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Abstract
Applications of multi-robot systems (MRS) have been widely considered in domains rang-
ing from healthcare and manufacturing to search-and-rescue. These applications involve
the execution of complex missions comprising interdependent tasks with complicated con-
straints and conflicting optimisation objectives. One of the most challenging MRS prob-
lems is therefore the synthesis of robot plans that comply with these complexities. Despite
significant research, existing solutions do not provide end-to-end methodologies capable
of addressing this MRS planning problem for realistic sets of complex constraints and
optimisation objectives. Furthermore, current solutions rarely employ formal methods to
provide guarantees on the compliance of their MRS plans with such requirements.

This thesis addresses the limitations summarised above by proposing an end-to-end,
tool-supported MRS task allocation and scheduling approach (KANOA). KANOA tackles
the allocation of mission tasks to, and the synthesis of plans (i.e., task schedules) for,
the heterogeneous robots of an MRS by using a combination of formal methods over
several stages. To that end, KANOA comes with a domain-specific language (DSL) for
the high-level description of MRS planning problems with: (i) realistic constraints on
the sequencing of tasks, and on permitted robot workloads and areas of operation; and
(ii) conflicting optimisation objectives (maximising the probability of successful mission
completion, minimising the robot idling time, and/or minimising the mission duration).

In the first stage of the KANOA approach, this DSL is used to specify the MRS
planning problem of interest, and to formalise it through mapping to Z notation. In a
second stage, KANOA uses this Z-notation encoding to formulate the allocation of the
mission tasks to the robots of the MRS as a constraint-solving problem, which is then
solved through model synthesis using the Alloy model finder. Finally, KANOA employs a
combination of probabilistic model checking and closed-form model analysis to schedule
(i.e., to order and decide the start time of) the tasks allocated to each robot. The combined
set of robot plans generated in this last KANOA stage is guaranteed to satisfy the MRS
mission constraints, and to be Pareto-optimal with respect to its optimisation objectives.
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Chapter 1

Introduction
Robots can access environments beyond human reach, such as outer space [3], undersea
regions, and hazardous environments [4]. They can also excel at perpetually perform-
ing routine tasks that might be tedious for humans, such as continuously moving goods
around a warehouse [5] and providing support for personal assistance and rehabilita-
tion [6, 7]. These situations, however, require a high level of robot coordination and
robustness to deal with the uncertainties that are common in real-world environments.
Multi-robot systems possess multiple benefits compared to single-robot ones. Some of
these are [8, 9]: (a) resolving task complexity when a single robot requires complex skills
or might be unable to complete a task on its own, this might include the distributed
nature of the tasks; (b) improving reliability through redundancy by having more than
one robot available; (c) increasing the overall performance as completion times can be
drastically reduced by robots advancing task in parallel; and (d) simplifying robots’ de-
sign by dividing the necessary capabilities to complete the tasks into simpler and cheaper
robots. Over the past few years, MRSs have been employed in different environments,
including agriculture [10,11], pick-up and delivery in distribution centers [12,13] and
search-and-rescue [14–16]. As new and more complex applications are considered for
systems with multiple robots, so is the need to incorporate a broader range of constraints
in the definition of the missions associated with these applications. These constraints ap-
ply to the robots, tasks and environment. For example, they may restrict the space where
each of the robots can work, or they may specify intricate task ordering requirements.
Additional requirements for these applications may involve the optimisation of mission
objectives such as maximising the probability of completing the mission without failing
to travel between locations or completing the tasks, or minimising the mission execution
time.

Guarantees that a correct plan will be synthesised under a complex set of constraints
must also be considered. In this context, we investigate a variant of the multi-robot system
task allocation and scheduling problem whose requirements consist of a complex set of
constraints and multiple conflicting optimisation objectives. We provide solutions for the
definition of tasks, task allocation and scheduling problems, and the synthesis of individual
robot plans. We propose a framework that eases the adoption of new constraints and
requirements as needed for the application at hand, while providing constraint-compliance
guarantees and Pareto-optimal trade-offs between the optimisation objectives.

This chapter is divided as follows. Section 1.1 presents the thesis’ motivation, Sec-
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tion 1.2 shows the research objectives and Section 1.3 describes the thesis contributions.

1.1 Motivation

The motivation behind this thesis stems from the challenging and error-prone task of elici-
tating formal specifications for multi-robot systems, particularly in addressing uncertainty
both within these specifications and in the context of task allocation and scheduling. We
are interested in the allocation and scheduling of tasks as solving these two interrelated
problems is essential for the deployment of robots, yet non-trivial. This becomes increas-
ingly complex as the number of requirements increases, both in terms of their specification
and the mechanisms to find solutions. In this section, we further elaborate on the thesis’s
motivation.

Uncertainty in multi-robot applications. In the deployment of mobile robots,
uncertainties may arise from the oversimplified models underpinning the operation of
the robots, model drifting between the actual and the expected behaviour of the robots,
the inaccurate specification of goals, and so on [17–19]. This wide variety of sources of
uncertainty has driven the design of new taxonomies expressly for robotic systems [20], but
also in related research areas such as that explored by the self-adaptative systems research
community [19, 21]. Currently, many researchers consider the modelling of certain types
of uncertainties using probability theory [22, 22–25] and stochastic algorithms such as
simulated annealing [9]. As more complex applications for multi-robot systems (MRS)
are proposed, there is a growing need to formalise and incorporate these uncertainties
systematically into the underlying MRS models and specifications.

Another approach for reasoning about the probabilistic behaviour of MRS systemati-
cally involves the use of formal methods—rigorous, unambiguous and verifiable techniques
applied in the design and implementation of systems [26]. Model checking, a type of for-
mal method, has been successfully used in robotics for task allocation and planning, and
for the synthesis of individual robot controllers [27, 28]. Model checking enables the ver-
ification of a set of properties on all possible states of a system model [29]. Within the
family of model checking techniques, probabilistic model checking is a formal technique
for analysing systems that exhibit stochastic behaviour under a set of properties defined
in probabilistic variants of temporal logic [29]. For models that allow the specification of
nondeterministic choices, such as Markov decision processes (MPDs), one can synthesise
a policy (i.e., a solution to nondeterministic actions) by optimising some model-related
value such as probabilities or rewards (e.g., probability of success, expected energy con-
sumption) while satisfying some temporal specification [29].

These characteristics encouraged the use of probabilistic model checking in multi-robot
systems to synthesise robot plans (policies) under a set of formally-defined properties [30].
To give an example, a team of robots helping in a healthcare setting may be required to
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sanitize patient rooms [31], deliver medical supplies [32], move furniture and medical
equipment [7], and help nurses to dress patients [33]. Given the different robot capa-
bilities and mission tasks, the robots should find a way to cooperate to accomplish the
whole mission. The robot team must complete the tasks with a high probability of suc-
cess, within a certain time window, optimising the available energy and travelling costs.
Finally, probabilistic behaviour may appear, for example, when robots may fail to travel
between the required locations or to complete their tasks with certain (small) probabilities
estimated through testing.

Specification of MRS missions and requirements. Beyond modelling the spectrum
of uncertainties in MRS, another challenge is capturing their numerous functional and
non-functional requirements. These requirements can depend on the type of robots; for
example, in a heterogeneous MRS the robots possess different capabilities, and must
only be allocated tasks that they are capable of carrying out. In the case of mobile
robots, we also assume that tasks require them to move within feasible spaces while
avoiding the obstacle space. Before deployment, at design time, the description of the
MRS problem must include all the necessary robotic mission requirements and relevant
models of uncertainties. Hence, there is a need for languages that support the specification
of a wide range of MRS requirements in an unambiguous, formal manner, but at the same
time, remain user-friendly to ease their adoption.

The specification of tasks has been widely studied within the planning community with
well-known solutions including Hierarchical Task Networks (HTN) and actions description
languages (ADLs) such as STRIPS, PDDL, and RDDL [34]. Some extensions to these
solutions, such as PDDL 1.0 [35] allow the modelling of a probabilistic distribution over
the set of possible effects to an action. However, these specification languages cannot be
used to describe how additional probabilistic behaviour (for instance, the probability of
a robot failing to travel to a location or the probability of multiple robots succeeding to
complete a task).

Another approach to the formalisation of robot tasks, as well as functional require-
ments, is the use of temporal logic such as Linear Temporal Logic (LTL) and Compu-
tational Tree Logic (CTL) [29]. Temporal logic provides unambiguous languages for the
specification of requirements. In robotics, they have been successfully applied in the spec-
ification of robotic missions, as well as in the description of functional and non-functional
mission requirements. A catalogue of qualitative robotic mission requirements specified
in LTL and CTL is provided in [2,36]. One of the disadvantages of using temporal logic is
that their syntax is foreign to potential users of robotic systems. Moreover, the elicitation
of requirements written in such types of logic languages are susceptible to errors due to
their intricate semantics, even for domain experts. Hence, higher-level domain-specific
knowledge is proposed to ease their adoption [2]. A second disadvantage is that LTL and
CTL do not support the modelling of important probabilistic and quantitative require-
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ments such as “the probability of all robots completing the mission without failure should
be at least 0.99” or “the mission execution time should be minimised”. These properties
can be specified in a type of probabilistic logic called probabilistic computational tree logic
(PCTL) extended with rewards. Rewards-extended PCTL is exploited for the description
of robotic mission requirements within this thesis.

Allocation of tasks to robots. When discussing the implementation of a multi-robot
system, we delve into a range of challenges that need to be addressed. One of these is
how to partition the tasks of an MRS mission among a team of heterogeneous robots.
This issue, in itself, implicates a series of problems. Some of these include defining the
tasks assigned to the robots and any task constraints; defining the set of constraints
applicable to the allocation of tasks (such as bounding the number of tasks acceptable by
each robot, or pre-allocating some of these tasks to a robot); and modelling as part of the
task allocation problem the heterogeneity of the robots, including by defining the types
of tasks that each robot can perform.

Despite the availability of numerous solutions for the MRS task allocation problem,
ongoing research in this area remains active due to the variations and complexity inherent
in this problem. For instance, regarding the hetereogeneity of the robots, some robots may
be better suited for pick-and-place tasks than others as they have newer object detection
sensors, better grippers or are equipped with more dexterous robot arms. Other robots
may entirely lack the capability to perform these tasks. For this example, deploying the
most suitable robots results in a higher probability of completing the mission successfully.

The task allocation problem can be solved separately or jointly with the generation of
individual robot plans. A robot plan describes what action a robot must be doing at any
point in time until the mission is completed. The process of synthesising robot plans can
be viewed as a sequence of problems to be solved. As mentioned before, solutions consider
one of three options: (a) synthesize robot plans by first resolving the allocation of tasks to
robots and then addressing the scheduling of these tasks to create individual robot plans
that comply with a given set of constraints; (b) model the allocation and scheduling of
tasks jointly and solve them concurrently; or (c) assume that the tasks are pre-allocated to
robots, transforming the problem into a scheduling problem. By scheduling problem, we
mean that each robot must know in which order to perform its tasks while complying with
a set of mission requirements. These constraints may involve maintaining some prescribed
ordering of the task [37] or completing the mission within a specified time limit [30].

Partitioning the plan synthesis into two distinct problems, namely task allocation and
scheduling, mitigates the complexity associated with the use of a potentially very large
monolithic model. Additionally, we argue that using this approach supports the modelling
and analysis of a broader set of requirements, as some constraints may belong exclusively
to either the task allocation or the scheduling part. For instance, if the decision is made
to restrict the number of tasks assigned to each robot to promote a “fair” distribution of
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tasks, this constraint is relevant to the allocation problem but not the scheduling aspect.
Consequently, in this thesis, we exploit these advantages and approach the synthesis of
robot plans as a combination of two distinct problems: allocation and scheduling of tasks.

In recent years, extensive research has been conducted on the task allocation problem.
Well-known multi-robot task allocation (MRTA) algorithms include the optimal assign-
ment problem [9] and market-based approaches [9, 38]. However, the current solutions
do not provide an easy solution to adapt their problem formulation in order to system-
atically add new types of requirements; for example, by providing repositories of such
requirements. Moreover, they do not provide guarantees that an allocation can be found
when faced with a complex set of mission constraints.

Scheduling of tasks and robot-plan synthesis. Task allocation and scheduling prob-
lems solve the who and in which order questions, respectively. These problems are known
to be strongly NP-hard1 [39]. To schedule nt tasks assigned to a robot, there are nt !
possible solutions. For nr allocated with the same number of tasks, the solution space
grows to nr × nt !. Moreover, once the permutation is done, we must ensure that task
dependencies among robots comply, for example, as two or more robots must meet at the
same time and space. We refer to this problem as plan synthesis. Synthesizing robot plans
is a non-trivial problem, yet necessary for robots to know what to do at every moment
during deployment. The plan synthesis complexity arises from existing task constraints,
the coordination of robots in space and time, multiple conflicting optimisation objectives,
time and spatial constraints [8], times required to travel between tasks, and uncertainties
in the system that have an impact on the completion of the tasks [41].

Once the tasks are allocated to the robots, we must deal with how to schedule the
tasks assigned to each robot. Some constraints relevant to the scheduling problem involve
the sequencing of tasks. For instance, a robot must first pick up the medicine before
delivering it to a patient. Other requirements relevant to the scheduling phase may include
predetermined completion time windows, requiring the completion of tasks within specific
time frames; limitations on the available time; or constraints on the total travelling cost
incurred by the robots as they move between task locations. Scheduling the tasks assigned
to each robot generates an ordered sequence of these tasks. However, the plans intended
for the deployment of the robots must also account for travel and idle actions. The need
for idling arises, for instance, when two robots are instructed to meet at a location in
order to carry out a joint task (such as moving a piece of furniture that can only be lifted
by two robots working together), but one arrives at this location earlier, requiring it to
idle until the second robot arrives.

1The only not NP-hard is when no dependencies exist between tasks, robots execute a single task (ST)
at a time, tasks require a single robot (SR), and the tasks are instantaneously assigned (IA) without future
tasks information [39,40]. It’s important to highlight that in these studies, task allocation indirectly
solves the scheduling of tasks.
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Different variations of the scheduling problem have resulted in a wide range of problem
formulations and solutions within and outside the robotics research community. Two of
the non-robotics research areas that tackled this problem are the scheduling of computa-
tion tasks (e.g., on a computer cluster) and the scheduling of manufacturing processes [42].
Classical scheduling techniques, such as the job shop problem [43] and multiple mixed in-
teger programming [41,43], have also been studied for MRS. Planners such as STRIPS [44]
and Hierarchical Task Network planners [45] provide another set of solutions to the robotic
task-scheduling problem. However, these solutions are very restrictive in their problem
formulations, so changes to accommodate the types of constraints we are interested in
in this thesis require significant research work. Moreover, even defining the problem to
be solved requires domain experts to specify all the intricate relations between tasks,
pre-conditions, actions, etc. We aim to simplify the specification of multi-robot task
scheduling problems and facilitate their automatic translation into (possibly probabilis-
tic) formal models and requirements; indirectly mitigating the error-prone process of their
elicitation.

As the need for more complex scheduling problem formulations grows, so does the
need to make these approaches flexible enough to capture a greater diversity of mission-
related requirements, constraints and optimisation objectives. For example, consider a
safety-critical search-and-rescue scenario where a fleet of robots must locate individuals
who are in danger. To make the system more resilient, designers must model multiple
uncertainties coming from different sources, such as the unknown distance to the victims,
the uneven terrain reducing the probability of the robots travelling successfully between
search locations, etc. These different aspects have to be captured in the problem de-
scription and the solution for the synthesis of individual robot plans. Furthermore, when
multiple solutions and conflicting optimisation objectives are present, achieving effective
trade-offs between these objectives becomes important.

Theoretically, addressing the permutation of tasks across N robots falls in the cate-
gory of non-deterministic polynomial problems. For instance, in the shop floor problem,
there are n!m possibilities to schedule n tasks (pre-allocated) to m robots [46]. As the
applications of multi-robot systems become more challenging and demand the use of more
complex models for task allocation and scheduling, the scalability issue must be carefully
assessed when proposing new task scheduling techniques for multi-robot systems. Some
solutions recur to heuristic techniques to sample the solution space [47–49]. Some meta-
heuristics sampling techniques, such as Genetic Algorithms (GA), can guide the search to
obtain Pareto-optimal solutions. In this thesis, we employ GA and a series of specialised
models to obtain Pareto-optimal robot plans that optimise one or more conflicting opti-
misation objectives, while complying with a set of complex mission constraints.
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1.2 Research Objectives

We have described the key challenges faced in the MRS design pipeline: from the specifica-
tion of the problem, to the MRS mission task allocation and scheduling and the synthesis
of individual robot plans. This thesis presents research that addresses multiple limita-
tions in the way in which existing solutions handle these challenges. Given a high-level
description of a series of tasks to be performed by a group of heterogeneous mobile robots,
with multiple constraints and optimisation objectives to be considered in the synthesis of
the robot plans, the research objectives of this thesis are as follows:

1. To ease the definition of an MRS task allocation and scheduling problem
for realistic sets of complex constraints and optimisation objectives, including
the description of robots exhibiting probabilistic behaviour.

2. To devise an MRS task allocation method capable of managing a diverse
set of constraints, including the heterogeneity of robots’ capabilities and spatial
limitations, and to design a subsequent task scheduling method that generates
individual robot plans optimised to meet multiple mission-critical requirements.

3. To integrate the methods from Objective 2 into an end-to-end methodology
for MRS task allocation and scheduling that employs formal methods at each
stage of its robot schedule generation process.

4. To provide tool support for the adoption and testing of the developed
techniques for the definition of MRS specifications and the generation of task
schedules.

1.3 Contributions and Thesis Structure

To achieve the research objectives summarised in the previous section, this thesis in-
troduces KANOA, a novel end-to-end framework for the synthesis of multi-robot plans
from high-level mission specifications. KANOA allows the specification of multiple op-
timisation objectives and a complex set of functional and non-functional mission-related
requirements applicable at different stages of the MRS plan synthesis, and employs formal
methods in novel ways at each stage of the MRS task allocation and scheduling process.

The main contributions of the research presented in this thesis are as follows:

• A systematic review on the state-of-the-art research on allocation and
scheduling in robotic systems (Chapter 3). Chapter 3 presents a comprehen-
sive review of the research landscape on task allocation and scheduling for robotic
systems. Through this systematic review, we untangle the intricate variety of terms
used for variations of the MRS task allocation and scheduling problems and their
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proposed solutions. The review identifies key trends, challenges, and the algorithms
and methodologies that have shaped the field in recent years. We also identify a
series of research gaps to establish a foundation for future work.

• Formalisation of a repository of robotic mission patterns from high-level
specifications (Chapter 4). We present the formalisation of QUARTET, an exten-
sive repository of quantitative mission patterns for mobile robots. We use proba-
bilistic computational tree logic augmented with rewards to unambiguously define
quantitative requirements applicable to functional and non-functional aspects of
the system. A tool supporting the translation from a higher-level language into this
logic is also delivered. As this contribution was carried out as part of a collaborative
project [1], Section 4.1.1 describes the components of this research that were carried
out as part of our thesis.

• KANOA problem specification for multi-robot systems (Chapter 4). In ad-
dition to the previous contribution, Chapter 4 describes the multi-robot plan syn-
thesis problem considered by KANOA. Designed in a separation-of-concerns fashion,
KANOA’s problem specification comprises separate modules for defining the MRS
world (i.e., environment), robots, tasks and mission. This modular specification
allows for the definition of a vast range of both functional and non-functional re-
quirements, providing designers the flexibility to integrate them based on the specific
part to which these requirements apply. Furthermore, we introduce a user-friendly
domain specification language designed to facilitate the adoption of KANOA, we
formalize KANOA’s problem using the Z notation, and we present a scenario of
robots moving surgical equipment and visiting patients in a hospital case study
that serves as a motivating scenario throughout this thesis.

• Task allocation as a constraint-solving problem (Chapter 5). We specify
KANOA’s task allocation as a constraint-solving problem. This enables the use
of a wide range of optimised techniques and tools for the generation of feasible
allocation instances, such as the Alloy Analyser constraint solver. Compared to
other techniques, the aim is to guarantee that allocations comply with any applicable
(to the task allocation) requirements is to be found even in the presence of multiple
constraints. We demonstrate the applicability of our solution in the hospital case
study.

• Task scheduling and plan generation (Chapter 6). KANOA uses a combination
of formal techniques for the generation of a set of Pareto-optimal robot plans. First,
during a pre-scheduling phase, robots are organized into groups based on whether
they have shared dependencies in their allocated tasks. Next, in a scheduling and
plan synthesis phase, we assemble: (a) a discrete-time Markov chain (DTMC) to
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reason about the minimisation of the total robot idle time; (b) an MDP to devise
plans that maximise the probability of mission success; and (c) an analytic model
to compute the total travelling cost. We use probabilistic model checking to analyse
key properties (specified in probabilistic temporal logic augmented with rewards)
of the first two models. Inspired by the EvoChecker approach [50], we employ
multiobjective optimization genetic algorithms to automate the generation of robot
plans. This produces Pareto-optimal solutions for each task allocation, from which
the plan for deployment of the robots is eventually selected.

• KANOA’s tool, framework and evaluation (Chapter 7). Finally, we present
the tool-supported KANOA’s framework for the synthesis of robot plans from the
high-level specifications described in the KANOA’s DSL, and we evaluate KANOA
in Chapter 7.

Defining the contributions’ scope and impact. The open problem addressed
in this thesis involves providing methods to specify unambiguous MRS requirements and
ways to solve specific formulations of the MRS allocation and scheduling problems, lead-
ing to the synthesis of formally verified multi-robot plans under complex constraints and
optimisation objectives. These include (a) guaranteeing the overall mission success, ac-
counting for the possibility of robots probabilistically failing to complete tasks, or to travel
between locations and possible task retries; (b) addressing task ordering constraints and
handling joint tasks where multiple robots must coordinate in time and space to work
together; (c) incorporating time constraints for the initiation and completion of tasks,
as well as for the overall mission duration; (d) optimising mission-related determinis-
tic and probabilistic metrics, such as maximising the probability of mission success and
minimising the total travelling cost.

Following the well-known Gerkey & Mataric’s taxonomy [39,51] for task allocation
problems, our work targets single-task, multi-robot time-extended assignment (ST-MR-
TA). Therefore, we make the following assumptions for the types of MRS problems
targeted within this thesis:

• single tasks: each robot is capable of executing at most one task at a time (hence,
advancing multiple tasks at a time requires more than one robot);

• multi-robot tasks: some tasks might require multiple robots to be completed;

• time-extended assignment: the allocation of tasks considers information of all tasks
to be assigned to the robots and their time and ordering constraints;

• centralised architecture: there exists a single coordinator in charge of the task allo-
cation and scheduling computation;
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• collision-free behaviour: a lower-level behavioural controller is in place to avoid
collisions between robots or the environment;

• motion planning independent: a planning system is in place to ensure the robots’
movement between task locations;

• number of retries allowed: the number of retries allowed for each task is predefined
and cannot be modified;

• stationary probability: the probability of robots failing while travelling and com-
pleting tasks are assumed stationary and known in advance.

Providing guarantees for probabilistic and non-deterministic plan properties can be
computationally expensive and time-consuming [29]. Recognising that the formal verifi-
cation of plans involves high computational overheads, this thesis focuses on the synthesis
of robot plans during the design phase of the multi-robot system (MRS) development
lifecycle. This stage occurs before the runtime activities required post-deployment, when
time is critical, and new schedules must be generated within seconds [52].

Our work was done with robotics and systems engineering stakeholders in mind.
Hence, we aimed to advance the state-of-the-art by developing methods for generating
robot plans that meet a specified list of requirements while ensuring a degree of optimal-
ity; and proposing a methodology that combines these methods, supporting their adoption
and future development.

The remainder of this thesis is organised as follows. Chapter 2 presents the background
concepts and terminology used in the rest of the thesis. Chapter 3 provides a systematic
review of the task allocation and scheduling problems in multi-robot systems. Chapter 4
presents a repository of quantitative robotic mission specifications, and the problem speci-
fication for task allocation and scheduling multi-robot systems, called KANOA. Chapter 5
describes KANOA’s task allocation process where robots are assigned a set of tasks com-
plying with any applicable constraint from the problem specification. The pre-allocation
and task allocation are described in Sections 5.2 and 5.3, respectively. Chapter 6 de-
scribes KANOA’s task scheduling, a hybrid approach combining meta-heuristic search
to explore the solution space, and probabilistic model checking (PMC) to quantitatively
reason about the quality of the solutions. The pre-allocation and task allocation are
described in Sections 6.2 and 6.3, respectively. KANOA’s tool implementation and evalu-
ation are presented in Chapter 7. Finally, Chapter 8 concludes the thesis by summarising
the findings of this research and providing directions for future work.
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Chapter 2

Background
The study of robotic systems demands a multifaceted approach to the description, design,
and analysis of their intricate components, functionalities and missions. In this chapter,
we present a series of techniques successfully used within this thesis for this purpose.
Section 2.1 presents the fragment of Z notation used in this thesis for the formal description
of multi-robot systems. Section 2.2 introduces a constraint solver called Alloy Analyzer,
and its associated Alloy language for the declarative description of systems. The Alloy
Analyzer is used in the thesis for the generation of feasible allocations of tasks to robots.
Section 2.3 presents background on the verification of probabilistic systems, specifically
on probabilistic model checking (PMC), a technique supporting the analysis of systems
with stochastic behaviour. This section also describes two types of probabilistic models
(Sections 2.3.1 and 2.3.2) and logic languages (Section 2.3.3), which we will use for the
description of robotic mission requirements and optimisation objectives. Section 2.3.2
also presents the synthesis of Markov decision process (MDP) adversaries (also known as
strategies or policies), which are used within this thesis for the synthesis of individual robot
plans in a multi-robot mission. Section 2.3.4 introduces PMC, and describes PRISM,
a tool (and language) for the automatic verification of models through PMC. Lastly,
Section 2.4 concludes the chapter with a description of evolutionary-guided synthesis of
MDP adversaries, a method that we exploit to generate robot plans in the thesis.

2.1 Z Notation

Z notation is a formal language and a style for the description of systems based upon
mathematical logic, set theory and the concept of schema representations as a key feature.
The advantage of using Z notation for this purpose is that it is precise and unambiguous,
avoiding the mistake of hidden information and details flaws that are difficult to foresee
in other documentation methods such as text, pictures or diagrams [53].

The Z notation includes a mechanism for defining and combining schemas by schema
calculus. Hence, large specifications can be partitioned into multiple schemas and built
up in stages, easing readability, reusability of components and maintenance.

In this section, we introduce Z notation concepts that are later used in the definition of
multi-robot mission specifications. We do not provide a full description of the capabilities
and syntax of the Z notation, but rather an introduction detailed enough to understand
its application in Section 4.2.
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We introduce the concepts with a simple example. For our example, there exist robots
described by an identifier and a location, and each location also has an identifier. We
declare these basic types as:

[RobotID,LocationID]

These objects represent sets self-defined that do not need any further reference to the
type of objects they contain. We define a schema to describe a state space of the system.
A schema contains two parts, separated by a central diving line in the Z graphical no-
tation. The top part allows for the declaration of variables, and the bottom defines the
relationships and constraints for the values of these variables, stated as predicates.

SchemaName
variabledeclarations

predicates

In our example, we are interested in defining robots and location schemas: the robot
schema contains two variables. The robot identifier id associated with variables in the set
RobotID, and the velocity of the robot which is a value in the set of natural numbers N
and is constrained to under 10 units per minute.

Robots
id : RobotID
velocity : N

velocity < 10

The location schema has only two variables describing its identifier and its (x , y)
coordinates.

Location
id : LocationID
x , y : N

Note that the set of natural numbers N is predefined in Z notation and does not need to
be explicitly defined. We can extend the Location schema with a relationship where, for
any two locations, their identifiers are the same if and only if the two locations are the
same,

∀ l1, l2 : Location • l1.id = l2.id ⇔ l1 = l2

We can also define relations between schema variables. For example, the world model
containing all locations and the distance between two locations is specified as,
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World
locations : PLocation
dist : LocationID × LocationID 7→ N

where LocationID × LocationID defines the set of pairs of location identifiers, and 7→ is
a partial function mapping it to a natural number. The operator P is the power set
operator, hence locations is defined as a set of Location.

We can create axiomatic definitions for each robot identifier, locations and location
identifier instances as follows,

r1, r2, r3, r4, r5 : RobotID
loc1, loc2, loc3, loc4, loc5 : LocationID
LOC1,LOC2,LOC3,LOC4,LOC5 : Location

LOC1.id = loc1 ∧ LOC1.x = 0 ∧ LOC1.y = 0

In the last schema, we also wrote as an example the values of Location LOC1 such that
its elements are id = loc1, x = 0 and y = 0.

Z notation for MRS. We decided to use Z notation to formalise the different building
blocks of the task allocation and scheduling problem specification. Its strong mathemat-
ical foundation allows for the precise definition of system components and their interac-
tions. By employing Z notation, we can rigorously specify the different elements of the
MRS, such as tasks, robots, locations, and the constraints that govern their interactions.
The use of separate schemas in Z notation facilitates a clear separation of concerns, mak-
ing the system’s structure more understandable and manageable. This separation allows
us to independently validate individual components (through tools such as Fuzz [54]),
ensuring that each part of the system adheres to its specified behaviour before integrating
them into the larger system.

2.2 Alloy Language and Alloy Analyzer

Alloy is a formal specification language (supported by the Alloy analyzer tool) that has
its roots in the Z specification language and that can describe structural properties of sys-
tems succinctly. Alloy is defined in terms of simple relational semantics, and constraints,
employing constructs that are common in object-oriented notations. These constructs
are based on abstract models that are defined in terms of data domains, and operations
between those domains [55].

We introduce some of the standard features of the Alloy specification language using
examples from the multi-robot system domain. Suppose that we want to specify a model
of the domain at an abstract level, in which we have robots (and robot capabilities), rooms
(e.g., within a hospital) where the robots need to perform a mission, and tasks. We can
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start by indicating the existence of a set (of atoms) for robots and their capabilities, which
in Alloy are specified using signatures,

abstract sig Robot {hascapability: some Capability}
abstract sig Capability {belongsto: one Robot}

In the signature definitions above, Robot.hascapability denotes a relation with a non-
empty set of capabilities that a robot possesses. The keyword some in Alloy indicates
that the set of capabilities denoted by hascapability has to contain at least one atom
(we assume that it would not make sense to have a robot without any capabilities). In
contrast, Capability.belongsto denotes a relation that states that a capability must belong
to one (and only one) robot (as indicated by the keyword one in the declaration). The
keyword abstract in the declaration of both signatures indicates that new signatures can
extend them, inheriting all their characteristics. In our example, we can for instance,
create concrete robots and capabilities (e.g., r1, r2 and c1, c2) that instantiate their
corresponding abstract signatures,

sig r1, r2 extends Robot { ... }
sig c1, c2 extends Capability { ... }

Alloy models can incorporate relational logic sentences in the form of predicates and
facts (i.e., expressions that always have to be satisfied) that place explicit constraints
on the model. Hence, when the Alloy analyzer searches for examples that satisfy the
structural properties described in the Alloy model, it discards any which violate any fact.
In our example, we can write a fact which ensures that if a capability c belongs to a specific
robot r, that robot indeed has c among its capabilities (and the other way around),

fact { all c:Capability, r:Robot |
r in c.belongsto <=> c in r.hascapability }

The set of integers must be explicitly declared if the Alloy model constrains any
reference to this set. It is added into the model by the statement,

open util/integer

The Alloy analyzer can look for examples of structures that satisfy all the relational
constraints in the model within a finite scope. All Alloy models are bounded models;
i.e., they require a maximum size. These can be explicitly defined stating the maximum
number of atoms of each signature that a solution can consider. If not specified, the
analyzer will compute up to three of each signature and any number of relations. The
scope can be modified within the command run, which starts the analysis of the Alloy
model. For example,

run predicate1 for exactly 6 Capability, 2 Robot

generates a search space for the solutions with exactly 6 atoms of type Capability and up
to 2 robots.

A special set is the set of integers. Its scope is added into the run statement as
the bitwidth of the range of values needed for the model; for an integer scope n, Alloy

14



CHAPTER 2. BACKGROUND

generates 2n values ranging from −2n/2 to (−2n/2)− 1. For example, the command
run predicate1 for 6 Int

sets n to 6, and therefore adds into the model the set of integers ranging from -32 to 31.
Alloy Analyzer. Alloy analyzer provides tool support for the specification and anal-

ysis of Alloy models. Developed by the Software Design Group at MIT, the tool uses
Kodkod [56] as its model finding engine, and can be configured to employ one of several
SAT solvers for its constraint solving. The SAT4J SAT solver is selected by default. For
faster performance on small problems, MiniSat and ZChaff solvers are available (for some
operating systems) [57]. For more information, we direct the reader to [58] and the Alloy
website [59].

Alloy for MRS. The Alloy Analyzer is a powerful tool for exploring and checking
models of systems defined by relational logic. In the context of MRS and task allocation,
Alloy’s ability to automatically generate instances of the system and check for constraint
satisfaction is valuable. Specially, for the task allocation problem. The Alloy Analyzer
can quickly explore the state space of the system and generate ’correct’ allocations, which
is crucial in MRS due to the complexity of interactions between multiple robots and tasks,
where unexpected behaviours can easily arise.

Using Z notation in conjunction with the Alloy Analyzer combines the strengths of
both formal methods. Z notation provides a rigorous mathematical framework for speci-
fying the components and constraints of the MRS task allocation problem, ensuring that
the system’s design is precise and unambiguous. Once the system is specified in Z, he
Alloy Analyzer can generate allocation instances and verify the specifications by exploring
different scenarios and ensuring the constraints are properly applied. This combination
allows for a comprehensive approach to the problem: Z notation ensures that the system
is correctly and clearly defined, while the Alloy Analyzer ensures the generation of correct
solutions, such as for the task allocation problem, and verifies that their deployment leads
to the expected behaviour of the robots.

2.3 Verification of Probabilistic Systems

Since certain aspects of a robotic system and its environment can be described with prob-
abilities, it is reasonable to represent this behaviour through the modelling of a stochastic
process—see, for instance, Table 3.5 later in the thesis for a wide range of uncertainties
encountered in robotic systems, many of which can be modelled using probability the-
ory. In this section, we introduce several types of probabilistic models, their verification
through a technique called probabilistic model checking, and a tool for their automatic
verification called PRISM. As we are using the PRISM modelling language and tool later
in the thesis, this section adopts the notation and definitions for the probabilistic mod-
els and probabilistic model checking from [60], and [61] for the synthesis of adversaries.
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Further information about this large topic is available in [29].
Formal verification is a systematic methodology that uses mathematical reasoning

to obtain guarantees about the correctness of a system. A well-known technique within
this field successfully applied for robotic systems is model checking, which involves con-
structing and analysing a system model, typically presented as a finite state automaton
characterised by states representing different configurations and transitions capturing the
evolution of the system over time. The verification of the system is done under a property
defined in temporal logic, such as “the robotic system eventually finishes the mission” or
“no object collisions happen until the mission is completed”.

Probabilistic model checking (PMC) is a type of formal verification enabling quan-
titative reasoning about systems, for example by considering probabilistic and timed as-
pects of a robotic system. It is a generalisation of model checking for the analysis of
probabilistic models, such as Markov models. Markov models are a special category of
stochastic processes which satisfy the Markov property. This property dictates that future
events are independent of the past, with the present influencing only the immediate sub-
sequent event. We describe next two widely used types of models that follow the Markov
property: discrete-time Markov chains (DTMCs), used to model probabilistic behaviour;
and the Markov decision processes (MDPs), an extension of DTMCs that supports the
modelling of nondeterministic actions.

2.3.1 Discrete-Time Markov Chains

A discrete-time Markov chain is a mathematical model used to describe a system that
undergoes transitions between a set of distinct states in discrete time steps. In a homo-
geneous DTMC, the transition probabilities remain constant over time. This means that
the system’s behaviour does not change as time progresses. The evolution of a DTMC
can be described through a sequence of random variables representing the system’s state
at each discrete time step.

Definition 2.3.1 (Discrete-time Markov chain (DTMC)) A DTMC is a tuple D =

(S , ιinit ,P,L), where S is a (countable) set of states and ιinit ∈ S the initial state; P :

S × S → [0, 1] is a transition probability matrix such that the exiting probability of state
s ∈ S is given by

∑
s′∈S P(s, s′) = 1; and L : S → 2AP is a labelling function assigning a

set of atomic propositions from a set AP to each state s ∈ S.

In this definition, 2AP denotes the power set of AP. An atomic proposition defines a
relevant characteristic of the robotic system. This describes simple Boolean statements
such as “the robot r1 is at location at1”, evaluating to true in states where the premise
holds, i.e., if robot r1 is at this given location. Another example of an atomic proposition
is “the mission has been completed”, evaluating to true in states where all the tasks
assigned to the robots have been successfully completed.
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Figure 2.1: Representation of a DTMC and its transition matrix, P. Taken from [60].

Figure 2.1 shows a DTMC consisting of three states S = {s0, s1, s2}, with initial state
ιinit = s0, L(s0) = {init}, L(s1) = {}, L(s2) = {succ}, and transition probability displayed
on each state transition (arrows). The transition probabilities are also shown as the P
matrix on the right. This matrix contains the transition probabilities for all state pairs,
where the row number gives the initial state and the column number gives the final state
of the transition (starting at 0).

A path (finite or infinite) represents one possible execution of D, i.e., a sequence of
states s0, s1, s2, ... for which the probability of transitioning between consecutive states is
greater than 0, P(si , si+1) > 0. We denote the set of all finite and infinite paths from
state s as FPathD,s and IPathD,s, respectively. We use ρ ∈ FPathD,sπ to denote a finite
path and π ∈ IPathD,s to represent an infinite path.

We can reason about DTMCs by determining the probability that a certain path
is taken. We define the probability of a finite path ρ = s0...sn as P(ρ) ::= Πn−1

i=0 P(si , si+1).
For infinite paths, we begin by finding the basic cylinder Cp for each finite path ρ ∈
FPathD,s, consisting of all infinite paths starting with ρ. Using properties of cylinders, a
probability space (IPathD,s,FD,s,PrD,s) is constructed; where FD,s is the smallest sigma-
algebra generated by the set of basic cylinders {Cρ | ρ ∈ FPathD,s} and PrD,s is a measure
such that PrD,s(Cρ) = P(ρ),∀ ρ ∈ FPathD,s.

For example in Figure 2.1, we can compute the probability that a path contains s2 as,

PrD,s0({π contains s2}) = Σ∞n=1PrD,s({π starts with (s0s1)ns2})
= Σ∞n=11× (0.7× 1)n−1 × 0.3 = 1

We can rephrase the last query as, “what is the probability that in the future s2 happens?”,
as described later in Section 2.3.3.

2.3.2 Markov Decision Processes

Markov decision processes (MDPs) are a formalism for the modelling of systems that
supports probabilistic and nondeterministic behaviour to be captured in the model [60].
MDPs are state-transition models where transitions are made in two stages. Given a state
in an MDP, first, an action is taken from a set of actions available. Then, a (probabilistic)
transition is made to a possible next state following a probability distribution that depends
on the action selected in the first stage [60].
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Figure 2.2: Representation of an MDP with rewards (underlined numbers). Taken from
[60].

Definition 2.3.2 (Markov decision process (MDP)) An MDP is a tuple M = (S ,
ιinit , αM, δM,L), where S is a finite set of states and ιinit ∈ S the initial state; αM is
a set of actions; δM : S × αM → Dist(S) is a (partial) probabilistic function that maps
state-action pairs to distribution functions over the states; and L : S → 2AP is a labelling
function assigning a set of atomic propositions from a set AP to each state s ∈ S.

In this definition, Dist(S) represents the set of distributions µ ∈ Dist(S) over S , where,
µ = {s0 7→ x0, ..., sn 7→ xn} denotes the (discrete) distribution that chooses si with
probability xi ∈ [0, 1], where µ : S → [0, 1] satisfying Σs∈S µ(s) = 1. For each state
s, we use the notation A(s) for the set of actions available in state s: A(s) ::= {a ∈ αM |
(s, a) ∈ dom δM}.

Reward structures are used to associate quantities to MDP states and/or transi-
tions, e.g., to track the energy consumption or calculate the minimum travelling distance
of a robot from an initial to a final location; hence, rewards are often referred as costs.

Definition 2.3.3 (Reward structure) A reward structure over an MDP M is defined
as a tuple r = (rstate, raction), where rstate : S → R≥0 is an state reward function and
raction : S × αM → R≥0 is an action reward function.

A finite path ρ of an MDP is a sequence of states-actions ending in a state, e.g.
ρ = s0, a0, s1, a1, ..., an−1, sn, where the last state is retrieved by the function last(ρ) = sn

and | ρ |= n denotes the length of the path. The set of all finite paths of an MDP M is
denoted by FPathM,s.

Figure 2.2 shows an MDP M comprising four states S = {s0, s1, s2, s3} with initial
state ιinit = s0 and action space αM = {go, risk, safe, finish, reset, stop}. The probabilistic
function has values depicted before a state is reached (inward arrow) from an (action,
state) pair. For example, δM(s0, go) = [s1 7→ 1], δM(s1, risk) = [s2 7→ 0.5, s3 7→ 0.5].
We note that the MDP actions are only available in specific states, e.g., (s1, go) /∈ dom δ

and A(s1) = {risk, safe}. The labels of states are depicted in curly brackets, for example,
L(s0) = {init} and L(s1) = ∅. State and action rewards are also depicted in Figure 2.2

18



CHAPTER 2. BACKGROUND

by underlined numbers close to the states labels and actions; for instance rstate(s1) = 2

and raction(s3, reset) = 5. A finite path of MDPM is ρ = s0
go−→ s1

risk−−→ s2, and an infinite
path π = s0

go−→ s1
risk−−→ s2

finish−−−→ s2
finish−−−→ ....

Definition 2.3.4 (Deterministic MDP) We use the term “deterministic MDP” to de-
scribe an MDP in which transitions for every state-action pair are deterministic.

Adversaries. Quantitative information can be retrieved from an MDP model in the
form of rewards and probabilities [60]. To reason about probabilities in the same way as
for DTMCs, it is necessary to remove the non-determinism so that a fully probabilistic
model is left.1 For this purpose, adversaries are responsible for choosing an action (i.e., a
distribution) at each of the states of the MDP, based on the execution so far represented
as a finite path ρ.

Definition 2.3.5 (Adversary) An adversary of an MDPM is a function σ : FPathM →
Dist(αM) where σ(ρ)(a) > 0 only if a ∈ A(last(ρ)), with last(ρ) denoting the last state
on path ρ.

For the example in Figure 2.2, we can define an adversary that solves the non-
determinism after an execution s0 go−→ s1, by selecting action safe with probability 1,

σ(s0 go−→ s1) = [safe 7→ 1]

which satisfies σ(s0 go−→ s1)(safe) > 0 as safe ∈ A(s1).
An adversary is said to be memoryless if σ(ρ) depends only on the last state last(ρ)

rather than on a path leading to this state, i.e., for any two paths ρ, ρ′ ∈ FPathM such
that last(ρ) = last(ρ′), then σ(ρ) = σ(ρ′). Additionally, an adversary σ is said to be
deterministic if σ(ρ) is a point distribution ∀ ρ ∈ FPathM, and randomised otherwise.

In autonomous systems and MRS applications, probability is used to quantify envi-
ronmental uncertainty and stochasticity, while non-determinism represents model deci-
sions [62]. Non-determinism allows for the representation of choices made by a controller
of a robot, in our case, the choices of idling a robot or travel and perform a task. Solving
the non-determinism by generating deterministic (or pure) adversaries means that the
robot’s controller picks a single action (with probability 1) for all finite paths of the MDP.
Hence, we use deterministic adversaries to solve when the robot must idle (to synchronise
in time with other robots) while completing its allocated tasks.

In the context of general path formulae, optimal strategies are finite-memory and
deterministic because they must account for a variety of states and decisions throughout
a process. Finite memory allows these strategies to retain information about previous

1For any adversary σ, this results in an induced DTMC denoted as Mσ.
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states, which is crucial for making informed decisions based on the history of the system’s
behavior.

However, for specific scenarios, such as calculating probabilities or expected accumu-
lated rewards to reach a target (used in this thesis for the synthesis of robot plans),
memoryless deterministic adversaries suffice [62]. This is because the decision at any
given moment can be made based solely on the current state, without needing to consider
past states or actions. In these cases, the outcomes are typically based on well-defined
probabilities or rewards, allowing for straightforward, immediate choices that do not re-
quire historical context [60].

For these reasons, we focused exclusively on deterministic memoryless adversaries,
which are sufficient for addressing the MRS problem at hand. A way to formalise specific
properties of an MDP for which we wish to synthesise an adversary is using temporal
logic, as detailed in the following section.

2.3.3 The Logics PCTL and RPCTL

Probabilistic computational tree logic augmented with rewards (RPCTL) is an extension
of probabilistic computational tree logic (PCTL). Hence, in this section, we describe
PCTL and then RPCTL.

PCTL. Probabilistic computational tree logic [63] is an extension of computational
tree logic (CTL) augmented with probabilities.

Definition 2.3.6 (PCTL Syntax) The syntax of PCTL is defined by,

Φ ::= True | ap | ¬Φ | Φ1 ∧ Φ2 | P▷◁p(Ψ) (2.1)

Ψ ::= XΦ | Φ1UΦ2 | Φ1U⩽nΦ2 (2.2)

where Φ is a state formula and Ψ a path formula; ap ∈ AP is an atomic proposition and
AP the set of atomic propositions; p ∈ [0, 1] with ▷◁ ∈ {⩾,⩽, >,<}; and n ∈ N.

A PCTL formula can be contextualised by a state transition model such as an MDP,
which has states labelled with atomic propositions. Hence, atomic propositions ap ∈ AP
match propositions existing in an MDP. A property of a model is defined as a state formula;
meanwhile, path formulae only occur within the probabilistic operator P▷◁p(φ) to reason
about the possibility (true or false) that any path satisfying φ from an initial given state(s)
s has a probability, for example, greater or equal than (▷◁=⩾) some predefined value p.

For a path ρ, the next path formula XΦ is true if Φ holds for the next state of ρ; the
until operator U requires two state formulae (Φ1UΦ2) to assess if Φ1 is true in all states
along the path until Φ2 becomes true; similarly, the bounded until operator (Φ1U⩽nΦ2)
constraints Φ2 to become true within the next n states, with Φ1 holding until then.

The semantics of the PCTL logic are described in terms of the states and paths, in
our case, of the MDP state transition model and its adversaries (Adv).
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Definition 2.3.7 (PCTL Semantics) Given an MDPM = (S , ιinit , αM, δM,L), a class
of adversaries Adv of M with σ ∈ Adv, a state s ∈ S, PCTL state formulae {Φ1,Φ2},
and path formula Ψ, the satisfaction relation |=Advis defined by:

s |=Adv True always holds (2.3)
s |=Adv ap iff ap ∈ L(s), (2.4)

s |=Adv ¬Φ iff not s |=Adv Φ, (2.5)

s |=Adv Φ1 ∧ Φ2 iff s |=Adv Φ1 and s |=Adv Φ2, (2.6)

s |=Adv P▷◁p(Ψ) iff Prσ
(M,s)({π ∈ IPath(M,s) | π |=Adv Ψ}) ▷◁ p , ∀σ ∈ Adv. (2.7)

where Pr is the probability operator and IPath(M,s) is the set of all infinite paths starting
from s. Then, ∀π ∈ IPathM:

π |=Adv XΦ iff π(1) |=Adv Φ, (2.8)
π |=Adv Φ1UΦ2 iff ∃ n ⩾ 0 · (π |=Adv Φ1U⩽nΦ2), (2.9)

π |=Adv Φ1U⩽nΦ2 iff ∃ i ⩽ n · (π(i) |=Adv Φ2 ∧ (∀ j < i.π(j) |=Adv Φ1)). (2.10)

Min/max probability. The second part of Formula 2.7 is shorten as follows as it is
repeatedly used in the next sections,

Pσ(Ψ) := Prσ
(M,s)({π ∈ IPath(M,s) | π |=Adv Ψ}) (2.11)

Using this notation, we define two types of adversaries σ ∈ {min, max} corresponding
to the minimum and maximum probabilities of a formula Φ holding under the adversaries
Adv from state s, respectively. For example, in a robotic system, we can reason about
“what is the minimum probability of completing all tasks assigned to robots without
failure”.

Pmin(Ψ) := infσ∈AdvPrσ(Ψ) (2.12)

Pmax(Ψ) := supσ∈AdvPrσ(Ψ) (2.13)

where inf and sup refers to the inferior and superior values, respectively.

Derived operators. The following additional operators are derived from operators
in the PCTL syntax:
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False :=¬True,
Φ1 ∨ Φ2 :=¬(¬Φ1 ∧ ¬Φ2),

Φ1 → Φ2 :=¬Φ1 ∨ Φ2,

FΦ :=True U Φ,

F⩽nΦ :=True U⩽nΦ,

GΦ :=¬(F¬Φ),
G⩽nΦ :=¬(F⩽n¬Φ).

where ∨ and → are the logic disjoint and implication operators. The future or eventually
operator F (also found in the literature as ⋄) intuitively looks for a future state on a path
(from a given initial state) that satisfies state formula Φ. Similarly, the always or global
operator G (also written as □) looks for a path where all states satisfy the state formula
Φ. F and G operators are borrowed from CTL, and are augmented with bounded variants
(F⩽n,G⩽n) limiting the number of states ahead for which the formula has to hold to be
True.

Note that the future operator (F) is implicit within the definition of PCTL semantics
as it is derived from the until operator U . However, the global operator (G) requires the
negation of a formula that is not part of PCTL. Hence, we define the following equality
and direct the reader to [60] for the explanation of equivalence,

P⩽1−p[F ¬Φ] := P⩾p[G Φ] (2.14)

PCTL with Rewards. A second extension of the initial PCTL is the reward-related
operator R. The complete syntax of RPCTL is given by,

Φ ::= True | ap | ¬Φ | Φ1 ∧ Φ2 | P▷◁p(Ψ) | Rr
▷◁ x [I=n] | Rr

▷◁ x [C⩽n] | Rr
▷◁ x [F Φ]

(2.15)
where r = (rstate, raction) is an MDP reward structure (see Section 2.3.2) that allows the
specification of a reward, i.e. a quantity, that changes through changes of transitions and
states in the Markov model; and x ∈ R⩾ 0 is a reward bounding variable. The semantics
of RPCTL follows the same semantics as defined for PCTL plus the following formulae.

Three random variables are introduced to specify different types of expected rewards,
defined overall infinite paths π ∈ IPaths. First, instantaneous reward returns the reward
gained immediately at the n time step, and is defined as I n

rstate
:= rstate(π(n)). The step-

bounded cumulative reward computes the reward accumulated up to the nth time step,
defined as C⩽n

r (π) = Σn−1
i=0 (rstate(si)) + raction(si , ai)).

The third one is the cumulative reward to reach a target where Φ holds, also known
as reachability reward. To explain it, we first define a set of target states T ∈ S which
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contains all states that satisfy the formula Φ. We now can define Fr as,

FT
r (π) =

∞, if si /∈ T ∀ i ∈ N

Σ
kT
π −1

i=0 (rstate(si)) + raction(si , ai)), otherwise

where kT
π = min{k | sk ∈ T} is the lower state number that is in the target set T .

Reachability rewards are particularly relevant to MRS missions to reason about energy
consumption until the mission is completed, the time elapsed when after some locations
are reached, or to track the expected number of failed tasks [64]. Reachability properties
are also common in the specification of robotic missions, for example, to specify that a
group of robots must visit locations l1 and l2 (defined in LTL as F (l1 ∧ l2)) [2, 20,64].
To limit the scope of this thesis, we only use as part of this thesis reachability rewards
for the synthesis of MDP adversaries, to specify quantitative properties such as: what is
the minimum time that a group of robots need to spend idling (due to waiting for other
robots to arrive at a task location) while completing a mission.

RCPTL adversary semantics. The following RPCTL semantic rules are additional
to the PCTL semantics defined in (2.3) to (2.10). These define the semantics of adversaries
Adv instead of infinite paths IPaths,

s |=Adv Rr
▷◁ x [I=n] iff Eσ

(M,s)(I=n
rstate) ▷◁ x ∀σ ∈ Adv, (2.16)

s |=Adv Rr
▷◁ x [C⩽n] iff Eσ

(M,s)(C⩽n
r ) ▷◁ x ∀σ ∈ Adv, (2.17)

s |=Adv Rr
▷◁ x [FΦ] iff Eσ

(M,s)(FSatAdv(Φ)
r ) ▷◁ x ∀σ ∈ Adv, (2.18)

where E is the expected value under adversary σ.
Intuitively, these formulae answer the question of where a state s has a reward bounded

by x under some adversary σ.
Min/max rewards. The value of interest for the rewards formulae is either the

minimum or maximum reward. This can be written similar to the quantitative probability
formulae, as, Rmin,r [·] and Rmax,r [·].

2.3.4 Probabilistic Model Checking

The basic theory of probabilistic model checking was developed in the mid-80s [65]. Later
on, Alur, Courcoubetis and Dill worked on the timed automata model for real-time and
probabilistic systems [66,67]. Continuing, in the mid-90s, [63] and [68] introduced PCTL
and PCTL* for probabilistic specifications. Daws [69] provides the following description
of probabilistic model checking:

Probabilistic model-checking of PCTL over discrete probabilistic systems is
based on the computation in every state of the probability measure of the set
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of paths satisfying a (path) formula. These probabilities are computed numer-
ically by solving a system of linear equations in the case of DTMCs [...], and
by solving a linear optimisation problem in the case of MDPs [...].

Qualitative properties are concerned with a yes or no answer to the question: “Can
this assertion ever be violated?” [70]. On the other hand, quantitative properties check
for dependability and performance aspects, such as [70]:

• Dependability aspects: safety, reliability, availability, survivability, etc.

• Performance aspects: response times, throughput, power consumption, etc.

Quantitative verification requires a model formalism that captures real-time aspects, prob-
abilities or continuous dynamics [70]. Examples of these models are DTMCs and MDPs.

As Markov models suffer from the state-explosion problem, i.e., an explosion in the
number of states as the complexity of the modelled system grows, probabilistic model
checking techniques are usually combined with mechanisms to reduce the number of states
to visit. We refer the reader to [29] for detailed descriptions of the algorithms used for
probabilistic model checking, as well as strategies for state-space reduction. We also
recommend the paper [60] on the formalisation of the techniques implemented for the
probabilistic model checker PRISM (see Section 2.3.5), which is used in this thesis.

2.3.5 PRISM Model Checker

PRISM modelling language. KANOA MDPs are defined in the high-level modelling
language of the probabilistic model checker PRISM [71]. A model specified in this lan-
guage comprises several interacting reactive modules. Each such module consists of a set
of finite-valued state variables, and several transitions (i.e., commands) modifying these
variables. A transition has the generic form

[<action>] <guard> → <prob>:<update> +...+ <prob>:<update>;

and comprises an optional action label, a guard and state updates with transition prob-
abilities assigned. An action is a label that allows synchronisation between modules. A
guard is a predicate over the variables of all modules. An update modifies the module
variables if the transition is taken (→) with a probability of prob. In an MDP, nonde-
terministic actions are taken when two transitions in the same or different modules have
overlapping guards.

PRISM Model Checker [72] is a probabilistic model checker that supports multiple
types of probabilistic models, including DTMCs and MDPs, as well as several types of
probabilistic logics, including PCTL and RPCTL. These models and properties must be
defined in the PRISM modelling language to be automatically analysed by the PRISM
Model Checker. We refer the reader to the PRISM website manual [73] for further detail.
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2.4 Evolutionary-guided Synthesis of MDP Adver-
saries

The MDP model is defined in Section 2.3.2. In this section, we define the multi-objective
optimisation of synthesizing MDP adversaries using meta-heuristics. We are interested in
optimising a set of parameters related to the quality of the mission. The multi-objective
problem (MOP) is formally defined as [74],

Definition 2.4.1 (MOP) A multi-objective problem (MOP) requires finding a vector
x+ = [x+

1 , x+
2 , . . . , x+

n ] which satisfies: p equality constraints hi(x) = 0, i = 1, 2, . . . , p,
and m inequality constraints gi(x) ≥ 0, for i = 1, 2, . . . ,m; and minimizes the vector of
functions f x = [f1(x), f2(x), . . . , fk(x)]T , where x = [x1, x2, . . . , xn]

T is the vector of decision
variables.

The set of all feasible solutions is referred to as the feasible region Ω, with a feasible
solution being x ∈ Ω. Note that while this definition refers to minimising functions f i ,
this is equivalent to maximising these functions multiplied by -1.

Pareto optimality. Finding a Pareto-optimal solution from the feasible region re-
quires finding a solution such that no other feasible solution exists that would improve
some (objective) functions f i without worsening one or more other such functions [74].

Definition 2.4.2 (Pareto optimal point) A point x+ is Pareto optimal if for every
other solution x ∈ Ω, either ∀ i ∈ {1, ..., k}.fi(x+) = fi(x), or ∃ i ∈ {1, ..., k}.fi(x) > fi(x+).

Obtaining the Pareto front of a MOP, composed of all non-dominated solutions and
their respective vector of function values, is the main aim of the multi-objective optimi-
sation problem [74].

Definition 2.4.3 (Dominated solution) A vector v is said to be dominated by u iff
∀ i ∈ {1, ..., k}.ui ≤ vi and ∃ i ∈ {1, ..., k}.ui < vi. We use the notation u ≼ v to denote
this dominance.

We are interested in finding the set of solutions that are Pareto optimal.

Definition 2.4.4 (Pareto optimal set) The Pareto optimal set for a MOP f (x) is the
set as P+ = {x ∈ Ω | ¬ ∃ x ′ ∈ Ω, f (x ′) ≼ f (x)}.

Definition 2.4.5 (Pareto front) The Pareto front of a MOP f (x) of a Pareto optimal
set P+ is the set PF+ = {f (x), x ∈ P+}.
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Genetic algorithms. Metaheuristic algorithms are used to solve this optimisation
problem when the Pareto front consists of a large number of points. Genetic algorithms
(GA) is a method for solving optimisation problems. It encodes a large number of solu-
tions (population), where the individual solution (chromosome) is a sequence of values,
called genes, that are genetically bred through Darwinian principles of survival and re-
production of the fittest solutions, and their recombination (crossover) to create new
populations (offspring) that evolve towards an optimal solution [75]. GA starts with an
initial randomly generated population of feasible solutions (individuals) from a design
space DS. This population is evolved into subsequent populations by the GA stages of
selection, crossover and mutation. The selection stage uses a fitness function to evaluate
each individual and selects the population for the next generation, as well as the mating
pool (individuals with the highest fitness levels). Crossover selects two individuals from
the mating pool and generates new individuals by recombination of their genes. Lastly,
mutation produces individuals by randomly modifying some genes from individuals in the
pool. This process continues by replacing the initial population with the new popula-
tion until there is no significant fitness improvement or after a predetermined number of
iterations [50]. The most used multi-objective evolutionary algorithm (MOEAs) is the
nondominated sorting genetic algorithm II (NSGA-II), used also in this paper. We refer
the reader to [76] for further details.

EvoChecker. EvoChecker [50, 77] is a search-based approach and tool for the syn-
thesis of feasible instantiations for parametric Markov models. A parametric Markov
model is a Markov model that includes undefined variables, i.e., parameters. EvoChecker
allows the use of such parameters to describe transition probabilities between states, sys-
tem variables, as well as different configurations of the modelled system. EvoChecker
uses as input a single model that defines the parameter ranges, as well as these possible
system configurations written in an extended version of the PRISM modelling language
(see Section 2.3.5). Internally, it creates PRISM models with instances of these variables
within the specified ranges and configurations, and uses metaheuristic search techniques
to obtain Pareto-optimal combinations of variable values.

The theory behind EvoChecker is used in this thesis for the synthesis of individual
robot plans. The main difference to our approach is that we do not create a single initial
model. Given that the system configurations are, in our case, the permutation of robot
tasks, the number of permutations grows factorially with the number of tasks and linearly
with the number of robots, making the definition of a single initial model unfeasible.
For example, for 5 tasks and two robots, there are 5!×2= 240 configurations that had
to be modelled as a single EvoChecker model. Hence, the approach proposed in the
thesis creates each PRISM model directly from the robot system specifications. Similar
to EvoChecker, EvoPoli [78] is another tool available for the evolutionary synthesis of
adversaries for MDP models. However, this tool is not considered in this thesis as it is
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known to have scalability issues with large MDPs.

Context. In the following chapters, we use the Z notation for the formalisation of task
allocation and scheduling problem specifications (Chapter 4). The Alloy Analyzer is used
to generate task allocations for heterogeneous groups of mobile robots operating under a
finite set of spatial constraints. The satisfaction problem is formalised with the help of the
Alloy language (Chapter 5). Finally, the verification of probabilistic systems is required
for the synthesis of formally verified robot plans, while searching through the solution
space of these robot plans using evolutionary guided synthesis. In our formulation, a
robot plan is defined by an MDP adversary (see Chapter 6).
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Chapter 3
Systematic Review of Multi-robot
Task Allocation and Scheduling

Multi-robot systems can carry out useful missions in applications dangerous to humans,
such as search and rescue operations during natural disasters, the exploration of other
planets, and infrastructure monitoring and repair in nuclear power plants. They are also
capable of performing repetitive and big-scale activities, such as the delivery of goods in
an urban area, and hospital cleaning and disinfection. Given the benefits of these appli-
cations, the decades of significant advances in robotics and control theoretic approaches
for automating the physical motion of robots, and the growing body of research on the
specification of robot tasks, one may wonder why such uses of multi-robot systems are
still far from common.

The systematic review presented in this chapter highlights some of the complexi-
ties involved in adopting multi-robot systems. One significant challenge is identifying a
suitable language for specifying the multi-robot problem at hand—this language must ef-
fectively capture all required elements such as tasks, task constraints, task requirements,
world model characteristics, and robot capabilities. Additionally, the lack of consensus on
terminology for specific problems like task allocation, scheduling, planning, and motion
planning creates further difficulties. Developers must establish and formalise consistent
terminology for their solutions to ensure clarity and facilitate adoption by others. Finally,
given the extensive body of knowledge available for addressing multi-robot problems,
selecting an appropriate solution is not straightforward, and trade-offs between various
approaches must be carefully considered. We drew these conclusions following a thor-
ough review of the research literature in which we systematically collected 837 primary
research papers related to task specification, allocation and scheduling in robot and multi-
robot systems spanning the past five years. After examination, 73 papers were used for
the systematic review to answer research questions aimed at understanding: (a) the cur-
rent terminology used among researchers; (b) how tasks are formally defined and what
normative is considered; (c) the types of solutions for the task allocation and schedul-
ing problems, what uncertainties they consider, and which types of formal methods they
employ; (d) how these problems are solved and what metrics and simulators or testbeds
were used to evaluate their effectiveness.

In addition to answering these research questions, we leverage our assessment of the
terms used by the current research on robotic task allocation and scheduling to propose
a unified terminology for this important research area.
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3.1 Research Questions

Our systematic review follows the guidelines in [79] and [80]2 for systematic reviews in
software engineering. As detailed in Section 3.2, we scanned 837 primary studies gathered
from multiple leading venues, digital sources and experts in the specified MRS area. From
these, 73 relevant studies were retained and used to answer the following exploratory
research questions (EQs), which we organised into four problem categories:

EQ1. Terminology for task allocation and scheduling in robot systems.
1.a) Do the terms mission, task, allocation and scheduling refer to the same concepts
across research papers?
1.b) If the terms from 1.a) refer to different concepts in different papers, what is
their most common meaning?

EQ2. Ways of modelling tasks.
2.a) What types of formalisms are used for the specification of tasks?
2.b) What standards/patterns/guidelines are used to define tasks in robot and multi-
robot systems?

EQ3. Allocation and scheduling problem solutions and variants.
3.a) What approaches are used to solve the task allocation and scheduling problems
in robot systems?
3.b) Are task allocation, scheduling, planning or a combination thereof considered?
3.c) What research papers consider uncertainty, and what types of uncertainty are
being considered?
3.d) What solutions use formal methods, and what type of formal techniques do
they use? (This question is particularly relevant to our thesis, which focuses on the
application of formal methods to MRS task allocation and scheduling.)

EQ4. Future research directions.
4.a) What gaps that need to be addressed by future research are identified in the
paper?

3.2 Search Strategy

To identify the most relevant research, the primary studies were obtained from: (i) high-
impact venues in the areas of robotics, automation and software engineering; (ii) the
IEEE Computer Society Digital Library and Google Scholar, using the search engines
available for the two platforms; and (iii) authors and publications known to be relevant
from personal knowledge. Source (i) ensures the quality of the survey as most (if not

2This systematic review is also inspired by [1] and [81].
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Table 3.1: Sources used to obtain the primary studies and the number of publications
retrieved using specific search queries as described in the text.

i Venue Acronym Type
Num
publ.

i.1 International Journal of Robotics Research IJRR Journal 29
i.2 Transactions on Software Eng. TSE Journal 1
i.3 Robotics and Automation Letters RA-L Journal 369
i.4 Transactions on Robotics T-RO (Trob) Journal 63
i.5 Transactions on Automation Science and Eng. T-ASE Journal 0
i.6 Software Eng. for Adaptive and Self-Managing Sys. SEAMS Conf. & Symposium 0
i.7 Symposium on Applied Computing SAC Conf. & Symposium 2
i.8 Foundations of Software Engineering ESEC/FSE Conf. & Symposium 0
i.9 Intelligent Robots and Systems IROS Conference 133

i.10 Int. Conference on Robotics and Automation ICRA Conference 137
i.11 Int. Conference on Automation Science and Eng. CASE Conference 32
i.12 International Conference on Advanced Robotics ICAR Conference 15
i.13 International Conference on Software Engineering ICSE Conference 9
i.14 Int. Conf. on Model Driven Eng. Languages and Sys. MODELS Conference 3
i.15 Simulation, Modeling and Progr. for Aut. Robots SIMPAR Conference 2
i.16 Software Engineering and Formal Methods SEFM Conference 2

TOTAL (venues) 797
ii Library/Search engine

ii.1 IEEE Computer Society Digital Library 22
ii.2 Google Scholar 16
iii Personal knowledge 2

TOTAL 837

all) publications from this category are peer-reviewed and obtained from high-ranked
conferences. Source (ii) provides a broader view of the existing body of knowledge on MRS
task allocation and scheduling; sorted by relevance, Google Scholar provides an insight
into the most-cited/widely-used publications within the research community. Finally,
source (iii) adds important research papers known from personal knowledge gained over
the last five years.

3.2.1 Inclusion Criteria

To search through the sources, we used a query filtering papers related to robots (including
robots, multi-robot, MRS terms) and the set of problems on which this study focuses, aka
task allocation, scheduling, mission specification and adaptation. For (i), the publications
were retrieved from the DBLP [82] repository using the query3:

robot|MRS$ task|schedul|allocation|mission|adapt year:2023:|year:2022:| [...] |year:2018:
streamid:journals/ijrr:|streamid:journals/tse:| [...] |streamid:conf/sefm:

For ii.2 and ii.3, the search was limited to finding the top 25 matches (which is a limit
imposed by the IEEE library search engine) ranked by relevance. After an elimination

3Spaces mean logical and’s, | logical or ’s, $ looks for exactly the word before this sign, year :XXXX:
filters by publication year, and streamid:TYPE/NAME: by venue.
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process to remove duplicates, 22 and 16 new papers were found in the IEEE Computer
Society Digital Library and Google Scholar, respectively. The search query used to guide
both engines was: (robots OR robot OR MRS) AND (task OR tasks OR schedule OR scheduling
OR allocation OR mission OR missions OR adapt OR adaptation) .

Finally, another two papers were added from personal knowledge. Hence, a total of 837
primary studies were identified, as depicted in Table 3.1, which lists the three sources
of information, as well as the full list of venues considered for source (i). The search was
limited to the period 2018–2022, portraying the last five years of research. The full list of
references can be downloaded from https://github.com/Gricel-lee/MRS-ThesisMaterial.

3.2.2 Exclusion Criteria

From the 837 primary studies, the following exclusion criteria were used to eliminate
studies unrelated to the research questions:

1. Studies whose title and abstract are unrelated to task allocation and scheduling for
robotic systems.

2. Studies focusing on the hardware of robotic systems rather than their software.

3. Studies described in short or conference papers that the authors also published in
an extended journal paper (e.g., [83] and [84]).

The 146 studies retained after applying these exclusion criteria were scanned for relevance
based on their conclusions, section titles and figures. After this additional examination,
a final list of 73 relevant studies was selected to answer our exploratory questions from
Section 3.1.

3.2.3 Data Items

To answer the questions formulated in Section 3.1, we used a data extraction form com-
prising the following entries (whose data type is provided in brackets):

• Type of contribution (Categorical): architecture, algorithm, specification language,
mission catalogue, etc.

• Self-adaptation (Boolean): true if adaptation at runtime is proposed.

• Formal methods (Boolean and Text): the specific formal method(s) applied to
address the current Multi-Robot System (MRs) problem, if applicable.

• Summary of the paper (Textual).

• Terminology (Categorical/Textual): the definition of terms that the authors use,
such as task, subtask, mission, planning, etc.

31

https://github.com/Gricel-lee/MRS-ThesisMaterial


Multi-robot Task Allocation and Scheduling Overview

• Task specifications (Categorical): what language is used for the specification
of the tasks, e.g., a domain-specific language (DSL), Planning Domain Definition
Language (PDDL), logic language, or other.

• Task patterns (Boolean): true if the paper describes a repository of tasks.

• Solution (Textual): the type of robot problem(s) studied and the solution proposed.

• Uncertainties considered (Text): types of uncertainties considered.

• Robot type (Categorical): the type of robot system used, for example, single robot,
MRS, human-in-the-loop, or cobot (collaborative robot);

• Standards (text): references to standards and norms;

• Gaps (text): gaps in the state-of-the-art identified by the authors.

3.3 Results

Demographic Information

Figure 3.3: Number of publications per year
for the final list of selected papers as de-
scribed in the text. The lower (blue) bars
are publications in Conferences and the up-
per (red) bars in Journals.

As shown in Figure 3.3, the number of se-
lected robot systems, task allocation and
scheduling publications from each of the
last two full years has almost doubled com-
pared to previous years, with a total of 25
publications in 2021 and 19 in 2022 com-
pared to a maximum of only 11 papers per
year between 2018 and 2020. More than
half of the publications were found in the
Journal Robotics and Automation Letters
(RA-L) (26%) and two of its associated
conferences, ICRA (16%) and IROS (9%),
as depicted in Figure 3.4a. The journal with the next highest number of selected papers
is IEEE Transactions on Robotics (T-RO) with 10%, followed by the conferences CASE
and IJRR with 7% and 5% of the publications, respectively. From now on, we will refer
simply as papers to the set of relevant papers.

To assess the content of the papers, we classified the 73 papers depending on the
outcome of their study. This is obtained from the “type” data item, from the list in
Section 3.2.3. We defined the following categories with the number of studies found for
each category depicted within parenthesis:

1. a framework (29 papers) set of components or libraries that provide an intercon-
nected structure, often accompanied by a defined workflow.
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2. a method/approach (26 papers), a new procedure(s) or algorithm(s) to solve the
MRS problem in hand, for example, the scheduling of the robot tasks;

3. an architecture (7 papers), the structure and design of a system, including the
system’s components and how they interact at a higher level of abstraction compared
to a framework, but more structured facilitating in-further analysis (for example, to
analyse system qualities such as modifiability, security, and availability);

4. a mission catalogue (4 papers), a repository of robotic missions facilitating their
understanding, categorisation, and adoption;

5. a specification language (4 papers), a new language for the specification of robot
tasks or robotic mission requirements;

6. a case study (1 paper), the implementation and analysis of an existing solution
to the MRS problem in hand within the context of a particular case study (only
the case study, as most papers include one or more case studies as part of their
evaluation);

7. a comparison study (2 papers), comparing two or more methods (only describing
the comparison, as many papers include a comparison to other studies as part of
their evaluation and/or related work sections).

As shown in Figure 3.4b, the majority of the papers propose new frameworks, ap-
proaches, or architectures—these types of contributions account for 84% of the papers.
Another 12% of the papers propose catalogues and/or new languages for the specification
of missions for robotic system. One paper conducts a case study inspired by the assem-
bly line of the Boeing 777, while the remaining two papers compare various methods for
solving the task allocation and scheduling problem.

With regard to the type of robot system used by the analysed research papers obtained
from the “robot type” data item, Figure 3.4c shows that 71% of the papers target some
variant of a multi-robot system, while 18% focus on single-robot problems. Unexpectedly,
11% of the studies present research on collaborative robots (cobots), with a focus on
human-robot interaction (HRI), human-robot collaboration (HRC), or human-in-the-
loop. For additional information, refer to Table 3.2, which presents the paper citations
compiled through this review categorized by the type of robotic system, (a) multiple
robots (MRS), (b) single robots and (c) collaborative robots (Cobots); the latter is sub-
divided into three categories depending on the number of agents involved.

Next, we extracted the types of uncertainties considered by each paper (“uncertain-
ties” data item), and assesed whether the robotic system used in the paper is capable of
self-adaptation (“self-adaptation” data item), and/or if the paper uses formal methods
(“formal methods” data item). We report the results as a Venn diagram in Figure 3.4d.
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(a) Publications per venue.

(b) Types of studies found across the 73 papers.
(c) Types of robot systems used in the
studies.

(d) Studies that consider uncertainty (N),
self-adaptation (SA), formal methods (FM)
or a combination thereof.

(e) Studies considering task schedul-
ing (TS), allocation (TA), planning (TP)
or a combination of them.

Figure 3.4: Understanding the information contained in the collected papers.
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Table 3.2: Types of robot systems and references.

Robot system type Count References

MRS 51

[22,48,49,85–95]
[20,41,96–108]
[24,84,109–120]
[25,27,28,30,121–124]

Single robot 14 [1, 2, 23,36,125–134]
Cobot (Robot-single human) 4 [47,135–137]
Cobots (MR-single human) 1 [138]
Cobots (MR-MH) 3 [43,139,140]

Similarly, Figure 3.4e shows the number of papers that address the following specific
problems relevant to MRS and aligned with the aims of the ongoing systematic review. To
establish a clear distinction among the papers—given that some of them simultaneously
address multiple issues—we have broadly outlined the following categories,

• planning: route/path from one location or configuration of the system to another;

• allocation: select who (robot, human, group of robots, etc) does what;

• scheduling: the ordering of the tasks, in many cases, under system constraints and
objectives.

Although planning was not the target of this review, it had to be considered given
its intrinsic connection to allocation and scheduling. For this Venn diagram, we did
not consider all of the papers as, for example, some of them study the description of
robotic missions rather than solving any of these problems. A threat to the validity of
this specific Venn diagram is that, in some cases, it is difficult to assess if more than
one problem is solved at the same time (for example, finding paths in the Weighted
Transition System [104] may only consider planning if an initial and final point is given,
but scheduling if multiple points must be visited). The information for this diagram was
obtained from the “solution” data item.

To summarise, more than half of the selected research papers focus on frameworks and
methods for MRS, while a smaller percentage target single-robot and COBOTs systems.
From the 73 papers collected, 47 papers where identified to have used formal methods, self-
adaptation and/or model some type of uncertainty. A total of 19 papers consider formal
methods in some manner, 23 self-adaptation and 38 model some type of uncertainty.
From the three robot problems targeted by the ongoing systematic review, the two mostly
considered were planning and allocation accounting. The third problem, scheduling, is
studied mostly in combination with the previous two. The insights derived from both
Venn diagrams are expanded in response to exploratory research question EQ3.
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EQ1. Terminology

Figure 3.5: Word-cloud of terms
found in the summary of the papers.
Produced on [141]

Figure 3.5 shows a word cloud created by joining the
text gathered from all papers for the “summary”
data item. Similar terms were joined (e.g., task &
tasks, scalable & scalability), followed by the elim-
ination of pronouns, spaces, signs, author names,
and verbs (such as substitutes, assigns, and design).
The final list of terms is depicted within this figure.
Terms displayed in a smaller font indicate that they
occur less frequently compared to terms presented
in a larger font size. Some of the most visible terms
include framework, planning, robots, tasks, alloca-
tion, constraints and mission; this is expected as
they are aligned with the ongoing systematic review.
The terms planning and allocation stand out while
the term scheduling does not appear in the figure; this observation aligns with the Venn
diagram in Figure 3.4e, where the scheduling problem is mostly considered as part of the
first two problems. This figure is only for visualisation purposes as it does not provide
any unexpected term; hence, we continue in the following paragraphs by defining the
terminology of interest such as task allocation, mission, task, subtask and goal.

Comparison of two terminologies for the description of tasks. To understand
and classify the terminology used by the studies gathered by this systematic review, in
this section, we use the information gathered from the “terminology” data item. It is
noticeable that some discrepancies exist among studies. As an example, we compare the
terminology for two studies, PROMISE [84] and GODA [142], as depicted in the Figure
3.6 summaries.

One could argue that PROMISE [37] uses a terminology focused on the operators
(tasks are elementary operations and missions complex tasks), while GODA [142] (also
used in GoalD [37]) uses the TROPOS methodology, focused on the agents. For the latter,
goals are agent strategies and tasks are the plan to be performed by robots. Table 3.3
shows five examples of things that the robots require to-do: a) ordered visit, b) visit,
c) parallel, d) fallback, and e) combination of parallel and fallback, and the terminology
used by PROMISE versus the GODA. A natural language description of the to-do list is
shown in column 2.

Starting with the first row in Table 3.3, ordered visit is described as a task in PROMISE
but called a goal in GODA. However, visit in the second row is referred to as a task in
GODA terminology, as it is seen as the composition of multiple single tasks. Continuing,
there are three examples of Missions in PROMISE. The parallel mission is referred to
as a goal in GODA, whereas fallback and combinations of this, such as the parallel and
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Figure 3.6: On the left, mission and task definitions defined by PROMISE [84]. On the
right, GODA [142] terminology uses the words goals and task/plan for similar concepts.
PROMISE focuses on the operators (ways to combine tasks) and GODA on the agent
requirements.

fallback mission, are not supported by GODA.
Beyond PROMISE and GODA, discrepancies in the definition of tasks arise from the

type of robotic system. For example, for robotic arm setups, a task may involve reaching
a position in space or following a trajectory, moving from configuration A to configuration
B through a collision-free path [129]. Meanwhile, in cloud robots, a task may be defined by
a time length and a cost associated with the priority of the task [116]. Cloud robotics is a
field that integrates cloud computing with robotics to enhance their capabilities, allowing
robots to offload complex tasks to remote servers for processing, analysis and storage.

Common terminology. As previously discussed, there is no universally formal def-
inition for the many of the terms used within the research of MRS, such as tasks and
missions. To ascertain what these terms mean within the broader community, we assem-
bled the following definitions based on the information collected from the “terminology”
data item and its analysis.

For the definitions of task and mission, we used the three most cited papers [27, 130,131]4.
Garrett et al. [131], the authors differentiate between motion tasks (pick, place and move)
and higher-level tasks such as cleaning and cooking. Both types of tasks are formalised
as action schemas in an extension of SAS+ planner. This planning formulation defines
conditions (Boolean restrictions associated to states of the planning problem) and effects
(updates to the value of planning variables). Schillinger et al. [27] define a task as inde-

4Number of citations obtained on 24th August 2024.
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Table 3.3: Examples of terms defined in the PROMISE and the GODA terminology.
Three examples of missions in PROMISE are shown with their names within brackets.
Two of these missions are not supported by GODA.

Examples of things “to-do”
PROMISE

term
GODA
term

a Ordered visit patients 1, 2 and 3 Task Goal
b Visit patient 1 Task Task

c
“Robot 1 visit patient 1” and
“Robot 2 check vital signs on
patient 2 and 3”

Mission
(Parallel)

Goal

d

if “Ordered visit to patients 1, 2
and 3”, if fails, then ”visit
doctor 1”, if this also fails,

then ”visit reception”

Mission
(Fallback)

Not
supported

e

“Robot 1 visit patient 1” and
“Robot 2 check vital signs on
patient 2 and 3”, if Robot 2
fails, “go to reception”

Mission
(Parallel

and
fallback)

Not
Supported

pendent activities that can be executed by the robots and that can be formally defined as
an LTL formula. They also define a mission as the completion of all tasks. Formally, a
mission is given as a set of tasks M := {T1,T2, ...,Tn}, or its respective LTL formula (or
its respective non-finite automaton). Additionally, a mission must satisfy the properties
of independence (an execution of a task must not violate another task) and completeness
(the completion of all tasks implies the completion of a mission).Hence, we informally
define tasks and missions as,

A task usually refers to an action that a robot or multiple robots are intended to
perform (e.g., cooking or visiting patients). Tasks can be define as individual
action, or as a series of them (e.g., cleaning a room or cleaning a series of
rooms) and might consider dependencies such as the order or their execution.
Meanwhile, a mission generally refers to a similar concept but involves more
complex dependencies that may encompass multiple or even all defined tasks.

Terms such as task allocation (who), planning (what), scheduling (when) and motion
planning (how) are recurrently found in the literature. We guide our following definitions
in papers than describe these in more detail by the application of multiple [24, 90,130]
or all [90] of this relevant MRS problems. Task planning is generally define as,

Task planning is the process of ordering a discrete sequence of tasks. In
ordered task planning, tasks are arranged in a strict sequence. In partially
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ordered task planning, tasks are not strictly sequenced, allowing for more flex-
ibility in execution. This ordering is usually guided by the optimisation of
resources.

In [130], Dantam et al. refer to task planning as a well-established field largely evolving
from planners such as STRIP into heuristic search and logic programming approaches.

Motion planning can be defined on its own as it usually refers to a lower level where
the motion of the robots as it performs its tasks is considered [90, 95]. We define motion
planning as follows,

Motion planning determines the trajectories needed to move robots from an
initial to a goal location (or robot configuration) as they perform tasks under
a given allocation and schedule; it might involve finding collision-free paths as
robots perform the tasks.

In some cases, the analysed studies use the term motion planning together with task
planning, such as in task and motion planning (TMP or TAMP) [24,90,130], combin-
ing the problem of efficiently generate executable and low-cost discrete task plans, while
determining the continuous motion decisions for the completion of the generated paths [24,
130]. For multi-agent systems, the term Multi-Agent Path Finding (MAPF) is used
with a similar meaning [102]. A similar problem, Multi-agent Pickup and Delivery
(MAPD), is an industrial problem where a team of robots is tasked with transport-
ing tasks, each from an initial location to a specified target location. This is solved by
first allocating the tasks among the robots and subsequently finding collision-free robot
paths [102].

Similarly, we consider kinodynamic planning as a type of motion planning where the
kinodynamic model of the robots and constraints (e.g., limited velocity, acceleration and
torque) are considered for motion planning [99]. Other similar terms found in the literature
are robot exploration, defined in [22, 23] as the exploration of the environment by the
robot, deciding “what to do” and “where to go”; and Orienteering Problem (OP),
defined as a routing problem where the objective is to determine a set of routes that
maximises the summation of collected rewards in the environment while respecting the
vehicles’ budget [118].

Additionally, the task allocation problem decides “who does what” and it is generally
defined as,

Task allocation refers to the process of assigning tasks or responsibilities
to one or more robots within the system. The goal is to ensure that tasks
are completed efficiently and effectively by the robots that have the necessary
capabilities and resources to perform them.
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This problem definition does not specifically address resolving the execution order of
tasks, as elaborated later in task scheduling problems. Nonetheless, in numerous pro-
posed solutions, determining the order is resolved as a by-product of assigning tasks to
the robots. Special cases of task allocations require distributing a set of tasks between a
robot and a human [135]. There is also a recurrent mention of the term multi-robot task
allocation (MRTA), referring to a set of well-known algorithms to solve task allocation
problems [43,49,91,105,110]. MRTA algorithms and problem formulations are covered in
the 2015 survey [9], which broadly covers the Fair Division Problem, Optimal Assignment
Problem (OAP), ALLIANCE Efficiency Problem (AEP), integer linear or non-linear pro-
gramming (ILP or INLP), as well as the multi-Traveling Salesman Problem (mTSP) and
its generalised version, the Vehicle Route Planning (VRP) [91].

Another terms found in the literature are task assignment [101,135] and goal alloca-
tion [95], with the same or a similar meaning. Similarly, multi-vehicle routing (MVR)
is defined as selecting a set of vehicles and their routes to visit a set of locations [90];
multi-depot vehicle routing problem (MDVRP) refers to the problem in which
vehicles with limited payloads must pick up or deliver items at different locations [88];
and Multi-robot Motion Planning and Goal Allocation Problem(MMP-GA) is
defined in [95] as finding feasible paths for multiple robots navigating in shared environ-
ments.

Finally, task scheduling deals with ordering and timing of the tasks [90],

Task scheduling refers to the process of determining the timing of tasks that
need to be performed by one or more robots. The goal of task scheduling is to
assigned the start and end times to each task to be performed by the robots.
A valid schedule must comply with all relevant temporal constraints. It might
consider task priorities and the optimisation of system objectives.

Similar terms include task sequencing [121] and task-based coordination [92],
defined as ordering the tasks in robot teams. In [90], the authors summarise the MRS
problem as answering: what (task planning), how (motion planning), who (task alloca-
tion), and when (scheduling).

Finally, other terms such as goals [99,138,139], subtasks [43,121], actions [114,131],
events [22, 84, 100, 106], conditions [106, 138] and capabilities [49] are found in the
literature, but cannot be globally defined as they fall into one of two categories: they
depend on a well-known language or technique for robot missions, or they are defined by
the authors referring to specific types of tasks or task attributes. For example, research
projects using the PDDL language [23, 138] adopt its terminology, which includes goals,
conditions, effects, actions, etc.

Taxonomy for multi-robot task allocation problems. There exist a common ter-
minology that applies to multi-robot systems and the type of the task allocation problem
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under research. Proposed by Gerkey and Mataric [39] in 2004, it still used by several of the
papers gathered by this review [43,91,96,105,121]. Designed as a three-axes taxonomomy,
the first axis distinguishes between single-task (ST) robots, capable of performing only
one task at a time, and multi-task (MT) robots, which can handle multiple tasks simulta-
neously. The second axis, differentiates between single-robot (SR) and multi-robot (MR)
tasks, with the former requiring only one robot for execution and the latter cooperative
tasks that involve multiple robots. The third axis distinguishes between the instanta-
neous assignment (IA) of tasks to robots, where the problem only concerns the allocation
process; and time-extended assignment (TA), additionally considering the scheduling of
these allocated tasks.

EQ2. Specification of Tasks

In this section, we categorised the strategies used for the definition of tasks based on
information derived from the “task specifications” data item. The taxonomy was in-
spired by the categories in [130]. As depicted in Figure 3.7, this consists of five categories:
logic based, hierarchical representation, language based, motion based, and solutions ori-
ented. Logic-based approaches encode robotic tasks using logic languages. The types of
logic found to be used are LTL, LTL+CTL, STL, PCTL, RPCTL and CaTL. Hierar-
chical representations describe the tasks as hierarchical networks or precedence diagrams.
Language-based approaches follow well-known languages for the description of tasks, such
as PDDL and SAS+, or are based on a new domain-specific language (DSL) or formal
grammar. Motion-based approaches describe tasks as dynamic object tasks (for instance,
the trajectory of the end effector of a robotic arm), dynamic movement primitives or
Jacobian control trajectories.

In the solution-oriented category, research papers represent tasks using lists, buffers,
graphs, Markov processes, and various other data types and representations chosen to
align with their proposed solutions. For example, [22] uses a method based on the rein-
forcement learning (RL) algorithm, SARSA, to solve the coordination of a fleet of robots.
Its case study involves putting out a wildfire modelled as a dynamic propagation model,
where the wildfire spreads following this model. Robots are divided into perception agents
and firefighting UAVs, which can search for targets and drop extinguisher fluid to reduce
the fire, respectively. When the fire is below a threshold, the fire point is pruned and
that area cannot catch fire anymore. The formalisation of tasks as Markov models is
specifically designed to be solved by their RL-based approach.

Regardless of the category to which the task representation belongs, it is important
to emphasise that the selection of a formalism for task specification is heavily influenced
by the specific problem at hand. As highlighted by [130], “each [task] notation provides
advantages for certain domains or proprieties, e.g., safety properties are easily specified
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Figure 3.7: Type of strategies for the specification of robotic missions found in the liter-
ature in the past five years.

with temporal logics, action effects with PDDL, and hierarchies with grammars”.

Robot mission (and task) catalogues. Three robot mission catalogues (divided
into four papers) were identified in the literature: PsALM patterns [2], QUARTET [1]
and ROBOMAX [20]. These were obtained from the “task patterns” data item.

• PsALM mission patterns (2019). Menghi et al. (2019) [2] propose 22 qualitative
mission specification patterns for mobile robots described in LTL and CTL logic
(see Figure 3.8a). Additionally, they created PsALM [36], a tool for the automatic
translation of robot missions defined using the patterns from the catalogue, which
are written in a higher-level domain-specific language, into various languages for
model checkers and planners.

• QUARTET (2022). QUARTET [1], extends the patterns catalogue in [2] with a
second set of patterns that handle quantitative reasoning by adding rewards (also
known as costs) and probabilities. These are not supported by the original PsALM
logics, LTL and CTL. Accordingly, the second catalogue uses a type of probabilistic
temporal logic augmented with rewards. QUARTET is further described in Sec-
tions 4.1.1 and 4.1.2 with its semantics and tool presented as part of this thesis.
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(a) Catalogue of 22 patterns (filled nodes) grouped by patterns (non-filled nodes), from [2].

(b) Specification of robot mission from the ROBOMAX repository [20].

Figure 3.8: Two repositories of robotic missions found in the literature, PsALM (a) and
ROBOMAX. An example of a ROBOMAX mission is shown in (b).
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• RoboMAX (2021). RoboMAX is a living repository of robotic missions intended as
a reference to developers in the field of robotics. It contains the description of the
missions in natural language, as well as a list of relevant features. These features
include their application domain, robot features, robot technical and operational ca-
pabilities, types of uncertainties considered, and the types of adaptation required by
the mission, if any. An example of a RoboMAX mission is shown in Figure 3.8b [20].

Standards. Regarding standards (identified as part of the “standards” data item),
we did not encounter any explicitly related to the specification of tasks. However, two
standards were found in [140], which refers to the IEC61499 modular function-based
standard for the development of distributed control architectures that can be adopted for
robot systems; and in [137], which mentions the ISO/TS 15066 standard that provides
detailed information on how to assess the risk for a HRC application.

EQ3. Task Allocation, Scheduling and Planning

In the implementation of multi-robot systems, significant challenges involve the planning,
allocation, and scheduling of tasks, along with motion planning. These were previously
defined as part of the terminology discussion in this section. In this section, we extract
the information from the “solution” data item to understand the types of solutions
adopted recently by the research community. To compartmentalise the solutions to these
problems, a classification is presented based on [143]. Table 3.4 shows the publications
classified based on the problems they solved, and the class of technique/method they
used to solve them. Some studies may belong to different categories as the two examples
highlighted in yellow and pink in this table. This is due to several reason. For example, in
pink, [89] considers all four problems, while in yellow, [41] presents a comparison between
multiple task allocation and planning algorithms. We do not classify the motion planning
into the same categories as we defined this as a problem involving a lower level of control
of the robots (usually involving control theory). We summarise these findings below.

• Auction based. Auction and market-based algorithms are based on economics, where
agents use a negotiation protocol to auction tasks between participants. A compari-
son between multiple auction-based algorithms for the allocation of tasks is described
in [41]: parallel auction, sequential auction, generalisation of Prim allo-
cation, repeated parallel auction, combinatorial auction algorithm, etc.
Their study focused on their performance under failing communication between
agents.5 In the work presented in [117], a market-based optimisation algorithm is
used to allocate tasks that remained unallocated after an initial assignment or are

5Although the work in [41] creates schedules after the tasks are allocated to robots, this is implicit in
the allocation stage, and therefore it is not considered as scheduling in Table 3.4.
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Table 3.4: Recent studies classified by the type of robotic problem (task planning, allo-
cation and scheduling, and motion planning) and the methods/techniques used to solve
them. Two research studies are highlighted in pink and yellow to understand why they
belong to different categories. In pink, [89] considers all four problems solved by different
techniques. In yellow, a comparison between multiple task allocation and planning algo-
rithms is presented [41]. The classification of the different techniques/methods is based
on [143].

Problem Problem
Task

Planning
Task

Allocation
Task

Scheduling
Motion

Planning

Te
ch

ni
qu

e/
M

et
ho

d
cl

as
s

Auction based - [114,117] [41] -
[111,138]
[98,108]
[105,125]
[85,126]
[90,106]
[49,137]
[99,127]
[28]
[89]

Optimisation based
(deterministic)

[95,101,110,129]
[98,121,127,135]
[94,101,106,122]
[30]

[98,101,121,124]
[30,116,122]

Optimisation
based (heuristics)

[48,105,115,131]
[97,137] [41]

[47,48,90,105,115]
[49] [41]

[47,48,105,115]
[49,137]

Optimisation based
(metaheuristics)

- [88,139] [88]

Learning based [22,91,109] [22,91] [91]
Constraint based - [93,108,111] [111] [89]
Search based [23,90,138] [23,90] [90]

Logic based
[25,27,28,100,104]
[89]

[100,104] [89] [28]

Game theory - [87,103,119] [87]
Hybrid [86,134] [43,92,99,102] [43,92,93,102]
Other [96,107] [86,107,140] [140]

left uncompleted due to a robot failure. A domain specific language and a ROS
code generator for the allocation of tasks are proposed in [114], solving the alloca-
tion problem with an auction-based architecture with one of the robots chosen to
be the auctioneer.

• Optimisation based (deterministic). In [127], finding trajectories for a robot arm is
formulated as a local optimisation problem co-optimising the navigation costs
and the manipulation-related costs, mixing the task planning and motion problems.
In [95], the authors present the optimisation problem as a minimum-Cost max-
Flow problem. This is a type of optimisation problem that involves finding the
maximum flow in a network while minimising the total cost of the flow. In [124],
the scheduling of tasks is modelled as a job shop scheduling problem (JSP) and
solved using constraint programming. Liu et al. [101] solve the task planning,
allocation and scheduling as a quadratic assignment problem (QAP), which
can be transformed into a linear programming (LP) problem. QAP is a type of
optimisation problem that involves assigning a set of facilities to a set of locations

45



Multi-robot Task Allocation and Scheduling Overview

in such a way as to minimise a quadratic objective function.

Proposing a method to distribute and allocate a series of tasks among humans and
robots, [135] suggests utilising a Convolutional Neural Network (CNN) to estimate
human fatigue. The goal is to minimise human fatigue by analysing the correlation
between allocating a task to a human and their fatigue levels. In [94], authors use a
distributed constraint optimisation problem (DCOP), a type of optimisation
problem that involves finding a solution to a problem that is distributed across mul-
tiple agents. In [106], a resilient task allocation algorithm is invoked to redistribute
robots among tasks while taking into account their degraded capabilities leveraged
by a centralised mixed-integer quadratic program (MIQP). Similarly, [121]
uses a mixed-integer linear program (MILP) as part of the task allocation and
the synthesis of robot schedules.

Finally, [98] solves the task allocation problem using the distributed max-sum al-
gorithm, in which multiple agents need to make decisions that affect a shared
objective function. It also uses Markov Decision Processes (MDP) and Mixed Ob-
served Markov Decision Processes (MOMDP) (depending on whether full states or
partial states are observable) and optimal policy synthesis to generate robot
schedules/plans.

• Optimisation based (heuristics). Optimisation-based (heuristics) refers to a class
of algorithms that are designed to find a near-optimal solution to a problem by
making a sequence of informed decisions. In [48], the authors present a series of
heuristics, such as the Minimum Transportation Cost (MTC) and Predict
Earliest Finish Time (PEFT), for the planning, allocation and scheduling of
tasks among static and mobile robots in a factory. In [137], multi-objective mixed
integer linear programming problem (MILP) is used for the allocation of
tasks between humans and robots. In [97] a heuristics that iterative adapts the
initial plans using path rewards is presented. Otte et al. [41] use a mixed integer
programming solution (MIPG) and the following heuristics for cost approximating
for the comparison of auction algorithms: the multi-travelling salesman prob-
lem (mTSM), maximizing profit (max sum), minimising cost (min-sum), and
minimising the maximum distance travelled by any particular robot (min-max).

For task allocation, [90] uses two heuristics: allocation percentage remaining
(APR), which guides the search based on the quality of the allocation, and nor-
malised schedule quality (NSQ), which guides the search based on the quality
of the schedule makespan. In [105], authors propose a new heuristic estimator
for computing interference cost that accounts for the kinodynamics and the cur-
rent state of the robots in an MRS for the allocation (and planning, indirectly)
stage. Also, [49] defines a series of heuristics, including mixed-integer quadratic
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programming (MIQP) for a framework covering from allocation and scheduling to
the execution of tasks in MRS.

For human-robot collaboration, [47] uses a series of heuristics over graph-structured
tasks for task allocation and scheduling, identifying a group of tasks to be executed
first (by a given pre-defined order and computing their priority value) and assigning
them to the agent that is better at completing the task.

• Optimisation based (metaheuristics). Metaheuristic optimisation methods are high-
level algorithms to find approximate solutions; they can be based on various math-
ematical or heuristic concepts, such as randomisation, simulation, and estimation
of distribution algorithms. Pheromone Ant Colony Optimisation based on
the HUMANT algorithm is used in [139] for the allocation of tasks to humans and
robots.

For the task allocation and scheduling problem, [88] employs a multi-objective opti-
misation method based on genetic algorithm (GA), called Coalition-Based Meta-
heuristic (CBM).

• Learning based. In terms of learning-based approaches, [22] presents a high-level
decision-making problem modelled as a multiagent partially observable semi-Markov
decision process (MA-POSMDP) and solved by a variant of the reinforcement learn-
ing SARSA algorithm, MA-SARTSA. Similarly, [91] presents a graph reinforce-
ment learning (RL) and CNN neural architecture to solve multi-robot task allocation
(MRTA) problems that involve tasks with deadlines, workload and robot constraints.
In [109], researchers combine dynamic team Q-learning based on multi-agent re-
inforcement learning with heuristics to accelerate space exploration and planning.

• Constraint based. In previous work, [93] utilise a constraint solver to synthesise
correct-by-construction feasible allocation of tasks to robots. Meanwhile, in [108]
and [89], the authors use the Control Barrier Function (CBF) to allocate each task
to the robot that has less possibility of violating its associated constraints.

• Search/Planning based. The solution presented in [23] focuses on the specification
of the system in PDDL with subtasks to decide exploration versus pursuing a goal,
solved by PDDL symbolic planners. Similarly [138] proposed a combination of
PDDL and share control templates (for example, when moves of a joystick by
the user are mapped into lower-level robot motion maps) for the generation of plans
under shared control and supervised autonomy.

On the other hand, [90] uses an incremental order motion planner as a search-
based algorithm that can simultaneously satisfy planning constraints, comply with
task requirements and optimise time schedules. This work also proposes GRSTAPS
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framework, which interleaves all four problems: task planning, allocation, schedul-
ing, and motion planning, while allowing information between modules

• Logic based. In [100], high-level, reactive robot tasks that include timing constraints
are modelled in event-based STL logic and solved using temporal logic synthesis
for the generation of MRS plans. Similarly, in [89], the event-based STL syntax is
extended adding conjunction into the tasks description. [104] uses model checking
for MRS task planning under individual and collaborative temporal logic specifica-
tions.

• Game theory. Consensus-based timetable algorithm (CBTA) in [87] solves the
decentralised simultaneous multi-agent task allocation problem, aiming to minimise
the start time of each task, iterating between a timetable construction phase and
a consensus phase. The authors of [103] propose a game-theoretic multi-robot task
allocation framework for large MRS in dynamically changing environments, where
robots select tasks to perform and repeatedly revise their task selections in response
to changes in the environment.

• Hybrid. Hybrid techniques use more than one technique to solve one problem.
For example, Fang [86] uses satisfiability theory over graphs created by joining
the robot models and their desired behaviour modelled as Buc̈hi automata (from
LTL mission specifications), and a token-based approach for the allocation of
tasks. In a token-based framework, tasks and resources are abstracted as tokens
and passed locally among robots. Each robot decides whether to keep a token or
pass it around. Information on how the token has been passed around is saved for
each token. In [102], the authors combine marginal-cost assignment heuristic
and a meta-heuristic strategy based on Large Neighbourhood Search for the
multi-agent pickup and delivery (MAPD) problem involving allocation and planning.
In [92], mixed integer linear programming (MILP) and satisfiability theory
for CaTL logic formulae is used to encode constraints of the mission and robot
teams, and for the coordination of the MRS. This work also includes the use of
heuristics for the optimisation of availability robustness. In [43] a Boeing 777 case
study uses the flexible job shop problem (FJSP) formulation and multiple
mixed integer programming algorithms for planning, allocating and scheduling
of tasks between multiple humans and robots. The authors of [128] merged a search-
based Monte Carlo tree search (MCTS) algorithm and simulated annealing
(SA) to automatically design agent behaviour trees, where the former expedites the
aggregation of the most functional subtrees.

In [99], the authors mixed a graph-based abstraction to partition the navigable
space into polygons, heuristic search for simultaneously determine task assignments
and polygons to be traversed by robots; and multi-robot motion planner for the
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synthesis of robot trajectories. In previous work, RPCTL logic is used in [93] for the
scheduling of tasks, in conjunction with genetic algorithms (GA) for the optimisation
of multiple objectives.

• Others. For allocation, [86] uses an heuristic, token-based conflict resolution task
allocation algorithm to generate near-optimal allocations. Token-based conflict res-
olution is a method used to allocate tasks in multi-agent systems, where a token or a
set of tokens is used to represent the right to perform a task. The tokens are passed
from one agent to another in a predefined sequence to resolve conflicts and ensure
a fair allocation of tasks. Multitasking is handled in [96] inspired in information
invariant theory. In [107], the task allocation process applies Bayesian inference
to compute confidence levels of each robot to estimate the agents’ specialisation
levels, hence, allocating the task in hand to the most specialised robots through
heuristic methods. Finally, in [140] a multi-criteria optimisation algorithm based
on [144] is used for the task scheduling and online re-scheduling of a human-robot
scenario.

Uncertainties. The self-explanatory Table 3.5 depicts the types of uncertainty en-
countered in the selected studies, based on a classification of uncertainty types adapted
from [20]. The information is extracted from the “uncertainties” data item. The most
commonly studied uncertainties are related to the incompleteness of the environment (4
papers), the addition of new tasks at execution time (5 papers), the modelling of dy-
namic objects (4 papers) and robots’ failure or leaving the mission (6 papers). This Table
is particularly useful for understanding the complexity behind robot and MRS systems.
There is not a single paper that captures all sources of uncertainty, with [22] covering the
most (5) types of uncertainties: unknown environment, model drift, limited action space,
variability of task execution and probabilistically modelled capabilities of the robots.

Formal specifications and formal methods for robotic systems. A notable
contribution of this thesis involves employing formal languages and methods to address
the description of robotic systems and robotic missions, and solve the task allocation
and scheduling problems in MRS. In this context, we are interested in understanding
the applications of formal methods within this research community. Our findings are
summarised in Table 3.6 and elaborated upon in the following discussion. The information
presented was extracted from the “formal methods” data item.

The theory behind translating Linear Temporal Logic (LTL) formulae into Büchi au-
tomata and synthesizing plans that comply with all LTL formulae falls under the broader
umbrella of formal methods and model checking. Specifically, this process is often asso-
ciated with the area of reactive synthesis, where the goal is to automatically generate
a system that satisfies a given specification, expressed in temporal logic. This concept
is studied in [86] for MRS control synthesis from LTL specifications. Non-deterministic
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Table 3.5: Uncertainty classes, sources and causes for robot systems. The causes of
uncertainty are addressed in the references in the last column. Adapted from [20].

Class Source Cause (addressed in the references) References

Model or state
uncertainty

Incompleteness Unkown environment
Unknown cost of paths or tasks

[22–25]
[110,123]

Model drift Discrepancy between the robot
maintained state and the actual state

[22,101,113,127]

Complex models Unknown robot density in a sector [101]

Events Trigger events
Adversarial attacks

[84,100]
[106]

Actuation Limited action space [22]
Adaptation
functions

Decentralisation
& coordination

Changes in communication topology [110,112]

Mission
uncertainty

Future mission
changes

New tasks at runtime
Changes in tasks deadlines

[86,87,98,105,137]
[121]

Environment
uncertainty

Execution context
Dynamic objects
Slope/roughness of the terrain
Variability depending on task execution

[89,103,126,127]
[126]
[22,131,134]

Human in the loop
Human fatigue/performance
Robot requires human intervention
Human enters the working space

[47,135]
[137]
[121]

Capabilities
uncertainty

New or defunct
capabilities

Sensor failure
Probabilistic completion capabilities

[85]
[22,30,93]

Changing
capabilities

Changing or unknown capabilities
Degradation of robots communication

[25,108]
[41]

Robot failure Robot dropout [92,97,117,119],
[118,121]
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Büchi automata (NBA) are used in [28]. Further, in [104] and [27], nondeterministic
finite automata (NFA) are constructed from LTL formulae. The NFA must fulfill the
input LTL formula, and contain possible alternative sequences to fulfill the formula called
strategies [27].

Menghi et al. [25] propose a new decentralised planning algorithm, MAPmAKER, for
the synthesis of robot plans from missions defined in a variation of LTL, under partial
knowledge of the system and environment. In [89, 100], the mission specifications are
defined in event-based STL, and subsequently translated into LTL. The description of
LTL specifications was also used in the robotic missions catalogue in [36]. This catalogue
also contains the formalisation in CTL, and is complemented by a domain specific lan-
guage (DSL) to ease its adoption. Additionally, a formally verifiable DSL through model
checking has been proposed in [132].

Tasks and robotic requirements formalised in temporal logic can also be solved by other
methods. In [92], the tasks are formally specified in capability temporal logic (CaTL),
which is a fragment of signal temporal logic (STL). As the authors mentioned, “[t]he
qualitative semantics of STL (and thus, CaTL) can be encoded as mixed integer linear
constraints on trajectories of this linear system”. Hence, the robot trajectories are solved
as a mixed-integer linear program (MILP) problem using off-the-shelf MILP solvers such
as Gurobi.

Chen et al [98] model each robot planning problem as a Markov Decision Process
(MDP) or a partially observable MDP (POMDP) synthesising policies that represent the
robot plans. The synthesis is based on a piecewise linear dynamic programming approach.
MDPs were also used in [24] along with reinforcement learning to improve previously
synthesised robot plans. Moreover, modelling the task planning problem as a symbolic
planning problem, it uses an answer-set solver to generate the initial robot plans. In
comparison, in previous research, we used MDPs to model the scheduling of tasks. We
used probabilistic model checking (PMC) to synthesise robot plans that minimise
the total idling time of the robots, needed to synchronise robots in time due to task
ordering constraints [93, 122]. System properties were specified in probabilistic temporal
logic extended with rewards (RPCTL). This type of logic was also used to define the
robotic mission catalogue in [1].

A systematic way to derive new information and conclusions from existing knowledge
or axioms is by providing inference rules. These are used by [96] to form robot coalitions
(robots sharing one or more tasks at a time) modelling tasks such as, maintaining relative
position and monitoring a target within a close proximity. These tasks build inference
rules to obtain, for instance, the global position of a robot based on two tasks specifying
the relative positions between two other robots.

Another approach for the specification of tasks is by building behaviour trees based on
a formal grammar, as in [128]. Behaviour trees are directed rooted trees comprised of
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Table 3.6: Studies found to use formal methods or logic specifications. The last two rows
belong to repositories of robotic missions written in different types of temporal logic.

Method Type of model Propety formalisms Reference
Reactive synthesis Büchi automata LTL [86]
Reactive synthesis NBA LTL [28]
Reactive synthesis NFA LTL [27,104]
LTL planner - LTL variant [25]
Reactive synthesis Büchi automata event STL [89,100]
MILP - CaTL [92]
Model checking Verifiable DSL - [132]
Linear programming MDP/POMDP - [98]
Symbolic planner + RL MDP - [24]
PMC
+ constraint solver

MDP
+ constraint allocation problem

RPCTL [93,122]*

Information invariant
theory

Inference rules - [96]

Monte Carlo tree search Formal grammar
+ behaviour trees

- [128]

LTL planner LTL + behaviour trees LTL [84]
SMT Constraint planning problem - [130]
- - LTL + CTL [36]
- - RPCTL [1]
* = previous studies to this thesis

execution nodes and control flow. Examples of control flow nodes are fallback, sequence
and parallel. Execution nodes are actions that robots must complete and condition nodes;
the latter is a Boolean whose state depends on the robots and environment. Inspired by
behaviour trees approaches, PROMISE [84] proposes a new language for the specification
of robotic missions build on top of LTL mission specifications.

Finally, in [130], Dantam et al. implement the task planning problem as a constraint-
based planning problem, using satisfiability module theory (SMT) solvers to generate
alternative task plans. Similarly, a constraint solver is used in [93,122] to solve the alloca-
tion of tasks to robots. These two studies are our previous work, extended in this thesis.
These findings suggest that there is active research on formal methods applied to robotic
systems. They also offer insights into the limited use of formalisms that incorporate
probabilistic models and properties in these systems.

EQ4. Future Work

In order to offer insights into potential future research directions that the gathered pa-
pers might explore, thereby shaping the forthcoming landscape of research, this section
enumerates the gaps and prospective endeavours identified from the “gaps” data item.
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First, we examined each paper to identify any gaps and areas for further work identified
by the authors. Subsequently, we categorised the identified gaps into types, and organised
the information based on the nature of the concerns. The following categories emerged:

• Extending the system language for the specification of the robotic system. This
involves considering other language candidates or an expansion of the current one
to address limitations in the expressiveness of the tasks, tasks constraints and system
specification [1,23,47,87,88,104,117,128]. For example, extending the expressiveness
of the well-known PDDL language is mentioned in [23].

• Scalability. In studies where there is a limitation in the number of supported robots
or tasks due to the state-explosion problem, increasing the scalability is stated as
future work [49,93].

• Online adaptation and its limitations. The surveyed research mentions as areas
of further study the adaptation of the robotic system and its limitations such as
switching between a centralised and a decentralised architecture for the allocation
of tasks [49]; allocating or re-scheduling tasks at runtime [30, 89, 90, 92, 102, 128];
and integrating new robots and new objects reducing or modifying the free-space at
runtime [111,114].

• Computational complexity. Understanding [88, 93, 102] and reducing [87, 104] the
computational complexity of the solutions proposed are mentioned as areas requiring
further research, especially in papers rely on more than one technique.

• Communication issues. Analysing the failures in the communication between robots
and finding ways to make the system more robust and resilient [88].

• Real world applications. Testing the proposed solution in real-world applications
or more realistic case studies. Examples in the literature include a greenhouse
environment [88], an industrial case scenario [137] and underground mining appli-
cations [105].

• Preventive events. For example, using pre-failure warnings to modify a specification
at runtime [89]. This is also part of the online adaptation strategies and requires
means for the prediction of future failures.

• Dynamic and uncertain environments. To account for dynamic objects where ob-
stacles change positions overtime, and partially-observable environments [90].

• Heterogeneous robots. By modelling robots with different capabilities to perform
the given tasks. This research gap was identified in [118]. However, it has been
considered in multiple research studies, including this thesis.
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• Environmental conditions. Considering multiple environmental conditions in the
system specification, for example, related to the type of terrain, the amount of
light, the velocity of the wind, local gravity dependent on the altitude and the air
density [113]. These may also interfere with the quality of the sensors’ reading.

• Specifics to the approach. This category involves future efforts aimed at enhancing
the methodologies applied. For instance, fine-tuning specific parameters within
meta-heuristic techniques or broadening the semantics derived from a particular
language syntax, such as PDDL [23,138].

3.4 Analysis

This systematic review comprehensively covered multiple challenges related to the descrip-
tion and partition of tasks in robotic systems. These challenges include the allocation and
scheduling of tasks for individual robots. Through an extensive examination of both so-
lutions and problem formulations, we identified two other distinct well-defined problems,
namely task planning and motion planning. These were defined through the research
question EQ1. Within this context, we delved into the diverse terminologies employed
to denote robot actions, such as tasks, missions and goals. Specifically, we conducted a
detailed comparative analysis of the terminologies used in PROMISE and GODA, elu-
cidating their disparities (refer to Table 3.3). This comparative exploration led to the
proposition of a unified definition for the term task.

In addressing research question EQ2, we identified several repositories for robotic mis-
sions developed by the research community with the aim of creating living repositories
whose missions can be reused, as is the case of RoboMAX, but also to ease the adoption
of intricate logic-based languages, such as in PsALM and QUARTET. The use of logic
languages removes ambiguity from the specification of missions and is further studied
as part of this thesis in Chapter 4. Figure 3.7 presents a classification of various tech-
niques employed in task definition. These include logic-based, hierarchical representation,
language-based, solution-oriented and motion-based.

Despite our comprehensive search, no applicable standards for task description were
found, although standards do exist for other facets of robotic systems. Noteworthy among
these are the IEC61499 for distributed control architectures, also adopted for distributed
multi-robot systems, and the ISO/TS 15066 for risk assessment in Human-Robot Collab-
oration (HRC) scenarios.

Addressing EQ3, we provided a comprehensive classification of the collected papers
based on the nature of the problem tackled (task allocation, scheduling, and planning)
and the corresponding solution types. This detailed classification is outlined in Table 3.4,
accompanied by a thorough description of the various techniques, supported by citations
to the respective collected papers. Among these techniques, deterministic and heuristic
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optimisation approaches emerged as the predominant choices within the collected papers.
Additionally, we systematically extracted and categorised their different types of un-

certainties, displayed in Table 3.5. Our analysis revealed 22 different types of uncertainties
addressed by the research community. In addressing EQ3, it becomes apparent that fu-
ture endeavours should focus on incorporating multiple of these types of uncertainties in a
unified robotic system model, as well as new techniques for system adaptation at runtime
to mitigate their effects. We also investigated whether the collected papers incorporate
any formal methods as outlined in Table 3.6. A comprehensive description of the diverse
formal techniques is provided, substantiated by references to the corresponding collected
papers. We also emphasised the limited use of probabilistic models and properties for
robotic systems, which could significantly enhance the modelling of uncertainties that
impact their adoption in real-world applications.

Concluding with EQ4, we explored potential future directions within the dynamic
landscape of task allocation and scheduling for robotics. This examination involved pre-
senting a list of research gaps and areas for future work identified within the collected
papers. By doing so, we contribute to the ongoing discussion and evolution of this fas-
cinating robotics subfield. The insights derived from this analysis not only deepen our
understanding of existing challenges but also provide a roadmap for future research.

3.5 Discussion and Limitations.

Selection of targeted venues. Within the framework of our research questions, our
primary focus revolved around unravelling the strategies put forth by the robotics re-
search community to solve robotic systems-related problems such as task allocation, task
scheduling, and the adaptation of these systems. Our intent was to gain an understand-
ing of the latest terminology, methodologies, algorithms, and conceptual frameworks that
have been advanced within this specialised domain. To ensure the relevance and speci-
ficity of our findings, we predominantly targeted venues that are recognised by experts
and scholars within the field of robotics.

As part of the research questions, we were interested in understanding what the
robotics research community was proposing for the study of task allocation, task schedul-
ing and adaptation of robot systems. Hence, we targeted venues familiar to this research
community. Nevertheless, we are aware that variants of the same problems are studied in
other fields such as scheduling computing and manufacturing processes [42]. A threat to
the validity of our approach is the likelihood of overlooking relevant research publications
that might be disseminated in alternative venues not considered in this survey.

Time frame. By confining our search to publications from the last five years, we
aim to present a snapshot of the latest advancements and trends in the specified areas
covered by this survey. It is crucial to acknowledge that our objective is not to present
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an exhaustive literature review encompassing the most common or well-established meth-
ods, for instance, those relevant to the domains of task scheduling or the adaptation of
multi-robot systems. Rather, our emphasis lies in offering insights into the cutting-edge
initiatives that have surfaced in the recent research landscape. For readers seeking a
comprehensive understanding of the foundational and widely recognised formulations, we
refer to authoritative texts, such as Artificial Intelligence: A Modern Approach, by Rus-
sell and Norvig (2010) [145] and the Handbook of Scheduling: Algorithms, Models, and
Performance Analysis by Blazewicz et al. (2019) [42].

Division of scheduling, allocation and planning problems. Another challenge
in classifying the papers relies on the intricacy of the solutions they proposed. It is
not straightforward to differentiate between task allocation, scheduling and planning for
multiple reasons. The first reason is that, as mentioned in EQ1, there is a wide range of
terminology used to refer to variations of these problems. This makes it difficult to identify
what problem is going to be solved by only looking at the description of the problem and
the problem definition. A second challenge is that multiple problems may be solved in
a single paper. Early on, we needed to draw a distinction between what we classify as
task allocation, task scheduling and task planning, as described in the Demographic
Information part of Section 3.3. However, this initial assumption was challenged as we
discovered different terminology used for very similar problem definitions. Hence, in EQ1
we redefine these problems based on the collective information from the relevant studies.

Informing the thesis: key literature insights. The literature review provides
insights into the terminology and types of solutions adopted by the research community
for two problems we are interested in this thesis. Other findings that informed the work
carried out in this paper are as follows.

- There is a lack of repositories or catalogues of robotic missions specified in formal
languages, specifically that consider quantitative reasoning such as: “what is the expected
energy consumed by all robots when all tasks are completed?” or “what is the probability
of failing with the mission?”.

- The use of formal methods for the synthesis of robot controllers is considered in
multiple studies, however, their research considering probabilistic properties is limited.

- There is no consensus on the definitions of terms like task, mission, and similar
concepts such as goal. Mathematically defining the adopted terminology is a critical step
s.t. readers clearly understand its application and limitations.

- Scalability issues were reported, especially due to the state-explosion problem.
- A wide range of uncertainties can arise in the modelling of MRS, such as the prob-

abilistic completion of tasks, potential sensor failures, variations in terrain slope and
roughness affecting robot travel behaviour, and unknown path costs. To advance the
state-of-the-art, it is crucial to identify a subset of these uncertainties that are most rel-
evant to the specific problem at hand and develop solutions that enhance the system’s
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resilience.
Finally, after considering the different terminology, we refer to the two main problems

addressed in this thesis as task allocation and task scheduling, i.e., the partition of tasks
into robots, and the generation of individual robot plans.

3.6 Summary

Our systematic review spans the last five years of research within the robotics community.
It specifically delves into the allocation and scheduling challenges encountered in robotic
systems. Additionally, the review addresses the formalisms employed for describing robot
tasks, explores the associated terminology, examines the various uncertainties modelled
in these systems, evaluates the types of formal methods applied, and identifies gaps for
future research.

As the momentum grows in the research area of task allocation and scheduling for
robot systems, surveys like this, roadmaps and (maybe in the near future) standards
must update the community on what has been accomplished, where the field is heading,
and what common ground, algorithms, etc., can be followed to ease reusability, accessi-
bility and avoid repetition of work. Moreover, such surveys contribute to the independent
maturation of the field, setting it apart from other applications of allocation and schedul-
ing beyond the scope of robotics, such as manufacturing and computing. For a more
in-depth analysis and summary, readers are directed to Section 3.4.

This systematic review further motivates the need for formalisms that can capture
a wide range of mission constraints, multiple conflicting optimisation objectives, as well
as different types of uncertainties inherent in the use of multi-robot systems. In the
following chapters, we propose solutions for the specification of a combination of these,
with a particular focus on the task allocation and scheduling problem.
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Chapter 4

Mission specification
This chapter presents a methodology for specifying the missions to be carried out by a
robotic team. The chapter has two parts. In the first part, we describe the use of a
domain-specific language to specify quantitative requirements for robotic missions (Sec-
tion 4.1). In the second part, we present a systematic approach to specifying all the
information required for the task allocation and scheduling associated with an MRS mis-
sion (Section 4.2).

This domain-specific language (DSL) based method for specifying quantitative require-
ments of robotic missions has been developed as part of a larger project called QUantitA-
tive RoboTic mission spEcificaTion patterns (QUARTET) [1], and comprises a set of 22
patterns (see Figure 4.3) for the specification of quantitative properties for robot missions.
QUARTET provides a method for mapping these patterns to RPCTL logic formulae in
order to be used in conjunction with probabilistic model checkers, such as PRISM [71]. As
the patterns were identified jointly by the QUARTET research team, they are presented
briefly in the chapter preliminaries (Section 4.1.1). The mapping method, which estab-
lishes the semantics of these patterns–together with a tool that automates this mapping–
have been developed as part of this PhD project, and therefore they are contributions of
this thesis and are presented in detail in Section 4.1.2. QUARTET covers a wide spec-
trum of robotic mission pattern types identified from the research literature and domain
experts. These patterns support the specification of requirements corresponding to the
quantitative aspects of a mission, such as the minimum and maximum value of a measure
(energy used, time taken, number of tasks completed, etc.) when a mission is completed.

However, only specifying the requirements of MRS missions using patterns such as
those provided by QUARTET is insufficient for MRS task allocation and scheduling.
For these to be possible, additional information is required. This includes, for instance,
the specification of robot capabilities, the tasks that the robots can perform with these
capabilities, and the locations and robots. To allow the systematic specification of these
key aspects of MRS missions, we introduce a DSL for tasK specificAtion for heterogeNeous
rObot teAms (KANOA, Section 4.2). KANOA specifications define the tasks (with their
constraints, subtasks, etc.), the world model (e.g., physical locations and boundaries),
and the mission (with its requirements expressed using formalisms such as those provided
by QUARTET) of an MRS separately, in a separation-of-concerns fashion.

Finally, related work and the summary of the chapter are presented in Sections 4.4
and 4.5, respectively.
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KANOA

Task allocation
[Alloy]

Task scheduling

[MDP, DTMC
RPCTL]

mission specs.

robot plans

[Z notation]

Problem
specification

QUARTET Quantitative
mission patterns

Qualitative
mission patterns
[CTL, LTL][RPCTL]

Figure 4.1: High-level description of the two contributions of the chapter, QUARTET and
KANOA. KANOA’s task allocation and scheduling stages are covered in the following
chapters of this thesis.

Context for QUARTET and KANOA frameworks. In this part, we provide
context to the reader for the current and subsequent chapters by briefly introducing the
frameworks developed as part of this thesis. This chapter presents two orthogonal contri-
butions to the description of mission specifications for robotic systems. First, QUARTET
comprises a catalogue of quantitative mission specifications automatically translated from
a proposed pattern-based DSL to RPCTL logic. An example of these requirements is:
minimise the energy to complete a mission. Second, KANOA is an end-to-end tool for the
description of task allocation and scheduling problems for MRS formally defined within
this chapter. We intend these tools to be standalone s.t. they can be used separately by
stakeholders.

KANOA provides the means to explicitly define other information relevant to MRS
scheduling problems, such as locations, paths, probabilities of failing while travelling and
possible task retry. As KANOA deals with the specification of task scheduling problems,
we allow the generation of task schedules to be guided by multiple optimisation require-
ments. Currently, the KANOA DSL allows three optimisation requirements: “minimise
the travelling cost of the mission”, “maximise the probability of success by the end of
the mission” and “minimise the robots’ idling time until completing the mission”. It
is worth noticing that these requirements can be defined in QUARTET and automati-
cally formalised into RPCTL. However, the semantics of KANOA and QUARTET target
different problems.

The quantitative specifications from QUARTET assume the existence of a model on
which these RPCTL specifications can be verified. In contrast, KANOA generates au-
tomatically models relevant to task allocation and scheduling problems. The models are
encoded using various formalisms–including various Markov models. As KANOA synthe-

59



CHAPTER 4. MISSION SPECIFICATION

sises robot plans using probabilistic model checking, this tool also formalises some of the
required properties in RPCTL. This slight overlapping between QUARTET and KANOA
can be further explored in future work.

The KANOA end-to-end framework is detailed in this thesis, comprising the following
components: (a) a formal description of the parts and constraints of the type of problems
solved by KANOA in Z-notation; (b) a user-friendly DSL for the description of the problem
complying with the Z specifications; (c) a formal description of the task allocation problem
as a constraint solver in Alloy (based on the Z specifications); (d) a formal description
of the multi-objective task scheduling problem using the PRISM language; and (e) the
tool-supported automatic generation of robot plans for problems defined in the KANOA
DSL.

4.1 QUARTET Mission Patterns

In this section, we present the project’s contributions to QUARTET, a comprehensive
catalogue for quantitative robotic mission specifications. This catalogue is accompanied
by a domain-specific language (DSL), which is detailed in the preliminaries. Then, we
present the semantics of QUARTET as a key contribution to this thesis. We show the
automatic translation of the DSL written requirements into a probabilistic logic language
supporting quantitative reasoning, such as “what is the level of the robot’s battery at
the end of the day” or “what is the probability of failing to retrieve a series of objects.”
Finally, we conclude with the evaluation of the catalogue’s effectiveness and applicability.

4.1.1 Preliminaries

This section introduces the syntax for the specification of quantitative robotic mission
patterns. These patterns, extracted from literature and expert input, follow a hybrid
approach detailed in Figure 4.2. The bottom-up method extracts recurrent patterns from
the literature, while the top-down approach proposes patterns based on domain experts’
experiences. The extraction of the mission patterns and their syntax was conducted as
part of a larger collaborative project [1] that this PhD research contributed to. Hence,
these patterns are described as part of the preliminaries section. To enable programmatic
reasoning about the quantitative robotic mission patterns, these are translated into tem-
poral logic; the semantics and tool related to this translation are an original contribution
of this thesis and elaborated upon in Section 4.1.2.

QUARTET DSL syntax

QUARTET [1] is a pattern-based Domain-Specific Language (DSL) for the specification
of quantitative and qualitative robot missions. One of its key features is that the DSL
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Figure 4.2: Methodology used for the collection and pattern formulation of robot missions.
Figure obtained from [1].

is constructed based on patterns extracted from both literature and research experts.
The methodology for the collection and identification of the mission patterns follows a
top-down and bottom-up hybrid methodology, as depicted in Figure 4.2. The bottom-up
methodology collects and defines the robot missions and mission requirements from the
literature, whilst the top-down methodology is used to collect users’ data and case studies
from domain experts to test the applicability of these patterns. QUARTET identifies 22
quantitative patterns shown in Figure 4.3, which are subdivided into two categories, the
elementary problems and the composite problems.

Elementary problems are subdivided into objectives, intervals and bounds; the first
addresses the optimisation of mission requirements, specifically aiming to either maximize
or minimize certain quantities. The second defines a range within which a variable should
be sustained throughout the mission, whereas the third limits a variable to either above
or below a specified value.

Composite problems are subdivided into four types: performance and dependabil-
ity, space, and time and resource. Performance and dependability refers to confidence
levels of performing a mission (confidently), the reliability of completing a mission (re-
liability) and the maximisation of a metric that measures performance (accrue). Time
incorporate deadlines (timeout, end), repetition of missions at every pre-specified interval
of time (repeat), time to execute a mission relative to a second mission (proportionality),
time to pause a mission (pause), and the execution of multiple actions simultaneously
(simultaneously). Finally, resources refers to maintaining a measurement within a speci-
fied interval during the mission (preservation) or minimising its value (conservation). A
detailed description of all problems is provided in Table 4.1. The first column shows the
name of the pattern, the second column the description in natural language, and the third
column the syntax in QUARTET DSL.

These quantitative robotic missions patterns (as shown in Figure 4.3) build upon a
prior collection of 22 qualitative specification patterns compiled by [2], as illustrated pre-
viously in Figure 3.8a. A tool called PSALM [36] was developed for the translation of the
patterns of this earlier repository into LTL and CTL formulae for their later verification
through model checkers. The limitation of the initial mission repository and PSALM is
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Figure 4.3: Elementary and composite QUARTET patterns for robotic mission specifica-
tion. Shadowed nodes represent robotic mission specification problems and clear nodes
denote categories of requirements. Nodes with solid and dashed borders represent the
mission specification problems identified by following bottom-up and top-down proce-
dures, respectively, as depicted in Figure 4.2. Patterns marked with a star ‘*’ were not
formalised within QUARTET.

that it does not support quantitative verification, meaning that the result only provides
True or False feedback. To address this limitation, the QUARTET repository supplies an
additional set of mission patterns that enable qualitative feedback in terms of probabili-
ties and rewards. From this point onwards, we exclude the patterns of trail, equidistance,
proportionality and confidence as they were not able to be formalised within QUARTET.
For more details on these patterns, we refer the reader to [1].

Syntax. The QUARTET syntax is depicted in Figure 4.4. The grammar is divided
into five categories (mission, patterns, elementary patterns, composite patterns, and con-
ditions and locations). Alternatives are separated by the symbol |; optional items are
enclosed in round brackets followed by a question mark (?); recursive items in round
brackets followed by an asterisk (∗); while keywords are shown in coloured font.

There are six terminals of the language: (1) loc represents a location, e.g., a room of
the building or a physical position x , y, z ; (2) rob indicates a robot identifier; (3) condition
indicates a Boolean condition that can be either true or false; (4) acti represents the ith
action, which is a Boolean variable representing an action achievable by the robot; (5) m
represents the name of a quantitative measurement (i.e., Energy, referring to the energy
consumption of a robot), and (6) vi represents a numerical value, vi ∈ R.

A robotic mission miss consists of the composition of missions through logic connectors
and and or, the negation of a defined mission (not miss), a robot in charge of executing
a pattern (rob shall pat), an elementary pattern (e qpat), or a composite quantitative
pattern (c qpat).

Patterns (pat) consist of non-quantitative robotic specifications. Patterns are assigned
to a robot by specifying a mission of the form “rob shall pat”, where this mission can
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Mission miss ::= miss and miss | miss or miss | not miss | rob shall pat | e qpat | c qpat
Patterns pat ::= visit (in sequence | in order | in strict order | fairly)? locs |

patrol (in sequence | in order | in strict order | fairly)? locs |
visit (more than | less than | exactly) n times loc |
avoid (loc until cond | loc | loc after cond) |
react (instantly | with a delay | promptly) to cond by (exec act | pat | reach loc) |
counteract (instantly | with a delay) when reach loc by cond |
wait in location loc until cond

Elementary
Patterns

e qpat ::= (reward)? maximize m miss | minimize m miss | m at most v miss | m less than v miss |
m at least v miss | m greater than v miss | m exactly v miss | m within v1 and v2 miss |
m strictly within v1 and v2 miss

Composite
Patterns

c qpat ::= conserve m while miss | preserve m within [v1,v2] while miss | pause v miss |
timeout v miss | repeat miss every v | end miss exactly at v |
execute rob actions act1,act2,. . . actn | rob accrue m while miss |
achieve miss with reliability m (greater | less) than v |

Condition cond ::= condition is true | act is ended | rob in loc
Locations locs ::= {loc (, loc)∗}

∗ miss, miss1, miss2 are missions; v, v1, v2 are values; rob is a robot, m is the name of the quantitative measure.

Figure 4.4: The syntax of the DSL for the quantitative specification patterns for robotic
missions. From [1].

be later used as part of the elementary patterns; for example (based on [1]):

“...after the opening, the robot r1 shall visit the different parts of the hospital
to record the number of employees that are present in each of the rooms. The
robots have to minimize the energy required to perform this mission.”

In QUARTET, elementary patterns are differentiated based on whether they refer to
probabilities or rewards (aka costs). The previous example, “...minimize the energy...,”
requires a reward elementary pattern to reason about the energy cost. Thus, we can write
this example in the QUARTET DSL by defining a mission identifier, m11; the measure
of Energy; an event specifying the opening of the hospital, open; the locations to visit,
room1, room and room3; and the condition that must be satisfied when reaching these
locations while recording the number of employees, record. Thus, the mission is defined
in QUARTET language as:

m1: reward minimize Energy (
(r1 shall react instantly to open by visit room1, room2, room3)
and
(r1 shall counteract instantly when reach room1 by record) and
(r1 shall counteract instantly when reach room2 by record) and
(r1 shall counteract instantly when reach room3 by record)
)

Elementary (e qpat) and composite (c qpat) patterns are defined in the first and sec-
ond half of Table 4.1, respectively. This table contains the intermediate step between the

1The identifier is added for readability purposes but not explicitly defined in the DSL syntax.
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Table 4.1: Quantitative mission specification problem descriptions and their translation
into the QUARTET DSL. From [1].

Problem Description DSL

Maximize Maximize m while performing the mission miss. reward maximize m miss
Minimize Minimize m while performing the mission miss. reward minimize m miss
At most Keep m lower than or equal to v while performing miss. reward m at most v miss
Less than Keep m strictly lower than v while performing miss. reward m less than v miss
At least Keep m greater than or equal to v while performing miss. reward m at least v miss
Greater than Keep m strictly greater than v while performing miss. reward m greater than v miss
Exactly Keep m exactly v while performing miss. reward m exactly v miss
Within Keep m within the (closed) interval [v1, v2] while performing miss. reward m within v1 and v2 miss
Strictly Within Keep m within the (open) interval (v1, v2) while performing miss. reward m strictly within v1 and v2

miss

Conservation Minimize the value of m performing miss. conserve m while miss
Preservation Keep the value of m within interval [bl ,bu ] while performing miss. preserve m within [v1, v2] while miss
Pause Pause the mission miss for v time instants. Then, resume it. pause v miss
Timeout-deadline Execute miss. Stop the the execution when the timeout v is reached. timeout v miss
Repeat Repeat the mission miss every v time units. repeat miss every v
End Terminate mission miss exactly at time v. end miss exactly at v
Simultaneously Execute the actions act1,. . . , actn simultaneously. execute rob actions act1,. . . , actn
Accrue Maximize the performance m while performing miss. rob accrue m while miss
Reliably Ensure that the measure m is higher/lower than the value v. achieve miss with reliability m [...]

∗ miss, miss1, miss2 are missions; v, v1, v2 are values; rob is a robot, m is the name of the quantitative measure; [...]

represents portions of the DSL of Figure 4.4 omitted for graphical reasons. Elementary patterns (maximize to strictly
within) descriptions can refer to probabilistic requirements (instead of rewards) by removing the reward keyword from their
DSL counterpart.

ontological representation of mission problems in Figure 4.3, and their DSL counterparts
presented in Figure 4.4.

Finally, we define the two last categories, conditions (cond) and locations (locs).
The latter refers to a set of locations, {loc (, loc)∗}; while the former corresponds to
Boolean events specifying that: a condition is happening (condition is true), an ac-
tion has ended (act is ended), or a robot reached a certain location (rob in loc). A
measurement m represents a relevant quantity within the mission specification. These
measurements are included in the mission description to provide context for the quanti-
ties under consideration, but they are not part of QUARTET’s formal semantics. In the
previous example where the goal was to minimize energy consumption, m was defined as
Energy.

4.1.2 QUARTET Semantics and Implementation

In this section, we introduce a key contribution of this thesis, namely the semantics of
QUARTET for the translation of quantitative specification patterns to Reward-augmented
Probabilistic Computational Tree Logic (RPCTL) formulae. An introduction to RPCTL
is provided in the background Section 2.3.3. To conclude, we assess the applicability and
exploitability of the QUARTET catalogue.
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Table 4.2: Semantics of QUARTET for the translation of quantitative missions into
RPCTL logic formulae.

Mission
τ(miss1 and miss2)= τ(miss1) ∧ τ(miss2) τ(miss1 or miss2)= τ(miss1) ∨ τ(miss2)
τ(not miss) = ¬τ(miss) rob shall pat = τ(pat[r ←− rob])

Elementary
Patterns

Prob.

τ(maximize m miss) = Pmax=?(τ(miss)) τ(minimize m miss) = Pmin=?(τ(miss))
τ(m at most v miss) = P≤v(τ(miss)) τ(m less than v miss) = P<v(τ(miss))
τ(m at least v miss) = P≥v(τ(miss)) τ(m greater than v miss) = P>v(τ(miss))
τ(m exactly v miss) = P≥v(τ(miss)) ∧ P≤v(τ(miss))
τ(m within v1 and v2 miss) = P≥v1 (τ(miss)) ∧ P≤v2 (τ(miss))
τ(m strictly within v1 and v2 miss) = P>v1 (τ(miss)) ∧ P<v2 (τ(miss))

Rewards

τ(reward maximize m miss) = Emax=?(τ(miss)) τ(reward minimize m miss) = Emin=?(τ(miss))
τ(m reward at most v miss) = E[0,v](τ(miss)) τ(m reward less than v miss) = E[0,v)(τ(miss))
τ(m reward at least v miss) = E[v,∞)(τ(miss)) τ(m reward greater than v miss) = E(v,∞)(τ(miss))
τ(reward m exactly v miss) = E≥v(τ(miss)) ∧ E≤v(τ(miss))
τ(reward m within v1 and v2 miss) = E[v1,∞)(τ(miss)) ∧ E[0,v2](τ(miss))
τ(reward m strictly within v1 and v2 miss) = E(v1,∞)(τ(miss)) ∧ E[0,v2)(τ(miss))

Composite
Patterns

τ(conserve m while miss) = Emin=?(τ(miss))
τ(preserve m within [v1, v2] while miss) = E[v1,v2](τ(miss))
τ(pause v miss) = G[0,v]τ(¬miss) ∧ (F [v+1,v+1](τ(miss)))
τ(timeout v miss) = G[v,∞](¬τ(miss))
τ(repeat miss every v) = τ(miss) ∧ G[0,∞](τ(miss)→ (G[1,v−1](¬τ(miss)) ∧ (F [v,v](τ(miss)))))
τ(end miss exactly at v) = G[0,v)(τ(miss)) ∧ G[v,∞](¬τ(miss))
τ(time of miss1 proportional to miss2 by factor v)=NA (Not Available in PRCTL)

τ(execute rob actions act1,act2,. . . , actn)= F (
n∧

i=1
acti)

τ(r accrue m while miss)= Emax=?(τ(miss))
τ(achieve miss with reliability m (greater | less) than v)= E[v,∞)(τ(miss))/E[0,v)(τ(miss))

Semantics

The semantics of QUARTET are depicted in Table 4.2. The table presents the seman-
tics divided into missions, elementary patterns and composite patterns. Notice that the
patterns (pat) from the QUARTET syntax in Table 4.4 are not defined. This is because
pat are qualitative formulae with their translation into LTL and CTL logic presented in
previous work [2]. We include the translation of pat in Appendix A for reference.

We define a function τ for the translation of QUARTET missions into RPCTL for-
mulae. The first defined mapping function takes a mission miss and miss, and maps it
to the conjunction of the translation of each part, τ(miss1) ∧ τ(miss2); similarly for the
disjunction (or) and negation (not) variants. For a robot performing a non-quantitative
pattern τ(rob shall pat) the translation is defined as (τ(pat[r ←− rob])), in which pat
is the translation of some QUARTET pattern containing the terminal r , which in this
case takes the value of rob. The further translation of each QUARTET pattern, defined
as CTL and LTL formulae, is described in Appendix A.

Elementary patterns enable the quantitative verification of robot mission charac-
teristics. Their quantitative values can be in the form of a reward/cost or a probability
that is returned through the verification of RPCTL formulae. Hence, the elementary pat-
terns are divided into two categories: probabilities and rewards. The operands Pmax=? and
Pmin=? are RPCTL structures which denote the maximum and minimum probabilities of
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a RPCTL property, respectively. Similarly, the operators Emax=? and Emin=? denote the
maximum and minimum expected reward. In the case of the rewards formulae, they rely
heavily on the model as the reward structure must describe the changes in the measure
m or value v indicated as part of the formula. For example, for the elementary pattern
maximising the measure m, where m is a probability value of completing mission miss,
the mapping function τ(maximize m miss) returns the formulae Pmax=?(τ(miss)). On
the other hand, if a pattern refers to some other measure, e.g. energy consumption, the
mapping function corresponds to Emin=?(τ(miss)).

In the elementary patterns mapped to reward formulae, the structure EJ (ϕ) corre-
sponds to the RPCTL reward operator. If J is an interval, the formula corresponds to
the expected reward on the interval J , where J is [0, v], [0, v), [v,∞) or (v,∞), depend-
ing on the pattern to be translated. If J is max =? or min =?, the resulting formula
corresponds to the maximum or minimum expected rewards. Finally, if J is ▷◁ v, where
▷◁= {⩽,⩾, <,>} the resulting formula corresponds to the bounding RPCTL.

The composite patterns also consider reward and probabilities formulae. However,
these quantities are treated as metrics that assess the resource, performance and depend-
ability of the mission. For example, the conservation pattern translation τ(conserve m
while miss) calculates the minimum reward Emin=? that the user can evaluate assessing
if a measure (e.g., the battery energy of a robot) is conserved (or not) above a threshold
throughout the mission. The preservation pattern τ(preserve m within [v1, v2] while
miss) translation maintains the rewards within the interval [v1,v2] through the operator
EJ .

The Pause pattern translation specifies an interval [0, v] when a mission miss is not
executed (i.e., G [0,v]τ(¬miss) holds), with the execution of the mission guaranteed at time
instant v + 1 (i.e., F [v+1,v+1](τ(miss))) holds). The Timeout pattern translation specifies
an interval [v,∞] in which the mission is not executed (i.e., G [v,∞](¬τ(miss)) holds). The
pattern translation of repeat specifies that the formula must hold initially (τ(miss)), and
requires its repetition such that whenever the mission happens at a time step, then it
must not happen in the following v-1 time steps, and must repeat only after v time steps.

The End pattern translation specifies that a mission miss is in execution from the
beginning and up to a time instant v (i.e., G [0,v](τ(miss)) holds), and its execution stops
at time v (i.e.,G [v,∞](¬τ(miss)) holds). Finally, the translation for the Simultaneously
pattern specifies that eventually all the actions are performed at the same time instant.

Notice that the translation proposed for the patterns belonging to the “Time” category
(simultaneously, timeout, repeat, end and pause) do not follow the RPCTL syntax (i.e.,
the temporal formula is not preceded by the P or E operator). Therefore, to ensure that
our translation generates well-formed RPCTL formulae, we constrain the patterns
belonging to the “Time” category to be used only within elementary patterns.

The translation for the Accrue pattern relies on the operator Emax=? that enables
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maximising a reward measure while performing a mission miss. Similarly, the translation
for the Reliability pattern relies on the operator EJ where the interval J is set to (v,∞)

or [0, v) depending on whether the less than or greater than option is used.

Well-formedness conditions

To have a well-defined meaning in the RPCTL semantics accepted in the PRISM language,
a robotic mission specification written in our QUARTET language must satisfy multiple
well-formedness conditions. Mission requirements must be well-typed and well-scoped.
Locations and conditions must be defined before they are used within elementary and
composite patterns. The generated requirements must comply with the RPCTL syntax
accepted by the PRISM model checker (see Sections 2.3.3 and 2.3.5). The following
well-formedness conditions apply to missions in QUARTET.

F1. The elementary patterns maximise and minimise must not be preceded nor
followed by any of the boolean operators accepted (and, or and not) as these patterns
result in a numerical value rather than a Boolean.

F2. Elementary patterns cannot be composed by missions miss that refer to other
elementary pattern. This is due to their semantics translating them as probabilistic P
and reward E formulae—RPCTL does not allow to have two consecutive P’s or E’s, nor
their combination, PJ (EJ (miss)) or EJ (PJ (miss)). This also apply to composite patterns
conservation, preservation, accrue, reliability and confidently.

F3. Nested probabilities are not allowed. Nesting can occur as explained in F2 or by
having elementary patterns joint by logic operators inside other elementary patterns, as
in PJ (PJ (miss) ∧ PJ (miss)). These types of formulae do not comply with the RPCTL
syntax.

F4. The repeat composite pattern must comply with F2 and F3; e.g., the mission
included as part of this pattern must not result in a requirement with nested P ’s.

If these constraints are not satisfied, QUARTET generates a warning indicating that the
mission specification cannot be generated in the PRISM language. The following section
shows an example of the automated process.

QUARTET Tool

Another contribution of the thesis is the implementation of a proof-of-concept tool and
user interface (GUI) for the automatic translation of missions specified in QUARTET DSL
to RPCTL formulae. The generated formulae are written in the PRISM model checker’s
property specification language [71] and can be used for the verification of PRISM-encoded
Markov models of an MRS behaviour. To ensure that our tool generates mission spec-
ifications expressed in the PRISM property specification language, we constrained the
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Figure 4.5: Screenshot of the QUARTET tool showing a portion of the mission require-
ment of mission m1 introduced in Section 4.1.1. The problem specifications define the
locations (goal, CP, TA and HA), robots (r1) and conditions (record and close). Missions
m2 and m3 are derived from m1 as quantitative and qualitative formulae, respectively,
translated automatically into PRISM (bottom part). Mission m1 cannot be translated
directly into PRISM as it joins (by a logical “and”) a number (from m2) and a Boolean
(from m3), a type of property conjunction which PRISM does not support.

DSL semantics to the well-formedness conditions presented before. These prohibit nested
probabilities, accept only LTL properties for the reward and probability operators, and
prohibit the definition of specifications that lead to the conjunction of quantitative and
non-quantitative PRISM formulae since such formulae cannot be processed by PRISM.
The tool is publicly available at [146] as an Eclipse plugin.

Figure 4.5 shows the GUI interface as well as Example1.mydsl file with the description
of three missions, m1,m2 and m3. Mission m1 is already described in Section 4.1.1. Mission
m2 is a quantitative formula derived from m1. Mission m3 is a qualitative formula also
derived from m1. The translation of the missions depends on whether or not the PRISM
properties language supports their translation. For missions (m1,m2,m3), the tool output
is depicted at the bottom of this Figure 4.5 and described in the next paragraphs.

The QUARTET tool automatically translates QUARTET mission requirements into
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RPCTL formulae according to the semantics specified in Table 4.2. The translation uses
the open-source software framework Xtext [147] for the development of domain-specific
languages. Xtext supports the Java-inspired high-level language Xtend as a general-
purpose language that accelerates the process of coding the semantics of a language given
its flexibility and expressiveness.

We selected the property specification language PRISM [71] for the specification of
QUARTET-generated formulae as it supports the entire RPCTL logic, it has been widely
and successfully used within the formal methods community and it supports the LTL
and CTL formulae necessary for the translation of QUARTET non-quantitative missions.
Also, it provides an open-source tool available online for the specification and verification
of these logic formulae.

To ensure that the QUARTET tool generates well-defined PRISM properties in its
supported RPCTL, LTL and CTL logics, we constrained the generated output to (a) pro-
hibit nested probabilities, (b) accept only LTL properties as arguments for the reward
and probability operators, and (c) prohibit the definition of specifications that lead to
the conjunction/disjunction of quantitative and non-quantitative PRISM formulae, since
such formulae cannot be processed by the PRISM model checker.

Given constraint (a), a formula of the form Pmax=?(Pmin=?σ) is not allowed. Constraint
(b) forces the formulae used within the reward and probability operators to be LTL
formulae, such as ϕ1Uϕ2, i.e., it does not enable the exploitation of the values assumed
by J and N within formulae of the form ϕ1UN

J ϕ2. Finally, an example of a mission that
violates constraint (c) is mission m1 from Figure 4.5, in which a quantitative formula and a
non-quantitative formula are joined by the conjunction operator. If one of the constraints
is violated, the QUARTET tool will return a warning as in the case of mission m1 result
depicted at the bottom of Figure 4.5.

4.1.3 Evaluation

To evaluate the coverage and exploitability of the QUARTET catalogue of robot mission
specifications, we considered the following research questions.

• RQ1 (Applicability of the translation). In how many cases does new identified
requirements were able to be formalised using the intended semantics? We assess
how many requirements which are agnostic to the generation of QUARTET can be
translated into RPCTL using our developed tool.

• RQ2 (Exploitability). How can the translation of robotic mission requirements
using the QUARTET semantics be used in practice? We assess the usefulness of the
QUARTET mission formalisation, for example, for the verification of models.

RQ1 experimental tasks (Applicability). In order to evaluate the applicability
of the QUARTET patterns, we use 21 mission requirements previously collected as part
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Table 4.3: Number of times each of the QUARTET patterns was used to express a mission
requirement or part of this from our dataset.

Pattern #N Pattern #N Pattern #N

Maximize 5 Within 2 Timeout 5
Minimize 6 Strictly Within 1 Reliability 4
At most 3 Conservation 5 Simultaneously 1

Less than - Preservation 4 Accrue 3
At least 3 Pause - Exactly 2

Greater than - Repeat 1 End -

of the hybrid methodology described in Figure 4.2. These patterns were not considered
in the formulation of any of the QUARTET patterns.2 We attempted to express these
collected papers in the proposed DSL and evaluate if their translation is possible.

RQ1 results and discussion. In order to evaluate the applicability of our approach,
we first assess the number of missions collected from the literature that can be defined in
QUARTET’s domain-specific language. Then, we assess how many of these requirements
can be translated into RPCTL formulae written in the PRISM language. From the 21
requirements collected agnostic to the QUARTET catalogue, we were able to completely
express 20 of them (9̃5%), and to partially express the last one (5̃%). This coverage is
acceptable for practical applications since the patterns are (by definition) not exhaustive.
The requirement that was not able to be formalised requires “adapt[ing] the velocity profile
of the robot, according to the wireless channel measurements” [148]. This requirement
requires modifying the velocity as a function of the wireless communication measurements.
Functions describing the dynamics between measurements are not currently supported in
QUARTET.

Recall that to express one mission requirement, the DSL allows more than one pattern
to be used. Table 4.3 reports the number of times each of the QUARTET patterns was
used to express a (part of) a mission requirement from our dataset. Continuing, we assess
how many of these requirements were able to be formalised using the QUARTET tool
expressing them in the PRISM language. Our results show that our translation provides
reasonable applicability by translating more than 50% of the requirements. We intend
this to grow as the dynamic repository is increased as (a) more expressive logic is defined
by the research community, and (b) efficient tools that support and scale to more complex
logic formulae are proposed.

RQ2 experimental tasks (Exploitability). In order to assess the exploitability of
the QUARTET requirements in different robotic missions, one would need to have access
to the missions themselves specified in a model compatible with the RPCTL formalism.
For example, PRISM supports the verification of RPCTL formulae for Markov models

2The collection of these papers is not part of the contributions of these papers. We refer the reader
to [1] for more details.
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such as DTMCs and MPDs [73]. However, manually deriving these models would intro-
duce significant threads to the validity to our results. For this reason, we opted to collect
mission requirements from the literature that were accompanied by a PRISM specification
already proposed by the respective authors. Then, we check if the mission requirements
in each of the collected could be express using QUARTET’s DSL and if the translation
was possible using the accompanying tool. We verified whether QUARTET generated the
PRISM mission specification defined by the authors. If this was the case, we considered
the results reported in the publication and discussed how the mission specifications were
employed by the authors.

The dataset for RQ2 consists of 16 requirements collected from the PRISM Case
studies webpage [149] (2 requirements) and from the literature (14 requirements). All
studies from which the requirements were obtained contain both the mission specification
and its formalisation into the PRISM language. Requirements from research question
RQ1 were not reused as they do not contain the PRISM counterpart.

RQ2 results and discussion. The 16 mission requirements considered with PRISM
formalisms were able to be defined through our QUARTET DSL, demonstrating the flexi-
bility and expressiveness of the DSL in describing robotic missions. Moreover, the original
collected requirements defined in the PRISM language matched the ones synthesised by
our QUARTET tool, further validating the applicability of our catalogue. This data is
publicly available in [146].

Upon analysis, we identified two key applications within the research studies. In 75%
of the cases, the specifications were used for the synthesis problem (e.g. [150,151]), high-
lighting the predominant use of the specifications in generating decision-making strategies
for robotic systems. Meanwhile, for 25% of the cases these specifications were considered
for model checking (e.g. [152,153]), emphasising the importance of verifying and validat-
ing robotic missions.

These findings indicate that our robotic mission specification catalogue can serve dual
purposes in future applications. It can be employed both for policy synthesis, enabling
the development of adaptive and responsive robotic behaviours, and for model checking
ensuring, for example, the reliability and safety of the designed missions.

Discussion and limitations

QUARTET provides a wide range of quantitative mission patterns extracted from ex-
tensive research on robotic missions found in the research literature. It presents a com-
prehensive language for the specification of quantitative robotic patterns and missions
and the translation of these into logic formulae. However, there exist some limitations
in using QUARTET. First, the translation into logic formulae imposes constraints on the
expressiveness of missions. For example, it is not possible to express a qualitative and a
quantitative formula joined by the and logic operator.
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As briefly described at the beginning of this chapter, another important limitation is
that whilst QUARTET is focused on the description of robotic problems, i.e., elemen-
tary and composite problems as depicted in Figure 4.3, QUARTET does not support the
description of locations, robots, tasks, etc. associated with robotic missions in greater de-
tail. Consider for instance the mission minimize Time r1 shall visit goal, in which the
robot identifier r1 is obtained from a set of robot identifiers given in advance. QUARTET
does not allow the description of robot capabilities for the robots with these identifiers,
nor of the tasks that they can perform with those capabilities and the probability that
task X can be completed successfully by robot Y. Another example of key information
that cannot be captured in QUARTET is associated with the locations where the mis-
sion tasks are to be performed, which can be specified as location identifiers but cannot
be mapped to physical coordinates from the real world. A mechanism to specify such
information that cannot be encoded in QUARTET is presented in the following section.
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4.2 KANOA Mission Specifications

This section presents the KANOA approach for the description of robotic problem speci-
fications. KANOA uses a DSL defined in a separation-of-concerns fashion where different
models capture different aspects of the robotic problem: (a) the world model, (b) the task
specifications, (c) the robots’ specifications, and (d) the mission and its properties, con-
straints, and objectives. The KANOA DSL is intended to be a user-friendly language that
captures more information than QUARTET. However, QUARTET mission patterns can
be added into KANOA’s specifications. As QUARTET provides an extensive catalogue of
patterns, from now on we only continue with the formulae minimise and maximise as
a running example on how to include QUARTET patterns into KANOA. These are used
in the definition of objectives including minimising the idling time i.e., the time during
which the robots are in stand-by, minimising the robots’ travelling costs and maximising
the probability of succeeding with the mission, and as such constitute a general example
of core QUARTET functionality which KANOA must support.

We also present the formalisation of the KANOA DSL using Z notation (see Section 2.1
for a background on Z notation). We use the DSL for the modelling of the system and Z
notation for the formal definition of the different parts of the problem (world model, tasks,
robots and the mission), as well as to ensure the completeness and compatibility between
these parts. In particular, using Z notation enables the specification of key constraints
that need to be satisfied by a valid problem specification defined in the KANOA DSL. As
an example, a robot is characterised by a (non-empty) set of capabilities; each capability,
in turn, corresponds to an atomic task identifier, which is associated with a location
identifier, and so forth. Furthermore, the KANOA task allocation (detailed in the next
chapter) is carried out using the Alloy Analyzer, whose input can is obtained from this Z
specification.

4.2.1 KANOA Syntax and Problem Definition

In this section, we define the KANOA DSL syntax. We also describe the relations be-
tween the elements of an MRS mission, ant their scopes and mathematical constraints by
supporting the description of the DSL with the Z notation. Hence, after introducing the
KANOA language, each section of the grammar is also described in terms of its Z-notation
counterpart.

KANOA’s language syntax for the specification of MRS problems is depicted in Ta-
ble 4.4, and is divided into five parts (world model, tasks model, robots model, mission
and overall problem specification). In this table, alternatives are separated by the symbol
|; possible recursive items are encircled in round brackets and followed by an asterisk *;
items that can appear in any order are listed between curly brackets { }; while keywords
are depicted in bold font. There are two types of terminals in the language: (a) identi-
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Table 4.4: The syntax of KANOA’s DSL for the specification of MRS missions consists
of four parts (world model, tasks model, robots model and mission specification) that are
combined into a problem specification.

Name Term Syntax

World Model world ::= loc (,loc)∗(,path)∗

Location loc ::= locID :(x v1 , y v2 )
Path path ::= distance locID1 to locID2 is v (has success rate:v[0,100] %)?

Task Model task ::= {( a task | c task)∗ }
Atomic Task a task ::= atID : v1 robots needed at location locID (, v2 retries allowed)?
Compound Task c task ::= ctID : subtasks [ { (ctID | atID) ((,ctID | ,atID))∗ } ] (constraint:

ordered | constraint:consecutive)?

Robots Model robot ::= (rob)∗

Robot rob ::= robID: at initial position locID has velocity v with capabilities ( capab
(, capab)∗ )

Capability capab ::= atID - required time: v, success rate:v[0,100] %

Mission miss ::= {m task(, m task)∗} objectives:{obj(, obj)∗} (constraints:{con(, con)∗})?
(parameters: time: v)?

Mission task m task ::= mtID: (compound task ctID | atomic task atID) (at locID)?
Objectives obj ::= (minimiseIdle | minimiseTravel | maximiseSuccess)
Constraints con ::= rateSucc | spaceXY | taskTime | allocateT | closest | maxTasks
Success rate rateSucc ::= rate of success greater than v[0,100]
Set coordinate spaceXY ::= (robot robID | all robots) work in (x | y) (lower | greater ) than v
Task time taskTime ::= (atomic task atID | compound task ctID | mission task mtID) has to (start

after | end before) time: v
Allocate task allocateT ::= allocate (atomic task atID | compound task ctID | mission task mtID) to

(robot robID | single robot)
Closest task closest ::= allocate (all tasks | atomic task atID | compound task ctID |

mission task mtID ) to closest robot
Limit n tasks maxTasks ::= limit max number of tasks (in robot robID | per robot) to v
Allocations nAlloc ::= v allocations
Time Available time ::= time available: v

Problem system ::= ProblemSpecification{ WorldModel: world
Spec. TaskModel:task

RobotsModel:robot
Mission:miss }

∗ v’s are values; v[0,100] is a value between 0 and 100; vbool is a Boolean value; and locID,robID,atID,ctID,mtID are
identifiers of locations, robots, atomic-, compound- and mission-tasks, respectively.

fiers for the locations (locID), the atomic (atID) and composite (ctID) tasks, the robots
(robID) and the mission tasks (mtID); and (b) values, which can be integers v, vn ∈ N,
probabilities v[0,1] ∈ [0, 1] and Booleans vbool ∈ {true, false}.

4.2.2 World Model

Syntax. Multi-robot systems (MRS) involve the coordinated motion of a group of
robots within a physical space, which is specified by a world model that define the area
where these robots must perform various tasks. The world model is composed of locations
loc and paths path, where:

• a location (locID:(x v1, y v2)) is defined by an identifier locID and the (x,y)
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coordinates of that location in a 2D discrete space, (v1,v2) ∈ N× N.

• a path (distance locID1 to locID2 is v) is defined as the distance v ∈ N between
two locations with identifiers locID1,locID2 ∈ LocationID, where LocationID is
the set of all location identifiers.

Every path has an optional parameter specifying the success rate of travelling between
locID1 and locID2 (has success rate: v0,100%), where v0,100 ∈ [0, 100]. Some examples
that characterise a path with a low rate of transitioning are a path that is narrow—thus
increasing the collision of the robots, very long, or that has an uneven terrain. Notice that
not all paths may be specified; only those paths that robots can traverse are declared.

Formal Specification. In the Z notation, we define the set of discrete location identifiers
as,

[LocationID]

Each location is then formally defined by its (x,y) coordinates and its location identifier
id

Location
id : LocationID
x , y : N

where

∀ l1, l2 : Location • l1.id = l2.id ⇔ l1 = l2

The world model is defined as a set of these locations, and two (partial) functions, dist
and succRate, to describe the feasible paths between locations and the rate of succeess if
attempting to navigate these paths, respectively.

World
locations : PLocation
dist : LocationID × LocationID 7→ N
succRate : LocationID × LocationID 7→ N

∀ l1, l2 : Location •
(l1.id, l2.id) ∈ dom dist ⇒ l1 ∈ locations ∧ l2 ∈ locations

∀ l1id, l2id : LocationID •
((l1id, l2id) ∈ dom dist ∧
dist(l1id, l2id) = 0)⇔ l1id = l2id

dom succRate ⊆ dom dist

∀(l1id, l2id) ∈ dom succRate • 0 < succRate(l1id, l2id) ≤ 100
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The first two predicates of this Z schema indicate that all location identifiers appearing
in the paths are specified beforehand as locations, and that every path has non-zero
distance except if its start and end are the same location. The last two predicates state
the existence of a rate of success (succRate) for some of the paths, and its possible range
of values, respectively.

4.2.3 Task Model

Syntax. Robotic missions involve the execution of tasks that have unique identifiers.
These tasks can be atomic (indivisible) tasks, or compound tasks formed of multiple
subtasks.

The task model is a set composed of multiple atomic and compound tasks. Atomic
tasks (atID: v1 robots needed at location locID) are defined by an identifier atID,
the number of robots needed v1∈ N, and a location identifier locID where the task is to
be done. Each atomic task comes with an optional parameter specifying the permissible
number of retries for the robot(s) in the event that the task is not successfully completed
on the initial attempt(s) (, v2 retries allowed), where v2∈ N.

Compound tasks (ctID : subtasks [ { (ctID | atID) ((,ctID | ,atID))∗ }
(constraint: ordered | constraint: consecutive)? ) are defined by an identi-
fier ctID and a list of subtasks (compound or atomic tasks). The optional parameter
constraint:ordered means that the subtasks must be completed in the specific order
(but not necessarily without the robots also doing other tasks or pausing between them).
The optional parameter constraint:consecutive means that the subtasks must be
completed immediately one after the other, i.e., in a consecutive task with N subtasks,
the time on which its subtask i − 1 is completed is the beginning of its i-th subtask, for
all i = 2, 3, . . . ,N .

Formal Specification. In the Z notation, we formally define the set of all possible task
identifiers as

[TaskID]

We distinguish between the sets of identifiers for atomic tasks(ATaskID) and compound
tasks (CTaskID):

ATaskID : PTaskID

CTaskID : PTaskID

ATaskID ∪ CTaskID = TaskID
ATaskID ∩ CTaskID = ∅

An atomic task comprises an identifier id, specifies the number of robots nRobots required
to perform the task, the allowed number of retries nRetry in case of failure, and a location
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locationID:

AtomicTask
id : ATaskID
nRobots : N1

nRetry : N1

locationID : LocationID

Atomic tasks whose execution requires several robots are termed joint tasks.
Compound tasks are formed by a sequence of subtasks that can be performed in no

specific order, in a specific order (without forcing them to be consecutive), or consecutively
and ordered (start each subtask that is not the first one exactly when the previous subtask
finishes):

CON ::= none | ordered | consecutive

The subtasks of a compound task can be atomic or other compound tasks. Hence, a
compound task is defined by an identifier id, its subtasks, and an ordering constraint
value, constraint.

CompoundTask
id : CTaskID
subtasks : seqTaskID
constraint : CON

Compound tasks are hierarchical tree-like structures. Therefore, we prevent loops by
recursively forbidding specifying a composite task within its subtasks. We define the
descendants as a well-defined relation between a compound task identifier and a set of
reachable task identifiers, i.e., its subtasks and the descendants of its (compound) subtasks,

descendants : CTaskID → PTaskID

∀ c : CompoundTask • descendants (c.id) = ran c.subtasks ∪⋃
{subCT : CompoundTask |

subCT .id ∈ ran c.subtasks • descendants(subCT .id)}

and impose the constraint

∀ c : CompoundTask • c.id /∈ descendants (c.id)

Hence, an organisation that uses robotic teams to carry out missions will define their
MRS missions based on a TaskSet comprising finite sets of atomic and compound tasks:
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TaskSet
atomicTasks : PAtomicTask
compoundTasks : PCompoundTask

∀ a1, a2 : atomicTasks • a1.id = a2.id ⇔ a1 = a2
∀ c1, c2 : compoundTasks • c1.id = c2.id ⇔ c1 = c2
∀ c : compoundTasks •

descendents (c.id) ⊆ {at : atomicTasks • at.id}∪
{ct : compoundTasks • ct.id}

4.2.4 Robot Model

Syntax. The robot model comprises the set of all robots available for the mission. Each
robot is defined by an identifier (robID), the identifier locID for the initial location of
the robot at the start of the mission, the average velocity of the robot v∈ N, and a list of
capabilities describing the tasks that the robot can perform (capab (, capab)∗).

A robot capability (capab) associates a robot with an atomic task identified by atID.
It also contains information specifying how the robot performs for this task in terms of
two metrics: the completion time (time) and the rate of succeeding with the mission
(succRate). The probability that the robot completes the task successfully is obtained
through dividing the success rate by 100.

The probability of completing of tasks can differ from robot to robot (even for robots
of the same type) due to multiple factors. For example, if a robot r1 is capable of cleaning
the floor, aging can impact the actuator used to clean the floor. Hence, robot r1 has a
lower probability of completing successfully this task than a newer robot of the same type.
Another example is that of a robot that is bigger, may get stuck from time to time while
trying to clean a room with multiple beds or objects, which also impacts the probability
of completing this task.

Formal Specification. A robot is referenced by a unique identifier of type

[RobotID]

Each robot has a set of capabilities consisting of the application-related atomic tasks that
the robot can carry out. Each capability states that the robot can accomplish an atomic
task in a mean time, and with probability of success succRate/100,

Capability
task : ATaskID
time : N
succRate : N

0 < succRate ≤ 100
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Finally, a robot is defined by its identifier, an initial location initLocation, its nominal
velocity when in motion, and a set of capabilities,

Robot
id : RobotID
initLocation : LocationID
velocity : N
capabilities : P1 Capability

As explained earlier, times and rates of success can vary between homogeneous robots
due to ageing, manufacturing defects, etc.

4.2.5 Mission Specification

Syntax. Once the atomic and compound tasks are specified, the user must select which
tasks are to be done by the robots and the associated constraint and objective require-
ments. The tasks that the robots must complete (atomic or compound) are named
mission tasks and we informally define a mission as the set of mission tasks, a list
of mission-related parameters, as well as the sets of constraints that must hold and
optimisation objectives that must be pursued by the MRS mission (see Table 4.4).

Each mission task (m task) consists on the task identifier (mtID), an atomic (atID)
or compound (ctID) task identifier, and an optional location where the task is to be done
(locID). The optional location is added for reusability of the tasks; for example, consider
an atomic task at1 defined in the task model in a location loc1, if the same task is to
be done in three different locations (loc1, loc2, loc3), the user can avoid defining the same
task three times in the task model and instead, reuse at1 within the mission overriding
the location to loc2 and loc3. Four scenarios are possible to assign the location of tasks
depending on how the mission task is defined:

• atomic task + location: the atomic task must be completed in the location defined
by the mission task;

• atomic task + no location: the atomic task must be completed in the location
defined by the atomic task (a task);

• compound task + location: all atomic tasks reachable from the subtasks in the
compound task must be completed in the location defined by the mission task;

• compound task + no location: each atomic task reachable from the subtasks in
the compound task must be completed in the location defined by each atomic task
definition (a task).
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KANOA supports three types of mission optimisation objectives: minimiseIdle,
minimiseTravel and maximiseSuccess (see Table 4.4). These are measures that are
to be optimised when creating a plan for each of the robots that will contribute to ac-
complishing the mission. First, minimising the idle time minimiseIdle aims to reduce
the total time during which each robot is not performing any activity due to waiting
for other robots to complete a task. Second, minimiseTravelling cost reduces the time
a robot spends travelling between locations. Third, maximiseSuccess probability aims
to increase the overall probability of completing the mission. We note that the three
optimisation objectives supported by KANOA may be conflicting.

There are six types of mission constraints (denoted as con in Table 4.4):

• rateSucc v[0,100], which requires that the mission is achieved with a success rate of
at least v[0,100].

• spaceXY constrains the 2D space within which a robot can perform tasks. It re-
quires the robot identifier (robID), the coordinate to constrain (x or y), the type of
constraint (lower than or greater than) and the limit in space units v ∈ N.

• taskTime constrains the time v ∈ N when a task (with identifier atID, ctID or
mtID) is to be started after or completed by (start after or end before).

• allocateT enforces the allocation of a task (atID, ctID or mtID) to a specific robot
(robID). It allows the task to be an atomic, compound or mission task.
If multiple constraints exist, the allocation algorithm reads each constraint one by
one. Hence, order matters when writing these requiments. For example, there are
three robots r1, r2, r3, a compound task ct1 with two atomic subtasks (at1, at2)
and a mission task m1 to accomplish ct1; the user specifies three constraints (in
this order): (a) allocate m1 to r1, (b) allocate ct1 to r2, (c) allocate at1 to r3.
In this case, m1 is first allocated to r1. Then, the second constraint overwrites the
allocation and assigns m1 to r2 (as m1 only consists of ct1). Finally, the subtask
at1 of m1 is allocated to r3 so mission m1 is completed by r2 and r3.

If no robot is provided (single robot), the mission, atomic or compound task is
assigned to a robot or (for joint tasks) set of robots that possess the capability to
complete it.

• closest allocates a task or all tasks (all tasks, atID, ctID or mtID) to the robot
with the shortest path to the task location. Similarly to allocateT, the order in
which multiple constraints of this type are defined matters.

• maxTasks limits the number of tasks v ∈ N to allocate to a robot or for all robots
(in robot robID, per robot).

80



CHAPTER 4. MISSION SPECIFICATION

Finally, the mission parameter (time: v) limits the time v ∈ N within which the mission
must be completed.

Formal Specification. The tasks that the robots must complete (atomic or compound)
are named mission tasks; each consists of an identifier of tyype

[MissionTaskID]

and the identifier of the task taskID, atomic or compound, that the robots must complete
at a given location with identifier locationID,

MissionTask
id : MissionTaskID
taskID : TaskID
locationID : LocationID

There are three types of optimisation objectives related to the mission. The user can se-
lect between minimising the time that the robots stay idle (minimiseIdle), minimising the
travelling cost of travelling between locations to complete the mission (minimiseTravel)
and maximising the probability of succeeding with the mission (maximiseSuccess),

OBJ ::= minimiseIdle | minimiseTravel | maximiseSuccess

The six types of constraints are defined as,
(a) rateSucc: the rate of successfully completing a mission,
(b) spaceXY : the strict coordinates on which a robot can have allocated tasks. In the
Z notation, this is divided into four combinations constraining the coordinates x and y
(XY), and the restriction of being greater or lower than (GLT). We define the coordinates
and restrictions as,

XY ::= x | y

GLT ::= greater | lower

(c) taskTime: define the start or completion time of an atomic or compound task, and
mtaskTime for mission tasks. We define the start or end restriction as,

STARTEND ::= start | end

(d) allocateT : assign an atomic or compound task to a designated robot; allocatemT
assigns a mission task to a specified robot. Similarly, for assigning all tasks to a single
(undefined) robot, utilise allocTtogether and allocmTtogether ;
(e) closest: allocate an atomic or compound task to the closest robot; similarly, closestmT
allocates the mission task (and all recursive subtasks from its compound tasks) to the
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closest robot.
(f) maxTasks: limit the maximum number of tasks to assign to a robot.
These constraints are shown in the following schema,

Constraints
rateSucc : N
spaceXY : P((RobotID × XY ×GLT )× N)
taskTime : P((TaskID × STARTEND)× N)
mtaskTime : P((MissionTaskID × STARTEND)× N)
allocateT : P(TaskID × RobotID)

allocatemT : P(MissionTaskID × RobotID)

allocTtogether : PTaskID
allocmTtogether : PMissionTaskID
closest : PTaskID
closestmT : PMissionTaskID
maxTasks : P(RobotID × N)

0 < rateSucc ≤ 100

Finally, a mission is defined as the set of mission tasks tasks, the set of objectives and
constraints and the mission parameter, time, defining a deadline to complete the mission.

Mission
tasks : PMissionTask
constraints : Constraints
objectives : POBJ
time : N

As detailed in the following chapters, a time deadline is essential to the mission because
of the approach used to solve the task scheduling problem within the KANOA framework.
The KANOA task scheduler generates a state-transition model that tracks the robots’
progress on tasks, and the time limit defines the maximum allowable idle time for the
robots. Without this bound, the idling state variable overflows leading to a state explosion.
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4.2.6 Problem Specifications

Syntax. We can now define the problem specification as shown in Table 4.4: (a) the world
model; (b) the tasks model; (c) the robots available; and (d) the mission to be carried
out by the robots,

ProblemSpecification{ WorldModel: world
TaskModel:task
RobotsModel:robot
Missions:miss }

Formal Specification. Finally, we formally define the system specification as,

ProblemSpecification
worldModel : World
tasksModel : TaskSet
robotsModel : PRobot
mission : Mission

KANOA DSL is domain-specific in the sense that it focuses on multi-robot system
missions; however, it is generic in its support of different applications and scenarios. For
example, it can be used to define a hospital MRS mission where robots must clean and
rearrange medical equipment (as presented in Section 4.3) or in the description of the
deployment of an MRS to map a natural disaster area in a search-and-rescue scenario.

To ensure that the specifications written in Z notation are well-formed, we verified it
using the fuzz typechecker for Z [54]. Fuzz is a collection of tools that check Z specifications
for correctness in their formulae and compliance with the Z scope and type rules. It is
built to check the grammar and correctness in Z specifications written in a dedicated Z
LATEX package.

Complexity of the problem specification and discussion. To discuss the com-
plexity arising from the specification of the problem, we discussed each of its parts sep-
arately. The world model depends on the number of locations Location and the number
of paths dist. For nl number of locations, the number of paths np can be calculated as
the number of edges in a graph of length np = nl(nl−1)

2
. This represents an upper bound

since users can disregard some paths due to real-world constraints. The KANOA DSL is
agnostic to the motion planning used to travel between two locations. KANOA DSL does
not support the direct encoding of properties such as the elimination of subtours affecting
MRS travelling salesman problems (in which trajectories are not continuous as discon-
nected paths, called subtours, exist)3. However, as described in the following Chapters,

3Subtour elimination inequalities is a crucial concept in solving the Traveling Salesman Problem (TSP),
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these properties are not necessary for the types of solutions implemented in the KANOA
tool (Chapter 7.1).

The size of the robot model depends on the number of robots and the number of
capabilities nr

cap for each robot r , i.e. Σrnr
cap. The task model allows us to specify (atomic

and compound) tasks only once and reuse them as part of the subtasks of compound
tasks. This reduces the size of the task model to the sum of the number of atomic tasks
and compound tasks nat + nct .

The mission specification complexity is linear in the number of mission tasks nmt , the
number of constraints nc. Hence, the complexity of the mission specification is linear as
nl , np, nat , nct , ncap, nc ∈ N are finite.

Finally, we can conclude that the problem specification is linear in the size of robots,
task and mission models, but exponential in the size of the world model. As the number
of paths in the world model increases combinatorially with the number of locations, the
KANOA tool (introduced in Chapter 7.1) simplifies the writing on the KANOA DSL
by providing an option to automatically represent all unspecified paths as the Euclidean
distance between any two locations.

4.3 Hospital Case Study

In this section, we illustrate the use of the KANOA DSL to specify a hospital MRS
mission in which a set of robots must complete a series of tasks inspired by the robot
missions from the RoboMAX catalogue [20]. In the hospital, patient rooms must be kept
clean, and medical equipment has to be moved around to perform daily operations in the
surgical room. We describe a concrete scenario where the physical space consists of six
rooms, Room1 to Room6 as depicted in Figure 4.6. Rooms 1 and 6 are surgical rooms,
where robots must move the surgical equipment into place to make it ready for the next
operation. Rooms 2 to 5 are patient rooms that the robot must clean in a certain manner.
Hence, the mission consists of six mission tasks (M1 to M6), where M1 and M2 require
rearranging rooms 1 and 6, and M3–M6 require robots to clean patient rooms 2 to 5.

Moving medical equipment (AT1) is a task requiring two robots to meet and coordinate
in the room to complete the task. Cleaning a patient’s room (CT2) is a task consisting
of two subtasks. First, the patient must be notified that the robot is about to start
cleaning (AT4). Second, the robot must proceed to clean the room (CT1), which comprises
cleaning the floor (AT2) and sanitising the room (AT3), in no specific order. Notice that
the subtasks of CT2 are required to be done in that specific order and each of the subtasks

particularly in integer programming formulations. The main purpose of these inequalities is to ensure
that any feasible solution to the TSP visits every vertex exactly once, thereby eliminating the possibility
of isolated loops [154]. The TSP involves finding the shortest possible route that visits a set of cities
exactly once and returns to the origin city.
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Figure 4.6: Floor plan of hospital area with six rooms serviced by robots r1-r5. Crosses
mark the locations that robots must reach to start a task in each room, and blue rectangles
denote medical equipment (inspired by [155]). The red lines show a possible robots’
schedule to clean rooms 2 to 4, and to move equipment in rooms 1 and 6.

requires only one robot to complete them.
There are five robots available within the hospital (r1 to r5). Robots r1–r3 are cleaner

robots able to sanitise rooms, clean the floor and communicate with patients when they
start cleaning (i.e., they are capable of performing tasks at2--at4). Robots r4 and r5 are
pick-and-place robots able to rearrange equipment and cooperate between them to pick
up larger objects (i.e., capable of performing task at1). Each robot has a given speed
and a given probability and time of completing a task, as shown in Table 4.5. At the
beginning, the robots are located in the robot storage room.

The layout in Figure 4.6 has its origin on the lower left side and each square measures
1×1 units. Hence, we know the exact X and Y initial position of the robots and the
location at each room (marked with a cross) where robots must report to start activities
in these rooms. The length of paths between any two locations is also known beforehand.4

Besides task constraints imposed within the tasks definitions, such as the number of
robots required to complete a task and the ordering in which some of the tasks must be
completed, there are other constraints that the robots must consider when completing
the mission: (a) the mission must be completed within 120 time-units; (b) the mission
must be completed with a rate of success greater than 90%; (c) robot r3 must be close
to patient room room5 because the patient is in critical condition, hence a constraint
is placed to move r3 only in positions where x>9 and y<7, and the mission in room5

4The coordinates of each of the rooms’ locations, the initial positions of the robots and the travel
distances between locations are shown in Z schema boxes in Section 4.3.2.
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Table 4.5: Robot parameter values for the hospital case study: velocity (meters/minute),
probability of completing a task and time to complete a task (minutes). NA means not
apply as the robot does not possess the capability to perform the task.

Time to complete
task ATi

Probability of completing
task ATi

Robot Type
Initial
Loc.

Velocity
AT1
(move)

AT2
(floor)

AT3
(sanit)

AT4
(notify)

AT1 AT2 AT3 AT4

r1 cleaner l1 1 Na 5 5 1 Na 0.95 0.95 0.99
r2 cleaner l2 1 Na 5 4 1 Na 0.85 0.85 0.90
r3 cleaner l3 2 Na 6 6 1 Na 0.99 0.99 0.99
r4 p & p l4 2 4 Na Na Na 0.99 Na Na Na
r5 p & p l5 2 4 Na Na Na 0.99 Na Na Na

is explicitly assigned to r3; and (d) probability of a robot moving successfully between
rooms 2 and 3 is set to 90% as the two rooms are linked by a narrow hall where the robots
may collide with the walls.

Finally, the mission must be completed optimising three objectives: (i) minimisation
of idle time, (ii) maximisation of the probability of success, and (iii) minimisation of the
travelling cost. These objectives are not independent, and optimising one may affect the
optimisation of the others. For example, minimising the travelling cost may mean that
a robot spends more time at the location where the tasks are to be completed, which in
turn means that the idling waiting for other robots to complete some of their tasks may
increase. Also, robots that have a greater probability of success may be successful because
they travel slower and are at less risk of collision; hence, maximising the probability of
succeeding with the mission may increase the travelling cost.

So far, we have described the different parts of the hospital, the mission to be ac-
complished and the set of constraints and optimisation objectives. For the mission to
be accomplished, a plan must be created such that the robots must know what tasks
to do, how to reach the locations of these tasks, and at what time to do so. The red
trajectories in Figure 4.6 show an example of how the robots can be deployed following
their synthesised plans. This problem is further explored in Chapters 5 and 6.

4.3.1 Hospital Case Study in KANOA DSL

We encoded the hospital case study using the KANOA DSL as introduced in Section 4.2.1.
Figure 4.7 shows the problem specification containing the hospital world model, the tasks
model, the robots available to be deployed and the hospital mission. The WorldModel
shows the locations of the six rooms, and the locations l1-l5 of the robots, followed by
(a subset of) the possible paths between two locations.

The TaskModel depicts the four atomic tasks at1-at4, the number of robots required
for each of these tasks, and the locations to complete these tasks. For example “at1 :
2 robots needed at location l1,” means that there is an atomic task with identifier
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Figure 4.7: KANOA tool screenshot showing DSL encoding of the hospital MRS mission
from Section 4.3.
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at1 requiring 2 robots at location l1 to be accomplished. This location can be changed
when defining the mission tasks, as we proceed to do later on.

The RobotModel shows the five robots available at the hospital. For example, the first
robot is defined as “r1:at initial position l1 has velocity 2.0 with capabilities
...” followed by its set of capabilities. Its first capability is written as “at2-required
time: 5.0, success rate: 99.0%,” meaning that robot r1 requires 5 time units to
complete task at2 and succeeds with this task 99.0% of the times. The robot’s perfor-
mance information is previously provided in Table 4.5.

Next, the Mission is formed by the list of mission tasks to be done by robots and
the associated mission objective, constraints and parameters. The mission task “m1:
atomic task at1 at location room1” has identifier m1 and requires the robots to per-
form atomic task at1 at room1. The mission optimisation objectives require to minimise
the idling time (minimiseIdle), minimise the travelling cost (minimiseTravel) and
maximise the probability of succeeding with the set of mission tasks (maximiseSuccess).
There are three mission constraints: the rate of succeeding with the mission must be
greater than 90%, robot r3 must work in a section of the hospital where x is greater
than 9 units and y is lower than 7 units. Robot r3 is also assigned to mission m6.
Finally, the mission parameter specifies a time limit of 120 time units for completing the
mission (time:120).

4.3.2 Hospital Case Study Formalisation

In the hospital case study, there are 6 rooms. We define the location identifiers of rooms
1 to 6 as room1 − room6, and their coordinates; for example, the coordinates of room1
and room2 are (2,3) and (1,7), respectively.

room1, room2, room3, room4, room5, room6 : LocationID
Room1,Room2,Room3,Room4,Room5,Room6 : Location

Room1.id = room1 ∧ Room1.x = 2 ∧ Room1.y = 3

Room2.id = room2 ∧ Room2.x = 1 ∧ Room2.y = 7

Room3.id = room3 ∧ Room3.x = 4 ∧ Room3.y = 1

Room4.id = room4 ∧ Room4.x = 10 ∧ Room4.y = 1

Room5.id = room5 ∧ Room5.x = 10 ∧ Room5.y = 5

Room6.id = room6 ∧ Room6.x = 9 ∧ Room6.y = 7

We also describe locations related to the initial positions of the robots
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loc1, loc2, loc3, loc4, loc5 : LocationID
Loc1,Loc2,Loc3,Loc4,Loc5 : Location

Loc1.id = loc1 ∧ Loc1.x = 1 ∧ Loc1.y = 1

Loc2.id = loc2 ∧ Loc2.x = 2 ∧ Loc2.y = 1

Loc3.id = loc3 ∧ Loc3.x = 6 ∧ Loc3.y = 7

Loc4.id = loc4 ∧ Loc4.x = 7 ∧ Loc4.y = 7

Loc5.id = loc5 ∧ Loc5.x = 8 ∧ Loc5.y = 7

We now define the world model with the rooms and robot locations, as well as the
paths between them. In the following schema, we only show the paths between the robots
and the rooms to reduce space,

hospitalWorld : World

hospitalWorld.locations = {Room1,Room2,Room3,Room4,Room5,Room6,Loc1,
Loc2,Loc3,Loc4,Loc5}

hospitalWorld.dist(l1, room1) = 2 ∧ hospitalWorld.dist(l1, room2) = 6

hospitalWorld.dist(l1, room3) = 3 ∧ hospitalWorld.dist(l1, room4) = 9

hospitalWorld.dist(l1, room5) = 12 ∧ hospitalWorld.dist(l1, room6) = 14

hospitalWorld.dist(l2, room1) = 2 ∧ hospitalWorld.dist(l2, room2) = 6

hospitalWorld.dist(l2, room3) = 2 ∧ hospitalWorld.dist(l2, room4) = 8

hospitalWorld.dist(l2, room5) = 11 ∧ hospitalWorld.dist(l2, room6) = 13

hospitalWorld.dist(l3, room1) = 7 ∧ hospitalWorld.dist(l3, room2) = 5

hospitalWorld.dist(l3, room3) = 7 ∧ hospitalWorld.dist(l3, room4) = 8

hospitalWorld.dist(l3, room5) = 5 ∧ hospitalWorld.dist(l3, room6) = 3

hospitalWorld.dist(l4, room1) = 8 ∧ hospitalWorld.dist(l4, room2) = 6

hospitalWorld.dist(l4, room3) = 8 ∧ hospitalWorld.dist(l4, room4) = 7

hospitalWorld.dist(l4, room5) = 4 ∧ hospitalWorld.dist(l4, room6) = 2

hospitalWorld.dist(l5, room1) = 9 ∧ hospitalWorld.dist(l5, room2) = 6

hospitalWorld.dist(l5, room3) = 9 ∧ hospitalWorld.dist(l5, room4) = 6

hospitalWorld.dist(l5, room5) = 3 ∧ hospitalWorld.dist(l5, room6) = 1

hospitalWorld.succRate(room2, room3) = 90

hospitalWorld.succRate(room3, room2) = 90

The tasks to be done in the hospital consist of: (a) cleaning an empty room ct1 clean,
(b) cleaning a patient room ct2 patient, and (c) moving medical equipment at1 move.
Cleaning an empty room is a compound task with two atomic subtasks: floor cleaning
at2 floor and room sanitising at3 sanit. Cleaning a patient’s room (ct2 patient) consists
of notifying the patient in the room that the cleaning is about to start at4 notify, fol-
lowed by compound task ct1 clean. Lastly, moving medical equipment is an atomic task
requiring two robots. The tasks are defined as:
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ct1 clean, ct2 patient : CTaskID
at1 move, at2 floor , at3 sanit, at4 notify : ATaskID

AT1,AT2,AT3,AT4 : AtomicTask

AT1.id = at1 move ∧ AT2.id = at2 floor ∧ AT3.id = at3 sanit ∧ AT4.id
= at4 notify
AT1.nRobots = 2 ∧ AT2.nRobots = 1 ∧ AT3.nRobots = 1 ∧ AT4.nRobots = 1

Notice that we did not set the locations of the atomic tasks (e.g., AT2.locationID =
room1), as we define them later when the mission is specified. Continuing,

CT1,CT2 : CompoundTask

CT1.id = ct1 clean ∧ CT1.subtasks = ⟨at2 floor , at3 sanit⟩
∧ CT1.constraint = none

CT2.id = ct2 patient ∧ CT2.subtasks = ⟨at4 notify, ct1 clean⟩ ∧ CT2.constraint
= ordered

hospitalTasksSet : TaskSet

hospitalTasksSet.atomicTasks = {AT1,AT2,AT3}
hospitalTasksSet.compoundTasks = {CT1,CT2}

Continuing with the robot’s model, there are five robots available at the hospital: three
cleaners, r1-r3; and two pick-and-place, r4 and r5,

r1, r2, r3, r4, r5 : RobotID

Robots with identifiers r1-r3 have the capabilities to clean rooms (atomic tasks at2 floor
and at3 sanit), as well as notify a patient that a robot is about to clean the room (perform
task at4 notify). We use the form “CapXrN” to define the capability of accomplishing
X of robot N. We now define robots with identifiers r1-r3 (their tasks, completion times
time and success rates succRate for each of its capabilities) as,

90



CHAPTER 4. MISSION SPECIFICATION

Cap1r1,Cap2r1,Cap3r1 : Capability
Cap1r2,Cap2r2,Cap3r2 : Capability
Cap1r3,Cap2r3,Cap3r3 : Capability

Cap1r1.task = at2 floor ∧ Cap1r1.time = 5 ∧ Cap1r1.succRate = 95

Cap2r1.task = at3 sanit ∧ Cap2r1.time = 5 ∧ Cap2r1.succRate = 95

Cap3r1.task = at4 notify ∧ Cap3r1.time = 1 ∧ Cap3r1.succRate = 99

Cap1r2.task = at2 floor ∧ Cap1r2.time = 5 ∧ Cap1r2.succRate = 85

Cap2r2.task = at3 sanit ∧ Cap2r2.time = 4 ∧ Cap2r2.succRate = 90

Cap3r2.task = at4 notify ∧ Cap3r2.time = 1 ∧ Cap3r2.succRate = 85

Cap1r3.task = at2 floor ∧ Cap1r3.time = 6 ∧ Cap1r3.succRate = 99

Cap2r3.task = at3 sanit ∧ Cap2r3.time = 6 ∧ Cap2r3.succRate = 99

Cap3r3.task = at4 notify ∧ Cap3r3.time = 1 ∧ Cap3r3.succRate = 99

Similarly, robots with identifiers r4 and r5 can move medical equipment. Hence, we
define the capability of moving equipment for robot r4 (Cap1r4) and robot r5 (Cap1r5)
as,

Cap1r4,Cap1r5 : Capability

Cap1r4.task = at1 move ∧ Cap1r4.time = 4 ∧ Cap1r1.succRate = 97

Cap1r5.task = at1 move ∧ Cap1r5.time = 4 ∧ Cap1r2.succRate = 98

The robots have respective initial locations given by l1,...l5 identifiers, as specified in the
world model. Hence, we define each robot by its identifier, velocity and set of capabilities,

R1,R2,R3,R4,R5 : Robot

R1.id = r1 ∧ R1.initLocation = l1 ∧ R1.velocity = 1 ∧ R1.capabilities
= {Cap1r1,Cap2r1,Cap3r1}

R2.id = r2 ∧ R2.initLocation = l2 ∧ R2.velocity = 1 ∧ R2.capabilities
= {Cap1r2,Cap2r2,Cap3r2}

R3.id = r3 ∧ R3.initLocation = l3 ∧ R3.velocity = 2 ∧ R3.capabilities
= {Cap1r3,Cap2r3,Cap3r3}

R4.id = r4 ∧ R4.initLocation = l4 ∧ R4.velocity = 2 ∧ R4.capabilities
= {Cap1r4}

R5.id = r5 ∧ R5.initLocation = l5 ∧ R5.velocity = 2 ∧ R5.capabilities
= {Cap1r5}

We define the hospital mission as the list of tasks to be done by the robots: rear-
range medical equipment in rooms 1 and 6 (m1,m2); and clean patient rooms room2 to
room5 (m3−m6),
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m1,m2,m3,m4,m5,m6 : MissionTaskID

M1,M2,M3,M4,M5,M6 : MissionTask

M1.id = m1 ∧ M1.taskID = at1 move ∧ M1.locationID = room1

M2.id = m1 ∧ M2.taskID = at1 move ∧ M2.locationID = room6

M3.id = m1 ∧ M3.taskID = ct2 patient ∧ M3.locationID = room2

M4.id = m1 ∧ M4.taskID = ct2 patient ∧ M4.locationID = room3

M5.id = m1 ∧ M5.taskID = ct2 patient ∧ M5.locationID = room4

M6.id = m1 ∧ M6.taskID = ct2 patient ∧ M6.locationID = room5

We can define the constraints of the mission as follows. First, the rate of success must
be at least 90%; then, robot r3 is constrained to accept tasks only within the coordinates
x > 9 and y < 7,

hospitalConstraints : Constraints

hospitalConstraints.rateSucc = 90

hospitalConstraints.spaceXY = {(r3, x , greater) 7→ 9, (r3, y, lower) 7→ 7}

Now we define the hospital mission as,

hospitalMission : Mission

hospitalMission.tasks = {M1,M2,M3,M4,M5,M6}
hospitalMission.constraints = hospitalConstraints
hospitalMission.objectives = {minimiseIdle,minimiseTravel,maximiseSuccess}
hospitalMission.time = 120

Lastly, we can define the hospital problem specifications as,

HospitalScenario : ProblemSpecification

HospitalScenario.worldModel = hospitalWorld
HospitalScenario.tasksModel = hospitalTasksSet
HospitalScenario.robotsModel = {R1,R2,R3,R4,R5}
HospitalScenario.mission = hospitalMission

Similarly to Section 4.2.1, we used the Z notation checker fuzz [54] to ensure that the
instantiation of the hospital case study is well-formed.

4.3.3 Discussion

KANOA’s DSL is designed in a separation-of-concerns fashion. As it draws a separation
between the world model, tasks model, robots model and the mission itself, it makes it
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easier to identify the relation between these parts of an MRS problem and any existing
constraints to be modelled. For example, the probability of succeeding when travelling
between locations concerns the world model. Hence, this type of constraint is encoded into
the paths as part of the world model. Another advantage to exploit in future work is that
if a new MRS problem requires the extension of the problem definition, KANOA’s problem
specification design makes it easier to add these extensions. For example, consider a group
of mobile robots to be deployed in a search-and-rescue scenario where some robots have
newer wheels better adapted to the terrain. In this case, the designer may modify the
probability of succeeding with the paths to be dependent on the robots, from:

path ::= distance locID1 to locID2 is v
(and success rate:v[0,100] % )?

by adding the robot’s dependency as:

path ::= distance locID1 to locID2 is v
(and success rate:v[0,100] % for robot robID)?

Similarly, as robotic task decomposition5 has been the centre of attention in multi-
ple studies such as in [156], an extension of the current syntax can add also add these
alternatives to subtasks by modifying the compound task specification as:

c task ::= ctID : subtasks [
{ (ctID | atID)
((,ctID | ,atID))∗ }
] (constraint: ordered | constraint:consecutive)?

to:
c task ::= ctID : subtasks [

{ (ctID | atID) ((or ctID | or atID))∗

( , (ctID | atID) ((or ctID | or atID))∗ )∗ }
] (constraint: ordered | constraint:consecutive)?

In the following chapters, we map the semantics of KANOA problem specification to
models for the task allocation and scheduling, and the generation of robot plans. If the
current problem specification is modified, the semantics must capture these changes.6

5By task decomposition we mean the possibility of having logical ors in the subtasks of compound
tasks rather than only a sequence of these (implicitly defining logical ands). This flexibility allows for
diverse configurations of subtasks to define the same compound task.

6We also propose methods that ease the adoption of new constraints for the task allocations and the
task scheduling problems, described in Sections 5.7 and 6.8, respectively.
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4.4 Related Work

Early applications of robotic systems deployed in the industry rely on tailored controllers
following pre-defined tasks [20]. However, as these systems are increasingly used in more
complex critical domains such as search-and-rescue and healthcare, so is the need to de-
fine robotic missions unambiguously. Beyond natural language, multiple approaches have
been considered for the specification of robotic missions throughout the years, includ-
ing hierarchical representations such as HTN [88] and precedence diagrams [139, 140];
language-based such as PDDL [23, 138] and formal grammars [128, 130]; motion-based
such as movement primitives [136] and Jacobian trajectories [129]; and logic-based ap-
proaches [89,104]. Among this spectrum of solutions, the last one offers an unambiguous
common language for the specification of robotic missions, and has been successfully used
for the specification of such missions. These findings are summarised in Table 3.7, part
of the literature review carried out in Chapter 3.

Different types of temporal logic have been widely explored for mission specifications.
These logics provide formal languages avoiding ambiguity in the specifications of missions
and mission requirements. The most common found in the literature is LTL [25,27,28,86,
104]. Researchers choose this formalism for several reasons. Firstly, it is widely recognized
and has been effectively utilised in specifying robotic missions. Secondly, it provides
simpler semantics compared to other logic. Lastly, it is integrated into formal techniques
such as model checking for verifying LTL properties and reactive synthesis for generating
models from LTL formulae such as Büchi automata, NBA and NFA. These findings are
illustrated in Table 3.6, Chapter 3, showcasing recent studies that have employed LTL in
the context of robotic systems.

One of the limitations of LTL is that it can only be used for qualitative verification
of single traces (i.e. linear time). Properties such as “perform task A before task B” can
be expressed in LTL. However, LTL falls short when it comes to representing temporal
constraints reasoning about time-bound scenarios like “perform task B within 10 minutes
of task A”. To overcome this limitation, in [89] and [100], Gundana D. et al. employ
event-based Signal Temporal Logic (STL) which introduces the time-bounded eventually,
always and until operators. A logic based on STL called Capability Temporal Logic
(CaTL) is successfully employed by Leahy K. et al. [92]. Our QUARTET catalogue allows
the specification of properties using these bounded operators with patterns such as pause
and timeout. Moreover, the use of RPCTL logic in QUARTET allows the specification
of quantitative properties such as maximising energy while performing a mission. To
the best of our knowledge, the only other study that uses RPCTL for the specification
of robotic mission properties is [133] to reason about the minimum time to reach the
goal (Emin=?(Fgoal)), the maximum remaining energy (Emax=?(Fgoal)) and the maximum
probability of collision (Pmax=?[F(goal ∧ ¬collided)]. The QUARTET repository supports
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all of these properties. RPCTL properties allow the verification of some probabilistic state-
transition models (see Section 2.3.1). Rewards in properties identified by the symbol E
refer to a real positive value that is increased at specific states or transitions described
within the probabilistic model under consideration. In PRISM, these are defined within
reward structures. We refer the reader to [73] for further information..

Due to the intricacy of logic languages, multiple domain-specific languages have been
created for the description of robotic systems [84, 112, 114]. For example, PsALM [36]
provides a structured English grammar for the specification of missions, which is trans-
lated into LTL and CTL [2]. NASA’s Formal Requirements Elicitation Tool (FRET)
provides support to write their system’s requirements using a restricted natural language.
This general-purpose tool provides the automatic elicitation of properties in metric tem-
poral logic and has been explored for robotic scenarios [157, 158]. In contrast, KANOA
is designed as a user-friendly language for the specification of missions for mobile robots
designed in a separation-of-concerns fashion. The semantics of KANOA is formalised in
Z notation and its semantics can be tailored for the application in hand. In Chapters 5
and 6, we use KANOA as the starting point for the allocation and scheduling of robotic
tasks.

Multiple catalogues for logic specifications have emerged easing the adoption of tem-
poral logic requirements. Two of the most known come from software engineering, [159]
and [160]. In contrast, repositories of patterns for the specification of mobile robot mis-
sions (e.g., PsALM [36] and QUARTET) employ different types of patterns focusing on
agents (robots), locations and the quality of completing such missions (e.g., verifying that
the battery’s energy is more than 20% when the mission is completed). ROBOMAX [20]
is a living repository of robotic missions described in natural language whose missions are
worth exploring in future work.
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4.5 Summary

In this chapter, we described the QUARTET catalogue, a new repository of quantitative
robotic mission specifications. As part of this thesis, we presented its semantics that map
QUARTET quantitative specification patterns to a type of temporal logic that supports
the quantitative reasoning of probabilities and costs, RPCTL. We also developed a tool
for the automatic formalisation of these mission specifications to ease its adoption.

Additionally, we proposed the KANOA DSL, a user-friendly domain-specific language
for the specification of multi-robot system missions underpinned by a separation of con-
cerns approach. We presented the KANOA DSL syntax and formalised its components
using the Z notation. Also, we introduced a hospital case study, from which we instanti-
ated the KANOA DLS and its associated Z notation, to illustrate the use of KANOA for a
concrete MRS mission. Within the definition of a mission, we described the tasks that the
robots must perform, a set of objectives, constraints and parameters associated with the
mission. We note that the KANOA DSL can be expanded to other types of constraints;
for example, by adding a constraint specifying that there cannot be more than N robots
in a room at the same time, or by specifying the initial level of energy within the robots’
description and the required energy while travelling or performing tasks within the world
and the task models.
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Chapter 5

Task Allocation
The multi-robot task allocation problem involves the partitioning of the tasks among the
available robots. Assigning tasks to robots is a challenging endeavour due to the existence
of compound tasks (tasks with subtasks), temporal and spatial task constraints, robots’
heterogeneity, and the unreliability of sensors and actuators, along with the search for an
optimal allocation [9]. In the most general scenario, the solution space for task allocation
increases exponentially with the number of robots and tasks. For T number of tasks to
be allocated into R robots, there are RT possible allocations. However, relevant practical
constraints can significantly narrow this solution space. These constraints include spatial
limitations, the maximum number of allocated tasks per robot, and the specific capabilities
of the robots dictating the types of tasks they can undertake. For example, suppose only
one robot is capable of performing pick-and-place operations. In that case, all such tasks
will be assigned to that single robot, narrowing the solution space to just one possibility.
We presented the KANOA DSL for specifying constraints relevant to the task allocation
problem. This chapter examines how they can be utilised to generate effective multi-robot
task allocations.

The diversity of variants in the definition of the task allocation problem has opened
the door to a vast variety of solutions, some of which are described in Section 3.3 and Ta-
ble 3.4. That table mentions, for example, a study that compares multiple auction-based
and optimisation-based techniques for solving different variants of the task allocation prob-
lem [41]. Most solutions proposed for the task allocation problem are optimisation-based
techniques, such as the min-max algorithm [95], a centralised optimisation algorithm that
aims to allocate a set of limited resources among a group of robots in a way that min-
imises the maximum cost of a variable (e.g., the total travelling cost) over a set of possible
allocations. This is a centralised approach that requires a central authority to allocate
resources based on a predetermined set of rules and constraints. In contrast, auction-
based allocation is a decentralized approach that involves entities bidding for resources
in an auction. In this auction, the entities compete with each other by offering prices or
bids for the resources they need. The resources are then allocated to the highest bidder,
and the process is repeated until all resources are allocated. Another technique is the
multi-travelling salesman problem, where there are multiple robots, each of which must
visit a set of task locations exactly once and return to their starting point such that the
distance travelled by all robots combined is minimised.

As detailed in the literature review from Chapter 3, existing algorithms cannot pro-
vide formal guarantees that the resulting allocations comply with the types of mission
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requirements considered in this thesis. This is a problem especially when there is a large
number of constraints or the mission constraints are too complex for a human to deter-
mine whether the allocation fulfils all of them. A solution to this satisfiability problem
is the use of SAT solvers, model checkers and constraint solvers to generate allocations
complying with such set of requirements.

In this chapter, we introduce the KANOA task allocator, a new approach to solving
the task allocation problem for a group of heterogeneous robots under a set of constraints,
while assuring that the solutions comply with the mission requirements. We use a model
generator for the generation of potential allocations, and a SAT solver for the analysis
of the allocations. These engines are part of the Alloy Analyzer, previously introduced
in Section 2.2. Therefore, we use the Alloy language for the description of the allocation
problem and the Alloy analyzer for the generation and analysis of solutions.

This chapter is divided as follows. Section 5.1 introduces the KANOA task allocation
problem. Section 5.2 describes a pre-allocation stage for the pre-processing of the problem
specification. Sections 5.2 and 5.3 present pre-allocation and allocation components of
the KANOA task allocator, respectively. Section 5.4 illustrates the application of the
KANOA allocation to the hospital case study. The advantages and limitations of the
KANOA task allocation are then discussed in Section 5.5. Finally, Sections 5.6 and 5.7
review related work and summarise the chapter, respectively.

5.1 Task Allocation Problem

In Chapter 4, we used the Z notation to define the problem specification. This section
formalises the task allocation problem using the Alloy language [55], a declarative language
inspired by the Z notation and previously introduced in the background part of the thesis
(Section 2.2). The Alloy language is a formal modelling language for software design that
is based on set theory and relational theory, and shares similarities with the Z notation.
In [161], Bolton shows how to use the Alloy Analyzer to verify data specified in the Z
notation. We follow this approach to generate a model in the Alloy language that can be
used as an input for the task allocator. In other words, given a problem defined in the
KANOA DSL, we can transform it into an Alloy language model that can be fed into the
task allocator.

In the previous chapter, we captured the MRS mission allocation problem by means
of a formal specification divided into: the world model, the tasks model, the robots model
and the mission, each of which was formalised in the Z notation. To solve the task
allocation problem, we extract from this specification the information relevant to this
problem and convert it to an Alloy model similar to the Z specification. We are interested
in finding allocations of tasks to robots that comply with the following types of constraints
(introduced in Section 4.2):

98



CHAPTER 5. TASK ALLOCATION

Process

Artifact

Database

Allocations

End-user
and MRS
experts

KANOA
Database
and artifacts

KANOA
Process

Problem specific.
[DSL]

Problem specif.,
task tree, world model

Pre-allocation

-instantiate tasks
-change task locations
-pre-allocate tasks to robots
-time windows

Task Allocation

Figure 5.1: Overview of the KANOA workflow from the specification of the problem to
the generation of task allocations.

• (C1) spaceXY. Restricts the physical working space of one or more robots.

• (C2) allocateT. Enforces the allocation of a task to a specific robot.

• (C3) closest. Enforces the allocation of a task to the closest robot.

• (C4) maxTasks. Bounds the maximum number of tasks allocated to a robot.

We note that the allocation must assign a task to more than one robot if this task is
defined as a joint task.

The steps followed by KANOA for the generation of allocations from the problem
specifications defined by end-users and MRS domain experts are shown in Figure 5.1.
First, a pre-allocation step creates the tree-like structure containing task instances and
saves the rest of the information from the problem specification into KANOA’s database.
This database is then accessed by the task allocator in a second step, to generate feasible
allocations of tasks to robots as explained in the next section.

We define two new entities necessary for the allocation of tasks to robots: atomic
and compound task instances. A robotic mission may require performing a task more
than once, e.g., at different locations. The mission example in Section 4.3.2 requires the
robots to complete two mission tasks M1,M2 : MissionTask.1 Both mission tasks require
the compound task with identifier ct2 patient : CTaskID to be performed (M1.taskID,

M2.taskID = ct2 patient) at different locations. To support this, we define instantiation
of compound or atomic tasks for a given problem specification p,

p : ProblemSpecification

Definition 5.1.1 (Atomic task instance) An instance of an atomic task from the prob-
lem specification p is defined by the data type AtomicTaskInst, which comprises a type that

1CompoundTask, AtomicTask, Mission, etc. are defined in the problem specification in Section 4.2.
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maps the instance of the atomic task to its uninstantiated counterpart, a unique id of type
ATInstanceID, the number of robots nRobots required to execute the task (which has the
value type.nRobots), and locationID, the identifier of the location where the instantiated
task has to be performed.

[ATInstanceID]

AtomicTaskInst
type : AtomicTask
id : ATInstanceID
nRobots : N
locationID : LocationID

type ∈ p.taskModel.atomicTasks
nRobots = type.nRobots

We note that an atomic task instance at : AtomicTaskInst may have a different location
than the uninstantiated task, i.e., at.locationID ̸= at.type.locationID may hold. Com-
pound task instances are defined similarly.

Definition 5.1.2 (Compound task instance) An instance of a compound task from
the problem specification p is defined by the data type CompoundTaskInst, which com-
prises the non-instantiated task (type), a unique identifier id, and the sequence subtasks
of identifiers for its instantiated subtasks. As an example, the subtasks for the instantiated
version of an uninstantiated compound task with subtask IDs [at1, ct2] may be given by
[at1 1, ct2 1].

[CTInstanceID]

TaskInstID = ATInstanceID ∪ CTInstanceID

CompoundTaskInst
type : CompoundTask
id : CTInstanceID
subtasks : seq TaskInstID

type ∈ p.taskModel.compoundTasks

Instances of (atomic and compound) tasks are obtained from mission tasks. Let
mission ∈ Mission be the mission specification, where mission.tasks is the set of tasks to
be performed by the robots; we define a task instance for every t ∈ mission.tasks. If t is
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a compound task, its subtasks are also instantiated recursively until all descendants are
instantiated2. We refer to the set of all atomic task instances as AtomicTaskInst. This is
the set of tasks to be allocated to robots..

Continuing, we define a feasible problem specification. This definition is required for
the task allocation problem to have a solution (i.e., a non-empty set of allocations.

Definition 5.1.3 (Feasible problem specification) A problem specification PS is called
feasible if there exist (a) all robots in the required number (for joint tasks) (c) that can
travel to the respective task locations and (b) with the necessary capabilities to complete
all tasks defined as part of the mission.

We now define an allocation as follows.

Definition 5.1.4 (Allocation) Given a feasible problem specification PS s.t. the robot
capabilities are available to complete all tasks in the problem specifications, the number
of robots... s.t. an allocation can be synthesised An allocation is a partial function that
maps robots (from the problem specification p) to the sets of tasks they are assigned to
complete.

alloc : Robot 7→ PATInstanceID

dom alloc ⊆ p.robotsModel⋃
{r : dom alloc • alloc r} = AtomicTaskInst
∀(r , t) ∈ alloc • ∃ a : AtomicTaskInst • (a.id = t ∧

a.type.id ∈
⋃
{c : r .capability • c.task})

Note that alloc is a partial function as some robots may not be deployed, even though
they are declared in the problem specification p.3 Tasks can only be assigned to robots
that possess the capability to perform them, as expressed by the last predicate from the
definition.

Finally, we define the allocation problem as follows.

Definition 5.1.5 (Allocation Problem) The allocation problem consists of finding al-
locations alloc that satisfy the space constraints (spaceXY), the task pre-allocation con-
straints (allocateT), the constraints to assign tasks to the nearest robots (closest), and
the limits on the number of tasks assigned to a robot (maxTasks) declared in the problem
specification.

The closest distance is considered from the initial state of the MRS as defined in the
world model of the KANOA problem specification4. In the following paragraphs, we show

2This is explained later with an example in Figure 5.2.
3See problem specification in Section 4.2.6.
4Modifying the closest distance from the last visited location is left for further work.
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the Z schemas defined so far on the left and their counterparts in the Alloy language in a
box on the right. For an introduction to the Alloy language, please refer to the background
Section 2.2.

Problem specification

Robots

A robot from KANOA’s robot model is defined in the Z notation by an identifier (id),
an initial location (initLocation), its average velocity (velocity) and its set of capabilities
(capabilities). In Alloy (we refer to the Alloy language simply as Alloy when it is clear we
are referring to the language and not the Alloy Analyzer tool), we declare an abstract
signature for the robot with the relation hascapability mapping a robot to the set of
capabilities that the robot possesses. An abstract signature (abstract sig) is analogous
to a class in object-oriented programming, where instances of these classes are declared
as signatures (sig) instantiating (extends) abstract signatures.

We define each of the robots as signatures with identifiers matching their Z notation
counterpart. In the following box on the right, we show robot r1 as an example. The
multiplicity operator lone states that each of the robot’s instances must appear at most
once. This allows the robot to appear in an allocation, and in others to be removed if
there are enough robots that can complete the mission without its help.

Robot
id : RobotID
initLocation : LocationID
velocity : N
capability : P1 Capability

abstract sig Robot{
hascapability : set Capability

}...
//example :

lone sig r1 extends Robot{}
{disj[hascapability,Capability−
r1at2 floor − r1at3 sanit−
r1at4 notify]}

...

The disjoint fact defined within the signature,
{disj[hascapability, Capability- r1at2 floor - r1at3 sanit- r1at4 notify]}

states that robot r1 has capabilities r1at2 floor, r1at3 sanit, and r1at4 notify from the
set of all capabilities, Capability. As shown later in this section, the robot’s initial location
initLocation is used in the description of the mission constraints, while the velocity is used
later for the scheduling of tasks in Section 6.
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Capabilities

The capabilities are declared as abstract signatures with a relation do mapping to the set
of atomic tasks that can be performed with this capability. The relation do maps to a set
because a capability can be used to do one or more atomic tasks.

There are three facts related to the capabilities. The first fact states that all capa-
bilities that appear as part of the solutions must be assigned to exactly one robot; i.e.,
each robot has its disjoint set of capabilities. As any robot r has a relation hascapability
mapping to a set of capabilities r .hascapability, this can be thought of as multiple rela-
tions between one robot and multiple capabilities. We can access the robot from which
a capability c originates by the inverse relation hascapability.c. By defining the parity of
hascapability.c to one, all capabilities appearing in the solutions are constrained to belong
to one robot,

fact{all c: Capability | #hascapability.c=1}
The second fact states that “all robots appearing in the allocation must have assigned
tasks”, where do is the mapping function from capabilities to tasks,

fact{all r: Robot | #r.hascapability.do>0}

Capability
task : ATaskID
time : N
succRate : N

0 < succRate ≤ 100

abstract sig Capability{
do : set AtomicTask

}
fact{all c : Capability |

#hascapability.c = 1}
fact{all r : Robot |

#r .hascapability.do > 0}
fact{all c : Capability |

#c.do > 0}...
//example :

lone sig r1at2 extends
Capability{}
{all d : do | d in at2}

...

Similarly, the third fact states that all capabilities that appear in the solutions must have
assigned tasks,

fact{all c: Capability | #c.do>0}
Complementary to this section, Appendix C shows an example of what would happen if

any of these three facts were removed.
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The capabilities for each of the robots are defined explicitly in Alloy as signatures.
For example, if robot r1 has the capability of performing task at2, we create a signature
named r1at2 as an extension of the abstract signature Capability. The keyword lone
means that an instance of the signature can appear in the solution at most once. If it
does not appear in the model, it means that robot r1 is not using the capability r1at2 for
the given solution. The time to complete a task (time) and the rate of success (succRate)
from the Z specification are used later for the scheduling of tasks in Section 6.

Observation 1. Note that the last signature is equivalent to the less id-
iomatic solution removing the lone operator from “lone sig r1at2...” and adding
“fact{#r1at2<=1}” constraining the appearance of r1at2 to be less than two. How-
ever, Alloy generated duplicated solutions when this alternative approach was used.
This type of puzzling behaviour is briefly discussed in Jackson’s “Software Abstrac-
tions” book on Alloy [162] (Section 4.5.1 on facts, pages 120-121). This is likely be-
cause adding the multiplicity operator lone removes the need to generate more than
one atom of a signature from the beginning, at the creation of the system model.

Atomic tasks

Atomic tasks are defined as abstract signatures with coordinates (x,y) mapping to the
set of Integers. For each atomic task in the Z specification, an abstract signature in the
Alloy model is defined. Each of these abstract signatures has a constraint on the number
of robots required to achieve do this task. The relation do is declared in the capability’s
signature, mapping a capability to an atomic task.

AtomicTask
id : ATaskID
nRobots : N
locationID : LocationID

nRobots ≥ 1

abstract sigAtomicTask{
x : one Int,
y : one Int,

}...
//task example :

abstract sig at2
extendsAtomicTask{}

fact{all a : at2 | #do.a = 2}...
//instance task example :

one sig at2 1 extends at2{}
{x = 4 y = 1}

one sig at2 2 extends at2{}
{x = 10 y = 1}

...
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For example, if there is an atomic task with identifier at2 that requires two robots to
be completed, we declare,

abstract sig at2 extends AtomicTask {}
fact{all a:at2 | #do.a=2}

where the relation do is defined in the capabilities signature; and do.a returns the capa-
bility (or capabilities) of the robot (or robots) that task at2 is assigned to. Then, its arity
is set to two (#do.a=2).

Finally, we create signatures for each instantiated atomic task. We declare that they
must appear once by using the one quantifier operator. The (x,y) coordinates of the
locations computed by the pre-allocation stage are added as a constraint when declaring
the atomic task instances. For example, in the right box above, there are two atomic
task instances at2 1 and at2 2 of type at2, each requiring two robots to be completed at
locations (4,1) and (10,1), respectively.

Mission constraints

There are six types of mission constraints specified in KANOA (see Section 4.2). In the
allocation of tasks, only a subset of these is relevant. For example, if there is a spatial
constraint where a robot r1 can only move within an area, the allocator must only allocate
tasks inside this constrained area. The rest is used for the scheduling of Task in Chapter 6.

The mission constraints that impact the task allocation process are: (a) spaceXY,
constrains the working space of a robot; (b) allocateT, allocates directly a task to a
specific robot; (c) closest, allocates a task (or all tasks) to the closest robot(s); and
(d) maxTasks, limits the number of tasks that can be assigned to a robot.

In this section, we show the specification of mission constraints in Alloy language in a
generic form, where information that is retrieved from KANOA DSL is depicted in bold
font.
• spaceXY. spaceXY restricts the working area of a robot. For every relation (robotID,

xy, glt) 7→ v defined in Z to specify that a robot has a constraint on coordinate x or y
(xy ∈ XY ) to be greater or lower than (glt ∈ GLT ) a given number (v ∈ N), we define
an Alloy fact as shown in the following box,

Constraints
spaceXY :

P((RobotID × XY ×GLT )× N)
...

fact{ all r : robotID |
all c : r .hascapability |
all do : c.do | do.xy glt v}
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Example 1. For a mission constraint: “restrict robot r6 to only work within an
area where the y axis is greater than 10 units”, defined in KANOA as,

robot r6 work in y greater than 10

and in the Z notation as (r6,y,greater) 7→10, the following fact is encoded in the Alloy
language,

fact{all r:r6 | all c:r.hascapability | all do:c.do | do.y > 10}

• allocateT and allocatemT. Constraints of type allocateT allocate a compound
or atomic task to a robot, while allocatemT allocates a mission task to a robot. In the
pre-allocation stage (described in Section 5.2), we parse these constraints and associate
each such atomic task instance with the robot(s) responsible for its completion. Therefore,
within our Alloy model, it is necessary to incorporate a fact for each of these pre-allocated
atomic tasks (i.e., atomic tasks with robot associations). For any atomic task instance,
we define the relation mapping the task into the robot capabilities (do) to be in the set
of a specific robot (d in robotID.hascapability).

Constraints
allocateT : P(TaskID × RobotID)

allocatemT : P(MissionTaskID
×RobotID)

...

fact {all at : taskInstanceID |
one d : do.at |

d in robotID.hascapability}

Example 2. For a mission constraint “allocating atomic tasks at1 to robot r4”,

allocate atomic task at1 to robot r4

given two instances (at1 1 and at1 2) required to accomplish the mission, the Alloy
model includes two additional facts,

fact {all at: at1 1| one d: do.at | d in r4.hascapability}
fact {all at: at1 2| one d: do.at | d in r4.hascapability}

• allocateTtogether and allocatemTtogether. Similar to the last constraint, this
constraint allocates a task to a single robot. However, we do not provide the robot so
this can change from allocation to allocation (as long as the selected robot possess the
necessary capabilities). In the fact on the left, ati is of type taskInstanceID. The
Alloy model includes a fact for every reachable atomic task, so that the allocated robot
(reachable through the inverse relation from the task to the capability followed by the
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inverse relation do) is equal to the robot for the next atomic task.

Constraints
allocateTtogether : PTaskID
allocatemTtogether : PMissionTaskID
...

fact {capability.do.at1
=capability.do.at2}
fact {capability.do.at2
=capability.do.at3}
...

Example 3. For the following mission constraint, where m3 consists of reachable
atomic tasks at1 1, at1 2 and at1 3

allocate mission task m3 to single robot

the Alloy model contains the facts,

fact {capability.do.at1 1= capability.do.at1 2 }
fact {capability.do.at1 2= capability.do.at1 3 }

• closest and closestmT. Constraints of type closest allocate compound or atomic
tasks to the closest robots, while closestmT allocates a mission task to the closest
robots. Similar to the last constraints, allocateT and allocationmT, these constraints
were parsed by the pre-allocation stage with the required robot(s) associated with the
atomic task instances, if applicable. Hence, in Alloy, these two constraints, closest and
closestmT, were already added as part of the last ones by defining facts for atomic task
instances with an assigned robot. The Z schema does not contain a robot field as this is
computed during the pre-allocation stage.

Constraints
closest : P(TaskID)

closestmT : P(MissionTaskID)

...

fact {all at : taskInstanceID |
one d : do.at |

d in robotID.hascapability}

Remember that the order matters when specifying tasks of the type allocateT, allo-
catemT, closest and closestmT. As explained in Section 5.2, if more than one of these
constraints is specified and they affect the same atomic task instance, the last overrides
the previous ones.
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Example 4. For a mission constraint “atomic task at2 to the closest robot”

allocate atomic task at2 to closest robot

given three instances of at2 (at2 10, at2 15 and at2 20) required to accomplish the
mission, the Alloy model introduces three additional facts,

fact {all at: at2 15| one d: do.at | d in r3.hascapability}
fact {all at: at2 20| one d: do.at | d in r3.hascapability}
fact {all at: at2 10| one d: do.at | d in r2.hascapability}

where robots r2 and r3 appearing for task at2 instances were found to be the closest.

Observation 2. Tasks already assigned to robots within the mission specification
are included in the task allocation process for two reasons. First, these predetermined
allocation constraints may conflict with other constraints, and we want Alloy to check
for such conflicts; a simple example is when the problem specification assigns six
tasks to robot r1, but there is a mission constraint preventing any robot from taking
more than five tasks in which case Alloy won’t find any possible solution. Second,
we would like the diagrammatic representation of the allocations found by Alloy to
include every task (see Figure 5.3) for explainability purposes. Additionally, to assess
the Alloy Analyzer execution time increase when pre-allocated tasks are added to the
model, we perform some experiments discussed in the evaluation of KANOA’s tool
in Section 7.2.4 showing that the increase in computation time is linear and relatively
small compared to the number of tasks added.

• maxTasks. Constraints of the type maxTasks set the maximum number of tasks that
a robot can accept. Hence, for every constraint in Z of the form maxTasks(robotID) = v,
we add a fact constraining the arity of the transitive relation from robot robotID to its
allocated tasks (hascapability.do) to a maximum number v ∈ N.

Constraints
maxTasks : P(RobotID 7→ N)
...

fact{no r : robotID |
#(r .hascapability.do) > v}

Example 5. For a mission constraint “limiting the number of tasks that robot r1
can accept to 4”,

limit max number of tasks in robot r1 to 4

the following fact is added to the Alloy file,
fact { no r:r1 | #(r.hascapability.do ) > 4}
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Figure 5.2: (a) Visualisation of task missions m3 and m4, each defined as performing task
ct2; compound task ct2 is defined in terms of tasks at4 and ct1, while task ct1 is defined
as doing at2 and at3. (b) Instantiation of all tasks needed to be completed done in the
pre-allocation stage.

We have covered the different constraints applicable to the task allocation problem
from KANOA’s specifications. As we devise the description of the allocation problem in
a declarative language, new mission constraints can be added easily into the Alloy model.
For example, imagine there may be some allocations where a robot r1 is not assigned any
task as its peers can complete the mission but we want to enforce deploying this robot
for the mission as we know beforehand that it is more suitable for the job. This new
constraint would be added as a new fact in the Alloy model. A second example is forcing
the allocator to deploy all robots to help balance the distribution of tasks among them
and ensure that no robots are left without tasks.

5.2 Pre-allocation

Once the user has specified the robotic problem in KANOA DSL as described in Sec-
tion 4.2.1 (i.e., the world model, task model, robots model and mission specification), the
pre-allocation parses the data and processes it through four phases. Phase 1 generates
instances of all the necessary tasks to complete the whole mission. Next, phase 2 changes
the location of the atomic tasks instances reachable from mission tasks that were defined
with a location, and phase 3 pre-allocates atomic tasks to robots defined from any task
specified in the mission constraints of the type allocateT and closest. Finally, phase 4
sets time windows (start and/or end time) of atomic tasks affected by mission constraints
of the type taskTime. We show this process with the following example.
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Example 6. Consider a scenario where the mission consists of two tasks: cleaning
patient rooms room2 and room3 (as described in the hospital case study introduced
in Section 4.3). These tasks are declared as mission tasks, m3 and m4, respectively,
defined in KANOA DSL as,

m3 : compound task ct2 at location room2,
m4 : compound task ct2

where ct2 is the task of cleaning a patient room, composed of multiple subtasks; first,
notifying the patient (at4) that the robot is about to clean the room, followed by two
tasks, cleaning the floor (at2) and sanitising the room (at3), that are declared as a
single compound task ct1. The visual representation of these tasks is depicted in
Figure 5.2a.

Phase 1. To accomplish m3 and m4, we first create instances of all necessary
compound tasks, and atomic tasks that are to be allocated to the robots. Fig-
ure 5.2b shows the four compound tasks (ct2 1, ct1 2, ct2 3, ct1 4) and five atomic
tasks (at4 1, at2 2, at3 3, at4 4, at2 5, at3 6) required for the missions.

Phase 2. We set the locations of atomic task instances [at4 1, at2 2, at3 3] to room2

by computing the leaf nodes of mission m3. To that end, we first set the locations of
[at4 4, at2 5, at3 6] to the ones specified in the Task Model as m4 has no specified
location overriding the default location for its tasks.

Phase 3. Consider the following two mission constraints allocating tasks to robots,

allocate compound task ct1 to closest robot,
allocate mission task m3 to robot r3

we first pre-allocate compound task ct1 subtask instances [at2 2, at3 3, at2 5, at3 6]
to the closest robot. Then we assign subtasks of mission task m3 [at1 1, at2 2, at3 3]
to robot r3. Hence, only task at4 4 is not pre-allocated to any robot. Notice that
the order of these constraints matters.
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Phase 4. Finally, the mission also has two constraints: (i) all patients must be
notified (task at4) that their room is going to be cleaned before 50 time units, and
(ii) all patient rooms must be cleaned before the end of the day at 110 time units.

compound task ct2 has end time: 110,
atomic task at4 has end time 50

As such, we obtain all ct2 reachable atomic task instances, which, in this case,
are the complete set (at4 1, at2 2, at3 3, at4 4, at2 5, at3 6) and add an endtime
attribute for each element with the value of 110. Finally, we get the instances of the
atomic task at4 (at4 1, at4 4) and set this attribute to 50.

Phase 3 creates two new types of objects, atomic and compound task instances. Phase 4 is
performed in the pre-allocation stage although its result is used for the scheduling of tasks
in Section 6. The algorithms used for the pre-allocation are described in the following
paragraphs

Pre-allocation algorithms. Here we describe the algorithms used in the pre-
allocation stage—these are automated as part of the KANOA tool. In the first phase
(Algorithm 1), we instantiate each of the required atomic and compound tasks By instan-
tiation we mean that each required task is defined with a unique identifier comprising:
(a) the task identifier defined from the problem specification, (b) the underscore charac-
ter, (c) a unique number. A counter (counterAT) is used to assign a unique number to
the set of atomic tasks, and a second counter (counterCT) for the set of compound tasks.

We start the algorithm Instantiation retrieving the set of mission tasks (mission
Tasks) from the problem specification defined in Kanoa DSL. If the mission task is
to perform an atomic task (mt.at), we simply add the instance of the atomic task
(instantiatedTask.add()). If the mission task is to perform a compound task (mt.ct),
we instantiate each subtask by calling the function InstantiateSubtasks. It first adds
the compound task instance, then generates instances of all its subtasks, and finally adds
the instantiated subtasks one by one, adding the subtasks of any compound task recur-
sively. The InstantiateSubtasks function is self-explanatory. It creates a new list
isubtasks to add all subtasks of the compound task ct. Then it adds itself and all
subtasks instantiated (lines 12, 16 and 20). For subtasks that are compound tasks are
recursively instantiated (lines 22-28).

Algorithm 1 correctness. The functions Instantiation and Instantiate-
Subtasks terminate and set the global variables counterAT,counterCT
and instantiatedTask values when completed. It is linear in the number of
mission tasks as: (i) the mission task consists of a single atomic task or (ii) the
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Algorithm 1 Pre-allocation Phase 1 - Instantiate atomic and compound tasks required.
Require: Problem specification in Kanoa DSL parsed.
Require: global var counterAT,counterCT=0; ▷ atomic and compound tasks counters
Require: global var instantiatedTask= new List<String> ▷ instantiates tasks

1: procedure Instantiation(missionTasks) ▷ Instantiate atomic & compound tasks
2: for mt in missionTasks do
3: if mt.at ▷ mission requires do to atomic task
4: counterAT+=1
5: instantiatedTask.add( mt.at.id+“ ”+ str(counterAT) ) ▷ add task
6: else if mt.ct ▷ mission requires to do compound task
7: counterCT+=1
8: InstantiateSubtasks(mt.ct, counterCT) ▷ instantiate subtasks
9: end if

Instantiate compound task and its subtasks.

10: function InstantiateSubtasks(ct , numOfTask)
11: isubtasks = new List<String> ▷ ordered instantiated subtasks
12: instantiatedTask.add( ct.id+“ ”+ str(counterAT) ) ▷ add task
13: for subtask : ct.subtasks do
14: if subtask is atomic task
15: counterAT+=1
16: isubtasks.add(subtask.id+“ ”+ str(counterAT)) ▷ task instance
17: end if
18: if subtask is compound task
19: counterCT+=1
20: isubtasks.add(subtask.id“ ”+ str(counterCT)) ▷ task instance
21: end if
22: for i:isubtasks do
23: if subtask is atomic task
24: instantiatedTask.add(i) ▷ add task
25: end if
26: if subtask is compound task
27: InstantiateSubtasks(task type of i, num assigned to i)
28: end if
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Algorithm 2 Pre-allocation Phase 2 - Overwrite location of tasks.
1: procedure ChangeLocation(missionTasks)▷ Change location of tasks if added in

mission task
2: for mt in missionTasks do
3: if mt.loc ▷ mission has location
4: a = Get Atomic Inst(mt) ▷ atomic tasks from mission task
5: ChangeLocation(a,mt.loc) ▷ change location of each atomic task
6: end if

mission consists of a finite number of compound tasks with a finite number of
subtasks (see Section 4.2.1).

In the second phase (Algorithm 2), we deal with task missions defined by a location,
for example, m1 : compound task ct1 at location room1. Any mission task that
is specified with a location overwrites the location of any reachable atomic task. By
reachable tasks we mean the task (atomic or compound) defined in the mission task,
as well as any descendant of its compound task (see Task model in Section 4.2.1). To
shorten the explanation, Algorithm 2 shows that for every mission task mt, if a location
is provided mt.loc, we get the (previously instantiated) list of reachable atomic tasks,
a=Get Atomic Iinst(mt), and change the location on each of the tasks in the list to
the one provided in the mission task.

Algorithm 2 correctness. The function ChangeLocation terminates as there
is a finite number of mission tasks and atomic task instances reachable from
each mission task. It is linear in the number of mission tasks defined with a
location, and the number of reachable atomic tasks from each of these mission
tasks (see Section 4.2.5).

Within the KANOA tool, we define the data type of mission constraints as con, with
attribute type defining the type of mission constraint. It can take values: allocateMT,
allocateAT or allocateCT meaning to allocate a mission, atomic or compound task,
respectively; closestRobotMT, closestRobotAT, closestRobotCT and closestRobotAll
assign a mission, atomic, compound task or all atomic tasks to the closest robot; and
taskTimeMT, taskTimeAT and taskTimeCT define the time to start of end a mission task,
atomic task or compound task, respectively.

In the third phase (Algorithm 3), tasks are assigned to robots if there exists any
constraint of the type allocateT or closest. Algorithm 3 shows that each constraint
is read in the order they appear in the problem specifications (line 2), hence, the order
must be considered when defining mission constraints of these two types. It first checks
the type of mission constraint (line 3). Then, it gets the list of instantiated atomic tasks
reachable from the task defined in the mission constraint (Get Atomic Inst); and
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Algorithm 3 Pre-allocation Phase 3 - Allocated tasks from mission constraints.
1: procedure AssignTasks2Robot(missionConstraints) ▷ Assign robots to tasks
2: for con in missionConstraints do
3: switch con.type do
4: case allocateMT ▷ mission task to robot
5: Assign2Robot(Get Atomic Inst(con.mt) , con.robot)
6: case allocateAT ▷ atomic tasks to robots
7: Assign2Robot(Get Atomic Inst(con.at) , con.robot)
8: case allocateCT ▷ compound tasks to robot
9: Assign2Robot(Get Atomic Inst(con.ct) , con.robot)

10: case closestRobotMT ▷ mission task to closest robots
11: Assign2ClosestRobot(Get Atomic Inst(con.mt),con.robot)
12: case closestRobotAT ▷ atomic tasks to closest robots
13: Assign2ClosestRobot(Get Atomic Inst(con.at) , con.robot)
14: case closestRobotCT ▷ compound tasks to closest robots
15: Assign2ClosestRobot(Get Atomic Inst(con.ct) , con.robot)
16: case closestRobotAll ▷ all atomic tasks to closest robots
17: Assign2ClosestRobot(Get All AT Inst() , con.robot)
18: end switch

lastly, it assigns each of the tasks in the list to a given robot (Assign2Robot) or the
closest robot (Assign2ClosestRobot). In KANOA’s tool, if a robot does not have
the capability to complete an atomic task allocated through these mission constraints, an
error will appear. Notice that atomic and compound tasks can be part of multiple other
tasks. Task constraints of these types modify all the respective task instances. This gives
the versatility to define very intricate allocations from the beginning and capture expert
knowledge when, for example, we know that there is a set of robots that is more suitable
to perform specific task types.

Lastly, the fourth phase assigns starts and end times to atomic task instances (Al-
gorithm 4). It first checks for constraints of type related to modifying the task time
(taskTimeMT, taskTimeAT, taskTimeCT), then obtains all atomic instances reachable
from the respective task (Get Atomic Inst). Finally, it assigns a start (lines 16) or
end time 18) to each atomic task instance.

Algorithms 3 and 4 correctness. The functions AssignTasks2Robot and
AssignStartEndTime terminate because they iterate over a finite number
of constraints, missions, atomic tasks and compound task instances. Missions
can only contain tasks of type atomic or compound. Atomic tasks do not have
subtasks, while compound tasks are limited to a finite number of subtasks and
cannot contain themselves (either directly or through a transitive relationship,
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Algorithm 4 Select initial or final state of atomic tasks instances constrained by mission
constraints of the type taskTime.

1: procedure AssignStartEndTime(missionConstraints) ▷ Assign start and/or end
time

2: for con in missionConstraints do
3: switch con.type do
4: case taskTimeMT ▷ mission task
5: at = Get Atomic Inst(con.mt)
6: SetStartEndTime(at, con)
7: case taskTimeAT ▷ atomic task
8: at = Get Atomic Inst(con.at)
9: SetStartEndTime(at, con)

10: case taskTimeCT ▷ compound task
11: at = Get Atomic Inst(con.ct)
12: SetStartEndTime(at, con)
13: end switch
14: procedure SetStartEndTime(at, con)
15: for a in at do
16: if con.end
17: Assign Endtime(a , con.robot)
18: else con.start
19: Assign Startime(a , con.robot)

as defined in Section 4.2.3). Therefore, constraints related to compound tasks
also terminate.

In this pre-allocation stage, we translated high-level constraints from missions and
compound tasks into individual tasks, and instantiated these atomic tasks if necessary.
The complexity of these pre-allocation algorithms is linear in the size of the KANOA prob-
lem specification described in Section 4.2.6. The next section describes how to allocate
the atomic tasks into the set of available robots, or a subset of those.
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5.3 Task Allocation in KANOA

We defined the task allocation problem using the Alloy language in Section 5.1. KANOA
uses the Alloy Analyzer [55] as a task allocator to generate multiple allocations of tasks
to robots, where each allocation complies with the requirements from the problem speci-
fication.

5.3.1 Task Allocation Generation

This section describes the parts missing to complete the Alloy model that can be provided
to the Alloy Analyzer to find models that satisfy the task allocation problem specification.
These parts are the set of integers and the commands to run the model (the predicate and
run commands). For the latter, the Alloy Analyzer requires a finite scope to bound the
maximum size of each of the signatures, i.e., the depth to which Alloy Analyzer searches
for solutions. The computation of the different scopes is described within this section.

We proceed by explaining each of the missing statements in the Alloy model,

Integers. As we are using integers in the Alloy model (for example, to define the
coordinate x where a task must be done), we must explicitly import the set of integers by
adding the instruction,

open util/integer

Scope. In Alloy, the scope defines the number of atoms to create in the Alloy universe.
For example, if we declare a scope of three for the robots, we can create allocations with
up to three robots. However, if we define the scope of the robots to be exactly three, any
structure (i.e., solution) found by the Alloy Analyzer must contain exactly 3 robots. We
explicitly declare scopes for the: (a) capabilities, (b) atomic tasks, (c) robot signatures,
as well as (d) the set of integers.
• To compute the scope of integers (iScope), we must know the range of integer

numbers that should be included. To this end, we retrieve the largest integer intmax

that appears in the model. Integer numbers v ∈ N are used to describe the atomic task
instances coordinates x and y, e.g.,

one sig at2 1 extends at2{} {x=v y=v}
and in the spaceXY mission constraints5, e.g.,

fact{all r:r6 | all c:r.hascapability | all do:c.do | do.y > v}

As explained in Section 2.2, the scope of the integers set is defined by the bidwidth of
intmax . Let intmax be the maximum integer among (a) the set of x ’s and y’s coordinates

5Notice that the integers in arity constraints, for example, in the maxTasks mission constraint, are
not considered in the scope as this is a restriction in the number of relations rather than a relation
mapping to the set of integers or an inequality requiring the comparison of two integers.
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of all atomic tasks, and (b) the integers in the spaceXY mission constraints, if any. We
calculate the scope iScope of the integer set by,

iScope = ⌈log2(intmax + 1) + 1⌉ (5.1)

• The capabilities’ scope (cScope) is the sum of the number of robot capabilities,
calculated over all the robots from the problem specification. This is the maximum number
of capabilities that can appear in the model, however, capabilities may not appear in an
allocation solution synthesised by Alloy if: (a) the robot that possesses this capability
does not appear in the model, or (b) the robot does not use the capability to perform any
task.

• The atomic tasks’ scope (aScope) is exactly the total number of atomic tasks as
instantiated by the pre-allocation stage.

• The robots’ scope (rScope) is the total number of robots available.

Run predicate. To generate allocations of tasks to robots, we declare a predicate
statement and a run command. The Alloy Analyzer runs this command to generate
models satisfying our “task allocation problem specifications”.

We define the predicate and run commands as follows. The predicate (containing a
list of statements that must hold) TaskAllocation does not contain any instructions as we
have already defined all the constraints within the other parts of the Alloy model.

pred TaskAllocation{ }
run TaskAllocation for iScope Int, cScope Capability,

exactly aScope AtomicTask, rScope Robot

Example 7. For an allocation problem with iScope=15, a total number of ca-
pabilities of the robots available cScope=10, and aScope=20 atomic tasks to be
completed by rScope=5 available robots, we add to the Alloy model,

pred TaskAllocation{ }
run TaskAllocation for 5 Int, 10 Capability, exactly 20 AtomicTask, 5 Robot

The run command initialises the generation of allocations setting the maximum scope
for the integers, capabilities and robots; and the exact number of atomic tasks. When
running the Alloy Analyzer programmatically, we can also specify the maximum number
of allocations to retrieve.

5.3.2 Allocation Visualisation

The Alloy Analyzer generates multiple task-to-robot allocations, if such allocations exist
(for example, if there exists tasks defined in an area where robots are constrained not to
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Figure 5.3: Visualisation of two different allocations of atomic task instances at4 1, at3 2

and at2 3 in the Alloy Analyzer tool. (a) Robot r2 is assigned to do all tasks. (b) Robot
r1 is assigned to task at2 3 while robot r3 has to complete tasks at4 1 and at3 2.

enter, or when there is a task requiring more robots to be completed that the ones defined
with the capability to perform the task, etc.). An advantageous aspect, particularly for
explainability purposes, is its capability to visualize solutions using the Alloy Analyzer
tool. We explain the Visualizer with the following example.

Example 8. Figure 5.3 shows an example of two allocations generated by Alloy
Analyzer for a mission comprising three atomic tasks (at2, at3, at4) at room1 with
coordinates (10,5). Three robots are available, r1, r2 and r3; each robot has the
capability of completing any of these tasks. The first allocation in Figure 5.3a shows
the robot r2 at the top, using three of its capabilities r2at4, r2at3 and r2at2, to
perform the three instantiated atomic tasks (at4 1, at3 2 and at2 3) required to
complete the mission. At the bottom, the location coordinates show that all tasks
are to be performed at (10,5). Relations hascapability, do, x and y are also shown
within the diagram.

A second allocation shown in Figure 5.3b shows two robots, r1 and r3. Robot r1
uses capability r1at2 to perform instantiated atomic task at2 3. Meanwhile, robot
r3 uses capabilities r3at4 and r3at3 to perform instantiated atomic tasks at4 1 and
at3 2, respectively.
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Figure 5.4: Alloy specification for the hospital case study.
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5.4 Hospital Case Study

We show the applicability of KANOA’s task allocator using the hospital case study from
Section 4.3. To this end, we generated an Alloy model based on the hospital problem
specification6 and used the Alloy Analyzer [55] to compute a set of possible solutions to
the task allocation problem that complies with the set of requirements.

5.4.1 Allocation Model

The task allocation problem described in the Alloy language for the hospital case study is
shown in Figure 5.4. This is generated automatically within the KANOA tool. In the left
column, “open util/integer” import the set of integers. The abstract signatures for the
types of Robot, Capability and Atomic Task are then defined, as well as four constraints
(facts) that apply to the number of capabilities and robots present in the allocations,
along with their relations.

The robots r1 to r5 available in the hospital and their capabilities are then defined.
Subsequently, the capabilities associated with the robots and the relations do, mapping
to the type of atomic task that each capability corresponds to, are added. For example,

lone sig r1at2 extends Capability{}{ all d:do | d in at2}
means that the robot capability r1at2 of robot r1 can be used to perform tasks of type
at2. Then, the abstract signatures of each of the atomic tasks are added,

abstract sig at4,at3,at1,at2 extends AtomicTask{}
followed by the facts constraining the number of robots needed to complete each of these
tasks; for example, two robots are needed to complete atomic tasks of type at1 is written
as,

fact {all at1 | #do.a = 2 }
Next, the specific instances of the atomic tasks (for the pre-allocation stage) are defined;
for example, an atomic task instance at4 9 of type at4 required at a location with coor-
dinates (10,1) is specified as,

one sig at4 9 extends at4{} { x=10 y=1 }
It then defines the empty predicate, TaskAllocation.

In the hospital case study, there are two constraints that the task allocator must
consider: the restriction of robot r3 to move in an x coordinate greater than 9 units,

fact {all r: r3 | all c:r.hascapability | all do:x.do | do.x>9 }
and the restriction of robot r3 to move within a y coordinate less than 7 units,

fact {all r: r3 | all c:r.hascapability | all do:x.do | do.x<7 }
6This model was obtained using a tool that we implemented to automate the Alloy model generation

process detailed earlier in this chapter, and that is described in Chapter 7.
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Figure 5.5: Example 1 of an allocation found by the Alloy Analyzer for the hospital case
study. Robots r1, r2, r4 and r5 are deployed.

These two facts are added into the model. Finally, it defines the run command and the
different scope for the sets of Integers, capabilities, atomic tasks and robots.

Figure 5.5 shows a solution found for the hospital case study where robots r1, r2, r4
and r5 are deployed. In this case, robot r1 has eight tasks to perform, while robot r2
has four. As expected, robots r4 and r5 are assigned all tasks of type at1 as these robots
are the only ones equipped with the capability to accomplish this task. Robot r3 is not
deployed in this solution.

Figure 5.6 shows a second solution where robots r1 and r3-r5 are deployed. Robot r3
has four allocated tasks (at2 11, at2 14, at3 13 and at4 12), required at two locations
with coordinates (10,1) and (10,5). These comply with the mission requirement that robot
r3 must only accept tasks with coordinates x>9 and y<7.

5.5 Discussion and Limitations

In the general case, if there are T tasks to be allocated into R robots, there are a total
of RT possible allocations. This is, it has exponential complexity with respect to the
number of tasks, specifically O(RT ). Nevertheless, the approach proposed in this chapter
reduces this complexity significantly by incorporating a series of relevant constraints.
As demonstrated with the hospital case study, in many practical instances of the task
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Figure 5.6: Example 2 of an allocation found by the Alloy Analyzer for the hospital case
study where robot r3 is deployed.

allocation problem, constraints appear naturally with the heterogeneity of the robots,
constrained working space, etc. In this case study, there are 5 robots and 14 tasks; this
is 514 = 6, 103, 515, 625 possibilities. However,

• there are only two robots (r4 and r5) that possess the capability to move objects.
Given that moving objects requires both robots, all resulting task allocations must
show these tasks alloated to r4 and r5. This reduces the possible allocations of
move object tasks to one.

• There is also the spatial constraint over robot r3. This only allows r3 to accept
tasks in an area covering six tasks (in rooms four and five). As r1 − 3 have the
capability to complete these tasks, there are 36 possible task allocations.

• For the rest of the six tasks (rooms two and three), only r3 is not allowed to work.
Hence, there are 26 possible task allocations.

This reduces the task allocation solution space to (1 × 26 × 36) = 46, 656 feasible task
allocations.

One of the advantages of using a constraint solver is that any solution returned is cor-
rect by construction. However, a disadvantage is that we cannot guarantee the optimality
of the solutions with respect to, for instance, the optimisation objectives defined as part
of the KANOA problem specification (minimising the robots’ idle time, maximising the
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probability of mission success, and minimising the cost of travelling between locations).
Using a SAT approach signifies that solutions are not distinguished in the sense that there
is no ranking of the solutions regardless of some solutions being better than others. To
partly compensate for this weakness, we rely on the user to specify any mission constraints
into the KANOA DSL to guide the search process. For example, if it is known that there
is a series of tasks to be done in a location that is easier to reach by one of the robots, this
knowledge can be added as a mission constraint. Another example of such a constraint
is dividing the robots to accept tasks only in specific areas of the workspace by adding
spatial constraints.

We separated the allocation and scheduling task problems into two distinct stages.
This decision allows for the incorporation of a diverse range of constraints while avoiding
the complexity associated with the modelling of these as a single model. However, the
evaluation of the quality of an allocation requires the generation of schedules from this
allocation and the computation of performance metrics, such as the time required to
complete all tasks and the total idling time when robots are inactive. Consequently,
the detailed evaluation of the task allocator is conducted in conjunction with the task
scheduler in Chapter 7. A limitation lies in the fact that a feasible allocation does not
guarantee a feasible schedule. It is plausible that no permutation of tasks from a given
allocation may align with the mission requirements, such as completing all tasks within
a specified time frame.

Another limitation of the pre-allocation of tasks to robots (defined as part of the
mission constraints) is that it can only pre-allocate one robot to each atomic task. This
is a problem when a task requires more than one robot to be completed. For example,
when defining a mission constraint “allocate atomic task at1 to robot r4”, where
task at1 requires two robots, it is not possible to pre-allocate this task to a second robot.
This feature will be explored in future work.

Finally, the use of integers is discouraged in Alloy as there is usually another abstract
description for the set of integers tailored for the application in hand [162]. In our case,
we make use of this set to describe the locations where tasks are to be accomplished and
define the scope of the integers based on the range of numbers appearing in the x and y co-
ordinates appearing in these locations. This creates a set with unnecessary integer values
that are not needed in the model and increases considerably the time to compute solutions
to the allocation problem as the integer scope increases. For the hospital case study, the
Alloy Analyzer ran out of memory for an integer scope of 12, increasing considerably the
time to generate solutions as the integer scope grows beyond 678. A possible solution for
future work would be to create an ordered set containing only the integers used to describe
the coordinates of the locations. Another solution involves fully abstracting away from

7A scope of 6 generates integers from -31 to 31 as explained in Section 2.2.
8Experiments ran on a MacBookAir, Apple M1, 8GB, macOS Monterey
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coordinates by introducing a “zone” or “area” signature. The robot-to-task area mapping
relations can then be automatically generated from Kanoa specifications, relieving Alloy
from dealing with integers. This approach also offers increased flexibility in terms of the
shape of workspace areas, eliminating the necessity for them to be rectangular, as is the
case in the current version of the approach.

5.6 Related Work

In Section 3.3 as part of the answer to exploratory question EQ1, we proposed a gen-
eral definition for the task allocation problem and broadly defined the different common
techniques used for the allocation of tasks. These include algorithms that are part of the
well-known MRTA (multi-robot task allocation) set of solutions [9], such as the integer
linear programming [163], market/auction-based approaches [164, 165], and the multi-
Travelling Salesman problem (mTSP) [166]. Modelling techniques including the optimal
assignment problem (OAP), the fair division problem and the ALLIANCE efficiency prob-
lem are also covered by [9]. These algorithms provide a wide range of descriptions for
the problem at hand. For example, OAP may describe a simple allocation problem where
multiple tasks have assigned weights depending on the robot that performs them, then
the objective is to minimize the total cost. The problem can be solved using, for instance,
the Hungarian algorithm [167,168].

Compared to travelling problems, assignment problems use binary variables to de-
scribe if a robot has to complete the task or not. In contrast, constraint solvers, such
as Alloy, search for solutions that comply with all the constraints of the design space.
It uses relational and set theory to reason about possible solutions. Hence, compared to
Hungarian binary algorithms or Linear Programming, constraint solvers allow a richer de-
scription of the allocation problem (agents, capabilities, tasks, locations, constraints, etc.)
and their relations, while still finding solutions that are not easily synthesized. Although
optimality is lost in the process, we gain expressiveness of the requirements (stated in a
declarative manner which makes it easier to expand, if necessary) and add complexity to
the mission constraints that we can reason about. Optimising the allocation solutions is
done in conjunction with the scheduling and plan synthesis problem in Chapter 6.

Internally, the Alloy Analyzer transforms the model into a series of boolean satisfi-
ability formulae to leverage the power of SAT solvers [58]. Another approach involves
the use of satisfiability module theories (SMT). SMT “extends boolean satisfiability with
rules (theories) for domains such as linear arithmetic” [169]. In [169], an SMT was used
in a (single) robotic arm scenario for the task motion planning problem. The crucial
reason they claim is that some SMT solvers enable incremental solving to add/remove
constraints, although this is also the case of SAT solvers, where new constraints can be
added incrementally (as shown using Alloy). In further work, we will assess the use of
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SMT solvers (if the newly tackled task allocation problems require to add such types of
rules handled by SMT), such as Z3 [170] and compare it with our proposed approach.

5.7 Summary

The Alloy Analyzer is a tool used for the validation of declarative models specified in the
Alloy language. It converts the model into a SAT formula, takes the set of constraints of
the model and finds structures that satisfy them. The Alloy Analyzer can be used for the
verification of properties and generation of counterexamples, as well as for the exploration
of models and generation of sample structures.

In this chapter, we used the Alloy language and Alloy Analyzer for the description and
generation of the allocation of tasks to robots, respectively. We described the building
blocks of the Alloy model, showing the Z notation schemas from which information is
obtained from the KANOA DSL. We illustrated the applicability of our approach using a
hospital case study, for which we showed some of the allocations synthesised by the Alloy
Analyzer.
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Task scheduling
This chapter presents the KANOA approach for addressing the task scheduling problem
in multi-robot systems (MRS). This approach involves synthesising individual plans for
robots to execute a series of tasks while adhering to both functional and non-functional
requirements outlined in the problem specification encoded in the KANOA DSL (refer
to Section 4.2). These requirements may encompass achieving a mission success proba-
bility exceeding 0.9, initiating task t1 immediately after t2, or concluding task t3 within
a specified time frame. These examples highlight a significant challenge in MRS task
scheduling—the interdependence of tasks. In the context of KANOA, task constraints
are divided into two within the system specification: task constraints and mission con-
straints. Task constraints are defined as part of the task model when an atomic task is
declared to require more than one robot to be completed, or when compound tasks are
defined as ordered (where subtasks follow a specific order) or consecutive (where each
subtask starts upon completion of the preceding one). Mission constraints are defined
in the mission specification, encompassing constraints such as completion times, spatial
constraints, and initial allocations of tasks to robots.

A second challenge in the scheduling of robot tasks arises from the size of the solution
space. In a scenario where a robot is allocated nt tasks (with no task interdependen-
cies), there are nt ! possible solutions (e.g., there are 3,628,800 possible ways of scheduling
10 tasks); and for nr robots, the solution space grows to nr × nt !. Consequently, the
use of heuristics [47–49], meta-heuristics [88] and hybrid techniques [43, 92, 93, 102] has
been adopted in the majority of recent solutions as shown previously in Table 3.4. The
comprehensive review in Chapter 3 offers further insights into the application of these
methodologies for addressing the task scheduling problem in robotic systems.

A third challenge arises from the variety of inherent uncertainty in MRS. Table 3.5
shows some common sources of uncertainty that researchers typically consider when mod-
elling robotic systems. These include robots exploring partially known or unknown envi-
ronments [22–25], the roughness of the terrain affecting mobile robots performance, the
changes in the communication topology when adjustments have to be made to improve
communication and failures [110, 112, 126]. In this chapter, we introduce KANOA’s task
scheduler. Our approach considers two types of uncertainties: the possibility of a robot
failing to complete a task, and the possibility of a robot getting stuck when travelling from
one location to another.1 KANOA combines in a new way several techniques, including

1These types of uncertainties are studied in robotic systems as shown in Table 3.5. Other types of
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probabilistic model checking and genetic algorithms, to address the task scheduling prob-
lem. We use the PRISM probabilistic model checker to reason about system uncertainties
and a variant of the EvoChecker framework2 to explore the solution space and generate
Pareto-optimal solutions.

This chapter is organised as follows. Section 6.1 describes the task scheduling problem.
Section 6.2 introduces the pre-scheduling stage for the grouping of robots and the transfer
of the compound task constraints to their constituent atomic tasks. Section 6.3 presents
the methodology to solve the task scheduling problem in KANOA, and Section 6.4 covers
the optimisation of potential robot plan solutions. Section 6.5 demonstrates the applica-
bility of KANOA through the hospital case study. Section 6.6 discusses the advantages
and limitations of the KANOA scheduler. Finally, Sections 6.7 and 6.8 review related
work and summarise the chapter, respectively.

6.1 Task Scheduling Problem

In this section, we describe the task scheduling problem. Informally, we define this prob-
lem as finding a sequence of possible robot actions (execute a task, travel, or stay idle)
such that, for each robot, the execution of these actions ensures that all of its allocated
tasks are completed with an optimal level (minimising the completion time, travelling
cost and/or probability of success), satisfying all relevant constraints from the problem
specification across the task schedules of all robots.

In previous chapters, we introduced the KANOA problem specification for multi-robot
systems (Chapter 4) and a solution to the allocation of tasks to robots (Chapter 5). The
task scheduling problem assumes the existence of: (i) a description of the system; and
(ii) one or more task allocations generated by the KANOA allocator. This workflow is
illustrated in Figure 6.1. The problem specification (1) describes the different aspects of
the MRS mission, divided into the world, robot and task models, as well as the mission
specification. The last describes the constraints and the list of tasks that robots must
complete. This information is parsed, stored and used to generate feasible allocations in
the pre-allocation and task-allocation stage (2). This chapter deals with stages (3) and
(4). The result of the task scheduling process (4) is a set of (Pareto-)optimal robot plans.

Before formulating the scheduling problem, we review some of the previously defined
concepts needed to describe the task scheduling problem.

uncertainties can be modelled in future work.
2In comparison to EvoChecker, the main difference is that we incorporated multiple models as part

of the evaluation stage in the multi-objective evolutionary algorithm.
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Figure 6.1: Overview of the KANOA workflow from the specification of the problem to
the generation of robot plans .

Preliminaries

We define the multi-robot problem specification divided into:3 the world model, the tasks
model, the robots model and the mission, and formalised it in Z notation in Section 4.2.1.
We refer to this as KANOA’s problem specification. KANOA allows the specification
of multiple objective and constraint requirements relevant to multi-robot systems. The
complete list of these requirements is depicted in Table 6.1. These consist of four types of
constraints (C1-C4) to consider for the allocation of tasks, and six constraints (C5-C10)
applicable to the task scheduling. There are also three optimisation objectives (O1-O3)
related to the probability of mission success, the robot’s idling time and the total robots’
travelling cost. Users of KANOA can specify one or more of these objectives to guide the
synthesis of robot plans.

There are three types of tasks in KANOA4. First, atomic tasks at ∈ AtomicTask are
indivisible activities carried out by one or several robots, at.nRobots ∈ N, at a given
location at.locationID5. These have identifiers at.id ∈ ATaskID. Secondly, compound
tasks ct ∈ CompoundTask are formed by a sequence of (atomic or compound) subtasks,
ct.subtasks; and are identified ct.id ∈ CTaskID. Compound tasks can be performed
in no specific order, in a specific order (without forcing them to be consecutive), or
consecutively and ordered (start the next exactly when the last subtask finishes); where
ct.constraint ∈ {none, ordered, consecutive} is related to constraints C5-C7, respectively,
in Table 6.1.

A mission task mt ∈ MissionTask instantiates an atomic or compound task to be
carried out by robots. It has a unique identifier mt.taskID that corresponds to the

3This is a summary of Section 4.2.1. We refer the reader to this section for further details.
4See KANOA problem specification in Section 4.2.1
5Where locationID is the location identifier.
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Table 6.1: List of requirements (objectives and constraints) that can be specified in
KANOA’s problem specification and the stages (see Figure 6.1) where these are applicable.

ID Name Description Addressed
at stage

Type

C1 spaceXY Limits the physical operational area of robots. 2 Constraint

C2 allocateT Allocates a task to a specific robot. 2 Constraint

C3 closest Allocates a task to the closest robot. 2 Constraint

C4 maxTasks Bounds the maximum number of tasks accepted by a robot. 2 Constraint

C5 joint task Synchronise two or more robots to complete an atomic task. 4 Constraint

C6 ordered task Constrains a subtask (of a compound task) to start only when
the last one is completed at some moment in the past.

4 Constraint

C7 consecutive task Constrains a subtask (of a compound task) to start immedi-
ately after the last one is completed

4 Constraint

C8 taskTime Constraints the time to start or finalise a task. 4 Constraint

C9 rateSucc Sets minimum rate of mission success without failure. 4 Constraint

C10 time Sets the time available to complete the mission. 4 Constraint

O1 maximiseSuccess Maximise the probability of success without failure. 4 Objective

O2 minimiseIdle Minimise the robots’ idling time 4 Objective

O3 minimiseTravel Minimise the travelling cost. 4 Objective

taskID of the relevant atomic or compound task. Mission tasks are instantiated into
AtomicTaskInst and CompoundTaskInst.6 A mission is defined as the set of mission
tasks m.tasks : PMissionTask, where m : Mission; the set of objectives m.objectives ⊆
{minimiseIdle,minimiseTravel,maximise-Success}; and constraints m.constraints of types
C1-C4 and C8-C9 defined in Table 6.1; and time-bound to complete the mission m.time ∈
N parameter, referring to constraint C10.

Section 5.1 defines an allocation alloc as a partial function between robots and a
set of atomic task instances identifiers ATInstanceID, alloc : Robot 7→ PATInstanceID.
The available robots are defined in the problem specification. For example, for a problem
specification p : ProblemSpecification, the set of available robots is given by p.robotsModel.

Now that we have defined the preliminaries, we proceed with the definition of the task
scheduling problem.

6The tasks that robots must carry out are the atomic task instances. As two different mission tasks
can refer to the same atomic or compound task, we instantiate these into AtomicTaskInst and Com-
poundTaskInst, respectively, as described in Section 5.1.
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Task scheduling problem

A task schedule requires knowing the order in which tasks are executed. Hence, we first
define a task permutation and a task permutation vector as follows.

Definition 6.1.1 (Task Permutation) Given a non-empty set of atomic task IDs AT =

{at1, at2, . . . , atn} and a permutation index j ∈ {1, 2, . . . , n!}, the j-th permutation of the
n tasks is a sequence ⟨atb1 , atb2 , . . . , atbn⟩ where ⟨b1, b2, . . . , bn⟩ represents the j-th permu-
tation of the task ID indices 1, 2, . . . , n according to the Lehmer code [171]. We use the
notation perm(AT , j) to denote this task permutation.

Definition 6.1.2 (Task Permutation vector) Given an allocation ai with the set of
robots R = {r1, r2, ..., rm} = dom ai, and, for each of these robots r, a permutation index
jr corresponding to the order in which it will execute its tasks, we refer to the sequence
j = ⟨jr1, jr2, ..., jrm⟩ as the task permutation vector.

We illustrate these definitions with the following example.

Example 9. For an allocation a deploying two robots R = ⟨r1, r2⟩ with assigned
tasks a(r1) = {at1, at2}, a(r2) = {at3, at4}, the possible task permutations for
each robot are,

r1 tasks permutations: ⟨at1, at2⟩ and ⟨at2, at1⟩
r2 tasks permutations: ⟨at3, at4⟩ and ⟨at4, at3⟩

and the possible task permutation vectors,
1) j1 = ⟨1, 1⟩. Robot r1 do [at1, at2] and robot r2 do [at3, at4]
2) j2 = ⟨1, 2⟩. Robot r1 do [at1, at2] and robot r2 do [at4, at3]
3) j3 = ⟨2, 1⟩. Robot r1 do [at2, at1] and robot r2 do [at3, at4]
4) j4 = ⟨2, 2⟩. Robot r1 do [at2, at1] and robot r2 do [at4, at3]

We can access a specific task permutation, such as perm(a(r1), 1) = ⟨at1, at2⟩, to
retrieve the first task permutation of r1.

In addition to tasks, there are two more actions, idle and travel, that robots can
perform and therefore interleave with task executions (if necessary). Accordingly, we
define a robot plan as follows.

Definition 6.1.3 (Robot Plan) A robot plan for a robot r that is assigned tasks a(r)
by an allocation a and is required to perform these tasks in the order given by the task
permutation j is a sequence comprising a combination of:

• (travel, d) pairs, where travel ∈ LocationID is the identifier of a location that the
robot needs to travel to, and d ∈ N is the mean number of time units required to
reach this location from the current position of the robot;
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• (idle, d) pairs, where idle specifies that the robot must idle for d ∈ N time units;

• (dotask, d) pairs, where dotask ∈ ATInstanceID is the identifier of an atomic task,
and d ∈ N is the duration needed to complete the relevant task by robot r,

such that each task from the allocation a(r) appears in the plan precisely once, and in the
order specified by the task permutation j.

We use the notation plan(perm(a(r), j)) to denote such a plan, and term it “a plan
synthesised for the jth permutation of the tasks allocated to r in the allocation a.”

Example 10. If the first task permutation of a task allocation indicates that robot
r1 must “perform task at1 (in location l1), then perform task at2 (in location l2)”,
a possible robot plan is: “travel to location l1, which takes 4-time units from the
robot’s initial position, and do at1 which takes 5-time units; idle one-time unit;
travel to location l2 from l1 which takes 4-time units, and then do at2 taking 7-time
units”. This is represented as follows:

perm(ai(r1), 1) = ⟨at1, at2⟩,
and the possible robot plan for robot r1 is

plan(⟨at1, at2⟩) = ⟨(l1, 4), (at1, 5), (idle, 1), (l2, 4), (at2, 7)⟩
Notice that the initial position is not explicit in the plan but obtained from the
problem specification. Also, the initial travelling point for travel actions is implicit
from the location in the previous action.

We now define the set of plans consisting of one (and only one) plan for each robot in
an allocation such that each robot with allocated tasks knows what to do at every time
until the mission is completed.

Definition 6.1.4 (Task Schedule) Given an allocation “a” for a set of robots {r1, r2,
. . . , rm} = dom a, a task schedule is a set of plans {plan1, plan2, . . . , planm} s.t. plani is
the valid robot plan for robot ri, for i = 1, 2, . . . ,m. The completion of all these plans
complies with the constraints of task ordering, consecutive, joint tasks, completion time
and rate of success (as summarised in Table 6.1).

Finally, we define the task scheduling problem as follows,

Definition 6.1.5 (Task Scheduling Problem) Given a set of KANOA-generated task
allocations for an MRS mission, the task scheduling problem consists of synthesising a
set of task schedules. These schedules must be Pareto optimal with respect to one or
more optimisation objectives allowed by the KANOA problem specification (maximise the
probability of mission success, minimise the total idling time and/or minimise the total
travelling cost).
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Example 11. For two allocations a1, a2, where robots r1 and r2 are deployed in
allocation a1, and r1, r2 and r3 in a2, solving the task scheduling problem requires
first finding task schedules consisting of robot plans for all robots in either allocation
a1 or a2, where the completion of these plans ensures the successful completion of the
mission. Synthesised task schedules for our running example follow one of these two
patterns:

ts1 = {plana1,r1, plana1,r2}
ts2 = {plana2,r1, plana2,r2, plana2,r3}

where (to simplify notation) plana1,r1 is a possible plan for robot r1 with allocated
tasks from allocation a1. Solving the problem secondly requires retaining from these
task schedules those that are Pareto optimal with respect to the optimisation objec-
tives defined in the KANOA problem specification.

6.2 Pre-scheduling

Previously, we described the KANOA DSL to specify the multi-robot problem specifi-
cation in Section 4.2.1 and solved the allocation of tasks to robots in Section 5.1. The
outcome of the task allocation is a set of task allocations as shown in Figure 5.1. For each
allocation found by KANOA, we reduce (where possible) the complexity of the scheduling,
by identifying groups of robots that share task dependencies, and do not have such depen-
dencies with any robot from outside their group. This process is done in a pre-scheduling
stage, which we describe in the following section.

The goal of the task scheduler is to create robot plans that include all atomic tasks
necessary to complete the mission. These plans must comply with any task constraint
specified as part of the KANOA’s task model. Hence, in the pre-scheduling stage, we also
transfer existing compound task constraints into the atomic tasks (see Section 6.2.2).

6.2.1 Robot Grouping

We group robots with shared constrained tasks to simplify the models we will use for the
scheduling process. A constrained task is a task that needs to be executed by more
than one robot, or that needs to be executed (or, in the case of a compound task, to
have its subtasks executed) in a certain order because of constraints specified in the MRS
mission specification.

For the purpose of robot grouping, we represent an MRS mission as a tree structure
as illustrated in Figure 6.2. In this representation, each mission task appears as a child
node of the root, and has as descendants the compound and/or atomic tasks it maps to,
with compound tasks as parent nodes for their subtasks. A parent relation on this tree
structure is defined in the natural way. In particular, each subtask of a compound task
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Figure 6.2: Tree of tasks conforming a mission. Nodes at level 1 represent mission tasks.
Each “mission task” node has one child. Circle nodes indicate that all subtasks must be
completed. Leaf nodes represent atomic tasks and do not possess subtasks, each of them
has to be executed by one or more robots. We use arc links to show consecutive constraints
and dotted arrows for ordering ones. Constraint tasks (depicted in pink) include tasks
with any of these constraints and joint atomic tasks.

has that compound task as its parent.
We say that two tasks are task dependant if they share a constrained task.

Definition 6.2.1 (Task Dependency). Two atomic tasks in a mission task tree are
dependant iff they have a common ancestor compound task with an ordered or consecutive
constraint over its subtasks.

Example 12. Consider the left-side mission task depicted as a tree-structure in
Figure 6.2. Constrained tasks are shaded (in pink), for example, ct2 2 is a compound
task with a ordering constraint on its subtasks, ct4 4 and ct5 5; this indicates that
all tasks from ct4 4 have to be completed before subtasks from ct5 5. Hence, we
say that all atomic tasks reachable from ct2 2, {at1 1, at2 2, at1 3, at3 4, at4 5}
are dependant, and independent from the rest of the atomic tasks as they share no
constrained task with those. The rest of atomic tasks grouped by dependencies are:
{at1 6, at4 7}, {at3 9, at4 10}, {at1 8}.
Appendix B shows this example in KANOA DSL.

The three-stage process for robot grouping is depicted in Figure 6.3. The initial
step (a) involves grouping atomic tasks based on task dependencies on higher nodes.
First, KANOA computes the Breadth-First Search BFS algorithm pruning the mission
tree (missionTree) whenever a constrained task is encountered or when an atomic task is
reached. The algorithm then returns the task at which the tree was pruned. We define
this set of tasks tci ∈ TinstID, where TinstID ∈ ATInstanceID

⋃
CTInstanceID as,

BFS(missionTree) = {tc1, tc2, ...} (6.1)

133



CHAPTER 6. TASK SCHEDULING

atomic task
compound task

mission task

c constrained task

c c c

c

cluster of tasks

cluster of robots

c

(a)

r5

r2

r4r3
r5

(b)

r3

r3

r3

r3

r4

r2

r5

r2

r4r3
r5

(c)

r3

r3

r3

r3

r4

r2

mission task

mission task

atomic task
compound task

c constrained task

cluster of tasks

cluster of robots

r5

r2

r4r3
r5

(c)

r3

r3

r3

r3

r4

r2

mission task

r2

mission

mission task

r2

mission

mission task

r2

mission

mission task

mission

Figure 6.3: Grouping robots process. (a) Tasks are grouped if they are task-dependent.
In the example, five subtrees were found. (b) For each subtree, the allocated robots to
its atomic tasks are computed. (c) The transitive closure over the robots returns clusters
of robots sharing constrained tasks directly or indirectly through other robots. In this
example, there are two robot clusters < r3, r4, r5 > and < r2 >.

Example 13. For the mission in Figure 6.2 and Figure 6.3a,
BFS(missionTree) = {ct2 2, ct6 7, ct7 9, at1 8, ...}.

Second, given an allocation a : alloc, we obtain the robot(s) allocated to each task
t ∈ BFS(missionTree). We define this process as a function,

atRobots : alloc × PTinstID 7→ P(PRobot) (6.2)

and obtain atRobots(a,BFS(missionTree)) by acquiring for each t ∈ BFS(missionTree):

1. if t is an atomic task, return the set of robots R = {r : Robot | t ∈ alloc(r)} this
task is allocated to.

2. if t is a compound task, first get its set of descendent atomic tasks. Perform 1 for
each of these atomic tasks and combine their outcomes into a set R. Then, return
this set.

For case 1 above, || R ||> 1 only when t is a joint task, else || R ||= 1. The result
is illustrated in Figure 6.3b and the process explained in Algorithm 6. The function
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Algorithm 5 Get groups of robots that share task dependencies.
Require: missionTree: tree structure build from all mission tasks in KANOA
Require: Ai : ith allocation of atomic tasks to robots
1: procedure GetRobotsGroupedByTaskDependencies(missionTree,Ai)
2: firstConstrainedTasks = BFS(missionTree) ▷ bread-first search, see Section 6.2
3: robotListOfLists = [ ] ▷ initialise list for groups of robots
4: for t in firstConstrainedTasks do
5: if t is atomic task
6: robotListOfLists.add([list of robot(s) allocated to t in Ai ])
7: else if t is compound task
8: set = {} ▷ empty set
9: for at in reachable atomic tasks from t

10: set.addAll(robot(s) allocated to at in Ai)
11: end for
12: robotListOfLists.add([set.toList])
13: return robotListOfLists

GetRobotsGroupedByTaskDependencies received a tree-structure of tasks repre-
senting a mission task missionTree, and an allocation Ai . It returns groups of atomic tasks
that are only dependent on members of the same group robotListOfLists. The algorithm’s
correctness is ensured by employing breadth-first search (BFS) until it reaches either a
constrained task or an atomic task. Its completeness is guaranteed, as it terminates after
iterating over a finite number of tasks in the mission tree and a finite number of robots
assigned in allocation Ai .

Example 14. For the mission in Figure 6.2 and an allocation a1 with robots as-
signed to atomic tasks as shown in Figure 6.3b, atRobots(a1,BFS(missionTree)) =

{{r3, r5}, {r4, r5}, {r2}, {r4}, }r2}}.

Third, if a robot belongs to different sets in atRobots, these two groups are merged.
We compute the transitive closure among all robots to combine sets if they share a robot
(directly or through a transitive relation).

Definition 6.2.2 (Robot dependency relation) The robot dependency relation is the
reflexive binary relation R on the robots of an MRS such that two robots ra and rb are in
this relation (i.e., raRrb) iff

∃Rj ∈ atRobots(alloc,BFS(missionTree)) • {ra, rb} ⊆ Rj .

Definition 6.2.3 (Group of robots) We define a robot group as a set of robots,

group : PRobot
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Algorithm 6 Get groups of robots that share task dependencies.
Require: missionTree: tree structure build from all mission tasks in KANOA
Require: Ai : ith allocation of atomic tasks to robots
1: procedure GetRobotsGroupedByTaskDependencies(missionTree,Ai)
2: firstConstrainedTasks = BFS(missionTree) ▷ bread-first search, see Section 6.2
3: robotListOfLists = [ ] ▷ initialise list for groups of robots
4: for t in firstConstrainedTasks do
5: if t is atomic task
6: robotListOfLists.add([list of robot(s) allocated to t in Ai ])
7: else if t is compound task
8: set = {} ▷ empty set
9: for at in reachable atomic tasks from t

10: set.addAll(robot(s) allocated to at in Ai)
11: end for
12: robotListOfLists.add([set.toList])
13: return robotListOfLists

and all groups of robots in an allocation as,

groups : alloc → P group (6.3)

such that

∀ g ∈ groups(ai) • ∀ ra, rb ∈ g • raR′rb,

where R′ is the transitive closure of R.

To represent the groups of robots for an allocation ai and robots grouped by atRobot(ai ,

BFS(missionTree)), we create the squared adjacency matrix where a value of 1 in the
matrix elements is associated with two robots belonging to the same group. Then, we
compute the transitive closure using Warshall’s algorithm or variations [172]. Finally, we
remove any duplicated row and retrieve the robots on each row left where there is a 1 as
shown in the next example.

Observation 3. We adopted the term group avoiding the term subteam as in market-
based approaches [164], as this refers to a subset of robots that coordinate to complete
a task. This concept is implicit in our definition of joint tasks, where robots must
coordinate to complete a task.
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Example 15. The adjacency matrix of {{r3,r5},{r4,r5},{r2},{r4},}r2}} is given
by,

M =


r2 r3 r4 r5

r2 1 0 0 0

r3 0 1 0 1

r4 0 0 1 1

r5 0 1 1 1


and its transitive closure by,

M ′ =


r2 r3 r4 r5

r2 1 0 0 0

r3 0 1 1 1

r4 0 1 1 1

r5 0 1 1 1


Rows are removed if they are repeated. Hence, two groups of robots are obtained.
From row 1, {r2}, and from row 2, {r3, r4, r5}, as shown in Figure 6.3c.

6.2.2 Task Constraint Transfer

In KANOA’s DSL, we specify task constraints as part of the compound tasks and atomic
tasks definitions. Compound tasks can be defined with a constraint of type order or
consecutive, or none. We must transfer these constraints to the constituent atomic tasks,
which are the type of tasks to be allocated to robots and, ultimately, the ones appearing in
the robot plans. We define two functions to capture these two compound task constraints
passed into the atomic tasks.

First, we define the function doneBefore as,

doneBefore : ATInstanceID 7→ PATInstanceID (6.4)

mapping any atomic task to the set of atomic tasks that have to be completed before ati

can be started.
Second, for every atomic task ati , we define the function,

justDone(ati) =

ati−1 if ∃ ati−1 that has to be just completed to start ati

none otherwise
(6.5)

which returns an atomic task ati−1, iff there is a consecutive compound task constraining
ati to be started immediately after ati−1.

KANOA’s task model allows to specify compound tasks with compound tasks as sub-
tasks. Hence, since compound tasks as tree-like structures, atomic tasks must comply
with all constraints from the nodes above. Computing doneBefore and justDone for each
atomic task is non-trivial (see also Appendix D). We propose Algorithm 7 to compute
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doneBefore(ati) and justDone(ati) for any atomic task ati , while solving any conflict aris-
ing from multiple compound task constraints applied to a single atomic task.

For each atomic task (inputATList), this algorithm checks the highest compound task
For each atomic task (at in inputATList), this algorithm checks for the list of com-

pound tasks reachable through a parent relation (line 4). If this is empty, the atomic
task is defined as part of a mission task. If not empty (line 5), it iterates over this list
of compound tasks. If a consecutive constraint is found (line 8), all reachable atomic
tasks from the task are returned as a list (line 9). Then, the atomic task to the left of
ati is added to justDone (line 12). If an ordered constraint is found (line 14), atomic
subtasks from the ordered task and to the left of the path of constrained tasks, are added
to doneBefore.

Algorithm 7 Compute doneBefore(ati) and justDone(ati).
Require: inputATList: list of atomic tasks
1: procedure TranferConstraintsToAtomicTasks(inputATList)
2: While inputATList:
3: at = inputATList.pop(0)
4: listCTsAbove: list of compound tasks in order from the highest constraint compound task
5: if listCTsAbove is not empty:
6: While listCTsAbove:
7: ct0 = listCTsAbove.pop(0)
8: if ct0.consec: ▷ consecutive constrained
9: listAT = t.reachableAT get all reachable atomic tasks
10: atIndex = index of at in listAT
11: if (atIndex!=0):
12: at.justDone = listAT[atIndex-1]
13: return
14: if ct0.ordered: ▷ order constraint
15: if at in ct0.subtasks: ▷ only get previous tasks if ‘at’ part of subtasks
16: atIndex=index of at in ct0.subtasks
17: if (atIndex!=0): ▷ if not the only subtask
18: taskToBeDoneBefore=ct0.subtasks[0:atIndex-1] ▷ get previous tasks
19: for (i in taskToBeDoneBefore) do:
20: if i is compound task:
21: at.doneBefore.append(i.reachableAT) ▷ add reachable atomic

tasks
22: if i is atomic task:
23: at.doneBefore.append(i) ▷ add atomic task
24: end for
25: else (at not in ct0.subtasks):
26: subCT = listCTsAbove[0] ▷ get compound task
27: ctIndex = index of subCT in ct0.subtasks ▷ get index of compound task
28: if (ctIndex!=0):
29: for i=0; i==ctIndex-1; i++ do: ▷ iterate over subtasks
30: subtask=ct0.asubtasks[i]
31: if subtask is an atomic task:
32: at.doneBefore.append(subtask)
33: if subtask is a compound task:
34: at.doneBefore.append(subtask.reachableAT)
35: end for
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Figure 6.4: Task-trees shown higher node from at6 with a task constraint. In (a), the
higher node has an ordered constraint; hence, it overtakes any constraint of tasks below if
they are either order-constrained or with no constraint (∅). In (b), the highest constraint
node has a consecutive constraint; hence, it overwrites any constraint from lower nodes.
The image in (c) shows an example where the highest is an ordered and, at some lower
node, there is a consec constraint. In this case, the ordered constraint overtakes any node
until consec; thereafter, consec overwrites any node below.

Example 16. Figure 6.4 shows three examples of tree-like structures of com-
pound tasks. We show how the algorithm works in these examples. We have an
inputATList={t1, t2, t3...t6, ..., tn}. Algorithm 7 obtains doneBefore and justDone
for all atomic tasks. Here we show the output for doneBefore(at6) and justDone(at6).
We only need the information on the task’ tree-like structure from the left of task
at7 (as shown with an arrow in Figure 6.4.a). Constraints are depicted within curly
brackets, where ∅ means the compound task has no constraint.
In example (a), there are two compound tasks with order constraints (ct1 and ct3),
hence,

doneBefore(at6) = {t1, t2, t5}
justDone(at6) = null

In example (b), there is a consecutive task (ct1) at the highest node, hence, this
requires that all subtasks are done consecutively regardless of any other existing
constraints (consecutive, ordered or none). constraint t6 to be done just after t5 is
completed,

doneBefore(at6) = {}
justDone(at6) = t5

In example (c), t6 is constrained to be done just after t7 is completed (constraint
transferred from ct4) and after t1 and t2 (constraint transferred from ct1),

doneBefore(at6) = {t1, t2}
justDone(at6) = t7
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Figure 6.5: High-level process to create a task schedule and its QoS attributes from a
given allocation and permutation.

6.3 Task Scheduling in KANOA

Figure 6.5 shows the high-level process for generating a task schedule and a list of quality-
of-service (QoS) attributes. Starting from a task allocation and a task permutation, the
plan synthesis stage generates plans for each group of robots, if possible. If all robot
plans are feasible, the task schedule analysis stage returns the feasible task schedule
and the list of QoS attribute values. We provide more detail in the subsequent subsections.

6.3.1 Plan Synthesis

Section 6.1 defines a robot plan as a sequence of actions (idle, travel and dotask) and a task
schedule as a set of these robot plans that comply with any requirement (from Table 6.1)
defined in the KANOA problem specification. In this section, we are interested in finding
task schedules that comply with constraints C1-C10. The problem of synthesising robot
plans is approached as finding the adversary of an MDP modelling the behaviour of the
robots, where the possible actions from an MDP state can cause a robot to idle or to
complete the next task, as described in the following paragraphs.

Idling Model. We create an MDP Mi,j,g for each group of robots g ∈ groups(i) in
allocation i and permutation of tasks j. Mi,j,g models the robot’s actions, where a robot
r in group g is modelled by the state variable s defined by the tuple,

s = (rorder , rtime, ridleT ) (6.6)

where rorder counts the tasks completed and increases by one every time robot r completes
a task; rtime works as a clock increasing each time r travels and completes a task or when
it spends time idling, while ridleT counts only the time that r spends idling. An MDP
state is given by the composition of each of the robot’s state variables s = (s1, s2, ..., sn).

Variable rorder has a range of [0,n], where n is the number of tasks allocated to r by
allocation i; rtime has a range of [0,TT ] set as the total time available to complete the mis-
sion (specified in the KANOA problem specification); and ridleT a range of [0,rmaxIdle],
where rmaxIdle is the maximum time that the robot is allowed to idle given the time limit
TT . Time to idle, ridleT , can be omitted for any robot that lacks the time to idle while
completing all assigned tasks within the specified time frame TT .
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Observation 4. The maximum number of times a robot r can idle, rmaxIdle, is
calculated beforehand as the total time minus the time spent travelling and doing
all its tasks. The user can also specify the hyperparameter maxIdle directly in the
KANOA tool to limit the idling time available for each robot. This is useful from an
application perspective when we would like to synthesise plans with a bound on the
time that they are not doing any task. From the methodology perspective, adding a
bound on the idle time can result in a large reduction in the state space as thoroughly
explained in Appendix E.

Observation 5. A bound on the possible idling time is also found in classical
scheduling techniques such as job shop problems: “In a general job shop system the
number [of tasks] is arbitrary. Usually, in such systems, it is assumed that buffers
between processors have unlimited capacity and a job after completion on one processor
may wait before its processing starts on the next one. If, however, buffers are of zero
capacity, jobs cannot wait between two consecutive processors, thus, a no-wait property
is assumed” [42].

We describe the MDP model with the help of the example in Figure 6.6. On the left,
Figure 6.6a shows a representation of the Markov model for robot r17. Robot r1 starts
with two actions available: (1) travel and perform t1 (r1t1) or (2) idle (r1idle). When t1
is done, r1 can idle or travel and perform t2. When t1 and t2 are completed, r1 is done.
All actions lead to a single state, i.e., transition probabilities are set to 1.

The maximum idle time for each robot (ri idle) is constrained by the mission completion
time (denoted as time in KANOA’s DSL) minus the total time spent on travelling and
completing assigned tasks. The last two values are known given the allocation and the
permutation. Ideally, the idle time should be kept as small as possible to prevent state
explosion; however, determining what qualifies as ”small enough” can be challenging. We
provide some insights into the selection of an idling time in Appendix E.

On the right, Figure 6.6b shows the MDP written in the PRISM language. Starting
with the constant variables, TT is the total time available set to 24 time units. r1t1Time
is the completion time for task t1 by robot r1. travell0t1 is the travelling time from
the initial location to the location where t1 is performed. The Boolean formula,

formula done =(r1order=2 & r2order=...) (6.7)

is True only when all robots have completed their tasks.
PRISM modules are used to model each robot separately. Robot r1 behaviour is

7We follow the way MDPs are represented from [60]. States are represented as circles. Outgoing
arrows from a state are possible actions. Actions can have labels (e.g., r1t1). The number between states
si and si+1 is the probability of transitioning from si to si+1; in our example, all non-final states have
non-deterministic actions with a probability of 1 to reach the next state.
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mdp
const int TT=24; //TotalTime
const int r1t1Time; //t1 completion time
const int r1t2Time; //t2 completion time
const int travell0t1; //travelling time to t1
const int travelt1t2; //travelling time to t2
const int r1maxIdle;//max. r1 idle time
const int r2maxIdle;//max. r2 idle time
formula done = (r1order=2

& r2order= ...);//done
module Robot r1
// r1order = 0: task t1 scheduled
// r1order = 1: task t2 scheduled
//r1order = 2 : done
r1order: [0..2] init 0; // execution order
r1time:[0..TT] init 0; //time available
r1idleTime:[0..r1maxIdle];//times idling
// do sequence of tasks
//travel and t1
[r1t1] r1order=0 &
(r1time+r1t1Time+travell0t1<=TT)
−> (r1order’=1)

& (r1time’= r1time +travell0t1
+r1t1Time);

//travel and t2
[r1t2] r1order=1 &

(r1time+r1t2Time+travelt1t2<=TT)
−> (r1order’=2)

& (r1time’= r1time +travelt1t2
+r1t2Time);

// idle
[r1idle] r1order!=2 &

(r1time+1<=TT) &
(r1idleTime+1<=r1maxIdle)

−> (r1time’+= 1) &
(r1maxIdle’+= 1);

endmodule
module Robot r2
...

endmodule
rewards ‘‘idle”
[r1idle] true: 1;
[r2idle] true: 1; ...

endrewards

MDP model
Robots’ models for the ith allocation

Robot2

Robot1

(1)

(2)

(b)

(1)

(1)Sequence of actions and (2)idling time
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...{done}
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Figure 6.6: Model for the synthesis of plans for individual robots under task constraints
and minimising the idling time as the optimisation objective. On the left, (a) shows a
representation of the transition model. On the right, (b) the MDP model in PRISM
language. The idle optimisation parameter is shown in (c). The layout in (a) is inspired
by [173]).

defined in module Robot r1 with state variables r1order and r1time8. The orange
arrows from Figure 6.6 shows the transitions to a next task; for example,

[] r1order=0 & (r1time+r1t1Time+travell0t1<=TT)

-> (r1done’=1)&(r1time’=r1time+travell0t1+r1t1Time); (6.8)

represents the transition of r1 from an initial location into the location of t1. The guard
checks that the robot is at the initial location (r1order=0) and that there is enough time
to travel from the initial location of robot r1 to the location where t1 has to be done
(travell0t1), as well as enough time to complete t1 (travell0t1),

(r1time+r1t1Time+travell0t1<=TT) (6.9)
8State variables r1tasks depend on task constraints, as explained later.
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The update moves the robot to a state where t1 is completed (r1order’=1) and the time
of r1 reflects the travelling time and the time needed to complete t1
(r1time’=r1time+travell0t1+r1t1Time).

Next, the robot has the option to idle for one time step at a time, e.g.,

[r1idle] r1order!=2 & (r1time+1<=TT) -> (r1time+=1); (6.10)

Robot r1 can choose to idle if it hasn’t completed all tasks (r1order ! = 2) and still has time
available (r1time+1<=TT). When the transition is taken, r1’s time updates (r1time+ = 1).
Moreover, the action label [r1idle] is used to compute the idling time for robot r1
through r1idle reward structure,

reward "r1idle"

[r1idle] true: 1;

...

endreward

(6.11)

acting as a counter tracking the number of times a robot idles. These idle-related transi-
tions are shown in Figure 6.6 by purple arrows.

Optimisation Objective. Finally, Figure 6.6c depicts the RPCTL formula used for
the synthesis of the robot plans, R{"idle"}min=?[F done]. These read as follows: what
is the minimum “idle” reward such that eventually the state done is reached. We use the
PRISM Probabilistic Model Checker (PMC) to compute an adversary that, given Model
A, minimises the robot’s idle time. If an adversary is not found, no strategy complies
with the set of constraints, for example, the tasks cannot be completed within the time
available TT or, as formalised in the following paragraphs, no robot plan can comply with
the set of task constraints (C5-C8). The outcome of the PMC is the set of individual
robot plans and the total idle time required to complete the mission.

Plan synthesis. We generate robot plans by synthesising an MDP policy that
minimises the idling time (R“idle”min=? [ F done ]). As described in background Sec-
tion 2.3.3, an adversary resolves the non-determinism in an MDP. We are interested in
deterministic policies such that, at any state s, we know exactly what action to take.
Hence, our policy σ is a point distribution such that,

α(s) = a (6.12)

where a is a possible action for state s, a ∈ A(s). We use the PRISM probabilistic model
checker for the synthesis of adversaries for reward properties. Hence, a feasible task
schedule (for the ith allocation and the j permutation) is obtained iff an adversary can
be obtained for each robot group g in allocation i.
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mdp
...
module Robot r1
// r1order = i: travel and do task jt1
...
[jt1] r1order=i & (r1time+travelTi+r1jt1<=TT)

& (r1time+travelTi = r2time+travelTj)
−> (r1order’=i+1) & (r1time’+=travelTi+r1jt1);

...
endmodule

module Robot r2
// r2order = j: travel and do task jt1
...
[jt1] r2order=j & (r2time+travelTj+r2jt1<=TT)

& (r1time+travelTi = r2time+travelTj)
−> (r2order’=j+1) & (r2time’+=travelTj+r2jt1);

...
endmodule

Figure 6.7: Joint task jt1 in robot r1 written in PRISM language as two transitions,
first travel, then synchronise with other robots via the action label [jt1]. All transitions
in other modules, with the same action label, “transition” at the same time. Changes
compared to unconstrained tasks are highlighted in blue.

It is possible that the synthesis of an adversary is infeasible (for the ith allocation and
jth permutation), due to violations of the task constraints explained in Section 6.3.2 and
modelled as part of Mi,j,g.

6.3.2 Modelling Task Constraints

This section introduces the modelling of the task constraints as part of the MDP model,
Mi,j,g. Joint tasks require the synchronisation between robot modules in the PRISM
model so that robots meet in space and time to perform a particular task. On the other
hand, consecutive and ordered tasks require that robots know when the previous task(s)
has been completed to allow the next to start. Finally, constraints associated with the
time that a task must have started or finished, require that robots can only perform these
tasks within specific time windows. We formalise each of these constraints in the following
paragraphs.

a. Joint tasks (constraint C5)

Figure 6.7 shows an example where robot r1 has allocated a joint task jt1 to be performed
with the help of robot r2. Joint tasks require robots to start a task at the same time. This
is modelled as part of the MDP transition’s guard when r1 and r2 are ready to perform
task jt1 (when r1order = i and r2order = j, respectively). A proposition is added to
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check that both robots are at the same time ready to start jt1,

(r1time+travelTi = r2time+travelTj) (6.13)

where travelTi is the time needed by robot r1, to travel to perform jt1 from its current
location (i.e., the location after performing the task at (r1order=i-1) or from its initial
position if (i=0)). Similarly for travelTj and robot r2.

Robot variables transition simultaneously due to the PRISM action [jt1]. This
means that in a single transition, different state variables belonging to different modules
change at the same time. In this example, state variables related to the order and time
of r1 and r2.

b. Ordered tasks (constraint C6)

Figure 6.8 shows an example of two ordered atomic tasks, r1t1 and r2t2. These are
allocated to robots r1 and r2, respectively. Task r1t1 has to be done before r2t2. For
each atomic task with an ordered constraint, a Boolean formula is added to check when
the task is completed,

formula r1t1Done = r1order>=k+1;

formula r2t2Done = r2order>=j+1;
(6.14)

When robot r2 has to perform r2t2 (at r2order=j), it can only perform this task
when the previous task has been done, hence the proposition (r1t1Done) is added into
the transition’s guard. Also, as each robot has its own time as a state variable ritime,
the transition has to be taken only if the last robot has completed the task in the past.
In other words, r2 is at the location of task r2t2 and ready to perform this task after r1
completed r1t1Done,

r2time+travelT2>=r1time (6.15)

Note that if both tasks are assigned to the same robot, the guard ritime>=ritime can be
removed.

Finally, the update is extended to state that r2t2 has been completed

r2t2’=true (6.16)

This is needed if, for example, other tasks require r2t2 to be completed.

c. Consecutive tasks (constraint C7)

Figure 6.9 shows an example of two consecutive tasks, r1t2 and r2t3. These are allocated
to robots r1 and r2, respectively. Task r2t3 must start only immediately after r1t2 is
completed. Task r1t2 starts at r1order=j and it ‘just’ finishes at j+1, when the robot
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mdp
formula r1t1Done = r1order>=k+1 ; //TaskDone
formula r2t2Done = r2order>=j+1; //TaskDone
...
module Robot r2
// r2order = j: do task r2t2
...
[ ] r2order=j & (r2time+r2t2Time+travelT2<=TT)

& (r2time+travelT2 >= r1time) & (r1t1Done)
−> (r2order’=j+1)

& (r2time’+=r2t2Time+travelT2);
...
endmodule

Figure 6.8: Ordered tasks modelled as part of the MDP model guards and updates.
Boolean variables are added to check when a task is completed. Changes compared to
unconstrained tasks are highlighted in blue.

is ready to perform the next task. Hence, the following formulae are added to captured
when robots just completed tasks r1t2 and r2t3,

formula r1t2Just=r1order=j+1;

formula r2t3Just=r2order=k+1;
(6.17)

A special case happens if a task with a consecutive constraint is also a joint task. For
example, if r1t2 is also a joint task, we consider the longest task completion time among
the robots allocated with this task.

To model consecutive tasks, two conditions are added to the guard. First, we check
that robot r2 has just completed task r2t3, i.e., (r2order = k+1). The second checks
that robot r1 is synchronised in time with r2 to start r1t2. As we must check r1 time
after it has travelled to the desired location, this is modelled as,

(r1time)+travelT2=r2time (6.18)

d. Task constrained by time (constraint C8)

Time constraints can be defined in the KANOA’s mission specification defining the time
after a task can start or the time by which it has to finish (start after or end before).
Figure 6.10 shows an example where robot r1 is allocated tasks with time constraints.

In Figure 6.10.a, task r1t4 has to start after 10 time units. Hence, the guard’s tran-
sition (at r1order=i) has an additional proposition. This states that the robot’s clock
must be at least 10-time units by the time it is ready to start its task (i.e., after travelling
to the location where r1t4 has to be performed),

(r1time+travelT4>=10) (6.19)

Similarly, in Figure 6.10.b, task r1t5 has to end before or at 15-time units. Hence,
the additional guard’s proposition (at r1order=j) checks the robot’s clock to be lower or
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mdp
formula r1t2Just = r1order=j+1; //’just’done
formula r2t3Just = r2order=k+1 ; //’just’done
...
module Robot r1
// r1order = j: do task r1t2
...

endmodule
module Robot r2
// r2order = k: do task r2t3

...
[ ] r2order=k & (r2time+r2t3Time+travelT3<=TT)

& (r1t2Just) //r1t2 ’just’ done
& (r2time+travelT2 = r1time) //even iff same robot

−> (r2order’=k+1)
& (r2time’+=r2t3Time+travelT3);

...
endmodule

Figure 6.9: Consecutive tasks modelled as part of the MDP model guards (in blue). In
this example, task r1t2 has to be performed immediately after r2t3.

equal to 16 by the time the task is completed,

(r1time+travelT5+r1t5Time<=15) (6.20)

Observation 6. Why do we model task constraints as part of the MDP and not
as temporal logic formulae? It is possible to formulate some of the task constraints
as RPCTL* formulae rather than model them as part of the MDP transitions. Con-
sider the example of synthesising a robot plan for r1 that minimises the idle time
(R{"idle"}) to reach a state where all tasks are completed ([F done]), and task
r1t1 has to be performed in the first 15 time units. If task r1t1 is the third task to
be done by r1, this can be written as R{"idle"}[(F done) & (G((r1order=3) ⇒
(r1time>15)))]. We opt to encode the task constraints directly into the model to
reduce the number of states where possible, mitigating the state-explosion problem.
Moreover, the probabilistic model checking of more complex formulae (compared to
the reachability formulae proposed) requires more computation time.

6.3.3 Task Scheduling Analysis

We describe the task scheduling problem in Section 6.1 as finding task schedules (i.e., sets
of robot plans) that comply with a set of requirements. These requirements encompass
constraints and optimisation objectives detailed in Table 6.1. Optimisation objectives
can also be referred to as quality-of-service (QoS) attributes to be minimised or max-
imised [50].

KANOA’s DSL allows to specify one, two, or all three optimisation objectives O ⊆
{O1, O2, O3}, as defined in Table 6.1. For consistency and without loss of generality, we
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mdp
...
module Robot r1
// r1order = i: do task r1t4
...
[ ] r1order=i

& (r1time+r1t4Time+travelT4<=TT)
& (r1time+travelT4 >= 10)

−> (r1order’=i+1)
& (r1time’+=r1t4Time+travelT4);

...
endmodule

mdp
...
module Robot r1
// r1order = j: do task r1t5
...
[ ] r1order=j

& (r1time+r1t5Time+travelT5<=TT)
& (r1time+travelT5+r1t5Time <= 15)

−> (r1order’=j+1)
& (r1time’+=r1t5Time+travelT5);

...
endmodule

a) b)

Figure 6.10: Time constraints modelled as part of the MDP model. As an example, robot
r1 has allocated task r1t4, which must start after 10-time units (a), and r1t5 before 15
(b).

assume that all attributes are intended to be minimized. In the case of “maximising the
probability of success”, we rephrase it as “minimise the probability of failure”. We are
interested in computing the optimisation attributes attr1−3 associated with O1–O3 for each
allocation i and permutation j. Since robots in (i, j) are divided into g groups, we initially
derive attribute values for each group and then combine them. For example, KANOA
calculates the probability of mission success for each group g in (i, j) and computes the
product of these probabilities across all groups to obtain the overall value of attribute
attr19. We compute each attribute as follows,

attr1 =
∏

g

PMC (Mprob,g, ϕprob), (6.21)

attr2 =
∑

g

PMC (Midle,g, ϕidle), (6.22)

attr3 =
∑

g

f (Mtravel,g) (6.23)

Attribute attr1 indicates the probability of succeeding with a mission; it uses prob-
abilistic model checking for the qualitative verification of the discrete Markov chain
model, Mprob,g under property “ϕprob =P=? [ F success ]”. The second attribute, attr2,
obtains the total robot idling time using the MDP model, Midle,g, and the property
“ϕprob =R{“idle”}min=? [ F done ]”. The third attribute, attr3, refers to the total trav-
elling cost of the robots captured by model Mtravel,g and computed by a function f .

We refer toM(prob|idle|travel),g as specialised models as they capture different aspects
of the task scheduling process. We specify each of these as follows,

- Probability of success model (Mprob,g). This DTMC models the probability
of successfully transitioning between locations and successfully completing tasks. Each
robot r in group g is modelled as a state variable s defined by the tuple, s=(rorder), where

9As these models depend on i, j we can write these as in Section 6.3.1, for example, Mprob,i,j,g.
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dtmc
//prob. of sucess
const double p1;
const double p2;
const double p3;
const double p4;
formula success = r1=10 & r2=...; //succ
label ‘‘fail” = (r1=1|r1=5|r1=7|r1=9)

|(r2=...; //fail
label ‘‘r1try t1” = r1=2 & r1=3 & r1=4;
label ‘‘r1try t2” = r1=8 & r1=3 & r1=4;

module Robot r1
r1:[0..10];
//travel to t1
[r1travel t1]r1=0 −> p1:(r1’=2)

+ 1−p1:(r1’=1);
//try t1, retry allowed 2 times
[]r1=2 −> p2:(r1’=6) + 1−p2:(r1’=3);
[]r1=3 −> p2:(r1’=6) + 1−p2:(r1’=4);
[]r1=4 −> p2:(r1’=6) + 1−p2:(r1’=5);
//travel to t2
[r1travel t2]r1=6 −> p3:(r1’=8)

+ 1−p3:(r1’=7);
//try t2, no retry allowed
[]r1=8 −> p4:(r1’=10) + 1−p4:(r1’=9);
endmodule

module Robot r2
...

endmodule

DTMC model
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Figure 6.11: DTMC Model for the probability of succeeding with a mission without failure.

rorder tracks the robot’s travelling, task attempts and failures. We describe the DTMC
model with the help of Figure 6.11. On the left, Figure 6.11a shows the representation of
the Markov model for robot r1. Robot r1 starts from state s0. It takes action labelled
r1travel t1, and with probability p1 it travels to the first task location (s2), while with
probability 1-p1 fails (s1). At state s2 (labelled {r1try t1}), the robot attempts to perform
its first task and succeeds with probability p2. If it fails, it attempts to complete the task
κ1 times, each with a probability of p2 of succeeding and 1-p2 of failing. At the last
attempt, if the robot fails to complete the task it ends in state s3+κ1 . If it succeeds
(s4+κ1), it travels to the next task with probability p3 and fails with 1-p3, and so on until
the last task is completed at state sm5 .

Note that each task is modelled using four states plus the times allowed for retry. For
example, the first task requires states (s0, s1, s2 and s3+κ1) to travel (or fail travelling)
and complete the task (or fail the task), plus κ1 states to retry in case of a failed attempt.
Hence, in sm5 , m5 = 4 ∗ nr1 + Σm

x=1κx . Let nr be the total number of tasks for any robot
r in allocation ai , the total number of states is given by,

ns = Σr∈ai(4 ∗ nr + Σm
i=1κi) + (#dom ai) (6.24)

where the number of robots (#dom ai) is added to account for the initial states (repre-
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sented with index 0 for r1).
Figure 6.11b shows the DTMC written in the PRISM language, starting with: the

probability values declared as constants p1,...,p4; the formula done defined as the con-
junction of states where robots completed successfully all their tasks; label fail defined as
the conjunction as a robot failing (at any state, declare by disjoint states for each robot);
and, for explainability purposes, labels defining the states where robots are attempting to
complete a task r1try t1, r1try t2. The robot’s behaviour is defined by PRISM modules,
where the state variable, s=(rorder), introduced before, is defined as the robot’s name.
For robot r1, this is declared as r1:[0..10];. As this robot has two tasks, t1 and t2, and
t1 is allowed to be retried 2 times, the last state is 4*2+2=10 and the total number of
states (for r1) is 11 as defined in Equation 6.24 (without counting robot r2). The rest of
the PRISM module in this figure is self-explanatory.

Finally, Figure 6.11c depicts the PCTL formula P=?[F success], read as “what is the
probability of completing the mission (all tasks) successfully (without any failure)?”. We
use this formula and the PRISM model checker tool to compute the attribute attr1.

- Idle time model (Midle,g). Attribute attr2 is obtained as a byproduct of the plan
synthesis; when generating a plan that minimises the robots’ idling time, the minimum
idle time for the given (allocation,permutation) pair is also returned. Hence, Figure 6.6
depicts ϕidle and Mprob (denoted as Mi,j,g in Section 6.3.1).

- Travelling cost model (Mtravel,g). The travel cost model incorporates the travel
actions (along with their corresponding times) extracted from plans generated during
plan synthesis. The function f sums the travel times in these plans for each group, and
subsequently, these values are combined to determine the total travel time associated with
(i, j).

Observation 7. Attribute attr1 represents the probability of the mission being
completed successfully. In the next section, we set the optimisation problem as the
minimisation of all attributes. Hence, we are interested in minimising the probability
of mission failure calculated as 1−attr1. It is worth noticing that this is not the same
as computing the probability of each group failing by modifying the PCTL formula
ϕprob to 1-P=?[F success], as visualised in the example on Figure 6.12. This variant
would minimise “the probability of (strictly) all tasks failing”, as opposed to the
failure of one or more tasks, which would result in mission failure. While KANOA
minimises the probability of mission failure, its users may consider this alternative if
it aligns better with the specific requirements of their application.

The actions in the MDP and DTMC models are consistent with each other. To
establish this, we need to show that each PRISM robot module in the MDP model behaves
identically to its counterpart in the DTMC. Both models are based on the same task
permutation j and the same group of robots g. Each robot r ∈ g has a module in the
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Group2 succeded
Group1
succeded

Group2 failed0.8

0.2

0.7

0.3

0.7

0.3

=0.56 prob. of all groupss succeeding

=0.06 prob. of all groups failing
Group1
failed

Group2 succeded

Group2 failed

=0.44 prob. of mission failing

Figure 6.12: Example of calculating the probability of success.

MDP that follows the task sequence defined by j along with potential non-deterministic
actions for idling. This task sequence is preserved in the DTMC model since it follows
the same ordered sequence of tasks. Since the idling time is not treated as probabilistic,
it can be omitted in the DTMC. As a reference to the reader, the conversion between
MDPs and DTMCs is well-documented in the literature; for an example of this process,
we refer the reader to [78] (Theorem 1).

6.4 Task Scheduling Optimisation.

Thus far, we described the plan synthesis process and generation of multiple specialised
models to obtain QoS attributes. These attributes are computed for a given allocation and
permutation pair, denoted as (i, j). As mentioned briefly in the chapter’s introduction,
finding optimal solutions for a large number of robots and tasks is unfeasible as the
solution space grows linearly with the number of robots but factorially with the tasks (for
each task allocation). The solution space size (SS)10 can be computed as follows. For each
allocation ai , the potential solutions are the multiplication of each robot’s permutation
of tasks. Hence,

#SS =
∑

ai∈alloc

∏
r∈dom ai

#(ai(r))!

where
∏

r∈dom ai
#(ai(r))! = #SSi is the solution space size of allocation ai .

Example 17. From Example 11, the four potential solutions for allocation ai are:
j1 = ⟨1, 1⟩, j2 = ⟨1, 2⟩, j3 = ⟨2, 1⟩, j4 = ⟨2, 1⟩. In this case, as the solution space is
small, it is possible to evaluate each of these solutions. However, if robot r1 were
allocated 8 tasks, this would be 8!×2!=80640 possible solutions for ai .

10Without considering any constraints that can be specified in the problem specification and which
may reduce this number.
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Figure 6.13: Workflow of the generation of a plan and computation of its attribute values
for its evaluation.

To generate task schedules for large solution space multi-robot problems, KANOA
utilises metaheuristic search based on genetic algorithms (GA),11, producing approximate
Pareto-optimal task schedules with respect to O for each task allocation. As previously
said, the GA search method consists of the following steps: initialisation, evaluation (fit-
ness assessment), selection, crossover, mutation and replacement. An initial population
consisting of permutations j from allocation i are generated in the initialisation step.
The evaluation (or fitness assessment) consists of finding the attribute values for poten-
tial solutions (i, j), as explained in the following paragraphs. The fitness score for each
solution is determined based on (up to) three objective functions, or fitness functions,
defined in KANOA. The last four steps are carried out as dictated by the GA algorithm.

Figure 6.13 illustrates the process for the evaluation of potential solutions, referred
to as individuals. Initially, the meta-heuristic search algorithm generates a population
of potential solutions, i.e., a set of task permutations {j1, j2, ...} for an allocation i. For
each individual (1), KANOA retrieves the groups of robots in allocation i (2). Within
each group, KANOA synthesizes robot plans according to the methodology outlined in
Section 6.3.1 (3). If it is unable to generate a plan for all groups, the evaluation stage
returns inf inite for all attributes (4), as the optimisation process aims to minimise these
values. Conversely, if successful, the value of each attribute is computed for each group (5),

11See background Section 2.4.
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followed by aggregation across all groups (6). These steps are summarised by (6.22) and
(6.23). Finally, the optimisation values and the (i, j) pair are returned (7).12

We omitted the (implicit) reliance of equations 6.22-6.23 on an allocation i and a
task permutation j. Let us refer to these equations as attrι(i, j), where ι is the number
of the attribute13, and i, j the variables from which the models are constructed. The
output of the task scheduling optimisation process is a Pareto-optimal set PS of solutions
satisfying constraints C1-C10, non-dominated with respect to the optimisation objectives
O ⊆{O1,O2,O2}, PSi = {j ∈ SSi | (∄j’ ∈ SSi • j’ ≺ j)} with the dominance relation
≺: SSi × SSi → B defined by,

∀ j1,j2 ∈ SSi • j1 ≺ j2 ⇔
(∀ ι ∈ L • attrι(i, j1) ≤ attrι(i, j2)) ∧ (∃ ι ∈ L • attrι(i, j1) < attrι(i, j2))

where L ⊆ {1, 2, 3} s.t. k ∈ L iff Ok ∈ O. We define the Pareto front PF as the set of
the attribute values corresponding to all the solutions from PS .

Observation 8. PRISM supports the specification of multi-objective proper-
ties [174]. However, as we opt to generate multiple specialised models, this feature
cannot be exploited in the current version of KANOA. As a side note, in previous
versions of KANOA [30,93,122], a single MDP model captured the behaviour of the
robots for a given permutation. However, this PRISM feature could not be exploited
either, because: (a) the property used to reason about the travelling cost was not
a cumulative reward property (e.g., “what is the expected travel cost within t time
units”, written as, R=? [C<=t ]) which is the only type of reward property accepted
in multi-objective PRISM properties; and (b) PRISM only supports transition re-
wards in this context; state rewards are not [174].

12Notice that the (i, j) pair has shown to be a feasible solution (as all synthesised plans were feasible)
and it contains enough information to synthesise the robots’ plan. Hence, Figure 6.13 shows that the
robot plans synthesised plans are returned.

13The values of ι consist of the indices of the optimisation objectives, s.t. Oι ∈ O.
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6.5 Hospital Case Study

In this section, we show the grouping of robots and the attribute values’ generation for the
hospital case study. Further evaluation is provided in Chapter 7 as part of the KANOA’s
tool evaluation. The hospital case study is introduced in Section 4.3.14

We assume that multiple task allocations are given, so robots know what tasks they
must carry out but do not know the order of these tasks, and we consider an allocation that
consists of deploying four robots R = ⟨r3, r4, r5, r1⟩. The pre-scheduling stage identifies
three groups of robots, {{r3},{r4, r5}, {r1}}. As part of the multi-objective optimisation
loop, the permutation j = ⟨78, 2, 2, 600⟩ is evaluated.

We explain three models in this section, two MDPs and one DTMC; the rest follow the
same structure and are provided in Appendix F. The configuration of the metaheuristic
search and other KANOA’s tool hyperparameters are explained in Chapter 7.

MDP, robot group 1. The MDP for group one is shown in Listing 6.1. Line 2 shows
the time limit set to 120 minutes; lines 4-9 the travelling time between locations of its
assigned tasks; lines 10-12 the time to complete each task; line 13 shows the maximum
idling time, set to 20. Line 14 shows the formula done, defined as the state variable
r3done = 6, coinciding with the robot completing the last task. Lines 16-17 show the
constraints for ordered tasks. The behaviour of r3 is described in lines 19-32. Lines 20-22
show the state variables to track the order (r3order), the robot’s clock (r3time) and the
robot’s time spent in idling (r3idleTime).

Line 23 completes task at4 9, as shown in the label between square brackets. As this
is the first task, the robot starts at r3order = 0. The second part of the guard checks
if enough time is available to travel to at4 9 location and complete it. The transition
updates r3order ′ = 1 to move on to the next task and increases the robot’s clock (by the
time it took to travel and complete the task).

In line 25, the robot completes tasks at2 11. As this task can only be performed
after at4 9, the guard also checks that the previous task has been done in the past, shown
highlighted in yellow. This is previously explained in Figure 6.8. In this special case, as
both tasks are assigned to the same robot, it is trivially true that the robot completed
the previous task in the past (r3time + travelr3at3 10 >= r3time). The update part in
this line and the following tasks (lines 28-33) are similar to the previous task.

Line 32 shows the idle transition that the robot can take at any time as long as it
has not completed its tasks (r3done! = 6) and there is time to idle a one-time unit
(r3time + 1 <= TT ). Lastly, line 36 shows the cost of 1 added to the “idle” reward
structure when transition [r3idle] is taken.

14We modify the success rate in the hospital case study to be more than 20% for KANOA to generate
solutions. While a 20% success rate might seem modest, its calculation method, as detailed in Figure 6.12,
accounts for this perception.
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1 mdp
2 const int TT=120;//total time available
3 //r3 velocity:2.0
4 const int travelr3at4 9=4 ;// from location: l3 (robot initial loc) to location: room4 (at4 9) distance:8
5 const int travelr3at2 11=0 ;// from location: room4 (at4 9) to location: room4(at2 11) distance:0
6 const int travelr3at3 10=0 ;// from location: room4 (at2 11) to location: room4(at3 10) distance:0
7 const int travelr3at4 12=2 ;// from location: room4 (at3 10) to location: room5(at4 12) distance:4
8 const int travelr3at3 13=0 ;// from location: room5 (at4 12) to location: room5(at3 13) distance:0
9 const int travelr3at2 14=0 ;// from location: room5 (at3 13) to location: room5(at2 14) distance:0

10 const int r3at4 9Time=1; const int r3at2 11Time=6;
11 const int r3at3 10Time=6; const int r3at4 12Time=1;
12 const int r3at3 13Time=6; const int r3at2 14Time=6;
13 const int maxIdler3=20;
14 formula done=(r3order=6);
15 //formulae for ordered tasks
16 formula r3at4 9Done =r3order>=1 ;
17 formula r3at4 12Done =r3order>=4 ;
18

19 module r3
20 r3order:[0..6];
21 r3time:[0..120];
22 r3idleTime:[0..maxIdler3];
23 [r3at4 9] r3order=0 &(r3time+r3at4 9Time+travelr3at4 9<=TT) →(r3order'=1) &...

(r3time'=r3time+r3at4 9Time+travelr3at4 9);
24

25 [r3at2 11] r3order=1 &(r3time+r3at2 11Time+travelr3at2 11<=TT) &
26 (r3time+travelr3at2 11 >= r3time) & (r3at4 9Done) →(r3order'=2) &...

(r3time'=r3time+r3at2 11Time+travelr3at2 11);
27

28 [r3at3 10] r3order=2 &(r3time+r3at3 10Time+travelr3at3 10<=TT) &(r3time+travelr3at3 10 >=r3time) &...
(r3at4 9Done) →(r3order'=3) &(r3time'=r3time+r3at3 10Time+travelr3at3 10);

29 [r3at4 12] r3order=3 &(r3time+r3at4 12Time+travelr3at4 12<=TT) →(r3order'=4) &...
(r3time'=r3time+r3at4 12Time+travelr3at4 12);

30 [r3at3 13] r3order=4 &(r3time+r3at3 13Time+travelr3at3 13<=TT) &(r3time+travelr3at3 13 >=r3time) &...
(r3at4 12Done) →(r3order'=5) &(r3time'=r3time+r3at3 13Time+travelr3at3 13);

31 [r3at2 14] r3order=5 &(r3time+r3at2 14Time+travelr3at2 14<=TT) &(r3time+travelr3at2 14 >=r3time) &...
(r3at4 12Done) →(r3order'=6) &(r3time'=r3time+r3at2 14Time+travelr3at2 14);

32 [r3idle] r3order!=6 &(r3time+1<=TT) &(r3idleTime+1<=maxIdler3) →(r3time'=r3time+1) &...
(r3idleTime'=r3idleTime+1);

33 endmodule
34

35 rewards “idle“
36 [r3idle] true: 1;
37 endrewards

Listing 6.1: MDP model for robot group 1.

MDP, robot group 2. Listing 6.2 shows the MDP model of the second robot group.
The difference with the previously described MDP is that tasks at1 1 and at1 2 must
start after 10 minutes. As both tasks are joint, robots r4 and r5 must synchronise in time
and space to complete these tasks.
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1 mdp
2 const int TT=120;//total time available
3 //r4 velocity:2.0
4 const int travelr4at1 1=4 ;// from location: l4 (robot initial loc) to location: room1 (at1 1) distance:8
5 const int travelr4at1 2=4 ;// from location: room1 (at1 1) to location: room6(at1 2) distance:8
6 //r5 velocity:2.0
7 const int travelr5at1 1=5 ;// from location: l5 (robot initial loc) to location: room1 (at1 1) distance:9
8 const int travelr5at1 2=4 ;// from location: room1 (at1 1) to location: room6(at1 2) distance:8
9 const int r4at1 1Time=4; const int r4at1 2Time=4;

10 const int r5at1 1Time=4; const int r5at1 2Time=4;
11 const int maxIdler4=20; const int maxIdler5=20;
12 formula done=(r4order=2 &r5order=2);
13

14 module r4 //robot r4
15 r4order:[0..2];
16 r4time:[0..120];
17 r4idleTime:[0..maxIdler4];
18 [at1 1] r4order=0 &(r4time+r4at1 1Time+travelr4at1 1<=TT) &...

(r4time+travelr4at1 1 = r5time+travelr5at1 1) & (r4time+travelr4at1 1 >= 10) →(r4order'=1) &...
(r4time'=r4time+r4at1 1Time+travelr4at1 1);

19 [at1 2] r4order=1 &(r4time+r4at1 2Time+travelr4at1 2<=TT) &(r4time+travelr4at1 2 =r5time+travelr5at1 2)& ...
(r4time+travelr4at1 2 >=10) →(r4order'=2) &(r4time'=r4time+r4at1 2Time+travelr4at1 2);

20 [r4idle] r4order!=2 &(r4time+1<=TT) &(r4idleTime+1<=maxIdler4) →(r4time'=r4time+1) &...
(r4idleTime'=r4idleTime+1);

21 endmodule
22

23 module r5 //robot r5
24 r5order:[0..2];
25 r5time:[0..120];
26 r5idleTime:[0..maxIdler5];
27 [at1 1] r5order=0 &(r5time+r5at1 1Time+travelr5at1 1<=TT) &&...

(r5time+travelr5at1 1 = r4time+travelr4at1 1) & (r5time+travelr5at1 1 >= 10) →(r5order'=1) &...
(r5time'=r5time+r5at1 1Time+travelr5at1 1);

28 [at1 2] r5order=1 &(r5time+r5at1 2Time+travelr5at1 2<=TT) &(r5time+travelr5at1 2 =r4time+travelr4at1 2)& ...
(r5time+travelr5at1 2 >=10) →(r5order'=2) &(r5time'=r5time+r5at1 2Time+travelr5at1 2);

29 [r5idle] r5order!=2 &(r5time+1<=TT) &(r5idleTime+1<=maxIdler5) →(r5time'=r5time+1) &...
(r5idleTime'=r5idleTime+1);

30 endmodule
31

32 rewards “idle“
33 [r4idle] true: 1;
34 [r5idle] true: 1;
35 endrewards

Listing 6.2: MDP model for robot group 2.

The synchronisation of at1 1 is highlighted in yellow. Line 18 shows robot r4 complet-
ing task at1 1, as described in the label. The guard checks if it is ready to start the task
(r4order = 0) and if there is enough time (r4time + r4at1 1Time + travelr4at1 1 <TT).
It also checks if r4 is synchronised with r5 in time after travelling to the location of this
task (r4time + travelr4at1 1 = r5time + travelr5at1 1) and if at least 10 time units have
passed (r4time + travelr4at1 1 >= 10).

Similarly in line 27, robot r5 checks that r4 is ready to synchronise and that its clock
r5time is at least 10 time units after reaching at1 1’s location. Synchronising at at1 2’s
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location is also ensured by lines 19 and 28. The rest of the model follows the same
structure as the previous MDP.

1 dtmc
2 const double p travel r4at1 1=1.0 ;// from location: l4 (robot initial loc) to location: room1 (at1 1)
3 const double p travel r4at1 2=1.0 ;// from location: room1 (at1 1) to location: room6(at1 2)
4 const double p travel r5at1 1=1.0 ;// from location: l5 (robot initial loc) to location: room1 (at1 1)
5 const double p travel r5at1 2=1.0 ;// from location: room1 (at1 1) to location: room6(at1 2)
6 const double p r4at1 1=0.97 ;const double p r4at1 2=0.97 ;
7 const double p r5at1 1=0.98 ;const double p r5at1 2=0.98 ;
8 formula done=(r4=12 \& r5=12);
9

10 module r4 //robot r4
11 r4:[0..12];
12 //travel to at1 1
13 [r4travel at1 1] r4=0→p travel r4at1 1:(r4'=2) +1-p travel r4at1 1:(r4'=1);
14 //try at1 1, retry allowed 2 times
15 []r4=2 →0.97:(r4'=6) +1-0.97:(r4'=3);
16 []r4=3 →0.97:(r4'=6) +1-0.97:(r4'=4);
17 []r4=4 →0.97:(r4'=6) +1-0.97:(r4'=5); //fail task at r4=5
18 //travel to at1 2
19 [r4travel at1 2] r4=6→p travel r4at1 2:(r4'=8) +1-p travel r4at1 2:(r4'=7);
20 //try at1 2, retry allowed 2 times
21 []r4=8 →0.97:(r4'=12) +1-0.97:(r4'=9);
22 []r4=9 →0.97:(r4'=12) +1-0.97:(r4'=10);
23 []r4=10 →0.97:(r4'=12) +1-0.97:(r4'=11); //fail task at r4=11
24 endmodule
25

26 module r5 //robot r5
27 r5:[0..12];
28 //travel to at1 1
29 [r5travel at1 1] r5=0→p travel r5at1 1:(r5'=2) +1-p travel r5at1 1:(r5'=1);
30 //try at1 1, retry allowed 2 times
31 []r5=2 →0.98:(r5'=6) +1-0.98:(r5'=3);
32 []r5=3 →0.98:(r5'=6) +1-0.98:(r5'=4);
33 []r5=4 →0.98:(r5'=6) +1-0.98:(r5'=5); //fail task at r5=5
34 //travel to at1 2
35 [r5travel at1 2] r5=6→p travel r5at1 2:(r5'=8) +1-p travel r5at1 2:(r5'=7);
36 //try at1 2, retry allowed 2 times
37 []r5=8 →0.98:(r5'=12) +1-0.98:(r5'=9);
38 []r5=9 →0.98:(r5'=12) +1-0.98:(r5'=10);
39 []r5=10 →0.98:(r5'=12) +1-0.98:(r5'=11); //fail task at r5=11
40 endmodule

Listing 6.3: DTMC model for robot group 2.

DTMC, robot group 2. Listing 6.3 shows the DTMC model of the second group
of robots. Lines 2-7 show the probabilities associated with travelling between locations
and completing tasks for robots r4 and r5. Line 13 shows the transition from r4 initial
location to the location of task at1 1, succeeding with probability p travel r4at1 1. Lines
15-17 show the attempts to complete task at1 1, succeeding with 0.97 probability. The
rest of the model follows the same structure. Line 8 shows the done formula showing the
states where robots must arrive to say that the mission has been completed.
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The attribute values for the allocation and permutation (a5, j) after combining the
values for each group are: minIdle = 11.0, maxSucc = 44.37, minTravel = 41.0.

6.6 Discussion and Limitations

Scalability. It is known that probabilistic model checking (and model checking tech-
niques in general) suffer from the state explosion problem [29]. For multi-robot systems,
this is exacerbated due to the (expected) large number of tasks. As KANOA is intended to
be compositional, the module in charge of the plan synthesis can be replaced, or enhanced
with different alternatives depending on the size of the model. Another research direction
is to extend KANOA with alternatives for the synthesis of plans beyond PMC—many of
which were identified in Chapter 3.

Centralised approach. We considered a centralised approach for the scheduling of
tasks where all the information of the system (i.e., tasks, robots and the initial state of the
system) is known by a central task scheduler. In real-world applications, this represents
a disadvantage over decentralised, distributed and hybrid approaches, for example, as the
failure of the central (task scheduler) manager represents the failure of the whole system.
KANOA can be extended to support these approaches, as well as possible adaptations
of the system if disruptions are encountered at runtime. For example, if a robot cannot
complete one of its tasks, it can try to rearrange its plan and come back to this task later.
If this cannot be done (for example, due to this task being a joint task that requires more
robots to meet and coordinate), it can communicate to its closest peers to re-allocate this
task among them. If this fails, the last resource would be to contact the central manager
to reorganise this task among all available robots. Solutions such as [175] propose some
of these steps. However, a trade-off is made between the resilience of the system due to
these types of failures, and the loss of near-optimal solutions.

Partially-observable environments. In KANOA, we assume total knowledge of the
tasks and robots. MDP alongside Mixed-Observed Markov Decision Process (MOMDP)
are used in [98] to model single robots’ behaviour. Then, a second module resolves any
conflict arising for the set of synthesised plans using dynamic programming. The selection
of MDP and MOMDP is done on a robot by robot basis depending on the information
available. Although we do not consider partially known environments, KANOA’s work-
flow can be augmented for this type of environment if required. As mentioned before,
KANOA’s behavioural analysis relies on a series of specialised models. The model in
charge of the synthesis of plans can be modified into a series of MDPs and MOMDPs as
described in [98] if the application at hand requires it.

Discrete time. We discretised the time to be modelled as part of the Markov Decision
Process. However, this approach may not be optimal and presents limitations that need
to be addressed for improved modelling accuracy and efficiency. One limitation is that if
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the time scale is large, there is the possibility that robots have to idle for a large number
of time units increasing the number of states in the model and causing a state explosion.
For the current version of KANOA, we avoid using the Continuous Time Markov Chain
(CTMC) formalism, also supported by PRISM, as these are generally considered to be
more prone to state explosion compared to DTMCs.

Implementation. The implementation of the task scheduler also restricts the number
of tasks that a robot can handle—details of the implementation are further provided in
Chapter 7. For instance, considering the maximum value of the int type in Java, which
is 2147483647, (used to store the permutation of tasks) and the factorial of 16 being just
below this limit (16! equals 2092278989), it follows that the tasks assigned to a robot
must be limited to 16. Hence, scalability is also constrained by the implementation and
further work is required to assess (and implement) alternatives in order to improve this
limitation.

6.7 Related Work

The systematic literature review in Chapter 3 presents several strategies used by the
research community for the scheduling of task problems in robotic systems. These are
categorised in Table 3.4 into optimisation based techniques [48, 95, 101, 105, 110, 115, 129,
131], learning based [22,91,109], search based [23,90,138], logic based [25,27,28,100,104],
hybrid [86, 134] and others [96, 107]. In this section, we discuss some of the most similar
research to our proposed task scheduling method.

Given the wide variety of sources of uncertainties in multi-robot systems, it is not
possible to capture this diversity into a single formalism. Consequently, multiple solu-
tions have been proposed by the research community to tackle a subset of these uncer-
tainties. Table 3.5 shows the classes and sources of uncertainties tackled by state-of-
the-art solutions. For example; [22–25] propose solutions for partially known environ-
ments; [86,87,98,105,137] model the uncertainty of accepting and distributing new tasks
at runtime; and [22,101,113,127] the discrepancy between the belief state and the actual
state, for example, by modelling the robots’ model-drifting. KANOA adds to the body
of knowledge a solution for the modelling of two types of uncertainties, “the probabilistic
behaviour of task failures and retries” as a function of the heterogeneity in the robots’
capabilities and “the probability of failing while travelling between locations”. Moreover,
we devise a method to compositionally annex several specialised models (as needed), to
reason about other types of uncertainties in parallel.

The synthesis of MDP adversaries has been widely explored as a strategy for the
synthesis of robot controllers [8]. MDP and MOMDP are used in [98] for the synthesis
of robot plans depending on the information available. Each model considers one single
robot task, while conflicts between synthesised plans are solved in a second stage. Using
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the PRISM model checker, [176] reports the synthesis of strategies for multiple scenarios,
such as searching for objects and recharging at energy stations.

Although we also use probabilistic model checking, there are several differences in our
approach. First, we simplify the MDP models by synthesising strategies to minimise the
idling time instead of searching for the best permutation/sequence of tasks. The explo-
ration to find optimal permutations is done by the meta-heuristic search-based approach,
increasing the scalability of our solution. Second, we devise several specialised models
to reason about different aspects of the quality of the robot plans. This is particularly
important in MRS applications where the diversity of functional and non-functional re-
quirements requires the computation and optimisation of multiple parameters. Third, we
devise a series of rules for the MDP model for several tasks and time constraints in a
correct-by-construction fashion. Lastly, we devise KANOA as a compositional approach,
where the specialised models can be augmented, replaced or removed depending on the
application in hand. For example, another model can be added to reason about the energy
consumption assuming the robots have to recharge every certain amount of time.

GAs have been successfully applied for the task allocation and scheduling problem [177,
178], especially for the travelling salesman problem and variants [175,179]. In, [179], the
authors propose three different GA to solve the colored traveling salesperson problem
(CTSP). This problem is not the same as the one we are solving. To understand the
difference with KANOA, the constraints handled by CTSP are:

- every robot starts from and returns to location 0;
- a robot cannot visit the locations of other robots;
- a robot cannot start from another robot’s location;
- each location must be visited by a robot exactly once;
- as some locations are shared, robots can enter this location and exit is required if

this is the case;
- disconnected paths (called subtours) from an initial robot’s location around locations

are not allowed;
subject to a mono-objective optimisation function minimising the total travelling cost.
Another difference is that the allocation and scheduling are modelled together and solver
within the GA loop using integer linear programming. In [175], an extended version of the
CTSP problem adds precedence of task constraints (which we refer to as ordered tasks)
and is solved in a similar fashion within the presented genetic mission planner framework.
Nevertheless, they don’t consider other task constraints as KANOA do (aka consecutive
and joint tasks).
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6.8 Summary

In this chapter, we presented the KANOA approach for the task scheduling problem in
multi-robot systems. Through the synthesis of individual robot plans, taking into account
a spectrum of functional and non-functional, qualitative, and quantitative requirements
as specified in the KANOA DSL, we have addressed a significant challenge in MRS task
scheduling.

We used probabilistic model checking to reason about the probabilistic behaviour of
the system. The probabilistic behaviour captures the possibility of failing with a task and
several possible retries, as well as the possibility of failing while travelling between loca-
tions. The advantage of an exhaustive search by using PMC represented a disadvantage
in the scalability of the problem as the number of tasks and robots increased. We have
tackled the challenge of the size of the solution space by employing a hybrid approach that
combines evolutionary-guided search with PMC. This allowed us to explore the solution
space while optimising key objectives such as mission completion probability, robot idle
time, and travel costs. The use of PMC not only aids in evaluation but also facilitates
the synthesis of robot plans.

Overall, the KANOA approach offers a comprehensive solution to the task scheduling
problem in MRS, leveraging the combination of probabilistic model checking and genetic
algorithms, in a hybrid optimisation approach. We have illustrated the applicability of
KANOA through a hospital scenario. Future research may explore extensions support-
ing the adaptation of the system and the degradation of requirements to enhance the
scalability and robustness of the KANOA approach in tackling complex task scheduling
challenges in multi-robot systems. Our contribution expands the existing body of MRS
problem variants and solutions documented in the research literature.
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Tool-supported Mission Allocation and
Scheduling Methodology

This chapter presents the KANOA tool-supported framework for the synthesis of robot
plans under a set of complex constraints and multiple conflicting optimisation objectives.
The complete list of supported constraints is presented in Table 6.1. Following the tax-
onomy for task allocation problems, KANOA’s tool can solve single-task, multi-robot
time-extended assignment (ST-MR-TA) [39] with cross-schedule dependencies (XD) [51]
task allocation problems.

This chapter is organised as follows. The KANOA methodology is introduced in Sec-
tion 7.1. Section 7.2 presents the evaluation assessing the performance and feasibility
of the KANOA methodology and tool. Section 7.3 presents discussion and limitations.
Finally, Sections 7.4 and 7.5 describe related work and a summary of the chapter, respec-
tively.

7.1 End-to-end Methodology

The KANOA end-to-end framework is depicted in Figure 7.1. The workflow starts with the
problem specification and KANOA’s hyperparameters (1). The problem specification—
designed in a separation-of-concerns fashion—allows clients, domain experts, and other
stakeholders to collaborate on different parts of the problem: world model, task, robots’
description, and mission specification. For example, MRS experts may focus on the
description of the robots, their capabilities and probabilistic behaviour, while clients and
other stakeholders define the task and mission for their specific scenario. KANOA’s DSL
for the specification of the problem specification is described in Section 4.2. KANOA’s
hyperparameters are associated with different stages of the framework. For example, for
the optimisation process (5), the MRS experts can define the number of iterations and
population size for the multi-objective optimisation algorithm.

The pre-allocation component (2) processes the problem specification and stores it into
KANOA’s database. As the mission allows the repetition of tasks at different locations,
this step also instantiates any task to be allocated to robots.1 It also performs a model-
to-model transformation to generate the task allocation model. The task allocator (3)
generates multiple allocation models, consisting of feasible allocations of the tasks into a

1See section 6.2.
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set or subset of available robots.
Continuing, the pre-scheduler component (4) generates groups of robots that share

task constraints, and transfers any task constraint from compound tasks to atomic tasks.
In stage (5), the task scheduling stage integrates three components: an elitist multi-
objective optimisation genetic algorithm (GA) component, a task scheduler component,
and n quality of service (QoS) analysers. The GA component explores the solution space,
which consists of task allocations and their task permutations. The task scheduler creates
feasible task schedules based on these allocation-permutation combinations. Each QoS
analyser quantifies one of the optimisation objectives outlined in the problem specification.
Internally, during the GA evaluation stage, the GA component employs the task scheduler
and the QoS analysers to guide the exploration of the solution space. Finally, the plan
selector chooses a task schedule, containing individual robot plans through a ranking
system.
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Figure 7.1: KANOA tool workflow.
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Figure 7.2: Config.prop file containing KANOA hyperparameters.

Implementation. We automated the KANOA approach by implementing a tool
for the generation of feasible robot plans. KANOA’s domain specific language in (1),
Figure 7.1, was implemented using the Eclipse EMF supported Xtext framework [147].
We used Ecore and Xtend [180] for the model-to-model transformation from the DSL into
the Alloy model. The remaining components of the toolchain are developed in Java (2-
5). For the task allocation, we integrated the Alloy Analyzer [55] as the task allocator
component (3). We implemented the NSGA-II multi-objective optimisation GA algorithm
in JMetal [181] in task scheduling (5). The PRISM probabilistic model checker [71] was
used as the task scheduler and for the QoS analyser components, for the synthesis of robot
plans and their analysis, respectively (5). The KANOA source code is available from our
GitHub repository at https://github.com/Gricel-lee/MRS-ThesisMaterial.

KANOA framework starts with two input specification files. An example of the “prob-
lem specification file” is previously shown in Figure 4.7, whereas an example of the hy-
perparameters’ file is illustrated in Figure 7.2. For the latter, the first line states the
number of allocations to obtain and lines 2-3 refer to the population size, as well as the
number of iterations of the genetic algorithm. Line 4 is optional and defines an upper
bound for the time that robots are allowed to spend idling. Line 5 is optional and allows
the generation of all paths. These paths are computed as the Euclidean distance between
any two locations declared in the problem specification.2 Continuing, lines 6-7 enable the
visualisation of the Pareto front of solutions and provide feedback printed into the console,
respectively. Line 8 allows saving the Markov model files created by the task scheduler.
Lastly, line 9 is the relative path to any generated file from the problem specification by
KANOA.

If the VERBOSE hyperparameter is set to true in line 7, KANOA also generates
an Allocinfo.txt file. An example of this file is shown in Figure 7.3. The first line
is the header with each column’s name separated by ”„”: number of allocation (alloc),
robot groups (clusters), allocation of tasks to robots (tasksAlloc) and the allocation file
generated by the Alloy Analyzer (file).

2In a scenario with n locations, where each location has a path to every other location, there would
be (n − 1)! paths between any two distinct locations. This parameter aims to facilitate testing the tool
without the tedious task of explicitly declaring each of these paths. Internally, KANOA computes the
Euclidean distance rather than generating all paths as part of the problem specification’s file.
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Figure 7.3: File with task allocations’ information.

Lines 2-3 show the first allocation. Starting with the allocation identifier, 1; followed
by the groups of robots [r2, r3] and [r4, r5]; the tasks allocated to each robot show as a
dictionary; and the Alloy’s model global path. Similarly, allocations 2 and 3 are depicted
in lines 5-7 and 9-11, respectively.

Context. In Section 1.2 we defined the research objectives of this thesis. These
relate to (1) the specification of task allocation and scheduling problems for MRS, (2) the
development of a method for solving these two relevant MRS problems, (3) the integration
of the proposed methods in an end-to-end methodology, and (4) provide tool support for
their adoption and future development.

In Chapter 4, we presented and evaluated a catalogue for the specification of quan-
titative robotic patterns, and the KANOA DSL for the problem specification of task
allocation and scheduling problems; both relevant to research objective (1). Chapter 5
and Chapter 6, we presented a methods for solving the task allocation and scheduling
problems captured by the KANOA DSL; relevant to research objective (2). This section
presented the integration of such methods and their tool implementation, aligned to re-
search objectives (3) and (4), respectively. To assess the effectiveness and feasibility of
these contributions, the following section presents a systematic evaluation of the proposed
KANOA framework. Additionally, we examine its scalability through two case studies and
analyse the impact of various hyperparameters.

7.2 Evaluation

We carried out extensive experiments to evaluate KANOA’s effectiveness, scalability and
configurability.

This section is divided as follows. Section 7.2.1 introduces the research questions we
explore. Section 7.2.2 describes the case studies. Section 7.2.3 shows the experimental
setup. Section 7.2.4 contains the experimental tasks, results and discussion.

7.2.1 Research Questions

Our evaluation aims to answer the following research questions,
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RQ1 (Effectiveness). Do plans synthesised by KANOA achieve better trade-
offs among the optimisation objectives than those generated through random
search? We use established metrics for evaluating the quality of the Pareto
fronts of solutions generated both by KANOA and random search (a common
baseline in the metaheuristic search-based community [50,182,183]) within
a limited time frame, assessing how they compare with respect to the qual-
ity of service attributes associated with the different optimisation objectives
supported by KANOA.

RQ2 (Scalability). How does the computational overhead for KANOA’s
solution synthesis grow with increasing mission size, number of allocations,
and number of pre-allocated tasks? We performed experiments to assess how
the execution time of KANOA increases for MRS missions with a growing
number of tasks and task constraints, under different numbers of allocations,
and with different numbers of pre-allocated tasks.

RQ3 (Configurability) How do KANOA hyperparameters affect the quality
of the solutions? We assess the impact of two hyperparameters associated
with the number of task allocations and the number of iterations. We assess
the trade-off between increasing “optimality” (in terms of attaining better
values for the quality attributes of the optimisation objectives) at the expense
of increasing the execution time when the number of allocations increases.

For RQ1, we use random search as our baseline. KANOA’s unique combination of
features makes it challenging to compare with existing approaches. These differentiators
include probabilistic modelling of potential failures during robot travel, a finite number
of task retries, and the optimisation of multiple objectives (see Table 6.1).3

7.2.2 Case Studies

To answer the questions posed in the previous section, we extensively evaluate KANOA
on two multi-robot case studies. We selected two distinct case studies from the domain
of mobile robots following standard practice in empirical software engineering [184, 185].
Their key differences are summarised in Table 7.1.

Hospital case study. The first case study consists of the hospital scenario
outlined in Section 4.3. This scenario is further discussed in Sections 5.4
and 6.5, to illustrate the task allocation and scheduling solutions, respectively.

3Comparing KANOA to other algorithms, either by extending these approaches to meet KANOA’s
requirements or by simplifying KANOA’s case studies, is left for future work.
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Figure 7.4: Bo-alpha case study deployment area. The mission consists of measuring
temperature and salinity levels in every location x∈{1,2,3} y∈{a, b, c, d, e, f, g}, except
for (a,1) and (b,1). UUVs r1− r3 start at location (3,d).

Bo-alpha case study. The second case study is based on a variant of the
Bo-alpha mission deploying unmanned underwater vehicles (UUVs) from [186,
187]. The mission involves sampling a designated ocean area to assist oceanog-
raphers in acquiring data on water salinity (AT1) and temperature (AT2).
These tasks are defined together as a compound task CT1 with a consecutive
constraint so that both measurements are taken together.

Within the deployment area, three UUVs (r1− r3) must collect two samples
from 19 points shown as the intersection of dotted lines in Figure 7.4. Each
location is identified with the letter l, followed by a number and a letter as
shown in the axes of this figure. The UUVs start at location l3d. It is known
that certain areas pose greater challenges for their access due to underwater
obstacles such as coral reefs, kelp forests and rocky zones. Two of the robots,
r1 and r2, are notably smaller in size compared to r3, thus enhancing their
likelihood of navigating and completing tasks in these challenging areas. Each
sampling location belongs to one of three areas: deep waters, deep rocky areas
or reef zones. Robot r3 cannot enter the reef zone to avoid damaging the reef
and itself, and cannot take any task too close to the coastline set at x<5km.
Robots can retry tasks in deep water up to three times, but not in the other
two zones as it is considered high-risk. Furthermore, paths within the reef
zone have an 85% probability of the UUVs transitioning successfully and all
tasks in the reef zone have a lower probability of completion.

To ensure that the robots have enough battery to return home, we are in-
terested in minimising the travelling cost and recalling all robots after 600
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Table 7.1: Key characteristics of the two case studies. *See Table 6.1 for constraints and
optimisation objective full descriptions.

Hospital case study Bo-alpha case study
Domain Medical and household Exploration and research
Number of robots 5 3
Number of atomic tasks in the mission 14 38

Constraints types*+

C1 (Constrains operational area),
C2 (Allocates a task to a robot),
C5 (Joint tasks),
C6 (Ordered tasks),
C8 (Time to start or finalise a task),
C9 (Minimum rate of mission success),
C10 (Maximum completion time).

C1, C4 (Limit number of tasks
in a robot), C9, C10

Optimisation objectives*
O1 (Maximise the probability of success),
O2 (Minimise the robots’ idling time),
O3 (Minimise the travelling cost).

O2, O3

+C7 (forces subtasks of a compound task to be performed consecutively) is added as part of the research question RQ2.
Constraints C3 (allocates a task to the closest robot) is similar to C2.

minutes. Finally, to help with a fair partition of the tasks, we limit each
task allocation to a maximum of 16 tasks per robot. The description of the
robots, initial locations and their probabilities of task completion is defined in
Table 8.2. The problem specification is shown in Appendix G Figure 8.8.

7.2.3 Experimental Setup.

Experimental setup. Results were obtained using a NUC Extreme i9-12900, 64 GB
RAM, 3200 MHz, Ubuntu 22.04; KANOA was run within the Eclipse IDE version 2022-
09. We used the multi-objective optimisation algorithm NSGA-II implemented in the
JMetal library [181]. We followed the suggested default parameters from the JMetal
library (summarised in [188]) as:

Selection of parents: binary tournament; mutation probability = 1/(number of at-
tributes); mutation: polynomial; crossover probability = 0.9; crossover : simulated
binary crossover (SBX).

These default values are also considered in EvoChecker [50], which served as an inspiration
for the KANOA’s task scheduler. We used default settings for the Alloy Analyzer4 and
the PRISM model checker.

4By default, Alloy Analyzer selects the SAT4J SAT solver to generate solutions. For faster performance
on small problems, MiniSat and ZChaff solvers are available (for some OS) [57]. For larger problems,
Berkim solver is documented to perform the best [59]. We kept the default configuration as the time to
return the solutions for our case studies is in the scale of seconds. This can be configured for other case
studies if needed.
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Table 7.2: Pareto front quality indicators [188]. Intuitively, the IGD indicates how close a
set of solutions is to the overall best set of solutions (the Pareto front reference), while the
HV indicates how much volume has been covered, indirectly getting closer to the Pareto
front reference.

Acronym Name Brief description Requires

IGD Inverted generational distance
Euclidean distance between solutions
in PFref and the nearest solutions in PFc.
Smaller is better.

Reference Pareto front
(PFref )

HV Hypervolume
The volume covered by solutions in PFc
with respect to the nadir point.
Bigger is better.

Nadir point

To account for random variations from the intrinsic probabilistic behaviour of the
search algorithms used (KANOA and random) we ran all experiments five times. The
following section answers our research questions RQ1-3 through these case studies. Each
answer is structured in three parts: 1) experimental setup, 2 experimental tasks and 3)
results and discussion.

7.2.4 Experimental Tasks, Results and Discussion.

RQ1 (Effectiveness)

Do plans synthesised by KANOA achieve better trade-offs among the optimisation objec-
tives than those generated through random search?

RQ1 experimental setup. We compared KANOA against randomly generated task
schedules for both case studies. To this end, we:

1. Used the first part of KANOA (cf. Figure 7.1 stages 1-3) to generate 5,000 task
allocations available to be sampled randomly. This covers the total of 1,728 feasible
allocations found for the hospital case study, and a large number for the Bo-Alpha
case study (compared to KANOA). By using the allocation of KANOA, we ensured
that tasks were allocated only to robots that are equipped to perform them.5

2. Randomly generated task schedules in two steps. First, randomly selecting a task
allocation and second, randomly selecting a possible task permutation from this
allocation.

We ran KANOA and random search for 400 s (∼6.5 minutes) assuming that feasible
5In [189], their random search algorithm can allocate tasks to robots that cannot perform them. Then,

a no − capability failure detects this inconvenience. In our case, we only consider feasible allocations,
resulting in a better comparison of KANOA against a random search baseline.
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Table 7.3: Reference Pareto front of feasible solutions found for the Hospital case study.

Idling time
minIdle
(min)

Success rate
maxSucc

(%)

Travel cost
minTravel

(m)

Synthesised
by

1 18.0 40.040 23.0 Random search
2 11.0 60.874 34.0 Kanoa
3 11.0 67.638 36.0 Kanoa
4 18.0 60.874 29.0 Kanoa
5 18.0 69.203 55.0 Kanoa

plans must be transmitted to the robots within a limited timeframe before deployment6,
taking snapshots every 20 seconds. Then, we compared the performance between the two
alternatives at every time instant in which the snapshots were taken. We set the number
of iterations to its minimum value (ni = 2)—KANOA searches for feasible robot plans
one allocation at a time; this low number of allocations allows KANOA to sort the best
task schedules initially found while also searching through as many allocations as possible
within the time limit.

RQ1 experimental tasks. For each case study, the experimental tasks (e1) for RQ1
consisted of saving the set of feasible solutions found at every 20 s time step. We collected
the data over five runs using KANOA and our baseline.

To quantitatively assess the quality of the solutions found at every time step, we use
two quality indicators, the inverted generational distance (IGD) and the hypervolume
(HV) described in Table 7.2. The IGD requires a reference Pareto front, preferably the
optimal set of Pareto front solutions. However, in many cases, including ours, this is
unknown. In these cases, a reference Pareto front is obtained from the set of all solutions
available [190]. For HV, we are required to obtain the nadir point defined as the worst
possible value for each optimisation objective [188,191]. Hence, we generated the refer-
ence Pareto front (PFref ) and the nadir reference point from the joint set of all solutions
found. Then, we generated the Pareto front of solutions at every time step and computed
the Pareto quality indicators as described in Table 7.2.

RQ1 results and discussion. (e1). For the hospital case study, Table 7.3 shows
the reference Pareto front consisting of five solutions (see also Appendix H) Columns 2-4
show the values of the three attributes (idling time, success rate, and travel cost); the last
column indicates that four out of five solutions were synthesised by KANOA. The nadir
(worst) point was found at minIdle = 51.0,maxSucc = 20.385,minTravel = 87.0.7

Figure 7.5 shows the quality indicator (IGD and HV) box plots at every time incre-
ment, and the total number of feasible solutions found. Two boxes at every time step

6We focus on design time because verifying robot plans with our approach is time-consuming. In
critical applications, a delay of minutes might not be unacceptable at runtime.

7d
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Figure 7.5: Hospital case study: number of solutions found by KANOA vs random gener-
ation (top), and quality indicator values (HV: middle, IGD: bottom) of computed Pareto
fronts at every time step.

show the results for the KANOA and randomly generated solutions, respectively. For the
hospital case study, KANOA’s task scheduler systematically checked up to 34 allocations
for solutions. Random search sampled from all the 1,728 allocations found. The top box
plot shows the number of solutions found by KANOA, with a median value of 44 solutions
by the end of the 400 s, compared to 21 found through random search. Both search algo-
rithms show a decrease in the values of IGD over time and a gain in the HV, indicating
better solutions. However, KANOA converges more quickly and produces higher-quality
solutions in the Pareto optimal set, for example, after 80 s the IGD median reaches a
steady value of 12 and the HV’s a value of 85,000 approximately.

In contrast, the randomly generated solutions seem to continue varying in a monotonic
trend. An interpretation of this trend in comparison with KANOA is that, as the random
algorithm has more information available on which to sample from, it is likely that it
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Table 7.4: Reference Pareto front of feasible solutions found for the Bo-alpha case study.

Idling time
minIdle
(min)

Success rate
maxSucc

(%)

Travel cost
minTravel

(m)

Synthesised
by

1 18.0 63.136 515.0 Kanoa
2 18.0 72.409 576.0 Kanoa

avoids staying in local optimal solutions. However, this may take longer as information
from the already found solutions is not exploited to generate similar optimal solutions
instead of exploring the search space.

For the Bo-alpha case study, Table 7.4 shows the two points comprising the bi-
objective reference Pareto front.8 The nadir is set to maxSucc = 50.746,minTravel =

879.0. Through experimentation, we realised that for this case study, the time to generate
solutions through the random algorithm is considerably larger than using KANOA as the
task allocator must first generate a large number (5000) of allocations from which to
sample randomly. To make a fair comparison, we start the timer after the task allocation
is completed.

Figure 7.6 shows the quality indicator (IGD and HV) box plots at every time incre-
ment, and the number of feasible solutions found over time. Two boxes at every time
step show the results for the KANOA and randomly generated solutions, respectively.
KANOA’ experiments employ 36 allocations, while random search sampled from 5000
allocations. The top box plot shows the number of solutions found by KANOA, with a
final median value of 97, compared to 47 by random search. Both search algorithms show
a decrease in the values of IGD over time and a gain in the HV, indicating that the Pareto
front contains progressively better solutions as time increases. Both quality metrics show
better (median) values for KANOA compared to the randomly generated Pareto front
of solutions. Note that there is a time interval between 140 s and 240 s during which
KANOA cannot find any solutions. This behaviour is given because KANOA systemati-
cally selects an allocation, and then iterates through its possible task permutations before
moving to the next allocation. Hence, it is possible that, for some allocations, KANOA
might not find a solution to optimise due to the constraints of the problem at hand. In
contrast, the random algorithm follows a linear trend when finding feasible solutions. A
solution to optimise KANOA as it iterates through allocation is to stop the optimisation
process of an allocation if it cannot find any feasible solutions after a certain number of
evaluations.

8These were obtained from the join set of solutions found by RQ1 and RQ3.
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Figure 7.6: Bo-alpha case study: number of solutions found by KANOA vs random
generation (top), and quality indicator values (HV: middle, IGD: bottom) of computed
Pareto fronts at every time step.

RQ1 findings summary. The best robot plan solutions (i.e., from the joint Pareto-
optimal set) were found by the KANOA framework, with the exception of one solution
in the hospital case study. Additionally, for both case studies, KANOA was able to
generate a greater number and better task plan solutions over time compared to our
baseline.

RQ2 (Scalability)

How does the computational overhead for KANOA’s solution synthesis grow with increas-
ing mission size, number of allocations, and number of pre-allocated tasks?

RQ2 experimental setup. We systematically increased the number of tasks, task
constraints, and robots required for a single joint atomic task to find the limit to which
these scale in both case studies. We chose to conduct the evaluation for this research
question with a single joint task, given that increasing the number of tasks without de-
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pendencies among them will only result in multiple clusters of tasks that can be processed
independently, and where computation time will be dominated by the largest cluster.

We also assessed the impact of increasing the number of allocations. As the time
needed by the task allocator to generate na allocations is much shorter than the time
needed by the task scheduler to go over the same number of allocations, we assessed the
time taken by the task allocator and scheduler separately. For the task allocator, we set
1,000 as the maximum number of allocations to generate—this should provide a reasonable
estimate of the expected computational time required to generate up to n-allocations.
Since the task scheduler requires more time to complete (due to the formal verification of
the robot plans’ stage), we limited it to iterating over 100 of these allocations—assuming
this should be a reasonable estimate of the expected computational time required to
iterate over up to n-allocations. Finally, we set the number of iterations to ni =100.9

Finally, we assessed the overhead of adding these pre-allocated tasks, as the pre-
allocation of tasks to specific robots (required by several types of constraints supported
by KANOA) increases the size of the Alloy model. To assess the pre-allocation overhead,
we extended the hospital case study with an additional robot, r6, with 1, 25, and 50
pre-allocated tasks.

RQ2 experimental tasks. Three different experiments were conducted to answer RQ2.
For each case study, we:

e2.1. Created variants of the case studies by systematically increasing the number
of robots nr , tasks nt , task constraints, and the number of robots required for a joint
task, observing and reporting the problem instance sizes for which KANOA can no longer
generate solutions.

e2.2. Varied the number of allocations from 10 to 1000 in increments of 20 and
obtained the time required by the task allocator to generate these allocations. We also
executed the task scheduler to obtain plans for up to 100 allocations and obtained the
time needed to iterate through them. In both setups, we report the computation time
required.

e2.3 Extended the hospital case study with an additional robot, r6, with 1, 25 and
50 pre-allocated tasks. For each variant, we report the average execution time required
to generate 10 allocations.

RQ2 results and discussion. (e2.1). Evaluating scalability in terms of tasks, robots,
and task constraints proved to be a challenging task due to the intricacy of these and
their impact on the ability to find solutions. In this section, we summarise the findings
for both case studies after running the variants shown in Table 7.5. The table shows
the original case studies (yellow-shaded rows); variants for which task schedules were

9We bound it to 100 as completing a single run over 100 allocations for the Bo-alpha case study takes
approximately 20 hours. We collected 5 runs for each case study.
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successfully synthesised; and variants for which no solution was found representing the
limit to which varying the number of tasks, task constraints and robots scale (grey-shaded
rows).

The findings of the hospital case study are summarised as follows:

• A maximum of 7 ordered tasks are manageable. Exceeding this limit results in the
inability to generate schedules that adhere to both mission and task constraints.

• The addition of consecutive tasks is not feasible, as there is insufficient idle time
available to coordinate the robots designated for its tasks.

• A joint task can accommodate up to ten robots. Exceeding this number leads to
memory overflows in the PRISM model checker.

• Up to 5 joint tasks can be integrated successfully. Beyond this, the task scheduler
cannot find a schedule that meets the task constraints.

Joint tasks require the synchronisation of robots in space and time. Hence, as more
joint tasks were added, finding permutations that allow robots to meet in space and time
became more difficult.

A similar scalability problem takes place when ordering and consecutive constraints
are added. For this case scenario, adding a single consecutive task resulted in no plans
being synthesised. Consecutive constraints are more restrictive than ordering constraints
in the sense that require the previous subtask to be completed at same time instant in
which the next one starts. Hence, it is more difficult (compared to ordering constraints)
to obtain plans, as consecutive constraints require (a) a valid permutation of the tasks
found by the task scheduler, and (b) enough idling time for robots to wait until their
peers complete the previous tasks.

Scaling the number of robots when task constraints exist may result in the inclusion
of all robots with similar capabilities within the same probabilistic model. In this case
study, the increase in the number of (cleaner) robots resulted in a state explosion of the
MDP models generated within the optimisation loop.

The findings of the Bo-alpha case study are summarised as follows10:

• A maximum of 9 ordered tasks are manageable. Exceeding this limit results in no
solutions due to limited idling time.

• A maximum of 5 consecutive tasks are manageable. Exceeding this limit results in
no solutions due to limited idling time.

10To test the scalability of the task constraints, we had to lower the number of tasks and systematically
increase them while adding task constraints.
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Table 7.5: Variants of the case studies varying robots, tasks and task constraints. The
name of the variant contains information about the case study (H for hospital, B for
Bo-Alpha); followed by “-r”, the number of robots (nr), “t” and the number of atomic
tasks (nt). Next, after the second hyphen, the maximum number of robots needed for a
joint task, consecutive tasks and ordered tasks are displayed after the “j”, “c” and “o”,
respectively.

Variant identifier Description of variant
Plans
synthe-
sised

Feedback on failure to get solutions

H-r5t14-j2c0o4 Hospital original case study+ ✓ -
H-r5t17-j2c0o5 increase to 5 ordered tasks ✓ -
H-r5t23-j2c0o7 increase to 7 ordered tasks ✓ -
H-r5t29-j2c0o9 increase to 9 ordered tasks × No schedule found complying with tasks constraints.
H-r5t14-j2c1o5 increase to 1 consecutive tasks × Not enough idling time available.
H-r6t14-j1c0o4 1 joint task requiring 3 robots ✓ -
H-r8t14-j1c0o4 1 joint task requiring 5 robots ✓ -
H-r13t14-j1c0o4 1 joint task requiring 10 robots ✓ -
H-r14t14-j1c0o4 1 joint task requiring 11 robots × PRISM runs out of memory
H-r5t15-j3c0o4 increase to 3 joint tasks ✓ -
H-r5t17-j5c0o4 increase to 5 joint tasks ✓ -
H-r5t19-j7c0o4 increase to 7 joint task × No plan found complying with tasks constraints.
B-r3t38-j0c0o0 Bo-alpha original case study ✓ -
B-r3t2-j0c1o0 1 consecutive task* ✓ -
B-r3t6-j0c3o0 3 consecutive tasks* ✓ -
B-r3t10-j0c5o0 5 consecutive tasks* × Not enough idling time available.
B-r3t10-j0c0o5 5 ordered tasks* ✓ -
B-r3t14-j0c0o7 7 ordered tasks* ✓ -
B-r3t18-j0c0o9 9 ordered tasks* ✓ -
B-r3t22-j0c0o11 11 ordered tasks* × Not enough idling time available.
B-r3t2-j2c0o0 2 joint tasks, 3 robots per task ✓ -
B-r5t2-j2c0o0 2 joint tasks, 5 robots per task × Not enough idling time available.

+Four ordered tasks of three atomic tasks each, and two join tasks for a total of 14 atomic tasks.
*Each ordered or consecutive task consists of two atomic tasks (check salinity level and temperature).
**Adding cleaner robots.
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Hospital case study

(a)

Bo-alpha case study

(b)

Figure 7.7: Time required to obtain up to 1000 allocations.

• A joint task can accommodate up to five robots. Exceeding this limit results in no
solutions due to limited idling time.11

Although this is not an exhaustive evaluation of all possible combinations of robots,
tasks and task constraints, we can conclude that scalability is an issue as more con-
straints of tasks appear. We also identified key characteristics to improve the scalability
of KANOA: i) only generate permutations that comply with the order of tasks dictated
by the task constraints (see the following observation box), ii) increase the idling limit
automatically by degrading this constraint (when the bound in the idling time is identified
as a problem to generate solutions), iii) limit the number of robots and tasks in an MDP
model to avoid running out of memory (caused by the state-explosion problem). These
solutions are not straightforward to implement, and additional efforts are necessary to
address these challenges effectively.

Observation 9. The current version of KANOA generates permutations based on
the number of tasks allocated to each robot. Creating an algorithm to discard the per-
mutations that are not feasible due to task constraints could increase the scalability
in terms of the number of constraints in tasks.

(e2.2) Figure 7.7 shows the mean time needed by the task allocator to generate up
to 1000 allocations for the (a) hospital and the (b) Bo-alpha case studies. Both case
studies show a linear trend in their execution time as more allocations are generated. For
the hospital case study, the mean time to generate 1000 allocations is 4.68 s. For the
Bo-alpha case study, this time goes up to 44.12 s. Although the Bo-alpha case study
does not have any task constraints, it has more tasks and task locations than the hospital
case study. The task allocator, implemented through the Alloy Analyzer, generates atoms
for all the locations and their coordinates. This accounts for the increase in time shown

11For this variant, two joint tasks were added, each requiring five robots.
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when comparing these case studies results.
The variance in the time required to obtain allocations grows with the number of

allocations. Visually inspecting Figure 7.7, there is a smaller variance between 100 and 300
allocations generated, compared to the range between 800 and 1000. Although this shows
that the execution time deviates from the expected time as more allocations are needed,
it also shows that, for both case studies, less than 1000 allocations can be computed in
less than a minute.

Figure 7.8 shows the mean time needed by the task scheduler to go through up to
100 allocations for the (a) hospital and the (b) Bo-alpha case studies. For the hos-
pital case study, several spikes can be observed, for example, between 20 and 40, and
around 80.12 These spikes appear when allocations take longer than usual due to two
possible reasons: i) the probabilistic models are more complex13 or ii) more solutions
were found14—increasing the time considerably (and hence creating a spike that can be
observed in the plot).

For the Bo-alpha case study, the mean time shows a linear trend with no spikes com-
pared to the previous case study. As tasks in the Bo-alpha case study are not constrained,
robots are modelled separately in every task allocation. Hence, the spike pattern is not
visible in Figure 7.8b. The graph also shows that, for this case study, no feasible solu-
tions were found for task allocations 2, 4-7 and 9-15. This information can be used in
future versions of KANOA to avoid spending time on allocations where it is difficult (or
impossible due to the problem constraints) to synthesise solutions setting a limit on the
number of failed evaluations.

Finally, notice that the average time to complete 100 allocations is 1.44 e4 s (4 hr
approximately) for the case study and more than 1.4 e5 s (38.8 hr approximately) for
Bo-alpha.15. This time scale must be considered by the domain experts and KANOA’s
users when defining the hyperparameters of the problem.

(e2.3) Figure 7.9 shows the execution time to allocate 1, 25 or 50 pre-allocated tasks
to robot r6 in a variant of the hospital case study. This figure shows a positive linear trend
with an increase of approximately 19.65 ms in the execution time for every pre-allocated
task. Although there is an increase in time as the number of pre-allocated tasks increases,
we can conclude that the task allocation is still computed in a reasonable amount of time
in the order of seconds with tests adding up to 50 pre-allocated tasks. Moreover, the

12Times deviating from the mean (at 14, 16, 22, 74 and 86 allocations) are considered outliers and can
be smoothed.

13In terms of states and transitions, for example, when more robots are modelled together or a robot
is assigned by a larger number of tasks compared to other allocations.

14Hence, the scheduler creates the MDP and DTMC models for all the groups of robots, rather than
stopping when one of the models can’t generate a feasible plan.

15These times are considerably longer compared to RQ1 as we increased the number of iterations from
2 to 100, and the number of allocations from <40 to 100

178



CHAPTER 7. TOOL-SUPPORTED MISSION ALLOCATION AND SCHEDULING
METHODOLOGY

Hospital case study

(a)

Bo-alpha case study

(b)

Figure 7.8: KANOA’s task scheduler time to iterate over up to 100 allocations.

Figure 7.9: Average execution time (over 5 runs) to compute the task-allocation stage
when pre-allocated tasks exist.

execution times were fairly consistent over the 5 trials ran for each configuration.16

RQ2 findings summary. Scalability is heavily influenced by the number of robots,
tasks, and task constraints involved. Limitations were described with the help of
Table 7.5. Linear trends are noticed in the computational time taken by the task
allocator and the task scheduler. Similar trends are observed for predefined tasks.
The time taken by the task allocator is considerably smaller than the time taken by
the task scheduler. These findings applied to both case studies.

RQ3 (Configurability)

How do KANOA hyperparameters affect the quality of the solutions?

RQ3 experimental setup. Finally, we evaluate how two parameters, i) the number
of allocations and ii) the number of iterations for the KANOA task scheduling, affect
the quality of solutions. To assess the impact that the number of allocations has on the
Pareto optimal set of solutions we use the data from e2.2, obtained by running KANOA
for 100 allocations.

Similarly, to evaluate the impact of more number of iterations ni , we compare the
16The standard deviation was too small to be shown in the Figure
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(a) (b)

Figure 7.10: For the hospital case study, quality indicators from solutions found after the
task-scheduler iterate over na = 10, 20, ..., 100 number of allocations.

data obtained for experiments e1 and e2.2 with ni = 2 and ni = 100, respectively. Given
that the data for the hospital case study in e1 covers up to 34 allocations, we limits our
comparison to this number of allocations. . We compare the median values of the IGD
and HV quality indicators.

RQ3 experimental tasks. The experimental tasks are divided into two. For each case
study, we:

e3.1. Run KANOA through 100 allocations (data obtained in e2.2). Generated the
Pareto fronts of solutions found through n allocations, n = 10, 20, ..., 100. This generates
10 different variants. For each variant, compute the Pareto quality indicators HV and
IGD.

e3.2. Compare the IGD and HV median values obtained by configuring KANOA with
ni = 2 against ni =100 iterations—running KANOA for 34 allocations.

RQ3 results and discussion. (e3.1) For the hospital case study, Figure 7.10a and
7.10b show the IGD and HV values, respectively, for the Pareto front of solutions at
intervals of 10 allocations, and up to 100 allocations. Lower IGD values are indicative
of better quality of the Pareto front of solutions. Comparing the box at 100 allocations
and the initial one at 10 allocations reveals a significant improvement in the IGD of
the respective solutions. This trend is also observed in the HV box plot, where higher
indicates better performance. It is worth noting that there is no difference in the quality
of the solutions after 20 allocations. This is because the reference Pareto front of solutions
(computed among all solutions from RQ1 and RQ3 data) contained solutions found among
the first 19 allocations.

For the Bo-alpha case study, Figures 7.11a and 7.11b show the IGD and HV values
of the Pareto front of solutions found from 10 to 100 allocations, respectively. Both
quality indicators show an improvement as the number of allocations increases. In this
case, adding allocations beyond the 90th allocation has no impact on the quality of the
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(a) (b)

Figure 7.11: For the Bo-alpha case study, quality indicators from solutions found after
the task-scheduler iterate over na = 10, 20, ..., 100 number of allocations.

solutions.

(e3.2). To compare the impact of the number of iterations for the hospital case
study, we compare the quality of solutions found with ni = 2 (see Figure 7.5 at 400 s)
against ni = 100 (depicted at every 10 allocations in Figure 7.10). The median values at
34 allocations are,

With ni = 2 iterations: IGD value of 11.0 and 83.2 HV.
With ni = 100 iterations: IGD value of 7.4 and 164.1 HV.

For the Bo-alpha case study, we follow the same process comparing the quality of
solutions found with ni = 2 (Figure 7.6 at 400s) against ni = 100 (depicted every 10
allocations in Figure 7.11). The median values at 34 allocations are,

With ni = 2 iterations: IGD value of 33.0 and 5.8 HV.
With ni = 100 iterations: IGD value of 24.0 and 8.4 HV.

Therefore, based on these quality indicators, in both studies more iterations improve
the quality of the solutions—for IGD, lower values are preferable; for HV, a greater. This
is as expected, as the more iterations are available, the more chances the evolutionary
optimisation algorithm has to select, evolve, sort and ultimately uncover better solutions.

RQ3 findings summary. Increasing the number of allocations doesn’t necessarily
improve the quality of the Pareto-optimal solutions. However, increasing the number
of iterations increases the quality of the solutions in both case studies.

7.3 Discussion and Limitations

Evaluation of the scalability of KANOA. Evaluating KANOA in terms of tasks,
robots in a joint task and task constraints revealed itself to be a complex task. From RQ2,
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Figure 7.12: KANOA’s parts (pink rectangles) and variables (white rectangles) affecting
the synthesis of solutions.

comparing the results using different case studies shows that the existence of solutions does
not only depend on these three variables. Actually, results in RQ2 are also dependent on
KANOA’s configuration. For example, when multiple task constraints exist, increasing
the population size allows the GA to generate more task permutations, increasing the
possibility that some of these comply with task ordering constraints.

A second example is when multiple consecutive task constraints exist. Robots allo-
cated with subtasks of these constraint tasks are required to synchronise in time. Hence,
some robots may need to wait until other robots finish the preceding tasks. If the idling
time is too short, robots run out of time to wait and complete the rest of their tasks.
These complex relations are further discussed in the following paragraphs. In the cur-
rent evaluation, we considered a subset of the possible variants of our two case studies to
evaluate the scalability KANOA. Although the results were very useful to understand the
limitations in scalability, further evaluation is required to provide a detailed reference of
such limitations.

Parts affecting KANOA’s solutions. Figure 7.12 depicts the different parts of
KANOA affecting the quality and existence of solutions. These are classified into five
parts: hyperparameters, mission constraints, robots, world model and tasks. These are
subdivided into 18 variables depicted in white rectangles. These variables are defined as
part of the problem specification or as hyperparameters of KANOA’s tool.

The hyperparameters of the system are subdivided into three: the configuration of the
GA (i.e., the population size and the number of iterations), the number of allocations
and the idling time. The tasks variables consist of the number of (atomic and compound)
tasks and the number of task constraints (ordered, consecutive and joint). The world
model variables consist of the number of paths and the path distances; the latter affects
the scalability of the task allocator as described in Chapter 5, and the idling time which
in turn affects the size of the MDPs as described in Chapter 6.

Robots’ variables are divided into the velocity, number, initial location and capabilities
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of the robots. The robot’s capabilities are subdivided into the success rate and completion
time of the task performed by these capabilities. As an example, the robots’ initial location
and their velocity impact the time required to meet other robots at a task location. If the
distance to the first task is too far for some robots, others would have to idle for longer.

Finally, the mission constraints are as described in KANOA’s problem specification:
time available to complete the whole mission, the minimum rate of success, pre-allocated
tasks to robots and spatial constraints limiting the working space of robots. Finding a
better approach to evaluate and assess these dependencies is still an open question we
will address in further work.

Task allocation selector. Given that KANOA selects and optimises one task allo-
cation at a time, this approach might result in local minima (when the first synthesised
task allocations do not contain solutions belonging to the true Pareto optimal). In fu-
ture work, we will explore the possibility of (a) generating an initial population for the
genetic algorithm with previously evaluated task allocations from which solutions (i.e.,
feasible permutations) were found (b) ranking the allocations depending on the quality of
these solutions and (c) modifying the GA to encode the number of the allocation as part
of the chromosome and modify the crossover stage to only allow the crossover between
chromosomes of the same allocation.

Additionally, our observations suggest that in highly restrictive scenarios, the majority
of solutions turn out to be infeasible. In such instances, the genetic algorithm struggles to
identify an initial viable solution to kickstart the optimisation process and generate similar
feasible solutions. Our future efforts aim to develop an algorithm capable of generating
only viable sequences of tasks.

Limited number of robots. The scalability of robotic mission planning using logic-
based programming languages is discussed in [92], where the ability to devise plans for up
to 36 robots is demonstrated. However, instead of employing logic planning techniques
like model checking (or PMC as in our case) which suffer from a state-explosion problem,
their approach converts the problem into a mixed-integer linear program (MILP) and
uses off-the-shelf solvers for the synthesis of plans. KANOA’s modular design allows for
the integration or substitution of different techniques within its framework. Particularly,
since plan synthesis via PMC is hindered by the state explosion problem, other established
methods like MILP17 (and other techniques described in Chapter 3) could be explored in
future development.

However, it should be noted that multiple case studies and related approaches report
a number of robots in their evaluation similar to the ones we have employed in ours.
For example, [22, 49] and [85] report deploying less than five robots; [86, 88, 91] up to 10,

17Although MILP comes with the expense of solving the set of a large set of constraints which becomes
computationally expensive, as pointed out by [100].
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and [87] up to 12.

Multiple robot plans. It is possible that when the robots are about to be deployed,
the initial configuration of the system that was considered for the planning has already
changed, so the selected robot plans are not feasible anymore. For example, in a scenario
where robots are finishing their previous plans and a new plan is about to be deployed,
some of the robots may no longer be available as they run out of battery and require
recharging. To this end, we maintain an archive of feasible task schedules, as shown in
stage (5), Figure 7.1. Hence, the robot plans can be swapped before deployment for a
new task schedule that complies with the new set of available robots. Similarly, it is
possible that not every task allocation in stage (3) generated by stage (3) is used by the
task scheduler. Nevertheless, these are archived within KANOA. These allocations can
be used in the future to generate more plans in case the task schedules saved in (5) are
no longer valid as the system evolves.

Quality indicators. To evaluate the quality of solutions produced by KANOA
against those from random search, as well as to compare various versions differing by
the number of allocations, we employ Pareto front quality indicators. Despite adhering to
conventional methods, it is important to note that these indicators are subject to misin-
terpretation; as conveyed in [190]: “IGD prefers uniformly distributed solutions and HV is
in favour of knee solutions.” Knee solutions in the context of multi-objective optimisation
are specific points on the Pareto front where making a small improvement in one objective
would require a large sacrifice in another objective. These solutions are desirable because
they represent a sweet spot of trade-offs between competing objectives. Predicting the
shape of the Pareto front is challenging, but conducting more runs can enhance confidence
in the accuracy of the quality indicators [190]. To increase the reliability of our evaluation,
we will conduct additional experimental runs in subsequent research.

Evolutionary optimisation (GA) loop. For the current version of KANOA, we
selected the NSGA-II evolutionary optimisation algorithm and tuned it as described in
Section 7.2.3. Further evaluation is required to assess the impact on the quality of solutions
of the current configuration against different setups and algorithms, such as SPEA and
MOCell (available within the JMetal package [181]).

7.4 Related Work

As part of a carried out systematic review on multi-robot task allocation and scheduling,
related work relevant to KANOA’s framework is described in Chapter 3. Sections 5.6
and 6.7 also provide related work specific to the task allocation and task scheduling parts
of KANOA. In this section, we compare some of the most similar works to KANOA
which incorporate formal methods as part of the task allocation and scheduling problem
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in robotic systems.
Table 7.6 shows KANOA compared to five other studies. The second and third columns

indicate what type of problem they solve. Two of them, [25] and [28], assume that the
allocation of tasks is known beforehand. Meanwhile, [192] solves the allocation of tasks
as part of the path planning solution, while [193], [194] and [195] model the allocation
and scheduling of tasks together. The path planning algorithm in [192] uses the so-called
Devises for Assisting Living (DALi) algorithm, which in turn is based on a variant of
the Dijkastra’s algorithm. In [196], Integer Linear Programming (ILP) is used for the
allocation of tasks, while constraint programming for the scheduling of tasks for a variant
of the multi-travelling salesmen problem.

In [193], a declarative programming language was proposed for the specification of
robotic missions, and an SMT-based solver was used for the synthesis of robot plans.
All of these approaches, except for [193], [196] and KANOA, use model checking for the
generation of robot plans—the outcome of the scheduling stage.

In [193], the authors propose a ranking system ordering robot plans based on the
trajectory cost to select the “optimal” task schedule from the set of solutions found.
Work in [194] and [195] minimise plans generated from LTL specifications through model
checking. Then, they provide optimal guarantees of the synthesised plans. However, this
is a mono-objective algorithm minimising the total mission time. In [196], ILP is used
for the task allocation minimising the overall span of the mission in terms of travelling
time. Subsequently, the task scheduling part is implemented using a constraint solver to
address task dependencies. The scheduling process is further optimised with the same
objective—minimise the overall mission span—by modelling it as a min-max optimisation
problem. In contrast, in KANOA we can model up to three objectives as a result of using
a multi-objective evolutionary algorithm.

Key characteristics of each approach are shown in column five. One of the main
differences between KANOA and other approaches is the types of constraints that our
framework can handle. To maintain clarity, we refer the reader to Table 6.1 for the full
list. Also, dividing the problem into the allocation and scheduling of tasks also allowed a
broader list of constraints to be added, as (a) some of the constraints only concern one of
these two stages in the generation of plans, and (b) it reduces the complexity of encoding
both problems into a single one. This is also highlighted in [196].

Many of the compared approaches consider the avoidance of obstacles as part of the
mission constraints [28, 192, 193]. KANOA assumes that the planning captured by the
locations and paths in the world model already contains enough information to avoid fixed
obstacles. Adaptation of plans due to mobile obstacles is one of the tasks we will explore
in future work. Additional future research directions can explore key characteristics of
other approaches, such as adding guarantees when the travelling time diverges from the
expected time and partial knowledge of the robots’ actions.
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Table 7.6: Comparison between KANOA and similar state-of-the-art approaches for the
scheduling of multi-robot tasks.

Approach Allocation
technique

Scheduling
technique

Optimisation
technique
[objectives]

Key characteristics

KANOA
Constraint
solver

PMC and GA
[probability of success,
idle time, travel cost]

- Robots heterogeneity
- Groups of robots modelled independently
- Multi-objective optimisation
- Probabilistic robots’ behaviour when
travelling and attempting tasks
-User-friendly DSL

[25] - Model
Checking

- - Partial knowledge of robots’ actions

[28] - Model
Checking

-

- Online and offline
- Obstacle avoidance
- Limited local information
available to robots
- Fully distributed

[192] Path
planning

Model
Checking

- - Obstacles avoidance
- Various road conditions

[193] SMT-based
Ordering by cost
[trajectory cost]

- Failure detection and re-planning
- Online and offline
- Dynamic obstacle avoidance
- Robots heterogeneity

[194] Model Checking
Graph optimisation
[total time]

- Optimality of synthesised plans
under LTL specifications

[195] Model Checking
Graph optimisation
[total time]

- Non-deterministic travelling actions
- Joint tasks
- Deviations from optimal trajectory
(upper/lower deviation values)
- Optimality of synthesised plans
under LTL specifications

[196] Integer Linear Programming (ILP)
& Constraint Programming (CP)

ILP [trajectory cost]
and CP [mission time]

- Parallel-tasks single-robot execution
- Tasks precedence
- Robots heterogeneity
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7.5 Summary

This chapter has presented a comprehensive overview and evaluation of KANOA, a tool-
supported methodology for task allocation and scheduling for multi-robot systems. The
end-to-end framework is presented from the initial problem specification using a domain-
specific language to the final generation of robot plans. This process integrates several
formal methods: constraint solving for task allocation and probabilistic model checking for
the synthesis of robot plans. The latter is leveraged as part of a multi-objective optimisa-
tion algorithm to quantitatively assert about the Pareto optimally of feasible robot plans.
The chapter also elaborates on the system’s capability to handle heterogeneous groups of
robots and complex task dependencies, showcasing its utility through two case studies:
the deployment of a group of robots in a hospital, and UUVs for collecting samples in the
ocean.

The evaluation section of the chapter provides a thorough analysis of KANOA’s perfor-
mance, highlighting its efficacy in generating Pareto optimal task allocations and sched-
ules that enhance operational efficiency while adhering to mission-critical constraints. We
show a significant statistical improvement in the quality indicators compared to our base-
line. The chapter also discusses potential threats to validity, such as the generalisability
of results and the scalability of the approach to larger and more complex scenarios.

In conclusion, this chapter highlights the compositional multi-stage aspect of KANOA,
emphasizing its integrated use of formal methods for the generation of correct-by-con-
struction solutions, its flexibility in accommodating various MRS configurations, and its
capability to optimising multiple mission-critical parameters.
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Chapter 8

Conclusions and Future Work
This thesis has addressed major limitations in two important areas of mission-critical
multi-robot systems (MRS). The first one is the unambiguous specification of quanti-
tative robotic mission requirements and the formulation of the problem of generating
individual robot plans in a user-friendly language. The second one is the task allocation
and scheduling problem for multi-robot heterogeneous systems under multiple functional
and non-functional constraints and optimisation objectives.

Multiple previous projects have addressed problems in these two areas. Specifically,
logic languages such as linear temporal logic (LTL) have provided ways to describe mis-
sions with precise semantics and in an unambiguous manner. Similar languages have
extended the capabilities of LTL to reason about time constraints, such as signal tempo-
ral logic (STL), which has been successfully applied in the synthesis of robot plans. To
the best of our knowledge, prior to this work, there was no existing specification catalogue
that compiles quantitative aspects of robotic missions, such as probabilistic behaviour and
associated costs, while maintaining the unambiguity of the specifications.

Regarding task allocation and scheduling, variants of these problems have been solved
through different methods, some of which were discussed in Chapter 3. However, as MRS
are applied in increasingly complex and safety-critical environments, it becomes challeng-
ing to identify a single method that fully captures the complexities of the application
domain and integrates them into the synthesised robot plans.

Considering these limitations, we defined four research objectives in Section 1.2:

1. To ease the definition of an MRS task and scheduling problem for realistic
sets of complex constraints and optimisation objectives[...];

2. To devise an MRS task allocation method capable of managing a diverse
set of constraints, [... and a] task scheduling method that generates individual
robot plans optimised to meet multiple mission-critical requirements;

3.To integrate the methods from Objective 2 into an end-to-end methodology
for MRS task allocation and scheduling that employs formal methods at each
stage of its robot schedule generation process.

4. To provide tool support for the adoption and testing of the developed tech-
niques for the definition of MRS specifications and the generation of task sched-
ules.
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Within the rest of this chapter, we summarise our research contributions, which ad-
dress these four research objectives. The contributions are divided into three parts that
reflect the stages of the end-to-end framework developed throughout the thesis. First, the
contributions in the area of robotic mission specifications address research objective 1,
and are presented in Section 8.1. Second, our solutions for the multi-robot task alloca-
tion and scheduling problems address research objectives 2 and 3, and are summarised
in Sections 8.2 and 8.3. Finally, the KANOA’s tool-supported framework contribution
addresses research objective 4, and is described in Section 8.3. Each of Sections 8.1–8.3
also provides suggestions for future research directions.

8.1 Robotic Mission Specification

8.1.1 Research Contributions

To support the formalisation of quantitative robotic mission requirements, we have in-
troduced the semantics of the QUARTET repository of missions. QUARTET provides
a catalogue for robotic mission developers and practitioners to specify mission-related
quantitative specifications. These specifications are initially specified in a domain-specific
language. We have proposed a semantics to allow for their translation into Reward Prob-
abilistic Computation Tree Logic (RPCTL) and implemented this in a tool-supported
framework. The QUARTET catalogue can be used by practitioners and designers to
define a wide range of robotic missions and mission requirements in an unambiguous
language without dealing with the intricacies of writing them directly in logic language.

This catalogue concentrates on requirement specifications, which leaves out the syntax
and semantics needed to capture essential details of MRS problems such as task allocation
and scheduling. The end-to-end tool-supported framework provided by KANOA allowed
the description of a complex set of functional and non-functional requirements for the
synthesis of robot plans, as well as important details relevant to task allocation and
scheduling problems. KANOA’s input is the robotic problem specification described in
our user-friendly domain-specific language. Following a separation-of-concerns approach,
stakeholders and developers can focus on writing different complementary parts of the
robotic mission specification.

8.1.2 Further Research Directions

In the area of robotic mission specification, we identify the following research directions
to explore in future work:

• Generalisation of KANOA problem specifications. The current problem
specification of KANOA is restricted to the type of tasks, constraints and objec-
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tives described in KANOA’s DSL. Future versions of KANOA will generalise the
presented problem specification to account for the increasing diversity of multi-robot
applications and types of constraints involved (e.g., restricted temporal availability
of certain components of the system).

• Support for RPCTL extensions and other logic languages tailored to
robotic mission specifications. RPCTL was successfully used as part of the
QUARTET catalogue of robotic mission requirements and in the robot plan synthe-
sis in KANOA. RPCTL is well-suited to reason about bounded-time requirements,
probabilistic behaviour between states of the system, and costs of the system associ-
ated with states and transitions. As this logic is not intended to be domain-specific
but to generalise well across multiple applications in different fields, intrinsic as-
pects of robotics are not directly representable in RPCTL. To address this gap, a
promising future research direction concerns the formalisation of MRS mission re-
quirements that are not currently representable using RPCTL that may be related
to different aspects of the domain. Some of these include adversarial behaviour of
parts of the environment, which can be used to provide guarantees about worst-
case scenarios for plans and can be encoded in temporal logics such as probabilistic
alternating-time temporal logic with rewards (rPATL) [197], or fine-grained tempo-
ral properties, which can be captured with languages such as signal temporal logic
(STL) [100].

• Non-functional SLEEC requirements for robotics. Related to the two pre-
vious points, an important area already mentioned as part of the literature review
in Chapter 3, is co-bot applications (i.e., applications where robots and humans
interact). These were identified as a new category of robot system applications in
which robots must be equipped to satisfy non-functional requirements that allow
their integration in a social, legal, ethical, empathetic and cultural manner. The
elicitation process of these types of requirements, referred to as the SLEEC rules,
is presented in [198]. The addition of SLEEC rules into KANOA is intended for
further work.

8.2 Task Allocation

8.2.1 Research Contributions

We addressed the multi-robot task allocation problem using the Alloy Analyzer constraint
solver. Our approach successfully addressed the allocation by taking into account the het-
erogeneity of the robots’ capabilities and the spatial constraints outlined in the KANOA
mission specification. Internally, KANOA solves the generation of robot plans by divid-

190



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

ing the problems of task allocation and scheduling into separate stages. By modelling
task allocation independently from task scheduling, we isolated the constraints specific to
task allocation. This approach allowed us to focus solely on those constraints in a subset
derived from KANOA’s problem specification. We formalised constraints in the Alloy
language that pre-allocate tasks to specific robots, limit the number of tasks assigned to
each robot, and define the spatial boundaries within which robots can operate. We also
contributed a specification of the problem in Z notation as an intermediate step to make
the transition between Kanoa’s DSL and the Alloy specification in a consistent manner,
given that the latter is based on Z notation. Moreover, this formalisation can be reused
as a reference to perform translations of KANOA problem specifications into other formal
languages beyond Alloy.

Our findings demonstrate the practicality of using constraint solvers like the Alloy
Analyzer for components of the multi-robot plan synthesis problem formally specified
in mathematical-based languages such as Z notation (specifically for task allocation to
robots). The applicability and effectiveness of this approach are further validated through
a hospital case study.

8.2.2 Further Research Directions

For task allocation, future research directions include:

• Degradation of requirements. Consider the example where all robots have to
be deployed and work in a specific area. At the same time, there is a requirement
stating that robot r1 cannot enter this area. In this simple example, no allocation
is returned as the two requirements conflict. Resolution of requirements can happen
through a human-in-the-loop approach where feedback is provided to the user on
what conflicts were detected. Another solution is to systematically degrade some
of the requirements such that an allocation can be obtained even when the original
requirements were (slightly) modified or removed.

• Scalability. One of the problems of using constraint solvers is that the whole set
of atoms related to robots, tasks and allocation coordinates have to be modelled
individually—the maximum or exact numbers of these atoms are defined as part
of the defined scope. Hence, the scalability of our solution suffers as more atoms
are added. Future research is needed to overcome this limitation. For example, by
modelling the working area of the robots as discrete areas rather than coordinates,
we avoid using unnecessary atoms to model the integers representing specific x and
y coordinates.

• Limitations of constraints solvers. Another disadvantage of using off-the-shelf
constraint solvers is that the computation of solutions is done hidden from the user
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using a series of techniques to optimise the execution time while returning as many
solutions as possible. This is also the case with the Alloy Analyzer (which uses
the Kodkod solver under the hood). The complexity of the model itself, including
the number of constraints and how they interact, can affect whether Alloy can
find a solution. Complex interdependencies can make the solution space difficult to
traverse, increasing the likelihood that Alloy might not find an existing solution [55].
Hence, it is important to acknowledge that the Alloy Analyzer does not always return
a solution even if one exists. Further work must be done to ensure that a solution
is found if it exists.

• Decomposition of tasks. Several studies consider the decomposition of tasks to
describe alternative ways of completing a mission [51,199]. While our current work
does not encompass this decomposition, in principle it could be incorporated into
the Alloy problem specification.

8.3 Task Scheduling and KANOA Tool

8.3.1 Research Contributions

In the task scheduling phase, we generate a set of Pareto-optimal robot plans that con-
form to the mission critical requirements defined in the KANOA problem specification.
These plans were synthesised using probabilistic model checking (PMC). KANOA incor-
porates a variety of specialised models to analyse different facets of the robot plans. The
verification results from some of these models facilitate the multi-criteria optimisation of
the synthesised robot plan.

As part of the task scheduling solution, three different models were proposed for the
quantitative reasoning of robot schedules. The analysis of these models is handled in the
evaluation phase by KANOA’s meta-heuristic evolutionary search algorithm. The search
algorithm explores the solution space and optimises feasible plans. Given that PMC,
the technique used for the robot plan synthesis, is susceptible to the state explosion
problem, robots are grouped depending on the constraints of their allocated tasks in a
pre-scheduling stage. This strategy effectively reduces the states and transitions compared
to a single-model approach.

The practicality of KANOA’s task scheduler in conjunction with the task allocator, is
supported by the delivered compositional tool-supported KANOA framework. Through
an extensive evaluation, we demonstrated the applicability and effectiveness of KANOA
for the synthesis of Pareto-optimal robot plans under a complex set of constraints and
multiple conflicting objectives.
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8.3.2 Further Research Directions

To continue the work in task scheduling, we identify the following research directions:

• Specialised models. As part of the scheduling of tasks, we develop a framework
to integrate a series of specialised models that capture the idling of the robots, the
probabilistic behaviour of travelling between locations and the travelling cost. Two
of them use probabilistic model checking while the third is a simpler specification
of the arithmetic required to sum the total travelling cost of the robots. Additional
models reasoning about safety properties, communication between robots, model
drifting and other parts of the system can be added to the current set of models,
expanding the set of classes of properties that the approach can handle.

• Integration with other scheduling techniques. As mentioned in the literature
review (Chapter 3), there are multiple existing techniques for the scheduling of tasks
in multi-robot systems, such as HTN planners and PDDL solvers. As KANOA’s
plan synthesis is compartmentalised inside the meta-heuristic search loop, we can
augment (or replace) KANOA’s method to generate task schedules. In other words,
a series of task schedulers can be available for KANOA to select depending on the
problem at hand. Future work will define what type of schedulers can be added and
how is the selection of the task scheduler done.

• Runtime task scheduling and self-adaptation. Due to the inherent sources
of uncertainty associated with the robots, their environment, and changes in the
robot mission itself, modification of plans to accommodate such changes at runtime
is necessary. Multiple studies have taken steps towards perpetual scheduling of
tasks [200, 201] and adaptation of these in the presence of disturbances [202, 203].
In future work, we intend to extend KANOA with runtime capabilities for the
adaptation of plans. Two of the main decisions to be made are: what types of
disturbances are to be considered as triggering adaptation actions? and what stages
of the KANOA framework will be extended with runtime capabilities and how will
these be modified (e.g., following the MAPE-k architecture [204])?.

• Hybrid architectures. As KANOA’s task scheduling is designed as a centralised
architecture, the resilience of the system is at risk when the central task allocator
and scheduler unit fails. Future effort is needed to extend KANOA to decentralised,
distributed or hybrid architectures.

• Scalability. The task scheduler was designed with a novel series of measures
to avoid the state-explosion problem inherited from probabilistic model checking.
These measures include the grouping of robots, the use of a meta-heuristic evolu-
tionary algorithm for the exploration of the solution space, and the creation of spe-
cialised models that capture only specific aspects of the scheduling problem, rather
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than modelling all aspects together. However, as part of the evaluation in Chap-
ter 7, one of the primary scalability drawbacks is the selection of the permutation
of tasks within the evolutionary algorithm. As mentioned in the evaluation chapter,
in future work we plan to create an algorithm to select only feasible permutations
of tasks complying with the ordering of the tasks’ requirements.

• Digital twins. Significant advancements in multi-robot digital twin scheduling
have become a vital component in narrowing the multi-robot simulation-reality gap.
For instance, the development of a re-scheduling digital twin for multi-robot arm
applications is detailed in [205]. Various features of KANOA, such as the creation of
multiple specialised models are appealing for near real-time applications including
digital twins, as it would allow the online and offline verification of different aspects
of the robot plans. A critical consideration in real-time applications is managing
the time required to generate and analyse these plans. Ensuring that a plan is
synthesised within a specific time frame presents significant challenges and is an
area earmarked for further research.
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[30] G. Vázquez, R. Calinescu, and J. Cámara, “Scheduling multi-robot missions with
joint tasks and heterogeneous robot teams,” in Towards Autonomous Robotic Sys-
tems, no. 22. Springer, 2021, pp. 354–359.

[31] S. Khanna and S. Srivastava, “The emergence of AI based autonomous UV disinfec-
tion robots in pandemic response and hygiene maintenance,” International Journal
of Applied Health Care Analytics, vol. 7, no. 11, pp. 1–19, 2022.

[32] R. Bogue, “Robots in a contagious world,” Industrial Robot: the International Jour-
nal of Robotics Research and Application, 2020.

[33] K. Parnell, S. Merriman, S. Getir Yaman, K. Plant, and R. Calinescu, “Resilient
strategies for socially compliant autonomous assistive dressing robots,” in Proceed-
ings of the First International Symposium on Trustworthy Autonomous Systems,
2023, pp. 1–9.

[34] R. I. Brafman, D. Tolpin, and O. Wertheim, “Probabilistic programs as an action
description language,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 37, no. 13, 2023, pp. 15 351–15 358.

197



REFERENCES

[35] H. L. Younes and M. L. Littman, “PPDDL1. 0: An extension to PDDL for ex-
pressing planning domains with probabilistic effects,” Techn. Rep. CMU-CS-04-162,
vol. 2, p. 99, 2004.

[36] C. Menghi, C. Tsigkanos, T. Berger, and P. Pelliccione, “PsALM: Specification of
dependable robotic missions,” in IEEE/ACM International Conference on Software
Engineering, no. 41. IEEE, 2019, pp. 99–102.
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A Non-quantitative specification patterns

Menghi et al. [2] proposed a set of 22 non-quantitative patterns presented in Figure 3.8a.
The translation into LTL and CTL formulae for each of these patterns is presented in the
self-explanatory Figures 8.1 and 8.2. For example, the first row depicts the visit pattern.
It describes a pattern where a set of locations in any order are visited by a robot. An
example of this pattern is to visit locations l1, l2 and l3, and an example of a path that
fulfills this pattern is given by l1 → l4 → l3 → l1 → l4 → l2 → (l#)w, where l# is any
location and (l#)w indicates an infinite sequence of locations. For the complete notation
of symbols in the translated formulae we refer the reader to [2].

Figure 8.1: Core movement robot patterns, from [2].
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Figure 8.2: Avoidance and Trigger patterns, from [2].
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B Example of the task model

The following example shows the Task Model consisting of 4 atomic tasks and 7 compound
tasks; and the Mission m1 specified in the KANOA DSL for the example presented in
Section 6.2.

————————————————————
TaskModel:
at1 : 2 robots needed at location l1,
at2 : 1 robot needed at location l1,
at3: 1 robot needed at location l1,
at4: 1 robot needed at location l1,
ct1: subtasks [ct2,ct3],
ct2: subtasks [ct4,ct5] constraint:ordered,
ct4: subtasks [at1,at2],
ct5: subtasks [ct7,at1],
ct7: subtasks [at3,at4] constraint:ordered,
ct3: subtasks [ct6,ct5],
ct6: subtasks [at1,at4] constraint:ordered
RobotsModel: ...
Mission :
m1 : compound task ct1
————————————————————
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C Alloy facts in the task allocation model

This section is a continuation of Section 5.1. This section shows the effects of removing
any of the facts in the Alloy model related to the capabilities. The example consists of
three robots, r1, r2 and r3. Robot r1 has two capabilities, c1, c11, robot r2 capabilities
c2, c22, and robot r3 capabilities c3, c33. Atomic task at1 can be done by capabilities c1
or c3. Atomic task at2 can be done by capabilities c11 or c33. Atomic task at3 can be
done by capability c2 and atomic task at4 by c22.

The complete Alloy model is depicted in Figure 8.4, which shows an example of an
allocation problem, with the three facts related to capabilities inside a red rectangle.
The effects of removing (b),(c) or (d) are depicted in Figure 8.3 matching these labels.
Figure 8.3.a shows a possible allocation solution without removing any fact.

(a) (b)

(c) (d)

Figure 8.3: Effect of removing Alloy facts on the solutions to the allocation problem. This
visualisation of solutions in the Alloy analyzer is explained in Section 5.3.2)

Figure 8.3.b shows that by removing fact{all rt:Capability| #capability.rt=1 }, some
of the capabilities may appear without a relation to a robot. Figure 8.3.c shows that
by removing fact (c), some robots may appear without any capability or task assigned.
Figure 8.3.c shows that by removing fact (d), some capabilities may appear without any
allocated task.
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Figure 8.4: Example of an allocation problem in Alloy.
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D Compound Task Constraints to Atomic Tasks

This appendix complements the information provided in Section 6.2.2. Here, we remind
the reader what an ordered and consecutive compound task constraint means, intuitively.
Ordered tasks. When we talk about a constraint of a compound task, the constraint
is applied to its subtasks. For an ordered compound task with subtasks (t1, t2, t3,...),
intuitively, we allow other actions to happen between the subtasks but their order must
be preserved1,

ordered tasks[t1, t2, t3, ...] : t1 + ...︸ ︷︷ ︸
idle and other tasks

+t2 + ...︸ ︷︷ ︸
idle and other tasks

+t3 + ...

The solution of applying an order constraint to the list of subtasks of a compound task cti

is a set of action sequences, where each sequence captures the ordering of the subtasks,
other atomic tasks, and idle time slots. For example, a possible set of solutions Sord for
ordering task t1 to t4:

Sord([t1, t2, t3, t4]) = {[t1, t2, t3, t4],
[t1, idle, t2, t3, t4],
[idle, t1, idle, t2, t3, idle, idle, t4]...}

Consecutive tasks. For consecutive compound tasks, every subtask must start just after
the previous one is finished,

consecutive tasks [t1,t2,t3,...] : t1 + t2 + t3 + ...

Hence, there is only one solution scon to the consecutive task constraint2,

sconsec = [t1, t2, t3, t4]

as [t1, t2, t3, t4] ∈ {[t1, t2, t3, t4], [t1, idle, t2, t3, t4],...}, we propose the next condition.

Well-Formedness Condition. Let Sord(T ) be the set of solutions to ordering the
sequence of tasks T=t1,t2,...,tn. Let scon(T ) be the solution to consecutively order T, then
scon(T ) ∈ Sord(T ). In other words, “if an atomic task ati has to be done consecutively
after ati−1 and ordered after ati−1, we remove the ordering constraint and apply only the
consecutive constraint”.

1We are only reasoning about the start and end time of tasks. If t1 and t2 are done in different
locations, two robots must be needed so that the robot at t2 is ready to start immediately after the robot
at t1 finishes this task.

2Although it may seem trivial to consider consecutive tasks, robots require time to travel between
locations. Hence, a consecutive task may require multiple robots synchronising at different locations.
In other words, solving the sequencing of consecutive tasks is trivial, but not the robot allocation and
scheduling of consecutive tasks.
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This conclusion helped us solve the conflicts arising for atomic tasks that share multiple
compound task constraints: a consecutive constraint cancels an ordering constraint.

Observation 10. Constraint conflicts. Consider an consecutive task ct1=[at1
at2 ct2], where ct2=[at3,at4] and at1,...at4 are atomic tasks. As designers, we must
decide what does “consecutiveness” of ct1 subtasks (at1, at2, and ct2) mean. a) We
may decide that all reachable atomic tasks are ordered, i.e., they must be performed
as at1−→at2−→at3−→at4. b) Another design solution is to constrain all atomic tasks
of subtasks that are compound to be done immediately, i.e., at1−→at2−→{at3 and at4
start at the same time}. c) A third design may be to start with any task of ct2 after at1
and at2, leading to two solutions: 1) at1−→at2−→at3−→at4 and 2) at1−→at2−→at4−→at3.
A fourth solution may be to start any task of ct2, then allow other tasks from the
whole mission to happen and, at some point, complete ct2. We opt for solution a)
for three reasons. First, in a multi-robot system, we expect to have consecutive tasks
such as, “first clean room 1 and immediately after go to room 2 and immediately
after clean room 2” (see, for example, the robotic mission patterns [25]). Second,
it avoids confusion when the plans of the robots are synthesised and the user may
expect tasks under a “consecutive” constraint to be done “consecutively”; and third,
it is a tradeoff between scalability and solving the consecutiveness of atomic tasks,
as avoiding permutations arising from solution (c) increases the size of the model.

.
We force atomic tasks to be performed consecutively when they are constrained by both

(order and consecutive) constraints. In Section 6.2.2, we define new atomic constraints
in terms of two additional functions, doneBefore(ati) and justDone(ati). These describe
the tasks that have to be done before and the ones that must finished at the same as the
new one starts, respectively (see Section 6.2.2).

We force atomic tasks to be performed consecutively when they are constrained by both
(order and consecutive) constraints. In Section 6.2.2, we define new atomic constraints
in terms of two additional functions, doneBefore(ati) and justDone(ati). These describe
the tasks that have to be done before and the ones that must finished at the same as the
new one starts, respectively (see Section 6.2.2).
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E MDP model with idling-time limit assessment

In this Section, we further justify the decision to add a limit to the time robots can spend
idling and demonstrate the reduction in the size of the model’s transitions and states with
an example.

Consider a PRISM model with a time limit of TT to complete four tasks allocated to
two robots, r1 and r2. Robot r1 has tasks r1t1 and r1t2. Robot r2 has tasks r2t3 and
r2t4. The travelling time for robot ri from an initial location l0 to the location where tj

has to be done is denoted as travelri l0tj . The travelling time between tasks’ locations tj

and tk is denoted as travelritjtk . The time to complete task tj is denoted as ritjTime. The
robots have the option to perform a task or idle for a time unit. Intuitively, if we limit
the number of times that the robot can enter an idling state, the number of transitions
and states of the MDP are reduced, which increases the scalability of our model. Hence,
we decided to explicitly add to the model the maximum number of times that a robot can
idle. For each robot, we limit the idle time to be the total time available, TT, minus the
time spent travelling between locations and performing tasks. For example, for robot r1,

maxIdler1=TT-r1t1Time-r1t2Time-travelr1l0t1-travelr1t1t2; (8.1)

where r1t1Time and r1t2Time are the time that r1 needs to perform t1 and t2; and
travelr1l0t1 and travelr1t1t2 the time travelling between locations.

We add a state variable for each robot (e.g., for robot r1, r1idleTime) to track the
number of times that a robot has entered idle. We strengthen the idle transition by
allowing the robot to idle only maxIdler1 times,

[r1idle] r1order!=2 & (r1time+1<=TT) & (r1idleTime+1<=maxIdler1)

-> (r1time’=r1time+1) & (r1idleTime’=r1idleTime+1);
(8.2)

An special case happens when the total time TT is equal to the sum of the time
spend in travelling and doing tasks. In this case, we had the issue of a 0 range, which is
marked as an error by Prism,

r1idleTime:[0..0]; (8.3)

Intuitively, this means that the robot only has time to travel and complete the tasks
with the time available, and no time to idle. Hence, we remove the idling transition
(equation 8.2) and the idle time modelled in the “idle” reward structure, for any robot ri

that has an maxIdleri=0.

Observation 11. If a robot has an maxIdleri<0, there is not enough time to com-
plete all tasks (and trips between tasks) within the time available. This is computed
before creating the MDP model so the schedule (aka. permutation of tasks) can be
discarded.
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We emphasize that the reduction of the model when a constraint in the idling time is
added to the original model is possible as the idling transitions are reduced by
maxIdler1<=TT.

Evaluation. We created a PRISM model without limiting the idling time (see Listing
8.1) and a second where we limit each robot’s number of times that a robot can enter
idling (see Listing 8.2). We assume a travelling time between any two locations and a
task completion time equal to time4TasknTravel, to simplify the comparison between
tests. Table 8.1 shows the number of states and transitions varying the values of TT and
time4TasknTravel.

In the case of time4TasknTravel=1, this means that each robot travels from its
initial location to the next task in 1-time step. It spends 1-time step travelling to its first
allocated task, 1-time step performing its first task, another time step travelling to the
second task, and one more to perform the second task. In total, this requires at least 4
time units. If time4TasknTravel=10 the mission would require 40 time units, and so on.
We should the results with time4TasknTravel=1 and 10 in Table 8.1. Table 8.1 shows
the reduction of transitions and states when the idle time is limited, as expected.

If maxIdler1 and maxIdler2 result in negative numbers, this means that there is no
possible plan where robots can complete all tasks in the time available and the permutation
is discarded.

Table 8.1: MDP model with two robots and four tasks

No idle time limit Idle time limit
Time to do
task or travel
(time4TasknTravel)

Total time (TT) States Transitions States Transitions

1 4 81 189 9 13
1 50 21609 59437 19881 54661
1 100 88209 243837 84681 234061
1 200 356409 987637 349281 967861
10 40 3969 10341 25 54
10 50 8649 22861 1089 2893
10 100 59049 160461 33489 92293
10 200 294849 810661 110889 306693
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1 mdp
2

3 const int TT=200;
4 const int time4TasknTravel=10;
5

6 const int r1t1Time =time4TasknTravel;
7 const int r1t2Time= time4TasknTravel;
8 const int r2t3Time= time4TasknTravel;
9 const int r2t4Time= time4TasknTravel;

10 const int travelr1l0t1= time4TasknTravel;
11 const int travelr1t1t2= time4TasknTravel;
12 const int travelr2l0t3= time4TasknTravel;
13 const int travelr2t3t4= time4TasknTravel;
14

15 formula done =(r1order=2 &r2order=2);
16

17 module r1 //robot 1
18 r1order:[0..2];
19 r1time:[0..TT];
20 []r1order=0 &(r1time+r1t1Time+travelr1l0t1<=TT) →(r1order'=1) &(r1time'=r1time+r1t1Time+travelr1l0t1);
21 []r1order=1 &(r1time+r1t2Time+travelr1t1t2<=TT) →(r1order'=2) &(r1time'=r1time+r1t2Time+travelr1t1t2);
22 [r1idle] r1order!=2 &(r1time+1<=TT) →(r1time'=r1time+1);
23 endmodule
24

25 module r2 //robot 2
26 r2order:[0..2];
27 r2time:[0..TT];
28 []r2order=0 &(r2time+r2t3Time+travelr2l0t3<=TT) →(r2order'=1) &(r2time'=r2time+r2t3Time+travelr2l0t3);
29 []r2order=1 &(r2time+r2t4Time+travelr2t3t4<=TT) →(r2order'=2) &(r2time'=r2time+r2t4Time+travelr2t3t4);
30 [r2idle] r2order!=2 &(r2time+1<=TT) →(r2time'=r2time+1);
31 endmodule
32

33 rewards “idle“
34 [r1idle] true: 1;
35 [r2idle] true: 1;
36

37 endrewards

Listing 8.1: MDP model for two robots with two tasks
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1 mdp
2

3 const int TT=200;
4 const int time4TasknTravel=10;
5 const int r1t1Time =time4TasknTravel;
6 const int r1t2Time= time4TasknTravel;
7 const int r2t3Time= time4TasknTravel;
8 const int r2t4Time= time4TasknTravel;
9 const int travelr1l0t1= time4TasknTravel;

10 const int travelr1t1t2= time4TasknTravel;
11 const int travelr2l0t3= time4TasknTravel;
12 const int travelr2t3t4= time4TasknTravel;
13

14 const int maxIdler1 v =TT-r1t1Time-r1t2Time-travelr1l0t1-travelr1t1t2;
15 const int maxIdler2 v =TT-r2t3Time-r2t4Time-travelr2l0t3-travelr2t3t4;
16

17 const int maxIdler1 =maxIdler1 v=0 ? 1 :maxIdler1 v;
18 const int maxIdler2 =maxIdler2 v=0 ? 1 :maxIdler2 v;
19

20 formula done =(r1order=2 &r2order=2);
21

22 module r1 //robot 1
23 r1order:[0..2];
24 r1time:[0..TT];
25 r1idleTime:[0..maxIdler1];
26 []r1order=0 &(r1time+r1t1Time+travelr1l0t1<=TT) →(r1order'=1) &(r1time'=r1time+r1t1Time+travelr1l0t1);
27 []r1order=1 &(r1time+r1t2Time+travelr1t1t2<=TT) →(r1order'=2) &(r1time'=r1time+r1t2Time+travelr1t1t2);
28 [r1idle] r1order!=2 &(r1time+1<=TT) &(r1idleTime+1<=maxIdler1) →(r1time'=r1time+1) &...

(r1idleTime'=r1idleTime+1);
29 endmodule
30

31 module r2 /robot 2
32 r2order:[0..2];
33 r2time:[0..TT];
34 r2idleTime:[0..maxIdler2];
35 []r2order=0 &(r2time+r2t3Time+travelr2l0t3<=TT) →(r2order'=1) &(r2time'=r2time+r2t3Time+travelr2l0t3);
36 []r2order=1 &(r2time+r2t4Time+travelr2t3t4<=TT) →(r2order'=2) &(r2time'=r2time+r2t4Time+travelr2t3t4);
37 [r2idle] r2order!=2 &(r2time+1<=TT) &(r2idleTime+1<=maxIdler1) →(r2time'=r2time+1) &...

(r2idleTime'=r2idleTime+1);
38 endmodule
39

40 rewards “idle“
41 [r1idle] true: 1;
42 [r2idle] true: 1;
43

44 endrewards

Listing 8.2: MDP model with limits on the idle time for each robot (lines 17-18).
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Figure 8.5: MDP model for group 3.

F MDP and DTMC model from task scheduling

This is a continuation of Section 6.5. Figures 8.5 and 8.6 show the MDP and DTMC
models, respectively, of group 3 consisting of a single robot, r1. Figure 8.7 shows the
DTMC model of group 1 consisting of robot r3.
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Figure 8.6: DTMC model for group 3.
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Figure 8.7: DTMC model for group 1.
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Table 8.2: Robot parameter values for the Bo-Alpha case study: velocity (meters/minute),
time to complete a task (minutes) and probability of completing a task. NA means not
apply as the robot does not possess the capability to perform the task.

Time of completion (min)
[zone]

Prob. of completion
[zone]

Robot Initial
Loc.

Velocity
(km/m)

AT1
–salinity

AT2
–temp.

AT1 AT2

r1 l3d 1
15 [deep water]
18 [rocky]
18 [reef]

11[deep water]
17 [rocky]
17 [reef]

0.95 [deep water]
0.80 [rocky]
0.75 [reef]

0.95 [deep water]
0.80 [rocky]
0.75 [reef]

r2 l3d 1
14 [deep water]
16 [rocky]
16 [reef]

10[deep water]
12 [rocky]
12 [reef]

0.95 [deep water]
0.85 [rocky]
0.75 [reef]

0.95 [deep water]
0.85 [rocky]
0.75 [reef]

r3 l3d 1 6 [deep water]
10 [rocky]

5[deep water]
10 [rocky]

0.99 [deep water]
0.85 [rocky]

0.99 [deep water]
0.85 [rocky]

G Bo-Alpha case study complementary material

This section contains complementary material to the Bo-Alpha study presented in Sec-
tion 7.2. The robots’ capabilities are depicted in Figure 8.2, while the KANOA’s problem
specification is in Figure 8.8.
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Figure 8.8: Bo-Alpha problem specification in KANOA’s DSL.
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H Hospital dominated solutions and reference Pareto
front

The evaluation section 7.2 contains the values of the reference Pareto for the hospital case
study. A visualisation of these and the all dominated solutions is shown in this section.

(a) (b)

(c)

Figure 8.9: Feasible (attribute values of) solutions found for the Hospital case study.
Figures (a) and (b) show different 2D views of the attribute values of the solution space.
Figure (c) is the combined 3D plot. Figure Pareto front of solution depicted in red.
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