variables on ego-alter level
Sex

Continued on next page
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Table 2.1 – continued from previous page
Type of variables Variable

Age
Core contact
Ask for help
Discuss important problems
Context of meeting
Variables of locations of 1st meeting
Variables of home location
Types of relationship
Alter’s degree centrality
Alter’s betweenness
Relation duration
Contact frequencies per year:

(1) face-to-face
(2) phone
(3) e-mail
(4) SMS
(5) internet chat

Distance (KM)
Similarity of socioeconomics
Tie strength
Citizenship
Language
Civil status
Education level
Preferred language for discussions

Variables on ego-network level
Network size (various definitions)
Network degree (various definitions)
Degree Centralisation (various definitions)
Betweenness centralisation (various definitions)
Network density (various definitions)
Network composition (proportion)
Number of components
Variability of with whom

Continued on next page
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Table 2.1 – continued from previous page
Type of variables Variable

Homophily of socioeconomics
Number of cliques (activity groups) reported
Average number of participants per clique
Number of strong ties in personal network
Number of weak ties in personal network
Varibales of home location

Table 2.1: Independent variables in the data

As demonstrated in Figure. 2.4, the distribution of reported distances is skewed
toward the lower end, in fact, over 93% at a distance less or equal to 100 KM.
Thus, it is reasonable to censor at 100 KM, as most ego-alter live within this more
localised range.

Figure 2.4: Distribution of distance (Log-transformed)

Figure 2.5 presents the log-transformed distribution of relationship duration.
Log transformation is applied because we hypothesised that once an ego knows
an alter for a long time, the effect of this on the choice diminishes. This means
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that the incremental impact of additional time knowing an alter becomes smaller
over time. As shown in the figure, most relationships fall within the middle range
(i.e., between 2 and 4 on the log scale). This suggests that most relationships have
a moderate duration, with fewer relationships being either very short or long.

Figure 2.5: Distribution of relationship duration (Log-transformed)

Table 2.2 shows the sample demographics. In our study, age homophily refers
to ego-alter pairs with age differences within ten years. A majority of the sample
exhibits age homophily, indicating that most ego-alter pairs are close in age. The
sample is fairly evenly split between those who are both married and those who
are not. There is a higher proportion of ego-alter pairs where both individuals
are female. Friends constitute the largest category of ego-alter pairs, followed by
acquaintances and relatives.
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Table 2.2: Sample demographics

Characteristic N %

Age homophily 9428 68.74%
Not age homophily 3210 23.41%
Both married 6944 50.63%
Not both married 6770 49.37%
Both male 3012 21.96%
Both female 5860 42.73%
Spouse 291 2.12%
Relative 1st degree 1886 13.75%
Other relative 817 5.96%
Married into family 724 5.28%
Friend 5578 40.67%
Acquaintance 3932 28.67%

Table 2.3 details activity participation by age homophily. It can be observed
that most activities are conducted with alters who are of similar age, suggesting
the influence of age similarity on activity companionship.

Table 2.3: Activity participation by age homophily.

Activity Type Age Homophily N (%)

Excursions
Age homophily 141 (79.21%)
Not age homophily 27 (15.17%)

Sport
Age homophily 604 (78.24%)
Not age homophily 115 (14.90%)

Eating out
Age homophily 402 (79.92%)
Not age homophily 71 (14.12%)

Hobby
Age homophily 756 (75.98%)
Not age homophily 168 (16.88%)

Continue on the next page
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Activity Type Age Homophily N (%)

Culture
Age homophily 104 (64.60%)
Not age homophily 45 (27.95%)

Visiting
Age homophily 33 (58.93%)
Not age homophily 18 (32.14%)

Table 2.4 provides data on activity participation by marital status homophily.
Activities such as culture and sports show varying degrees of participation based
on whether both individuals are married.

Table 2.4: Activity participation by marital status homophily

Activity Type Marital Status N (%)

Culture
Both married 97 (60.25%)
Not both married 64 (39.75%)

Hobby
Both married 531 (53.37%)
Not both married 464 (46.63%)

Visiting
Both married 36 (64.29%)
Not both married 20 (35.71%)

Excursions
Both married 91 (51.12%)
Not both married 87 (48.88%)

Eating out
Both married 258 (51.29%)
Not both married 245 (48.71%)

Sport
Both married 438 (56.74%)
Not both married 334 (43.26%)

Table 2.5 details activity participation by sex homophily. Activities such as
visiting, sports, and hobbies demonstrate varying degrees of participation based
on sex homophily.
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Table 2.5: Activity participation by sex homophily.

Activity Type Sex Homophily N (%)

Visiting
Both male 2 (3.57%)
Both female 37 (66.07%)

Sports
Both male 249 (32.25%)
Both female 291 (37.69%)

Hobby
Both male 281 (28.24%)
Both female 448 (45.03%)

Culture
Both male 37 (22.98%)
Both female 81 (50.31%)

Eating out
Both male 104 (20.68%)
Both female 230 (45.73%)

Excursions
Both male 47 (26.40%)
Both female 70 (39.33%)

Table 2.6 shows activity participation by relationship type. Friends are the
most common companions for all activities, indicating their significant role in
leisure activities.

Table 2.6: Activity participation by relationship type.

Activity Type Relationship Type %

Culture
Spouse 2.56%
Relative 1st degree 5.13%
Other relative 0%
Married into family 1.28%
Friend 55.77%

Continue on the next page
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Activity Type Relationship Type %

Acquaintance 35.26%
Sport

Spouse 2.65%
Relative 1st degree 5.16%
Other relative 2.25%
Married into family 1.72%
Friend 55.53%
Acquaintance 37.70%

Eating out
Spouse 2.79%
Relative 1st degree 6.18%
Other relative 3.78%
Married into family 1.59%
Friend 56.57%
Acquaintance 29.08%

Hobby
Spouse 1.33%
Relative 1st degree 2.76%
Other relative 1.13%
Married into family 0.81%
Friend 53.02%
Acquaintance 40.94%

Excursions
Spouse 1.16%
Relative 1st degree 8.72%
Other relative 4.07%
Married into family 2.33%
Friend 52.33%
Acquaintance 31.40%

Visiting
Spouse 5.36%
Relative 1st degree 37.5%
Other relative 0%
Married into family 12.5%
Friend 32.14%

Continue on the next page
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Activity Type Relationship Type %

Acquaintance 12.50%
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Chapter 3

Social Contact Selection in Leisure Ac-
tivities

3.1 Introduction

Several studies have highlighted specific patterns; individuals tend to engage more
in joint activities with family members providing emotional support (Lin & Wang,
2014), display a propensity for social activities with neighbours (Carrasco &
Miller, 2006), and show a greater frequency of social activities with friends,
males, and very close alters (Carrasco & Miller, 2009). Further, it has been shown
that people tend to have more social interactions with strong tie contacts (van den
Berg et al., 2012b). Collectively, these studies underscore the importance of “with
whom” selection in understanding and modelling activity-travel behaviour.

However, the current literature predominantly explores the “with whom” fac-
tor as an explanatory component of activity-travel behaviour (choice of activity
or start time), with limited focus on identifying determinants of the “with whom”
selection process itself. Understanding the determinants of this selection process
is crucial because it allows for the development of more accurate and comprehen-
sive models of human behaviour. By improving our models, we can gain deeper
insights into the underlying mechanisms that drive social interactions and activity
participation. This study aims to enhance the understanding of how individuals
choose their social network members for different activities, which can lead to
better model fit and more robust behavioural insights. This, in turn, has signifi-
cant implications for urban planning, transportation policy, and social well-being.
Improved “with whom” models can inform data collection and modelling efforts,
enabling future studies to incorporate more nuanced social dimensions into their
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analyses. With a better “with whom” model, joint models such as the trivari-
ate econometric model used by Habib and Carrasco (2011) and potentially more
advanced approaches like the MDCEV (Multiple Discrete-Continuous Extreme
Value) model can better account for continuous variables like activity duration
alongside social interactions. This advancement will improve the explanatory
power of joint models and provide valuable insights for policymakers and re-
searchers aiming to foster more connected and efficient communities.

In addition, individual characteristics significantly affect companionship (i.e.,
household member and non-household member) choices for leisure activity (Srini-
vasan & Bhat, 2006). Hasnine et al. (2022) found that factors such as modal ac-
cessibility, household size, and age significantly influence decisions about living
arrangements (i.e., with parents/family, with a partner, living with a roommate(s),
and living alone). This finding is relevant because it highlights how individual
characteristics and contextual factors influence decisions about “with whom” to
live, which is a specific type of “with whom” selection. Similarly, research has
emphasized the role not just of the personal attributes of the individuals but also
of the characteristics of their personal networks in shaping “with whom” choices
(Habib et al., 2008). For example, a higher proportion of friends in one’s network
increases the likelihood of participating in social activities with friends. Nonethe-
less, these studies primarily considered aggregated categories of social contacts
such as family, friends, or household members, thereby overlooking important
factors like the specific characteristics of individual social network members (al-
ters) and the detailed nature of dyadic relationships. For instance, factors such
as the physical distance between the ego and alter, whether both individuals are
female or if both are married, can significantly influence “with whom” decisions.
Such detailed dyadic variables are often not captured when data and models are
based on broader categories, like “with friends” or “with family,” which do not
account for the nuanced attributes of each individual relationship.

3.1.1 Initial Hypotheses

Based on intuition and guidelines from previous studies in related literature, we
propose the following initial hypotheses regarding the potential relevance/significance
of certain explanatory variables existing in the dataset across various categories of
activities:

• Age: Age is shown to influence preferences for socialising with family or
friends, especially for older individuals (K. M. N. Habib & Carrasco, 2011).
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• Age Homophily: Age homophily, where individuals are more likely to en-
gage in activities with others of a similar age, is a well-documented phe-
nomenon in social behaviour (Carrasco & Miller, 2009).

• Gender: Gender may play a role in determining the choice of social net-
work members across various activities. Males, for example, may prefer to
socialise with friends rather than family, suggesting that gender could in-
fluence the choice of social network members for different social activities
(K. M. Habib et al., 2008).

• Gender Homophily: Gender homophily, the tendency for individuals to
interact with others of the same gender, can also play a role in social inter-
actions. van den Berg et al. (2012a) found that gender similarity correlates
with the duration of social activities, suggesting that it might also influence
the choice of social network members across various social activities.

• Relationship Type and Household Dynamics: The nature of the relation-
ship (e.g., friends, family, household members) and the roles individuals
occupy within their households/marital status (e.g., household heads, adults
with partners) could impact the choice of social network members for social
activities (K. M. Habib et al., 2008). Additionally, household size influences
social choices, with larger households being less likely to socialise without
household members (K. M. N. Habib & Carrasco, 2011).

• Network Composition: The composition of an individual’s social network
(e.g., proportion of friends) may influence the likelihood of participating in
social activities with different social network members. A higher proportion
of friends in the network increases the probability of engaging in social
activities with friends, while a higher number of family members increases
the likelihood of participating in family-based activities (K. M. Habib et al.,
2008).

• Relationship Duration: The length of a relationship between individu-
als has been shown to affect the frequency and mode of social interactions
(Calastri, Hess, Daly, Maness, et al., 2017), suggesting that relationship du-
ration might still be a relevant variable in explaining social activity engage-
ment (e.g., engagement in certain types of social activities might decrease
with relationship duration but will be compensated by increased communi-
cation via other methods)
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• Income: Income can play a role in the ”with whom” decision. For exam-
ple, higher income can increase the likelihood of interacting with family
members K. M. N. Habib & Carrasco (2011).

• Physical Distance: The physical proximity of individuals may be a factor
in deciding with whom to engage in social activities. The likelihood of
participation might decrease as the distance between individuals increases,
making physical distance a potentially significant variable across various
activity types (Axhausen, 2005).

• Education Level: Education level is strongly linked to individuals’ cul-
tural activities, such as museum visits or concert-going (Bourdieu, 2018).
Consequently, it might be reasonable to infer that individuals with similar
educational backgrounds may engage in cultural activities.

• Degree Centrality: Degree centrality, which measures how connected an
alter is to other network members, has been shown to positively corre-
late with social activity frequency (Carrasco & Miller, 2009). Alters with
more direct connections are more likely to interact frequently with the ego,
suggesting that degree centrality could influence the ”with whom” choice
across various activities.

• Degree Centralisation: Degree centralisation measures how concentrated
connections are in a few central alters. Higher degree centralisation has
been linked to a greater propensity for socialising within the network (Car-
rasco & Miller, 2006), suggesting that it could be a factor in predicting with
whom individuals choose to engage in social activities.

• Network Density: Network density, defined as the proportion of actual
connections to all possible connections in a network, has been shown to
correlate with higher interaction frequency between ego and alters (Car-
rasco & Miller, 2009). A denser network may lead to more frequent social
interactions, making this variable relevant to the ”with whom” choice across
different activities.

3.2 Method

An ego-alter pair can engage in one of six types of activities. In total, there are 7
distinct alternatives. One of these is the null alternative, indicating the ego is not
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engaging in any of the six activities with a given alter.
For each ego i, under the paradigm of utility maximisation, a certain amount

of utility is derived from each choice alternative given by:

Ui jn = αn + εi jn (3.1)

where i is the ego; j is the alter;n is one of the alternatives;αn is an alternative-
specific constant; and εi jn is the disturbance term. The disturbances εi jn are as-
sumed to be independently and identically distributed (IID) with a Type I Extreme
Value distribution (Gumbel distribution).

The utility function in baseline model with just ASC (3.1) was first extended
to accommodate the effects of variables on ego level

Ui jn = αn +βnXin + εi jn (3.2)

Where Xin the explanatory variables are the ego-level variables; βn represents
the effect of ego-specific characteristics on the probability of choosing alternative
n.

Subsequently, the utility function in 3.2 was extended to accommodate the
effects of the variables on the ego-network level. By extending Eq. (3.2), the
utility of ego i choosing alter j for activity n could then be written

Ui jn = αn +βnXin + γnNin + εi jn (3.3)

Where Nin the explanatory variables are the ego-network level variables; γn
represents the effect of network characteristics on the probability of choosing al-
ternative n.

The utility function in 3.3 was then extended to accommodate the effects of
the dyadic variables (the variables on ego-alter level)

Ui jn = αn +βnXin + γnNin +ζnAi jn + εi jn (3.4)

where Ai jn the ego-alter level variables; ζn represents the effect of dyadic vari-
ables on the probability of choosing alternative n between ego-alter pairs.

The resulting structure allows us to consider how individual characteristics
and preferences and the specific ego-alter relationship affect the utility derived
from different activities. Therefore, our model encompasses variables at the ego
level and ego-alter level, which helps us examine the impact of these factors on
the utility derived from different activities with an alter and, consequently, on the
likelihood of different activities being chosen with an alter.
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The multinomial logit (MNL) choice model used in this study assumes mu-
tually exclusive alternatives, meaning that each ego-alter pair can only engage in
one type of activity at a time. This assumption simplifies the model and is neces-
sary for the proper application of the MNL framework, as overlapping activities
would violate the requirement for mutually exclusive alternatives.

To understand the necessity of this simplification, a preliminary analysis of
the data revealed that each ego-alter pair does not engage in more than one kind
of activity. Table 3.1 and Table 3.2 provide a detailed breakdown of the number
of activities and their combinations:

Number of Activity Types Frequency %
0 types of activities 11049 78.82%

1 type of activities 2665 19.02%

2 types of activities 243 1.73%

3 types of activities 46 0.33%

4 types of activities 4 0.03%

5 types of activities 1 0.01%

Other 0 0.00%

Total 14009 100%

Table 3.1: Frequency of the number of activity types that the ego conducts with a

given alter

Table 3.2: Activity Combinations and Frequencies

Activity Combination Frequency
No activities 11049
Hobby 995
Culture 161
Culture, Hobby 10
Visiting 56
Visiting, Hobby 1
Visiting, Culture, Hobby 2

Continued on next page
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Activity Combination Frequency
Excursions 178
Excursions, Hobby 41
Excursions, Culture 9
Excursions, Visiting 2
Excursions, Visiting, Hobby 1
Eating Out 503
Eating Out, Hobby 52
Eating Out, Culture 4
Eating Out, Culture, Hobby 2
Eating Out, Visiting 1
Eating Out, Excursions 18
Eating Out, Excursions, Hobby 4
Eating Out, Excursions, Visiting 3
Sport 772
Sport, Hobby 41
Sport, Culture 3
Sport, Culture, Hobby 1
Sport, Visiting, Hobby 1
Sport, Excursions 34
Sport, Excursions, Hobby 2
Sport, Excursions, Visiting 3
Sport, Excursions, Visiting, Hobby 2
Sport, Eating Out 28
Sport, Eating Out, Hobby 14
Sport, Eating Out, Culture 4
Sport, Eating Out, Excursions 9
Sport, Eating Out, Excursions, Hobby 1
Sport, Eating Out, Excursions, Culture, Hobby 1
Sport, Eating Out, Excursions, Visiting 1
Total 14009

Table 3.2: Frequency of combinations of activities that the ego conducts with a

given alter

From Table 3.1, it is evident that most ego-alter pairs (11049 pairs) are not
engaged in any activities together, while 2665 pairs are involved in only one type
of activity. Only 295 pairs are involved in more than one type of activity, as further
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detailed in Table 3.2.
Given the small number of observations involving multiple activities (295 out

of a total of 14009 ego-alter pairs), including these combinations as separate alter-
natives would lead to a sparse data problem. This scarcity could compromise the
reliability and stability of the model estimates due to insufficient data for many of
the activity combinations.

The decision to simplify the model by removing from the data any scenarios
where the ego engages in multiple types of activities with the alters was made to
ensure robust estimation and to maintain the tractability of the model. The limited
observations for combined activities do not provide a strong statistical foundation
for more complex modelling approaches that would incorporate multiple concur-
rent activities.

An alternative approach could involve creating composite alternatives repre-
senting combinations of activities. However, this would exponentially increase the
number of alternatives and further complicate the data sparsity issue. Another ap-
proach could involve using a nested logit model or a mixed logit model to account
for correlations between activities, but these models would also require sufficient
data for reliable estimation. For example, although a nested logit model could the-
oretically account for the correlations between different types of activities, it was
not implemented due to data limitations. Specifically, the small number of ego-
alter pairs engaging in more than one activity would lead to an insufficient number
of observations for reliable estimation of the correlation structure in a nested logit
framework. We also explored a multivariate probit (MVP) model to account for
possible correlations between activities, but, as we will discuss later in Chapter
5, the data’s richness was a limiting factor. The small number of ego-alter pairs
engaging in multiple activities compromised the robustness of this model.

In conclusion, the simplification to mutually exclusive alternatives, while an
assumption, is justified based on the observed data distribution. The majority of
ego-alter pairs engage in zero or one type of activity, supporting the use of the
MNL model in its current form. This approach ensures that the model remains
statistically robust and computationally feasible, providing reliable insights into
the factors influencing activity choices among ego-alter pairs.

The choice probability of alternative n for ego i and alter j is given by

Pi jn =
e f (Xin,Ai jn;β )

∑m∈L e f (Xim,Ai jm;β )
(3.5)

where L is the choice set and the denominator is the sum of the exponential of the
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systematic utility associated with all alternatives.
In practice, this means that the probability of choosing a particular activity n

(such as Sport, Eating out, etc.) by an ego i with an alter j depends on the utility
derived from that activity relative to the utility derived from all other available
activities in the choice set. All six activities listed in the Data section (section 2)
are available to each ego-alter pair. Additionally, there is a null alternative, repre-
senting no engagement in any of the six activities. Therefore, the total number of
alternatives available in the choice set L for each ego-alter pair is seven, including
the null alternative.

This means that for any given ego i and alter j, the model considers these seven
alternatives when determining the probability of engaging in a specific activity.

This framework facilitates the understanding of how individual characteristics
and specific ego-alter relationships influence the likelihood of different activities
being chosen.

3.3 Empirical results

In this section, we present the results of the analysis, focusing on modelling the
choice of the type of activities that an ego conducts with a given alter. The activ-
ities reported by the respondents have been grouped into several aggregate cate-
gories to facilitate a clearer understanding of social behaviour patterns. This cat-
egorisation follows the logic of a sociogram, which identifies activities and then
lists the social contacts who regularly participate in these activities. This approach
allows for a structured analysis of the types of activities and the social dynamics
involved. Essentially, we created a choice variable that was previously implicit in
the data, enabling a more detailed examination of the participant selection process
for different types of activities.

The activities that the egos perform with their alters have been allocated to
several aggregate activity categories as follows:

• Sport (e.g., tennis, football, basketball, swimming, skiing)

• Eating out (e.g., dinner, barbeque, coffee, restaurant visits)

• Hobby (e.g., painting, reading, music, gardening, yoga)

• Excursions (e.g., hiking, mountain tours)
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• Culture (e.g., concerts, theatre, museums)

• Visiting (e.g., visiting friends and family)

These categories were determined based on the types of activities reported
by the respondents. For example, the “Sport” category includes activities such
as tennis, football, basketball, swimming, and skiing. The “Eating out” category
includes activities such as dinner, barbeque, coffee, and restaurant visits. The
“Hobby” category encompasses a wide range of personal interests, such as paint-
ing, reading, music, gardening, and yoga. “Excursions” involve outdoor activities
such as hiking and mountain tours. The “Culture” category includes arts and
culture-related activities, such as concerts, theatre, and museums. The “Visiting”
category involves social visits to social network members.

The choice of categories is inspired by the classification of the share of the
number of trips according to leisure purposes in the German travel survey (Illen-
berger, 2012).

The distribution of activity types that egos engage in with their alters in the
study data is summarized in Table 3.3. As shown in Table 3.3, hobbies represent
the largest category, followed by sports and eating out. This distribution highlights
the predominance of personal interests and physical activities in the social inter-
actions of the respondents, while visits and cultural activities are less common.

Activity Type Percentage
Sports 29%

Hobby 37%

Eating Out 19%

Excursion 7%

Visit 2%

Culture 6%

Table 3.3: The table shows the distribution of activity types egos engage in with

their alters based on the study data.
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3.3.1 Correlation analysis

Correlation analysis was conducted to examine the relationships between the ex-
planatory variables and identify potential multicollinearity issues. A comprehen-
sive analysis has been conducted, considering the nature of each variable.

• Continuous Variables Analysis: Pearson’s correlation coefficients calcu-
lated for continuous variable pairs, such as “distance” and “relation dura-
tion,” have shown only weak correlations (e.g., 0.131). These results sug-
gest negligible multicollinearity that would affect parameter estimation.

• Categorical Variables Analysis: Cramer’s V statistics were employed for
categorical variable pairs. The values ranged from very weak (e.g., 0.022
between “alter’s education level” and “ego’s sex”) to moderate associations
(e.g., 0.316 between “ego’s sex” and “alter’s sex”). While some variables
demonstrated moderate associations, none reached a level that would sug-
gest a risk of multicollinearity compromising the model.

• Mixed Variable Types Analysis: For the pairs consisting of one continuous
and one categorical variable, a practical assessment approach was taken.
The stability of coefficient estimates and robust t-ratios indicated no sub-
stantial changes across model specifications when variables were added or
removed. For instance, the removal of “relation duration” resulted in minor
changes in the estimates for “age homophily” across alternatives such as
cultural activities, sports, and dining out, with robust t-ratios suggesting the
variable remains significant.

• Specific Findings and Conclusions:

– The coefficient for “age homophily” (-0.463 to -0.486) and associ-
ated robust t-ratios (-1.88 to -2.01) remained stable, affirming that
collinearity with “relation duration” is not a concern.

– A consistent pattern was observed for “age homophily” across various
activities, with minimal fluctuation in the estimates and significance
levels when “distance” was excluded.

– For categorical pairs, the moderate association between “ego’s sex”
and “alter’s sex” was notable. However, since our model includes in-
teraction effects between these variables, this association is accounted
for and does not imply multicollinearity.
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– Further analyses have been conducted to ensure a thorough examina-
tion of potential collinearity within our model. They echo the patterns
observed in the presented findings, reinforcing our confidence in the
model’s robustness without delving into repetitive details here.

The analyses suggest that our model is robust with respect to collinearity. The
measures of association, significance levels, and stability of estimates across spec-
ifications have been carefully considered. Although some variables are moder-
ately associated, the effects are not strong enough to distort the model estimates
significantly. The results have been consistent and aligned with theoretical expec-
tations, indicating that the explanatory variables are contributing meaningful and
distinct information to the model.

3.3.2 Core Results

The model was estimated using Apollo (Hess & Palma, 2019). The parameter
estimates presented in Table 4.5 are evaluated for their statistical significance us-
ing robust t-ratios. The model includes a range of ego-level and ego-alter level
variables, although some variables, such as income, age, and sex (except for the
alternative of playing sport with a given alter), were tested but found to be non-
significant and thus not included in the final model. Additionally, the following
variables were removed due to endogeneity: frequency of different communica-
tion modes, help, discuss important problems, both help and discuss important
problems, and contexts of 1st meeting. A number of network features have been
suggested from the literature, but we are cautious about including them in our
choice model because of the concern of endogeneity (mainly in line with omitted
variable bias), including degree centralization, network size, network density, and
network degree.

Using the likelihood ratio (LR) statistic to compare Specification 0 (ASC only)
with Specification 1 (including variables at the ego level), Specification 2 (adding
ego-network level variables), and Specification 3 (further including ego-alter level
variables), as shown in Table 3.5, each subsequent model significantly improves
in goodness-of-fit relative to its restricted version at a 95% confidence level or
higher. Specifically, the LR statistics of 580.7, 134.16, and 627.12 provide strong
evidence against the null hypothesis for each comparison, suggesting that the in-
clusion of ego-level, ego-network, and ego-alter level variables enhances the ex-
planatory power of the original model.
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While the likelihood ratio tests show stepwise improvements for each nested
model, the AIC values further support the comparison between these specifica-
tions (see Table 3.4). Among the tested models, Specification 3 has the lowest
AIC value (20123.22), indicating the best balance between model fit and complex-
ity. This result suggests that the inclusion of ego-alter level variables significantly
contributes to improving model fit by capturing additional dyadic relationship fac-
tors that are not accounted for by ego or ego-network characteristics alone.

Table 3.4: Model comparisons (a)

Model logL AIC
ASC only (Eq.3.1; Specification 0) -10678.60 21369.20

ASc plus variables on ego level (Eq. 3.2; Specification 1) -10388.25 20838.49

ASc plus variables on ego level and ego-network level (Eq. 3.3; Specification 2) -10321.17 20716.34

ASc plus variables on ego level, ego-network level and ego-alter level (Eq. 3.4; Specification 3) -10007.61 20123.22

Compared Model Restricted Model LR statistic p-value
Specification 1 Specification 0 580.7 < 0.001

Specification 2 Specification 1 134.16 < 0.001

Specification 3 Specification 2 627.12 < 0.001

Table 3.5: Model comparisons (b)

The results section presents the estimated coefficients for each activity type,
where the sign and magnitude of these coefficients provide insights into the rela-
tive influence of different factors on the likelihood of engaging in specific activi-
ties with alters.

To support the explanations of our findings, we calculated the probabilities of
engaging in each type of activity for different levels of explanatory variables (cat-
egorical ones). These probabilities were derived using the estimated model, which
includes all relevant variables. We filtered the predicted probabilities for each key
explanatory variable to focus on specific scenarios/levels of categorical variables
(e.g., where age homophily is true). By averaging the probabilities within these
levels, we examined the likelihood of engaging in different activities under these
specific conditions.

Table 3.7 summarises the average probabilities for activities based on different
levels of categorical explanatory variables.
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Table 3.6: MNL (base alternative = no joint activity, with its ASC fixed to zero).

Culture Excursions Visiting Sports Hobby Eating Out

ASC −4.8838 (-5.021) −4.5926 (-18.183) −6.9576 (-6.424) −1.6930 (-3.776) −1.7649 (-6.928) −2.5764 (-5.689)

Distance −0.0170 (-2.271) 0.0409 (2.031) −0.0380 (-2.176) −0.0334 (-4.128) −0.0101 (-2.821)

Distance squared −0.0005 (-2.431) 0.0003 (1.650) 0.0002 (2.303)

Relationship duration −0.1524 (-1.309) −0.1461 (-2.131)

Age homophily 0.6328 (2.503) 0.4889 (3.968) 0.2847 (1.362)

Both married 1.2247 (6.650)

Both male −1.7604 (-2.660) 0.3489 (2.353)

Both female 0.6394 (2.098)

Ego male −0.7257 (-2.774)

Household size 0.3931 (3.169)

Proportion of ego-alter pairs with similar sex 0.0206 (1.774) 0.6328 (2.503) 0.0197 (1.287) −0.0123 (-1.955) −0.0117 (-1.658)

Proportion of ego-alter pairs with similar age −0.0170 (-2.328) −0.0099 (-1.990) 0.0135 (2.240)

Proportion of ego-alter pairs with similar education 0.0058 (1.859) 0.0073 (2.606)

Proportion of ego-alter pairs with similar civil status 0.0197 (1.287) 0.0054 (1.501)

Type of relationship
Married into family −1.6376 (-2.212) −1.4628 (-4.082) −2.2025 (-5.507) −1.6340 (-3.430)

Relative 1st degree −1.2001 (-2.431) −1.1681 (-4.348) −1.8902 (-8.169) −1.2411 (-4.673)

Relative −1.1217 (-3.786) −1.8277 (-4.306) −0.7947 (-2.583)

Spouse −0.8520 (-2.826)

Acquaintance −0.2799 (-1.523)

Missing values coefficients
Distance −0.5528 (-1.354) −0.4330 (-2.308) −0.6751 (-3.755)

Relation duration −0.6013 (-1.989)

Activity Type Similar
Age

Not
Simi-
lar Age

Both
Mar-
ried

Not
Both
Mar-
ried

Both
Female

Both
Male

Excursions 0.015 0.009 - - - -

Sports 0.064 0.034 - - - 0.083

Eating Out 0.043 0.024 - - - -

Culture - - 0.014 0.009 - -

Visiting - - - - 0.006 0.001

Hobby - - - - 0.073 0.093

Table 3.7: Average probabilities for activities based on different explanatory

variables.
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3.3.3 ASC (Alternative Specific Constant)

The ASCs in this model capture the average effect of all unmeasured variables on
the probability of choosing each activity, independent of the measured explanatory
variables. These ASCs are crucial for understanding the baseline attractiveness of
each alternative, especially within the context of ego-alter relationships. The neg-
ative ASCs for all activities indicate a general tendency against engaging in any
of the listed activities with alters. The ASC for culture is -3.5113, excursions -
4.5963, visiting -5.6770, sports -2.4427, hobby -1.3595, and eating out -2.8036,
reflecting varying baseline levels of preference against these activities, with vis-
iting having the strongest negative baseline preference. In other words, all else
being equal, one alternative is more preferable than the other depends on the mag-
nitude of the ASCs.

3.3.4 Distance

This continuous variable captures the physical separation (in kilometres) between
each ego and their corresponding alter (see Figure 2.4). The distance was censored
at 100km, and the variable was then entered into the model in a polynomial form
(e.g., x+ x2, where x is distance).

The variable “Distance” has negative coefficients for alternatives such as “Eat-
ing Out with alters,” “Playing Sports with alters,” and “Engaging in hobbies with
alters,” suggesting that an increase in the physical distance between the ego and
the alter consistently reduces the likelihood of engaging in these activities to-
gether. This indicates that proximity plays a significant role in the propensity to
partake in eating, sports, and hobby activities with alters, with greater distances
acting as a deterrent. The pattern reverses for “Visiting alters,” where the positive
coefficient indicates that as the distance increases, the likelihood of engaging in
visiting activities actually rises. The positive coefficient for visiting, against the
general trend of a negative Alternative-Specific Constant (ASC) and the negative
coefficients for other activities, underscores the unique nature of visiting activi-
ties. They become more desirable or feasible as the distance increases, contrasting
with the reduced likelihood of engaging in other activities under similar distance
conditions. This, we recognise, is a counterintuitive result.

The negative coefficient for “Distance squared” in relation to visiting activi-
ties suggests a quadratic relationship between distance and the likelihood of en-
gaging in these activities. While the initial positive coefficient for “Distance”
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implies that visiting activities become more likely as distance increases, the neg-
ative “Distance squared” coefficient indicates that this trend reverses beyond a
certain point. Essentially, there is a turning point at which the increasing distance
starts to discourage visiting activities, suggesting that extremely long distances
eventually become a barrier to visiting. The calculated turning point for visiting
activities is approximately 39.3 km. Conversely, the positive coefficients for “Dis-
tance squared” with activities like “Playing Sports with alters” and “Engaging in
hobbies with alters” suggest a different dynamic (an initial positive influence fol-
lowed by a negative influence, as demonstrated in Figure 3.1). The calculated
turning points for sports and hobby activities are approximately 64 km and 78.5
km, respectively. This could indicate that at moderate distances, the challenges
of meeting for these activities are outweighed by other factors, perhaps includ-
ing the value placed on such activities or the organization of special events that
justify travelling the longer distances. This, however, conflicts with the literature.
Notably, the model indicates that distance does not significantly affect the util-
ity of excursions with alters, which could be anticipated given the inherent travel
component of such activities.

In Figure 3.1, we present simulations that depict the impact of distance on
the utility of engaging in various activities with alters, for distances ranging from
zero to 100 km. These simulations incorporate the baseline utility of each activity
with alters (reflected in the alternative-specific constants) along with the effects of
distance and its squared term. The graphical results affirm our interpretations.

These results are in line with the previous studies in terms of the significance of
distance in social interactions, for example, in social activity frequency (Carrasco
& Miller, 2009) and communication frequency of different communication modes
(Calastri, Hess, Daly, Maness, et al., 2017).

3.3.5 Relationship duration

This variable indicates for how many years the ego and each alter have known each
other. A log transformation is applied to the values because the model performs
better with a log transformation than without in terms of log-likelihood, AIC and
BIC. We have also considered the interaction terms between relationship duration
and family members to explore the potential differences in how long-standing
family relationships impact social contact choices compared to other types of re-
lationships. However, the inclusion of such interaction terms did not lead to a
significant improvement in the model’s statistical performance, so we decided to
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Figure 3.1: Effect of distance on utility.

retain the simpler specification without the interaction term.

The significant and negative coefficients for “relationship duration (number of
years)” in the context of “cultural activities with alters” and “engaging in hobby
activities with alters” suggest that the longer the ego has known the alter, the
less likely they are to engage in these activities together, as reflected in Figure.
3.2, where we represent the effect of relationship duration on utility given the
estimated parameters, analogously to the relationship with distance in Fig. 3.1,
though engaging in hobby activities with alters is preferred over cultural activ-
ity with alters for longer-term relationships. This trend is particularly significant
in light of the negative ASC, which generally indicates a tendency towards not
choosing any activity over non-engagement. The findings imply that, as the du-
ration of the relationship between the ego and the alter increases, the probability
of choosing to participate in cultural and hobby activities diminishes. This could
reflect a shifting dynamic in long-standing relationships, where the preference for
engaging in cultural and hobby activities together wanes over time. Consequently,
the relative undesirability of these types of activities becomes more pronounced as
the relationship between the ego and the alter grows older. This is also in line with
the general finding in the literature that face-to-face time interaction, in general,
reduces as the ego knows their alter longer (van den Berg et al., 2012b; Kowald,
2013; Frei & Ohnmacht, 2016; Calastri, Hess, Daly, Maness, et al., 2017) indeed
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engaging in various leisure activities with the alters is a kind of face-to-face com-
munication mode. Similar to the interpretation by Calastri, Hess, Daly, Maness,
et al. (2017) and her colleagues for the negative coefficient for face-to-face com-
munication frequency, it is likely that the longer an ego knows an alter, the more
physically separated they are making engaging in leisure activities with alters lo-
gistically challenging.
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Figure 3.2: Effect of relationship duration on utility.

3.3.6 Age homophily

This study categorises pairs as either “age homophily” or “non-age homophily”,
as shown in Table 2.3, with the latter serving as the base category. The decision
to model age homophily as a dummy variable was influenced by related literature,
where this is one of the approaches that has been adopted. However, another
approach that includes age difference as a continuous variable could be employed
instead, which could provide better model performance and interpretability (e.g.,
this will help address potential boundary issues that arise with a fixed threshold,
where small differences (e.g., 11 years) might still represent age similarity but fall
outside the defined boundary). However, the performance of the two models is
very similar, with only a minor difference in log-likelihood and AIC. This suggests
that neither model is significantly outperforming the other. The former approach
is chosen in this work for easier comparison with some of the literature on activity-
travel behaviour.

The model reveals insights about the role of age homophily in the selection of
activities with alters. Age homophily has positive coefficients for alternatives like
“Eating Out with alters”, “Playing Sport with alters”, and “Going on an Excursion
with alters”, indicating that age similarity between the ego and alter increases the
relative appeal of these activities, even though the general inclination might still

44



be against engaging in any activity with any alter. The magnitude of these coef-
ficients suggests a hierarchy of preferences, with excursions being the most pre-
ferred, followed by eating out and sports, within age-similar dyads. Conversely,
the absence of a significant coefficient for activities like “Visiting”, “Culture”, or
“Hobby” suggests that age similarity does not significantly influence the choice
of these activities with alters. This differential impact of age homophily across
activities provides insights into social preferences.

The probabilities table (Table 3.7) further supports these findings. It shows
a higher probability of choosing activities like “Excursions” (0.015 vs 0.009),
“Sports” (0.064 vs 0.034), and “Eating Out” (0.043 vs 0.024) for age-homophily
pairs compared to non-age-similar pairs. This empirical evidence aligns with the
model’s coefficients, underscoring the significance of age homophily in social
activity choices with alters.

In light of the detailed age homophily data presented in Table 3.8, our findings
gain additional depth and specificity. Notably, the top three counts of ego-alter
pairs within age homophilous pairs offer interesting insights. The number of ego-
alter pairs in the 25-39 age group aligns with the observed trend of age homophily
being a significant factor in the preference for “Playing Sport with Alters”. This
is consistent with the general understanding that younger individuals are more in-
clined towards physical activities, thus reflecting a higher propensity for engaging
in sports within this age group. The prevalence of the 40-59 age group ego-alter
pairs may explain the significant coefficient of age homophily for the preference
of “Engaging in Excursions with Alters”. This demographic, often characterized
by greater financial stability and a desire for leisure activities, may prefer excur-
sions as a means of social engagement, reinforcing the influence of age homophily
in this choice. The prominence of the 60-79 age group pairs within ego-alter pairs
with similar age supports the finding of a significant parameter of age homophily
for “Eating Out with Alters”. This preference could be attributed to retired indi-
viduals having more leisure time and a tendency to socialize in more relaxed and
accessible settings, such as dining out.

3.3.7 Both married

There are two dummy variables that report the marital status of ego and alter. Re-
spondents and their social contacts could be married or not married. We included
an interaction term between these two variables, to consider ego and alters who
are both married (i.e, consider the marital status of both members of the ego-alter
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Table 3.8: Age Homophily by Age Group

Ego Age Group Alter Age Group N %
40-59 40-59 4780 38.34

60-79 60-79 1340 10.75

25-39 25-39 1072 8.60

40-59 25-39 470 3.77

40-59 60-79 510 4.09

60-79 40-59 376 3.02

25-39 40-59 356 2.86

18-24 18-24 262 2.10

25-39 18-24 88 0.71

18-24 25-39 77 0.62

60-79 80+ 49 0.39

80+ 60-79 27 0.22

80+ 80+ 19 0.15
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pair, but it does not imply that the ego and alter are married to each other, see Table
2.4). In this case, only the “cultural activities with alters” coefficient is significant
and has a positive sign. The positive coefficient for the variable “both married” in
the context of the “Engaging in cultural activities with alters” alternative signifies
that when both the ego and the alter are married, there is an increased likelihood
of participating in cultural activities together compared to dyads where this is not
the case. This suggests that a shared married status enhances the attractiveness of
cultural engagements amongst pairs. Notably, this tendency is evident despite a
negative ASC, which indicates a general trend towards not engaging in activities.
Thus, the condition of both ego and alter being married appears to counteract the
overall predisposition against activity engagement, at least in the realm of cultural
activities (as it is not significant in other alternatives).

The probabilities table (Table 3.7) further supports these findings. It shows a
higher probability of choosing cultural activities for pairs who are both married
compared to non-married pairs. This empirical evidence aligns with the model’s
coefficient, underscoring the significance of pairs being both married in social
activity choices with alters.

3.3.8 Sex homophily

There are two dummy variables that report the gender of the ego and alter (male
or female). We included two interaction terms between these two variables to
consider ego and alters who are both male and both female (i.e., consider the
gender of both members of the ego-alter pair, see Table 2.5).

The positive coefficients for “Ego and alter both male” in relation to alter-
natives like “Playing Sport with alters” and “Engaging in a hobby with alters”
indicate that when both the ego and the alter are male, there is an increased like-
lihood of engaging in these activities relative to all other gender pairings (except
for the case of visiting alters, this is relative to ego and alters of different gen-
der). Despite the negative ASC, which implies a general disinclination towards
activity engagement, male-male dyads show a particular propensity for sports and
hobbies. A potential explanation could be that when a male ego considers playing
sports, an alter being male is naturally more appealing simply due to the level of
physicality and competition a male aler could offer as opposed to a female alter.
Similarly, a male-male pair might be more likely to have similar interests, e.g.,
shooting, as opposed to other pairings. Conversely, the negative coefficient for
“Visiting with alters” suggests that male-male pairs are less likely to choose vis-
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iting activities compared to other gender combinations. This denotes a specific
aversion towards visiting activities within male-male pairings, further accentuat-
ing the general non-engagement trend as captured by the negative ASC.

The positive coefficient associated with the “Ego and alter both female” for the
“Visiting alters” alternative suggests that when the ego and alter are both female,
there is a higher likelihood of choosing to engage in visiting activities compared to
pairs of mixed genders. This increased propensity is observed even in the context
of an overall lesser inclination to engage in any activities. Therefore, the data im-
ply a specific preference for visiting activities among female-female dyads, which
stands out against the general trend of non-engagement.

The probabilities table (Table 3.7) further supports these findings. It shows
a higher probability of choosing visiting activities for pairs who are both female
compared to pairs both male, a higher probability of choosing sports and hobby
activities for pairs who are both male compared to pairs both female. This empiri-
cal evidence aligns with the model’s coefficients, underscoring the significance of
sex homophily in social activity choices with alters.

3.3.9 Type of relationship

The “Type of Relationship” variable captures the essence of the ego-alter connec-
tion, distinguishing among various relational ties as depicted in Table ??. Friend-
ship serves as the reference category, offering a baseline against which other rela-
tionships are measured.

The model outputs reveal that non-friendship ties—spanning familial to ac-
quaintance levels—are consistently associated with lower propensities to engage
in shared activities like “Eating Out with alters”, “Playing Sports with alters”,
“Engaging in cultural activities with alters” and “Engaging in hobbies with alters”
(further accentuating the general non-engagement trend as captured by the nega-
tive ASC). This trend suggests that activities typically associated with voluntary
social leisure are less preferred when the alter is not a friend. The negative coef-
ficients for familial and acquaintance relationships across these activities indicate
a nuanced preference structure. For example, the hierarchy of least preferred ac-
tivities for marital family ties—starting with cultural activities and extending to
hobby activities—may reflect the ingrained social rituals or perceived appropri-
ateness of engaging in certain activities within specific relational contexts.

The pronounced aversion across all relationship types, apart from friendship,
to participating in the listed activities may reflect the social dynamics where friend-
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ship is the primary gateway to leisurely social interaction. The differential mag-
nitude of the coefficients across relationship types could be hinting at varying
degrees of relational distance and the social obligations that come with them. For
instance, familial relationships may entail a sense of obligation that potentially
dampens the appeal of more casual or recreational activities that are otherwise
freely chosen among friends.

The distinct patterns observed underscore the intricate interplay between so-
cial ties and activity choices, suggesting that the nature of the relationship signifi-
cantly sways the decision to engage in certain activities with alters. It also points
to the potential role of cultural and social expectations in shaping these patterns,
especially in the Swiss context where private leisure time is highly valued and
potentially reserved for certain types of relationships.

Our findings are in line with the existing studies in that they often would find
positive coefficients in reference to friends (Carrasco & Miller, 2009; van den
Berg et al., 2012b), which is also our case here.

3.3.10 Missing values analysis

In our study, missing values in the explanatory variables were modelled as a sep-
arate category of explanatory variables. This approach allows us to handle the
non-random nature of missing data and incorporate it into the model without los-
ing significant portions of observations. This methodology is similar to the ap-
proach taken by Calastri, Hess, Daly, Maness, et al. (2017) in their study of social
network interactions, where they treated missing values as a separate category to
understand underlying patterns and avoid bias from data elimination.

In our model, missing values, particularly for distance and relationship dura-
tion, reveal interesting patterns. For instances where the ego or the alter’s home
location is not reported, significant negative coefficients are noted in activities like
engaging in culture, sports, and hobbies with alters. This pattern suggests that the
absence of location data, likely due to unknown addresses, is associated with a
lower likelihood of participation in these activities with alters. The tendency for
missing values predominantly at the alter-level supports the hypothesis that unrec-
ognized distances serve as a barrier to engagement. This aligns with the broader
understanding that physical proximity is a key facilitator of social interactions.

The missing values in the context of relationship duration present a similarly
insightful narrative. The observed coefficients mirror those where the duration
is known but with higher magnitudes in the case of missing data. This could
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be indicative of long-standing relationships where the ego might struggle to re-
call the exact duration of the relationship, a situation perhaps more common in
well-established social ties. Such ties, characterized by familiarity and longevity,
could naturally influence the utility derived from engaging in hobbies with alters,
justifying the parallel effect on utility in both known and unknown cases.

For the type of relationship, significant coefficients in the missing values are
evident for hobbies and eating out with alters. This pattern could suggest a nu-
anced effect where the nature of the relationship, when unspecified, influences the
preference for certain activities with the alters. It could be that in cases where the
relationship type is unclear or less defined, there is a tendency to lean towards less
close activities like playing sports than eating out.

3.4 Conclusion

This study provides a detailed examination of the determinants influencing the
selection of social network members for various leisure activities at the ego-alter
level. Our findings indicate that age homophily, physical distance, marital status,
and the type of relationship significantly influence the likelihood of participating
in specific activities with alters.

Our analysis revealed several key insights:

• Age Homophily: Individuals are more likely to engage in activities such
as sports, eating out, and excursions with alters who are close in age. This
suggests that age similarity plays a significant role in social activity choices.

• Physical Distance: The likelihood of engaging in leisure activities de-
creases as the physical distance between ego and alter increases, except
for visiting activities, which initially increase with distance but decrease
beyond a certain point. This highlights the importance of proximity in fa-
cilitating social interactions.

• Marital Status: Pairs where both the ego and alter are married are more
likely to participate in cultural activities together.

• Type of Relationship: Friends are the most common companions for leisure
activities, highlighting the importance of friendship ties over familial or ac-
quaintance relationships in these contexts.
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Snowball sampling, while effective for studying network structures, inherently
includes biases such as homophily and degree bias. Homophily bias occurs be-
cause respondents tend to recruit others who are similar to themselves, leading to
a more homogeneous sample. Degree bias arises because individuals with larger
social networks are more likely to be included multiple times, which can overrep-
resent well-connected individuals.

To address these biases, several measures were implemented:

1. Initial Iteration Representativeness: The initial sample was carefully se-
lected to ensure it was representative of the target population. This included
using a diverse range of starting points for the snowball chains to capture a
wide variety of social network structures.

2. Balancing Homophily Bias: The study employed two consecutive sub-
samples to balance homophily bias. This approach ensured that the sample
included individuals from various social backgrounds and network sizes.

3. Data Quality and Imputation: The study used homophily-based imputa-
tion strategies to handle missing data and reduce biases. This method lever-
aged the observed homophily patterns to accurately impute missing values,
thereby improving the overall data quality.

Despite these efforts, it is acknowledged that snowball sampling does not aim
for full representativeness. Instead, it focuses on understanding network struc-
tures. The degree bias and homophily are part of the tool’s inherent characteristics,
and while they can be mitigated, they cannot be entirely eliminated. However, the
study’s exploratory nature and the measures taken ensure that the findings provide
valuable insights into the dynamics of leisure activities within social networks.
More details on these methodologies can be found in Kowald (2013).

Future research could address these limitations by incorporating data from di-
verse geographic and cultural settings. Previous research has successfully exam-
ined distance patterns in personal networks across multiple countries, including
Canada, Switzerland, the Netherlands, and Chile (Kowald et al., 2013), demon-
strating that such comparative studies can yield valuable insights. Exploring more
complex models, such as nested logit or mixed logit models, could provide a
deeper understanding of the interplay between multiple concurrent activities.

Improved “with whom” models can enhance the explanatory power of joint
models, such as the trivariate econometric model and the MDCEV (Multiple
Discrete-Continuous Extreme Value) model, by better accounting for continuous
variables like activity duration alongside social interactions.
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Chapter 4

Machine learning assisted choice model
specification in a context of social con-
tact selection in leisure activities

4.1 Introduction

Traditional choice model specification involves a base model, which is then sys-
tematically refined by adding and combining variables (e.g., the interaction term
between two variables). This process is driven by statistical significance, intuition,
insights from prior research and the reasonableness of the findings. However, it
is generally impractical and often practically impossible to try all specifications,
even with only a few explanatory variables, let alone the scenarios where the data
consists of a large set of explanatory variables.

Machine learning methods, on the other hand, excel at identifying hidden cor-
relations within large datasets (Hillel et al., 2021; van Cranenburgh et al., 2022;
Wang et al., 2021). Previous studies have attempted to help the choice mod-
ellers in specification searching by framing this as an optimisation problem solved
through iterative search algorithms (Ortelli et al., 2021).

Thus, some authors have suggested using feature importance ranking of the
machine learning model (Hillel et al., 2019) to help the modellers in selecting
the explanatory variables (even before looking into how this variable should be
specified in the model), which gives an additional aspect of considerations in de-
veloping the choice model alongside other aspects aforementioned.

Some other authors take another step back and suggested using feature im-
portance ranking of the machine learning model (Hillel et al., 2019) to help the
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modellers in selecting the explanatory variables (even before looking into how
this variable should be specified in the model), which gives an additional aspect
of considerations in developing the choice model alongside other aspects afore-
mentioned. Feature importance ranking in machine learning is a technique used
to identify and rank the relative importance of various features (or variables) in a
dataset with respect to the predictive power they hold in a model. This ranking
is based on the principle that not all features contribute equally to a prediction
model’s accuracy. Some features might strongly influence the outcome (e.g., dis-
tance might be a strong predictor in an activity-travel-related model), while others
may have little to no impact. The process of feature importance ranking involves
using statistical techniques or algorithms to quantify the extent to which each fea-
ture contributes to the model’s performance.

Our study introduces the assisted specification approach to the domain of so-
cial network analysis, a context distinct from its traditional applications in trans-
portation, such as mode choice studies (Ali et al., 2023). Unlike transport con-
texts, where choices are often explained by factors such as time, cost, convenience
and etc., social network analysis look into the complexities of social relationships
and their multifaceted impacts on behavior. This domain’s inherent complex-
ity presents unique challenges and opportunities for methodological innovation.
The traditional choice modelling approach may not fully capture the subtleties of
these social influences. By applying feature importance ranking within this novel
context, our research aims to uncover hidden patterns and correlations that are
uniquely present in social networks but might be overlooked by the conventional
approach. Our investigation responds to calls for further testing and case studies of
the assisted specification approach (Hillel et al., 2019) by demonstrating its appli-
cability in social network analysis, aiming to contribute to broader methodological
exposure, highlighting the value of integrating machine learning techniques with
traditional choice modelling to enhance the interpretability of behavioural models.

In contrast to Hillel et al. (2019), our study will employ SHapley Additive
exPlanations (SHAP) for feature importance ranking (Lundberg & Lee, 2017).
This technique offers an alternative theoretical perspective based on game theory,
as opposed to information theory. We would attempt to see if what we perform
here with machine learning can be a valuable complement to choice modelling.
For example, improving the variable selection process in choice modelling and
unearthing hidden correlations could provide new insights into activity-travel be-
haviour. Ultimately, this chapter would serve as further evidence for bridging
choice modelling and machine learning.
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4.2 Method

In supervised learning—a foundational method of machine learning described
comprehensively in Hastie et al. (2009)—models are trained using labelled data
to predict outcomes based on input features. In this research, the objective is to
classify each ego-alter pair into one of several activity categories, showcasing a
typical application of supervised learning where the model learns to map inputs
(e.g., dyadic variables) to outputs (activity types). Our method incorporates a
two-step approach. Initially, we implement and compare various machine learn-
ing models, such as tree-based models and neural networks, to identify the model
that performs best. Once the best-performing model is selected, we apply SHAP
to this model to obtain detailed insights from the model, such as the contribution
of each feature toward the prediction of the outcome.

In our context of imbalanced datasets, where one class significantly outweighs
the others (i.e., one label/alternative is chosen around 80% of the time), relying
solely on overall accuracy as a performance metric can be misleading. This is be-
cause a model that always predicts the majority class will achieve high accuracy
but will not necessarily be effective in identifying instances of the minority class.
Therefore, a combination of the metrics will be considered to gain a comprehen-
sive understanding of a model’s performance.

The key metrics used to evaluate our models are:

1. Accuracy: The ratio of correctly predicted instances to the total instances.
While high accuracy might seem desirable, in the context of imbalanced
data, it can be misleading because it does not account for the model’s ability
to predict minority class instances.

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Number of Samples

2. Recall (Sensitivity or True Positive Rate): The ratio of correctly predicted
positive observations to all observations in the actual class.

Sensitivity =
True Positives (TP)

False Negatives (FN) + True Positives (TP)

3. Specificity (True Negative Rate): The ratio of correctly predicted negative
observations to all observations in the actual negative class.

Specificity =
True Negatives (TN)

False Positives (FP) + True Negatives (TN)
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4. Balanced Accuracy: The average of recall and specificity, providing a more
balanced measure of performance across both classes.

Balanced Accuracy =
Sensitivity + Specificity

2

Label Encoding (Integer Encoding) is convenient but inappropriate when deal-
ing with nominal variables, as it imposes an ordinal relationship where none ex-
ists. We employed one-hot encoding for nominal variables in our dataset to ad-
dress this. For instance, the variable ”Ego-Alter relation: Is alter a kin-contact?”
with levels such as close relative, non-relative, other relative, and missing data
was converted into four binary variables (dummy variables), each indicating the
presence or absence of a specific category.

4.2.1 ML models

4.2.1.1 Data

Given the imbalanced nature of our dataset, where some classes are significantly
underrepresented, traditional data splitting and performance metrics could lead
to misleading conclusions. To mitigate this, we adopted a stratified sampling
approach to maintain the proportion of each class in both training and testing
datasets (85% and 15% respectively). Stratified sampling was chosen to ensure
that the class distribution in the training and test sets is consistent with the overall
dataset. This approach prevents scenarios where random sampling might result in
some subsets having very few or no instances of the minority class, which could
lead to biased model training and evaluation. By preserving the class ratios, strat-
ified sampling ensures that the model is exposed to both classes in a balanced way
during training and testing. Furthermore, balanced accuracy is used as one of the
main evaluation metrics, stratified sampling is a natural complement because it
allows for a fair comparison of performance across classes. Balanced accuracy
considers both the majority and minority classes equally, and stratified sampling
ensures that the minority class is represented in all subsets, thus avoiding mislead-
ing results/evaluations caused by highly skewed data distributions. This strategy
ensures that our models are trained and validated on a representative sample of the
original data, enhancing the reliability of our predictive performance. While other
techniques like oversampling or undersampling could also address class imbal-
ance, they were not chosen in this study because the focus was on preserving the
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original structure and relationships in the data rather than altering them (oversam-
pling duplicates examples from minority classes, which can lead to overfitting.
Undersampling, on the other hand, reduces the number of samples in the majority
class, which can cause loss of potentially valuable information).

The decision to adopt an 85-15 split for the training and test datasets was made
to ensure that a substantial portion of the data was used for model training, while
still maintaining an adequate sample for performance evaluation. Allocating 85%
of the data for training aids in capturing sufficient information, which is essential
given the complexity of the model and the range of explanatory variables under
consideration. The remaining 15% provides a reliable basis for evaluating the
model’s generalisability and mitigating risks associated with overfitting.

To examine whether the model’s performance is sensitive to the specific choice
of split ratio, additional experiments were conducted using different proportions
(e.g., 70-30, 80-20, and 90-10). The results indicated that the model’s perfor-
mance across different metrics remained relatively stable, with only minor differ-
ences observed. For example, the balanced accuracy values for the random forest
binary classifier predicting “eating out” with alters were:

• 70-30 split: 0.6977

• 80-20 split: 0.7044

• 85-15 split: 0.6987

• 90-10 split: 0.7261

Although the 90-10 split yielded a slightly higher balanced accuracy, it re-
sulted in a reduced test set size, thereby limiting its reliability for performance
evaluation. Conversely, the 70-30 split provided a larger test set but a smaller
training set, which could impact the model’s capacity to learn from underrepre-
sented classes.

The 85-15 split was selected as it offers a balanced compromise, ensuring that
the training set is sufficiently large to capture complex patterns, while the test
set is robust enough to evaluate model performance reliably. This choice ensures
that class proportions are preserved through the use of stratified sampling, thereby
enhancing the reliability of the evaluation.

Moreover, it is worth noting that there is no universally optimal rule for choos-
ing a split ratio. As highlighted by Joseph (2022), the optimal training/testing
ratio often varies depending on the specific data characteristics and the model
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complexity, and commonly used splits such as 80-20 or 70-30 are largely based
on heuristic considerations. Given this, the observed stability of our results across
multiple splits indicates that the model’s performance is not unduly sensitive to
the specific choice of split ratio, and the use of the 85-15 split is justified for the
data in this study.

During the training of our machine learning models, we used balanced accu-
racy as the evaluation metric within a cross-validation framework. This involved
splitting the data into multiple folds, training the model on some folds, and validat-
ing it on the remaining folds. The balanced accuracy metric was used to assess the
model’s performance on the validation sets, guiding the selection of optimal model
parameters. By averaging the balanced accuracy across all folds, we ensured that
our model’s performance was robust and not biased towards any particular class.
The cross-entropy loss was used to train the models by optimising probabilistic
predictions. However, since some of the activity choices are imbalanced, balanced
accuracy was used as the evaluation metric during the cross-validation (CV) pro-
cess to select the best model. This combination allowed us to effectively train
the models while ensuring balanced performance across different classes during
evaluation.

A brief summary of the ML models used in this chapter is provided. More
details can be found in Hastie et al. (2009).

4.2.1.2 Decision Trees

A decision tree is a popular machine learning model used for both classifica-
tion and regression tasks. It operates by repeatedly splitting the data into dis-
tinct sub-groups based on the attributes of the data. Each split aims to max-
imise the homogeneity of the resultant sub-groups regarding the outcome vari-
able. The quality of these splits is determined using impurity measures such as
Gini impurity and entropy: - Gini Impurity: Gini(t) = 1−∑

k
i=1 p2

i - Entropy:
Entropy(t) =−∑

k
i=1 pi log2(pi) where pi represents the proportion of class i sam-

ples at node t. We used Gini Impurity.
The decision tree begins with the root node, which contains the entire dataset.

This node represents the initial state before any splits have been made.
As we move down the tree, the dataset is split at several internal nodes. Each

node represents a decision point that bifurcates the data based on a specific condi-
tion or attribute. For example: An internal node may pose a question such as ”Is
the number of edges greater than 116?” Depending on the answer, the dataset is
divided into two paths: one for data points that satisfy the condition (right branch)
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and another for those that do not (left branch). The branches culminate in leaf
nodes, where no further splitting occurs. Each leaf node provides a prediction
or decision based on the path followed from the root. Typically, a leaf node will
specify:

• The predicted class (e.g., plays sports together: yes or no)

• A measure of confidence or error rate associated with the prediction

• The proportion of the dataset that reaches this leaf

The decision-making process in a decision tree is analogous to following a
flowchart where each decision leads down a path to a final outcome. Starting
from the root, one evaluates the attributes of the case in question and follows the
path dictated by the conditions at each node until reaching a leaf. The prediction
at the leaf node is then used as the outcome for that case.

In developing the decision tree model for predicting whether individuals are
likely to engage in sports together (and so on for the other types of activity), it was
crucial to adjust the model’s complexity to optimise both its accuracy and ability
to generalise. This optimisation process was conducted using the caret package
in R, which supports efficient parameter tuning via cross-validation and allows for
adjustments to the tree complexity. The model was trained using a 5-fold cross-
validation approach. This technique involves splitting the dataset into five equal
parts, each part being used once as a validation set while the remaining data serve
as training sets. Such a strategy ensures comprehensive model evaluation and
helps in avoiding overfitting.

The complexity parameter (cp) in the decision trees serves as a control for
the minimum required improvement in model fit at each node. By experimenting
with different cp values, the model can be adjusted to balance between being
overly complex and overly simplified:

• Parameter Range: Multiple cp values were tested to identify the best cp
value that allows the model to maintain an appropriate level of complexity
without sacrificing predictive accuracy. The criterion for selecting the best
cp value was based on achieving the highest balanced accuracy across the
cross-validated datasets.

• Evaluation Metric: The primary metric for model evaluation was balanced
accuracy, which provides a robust measure for the effectiveness of the model
in classifying the two outcomes.
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With the optimal complexity parameter identified, the decision tree model is
finely tuned to predict sports participation (and other types of activities) among
ego-alter pairs.

4.2.1.3 Random Forests

Random Forests build on the foundation of decision trees, enhancing the model’s
predictive power and robustness by incorporating ensemble learning principles.
This method involves deploying multiple decision trees, each trained on a dis-
tinct bootstrap sample of the data. A bootstrap sample is a random subset drawn
with replacement, meaning some observations may appear more than once, while
others may not appear at all. This ensures variability among the trees, which is
crucial for reducing overfitting.

Each tree in a Random Forest is constructed by selecting a random subset of
features at each decision split—this approach is termed ‘feature bagging’. By not
always using all features at each split, it decreases the correlation between indi-
vidual trees, significantly enhancing the model’s ability to generalise and further
reducing the variance of the model without significantly increasing the bias.

The predictive performance of Random Forests primarily hinges on reducing
variance while retaining low bias. Each tree aims to minimise either the Gini
Impurity or Entropy at each split (we used the former).

Random Forests employ bagging (bootstrap aggregating) to stabilise the vari-
ance. In classification, it uses a majority voting system among the N trees. Each
tree votes for a class and the class with the majority of votes becomes the model’s
prediction.

In our study, each Random Forest model was trained using a 5-fold cross-
validation technique, facilitated by the caret package, which ensured a compre-
hensive validation approach. This package also handled the tuning of key param-
eters such as the number of trees (ntree) and the number of features at each split
(mtry). These parameters are critical for optimising the Random Forest model to
achieve the best trade-off between bias and variance.

The model’s effectiveness was evaluated using the balanced accuracy metric.
Random forests typically achieve higher accuracy and better generalisation ca-

pabilities through these ensemble techniques than individual decision trees, par-
ticularly on complex datasets with interactions among attributes. The ensemble
nature of Random Forests helps manage larger datasets and effectively handles
unbalanced data by balancing error rates across different classes.
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4.2.1.4 Boosting

Building further on the principles of ensemble learning, Boosting represents a
different methodology aimed at creating a strong predictive model by combining
multiple weak models, typically decision trees. Unlike Random Forests, which
build trees independently and combine them through averaging or majority voting,
Boosting involves adding trees sequentially to correct the errors made by previous
trees.

XGBoost (eXtreme Gradient Boosting) stands as one of the most efficient
and powerful implementations of the gradient boosting framework. It enhances
the boosting technique with both speed and performance optimisations, making it
highly effective for a wide range of data science applications and competitions.

XGBoost improves on the traditional boosting methods by using a more reg-
ularised model formalisation to control over-fitting, which gives it better perfor-
mance. At its core, XGBoost utilises the gradient boosting algorithm, where new
models are created that predict the residuals or errors of prior models and then
added together to make the final prediction. This is often done through a tech-
nique called gradient descent to minimise a loss function. Unlike other boosting
techniques that grow trees greedily, XGBoost uses a depth-first approach where
the growth of a tree is halted early if it doesn’t lead to a minimum reduction in
the loss function. This results in a more optimal and generalised tree. The loss
function used here is logistic loss. Additionally, XGBoost automatically han-
dles missing values and supports sparse data input, making it versatile for various
datasets.

In the application to our dataset for predicting sports participation among ego-
alter pairs, XGBoost was configured to optimise the binary logistic objective,
which is essential for our binary classification problem. Using a robust cross-
validation framework, the model parameters were finely tuned, focusing on key
parameters like the number of gradient-boosted trees (n rounds), tree complexity
(max depth), and the learning rate (η).

The XGBoost model was trained using the same 5-fold cross-validation as
previous models to align with our methodological rigour. This ensured a com-
prehensive assessment and validation against overfitting, maintaining consistency
with our analytical approach.

The effectiveness of the XGBoost model was evaluated using the balanced ac-
curacy metric, allowing for a direct comparison with both the decision tree and
Random Forest models. Given the sequential improvement nature of Boosting,
XGBoost was expected to show an increment in the balanced accuracy metric,
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demonstrating its superior ability to accurately classify positive and negative out-
comes.

4.2.1.5 Support Vector Machine

Support Vector Machines (SVM) introduce yet another powerful approach, pri-
marily distinguished by its basis in statistical learning theory. Unlike decision
trees that partition the data space into segments using lines or curves, SVMs con-
struct a hyperplane or set of hyperplanes in a high-dimensional space, which can
be used for classification, regression, or other tasks. The effectiveness of SVMs
lies in their ability to find the maximum margin separator between classes, making
them exceptionally good at recognising subtle patterns in complex datasets.

The core idea behind SVM is to find the hyperplane that best divides a dataset
into two classes, where the margin of separation between the classes is max-
imised. This is particularly powerful for linearly separable data but extends to
non-linear boundaries using the kernel trick. By applying different kernel func-
tions, such as polynomial, radial basis function (RBF), or sigmoid, SVMs can
perform non-linear classification, subtly capturing complex relationships between
features without necessitating transformations on the raw data itself.

Incorporating SVMs into our study, we employed the svmRadial method,
which utilises an RBF kernel, known for its flexibility and suitability for vari-
ous data distributions. The training was conducted within the caret framework,
allowing us to leverage its robust cross-validation capabilities to fine-tune the
model. This involved adjusting parameters like the cost of constraints violation
(C) and the γ parameter, which defines the reach of a single training example.
Cost ( C) determines the trade-off between achieving a low error on the training
data and minimising the model complexity for better generalisation. A higher C
attempts to correctly classify all training examples by giving the model freedom
to select more samples as support vectors. γ defines how far the influence of a
single training example reaches, with low values meaning ‘far’ and high values
meaning ‘close’. The right gamma parameters can affect the smoothness of the
decision boundary.

The performance of the SVM model was rigorously evaluated using the bal-
anced accuracy metric, ensuring consistency with the evaluation criteria applied to
our previous models. This metric was particularly pertinent to our SVM analysis
due to its sensitivity in distinguishing between the classifier’s ability to maintain
high true positive rates while minimising false positives.

Using a 5-fold cross-validation approach, similar to that used for both the Ran-
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dom Forest and XGBoost models, ensured that the SVM’s evaluation was com-
prehensive and robust, effectively demonstrating its capacity to generalise across
unseen data.

4.2.1.6 Neural Networks

Neural Networks offer a sophisticated computational approach that mimics the
human brain’s operations to recognise patterns and solve complex problems. Un-
like the previously discussed models that emphasise individual learners or hyper-
planes, Neural Networks consist of layers of interconnected nodes or ’neurons’
that work collaboratively to make decisions. This model excels in environments
where relationships between inputs and outputs are non-linear and intricate.

Neural Networks are structured in layers: an input layer that receives the data,
one or more hidden layers that compute the inputs, and an output layer that pro-
duces the final decision. Each neuron in these layers is connected with adjustable
weights, which are tuned during the training process to minimise the prediction
error. The power of Neural Networks lies in their ability to learn these weights
through backpropagation, effectively adjusting them based on the gradient of the
error with respect to the network’s configuration.

For our study on predicting activity participation among ego-alter pairs, we
utilised a standard feedforward Neural Network with multiple hidden layers, trained
using the backpropagation algorithm. The architecture included:

• Input Layer: Matching the number of features in the dataset.

• Hidden Layers: Two hidden layers with 3 and 5 neurons respectively.

• Output Layer: A single neuron output layer to classify the binary outcome
of activity participation.

The decision to use two hidden layers with 3 and 5 neurons, respectively,
was driven by the necessity to construct a model that balances complexity with
performance and generalisation capabilities. The initially larger networks led to
practical issues such as excessive model weights and potential overfitting. The
network size is then systematically reduced, which indicated that a simpler model
was more appropriate for the dataset at hand. This approach is consistent with
best practices in machine learning, where model complexity should not exceed
what is supported by the data.

Neural Networks compute the output from each neuron in the hidden layers
and the output layer using an activation function. For our binary classification
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task, the sigmoid function is used at the output layer to squash the output between
0 and 1, representing the probability of class 1:

σ(z) =
1

1+ e−z

During training, we use the binary cross-entropy loss function, which mea-
sures the performance of our classification model. The loss function is defined
as:

L(y, ŷ) =− [y log(ŷ)+(1− y) log(1− ŷ)]

Backpropagation is used to update the weights in the network. The weights
are adjusted according to the gradient of the loss function with respect to each
weight:

w(new)
i j = w(old)

i j −η
∂L

∂wi j

This ensures that the model learns to minimize the loss function, improving its
accuracy over time. The learning rate η controls the step size during the weight
updating phase.

In addition, feature scaling through standardisation was applied to ensure that
all input variables have a mean of zero and a standard deviation of one, making
them comparable in scale. The training process involved tuning the network with a
grid specifying the size and decay parameters. The network was optimised for the
balanced accuracy metric, with parameters controlled for the maximum number
of iterations and the maximum number of weights allowed.

The Neural Network’s performance was assessed using the balanced accuracy
metric, as with the other models, to maintain evaluation consistency across all
analytical methods. Given the Neural Network’s capacity for modelling complex
relationships and its flexibility in layer and neuron configurations, it often excels
in capturing subtle nuances in data that other models might miss.

During our initial experiments with neural networks, particularly when explor-
ing configurations suitable for our dataset, we encountered a challenge related to
the model’s complexity and the data. As the complexity of the neural network
architecture increases, so does the number of weights that need to be optimised.
This can lead to a scenario known as the ’curse of dimensionality’, where the
parameter space becomes so large that the available data are sparse, making effec-
tive training and generalisation difficult. Given this challenge, we decided against
pursuing deeper neural network architectures.
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4.2.2 SHAP

SHAP (SHapley Additive exPlanations) is a machine learning explainability frame-
work that offers insights into the contribution of each feature to a model’s predic-
tion at the individual data point level. Derived from cooperative game theory,
SHAP values quantify the impact of each feature by considering all possible com-
binations of features in a model.

SHAP is rooted in the Shapley value concept from cooperative game theory,
which allocates payouts to players based on their contribution to the total payout.
In machine learning, ”players” are the features used in a model, and the ”payout”
is the prediction output. The Shapley value provides a fair distribution of the
”payout” among the features, considering the contribution of each feature to the
prediction in all possible combinations of features.

SHAP assigns each feature an importance value for a particular prediction by
defining an explanation model as a linear function of binary variables. The general
form of the explanation model g is:

g(z′) = φ0 +
M

∑
i=1

φiz′i

Where z′ is a binary vector representing the presence (1) or absence (0) of
each feature, φi are the feature attributions, and M is the number of features. This
framework ensures that the sum of the feature contributions (including the base-
line φ0) approximates the model output f (x).

To calculate SHAP values, we use the concept of marginal contributions,
which involves computing the change in the expected model prediction when con-
ditioning on each feature. The SHAP value for a feature i is given by:

φi( f ,x) = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|!

[ f (S∪{i})− f (S)]

Where:

• N is the set of all features,

• S is a subset of features excluding i,

• |S| is the size of the subset S,

• f (S) is the model prediction with the features in subset S,
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• f (S∪{i}) is the model prediction with the features in subset S plus feature
i.

Using SHAP for feature importance provides three key outputs:

• Global Feature Importance: This shows the overall importance of each fea-
ture across all predictions, akin to what information gain would provide. It
will show us, say, the type of relationship is generally the most important
feature in classifying ego-alter pairs into different types of activities. How-
ever, it does not indicate how different values of the type of relationship
affect the classification into each category, nor does it give insights into in-
dividual ego-alter pair classifications, which is why we suggested SHAP as
an alternative

• Feature Influence: SHAP values illustrate how each feature value impacts
the prediction for a specific data point. For instance, an alter being a friend
might increase the SHAP value for playing sport (positive impact) but de-
crease it for visiting (negative impact).

• Local Interpretation: Consider two ego-alter pairs with the following char-
acteristics:

– Ego-alter pair A:

* Alter homophily

* Alter is a friend

* Lives 50 KM away from the ego

– For ego-alter pair A, SHAP might reveal that the alter being the same
age contributes to it being classified as playing sport, while the alter
being a friend also contributes but to a lesser extent.

– Ego-alter pair B:

* Not age homophily

* Alter is a relative

* Lives 10 KM away from the ego

– For ego-alter pair B, the SHAP values might indicate that the ego-
alter pairs of different ages/generations strongly influence its hobby
classification, and the short distance reinforces this classification.
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The analysis would help give insights in terms of expectation of statistical sig-
nificance (global feature importance), signs of the parameters (feature influence)
and behavioural interpretation (local interpretation, e.g., preview of whether it
is reasonable or intuitive or in line with literature even before running a choice
model).

Eventually, we would want to see what choice specification we ended up with.
Is it the same as the one we obtained in the previous chapter? If it is, this ma-
chine learning-assisted choice model specification further confirms/validates our
previous model. If not, does it offer additional behavioural insight we previously
overlooked?

By integrating these insights into our choice model, we aim to uncover hidden
patterns and correlations that are unique to social networks but might be over-
looked by conventional approaches. This methodology allows us to enhance the
variable selection process, validate our previous models, and provide new be-
havioural insights.

In conclusion, SHAP values offer a rigorous and theoretically grounded ap-
proach to interpreting machine learning models. By quantifying feature contri-
butions in a way that ensures fairness and consistency, SHAP values enhance our
understanding of model predictions and support more informed decision-making
in choice model specification.

4.3 Results and discussion

4.3.1 Comparison with ML models

The data is an imbalanced data (see Table 4.1)

Category None Hobby Culture Visiting Excursions Eating Out Sport

Percentage 80.57% 7.26% 1.17% 0.41% 1.3% 3.67% 5.63%

Table 4.1: Percentage of ego-alter pairs for different types of activities

Since accuracy is not the best measure of the performance of a machine learn-
ing model for an imbalanced data, we should explore other measures that take into
account of this nature of the data and therefore gives an less biased view on the
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performance. The performance of a machine learning model can be summarised
in a confusion matrix :

TN FP

FN TP

Table 4.2: Confusion Matrix

Where TP denotes the number of true positives etc.. So, the top row consists of
negative predictions and the left-hand column of actual negative observations. Be-
low is the decision tree for the target variable playing sport with alters, introduced
here for illustration of the metrics introduced earlier)

Reference
Prediction 0 1

0 1920 114

1 7 16

Table 4.3: Confusion Matrix for decision tree

Confusion Matrix is interpreted as the following:

• True Negatives (TN): 1920 - The model correctly predicted the majority
class (0) most of the time.

• False Negatives (FN): 114 - These are instances where the model incorrectly
predicted the negative class (0) when the actual class was positive (1).

• True Positives (TP): 16 - The model correctly predicted the minority class
(1), which is typically harder in imbalanced datasets.

• False Positives (FP): 7 - Instances where the model incorrectly predicted the
positive class.

One common measure is Accuracy:

Accuracy =
TP + TN

Total Number of Samples
=

1920+16
2057

≈ 94.12%
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While this might seem high, it’s not very informative due to the imbalanced
nature of our data.

Another measure is Sensitivity:

Sensitivity =
TP

FN + TP
=

16
114+16

≈ 12.31%

This is relatively low, reflecting the model’s limited effectiveness in correctly
identifying actual positive cases (class 1).

Specificity:

Specificity =
TN

FP + TN
=

1920
7+1920

≈ 99.64%

This is very high, indicating the model’s effectiveness at identifying negative
cases (class 0) as expected.

Balanced Accuracy:

Balanced Accuracy =
Sensitivity + Specificity

2
=

0.1231+0.9964
2

≈ 55.97%

Since this takes into account both sensitivity and specificity, it provides a more
realistic picture of model performance, showing that it is not performing well
overall.

The holdout validation results for all models are shown in the table below. The
GBDT model performs best, achieving the highest balanced accuracy.

Model Sports Hobby Visiting Excursions Eating Out Culture
Decision Tree 0.5361 0.5301 0.9370 0.6197 0.5375 0.5275

Random Forest 0.7270 0.6949 0.8328 0.6399 0.6912 0.7056

GBDT 0.7472 0.7143 0.8333 0.6598 0.6987 0.7629

SVM 0.7047 0.7124 0.7998 0.5677 0.6144 0.6384

NN 0.5970 0.6083 0.7725 0.6633 0.6817 0.5868

Table 4.4: Balanced Accuracy of Different Models
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4.3.2 SHAP

One-vs-All (OvA), also known as one-versus-the-rest, is a heuristic strategy em-
ployed to adapt binary classification algorithms for multi-class classification tasks
(Murphy, 2012). This method entails decomposing the multi-class dataset into
several binary classification challenges. For each distinct binary problem, a bi-
nary classifier is trained, where the class in focus is labelled as positive, and all
other classes are labelled as negative. For example, the choice of an ego to play
sports with an alter is positive (or 1) when an ego chooses to do sport with an alter
otherwise negative (or 0), this negative means not only no engagement but also
other alternatives other than sport. Subsequently, predictions are made based on
the model that shows the highest confidence level. In other words, there will be 6
binary classifiers corresponding to each alternative/binary problem, the one with
highest probability will be used for the prediction say of a specific ego-alter pair.

Hence, instead of presenting a single feature importance ranking for a multi-
class classifier—which could potentially lead to confusion—it is rational to present
individual feature importance rankings for each of the six binary classifiers (ex-
cluding null class or alternative). This method simplifies the interpretation of
feature importance rankings. We have further verified that it gives no different
results in terms of the feature importance ranking with either approach practically
with our dataset. That is when comparing the feature importance ranking of the
multi-class classifier with the binary classifiers, feature rankings agree.

4.3.2.1 Feature importance rankings

The results in Figure 4.1 to 4.6 can be understood in the following way:

• Variable Names/Feature: The y-axis lists the variable names, these represent
the different features used in the model.

• Importance Scores: The x-axis shows the importance scores derived from
SHAP values. Higher scores indicate that the feature has a greater impact
on model predictions.

• Ranking of Features: The length of each bar represents the magnitude of
the feature’s importance. The features are ranked from top to bottom, with
the top feature (’Centralization in network’) having the highest importance
in Figure 4.1.
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In SHAP analysis, the importance of a feature is measured by the average
magnitude of the SHAP value across all samples. A feature with a high SHAP
value would typically have a stronger impact on the model’s prediction, either
pushing the prediction higher or lower.

From Figure 4.1, we can see the following: “Centralization in-network”, “share
of alters with same-sex as ego”, and “No. of people in household”, these features
are the most important, indicating they have the most significant influence on the
decision of engaging in cultural activities with alter. The features “context of
meeting: club” also seem to have a substantial impact on predictions, though less
than the top three features. This implies that the context of meetings plays an im-
portant role in the model’s decision-making. The features like “network density”,
“network degree” etc. suggest that network-related variables are also influential
in the model, although to a lesser extent than the top features. Practitioners could
look at such a plot to determine which features they might want to examine further
to understand behaviour.

Furthermore, by comparing the importance of features across different classes,
we can deduce which factors are universally important and which are specific to
certain activities. For example, the type of relationship (i.e., non-realtive) is im-
portant across many classes; it suggests that the fundamental relationship between
ego and alter is a key determinant in the decision to engage in any activity with
alters.

As a result of the SHAP investigation:

• Several network features have been suggested across the feature importance
rankings of classifiers, including degree centralization, network size, num-
ber of educational places an ego had in the course of life, network density,
network degree, number of edges in the network, mean participant of activ-
ity groups, components in the network, number of weak ties.

• Figure 4.1 (culture) suggests Share of alters with same-sex, Share of alters
with the same education, and No. of people in the household

• Figure 4.2 (eating out) suggests a different way of classifying the type of re-
lationships for “better” model performance, i.e., instead of the type of rela-
tionship incorporated into the choice model kin classification (in Chapter 2
we employed the following classification: acquaintance/friend/married into
family/relative/relative 1. degree/spouse; But feature importance seems to
suggest a different classification: close relative/non-relative/other relative).
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The implication here is that a decision should be made on which classifi-
cation of relationship should be used considering both the performance and
behavioural interpretations.

• Figure 4.3 (Excursions) suggests the Share of alters with the same civil
status.

• Figure 4.4 (Hobby) suggests Alter not a relative and Share of alters with the
same education

• Figure 4.5 (Sport) suggest Alter not a relative

• Figure 4.6 (Visiting) suggest Share of alters with the same education and
No. of the main residency an ego has.

A key insight is that such analysis helps modeller in deciding which definition
of a variable to use when there are multiple definitions possible.

We then applied what we had learned from these results to inform our new
choice model specification, using the model developed in Chapter 3 as the baseline
model (i.e., Eq. 3.4; Specification 3).

The network features, or variables on the ego-network level that we have iden-
tified, have not been included in the choice model in the previous chapter. How-
ever, we are cautious about including them in our choice model because of the
concern of endogeneity (see 3.3.2). The model remains the same.

From Figure 4.1 (culture): Share of alters with same-sex and No. of people in
the household, both have significant and positive coefficients, which would have
been included in the model anyway. The share of alters with the same education
is not significant. No updates on the model.

From Figure 4.2 (eating out): Alter not a relative has a significant and positive
coefficient, 0.9599***, as opposed to relatives and close relatives. Missing values
have a significant but negative coefficient, -2.2797***. The model is updated
by removing married into family, 1st degree relative, relative and acquaintance,
replaced by non-relative and missing value coefficient for the type of relationship
for the utility function of this alternative.

From Figure 4.3 (Excursions): Share of alters with the same civil status is
tested, but no significant result is found. No update on the model. No further
updates on the model following the change in the previous step.

From Figure 4.4 (Hobby): Alter not a relative and missing values both have
significant and positive coefficients, 1.7843*** and 1.1077***, respectively, as
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opposed to relatives and close relatives. Share of alters with the same educa-
tion has a significant and positive coefficient of 0.0085*. In the former case, the
model is updated by removing married into family, 1st degree relative, relative
and spouse, replaced by non-relative and missing value coefficient for the type
of relationship for the utility function of this alternative; in the latter case, this is
what we would have found anyway.

From Figure 4.5 (Sport): Alter not a relative has a significant and positive
coefficient, 1.0951***, as opposed to relatives and close relatives. The model is
updated by removing married into family, 1st degree relative and relative, replaced
by non-relative for the utility function of this alternative.

From Figure 4.6 (Visiting): Share of alters with the same education and No. of
the main residency an ego have was tested, but neither was significant. No further
updates on the model following the change in the previous step.

The results from Chapter 3 are displayed in Table 4.5 and the results of the
ML-assisted choice model specification are summarised in Table 4.6.

Using the LR statistic to compare the model from Chapter 3 with the ML-
assisted model (Model 2), as displayed in Table 4.7, Model 2 is significantly dif-
ferent from Model 1 at well beyond the 95% confidence level. This result confirms
that the ML-assisted choice model significantly increases the goodness of fit of the
original model. The very low p-value indicates strong statistical evidence against
the null hypothesis that the earlier model is sufficient, thereby supporting the more
complex model’s validity in capturing essential variations in the data that are not
accounted for by the previous model.

Practitioners could look at such a plot (i.e, Figure 4.1 to Figure 4.6) to deter-
mine which features they might want to examine further to understand behaviour.

Furthermore, by comparing the importance of features across different classes,
we can deduce which factors are universally important and which are specific
to certain activities. For example, if ’alter relation’ is important across many
classes, it suggests that the fundamental relationship between ego and alter is a
key determinant in the decision to engage in any activity with alters.
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Figure 4.1: feature importance ranking of the binary classifier for the target vari-

able ego engaging in cultural activities with alters
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Figure 4.2: feature importance ranking of the binary classifier for the target vari-

able ego eating out with alters
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Figure 4.3: feature importance ranking of the binary classifier for the target vari-

able ego going on excursions with alters
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Figure 4.4: feature importance ranking of the binary classifier for the target vari-

able ego engaging in hobbies with alters
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Figure 4.5: feature importance ranking of the binary classifier for the target vari-

able ego playing sports with alters
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Figure 4.6: feature importance ranking of the binary classifier for the target vari-

able visiting interactions between ego-alter pairs
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Table 4.5: MNL Model results from chapter 2 (base alternative = no joint activ-

ity, with its ASC fixed to zero).

Culture Excursions Visiting Sports Hobby Eating Out

ASC −4.8838 (-5.021) −4.5926 (-18.183) −6.9576 (-6.424) −1.6930 (-3.776) −1.7649 (-6.928) −2.5764 (-5.689)

Distance −0.0170 (-2.271) 0.0409 (2.031) −0.0380 (-2.176) −0.0334 (-4.128) −0.0101 (-2.821)

Distance squared −0.0005 (-2.431) 0.0003 (1.650) 0.0002 (2.303)

Relationship duration −0.1524 (-1.309) −0.1461 (-2.131)

Age homophily 0.6328 (2.503) 0.4889 (3.968) 0.2847 (1.362)

Both married 1.2247 (6.650)

Both male −1.7604 (-2.660) 0.3489 (2.353)

Both female 0.6394 (2.098)

Ego male −0.7257 (-2.774)

Household size 0.3931 (3.169)

Proportion of ego-alter pairs with similar sex 0.0206 (1.774) 0.6328 (2.503) 0.0197 (1.287) −0.0123 (-1.955) −0.0117 (-1.658)

Proportion of ego-alter pairs with similar age −0.0170 (-2.328) −0.0099 (-1.990) 0.0135 (2.240)

Proportion of ego-alter pairs with similar education 0.0058 (1.859) 0.0073 (2.606)

Proportion of ego-alter pairs with similar civil status 0.0197 (1.287) 0.0054 (1.501)

Type of relationship
Married into family −1.6376 (-2.212) −1.4628 (-4.082) −2.2025 (-5.507) −1.6340 (-3.430)

Relative 1st degree −1.2001 (-2.431) −1.1681 (-4.348) −1.8902 (-8.169) −1.2411 (-4.673)

Relative −1.1217 (-3.786) −1.8277 (-4.306) −0.7947 (-2.583)

Spouse −0.8520 (-2.826)

Acquaintance −0.2799 (-1.523)

Missing values coefficients
Distance −0.5528 (-1.354) −0.4330 (-2.308) −0.6751 (-3.755)

Relation duration −0.6013 (-1.989)

Table 4.6: Updated Model results with new estimates and significance levels.

Variables in bold indicate changes from the baseline model.

Culture Excursions Visiting Sports Hobby Eating Out

ASC −4.8938 (-5.056) −4.5902 (-18.173) −6.9583 (-6.434) −2.4027 (-4.663) −3.5230 (-10.934) −3.6630 (-7.802)

Distance −0.0170 (-2.272) 0.0408 (2.029) −0.0406 (-2.302) −0.0347 (-4.280) −0.0104 (-2.857)

Distance squared −0.0005 (-2.430) 0.0003 (1.766) 0.0002 (2.436)

Relationship duration −0.1533 (-1.319) −0.1486 (-2.163)

Age homophily 0.6292 (2.489) 0.4419 (3.748) 0.0143 (2.350)

Both married 1.1638 (6.359)

Both male −1.7584 (-2.658) 0.3348 (2.268)

Both female 0.6448 (2.114)

Ego male −0.7262 (-2.736)

Household size 0.3928 (3.161)

Proportion of ego-alter pairs with similar sex 0.0206 (1.785) −0.0144 (-2.188) −0.0119 (-1.684)

Proportion of ego-alter pairs with similar age −0.0170 (-2.318) −0.0109 (-2.156) 0.0143 (2.350)

Proportion of ego-alter pairs with similar education 0.0051 (1.666) 0.0072 (2.575)

Proportion of ego-alter pairs with similar civil status 0.0196 (1.288) 0.0044 (1.248)

Non-relative 1.0951 (5.312) 1.7843 (10.396) 0.9599 (5.233)

Married into family −1.6083 (-2.173)

Relative 1st degree −1.1875 (-2.406)

Missing values coefficients

Distance −0.5540 (-1.355) −0.4071 (-2.196) −0.6823 (-3.808)

Relation duration −0.6073 (-2.009)

Type of relationship 1.1077 (2.810) −2.2797 (-2.209)
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Table 4.7: Comparison of Nested Models Using Likelihood Ratio Test

ML assisted choice model Model from Chapter 3 LR Statistic p-value

Model 2 Model 1 29.72 2.369×10−4

4.3.2.2 Feature influence

Feature Importance Order (Activity type sport): The features are listed on the
y-axis in descending order of importance. Context of 1st meeting: club is the
most important feature, while face to face contact frequency is the least important
among the top features displayed. Next to each feature name is the mean SHAP
value. This value indicates the average impact of the feature on the model’s output.
A higher absolute value means the feature has a greater effect on the model’s
output. The x-axis shows the SHAP values, representing the change in log-odds
of the output due to each feature. Points to the right of zero increase the log-odds
of the dependent variable, while points to the left decrease the log-odds.The colour
represents the feature’s value for each observation. Purple indicates higher values,
and yellow indicates lower values. This allows us to see if higher or lower values
of a feature are associated with increasing or decreasing the prediction. Each
dot represents an individual observation (an ego-alter pair in our dataset). The
spread of the dots indicates the variability of this feature’s impact across different
observations.

In terms of how this is useful for a choice modeller, an example would be (the
fifth row in Figure 4.11, which is non-relative): the lower feature value is associ-
ated with the yellow colour on the plot. Because these dots are on the left-hand
side of zero, they are contributing negatively to the model output (which is true
as reflected in Table 4.6, had we included not a non-relative, in the model instead
of non-relative, we would expect a negative sign). A positive SHAP value means
that this feature increases the log odds of the dependent variable (playing sport
with an alter in our example). This implies that an ego-alter pair characterised by
a non-relative relationship is more likely to play sports with an alter. Therefore,
you would expect a positive impact of the alter being a non-relative on the like-
lihood of choosing to play sport with alter. Similar observations can be made in
Figure 4.10 and Figure 4.8. We indeed found the positive signs of the coefficients
associated with this variable in the choice model in Table 4.6.
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A lack of clear colour separation could indicate that the relationship between
the feature and the outcome is not linear or is influenced by interactions with other
features. For instance, in Figure 4.11, ”face-to-face contact frequency” may have
a different impact on the likelihood of engaging in sports with an alter depending
on other features.

This is useful to a choice modeller because the choice modeller would expect
the sign of the parameter associated with the variables included in the model, at
least from a performance perspective. Any disagreement in the model’s results
in the comparison of feature influence serves as a signal that may prompt the
modeller to check if something is wrong in the modelling process.

Figure 4.7: feature influence of the binary classifier for the target variable ego

engaging in cultural activities with alters
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Figure 4.8: feature influence of the binary classifier for the target variable ego

eating out with alters
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Figure 4.9: feature influence of the binary classifier for the target variable ego

going on excursions with alters
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Figure 4.10: feature influence of the binary classifier for the target variable ego

engaging in hobbies with alters
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Figure 4.11: feature influence of the binary classifier for the target variable ego

playing sports with alters
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Figure 4.12: feature influence of the binary classifier for the target variable visit-

ing interactions between ego-alter pairs

4.3.2.3 Local interpretation

Force plots are a type of visualization used to show the contribution of each feature
to the model’s prediction for a specific instance. Each feature’s effect is displayed
as a force that either increases or decreases the model’s output. In a force plot,
base Value E[ f (x)] is the starting point for the SHAP value calculation. Output
Value f (x) is the difference between the base value, and this value is explained by
the SHAP values of the features for this instance. Features that push the prediction
higher (to the right of the base value) have positive SHAP values and are shown
in yellow. These features contribute to an increase in the prediction from the base
value. Features that push the prediction lower (to the left of the base value) have
negative SHAP values and are shown in purple. These features contribute to a
decrease in the prediction from the base value. The length of each colored bar
represents the magnitude of that feature’s contribution. The longer the bar, the
greater the impact of that feature on the model’s prediction.

Figure 4.13 and Figue 4.14 are SHAP values to explain the prediction of
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playing sports with two different ego alter pairs. In the first pair, probability-
decreasing effects such as the context of 1st meeting not in a club are offset by
increasing effects such as alter is a non-relative. In the second pair, being a non-
relative and face-to-face contact frequency increases the probability of the pair
engaging in sports.

As demonstrated here, local interpretation gives the choice modeller an oppor-
tunity to examine the behaviour of the individuals in the data, thereby verifying
any assumption or hypothesis they might hold before the formal investigation. We
recognise that choice modelling is ultimately a result on an aggregate level, but
such check as a pre-modelling can still benefit the modeller, for example, if the
decision rule such as utility maximisation is really a reasonable assumption to
hold by doing so (are an alternative rule demonstrated by some individuals and
therefore more consideration should be invested before going down the path of
utility maximisation decision rule).

Figure 4.13: force plot of row id 1 of the binary classifier for the target variable

ego playing sports with alters
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Figure 4.14: force plot of row id 22 of the binary classifier for the target variable

ego playing sports with alters

4.4 Conclusion

This chapter has explored the integration of machine learning (ML) techniques,
specifically SHapley Additive exPlanations (SHAP), into choice model specifi-
cation within the context of social network analysis. Our study underscores the
potential of combining ML and traditional choice models to enhance both the pre-
dictive accuracy and interpretability of behavioural models.

The key findings of this research are:

1. Enhanced Variable Selection: By employing SHAP for feature impor-
tance ranking, we identified significant variables that influence the likeli-
hood of individuals engaging in various leisure activities with their social
contacts (e.g., number of people in the household in the alternative of engag-
ing in cultural activities with alters) This method provided a more nuanced
understanding of variable contributions compared to traditional approaches.
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2. Improved Model Performance: The ML-assisted choice model demon-
strated superior performance compared to traditional models. The integra-
tion of SHAP values allowed for more accurate identification of relevant
features, which improved the overall goodness-of-fit of the model, as evi-
denced by the likelihood ratio test.

3. Behavioral Insights: The application of SHAP provided further behavioural
insights into social contact selection in leisure activities. It highlighted the
importance of variables such as centralization in the network, the type of
relationship between ego and alter, and demographic similarities (e.g., age
and sex homophily). These insights are crucial for understanding the under-
lying dynamics of social interactions.

4. Feature Influence: SHAP values provided insights into the influence of
individual features on the model’s predictions. This technique allowed us to
see how different values of each feature affect the classification of specific
instances, offering a clear view of the positive or negative impact of each
feature.

5. Local Interpretation SHAP also facilitated local interpretation, enabling
the examination of model predictions at an individual level. This was par-
ticularly useful for understanding how specific characteristics of ego-alter
pairs influenced the likelihood of engaging in different activities, providing
detailed behavioural insights that complement the aggregate-level findings.

6. Methodological Contribution: This study contributes to the broader method-
ological discourse by demonstrating the applicability and benefits of inte-
grating ML techniques, like SHAP, with traditional choice modelling. It is a
small step toward bridging the gap between choice modelling and machine
learning.

In summary, integrating SHAP into choice modelling represents a modelling
approach for enhancing model specification and gaining deeper behavioural in-
sights. While this approach may not be universally necessary, its potential bene-
fits make it valuable to the choice modeller’s toolkit. Future research could further
explore the applicability of this method in other contexts and extend its use to cap-
ture more complex interactions within behavioural models.

This chapter contributes to the advancement of methodological practices by
demonstrating the utility of ML-assisted choice model specification in social net-
work analysis, as well as offering a pathway for future research to build upon
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these findings. The study demonstrates how machine learning techniques, such as
feature importance, feature influence, and local interpretation, can support choice
modellers in the pre-modelling stage. These techniques are not intended to replace
discrete choice modelling, which has a strong theoretical foundation rooted in util-
ity maximisation, statistical theory, and interpretability. Machine learning models,
while primarily built for predictive purposes, lack the level of interpretability and
policy relevance that are often important to choice modellers.

In this thesis, we do not advocate for the use of machine learning as a substi-
tute for discrete choice models. Instead, we propose that machine learning serves
as a complementary tool in the pre-modelling stage. Specifically, insights ob-
tained from machine learning can guide the modeller in identifying potentially
relevant variables or specifications, thereby leading to better model formulations.
Additionally, machine learning models can provide reassurance regarding the pre-
dictive accuracy of a choice model, offering a form of external validation.

Thus, rather than being the end product, machine learning can be a useful tool
in the toolbox of a choice modeller. It can aid in the model specification process
and ensure that the resulting discrete choice model is both statistically robust and
theoretically grounded.
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Chapter 5

Discussion and conclusions

This thesis explores the determinants of social contact selection in leisure ac-
tivities through the integration of traditional discrete choice models (DCM) and
machine learning (ML) techniques. Utilising a snowball-sampled dataset from
Switzerland, the study employed multinomial logit models (MNL) to analyse how
various dyadic variables influence leisure activity choices with different social
contacts. Additionally, machine learning models were used, and Shapley Addi-
tive explanations (SHAP) were employed to interpret the best-performed machine
learning, and the insights obtained were used to enhance the choice model specifi-
cation and, thus, the explanatory power. In the following sections of this chapter,
we will go over the key gaps and demonstrate how they have been addressed.

5.1 Significance and Contributions

The research presented in this thesis offers contributions to the field of choice
modelling, particularly in understanding the social dimension of activity-travel
behaviour. By addressing the determinants of social contact selection, this re-
search provides a nuanced understanding of how social factors influence individ-
uals’ activity choices. Specifically, it highlights the roles of dyadic variables in
shaping social interactions. This enhanced understanding adds depth to existing
studies by uncovering the factors that govern social contact choices, which are
often under-explored in the literature.

Furthermore, the integration of machine learning techniques with traditional
modelling approaches enhances the methodological toolkit available to choice
modellers. This integration allows for the identification and analysis of complex
patterns and relationships within datasets, which traditional methods might miss.
For instance, the use of machine learning in variable selection offers a more effi-
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cient and potentially more accurate approach to choice model specification. This
methodological approach not only improves model performance but also offers
further insights into the factors driving decision-making processes. By contribut-
ing to bridging the gap between machine learning and choice modelling, this re-
search contributes to a growing body of literature that seeks to leverage advanced
analytical techniques to enhance our understanding of human behaviour, and here
in this thesis, particularly in social networks and activity-travel contexts.

5.2 Addressing Identified Gaps

5.2.1 Social Contact Selection in Leisure Activities

• Gap Identified: Previous research often oversimplified the choice of who
people interact with by not accounting for detailed dyadic characteristics.

• Contribution: Chapter 2 presented an in-depth analysis of the determinants
influencing social contact selection in leisure activities, employing a multi-
nomial logit (MNL) model to understand how various factors affect the like-
lihood of engaging in different activities within ego-alter pairs. The choice
of the MNL model was guided by literature and theoretical considerations
that emphasise the need to capture the exclusive nature of activity choices
within ego-alter pairs.

Key findings include:

• Age Homophily: Individuals are more likely to engage in activities such as
sports, eating out, and excursions with alters who are close in age (within 10
years of age difference). This highlights the significant role of age similarity
in social activity choices.

• Physical Distance of home locations between ego-alter pairs: The like-
lihood of engaging in leisure activities generally decreases as the physical
distance between ego and alter increases, with the exception of visiting ac-
tivities, which initially increase with distance but decrease beyond a certain
point (39.3 KM for visiting, 64 KM for sports and 78.5 KM for hobby). This
underscores the importance of proximity in facilitating social interactions.
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• Marital Status: Pairs, where both the ego and alter are married, show a
higher likelihood of participating in cultural activities together.

• Type of Relationship: Friends are the most common companions for leisure
activities, indicating the primacy of friendship ties over familial or acquain-
tance relationships in these contexts.

• Relationship Duration: Longer relationship durations are associated with
a decreased likelihood of engaging in cultural and hobby activities together,
reflecting a changing dynamic where these activities become less common
over time.

• Gender Homophily: Female-female pairs have a higher likelihood of vis-
iting activities, whereas male-male pairs are more inclined towards sports
and hobbies. This reflects the influence of gender on activity preferences.

5.2.2 Machine Learning-Assisted Choice Model Specification

Chapter 4 introduced the use of machine learning (ML) techniques to assist in
choice model specification. Key findings include:

• Enhanced Variable Selection: Employing SHapley Additive exPlanations
(SHAP) for feature importance ranking improved the identification of sig-
nificant variables influencing the likelihood of individuals engaging in var-
ious leisure activities with their social contacts.

• Improved Model Performance: The ML-assisted choice model demon-
strated superior performance compared to traditional models. The integra-
tion of SHAP values allowed for a more accurate identification of relevant
features, enhancing the overall goodness-of-fit.

• Behavioral Insights: The application of SHAP provided deeper behavioural
insights, highlighting the importance of variables such as network centrali-
sation, relationship type, and etc.

• Feature Influence: SHAP values provided insights into the influence of
individual features on the model’s predictions. This technique allowed for a
detailed understanding of how different values of each feature affected the
classification of specific instances.
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• Local Interpretation: SHAP facilitated local interpretation, enabling the
examination of model predictions at an individual level. This was particu-
larly useful for understanding how specific characteristics of ego-alter pairs
influenced the likelihood of engaging in different activities, providing de-
tailed behavioural insights that complement the aggregate-level findings.

5.3 Discussion

Chapter 3 advances the understanding of social contact selection in leisure activ-
ities by investigating the “with whom” choice in various leisure contexts. The
study emphasizes the importance of dyadic characteristics in influencing the se-
lection of companions for leisure activities. This focus provides a nuanced view
of how personal and relational factors shape social interactions.

Chapter 4 demonstrates that integrating traditional choice modelling with ma-
chine learning techniques offers a powerful approach to understanding social con-
tact selection in leisure activities. The enhanced variable selection process im-
proves model performance and provides richer behavioural insights. The research
contributes to the broader methodological discourse by demonstrating the applica-
bility of integrating ML techniques with traditional choice modelling. The use of
SHAP for feature importance ranking (primarily) alongside feature influence and
local interpretation is a small step towards bridging the gap between predictive
performance and interpretability.

A key assumption in modelling the choice process in this research is excluding
ego alter pairs with multiple activity engagement, which made the investigation
of multiple joint activities impossible. Further insights into behavioural comple-
mentarities and substitutions were also therefore unable to be explored using a
multivariate probit (MVP) model (Greene, 2003)

It is important to note that the data used in this study was not specifically
collected for the purpose of with whom choice modelling. Despite these limita-
tions, progress was made in understanding the factors influencing social contact
selection in leisure activities. The insights gained point towards promising direc-
tions for future research and data collection efforts, which could enable a more
thorough exploration of these complex social behaviours.
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5.4 Outlook and limitations

During the course of this research, several aspects of choice modelling using the
available data were explored but did not yield the desired results. Two specific
approaches encountered limitations due to data insufficiencies and model com-
plexities.

One area of exploration was the implementation of a hybrid choice model to
account for latent variables (Walker, 2001). The intention was to model a latent
variable that could capture underlying preferences that some individuals might
have for certain social contacts (alters) in leisure activities, even when these alters
presented identical characteristics (e.g., same gender, age, similar distance from
ego). The hypothesis was that underlying preferences (such as YuanFen or Ci
Chang in Chinese culture) play a significant role in these preferences.

Despite building a hybrid choice model using relative ranking as an indicator,
the indicator proved to be insufficiently motivated. The lack of rich data—meaning
the heterogeneity in the data was not extensive enough—prevented a comprehen-
sive exploration of this hypothesis. The relative ranking indicator did not ade-
quately capture the nuanced underlying preferences due to the insufficient vari-
ability in the data.

As illustrated in the work of Calastri et al. (2020), ranking can serve as an
effective indicator of relationship strength in social network analysis, providing
a potential avenue for capturing underlying preferences more effectively in fu-
ture studies. However, further refinement and more targeted data collection are
necessary to support this approach.

We also estimated an MVP model; while the MVP model yielded interesting
preliminary results, the data’s richness was again a limiting factor. Specifically,
the number of observations for ego-alter pairs engaging in multiple joint activi-
ties was very limited. This scarcity compromised the robustness of the model’s
estimations and limited the ability to derive conclusive insights about the comple-
mentarities and substitutions in activities. The limited data on multiple joint en-
gagements constrained the model’s potential to reveal comprehensive behavioural
patterns.

These limitations underscore the importance of targeted data collection for
future research. For hybrid choice models to be effective, future data collection
efforts should aim to capture more detailed indicators that accurately reflect la-
tent preferences. Additionally, this opens another opportunity for research, ex-
tending from Chapter 4, towards bridging the gap between machine learning and
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choice modelling (in the research stream of machine learning in assisting choice
modelling). Specifically, we could take this as a problem where indicators are
absent and employ restricted Boltzmann machines (RBMs) to represent latent be-
havioural variables (Wong et al., 2018).

The challenges faced, and the results obtained highlight the need for rich,
detailed data in advancing our understanding of social interaction dynamics and
their influence on activity-travel behaviour. Future research that incorporates these
recommendations could yield models with greater explanatory power, providing
deeper insights for academic research.

In addition, our study utilised offline social network data, a resource increas-
ingly difficult to access compared to online social network data (which itself is
increasingly difficult to access due to legal and privacy issues). This raises the
question of whether methodologies and insights from the analysis of online social
networks, where many machine learning models have been successfully applied
(Luceri et al., 2019; Qiu et al., 2018; Tang et al., 2013; Cuzzocrea et al., 2020),
can be adapted to offline social networks. A natural example would be a graphical
neural network applied to social networks. For choice modellers, it is worth inves-
tigating which tools and methods from online social network analysis could bene-
fit the study of offline social networks. Moreover, understanding whether insights
obtained from online social network data can be translated to offline contexts is
an interesting research avenue. Conversely, choice modelling could provide struc-
tured approaches that could enhance the interpretation of machine learning models
in online social network studies. Can the synergies between machine learning and
choice modelling be explored in this very context of social network data in online
and offline forms?

5.5 Future research

One natural future research direction is to model the choice process explored in
this study while relaxing some of the assumptions imposed due to data limitations.
By doing so, future research could provide insights into the complementary and
substitution patterns of multiple activities that the ego conducts with their alters,
thereby contributing further to the understanding of activity-travel behaviour in
this context.

Additionally, applying the established methodology to more recent datasets
would be beneficial, especially those after rare events such as the COVID-19 pan-
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demic, which occurred after the data used in this study was collected. This would
enable an investigation of how such unprecedented events may have altered social
interaction patterns and activity participation with social network members.

As mentioned in Chapter 3, future research could also explore applying ma-
chine learning in the way demonstrated here but with larger and richer datasets—preferably
datasets containing a wide range of explanatory variables, or even big data or pas-
sively generated data. This approach would allow researchers to better showcase
the potential benefits of using machine learning techniques to enhance discrete
choice models in a more convincing manner.
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