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Abstract

Structural Health Monitoring (SHM), at its core, is the process of monitoring a

system or structure with the objective of utilising the acquired data to access the

overall condition — the health — of the object in question. One problem of such

an approach is acquiring enough data to specify the ‘health’ state of a structure.

Population-based Structural Health Monitoring (PBSHM) is a recent development

within the SHM community which attempts to bypass the data bottlenecks present

in the ‘classic’ SHM scenario.

The aim of PBSHM is that by monitoring multiple structures — the population

— one can gain additional insights into the health of a particular structure when

using population data, compared to the insights available when using only a single

structure’s data. PBSHM operates under the premise that learnt knowledge may

be shared across structures in the population; however, before any knowledge is

shared, a similarity between structures is first established, to guide if an attempt to

share knowledge should occur. The work conducted in this thesis is focussed on the

similarity-assessment portion of PBSHM and is divided into two parts.

The first part of the thesis, focusses on developing the required language and

ecosystem for determining the similarity of structures. To achieve this, a radical

reconstruction of the core concepts, definitions, and language of an Irreducible

Element (IE) model — the vehicle used within PBSHM to describe a structure — was

required, to provide a standardised representation of structures. A novel ecosystem is

then introduced to provide a shared-domain context for PBSHM similarity

computations: network, framework, and database.

The second part of the thesis, focusses on the problems faced during the similarity

iii



assessment process. When an IE model is curated, there is inherent author bias

present within the model which introduces nuanced variations within the model. The

Canonical Form is introduced as the potential vehicle for facilitating the network to

adapt to these aforementioned variations. A case study is further given of generating

an IE model for a real-world aircraft, a new graph notation is also introduced to

enable concise pictorial representations of IE models.

iv



Publications

Journal Papers

D. S. Brennan, T. J. Rogers, E. J. Cross, and K. Worden, ‘On calculating structural

similarity metrics in population-based structural health monitoring’, Accepted in

Data-Centric Engineering, 2024.

D. S. Brennan, J. Gosliga, E. J. Cross, and K. Worden, ‘Foundations of population-

based SHM, Part V: Network, framework and database’, Mechanical Systems and

Signal Processing, vol. 223, p. 111602, Jan. 2025.

C. T. Wickramarachchi, J. Gosliga, A. Bunce, D. S. Brennan, D. Hester, E. J.

Cross, and K. Worden, ‘Similarity assessment of structures for population-based

structural health monitoring via graph kernels’, Structural Health Monitoring, p.

14759217241265626, Aug. 2024.

D. S. Brennan, J. Gosliga, P. Gardner, R. S. Mills, and K. Worden, ‘On

the application of population-based structural health monitoring in aerospace

engineering’, Frontiers in Robotics and AI, vol. 9, p. 840058, Nov. 2022.

Book Chapters

L. A. Bull, I. Abdallah, C. Mylonas, L. D. Avendaño-Valencia, K. Tatsis, P. Gardner,

T. J. Rogers, D. S. Brennan, E. J. Cross, K. Worden, A. B. Duncan, N. Dervilis, M.

Girolami, and E. Chatzi, ‘Data-centric monitoring of wind farms’, in Data Driven

v



Methods for Civil Structural Health Monitoring and Resilience, 1st edition, Boca

Raton: CRC Press, 2023, pp. 120–180.

Conference Papers

C. Kent, C. O’Higgins, D. Hester, D. S. Brennan, Z. Zhu, and S. Taylor, ‘Expanding

IE model applications with real-world case studies of bridge structures’, Submitted

to International Modal Analysis Conference XLII, Orlando, Florida, USA, 2024.

A. Bunce, D. Hester, and D. S. Brennan, ‘Where is the end of a Bridge (model)?’,

Proceedings of EuroDyn XII, Delft, Netherlands, 2023.

D. S. Brennan, E. J. Cross, and K. Worden, ‘A comparison of structural similarity

metrics within population-based structural health monitoring’, Proceedings of the

International Workshop on Structural Health Monitoring, Stanford, California,

USA, 2023.

G. Delo, C. Surace, K. Worden, and D. S. Brennan, ‘On the influence of structural

attributes for assessing similarity in population-based structural health monitoring’,

Proceedings of the International Workshop on Structural Health Monitoring,

Stanford, California, USA, 2023.

D. S. Brennan, T. J. Rogers, E. J. Cross, and K. Worden, ‘Calculating structure

similarity via a graph neural network in population-based structural health

monitoring: Part II’, Proceedings of the International Modal Analysis Conference

XLI, Austin, Texas, USA, 2023.

D. S. Brennan, T. J. Rogers, E. J. Cross, and K. Worden, ‘On quantifying the

similarity of structures via a graph neural network for population-based structural

health monitoring’, Proceedings of the International Conference of Noise and

Vibration Engineering, Leuven, Belgium, 2022, p. 9.

G. Delo, A. Bunce, E. J. Cross, J. Gosliga, D. Hester, C. Surace, K. Worden, and

D. S. Brennan, ‘When is a bridge not an aeroplane? Part II: a population of real

structures’, Proceedings of the European Workshop on Structural Health Monitoring,

Palermo, Italy, 2022, pp. 965–974.

D. S. Brennan, R. S. Mills, E. J. Cross, K. Worden, and J. Gosliga, ‘On a

vi



description of aeroplanes and aeroplane components using irreducible element

models’, Proceedings of the International Modal Analysis Conference XL, Orlando,

Florida, USA, 2022, p. 14.

D. S. Brennan, J. Gosliga, E. J. Cross, and K. Worden, ‘On implementing

an irreducible element model schema for population-based structural health

monitoring’, Proceedings of the International Workshop on Structural Health

Monitoring, Stanford, California, USA, 2021, p. 11.

D. S. Brennan, C. T. Wickramarachchi, E. J. Cross, and K.Worden, ‘Implementation

of an organic database structure for population-based structural health monitoring’,

Proceedings of the International Modal Analysis Conference XXXIX, Bethel,

Connecticut, USA, 2021, pp. 23–41.

C. T. Wickramarachchi, D. S. Brennan, W. Lin, E. Maguire, D. Y. Harvey, E. J.

Cross, and K. Worden, ‘Towards population-based structural health monitoring,

Part V: networks and databases’, Proceedings of the International Modal Analysis

Conference XXXIX, Bethel, Connecticut, USA, 2021, pp. 1–8.

vii





Table of Contents

List of Figures xiii

List of Tables xvii

1 An Introduction to Population-based Structural Health Monitoring 1

1.1 Structural Health Monitoring . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Damage detection . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Population-based SHM . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Irreducible element models . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Graphs & networks . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Similarity metrics . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Chapter breakdown . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11

2.1 A brief history of Population-based SHM . . . . . . . . . . . . . . . . 11

2.1.1 The ‘Towards’ series . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 The ‘Foundations’ series . . . . . . . . . . . . . . . . . . . . . 15

ix



2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Embedding Structural Knowledge and Similarity Metrics . . . . . . . 17

2.2.1 Knowledge as graphs . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Shared Data Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 SHM database . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Irreducible Element Models 27

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Root Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Free and Grounded Models . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Ground Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Regular Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.4 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Perfect Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Connection Relationship . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Joint Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Boundary Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Network, Framework, & Database 55

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

x



4.1.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Network, Framework, and Database . . . . . . . . . . . . . . . . . . . 60

4.2.1 The network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 The database . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Database choice . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 JSON examples . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.4 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Similarity Metrics 79

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Canonical Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Canonical form reduction rules . . . . . . . . . . . . . . . . . 87

5.2.2 Jaccard index results . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Reality model . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Graph Matching Network . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 From Bridges to Aeroplanes 107

6.1 Where is an Aeroplane not a Bridge? . . . . . . . . . . . . . . . . . . 108

6.2 The GARTEUR Structure . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Attributed graph notation . . . . . . . . . . . . . . . . . . . . 113

xi



6.3 Hawk T.Mk1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Geometrical data method . . . . . . . . . . . . . . . . . . . . 119

6.3.2 Elements and relationships . . . . . . . . . . . . . . . . . . . . 122

6.3.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Conclusions and Future Work 131

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A PBSHM schema 141

A.1 Root Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 IE Model Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.2.1 Regular element . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2.2 Ground element . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2.3 Perfect & boundary relationship . . . . . . . . . . . . . . . . . 155

A.2.4 Connection relationship . . . . . . . . . . . . . . . . . . . . . 157

A.2.5 Joint relationship . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2.6 Shared objects . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.3 Channel Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B Real-world aircraft 167

Bibliography 175

xii



List of Figures

3.1 An example of multiple AG representations of the same bridge . . . . 29

3.2 Original IE model language . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 IE model root object properties . . . . . . . . . . . . . . . . . . . . . 31

3.4 Language migration from original to proposed IE model language . . 32

3.5 Proposed hierarchical IE model language . . . . . . . . . . . . . . . . 33

3.6 IE model [regular] element hierarchical properties . . . . . . . . . . . 35

3.7 IE model [regular] element coordinates object hierarchical properties . 36

3.8 IE model [regular] element contextual object hierarchical properties . 37

3.9 IE model [regular] element geometry object hierarchical properties . . 39

3.10 IE model [regular] element geometry faces object hierarchical properties 40

3.11 An example between a standard commonly-known name geometrical

representation and a complex geometrical representation . . . . . . . 41

3.12 An example of how a bounding box, faces and complex geometrical

shape interact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.13 IE model [regular] element material object hierarchical properties . . 44

3.14 IE model [perfect] relationship hierarchical properties . . . . . . . . . 46

3.15 IE model [connection] relationship hierarchical properties . . . . . . . 47

xiii



3.16 An example of where a [connection] relationship could be utilised

within a bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.17 IE model [joint] relationship hierarchical properties . . . . . . . . . . 50

3.18 IE model [boundary] relationship hierarchical properties . . . . . . . . 52

4.1 Data transmission from structures to the PBHSM database . . . . . . 57

4.2 RDBMS structure example . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 NoSQL structure example . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Visual representation of the ‘network of structures’ . . . . . . . . . . 61

4.5 PBSHM Framework hierarchical structure . . . . . . . . . . . . . . . 63

4.6 structure hierarchical properties . . . . . . . . . . . . . . . . . . . . . 70

4.7 channel hierarchical properties . . . . . . . . . . . . . . . . . . . . . . 71

4.8 [grounded] IE model JSON example . . . . . . . . . . . . . . . . . . . 72

4.9 channel JSON example . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 PBSHM Framework IE model similarity module . . . . . . . . . . . . 75

4.11 PBSHM Framework channel data module . . . . . . . . . . . . . . . . 76

4.12 Jaccard Index embedded type comparison . . . . . . . . . . . . . . . 77

5.1 Similarity score-driven network . . . . . . . . . . . . . . . . . . . . . 80

5.2 Two-span beam-and-slab bridge example . . . . . . . . . . . . . . . . 81

5.3 Potential variations introduced into an IE model through author bias 82

5.4 Jaccard Index similarity results . . . . . . . . . . . . . . . . . . . . . 84

5.5 Network diagram using the Canonical Form . . . . . . . . . . . . . . 86

5.6 Individual ground reduction rule . . . . . . . . . . . . . . . . . . . . . 88

5.7 Perfect Joint Joint reduction rule . . . . . . . . . . . . . . . . . . . . 90

xiv



5.8 Perfect reduction rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.9 Jaccard Index similarity results using the CFRR . . . . . . . . . . . . 94

5.10 Reality model hierarchical properties . . . . . . . . . . . . . . . . . . 96

5.11 Maximum common subgraph diagram . . . . . . . . . . . . . . . . . . 98

5.12 Graph matching network similarity results . . . . . . . . . . . . . . . 101

5.13 Jaccard Index using CFRR verses graph matching network similarity

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Hawk T.Mk1 fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Hawk T.Mk1 left wing . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 GARTEUR Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Repeated vertex/edge notation . . . . . . . . . . . . . . . . . . . . . 114

6.5 Repeated subgraph notation . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 GARTEUR AG representation using PBSHM notation . . . . . . . . 116

6.7 Hawk T.Mk1 fuselage, vertical stabiliser & landing gear segmentation

into [regular] elements . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.8 Hawk T.Mk1 fuselage measurements . . . . . . . . . . . . . . . . . . 119

6.9 Hawk T.Mk1 fixed reference . . . . . . . . . . . . . . . . . . . . . . . 120

6.10 Hawk T.Mk1 measurement equipment . . . . . . . . . . . . . . . . . 121

6.11 Hawk T.Mk1 wings & horizontal stabiliser segmentation into [regular]

elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.12 Hawk T.Mk1 landing gear subgraph . . . . . . . . . . . . . . . . . . . 126

6.13 Hawk T.Mk1 fuselage and vertical stabiliser graph . . . . . . . . . . . 127

6.14 Hawk T.Mk1 fuselage, wings, and horizontal stabilisers graph . . . . . 128

A.1 [regular] element �material types . . . . . . . . . . . . . . . . . . . . 150

xv



A.2 [joint] or [connection] relationship �nature types . . . . . . . . . . . 159

B.1 GARTEUR AG representation without PBSHM notation . . . . . . . 168

xvi



List of Tables

6.1 Hawk T.Mk1 fuselage and vertical stabiliser [regular] elements . . . . 124

6.2 Hawk T.Mk1 fuselage and vertical stabiliser relationships . . . . . . . 125

A.1 Structure object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2 Model object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.3 Irreducible Element object . . . . . . . . . . . . . . . . . . . . . . . . 142

A.4 [regular] element object . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.5 [regular] element �coordinates object . . . . . . . . . . . . . . . . . . 143

A.6 [regular] element �coordinates �global object . . . . . . . . . . . . . 144

A.7 [regular] element �contextual object . . . . . . . . . . . . . . . . . . 144

A.8 [regular] element �geometry object . . . . . . . . . . . . . . . . . . . 145

A.9 [regular] element �geometry standard named types . . . . . . . . . . 146

A.10 [regular] element �geometry �cuboid bounding box object . . . . . 147

A.11 [regular] element �geometry �faces object . . . . . . . . . . . . . . 147

A.12 [regular] element �geometry �face side object . . . . . . . . . . . . 148

A.13 [regular] element �geometry �face translation object . . . . . . . . 148

A.14 [regular] element �geometry complex types . . . . . . . . . . . . . . 149

xvii



A.15 [regular] element �material object . . . . . . . . . . . . . . . . . . . 150

A.16 [regular] element �material �properties object . . . . . . . . . . . . 151

A.17 [regular] element �material �properties unit-free types . . . . . . . 151

A.18 [regular] element �material �properties unit-based types and accepted

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.19 [regular] element �material �conditional value object . . . . . . . . 153

A.20 [regular] element �material �conditional value�environmental object154

A.21 [regular] element �material �conditional value types and accepted

properties values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.22 [ground] element object . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.23 [perfect] and [boundary] relationship object . . . . . . . . . . . . . . . 155

A.24 [perfect] or [boundary] relationship �named element object . . . . . 156

A.25 [perfect] or [boundary] relationship �coordinate object . . . . . . . . 156

A.26 [perfect] or [boundary] relationship �coordinate �global object . . . 156

A.27 [connection] relationship object . . . . . . . . . . . . . . . . . . . . . 157

A.28 [connection] relationship �named element object . . . . . . . . . . . 157

A.29 [joint] relationship object . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.30 [joint] or [connection] relationship �nested nature object . . . . . . . 158

A.31 [joint] relationship �degrees of freedom object . . . . . . . . . . . . . 159

A.32 [joint] relationship �degrees of freedom �global object . . . . . . . . 159

A.33 [joint] relationship �named element object . . . . . . . . . . . . . . . 160

A.34 Nested type object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.35 Coordinates objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.36 Value object and accepted type values . . . . . . . . . . . . . . . . . 162

xviii



A.37 Bounded value object and accepted type values . . . . . . . . . . . . 162

A.38 Dimension object and accepted type values . . . . . . . . . . . . . . . 163

A.39 Channel object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.40 Channel types and accepted values . . . . . . . . . . . . . . . . . . . 166

A.41 Channel value object . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.1 Hawk T.Mk1 left wing and stabilisers [regular] elements . . . . . . . . 169

B.2 Hawk T.Mk1 landing gear [regular] elements . . . . . . . . . . . . . . 170

B.3 Hawk T.Mk1 [ground] elements . . . . . . . . . . . . . . . . . . . . . 170

B.4 Hawk T.Mk1 left wing and vertical stabiliser relationships . . . . . . 171

B.5 Hawk T.Mk1 fuselage to vertical and horizontal stabilisers relationships172

B.6 Hawk T.Mk1 landing gear relationships . . . . . . . . . . . . . . . . . 173

xix





Chapter 1

An Introduction to

Population-based Structural

Health Monitoring

This chapter aims to provide a brief introduction into Population-based Structural

Health Monitoring (PBSHM). Structural Health Monitoring (SHM) is first

introduced, along with the potential pitfalls in the current methodology and

where PBSHM aims to solve these issues. An overview of the current state of

similarity within PBSHM is given, and finally a breakdown of the thesis is provided.

1.1 Structural Health Monitoring

Structural Health Monitoring (SHM) [1, 2], at its core, is the process of monitoring

a system or structure with the objective of using the acquired data to assess the

overall condition — the health — of the system in question. In short, the purpose of

SHM, is to detect damage within a structure. The statement of damage detection

is generally accepted to be defined as a set of hierarchical steps:

1. Detection: establish that damage is present.

2. Localisation: assess where the damage is located.

1
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3. Classification: determine what type of damage has occurred.

4. Assessment : calculate the extent of the damage.

5. Prediction: estimate the lifespan.

Rytter [3] introduced the initial four hierarchical steps, Worden & Dulieu-Barton [4]

later expanded this concept to include the third step: the concept of determining

what type of damage has occurred. Being able to define ‘damage’ as definitively

as outlined above — as alluded to in [4]: is a key factor in any decisions regarding

if a structure is ‘healthy’, as any damage present may affect the designed safety

thresholds and the accepted operational conditions of a structure.

1.1.1 Damage detection

How one detects damage in a structure, is another matter entirely. There are two

widely-explored approaches within the community: model-based and data-based.

A model-based approach would often consist of a physics-based model, commonly

a Finite Element (FE) model. This model portrays a digital representation of

the physical and structural properties of the structure. As data from the system

monitoring becomes available, the model is often updated in an attempt to match

the real-world structure as closely as possible.

This latter point highlights one of the main road blocks in a model-based SHM

approach: building a model which matches exactly the dynamic behaviour of a

real-world structure is incredibly difficult; any information not included within the

model, provides a gap between the dynamic behaviour of the model and the real-

world structure. One could simply state that this is not a problem, and instead time

and care must be required when curating the model; however, the problem is that

not all information may be known or even available during the development of the

model.

The second approach is a data-driven approach; instead of necessitating pre-

existing knowledge on a structure’s composition and properties like the model-

based approaches, a data-based approach assumes that no pre-existing knowledge is

available on the dynamic behaviour of the structure and instead builds a statistical

model of the structure based upon known ‘healthy’ states of the structure. As

the name suggests, a data-based approach requires a certain amount of data from
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a monitoring campaign — capturing data from a series of sensors attached or

associated with the structure over a period of time — potentially ongoing — to

build the statistical model. Raw sensor data will seldom provide a direct indication

of damage presence, unless total structure failure occurs; instead, raw data are

processed and combined to curate associated features, and, particularly important

within the context of SHM; damage sensitive features.

A damage sensitive features is — as the name suggests — any feature derived

from raw sensor data whose value would change when damage is present within

a structure. A common example of such a damage-sensitive feature, would be the

natural frequency of a structure. If one considers how the natural frequency is

derived from the mass and stiffness, it would often prove impractical to directly

measure the mass of a structure; however, if the observed natural frequency changes

we can surmise that either the mass or stiffness of the structure has changed;

subsequently, one could conclude that damage has potentially occurred within the

system.

Akin to the model-based approach, the downfall of a data-based approach is

again data availability; however, there may be a solution to the data-scarcity

problem within a data-based SHM domain — Population-Based Structural Health

Monitoring.

1.2 Population-based SHM

Population-based Structural Health Monitoring (PBSHM) [5–8] aims to solve the

inherent data scarcity problems in a traditional data-driven SHM scenario by

expanding the scope of ‘structure’ being monitored. The intention of PBSHM is

that by monitoring multiple structures — the population — one can gain additional

insights into the health of a given structure when using population data, compared

to those available from the single structure’s data.

But how does one gain additional insight on a structure’s health simply by utilising

monitoring data across multiple structures? By the idea that learnt knowledge can

be shared. PBSHMworks under the premise that knowledge gained on one structure,

may then be transferred over to another structure; a process called Transfer Learning

[9, 10]. The standard processes of traditional SHM still hold: data are captured via
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a monitoring campaign, features are extracted from the raw data in the monitoring

campaign, and then healthy or damaged state labels are attached to these extracted

features. However, in a PBSHM approach, if for instance, one structure is missing

damage-state labels, knowledge of what damage states for this structure look like

could instead be learnt from another structure which has known damage states.

Transfer learning may at first appear like a panacea technology for SHM; however,

like all seemingly too-good-to-be-true solutions, there is a catch. In the scenario

concerning missing damage-state labels, the hope is that the shared knowledge from

one structure, aids in overall knowledge of the structure in question. This may not

always be the case, what happens when this transferred knowledge not only doesn’t

aid in the overall knowledge of the structure, but instead hinders the knowledge and

potentially provides a false account towards the health of a structure? These cases

are known as negative transfer.

PBSHM hopes to sidestep the issue of negative transfer by borrowing an idea from

domain adaptation — a branch of transfer learning — by which knowledge can only

be classed as ‘shared’ if both the source and target systems share a common domain.

The belief in PBSHM is that if two structures share a form of similarity between

themselves, it is conceivable that knowledge may be shared across the structures in a

positive knowledge transfer, and the possibility of negative transfer can be reduced.

Structures are therefore categorised into two types of populations within PBSHM;

homogeneous populations where the structures inside the population are considered

to be nominally identical, and heterogeneous populations where the structures are

considered diverse. An example of a homogeneous population would be of a wind

farm: generally wind turbines within a farm are of the same manufacturer and

type and can be classed as uniform in nature; the only variations present between

structures are manufacturing tolerances. In contrast, a heterogeneous population

would contain structures with marked differences, for instance aeroplanes, bridges,

and wind turbines.

Whilst the similarity between homogeneous structures is evident, the similarity

between heterogeneous structures is not so apparent. How can two structures be

similar when — by their very nature as being heterogeneous — they are diverged?

This is where PBSHM employs the premise of a substructure. Both of the structures

being compared may be heterogeneous in nature, one a wind turbine and the other an

aeroplane; however, there may be a smaller common pattern within both structures.
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This substructure could vary from a single shared component, to a complex pattern

or purpose such as an aerofoil.

To achieve the goals of PBSHM therefore, two basic problems require addressing:

finding a mechanism for computing the degree of similarity between structures

(or components of the structure), and subsequently, transferring learnt knowledge

across the established population. The body of work contained within this thesis,

focusses on the first problem of PBSHM: computing the degree of similarity between

structures.

1.2.1 Irreducible element models

Before one can determine the similarity of two structures, there must first be a shared

context in which both structures are described. If within one structure a component

is referred to as a ‘bolt’ and in the other structure it is referred to as a ‘cylindrical

bar’, similarities between the two structures are going to be challenging to compute.

What is required, is a shared methodology and language to facilitate deconstructing

a structure into known components. This shared language for describing structures

within PBSHM is Irreducible Element (IE) models [6].

The premise of an IE model is to break down a structure into the structurally-

significant components which make up a structure. Imagine hitting a structure

with a magic hammer which instantly removed any binding items — bolts, welds,

rivets, etc. — you would be left with a pile of parts that comprise the makeup of the

structure. This — in a very simplified manner — is the idea behind an IE model.

Any available knowledge on each component is embedded into the model: the form,

material, and composition. Interactions between these components are also included

within the model with any relevant knowledge on how the components interact.

The belief of PBSHM, is that via the description of these structurally-significant

components — and the interactions between these components — a model can be

arrived upon which encapsulate the very essence of the structure in a manner which

enables comparisons to be drawn between the structures.

The keen-eyed reader will have noticed the prefix of ‘structurally-significant’ against

the definition of structure components. Whilst there are no restrictions within the

language of an IE model as to what may be considered a component, one does have
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to ensure that any component included within a model aligns with the spirit in

which the ‘rules’ of an IE model were created. It could be foreseen that a modeller

may desire to include every ‘nut and bolt’ within the structure; however, one has to

ask; is the bolt itself a significant structural component within the model, or is the

bolt simply part of the nature as to how two components are held together in static

motion. One has to keep the context as to why these models are being created,

whilst the inclusion of minute details such as every ‘nut and bolt’ may appear as an

effort of completeness, the modeller may in fact be hindering the very purpose as to

why the model exists: comparing the similarities between two structures.

1.2.2 Graphs & networks

Graphs are commonly used to represent interlinked data as a whole object. They

enable complex structural relationships to not only be represented mathematically,

but to facilitate a map of what is connected to where [11, 12]. A data point within

a graph is a vertex and the connection between two data points is an edge.

If one considers the required relations to be understood within the context of

determining similarity within PBSHM, having a method to represent these complex

interlinked data points as a whole object is incredibly useful. Firstly, to understand

the relationships between the components within a single structure; secondly, to

understand the computed relationships of similarity scores between each structure.

Graphs are a representation of data within the field of Graph Theory, Networks

are a representation of data within the field of Network Science. Both graphs and

networks are constructed in the same manner and model the same interlinked data

— graphs (vertices & edges), networks (nodes & links) — and as such, they are

often used interchangeably; however, the associated connotations of using a certain

terminology can differ depending upon the research field. In an effort to provide

a standardisation within PBSHM — or at least within this thesis — the terms

will be used when referring to specific scenarios. When referring to an individual

representation of a structure and the associated relationships within the structure,

this will be called a graph. When referring to a group of structures and the associated

relationships between structures, the term network will be used.

All edges within PBSHM graphs and networks are undirected edges: the relationship

between the two data points (VA, VB) is universal and is valid if travelling from VA →
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VB or VB → VA; subsequently, the graphs — and networks — can be considered as

undirected graphs. A graph within PBSHM may not have any isolated vertices — a

vertex without any edges. A network within PBSHM may be considered a connected

network — a network where every node has a link to every other node — and the

links weighted — where each link is weighted with a value. The network within

PBSHM may also be considered a multinetwork : where each node pair may have

multiple links connecting them.

1.2.3 Similarity metrics

The final destination for a structure — within the similarity concept — in PBSHM is

determining the similarity between itself and other structures. It is envisioned that

within the field of PBSHM there will eventually be multiple different methods and

algorithmic implementations to compute a similarity value between two IE models;

however, the output from the algorithms must be standardised to facilitate equal

comparison between the structures.

These computed values are what is referred to within PBSHM as the similarity

metrics or similarity matrix. Each algorithm will — regardless of the implementation

— ultimately provide a value between 0 and 1 when provided with two IE models,

where 0 implies that the IE models for the underlying structures have no similarities

and 1 implies that the IE models are considered identical for the associated

structures. These values then live within the network of structures defined within

this thesis.

1.3 Thesis Overview

The body of work within this thesis focusses on each step within the similarity

lifecycle within PBSHM and forms the necessary technical and fundamental building

blocks required to facilitate a network of similarity in PBSHM.

The first half of this thesis is dedicated to providing a holistic computational

ecosystem for PBSHM to further the desires of transferring knowledge between

established populations of similar structures. This holistic ecosystem required a

radical reformulation of the very concept of an IE model, to support an enhanced
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structural knowledge embedding and provide a standardised language for describing

structures to facilitate the unhindered similarity network. The aforementioned

ecosystem required the conceptualisation and implementations of three shared data

domains: data residency, computational operations, and similarity comparisons.

The second half of this thesis utilises the introduced ecosystem and reformulation

of IE models and explores its use within real-world scenarios. Firstly, an example

of inherent model variations from author bias is explored and how the reformulated

concept of IE models now contains knowledge regarding these biases. Using the

newly embedded knowledge enables these variations to be reduced within the shared

comparison domain by the introduction of the Canonical Form. Secondly, a machine

learning method for computing the similarity within the shared comparison domain

is utilised. Lastly, the introduced language of IE models is applied to a real-world

aeroplane and a new graph notation is introduced to aid in the visualisation of IE

models.

1.3.1 Chapter breakdown

� Chapter 2 reviews the current work published in PBSHM and explores

potential database systems and knowledge embedding available for SHM.

� Chapter 3 expands upon the previous work in IE models by introducing a

radical reformulation of the IE model concept to facilitate increased structural

knowledge embedding within the model. The new language of IE models

provides a standardised description of structures within PBSHM.

� Chapter 4 introduces a holistic computational conceptualisation for PBSHM

via the definitions of a PBSHM ecosystem: database, framework, and

network. This chapter also provides an initial implementation of the technical

components of the ecosystem: database and framework.

� Chapter 5 evaluates the existing similarity metrics used within PBSHM against

the inherent human variations introduced into an IE model by author bias.

With the increased knowledge now embedded within an IE model, the author

bias can be reduced by the introduction of a Canonical Form; a reduced IE

model which provides a standard representation for a single structure for use

within the network. Finally, a Graph Matching Network is investigated as a

potential similarity metric within PBSHM.
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� Chapter 6 demonstrates the introduced IE model language against a real-world

aeroplane. New graph notation is introduced for visualising IE models.

� Chapter 7 concludes this thesis and discusses potential future work.





Chapter 2

Background

While the focus within this thesis is on the similarity assesment aspects of PBSHM,

it is important to understand the wider context of PBSHM and the current state

of literature within the field. Within the scope of PBSHM, there is relatively little

literature on the subject of similarity — aside from the initial papers introducing the

notion; however, the problems faced within the similarity aspect of PBSHM have

been explored in other fields.

As such, this chapter is broken down into two parts, the first part in Section 2.1

covers a brief history of PBSHM to date, in the aim of providing a background to the

world in which this thesis is based. The second portion of this chapter is dedicated

to exploring the surrounding literature on the main problems to which this thesis

aims to provide a solution: the problem of embedding structural knowledge and

generating similarity metrics is explored in Section 2.2 and the problem of a shared-

data domain is explored in Section 2.3.

2.1 A brief history of Population-based SHM

Population-based Structural Health Monitoring (PBSHM) is a relatively-recent

development within the field of Structural Health Monitoring (SHM); as such, the

available literature on the subject is minimal — compared to the available literature

on SHM — and has been mainly conducted over a five-year period prior to the

date of this thesis. The first mentions of a population-based approach to SHM were

11
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made in 2015 [13–15].

Papatheou et al. [13] first mention the notion of a population when predicting the

power curve of a turbine within a wind farm. Instead of treating each turbine as

a siloed structure, they instead treat the wind farm as a homogeneous population

of structures and are able to predict the power curve of one turbine by utilising

data from other turbines within the farm. Antoniadou et al. [14] also remark upon

the possibility of a population-based approach in their quest for detecting damage

in turbine gearboxes and blades within the same wind-farm setting. Worden et al.

[15] further solidifies the population premise, by defining the scope of PBSHM as

developing a methodology to take inferences learnt from one structure and apply

these learnt inferences to other structures.

After the initial suggestion of a population-based approach to SHM was mentioned in

[13–15], two further papers introduced the first technical definitions within PBSHM.

Bull et al. [16] introduced the concept of a population form and Gosliga et al. [17]

introduced the concept of an Irreducible Element (IE) model and the associated

Attributed Graph (AG) representation. The form is a model — in a defined feature

domain — which is considered a generic representation of the population. An

IE model represents the physical composition of an individual structure within a

population. These later papers by Bull et al. and Gosliga et al. were followed up by

a series of papers expanding on these initial theorems and setting the potential scope

for PBSHM: the ‘Towards population-based structural health monitoring’ series [18–

23] (henceforth referenced as the ‘Towards’ series).

2.1.1 The ‘Towards’ series

In the first part of the ‘Towards’ series, Bull et al. formalised the understanding of

the population form [18] as a model that captures the very essence of the structures

within a homogeneous population. Bull et al. also introduces the first formalised

definition for the two types of populations within PBSHM using graph theory [11,

12]; a homogeneous population, and a heterogeneous population. A population

can be classed as homogeneous, if the associated graphs of the member structures

can be determined to be pair-wise topologically equivalent with structural property

values (graph attributes), considered to be from the same base-distribution. If any

structure within the population is determined to be non-homogeneous, then the
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population is defined as a heterogeneous population. Bull et al. also introduce the

special case of a strongly-homogeneous population, where structures are determined

to be identical — usually because of them being the same make or model — with

any variations considered to be present resulting from the associated manufacturing

or embodiment process.

In the second part of the ‘Towards’ series, Gosliga et al. [19] expand upon the

proposed IE model description of structures. Different areas of knowledge are

discussed and evaluated for the inclusion within an IE model as well as introducing

the reasoning behind the desire for an IE model to subsequently be converted

into an AG. Graphs provide a potential platform for enabling the quantification

of similarities between structures. Determining if two structures are similar or

not, is a key component in PBSHM to enable the decision as to if a population

is homogeneous or heterogeneous, as well as providing an insight into if transfer

learning is possible or not (introduced in Part IV [21]).

Gosliga et al. [20] also introduce in the third part of the series, the initial vehicle

for determining the similarity between two structures: the Jaccard Index or Jaccard

similarity coefficient [24, 25]. The Jaccard Index — in generic terms — is a method

for generating a similarity metric between two datasets. In the context of a graph

domain, the Jaccard Index can be used to generate a metric of similarity between

two graphs using the output from a Maximum Common Subgraph (MCS) algorithm

[26]. The MCS — or Maximum Common Induced Subgraph [27] — is the process

of finding the largest common subgraph that is present in two graphs G1 and G2.

The chosen implementation of the MCS algorithm within the paper is the Bron-

Kerbosch clique-finding algorithm [28]. Gosliga et al. also mention the notion by

which similarity metrics within a population relate to each other: the network of

structures.

The fourth paper in the ‘Towards’ series [21] by Gardner et al addresses the problem

of transferring learnt knowledge between structures. Gardner et al. introduce the

field of Transfer Learning [9, 10] as the aforementioned vehicle to accomplishing the

knowledge transfer required for PBSHM to function. Machine Learning (ML) [29]

is the process of teaching a computer to learn a particular piece of knowledge from

existing data, in the ambition that when new and unseen data are presented to the

computer, it can interpret and make a desired decision. This decision may often be

in the form of a classification; in the case of SHM, this could be as rudimentary as

determining if damage is present or not within a structure.
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Traditionally ML has often limited its algorithms to having the learning and future

data be from the same domain. Transfer learning is a subfield within ML where

the objective is that the learning data and the future data do not have to be from

the same domain. This new field unfortunately leads to another problem, negative

transfer — where the transfer of learnt knowledge from the source domain to the

target domain, negatively impacts the knowledge in the target domain. Gardner et

al. acknowledge the possibility of negative transfer within the context of PBSHM and

reinforce the idea that the potential solution for limiting its effect, is to establish a

similarity between structures before facilitating any knowledge transfer. Therefore,

Gardner et al. highlight the importance of the IE model and similarity metric work

introduced in [19, 20] to establish this necessary similarity in the populations.

It is important to note that this is not the first time that ML has been applied to

an SHM scenario. Farrar and Worden [1] outline the key approaches for applying

statistical pattern recognition and ML techniques to the problem of SHM. Worden

and Manson [30] apply these highlighted ML techniques to a number of data-driven

SHM case studies. This may appear somewhat parochial, given that the authors of

the aforementioned papers are from the same research group as the author; however,

the intention here is to simply highlight that ML approaches have been applied to

SHM before and not to provide an exhaustive list.

Part Six in the ‘Towards’ series by Worden [22] explores the use of a mathematical

space in which the transfer of knowledge can occur. Worden hypothesises that the

transfer of knowledge will occur as a set of mappings and associations between the

feature spaces for the associated SHM-driven problems. The population therefore,

would have a shared feature space which would be the union of all the member

structures’ feature spaces. The proposed field for transferring knowledge within this

shared feature space is that of fibre bundles [31].

The final paper in the ‘Towards’ series (the seventh) is by Lin et al. [23] and is

focussed on the presence of Environmental and Operational Variations (EOV’s)

within PBSHM. Data acquired from lab experiments is often shielded from the

inherent fluctuations of environmental and operational conditions that are common

in real-world SHM data. In a lab, the temperature will often be fixed during

an experiment; unfortunately this is not possible when measuring data on an

operational structure; as such, the effect that EOV’s have on operational structure

data, must be managed within any SHM scenario. Lin et al. explores how the use

of a population-based approach provides the required data to create a population
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map in a strongly-homogeneous population; a model which can encapsulate the

effect that EOV’s have upon the population and can identify when the EOV effect

is unexpected.

2.1.2 The ‘Foundations’ series

The ‘Towards’ series set the scope and initial premise for a population-based

approach towards SHM; however, this initial series of scoping papers required

a follow-up series to formally cement the introduced concepts and summarise

with examples the new terminology and methods which were to become the very

foundations of PBSHM. And so the ‘Foundations of population-based structural

health monitoring’ journal series (henceforth referenced as the ‘Foundations’ series)

was birthed.

Part I of the ‘Foundations’ series by Bull et al. [5] provides the definition of a

homogeneous population — and thereby the definition of a heterogeneous population

— and the case for when a homogeneous population can be classified as strongly-

homogeneous. The definition of a population form capturing the very essence of the

structures within the homogeneous population is also given.

Part II of the ‘Foundations’ series by Gosliga et al. [6] provides the definition of an

IE model and the associated knowledge necessary to capture the dynamic nature

of a structure, namely the topology, geometry, material, and boundary conditions.

The paper also provides the terminology and definitions required to convert an IE

model to an AG. An initial similarity metric is provided using the Bron-Kerbosch

algorithm and the Jaccard Index to generate a Jaccard distance metric against a set

of toy example structures.

Part III of the ‘Foundations’ series by Gardner et al. [7] focusses on the knowledge

transfer strand of PBSHM. Gardner et al. include the definitions required for

performing transfer learning — specifically by domain adaptation — on a

heterogeneous population, and provide the context in which the feature space

of one structure can be mapped onto another structure’s feature space. The

problem of negative transfer is addressed, and the similarity comparisons provided

in Part II [6] are suggested as a possible method for limiting the effect of negative

transfer within PBSHM.
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Part IV of the ‘Foundations’ series by Tsialiamanis et al. [8] expands upon the

premise of a fibre bundle to encapsulate the shared feature space associated with

a population. Tsialiamanis et al. use a Graph Neural Network (GNN) to solve the

problem of determining the normal condition features across a whole population.

GNN’s are a field within ML enabling learning on graph structures. Because the

structures within PBSHM have a graph-domain representation — via an IE model

— the GNN is a natural fit for evaluating the features across a population.

2.1.3 Summary

The overall premise of PBSHM can be summarised as: For a given population

of structures, determine the similarity between the individual member structures

and subsequently, transfer any learnt knowledge across member structures where the

aforementioned similarity has been established. While the previous statement may

appear simple in theory, in practise there is a whole realm of associated problems and

bottlenecks that need solving in order for the methodology of a population-based

approach to achieve realisation.

The previous sections of this chapter aimed to give the reader an initial overview

of the history of PBSHM as well as highlighting key literature milestones in the

journey towards the foundations of PBSHM. The literature included is by no means

an exhaustive inspection of all published PBSHM literature to date, instead it is

hoped that the included literature provides an understanding of the aforementioned

problems and potential theorems and strands currently being researched into,

to solve these problems. The remaining content in this chapter will focus on

the literature areas required for addressing the challenges faced to facilitate the

network of structures premise within PBSHM, namely: embedding structural

knowledge, generating similarity metrics, and providing a shared data domain. For

the interested reader, Worden et al. provide an extensive look at the progress to

date through a summary paper [32].

The astute reader will have noticed that ‘Part V’ is missing from both the ‘Towards’

and ‘Foundations’ series of papers. This is because the body of work covering ‘Part

V’ is conducted as part of this thesis, specifically the Irreducible Element model

(see Chapter 3) and Network, Framework and Database (see Chapter 4) chapters.

The author must also recognise that the main body of research conducted within
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field of PBSHM, has — in the main part — been driven by colleagues within the

same research group as the author. This by itself, is not unusual when a new field

of research is developed; however, the author is aware of the potential for an ‘echo

chamber’ effect within the initial referenced research and has attempted to maintain

an open view throughout this thesis.

2.2 Embedding Structural Knowledge and

Similarity Metrics

In the aid of chapter narrative, both the ‘Embedding Structural Knowledge’

and ‘Similarity Metrics’ literature is discussed as a whole, as both challenges —

within the context of PBSHM — are codependent upon each other. Within the

methodology of PBSHM, knowledge of a structure is embedded into an Irreducible

Element (IE) model which is later converted into an Attributed Graph (AG) space

to enable similarity comparisons to be drawn. Since the initial conceptualisation of

IE models and the first similarity metric by Gosliga et al. [6, 17, 19, 20], additional

material on the subject has been published.

Gosliga et al. [33] revisits the network of structures premise introduced in ‘Towards’

Part III [7] by exploring the different compositions of the network. In the proposed

network structure, each connection between a structure in the network should only

be formed when a given criterion is reached. This would naturally resolve to be

the learnt similarity between the aforementioned structures; this counteracts the

accepted standard operation of a network. Networks are often induced with a

predefined set of links. In the proposed network of structures, not only do the

links need to be optional, but the network needs to expand and be dynamic as new

structures are included within the network. Gosliga et al. explore the options of the

network being a fully connected or communities approach.

‘Communities’ in network science — like in human society — is a term for grouping

sets of nodes together, where each node in the community has more in common with

their community nodes, than nodes of another community. In short, it is network

science term for clustering [34] like-minded nodes together. A fully-connected

network is the term used to denote that every node within the network is connected

to every other node in the network via a link.
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With a community approach, any included structure to the network, would

necessitate a similarity to be computed between the inserted structure and a

representative structure for each community. In a fully-connected network, the

introduced structure would necessitate comparisons to be computed between the

inserted structure and every other structure in the network. The computational

advantage to a community approach is clear; however, the assignment between

communities is not consistent. The assignment of a community may be different

depending upon the order in which the structures are added to the network

and which community members are selected to represent the community during

assignment.

Worden et al. [35] discuss the theory of how structures within PBSHM will be

determined as similar — or dissimilar — and introduce the notion of a threshold

of similarity which must be met before knowledge transfer between structures may

occur with a reduced likelihood of negative transfer. The first example given by

Worden et al. are of an aeroplane and a four span bridge, from a purely topological

point of in the attributed graph space, they are identical apart from a single node.

Worden et al. state that the same could be stated for a three and four-blade wind

turbine.

Engineering judgement would suggest that the two wind turbines should be

evaluated as having a higher similarity than the simplified aeroplane and bridge

within the comparison space. Worden et al. highlight a potential solution to

the comparison conundrum, by suggesting a tiered knowledge embedding within

the comparison space to facilitate separation of structures where categories of

knowledge are disparate. The tiers suggested by Worden et al. are topology,

structure, geometrical knowledge in an IE, topological knowledge embedded in an

IE, and material knowledge embedded in an IE.

Both sets of structures — the pair of wind turbines and the set including a bridge and

an aeroplane — would initially appear as similar when only performing a comparison

in the topological space. When the structure information is also included, the pair

of wind turbines would still appear as the same level of similarity; however, this is

where the bridge and aeroplane would start to move apart within the comparison

space. As more knowledge is included within the comparison metric, the sets of

structures would become distant within the comparison space to the point where

the sets would be identifiable as similar and not similar.
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Bunce et al. [36] introduce the first set of guidelines and rules for generating IE

models of bridges. The introduced rules and methodology for breaking down a bridge

into element sets for an IE model are in the effort of ensuring that structures of the

same type should be able to have some form of similarity within the comparison

space.

Hester et al. [37] produces the first paper where the rules discussed by Bunce et al.

[36] are used to break down a real life bridge: the Bosphorus suspension bridge. The

bridge underwent maintenance between 2004 till 2015 to replace and redesign the

hangers used on the bridge because of fracturing found in the web plates. Hester

et al. explore the effects that these changes had upon the Jaccard Index similarity

comparison by producing an IE model of the bridge before and post hanger changes.

Gosliga et al. [38] expands upon the introduced bridge-specific PBSHM work

outlined by Bunce et al. [36] and Hester et al. [37] by implemented IE models for

five types of bridges: beam-and-slab, truss, arch, cable-stayed, and suspension.

Each type of bridge has both shared and unique components to their construction

technique and therefore provides a unique opportunity to evaluate the performance

of knowledge embedding within PBSHM and the comparison space. The Jaccard

Index is once again used to facilitate the comparisons between eight bridges across

the aforementioned types.

Whilst not directly relevant to the work outlined in this thesis, it is important to

note that Gosliga et al. also explore the use of hypergraphs for the first time within

the context of PBSHM. The main difference between a hypergraph and graph is that

a hyperedge — the hypergraph equivalent of an edge within a graph — can connect

to multiple vertices; compared to an edge which can only connect to two vertices.

2.2.1 Knowledge as graphs

As pointed out by Gosliga et al. [6], PBSHM is not the first field to use graph theory

to determine the similarity between two complex relational objects. Duesbury et al.

[26] highlight the field of chemoinformatics as one of those fields which use graphs

for embedding the complex composition of chemical compounds and also utilise

variations of the maximum common subgraph approach to find similarity.

Raymond and Willet [39] provide a review of recent maximum common subgraph
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algorithms and discuss the potential for reducing a graphical structure before

comparison within any algorithm. Fooshee et al. [40] study the use of the maximum

common subgraph method to determine the atoms that are present in both the

reactants and products graphs from a chemical reaction. Cao et al. [41] implement

a new backtracking algorithm within the context of a maximum common subgraph

search for drug-like compounds within a chemical database. Ehrlich and Rarey [42]

review the use of maximum common subgraphs and graph theory in the field of

molecular science via chemoinformatics databases. Schietgat et al. [43] focus on

the use of the maximum common subgraph approach in outerplanar graphs derived

from molecular structures.

Chemoinformatics is by no means the only field of research where the similarity

between two objects is determined by the use of graph theory. The maximum

common subgraph can be found in computer malware detection [44, 45], image and

video search [46, 47], and pattern recognition [48, 49], to name but three areas.

2.3 Shared Data Domain

As alluded to in the first four parts of the ‘Foundations’ series [5–8], there is a data

requirement for the proposed framework to operate successfully. To ensure that

PBSHM research is focussed on the core technology to achieve adoption, a shared-

data domain is proposed, to house PBSHM data in a shared repository and format:

a database. Databases, at their core, are simply a technique for storing data in a

structured manner. Codd [50] introduced the idea of a relational database in 1970

and it has since become the foundation of modern Relational Database Management

Systems (RDBMS).

As time has moved on, so has the desire of what a database should store. One

of the key principles within a relational database is the idea of a schema [51, 52]:

think of this as akin to an architect’s drawing for a building. The schema lays out

where each item of data belongs, what data are allowed, and what relationships

between data should be present — a blueprint for data residency within a relational

database. In theory, this database principle provides an oversight of how the data

within are related and ensures only correct and complete data are included within

the system; however, in a modern age where one can gain knowledge by a variety of

avenues — partially complete data, number of different sources, no structure at all
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— relational databases and their requirements for pre-existing knowledge in the form

of a schema, fall short of meeting potential current demands and have necessitated

the introduction of a new breed of databases.

Not only Structured Query Languages (NoSQLs) [53] are a family of database

methodologies that aim to solve the aforementioned problems seen in relational

databases, by enabling schema-free data storage. Structured Query Language (SQL)

[54] is used to manage data inside an RDBMS, and as such, NoSQL databases are

designed without these inherent language constraints. It is important to note that

despite the technological hype-train [55] regarding new technology, the introduction

of NoSQL databases does not mean that the relational database model should be

considered obsolete and irrelevant for today’s workloads. Both relational databases

and NoSQL databases are tools to accomplish a job; as such, they each have their

own purpose under the correct circumstances.

A concern within any technology stack is how to scale the system; in the context of

a database, this can be broken down into vertical and horizontal scaling. Vertical

and horizontal scaling are the principles of how to facilitate the required growth of

a system; the vertical mode views scaling from a single item/node, the horizontal

mode views scaling from multiple items/nodes. Nance et al. [56] and Zafar et al.

[57] review these concerns in conjunction with detailing differences between RDBMS

and NoSQL. Gandini et al. [58] outline some performance-planning considerations

when using a NoSQL database. It should be noted that some security concerns

highlighted by Nance et al. [56], regarding encryption at rest1, authentication in a

sharded2 environment, and client communication encryption have been addressed in

MongoDB [59–62] since the publication of these papers.

The rest of this section will focus on the literature available on the use of databases

within an SHM-focussed context.

2.3.1 SHM database

Perhaps the most complete work that can serve as a direct comparison to the

technological steps required within PBSHM, is the work of El-Mehalawi and Allen

Miller [63, 64] in their two part series looking at the premise of a component

1Encrypted Storage Engines are available as of MongoDB 3.2 Enterprise [59, 60]
2Sharding is a method of splitting data across multiple database instances
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database whose purpose is to provide cost estimations of new components in net-

shape manufacturing.

Over the two papers, the proposed database is broken down into five technical

operations: creating a computer-aided design (CAD) model in the standard for the

exchange of product information (STEP) file format, converting the CAD model into

an attributed graph, indexing the graphs based upon defined attributes, retrieving

similar graphs when a new component is evaluated within the system, and finally

producing a similarity factor between the retrieved graphs. The steps of the proposed

system by El-Mehalawi and Allen Miller overlap the three key areas being discussed

within this chapter; however, in the interest of maintaining a narrative, the papers

are discussed only within this section of the chapter.

The first part in the series [63] looks at embedding component knowledge into an

attributed graph. Akin to PBSHM, the work by El-Mehalawi and Allen Miller

desires a geometrical and topological representations of a physical item to be

embedded in graph form; however, rather than a graph representing a whole

structure as is stated in PBSHM, the work by El-Mehalawi and Allen Miller

has a graph representing only a single component. The premise is that for each

component, every surface within the component becomes a vertex in the graph

and every edge between the faces becomes an edge in the graph. If one were to

take a shell-like cylinder, it would be stated that there were four surfaces, one

annular surface at either end of the cylinder, and two cylindrical surfaces around

the cylinder. Each annular surface at the end of the cylinder would have two

circular edges to the corresponding cylindrical surfaces, and the two cylindrical

surfaces would have two straight edges connecting to each other. This embedding

of knowledge is accomplished by saving a CAD model in the STEP file format, and

then further converting the STEP file format into the described attributed graph.

The second part in the series [64], explores the forming of a similarity factor upon

the inclusion of a new component within the system. When a component is included

within the database, El-Mehalawi and Allen Miller state that not only is the graph

of the component stored, but associated metrics and statistics are included. These

metrics — number of nodes, number of edges, etc — create the base for the initial

retrieval of similar components from the database. Upon a new component being

evaluated for similarity, the system first calculates the same metrics as stored within

the database, based upon a tiered system; the search brings back graphs ordered by

the similarity between the metrics of the new component and the existing component
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database. The aim behind this method of retrieval is to eliminate components where

there is a big difference in the graph size — number of nodes, number of edges —

and performing an exact comparison on these components would be a waste of

computational resources. Once only initially-similar components are left, graph

comparisons can be computed against the returned set and the new component.

Jeong et al. [65] explore the requirements of data-management tools for SHM,

particularly in the use case of sensor data from bridges. Within the building and

construction industry, the building information model (BIM) [66] has emerged as an

open standard to encapsulate a digital representation of physical characteristics and

to provide support for sharing of building-related information. The same ethos has

now been applied to bridges with the bridge information model (BrIM) in the desire

to create a centralised format for capturing data associated with a bridge’s lifecycle.

Like most systems that need to regulate and control where data resides, BrIM uses

a schema via the eXtensible Markup Language (XML) file format. The work by

Jeong et al. investigates the implementation of a BrIM database to facilitate the

storage of BrIM data in a centralised system. They use a combination of NoSQL

databases — MongoDB and Cassandra — to achieve both a local and centralised

version of a BrIM database.

De Oliveria et al. [67] design and implement a full SHM data-management system

with the focus given to facilitating a low-cost hardware implementation with support

for remote monitoring. De Oliveria et al. approach the problem using the Internet of

Things (IoT) [68] paradigm: everyday things that can communicate with each other

to achieve a common goal. They use an everyday Single Board Computer (SBC)

[69] in the form of a Raspberry Pi to not only capture the data from the attached

sensors, but to also store the data within a NoSQL database — MongoDB to be

precise — and also serve a web management interface for monitoring and viewing

the data captured remotely.

Koo et al. [70] build an SHM data-management system based upon an RDBMS

database, a MATLAB integration, and a web interface. The principle behind the

system by Koo et al. is that instead of data being sent directly to a centralised

system, there is instead a site database running on a computer which captures

sensor information from the structure. This data is then concatenated up to the

central system where the data may be interrogated by a MATLAB interface for any

research requirements. The data within the central system is also available via a web

interface to view the available channels and to view historical time series data. Akin
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to the work by El-Mehalawi and Allen Miller, Koo et al. store within the database a

set of metrics on each dataset — generated by the MATLAB interface — to provide

an overall summary for users.

Valinejadshoubi et al. [71] depict a case study for including SHM data into a BIM

model. Valinejadshoubi et al. highlight the issue of the BIM specification not

including any native area for SHM raw data inclusion within the model; instead,

Valinejadshoubi et al. build a separate database via an RDBMS to store the

aforementioned SHM data — strain data in this case. When SHM data are written

to the database, the BIM model gets updated with the latest real-time sensor data.

Every object within a BIM model must be from an Industry Foundation Classes

(IFC) class, in the case of sensors this is ‘IfcSensor’ and ‘IfcSensorType’; however,

Valinejadshoubi et al. highlight that for wider SHM adoption within BIM, there

would need to be an expansion of the IFC standard related to BIM to include

additional sensor information.

Rio et al. [72] explore the currently allowed IFC against a set of sensor types and

propose a possible extension to the IFC to natively support a wider range of sensors

in a BIM model. O’Shea and Murphy [73] demonstrate that even with the current

limitations in the IFC specification, the sensor network of an SHM campaign can

be included within BIM using both the current class names and custom names

introduced by O’Shea and Murphy.

Mita et al. [74] discuss another SHM database; however, Mita et al. propose that

instead of sensors communicating with a digital acquisition system (DAC) and then

the data being transmitted to a central database, the sensors are instead smart and

communicate directly with a sensor gateway which writes the data into the database.

Pregnolato [75] suggests the need for a national UK bridge database to enable risk-

based bridge safety determinations. Testoni et al. [76] design a lightweight SHM

sensor network based upon using data-over power for communication between the

sensor nodes and the gateway machine, with the intention that the data captured

can be readily stored within an SHM data-management system. McVay et al. [77]

discuss the implementation of a state-wide bridge substructure database that acts

as an information store for a bridge throughout its entire life. Arliansyah et al. [78]

discuss the implementation of a road inventory database to track the location and

reported condition of bridges within a city.



2.4 Conclusion 25

2.4 Conclusion

In conclusion, this chapter has provided a brief history of the published literature on

PBSHM to date. This chapter is by no means intended to be an exhaustive survey

of the literature and is instead to provide a general overview of the field and the

problems faced towards the adoption of the technology.

This chapter has also explored the published literature in the problem areas covered

within this thesis. It is important to note, that within the chapter there is no

reference to any commercial solutions. The author is aware of the existence of such

systems; however, because of the sensitive commercial nature of the solutions, it is

difficult to extract any reference material for inclusion within the literature survey.

It is clear to see, that there is no existing solutions which would be a direct

replacement for the methodology proposed within PBSHM. This factor dictates

the clear development of the Irreducible Element (IE) model premise as the vehicle

for providing a uniform description of structures and the need for a shared-data

domain in which PBSHM data and computations can reside.





Chapter 3

Irreducible Element Models

The main theme running through this thesis relates to the idea of being able to

generate a similarity metric between two structures; however, before this can occur,

there needs to be a fair and equal representation of each structure within PBSHM,

thus the purpose of the Irreducible Element (IE) model in PBSHM. This chapter

radically reconstructs the core concepts, definitions, and language of an IE model,

to facilitate a standardised representation of structures, regardless of the class of

structure, whilst enabling additional engineering knowledge and design choices to

be embedded into the model, to aid in generation of accurate similarity metrics.

This chapter firstly explains the background of IE models as well as the potential

problems with the current version of IE models in Section 3.1, introduces the idea of

a root object and the free and grounded models in Sections 3.2 and 3.3 respectively,

introduces the supported element variations in Sections 3.4 and 3.5 and finally

introduces the supported relationship variations in Sections 3.6, 3.7, 3.8, and 3.9.

3.1 Background

The notion of an Irreducible Element (IE) model was introduced by Gosliga et

al. [6, 17, 19] as the vehicle used within PBSHM to describe structurally significant

components of the system and the associated interactions between said components.

This model comprises the abstract representation required to evaluate the similarity

of heterogeneous structures within the shared-data domain: the network (see Section

27
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4.2.1). An IE model is only concerned about components classified as belonging to

the structure, as such, the model notes where interactions with external systems are

present; however, it does not include any information to the extent of the effects

such external systems have upon the current model.

IE models by their very definition are designed to be abstract, it would be both

impractical and illogical for an IE model to contain such rich 3D information as

to replicate the data available within a Finite Element (FE) or Computer-Aided

Design (CAD) model. Such detailed information as the complex geometrical mesh

of a component is redundant when attempting to compare the overall similarity of

geometry across all structures within the network. An IE model should only contain

such pertinent structural information as to facilitate capturing the very essence and

purpose of a structure.

An IE model describes the structure in question; however, an IE model cannot be

directly inserted into the network of structures as the network exists in a graph space.

Subsequently, an IE model representation is transformed into an Attributed Graph

(AG), via each component within the model becoming a vertex within the graph

and interactions between components becoming edges. Any properties belonging

to either components or associated interactions are embedded within the graph as

attributes on the respective vertex/edge.

Gosliga et al. [38] explored the aforementioned theory with the comparison of

eight bridges of different structure types. They generated an IE model for each

bridge, converted these into their associated AG representation and then used

Maximum Common Subgraph (MCS) with Jaccard similarity score to compare

the geometrical similarities within their population. Whilst this initial work

demonstrated conceptually the use of IE models within the realm of PBSHM,

further expansion of the IE model language and concepts are required to support

the use case of a network of structures within the PBSHM database.

The objective of the proposed changes within this chapter are to expand the

core concepts and definitions of an IE model and subsequently, the language

used to describe the structure being modelled. The aim is that by making these

modifications, additional engineering knowledge and design choices regarding the

structure become possible to embed within the model itself. Understanding why the

modeller made certain choices when assembling the model is crucial to achieving

the goal of being able to determine which structures are similar within the network.
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(a) A photo of an example beam and slab bridge in Northern Ireland.
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E E

E
BC
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(b) An Attributed Graph representation
of Fig. 3.1a when using only one element
per span.

G
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E
BC

J J J

BC

J J

BC

(c) An Attributed Graph representation
of Fig. 3.1a using two elements per span
because of sensor localisation or damage
localisation requirements.

Figure 3.1: Two possible Attributed Graph representations of the same simplified
beam and slab bridge. Ground is represented via a G, an element via E, boundary
conditions via BC and joints via a J.

Figure 3.1 outlines one such problem when design choices of the modeller are not

available within the model itself. If one imagines a simple beam and slab bridge

(see Figure 3.1a) in the centre of a valley. In a simplified version, there is a single

column in the centre of the bridge and then a single beam on either side, creating a

path from one side of a valley to another. There are only three physical components

to be included within the IE model; however, the modeller may decide to split each

beam into two elements as they desire to know if the damage within the beam is

towards the centre of the bridge or towards the valley side of the bridge. Damage

localisation is a valid concern within the foundations of SHM and as such, needs to

be honoured in any PBSHM theory.

The problem with honouring these foundational principles of SHM, is that in

the scenario described above, two distinct IE models and subsequently AG’s are
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generated for a single unique structure (see Figure 3.1b and 3.1c). The problem

is compounded when one considers such effects as how different communities see

interest in the structure; one modeller may refer to a component as a ‘support’

and the other a ‘column’, one community may consider an IE model only to be

of interest when at rest on the ground, another community may only consider a

structure interesting when the structure is in flight. Any of the aforementioned

different view points would undoubtedly change the topology of the associated IE

model.

model

element

material class

material

geometry

shape

boundary condition boundary

joint

element set

coordinate

class

type

displacement dof

rotational dof

Figure 3.2: The original hierarchical data models used for describing an Irreducible
Element model as described by Gosliga et al. [6, 38].

The aspiration of the PBSHM ecosystem (see Chapter 4) and the language of IE

models, is that regardless of these design choices or view points, if an IE model is

generated from the same structure, the network should be able to identify these

IE models as being equivalent. Whilst this goal is theoretically achievable, within

the context of the current language of IE models, there is no available method for

embedding this knowledge within the model, and as such, a reconstructed language,

definitions and concept of an IE models is proposed. To achieve this new concept

and language of IE models, the theory put forth by Gosliga et al. (see Figure 3.2)

is expanded upon, restructured, defined and unified into the PBSHM Schema (see

Section 4.3) enabling a standardised representation of structures within PBSHM

and the network of structures. The rest of the sections within this chapter, provide

the definitions and language for the newly reconstructed IE model concept.
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3.2 Root Objects

In an effort to simplify the language of an IE model in conjunction with enabling

future expansion for yet unknown features of the language, the syntax of an IE model

has been restructured. Any component included in an IE model is an element,

and any interactions between these elements is a relationship. Subsequently,

direct mapping from an IE to an AG is supported, for use within the network of

structures; each element becomes a vertex and each relationship becomes an edge.

Any properties associated with a root object — an element or a relationship —

become embedded attributes on the associated vertex/edge. To denote different

classifications of object within a root object, further subdivision is facilitated via an

object type.

The subdivision of root objects via a type, enables a hierarchical approach to data

categorisation within the model. Known scenarios of an object are associated with

a type, whilst as-yet unknown scenarios are provided a vehicle for registering future

scenario in the model without invalidating any existing scenario’s logic. See Figure

3.3 for details on the properties available for all root objects. In the interest of clarity,

further documentation within this chapter will use the annotation of [type] object,

where [type] refers to the sub category/type of the named object: object.

root object
A element or relationship at the root of the IE model. An element

or relationship must implement the root object properties as
well as their associated properties dependent upon the declared
type value. See Sections 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9 for details.

name
The unique name
of the root object
within the model.

description
Additional none-

structured information
to describe the root object.

type
The type of root
object within
the model.

Figure 3.3: The properties for a root object in an Irreducible Element model.

Whilst the restructuring of root objects is critical for providing space within

the language for the previously-stated enhancements, historical IE models must

remain valid within the revised language via a minor translation. Historical

components element and ground become [regular] element and [ground] element



32 3.3 Free and Grounded Models

respectively with historical interactions joint and boundary condition becoming

[joint] relationship and [boundary] relationship respectively. Figure 3.4 depicts

the minor translations required for historical IE models by, translating the single

element per span example from the beam and slab bridge used in Figure 3.1, into

the proposed expanded syntax.

G

E E

E
BC

J

BC

J J

BC

(a) The AG when using the IE model
language introduced by Gosliga et al.
[6]. Ground is represented via a G, an
element via E, boundary conditions via
BC and joints via a J.

GE

RE RE

RE
BR

JR

BR

JR JR

BR

(b) The AG when using the IE model
language proposed within this chapter.
[ground] elements are represented via
GE, [regular] elements via RE, [joint]
relationships via JR and [boundary]
relationships via BR.

Figure 3.4: The single element per span Attributed Graphs (AG) of the bridge
displayed in Figure 3.1a using both the language introduced by Gosliga et al. in
Figure 3.4a and the new language proposed within this chapter, Figure 3.4b.

3.3 Free and Grounded Models

The first significant step in removing ambiguity from a IE model is understanding

the context in which the IE model was generated; should the IE model be considered

as [grounded] to a surrounding influence or should the IE model be considered as

[free] from all surrounding influences. A [free] IE model, is a model that is free

from any external references within the model and must therefore, be considered

as if the model was floating in a vacuum. A [grounded] IE model, is a model that

references any external systems which interact with the model, whilst not containing

any pertinent information to the extent which these external influences have upon

the model, they merely denote that an unknown external system interacts with the

modelled system at a specified intersection.
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model

[free]

element [regular]

relationship

[perfect]

[connection]

[joint]

[grounded]

element
[regular]

[ground]

relationship

[perfect]

[connection]

[joint]

[boundary]

Figure 3.5: The hierarchical data models used in the standardised version of
Irreducible Element models. The above diagram depicts which element and
relationship types are available for a given free or grounded model.

External systems are represented within a [grounded] model via [ground] elements

(see Section 3.4) and [boundary] relationships (see Section 3.9), these types of root

object are not permitted within a [free] model. A [grounded] model must be a valid

[free] model when all [ground] elements and [boundary] relationships are removed

from the model. A [free] model must be a valid [grounded] model when all [ground]

elements and [boundary] relationships are included for a models given surrounding

influences. Figure 3.5 depicts the permitted element and relationship types for the

given [grounded] and [free] models.

3.4 Ground Element

A [ground] element represents a system which is external to the current structure

being modelled. Practically, this could be as simple as a reference to the ground

which a structure is placed upon, or it could reference another structure which

potentially has its own IE model, both scenarios are valid within the same [grounded]

model.

If one imagines two skyscrapers with a skybridge between them, there are three IE

models generated and two distinct perspectives. From the skyscraper’s perspective,
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there will be a [ground] element for the foundations on which the building is built.

From the skybridge perspective, there will be a [ground] element for each skyscraper

connecting onto the bridge, but no [ground] elements are required for a interaction

with the earth as the skybridge’s interactions with the earth are via the skyscrapers.

In the currently-proposed solution within this chapter, a [ground] element does not

have any additional object properties over the base root object (See Figure 3.3);

however, in the future, additional [ground] element attributes could be declared to

include a reference to the external system being denoted, if the system in question,

has an associated IE model.

3.5 Regular Element

A [regular] element represents a structurally-significant component within the

structure being modelled. Depending upon the purpose of the model, this could

range from a large I-beam supporting the deck of a bridge, all the way down to a

washer used on a bolt. It is important to note that one single component within

a structure cannot be both a [regular] element and a [ground] element within the

same model; however, it may be a [regular] element within one model and a [ground]

element within another model.

If one imagines again the example used within the [ground] element (see Section

3.4) description, of a skybridge between two skyscrapers. In the two skyscraper

IE models, there will be [regular] elements representing the structurally-significant

components; however, some of these same components may be declared as [ground]

elements within the IE model of the skybridge, as they provide the support on which

the skybridge rests.

As a [regular] element represents a physical component within the structure,

there are additional details over the base root object that need to be captured in

order to embed the physical and structural significance of this element within the

model. To achieve the aforementioned embedding of data within the model,

there are four significant types of details to be captured via child objects:

coordinates, context, geometry, and material (see Sections 3.5.1, 3.5.2, 3.5.3

and 3.5.4 respectively). Figure 3.6 depicts the hierarchical layout of a [regular]

element and the corresponding child objects.
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[regular]
An element within the model that has

structural significance. See Table A.4 for details.

coordinates
Position of the [regular]

element within the
model ’s coordinate space.
See Section 3.5.1 and
Table A.5 for details.

contextual
Purpose of the [regular]

element within the model.
See Section 3.5.2 and
Table A.7 for details.

geometry
Details of the shape and volume

that the [regular] element
ocupies within the model ’s

coordinate space. See Section
3.5.3 and Table A.8 for details.

material
Details of the material and

associated properties that the
[regular] element is constructed

from. See Section 3.5.4
and Table A.15 for details.

Figure 3.6: The hierarchical layout of child objects within a [regular] element. In
the interest of comprehensibility, the base root object properties have been omitted
in this figure; however, they are included in Table A.4.

Within the network, there will inevitably be structures of different forms,

compositions, and purpose. Adding additional areas of knowledge into a [regular]

element enables a granular approach for determining the homogeneity of structures.

Differing user scenarios may necessitate contrasting requirements for determining

homogeneous structures within the network. User A may determine that only a

shared abstract form is required, whilst user B may require that not only is there a

shared abstract form, but the structures must share a common composition.

Depending upon the child object of a [regular] element in question, will determine

whether the aforementioned child object is required or not. The child objects are

designed to support the rich set of data required to embed engineering knowledge

and design decisions within themselves; however, it is understood that for many

structures, this knowledge and decisions may not be available, as such, if a child

object is required for a valid [regular] element the minimum data required for a

child object to be valid is the type property.
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3.5.1 Coordinates

The purpose of the coordinates object within a [regular] element is to facilitate

capturing the required data to represent the position of an element within the 3D

coordinate space of an IE model. Whilst capturing the position of the [regular]

element is optimal, this may not always be possible given the scale and age of

potential structures within the network ; as such, providing a coordinates object for

a [regular] element is not required. Figure 3.7 displays the hierarchical properties

within a coordinates object and Table A.5 gives a full list of all the properties,

including which properties are required.

coordinates

global
Position of the [regular] element

within the model ’s global coordinate
space. See Table A.5 for details.

translational
X, Y and Z translational
coordinates within the
global coordinate space.
See Table A.6 for details.

rotational
Alpha, Beta and Gamma

rotational coordinates within
the global coordinate space.
See Table A.6 for details.

x , y , z alpha , beta , gamma

unit value unit value

Figure 3.7: The hierarchical layout of child objects within the coordinates section
of a [regular] element.

Throughout an IE model, there is a generalised theme of capturing the position of

the item in question within the 3D coordinate space. Whilst the current enclosed

solution only implements a global coordinate space, it is acknowledged that there

should be provision for supporting multiple coordinate spaces within the model. As

such, the only direct property within the coordinate object declares that all further

information is within the global coordinate space. By structuring the coordinates
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object in this manor, the principles of organic data design are obeyed and room

is left for additional coordinate spaces to be declared without invalidating existing

coordinate data. Whilst it is possible to provide both the translational and rotational

information within the global coordinate space, only the translational information

is required for the coordinates object to be valid.

In the interest of clarity, the global coordinate space used within IE models is stated

to have an origin O in the bottom left corner of an IE model, where x = 0, y = 0

and z = 0. The x axis operates in the horizontal direction from left (x = 0) to right

(x = n), the z axis operates in the vertical direction from bottom (z = 0) to top

(z = n) and the y axis operates in depth direction from near (y = 0) to far (y = n)

(see Figure 3.12 for a labelled diagram).

3.5.2 Context

An important distinction between the initial IE model language and the proposed

IE model language included within this chapter, is the separation of the function

a component has within a structure verses the shape and volume occupied by the

component. The former is modelled by the contextual object and the latter is

modelled by the geometry object (see Section 3.5.3). As the contextual object

embeds the purpose of the component into an IE model, the property is required

for a valid [regular] element. Figure 3.8 displays the hierarchical properties within a

contextual object and Table A.7 gives a full list of all the properties including which

properties are required.

contextual

type
Purpose of the [regular] element within
the model. See Table A.7 for details.

Figure 3.8: The hierarchical layout of child objects within the contextual section of
a [regular] element.

As the knowledge included within a contextual object describes the function of

the underlying component, the terms used to describe this function should be

appropriate to the given modelling audience. Currently, this knowledge embedding
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is supported via the declaration of a flat type property where a value can only

be selected from a list of supported types. It is expected that via the production

of diverse structure-type IE models; additional types will be realised and included

within the allowed types.

3.5.3 Geometry

The geometry object, in partnership with the coordinates object (see Section 3.5.1)

enables capturing the form of a structure. Understanding the form of a structure

is an integral part of determining the homogeneity of structures, as such, the

geometry property is required for a valid [regular] element. Figure 3.9 displays

the hierarchical properties within a geometry object and Table A.8 gives a full list

of all the properties, including which properties are required.

Whilst the coordinates object is not required for a valid [regular] element, if any

dimensions are provided within the geometry object, it is highly recommended that

a coordinates object is generated — albeit with nominal values — otherwise any

inferred shape has no point of reference.

The primary embedding of knowledge within the geometry object is via the type.

Unlike the flat type used within the contextual object, a layered hierarchical forest

approach is used within the geometry object to embed the initial knowledge as a

type. Each tree within the forest is a rooted tree with a directed graph in the

direction from the root node to the leafs. The selected type for the geometry object

must be a complete path from a root node to its corresponding leaf node.

The reasoning behind a hierarchical approach for the type is clear when considering

how the geometrical type may be used within determination of the homogeneity

of structures. If one imagines two structures being compared for similarity; one

[regular] element may be declared as a rectangular beam (beam � rectangular)

in one structure and as a I-beam (beam � i-beam) in another model — because

of the available knowledge. It may be considered appropriate, especially if one

was primarily concerned about the material composition, to say that the geometry

properties ‘matched’ if the root node within the type tree was the same, e.g. if type

layer 0 was beam . Having this hierarchical approach to the type within the geometry

object, enables approximate similarities within future matching algorithms.
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geometry

type
The shape that describes the
volume which the [regular]

element occupies in the models
space. See Table A.8 for details.

bounding
Dimensions of the smallest box which
would encapsulate the volume of the

[regular] element. See Table A.8 for details.

faces
Dimensions and properties for
each face in the complex shape
being described. See Table A.8
and Figure 3.10 for details.

dimensions
Dimensions of the whole shape
that are associated with the
declared type . Child object
properties are either a named

property or a wildcard property,
see Table A.8 for details.

type length , width , height

axis source unit value

Figure 3.9: The hierarchical layout of child objects within the geometry section of
a [regular] element.

For simplistic shapes which can be represented by a commonly-known name (see

Table A.9), associated dimensions are required dependent upon the type selected

— if any dimensions are given at all. If one imagines selecting a rectangular beam

(beam � rectangular) as the type, giving no dimensions is still valid; however,

if any dimensions are provided, a length , width and height property must be

declared as property dimensions as a minimum. Whilst this simplistic approach

enables capturing the form for standard geometrical shapes, it is understood that

this approach will fall short for describing complex geometrical shapes (see Table

A.14), where referencing a commonly-known name is either impractical or would

bring confusion to the understanding of the shape.

For these aforementioned complex geometrical shapes, an abstract representation

of the shape is required with further knowledge regarding the form of the shape to
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faces

left , right
The left/right face
of the shape. See

Table A.11 for details.

translational
Translational properties
of the face. See Table

A.12 for details.

dimensions
Measured dimensions associated
with the face for the complex
shape. Child object properties
are either a named property

or a wildcard property,
see Table A.12 for details.y , z

unit value

Figure 3.10: The hierarchical layout of child objects within the faces section of
geometry within a [regular] element.

be embedded via additional geometry properties. These abstract representations

of geometrical shapes are envisioned to be activated via supplementary type

branches under the solid and shell root geometrical types. The first such abstract

representation supported is via the translateAndScale branch type under both

solid and shell root types.

The premise of the translate and scale type, is that one imagines the same two-

dimensional shape – say a rectangle – on both the left and right side of a volume.

The space between the two-dimensional shapes can be as large as required (the

translational part), and the two-dimensional shape itself may also be scaled up

or down in comparison to its counterpart (the scale part). The volume is then

completed by joining corresponding vertices in the defining faces. Figure 3.11

depicts this example via two cuboid shapes, the first (Figure 3.11a) has a consistent

cross-section throughout the length of cuboid, and as such can be represented via

a simplistic commonly-known named geometry (solid � translate � cuboid),

the second (Figure 3.11b) has an increasing cross-section through the left section of

the shape to the right section, and would be represented via the translate and scale
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complex geometrical type (solid � translateAndScale � cuboid).

(a) A square box represented as
a standard commonly-known named
representation; solid � translate �
cuboid

(b) A tapered square box represented as
the complex geometry representation;
solid � translateAndScale �

cuboid .

Figure 3.11: The difference between a standard commonly-known named
representation of a components geometry and a complex representation of a
component geometry.

When using an abstract geometrical type, the aforementioned imaginary volume,

is modelled using the bounding and faces properties of the geometry object.

The bounding and faces properties are only available for a population, once an

abstract geometrical type is selected, and are required to be valid. The principle

of the bounding property is that one is describing the smallest shape in which

the component — or section of component — could be placed and the bounding

completely encapsulate the component. The principle of the faces property is to

describe the geometrical properties of the two-dimensional shape upon the face (the

left and right of the imaginary space in the Figure 3.11 example).

Currently, only cuboid bounding boxes are supported, which necessitates the

requirement of a faces property to embed the knowledge regarding the form of a

component; however, in the future, yet-unknown bounding boxes may be included

which support the capturing of a component’s form in a different manner than the

declaration of faces. Figure 3.12 depicts the interactions between the component

being modelled as a [regular] element and the bounding and faces properties of

the geometry object.

For a cuboid bounding, it is said that the component in question, must transverse

through the bounding in a horizontal direction (x axis), as such, whilst there are
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x

y

z

boundi
ng

left
face

right
face

com
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Figure 3.12: The interaction between a component’s complex geometrical shape and
the associated bounding box and faces.

6 faces to a cube, only the left (x = 0) and right (x = n) faces are of interest. If

a component’s primary direction of transversing through the cuboid bounding is in

either the y or z axis, the bounding must be rotated via the coordinates object as

such, so that the primary direction through the bounding, is through the x axis.

Each face in question, captures dimensional properties for the component at the

cuboid bounding’s given position within the global coordinate space, dependent

upon the selected abstract type (see Table A.14). If a cuboid bounding encapsulates

the component in its entirety, then the dimensions captured on each face must be

considered as if there is no space on the x axis between the face and component.

If the cuboid bounding only encapsulates a section of the whole component, then

the dimensions captured for each face must be considered as if the face slices the

component at the given position. Additionally, if the slice made in a component does

not fill the face causing the slice, then translational movements must be captured

to embed the position of the component within the face.

The axis values for the length , width , and height properties of the cuboid

bounding, must match the direction of travel of the corresponding axis within

the global coordinate space. For example, the x axis is stated to travel along the

horizontal axis within the global coordinate space, as such, if x is given as the value

for the axis for the length property, this is stating that the length dimension for

the cuboid bounding is along the horizontal axis of the global coordinate space.
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The values for the translational movements within a face are local coordinates to the

face, with the axis and direction of travel matching the global coordinate space; as

such, only y and z coordinates are able to be captured. Translation movement values

should be based around moving the centroid of shape within the face. For instance,

in Figure 3.12 there is a component on a 6×6 grid. The type of the geometry would

be said to be solid � translateAndScale � cuboid . The coordinates of the

component would be stated as x = 1, y = 1 and z = 0. The cuboid bounding is an

even cuboid with 4 units in each dimension. On the left face, there is a 2× 2 square

caused by the slice, perfectly in the centre of the face. On the right face, there is a

4× 4 square, completely filling the face as this is the end of the component.

The left face would be stated as having width (y axis) and height dimensions (z

axis) with a value of 2, with the translational values being y = 2 and z = 2; this

would position the shape in the left face at; x = 1, y = 3 and z = 2 within the

global coordinate space. Conversely, the right face is stated so that the width and

height dimensions completely fill the face, as such, each dimension has a value of 4

and the translational values are said to be y = 2 and z = 2. This would position

the shape in the right face at; x = 5, y = 3 and z = 2 within the global coordinate

space.

3.5.4 Material

Whilst comprehending the form of a component is a key factor in determining the

behaviour and similarity of structures, gaining the knowledge of what components

are comprised of, is another fundamental influence in understanding the dynamics

of structures. The material object embeds this very compositional knowledge of a

component, into a [regular] element. As the composition of a structure may be a

determining factor of whether two structures are homogeneous, thematerial object is

required for a valid [regular] element. Figure 3.13 displays the hierarchical properties

within a material object and Table A.15 gives a full list of all the properties,

including which properties are required.

Similar to the other [regular] element child objects, the primary method of

embedding data is via the type property (see Figure A.1). Whilst the type

used within the material object is a hierarchical forest — like the geometry object

— the selected type does not have to complete a path from a root node to a leaf
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material

type
The classification of the
material that composes

the element. See
Table A.15 for details.

symmetry
The symmetry of the
physical properties
of the material. See

Table A.15 for details.

properties
The measurable
properties of the
material being

described. Child object
properties are either a
named property or a
wildcard property, see
Table A.16 for details.

[{}]

Figure 3.13: The hierarchical layout of child objects within the material section of
a [regular] element. A note on the [{}] symbol; this is used on the arrows to denote
when the property it is pointing towards accepts an array of objects, instead of a
singular value or object.

node, the path may terminate at any corresponding valid child node given the

selected root node.

The type provides both a simple categorisation of material but also an implied

understanding of materialistic information; however, this implied understanding

does not facilitate the granular level of detail required within certain similarity

determinations. Additional material properties of a [regular] element can be

embedded within a material object via the properties property.

Because of the available information at the time of generating a model, only a

singular value may be known for a given material property, as such, this is the

minimum required information — in conjunction with the unit, where appropriate.

It is also understood, that for some material properties, there may be the rich

knowledge of multiple values at given test conditions and environmental variables;

conditional values. For conditional values, instead of providing a singular value, a

list of values is provided with associated test conditions — the parameters property

— and environmental conditions — the environmental property.

To facilitate the flexibility required for the varying degree of material properties

specified within a structure, three categories of named material properties are

supported; material properties free from any associated units (see Table A.17),

which are deemed valid for either a singular or conditional value, material properties

dependent upon an associated unit to correctly quantify the value (see Table A.18),

which are also deemed to be valid for either a singular or conditional value and
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lastly, material properties which can only be considered valid with predetermined

test conditions (see Table A.21), and as such only accept a conditional value.

For the avoidance of confusion, a named property is a property which is known by

the PBSHM Schema and as such, is defined within the schema with a set of accepted

associated properties. A wildcard property is a property which is yet unknown by

the PBSHM Schema and as such, does not constrain what the associated accepted

properties are. For instance, a material property with the type set to ‘yieldStrength’

has an accepted list of valid unit values as defined in Table A.18. Currently, only

isotropic material properties are supported within the proposed material object;

however, it is expected that future versions of an IE model will support anisotropic

material properties.

3.6 Perfect Relationship

A [perfect] relationship represents the interaction between two — and only two —

[regular] elements where the two elements in question could be considered to be the

same singular element ; segmentation only occurring to embed additional geometrical

knowledge or enhanced localisation, within the model. The two elements within

the relationship must have matching type values for the contextual, geometry and

material objects of a [regular] element. Additionally, any defined properties within

the elements must not cause any logical conflicts between themselves.

If one imagines the fuselage of an aeroplane as a component within an IE model.

If one were to only use a single [regular] element to describe the component,

vast amounts of rich geometrical knowledge would not be embedded within

the model. In contrast, if multiple [regular] elements were instead used, the

rich geometrical knowledge is successfully embedded within the model; however,

the cost of implementation would be an introduced ambiguity regarding the

number of elements into which a component should be segmented. The proposed

solution for this problem, is the [perfect] relationship; by embedding segmentation

knowledge into the model, a reduction of elements can occur before any similarity

determinations.

In the pursuit of embedding the form of a structure within an IE model, the

relationships proposed within this chapter — akin to [regular] elements — support
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[perfect]
A relationship within the model where the two [regular] elements within

the relationship could be considered as the same element ; the elements have
only been divided up to encapsulate complex geometrical properties or to
localise damage detection/sensor placement. See Section 3.6 for details.

coordinates
Position of the [perfect] relationship

within the models coordinate
space. See Table A.23 for details.

elements
The list of [regular] elements which

are part of this relationship.
See Table A.23 for details.

global name

translational

x , y , z

unit value

[{}]

Figure 3.14: The hierarchical layout of child objects within a [perfect] relationship.
In the interest of comprehensibility, the base root object properties have been omitted
in this figure; however, they are included in Table A.23.

the inclusion of positional data via a coordinates object; depending on the number

of elements included within a relationship, it determines if singular or multiple

coordinate objects are facilitated. In the interest of clarity, the coordinates provided

within the relationship must reference the centroid of the two faces which contact,

as such the coordinates provided therefore must be based within the same global

coordinate space used for [regular] element locations.

Within the context of a [perfect] relationship, only two [regular] elements are

accepted, subsequently, only a singular coordinate object is applicable for this

scenario. Figure 3.14 displays the hierarchical properties within a [perfect]

relationship and Table A.23 gives a full list of all the properties including which

properties are required.
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3.7 Connection Relationship

A [connection] relationship represents the interaction between two or more [regular]

elements where the elements in question are held together by an unknown

component excluded from the model, nominally because of the component having

no immediate structural significance. A [connection] relationship may only be used

within a model, if — and only if — the relationship can be substituted for numerous

[joint] relationships (see Section 3.8), without loss of knowledge within the model.

The previously-omitted component is modelled by; inclusion of a new [regular]

[connection]
A relationship within the model where two or more [regular] elements

are held in situ by a component with no structural significance
which, by its very nature, has been omitted from the model. A
[connection] relationship may be replaced by one or more [joint]
relationships, if the omitted component is subsequently included

within the model as a [regular] element. See Section 3.7 for details.

elements
The list of [regular] elements which are part of
this relationship. See Table A.27 for details.

name nature

name nature

name

coordinates

global

translational

x , y , z

unit value

[{}]

Figure 3.15: The hierarchical layout of child objects within a [connection]
relationship. In the interest of comprehensibility, the base root object properties
have been omitted in this figure; however, they are included in Table A.27.
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element, subsequently a [joint] relationship is created for every element previously

included within the [connection] relationship, and the newly instantiated [regular]

element.

The relationship must be considered static without any notable movement present

within the relationship. If any notable movement is present within the relationship, a

[connection] relationship is no longer valid and the interaction thus must be modelled

as a [joint] relationship. The elements included in the relationship may have different

properties within the [regular] element, without invalidating the relationship.

If one imagines a section of a bridge where three beams connect together; there

is a singular beam running horizontally, with two other beams at 45 degree angles

from the horizontal beam (see Figure 3.16). All the beams connect together in the

centre of the horizontal beam. There is also a face plate covering the connection

of all of these beams. One could make an argument for stating that the face plate

is not structurally significant within the structure; as such, the face plate could be

ignored from the model and the interaction between the three beams modelled as a

[connection] relationship, which positions them rigidly in the correct spatial relation

to each other. Conversely, an argument could also be stated for the inclusion of

the face plate, thus requiring the interaction to be modelled using multiple [joint]

relationships.

Figure 3.16: An example of where a [connection] relationship could be used within
an IE model. In this example, there are three beams all connecting together — the
rectangles in purple — in the centre, with a face plate — the dotted red rectangle
— covering the connection. This interaction can be modelled as a [connection]
relationship between all three of the beams, by omitting the face plate from the IE
model. This modelling methodology, is only possible using the premise that the face
place has no structural significance within the model; however, if the face plate is
stated to have structural significance, the interaction must therefore be modelled as
individual [joint] relationships, between each beam and the face plate.
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Coordinates are supported within a [connection] relationship; however, because of

the nature of a [connection] relationship, allowing the ability for each [regular]

element within the relationship becoming its own [joint] relationship, coordinate

data therefore must be stored against each element within the relationship instead of

against the overarching relationship. Figure 3.15 displays the hierarchical properties

within a [connection] relationship and Table A.27 gives a full list of all the properties

including which properties are required.

3.8 Joint Relationship

A [joint] relationship represents the interaction between two — and only two —

[regular] elements where the physics of the interaction between the two elements

is desired to be modelled. If the associated scenarios for a [perfect] or [connection]

relationship are not applicable for the given [regular] elements then a [joint]

relationship should be the selected relationship.

Both a [perfect] and [connection] relationship may be modelled as a [joint]

relationship — with a given [static] nature — and remain a valid [joint] relationship;

however, it is strongly encouraged that an interaction between two [regular]

elements which adhere to either the scenarios outlined in a [perfect] or [connection]

relationship are declared as a [perfect] or [connection] relationship for the additional

implicit context the definitions give to the relationship.

To correctly encapsulate the physics of the interaction within a [joint] relationship,

additional subdivision is facilitated via the nature of the [joint]. A [joint] relationship

is stated to have a [static] nature, if both elements within the relationship have

no movement between the two elements. A [joint] relationship is stated to have

a [dynamic] nature when, within the relationship, there is knowledge regarding

kinematic or dynamic degrees of freedom (DOF) between the two elements which

thus, could be embedded within the relationship.

Whilst implicit knowledge regarding the available movements within the relationship

is gained via knowing if the nature is [static] or [dynamic], explicit knowledge can

be embedded within the relationship via declaring translational and rotational

properties within the degreesOfFreedom . The degreesOfFreedom property is

only available within a [joint] relationship when the nature of the [joint] is [dynamic].
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[joint]
A relationship within the model in which the physics of the interaction
between two [regular] elements has structural importance. A relationship
that is not a valid [perfect], [connection] or [boundary] relationship, is
required to be a valid [joint] relationship. See Section 3.8 for details.

nature
The nature of the
physics within
the relationship.
See Table A.29
for details.

elements
The list of elements
which are part of

this relationship. See
Table A.29 for details.

degreesOfFreedom
The movement allowed
within the relationship.

See Table A.29 for details.
name nature

name
name coordinates

global

translational

x , y , z

unit value

global

translational rotational

x , y , z alpha , beta ,
gamma

minimum maximum unit

[{}]

Figure 3.17: The hierarchical layout of child objects within a [joint] relationship. In
the interest of comprehensibility, the base root object properties have been omitted
in this figure; however, they are included in Table A.29.

If one again imagines the bridge example given as part of the [connection]

relationship (see Section 3.7). The face plate element has been introduced within

the model and as such, the [connection] relationship is being remodelled as [joint]

relationships. One may determine that both theoretically and practically, there

should be no movement between the face plate and the beam and as such, this

could be modelled as a [static] nature [joint] relationship — ignoring the fact that

a [connection] relationship being remodelled as [joint] relationships must in fact

be of a [static] nature to be a valid [connection] relationship — using ‘static’ �

‘welded’, ‘static’ � ‘bolted’, ‘static’ � ‘adhesive’ or ‘static’ � ‘other’.
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Coordinates are further supported within a [joint] relationship; however, given

that there are only two [regular] elements included in the relationship, a singular

coordinate object only is facilitated. Figure 3.17 displays the hierarchical properties

within a [joint] relationship and Table A.29 gives a full list of all the properties

including which properties are required.

3.9 Boundary Relationship

A [boundary] relationship represents the interaction between two — and only two —

elements, where the first element within the relationship must be a [regular] element

and the second element within the relationship must be a [ground] element. A

[boundary] relationship denotes the boundary between the structure being modelled

and any system which can be considered as external to the modelled structure (see

Section 3.4).

By the same premise as a [ground] element, a [boundary] relationship only contains

the pertinent information to denote an external system’s presence within the model,

as such, the only information captured within a [boundary] relationship is the

position of the relationship within the model’s global coordinate system and the

name of the two elements within the relationship.

If one imagines a stationary aeroplane resting on the tarmac of an airport runway;

one could state that a [grounded] IE model of the aeroplane would best represent the

current state of the structure. [Regular] elements would be included for the standard

sections in the structure; fuselage, wings, landing gear, etc. At least one [ground]

element will need to be included within the model, to represent the airport runway

which is supporting the plane. The interaction between the wheels of the aeroplane

— [regular] elements — and the airport runway — [ground] elements — would be

modelled by multiple [boundary] relationships — one for every aeroplane wheel being

supported by the airport runway — within the aeroplanes’ [grounded] IE model.

Figure 3.18 displays the hierarchical properties within a [boundary] relationship

and Table A.23 gives a full list of all the properties including which properties are

required.
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[boundary]
A relationship within the model which denotes the end of the current

structure and captures the interaction with an external system. As such,
the relationship is between two elements ; one being a [regular] element
and the other being a [ground] element. See Section 3.9 for details.

coordinates
Position of the [boundary]
relationship within the

model ’s coordinate space.
See Table A.23 for details.

elements
The list of elements which
are part of this relationship.
See Table A.23 for details.

global name

translational

x , y , z

unit value

[{}]

Figure 3.18: The hierarchical layout of child objects within a [boundary] relationship.
In the interest of comprehensibility, the base root object properties have been omitted
in this figure; however, they are included in Table A.23.

3.10 Conclusion

This chapter provides a reconstruction of core concepts, definitions, and language

of an IE model, with the aim to provide a standardised representation of structures

and aid towards generation of accurate similarity metrics within PBSHM. The new

IE model language unifies any physical component within the model as an element,

and any interactions between these components as a relationship. Each element and

relationship supports multiple use-case scenarios via the introduction of a type. An

element can be sectioned into two supported types: a [regular] element for when a

component is part of the structure being modelled, and a [ground] element when a

component should be considered as external to the current structure being modelled.

A relationship can be sectioned into four supported types: a [perfect] relationship,
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when the two [regular] elements are considered as part of a larger single [regular]

element and have only been divided to encapsulate a components’ complex

geometrical form; a [connection] relationship where two or more [regular] elements

are held together by an unknown structurally-insignificant component which has

been excluded from the model; a [joint] relationship where the physics between two

[regular] elements is included within the model, and a [boundary] relationship to

denote where a [regular] element and a [ground] element come in contact with each

other and indicate the boundary of the structure.

To enable the understanding of the structure within the outside world, the model

itself may also be divided into two type: a [free] model, where the structure is

considered in a void — no [ground] elements or [boundary] relationships may be

present within the model — or as a [grounded] model where the interactions between

the structure and any external systems are included in the model. Each type of

object within the model, has its own associated domain of knowledge with a list of

accepted attributes and values to facilitate a fair embedding of knowledge on the

structure.





Chapter 4

Network, Framework, &

Database

This chapter follows on from the previous chapter by providing the underlying

technical implementation for a shared-data domain in PBSHM. Being able to

describe the structures within PBSHM in a standardised and equal format is only

part of the solution, there must also be a domain in which PBSHM data can

reside for the purpose of similarity comparisons. In the wider context of PBSHM,

there will be vast amounts of data which are requiring processing, to facilitate the

highlighted goals of PBSHM.

The data-processing requirements of an IE model are only a small portion of the total

data requirements of PBSHM; as such, this chapter introduces a shared-data domain

to encapsulate all underlying PBSHM data in a singular format and residency via

the following themes; network — the shared domain in which the relationships

between structure reside, framework — the shared domain in which PBSHM specific

algorithms and computations reside, and database — the shared domain in which

all PBSHM data reside for use within the framework and network as appropriate.

This chapter follows the following narrative: Section 4.1 outlines the current state of

a shared domain with PBSHM. Section 4.2 sets out the definitions of the network,

framework, and database, Section 4.3 describes the technical implementations

constructed for the database and framework, and Section 4.4 shows the framework

computing similarity scores for the included datasets.

55
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4.1 Background

In a traditional (SHM) scenario, one would typically be considering the health state

of a single structure by utilising data collected from the structure in question. From

a data point of view, this would typically mean that any researcher or engineer

trying to establish the health of a structure, would only have a single dataset to

process. Whilst this theoretical dataset, may include multiple formats, they are

typically limited in their variations within the dataset [15].

In contrast, PBSHM must, by its own definition, deal with data from multiple

structures and consequently, a never-ending variation in formats, languages, and

methodologies. These potential variations within PBSHM, cause problems when

attempting to build PBSHM-specific algorithms. If a potentially-infinite number of

formats were to be supported within PBSHM, this would necessitate a never-ending

cycle of updating PBSHM algorithms to understand these new data formats. This

process would be both impractical and commercially unviable for any real-world

adoption of PBSHM technology.

Therefore, PBSHM requires a new standardised methodology towards data storage

that addresses the unique challenge of accommodating multiple structure types and

varying data requirements. This shared standard must facilitate a uniform way

of describing and storing data on structures, support the flexibility of different

data types and enable easy identification of structures within a population or type.

It is important to acknowledge that structure owners may have existing systems

in place to monitor and capture SHM data; in order for industrial adoption and

adaptation, the standard must work in conjunction with existing systems and not

enforce replacement of existing systems.

There are two main methodologies for storing of data; flat files — such as Comma-

Separated Values (CSV) and plain text — and databases. Whilst a flat file structure

facilitates the viewing of data as a trivial task, querying and building relationships

between these data can become difficult when comparing data across multiple files.

In comparison, when using a database, querying and comparing data becomes easy,

whilst importing data can become a more difficult task, especially when importing

large amounts of historic data. As a key principal of PBSHM is to facilitate increased

knowledge retrieval, having a data store that allows data to be retrieved easily and

efficiently is key.
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PBSHM Database

Structure Owner

Bridges

Population

Structure

Population

StructureStructure

Wind Turbines

Population

Structure

Structure Owner

Wind Turbines

Population

StructureStructure

Figure 4.1: Data transmission from structure owners’ current SHM systems into a
PBSHM database.

Because of the requirement of working in conjunction with existing systems, the

PBSHM database should allow structure owners to capture SHM data as their

current business practices define. Afterwards, data should be submitted into a

centralised PBSHM database. The PBSHM database needs to not only have a

standardised format for data storage, but also one for data transmission. The

PBSHM database must allow operation in the following scenarios: an open global

database that structure owners can submit data into, or a private internal database

allowing an owner to compare data across their assets (e.g Wind and Wave farms).

Whichever route a structure owner may decide, the format of how to store and

communicate data must be the same. (see Figure 4.1)

4.1.1 Database

Selecting the correct database technology is crucial to the adoption of the PBSHM

schema and database. Subsequently, each database type is required to be evaluated

against the PBSHM requirements (see Section 4.2) set forth in this chapter.

Relational Database Management Systems

Relational Database Management System (RDBMS), in its most simplified version,

stores data in the format of tables and columns (see Figure 4.2). Relationships

within are created via primary keys and foreign keys. Primary keys are the method
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Structure table
id name type
1 structure-1 turbine

Structure Sensor table
id structure id sensor name
1 1 sensor-1
2 1 sensor-2
3 1 sensor-3
4 1 sensor-4

Figure 4.2: A relational example showing a “structure-1” structure containing four
sensors within an RDBMS.

for identifying a unique data entry inside a table. Foreign keys are the method for

creating a link/reference to a column in another table, usually a primary key; thus

creating a relationship between the tables. Utilising the combination of primary keys

and foreign keys facilitates the retrieval of relational data. To encourage separation

of data into multiple tables for the purpose of data deduplication, RDBMS have a

normalisation concept.

Database normalisation provides a methodology for when to partition data off

into a separate table by comparing the data inside the structure to the normal

forms; consequently, it structures data in an approach that grants extensions to the

structure, without the necessity of invalidating existing data. Codd [50] introduced

what is now known as first normal form (1NF) and later introduced second and third

normal form (2NF and 3NF) [79, 80]. Each level of normal form adds additional

requirements to reduce data duplication and improve data integrity; the greater the

number of columns that contain identical data regarding an entity, the greater the

number of columns a system is required to update when data change.

The benefit of an RDBMS is proven system stability; however, they lack the

flexibility to enable yet-unknown data to be added into the database without a

schema change (see Section 4.2.3 for the definition of a database schema). It

is possible to design around this issue in a data schema, nevertheless it is not

recommended, because of the required complexity of said schema. In the use case of

PBSHM, multiple Structured Query Language (SQL) statements — the standard

language used within an RDBMS to interact with the data contained within itself

— are required to retrieve the state of a single structure.
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NoSQL

NoSQL databases are generally agreed to be divided into four sub-categories;

� Key-Value databases;

� Wide-Column databases;

� Document databases;

� Graph databases.

Key-Value databases are, at their core, a dictionary data structure; they are a

large collection of key-value pairs, requiring each key to be unique. Wide-Column

databases are similar to RDBMS; they use tables, columns and rows. However,

each row inside the database may have differentiating columns compared to sibling

rows; similar to a ‘dictionary of dictionaries’ data structure. Graph databases use

vertices and edges to store data; they function via the same rules as graph theory

[11, 12]. Document databases use the notion of an entry being a document; they

follow a similar structure to Object Oriented Programming (OOP). Documents have

multiple properties/attributes; however, they can also have nested documents within

themselves. Zafar et al. [57] discuss the merits and drawbacks of each type of NoSQL

database in additional detail.

{

"id":1,

"name":"structure-1",

"sensors":[

"sensor-1","sensor-2","sensor-3","sensor-4"

]

}

Figure 4.3: An embedded example showing a “structure-1” structure containing four
sensors within a NoSQL Document database.

Within the context of a PBSHM database, Document databases permit the

functionality of both enabling unknown data to be added into the database without

prior knowledge and enabling nesting of data within one document (see Figure 4.3).

There is no feature to store relationships between documents; however, in the case

of PBSHM databases this is not a problem, given that any relationship between

structures would need to be discovered via similarity metrics in the network first
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(see Section 4.2.1). Document databases provide a unique opportunity for all

relevant information regarding the state of a structure to be returned with one

document, thus facilitating a straightforward and simple schema for engineers to

understand.

4.2 Network, Framework, and Database

In Section 2.1.3 the premise of PBSHM is stated as: For a given population of

structures, determine the similarity between the individual member structures and

subsequently, transfer any learnt knowledge across member structures where the

aforementioned similarity has been established. This summary of PBSHM, require

two themes addressing; finding which structures (or components of structures) are

similar, and transferring learnt knowledge across established similar structures.

Whilst the focus of this thesis is on the structural similarity portion of PBSHM,

there is a requirement of a shared domain for data residency, in which these

structural comparisons and transmission of knowledge can occur. The concept of

the Irreducible Element (IE) model introduced by Gosliga et al. [6], is reconstructed

in Chapter 3 to facilitate a shared domain and language for a standardised

description of structures. Tsialiamanis et al. [8] address the issue of a shared

domain for the transferring of knowledge by proposing the use of a total feature

space across a population, whereby mappings can occur from each structure’s SHM-

driven feature space, using the premise of a fibre bundle throughout established

similar structures.

There are further shared-domain problems which require addressing, to enable

the technical implementation of these theories within an expandable ecosystem; a

shared domain for the knowledge of established relationships between structures (the

network), a shared domain for the computational algorithms to determine structural

comparisons and transmission of knowledge (the framework) and a shared domain

for standardised data representation and residency (the database). By implementing

the aforementioned shared domain in a technical ecosystem outlined in this chapter,

the focus of PBSHM can shift towards algorithmic discovery and implementation,

as, once implemented within the framework, each algorithm will be able to compute

against every structure within the network, using the data available within the

database.
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4.2.1 The network

The network of structures – as the name suggests – is the shared domain space in

which the relationships between different structures within the PBSHM Database

(see Section 4.2.3) reside. Each relationship within the network will have been

established via an algorithm implemented in the framework (see Section 4.2.2). The

primary vector for establishing these relationships between structures is envisioned

to be via varying similarity metrics. Each structure within the network will have

relationships of differing weightings to every other structure within the network. One

structure may have multiple relationships with a given other structure, dependent

upon differing criteria for each available similarity metric.

When a new structure is inserted into the database, the framework will compute

similarities between the inserted structure and existing structures. This new

structure — and its associated relationships — are then introduced into the

network. Populations are then extracted from the network, dependent upon the

given strength of relationships present within the network and any observed criteria

for transferring knowledge. The known state of a structure is defined by the

available data present within the database at the given time.

Figure 4.4: A visual representation of the network of structures stored within the
PBSHM framework and PBSHM database. The large red nodes represent the
presence of a structure within the network, the green nodes represent the data stored
within the PBSHM database which depict the current known state of the given
structure. The dotted links between the structure nodes represent the relationships
present between structures, because of similarities metrics generated by the PBSHM
framework.
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Figure 4.4 depicts a visual representation of a potential network. If one imagines

that each large red node represents an individual structure within the network, each

green node with a link to a structure node, represents a piece of data present within

the database which establishes the current known state of the given structure. The

dotted links between each of the structure nodes, represent a relationship established

by the similarity metrics available within the framework. Within the fullness of time,

the database is expected to support the full range of data required to capture the

state of a structure; however, in the interest of brevity, this chapter will focus on

the implementations required to support IE models and channel data.

4.2.2 The framework

The power of the PBSHM methodology becomes most apparent when the PBSHM

ecosystem has a rich spectrum of structures, data, and algorithms present.

Additional structures mean increased possibilities of structural similarity and

potential opportunity for learnt knowledge to be transferred. However, for this to

be achieved, PBSHM is not only going to have to evidence increased knowledge on

the health of a structure compared to traditional SHM, but it is going to have to

facilitate easy buy-in from key structure stakeholders. There is no point creating

world-class SHM algorithms if only a handful of people can interact with the

algorithms and understand the outputted information. As such, the framework

must not only provide a shared domain in which PBSHM computations must

reside, but facilitate a simplistic way in which engineers can interact with both the

algorithms and the underlying data.

To support the ever expanding nature of PBSHM, the framework cannot be fixed

in nature and must support the organic design principles outlined within the

PBSHM database (see Section 4.2.3). In practise, this requirement necessitates

an implementation approach which allows compartmentalisation of algorithmic

functions into separate units of logic; a module. The PBSHM framework will be

composed of a central ‘core’ which deals with the basics of any software platform;

authentication, permissions, security, database access, etc. This ‘core’ will then

be expanded into the PBSHM framework by the introduction of modules. Using

the implementation pattern outlined above, enables the PBSHM framework to be

flexible in its desired functionality and use.
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PBSHM Database
Sensor data, Feature data
IE Models, FE Models

Similarity metrics, Information metrics
Inspection Reports

PBSHM Core
Authentication
Module Support

Example PBSHM Module 1
Outlier analysis

Missing data analysis
Normalisation

Example PBSHM Module 2
Damage detection

Example PBSHM Module 3
IE Similarity metrics
Information metrics

Figure 4.5: The hierarchical structure of the PBSHM framework; PBSHM modules
interacting with the PBSHM core and subsequently the PBSHM core then
interacting with the PBSHM database to fulfil the requests from the PBSHM
modules.

Whilst the ideal scenario for the PBSHM framework may be to have a singular

centralised system which encapsulates all the available PBSHM data, the author

realises that this may not be practical within the real world and limitations of

commercial agreements with structure owners. As such, the flexible nature of the

PBSHM framework lends itself to tailoring the installed setup of the framework,

dependent upon the structure owners’ requirements and available data within the

associated database. Figure 4.5 depicts the overall hierarchy of how the modules,

core system and database interact together, to fulfil the desired functionality of the

PBSHM ecosystem.

During the fullness of time, it is expected that the PBSHM framework (and

underlying database), will be expanded via modules to support the full spectrum

of data and algorithms required to support the lifespan of a structure; channel

data, features, Irreducible Element models, Finite Element models, metadata,

inspection reports, etc. However, as the implementation of these future modules
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will be decentralised from the author of this thesis, a set of guidelines and

requirements are included within, to ensure all modules generated interact seamlessly

together and comply with the spirit in which the PBSHM framework is produced.

� Any actions taken upon a population, must function regardless of the

population size. Modules must be written in a manner which enables any

action or method applied to a population of structures, to also be applied to

an individual structure from within that population, if desired. For example,

any normalisation of channel data within the PBSHM framework, must

function to normalise the data for only one structure or a whole population

of structures.

� Raw data, such as data captured during an SHM campaign should be treated as

Write Once Read Many (WORM) data. Modules must adhere to the practise

of being able to only read raw data from the database and saving any computed

data relevant to the module in a different section of the database. The PBSHM

framework will enforce a special section of the database where raw data can

only be written to by specialised data ingestion modules; however, once the

data have been written into the database, changes to this data will not be

permitted, regardless of the type of module attempting the change.

� Any discovered features, must have the ability to be saved within the

database as either: user-defined features (only available to the user who

generated the feature), or global-defined features (accessible by any user

within the associated framework). Each feature must be accompanied by a

set of metadata describing the details regarding the feature and the relevant

framework steps (inputs, algorithms, and variables) taken to generate the

feature.

� A module must only use currently-available data from within the framework’s

associated database. The purpose of a module is to interact with the data

contained within the PBSHM database. As mentioned previously, this may

be as simple as importing external data of a known format into the database.

Alternatively, this also may be as simple as calculating the normalised set of

a population’s raw channel data and saving it back within the database. A

module should not require connecting to a third-party data source to perform

its operations on the PBSHM database.
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� For a framework to be classed as a PBSHM Framework, there must be at least

one module which fulfils the two outlined objectives of PBSHM (see Section

4.2). This requirement means that within a PBSHM Framework, there must

be one module which can produce a metric to determine which structures are

similar, and another module which can transfer learnt knowledge from one

structure to another, given that the metrics in the first module conclude that

the structures in question, are from the same ‘similar’ population.

� Modules should aspire to keep interactions with end users as simple as is

relevant for the desired audience of the module. Where possible, algorithmic

outputs should be visualised with a detailed explanation of the included visual

and any suggestions on what the results of the visualisation may derive.

� Modules may be implemented in whichever language is most relevant for the

desired purpose of the module; however, the modules must be able to be run

on a Linux distribution and a wrapper must be provided between the chosen

language of the ‘core’ and the implemented module language. For instance,

if the developers of a module have chosen the language STAN as the most

relevant for their desired purpose and the ‘core’ has been implemented in

Python, the module developers are required to implement a Python wrapper

from their module to tie up the interactions between the Python ‘core’ and

the STAN module.

4.2.3 The database

Underpinning the ecosystem described within this chapter, is the PBSHM database.

The database fulfils two key roles within the PBSHM ecosystem; providing a shared

domain for data residency, and providing the shared standardised format in which

PBSHM data is stored (a schema). A schema is to a database what an architect’s

drawing is to a structure; it is a technical document that says where data should go,

what is allowed where, and outlines any relationships and hierarchical structure of

the data.

Irrespective of the platform chosen to implement the PBSHM database, there are

several considerations that must be taken into account in the design of the database

– and underlying schema – to ensure that the database fulfil its desired purpose

within the PBSHM ecosystem.
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� PBSHM will, by its very nature, require vast quantities of varying types of

data. Whilst it is not expected that the database will have the knowledge

regarding all the types of data required to be stored within, the database

must be expandable at a later date to include these yet-unknown data types.

� For a database to be a valid PBSHM database, it must support both of the

main themes of PBSHM. As such, the database must have a storage mechanism

and shared standard for: describing structures with the outlook of being able to

determine the similarity of said structures within the network, and knowledge

regarding the state of a structure in which this acquired knowledge could then

be transferred across the population.

� Provide and restrict access to certain subsets of data. To satisfy the

requirements of external structure owners and the requirements of the

framework, the database must provide the facility to restrict access to certain

subsets of data. The reasoning behind this is twofold; to protect other entities

from gaining access to potentially-sensitive corporate information, and to

facilitate the premise of user-defined and globally-defined features within the

framework.

� Protect existing data from being overwritten and modified. The framework

requirements state that raw data from a monitoring campaign, should be

treated as WORM data. The database should adhere to these principals and

provide the facility to protect data from being overwritten. One of the founding

principals of PBSHM, is that additional knowledge can be gained from utilising

multiple sources of data; however, this learnt knowledge must never replace

the original source data from which the knowledge was learnt.

� Data must remain valid, once introduced into the database, throughout the

lifetime of the data within the system; via the process of expanding the schema

to include additional known data types, existing data must remain valid.

� Vast amounts of SHM datasets in question, may be historical and as such, may

not have the complete data available that the schema requires. The schema

should only enforce the data required for each section of the database, for the

data to have valid meaning within its corresponding section.

� Engineers from different fields may be generating and consuming PBSHM

data, thus the schema must be straightforward to understand and master.
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The schema must not become another barrier for the adoption of PBSHM

technologies.

In short, the shared-data domain must be organic in its governing nature. The

design of the shared-data domain must include within its principles that there is

only a partial understanding of the final data requirements of the domain. This

methodology allows for current knowledge to be embedded within the schema at

the outset; however, leaving space within the schema for yet-unknown data to be

included at a later date. It is imperative for the success of the PBSHM ecosystem,

that the database can expand over time with the ever-changing requirements of

PBSHM.

4.3 Implementation

Throughout the previous sections of this chapter, the foundations, and principals of

a PBSHM ecosystem have been outlined; however, the desire of this chapter is to

not only provide the theoretical technical components of such an ecosystem, but to

provide an initial implementation of this technology to demonstrate the potential of

PBSHM. As such, the rest of this chapter focusses on providing an initial database

schema for the shared-data domain required within PBSHM and the skeleton of an

initial framework for the computational shared domain.

As outlined within the requirements set forth in Section 4.2, any implementation

of the ecosystem must support both of the technical themes of PBSHM, therefore,

the database and framework implementation outlined within this chapter will focus

on supporting the newly reconstructed concept of an IE model from Chapter 3

— to fulfil the requirement of structure descriptions and subsequently similarity

comparisons — and raw channel data — to fulfil the acquisition of health knowledge

of a structure.

4.3.1 Database choice

Both RDBMS and NoSQL Document databases provide the technical requirements

to implement a PBSHM database. However, with an RDBMS there are

additional required processes as a result of converting tabular data into object
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representations. Consequently, NoSQL document databases have been chosen here

for implementation of the PBSHM database.

There are multiple NoSQL document databases available, each providing a unique

set of features driven by community goals. When selecting a document database,

the following additional requirements were introduced: access controls, to enable

different structure permissions, simple document structure and document level

concurrency. For the purposes of the PBSHM database, MongoDB has been

chosen. MongoDB was initially developed in 2007 [81], and has since become a

widely-adopted and supported document database. MongoDB can be deployed on

premises, on cloud providers or via MongoDB Atlas.

Documents inside MongoDB are stored in Binary Javascript Object Notation

(BSON) format - a derivative of the Javascript Object Notation (JSON) format.

JSON [82, 83] is a text-based data format that has gained popularity precisely

because of its transparent document structure, lightweight footprint and self-

contained nature.

MongoDB uses the following levels for data storage:

MongoDB Instance

Database

Collection JSON Schema

Document

An instance of MongoDB can contain multiple databases; inside each database can

be multiple collections and inside a collection can be multiple documents. Whilst a

principle of NoSQL document databases is a schema-less design, MongoDB supports

document validation via associating each collection with a JSON Schema. This

facilitates a “pbshm” database inside the MongoDB instance, a global “structures”

collection inside the database using the PBSHM JSON Schema for document

validation, and PBSHM data documents inside the collection.

Because of MongoDB’s access controls [59, 84], all users will be given read permission

to the “structures” collection; if any PBSHM framework modules require storage of
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computed values, these will be stored in module-specific collections. The MongoDB

database here will use the WiredTiger [59, 85, 86] storage engine, which supports

document-level concurrency, thus facilitating a structure’s data to be updated on

the system without locking read access to the rest of the structures.

Minimal latency upon retrieval of common queried data is implemented via

indexes [59, 87]. Indexes are quintessentially pointers from a specific data value to

documents which are stored in memory. For example, an index could be created

on a population name, so that when the system is queried for documents inside a

population, the system already knows which corresponding documents to be return

without enumerating each document inside a collection.

Distribution of data, either for redundancy or scalability is a key component for

any database. MongoDB supports this via replication [59, 88] and sharding [59,

89]; however, for the purpose of this chapter, they are not implemented within the

PBSHM database, as the data used for the documentation can fit within a single

database node.

Structure

At the root of a PBSHM data document, is knowledge regarding the ‘who’ and

‘when’ of the shared data domain; the structure. The basic properties required to

capture this are: version, name, population, and timestamp. Additional properties

can be included within the Structure entity to encapsulate data from within the

PBSHM framework. In the examples used within this chapter, additional properties

have been declared for models and raw channel data; model → irreducibleElement

(see Chapter 3), and channels (see Section 4.3.1) respectively. Figure 4.6 depicts

the hierarchical objects for the structure object and Table A.1 gives a full list of all

the properties, including which properties are required.

Within MongoDB there is a default date property type which stores date information

up to millisecond accuracy; however, because current sensor technology can capture

data at a 1Mhz sampling rate, this would cause a loss of accuracy on sensor data.

Dates within the PBSHM database are implemented via UTC nanoseconds since

UNIX epoch and stored in a long (Int64) data type which enables sampling up to

1Ghz1.

1When using Javascript to interact with the PBSHM Schema, there will be a loss of accuracy
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structure
A structure is the representation of a physical system for which
knowledge has either already been obtained or which has the

potential for knowledge to be discovered within the framework. A
structure within the network, is the collection of all associated data
within the database for the given name . See Table A.1 for details.

version
The version of the
PBSHM Schema to
which this structure’s
document is compliant.

name
The unique name
of the structure

within the database.

population
The initial group
of structures
to which this

structure belongs to.

channels
Raw channel data acquired

via either a short or
long-term monitoring

campaign on the structure.
See Section 4.3.1 and
Table A.39 for details.

models
The collection of

models which create a
digital representation
of the structure. See
Table A.2 for details.

irreducibleElement
The Irreducible Element

(IE) model which describes
the structurally-significant
component of the structure.

See Section 3.3 and
Table A.3 for details.

[{}]

Figure 4.6: The hierarchical layout of properties and child objects within the
structure root document.

Channel

Embedded beneath the Structure document is an array of Channel objects

containing details on associated Structure sensors; name, type, unit and value. A

Channel object should exist within the Structure document for each Channel that

was present and providing data on the associated Structure at the given Structure

timestamp. If a Channel did not provide data at the given timestamp, it should not

in the timestamps because of Javascript only supports 53 bytes in an Int64. This constraint will
also affect any interactions within the MongoDB Compass GUI tool, as at the time of publishing
this chapter it is implemented in Javascript
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channel
A channel represents a source of raw data or information on
a structure. Raw data may be converted from the acquired
unit to the units supported within the PBSHM Schema, but
no other processing or modification of data is allowed, whilst

maintianing the raw data classification. See Table A.39 for details.

name
The unique name
of the channel

within the structure.

type
The type of the channel
which generated the
raw data. See Table
A.40 for the list of
available values.unit

The unit on which the
values for the channel
are based. See Table
A.40 for the list of

available values where
a unit is applicable.

value
The singular or object
value of the channel.
See Table A.40 for the
list of available values.

min , max , mean , std

Figure 4.7: The properties for a channel in the PBHSM Schema.

exist within this Structure document. Figure 4.7 depicts the hierarchical objects

for the channel object. A description of each property within the Channel entity is

included in Table A.39.

To enable accurate comparisons across Channel objects, type and unit are

enumerated types. For each given value of type , there are associated accepted

values for both unit and value . For instance, if a channel has a value ‘tilt’ for

type , accepted values for unit are ‘degrees’, ‘radians’, or ‘other’ and accepted types

for value are int, double or object. The unit property is not applicable on certain

types where having a unit to provide context for the values value isn’t required.

For example a Channel with type ‘text’ does not require any additional context for

the value of value . A full list of accepted type , unit , and value combinations is

included in Table A.40.
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{

"version": "1.1.0",

"name": "test-structure",

"population": "ie-population",

"timestamp": 1588007841000000000,

"models": {

"irreducibleElement": {

"type": "grounded",

"elements": [

{

"name": "ground-element",

"type": "ground"

},

{

"name": "regular-element",

"type": "regular",

"contextual": {

"type": "beam"

},

"geometry": {

"type": {

"name": "beam",

"type": {

"name": "rectangular"

}

}

},

"material": {

"type": {

"name": "metal"

}

}

}

],

"relationships": [

{

"name": "relationship",

"type": "boundary",

"elements": [

{ "name": "ground-element" },

{ "name": "regular-element" }

]

}

]

}

}

}

Figure 4.8: An JSON example for including IE model data within the PBSHM
database. The example is a [grounded] model of a simple rectangular beam
interacting with ground.
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Value

When the unit for a Channel is applicable, the value on the Channel can be of

data type int, double or object. A Value object facilitates storage of value data

which is not singular; min , max , mean , std . The Value object must have at

least two properties set on the object, otherwise a singular value value should be

used instead. A description of each property within the Value entity is included in

Table A.41.

4.3.2 JSON examples

To illustrate the usage of the PBSHM Schema, the following JSON examples have

been included to demonstrate the relationship between the Schema outlined within

this chapter and the JSON code required to represent data into the database. Figure

4.8 includes the JSON required to represent a [grounded] model within the database.

The example is of a simple rectangular beam, represented by a singular [regular]

element. The model contains the minimum required information for the model to

be valid and pass the Schema validation.

Figure 4.9 includes the JSON required to represent a structure with three channels

of data for the given timestamp. The first channel ‘test-channel-1’ is a SCADA

channel with the source being an acceleration sensor. The second channel, ‘test-

channel-2’ is a singular value channel with the source being a temperature sensor.

The last channel, ‘test-channel-3’, is a text-based channel of non-numerical data.

A single timestamp document may contain channels of varying channel types and

values. Whilst an example is not given within this chapter in the interest of brevity,

a single JSON document could contain both IE model data and channel data.

4.3.3 Framework

In the interest of conciseness, the complete implementation of the framework

is omitted from this chapter; however, an overview of details regarding the

implementation have been included to show the research decisions made and the

main technology details. Given the requirements of the framework outlined in

Section 4.2.2, a Python-based micro web framework called Flask has been chosen as
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the base technical implementation upon which the framework is built. A PBSHM

flask core has been implemented to provide a skeleton structure in which modules

can be created to expand the functionality of the ‘core’ to produce a flexible

framework.

Keeping in mind the requirements outlined within this chapter of what is required

for a PBHSM framework, two modules have initially been authored to fulfil the

aforementioned requirements. Figure 4.10 shows a module within the PBSHM

framework which is an implementation of the maximum common subgraph and

the Jaccard Index originally used within Gosliga et al. [38] paper to determine the

similarity between a set of eight bridges. The IE models of the associated bridges,

{

"version": "1.1.0",

"name": "test-structure",

"population": "test-population",

"timestamp": 1588007839000000000,

"channels": [

{

"name": "test-channel-1",

"type": "acceleration",

"unit": "g",

"value": {

"min": 10,

"max": 11,

"mean": 10.5,

"std": 10

}

},

{

"name": "test-channel-2",

"type": "temperature",

"unit": "C",

"value": 28.9

},

{

"name": "test-channel-3",

"type": "text",

"value": "this is some text based context"

}

]

}

Figure 4.9: An JSON example for including channel data within the PBSHM
database. The example includes three channels, the first channel demonstrates
SCADA data within the database, the second channel a singular value and the third
channel with only a text-based value.
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Figure 4.10: An output from the PBSHM framework on computing the similarity
of eight bridge structures using the Jaccard Index. The bridges included within the
comparison are the same set of bridges used by Gosliga et al. [38].

have been updated to the latest version of the IE model definitions included within

this chapter. Figure 4.11 shows the ‘pathfinder’ module within the framework

which enables exploration of existing datasets within the database and includes

basic statistical analysis of these datasets.

4.3.4 Download

The schema and framework introduced in this chapter can be downloaded from

https://github.com/dynamics-research-group/pbshm-schema/releases/

tag/v1.1.0 and https://github.com/dynamics-research-group/pbshm-

flask-core/releases/tag/v1.0.4 respectively. For manual installation within

MongoDB, the required file from the schema repository is structure-data-compiled-

mongodb.min.json. To configure the framework, please follow the instructions

in the README file on the framework repository. During the configuration of

the framework, the latest version of the PBSHM schema will be downloaded and

https://github.com/dynamics-research-group/pbshm-schema/releases/tag/v1.1.0
https://github.com/dynamics-research-group/pbshm-schema/releases/tag/v1.1.0
https://github.com/dynamics-research-group/pbshm-flask-core/releases/tag/v1.0.4
https://github.com/dynamics-research-group/pbshm-flask-core/releases/tag/v1.0.4
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Figure 4.11: An output from the PBSHM framework on browsing the available
channel data for a given population.

installed within the selected collection.

4.4 Conclusion

In conclusion, this chapter has highlighted some significant data problems that could

potentially plague PBSHM, if not dealt with whilst PBSHM is in its infancy. The

chapter has proposed the potential solution for this, as a shared domain in which

PBSHM data and algorithms can reside, to not only aid in the adoption of PBSHM,

but enable the focus of PBHSM henceforth to be on algorithmic discovery and

generation, instead of data headaches.

This chapter built upon the grounds of Chapter 3 and has introduced the idea

of three unique shared domains; the network, the framework, and the database.

The network houses the similarity computations between structures, and creates a

network of relationships between the structures within PBSHM to evaluate if learnt

knowledge can be transferred across the network. The framework is where PBSHM
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(a) The framework’s similarity matrix
from the eight bridges, when embedding
the geometrical type data into the
Attributed Graph.

(b) The framework’s similarity matrix
from the eight bridges, when embedding
the contextual type data into the
Attributed Graph.

Figure 4.12: The similarity matrix generated from the PBSHM framework using
the Maximum Common Subgraph and the Jaccard Index. The Irreducible Element
models used are the same eight bridges used by Gosliga et al. [38].

algorithms reside; any computations on the similarity of structures or determining

potential transfer of knowledge from structures, happen here. The database unifies

both the network and framework by providing the shared-data format against which

all PBSHM data must be compliant.

The importance of the changes outlined within Chapter 3 to the language and

knowledge embedding within an IE model become apparent when one examines the

output from this Chapter’s framework’s similarity metrics for the eight bridges used

by Gosliga et al. [38]. Figure 4.12a shows the output from the framework when only

embedding the geometrical type properties from the IE model into the Attributed

Graph. As one can see, the similarity metrics still correctly identify ‘Beam & Slab 1’

and ‘Beam & Slab 2’ as being similar, the same is for ‘Suspension 1’ and ‘Suspension

2’, and for ‘Truss 1’ and ‘Truss 2’. These results are all in line with the result

published by Gosliga et al. However, one may notice that the ‘Cable-stayed’ bridge

and the ‘Arch’ bridge no longer have any meaningful similarity between themselves,

in contrast to the results published by Gosliga et al. Figure 4.12b shows the output

from the framework for the same eight bridges as used in Figure 4.12a; however,
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the embedding within the Attributed Graph is changed to the contextual type from

the IE model. As one can see, the vague similarity between the ‘Cable-stayed’ and

‘Arch’ bridges has returned to the same value as published by Gosliga et al. This loss

and regain of similarity between the ‘Cable-stayed’ and ‘Arch’ bridges, highlights

the importance of the work included within this chapter and Chapter 3 to isolate

knowledge within an IE model to its corresponding knowledge domains.



Chapter 5

Similarity Metrics

The work in this thesis so far has focussed on curating the required practical building

blocks to scale similarity comparisons from the initial notion phase to a practical

and standardised solution, to enable widespread adoption of PBSHM technologies

within the SHM research community. This chapter focusses on the problems faced

when multiple people are involved in the curation of models. The ideal situation is

that for a single structure, no matter who generates the model of the structure, one

should always end up with the same model at the end of the process. Unfortunately,

this is inevitably not the case. Each person who generates a model — henceforth

know as the author — will have differing desires behind why they are generating the

model in the first place — author bias. This unavoidably leads to variations being

present within the model.

The chapter explores the effects these variations have upon the similarity-

comparisons computed with the network. In Section 5.1 a background is given

as to why these aforementioned variations may appear within the model because

of author bias. The Canonical Form and the Canonical Form Reduction Rules

are introduced in Section 5.2 as the potential vehicle within PBSHM to remove

these variations from the network. Finally, a Graph Matching Network is utilised

in Section 5.3 as an alternative similarity metric to determine if a machine learning

approach can learn the similarity, even with the variations present within the

network.

79
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5.1 Background

Within PBSHM, IE models (see Chapter 3) are the vehicle used to embed structural

knowledge into the PBSHM; however, they are not the final domain in which this

structural knowledge resides. The whole purpose of embedding structural knowledge

within PBHSM — and thus the necessity of IE models — is to facilitate the

comparison of structures, to collect a measured score of similarity between structures

for determining potentially unknown populations. The introduced ecosystem in

Chapter 4 refers to this final destination of structure as the network ; a shared domain

in which the similarity comparisons of PBSHM structures reside and — based upon

the associated similarity — establish the strength of relationships between these

structures. The implementation of these similarity algorithms will be present within

the framework portion of the ecosystem, and as such, may support multiple different

similarity algorithms that execute within the network. Each structure within the

network will have a similarity score to every other structure, potentially for each

supported similarity algorithm within the framework.

IE

IE

IE

IE

IE

IE

IE

IE

IE

IE

Figure 5.1: A diagram of the similarity score-driven relationships between
Irreducible Element (IE) models within the PBSHM network. Each existing IE
model — a purple node — within the network, has a relationship with every other
IE model within the network — derived from a similarity score. The diagram also
depicts a new IE model — the green node — being added to the network, and the
process of relationships being discovered between the newly inserted IE model and
existing network models.
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This affiliation of relationships between structures within PBSHM can be envisioned

as a complete weighted graph, where each node is the model of a structure and

each link is the similarity value between the two structures. Figure 5.1 visualises

the relationships between structures within the network. As the network is the

final domain for IE model data, it is only natural that the field of graph theory

[11, 12] be an avenue for exploration in the goal of determining the similarity of

structures. IE models by their definition, naturally lend themselves to be represented

as an Attributed Graph (AG): each element becomes a vertex, and each relationship

becomes an edge. All the knowledge present within the IE model, is then embedded

as attributes on the corresponding vertex or edge.

Figure 5.2: A two-span beam-and-slab bridge example from Northern Ireland. The
same bridge that is showcased in Chapter 3.

Whilst PBSHM is a relatively recent branch of SHM, it does not invalidate the

fundamentals upon which SHM was built, and must honour these principles and

practises within the theory of PBSHM. One of these aforementioned principles

within SHM, is the desire to locate where potential damage is located within the

structure. The issue with honouring this principle is subjectivity. If one considers the

two-span beam-and-slab bridge depicted in Figure 5.2. The bridge — for the purpose

of this chapter — can be simplified into a single beam which runs horizontally from

the left embankment to the right embankment — as pictured — and a single column

supporting the horizontal beam, from the centre of the beam to the road. During

the process of curating an IE model for the given structure, one engineer may be

particularly interested in locating the damage on the beam, and as such, add more

details within the model on the beam section of the IE model. Another engineer may

decide that the damage on the column is of paramount importance, and thus add

additional details to the column section of the IE model. These nuances in model

objectives may appear insignificant within the grand scheme of PBSHM; however,

they vastly change the arrangement of an IE model and thus the associated AG.
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G R R R R G

R

G

B P P P B

J:S

B

(a) This IE model variation has been modelled with the deck as two separate [regular]
elements with the column component only interacting with the right section of the deck.
The right deck has also been subdivided into three [regular] elements to aid in damage
localisation on that section of the deck.

G R G

R

R

G

B B

J:S

P

B

(b) This IE model variation has been
modelled with the deck as only a
single [regular] element, whilst the
column component has been divided
into two [regular] elements for damage
localisation within the column.

G R R G

R

G

B P B

J:S J:S

B

(c) This IE model variation has the deck split
into two [regular] elements, with the column
section being modelled as a single [regular]
element ; however, the interaction between
the column and the deck has been modelled
as interacting with both sections of the deck.

Figure 5.3: Three of the potential Irreducible Element (IE) model representations
— displayed as graphs — of the two-span bridge displayed in Figure. 5.2. [ground]
elements are represented by a G in the centre of the node, [regular] elements
are represented by an R in the centre of the node. [boundary] relationships are
represented by a B on the edge, [perfect] relationships are represented by a P on the
edge and a [joint] relationship with a [static] nature is represented by a J:S on the
edge.



5.1 Background 83

Figure 5.3 illustrates how the subjectivity of the model creator — the author bias

— can change the underlying model submitted into the database and ultimately the

network. The first graph (see Figure 5.3a), shows the changes present within the

IE model if the author decided that instead of the horizontal beam being a single

[regular] element, the horizontal beam is initially split into two [regular] elements

to locate damage to a particular span of the bridge, the right span of the bridge

is further subdivided into three [regular] elements for either sensor placement or

potential further damage localisation given signs of wear on that span of the bridge.

The second graph (see Figure 5.3b), shows that the horizontal beam has been left as a

single [regular] element ; however, the vertical column has been split into two [regular]

elements, to enable damage localisation to either the top section of the column or

the bottom section of the column. The third and final graph (see Figure 5.3c), splits

the horizontal beam into two [regular] elements and a single [regular] element for

the column; however, the engineer generating this IE model has determined that

there should be a [joint] relationship to either span of the horizontal beam. These

are only three of potentially limitless variations that can be present in the simplified

two-span beam-and-slab bridge.

Variations being present within a model because of author subjectivity, are a

fundamental issue with any modelling task. The problem was present in the

initial version of IE models by Gosliga et al. [6] and remains present in the newly

reconstructed version in Chapter 3; however, with the second version of the IE

model language, there is embedded knowledge stored within the model itself to help

understand and interpolate why an author has chosen to dissect the structure in the

manner present within the model. Research has already been initiated by Gosliga et

al. [6] into the viability of the Jaccard Index as a similarity metric within PBSHM.

The Jaccard Index works by calculating the Maximum Common Subgraph (MCS)

between two graphs, in the case here, two attributed graphs.

To evaluate the impact these aforementioned variations have upon PBSHM’s

similarity results, a synthetic dataset was generated based upon the simplified two-

span beam-and-slab bridge example illustrated within this chapter. The dataset

contains randomly-generated beam-and-slab bridges from two to ten spans, with

each span being potentially divided up into three subsections; furthermore, each

column between the span was either joined to the previous span, the next span, or

both spans to include the full set of variations presented in Figure 5.3. The dataset

contains a total of 4500 randomly-generated bridges — 500 bridges per number
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of span — and was then randomly separated into a training, validation and test

subsets. This dataset — for the purposes of this chapter — will be henceforth

known as, the matching dataset.

To ensure consistency throughout the similarity matrix results depicted within this

chapter, the embedding of attributes into the AG representation from an IE model

has been fixed to embedding only the contextual type — the type attribute value

from the contextual object within a [regular] element. For vertices where there is

no contextual type — such as a [ground] element — no attributes are embedded

into the vertex. The edges in the AG representations have no attributes from the

associated [relationship]s embedded within the graph.

Figure 5.4: The Jaccard Index similarity matrix results from the Maximum Common
Subgraph on the test portion of the matching dataset when embedding only the
contextual type as the node attribute. The axes are labelled with the number of
spans the graph is associated with and the ID of the graph from within the dataset.
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Figure 5.4 shows the results of embedding only the [regular] element ’s contextual

type within the AG and evaluating each pair within the network for their given MCS

similarity using the Jaccard Index. The axes of the similarity matrix are labelled

with the number of spans of the bridge and their associated graph number within

the matching dataset. In the ideal scenario, all the graphs with the same number of

spans should all identify as matching with a similarity value of 1. When a graph with

either a descending or ascending number of spans — N − 1, N + 1 — is compared

to a graph with N number of spans, the similarity score should identify these as the

next closest match, after N .

As the reader can see in the results in Figure 5.4, when the inherent ambiguity of

model author subjectivity is included within the graphs, the algorithm is not able

to find any strong recognisable pattern. The algorithm correctly identifies when the

graph is compared to itself; however, the algorithm — at least within the matching

dataset — is not able to correctly identify graphs with the same number of spans

as identical; instead, it identifies graphs with differing number of spans as being the

closest matches. If one looks at the result for 6 (#5-220), the algorithm identifies

a four span bridge (#3-465) as having a closer similarity than any of the six span

bridges.

5.2 Canonical Form

The observed variations present within the similarity metrics — when introducing

the inherent model subjectivity — highlights two new scenarios which require

attention within the comparison portion of PBSHM. When generating similarity

scores, two graphs must always match as identical, if the source structure from

which both graphs have been generated, is the same structure, and structures which

are classed as nominally-identical or from a homogeneous population [5], should

further match as identical.

This chapter proposes that the solution for addressing the aforementioned scenarios

across all current and future similarity algorithms within the framework, is a

methodology for reducing IE models to a common form. A form which preserves

the structural knowledge and engineering decisions present within the original

model, but facilitates a common representation of a single structure, regardless of

any author subjectivity; a Canonical Form. IE models generated by authors would
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henceforth be known as detailed IE models, and only reduced to a Canonical Form

representation for the purpose of similarity matching within the network. Detailed

IE models would still be submitted by authors into the framework and ultimately

stored within the database.

IE

CF CF CF CF CF

IE IE IE IE IE IE IE IE IE

Figure 5.5: The PBSHM network using the Canonical Form as a common form for
comparison. The red nodes represent the known Canonical Form representations
within the network. The purple nodes represent existing detailed IE models, for
whom similarity comparison values are already present against the known Canonical
Form representations. The weight of the similarity between the existing detailed IE
models and the known Canonical Form representations, are represented by increased
darkness of colour on the link — higher similarity scores equal darker links. The
green node represents a new detailed IE model being inserted into the network and
the dotted links represent the similarity calculations made upon insertion.

Furthermore, the notion of a common form for a single structure has the potential

to improve the performance of the network. Currently, the network acts as a

complete weighted graph for each similarity algorithm within the framework.

Computationally, this involves each unique pair of graphs having their similarity

computed. Whilst this mechanism may appear trivial when factoring a toy dataset

numbering only a few hundred graphs, the logistics of performing this same

computation become problematic when considering the potentially vast size and

quantity of real-world structure graphs. The largest single graph within the

matching dataset, has in the order of tens of elements/nodes, real-world structures

may have elements numbering in the order of hundreds or even thousands within a

single structure. If one factors in, that within a network, one may have thousands,

if not tens of thousands of structures present, the reality of performing these

computations becomes expensive — without factoring in the possible variations
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from model subjectivity.

This chapter proposes that the solution to the computational problem is, that the

Canonical Form becomes an intermediary layer within the network, to act as a

known target for comparison against detailed IE models. Each detailed IE model

within the network, would have a similarity score to every Canonical Form within the

network. When a new detailed IE model is inserted into the network, only similarity

scores are drawn up for the newly-inserted model and the existing known Canonical

Forms. The proposed modified methodology of the network, has the potential to

not only reduce the number of computations performed within the network, but

also create a natural alignment of populations within the network for discovery by

clustering algorithms. Figure 5.5 visualises the configuration of the Canonical Form-

inspired network, and depicts the process of a new detailed IE model being included

into the network.

5.2.1 Canonical form reduction rules

To facilitate the process of reducing a detailed IE model to the corresponding

Canonical Form representation, this chapter proposes an initial set of three

reduction rules to accomplish the desired common form; the Canonical Form

Reduction Rules (CFRR). The CFRR are a set of rules which can be applied to

any detailed IE model, with the goal of removing any ambiguity from the model;

however, the rules must not remove any embedded knowledge within the model

which may later be used within the similarity metrics. Each rule must be grounded

in a solid reasoning as to why the associated modifications contained within the

rule are able to modify the IE model, without the loss of knowledge from within

the model. While the reduction rules may be applied whilst the model is within

the IE model domain, the reality is that the Canonical Form representation occurs

whilst within the network and as such, further discussions within this chapter will

refer to the changes made by the CFRR as within the associated graph-domain of

the network.

Individual Ground

The first rule proposed within the CFRR, is that each [ground] element within a

graph, must be unique. This rule requires that wherever a [boundary] relationship
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is present within a graph, the associated [ground] element included within the

relationship must be unique to the [boundary] relationship and not shared with any

other [boundary] relationships. The reasoning behind this rule is, each [ground]

element present within the graph, is the representation of another structure’s

presence within the model. Each interaction between the structure being modelled,

and the third-party structure is unique, and as such, should be represented as
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B

(a) Step 1: Select any
[ground] element where
two or more [boundary]
relationships are present.
The pattern is highlighted
in red.
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(b) Step 2: Create a new [ground] element
and [boundary] relationship for each [boundary]
relationship present within the previously selected
[ground] element. The creation of new objects,
must retain within the target object (i.e. the
newly created object) any attributes present
within the source object (i.e. the object which
is being copied).
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(c) Step 3: Remove the previously-selected
[ground] element from the model.

Figure 5.6: The stages of a Individual Ground Canonical Form reduction against
an Irreducible Element model graph. By performing this reduction, an unrequired
loop is removed from the graph without the loss of any embedded knowledge within
the model.
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a unique [ground] element within the model. As a [ground] element is only the

reference to the presence of an external structure, no knowledge is lost by this

reduction rule.

The Individual Ground reduction rule, not only reduces the topological complexity

of the graph by removing unnecessary loops, but could also be applied as a general

rule for [ground] elements in the detailed type. Figure 5.6 illustrates the process

of selecting a [ground] element with more than one corresponding [boundary]

relationship, creating new [ground] elements and [boundary] relationships, and

subsequently, removing the offending [ground] element and [boundary] relationships.

Perfect Joint Joint Relationships

The second rule proposed within the CFRR, is that any time within the graph where

there is a pattern of three [regular] elements connected in a loop via a [perfect],

[joint], and [joint] relationship; the loop can be broken and reduced to a [perfect]

and [joint] relationship. If one takes the example illustrated in Figure 5.3c, there are

two [regular] elements — representing the horizontal beam in the example bridge

— connected via a [perfect] relationship, there is then a single [regular] element —

representing the vertical support column — connected to both of the aforementioned

[regular] elements of the horizontal beam, via independent [joint] relationships.

The interaction between the three aforementioned [regular] elements can be

modelled in three distinct manners: the vertical support column is connected

via a [joint] relationship to both of the horizontal beam [regular] elements (as

depicted within Figure 5.3c), the vertical support column is connected via a [joint]

relationship to only the left horizontal beam [regular] element, and oppositely, the

vertical support column is connected via a [joint] relationship to only the right

horizontal beam [regular] element.

Each of these scenarios is a valid method for embedding the structural knowledge

of the interaction between the horizontal beam and the vertical support column.

In the last two scenarios, the physics between the vertical support column and the

horizontal beam have been embedded once within the model; conversely, in the first

scenario, the physics have been embedded twice within the model, once to each

beam.

The Perfect Joint Joint reduction rule can safely reduce a [perfect], [joint], [joint]
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(a) Step 1: Select any loop within
the graph, constituted of three [regular]
elements, connected via a [perfect],
[joint] and [joint] relationship. The loop
pattern is highlighted in red.
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(b) Step 2: Select one of the [joint]
relationships within the loop. The
selection between which of the
[joint] relationships within the loop is
irrelevant; however, any implementation
of the Perfect Joint Joint reduction,
must be consistent in its [joint]
relationship selection, as to enforce an
equivalent operation across the PBSHM
network.
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(c) Step 3: Remove the previously selected [joint]
relationship from the model.

Figure 5.7: The stages of a Perfect Joint Joint Canonical Form reduction against
an Irreducible Element model graph. By performing this reduction, an unrequired
loop is removed from the graph without the loss of any embedded knowledge within
the model.

relationship loop to a single [perfect] and [joint] relationship as the physics of

the interaction have been duplicated within the model; thus, one of the [joint]

relationships can safely be removed from the model without losing any structure

knowledge regarding the interaction. The Perfect Joint Joint reduction rule also
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simplifies the topology of the graph by removing another unnecessary loop.

Figure 5.7 illustrates the process of finding the [perfect], [joint], [joint] relationship

loop, selecting one of the [joint] relationships to remove, and finally removing the

selected [joint] relationship from the graph. Whilst the Perfect Joint Joint reduction

rule does not enforce which of the [joint] relationships should be removed from

the graph, any implementation of the Perfect Joint Joint reduction rule must

be consistent in which [joint] relationship the algorithm decides to remove; if the

same graph is reduced by a CFRR implementation, it must choose the same [joint]

relationship to remove, each and every time i.e. in a planar graph, the ‘right’ joint

is removed.

Perfect Relationships

The third rule proposed within the CFRR for now, is that any [regular] element,

with exactly two [perfect] relationships may be removed from the graph with the

associated [perfect] relationships, by creating a new [perfect] relationship between

the neighbouring [regular] elements and migrating any knowledge within the

[regular] element to be removed to the neighbouring [regular] elements.

[Perfect] relationships by their own definition, are present within an IE model

where a larger component has been divided up into additional [regular] elements,

either for representing a complex geometrical shape, or for the purpose of damage

localisation within the model. In both of the aforementioned scenarios, the [perfect]

[relationship] is only present within the model to handle model subjectivity or SHM

necessity of the creator. Embedding complex geometrical shapes is important to gain

advanced knowledge of the form of a component; however, such detailed knowledge is

potentially irrelevant when trying to compare the overall similarity of two structures,

but becomes increasingly relevant when trying to compare the similarity of structure

subsections or validate the comparisons to a third party. The same premise holds

true for division which has occurred because of damage localisation: knowledge on

where damage has transpired within the model is vitally important for the author

of the model, or when trying to relay knowledge back to the owner or operator;

however, these details are irrelevant when determining the similarity of structures.

The Perfect Relationship reduction rule can safely reduce a [regular] element with

two — and only two — [perfect] relationships, as the knowledge contained within
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the selected [perfect] relationships and associated [regular] element is irrelevant

for similarity purposes, and can be merged into neighbouring [regular] elements

without losing any structural relevant knowledge in the context of the network.
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B

(a) Step 1: Select any [regular] element within the graph that
has two — and only two — [perfect] relationships. The pattern
is highlighted in red.
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(b) Step 2: Isolate the previously selected
[regular] element and two [perfect] relationships
from the graph. Create a new [perfect]
relationship between the two neighbouring
[regular] elements from the isolated [regular]
element.
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(c) Step 3: Remove the previous-
selected [regular] element and two
[perfect] relationships from the
model.

Figure 5.8: The stages of a Perfect-Perfect Canonical Form reduction against an
Irreducible Element model graph. By performing this reduction, an unrequired node
is removed from the graph without the loss of any embedded knowledge required
for similarity matching. Iterating over the graph with this reduction rule until
no further regular elements are removed, will remove the unrequired sequences of
repeated [regular] elements and [perfect] relationships from the graph.
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Figure 5.8 illustrates the process of finding the [regular] element with two — and

only two — [perfect] relationships, creating a new [perfect] relationship between

the neighbouring [regular] elements of the selected [regular] element, and removing

the original selected [regular] element and the associated redundant [perfect]

relationships from the graph. Whilst the Perfect Relationship reduction rule

does not explicitly enforce that neighbouring [regular] elements must obey the

[perfect] relationship matching type rule defined in Section 3.6, it is expected that

any implementation of the CFRR, would ensure that the neighbouring [regular]

elements of the selected [regular] element have matching values for the contextual,

geometrical and material types before actioning the defined reduction rule.

It is envisioned that the [perfect] relationship reduction rule will be refined in the

future to handle [regular] elements that have more than two [perfect] relationships.

In the fullness of time, the CFRR will have additional rules included to facilitate

the removal of all unrequired variations within the network. In the final version

of the CFRR, there will be no [perfect] relationships present in a Canonical Form

IE model; however, this statement will not be valid within the remit of the Reality

Model (see Section 5.2.3).

5.2.2 Jaccard index results

As discussed earlier in the chapter (see Section 5.1), the Jaccard Index — or

Jaccard similarity coefficient — is a method for measuring the similarity between two

datasets. In the case of determining the similarity of IE models, the algorithm was

used by Gosliga et al. [6, 38], to generate a similarity score between two attributed

graphs (see Figure 5.9). The logic behind the Jaccard Index boils down to calculating

the intersection between G1 and G2, over the union of G1 and G2:

p(A,B) =
|A| ∩ |B|
|A| ∪ |B|

=
|A| ∩ |B|

|A|+ |B| − |A| ∩ |B|
(5.1)

The output from the Jaccard Index is a similarity score between 0 and 1, where 1

is similar and 0 is dissimilar. The calculation of the MCS between G1 and G2, is

implemented via a backtracking algorithm — the Bron-Kerboshs algorithm to be

precise — to find the largest common subgraph between two graphs — G1 and G2

in this case. In the interest of brevity, the logic of implementing the backtracking
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algorithm is excluded from this chapter, the interested reader is recommended to

read the original paper by Bron and Kerbosh [28] to understand the finer working

of the algorithm.

Figure 5.9 displays the similarity matrix results using the Jaccard similarity

coefficient against the matching dataset used in Figure 5.4 and the known Canonical

(a) The Jaccard Index similarity matrix results
using the detailed Irreducible Element model
without the Canonical Form Reduction Rules.

(b) The Jaccard Index similarity
matrix results using the Canonical
Form Reduction Rules to reduce the
detailed Irreducible Element model
before comparison.

Figure 5.9: The Jaccard Index similarity matrix when comparing the matching
dataset to the known Canonical Form dataset using both the Jaccard Index without
the Canonical Form Reduction Rules (see Figure 5.9a) and then with the Canonical
Form Reduction Rules (see Figure 5.9b). The Attributed Graph contains only the
embedding of the [regular] elements contextual type as a node attribute to keep
results in direct comparison to Figure 5.4. The X axis are labelled with the number
of spans of the Canonical Form graph, the Y axis are labelled with the number
of spans the graph is associated with and the IE of the graph from the matching
dataset. The label for the Y axis is missing from the second figure, because the
labels are the same as in the first figure.
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Form dataset for bridges with spans from 3-7. The ideal scenario for these similarity

metrics, is that a bridge from the matching dataset should match as near identical

— a value as close to 1 as possible — to the known Canonical Form bridge with

the same number of spans. The similarity value should decrease in value the further

away the number of spans being compared.

The first results in Figure 5.9a show the similarities when using none of the Canonical

Form Reduction Rules (CFRR), and instead using the Canonical Form as a common

form for comparison against. As the reader can evaluate, the Jaccard similarity

coefficient is unable to find any discernible pattern between the matching dataset

and the Canonical Form dataset. The second results in Figure 5.9b show the

similarities when the matching dataset — containing detailed IE models — has first

been reduced using an implementation of the CFRR before being evaluated against

the common form Canonical Form dataset, using the Jaccard similarity coefficient.

As the reader can see, the implementation of the CFRR within the network, improves

the indicated values with the desired pattern of similarity (results within the same

span should match identically with similarity values gradually decreasing through

the change in number of spans) starting to emerge when comparing the matching

dataset to the Canonical Form dataset.

5.2.3 Reality model

An Irreducible Element (IE) model is only concerned with structural composition.

The environment in which the IE model is placed, the operational constraints of

the structure, and the concerns of a structure owner, are but three examples of

knowledge that, while being vitally important in the overall makeup of a structures’

health, are out of the remit for an IE model. The aforementioned missing knowledge

provides critical context to conditions a structure must endure; as such, they are

required to be included within the global scope of PBSHM, whilst still remaining

out of bounds to the structural comparisons portion of the PBSHM architecture.

A new model is required to capture the circumstances in which a structure resides,

an encapsulation of the world in which the structure lives: the Reality Model. This

model doesn’t invalidate any of the proceeding research on capturing the structural

composition of a model or any of the defined shared-data domains: network,

framework and database. Instead, the model builds upon and encapsulates all of
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these PBSHM-defined fundamentals into a hierarchical overarching model.

A Reality Model by itself, won’t be an official specification or list of requirements

akin to the specification and language of an IE model: instead, the model will be

the summation of all available knowledge on a structure: structural composition,

channel values, extracted features, sensor network, environmental and operational

variables, and damage localisation concerns, to name but a few. Figure 5.10 depicts

the potential hierarchical knowledge areas within the Reality Model.

Reality Model
The encompassing object which captures

the world in which a structure lives.

models
The collection of

models which create a
digital representation

of the structure.

irreducibleElement
The Irreducible Element

(IE) model which
describes the structurally-
significant components

of the structure.

sensors
The network of
sensors capturing

data on the structure.

eovs
Environmental and

Operational Variables
on the structure.

features
Extracted features
from data available
on the structure.

labels
Defined SHM-problem

labels such as
damage localisation

areas required
on the structure.

Figure 5.10: A selection of potential knowledge areas included within the hierarchical
layout of the Reality Model.

The specifications and definitions of required knowledge, will be devolved to the

individual areas of knowledge. The decisions as to what is required to capture

structural composition, belong to an IE model, and as such are controlled by the

IE model section within the PBSHM schema. The decisions as what is required

to ensure a full picture of a sensor network, belong to the sensor network and as

such will be defined by a future sensor network section within the PBSHM schema.

It is only when the aforementioned knowledge areas are brought together, that the

Reality Model achieves its full identity and has a powerful and meaningful purpose
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within PBSHM.

Whilst by the definition of a Reality Model, each knowledge area is devolved and

has complete control of the associated data and language required to embed the

associated required knowledge. The PBSHM shared data domain — network,

framework, and database — must be aware of the Reality Model and understand

how the presence of the model determines any confounding influences. The database

will naturally become aware of any influences the Reality Model produces, by

the expansion of new defined knowledge areas within the PBSHM schema. The

framework will further organically expand to be Reality Model -aware, via the

inclusion of new algorithms designed to process the enhanced available state of a

structure, contained within the database.

Whilst the network operates its comparisons within the IE model domain, being

Reality Model -aware means that additional restrictions may be required when

considering the introduced Canonical Form. The whole purpose of an IE model

and subsequently the Canonical Form, is to find similarities between structures,

thus enabling new populations of structures to be established, and finally, learnt

knowledge being transferred across the population. There is no point in attempting

to transfer learnt knowledge across the population, if the knowledge being transferred

is not applicable to the target structure because of the world in which the structure

lives.

As such, each area of knowledge encompassed within the Reality Model must have

the potential to restrict and inform the produced Canonical Form representation

of a structure. This may be by the introduction of additional Canonical Form

Reduction Rules which are only pertinent if certain data are present within the

Reality Model, they may also be in the form of restrictions on when certain Canonical

Form Reduction Rules can be applied. A specific value within the labels section of

the Reality Model may dictate that certain elements are protected, thus they may

not be removed from the model through the Canonical Form Reduction Rules. In

a network, where only IE model data resides, the Canonical Form representation of

two homogeneous structures, should be identical; however, when additional Reality

Model data is included within the network, the Canonical Form representations of

two homogeneous structures, may no longer be identical.
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5.3 Graph Matching Network

The Jaccard Index is simply one methodology for generating a similarity between

two sets of data, once one has established the known intersection between these

two sets of data. The way in which this intersection has been found previously —

within the context of a graph — is using the Maximum Common Subgraph (MCS).

The MCS is an approach from Graph Theory [11, 12], where the goal is to find the

largest shared graph between two graphs (see Figure 5.11). The problem with this

approach, is that each node within G1 and G2, have to match exactly.
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(a) G1
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(b) G2
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(c) MCS of G1 and G2 when considering both topology
and the contextual type attribute.

Figure 5.11: The Maximum Common Subgraph (MCS) between G1 and G2, where
the graphs are two bridge IE models with the contextual type from the [regular]
element is embedded as an attribute within the associated nodes.

If one takes the example of material within a [regular] element, say a beam on a

bridge. Both bridges are classified as two-span beam-and-slab bridges; however, in

the first bridge, the beam has a material type set of ‘metal’�‘ferrousAlloy’�‘steel’,

in the second bridge, the beam has amaterial type set to ‘metal’�‘aluminiumAlloy’.

No matter how this material knowledge is encoded into an attributed graph, the
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nodes of the corresponding [regular] elements would never be included within the

MCS, without a decision to omit knowledge from the AG. To facilitate the inclusion

of these nodes within the MCS, a decision would have to be made to only include

the first level of material type within each node. Such modifications to knowledge

encoding within the AG, necessitate futile knowledge of both the context in which

the structures are based and the mechanics of the similarity metrics. Alternately, a

method in which all available knowledge from the IE model can be encoded within

the attributed graph, and then the similarity algorithm itself can determine which

of these attributes are necessary for determining the similarity of the network.

Neural Networks [90] are a subset of machine learning algorithms aiming to replicate

how the neurons inside the brain processed and passed data between themselves. If

one examines the process of a Multi-layer Perceptron (MLP) [91] to establish the

premise, the neural network — in the MLP case — works under the concept of

layers of knowledge. Within each layer of the network is a number of neurons —

in network terms, think of these as nodes — each neuron then connects to every

other neuron in the next layer of the network — again in networks terms, think of

them as links; however, there are no connections between neurons within the same

layer. The first layer is called the Input Layer, and the sole purpose of this layer

is to encode knowledge from a data point within the source dataset — in the case

here, this would be the IE model knowledge — into its neurons as a numerical value.

The last layer is called the Output Layer, this layer again has neurons like the Input

Layer ; however, the number of neurons within this layer will depend on the number

of outputs or classifications desired for the neural network to make. In between

the Input Layer and the Output Layer are the Hidden Layers, how many of these

layers there are, and how many neurons inside each layer is part of the individual

implementation of the neural network.

The aforementioned connections between neurons are where the machine learning

part of the algorithm takes place within a neural network. Each connection is

made up of weights and biases. These weights and biases enable multiplication and

addition — respectively — of the value within a neuron. Each data point within the

source dataset has a label defining what the correct output or classification should

be against the neurons in the Output Layer. The source dataset is then divided into

training, test, and validation subsets. Initially, the neural network is initialised with

random weights and biases. One by one, each data point within the training portion

of the source dataset, is fed into the neural network and the values of the Output
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Layer are stored. A Loss Function is defined which decides if the neural network

has performed well from the desired Output Layer values verses the actual Output

Layer values. The weights and biases are adjusted with the goal of improving the

results of the Output Layer, minimising the Loss Function.

Graph Neural Networks (GNN) [92] are a category of neural networks with the

focus of naturally embedding graph data within the Input Layer. Li et al. [93] have

recently introduced the Graph Matching Networks (GMN) derivative within the

GNN domain, where instead of categorising data, the objective is to determine the

similarity between graphs. The GMN can be trained in two ways; pairs of labelled

graphs, or triplets of unlabelled graphs. In the first method, each graph within the

dataset G1, is paired with another graph within the dataset, G2. If the graphs,

G1 and G2 are determined to be similar, then a label of 1 is assigned to the pair;

however, if the graphs are determined to be dissimilar, then a label of −1 is assigned

to the pair.

(G1, G2) = t ϵ {−1, 1} (5.2)

In the second method of training the GMN, each graph, G1, is paired with one graph

within the dataset that it is similar, G2, and one graph within the dataset that is

dissimilar, G3. The formed triplet doesn’t require a label; however, it does require

the order of the graphs within the triplet to be observed:

(G1, G2, G3); G1 is similar to G2, but G1 is dissimilar to G3 (5.3)

The work outlined with this chapter has shown the potential of a common form

within the PBSHM network. The main disadvantage with a method such as this, is

manually learning and forming the Canonical Form Reduction Rules to reduce the

detailed IE model down to the Canonical Form representation. The hope of using

a method such as the GMN, is that the neural network in the code of the GMN,

can learn yet unknown reductions. To evaluate the use case of a GMN within the

context of the PBSHM network, one first must establish if the GMN can learn the

similarity without using the common form.
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Figure 5.12: The Graph Matching Network similarity matrix results when comparing
the detailed Irreducible Element model against itself. The axes are labelled with the
number of spans the graph is associated with and the ID of the graph from within
the dataset.

Figure 5.12 depicts the results of using the GMN against only the matching dataset.

The GMN is trained using sets of labelled pairs, using a loss function of the margin-

based Euclidean distance and utilising the Adam optimiser [94] for the minimisation

of the loss function. As one can see, the GMN is able to learn and identify the

beam-and-slab bridges of the same span as identical, with a result of 1. The GMN

is also able to identify the desired tiered similarity, when travelling away from the

number of spans. If one looks at the results for the six-span bridges, the bridges

with the closest similarity are the group of six-span bridges. The bridges with the

next-nearest similarity are the bridges with five and seven spans, then the four-span

bridges and finally the three-span bridges. Whilst the results are not as separated

in distance as the Jaccard Index results in Figure 5.9b, there is a small noticeable

change in the results the further one moves away from the target span.
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(a) The Jaccard Index similarity matrix results
using the Canonical Form Reduction Rules to
reduce the detailed Irreducible Element model
before comparison. These are the same results
as in Figure 5.9b.

(b) The Graph Matching Network
similarity matrix results when
comparing the detailed Irreducible
Element model with the known
Canonical Form representation.

Figure 5.13: The similarity matrix results for both the Jaccard Index (see Figure
5.13a) and the Graph Matching Network (see Figure 5.13b) when comparing the
matching dataset — containing detailed Irreducible Element models — against the
known Canonical Form dataset. For the Jaccard Index results, the Canonical Form
Reduction Rules were used to reduce the detailed IE models before comparison.
For the Graph Matching Network results, the Graph Matching Network learnt
the reductions required against the training dataset — a labelled graph pairing
of detailed Irreducible Element models and known Canonical Form representations.
The Attributed Graphs for both algorithms, contain only the embedding of the
[regular] elements contextual type as a node attribute to keep results in direct
comparison to Figure 5.4 and 5.12. The X axes are labelled with the number
of spans of the Canonical Form graph, the Y axes are labelled with the number
of spans the graph is associated with and the IE of the graph from the matching
dataset. The label for the Y axis is missing from the second figure, because the
labels are the same as the first figure.
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Figure 5.13b shows the results of introducing the Canonical Form representation

into the GMN comparisons; instead of the GMN learning the reductions needed

between detailed IE models, the GMN learns the reductions required to reduce the

detailed IE model to the Canonical Form representations. As one can see, the GMN

is still able to identify detailed IE models to the Canonical Form representation

with the same number of spans as identical. The results also show that the pattern

of similarity decreasing with neighbouring number of spans from the target span, is

also preserved. These results illustrate the flexibility of the GMN, the algorithm is

able to learn the reduction rules between detailed IE model to detailed IE model, or

from detailed IE model to the Canonical Form representation.

Figure 5.13 illustrates the results of comparing the performance of the Jaccard Index

using the CFRR (see Figure 5.13a), verses the GMN comparing the matching dataset

to the known Canonical Form representation dataset (see Figure 5.13b). From the

initial inspection of the results, it is clear to see that the GMN algorithm outperforms

the Jaccard Index with CFRR when considering the ability to identify a pattern of

similarity within the example network ; however, when one considers the context of

the algorithms, the outcome is not so clear.

If one looks at the comparisons for the bridge 7 (#6-124), the Jaccard Index with

CFRR incorrectly identifies the five-span Canonical Form representation as the

closet match to the input bridge, whereas with the GMN, the algorithm correctly

identifies the seven-span Canonical Form representation as the closest match. The

GMN is evidently — within the context of the example scenario — able to learn

reduction rules which are not currently understood or implemented within the

CFRR; this may lead one to imagine, that the GMN algorithm should be used

above the Jaccard Index with CFRR; however, to achieve this learnt knowledge,

a not insignificant amount of bridges were required for the GMN to build the

aforementioned knowledge. In direct comparison, the Jaccard Index with CFRR

required no previous examples of similar bridges before it could establish a similarity.

Without modification to the existing GMN algorithm, there is no methodology of

extracting which elements or relationships cause the similarity, thus providing a

stumbling block in the algorithms’ ability to communicate back to a framework

user, why the given similarity is thus. The Jaccard Index with CFRR; however,

is able to communicate back to a framework user, as to where the similarity has

been established, via the MCS. Both of the aforementioned algorithms are able to

generate a similarity within the network : and as such belong within the framework.
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When each algorithm should be used, perhaps, requires a larger viewpoint of the

lifecycle of PBSHM.

Whilst PBSHM is still within its infancy, one cannot rely upon the network having

existing examples to generate learnt knowledge; instead the network will need to

depend upon algorithms which require no previous examples to learn from, such as

the Jaccard Index with CFRR. Once PBSHM has established itself to the extent

of having multiple examples of a single type of structure, learning algorithms such

as the GMN will have their place within PBSHM. The problem of data availability

should not block research into learning algorithms, on the contrary, research should

continue into machine learning approaches — using simulated datasets — and

focus on identifying what knowledge can be extracted from these approaches, and

incorporated back into the global knowledge of similarity and processes such as the

Canonical Form Reduction Rules.

5.4 Conclusion

This chapter has shown that the variations present within the network because

of author bias, directly effect the computed similarity scores when using a graph-

theory-based calculation. The chapter introduced the Canonical Form as the vehicle

within PBSHM to remove these variations from the network. A detailed author-

generated IE model is submitted into the network, the Canonical Form Reduction

Rules (CFRR) reduce the detailed IE model into the Canonical Form representation

so that no variations are present within the model, but all structural knowledge

which is relevant to the similarity comparisons is retained.

The first three CFRR are introduced; however, these rules are intended to be

expanded upon in the future as further knowledge is obtained upon what knowledge

is crucial for the network. The Maximum Common Subgraph (MCS) and Jaccard

Index (JI) is utilised as a graph-theory-based similarity metric to evaluate the use of

the CFRR. While using no CFRR, the algorithm is unable to detect any noticeable

pattern of similarity within the input graphs; however, when the CFRR are used to

reduce the input graphs before comparison, a pattern of similarity starts to appear.

The Reality Model is introduced as the vehicle within PBSHM to encapsulate the

knowledge regarding the world in which the IE model is placed. While this model is
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important within the wider context of PBSHM, there is a direct consequence that

the Reality Model has upon this chapter. As stated, PBSHM does not invalidate

the previous rules and desires of SHM; as such, SHM-driven labels may end up

determining what elements may or may not be reduced from a model, thus will

directly impact upon the CFRR.

Lastly, the chapter evaluates the use of a machine-learning approach to deriving the

similarity within a population. The Graph Matching Network (GMN) algorithm

is used in comparison to the MCS and JI method described above. The GMN is

able to find the similarity patterns and identify potential reductions, which were not

previously know when using the CFRR approach.





Chapter 6

From Bridges to Aeroplanes

Throughout this thesis, bridges have often been used to illustrate the introduced

transformations within the language and context of Irreducible Element (IE)

models. Whilst civil structures — such as bridges — are one of the desired

structure categories to be included within the PBSHM database, they are by no

means the only such category which are desired to reside within the PBSHM

database. This chapter looks at using the new IE model language in the context of

aeroplanes.

Bridges and aeroplanes can often apply commonality of properties across their IE

models, such as utilising the same metal within their construction; however, each

structure has a unique purpose and as such, has unique characteristics which require

capturing within an IE model — aside from the fact that one of them defies gravity!

With each purpose of a structure can often come unique construction techniques.

Rules defined for the creation of bridge IE models, cannot be easily transferred to

the curation of aeroplane IE models; consequently, rules are required for the process

of breaking down an aeroplane’s components into the corresponding elements and

relationships for IE model production.

This chapter firstly explores the differences in construction techniques between

bridges and aeroplanes and the associated consequences for IE model production

in Section 6.1, introduces a new graph notation for PBSHM structures via the use

of a simplified laboratory structure in Section 6.2 and finally applies these learnt

changes to a real world ex-Royal Air Force Hawk T.Mk1 in Section 6.3.

107
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6.1 Where is an Aeroplane not a Bridge?

Bridges – in the most part – are constructed to bear a weight along a defined

path over an obstacle. Aeroplanes are constructed to carry a load from one point to

another by breaking the earth’s gravitation pull. During the lifecycle of an aeroplane,

the geographical positioning of the structure will change during its operation, while

maintaining a healthy classification state; whereas, a bridge would be often classified

as unhealthy, if the geographical positioning varied during operation.

These differences in designated purpose between aeroplanes and bridges, often

lead to contrasting methodologies for their construction; subsequently, these

methodologies and design choices must be respected and captured during the

formation of any associated IE models. This is not to say that there would not be

any overlap between bridges and aeroplanes; on the contrary, there may be much

commonality of properties across both categories of structures. If one considers

the materials used: steel and aluminium are both materials that would be seen as

normal if present within either category of structure; however, how each category

uses these materials is subtly different. There are other properties which would

be classed as unusual if present within either structure: an aeroplane containing

concrete or a bridge designed with aerofoils are just two examples.

These examples highlight why the introduced restructuring of the IE model language

is fundamental for embedding different types of structures within PBSHM. The

purpose, form, material and positional knowledge on an element are now partitioned

into their designated areas, this separation of duties facilitates the shared properties

to be present; whilst permitting important structural differences to not be overlooked

or hidden because of a conflicting property.

The process of generating an IE model of a structure can be broken down into

two separate processes; determining how to divide a structure into structurally-

significant components, and then embedding the available knowledge regarding each

of these component and their interaction into the model. The restructured language

of IE models only effects the second part of this process — the knowledge embedding.

Decisions and reasoning behind what divisions have occurred are captured from

the first part of the process, but the determination of how to divide a structure,

remain valid from the rules introduced by Gosliga et al. [6]. Whilst these division

rules remain valid, they were initially formulated against a use case of bridges [38];
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therefore, this process required reevaluation against the context of aeroplanes.

One of the defining differences between the construction of an aeroplane and a bridge,

is that with bridges, the structure can often be broken down into common known

components which themselves give defined meaning towards the complex form taken

by whole physical component. If one takes for example an I-beam: the name alone

gives meaning to the shape and construction of the component. Additionally, the

shape is standardised and has a set of predefined accepted dimensions required to

capture any variations. Whereas, if one considers the fuselage of an aeroplane, there

are no defined shapes which can universally describe its complex form and no known

set of dimensions which would encapsulate knowledge for all possible variations. As

such, a different method for deconstructing the object — an aeroplane — is required

in this instance.

In general, fuselages are made by wrapping a protective layer of material around

a hollow interior; thus creating a shell. One could choose to represent the fuselage

via a series of [regular] elements with a geometrical type of ‘plate’ �‘other’

declarations — given appropriate relationships between elements — with custom

dimensions to encapsulate the bending. This approach may provide an accurate

Figure 6.1: Side view of the Hawk T.Mk1 fuselage at the Laboratory for Verification
and Validation. A section of the fuselage is enlarged to depict the joints between
two metal sheets.
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description of how the component was manufactured; however, it does not provide a

meaningful knowledge of the form of the component. In a crude IE model, one could

potentially represent this whole component by declaring a [regular] element with

a geometrical type of ‘shell’ �‘translate’ �‘cylinder’; however, the model would

not be truly representative of the form of the fuselage, let alone supporting any

form of information regarding damage localisation within the structure. Instead, a

methodology is proposed that both captures the form of the component, and also

embeds the knowledge of component manufacturing into the model.

If instead of breaking the structure down into components, one instead breaks

the structure down to the main sub-structures of an aeroplane: fuselage, wings,

horizontal stabilisers, vertical stabiliser and landing gear. One can then start

to break the sub-structures down into separate components using any visible

construction markers or structure features as a guide for where division should take

place. The goal is to try and ‘cut’ the subsections up into smaller components,

which can then be modelled as [regular] elements within the model. Markers for

division may be as simple as a weld or rivet line where two metal sheets have been

joined together, they could be where a large geometrical change is present, or they

could simply be where a gap is present to enable movement within the structure.

These markers create natural ‘lines’ on the structure for facilitating [regular] element

boundaries throughout.

Figure 6.2: Left-wing view of the Hawk T.Mk1 fuselage at the Laboratory for
Verification and Validation. The blue chalk lines on the wing indicate the subdivision
obtained by using the features of the flaps as a natural line.
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If one takes the example of the fuselage of the Hawk T.Mk1 pictured in Figure 6.1.

One can see from the enlarged section on the fuselage, that there are natural lines

present because of weld and rivet lines present from the construction of the aircraft.

There are also large geometrical changes where the cockpit is present along the

fuselage. Using these natural lines as boundaries between [regular] elements would

honour the manufacturing techniques while capturing the complex geometrical form

within the model.

This process can be further expanded when considering the wing of the Hawk

pictured in Figure 6.2. Not only are there natural lines present because of the

placement of hinges to facilitate flap movement, but the essence of the movement

being present within the wing, provides a natural division from observing this

structural feature of the ‘flaps’. The blue chalk line in Figure 6.2 shows the division

of the wing across the X axis when using the ‘flaps’ as a structural feature for

dividing up the wing. Further details on the specific division of subcomponents in

the Hawk is given in Section 6.3.

6.2 The GARTEUR Structure

The GARTEUR SM-AG19 structure is a laboratory test bed designed by the

Structures and Material Action Group (SM-AG19) of the Group for Aeronautical

Research and Technology in EURope (GARTEUR). The aim of the group was to

evaluate the performance of different ground vibration tests [95–97] on aeroplanes.

To facilitate a standardised test setup, a common test bed was build to mimic the

dynamic response of an aircraft: the GARTEUR SM-AG19 test-bed – henceforth

known as the GARTEUR structure.

Figure 6.3 shows a picture of a GARTEUR type structure in the Laboratory

for Verification and Validation [98]. The construction of the structure is simple

in nature; it consists of a fuselage, wings, winglets, and vertical and horizontal

stabilisers; however, unlike most real-world aircraft, each sub-structure present

within the aircraft consists of only a single uniform beam or plate. One could state

that the construction techniques used within the GARTEUR structure are more

akin to the construction techniques found within a bridge, than an aeroplane.

As discussed earlier in the thesis, an IE model may not be the final form in which
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Figure 6.3: A photo of a GARTEUR SM-AG19 test-bed structure in the Laboratory
for Verification and Validation.

PBSHM data resides: the PBSHM network may necessitate that an IE model

be converted into the associated AG representation. While depicting the AG

representation of a simple IE model such as a simplified two-span beam-and-slab

bridge is rudimentary, the same cannot be stated when considering such complex

models as seen from real-world structures. A simplified notation is required for

relaying the detailed information present within an IE model in an AG form. The

GARTEUR structure is used within this chapter as a bridge structure — pardon

the pun — from simplified theoretical structures to real-world structures in the

context of introducing the proposed PBSHM AG notation.

Using the newly introduced [perfect] relationship rules, the GARTEUR structure

could be broken down into any number of [regular] elements; however, for the

purpose of introducing the AG notation, the following division of sub-structures

has occurred:

� fuselage: three [regular] elements before the interaction between the fuselage

and the wing section, one [regular] element for the interaction between the
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fuselage and wing, and three [regular] elements after the wing interaction

but before the tail interaction, and finally one [regular] element where the

interaction between the fuselage and vertical stabiliser is present.

� wing : three [regular] elements on either side of the wings between the fuselage

interaction and the winglets, one [regular] element for the interaction between

the fuselage and the wing.

� winglet : three [regular] elements for each winglet with the centre element

interacting with the wing.

� vertical stabiliser : three [regular] elements, with the bottom element

interacting with the fuselage and the top element interacting with the

horizontal stabiliser.

� horizontal stabiliser : three [regular] elements, with the center element

interacting with the horizontal stabiliser.

The structure is considered as a [free] model with [perfect] relationships between

the regular elements within a sub-structure, and [joint] relationships with a [static]

nature to be present when sub-structures are interacting with each other.

6.2.1 Attributed graph notation

When one starts to study graphs from real-world structures, there are often repeated

vertices or edges present within the graph. This scenario is by no means alarming

and would be considered ordinary when one considers the reasoning behind the

repetition. The inclusion of [perfect] elements within the language of IE models

implies that the user has divided up a larger element into smaller components for any

of the reasons set out in this thesis: damage localisation and geometrical knowledge

embedded are but two of the potential reasons. This scenario will often necessitate

that vertices be present within the associated graph which are repeated with the

same attributes and respective edges.

Another scenario is that a sub-structure will be repeated numerous times within the

structure. One example of this is the landing gear on an aircraft. One could state

that the landing gear on the left wing of the aircraft is the same set of components

as used on the right wing. This causes the same pattern — or subgraph — to appear
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multiple times within an IE model graph. One could further expand this scenario

and say that certain sections of a structure are just mirrored copies from another

place within the structure, say the wings on an aeroplane: it could be stated that

the left wing is simply a mirror of the right wing.

While these repetitions within a graph are expected and indeed advantageous within

the context of similarity generation within the network ; they prove troublesome

when attempting to communicate a model’s graph representation in pictorial form

for a real-world structure, because of the space required often being larger than the

available medium. The new notation rules within this section of the chapter, aim

to aid representation of real-world structures within the pictorial form required for

documentation.

The first repetition one sees within IE model AGs, is when the same pattern of

vertex and edges are repeated multiple times within a graph. Figure 6.4 shows four

[regular] elements and their associated edges. Two of these elements have identical

attributes and matching number of edges — with identical attributes. These vertices

— highlighted in red — and edge combinations can be replaced by a single vertex

with a dashed line around the vertex and dashed edges instead of solid lines. The

number of vertices represented by this single vertex, is displayed as an integer value.

R R R R
P P P

R R

2

R
P P

Figure 6.4: In the left graph, there are two vertices which are repeated with the
same attributes and edges — highlighted in red. These vertices can be replaced
with a single vertex which instead of having a solid circle around the vertex, has
a dashed line around the vertex and the edges are replaced with dashed lines also.
The number of vertices it represents is displayed either below or to the side of the
vertex.

The second repetition one sees within IE model AGs, is when a pattern of related

vertices and edges are repeated multiple times within a graph. Figure 6.5 shows a

graph with a repeated subgraph on either side of the centre vertex — highlighted in

red. Each of the subgraphs on either side of the centre vertex have identical vertex

and edge attributes. This repetition within the graph can be replaced by selecting

one of the instances of the subgraph and providing a reference for the subgraph —

Slw in the example displayed in Figure 6.5 — and denoting the subgraph reference

by drawing a dashed box around the associated vertices and edges. Any other
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presences of this subgraph within the graph can be replaced with a square dashed

vertex with the reference of the subgraph it refers to: Slw. If an instance of the

referenced subgraph is determined to be a symmetrical instance of the referenced

subgraph, then the superscript M is to be used to denote that this instance is a

mirror of the referenced graph: SM
lw .

RR

R

R

R

R

R

R

R

PJ:S

P

P

P J:S

P

P

RR

R

R

R

SM
lw

PJ:S

P

P

P

Slw

Figure 6.5: In the top graph, there is a repetition of a subgraph on both the left
and right sides of the centre vertex — highlighted in red. This can be simplified
by drawing a dashed line around an instance of the subgraph and providing a label
for that subgraph. Subsequently, any further instances of this subgraph can use the
provided reference in a square dashed vertex to denote the presence of a referenced
subgraph.

The aforementioned notation can therefore be used to provide a succinct graph

notation for real-world structures. An AG representation for the described IE model

of the GARTEUR structure is provided in Figure 6.6 using the proposed notation.

In the interests of brevity, the AG representation of the IE model without using

the described notation is not included within the body of this thesis; however, the

interested reader can find this within the appendix as Figure B.1.
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Figure 6.6: The AG representation of the GARTEUR IE model described within
this chapter using the proposed PBSHM AG notations.
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6.3 Hawk T.Mk1

The Hawk T.Mk1. [99, 100] is a fast-jet aeroplane used by the Royal Air Force

(RAF) [101] for training pilots. Over the years, the aeroplane has served dual roles

for the RAF: originally as a training aircraft for new pilots before graduating onto

other fast-jets, and in an aerobatic role under the ‘Red Arrows’. Whilst the Hawk

T.Mk1 is being retired from its active trainer role by the RAF, the aeroplane still

serves as a good example — within the context of PBSHM — of how to deconstruct

a relatively modern aeroplane for the purpose of IE model generation.

This section of the chapter looks at applying the methodology discussed in Section

6.1 to a real world Hawk. The specific Hawk in question is XX184 and currently

resides at the Laboratory for Verification and Validation [98] in Sheffield, UK. Whilst

this instance of the Hawk pictured in Figure 6.1 and Figure 6.2 has been used to

generate the IE model included within this chapter, it should be noted that the

IE model generated is for the generalised form of a Hawk T.Mk1, as XX184 has

several components missing from the airframe (as pictured in Figure 6.2) because

of experiments and testing performed on the airframe before the IE model was

generated. Where components are missing, components have been inferred from a

mirror subcomponent — component missing on the left wing can be inferred from

components present on the right wing — or from the technical drawings by Rolfe

[100].

For the purpose of IE model generation, the Hawk can be broken down into nine

main sub-structures: fuselage, vertical stabiliser, left wing, right wing, left horizontal

stabiliser, right horizontal stabiliser, left landing gear, right landing gear, and nose

landing gear. Because of the inherent manufacturing variations, each Hawk will

be unique in its own exact dimensions; however, for the purpose of the generalised

Hawk T.Mk1, any sub-structures which are mirrored on either side of the fuselage

are stated to be a mirrored copy of its sibling sub-structure. To this end, the work

outlined within this chapter will focus on the right side of the plane and assert that

the left counterparts are mirrored sub-structures: i.e. the left wing is a mirrored

sub-structure of the right wing.

If one first considers the fuselage and vertical stabilisers, Figure 6.7a shows the

breakdown of the two sub-structures into the respective boundaries for [regular]

element curation. The divisions noted for the fuselage can be directly related to
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either geometrical changes on the fuselage — for instance, where the fuselage has a

distinct geometric change to house the canopy for the pilot — or where the fuselage

has visible manufacturing contours present — see Figure 6.1.

The minimum required knowledge for the curation of a [regular] element is contextual

type, material type, and geometry type. Whilst the exact material composition of

the airframe is unknown at the time of writing, for the purposes of an IE model,

one could make the assumption that the material used on the shell is a derivative

of aluminium: as such, ‘metal’ �‘aluminiumAlloy’ has been selected for inclusion

within the model. While one could use the standard geometrical types available
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(a) The side profile of the Hawk T.Mk1 depicting the segmentation of the fuselage and
vertical stabiliser.
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(b) The nose view of the Hawk T.Mk1 depicting the segmentation of the landing gear.

Figure 6.7: The segmentation on the Hawk T.Mk1 into [regular] elements for the
fuselage, vertical stabiliser and landing gear.
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within the IE model language to describe the aeroplane, any visualisations of the

models’ form would not accurately reflect the form of the Hawk T.Mk1; instead,

the advanced geometrical type of ‘shell’ �‘translateAndScale’ �‘cylinder’ is used

within the model.

6.3.1 Geometrical data method

Whilst the dimensions of the geometry object are not required for the generation of

a valid IE model, they are potentially advantageous when considering the evaluation

of similarity within the network. As such, a method was developed for capturing

the geometrical dimensions on such a large object. If one considers the marked

boundaries for [regular] elements depicted in Figure 6.7a as a face within a [cuboid]

bounding box, one needs to capture the x and y movements within the face to

encapsulate the shape.

The method used, was in the direction of the face, provide two fixed references (kt

and kb) which the shape within the face would be measured against. Figure 6.8

fixed reference (kt)

fixed reference (kb)

ϕt

ϕbϕw

ϕh

Figure 6.8: The measurements taken of each face for the fuselage of the Hawk
T.Mk1.
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shows the example of such an aforementioned shape and the relation between the

two fixed references. The first measurement (ϕh) measures the distance between the

two fixed references. The second measurement (ϕt) is from the top of the shape

within the face and top fixed reference (kt). The third measurement (ϕb) is from

the bottom of the shape within the face and the bottom fixed reference (kb). The

fourth and final measurement is between the left and right furthermost edges of the

shape to get the width of the shape (ϕw).

To acquire these dimensions for the real-world Hawk in the Laboratory for

Verification and Validation (LVV), two fixed references were used: a crane locked

out at a fixed height attached to a flat surface (kt), and the floor of the LVV (kb).

Figure 6.9 shows the modifications made to the crane to provide the fixed reference

kt. Figure 6.10b and Figure 6.10c show the laser measure used to measure the

distance between two points. To measure the width of the shape at the given face

(ϕw), a plumb line was used to transfer the point onto the plane of kb (see Figure

6.10a). Once both points from the airframe were transferred to kb, the distance

Figure 6.9: The top fixed reference used for the measurements of the Hawk T.Mk1: a
crane locked at a fixed height in the Laboratory for Verification and Validation, thus
facilitating the fixed reference to be moved to the desired position on the aeroplane.
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between these points was measure to give ϕw. These measured values can then

be transformed into the dimensions supported within ‘shell’ �‘translateAndScale’

�‘cylinder’.

(a) A plumb line was utilised to transfer
a position on the aeroplane to the
bottom fixed reference — the floor
of the Laboratory for Verification and
Validation.

(b) A laser distance measure was utilised
to measure points on the hawk to either
reference object.

(c) The laser distance measure was
placed in a jig to utilise gravity to ensure
the distance measure was as square as
possible to the reference object when the
surface was not horizontal.

Figure 6.10: The equipment used to generate the measurement dimensions set forth
in Figure 6.8.
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6.3.2 Elements and relationships

To depict the segmentation used on the generalised Hawk T.Mk1, three figures

have been provided to note the approximate boundaries between [regular] elements.

Figure 6.7a shows the side view of the Hawk T.Mk1 and depicts the segmentation

along the fuselage and vertical stabiliser. As aforementioned, the segmentation

along the fuselage has occurred at any instance where large geometrical changes

arise within the fuselage or when damage detection is desired. For instance, towards

the end of the fuselage, it is beneficial to know where, within the fuselage, the

interactions between the vertical and horizontal stabilisers take place, as such, the

fuselage is segmented to facilitate this desired localisation within the model.

Figure 6.7b shows the view of the Hawk from the nose of the aeroplane to depict the

segmentation in the landing gear. For the purpose of generating the IE model, the

Hawk is modelled in the situation that the real-world example is found within the

LVV: at rest on the ground being supported through its landing gear. The desire

behind the Hawk IE model, is to serve as a basis for finding similarity throughout

the airframe of an aeroplane; as such, the landing gear has been simplified to only

the shock absorber, support structure and wheel, as it is important to provide the

context as to how the model is supported from the ground, but is not required for

airframe matching.

Figure 6.11 shows the final perspective of the Hawk T.Mk1, from directly above

the aircraft, to provide the segmentation for the wings and horizontal stabilisers.

For both the wings and the horizontal stabilisers, the segmentation of [regular]

elements has occurred along features which are present upon the real-world aircraft.

Because of the movement required within a wing to provide the functionality of

the flaps, they are not often of a singular construction. There are gaps present

to provide a clearance for the flap and aileron movement within the wing. In the

case of the flaps and the ailerons, these gaps provide a natural boundary for the

corresponding [regular] elements; however, these boundaries can then be extended

to provide segmentation for the other sections of the wing. Figure 6.2 shows how

the boundaries for the flaps and the ailerons have been extended on the real-world

Hawk to provide a damage localisation-based segmentation for the rest of the wing

— the extension of the segmentation is depicted by a blue chalk line on the wing.

The outline of the Hawk used within Figures 6.7a, 6.7b, and 6.11, is based upon a

simplified tracing of the drawings constructed by Rolfe [100].
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Figure 6.11: The segmentation on the Hawk T.Mk1 into [regular] elements for the
left wing, right wing, left horizontal stabiliser, and right horizontal stabiliser.
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For brevity, the full tables including all element and relationship attributes are

not included within this thesis; instead, an abridged version is included with the

minimum required information for each root object as per the PBSHM Schema

v1.1.0 specification included within this thesis. Table 6.1 lists the [regular] elements

curated using the segmentation described in Figures 6.7a and 6.11 for the fuselage

and right-wing sub-structures. In the interests of chapter narrative, the tables for

the other elements curated during the segmentation depicted in Figures 6.7a, 6.7b,

and 6.11 are excluded from the main body of this chapter and instead included in

the Appendix. The left wing with the vertical and horizontal stabilisers is covered

in Table B.1, the landing gear in Table B.2, and the [ground] elements in Table B.3.

Fuselage
Element Names Type Attributes

antenna
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘solid’ �‘translateAndScale’ �‘cylinder’

fuselage-a, fuselage-b,
fuselage-c, fuselage-d,
fuselage-e, fuselage-f,
fuselage-g, fuselage-h,
fuselage-i, fuselage-j,
fuselage-k, fuselage-l

Contextual: ‘fuselage’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

Right Wing
Element Names Type Attributes
right-wing-a, right-wing-b,
right-wing-c, right-wing-d,
right-wing-e, right-wing-f,
right-wing-g

Contextual: ‘wing’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

right-flap-a, right-flap-b,
right-flap-c, right-flap-d,
right-flap-e

Contextual: ‘aerofoil’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

right-aileron
Contextual: ‘aerofoil’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

Table 6.1: The [regular] elements for the Fuselage and Vertical Stabiliser of the
generalised Hawk T.Mk1.

Using the rules defined within this thesis for relationship types, [regular] elements

that have been created to segment a larger element are represented by [perfect]

relationships, any presence of movement between [regular] elements is represented
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by [joint] relationships with a [dynamic] nature, any other interactions between

[regular] elements are modelled via [joint] relationships with a [static] nature; finally,

any interactions with [ground] elements are modelled using [boundary] relationships.

Fuselage
Relationship Name Element Set Type
antenna-fuselage-a {antenna, fuselage-a} [joint], [static]
fuselage-a-b {fuselage-a, fuselage-b} [perfect]
fuselage-b-c {fuselage-b, fuselage-c} [perfect]
fuselage-c-d {fuselage-c, fuselage-d} [perfect]
fuselage-d-e {fuselage-d, fuselage-e} [perfect]
fuselage-e-f {fuselage-e, fuselage-f} [perfect]
fuselage-f-g {fuselage-f, fuselage-g} [perfect]
fuselage-g-h {fuselage-g, fuselage-h} [perfect]
fuselage-h-i {fuselage-h, fuselage-i} [perfect]
fuselage-i-j {fuselage-i, fuselage-j} [perfect]
fuselage-j-k {fuselage-j, fuselage-k} [perfect]
fuselage-k-l {fuselage-k, fuselage-l} [perfect]

Right Wing
Relationship Name Element Set Type
right-wing-a-b {right-wing-a, right-wing-b} [perfect]
right-wing-b-c {right-wing-b, right-wing-c} [perfect]
right-wing-c-d {right-wing-c, right-wing-d} [perfect]
right-wing-d-e {right-wing-d, right-wing-e} [perfect]
right-wing-e-f {right-wing-e, right-wing-f} [perfect]
right-wing-f-g {right-wing-f, right-wing-g} [perfect]
right-wing-flap-a {right-wing-a, right-flap-a} [joint], [dynamic]
right-wing-flap-b {right-wing-b, right-flap-b} [joint], [dynamic]
right-wing-flap-c {right-wing-c, right-flap-c} [joint], [dynamic]
right-wing-flap-d {right-wing-d, right-flap-d} [joint], [dynamic]
right-wing-e-aileron {right-wing-e, right-aileron} [joint], [dynamic]
right-wing-f-aileron {right-wing-f, right-aileron} [joint], [dynamic]
right-wing-g-aileron {right-wing-g, right-aileron} [joint], [dynamic]
right-wing-a-flap-e {right-wing-a, right-flap-e} [joint], [dynamic]
right-wing-b-flap-e {right-wing-b, right-flap-e} [joint], [dynamic]
right-wing-c-flap-e {right-wing-c, right-flap-e} [joint], [dynamic]
right-wing-d-flap-e {right-wing-d, right-flap-e} [joint], [dynamic]
right-wing-a-fuselage-f {right-wing-a, fuselage-f} [joint], [static]

Table 6.2: The relationships for the Fuselage and Vertical Stabiliser of the
generalised Hawk T.Mk1.

The relationships defined via the segmentation present within the fuselage and
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right wing — as per the Figures 6.7a and 6.11 — are included within Table 6.2.

As discussed previously, the relationships between the other elements defined in

Figures 6.7a, 6.7b, and 6.11 are included within the Appendix of this thesis. The

left wing and vertical stabiliser is covered in Table B.4, the vertical and horizontal

stabilisers to the fuselage relationships are covered in Table B.5, and the landing

gear relationships are covered in Table B.6.

6.3.3 Graphs

Using the graph notation introduced within Section 6.2, the IE model representation

of the generalised Hawk T.Mk1 is transformed to its final resting place in the

form of an AG. The AG notation not only provides a concise methodology for

communicating the web of interconnections between the elements and relationships

within a model, but provides a visual representation of the form that a structure

takes.
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Slg

Figure 6.12: The subgraph for the landing gear in the generalised Hawk T.Mk1.

The standard notation and labelling set forth in Section 6.2 is expanded for the

purpose of the generalised Hawk T.Mk1 graphs to include a colour scheme for

representing the contextual type within a [regular] element. A contextual type of

‘fuselage’ is represented via a purple filled vertex, a contextual type of ‘aerofoil’ is
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represented by a green filled vertex, a contextual type of ‘wing’ is represented by a

blue filled vertex, a contextual type of ‘wheel’ is represented by a pink filled vertex,

and a contextual type of ‘other’ is represented by an olive filled vertex.

To aid in the visual representation of the Hawk T.Mk1, the graph has been split into

two views: the ‘top down’ view (see Figure 6.14), and the ‘side’ view (see Figure

6.13). The following subgraphs are present within the model: the landing gear (Slg),

the right wing (Srw), and the right horizontal stabiliser (Srhs).

Figure 6.12 depicts the subgraph of the landing gear: Slg. As discussed previously,

the landing gear — for the purpose of the model in question — has been simplified

in nature, and as such, is declared as a subgraph — external to the main graphs —

which can then be placed within the main body of the graph via a reference node.

Within the ‘side’ view of the Hawk graph (see Figure 6.13), the wings and

horizontal stabilisers are omitted from the graph to align the graph to the displayed

segmentation in Figure 6.7a. There are no subgraphs declared within Figure 6.13;

however, the landing gear subgraph Slg is referenced to depict the nose landing gear

location within the fuselage.

Within the ‘top down’ view of the Hawk graph (see Figure 6.14), the subgraphs Srw

Slg
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Figure 6.13: The graph of the ‘side’ view of the generalised Hawk T.Mk1 representing
the fuselage and vertical stabiliser.
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Figure 6.14: The graph equivalent to Figure 6.14 of the generalised Hawk T.Mk1.

and Srhs are declared, with a mirrored reference of the graphs SM
rw and SM

rhs also

present within the graph on the opposite side of the fuselage vertices. As part of

the subgraph Srw, the subgraph Slg is also referenced; thus, when a reference to Srw

is made, the Slg subgraph is also included.

6.4 Conclusion

In conclusion, this chapter demonstrates that IE models are not just for civil

structures and can be used across a range of structure types — including aerospace;

however, the methodology utilised within the curation of IE models will require

adaptation and modification dependent upon the structures in question.

A new graph notation has been introduced to simplify the associated graphs of real-
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world structures via the use of subgraphs, reference nodes and mirrored reference

nodes. A methodology was introduced for measuring aerospace structures and

breaking down these large complex structures into repeatable steps for capturing

their geometric representations.

Finally, the introduced IE model language, AG notation and measuring techniques

were applied to a real-world aircraft in the Laboratory for Verification and

Validation; a Hawk T.Mk1.





Chapter 7

Conclusions and Future Work

This thesis has focussed on the issues faced within the similarity assessment portion

of PBSHM. The goal of PBSHM is to be able to transfer learnt knowledge from a

source structure to a target structure via a process called transfer learning; however,

with the aim of reducing the likelihood of negative transfer — when the transferred

knowledge negatively impacts the knowledge of the target structure — PBSHM first

aims to establish a base similarity between a group of structures — the population

— to guide if transfer learning should be attempted.

To facilitate the aforementioned similarity between structure, one needs to establish

a shared domain in which all structures may be compared equally. The first section

of this thesis radically reconstructed the core concepts, definitions, and language

of an Irreducible Element (IE) model to enable embedding additional engineering

knowledge and design choices within the model. The second section of this thesis

introduced a novel ecosystem and shared-domain context for PBSHM similarity

computations: network, framework, and database. The third section of this thesis

looked at the problems present during similarity comparisons because of author bias,

and how the network can adapt to this bias, via the reconstructed language of an

IE model and the use of the Canonical Form. Lastly, a case study of generating

an IE model on a real-world structure is given via the Hawk aeroplane and a new

graphical notation for IE models is introduced.

Chapter 3 introduced the concept of an Irreducible Element (IE) model. Before

any attempt can occur to determine the similarity between two structures, there
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first must be a common reference for describing the structures in question, to

facilitate a level playing field. The IE model is the aforementioned vehicle in

PBSHM to describe structures; however, the knowledge contained within this

domain — prior to this thesis — did not facilitate either a standardised language

for representation within an algorithmic space or encapsulate enough knowledge

regarding the engineering knowledge and design choices for the network to reliably

understand certain modelling scenarios. Therefore, a radical reconstruction of

both the IE model language and the knowledge contained within the domain was

required.

The reconstructed language within the IE model domain now unifies any physical

component within a model as an element and any interaction between these

components as a relationship. Different use-case scenarios of an element or

relationship are embedded within the language via the use of object types. [regular]

elements represent a component that is part of the structure being modelled, and a

[ground] element represents any component that should be considered as external

to the current structure being modelled. [perfect] relationships represent when

the two [regular] elements should be considered as one larger [regular] element

and have only been divided to encapsulate a components’ complex geometrical

form. A [connection] relationship is where two or more [regular] elements are held

together by an unknown component excluded from the model; a [joint] relationship

is where the physics between two [regular] elements is desired to be modelled, and

a [boundary] relationship denotes where a [regular] element comes in contact with

a [ground] element and indicates the boundary of the structure in question.

Furthermore, the model itself may also be determined as a [free] model, where the

structure is considered in a void — no [ground] elements or [boundary] relationships

may be present within the model — or as a [grounded] model where the interactions

between the structure and any external systems are included in the model. The

language of an IE model is now also defined via a standardised representation,

providing each object with a separated subdomain of accepted attributes and values

to facilitate an equal description of structural properties and knowledge across the

network.

Chapter 4 introduced the holistic ecosystem to provide the technical grounding for

PBSHM technology. Akin to the work conducted in Chapter 3, Chapter 4 examined

the requirements for a technical ecosystem to provide a shared domain for PBSHM

technology. Because of the nature of PBSHM, data are required to be processed
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on multiple structures and datasets. To aid in the adoption of PBSHM technology,

a shared computational space is desired to operate universally across all structures

and associated data that may be present within PBSHM; as such, three shared

data domains were identified as being necessitated: data domain (the database),

computational domain (the framework), and the similarity domain (the network).

The database was implemented via a NoSQL database — MongoDB to be precise

— and a PBSHM-specific schema was built to regulate and accept data in a shared

format. The database over time will need to accept all relevant PBSHM data;

however, for the purpose of this thesis, the focus was placed upon implementing

and supporting channel data and IE model data. Channel data were defined as any

raw data occurring from a sensor on a structure from either a long-term monitoring

campaign or from a short-term experimental setup. The standardised representation

of IE model data defined in Chapter 3 is implemented into the PBSHM schema via

the native JSON document format within MongoDB.

The framework was implemented via a Python web framework — based upon the

micro-web framework: flask. Rather than the framework being a single entity, it

is instead split into a core computational platform, whose functionality can then

be extended via modules. This scenario not only enables each module to support

and govern its own domain of the PBSHM problem, but permits algorithms to

be built in conjunction with research developments. Akin to the database, the

framework over time will need modules curated that support the full spectrum

of computational algorithms necessitated in PBSHM; however, for the purpose of

this thesis two modules were implemented inline with the supported data. The

first module enables the viewing of channel data stored within the database. The

second module facilitates the generation of similarity metrics via the Maximum

Common Subgraph (MCS) and Jaccard Index — again, data is pulled directly from

the database. The Jaccard Index is then calculated for an example eight-bridge

dataset natively within the framework, showcasing how similarity metrics in the

network can now be generated using the reconstructed language of IE models, the

database, and the framework.

The network is the space in which the connections between structures live. Whilst

the database and the framework may provide the shared domain and technical

implementations for both the data and computations to respectfully reside, the

network is the shared domain where all of these individual items come together to

build the network of similarity. The definition of the network is expanded to include
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not only IE model data and similarity metrics, but to include any data contained

within the database or framework. The network of similarity is a fully-connected

graph where each node in the graph is a structure within PBSHM, any available data

on that structure is then a sub-node of the structure node. The similarities between

structures are stored as edges within the network; therefore, because of potentially

multiple similarity metrics within PBSHM, each structure may have multiple edges

to another node in the network.

Chapter 5 introduced the problem of variations being present within an IE model,

as a result of the inherent issue of author bias during the curation of IE models

from real-world structures. Nuanced variations within a model, better reflect the

current understanding and knowledge of the author on the structure; however, these

same variations in models, provide a computational conundrum when determining

the similarity. If the network cannot identify when two models are from the same

structure and therefore identical, the premise of generating a similarity between

different structures falls short. As such, for comparison within the network, a single

structure should have only one unique representation within the network; regardless

of any human-induced variations.

The Canonical Form IE model is introduced as the vehicle for the aforementioned

single representation per unique structure. A detailed IE model — a model

generated by a human — is reduced down to the Canonical Form version via

the Canonical Form Reduction Rules (CFRR). The reconstructed language of an

IE model, enables the CFRR to understand why certain variations within the

attributed-graph representation are present, and ultimately enables the variations

to be removed from the graph, without invalidating any knowledge which is later

relied upon within the network of similarity. The chapter introduces the first three

CFRR: unique [ground] elements, [perfect]-[joint]-[joint] relationships, and [perfect]

relationships. The concept of a Reality Model is introduced within the chapter. An

IE model only contains knowledge pertinent to the composition of a structure. The

Reality Model contains all the information regarding the world in which the IE

model is placed. Whilst the notation of a Reality Model is not expanded upon in

this thesis, it is important to understand the role in which the Reality Model may

affect the potential reductions made, to derive the Canonical Form representation.

The purpose of the Canonical Form is thus expanded to directly interact within

the network. In the network, instead of each structure requiring similarity metrics

calculated to each other structure, the Canonical Form is proposed as a known
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reference within the network, to reduce the number of computations necessitated in

the network. Each structure would have the similarity metrics calculated to only

the known Canonical Form reference models, instead of every structure within the

network.

The case study of a simplified beam and slab bridge is introduced. The Canonical

Form representations are generated for the simplified beam and slab bridges from

two to ten spans. An input dataset is also generated for the simplified beam and slab

bridges from two to ten spans; however, these input bridges contain the highlighted

variations within the graphs. Once again, the MCS and Jaccard Index is utilised

to generate two similarity matrices. The first matrix contains the similarity scores

when comparing the input graphs against the known representation graphs without

any reduction of the input graphs. The second matrix performs the same similarity

comparison as the first matrix; however, the input graphs are reduced via the CFRR

before comparison to the known representations. The results highlight that without

the CFRR, the algorithm in question is not able to find any noticeable pattern of

similarity within the two datasets; however, when the CFRR are used, the algorithm

is able to find the start of a pattern of similarity in the two datasets. This work

highlights the importance of the discovery and development of the CFRR within

PBSHM.

This Chapter also introduces the idea of using an algorithm from a Machine-Learning

(ML) domain instead of a graph-theory domain, to compute the similarity in the

network. The algorithm in question is a Graph Matching Network (GMN) algorithm,

where either pairs or triplets of graphs can be utilised to teach the algorithm what

is similar or not. The GMN algorithm is utilised to generate the same similarity

matrix as used in the MCS and Jaccard Index results. The GMN is successfully

able to identify the desired pattern of similarity between the input graphs and the

known representations graphs.

Chapter 6 demonstrated that IE models are not restricted to civil engineering

structures and are applicable to a full range of real-world structures; namely in

this chapter, aerospace structures. The generalised Hawk T.Mk1 is introduced as

a real-world aeroplane structures for which an IE model is generated. Whilst the

rules for what constitutes an element and relationship remain constant across all

structures, the methodology utilised to break down the structure into the individual

components for inclusion with the model, must be adapted and modified dependent

upon the class of structure being examined. For the generalised Hawk T.Mk1, the
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chapter depicted how to break down the airframe into an IE model and the process

used to translate the geometrical representation of the real-world structure in the

LVV, to the attributes available within the IE model language.

In PBSHM, representing an IE model of a real-world structures in a graph

visualisation can often prove a complicated endeavour, because of the 3D nature

and scale of the graph. To facilitate concise visual representation of these graphs,

PBSHM required a new notation for the graphs derived from real-world IE models.

The aforementioned notation is introduced in Chapter 6 to minimise the repetition

within the graph via the inclusion of subgraphs, reference nodes and mirrored

reference nodes. The graph of the generalised Hawk T.Mk1 is included within the

Chapter.

7.1 Future Work

The work outlined in this thesis provides the first holistic computational

conceptualisation for PBSHM. Whilst this work may be the first of its kind in

the field, there is still further work to be completed on each component of the

technological ecosystem described within this thesis, to achieve the lofty objectives

of PBSHM.

The reconstructed language of IE models, makes significant progress towards

achieving the end purpose of the model: being able to embed the structural

knowledge and composition of any structure, regardless of type, within PBSHM.

There are however, gaps within the language which prevent a full embedding of

engineering knowledge on certain classes of structures. Currently, an IE model has

the language to describe the geometrical properties for an I-beam; however, there

are other beam-related geometrical representations which require supporting within

an IE model: C-beam, H-beam, W-beam, etc. The geometrical representations of

a [regular] element as a whole, will need further expansion to embed yet unseen

forms of components within the model.

There are also gaps within the theory of an IE model which themselves will also

require addressing. There is currently no vehicle within an IE model for the

modeller to inform the framework and subsequently the network regarding the

granularity of the model. Has the modeller focussed in great detail on modelling
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the interaction between a specific component, whilst giving a very abstract and

general representation for the rest of the model? Akin to the understanding that

the CFRR provide the network regarding potential variations, understanding the

granularity of a model — or subsection of a model — may prove invaluable for

generating similarity metrics across the range of varied structures within PBSHM.

Another IE model theory which may require potential expansion over time, is the

reference to external systems within a model. Currently, the vehicle for achieving

this is a [ground] element ; however, there is no reference included as to what the

external system in question is. As the external system could also be modelled as

an IE model, it is envisioned that the definition of a [ground] element may be

expanded upon in the future to include a reference to another IE model, if such

a model exists. This approach would bolster the network ’s understanding of the

context of any directly-related structures. This same approach may also be included

to achieve a referencing of common subsections of an IE model. If one pictures the

Hawk T.Mk1 included in Chapter 6, within the network there may be a detailed IE

model (an IE model with a high level of granularity) of a particular subsection of

the aeroplane; say the landing gear. The landing gear may be used across multiple

makes and models of aeroplane, so instead of requiring the modeller to encapsulate

the intricate workings of the components which form the landing gear, they instead

can reference an external IE model which contains the relevant information. The

external referencing principle and the proposed granularity labels could also then be

combined for referencing generic high-level sections of a structure, as the purpose

for why the IE model is being generated may only be concerning a certain section

of the structure and not the high-level generic sections.

The Reality Model was introduced within the thesis as the vehicle for embedding

knowledge regarding the world in which the IE model lives in PBSHM. It is fair to say

that the Reality model is currently just a notion of what it may eventually be. The

desire is that the Reality model will encapsulate all currently available knowledge on

a structure. While the structural component of the Reality model will be delegated

to the IE model definitions and language, there are vast areas of knowledge which

require development of their own definitions and language to correctly embed their

knowledge within the model. Four of the aforementioned key knowledge areas

are: Environmental and Operational Variables (EOV’s), features, labels, and sensor

placement. Enabling the embedding of these key knowledge areas into the Reality

Model, is crucial for facilitating SHM-driven problems within PBSHM. These areas
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of research into the Reality model, will directly lead into future developments in the

network, framework, and database. As additional areas of knowledge are supported

within a Reality model, the network, framework, and database must be updated to

include these areas of knowledge within their associated shared data domain.

Removing unrequired variations from models within the network of similarity is

going to be a key area of research going forward, if PBSHM is ever going to realise

its objective. The Canonical Form is the vehicle within PBSHM, to have a network

free of variations which will inevitably hamper potential population generation via

similarity metrics. The results of the CFRR verses the GMN in Chapter 5 highlight

two key points for future research. The first core area of research needs to be into

the CFRR. The CFRR are clearly lacking total coverage of all potential reductions

of variations, even in a simplified simulated dataset. Further work needs to be

conducted into expanding the current three derived rules and potential new rules

of reduction or inclusion: it is envisioned that the CFRR in the future may not

only remove elements from the model, but may also include missing elements from

a model.

As the CFRR are developed to understand what data are required within the

network, undoubtably the version of what is stated to be the Canonical Form will

also change. The evolving reference is not problematic, as IE models will be stored

within the database as their detailed author-submitted versions. New Canonical

Form version of the detailed models will be generated inline with the evolving

knowledge around network requirements. The Canonical Form produced today from

a detailed model, is highly unlikely to be the Canonical Form produced in the future

from the same detailed model.

The second highlighted area of further research from the similarity comparisons is

that of utilising an ML approach within the network. The GMN result highlighted

the power of utilising an ML approach to similarity as the GMN was able to find

patterns and reductions not known to the CFRR; however, an ML approach is not a

panacea solution for similarity. To teach the GMN, it required a not insurmountable

amount of data to train the algorithm for successful recognition of the variations

present within the dataset. Whilst this is fairly easy to overcome when utilising

a simulated dataset, in the real-world, there are not enough IE models of real

structures yet, to accomplish such an ML-based approach. As with most things

in life, one needs to explore both paths on the road to similarity in PBSHM. Whilst

PBSHM is in its infancy, one will need to rely on non-ML approaches, such as the
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MCS from graph theory to address the similarity problem. This issue subsequently

necessitates the highlighted research opportunities with the CFRR. When PBSHM

has advanced in years, and has a greater amount of structures modelled within the

network, ML approaches may prove to be the favoured solution because of thier

ability to showcase yet unknown relations.





Appendix A

PBSHM schema

A.1 Root Schema

Property Description Type

version The version of the PBSHM Schema that the document is

compliant towards. Accepted values: ‘1.1.0’

string

name A unique name of the structure within the population. string

population The name of the initial type of structures to which the

structure belongs.

string

timestamp Timestamp of when the associated data were recorded,

stored in UTC nanoseconds since UNIX epoch.

long

models Associated models for the given structure. See Table A.2

for the available child properties.

object

channels Associated raw channel data acquired from either a short

or long-term monitoring campaign. See Table A.39 for the

available child properties and see Table A.40 for a list of

accepted values.

Required Properties: version , name , population and timestamp

Table A.1: The available properties for the declaration of a structure within the
PBSHM Schema.

141
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Property Description Type

irreducibleElement The Irreducible Element (IE) model that

describes the structure at the given time point.

See Table A.3 for the available child properties.

object

Required Properties: None

Table A.2: The available properties for the declaration of a model within the PBSHM
schema.

A.2 IE Model Schema

Property Description Type

type The selected type of the model, either ‘free’ for a [free]

model or ‘grounded’ for a [grounded] model.

string

elements An array of element objects. See Figure 3.5 for the

available elements dependent upon the selected model

type.

array

relationships An array of relationship objects. See Figure 3.5 for

the available relationships dependent upon the selected

model type.

array

Required Properties: type and either elements or relationships

Table A.3: The available properties for the declaration of an Irreducible Element
model within the PBSHM schema.
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A.2.1 Regular element

Property Description Type

name The unique name for the element within the model. Must

have a length between 1 and 64 characters.

string

description Additional none structured information to describe the

element.

string

type Selected type of element. Accepted values: ‘regular’. string

coordinates Position of the [regular] element within the models

coordinate space. See Table A.5 for the available child

properties.

object

contextual Purpose of the [regular] element has within the model.

See Table A.7 for the available child properties.

object

geometry Details of the shape and volume that the [regular] element

ocupies within the models coordinate space. See Table

A.8 for the available child properties.

object

material Details of the material and associated properties that the

[regular] element is constructed from. See Table A.15 for

the available child properties.

object

Required Properties: name , type , contextual , geometry and material

Table A.4: The available properties for the declaration of a [regular] element within
the PBSHM schema.

Coordinates

Property Description Type

global Translational and Rotational coordinates within the global

coordinate space. See Table A.6 for the available child

properties.

object

Required Properties: global

Table A.5: The available properties for the coordinate object within a [regular]
element in the PBSHM schema.
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Property Description Type

translational X, Y and Z translational values within the global

coordinate space. See ‘Translational coordinates

Object’ in Table A.35 for the available child properties.

object

rotational Alpha, Beta and Gamma rotational values within the

global coordinate space. See ‘Rotational Coordinates

Object’ in Table A.35 for the available child properties.

object

Required Properties: translational

Table A.6: The available properties for the global coordinate object within a [regular]
element in the PBSHM schema.

Contextual

Property Description Type

type The type that describes the purpose of the element within the

model. Accepted values: ‘wall’, ‘slab’, ‘beam’, ‘cable’, ‘block’,

‘plate’, ‘column’, ‘deck’, ‘aerofoil’, ‘wing’, ‘fuselage’, ‘tower’,

‘wheel’ or ‘other’.

string

Required Properties: type

Table A.7: The available properties for the contextual object within a [regular]
element in the PBSHM schema.
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Geometry

Property Description Type

type The shape that describes the volume which the element

occupies. See Table A.34 for the available nested child

properties. See Table A.9 for the list of accepted standard

types and Table A.14 for the list of accepted complex

types.

object

bounding Dimensions of the smallest box which encapsulates all the

associated dimensions of the element. See Table A.10 for

a list of child properties.

object

faces The dimensions and properties of each face of the complex

shape being described. See Table A.11 for a list of child

properties. Only available when the shape is a complex

geometry (See Table A.14).

object

dimensions Each measurable dimension associated with the shape

being described which belong to the whole shape. There

is one child property for each given dimension. Child

properties are either a named property (See Tables A.9

and A.14), or they are wildcard properties which can

have any valid JSON string as their name. The value for

the property is an object for which the child properties

can be found in Table A.38. For a wildcard property,

the accepted values are ‘Wildcard’ under ‘Value Object

Type’. For named properties, the accepted value type are

declared in Table A.9 for standard geometrical types and

in Table A.14 for complex geometrical types.

object

Required Properties: type . For any complex types declared in Table

A.14: bounding if faces or dimensions declared, faces if bounding or

dimensions declared.

Table A.8: The available properties for the geometry object within a [regular]
element in the PBSHM schema.
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Type Tree Dimension Property Dimension Object

beam � rectangular length , width , height Linear

beam � circular length , radius Linear

beam � i-beam length , d , h , s , b, t Linear

beam � other length Linear

plate � rectangular thickness , width ,

length

Linear

plate � circular thickness , radius Linear

plate � other thickness Linear

solid � translate � cuboid length , width , height Linear

solid � translate � sphere radius Linear

solid � translate � cylinder radius , length Linear

solid � translate � other

shell � translate � cuboid thickness , length ,

width , height

Linear

shell � translate � sphere thickness , radius Linear

shell � translate � cylinder thickness , radius ,

length

Linear

shell � translate � other thickness Linear

Required Properties: Any named dimension property in the Table above. See

Table A.38 for the available child properties and, within the table, ‘Linear’ under

‘Dimension Object Type’ for the accepted values.

Additional Information: Additional dimensions can be declared as a Wildcard.

See Table A.38 for the available child properties and, within the table, ‘Wildcard’

under ‘Dimension Object Type’ for the accepted values.

Table A.9: The available standard geometrical types and their associated required
dimensions properties and accepted object types for a [regular] element in the
PBSHM schema.
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Property Description Type

type The type of shape used to encapsulate the element. Accepted

Values: ‘cuboid’.

string

length The measured length of the cuboid bounding box. See Table

A.38 for the available child properties and, within the table,

‘Linear’ under ‘Dimension Object Type’ for the accepted

values.

object

width The measured width of the cuboid bounding box. See Table

A.38 for the available child properties and, within the table,

‘Linear’ under ‘Dimension Object Type’ for the accepted

values.

object

height The measured height of the cuboid bounding box. See Table

A.38 for the available child properties and, within the table,

‘Linear’ under ‘Dimension Object Type’ for the accepted

values.

object

Required Properties: type , length , width and height

Table A.10: The available properties for the cuboid bounding box object within a
[regular] element in the PBSHM schema.

Property Description Type

left The left face of the shape within the bounding box; the face

at which the value for X on the horizontal axis would be 0.

See Table A.12 for a full list of child properties.

object

right The right face of the shape within the bounding box; the face

at which the value for X on the horizontal axis would be N,

where N equals the dimensional property which is on the X

axis. See Table A.12 for a full list of child properties.

object

Required Properties: left and right

Table A.11: The available properties for the complex geometrical faces object within
a [regular] element in the PBSHM schema.
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Property Description Type

dimensions Each measurable dimension associated with the face

being described. There is one child property for

each given dimension. Child properties are either a

named property (See Table A.14), or they are wildcard

properties which can have any valid JSON string as their

name. The value for the property is an object for which

the child properties can be found in Table A.38. For

a wildcard property, the accepted values are ‘Wildcard’

under ‘Value Object Type’. For named properties, the

accepted value type are declared in Table A.14.

object

translational Y and Z translational values within the bounding box

coordinate space to convey the translational movements

of the face. See Table A.13 for a full list of child

properties.

object

Required Properties: dimensions and translational

Table A.12: The available properties for the complex geometrical face side object
within a [regular] element in the PBSHM schema.

Property Description Type

y The Y translational value within the bounding box coordinate

space. See Table A.36 for the available child properties and,

within the table, ‘Linear’ under ‘Value Object Type’ for the

accepted values.

object

z The Z translational value within the bounding box coordinate

space. See Table A.36 for the available child properties and,

within the table, ‘Linear’ under ‘Value Object Type’ for the

accepted values.

object

Required Properties: y and z

Additional Information: The values for the translational movements must be

relative to the bounding box dimensions.

Table A.13: The available properties for the complex geometrical face translation
object within a [regular] element in the PBSHM schema.
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Type Tree Dimension

Property

Dimension Object

solid � translateAndScale � cuboid length Linear Dimension

solid � translateAndScale � cylinder length Linear Dimension

solid � translateAndScale � other length Linear Dimension

shell � translateAndScale � cuboid length Linear Dimension

shell � translateAndScale � cylinder length Linear Dimension

shell � translateAndScale � other length Linear Dimension

Type Tree Face Dim.

Property

Face Dim. Object

solid � translateAndScale � cuboid width ,

height

Linear Dimension

solid � translateAndScale � cylinder radius Linear Dimension

solid � translateAndScale � other

shell � translateAndScale � cuboid thickness ,

width ,

height

Linear Dimension

shell � translateAndScale � cylinder thickness ,

radius

Linear Dimension

shell � translateAndScale � other thickness Linear Dimension

Required Properties: Any named property in either the dimension properties or

the face dimension properties in the Table above. See Table A.38 for the available

child properties and, within the table, ‘Linear’ under ‘Dimension Object Type’

for the accepted values.

Additional Information: Additional dimensions can be declared as a Wildcard.

See Table A.38 for the available child properties and, within the table, ‘Linear’

under ‘Dimension Object Type’ for the accepted values.

Table A.14: The available complex geometrical types and their associated required
dimension properties, face dimension properties and accepted object types for a
[regular] element in the PBSHM schema.
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Material

Property Description Type

type The classification of the material that composes the

[regular] element. See figure A.1 for the list of accepted

values.

object

symmetry The symmetry of the physical properties of the material.

Accepted values: ‘isotropic’.

string

properties Each measurable property of the material being described.

See Table A.16

array

Required Properties: type , symmetry if properties provided

Table A.15: The available properties for the material object within a [regular]
element in the PBSHM schema.

‘metal’
‘ferrousAlloy’

‘steel’
‘iron’

‘aluminiumAlloy’
‘nickelAlloy’
‘copperAlloy’
‘titaniumAlloy’

‘ceramic’
‘glass’
‘clayProduct’
‘refractory’

‘abrasive’
‘cement’
‘advancedCeramic’

‘polymer’
‘thermoplastic’

‘thermoset’
‘elastomer’

‘composite’
‘particle-reinforced’

‘fibre-reinforced’
‘structural’

Figure A.1: The available material type tree for a [regular] element in the PBSHM
schema.



A.2 IE Model Schema 151

Property Description Type

type The type of property on the material within the

[regular] element. See Tables A.17 and A.21

for accepted values which don’t support a unit

value and see Table A.18 for accepted values

which support and require a unit value.

string

unit The unit associated with the given value, if the

type selected supports a unit property.

string

value The given value for the material property. This

is either a singular value (if supported) or a

conditional value based upon test conditions

provided. See Table A.19 for a list of

accepted child properties for a conditional value.

Singular values are supported by types in

Tables A.17 and A.18 and conditional values are

supported by types in Tables A.17, A.18 and

A.21.

int, double or object

Required Properties: type , value and unit if the associated type value is a unit

based property as defined within Table A.18

Table A.16: The available properties for the material properties object within a
[regular] element in the PBSHM schema.

Type

‘poissonsRatio’

‘elongation’

‘reductionInArea’

‘fatigueStrengthExponent’

‘fatigueDuctilityCoefficient’

‘fatigueDuctilityExponent’

Table A.17: The available standard unit-free material properties for a [regular]
element in the PBSHM schema. The types in this Table, support both singular
and conditional values.
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Type Unit

‘density’ ‘kg/mˆ3’, ‘g/cmˆ3’, ‘kg/L’, ‘g/mL’,

‘t/mˆ3’, ‘kg/dmˆ3’, ‘oz/cu in’, ‘other’

‘linearThermalExpansionCoefficient’ ‘Kˆ-1’, ‘Cˆ-1’, ‘Fˆ-1’, ‘other’

‘volumetricThermalExpansionCoefficient’ ‘Kˆ-1’, ‘Cˆ-1’, ‘Fˆ-1’, ‘other’

‘youngsModulus’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘shearModulus’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘compressiveStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘shearStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘ultimateTensileStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘yieldStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘0.1%ProofStress’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘fatigueStrengthCoefficient’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’,

‘ksi’, ‘psi’, ‘other’

‘tensileToughness’ ‘GJ/mˆ3’, ‘MJ/mˆ3’, ‘kJ/mˆ3’,

‘J/mˆ3’, ‘ibf/inˆ3’, ‘other’

‘fractureToughness’ ‘TPa/mˆ(1/2)’, ‘GPa/mˆ(1/2)’,

‘MPa/mˆ(1/2)’, ‘kPa/mˆ(1/2)’,

‘Pa/mˆ(1/2)’, ‘psi/inˆ(1/2)’, ‘other’

Table A.18: The available standard unit-based material properties and their
associated accepted units for a [regular] element in the PBSHM schema. The types
in this Table, support both singular and conditional values.
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Property Description Type

environmental The test environmental conditions associated

with the given value. See Table A.20 for a full

list of child properties.

object

parameters The test parameters associated with the given

value. There is one child property for each

given test parameter associated with the given

material value. Child properties are either

a named property as declared as part of a

complex material property type (See Table

A.21), or they are wildcard properties which

can have any valid JSON string as their name.

The value for the property is an object for

which the child properties can be found in

Table A.36. For a wildcard property, the

accepted values are ‘Wildcard’ under ‘Value

Object Type’. For named properties, the

accepted value type is declared in Table A.21

which the accepted values are under ‘Value

Object Type’ in Table A.36.

object

value The singular value for the property at the

given test environmental and parameters

values.

int or double

Required Properties: value , either environmental or parameters

Table A.19: The available properties for the conditional material properties object
for a [regular] element in the PBSHM schema.
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Property Description Type

temperature The temperature at which the test was conducted. See

Table A.36 for the available child properties and, within

the table, ‘Temperature’ under ‘Value Object Type’ for

the accepted values.

object

humidity The humidity at which the test was conducted. See Table

A.36 for the available child properties and, within the

table, ‘Percentage’ under ‘Value Object Type’ for the

accepted values.

object

Required Properties: none

Additional Information: Additional environmental properties can be declared as a

Wildcard. See Table A.36 for the available child properties and, within the table,

‘Wildcard’ under ‘Value Object Type’ for the accepted values..

Table A.20: The available properties for the environmental conditional material
properties object for a [regular] element in the PBSHM schema.

Type Named Property Accepted Value Object Type

‘vickersHardness’ load Force

duration Duration

‘brinellHardness’ diameter Brinell hardness diameter

ball Brinell hardness ball

force Force

Table A.21: The available complex material properties and their associated required
environmental properties and accepted values for a [regular] element in the PBSHM
schema. The types in this Table, support only conditional values.
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A.2.2 Ground element

Property Description Type

name The unique name for the element within the model. Must

have a length between 1 and 64 characters.

string

description Additional non-structured information to describe the

element.

string

type The selected type of element. Accepted values: ‘ground’. string

Required Properties: name and type

Table A.22: The available properties for the declaration of a [ground] element within
the PBSHM schema.

A.2.3 Perfect & boundary relationship

Property Description Type

name The unique name for the relationship within the model.

Must have a length between 1 and 64 characters.

string

description Additional non-structured information to describe the

relationship.

string

type Selected type of relationship. Accepted values: ‘perfect’

or ‘boundary’.

string

elements The list of elements which are part of this relationship.

Must have exactly two elements in the list. Each member

of the list is an object. See Table A.24 for the available

child properties. If the type value is ‘boundary’, one of

the elements must be a [ground] element.

array

coordinates Position of the relationship within the models coordinate

space. See Table A.25 for the available child properties.

object

Required Properties: name , type and elements

Table A.23: The available properties for the declaration of a [perfect] and [boundary]
relationship within the PBSHM schema.
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Property Description Type

name The name of the element within the current model which is

part of this relationship. Must have a length between 1 and

64 characters.

string

Required Properties: name

Table A.24: The available properties for named element object within a [perfect]
and [boundary] relationship in the PBSHM schema.

Property Description Type

global Translational coordinates within the global coordinate space.

See Table A.26 for the available child properties.

object

Required Properties: global

Table A.25: The available properties for the coordinate object within a [perfect] and
[boundary] relationship in the PBSHM schema.

Property Description Type

translational X, Y and Z translational values within the global

coordinate space. See ‘Translational coordinates

Object’ in Table A.35 for the available child properties.

object

Required Properties: translational

Table A.26: The available properties for the global coordinate object within a
[perfect] and [boundary] relationship in the PBSHM schema.
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A.2.4 Connection relationship

Property Description Type

name The unique name for the relationship within the model.

Must have a length between 1 and 64 characters.

string

description Additional none structured information to describe the

relationship.

string

type Selected type of relationship. Accepted values:

‘connection’.

string

elements The list of elements which are part of this relationship

including the position of where the relationship resides

on the element. Must have exactly two or more elements

in the list. Each member of the list is an object. See Table

A.28 for the available child properties.

array

Required Properties: name , type and elements

Table A.27: The available properties for the declaration of a [connection] relationship
within the PBSHM schema.

Property Description Type

name The name of the element within the current model which

is part of this relationship. Must have a length between

1 and 64 characters.

string

nature The nature of physics that would construct the joint. See

Table A.30 for a list of child properties and see the values

under the ‘static’ root of the tree in Figure A.2 for the

branch of accepted values.

object

coordinates Position of the relationships interaction with the element

within the models coordinate space. See Table A.25 for

the available child properties.

object

Required Properties: name and nature

Table A.28: The available properties for named element object within a [connection]
relationship in the PBSHM schema.
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A.2.5 Joint relationship

Property Description Type

name The unique name for the relationship within the

model. Must have a length between 1 and 64

characters.

string

description Additional non-structured information to

describe the relationship.

string

type Selected type of relationship. Accepted values:

‘joint’.

string

nature The nature of physics that construct the joint.

See Table A.30 for a list of child properties and

see Figure A.2 for a tree of accepted values.

object

degreesOfFreedom The allowed movement within the joint. See

Table A.31 for a list of child properties. Only

available when the root value of the nature tree

is ‘dynamic’.

object

elements The list of elements which are part of this

relationship. Must have exactly two elements in

the list. Each member of the list is an object. See

Table A.33 for the available child properties.

array

Required Properties: name , type , nature and elements

Table A.29: The available properties for the declaration of a [joint] relationship
within the PBSHM schema.

Property Description Type

name The nature of the [joint] or [connection] relationship. string

nature The child nature of the current tree level. See Table A.30 for

the accepted child properties.

string

Required Properties: name

Table A.30: The available properties for a nested nature object within a [joint] or
[connection] relationship in the PBSHM schema.
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‘static’
‘bolted’
‘welded’
‘adhesive’
‘other’

‘dynamic’
‘hinge’

‘ballAndSocket’
‘pinned’
‘expansion’
‘ballBearing’

‘other’

Figure A.2: The available nature type tree within a [joint] or [connection]
relationship in the PBSHM schema. When declaring the nature within a [connection]
relationship, only the ‘static’ portion of the nature tree is available.

Property Description Type

global Translational and Rotational degrees of freedom of the joint.

See Table A.32 for the available child properties.

object

Required Properties: global

Table A.31: The available properties for the degrees of freedom object within a
[dynamic] [joint] relationship in the PBSHM schema.

Property Description Type

translational X, Y and Z translational degrees of freedom values

within the global coordinate space. See ‘Bounded

Translational coordinates Object’ in Table A.35 for the

available child properties.

object

rotational Alpha, Beta and Gamma rotational degrees of freedom

values within the global coordinate space. See ‘Bounded

Rotational Coordinates Object’ in Table A.35 for the

available child properties.

object

Required Properties: translational or rotational

Table A.32: The available properties for the global degrees of freedom object within
a [dynamic] [joint] relationship in the PBSHM schema.
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Property Description Type

name The name of the element within the current model which

is part of this relationship. Must have a length between

1 and 64 characters.

string

coordinates Position of the relationship’s interaction with the element

within the models coordinate space. See Table A.25 for

the available child properties.

object

Required Properties: name

Table A.33: The available properties for named element object within a [joint]
relationship in the PBSHM schema.

A.2.6 Shared objects

Property Description Type

name The name of the type at the current tree level. string

type The child type of current tree level. See Table A.34 for the

accepted child properties.

object

Required Properties: name

Table A.34: The available properties for a nested type object for embedding type
trees within the PBSHM schema.
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Translational Coordinates Object

Property Description Type

x , y , z The translational values within the coordinate

space. See Table A.36 for the available child

properties and, within the table, ‘Linear’ under

‘Value Object Type’ for the accepted values.

object

Required Properties: x , y and z

Rotational Coordinates Object

Property Description Type

alpha , beta , gamma The rotational values within the coordinate

space. See Table A.36 for the available child

properties and, within the table, ‘Angular’

under ‘Value Object Type’ for the accepted

values.

object

Required Properties: alpha , beta and gamma

Bounded Translational Coordinates Object

Property Description Type

x , y , z The translational values within the coordinate

space. See Table A.37 for the available child

properties and, within the table, ‘Linear’ under

‘Bounded Value Object Type’ for the accepted

values.

object

Required Properties: x , y and z

Bounded Rotational Coordinates Object

Property Description Type

alpha , beta , gamma The rotational values within the coordinate

space. See Table A.37 for the available child

properties and, within the table, ‘Angular’

under ‘Bounded Value Object Type’ for the

accepted values.

object

Required Properties: alpha , beta and gamma

Table A.35: The available properties for a coordinate object and associated accepted
values for different types of coordinate object within the PBSHM schema.
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Property Description Type

unit The unit associated with the given value . See below

for the list of accepted values given the type of value

object.

string

value The value for the measurement. int or double

Required Properties: unit and value

Value Object Type Accepted Unit Values

Linear ‘mm’, ‘cm’, ‘m’, ‘km’ or ‘other’

Angular ‘degrees’, ‘radians’ or ‘other’

Temperature ‘C’, ‘F’, ‘K’ or ‘other’

Force ‘kgf’

Duration ‘s’

Percentage ‘%’

Wildcard Any valid string

Brinell hardness diameter ‘mm’

Brinell hardness ball ‘W’ or ‘S’

Table A.36: The available properties for a value object and associated accepted
values for the different types of value object within the PBSHM schema.

Property Description Type

unit The unit associated with the given minimum

and maximum values. See below for the list of

accepted values given the type of value object.

string

minimum The minimum value for the degree of freedom int or double

maximum The maximum value for the degree of freedom int or double

Required Properties: unit , minimum and maximum

Bounded Value Object Type Accepted Unit Values

Linear ‘mm’, ‘cm’, ‘m’, ‘km’ or ‘other’

Angular ‘degrees’, ‘radians’ or ‘other’

Table A.37: The available properties for a bounded value object and associated
accepted values for the different types of bounded value object within the PBSHM
schema.
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Property Description Type

axis The axis in which the dimension has been measured.

Accepted values: ‘x’, ‘y’, ‘z’, ‘xy’, ‘xz’ or ‘yz’

string

source The source of which the measurement has come from.

Accepted values: ‘measured’ or ‘nominal’

string

unit The unit associated with the given measurement

value . See below for the list of accepted values given

the type of value object.

string

value The value for the measurement. int or double

Required Properties: axis , source , unit and value

Dimension Object Type Accepted Unit Values

Linear ‘mm’, ‘cm’, ‘m’, ‘km’ or ‘other’

Angular ‘degrees’, ‘radians’ or ‘other’

Wildcard Any valid string

Table A.38: The available properties for a dimension object and associated accepted
values for the different types of dimension object within the PBSHM schema.

A.3 Channel Schema

Property Description Type

name Name of the channel, must be unique within the

structure.

string

type The selected type value for this channel, see

Table. A.40 for the list of available options.

string

unit The selected unit value of this channel on which the

value is based; see Table. A.40 for the list of available

options for the selected type.

string

value Value of the channel, stored in the selected unit. See Table. A.40

Required Properties: name , type , value and unit dependent upon the

selected type

Table A.39: List of channel object properties in the PBSHM Schema.
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Types Units Values

acceleration m/sˆ2, g, v, other int, double,

object

velocity m/s, v, other int, double,

object

displacement mm, cm, m, km, other int, double,

object

angularAcceleration degrees/sˆ2, radians/sˆ2, other int, double,

object

angularVelocity degrees/s, radians/s, other int, double,

object

angularDisplacement degrees, radians, other int, double,

object

tilt degrees, radians, other int, double,

object

strain nd, other int, double,

object

tension fN, pN, nN, µN, mN, cN, dN, N,

daN, hN, kN, MN, GN, TN, PN,

other

int, double,

object

load fN, pN, nN, µN, mN, cN, dN, N,

daN, hN, kN, MN, GN, TN, PN,

other

int, double,

object

structuralPotentialHydrogen pH, other int, double,

object

temperature C, F, K, other int, double,

object

humidity %, other int, double,

object

speed mph, ft/s, km/h, m/s, kn, other int, double,

object

direction degrees, radians, other int, double,

object
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pressure fPa, pPa, nPa, µPa, mPa, cPa,

dPa, Pa, daPa, hPa, kPa, MPa,

GPa, TPa, PPa, at, atm, bar,

psi, other

int, double,

object

altitude mm, cm, m, km, feet, other int, double,

object

pitch degrees, radians, other int, double,

object

yaw degrees, radians, other int, double,

object

roll degrees, radians, other int, double,

object

pitchRate degrees/s, radians/s, other int, double,

object

yawRate degrees/s, radians/s, other int, double,

object

rollRate degrees/s, radians/s, other int, double,

object

current fA, pA, nA, µA, mA, cA, dA, A,

daA, hA, kA, MA, GA, TA, PA,

other

int, double,

object

charge fC, pC, nC, µC, mC, cC, dC, C,

daC, hC, kC, MC, GC, TC, PC,

other

int, double,

object

power fW, pW, nW, µW, mW, cW, dW,

W, daW, hW, kW, MW, GW,

TW, PW, other

int, double,

object

voltage fV, pV, nV, µV, mV, cV, dV, V,

daV, hV, kV, MV, GV, TV, PV,

other

int, double,

object

resistance fΩ, pΩ, nΩ, µΩ, mΩ, cΩ, dΩ, Ω,

daΩ, hΩ, kΩ, MΩ, GΩ, TΩ, PΩ,

other

int, double,

object

capacitance fF, pF, nF, µF, mF, cF, dF, F,

daF, hF, kF, MF, GF, TF, PF,

other

int, double,

object
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inductance fH, pH, nH, µH, mH, cH, dH, H,

daH, hH, kH, MH, GH, TH, PH,

other

int, double,

object

frequency fHz, pHz, nHz, µHz, mHz, cHz,

dHz, Hz, daHz, hHz, kHz, MHz,

GHz, THz, PHz, other

int, double,

object

conductance fS, pS, nS, µS,mS, cS, dS, S, daS,

hS, kS, MS, GS, TS, PS, other

int, double,

object

magneticFlux fWb, pWb, nWb, µWb, mWb,

cWb, dWb, Wb, daWb, hWb,

kWb, MWb, GWb, TWb, PWb,

other

int, double,

object

magneticFieldStrength fT, pT, nT, µT, mT, cT, dT, T,

daT, hT, kT, MT, GT, TT, PT,

other

int, double,

object

integer n/a int

double n/a double

text n/a string

date n/a long

Table A.40: The available values for Channel properties within the PBSHM schema.

Property Description Type

min Minimum channel value over the observed time period. int, double

max Maximum channel value over the observed time period. int, double

mean Mean channel value over the observed time period. int, double

std Standard deviation channel value over the observed time

period.

int, double

Required Properties: At least two of the properties described above.

Table A.41: List of value object properties in the PBSHM Schema.



Appendix B

Real-world aircraft

167



168

R

R

R

R

R

R

R

R

R R R R R R R

R

R

R

R

R

R

R

R

R

R R R

P

P

P

P

P

P

P

P

P

J:S

P P

J:S

P P P P P P
J:S

P

P

P

P
J:S J:S

Figure B.1: The AG representation of the GARTEUR IE model described within
this thesis without using the proposed PBSHM AG notations.
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Vertical Stabiliser
Element Names Type Attributes
vertical-stabiliser-a,
vertical-stabiliser-b,
vertical-stabiliser-c,
vertical-stabiliser-d

Contextual: ‘aerofoil’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

rudder
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

Left Wing
Element Names Type Attributes
left-wing-a, left-wing-b,
left-wing-c, left-wing-d,
left-wing-e, left-wing-f,
left-wing-g

Contextual: ‘wing’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

left-flap-a, left-flap-b,
left-flap-c, left-flap-d,
left-flap-e

Contextual: ‘aerofoil’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

left-aileron
Contextual: ‘aerofoil’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

Left Horizontal Stabiliser
Element Names Type Attributes

left-horizontal-stabiliser-a,
left-horizontal-stabiliser-b

Contextual: ‘aerofoil’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

Right Horizontal Stabiliser
Element Names Type Attributes

right-horizontal-stabiliser-a,
right-horizontal-stabiliser-b

Contextual: ‘aerofoil’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘shell’ �‘translateAndScale’ �‘cylinder’

Table B.1: [regular] elements for the left wing, vertical stabiliser, and horizontal
stabilisers of the generalised Hawk T.Mk1.
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Right Landing Gear
Element Names Type Attributes

right-shock-absorber
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘solid’ �‘translateAndScale’ �‘cylinder’

right-support
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘solid’ �‘translateAndScale’ �‘cylinder’

right-wheel
Contextual: ‘wheel’
Material: ‘other’
Geometry: ‘other’

Nose Landing Gear
Element Names Type Attributes

center-shock-absorber
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘solid’ �‘translateAndScale’ �‘cylinder’

center-support
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘solid’ �‘translateAndScale’ �‘cylinder’

center-wheel
Contextual: ‘wheel’
Material: ‘other’
Geometry: ‘other’

Left Landing Gear
Element Names Type Attributes

left-shock-absorber
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘solid’ �‘translateAndScale’ �‘cylinder’

left-support
Contextual: ‘other’
Material: ‘metal’ �‘aluminiumAlloy’
Geometry: ‘solid’ �‘translateAndScale’ �‘cylinder’

left-wheel
Contextual: ‘wheel’
Material: ‘other’
Geometry: ‘other’

Table B.2: [regular] elements for the landing gear of the generalised Hawk T.Mk1.

Element Name
right-ground
left-ground
center-ground

Table B.3: [ground] elements for the landing gear of the generalised Hawk T.Mk1.
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Left Wing
Relationship Name Element Set Type
left-wing-a-b {left-wing-a, left-wing-b} [perfect]
left-wing-b-c {left-wing-b, left-wing-c} [perfect]
left-wing-c-d {left-wing-c, left-wing-d} [perfect]
left-wing-d-e {left-wing-d, left-wing-e} [perfect]
left-wing-e-f {left-wing-e, left-wing-f} [perfect]
left-wing-f-g {left-wing-f, left-wing-g} [perfect]
left-wing-flap-a {left-wing-a, left-flap-a} [joint], [dynamic]
left-wing-flap-b {left-wing-b, left-flap-b} [joint], [dynamic]
left-wing-flap-c {left-wing-c, left-flap-c} [joint], [dynamic]
left-wing-flap-d {left-wing-d, left-flap-d} [joint], [dynamic]
left-wing-e-aileron {left-wing-e, left-aileron} [joint], [dynamic]
left-wing-f-aileron {left-wing-f, left-aileron} [joint], [dynamic]
left-wing-g-aileron {left-wing-g, left-aileron} [joint], [dynamic]
left-wing-a-flap-e {left-wing-a, left-flap-e} [joint], [dynamic]
left-wing-b-flap-e {left-wing-b, left-flap-e} [joint], [dynamic]
left-wing-c-flap-e {left-wing-c, left-flap-e} [joint], [dynamic]
left-wing-d-flap-e {left-wing-d, left-flap-e} [joint], [dynamic]
left-wing-a-fuselage-f {left-wing-a, fuselage-f} [joint], [static]

Vertical Stabiliser
Relationship Name Element Set Type

vertical-stabiliser-a-b
{vertical-stabiliser-a,
vertical-stabiliser-b} [perfect]

vertical-stabiliser-b-c
{vertical-stabiliser-b,
vertical-stabiliser-c} [perfect]

vertical-stabiliser-b-d
{vertical-stabiliser-b,
vertical-stabiliser-d} [joint], [static]

vertical-stabiliser-b-rudder {vertical-stabiliser-b, rudder} [joint], [dynamic]

Table B.4: relationships for the left wing and vertical stabiliser of the generalised
Hawk T.Mk1.
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Fuselage to Vertical Stabiliser
Relationship Name Element Set Type
fuselage-h-vertical-stabiliser-a {fuselage-h, vertical-stabiliser-a} [joint], [static]
fuselage-i-vertical-stabiliser-b {fuselage-i, vertical-stabiliser-b} [joint], [static]
fuselage-j-vertical-stabiliser-b {fuselage-j, vertical-stabiliser-b} [joint], [static]
fuselage-j-vertical-stabiliser-d {fuselage-j, vertical-stabiliser-d} [joint], [static]
fuselage-k-vertical-stabiliser-d {fuselage-k, vertical-stabiliser-d} [joint], [static]
fuselage-l-vertical-stabiliser-d {fuselage-k, vertical-stabiliser-d} [joint], [static]

Right Horizontal Stabiliser to Fuselage
Relationship Name Element Set & Type

right-horizontal-stabiliser-a-b
Set: {right-horizontal-stabiliser-a,

right-horizontal-stabiliser-b}
Type: [perfect]

right-horizontal-stabiliser-a-fuselage-k
Set: {right-horizontal-stabiliser-a,

fuselage-k}
Type: [joint], [dynamic]

Left Horizontal Stabiliser to Fuselage
Relationship Name Element Set & Type

left-horizontal-stabiliser-a-b
Set: {left-horizontal-stabiliser-a,

left-horizontal-stabiliser-b}
Type: [perfect]

left-horizontal-stabiliser-a-fuselage-k
Set: {left-horizontal-stabiliser-a,

fuselage-k}
Type: [joint], [dynamic]

Table B.5: relationships for the fuselage to vertical stabiliser and fuselage to
horizontal stabilisers of the generalised Hawk T.Mk1.
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Right Landing Gear
Relationship Name Element Set Type

right-shock-absorber-wing-b
{right-shock-absorber,
right-wing-b} [joint], [dynamic]

right-shock-absorber-support
{right-shock-absorber,
right-support} [joint], [dynamic]

right-support-wheel
{right-support,
right-wheel} [joint], [dynamic]

right-wheel-ground
{right-wheel,
right-ground} [boundary]

Nose Landing Gear
Relationship Name Element Set Type

center-shock-absorber-fuselage-b
{center-shock-absorber,
fuselage-b} [joint], [dynamic]

center-shock-absorber-support
{center-shock-absorber,
center-support} [joint], [dynamic]

center-support-wheel
{center-support,
center-wheel} [joint], [dynamic]

center-wheel-ground
{center-wheel,
center-ground} [boundary]

Left Landing Gear
Relationship Name Element Set Type

left-shock-absorber-wing-b
{left-shock-absorber,
left-wing-b} [joint], [dynamic]

left-shock-absorber-support
{left-shock-absorber,
left-support} [joint], [dynamic]

left-support-wheel {left-support, left-wheel} [joint], [dynamic]
left-wheel-ground {left-wheel, left-ground} [boundary]

Table B.6: [relationship]s for the right, centre and left and landing gear of the
generalised Hawk T.Mk1.
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Á Cunha and E Caetano, editors, Proceedings of the 10th International

Conference on Structural Health Monitoring of Intelligent Infrastructure

(SHMII-10), International Conference on Structural Health Monitoring of

Intelligent Infrastructure: Proceedings, pages 1789–1795. International Society

for Structural Health Monitoring of Intelligent Infrastructure, ISHMII, 2021.

[37] D Hester, A Bunce, K Worden, J Gosliga, and S Taylor. Comparison of bridge

topology before and after repair using attributed graph comparisons towards
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