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Abstract

Supervised learning is based in the premise that models can effectively solve tasks

by learning from numerous examples, mapping inputs to outputs through iterative

learning. However, contemporary deep learning models often require vast amounts of

labeled data, termed training examples, for optimal performance. Unfortunately, not

all training examples contribute equally to the learning process, leading to inefficiencies

and resource wastage. Active Learning (AL) has emerged as a powerful paradigm for

training language models in a data-efficient manner. By iteratively selecting informa-

tive unlabeled data points, which are then annotated by humans to form the training

set, AL intelligently guides the training process, optimizing data selection for model

improvement over random sampling.

This thesis investigates various aspects of active learning algorithms for language mod-

els, focusing on model training, data selection, in-context learning and simulation. The

thesis is structured along four key publications that tackle these topics respectively.

The first publication addresses the effective adaptation of pretrained language models

for AL, highlighting the importance of task-specific fine-tuning. The second publication

introduces a novel acquisition function, Contrastive Active Learning (CAL), which se-

lects contrastive examples to improve AL performance. The third publication explores

active learning principles for in-context learning with large language models, emphasiz-

ing the selection of informative demonstrations for few-shot learning. Lastly, the fourth

publication critically examines the limitations of simulating AL experiments and pro-

poses guidelines for future research. Through these contributions, this thesis aims to

advance our understanding of AL algorithms for data-efficient language model training.
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Lay Summary

Efficiently training language models to understand and generate human-like language

is a significant endeavor in artificial intelligence research. Traditionally, this process

demands a substantial amount of meticulously labeled data for effective learning. How-

ever, such data acquisition can be resource-intensive and time-consuming. Active

learning (AL) presents a promising approach to mitigate these challenges by selec-

tively choosing the most informative examples for training, mimicking human learning

strategies. This thesis delves into refining AL algorithms tailored for language models,

with the aim of enhancing learning efficiency and reducing data requirements.

The research in this thesis is organized around four key studies. The first study intro-

duces novel methodologies to dynamically adapt language models during the learning

process, ensuring their adaptability to evolving data distributions. The second study

introduces a novel approach to intelligently select hard training examples to optimize

the learning process by prioritizing the most informative instances. The third study

examines how AL principles can be applied to in-context learning with large language

models, focusing on selecting the most useful demonstrations for few-shot learning. The

final study evaluates the challenges of simulating AL experiments and offers recommen-

dations for future research.

Overall, this thesis aims to deepen our understanding of active learning algorithms and

their potential to train language models more efficiently.
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Chapter 1

Introduction

Supervised learning operates under the premise that models can effectively tackle tasks

by assimilating knowledge from numerous examples, refining their ability to map inputs

to outputs through iterative learning. Nonetheless, contemporary deep learning models

often demand copious amounts of labeled data, referred to as training examples, to

achieve optimal performance. Regrettably, not all training examples contribute equally

to the learning process. Active learning (AL) presents a remedy to this challenge by

adopting a human-and-model-in-the-loop framework (Cohn et al., 1996; Settles, 2009).

In a high-level, the setting includes a human, a pool or stream of unlabeled data and

a model (Figure 1.2). An AL algorithm aims to iteratively select the most informative

data points from the pool that will then be passed to the human for annotation. Then

the acquired labelled data will form the training set that will be used to train the model.

The process is typically repeated multiple times until a stopping criterion is met. The

goal of this iterative process data efficiency; acquiring the least amount of unlabeled

data for training a model that would perform close to the oracle (i.e. the model trained

on the entire pool of data). A successful AL algorithm should also enhance model

performance beyond random sampling from the pool (Figure 1.1).

The Natural Language Processing (NLP) community has researched active learning

algorithms on a plethora of tasks and domains, such as text classification (Ein-Dor et al.,

2020; Schröder and Niekler, 2020; Margatina et al., 2022; Schröder et al., 2023), machine

translation (Haffari et al., 2009; Dara et al., 2014; Miura et al., 2016; Zhao et al., 2020),

named entity recognition (Erdmann et al., 2019; Shen et al., 2017; Wei et al., 2019),

natural language inference Snijders et al. (2023), part-of-speech tagging (Chaudhary

et al., 2021), coreference (Yuan et al., 2022) and entity resolution (Qian et al., 2017;

Kasai et al., 2019), among several others. In our studies we mostly focus on text

classification tasks.
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2 Chapter 1. Introduction

Figure 1.1: Active learning on three datasets (PubMed, AGNews, and qqp), with

different acquisition functions (random sampling, Alps, BERT K-means, Badge,

Entropy, Cal). Empirical results show that with a small fraction of the training set

(from 2% to 15%) a model can reach even the same performance as the model with full

supervision (100% of data). Figure from Margatina et al. (2021).

More specifically, in this thesis we focus on the setting of pool-based active learning

for text classification tasks. In a pool-based AL setting, an AL algorithm strategically

selects the most informative data points from the pool for human annotation, and then

a model is trained using the collected labelled data that form the training set. Usually

this process is repeated in several rounds. The process is illustrated in Figure 1.2.

Model Training In the model training part of the pipeline we simply train the model

with the acquired labeled dataset (Figure 1.2: 2 ). Interestingly, there are not many

studies that explore how we should properly train the model in the low data resource

setting of AL. Existing approaches include semi-supervised learning (McCallum and

Nigam, 1998; Tomanek and Hahn, 2009; Dasgupta and Ng, 2009; Yu et al., 2022), weak

supervision (Ni et al., 2019; Qian et al., 2020; Brantley et al., 2020; Zhang et al., 2022b)

and data augmentation (Zhang et al., 2020; Zhao et al., 2020; Hu and Neubig, 2021),

with the most prevalent approach currently to be transfer learning from pretrained

language models (Ein-Dor et al., 2020; Margatina et al., 2021; Tamkin et al., 2022).

We showed large performance gains by adapting the pretrained language model to the

task using the unlabeled data of the pool (i.e., task adaptive pretraining by Gururangan

et al. (2020)), along with an adaptive fine-tuning technique to account for the varying

size of Dlab (Margatina et al., 2022). In active learning, the initial training dataset often

consists of a few tens or hundreds, and is increased until thousands, thus adapting the

training strategy is not trivial.

Data Selection The data selection step (Figure 1.2: 4 ) is probably the core of the

AL process and can be performed in various ways. Zhang et al. (2022e) categorize them
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Figure 1.2: High-level overview of the train-acquire-annotate steps of the active learning

loop. Figure from Margatina and Aletras (2023).

into two main families: informativeness and representativeness. Informativeness-based

methods evaluate each candidate instance individually, assigning scores to select the

top or bottom instances, with sub-categories including uncertainty sampling (Lewis

and Gale, 1994; Culotta and Mccallum, 2005; Zhang and Plank, 2021; Schröder et al.,

2022), divergence-based algorithms (Ducoffe and Precioso, 2018; Margatina et al., 2021;

Zhang et al., 2022c), disagreement-based Seung et al. (1992); Houlsby et al. (2011);

Gal et al. (2017); Siddhant and Lipton (2018); Kirsch et al. (2019); Zeng and Zubiaga

(2023), gradient-based (Settles et al., 2007; Settles and Craven, 2008), and perfor-

mance prediction (Roy and Mccallum, 2001; Konyushkova et al., 2017; Bachman et al.,

2017; Liu et al., 2018). Representativeness-based methods, on the other hand, consider

the correlation between instances to avoid sampling bias, with sub-categories such as

density-based methods (Ambati et al., 2010; Zhao et al., 2020; Zhu et al., 2008) and

batch diversity approaches (Gissin and Shalev-Shwartz, 2019; Erdmann et al., 2019),

where core-set is the most common (Sener and Savarese, 2018). Additionally, there are

hybrid methods that combine both informativeness and representativeness (Brinker,

2003; Bodó et al., 2011; Zhu et al., 2008; Geifman and El-Yaniv, 2017; Zhdanov, 2019;

Yu et al., 2022). Despite the variety of methods, no single acquisition function consis-

tently outperforms others, making the choice of data acquisition a continuing research

focus. Selecting the most useful data for annotation through active learning can be

critical to achieve high test set performance while opting for data efficiency. Figure 1.3

illustrates the considerably different performance curves with various AL data acquisi-

tion strategies, with some achieving the full dataset performance (i.e., if using 100% of

the training data) with less than 15% of the dataset, while others can have detrimental

effects and perform similarly with both 1% and 15% of the data.
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Figure 1.3: Different data selection methods can lead to considerably different perfor-

mance in the held-out test set when different labeled datasets are acquired through

active learning. Figure from Margatina et al. (2021).

Data Annotation Finally, the acquired unlabeled data is sent to humans for anno-

tation (Figure 1.2: 5 ). In simulation settings, researchers often overlook this step

because the labels are already known (i.e., in simulation labeled datasets are treated us

unlabeled). However, not all examples are equally easy to annotate; difficult instances

for classifiers are typically hard for humans too (Hachey et al., 2005; Baldridge and Os-

borne, 2004). This discrepancy suggests that current experimental settings are limited

and highlights the need for cost-aware selection strategies, which consider the varying

difficulty of instances and the expertise of annotators (Donmez and Carbonell, 2008;

Baldridge and Palmer, 2009; Tomanek and Hahn, 2010; Wei et al., 2019).

1.1 Research Aims and Objectives

Overall, we lay out four desiderata that will be addressed by the approaches proposed

in this thesis:

Developing model training algorithms that are effective throughout active

learning iterations This research study is motivated by the observation that off-

the-shelf pretrained language models are not effectively adapted to downstream tasks

during active learning in natural language processing (NLP). Addressing this issue is

important as it aims to improve the data efficiency of AL by proposing a method to

better adapt and fine-tune LMs, ensuring robust performance in both low and high

resource scenarios, ultimately enhancing the efficacy of AL strategies.

Strategically selecting the most useful unlabeled data The motivation for this

part of the thesis is the need to improve active learning strategies by combining the
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strengths of uncertainty and diversity sampling. The study introduces a novel acquisi-

tion function, Contrastive Active Learning (CAL), which selects data points that are

similar in the model feature space but have maximally different predictive likelihoods.

The importance of this research lies in its demonstrated ability to outperform existing

methods across multiple natural language understanding tasks and datasets, offering a

more effective balance between uncertainty and diversity in AL.

Exploring active learning principles beyond supervised learning The drive

behind this work is the need to optimize the selection of demonstrations for few-shot

learning in large language models (LLMs), an area that has received limited attention

previously. This study addresses this gap by approaching demonstration selection as

a pool-based Active Learning problem of a single iteration, and finds that similarity-

based selection consistently outperforms other methods. The importance of this work

lies in its extensive experimentation and analysis, showing that using semantically simi-

lar demonstrations significantly enhances performance, even outperforming much larger

models using random demonstrations, thus underscoring the critical role of demonstra-

tion selection in few-shot learning.

Addressing pain points in active learning simulation Only a limited body of

research has delved into the pain points of AL. For example, studies have revealed that

AL algorithms tend to acquire collective outliers, leading to the failure of several AL

approaches to surpass random sampling in certain tasks. Moreover, the benefits of AL

may not generalize reliably across different models and domains, highlighting the need

for a nuanced understanding of its limitations.

1.2 Thesis Overview: Publications and Contributions

This section lists the contributions made throughout this thesis. It follows a thesis

by publications format and consists of a collection of four papers where each paper

corresponds to an individual chapter.

Chapter 2 introduces two techniques for fine-tuning pre-trained language models in a

low-data resource setting of active learning and it is based on the publication “Effec-

tively Adapting Pretrained Language Models for Active Learning” (Margatina et al.,

2022).

Chapter 3 introduces Contrastive Active Learning (CAL), a novel acquisition function

for active learning, and it is based on the publication “Active Learning by Acquiring

Contrastive Examples” (Margatina et al., 2021).

Chapter 4 explores how active learning algorithms can be applied to select demon-
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strations for in-context learning and it is based on the publication “Active Learning

Principles for In-Context Learning” (Margatina et al., 2023).

Chapter 5 criticizes common practises in active learning simulation experiments and

proposes guidelines for future work on the field. It is based on the publication “On the

Limitations of Simulating Active Learning” (Margatina and Aletras, 2023).

Chapter 6 finally contains our conclusion where we summarize our findings and provide

an outlook into the future.

1.3 Published Work

The work in this dissertation primarily relates to the following peer-reviewed articles:

1. Margatina, K., Vernikos, G., Barrault, L., Aletras, N. (2021). Ac-

tive Learning by Acquiring Contrastive Examples. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, 2021

2. Margatina, K., Barrault, L., Aletras, N. (2022). Effectively Adapting

Pretrained Language Models for Active Learning. In Proceedings of the

Annual Meeting of the Association for Computational Linguistics, 2022

3. Margatina, K., Schick, T., Aletras, N., Dwivedi-Yu, J. (2023). Ac-

tive Learning Principles for In-Context Learning with Large Language

Models. In Findings of the Association for Computational Linguistics,

2023

4. Margatina, K. and Aletras, N. (2023). On the Limitations of Simulat-

ing Active Learning. In Findings of the Association for Computational

Linguistics, 2023

The following article is related, but will not be extensively discussed in this thesis:

5. Snijders, A., Kiela D., Margatina, K. (2023). Investigating Multi-

source Active Learning for Natural Language Inference. In Proceedings

of the Conference of the European Chapter of the Association for Com-

putational Linguistics, 2023

Finally, while not directly related, the following articles have also been completed over

the course of the PhD:

6. Vernikos G., Margatina, K., Chronopoulou, A., Androutsopoulos, I.

(2020). Domain Adversarial Fine-Tuning as an Effective Regularizer. In

Findings of the Association for Computational Linguistics, 2020
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7. Yamaguchi, A., Chrysostomou, G., Margatina, K., Aletras, N. (2021).

Frustratingly simple pretraining alternatives to masked language model-

ing. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, 2021

8. Hershcovich, D., Frank, S., Lent, H., Lhoneux, M., Abdou, M., Brandl,

S., Bugliarello, E., Cabello Piqueras, L., Chalkidis, I., Cui, R., Fierro, C.,

Margatina, K., Rust, P., Søgaard, A. (2022). Challenges and strate-

gies in cross-cultural NLP. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics, 2022

9. Margatina, K., Wang, S., Vyas, Y., Anna John, N., Benajiba, Y.,

Ballesteros, M. (2023). Dynamic Benchmarking of Masked Language

Models on Temporal Concept Drift with Multiple Views. In Proceed-

ings of the Conference of the European Chapter of the Association for

Computational Linguistics, 2023

10. Alajrami, A., Margatina, K., Aletras, N. (2023). Understanding the

Role of Input Token Characters in Language Models: How Does Infor-

mation Loss Affect Performance?. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, 2023

11. Kirk, H., Whitefield, A., Röttger, P., Bean, A., Margatina, K., Ciro,

J., Mosquera, R., Bartolo, M., Williams, A., He, H., Vidgen, B., Hale, S.

(2024). The PRISM Alignment Project: What Participatory, Represen-

tative and Individualised Human Feedback Reveals About the Subjective

and Multicultural Alignment of Large Language Models. Arxiv, 2024





Chapter 2

Publication I: Effectively

Adapting Language Models for

Active Learning

The main contribution of this chapter is the paper On The Importance of Effectively

Adapting Pretrained Language Models for Active Learning, which was published at the

Annual Meeting of the Association for Computational Linguistics in May 2022. We

first outline the motivation (Section 2.1), followed by the paper itself (Section 2.2), the

impact that it has had so far (Section 2.3), and discussion (Section 2.4).

2.1 Introduction

The work presented in this section was largely inspired by the task adaptive pretraining

paradigm (Gururangan et al., 2020), which at the time of its introduction, was the

most successful approach in leveraging unlabelled data to better adapt a pretrained

model, such as BERT (Devlin et al., 2019), to the task-specific domain. The method is

quite simple; collect task-specific corpora and continue pretraining the model with the

language modelling loss for a few training steps and after convergence fine-tune it to the

task. We thought that this would be the ideal setting for a pool-based active learning

setting, where we have already access to a large pool of unlabeled data. Before we

start AL we first do task-adaptive pretraining (TAPT) of the model for 100K training

steps. We use the new model checkpoint to initialize our first model for pool-based

AL which we then fined-tuned with the acquired labeled training dataset using fixed

hyperparameters proposed by Devlin et al. (2019), that include a fixed number of 3

training epochs, learning rate warmup over the first 10% of the steps and AdamW

9
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optimizer without bias correction. After early experimentation we found that TAPT

was highly successful, but we thought that there was still room for improvement. At

that point, we were fine-tuning the model at each AL iteration the training dataset that

gradually increased in size (as more labeled data was acquired through AL). We realized

that we had to further adapt our approach in order to take into account the change in

the size of the actively acquired dataset that started from a few hundreds of examples

(low-data resource) to thousands (high-data resource). We experimented we several

adaptations and finalized our training approach (FT+) at using early stopping with 20

epochs based on the validation loss, min(10% of total steps, 100), learning rate

2e−5, bias correction and 5 evaluation steps per epoch. Section 2 of the paper presents

our proposed methodology and Appendix A3-A4 the training details.

We found that our two contributions (TAPT and FT+) to the standard pool-based AL

training pipeline had a notable effect in improving AL performance, as demonstrated

by our experiments in Section 3 of the paper. For instance, we found that using AL

with entropy acquisition function and our methodology we managed to get close to the

full model performance (i.e., the score in the test set if the model was trained with

all available training data) using less than 10% of the training data. Our analysis,

shown in Section 4 of the paper, further validates that each component of our proposed

methodology was crucial in order to provide an approach that leverages the full potential

of the BERT AL model.

2.2 The Paper

Author Contributions

The paper is co-authored by myself, Löıc Barrault and Nikolaos Aletras. Nikolaos

Aletras seeded the idea to explore ways to use BERT to boost AL performance, su-

pervised the project, offered suggestions, and helped write the paper. As the lead

author, I developed the proposed methodology, performed the experiments, and wrote

the paper. Löıc Barrault helped with the identifying limitations at various stages of

the development of the methodology, participated in various discussions and proofread

the paper.
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Abstract

Recent Active Learning (AL) approaches in
Natural Language Processing (NLP) proposed
using off-the-shelf pretrained language mod-
els (LMs). In this paper, we argue that these
LMs are not adapted effectively to the down-
stream task during AL and we explore ways
to address this issue. We suggest to first adapt
the pretrained LM to the target task by contin-
uing training with all the available unlabeled
data and then use it for AL. We also propose a
simple yet effective fine-tuning method to en-
sure that the adapted LM is properly trained
in both low and high resource scenarios dur-
ing AL. Our experiments demonstrate that our
approach provides substantial data efficiency
improvements compared to the standard fine-
tuning approach, suggesting that a poor training
strategy can be catastrophic for AL.1

1 Introduction

Active Learning (AL) is a method for training su-
pervised models in a data-efficient way (Cohn et al.,
1996; Settles, 2009). It is especially useful in sce-
narios where a large pool of unlabeled data is avail-
able but only a limited annotation budget can be af-
forded; or where expert annotation is prohibitively
expensive and time consuming. AL methods iter-
atively alternate between (i) model training with
the labeled data available; and (ii) data selection
for annotation using a stopping criterion, e.g. until
exhausting a fixed annotation budget or reaching a
pre-defined performance on a held-out dataset.

Data selection is performed by an acquisition
function that ranks unlabeled data points by some
informativeness metric aiming to improve over ran-
dom selection, using either uncertainty (Lewis and
Gale, 1994; Cohn et al., 1996; Gal et al., 2017;
Kirsch et al., 2019; Zhang and Plank, 2021), di-
versity (Brinker, 2003; Bodó et al., 2011; Sener

1For all experiments in this paper, we have used the code
provided by Margatina et al. (2021): https://github.
com/mourga/contrastive-active-learning

and Savarese, 2018), or both (Ducoffe and Pre-
cioso, 2018; Ash et al., 2020; Yuan et al., 2020;
Margatina et al., 2021).

Previous AL approaches in NLP use task-
specific neural models that are trained from scratch
at each iteration (Shen et al., 2017; Siddhant and
Lipton, 2018; Prabhu et al., 2019; Ikhwantri et al.,
2018; Kasai et al., 2019). However, these models
are usually outperformed by pretrained language
models (LMs) adapted to end-tasks (Howard and
Ruder, 2018), making them suboptimal for AL.
Only recently, pretrained LMs such as BERT (De-
vlin et al., 2019) have been introduced in AL set-
tings (Yuan et al., 2020; Ein-Dor et al., 2020; Shel-
manov et al., 2021; Karamcheti et al., 2021; Mar-
gatina et al., 2021). Still, they are trained at each
AL iteration with a standard fine-tuning approach
that mainly includes a pre-defined number of train-
ing epochs, which has been demonstrated to be
unstable, especially in small datasets (Zhang et al.,
2020; Dodge et al., 2020; Mosbach et al., 2021).
Since AL includes both low and high data resource
settings, the AL model training scheme should be
robust in both scenarios.2

To address these limitations, we introduce a suite
of effective training strategies for AL (§2). Con-
trary to previous work (Yuan et al., 2020; Ein-Dor
et al., 2020; Margatina et al., 2021) that also use
BERT (Devlin et al., 2019), our proposed method
accounts for various data availability settings and
the instability of fine-tuning. First, we continue
pretraining the LM with the available unlabeled
data to adapt it to the task-specific domain. This
way, we leverage not only the available labeled data
at each AL iteration, but the entire unlabeled pool.
Second, we further propose a simple yet effective
fine-tuning method that is robust in both low and
high resource data settings for AL.

2During the first few AL iterations the available labeled
data is limited (low-resource), while it could become very
large towards the last iterations (high-resource).
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We explore the effectiveness of our approach on
five standard natural language understandings tasks
with various acquisition functions, showing that it
outperforms all baselines (§3). We also conduct an
analysis to demonstrate the importance of effective
adaptation of pretrained models for AL (§4). Our
findings highlight that the LM adaptation strategy
can be more critical than the actual data acquisition
strategy.

2 Adapting & Fine-tuning Pretrained
Models for Active Learning

Given a downstream classification task with C
classes, a typical AL setup consists of a pool of
unlabeled data Dpool, a modelM, an annotation
budget b of data points and an acquisition function
a(.) for selecting k unlabeled data points for anno-
tation (i.e. acquisition size) until b runs out. The
AL performance is assessed by training a model on
the actively acquired dataset and evaluating on a
held-out test set Dtest.

Adaptation (TAPT) Inspired by recent work on
transfer learning that shows improvements in down-
stream classification performance by continuing the
pretraining of the LM with the task data (Howard
and Ruder, 2018) we add an extra step to the
AL process by continuing pretraining the LM (i.e.
Task-Adaptive Pretraining TAPT), as in Gururan-
gan et al. (2020). Formally, we use an LM, such as
BERT (Devlin et al., 2019), P(x;W0) with weights
W0, that has been already pretrained on a large
corpus. We fine-tune P(x;W0) with the available
unlabeled data of the downstream task Dpool, re-
sulting in the task-adapted LM PTAPT(x;W

′
0) with

new weights W ′
0 (cf. line 2 of algorithm 1).

Fine-tuning (FT+) We now use the adapted
LM PTAPT(x;W

′
0) for AL. At each iteration i,

we initialize our model Mi with the pretrained
weights W ′

0 and we add a task-specific feedfor-
ward layer for classification with weights Wc on
top of the [CLS] token representation of BERT-
based PTAPT. We fine-tune the classification model
Mi(x; [W

′
0,Wc]) with all x ∈ Dlab. (cf. line 6 to

8 of algorithm 1).
Recent work in AL (Ein-Dor et al., 2020; Yuan

et al., 2020) uses the standard fine-tuning method
proposed in Devlin et al. (2019) which includes
a fixed number of 3 training epochs, learning rate
warmup over the first 10% of the steps and AdamW
optimizer (Loshchilov and Hutter, 2019) without

Algorithm 1: AL with Pretrained LMs
Input: unlabeled data Dpool, pretrained LM

P(x;W0), acquisition size k, AL
iterations T , acquisition function a

1 Dlab ← ∅
2 PTAPT(x;W

′
0)← Train P(x;W0) on Dpool

3 Q0 ← RANDOM(.), |Q0| = k
4 Dlab = Dlab ∪Q0

5 Dpool = Dpool \ Q0

6 for i← 1 to T do
7 Mi(x; [W

′
0,Wc])← Initialize from

PTAPT(x;W
′
0)

8 Mi(x;Wi)← Train model on Dlab
9 Qi ← a(Mi,Dpool, k)

10 Dlab = Dlab ∪Qi

11 Dpool = Dpool \ Qi

12 end
Output: Dlab

bias correction, among other hyperparameters.
We follow a different approach by taking into

account insights from few-shot fine-tuning liter-
ature (Mosbach et al., 2021; Zhang et al., 2020;
Dodge et al., 2020) that proposes longer fine-tuning
and more evaluation steps during training. 3 We
combine these guidelines to our fine-tuning ap-
proach by using early stopping with 20 epochs
based on the validation loss, learning rate 2e− 5,
bias correction and 5 evaluation steps per epoch.
However, increasing the number of epochs from
3 to 20, also increases the warmup steps (10% of
total steps4) almost 7 times. This may be problem-
atic in scenarios where the dataset is large but the
optimal number of epochs may be small (e.g. 2 or
3). To account for this limitation in our AL setting
where the size of training set changes at each it-
eration, we propose to select the warmup steps as
min(10% of total steps, 100). We denote standard
fine-tuning as SFT and our approach as FT+.

3 Experiments & Results

Data We experiment with five diverse natural lan-
guage understanding tasks: question classification

3In this paper we use few-shot to describe the setting where
there are few labeled data available and therefore few-shot fine-
tuning corresponds to fine-tuning a model on limited labeled
training data. This is different than the few-shot setting pre-
sented in recent literature (Brown et al., 2020), where no
model weights are updated.

4Some guidelines propose an even smaller number of
warmup steps, such as 6% in RoBERTa (Liu et al., 2020).
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Figure 1: Test accuracy during AL iterations. We plot the median and standard deviation across five runs.

DATASETS TRAIN VAL TEST k C

TREC-6 4.9K 546 500 1% 6

DBPEDIA 20K 2K 70K 1% 14

IMDB 22.5K 2.5K 25K 1% 2

SST-2 60.6K 6.7K 871 1% 2

AGNEWS 114K 6K 7.6K 0.5% 4

Table 1: Datasets statistics for Dpool, Dval and Dtest
respectively. k stands for the acquisition size (% of
Dpool) and C the number of classes.

(TREC-6; Voorhees and Tice (2000)), sentiment
analysis (IMDB; Maas et al. (2011), SST-2 Socher
et al. (2013)) and topic classification (DBPEDIA,
AGNEWS; Zhang et al. (2015)), including binary
and multi-class labels and varying dataset sizes (Ta-
ble 1). More details can be found in Appendix A.1.

Experimental Setup We perform all AL experi-
ments using BERT-base (Devlin et al., 2019) and
ENTROPY, BERTKM, ALPS (Yuan et al., 2020),

BADGE (Ash et al., 2020) and RANDOM (baseline)
as the acquisition functions. We pair our proposed
training approach TAPT-FT+ with ENTROPY ac-
quisition. We refer the reader to Appendix A for
an extended description of our experimental setup,
including the datasets used (§A.1), the training
and AL details (§A.2), the model hyperparameters
(§A.3) and the baselines (§A.4).

Results Figure 1 shows the test accuracy during
AL iterations. We first observe that our proposed
approach (TAPT-FT+) achieves large data efficiency
reaching the full-dataset performance within the
15% budget for all datasets, in contrast to the stan-
dard AL approach (BERT-SFT). The effectiveness
of our approach is mostly notable in the smaller
datasets. In TREC-6, it achieves the goal accuracy
with almost 10% annotated data, while in DBPE-
DIA only in the first iteration with 2% of the data.
After the first AL iteration in IMDB, TAPT-FT+, it
achieves only 2.5 points of accuracy lower than the
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performance when using 100% of the data. In the
larger SST-2 and AGNEWS datasets, it is closer to
the baselines but still outperforms them, achieving
the full-dataset performance with 8% and 12% of
the data respectively. We also observe that in all
five datasets, the addition of our proposed pretrain-
ing step (TAPT) and fine-tuning technique (FT+)
leads to large performance gains, especially in the
first AL iterations. This is particularly evident in
TREC-6, DBPEDIA and IMDB datasets, where after
the first AL iteration (i.e. equivalent to 2% of train-
ing data) TAPT+FT+ with ENTROPY is 45, 30 and
12 points in accuracy higher than the ENTROPY

baseline with BERT and SFT.

Training vs. Acquisition Strategy We finally
observe that the performance curves of the vari-
ous acquisition functions considered (i.e. dotted
lines) are generally close to each other, suggesting
that the choice of the acquisition strategy may not
affect substantially the AL performance in certain
cases. In other words, we conclude that the training
strategy can be more important than the acquisi-
tion strategy. We find that uncertainty sampling
with ENTROPY is generally the best performing
acquisition function, followed by BADGE.5 Still,
finding a universally well-performing acquisition
function, independent of the training strategy, is an
open research question.

4 Analysis & Discussion

4.1 Task-Adaptive Pretraining

We first present details of our implementation of
TAPT (§2) and reflect on its effectiveness in the
AL pipeline. Following Gururangan et al. (2020),
we continue pretraining BERT for the MLM task
using all the unlabeled data Dpool for all datasets
separately. We plot the learning curves of BERT-
TAPT for all datasets in Figure 2. We first observe
that the masked LM loss is steadily decreasing for
DBPEDIA, IMDB and AGNEWS across optimization
steps, which correlates with the high early AL per-
formance gains of TAPT in these datasets (Fig. 1).
We also observe that the LM overfits in TREC-6
and SST-2 datasets. We attribute this to the very
small training dataset of TREC-6 and the informal
textual style of SST-2. Despite the fact that the
SST-2 dataset includes approximately 67K of train-
ing data, the sentences are very short (i.e. average

5We provide results with additional acquisition functions
in the Appendix B.2 and B.3.
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Figure 2: Validation MLM loss during TAPT.
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Figure 3: Few-shot standard BERT fine-tuning.

length of 9.4 words per sentence). We hypothesize
the LM overfits because of the lack of long and
more diverse sentences. We provide more details
on TAPT at the Appendix B.1.

4.2 Few-shot Fine-tuning

In this set of experiments, we aim to highlight that it
is crucial to consider the few-shot learning problem
in the early AL stages, which is often neglected
in literature. This is more important when using
pretrained LMs, since they are overparameterized
models that require adapting their training scheme
in low data settings to ensure robustness.

To illustrate the potential ineffectiveness of stan-
dard fine-tuning (SFT), we randomly undersam-
ple the AGNEWS and IMDB datasets to form low,
medium and high resource data settings (i.e. 100,
1, 000 and 10, 000 training samples), and train
BERT for a fixed number of 3, 10, and 20 epochs.
We repeat this process with 10 different random
seeds to account for stochasticity in sampling and
we plot the test accuracy in Figure 3. Figure 3
shows that SFT is suboptimal for low data settings
(e.g. 100 samples), indicating that more optimiza-
tion steps (i.e. epochs) are needed for the model
to adapt to the few training samples (Zhang et al.,
2020; Mosbach et al., 2021). As the training sam-
ples increase (e.g. 1, 000), fewer epochs are of-
ten better. It is thus evident that there is not a
clearly optimal way to choose a predefined number
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of epochs to train the model given the number of
training examples. This motivates the need to find
a fine-tuning policy for AL that effectively adapts
to the data resource setting of each iteration (inde-
pendently of the number of training examples or
dataset), which is mainly tackled by our proposed
fine-tuning approach FT+ (§2).

4.3 Ablation Study

We finally conduct an ablation study to evaluate
the contribution of our two proposed steps to the
AL pipeline; the pretraining step (TAPT) and fine-
tuning method (FT+). We show that the addition
of both methods provides large gains compared
to standard fine-tuning (SFT) in terms of accu-
racy, data efficiency and uncertainty calibration.
We compare BERT with SFT, BERT with FT+ and
BERT-TAPT with FT+. Along with test accuracy,
we also evaluate each model using uncertainty esti-
mation metrics (Ovadia et al., 2019): Brier score,
negative log likelihood (NLL), expected calibration
error (ECE) and entropy. A well-calibrated model
should have high accuracy and low uncertainty.

Figure 4 shows the results for the smallest and
largest datasets, TREC-6 and AGNEWS respectively.
For TREC-6, training BERT with our fine-tuning
approach FT+ provides large gains both in accu-
racy and uncertainty calibration, showing the im-
portance of fine-tuning the LM for a larger number
of epochs in low resource settings. For the larger
dataset, AGNEWS, we see that BERT with SFT per-
forms equally to FT+ which is the ideal scenario.
We see that our fine-tuning approach does not de-
teriorate the performance of BERT given the large
increase in warmup steps, showing that our sim-
ple strategy provides robust results in both high
and low resource settings. After demonstrating
that FT+ yields better results than SFT, we next
compare BERT-TAPT-FT+ against BERT-FT+. We
observe that in both datasets BERT-TAPT outper-
forms BERT, with this being particularly evident in
the early iterations. This confirms our hypothesis
that by implicitly using the entire pool of unlabeled
data for extra pretraining (TAPT), we boost the per-
formance of the AL model using less data.

5 Conclusion

We have presented a simple yet effective training
scheme for AL with pretrained LMs that accounts
for varying data availability and instability of fine-
tuning. Specifically, we propose to first continue
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Figure 4: Ablation study for TAPT and FT+.

pretraining the LM with the available unlabeled
data to adapt it to the task-specific domain. This
way, we leverage not only the available labeled data
at each AL iteration, but the entire unlabeled pool.
We further propose a method to fine-tune the model
during AL iterations so that training is robust in
both low and high resource data settings.

Our experiments show that our approach yields
substantially better results than standard fine-tuning
in five standard NLP datasets. Furthermore, we find
that the training strategy can be more important
than the acquisition strategy. In other words, a
poor training strategy can be a crucial impediment
to the effectiveness of a good acquisition function,
and thus limit its effectiveness (even over random
sampling). Hence, our work highlights how critical
it is to properly adapt a pretrained LM to the low
data resource AL setting.

As state-of-the-art models in NLP advance
rapidly, in the future we would be interested in
exploring the use of larger LMs, such as GPT-
3 (Brown et al., 2020) and FLAN (Wei et al.,
2022). These models have achieved impressive
performance in very low data resource settings (e.g.
zero-shot and few-shot), so we would imagine they
would be good candidates for the challenging set-
ting of active learning.
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A Appendix: Experimental Setup

A.1 Datasets
We experiment with five diverse natural language
understanding tasks including binary and multi-
class labels and varying dataset sizes (Table 1).
The first task is question classification using the six-
class version of the small TREC-6 dataset of open-
domain, fact-based questions divided into broad
semantic categories (Voorhees and Tice, 2000). We
also evaluate our approach on sentiment analysis
using the binary movie review IMDB dataset (Maas
et al., 2011) and the binary version of the SST-2
dataset (Socher et al., 2013). We finally use the
large-scale AGNEWS and DBPEDIA datasets from
Zhang et al. (2015) for topic classification. We
undersample the latter and form a Dpool of 20K ex-
amples and Dval 2K as in Margatina et al. (2021).
For TREC-6, IMDB and SST-2 we randomly sample
10% from the training set to serve as the valida-
tion set, while for AGNEWS we sample 5%. For
the DBPEDIA dataset we undersample both training
and validation datasets (from the standard splits)
to facilitate our AL simulation (i.e. the original
dataset consists of 560K training and 28K valida-
tion data examples). For all datasets we use the
standard test set, apart from the SST-2 dataset that
is taken from the GLUE benchmark (Wang et al.,
2019) we use the development set as the held-out
test set (and subsample a development set from the
original training set).

A.2 Training & AL Details
We use BERT-BASE (Devlin et al., 2019) and fine-
tune it (TAPT §2) for 100K steps, with learning
rate 2e− 05 and the rest of hyperparameters as in
Gururangan et al. (2020) using the HuggingFace
library (Wolf et al., 2020). We evaluate the model
5 times per epoch on Dval and keep the one with
the lowest validation loss as in Dodge et al. (2020).
We use the code provided by Kirsch et al. (2019)
for the uncertainty-based acquisition functions and
Yuan et al. (2020) for ALPS, BADGE and BERTKM.
We use the standard splits provided for all datasets,
if available, otherwise we randomly sample a val-
idation set. We test all models on a held-out test
set. We repeat all experiments with five different
random seeds resulting into different initializations
of Dlab and the weights of the extra task-specific
output feedforward layer. For all datasets we use as
budget the 15% of Dpool. Each experiment is run
on a single Nvidia Tesla V100 GPU.

A.3 Hyperparameters

For all datasets we train BERT-BASE (Devlin et al.,
2019) from the HuggingFace library (Wolf et al.,
2020) in Pytorch (Paszke et al., 2019). We train
all models with batch size 16, learning rate 2e− 5,
no weight decay, AdamW optimizer with epsilon
1e− 8. For all datasets we use maximum sequence
length of 128, except for IMDB and AGNEWS that
contain longer input texts, where we use 256. To
ensure reproducibility and fair comparison between
the various methods under evaluation, we run all
experiments with the same five seeds that we ran-
domly selected from the range [1, 9999].

A.4 Baselines

Acquisition functions We compare EN-
TROPYwith four baseline acquisition functions.
The first is the standard AL baseline, RANDOM,
which applies uniform sampling and selects k data
points from Dpool at each iteration. The second is
BADGE (Ash et al., 2020), an acquisition function
that aims to combine diversity and uncertainty
sampling. The algorithm computes gradient
embeddings gx for every candidate data point
x in Dpool and then uses clustering to select a
batch. Each gx is computed as the gradient of the
cross-entropy loss with respect to the parameters of
the model’s last layer. We also compare against a
recently introduced cold-start acquisition function
called ALPS (Yuan et al., 2020). ALPS acquisition
uses the masked language model (MLM) loss
of BERT as a proxy for model uncertainty in
the downstream classification task. Specifically,
aiming to leverage both uncertainty and diversity,
ALPS forms a surprisal embedding sx for each x,
by passing the unmasked input x through the BERT

MLM head to compute the cross-entropy loss for
a random 15% subsample of tokens against the
target labels. ALPS clusters these embeddings to
sample k sentences for each AL iteration. Last,
following Yuan et al. (2020), we use BERTKM as
a diversity baseline, where the l2 normalized BERT

output embeddings are used for clustering.

Models & Fine-tuning Methods We evaluate
two variants of the pretrained language model; the
original BERT model, used in Yuan et al. (2020)
and Ein-Dor et al. (2020)6, and our adapted model
BERT-TAPT (§2), and two fine-tuning methods;

6Ein-Dor et al. (2020) evaluate various acquisition func-
tions, including entropy with MC dropout, and use BERT with
the standard fine-tuning approach (SFT).
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our proposed fine-tuning approach FT+ (§2) and
standard BERT fine-tuning SFT.

MODEL TREC-6 DBPEDIA IMDB SST-2 AGNEWS

VALIDATION SET

BERT 94.4 99.1 90.7 93.7 94.4
BERT-TAPT 95.2 99.2 91.9 94.3 94.5

TEST SET

BERT 80.6 99.2 91.0 90.6 94.0
BERT-TAPT 77.2 99.2 91.9 90.8 94.2

Table 2: Accuracy with 100% of data over five runs
(different random seeds).

B Appendix: Analysis

B.1 Task-Adaptive Pretraining (TAPT) &
Full-Dataset Performance

As discussed in §2 and §4, we continue training
the BERT-BASE (Devlin et al., 2019) pretrained
masked language model using the available data
Dpool. We explored various learning rates between
1e− 4 and 1e− 5 and found the latter to produce
the lowest validation loss. We trained each model
(one for each dataset) for up to 100K optimization
steps, we evaluated on Dval every 500 steps and
saved the checkpoint with the lowest validation
loss. We used the resulting model in our (BERT-
TAPT) experiments. We plot the learning curves of
masked language modeling task (TAPT) for three
datasets and all considered learning rates in Figure
5. We notice that a smaller learning rate facilitates
the training of the MLM.

In Table 2 we provide the validation and test
accuracy of BERT and BERT-TAPT for all datasets.
We present the mean across runs with three random
seeds. For fine-tuning the models, we used the
proposed approach FT+ (§2).

B.2 Performance of Acquisition Functions
In our BERT-TAPT-FT+ experiments so far, we
showed results with ENTROPY. We have also exper-
imented with various uncertainty-based acquisition
functions. Specifically, four uncertainty-based ac-
quisition functions are used in our work: LEAST

CONFIDENCE, ENTROPY, BALD and BATCH-
BALD. LEAST CONFIDENCE (Lewis and Gale,
1994) sorts Dpool by the probability of not pre-
dicting the most confident class, in descending
order, ENTROPY (Shannon, 1948) selects sam-
ples that maximize the predictive entropy, and
BALD (Houlsby et al., 2011), short for Bayesian
Active Learning by Disagreement, chooses data
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Figure 5: Learning curves of TAPT for various learning
rates.
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Figure 6: Comparison of acquisition functions using
TAPT and FT+ in training BERT.

points that maximize the mutual information be-
tween predictions and model’s posterior probabil-
ities. BATCHBALD (Kirsch et al., 2019) is a re-
cently introduced extension of BALD that jointly
scores points by estimating the mutual informa-
tion between multiple data points and the model
parameters. This iterative algorithm aims to find
batches of informative data points, in contrast to
BALD that chooses points that are informative
individually. Note that LEAST CONFIDENCE, EN-
TROPY and BALD have been used in AL for NLP
by Siddhant and Lipton (2018). To the best of our
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TREC-6 SST-2 IMDB DBPEDIA AGNEWS

RANDOM 0/0 0/0 0/0 0/0 0/0
ALPS 0/57 0/478 0/206 0/134 0/634
BADGE 0/63 0/23110 0/1059 0/192 -
BERTKM 0/47 0/2297 0/324 0/137 0/3651
ENTROPY 81/0 989/0 557/0 264/0 2911/0
LEAST CONFIDENCE 69/0 865/0 522/0 256/0 2607/0
BALD 69/0 797/0 524/0 256/0 2589/0
BATCHBALD 69/21 841/1141 450/104 256/482 2844/5611

Table 3: Runtimes (in seconds) for all datasets. In each cell of the table we present a tuple i/s where i is the
inference time and s the selection time. Inference time is the time for the model to perform a forward pass for all the
unlabeled data in Dpool and selection time is the time that each acquisition function requires to rank all candidate
data points and select k for annotation (for a single iteration). Since we cannot report the runtimes for every model
in the AL pipeline (at each iteration the size of Dpool changes), we provide the median.

knowledge, BATCHBALD is evaluated for the first
time in the NLP domain.

Instead of using the output softmax probabilities
for each class, we use a probabilistic formulation of
deep neural networks in order to acquire better cali-
brated scores. Monte Carlo (MC) dropout (Gal and
Ghahramani, 2016) is a simple yet effective method
for performing approximate variational inference,
based on dropout (Srivastava et al., 2014). Gal
and Ghahramani (2016) prove that by simply per-
forming dropout during the forward pass in making
predictions, the output is equivalent to the predic-
tion when the parameters are sampled from a varia-
tional distribution of the true posterior. Therefore,
dropout during inference results into obtaining pre-
dictions from different parts of the network. Our
BERT-basedMi model uses dropout layers during
training for regularization. We apply MC dropout
by simply activating them during test time and we
perform multiple stochastic forward passes. For-
mally, we do N passes of every x ∈ Dpool through
Mi(x;Wi) to acquire N different output proba-
bility distributions for each x. MC dropout for
AL has been previously used in the literature (Gal
et al., 2017; Shen et al., 2017; Siddhant and Lip-
ton, 2018; Lowell and Lipton, 2019; Ein-Dor et al.,
2020; Shelmanov et al., 2021).

Our findings show that all functions provide sim-
ilar performance, except for BALD that slightly
underperforms. This makes our approach agnos-
tic to the selected uncertainty-based acquisition
method. We also evaluate our proposed methods
with our baseline acquisition functions, i.e. RAN-
DOM, ALPS, BERTKM and BADGE, since our
training strategy is orthogonal to the acquisition

strategy. We compare all acquisition functions with
BERT-TAPT-FT+ for AGNEWS and IMDB in Fig-
ure 6. We observe that in general uncertainty-based
acquisition performs better compared to diversity,
while all acquisition strategies have benefited from
our training strategy (TAPT and FT+).

B.3 Efficiency of Acquisition Functions

In this section we discuss the efficiency of the
eight acquisition functions considered in this work;
RANDOM, ALPS, BADGE, BERTKM, ENTROPY,
LEAST CONFIDENCE, BALD and BATCHBALD.

In Table 3 we provide the runtimes for all ac-
quisition functions and datasets. Each AL experi-
ments consists of multiple iterations and (therefore
multiple models), each with a different training
dataset Dlab and pool of unlabeled data Dpool. In
order to evaluate how computationally heavy is
each method, we provide the median of all the
models in one AL experiment. We calculate the
runtime of two types of functionalities. The first is
the inference time and stands for the forward pass
of each x ∈ Dpool to acquire confidence scores for
uncertainty sampling. RANDOM, ALPS, BADGE

and BERTKM do not require this step so it is only
applied of uncertainty-based acquisition where ac-
quiring uncertainty estimates with MC dropout is
needed. The second functionality is selection time
and measures how much time each acquisition func-
tion requires to rank and select the k data points
from Dpool to be labeled in the next step of the AL
pipeline. RANDOM, ENTROPY, LEAST CONFI-
DENCE and BALD perform simple equations to
rank the data points and therefore so do not require
selection time. On the other hand, ALPS, BADGE,
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BERTKM and BATCHBALD perform iterative al-
gorithms that increase selection time. From all ac-
quisition functions ALPS and BERTKM are faster
because they do not require the inference step of
all the unlabeled data to the model. ENTROPY,
LEAST CONFIDENCE and BALD require the same
time for selecting data, which is equivalent for the
time needed to perform one forward pass of the en-
tire Dpool. Finally BADGE and BATCHBALD are
the most computationally heavy approaches, since
both algorithms require multiple computations for
the selection time. RANDOM has a total runtime of
zero seconds, as expected.
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2.3 Impact

According to Google Scholar, the paper has received 41 citations as of May 2024. It

was featured in numerous surveys (e.g. Tsvigun et al., 2022; Zhang et al., 2022f; Rauch

et al., 2023; Mehlin et al., 2023; Wang et al., 2023; Wan et al., 2023; Nachtegael et al.,

2023; Li et al., 2024; Tamkin, 2023; Zhang, 2023; Rainforth et al., 2024) and has inspired

follow-up work (Steegh and Sileno, 2023; Shi and Lipani, 2023; Shi et al., 2023).

2.4 Discussion

Apart from considerably improving active learning with BERTmodels, the more general

takeaways of the paper are twofold: (i) adapting a pretrained language model that will

be used for AL to the domain of the task is crucial and efficient, if such unlabeled data

is available beforehand, and (ii) the training strategy can be more influential in the

AL success than the acquisition strategy (i.e., if a model is high performing – such as

through our proposed adaptation methodology – several acquisition functions paired

with it provide similar results).

Naturally the field of NLP has advanced significantly during the years that this PhD

thesis has been conducted, and BERT-like models are often replaced by large language

models (LLMs) of million or billion of parameters that are based on the Transformer

architecture. Still, our key findings in this paper are general enough to aid practitioners

in building effective AL methods for their work. Using a model that is highly capable in

the domain of the task at hand is most likely always desired, as a very large pretrained

model still has limited capacity to perform perfectly in all scenarios. Also, even though

the exact fine-tuning technique we proposed will most likely be deprecated now, our

idea that the varying dataset size of the acqtively acquired training dataset during

the AL iterations will always be useful to take into account when developing the AL

training methodology.





Chapter 3

Publication II: Constrastive

Active Learning

The main contribution of this chapter is the paper Active Learning by Acquiring Con-

trastive Examples, which was published at the Empirical Methods in Natural Language

Processing conference in November 2021. We first outline the motivation for this work

(Section 3.1), followed by the paper itself (Section 3.2), the impact that it has had so

far (Section 3.3), and discussion (Section 3.4).

3.1 Introduction

Following our contribution to the training stage of the active learning (AL) loop (Chap-

ter 2), we turned our attention to the data acquisition stage. Selecting the appropriate

data for human annotation is arguably the most crucial aspect of AL. We examined

the most prevalent uncertainty-based and diversity-based AL acquisition methods, crit-

ically analyzing their limitations. Existing methods often either select hard examples

that are impossible for the model to learn (e.g., collective outliers) or data points that

are diverse but too easy for the model to learn, thus not significantly enhancing data ef-

ficiency. To address this gap in the literature, we proposed Contrastive Active Learning

(CAL). CAL is an algorithm that selects examples near the model’s decision boundary,

using the feature space of the hidden representations to determine which data points

will most effectively enhance the training set.

Section 2 of our paper below describes in detail how we formulated the algorithm for

CAL. The idea is to find, for each example in the unlabeled pool xp, a neighbourhood

of k data points in the labeled dataset that the model produces the most diverging

predictions. We would expect that the k nearest neighbours xl
k
i of xp to belong to
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the same class as xp. We measure the model’s predicted probability for p(y|xl)ki and

compute the KL divergence with p(y|xp). We compute a score as the average KL

divergence of the neighborhood for each xp in the pool. In the end, we choose to

acquire the data points whose average KL score was the highest, as these examples

diverge the most from their neighbours in the training set, being therefore close to the

model’s decision boundary (i.e. contrastive examples).

Through empirical experimentation we found that CAL the top performing (in some

cases along with the entropy acquisition function) algorithm between 6 methods, yield-

ing high AL results in several text classification tasks. We conducted a thorough

analysis of the algorithm (Sections 5 and 6 of the paper) and showed that CAL chooses

uncertain yet representative data.

3.2 The Paper

Author Contributions

The paper is co-authored by myself, Giorgos Vernikos, Löıc Barrault and Nikolaos Ale-

tras. Nikolaos Aletras seeded the idea of exloring a more effective acquisition function

for active learning, co-supervised the project, offered suggestions, and helped revise

the final version. Löıc Barrault co-supervised the project, attended all meetings with

Nikolaos Aletras and myself for the project, helped shape the idea for the algorithm

and proofread the paper. As the lead author, I developed the algorithm for CAL,

performed the experiments, and wrote the paper. Giorgos Vernikos participated in

many discussions, helped brainstorming the algorithm for CAL and gave pointers for

analysing the method and the results.
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Abstract

Common acquisition functions for active learn-
ing use either uncertainty or diversity sam-
pling, aiming to select difficult and diverse
data points from the pool of unlabeled data, re-
spectively. In this work, leveraging the best
of both worlds, we propose an acquisition
function that opts for selecting contrastive ex-
amples, i.e. data points that are similar in
the model feature space and yet the model
outputs maximally different predictive likeli-
hoods. We compare our approach, CAL (Con-
trastive Active Learning), with a diverse set of
acquisition functions in four natural language
understanding tasks and seven datasets. Our
experiments show that CAL performs consis-
tently better or equal than the best performing
baseline across all tasks, on both in-domain
and out-of-domain data. We also conduct an
extensive ablation study of our method and we
further analyze all actively acquired datasets
showing that CAL achieves a better trade-off
between uncertainty and diversity compared to
other strategies.

1 Introduction

Active learning (AL) is a machine learning
paradigm for efficiently acquiring data for anno-
tation from a (typically large) pool of unlabeled
data (Lewis and Catlett, 1994; Cohn et al., 1996;
Settles, 2009). Its goal is to concentrate the human
labeling effort on the most informative data points
that will benefit model performance the most and
thus reducing data annotation cost.

The most widely used approaches to acquiring
data for AL are based on uncertainty and diversity,
often described as the “two faces of AL” (Das-
gupta, 2011). While uncertainty-based methods
leverage the model predictive confidence to select
difficult examples for annotation (Lewis and Gale,
1994; Cohn et al., 1996), diversity sampling ex-
ploits heterogeneity in the feature space by typi-
cally performing clustering (Brinker, 2003; Bodó

Figure 1: Illustrative example of our proposed method
CAL. The solid line (model decision boundary) sepa-
rates data points from two different classes (blue and
orange), the coloured data points represent the labeled
data and the rest are the unlabeled data of the pool.

et al., 2011). Still, both approaches have core limi-
tations that may lead to acquiring redundant data
points. Algorithms based on uncertainty may end
up choosing uncertain yet uninformative repetitive
data, while diversity-based methods may tend to se-
lect diverse yet easy examples for the model (Roy
and McCallum, 2001). The two approaches are
orthogonal to each other, since uncertainty sam-
pling is usually based on the model’s output, while
diversity exploits information from the input (i.e.
feature) space. Hybrid data acquisition functions
that combine uncertainty and diversity sampling
have also been proposed (Shen et al., 2004; Zhu
et al., 2008; Ducoffe and Precioso, 2018; Ash et al.,
2020; Yuan et al., 2020; Ru et al., 2020).

In this work, we aim to leverage characteristics
from hybrid data acquisition. We hypothesize that
data points that are close in the model feature space
(i.e. share similar or related vocabulary, or similar
model encodings) but the model produces different
predictive likelihoods, should be good candidates
for data acquisition. We define such examples as
contrastive (see example in Figure 1). For that
purpose, we propose a new acquisition function
that searches for contrastive examples in the pool
of unlabeled data. Specifically, our method, Con-
trastive Active Learning (CAL) selects unlabeled
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data points from the pool, whose predictive like-
lihoods diverge the most from their neighbors in
the training set. This way, CAL shares similarities
with diversity sampling, but instead of performing
clustering it uses the feature space to create neigh-
borhoods. CAL also leverages uncertainty, by using
predictive likelihoods to rank the unlabeled data.

We evaluate our approach in seven datasets from
four tasks including sentiment analysis, topic classi-
fication, natural language inference and paraphrase
detection. We compare CAL against a full suite
of baseline acquisition functions that are based on
uncertainty, diversity or both. We also examine ro-
bustness by evaluating on out-of-domain data, apart
from in-domain held-out sets. Our contributions
are the following:

1. We propose CAL, a new acquisition function
for active learning that acquires contrastive ex-
amples from the pool of unlabeled data (§2);

2. We show that CAL performs consistently bet-
ter or equal compared to all baselines in all
tasks when evaluated on in-domain and out-
of-domain settings (§4);

3. We conduct a thorough analysis of our method
showing that CAL achieves a better trade-off
between diversity and uncertainty compared
to the baselines (§6).

We release our code online 1.

2 Contrastive Active Learning

In this section we present in detail our proposed
method, CAL: Contrastive Active Learning. First,
we provide a definition for contrastive examples
and how they are related to finding data points that
are close to the decision boundary of the model
(§2.1). We next describe an active learning loop
using our proposed acquisition function (§2.2).

2.1 Contrastive Examples
In the context of active learning, we aim to formu-
late an acquisition function that selects contrastive
examples from a pool of unlabeled data for anno-
tation. We draw inspiration from the contrastive
learning framework, that leverages the similarity
between data points to push those from the same
class closer together and examples from different
classes further apart during training (Mikolov et al.,

1https://github.com/mourga/
contrastive-active-learning

2013; Sohn, 2016; van den Oord et al., 2019; Chen
et al., 2020; Gunel et al., 2021).

In this work, we define as contrastive examples
two data points if their model encodings are simi-
lar, but their model predictions are very different
(maximally disagreeing predictive likelihoods).

Formally, data points xi and xj should first sat-
isfy a similarity criterion:

d
(
Φ(xi),Φ(xj)

)
< ε (1)

where Φ(.) ∈ Rd
′

is an encoder that maps xi, xj
in a shared feature space, d(.) is a distance metric
and ε is a small distance value.

A second criterion, based on model uncertainty,
is to evaluate that the predictive probability distri-
butions of the model p(y|xi) and p(y|xj) for the
inputs xi and xj should maximally diverge:

KL
(
p(y|xi)||p(y|xj)

)
→∞ (2)

where KL is the Kullback-Leibler divergence be-
tween two probability distributions 2.

For example, in a binary classification problem,
given a reference example x1 with output proba-
bility distribution (0.8, 0.2) 3 and similar candidate
examples x2 with (0.7, 0.3) and x3 with (0.6, 0.4),
we would consider as contrastive examples the pair
(x1, x3). However, if another example x4 (similar
to x1 in the model feature space) had a probabil-
ity distribution (0.4, 0.6), then the most contrastive
pair would be (x1, x4).

Figure 1 provides an illustration of contrastive
examples for a binary classification case. All data
points inside the circle (dotted line) are similar in
the model feature space, satisfying Eq. 1. Intu-
itively, if the divergence of the output probabilities
of the model for the gray and blue shaded data
points is high, then Eq. 2 should also hold and we
should consider them as contrastive.

From a different perspective, data points with
similar model encodings (Eq. 1) and dissimilar
model outputs (Eq. 2), should be close to the
model’s decision boundary (Figure 1). Hence, we
hypothesize that our proposed approach to select

2KL divergence is not a symmetric metric, KL(P ||Q) =∑
x

P (x)log
(P (x)
Q(x)

)
. We use as input Q the output probability

distribution of an unlabeled example from the pool and as
target P the output probability distribution of an example
from the train set (See §2.2 and algorithm 1).

3A predictive distribution (0.8, 0.2) here denotes that the
model is 80% confident that x1 belongs to the first class and
20% to the second.
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Algorithm 1 Single iteration of CAL

Input: labeled data Dlab, unlabeled data Dpool, acquisition size b, modelM, number of neighbours k,
model representation (encoding) function Φ(.)

1 for xp in Dpool do
2

{
(x

(i)
l , y

(i)
l )
}
, i = 1, ..., k ← KNN

(
Φ(xp),Φ(Dlab), k

)
. find neighbours in Dlab

3 p(y|x(i)l )←M(x
(i)
l ), i = 1, ..., k . compute probabilities

4 p(y|xp)←M(xp)

5 KL
(
p(y|x(i)l )||p(y|xp)

)
, i = 1, ..., k . compute divergence

6 sxp = 1
k

k∑
i=1

KL
(
p(y|x(i)l )||p(y|xp)

)
. score

7 end
8 Q = argmax

xp∈Dpool

sxp , |Q| = b . select batch

Output: Q

contrastive examples is related to acquiring difficult
examples near the decision boundary of the model.
Under this formulation, CAL does not guarantee
that the contrastive examples lie near the model’s
decision boundary, because our definition is not
strict. In order to ensure that a pair of contrastive
examples lie on the boundary, the second criterion
should require that the model classifies the two
examples in different classes (i.e. different predic-
tions). However, calculating the distance between
an example and the model decision boundary is
intractable and approximations that use adversarial
examples are computationally expensive (Ducoffe
and Precioso, 2018).

2.2 Active Learning Loop

Assuming a multi-class classification problem with
C classes, labeled data for training Dlab and a pool
of unlabeled data Dpool, we perform AL for T iter-
ations. At each iteration, we train a model on Dlab
and then use our proposed acquisition function,
CAL (Algorithm 1), to acquire a batchQ consisting
of b examples from Dpool. The acquired examples
are then labeled4, they are removed from the pool
Dpool and added to the labeled dataset Dlab, which
will serve as the training set for training a model in
the next AL iteration. In our experiments, we use
a pretrained BERT modelM (Devlin et al., 2019),
which we fine-tune at each AL iteration using the
current Dlab. We begin the AL loop by training a
modelM using an initial labeled dataset Dlab

5.

4We simulate AL, so we already have the labels of the
examples of Dpool (but still treat it as an unlabeled dataset).

5We acquire the first examples that form the initial training
set Dlab by applying random stratified sampling (i.e. keeping
the initial label distribution).

Find Nearest Neighbors for Unlabeled Candi-
dates The first step of our contrastive acquisition
function (cf. line 2) is to find examples that are
similar in the model feature space (Eq. 1). Specifi-
cally, we use the [CLS] token embedding of BERT

as our encoder Φ(.) to represent all data points in
Dlab and Dpool. We use a K-Nearest-Neighbors
(KNN) implementation using the labeled data Dlab,
in order to query similar examples xl ∈ Dlab for
each candidate xp ∈ Dpool. Our distance metric
d(.) is Euclidean distance. To find the most sim-
ilar data points in Dlab for each xp, we select the
top k instead of selecting a predefined threshold
ε (Eq. 1) 6. This way, we create a neighborhood
Nxp =

{
xp, x

(1)
l , . . . , x

(k)
l

}
that consists of the un-

labeled data point xp and its k closest examples xl
in Dlab (Figure 1).

Compute Contrastive Score between Unlabeled
Candidates and Neighbors In the second step,
we compute the divergence in the model predictive
probabilities for the members of the neighborhood
(Eq. 2). Using the current trained model M to
obtain the output probabilities for all data points
in Nxp (cf. lines 3-4), we then compute the Kull-
back–Leibler divergence (KL) between the output
probabilities of xp and all xl ∈ Nxp (cf. line 5). To
obtain a score sxp for a candidate xp, we take the
average of all divergence scores (cf. line 6).

Rank Unlabeled Candidates and Select Batch
We apply these steps to all candidate examples
xp ∈ Dpool and obtain a score sxp for each. With

6We leave further modifications of our scoring function
as future work. One approach would be to add the average
distance from the neighbors (cf. line 6) in order to alleviate
the possible problem of selecting outliers.
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DATASET TASK DOMAIN OOD DATASET TRAIN VAL TEST CLASSES

IMDB Sentiment Analysis Movie Reviews SST-2 22.5K 2.5K 25K 2

SST-2 Sentiment Analysis Movie Reviews IMDB 60.6K 6.7K 871 2

AGNEWS Topic Classification News - 114K 6K 7.6K 4

DBPEDIA Topic Classification News - 20K 2K 70K 14

PUBMED Topic Classification Medical - 180K 30.2K 30.1K 5

QNLI Natural Language Inference Wikipedia - 99.5K 5.2K 5.5K 2

QQP Paraphrase Detection Social QA Questions TWITTERPPDB 327K 36.4K 80.8K 2

Table 1: Dataset statistics.

our scoring function we define as contrastive ex-
amples the unlabeled data xp that have the highest
score sxp . A high sxp score indicates that the unla-
beled data point xp has a high divergence in model
predicted probabilities compared to its neighbors
in the training set (Eq. 1, 2), suggesting that it may
lie near the model’s decision boundary. To this end,
our acquisition function selects the top b examples
from the pool that have the highest score sxp (cf.
line 8), that form the acquired batch Q.

3 Experimental Setup

3.1 Tasks & Datasets
We conduct experiments on sentiment analysis,
topic classification, natural language inference and
paraphrase detection tasks. We provide details for
the datasets in Table 1. We follow Yuan et al. (2020)
and use IMDB (Maas et al., 2011), SST-2 (Socher
et al., 2013), PUBMED (Dernoncourt and Lee, 2017)
and AGNEWS from Zhang et al. (2015) where we
also acquired DBPEDIA. We experiment with tasks
requiring pairs of input sequences, using QQP and
QNLI from GLUE (Wang et al., 2019). To evaluate
robustness on out-of-distribution (OOD) data, we
follow Hendrycks et al. (2020) and use SST-2 as
OOD dataset for IMDB and vice versa. We finally
use TWITTERPPDB (Lan et al., 2017) as OOD data
for QQP as in Desai and Durrett (2020).

3.2 Baselines
We compare CAL against five baseline acquisition
functions. The first method, ENTROPY is the most
commonly used uncertainty-based baseline that ac-
quires data points for which the model has the
highest predictive entropy. As a diversity-based
baseline, following Yuan et al. (2020), we use
BERTKM that applies k-means clustering using
the l2 normalized BERT output embeddings of the
fine-tuned model to select b data points. We com-
pare against BADGE (Ash et al., 2020), an acqui-
sition function that aims to combine diversity and

uncertainty sampling, by computing gradient em-
beddings gx for every candidate data point x in
Dpool and then using clustering to select a batch.
Each gx is computed as the gradient of the cross-
entropy loss with respect to the parameters of the
model’s last layer, aiming to be the component that
incorporates uncertainty in the acquisition func-
tion 7. We also evaluate a recently introduced cold-
start acquisition function called ALPS (Yuan et al.,
2020) that uses the masked language model (MLM)
loss of BERT as a proxy for model uncertainty in
the downstream classification task. Specifically,
aiming to leverage both uncertainty and diversity,
ALPS forms a surprisal embedding sx for each x,
by passing the unmasked input x through the BERT

MLM head to compute the cross-entropy loss for a
random 15% subsample of tokens against the target
labels. ALPS clusters these embeddings to sample
b sentences for each AL iteration. Lastly, we in-
clude RANDOM, that samples data from the pool
from a uniform distribution.

3.3 Implementation Details

We use BERT-BASE (Devlin et al., 2019) adding
a task-specific classification layer using the im-
plementation from the HuggingFace library (Wolf
et al., 2020). We evaluate the model 5 times per
epoch on the development set following Dodge
et al. (2020) and keep the one with the lowest vali-
dation loss. We use the standard splits provided for
all datasets, if available, otherwise we randomly
sample a validation set from the training set. We
test all models on a held-out test set. We repeat all
experiments with five different random seeds result-
ing into different initializations of the parameters
of the model’s extra task-specific output feedfor-

7We note that BERTKM and BADGE are computationally
heavy approaches that require clustering of vectors with high
dimensionality, while their complexity grows exponentially
with the acquisition size. We thus do not apply them to the
datasets that have a large Dpool. More details can be found in
the Appendix A.2
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Figure 2: In-domain (ID) test accuracy during AL iterations for different acquisition functions.

ward layer and the initial Dlab. For all datasets we
use as budget the 15% of Dpool, initial training set
1% and acquisition size b = 2%. Each experiment
is run on a single Nvidia Tesla V100 GPU. More
details are provided in the Appendix A.1.

4 Results

4.1 In-domain Performance

We present results for in-domain test accuracy
across all datasets and acquisition functions in Fig-
ure 2. We observe that CAL is consistently the
top performing method especially in DBPEDIA,
PUBMED and AGNEWS datasets.

CAL performs slightly better than ENTROPY in
IMDB, QNLI and QQP, while in SST-2 most methods
yield similar results. ENTROPY is the second best
acquisition function overall, consistently perform-
ing better than diversity-based or hybrid baselines.
This corroborates recent findings from Desai and
Durrett (2020) that BERT is sufficiently calibrated
(i.e. produces good uncertainty estimates), making
it a tough baseline to beat in AL.

BERTKM is a competitive baseline (e.g. SST-
2, QNLI) but always underperforms compared to
CAL and ENTROPY, suggesting that uncertainty
is the most important signal in the data selection

process. An interesting future direction would be to
investigate in depth whether and which (i.e. which
layer) representations of the current (pretrained
language models) works best with similarity search
algorithms and clustering.

Similarly, we can see that BADGE, despite us-
ing both uncertainty and diversity, also achieves
low performance, indicating that clustering the con-
structed gradient embeddings does not benefit data
acquisition. Finally, we observe that ALPS gen-
erally underperforms and is close to RANDOM.
We can conclude that this heterogeneous approach
to uncertainty, i.e. using the pretrained language
model as proxy for the downstream task, is bene-
ficial only in the first few iterations, as shown in
Yuan et al. (2020).

Surprisingly, we observe that for the SST-2
dataset ALPS performs similarly with the highest
performing acquisition functions, CAL and EN-
TROPY. We hypothesize that due to the informal
textual style of the reviews of SST-2 (noisy social
media data), the pretrained BERT model can be
used as a signal to query linguistically hard exam-
ples, that benefit the downstream sentiment analy-
sis task. This is an interesting finding and a future
research direction would be to investigate the cor-
relation between the difficulty of an example in a
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TRAIN (ID) SST-2 IMDB QQP

TEST (OOD) IMDB SST-2 TWITTERPPDB

RANDOM 76.28± 0.72 82.50± 3.61 85.86± 0.48
BERTKM 75.99± 1.01 84.98± 1.22 -
ENTROPY 75.38± 2.04 85.54± 2.52 85.06± 1.96
ALPS 77.06± 0.78 83.65± 3.17 84.79± 0.49
BADGE 76.41± 0.92 85.19± 3.01 -
CAL 79.00± 1.39 84.96± 2.36 86.20± 0.22

Table 2: Out-of-domain (OOD) accuracy of models
trained with the actively acquired datasets created with
different AL acquisition strategies.

downstream task with its perplexity (loss) of the
pretrained language model.

4.2 Out-of-domain Performance
We also evaluate the out-of-domain (OOD) robust-
ness of the models trained with the actively ac-
quired datasets of the last iteration (i.e. 15% of
Dpool or 100% of the AL budget) using different
acquisition strategies. We present the OOD results
for SST-2, IMDB and QQP in Table 2. When we
test the models trained with SST-2 on IMDB (first
column) we observe that CAL achieves the highest
performance compared to the other methods by a
large margin, indicating that acquiring contrastive
examples can improve OOD generalization. In the
opposite scenario (second column), we find that
the highest accuracy is obtained with ENTROPY.
However, similarly to the ID results for SST-2 (Fig-
ure 2), all models trained on different subsets of
the IMDB dataset result in comparable performance
when tested on the small SST-2 test set (the mean
accuracies lie inside the standard deviations across
models). We hypothesize that this is because SST-2
is not a challenging OOD dataset for the different
IMDB models. This is also evident by the high
OOD accuracy, 85% on average, which is close
to the 91% SST-2 ID accuracy of the full model
(i.e. trained on 100% of the ID data). Finally, we
observe that CAL obtains the highest OOD accu-
racy for QQP compared to RANDOM, ENTROPY

and ALPS. Overall, our empirical results show that
the models trained on the actively acquired dataset
with CAL obtain consistently similar or better per-
formance than all other approaches when tested on
OOD data.

5 Ablation Study

We conduct an extensive ablation study in order to
provide insights for the behavior of every compo-
nent of CAL. We present all AL experiments on
the AGNEWS dataset in Figure 3.

Figure 3: In-domain (ID) test accuracy with different
variants of CAL (ablation).

Decision Boundary We first aim to evaluate our
hypothesis that CAL acquires difficult examples
that lie close to the model’s decision boundary.
Specifically, to validate that the ranking of the con-
structed neighborhoods is meaningful, we run an
experiment where we acquire candidate examples
that have the minimum divergence from their neigh-
bors opposite to CAL (i.e. we replace argmax(.)
with argmin(.) in line 8 of Algorithm 1). We ob-
serve (Fig. 3 - CAL opposite) that even after
acquiring 15% of unlabeled data, the performance
remains unchanged compared to the initial model
(of the first iteration), even degrades. In effect, this
finding denotes that CAL does select informative
data points.

Neighborhood Next, we experiment with chang-
ing the way we construct the neighborhoods, aim-
ing to improve computational efficiency. We thus
modify our algorithm to create a neighborhood for
each labeled example (instead of unlabeled).8. This
way we compute a divergence score only for the
neighbors of the training data points. However, we
find this approach to slightly underperform (Fig. 3
- CAL per labeled example), possibly be-
cause only a small fraction of the pool is considered
and thus the uncertainty of all the unlabeled data
points is not taken into account.

8In this experiment, we essentially change the for-loop of
Algorithm 1 (cf. line 1-7) to iterate for each xl inDlab (instead
of each xp in Dpool) and similarly find the k nearest neighbors
of each labeled example in the pool (KNN(xl,Dpool, k)) As
for the scoring (cf. line 6), if an unlabeled example was not
picked (i.e. was not a neighbor to a labeled example), its score
is zero. If it was picked multiple times we average its scores.
We finally acquire the top b unlabeled data with the highest
scores. This formulation is more computationally efficient
since usually |Dlab| << |Dpool|.
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Scoring function We also experiment with sev-
eral approaches for constructing our scoring func-
tion (cf. line 6 in Algorithm 1). Instead of com-
puting the KL divergence between the predicted
probabilities of each candidate example and its la-
beled neighbors (cf. line 5), we used cross entropy
between the output probability distribution and the
gold labels of the labeled data. The intuition is to
evaluate whether information of the actual label is
more useful than the model’s predictive probability
distribution. We observe this scoring function to re-
sult in a slight drop in performance (Fig. 3 - Cross
Entropy). We also experimented with various
pooling operations to aggregate the KL divergence
scores for each candidate data point. We found
maximum and median (Fig. 3 - Max/Median) to
perform similarly with the average (Fig. 3 - CAL),
which is the pooling operation we decided to keep
in our proposed algorithm.

Feature Space Since our approach is related to
to acquiring data near the model’s decision bound-
ary, this effectively translates into using the [CLS]
output embedding of BERT. Still, we opted to
cover several possible alternatives to the repre-
sentations, i.e. feature space, that can be used
to find the neighbors with KNN. We divide our
exploration into two categories: intrinsic repre-
sentations from the current fine-tuned model and
extrinsic using different methods. For the first
category, we examine representing each example
with the mean embedding layer of BERT (Fig. 3 -
Mean embedding) or the mean output embed-
ding (Fig. 3 - Mean output). We find both al-
ternatives to perform worse than using the [CLS]
token (Fig. 3 - CAL). The motivation for the sec-
ond category is to evaluate whether acquiring con-
trastive examples in the input feature space, i.e.
representing the raw text, is meaningful (Gard-
ner et al., 2020) 9. We thus examine contextual
representations from a pretrained BERT language
model (Fig. 3 - BERT-pr [CLS]) (not fine-tuned
in the task or domain) and non-contextualized
TF-IDF vectors (Fig. 3 - TF-IDF). We find both
approaches, along with Mean embedding, to
largely underperform compared to our approach
that acquires ambiguous data near the model deci-
sion boundary.

9This can be interpreted as comparing the effectiveness
of selecting data near the model decision boundary vs. the
task decision boundary, i.e. data that are similar for the task
itself or for the humans (in terms of having the same raw
input/vocabulary), but are from different classes.

6 Analysis

Finally, we further investigate CAL and all acquisi-
tion functions considered (baselines), in terms of
diversity, representativeness and uncertainty. Our
aim is to provide insights on what data each method
tends to select and what is the uncertainty-diversity
trade-off of each approach. Table 3 shows the re-
sults of our analysis averaged across datasets. We
denote with L the labeled set, U the unlabeled pool
and Q an acquired batch of data points from U 10.

6.1 Diversity & Uncertainty Metrics

Diversity in input space (DIV.-I) We first evalu-
ate the diversity of the actively acquired data in the
input feature space, i.e. raw text, by measuring the
overlap between tokens in the sampled sentences
Q and tokens from the rest of the data pool U . Fol-
lowing Yuan et al. (2020), we compute DIV.-I as
the Jaccard similarity between the set of tokens
from the sampled sentences Q, VQ, and the set of
tokens from the unsampled sentences U\Q, VQ′ ,
J (VQ,VQ′) =

|VQ∩VQ′ |
|VQ∪VQ′ | . A high DIV.-I value in-

dicates high diversity because the sampled and un-
sampled sentences have many tokens in common.

Diversity in feature space (DIV.-F) We next
evaluate diversity in the (model) feature space, us-
ing the [CLS] representations of a trained BERT

model 11. Following Zhdanov (2019) and Ein-Dor
et al. (2020), we compute DIV.-F of a set Q as(

1
|U |

∑
xi∈U

min
xj∈Q

d(Φ(xi),Φ(xj))
)−1

, where Φ(xi)

denotes the [CLS] output token of example xi
obtained by the model which was trained using
L, and d(Φ(xi),Φ(xj)) denotes the Euclidean dis-
tance between xi and xj in the feature space.

Uncertainty (UNC.) To measure uncertainty, we
use the model Mf trained on the entire training
dataset (Figure 2 - Full supervision). As in
Yuan et al. (2020), we use the logits from the fully
trained model to estimate the uncertainty of an ex-
ample, as it is a reliable estimate due to its high per-
formance after training on many examples, while

10In the previous sections we used Dlab and Dpool to denote
the labeled and unlabeled sets and we change the notation here
to L and U , respectively, for simplicity.

11To enable an appropriate comparison, this analysis is
performed after the initial BERT model is trained with the
initial training set and each AL strategy has selected examples
equal to 2% of the pool (first iteration). Correspondingly,
all strategies select examples from the same unlabeled set U
while using outputs from the same BERT model.
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DIV.-I DIV.-F UNC. REPR.
RANDOM 0.766 0.356 0.132 1.848
BERTKM 0.717 0.363 0.145 2.062
ENTROPY 0.754 0.323 0.240 2.442
ALPS 0.771 0.360 0.126 2.038
BADGE 0.655 0.339 0.123 2.013
CAL 0.768 0.335 0.231 2.693

Table 3: Uncertainty and diversity metrics across acqui-
sition functions, averaged for all datasets.

it offers a fair comparison across all acquisition
strategies. First, we compute predictive entropy of
an input x when evaluated by modelMf and then
we take the average over all sentences in a sampled
batch Q. We use the average predictive entropy to
estimate uncertainty of the acquired batch Q for

each method − 1
|Q|
∑
x∈Q

C∑
c=1

p(y = c|x)logp(y =

c|x). As a sampled batch Q we use the full actively
acquired dataset after completing our AL iterations
(with 15% of the data).

Representativeness (REPR.) We finally analyze
the representativeness of the acquired data as in Ein-
Dor et al. (2020). We aim to study whether AL
strategies tend to select outlier examples that do
not properly represent the overall data distribution.
We rely on the KNN-density measure proposed by
Zhu et al. (2008), where the density of an exam-
ple is quantified by one over the average distance
between the example and its K most similar ex-
amples (i.e., K nearest neighbors) within U , based
on the [CLS] representations as in DIV.-F. An
example with high density degree is less likely to
be an outlier. We define the representativeness of
a batch Q as one over the average KNN-density
of its instances using the Euclidean distance with
K=10.

6.2 Discussion

We first observe in Table 3 that ALPS acquires
the most diverse data across all approaches. This
is intuitive since ALPS is the most linguistically-
informed method as it essentially acquires data
that are difficult for the language modeling task,
thus favoring data with a more diverse vocabulary.
All other methods acquire similarly diverse data,
except BADGE that has the lowest score. Interest-
ingly, we observe a different pattern when evaluat-
ing diversity in the model feature space (using the
[CLS] representations). BERTKM has the highest

DIV.-F score, as expected, while CAL and EN-
TROPY have the lowest. This supports our hypothe-
sis that uncertainty sampling tends to acquire uncer-
tain but similar examples, while CAL by definition
constrains its search in similar examples in the fea-
ture space that lie close to the decision boundary
(contrastive examples). As for uncertainty, we ob-
serve that ENTROPY and CAL acquire the most
uncertain examples, with average entropy almost
twice as high as all other methods. Finally, regard-
ing representativeness of the acquired batches, we
see that CAL obtains the highest score, followed by
ENTROPY, with the rest AL strategies to acquire
less representative data.

Overall, our analysis validates assumptions on
the properties of data expected to be selected by the
various acquisition functions. Our findings show
that diversity in the raw text does not necessar-
ily correlate with diversity in the feature space.
In other words, low DIV.-F does not translate to
low diversity in the distribution of acquired tokens
(DIV.-I), suggesting that CAL can acquire simi-
lar examples in the feature space that have suffi-
ciently diverse inputs. Furthermore, combining
the results of our AL experiments (Figure 2) and
our analysis (Table 3) we conclude that the best
performance of CAL, followed by ENTROPY, is
due to acquiring uncertain data. We observe that
the most notable difference, in terms of selected
data, between the two approaches and the rest is
uncertainty (UNC.), suggesting perhaps the supe-
riority of uncertainty over diversity sampling. We
show that CAL improves over ENTROPY because
our algorithm “guides” the focus of uncertainty
sampling by not considering redundant uncertain
data that lie away from the decision boundary and
thus improving representativeness. We finally find
that RANDOM is evidently the worst approach, as
it selects the least diverse and uncertain data on
average compared to all methods.

7 Related Work

Uncertainty Sampling Uncertainty-based ac-
quisition for AL focuses on selecting data points
that the model predicts with low confidence. A sim-
ple uncertainty-based acquisition function is least
confidence (Lewis and Gale, 1994) that sorts data
in descending order from the pool by the proba-
bility of not predicting the most confident class.
Another approach is to select samples that maxi-
mize the predictive entropy. Houlsby et al. (2011)
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propose Bayesian Active Learning by Disagree-
ment (BALD), a method that chooses data points
that maximize the mutual information between pre-
dictions and model’s posterior probabilities. Gal
et al. (2017) applied BALD for deep neural models
using Monte Carlo dropout (Gal and Ghahramani,
2016) to acquire multiple uncertainty estimates for
each candidate example. Least confidence, entropy
and BALD acquisition functions have been applied
in a variety of text classification and sequence la-
beling tasks, showing to substantially improve data
efficiency (Shen et al., 2017; Siddhant and Lipton,
2018; Lowell and Lipton, 2019; Kirsch et al., 2019;
Shelmanov et al., 2021; Margatina et al., 2021).

Diversity Sampling On the other hand, diversity
or representative sampling is based on selecting
batches of unlabeled examples that are representa-
tive of the unlabeled pool, based on the intuition
that a representative set of examples once labeled,
can act as a surrogate for the full data available. In
the context of deep learning, Geifman and El-Yaniv
(2017) and Sener and Savarese (2018) select repre-
sentative examples based on core-set construction,
a fundamental problem in computational geome-
try. Inspired by generative adversarial learning,
Gissin and Shalev-Shwartz (2019) define AL as a
binary classification task with an adversarial classi-
fier trained to not be able to discriminate data from
the training set and the pool. Other approaches
based on adversarial active learning, use out-of-the-
box models to perform adversarial attacks on the
training data, in order to approximate the distance
from the decision boundary of the model (Ducoffe
and Precioso, 2018; Ru et al., 2020).

Hybrid There are several existing approaches
that combine representative and uncertainty sam-
pling. Such approaches include active learning
algorithms that use meta-learning (Baram et al.,
2004; Hsu and Lin, 2015) and reinforcement learn-
ing (Fang et al., 2017; Liu et al., 2018), aiming to
learn a policy for switching between a diversity-
based or an uncertainty-based criterion at each it-
eration. Recently, Ash et al. (2020) propose Batch
Active learning by Diverse Gradient Embeddings
(BADGE) and Yuan et al. (2020) propose Active
Learning by Processing Surprisal (ALPS), a cold-
start acquisition function specific for pretrained
language models. Both methods construct represen-
tations for the unlabeled data based on uncertainty,
and then use them for clustering; hence combining

both uncertainty and diversity sampling. The ef-
fectiveness of AL in a variety of NLP tasks with
pretrained language models, e.g. BERT (Devlin
et al., 2019), has empirically been recently evalu-
ated by Ein-Dor et al. (2020), showing substantial
improvements over random sampling.

8 Conclusion & Future Work

We present CAL, a novel acquisition function for
AL that acquires contrastive examples; data points
which are similar in the model feature space and
yet the model outputs maximally different class
probabilities. Our approach uses information from
the feature space to create neighborhoods for each
unlabeled example, and predictive likelihood for
ranking the candidate examples. Empirical experi-
ments on various in-domain and out-of-domain sce-
narios demonstrate that CAL performs better than
other acquisition functions in the majority of cases.
After analyzing the actively acquired datasets ob-
tained with all methods considered, we conclude
that entropy is the hardest baseline to beat, but our
approach improves it by guiding uncertainty sam-
pling in regions near the decision boundary with
more informative data.

Still, our empirical results and analysis show
that there is no single acquisition function to out-
perform all others consistently by a large margin.
This demonstrates that there is still room for im-
provement in the AL field.

Furthermore, recent findings show that in spe-
cific tasks, as in Visual Question Answering
(VQA), complex acquisition functions might not
outperform random sampling because they tend
to select collective outliers that hurt model perfor-
mance (Karamcheti et al., 2021). We believe that
taking a step back and analyzing the behavior of
standard acquisition functions, e.g. with Dataset
Maps (Swayamdipta et al., 2020), might be ben-
eficial. Especially, if similar behavior appears in
other NLP tasks too.

Another interesting future direction for CAL,
related to interpretability, would be to evaluate
whether acquiring contrastive examples for the
task (Kaushik et al., 2020; Gardner et al., 2020)
is more beneficial than contrastive examples for the
model, as we do in CAL.
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A Appendix

A.1 Data & Hyperparameters

In this section we provide details of all the datasets
we used in this work and the hyperparparameters
used for training the model. For QNLI, IMDB and
SST-2 we randomly sample 10% from the training
set to serve as the validation set, while for AG-
NEWS and QQP we sample 5%. For the DBPEDIA

dataset we undersample both training and valida-
tion datasets (from the standard splits) to facilitate
our AL simulation (i.e. the original dataset consists
of 560K training and 28K validation data exam-
ples). For all datasets we use the standard test
set, apart from SST-2, QNLI and QQP datasets that
are taken from the GLUE benchmark (Wang et al.,
2019) we use the development set as the held-out
test set and subsample a development set from the
training set.

For all datasets we train BERT-BASE (Devlin
et al., 2019) from the HuggingFace library (Wolf
et al., 2020) in Pytorch (Paszke et al., 2019). We
train all models with batch size 16, learning rate
2e− 5, no weight decay, AdamW optimizer with
epsilon 1e−8. For all datasets we use maximum se-
quence length of 128, except for IMDB that contain
longer input texts, where we use 256. To ensure
reproducibility and fair comparison between the
various methods under evaluation, we run all exper-
iments with the same five seeds that we randomly
selected from the range [1, 9999]. We evaluate the
model 5 times per epoch on the development set
following Dodge et al. (2020) and keep the one
with the lowest validation loss. We use the code
provided by Yuan et al. (2020) for ALPS, BADGE

and BERTKM.

A.2 Efficiency

In this section we compare the efficiency of the ac-
quisition functions considered in our experiments.
We denote m the number of labeled data in Dlab,
n the number of unlabeled data in Dpool, C the
number of classes in the downstream classification
task, d the dimension of embeddings, t is fixed
number of iterations for k-MEANS, l the maxi-
mum sequence length and k the acquisition size.
In our experiments, following (Yuan et al., 2020),
k = 100, d = 768, t = 10, and l = 12812. ALPS

requires O(tknl) considering that the surprisal em-
beddings are computed. BERTKM and BADGE, the

12Except for IMDB where l = 256.

most computationally heavy approaches, require
O(knd) andO(Cknd) respectively, given that gra-
dient embeddings are computed for BADGE 13. On
the other hand, ENTROPY only requires n forward
passes though the model, in order to obtain the log-
its for all the data in Dpool. Instead, our approach,
CAL, first requires m+ n forward passes, in order
to acquire the logits and the CLS representations
of the the data (in Dpool and Dlab) and then one
iteration for all data in Dpool to obtain the scores.

We present the runtimes in detail for all datasets
and acquisition functions in Tables 4 and 5. First,
we define the total acquisition time as a sum of
two types of times; inference and selection time.
Inference time is the time that is required in order
to pass all data from the model to acquire predic-
tions or probability distributions or model encod-
ings (representations). This is explicitly required
for the uncertainty-based methods, like ENTROPY,
and our method CAL. The remaining time is con-
sidered selection and essentially is the time for all
necessary computations in order to rank and select
the b most important examples from Dpool.

We observe in Table 4 that the diversity-based
functions do not require this explicit inference time,
while for ENTROPY it is the only computation that
is needed (taking the argmax of a list of uncertainty
scores is negligible). CAL requires both inference
and selection time. We can see that inference time
of CAL is a bit higher than ENTROPY because we
do m+n forward passes instead of n, that is equiv-
alent to both Dpool and Dlab instead of only Dpool.
The selection time for CAL is the for-loop as pre-
sented in our Algorithm 1. We observe that it is
often less computationally expensive than the infer-
ence step (which is a simple forward pass through
the model). Still, there is room for improvement in
order to reduce the time complexity of this step.

In Table 5 we present the total time for all
datasets (ordered with increasing Dpool size) and
the average time for each acquisition function, as a
means to rank their efficiency. Because we do not
apply all acquisition functions to all datasets we
compute three different average scores in order to
ensure fair comparison. AVG.-ALL is the average
time across all 7 datasets and is used to compare
RANDOM, ALPS, ENTROPY and CAL. AVG.-3 is
the average time across the first 3 datasets (IMDB,
SST-2 and DBPEDIA) and is used to compare all

13This information is taken from Section 6 of Yuan et al.
(2020).
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DBPEDIA IMDB SST-2 QNLI AGNEWS PUBMED QQP

RANDOM (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

ALPS (0, 181) (0, 222) (0, 733) (0, 1607) (0, 2309) (0, 5878) (0, 14722)

BERTKM (0, 467) (0, 431) (0, 4265) (0, 8138) (0, 9344) (0, 25965) (−,−)

BADGE (0, 12871) (0, 3816) (0, 25640) (−,−) (−,−) (−,−) (−,−)

ENTROPY (103, 1) (107, 0) (173, 0) (331, 0) (402, 0) (596, 0) (1070, 0)

CAL (133, 49) (212, 61) (464, 244) (528, 376) (656, 628) (1184, 1445) (1541, 2857)

Table 4: Runtimes (in seconds) for all datasets and acquisition functions. In each cell of the table we present a tuple
(i, s) where i is the inference time and s the selection time. Inference time is the time for the model to perform
a forward pass for all the unlabeled data in Dpool and selection time is the time that each acquisition function
requires to rank all candidate data points and select b for annotation (for a single iteration). Since we cannot report
the runtimes for every model in the AL pipeline (at each iteration the size ofDpool changes), we provide the median.

DBPEDIA IMDB SST-2 QNLI AGNEWS PUBMED QQP AVG.-ALL AVG.-3 AVG.-6

RANDOM 0 0 0 0 0 0 0 0 0 0

ALPS 181 222 733 1607 2309 5878 14722 3664 378 1821

BERTKM 467 431 4265 8138 9344 25965 − − 1721 8101

BADGE 12871 3816 25640 − − − − − 14109 −
ENTROPY 104 107 173 331 402 596 1070 397 128 285

CAL 182 273 708 904 1284 2629 4398 1482 387 996

Table 5: Runtimes (in seconds) for all datasets and acquisition functions. In each cell of the table we present the
total acquisition time (inference and selection). AVG.-ALL shows the average acquisition time for each acquisition
function for all datasets, AVG.-6. for all datasets except QQP and AVG.-3 for the 3 first datasets only (DBPEDIA,
IMDB, SST-2).

acquisition functions. Finally, AVG.-6 is the aver-
age time across all datasets apart from QQP and
is used to compare RANDOM, ALPS, BERTKM,
ENTROPY and CAL.

We first observe that ENTROPY is overall the
most efficient acquisition function. According to
the AVG.-ALL column, we observe that CAL is the
second most efficient function, followed by ALPS.
According to the AVG.-6 we observe the same pat-
tern, with BERTKM to be the slowest method. Fi-
nally, we compare all acquisition functions in the
3 smallest (in terms of size of Dpool) datasets and
find that ENTROPY is the fastest method followed
by ALPS and CAL that require almost 3 times more
computation time. The other clustering methods,
BERTKM and BADGE, are significantly more com-
putationally expensive, requiring respectively 13
and 100(!) times more time than ENTROPY.

Interestingly, we observe the effect of the acqui-
sition size (2% of Dpool in our case) and the size of
Dpool in the clustering methods. As these parame-
ters increase, the computation of the corresponding
acquisition function increases dramatically. For
example, we observe that in the 3 smallest datasets
that ALPS requires similar time to CAL. However,

when we increase b and m (i.e. as we move from
DBPEDIA with 20K examples in Dpool to QNLI

with 100K etc - see Table 1) we observe that the
acquisition time of ALPS becomes twice as much
as that of CAL. For instance, in QQP with acqui-
sition size 3270 we see that ALPS requires 14722
seconds on average, while CAL 4398. This shows
that even though our approach is more computa-
tionally expensive as the size of Dpool increases,
the complexity is linear, while for the other hybrid
methods that use clustering, the complexity grows
exponentially.

A.3 Reproducibility
All code for data preprocessing, model imple-
mentations, and active learning algorithms is
made available at https://github.com/mourga/
contrastive-active-learning. For questions
regarding the implementation, please contact the
first author.
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3.3 Impact

According to Google Scholar, the paper has received 140 citations as of May 2024 and

it was featured in numerous surveys (e.g. Tsvigun et al., 2022; Zhang et al., 2022f;

Treviso et al., 2023; Schröder et al., 2023; Rauch et al., 2023; Hu et al., 2023b,a; Zhang,

2023; Ghose and Nguyen, 2024).

CAL has directly influenced several followup studies (e.g. Zhang et al., 2022c; Maekawa

et al., 2022; Yu et al., 2022; Azeemi et al., 2023b; Hassan and Alikhani, 2023). Zhang

et al. (2022c) propose ALLSH: Active Learning Guided by Local Sensitivity and Hard-

ness. Similar to CAL, the motivation is to retrieve unlabeled samples with a local sensi-

tivity and hardness-aware acquisition function. ALLSH generates data copies through

local perturbations and selects data points whose predictive likelihoods diverge the

most from their copies.

The analysis we performed at our paper has also been used by several studies related to

data selection methods. Specifically, the analysis presented in Section 5 of our paper,

that uses diversity (DIV-I, DIV-F) and representativeness (REPR.) metrics, has been

established as standard practice for comprehensive analysis in the following, but not

limited to, papers (Su et al., 2023; Wan et al., 2024).

Several recent works perform extensive experimental studies comparing popular acquisi-

tion functions for active learning, for various NLP tasks, including CAL as a benchmark

acquisition function (e.g. Zhang et al., 2022b,a; Romberg and Escher, 2022; Karisani

et al., 2022; Steegh and Sileno, 2023; Zhang et al., 2022c; Maekawa et al., 2022; Yu

et al., 2022, 2023; Li and Qiu, 2023; Köksal et al., 2023; Zeng and Zubiaga, 2023; Deng

et al., 2023; Chen et al., 2023; Le et al., 2024; Chen et al., 2024; Pecher et al., 2024;

Ying et al., 2024). Zhang et al. (2022c,b); Romberg and Escher (2022); Maekawa et al.

(2022); Le et al. (2024), among several others, show that CAL outperforms the stan-

dard maximum entropy baseline, while Pecher et al. (2024) even shows that CAL has

considerably lower standard deviation across multiple runs.

CAL has been applied successfully even beyond the NLP domain (Wan et al., 2024;

Ying et al., 2024). Garg and Roy (2023) showed that CAL was among the top per-

forming baselines in the CIFAR-10 and CIFAR-100 datasets in computer vision, while

Azeemi et al. (2023a) used CAL as an inspiration for their COWERAGE algorithm for

representative subset selection in self-supervised Automatic Speech Recognition (ASR).
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3.4 Discussion

Despite its simplicity, CAL outperformed other uncertainty-based and diversity based

algorithms in our experiments. After analyzing the actively acquired datasets obtained

with all methods considered, we concluded that entropy was the hardest baseline to

beat, but our approach improved it by guiding uncertainty sampling in regions near

the decision boundary with more informative data.

One very interesting discovery is shown in the Ablation section of the paper (Figure 3)

where we compare many versions of CAL (with different settings). We included as a

baseline the “opposite CAL”, where instead of choosing the data points that scored the

highest KL divergence with their labeled neighbours we chose the ones with the lowest

score (orange line in the figure). We found that not only this version did not work well,

as expected, but even degraded the AL performance. The model performed better when

trained with randomly chosen 2% of the available data instead of up to 15% of the data

chosen with this approach. This very clearly shows that not all data is equal, that

including only easy, redundant data points can dramatically harm performance, and

further solidifying that hard uncertain examples are imperative for a high-performing

data-efficient model, which is the main takeaway of the paper.

One limitation of CAL is that we do not take into account a specific filter to avoid

selecting redundant data points. We do guide selection with our neighbourhood formu-

lation, but still we do not further investigate how similar are the data points that are to

be selected in the batch. Adding another criterion there would most likely further im-

proved CAL’s performance and sharpened its superiority to entropy sampling. Another

important limitation, not of CAL but in general of AL is the fragility of the ranking of

the acquisition strategies based on the setting they are applied. There is no universally

superior algorithm that outperforms all others. This is evident by the results, where

the performance lines in the plots are close to each other in many cases. We opted to

include the standard deviations as well in order to provide a clear presentation of the

results and avoid any misleading interpretation. This limitation is also highlighted by

the literature (Margatina and Aletras, 2023; Ghose and Nguyen, 2024).



Chapter 4

Publication III: Active

In-Context Learning Learning

with Large Language Models

The main contribution of this chapter is the paper Active Learning Principles for In-

Context Learning with Large Language Models, which was published at the Findings

of the Association for Computational Linguistics at the Empirical Methods of Natural

Language Processing conference in December 2023. We first outline the motivation for

this work (Section 4.1), followed by the paper itself (Section 4.2), the impact that it

has had so far (Section 4.3), and discussion (Section 4.4).

4.1 Introduction

Amidst the dynamic advancements in the NLP field, a notable shift from the con-

ventional supervised learning paradigm to few-shot learning, also known as in-context

learning, has emerged. Rather than fine-tuning smaller language models like BERT (De-

vlin et al., 2019), the focus has turned towards leveraging larger and more capable Lan-

guage Model Models (LLMs) such as GPT (Radford et al., 2019; Brown et al., 2020;

Black et al., 2022; OpenAI, 2023) and OPT (Zhang et al., 2022d) models, boasting

millions or billions of parameters. These models can be utilized off-the-shelf, with-

out requiring any weight updates, through prompting with in-context examples (i.e.,

demonstrations) serving as the new learning paradigm. Our interest lies in explor-

ing how active learning (AL) algorithms, previously analyzed within the supervised

learning framework, could adapt to these models. Thus, our research shifted towards

investigating whether AL acquisition functions could serve as effective data selection

43
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algorithms for in-context learning.

In this study, our primary goal was to redefine the notion of data efficiency within the

context of in-context learning, drawing inspiration from conventional AL methodolo-

gies. We approached this by aiming to identify a subset of k examples from a pool of

labeled or unlabeled data, which would act as demonstrations to an LLM, ultimately

maximizing performance on a held-out test set. To achieve this, we explored the ef-

fectiveness of prevalent AL approaches centered around uncertainty (Lewis and Gale,

1994; Cohn et al., 1996; Gal et al., 2017), diversity (Brinker, 2003; Bodó et al., 2011;

Sener and Savarese, 2018) and similarity (Margatina et al., 2021; Kirsch et al., 2021;

Liu et al., 2022), as methods for selecting demonstrations in the context of in-context

learning. Our evaluation spanned fifteen models ranging from 125M to 30B parameters

within the GPT and OPT families, across fifteen classification and nine multi-choice

tasks. Our findings underscored the superiority of selecting in-context examples that

closely aligned with the semantic content of the input test examples across all tasks,

model families, and sizes, while also highlighting nuances in the efficacy of uncertainty

sampling between supervised and in-context learning settings. Moreover, we observed

that larger models may exhibit greater benefits from uncertain demonstrations, indi-

cating a potential interplay between model size and the utilization of uncertainty as an

emerging capability in LLMs.

4.2 The Paper

Author Contributions

The paper is co-authored by myself, Timo Schick, Nikolaos Aletras and Jane Yu. As

the lead author, I conceived the idea to explore this research question, implemented the

codebase, performed the experiments, and wrote the paper. This paper was fulfilled

during my internship at Meta AI (FAIR), where Timo Schick and Jane Yu were my

advisors. They participated in many discussions and proofread the paper. Nikolaos

Aletras helped with brainstorming the original idea, offered suggestions and helped

revise the final version.
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Abstract

The remarkable advancements in large lan-
guage models (LLMs) have significantly en-
hanced predictive performance in few-shot
learning settings. By using only a small number
of labeled examples, referred to as demonstra-
tions, LLMs can effectively perform the task at
hand through in-context learning. However, the
process of selecting demonstrations for maxi-
mizing performance has received limited atten-
tion in prior work. This paper addresses the is-
sue of identifying the most informative demon-
strations for few-shot learning by approaching
it as a pool-based Active Learning (AL) prob-
lem over a single iteration. We compare stan-
dard AL algorithms based on uncertainty, di-
versity, and similarity, and consistently observe
that the latter outperforms all other methods,
including random sampling. Our extensive ex-
perimentation involving a diverse range of GPT
and OPT models across 24 classification and
multi-choice tasks, coupled with thorough anal-
ysis, unambiguously demonstrates the impor-
tance of using demonstrations that are semanti-
cally similar to the domain of the test examples.
In fact, we show higher average classification
performance using “similar” demonstrations
with GPT-2 (124M) than random demonstra-
tions with GPT-Neox (20B). Notably, while
diversity sampling shows promise, uncertainty
sampling, despite its success in conventional
supervised learning AL scenarios, performs
poorly in in-context learning.

1 Introduction

The field of Natural Language Processing (NLP)
has recently witnessed a remarkable paradigm shift
with the emergence of in-context learning with
large language models (LLMs), also referred to
as few-shot learning (Brown et al., 2020). Tradi-
tionally, NLP systems heavily relied on supervised
learning approaches, where large amounts of la-
beled training data were necessary to achieve high

∗ Work done during an internship at FAIR, Meta.

Figure 1: Performance of different in-context selection
algorithms in classification and multi-choice tasks.

predictive performance. However, in-context learn-
ing has changed this status-quo by enabling LLMs
to learn from limited, context-specific examples
and adapt to new tasks and domains with remark-
able proficiency (Zhao et al., 2021; Chowdhery
et al., 2022; García et al., 2023; Wei et al., 2023b;
Touvron et al., 2023; Bubeck et al., 2023). Unlike
more traditional approaches, which require exten-
sive retraining or fine-tuning for every new task,
in-context learning empowers LLMs to general-
ize from a few examples that are fed to the model
through prompting to learn a new task at hand,
without any weight updates.

The data efficiency of few-shot in-context learn-
ing of LLMs is indeed remarkable with only a small
number of demonstrations.1 Still, such demonstra-
tions constitute labeled data examples, raising two
key questions: (1) When faced with tasks where
there is only unlabeled data available, how can we
select the most appropriate samples to label and
then use as in-context demonstrations? (2) When
we have labeled data for a given task, how can

1We use the terms in-context examples, few-shot examples,
demonstrations, descriptors and exemplars interchangeably
throughout the paper.
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we efficiently identify the most informative combi-
nation of demonstrations for in-context learning?
Answering these questions is essential to ensure ef-
fective and efficient few-shot learning using LLMs.

A growing line of work has investigated how in-
context learning works (Reynolds and McDonell,
2021; Razeghi et al., 2022; Xie et al., 2022; Ye
et al., 2023b), which demonstrations to use (Liu
et al., 2022; Zhang et al., 2022b; Wu et al., 2022;
Kim et al., 2022), how to form the prompt (Zhao
et al., 2021; Lu et al., 2022; Yang et al., 2023) and
whether ground truth labels matter (Webson and
Pavlick, 2022; Min et al., 2022; Yoo et al., 2022;
Wang et al., 2022; Wei et al., 2023b). Still, to the
best of our knowledge, no prior work has explored
the problem of in-context demonstration selection
explicitly through the lens of active learning (AL).

Based on the core principle that not all data
points are equally useful, AL (Cohn et al., 1996;
Settles, 2009) aims to identify the most informa-
tive instances from a pool of unlabeled data for
annotation. Iterating through model training, data
acquisition and human annotation, the goal is to
achieve data efficiency. A data-efficient AL al-
gorithm ensures that a model achieves satisfactory
performance on a withheld test set by selecting only
a small fraction of the unlabeled data for annotation
that typically is better than randomly selecting and
annotating data of equal size.

In this paper, our main aim is to redefine the
concept of data efficiency within the framework of
in-context learning inspired by conventional active
learning settings. For this purpose, we assume
that given a pool of labeled or unlabeled data, the
objective is to identify a set of k examples that will
serve as demonstrations to an LLM, resulting in
optimal performance on a held-out test set. Given
this formulation of data efficiency, we explore the
effectiveness of the most prevalent AL approaches
based on uncertainty (Lewis and Gale, 1994; Cohn
et al., 1996; Gal et al., 2017), diversity (Brinker,
2003; Bodó et al., 2011; Sener and Savarese, 2018)
and similarity (Margatina et al., 2021; Kirsch et al.,
2021; Liu et al., 2022), as demonstration selection
methods for in-context learning (Figure 1).

Our key contributions are as follows:

• We formulate the selection of in-context ex-
amples as a single iteration AL problem and
explore the effectiveness of four standard ap-
proaches: uncertainty, diversity, similarity
and random sampling.

• We evaluate 15 models, between 125M and
30B parameters, from the GPT (Radford et al.,
2019; Brown et al., 2020; Black et al., 2022)
and OPT (Zhang et al., 2022a) families in 15
classification and 9 multi-choice tasks, using
different AL sampling techniques to select
demonstrations for few-shot learning.

• We demonstrate that while diversity and uncer-
tainty sampling perform slightly better than
random sampling, choosing in-context exam-
ples that are semantically similar to the in-
put test examples outperforms consistently all
other methods by a large margin across model
families and sizes in all tasks.

• We show that while uncertainty sampling is
one of the strongest AL approaches in super-
vised learning, this does not generalize to in-
context learning, where interestingly it under-
performs. Our analysis, however, shows that
larger models might perform better with uncer-
tain demonstrations, hinting that uncertainty
might be an emerging LLM ability.

2 Active In-context Learning

2.1 Problem Formulation

To build our in-context learning framework with
actively acquired demonstrations, depicted in Fig-
ure 2, we borrow the formulation from the standard
pool-based active learning paradigm. We consider
an AL setting where we have a large pool of unla-
beled data from which we want to sample a batch
of k data points using a data acquisition algorithm.
We assume that these k are subsequently labeled
by humans (Figure 2, top). Instead of following the
standard approach that involves multiple iterations
of data selection and model training, we only per-
form a single iteration (Longpre et al., 2022), since
we do not train or perform any model-in-the-loop
updates. We use the acquired set of k examples
as demonstrations for in-context learning with an
LLM (i.e., as part of the prompt). We assume the
existing datasets as the pool from which to select
these k examples. The goal is to find the most
informative examples from the pool, which are ex-
pected to yield improved performance on the test
set when employed as a few-shot prompt, com-
pared to demonstrations randomly sampled from
the same pool. The resulting prompt consists of
the concatenation of the k acquired examples (text
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Figure 2: Top: Active data collection (single iteration). Bottom: Prompt construction and model inference.

inputs and labels with standard verbalizers), along-
side the test example, repeated for all data instances
in the test set (Figure 2, bottom).

2.2 Few-shot Data Acquisition Algorithms

We build few-shot data acquisition algorithms in-
spired by the most prevalent AL algorithmic fami-
lies that are uncertainty sampling, diversity
sampling and similarity (also known as test-
aware sampling) (Zhang et al., 2022c). We ac-
knowledge that there are more elaborate demon-
stration selection methods for in-context learning
that are not considered in our experiments, such
as Q-learning (Zhang et al., 2022b), Self Adaptive
(Wu et al., 2022), SG-ICL (Kim et al., 2022), MI
(Sorensen et al., 2022), inter alia. These methods
fall beyond the scope of our analysis, as our ob-
jective is to gain insights into AL principles for
in-context learning, rather than benchmarking all
available demonstration sampling algorithms. Ad-
ditionally, there are techniques, complementary to
the aforementioned few-shot data selection meth-
ods, such as calibration (Zhao et al., 2021) and
prompt re-ordering (Lu et al., 2022), which can fur-
ther enhance few-shot learning performance, while
also being out of the scope of our work.

Random The overarching objective of any data se-
lection method, like AL algorithms, is to identify
data points that, however used, yield superior mod-
els compared to randomly sampled data from the
same pool which we consider as a baseline method.

Diversity The first data selection method that
we use as a representative for the diversity family
of methods is a simple clustering technique, similar

to Yu et al. (2022). Specifically, we first encode
all data points in the pool of unlabeled data with
Sentence-BERT (Reimers and Gurevych, 2019)
embeddings and then we perform k-means cluster-
ing.2 We choose the number of clusters to be k and
select one data point from each cluster. The under-
lying principle of this approach is that leveraging a
diverse set of in-context examples can offer greater
advantages compared to random sampling. This
selection strategy ensures that the chosen demon-
strations are likely to encompass a broad range of
information, enhancing the overall effectiveness of
the learning process.

Uncertainty The second approach is an
uncertainty-based sampling algorithm that is based
on SPELL, proposed by Gonen et al. (2022). Since
we use an off-the-shelf LLM that does not have a
fine-tuned classification layer, we cannot compute
the model probabilities associated with each class
(for a classification or multi-choice task). This
essentially means that we cannot use standard AL
uncertainty baselines such as maximum entropy
or least confidence. Instead, we can use the
loss, i.e., perplexity, of the LLM to score each
candidate example from the pool. Gonen et al.
(2022) define perplexity of the prompt as the
perplexity of the full prompt sequence, including
the input itself, and without the label, averaged
over 1, 000 examples. Our approach is different
since we want to evaluate the perplexity of each
in-context example individually. We also do not
do the averaging over a thousand examples as we
wanted to make the method more general, without

2We use the implementation from https://www.sbert.
net/examples/applications/clustering/.
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the need to assume access to that many examples.
The underlying principle guiding this approach is
the belief that a high perplexity set of in-context
examples can yield greater advantages compared
to randomly sampling from the dataset (or at least
for data efficiency in a supervised learning setting
this is proven to enhance the learning process).

Similarity Finally, the third AL algorithm we
consider is based on KATE a kNN-augmented in-
context example selection method proposed by Liu
et al. (2022). This method retrieves examples from
the pool that are semantically-similar to a test query
sample. We use Sentence-BERT (Reimers and
Gurevych, 2019) representations of both the pool
and the test set to find the k-nearest neighbours.
The rationale behind this approach is that the most
similar demonstrations to the test example will best
help the model answer the query. We have to high-
light, however, that by definition each test example
will have a different prompt, as the k most similar
demonstrations will be different. This is a crucial
limitation of this approach compared to the others,
as it assumes that we are able to acquire labels for
any in-context example selected from the pool.

3 Experimental Setup

Models We evaluate 15 LLMs in total, 8 mod-
els from the GPT (Radford et al., 2019; Brown
et al., 2020; Black et al., 2022) and 7 from the
OPT (Zhang et al., 2022a) family. We choose our
models to span from a few million to tens of billions
parameters, as we want to study how the model size
affects the effectiveness of in-context example se-
lection methods. All models considered in this
work are publicly available.

Tasks & Datasets Following Min et al. (2022),
we evaluate all LLMs in 15 classification and 9
multi-choice tasks taken from the Crossfit (Ye
et al., 2021) benchmark. We provide details for all
tasks and datasets considered in the Appendix A.1.

In-context Learning Prompting Unless speci-
fied otherwise, we sample k=16 demonstrations,
i.e., labeled data, from the pool with each AL
method. After collecting the k input-label pairs,
we concatenate them all together with the test ex-
ample that we want to make a prediction for to form
the LLM prompt (Figure 2). Our implementation,
including prompt verbalizers, is based on those by
Min et al. (2022) and Yoo et al. (2022).

4 Results

Figure 3 shows the results on few-shot in-
context learning across all data acquisition meth-
ods (random, diversity, uncertainty and
similarity), model families (GPT and OPT) and
tasks (classification and multi-choice question an-
swering).3 Overall, we observe the anticipated
trend of performance enhancement with increas-
ing scale, particularly notable in the multi-choice
tasks for both OPT and GPT models.

Still, the most remarkable finding is the sub-
stantial performance improvement achieved by se-
lecting similar in-context examples for few-shot
learning, particularly in classification tasks. This
observation aligns with the findings reported by Liu
et al. (2022), who demonstrated similar patterns in
sentiment analysis tasks with GPT-3. Our results
indicate that the selection of appropriate demonstra-
tions can hold greater significance than the number
of model parameters, at least within the scope of
the models evaluated in this study. In multi-choice
tasks, similarity is also the top-performing ac-
quisition method, while the other three approaches
exhibit closely competitive performance.

The data selection method based on diversity
is consistently the second best approach after
similarity (with very few exceptions in the multi-
choice tasks for OPT models). Even though it is
not the top performing method, we can consider
that consistently outperforming random sampling
is a strong signal that diversity in the demonstra-
tions is a characteristic of effective demonstrations.
Levy et al. (2022) explore the setting of composi-
tional generalization, where models are tested on
outputs with structures that are absent from the
training set and thus selecting similar demonstra-
tions is insufficient. They show that combining
diverse demonstrations with in-context learning
substantially improves performance for the task of
compositional generalization semantic parsing.

Remarkably, uncertainty sampling, typically
regarded as one of the best approaches for tradi-
tional supervised AL (Shen et al., 2017; Margatina
et al., 2022; Schröder et al., 2023), exhibits the
lowest performance. This finding contradicts the
conventional AL principles that suggest selecting
a few highly uncertain labeled data points for data
efficiency. Similar to our findings, Gonen et al.
(2022) explore the performance variabilty of dif-

3We provide the results per dataset and model in the Ap-
pendix A.2, including the majority vote baseline.
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Figure 3: Results for various GPT (top) and OPT (bottom) models and AL methods averaged over 15 classification
and 9 multi-choice tasks. Similarity is consistently the best performing approach overall, followed by diversity and
random. Interestingly, we observe that uncertainty sampling underperforms in this setting of in-context learning.

ferent prompts (consisting of randomly sampled
demonstrations) for in-context learning using un-
certainty, and find that the lower the perplexity of
the prompt is, the better the prompt is able to per-
form the task. Still, in a later analysis we show that
larger models might be able to handle high uncer-
tain prompts better than the smaller ones (§5.4).

5 Analysis

5.1 Effect of Model Size

In order to gain some intuition on the effect of
scale, we group together GPT and OPT models
with similar number of parameters. We provide
the results in Figure 4. Even after aggregating the
results from both model families, we do not see any
specific pattern as the model parameters increase.
We wanted to explore whether the largest models of
our collection would behave differently under the
varying in-context learning settings, thus perhaps
attributing such a behaviour to potential emergent
abilities of the bigger LLMs, but we observe the
same patterns (in terms of ranking between the
considered data selection methods). We believe
that this is an interesting avenue of future research,

especially as models grow and, most likely, will
continue to grow exponentially in terms of model
parameters. Our findings show that the in-context
learning ability of models from a few millions to a
few billions of parameters follows similar patterns.
However, this might not be the case when studying
even larger models, as primary results hint (Rae
et al., 2022; Wei et al., 2023b; Chowdhery et al.,
2022; Touvron et al., 2023).

5.2 Ground Truth Demonstrations

We next delve into the debate of whether ground
truth demonstrations, i.e., providing the correct la-
bel to the in-context examples, is crucial for high
performing in-context learning. Various findings
have shown mixed results for randomly sampled
data, which essentially means that the benefit of
ground truth labels depends on the label space or
the distribution of inputs specified by the demon-
strations (Min et al., 2022; Yoo et al., 2022). In
our analysis, we differentiate from prior work by
exploring the importance of ground truth demon-
strations in the case of leveraging similar in-context
examples (§2.2). The rationale is that if the find-
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Figure 4: Results per model size.

Figure 5: Effect of ground truth labels on in-context
learning with with the similarity AL selection method.

ings of Min et al. (2022) ubiquitously hold, then
the performance should only marginally drop if we
replace ground truth labels with random ones. If
the high performance of the similarity acquisi-
tion method can be retained, we would be able to
construct an efficient and effective in-context se-
lection algorithm that would be agnostic to correct
labels. However, we find that this is not the case.
We show in Figure 5 that for almost all datasets
considered in this part of analysis, the performance
with random labels drops significantly as expected.
There are cases where replacing the original labels
with random ones as in Min et al. (2022) retains the
same performance (e.g., in the glue-rte dataset),
but this is certainly a finding that does not general-
ize overall. In summary, we find that ground truth
demonstrations are crucial for high performing, ro-
bust in-context learning (Yoo et al., 2022).

5.3 Most vs. Least Similar Demonstrations
To investigate the striking effectiveness of the sim-
ilarity-based acquisition strategy, we conduct ad-
ditional experiments where we invert the approach

and choose the least similar examples from the
pool to form the prompt. This investigation aims
to ascertain whether the remarkable performance
gains can be attributed solely to the semantic simi-
larity between the demonstrations and the test input.
The results depicted in Figure 6 substantiate our hy-
pothesis, demonstrating a significant performance
drop when employing opposite examples from the
pool as in-context exemplars. While this pattern is
particularly pronounced in the classification tasks,
it consistently emerges across different model sizes
and task types. Hence, we can assert that maximiz-
ing semantic similarity between the demonstations
and the input test sample is an unequivocally vital
attribute for achieving successful in-context learn-
ing outcomes with LLMs. Future endeavors in the
field of building effective in-context learning frame-
works should incorporate this principle to enable
data-efficient algorithms that can fully harness the
potential of LLMs.

5.4 Most vs. Least Uncertain Demonstrations

Along these lines, we also opt to examine the dual-
ity between selecting the most or the least uncertain
in-context examples from the pool. We show the
results of these experiments for the GPT models
in Figure 7. Interestingly, we observe that while
the smaller language models (gpt2, gpt2-medium,
gpt-large) perform better with the least uncertain
prompts, the larger models seem to start benefit-
ing from the demonstrations with high uncertainty.
This is particularly clear in the largest model of our
collection, GPT-Neox (20B parameters). This inter-
esting finding shows that even larger models will
most likely perform better with high entropy in-
context examples, similar to their supervised learn-

5016

50Chapter 4. Publication III: Active In-Context Learning Learning with Large Language Models



Figure 6: Most vs. least similar in-context examples.

Figure 7: Most vs. least uncertain in-context examples.

ing counterparts. Such findings open a plethora of
research questions regarding understanding how in-
context learning works (Reynolds and McDonell,
2021; Razeghi et al., 2022; Xie et al., 2022; Min
et al., 2022), how AL and data acquisition methods
reshape with larger language models or whether we
can properly investigate potential emergent abili-
ties of LLMs acquired by model scaling (Wei et al.,
2022; Schaeffer et al., 2023).

5.5 Evaluation with Different Metrics

Finally, we want to provide a clear overview of our
experiments and summary of our findings, while
making some clarifications regarding how we evalu-
ate and compare different approaches to in-context
learning. Figure 8 shows the results for in-context
learning with random sampling, three data selec-
tion techniques inspired by AL (§2.2), namely
diversity, uncertainty and similarity, and
a zero-shot baseline where no labeled examples are
included in the prompt (no_demo). We show that in-
context learning with k=16 demonstrations consis-
tently outperform zero-shot learning for an average
of 15 classification tasks for gpt2-large, gpt-j
and gpt-neox. Next, we observe that the best
performing in-context example selection method
is by a clear margin similarity, followed by
diversity. This finding corroborates the origi-
nal hypothesis of AL that, indeed, not all data is
equal and there exist more informative data subsets

in the pool that can be used as in-context exemplars.
We can see that the uncertainty baseline, which
is usually top performing in supervised AL, gen-
erally underperforms in the few-shot setting. Still,
there is some evidence that this could change with
even larger and better models (§5.4). Finally, delv-
ing into the debate on whether ground truth labels
matter or not (Min et al., 2022; Yoo et al., 2022),
we show that replacing original with random in-
context labels hurt significantly the performance of
similarity, the best data selection method (§5.2).

We further emphasize the significance of em-
ploying a meticulous evaluation framework, partic-
ularly in the selection of appropriate metrics. In
Figure 8, we illustrate the same classification ex-
periments, but with the F1 score plotted on the
left and accuracy on the right. The use of F1,
the conventional metric for classification tasks,
reveals a distinct ranking among the various AL
methods, with similarity exhibiting the best per-
formance, followed by diversity. Conversely,
when employing accuracy to compare the methods,
diversity emerges as the top approach, followed
by similarity and random selection. This dispar-
ity highlights the potential for misconceptions or
obscured findings, underscoring the need for cau-
tion when evaluating and comparing different meth-
ods across various models within the in-context
learning framework (Dehghani et al., 2021; Min
et al., 2022; Yoo et al., 2022; Tedeschi et al., 2023).

6 Related Work

6.1 Understanding In-Context Learning

Few-shot in-context learning with LLMs has gar-
nered significant attention in recent NLP research.
Simply concatenating a few labeled examples to
form the prompt for the LLM results in high perfor-
mance gains, even outperforming fine-tuned mod-
els (Brown et al., 2020; Chung et al., 2022; Ouyang
et al., 2022; Dong et al., 2022). This has naturally
lead to study its effectiveness with multiple few-
shot learning benchmarks such as Crossfit (Ye
et al., 2021) and BigBench (Srivastava et al., 2022).

Another active area of research is on understand-
ing how in-context learning works (Xie et al., 2022;
Garg et al., 2022; Akyürek et al., 2022; Xie et al.,
2022; Pan et al., 2023), and what are its strengths
and limitations (Webson and Pavlick, 2022; Jang
et al., 2022; Levy et al., 2022; Shi et al., 2022;
Agrawal et al., 2022; Wei et al., 2023b; Ye et al.,
2023b). Previous work has explored the effec-
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Figure 8: The ranking of data selection methods is different depending on the metric used.

tiveness of the chain-of-thought prompting tech-
nique (Wei et al., 2023a; Wang et al., 2022; Madaan
and Yazdanbakhsh, 2022), while other studies try
to determine the importance of in-context ground
truth labels, with Min et al. (2022) showing that
random labels do not hurt performance consider-
ably and Yoo et al. (2022) providing a rebuttal. Wei
et al. (2023b) explain that model size plays an role
in the effect of ground truth labels, showing that
small LMs ignore flipped labels, while LLMs can
override semantic priors learned during pretraining.
Interestingly, Razeghi et al. (2022) demonstrates
that in-context learning performance is highly cor-
related with the prevalence of each instance in the
pretraining corpus, showing that models are more
accurate on few-shot numerical reasoning on in-
stances whose terms are more frequent.

6.2 Selecting Informative Demonstrations

Typically, work on evaluating LLMs in few-shot
settings commonly uses randomly sampled exam-
ples to compose the in-context prompt (Brown
et al., 2020; Zhang et al., 2022a; Chowdhery
et al., 2022; Chung et al., 2022; Touvron et al.,
2023). Nonetheless, it has been demonstrated that
the effectiveness of few-shot performance signif-
icantly depends on the selection of in-context ex-
amples (Kocielnik et al., 2022; Ye et al., 2023a;
Diao et al., 2023; Xu et al., 2023). Consequently,
there is ongoing research on generating or select-
ing the most informative demonstrations, aiming to
maximize the downstream few-shot performance.

Some approaches are based on a retrieval compo-
nent that sources the most relevant examples from
a pool. The prompt retriever can be trainable (Ru-
bin et al., 2022) or based on pretrained embed-
dings (Liu et al., 2022; Agrawal et al., 2022). Go-
nen et al. (2022) use uncertainty to evaluate the use-

fulness of in-context examples and find that the best
performing prompts have low perplexity. Zhang
et al. (2022b) formulate example selection for in-
context learning as a sequential decision problem
and show modest performance improvements by
acquiring data with their proposed method based
on reinforcement learning. Other previous work,
instead of focusing on the part of acquiring data for
in-context learning, show that demonstration order-
ing (Lu et al., 2022) and model calibration (Zhao
et al., 2021) are additional properties that influence
the few-shot learning performance.

6.3 Active Learning for NLP

AL has been extensively studied in various NLP
tasks, including machine translation (Miura et al.,
2016; Zhao et al., 2020), natural language infer-
ence (Snijders et al., 2023), named entity recog-
nition (Shen et al., 2017; Wei et al., 2019), and
text classification (Ein-Dor et al., 2020; Margatina
et al., 2022; Schröder et al., 2023), among others.

Still, its importance and potential value is on the
rise (Zhang et al., 2022c; Rauch et al., 2023), as the
current language model pretraining paradigm con-
tinues to advance the state-of-the-art (Tamkin et al.,
2022). Given the fundamental premise that“not all
data is equal” it is reasonable to expect researchers
to actively seek the “most informative” data for
pretraining or adapting their large language models
(LLMs), as well as identifying the most valuable
in-context examples for few-shot learning scenar-
ios. Previous work has explored AL for prompt-
based finetuning (Köksal et al., 2022), proposing
a method based in inter-prompt uncertainty sam-
pling with diversity coupled with the PET archi-
tecture (Schick and Schütze, 2021a,b) that outper-
forms all AL baselines.
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7 Conclusion

In this study, we have examined the selection of
demonstrations, i.e., labeled data that provide ex-
amples of solving a task, for in-context learning
with LLMs. We formulated the selection process
as a single iteration active learning problem and
evaluated four standard approaches: uncertainty,
diversity, similarity, and random sampling.
Our evaluation involved 15 models of varying
size from the GPT and OPT families, encom-
passing 15 classification tasks and 9 multi-choice
tasks. Through extensive experimentation, we have
demonstrated that selecting demonstrations that are
semantically similar to the test input examples con-
sistently outperforms all other methods by a signif-
icant margin across all model families, sizes, and
tasks. This corroborates findings of several previ-
ous and concurrent studies that explore the proper-
ties of “good” in-context examples (Liu et al., 2022;
Shi et al., 2022). Interestingly, our findings reveal
that uncertainty sampling, although effective in su-
pervised learning, underperforms in the in-context
learning paradigm. This highlights the importance
of our work in exploring the principles of active
learning in the context of few-shot learning.
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Limitations

Tasks & Datasets We acknowledge that even
though we experimented with a well established
benchmark, the Crossfit (Ye et al., 2021)
benchmark consisting of 15 classification and
9 multi-choice question answering datasets (Ap-
pendix A.1), it might still not be sufficient to ensure
that our findings will generalize to any NLP clas-
sification or multi-choice application of in-context
learning.

Language We also acknowledge that all the
datasets and models considered in this work are
based on the English language alone. This limits
generalizability of our findings to other languages.

Model scale We investigated in-context learning
with actively acquired demonstrations with 15 GPT

and OPT models that span 125M to 30B param-
eters. Even though our experimentation is thor-
ough, our findings might not generalize to larger
or smaller transformer-based models, or models
based in a different architecture.

Active learning considerations We explicitly
note in the paper that we do a single active learning
iteration, which is different than the common AL
loop that consists of multiple iterations. As we ex-
plained, because the model-in-the-loop (the LLM)
is not updated (no fine-tuning) with new data, per-
forming multiple iterations does not make sense
in this context (Figure 2). Still, it would be inter-
esting for future work to explore how we can per-
form multiple AL iterations while constructing the
prompt (i.e., acquiring the demonstrations). The
upper bound would be to try all the combinations
of a set of labeled data and find the best performing
prompt. However, doing this with unlabeled data,
in an efficient way, is far from trivial. We refer to
Zhang et al. (2022c); Treviso et al. (2023); Mar-
gatina and Aletras (2023) for in-depth suggestions
for future work in this area.

References
Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke

Zettlemoyer, and Marjan Ghazvininejad. 2022. In-
context examples selection for machine translation.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas,
Tengyu Ma, and Denny Zhou. 2022. What learn-
ing algorithm is in-context learning? investigations
with linear models. ArXiv, abs/2211.15661.

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. Tweeteval:
Unified benchmark and comparative evaluation for
tweet classification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1644–1650.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 – Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 95–136, virtual+Dublin. Association
for Computational Linguistics.

Zalán Bodó, Zsolt Minier, and Lehel Csató. 2011. Ac-
tive learning with clustering. In Proceedings of the
Active Learning and Experimental Design workshop

5019

4.2. The Paper 53



In conjunction with AISTATS 2010, volume 16, pages
127–139.

Klaus Brinker. 2003. Incorporating diversity in active
learning with support vector machines. In Proceed-
ings of the International Conference on Machine
Learning, pages 59–66.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with gpt-4.

Michael Chen, Mike D’Arcy, Alisa Liu, Jared Fer-
nandez, and Doug Downey. 2019. CODAH: An
adversarially-authored question answering dataset
for common sense. In Proceedings of the 3rd Work-
shop on Evaluating Vector Space Representations for
NLP, pages 63–69, Minneapolis, USA. Association
for Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,

Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

David A. Cohn, Zoubin Ghahramani, and Michael I.
Jordan. 1996. Active learning with statistical mod-
els. Journal of Artificial Intelligence Research,
4(1):129–145.

Ona de Gibert, Naiara Pérez, Aitor García-Pablos, and
Montse Cuadros. 2018. Hate speech dataset from
a white supremacy forum. In Proceedings of the
2nd Workshop on Abusive Language Online (ALW2),
pages 11–20.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse.

Mostafa Dehghani, Yi Tay, Alexey A. Gritsenko, Zhe
Zhao, Neil Houlsby, Fernando Diaz, Donald Metzler,
and Oriol Vinyals. 2021. The benchmark lottery.

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong
Zhang. 2023. Active prompting with chain-of-
thought for large language models.

Thomas Diggelmann, Jordan Boyd-Graber, Jannis Bu-
lian, Massimiliano Ciaramita, and Markus Leippold.
2020. Climate-fever: A dataset for verification of
real-world climate claims.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
ArXiv, abs/2301.00234.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.
Active Learning for BERT: An Empirical Study. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7949–7962, Online. Association for Computa-
tional Linguistics.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017.
Deep Bayesian active learning with image data. In
Proceedings of the 34th International Conference

5020

54Chapter 4. Publication III: Active In-Context Learning Learning with Large Language Models



on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1183–1192.
PMLR.

Xavier García, Yamini Bansal, Colin Cherry, George F.
Foster, Maxim Krikun, Fan Feng, Melvin Johnson,
and Orhan Firat. 2023. The unreasonable effective-
ness of few-shot learning for machine translation.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gre-
gory Valiant. 2022. What can transformers learn
in-context? a case study of simple function classes.
ArXiv, abs/2208.01066.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith,
and Luke Zettlemoyer. 2022. Demystifying prompts
in language models via perplexity estimation. ArXiv,
abs/2212.04037.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roem-
mele. 2012. SemEval-2012 task 7: Choice of plau-
sible alternatives: An evaluation of commonsense
causal reasoning. In *SEM 2012: The First Joint
Conference on Lexical and Computational Seman-
tics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012), pages 394–398, Montréal,
Canada. Association for Computational Linguistics.

Joel Jang, Seonghyeon Ye, and Minjoon Seo. 2022. Can
large language models truly understand prompts?
a case study with negated prompts. ArXiv,
abs/2209.12711.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. Qasc: A
dataset for question answering via sentence compo-
sition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8082–8090.

Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk
Kim, Kang Min Yoo, and Sang goo Lee. 2022.
Self-generated in-context learning: Leveraging auto-
regressive language models as a demonstration gen-
erator. ArXiv, abs/2206.08082.

Andreas Kirsch, Tom Rainforth, and Yarin Gal. 2021.
Test distribution-aware active learning: A principled
approach against distribution shift and outliers.

Rafal Kocielnik, Sara Kangaslahti, Shrimai Prabhu-
moye, M Hari, R. Michael Alvarez, and Anima
Anandkumar. 2022. Can you label less by using
out-of-domain data? active & transfer learning with
few-shot instructions. ArXiv, abs/2211.11798.

Abdullatif Köksal, Timo Schick, and Hinrich Schutze.
2022. Meal: Stable and active learning for few-shot
prompting. ArXiv, abs/2211.08358.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Itay Levy, Ben Bogin, and Jonathan Berant. 2022. Di-
verse demonstrations improve in-context composi-
tional generalization.

David D. Lewis and William A. Gale. 1994. A se-
quential algorithm for training text classifiers. In
In Proceedings of the Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

S. Longpre, Julia Reisler, Edward Greg Huang, Yi Lu,
Andrew J. Frank, Nikhil Ramesh, and Chris DuBois.
2022. Active learning over multiple domains in natu-
ral language tasks. ArXiv, abs/2202.00254.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Aman Madaan and Amir Yazdanbakhsh. 2022. Text
and patterns: For effective chain of thought, it takes
two to tango. ArXiv, abs/2209.07686.

Katerina Margatina and Nikolaos Aletras. 2023. On
the limitations of simulating active learning. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 4402–4419.

Katerina Margatina, Loic Barrault, and Nikolaos Ale-
tras. 2022. On the importance of effectively adapting
pretrained language models for active learning. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 825–836, Dublin, Ireland. As-
sociation for Computational Linguistics.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 650–663, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Clara H. McCreery, Namit Katariya, Anitha Kannan,
Manish Chablani, and Xavier Amatriain. 2020. Effec-
tive transfer learning for identifying similar questions:
Matching user questions to covid-19 faqs.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work?

5021

4.2. The Paper 55



Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning–based text classification: a com-
prehensive review. ACM computing surveys (CSUR),
54(3):1–40.

Akiva Miura, Graham Neubig, Michael Paul, and
Satoshi Nakamura. 2016. Selecting syntactic, non-
redundant segments in active learning for machine
translation. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 20–29, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos,
and Grigorios Tsoumakas. 2022. ETHOS: a multi-
label hate speech detection dataset. Complex Intelli-
gent Systems, 8(6):4663–4678.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen.
2023. What in-context learning "learns" in-context:
Disentangling task recognition and task learning.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,
Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling

language models: Methods, analysis & insights from
training gopher.

Lukas Rauch, Matthias Aßenmacher, Denis Huseljic,
Moritz Wirth, Bernd Bischl, and Bernhard Sick. 2023.
Activeglae: A benchmark for deep active learning
with transformers.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot numerical reasoning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 840–854, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Com-
puting Systems, CHI EA ’21, New York, NY, USA.
Association for Computing Machinery.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671, Seattle, United States.
Association for Computational Linguistics.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage?

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Christopher Schröder, Lydia Müller, Andreas Niekler,
and Martin Potthast. 2023. Small-text: Active learn-
ing for text classification in python. In Proceedings
of the 17th Conference of the European Chapter of

5022

56Chapter 4. Publication III: Active In-Context Learning Learning with Large Language Models



the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 84–95, Dubrovnik, Croa-
tia. Association for Computational Linguistics.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. In Pro-
ceedings of the Workshop on Representation Learn-
ing for NLP, pages 252–256.

Emily Sheng and David C Uthus. 2020. Investigating
societal biases in a poetry composition system. In
Proceedings of the Second Workshop on Gender Bias
in Natural Language Processing, pages 93–106.

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman,
Yulia Tsvetkov, and Luke Zettlemoyer. 2022. Toward
human readable prompt tuning: Kubrick’s the shining
is a good movie, and a good prompt too? ArXiv,
abs/2212.10539.

Ard Snijders, Douwe Kiela, and Katerina Margatina.
2023. Investigating multi-source active learning for
natural language inference. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 2187–
2209, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Taylor Sorensen, Joshua Robinson, Christopher Ryt-
ting, Alexander Shaw, Kyle Rogers, Alexia Delorey,
Mahmoud Khalil, Nancy Fulda, and David Wingate.
2022. An information-theoretic approach to prompt
engineering without ground truth labels. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 819–862, Dublin, Ireland. Association
for Computational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ambrose Slone, Ameet Rahane,
Anantharaman S. Iyer, Anders Andreassen, Andrea
Madotto, Andrea Santilli, Andreas Stuhlmüller, An-
drew Dai, Andrew La, Andrew Lampinen, Andy
Zou, Angela Jiang, Angelica Chen, Anh Vuong,
Animesh Gupta, Anna Gottardi, Antonio Norelli,
Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mul-
lokandov, Ashish Sabharwal, Austin Herrick, Avia

Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts,
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Figure 9: Results per model family.

A Experimental Details

A.1 Tasks & Datasets
Following Min et al. (2022), we evaluate our
models in 15 classification and 9 multi-choice
tasks taken from the Crossfit (Ye et al., 2021)
benchmark. Specifically the tasks we evaluate are
poem_sentiment (Sheng and Uthus, 2020), glue-
wnli (Wang et al., 2019; Levesque et al., 2012),
climate_fever (Diggelmann et al., 2020), glue-
rte (Wang et al., 2019), superglue-cb (de Marn-
effe et al., 2019), sick (Minaee et al., 2021), medi-
cal_questions_pairs (McCreery et al., 2020), glue-
mrpc (Wang et al., 2019; Dolan and Brockett,
2005), hate_speech18 (de Gibert et al., 2018),
ethos-national_origin (Mollas et al., 2022), ethos-
race (Mollas et al., 2022), ethos-religion (Mollas
et al., 2022), tweet_eval-stance_atheism (Barbieri
et al., 2020), tweet_eval-stance_feminist (Barbi-
eri et al., 2020) and quarel (Tafjord et al., 2019a),
openbookqa,qasc (Khot et al., 2020), common-
sense_qa, ai2_arc (Clark et al., 2018), codah (Chen
et al., 2019), superglue-copa (Gordon et al., 2012),
quartz-with_knowledge (Tafjord et al., 2019b),
quartz-no_knowledge (Tafjord et al., 2019b), for
classification and multi-choice respectively.

A.2 Full results
We provide below the full set of results, for each
dataset, model and active learning acquisition strat-
egy considered. The dashed line depicts the major-
ity vote baseline.

A.3 Model Family
We provide the results on few-shot learning with
k=16 demonstrations per prompt per model family
and task type in Figure 9. We observe the same
patterns for both GPT and OPT models.
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4.3 Impact

According to Google Scholar, the paper has received 22 citations as of May 2024. It

was featured in various surveys (e.g. Wan et al., 2023; Zheng et al., 2023; Li et al., 2024;

Tan et al., 2024) and has influenced follow-up work (Delaflor et al., 2022; Bansal and

Sharma, 2023; Gao et al., 2023; Muldrew et al., 2024; Pang et al., 2024; Wang, 2024;

Rouzegar and Makrehchi, 2024).

4.4 Discussion

In this study, we have presented a comprehensive analysis of data selection methods for

in-context learning with Language Model Models (LLMs). Our findings highlight sev-

eral key takeaways and shed light on important limitations in the current understanding

of this emerging field. Notably, our results demonstrate the paramount importance of

selecting in-context examples that closely align with the semantic content of the input

test examples. This finding is consistent across model families, sizes, and tasks, under-

scoring the significance of semantic similarity in driving successful in-context learning

outcomes. Furthermore, our study challenges the conventional idea regarding the effi-

cacy of uncertainty sampling, revealing its underperformance in the in-context learning

paradigm compared to traditional supervised learning settings. This prompts a reeval-

uation of active learning principles in the context of few-shot learning with LLMs,

emphasizing the need for tailored approaches to data selection in this domain.

Despite these insightful findings, our study has several limitations that warrant consid-

eration. While our analysis encompasses a diverse range of model sizes from both GPT

and OPT families, the scalability of our findings to even larger or smaller transformer-

based models remains an open question. Furthermore, our study focuses on a single

iteration of active learning, which may not fully capture the potential benefits of iter-

ative data selection strategies. Exploring multi-iteration active learning frameworks in

the context of in-context learning with LLMs could be a promising avenue for future

research, albeit challenging in practice.





Chapter 5

Publication IV: Limitations of

Simulating Active Learning

The main contribution of this chapter is the paper On the Limitations of Simulating

Active Learning, which was published at the Findings of the Association for Computa-

tional Linguistics at the ACL conference in July 2023. We first outline the motivation

for this work (Section 5.1), followed by the paper itself (Section 5.2), the impact that

it has had so far (Section 5.3), and discussion (Section 5.4).

5.1 Introduction

Throughout this PhD thesis, we delved deeply into the realm of active learning for

natural language processing, conducting exhaustive research on numerous algorithms

across various stages of the pipeline and with diverse settings and models. Crucially, we

not only studied these algorithms but also meticulously implemented them, conducting

thousands of experiments for our previously published papers. These endeavors have

yielded a wealth of insights, hard-earned lessons, key findings, and fertile ideas for

future exploration. As we amassed a trove of questions, unresolved issues, insights, and

practical guidelines, we recognized the value in consolidating them into a comprehensive

position paper for peer review and dissemination within the community. Thus, our

motivation for the final paper of this PhD thesis emerged—a synthesis of our years of

exploration into active learning algorithms for Language Models (LMs), encapsulating

our collective knowledge and experiences gained throughout this journey.
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5.2 The Paper

Author Contributions

The paper is co-authored by Nikolaos Aletras and myself. As a lead author, I collected

the material for the position paper and wrote it. We had multiple discussions with

Nikolaos and he helped revise the final version of the paper.
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On the Limitations of Simulating Active Learning

Katerina Margatina Nikolaos Aletras
University of Sheffield

{k.margatina, n.aletras}@sheffield.ac.uk

Abstract

Active learning (AL) is a human-and-model-

in-the-loop paradigm that iteratively selects
informative unlabeled data for human anno-
tation, aiming to improve over random sam-
pling. However, performing AL experiments
with human annotations on-the-fly is a labo-
rious and expensive process, thus unrealistic
for academic research. An easy fix to this im-
pediment is to simulate AL, by treating an al-

ready labeled and publicly available dataset as
the pool of unlabeled data. In this position
paper, we first survey recent literature and high-
light the challenges across all different steps
within the AL loop. We further unveil neglected
caveats in the experimental setup that can sig-
nificantly affect the quality of AL research. We
continue with an exploration of how the sim-

ulation setting can govern empirical findings,
arguing that it might be one of the answers
behind the ever posed question “why do ac-

tive learning algorithms sometimes fail to out-

perform random sampling?”. We argue that
evaluating AL algorithms on available labeled
datasets might provide a lower bound as to their
effectiveness in real data. We believe it is es-
sential to collectively shape the best practices
for AL research, particularly as engineering ad-
vancements in LLMs push the research focus
towards data-driven approaches (e.g., data ef-
ficiency, alignment, fairness). In light of this,
we have developed guidelines for future work.
Our aim is to draw attention to these limitations
within the community, in the hope of finding
ways to address them.

1 Introduction

Based on the assumption that “not all data is

equal”, active learning (AL) (Cohn et al., 1996;
Settles, 2009) aims to identify the most informative
data for annotation from a pool (or a stream) of
unlabeled data (i.e., data acquisition). With multi-
ple rounds of model training, data acquisition and
human annotation (Figure 1), the goal is to achieve

Figure 1: High-level overview of the train-acquire-

annotate steps of the active learning loop.

data efficiency. A data efficient AL algorithm en-
tails that a model achieves satisfactory performance
on a held-out test set, by being trained with only a
fraction of the acquired data.

AL has traditionally attracted wide attention in
the Natural Language Processing (NLP) commu-
nity. It has been explored for machine transla-
tion (Haffari et al., 2009; Dara et al., 2014; Miura
et al., 2016; Zhao et al., 2020), text classifica-
tion (Ein-Dor et al., 2020; Schröder and Niekler,
2020; Margatina et al., 2022; Schröder et al., 2023),
part-of-speech tagging (Chaudhary et al., 2021),
coreference (Yuan et al., 2022) and entity resolu-
tion (Qian et al., 2017; Kasai et al., 2019), named
entity recognition (Erdmann et al., 2019; Shen
et al., 2017; Wei et al., 2019; Shelmanov et al.,
2021), and natural language inference (Snijders
et al., 2023), inter alia. However, its potential
value is still growing (Zhang et al., 2022d), driven
by advancements in the state-of-the-art in language
model pretraining (Tamkin et al., 2022). Given
the initial assumption that “not all data is equal”,
it is reasonable to expect researchers to seek out
the “most valuable” data for pretraining or adapting
their language models.

The usual pool-based AL setting is to acquire
data from an unlabeled pool, label it, and use it to
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train a supervised model that, hopefully, obtains
satisfactory performance on a test set for the task
at hand. This is very similar to the general model-
in-the-loop paradigm (Karmakharm et al., 2019;
Bartolo et al., 2020, 2022; Kiela et al., 2021; Wal-
lace et al., 2022), with the main difference being
the AL-based data acquisition stage. The assump-
tion is that, by iteratively selecting data for anno-
tation according to an informativeness criterion, it
will result into better model predictive performance
compared to randomly sampling and annotate data
of the same size.

However, this does not always seem to be the
case. A body of work has shown that AL algo-
rithms, that make use of uncertainty (Lewis and
Gale, 1994; Cohn et al., 1996; Houlsby et al., 2011;
Gal et al., 2017), diversity sampling (Brinker, 2003;
Bodó et al., 2011; Sener and Savarese, 2018) or
even more complex acquisition strategies (Ducoffe
and Precioso, 2018; Ash et al., 2020; Yuan et al.,
2020; Margatina et al., 2021), often fail to improve
over a simple random sampling baseline (Baldridge
and Palmer, 2009; Ducoffe and Precioso, 2018;
Lowell et al., 2019; Kees et al., 2021; Karamcheti
et al., 2021; Snijders et al., 2023). Such findings
pose a serious question on the practical usefulness
of AL, as they do not corroborate its initial core
hypothesis that not all data is equally useful for

training a model. In other words, if we cannot
show that one subset of the data is “better”1 than
another, why do AL in the first place?

Only a small body of work has attempted to
explore the pain points of AL. For instance, Karam-
cheti et al. (2021), leveraging visualisations from
data maps (Swayamdipta et al., 2020), show that
AL algorithms tend to acquire collective outliers

(i.e. groups of examples that deviate from the rest
of the examples but cluster together), thus explain-
ing the utter failure of eight AL algorithms to out-
perform random sampling in visual question an-
swering. Building on this work, more recently Sni-
jders et al. (2023) corroborate these findings for the
task of natural language inference and further show
that uncertainty based AL methods recover and
even surpass random selection when hard-to-learn
data points are removed from the pool. Lowell
et al. (2019) show that the benefits of AL with cer-

1We consider a labeled dataset A ⇢ C to be “better” than
a labeled dataset B ⇢ C, both sampled from a corpus C
and |A| = |B|, if a model MA trained on A yields higher
performance on a test set compared to MB , where both models
are identical in terms of architecture, training procedure, etc.

tain models and domains do not generalize reliably
across models and tasks. This could be problematic
since, in practice, one might not have the means
to explore and compare alternative AL strategies.
They also show that an actively acquired dataset
using a certain model-in-the-loop, may be disad-
vantageous for training models of a different family,
raising the issue of whether the downsides inher-
ent to AL are worth the modest and inconsistent
performance gains it tends to afford.

In this paper, we aim to explore all possible
limitations that researchers and practitioners cur-
rently face when doing research on AL (Zhang
et al., 2022d). We first describe the process of
pool-based AL (Figure 1) and identify challenges
in every step of the iterative process (§2). Next,
we unearth obscure details that are often left un-
stated and under-explored (§3). We then delve
into a more philosophical discussion of the role of
simulation and its connection to real practical ap-
plications (§4). Finally, we provide guidelines for
future work (§5) and conclusions (§6), aspiring to
promote neglected, but valuable, ideas to improve
the direction of research in active learning.

2 Challenges in the Active Learning Loop
We first introduce the typical steps in the pool-
based AL setting (Lewis and Gale, 1994) and iden-
tify several challenges that an AL practitioner has
to deal with, across all steps (Figure 2).2

2.1 Problem Definition
Consider the experimental scenario where we want
to model a specific NLP task for which we do not
yet have any labeled data, but we have access to
a large pool of unlabeled data Dpool. We assume
that it is unrealistic (e.g., laborious, expensive) to
have humans annotating all of it. Dpool constitutes
the textual corpus from which we want to sample a
fraction of the most useful (e.g., informative, rep-
resentative) data points for human annotation. In
order to perform active learning, we need an initial
labeled dataset Dlab, often called “seed” dataset, to
be used for training a task-specific model with su-
pervised learning. To evaluate the model, we need
a usually small validation set for model selection
Dval and a held out test set Dtest to evaluate the
model’s generalization. We use Dlab and Dval to
train the first model and then test it on Dtest.

2We point the reader to the comprehensive survey of Zhang
et al. (2022d) for a more in-depth exploration of recent litera-
ture in AL.
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In this stage, we start acquiring labeled data for
model training. Data points are sampled from Dpool
via an acquisition strategy and subsequently passed
to human annotators for labeling. The acquisition
function selects a batch of data Q ⇢ Dpool accord-
ing to some informativeness criterion and can ei-
ther use the model-in-the-loop or not. We employ
crowdsourcing or expert annotators to label the
selected batch Q which then is appended to the
labeled dataset Dlab.

Now that we have augmented the seed dataset
with more data, we re-train the model on the new
training dataset, Dlab. We test the new model on
Dtest and we stop if we obtain satisfactory perfor-
mance or if the budget for annotation has run out
(or using any other stopping criterion). If we do
not want to stop, we use the acquisition function to
select more unlabeled data from Dpool, which we
annotate and append to Dlab, etc. This is the AL
loop shown in Figure 2.

2.2 Active Learning Design

Seed dataset We start the AL loop (§2.1) by
defining an initial labeled “seed dataset” (Figure 2:
1 ). The seed dataset plays an important role, as

it will be used to train the the first model-in-the-
loop (Tomanek et al., 2009; Horbach and Palmer,
2016). In AL research, we typically address the
cold-start problem by sampling from Dpool with a
uniform distribution for each class, either retain-
ing the true label distribution or choosing data that
form a balanced label distribution.3 This is merely
a convenient design choice, as it is simple and easy
to implement. However, sampling the seed dataset
this way, does not really reflect a real-world setting
where the label distribution of the (unlabeled data
of the) pool is actually unknown.

Prabhu et al. (2019) performed a study of such
sampling bias in AL, showing no effect in differ-
ent seed datasets across the considered methods.
Ein-Dor et al. (2020) also experimented with dif-
ferent imbalanced seed datasets, showing that AL
improves over random sampling in settings with
highest imbalance.

Furthermore, the choice of the seed dataset has
a direct effect on the entire AL design because the

3In AL research, a fully labeled dataset is typically treated

as an unlabeled Dpool by entirely ignoring its labels, while in
reality we do have access to them. Hence, the labels implicitly
play a role in the design of the AL experiment. We analyze
our criticism to this seemingly “random sampling” approach
to form the seed dataset in §4.2.

first model-in-the-loop marks the reference point
of the performance in Dtest. In other words, the
performance of the first model is essentially the
baseline, according to which a practitioner will
plan the AL loop based on the goal performance
and the available budget. It is thus essential to
revisit existing approaches on choosing the seed
dataset (Kang et al., 2004; Vlachos, 2006; Hu et al.,
2010; Yuan et al., 2020) and evaluate them towards
a realistic simulation of an AL experiment.

Number of iterations & acquisition budget Af-
ter choosing the seed dataset it is natural to de-
cide the number of iterations, the acquisition size
(the size of the acquired batch Q) and the budget
(the size of the actively collected Dlab) of the AL
experiment. This is another part where literature
does not offer concrete explanations on the design
choice. Papers that address the cold-start problem
would naturally focus on the very few first AL it-
erations (Yuan et al., 2020), while others might
simulate AL until a certain percentage of the pool
has been annotated (Prabhu et al., 2019; Lowell
et al., 2019; Zhao et al., 2020; Zhang and Plank,
2021; Margatina et al., 2022) or until a certain fixed
and predefined number of examples has been anno-
tated (Ein-Dor et al., 2020; Kirsch et al., 2021).

2.3 Model Training
We now train the model-in-the-loop with the avail-
able labeled dataset Dlab (Figure 2: 2 ). Inter-
estingly, there are not many studies that explore
how we should properly train the model in the low
data resource setting of AL. Existing approaches
include semi-supervised learning (McCallum and
Nigam, 1998; Tomanek and Hahn, 2009; Dasgupta
and Ng, 2009; Yu et al., 2022), weak supervision
(Ni et al., 2019; Qian et al., 2020; Brantley et al.,
2020; Zhang et al., 2022a) and data augmentation
(Zhang et al., 2020; Zhao et al., 2020; Hu and
Neubig, 2021), with the most prevalent approach
currently to be transfer learning from pretrained
language models (Ein-Dor et al., 2020; Margatina
et al., 2021; Tamkin et al., 2022). Recently, Mar-
gatina et al. (2022) showed large performance gains
by adapting the pretrained language model to the
task using the unlabeled data of the pool (i.e., task
adaptive pretraining by Gururangan et al. (2020)).
The authors also proposed an adaptive fine-tuning
technique to account for the varying size of Dlab
showing extra increase in Dtest performance.

Still, there is room for improvement in this rather
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Figure 2: Distinct steps of the active learning loop (1–6). We use blue for the unlabeled data, purple for the labeled
data and red for the (labeled) test data.

under-explored area. Especially now, state-of-the-
art NLP pretrained language models consist of
many millions or even billions of parameters. In
AL we often deal with a small Dlab of a few hun-
dred examples, thus adapting the training strategy
is not trivial.

2.4 Data Acquisition

The data acquisition step (Figure 2: 4 ) is probably
the core of the AL process and can be performed
in various ways.4

Zhang et al. (2022d) provide a thorough litera-
ture review of query strategies, dividing them into
two broad families. The first is based on infor-

mativeness, and methods in this family treat each
candidate instance individually, assign a score and
select the top (or bottom) instances based on the
ranking of the scores. Major sub-categories of
methods that belong in the informativeness family
are uncertainty sampling (Lewis and Gale, 1994;
Culotta and Mccallum, 2005; Zhang and Plank,
2021; Schröder et al., 2022), divergence-based al-
gorithms (Ducoffe and Precioso, 2018; Margatina
et al., 2021; Zhang et al., 2022b), disagreement-
based (Seung et al., 1992; Houlsby et al., 2011;
Gal et al., 2017; Siddhant and Lipton, 2018; Kirsch
et al., 2019; Zeng and Zubiaga, 2023), gradient-
based (Settles et al., 2007; Settles and Craven,
2008) and performance prediction (Roy and Mc-
callum, 2001; Konyushkova et al., 2017; Bachman
et al., 2017; Liu et al., 2018).

4In literature, the terms data selection method, query strat-

egy and acquisition function are often used interchangeably.

The second family is representativeness and
takes into account how instances of the pool cor-
relate with each other, in order to avoid sampling
bias harms from treating each instance individually.
Density-based methods choose the most representa-
tive instances of the unlabeled pool (Ambati et al.,
2010; Zhao et al., 2020; Zhu et al., 2008), while
others opt for discriminative data points that dif-
fer from the already labeled dataset (Gissin and
Shalev-Shwartz, 2019; Erdmann et al., 2019). A
commonly adopted category in this family is batch
diversity, where algorithms select a batch of diverse
data points from the pool at each iteration (Brinker,
2003; Bodó et al., 2011; Zhu et al., 2008; Geif-
man and El-Yaniv, 2017; Zhdanov, 2019; Yu et al.,
2022), with core-set (Sener and Savarese, 2018) to
be the most common approach.

Naturally, there are hybrid acquisition functions
that combine informativeness and representative-
ness (Yuan et al., 2020; Ash et al., 2020; Shi et al.,
2021). Still, among the aforementioned methods
there is not a universally superior acquisition func-
tion that consistently outperforms all others. Thus,
which data to acquire is an active area of research.

2.5 Data Annotation

Once an acquisition function is applied to Dpool,
a subset Q is chosen, and the obtained unlabeled
data is subsequently forwarded to human annota-
tors for annotation (Figure 2: 5 ). In the context of
simulation-based active learning, this aspect is not
the primary focus since the labels for the actively
acquired batch are already available. However, a
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question that naturally arises is: Are all examples

equally easy to annotate? In simulation, all in-
stances take equally long to label. This does not
account for the fact that hard instances for the clas-
sifier are often hard for humans as well (Hachey
et al., 2005; Baldridge and Osborne, 2004), there-
fore the current experimental setting is limiting
and research for cost-aware selection strategies
(Donmez and Carbonell, 2008; Tomanek and Hahn,
2010; Wei et al., 2019) is required. This would in-
clude explicit exploration of the synergies between
random or actively acquired data and annotator ex-
pertise (Baldridge and Palmer, 2009).

2.6 Stopping Criterion

Finally, another active area of research is to de-
velop effective methods for stopping AL (Figure 2:
3 ). In simulation, we typically decide as a budget

a number of examples or a percentage of Dpool
up to which we “aford” to annotate. However,
in both research and real world applications, it is
not clear if the model performance has reached
a plateau. The stopping criterion should not be
pre-defined by a heuristic, but rather a product
of a well-designed experimental setting (Vlachos,
2008; Tomanek and Hahn, 2010; Ishibashi and
Hino, 2020; Pullar-Strecker et al., 2022; Hacohen
et al., 2022; Kurlandski and Bloodgood, 2022).5

3 The Fine Print

Previously, we presented specific challenges across
different steps in the AL loop that researchers and
practitioners need to address. Still, these challenges
have long been attracting the attention of the re-
search community. Interestingly, there are more
caveats, that someone with no AL experience might
have never encountered or even imagined. Hence,
in this section we aim to unveil several such small
details that still remain unexplored.

3.1 Hyperparameter Tuning

A possibly major issue of the current academic sta-
tus quo in AL, is that researchers often do not tune
the models-in-the-loop. This is mostly due to limi-
tations related to time and compute constrains. For
instance, a paper that proposes a new acquisition
function would be required to run experiments for
multiple baselines, iterations, random seeds and

5Unless of course the actual budget is spent, where in real
world settings this is effectively the stopping criterion.

datasets. For example, a modest experiment in-
cluding a = 5 acquisition functions, i = 10 AL
iterations, n = 5 random seeds and d = 5 datasets,
would reach an outstanding number of minimum
a⇥ i⇥n⇥d = 1, 250 trained models in total. This
makes it rather hard to perform hyperparameter
tuning of all these models in every AL loop, so it
is the norm to use the same model architecture and
hyperparameters to train all models.

In reality, practitioners that want to use AL, ap-
ply it once. Therefore, they most likely afford
to tune the one and only model-in-the-loop. The
question that arises then, is “do the findings of AL

experiments that do not tune the models general-

ize to scenarios where all models-in-the-loop are

tuned”? In other words, if an AL algorithm A per-
forms better than B according to an experimental
finding, would this be the case if we applied hyper-
parameter tuning to the models of both algorithms?
Wouldn’t it be possible that, with another configu-
ration of hyperparameters, B performed better in
the end?

3.2 Model Stability

In parallel, another undisclosed detail is what re-
searchers do when the models-in-the-loop are un-
stable (i.e., crash). This essentially means that for
some reason the optimisation of the model might
fail and the model never converges leading to ex-
tremely poor predictive performance. Perhaps be-
fore the deep learning era such a problem did not
exist, but now it is a likely phenomenon.

Dodge et al. (2020) showed that many fine-
tuning experiments diverged part of the way
through training especially on small datasets. AL
is by definition connected with low-data resource
settings, as the gains of data efficiency are mean-
ingful in the scenario when labeled data is scarce.
In light of this challenge, there is no consensus as
to what an AL researcher or practitioner should
do to alleviate this problem. One can choose to
re-train the model with a different random seed, or
do nothing. Though, it is non-trivial under which
condition one should choose to re-train the model,
since it is common that not always test performance
improves from one AL iteration to the next.

Furthermore, there is currently no study that
explores how much AL algorithms, that use the
model-in-the-loop for acquisition, suffer by this
problem. For instance, consider an uncertainty-
based AL algorithm that uses the predictive proba-

4406

5.2. The Paper 77



bility distribution of the model to select the most
uncertain data points from the pool. If the model
crashes, then its uncertainty estimates are not mean-
ingful, thus the data acquisition function does not
work as expected. In effect, the sampling method
turns to a uniform distribution (i.e., the random
sampling baseline).

3.3 Active Learning Evaluation

Another important challenge is the evaluation
framework for AL. Evaluating the actual contri-
bution of an AL method against its competitors
would require to perform the same iterative train-

acquire-annotate experiment (Figure 1) for all AL
methods in the exact same data setting and with
real human annotations. Certainly, such a laborious
and expensive process is prohibitive for academic
research, which is why we perform simulations by
treating an already labeled and open-source dataset
as a pool of unlabeled data.

Still, even if we were able to perform the experi-
ments in real life, it is not trivial how to properly
define when one method is better than another. This
is because AL experiments include multiple rounds
of annotation, thus multiple trained models and
multiple scores in the test set(s). In cases with no
clear difference between the algorithms compared,
how should we do a fair comparison?

Previous work presents tables comparing the test
set performance of the last model, often ignoring
performance in previous loops (Prabhu et al., 2019;
Mussmann et al., 2020). The vast majority of previ-
ous work though uses plots to visualize the perfor-
mance over the AL iterations (Lowell et al., 2019;
Ein-Dor et al., 2020) and in some cases offer a
more detailed visualization with the variance due
to the random seeds (Yuan et al., 2020; Kirsch et al.,
2021; Margatina et al., 2021).

3.4 The Test of Time

Settles (2009) eloquently defines the “test of time”
problem that AL faces: “A training set built in

cooperation with an active learner is inherently tied

to the model that was used to generate it (i.e., the

class of the model selecting the queries). Therefore,

the labeled instances are a biased distribution, not

drawn i.i.d. from the underlying natural density.

If one were to change model classes—as we often

do in machine learning when the state of the art

advances—this training set may no longer be as

useful to the new model class”.

Several years later, in the deep learning era, Low-
ell et al. (2019) indeed corroborates this concern.
They demonstrate that a model from a certain fam-
ily (e.g., convolution neural networks) might per-
form better when trained with a random subset of a
pool, than an actively acquired dataset with a model
of a different family (e.g., recurrent neural net-
works). Interestingly, Jelenić et al. (2023) recently
showed that AL methods with similar acquisition
sequences produce highly transferable datasets re-
gardless of the model architecture. Related to the
“test of time” challenge, it is rarely investigated
whether the training data actively acquired with
one model will confer benefits if used to train a
second model (as compared to randomly sampled
data from the same pool). Given that datasets often
outlive learning algorithms, this is an important
practical consideration (Baldridge and Osborne,
2004; Lowell et al., 2019; Shelmanov et al., 2021).

4 Active Learning in Simulated vs. Real
World Settings

Is it truly logical to consider an already

cleaned (preprocessed), typically pub-

lished open-source labeled dataset as an

unlabeled data pool for pool-based ac-

tive learning simulation, with the expec-

tation that any conclusions drawn will

be applicable to real-world scenarios?

The convenience and scalability of simulation
make it an undoubtedly appealing approach for ad-
vancing machine learning research. In NLP, when
tackling a specific task, for instance summarization,
researchers often experiment with the limited avail-
ability of labeled summarization datasets, aiming
to gain valuable insights and improve summariza-
tion models across various domains and languages.
While this approach may not be ideal, it is a prac-
tical solution. What makes the sub-field of active

learning different?

Admittedly, progress has, and will be made
in AL research by leveraging simulation environ-
ments, similar to other areas within machine learn-
ing. Thus, there is no inherent requirement for a
radically different approach in AL. We believe that
simulating AL is indispensable for developing new
methods and advancing the state-of-the-art.

Nonetheless, we argue that a slight distinction
should be taken into account. AL is an iterative
process that aims to obtain the smallest possible
amount of labeled data given a substantially larger
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pool of unlabeled data for maximizing predictive
performance on a given task. The difference be-
tween developing models and constructing datasets
lies in the fact that if a model is poorly trained, it
can simply be retrained. Conversely, in AL, there
exists a finite budget for acquiring annotations, and
once it is expended, there is no going back. Conse-
quently, we must have confidence that the AL state-
of-the-art established through research simulations
will perform equally well in practical applications.

Given these considerations, we advocate for a
more critical approach to conducting simulation
AL experiments. We should be addressing all the
challenges (§2) and the experimental limitations
(§3) discussed previously, while acknowledging the
disparities between the simulation environment and
real-world applications (§4.1). Given that datasets
tend to outlast models (Lowell et al., 2019), we
firmly believe that it is crucial to ensure the trust-
worthiness of AL research findings and their gener-
alizability to real-world active data collection. This
will contribute to the generation of high-quality
datasets that stand the test of time (§3.4).

4.1 Simulation as a Lower Bound of Active
Learning

The distribution gap between benchmark datasets
in common ML tasks and data encountered in a real
world production setting is well known (Bengio
et al., 2020; Koh et al., 2021; Wang and Deng,
2018; Yin et al., 2021).

High Quality Data It is common practice for re-
searchers to carefully curate the data to be labeled
properly, often collecting multiple human annota-
tions per example and discarding instances with
disagreeing labels. When datasets are introduced
in papers published in prestigious conferences or
journals, it is expected that they should be of the
highest quality, with an in-depth analysis of its data
collection procedure, label distribution and other
statistics. Nonetheless, it is important to acknowl-
edge that such datasets may not encompass the
entire spectrum of language variations encountered
in real-world environments (Yin et al., 2021). Con-
sequently, it remains uncertain whether an AL algo-
rithm would generalize effectively to unfiltered raw
data. Specifically, we hypothesize that the filtered
data would be largely more homogeneous than the
initial “pool”. Assuming that the simulation Dpool
is a somewhat homogeneous dataset, we can ex-
pect that any subset of data points drawn from it

would, consequently, be more or less identical.6

Therefore, if we train a model in each such subset,
we would expect to obtain similar performance on
test data due to the similarity between the training
sets. From this perspective, random (uniform) sam-
pling from a homogeneous pool can be considered
a rudimentary form of diversity sampling.

Low Quality Data In contrast, it is possible that
a publicly available dataset used for AL research
may contain data of inferior quality, characterized
by outliers such as repetitive instances, inadequate
text filtering, incorrect labels, and implausible ex-
amples, among others. In such cases, an AL ac-
quisition strategy, particularly one based on model
uncertainty, may consistently select these instances
for labeling due to their high level of data diffi-
culty and uncertainty. Previous studies (Karam-
cheti et al., 2021; Snijders et al., 2023) have demon-
strated the occurrence of this phenomenon, which
poses a significant challenge as it undermines the
potential value of AL. In a real-world AL scenario,
it is plausible to have a dedicated team responsi-
ble for assessing the quality of acquired data and
discarding instances of subpar quality. However,
within the confines of a simulation, such data fil-
tering is typically absent from the researcher’s per-
spective, leading to potentially misleading exper-
imental outcomes. Snijders et al. (2023) tried to
address this issue in a multi-source setting for the
task of natural language inference, and showed that
while uncertainty-based strategies perform poorly
due to the acquisition of collective outliers, when
outliers are removed (from the pool), AL algo-
rithms exhibited a noteworthy recovery and out-
performed random baselines.

4.2 Simulation as an Upper Bound of Active
Learning

However, one might argue for the exact opposite.

Favored Design Choices Previously, we men-
tioned that when selecting the seed dataset (§2.2)
we typically randomly sample data from Dpool,
while keeping the label distribution of the true train-
ing set.7 Hence, a balanced seed dataset is typically
obtained, given that most classification datasets
tend to exhibit a balanced label distribution. In

6Here we do not hint that all textual instances of a dataset
are actually identical, but that they are more similar between
them compared to the larger pool that they were created from.

7The “true training set” is the original one used as the pool
(Dpool) by removing the labels.
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effect, the label distribution of Dpool would also be
balanced, setting a strict constraint for AL simula-
tion, as the actual label distribution of the unlabeled
data should in reality be unknown. In other words,
such subtle choices in the experimental design can
introduce bias, making the simulated settings more
trivial than more challenging real world AL set-
tings where there is uncertainty as to the quality
and the label distribution of data crawled online,
that typically constitute the unlabeled pool.

Temporal Drift & Model Mismatch Datasets in-
tended for research purposes are often constructed
within a fixed timeframe, with minimal considera-
tion for temporal concept drift issues (Röttger and
Pierrehumbert, 2021; Lazaridou et al., 2021; Mar-
gatina et al., 2023b). However, it is important to
recognize that this may not align with real-world
applications, where the data distribution under-
goes changes over time. The utilization of ran-
dom and standard splits, commonly employed in
AL research, can lead to overly optimistic per-
formance estimates (Søgaard et al., 2021), which
may not generalize to the challenges presented
by real-world scenarios. Consequently, practition-
ers should consider this limitation when designing
their active learning experiments. Lowell et al.
(2019) also raises several practical obstacles ne-
glected in AL research, such as that the acquired
dataset may be disadvantageous for training sub-
sequent models, and concludes that academic in-
vestigations of AL typically omit key real-world
considerations that might overestimate its utility.

4.3 Main Takeaways

In summary, there exist compelling arguments that
support both perspectives: simulation can serve as
a lower bound by impeding the true advancement
of AL methods, or it can implicitly favor AL exper-
imental design, thus providing an upper bound for
evaluation. The validity of these arguments likely
varies across different cases. We can claim with
certainty that this simulation setting, as described
in this paper, is a far from perfect framework to
evaluate AL algorithms among them and against
random sampling. Nevertheless, we hypothesize
that the lower bound argument (§4.1) might be
more truthful. It is conceivable that AL data selec-
tion approaches may exhibit similar performance
levels, either due to a lack of variation and diversity
in the sampled pool of data or due to the presence
of outliers that are not eliminated during the iter-

ations. Hence, we contend that simulation can be

perceived as a lower bound for AL performance,
which helps explain why AL methods struggle to
surpass the performance of random sampling. We
undoubtedly believe that we can only obtain such
answers by exploring the AL simulation space in

depth and by performing thorough analysis and

extensive experiments to contrast the two theories.

4.4 Active Learning in the LLMs Era

The field of active learning holds considerable im-
portance in the current era of Large Language Mod-
els (LLMs). AL has recently been explore as a
framework to identify the most useful demonstra-
tions for in-context learning with LLMs (Zhang
et al., 2022c; Diao et al., 2023; Margatina et al.,
2023a). Additionally, AL is inherently inter-
twined with data-driven approaches that underpin
recent advancements in artificial intelligence, such
as reinforcement learning from human feedback
(RLHF) (Christiano et al., 2023; OpenAI, 2022,
2023; Bai et al., 2022a). AL and RLHF represent
two distinct approaches that tackle diverse aspects
of the overarching problem of AI alignment (Askell
et al., 2021). AL primarily focuses on optimizing
the data acquisition process by selectively choosing
informative instances for labeling, primarily within
supervised or semi-supervised learning paradigms.
On the other hand, RLHF aims to train reinforce-
ment learning agents by utilizing human feedback
as a means to surmount challenges associated with
traditional reward signals. Despite their disparate
methodologies, both AL and RLHF emphasize the
criticality of incorporating human involvement to
enhance the performance of machine learning and
AI systems. Through active engagement of humans
in the training process, AL and RLHF contribute to
the development of AI systems that exhibit greater
alignment with human values and demonstrate en-
hanced accountability (Bai et al., 2022a,b; Ganguli
et al., 2022; Glaese et al., 2022; Sun et al., 2023;
Kim et al., 2023). Consequently, the synergistic
relationship between these two approaches war-
rants further exploration, as it holds the potential
to leverage AL techniques in order to augment the
data efficiency and robustness of RLHF methods.

5 Guidelines for Future Work

Given the inherent limitations of simulated AL set-
tings, we propose guidelines to improve trustwor-
thiness and robustness in AL research.
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Transparency Our first recommendation is a call
for transparency, which essentially means to report

everything (Dodge et al., 2019). Every detail of
the experimental setup, the implementation and
the results, would be extremely helpful to properly
evaluate the soundness of the experiments. We
urge AL researchers to make use of the Appendix
(or other means such as more detailed technical re-
ports) to communicate interesting (or not) findings
and problems, so that all details (§3) are accessible.

Thorough Experimental Settings We aim to in-
centivize researchers to thoughtfully consider ethi-
cal and practical aspects in their experimental set-
tings. It is crucial to compare a wide range of
algorithms, striving for generalizable results and
findings across datasets, tasks, and domains. More-
over, we endorse research endeavors that aim to
simulate more realistic settings for AL, such as ex-
ploration of AL across multiple domains (Longpre
et al., 2022; Snijders et al., 2023). Additionally,
we advocate for investigations into active learning
techniques for languages beyond English, as the
prevailing body of research predominantly focuses
on English datasets (Bender, 2011).

Evaluation Protocol We strongly encourage re-
searchers to prioritize the establishment of fair com-
parisons among different methods and to provide
extensive presentation of results, including the con-
sideration of variance across random seeds, in or-
der to ensure robustness and reliability of findings.
Generally, we argue that there is room for improve-
ment of the active learning evaluation framework
and we should explore approaches from other fields
that promote more rigorous experimental and eval-
uation frameworks (Artetxe et al., 2020).

Analysis We place additional emphasis on the
requirement of conducting comprehensive analysis
of AL results. It is imperative to delve into the nu-
ances of how different AL algorithms diverge and
the extent of similarity (or dissimilarity) among the
actively acquired datasets. It is incumbent upon AL
research papers to extend beyond the results sec-
tion and include an extensive analysis component,
which provides deeper insights and understanding,
as in Ein-Dor et al. (2020); Yuan et al. (2020); Mar-
gatina et al. (2021); Zhou et al. (2021); Snijders
et al. (2023), among others. If we aim to unveil
why an AL algorithm fails to outperform another
(or the random baseline), we need to understand
which data it selected in the first place, and why.

Reproducibility Reproducing AL experiments
can be challenging due to the complex nature of a
typical AL experiment, involving multiple rounds
of model training and evaluation, which can be
computationally demanding. However, we strongly
advocate for practitioners and researchers to priori-
tize the release of their code and provide compre-
hensive instructions for future researchers aiming
to build upon their work. By making code and asso-
ciated resources available, the research community
can foster transparency, facilitate replication, and
enable further advancements in AL methodologies.

Efficiency Finally, we propose the release of ac-
tively acquired datasets generated by different AL
algorithms, which would greatly contribute to data-
centric research and interpretability aspects of AL.
Particularly when employing AL with large-scale
models, it becomes crucial to establish the actively
acquired data from other studies as baselines, rather
than re-running the entire process from the begin-
ning. Such an approach would not only enhance
transparency, but also promote efficiency and eco-
friendly practices within the research community.

6 Conclusion

In this position paper, we examine the numer-
ous challenges encountered throughout the vari-
ous stages of the active learning pipeline. Addi-
tionally, we provide a comprehensive overview of
the often-overlooked limitations within the AL re-
search community, with the intention of illumi-
nating obscure experimental design choices. Fur-
thermore, we delve into a thorough exploration of
the limitations associated with simulation in AL,
engaging in a critical discussion regarding its po-
tential as either a lower or upper bound on AL per-
formance. Lastly, we put forth guidelines for future
research directions, aimed at enhancing the robust-
ness and credibility of AL research for effective
real-world applications. This perspective is partic-
ularly timely, particularly considering the notable
advancements in modeling within the field NLP
(e.g., ChatGPT8, Claude9) . These advancements
have resulted in a shift of emphasis towards a more
data-centric approach in machine learning research,
emphasizing the significance of carefully selecting
relevant data to enhance models and ensure their
alignment with human values.

8https://openai.com/blog/chatgpt
9https://www.anthropic.com/index/

introducing-claude
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Limitations

In this position paper, we have strived to provide a
comprehensive overview, acknowledging that there
may be relevant research papers that have inadver-
tently escaped our attention. While we have made
efforts to include a diverse range of related work
from various fields, such as machine learning and
computer vision, it is important to note that our
analysis predominantly focuses on AL papers pre-
sented at NLP conferences. Moreover, it is worth
mentioning that the majority, if not all, of the AL
papers examined and referenced in this survey are
centered around the English language, thereby lim-
iting the generalizability and applicability of our
findings and critiques to other languages and con-
texts. We wish to emphasize that the speculations
put forth in this position paper carry no substantial
risks, as they are substantiated by peer-reviewed pa-
pers, and our hypotheses (§4) are explicitly stated
as such, representing conjectures rather than defini-
tive findings regarding the role of simulation in AL
research. We sincerely hope that this paper stim-
ulates robust discussions and undergoes thorough
scrutiny by experts in the field, with the ultimate
objective of serving as a valuable guideline for AL
researchers, particularly graduate students, seeking
to engage in active learning research. Above all,
we earnestly urge researchers equipped with the

necessary resources to conduct experiments and

analyses that evaluate our hypotheses, striving to

bridge the gap between research and real-world

settings in the context of active learning.
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5.3 Impact

According to Google Scholar, the paper has received 7 citations as of May 2024. The

propositions in our paper have influenced follow-up work (Ghose and Nguyen, 2024;

Rouzegar and Makrehchi, 2024).

5.4 Discussion

The paper examines the challenges and limitations surrounding active learning (AL)

in natural language processing (NLP) research. It surveys recent literature on AL,

highlighting the growing interest in AL within the NLP community as language model

pretraining advances. Despite its potential, AL algorithms are shown to fail to out-

perform random sampling, prompting questions about their fundamental assumptions.

The paper identifies challenges within the AL loop, including problem definition, model

training, data acquisition, and evaluation frameworks, emphasizing the need for a rig-

orous approach to conducting AL experiments and considering practical implications

in real-world scenarios.

A significant portion of the paper focuses on the role of simulation in evaluating AL

algorithms, framing it as both a lower and upper bound. Simulation is seen as a

lower bound due to its limitations in replicating real-world scenarios accurately, poten-

tially leading to misleading outcomes. However, it can also serve as an upper bound

by imposing strict constraints on experimental settings, biasing results towards more

straightforward scenarios. The main takeaway suggests that while simulation offers

insights into AL performance, it may not fully capture the complexities of real-world

scenarios, hindering the true advancement of AL methods.

In conclusion, the paper advocates for transparency, thorough experimental settings,

and rigorous evaluation protocols in AL research to address the identified challenges

and limitations. By providing guidelines for future research directions, including the

exploration of AL techniques across various domains and languages, the paper aims to

enhance the credibility and applicability of AL research in real-world settings. Over-

all, it highlights the importance of addressing the complexities of AL and considering

practical implications to drive meaningful progress in the field, particularly within the

context of advancing NLP research.





Chapter 6

Conclusion

This thesis introduces two approaches to improving active learning with (large) lan-

guage models for text classification tasks, one study on using active learning algorithms

to improve in-context learning with large language models, as well as a theory on what

are the painpoints of active learning simulation and how to address them in the fu-

ture. In Chapter 2, we introduce two techniques for fine-tuning pre-trained language

models in a low-data resource setting of active learning Chapter and show substantial

improvements with their application. Chapter 3 introduces CAL, a novel acquisition

function for active learning that selects examples that are close to the model’s decision

boundary using the feature space of the hidden representations of the model to define

which data points are most useful to be added to the training set. The focus of Chapter

4 is to explore how active learning algorithms can be applied to select demonstrations

for in-context learning with large language models. Lastly, in Chapter 5, we criticize

common practices in active learning simulation experiments and propose guidelines for

future work on the field.

All presented algorithms are designed to be relatively simple, allowing for easy adapta-

tion to various tasks and domains beyond NLP, even though the focus here is on text

classification. While the models developed in this thesis are limited to pretrained lan-

guage models like BERT (except for the study in Chapter 4), extending these models

to newer large language models is relatively straightforward and has already been par-

tially achieved by subsequent work. The theoretical part of the thesis, which discusses

potential limitations in the experimental setup of active learning simulations, provides

a thorough review of AL practices and proposes future improvements that are general

enough to remain relevant amidst ongoing advancements in AL and NLP.

The key insights obtained from the exploration of active learning (AL) algorithms for
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data-efficient language models are as follows:

• Model Adaptation in Increasing Dataset Size: When executing standard pool-

based active learning with supervised learning methods, adapting the model to an

increasing dataset size presents significant challenges. A static training protocol

proves suboptimal as it must accommodate the evolving dataset size.

• Domain-Specific Adaptation: Adapting a pretrained language model to the spe-

cific domain of the task is unequivocally advantageous. This approach is particu-

larly well-suited to the pool-based AL framework, where a substantial amount of

unlabeled data is available beforehand, facilitating effective model domain adap-

tation.

• Criticality of Data Selection: The data selection phase within the AL pipeline is

pivotal to the framework’s overall success. Despite the absence of a universally

superior method applicable across all tasks, domains, languages, and settings,

prioritizing high-uncertainty and challenging examples near the model’s decision

boundary emerges as a highly promising strategy.

• Quality of Annotations: Ensuring the accuracy and high quality of annotations

is paramount for AL performance. The presence of mislabeled data within the

(small) training set can severely detract from performance, underscoring the ne-

cessity of allocating resources to secure high-quality annotations.

• Contrasts Between AL and In-Context Learning: The principles guiding multi-

ple rounds of standard pool-based AL with a supervised learning model differ

markedly from those of a single data selection step for demonstrations in in-

context learning. In the former, high-uncertainty data proves beneficial, whereas

in the latter, the critical factor is the semantic similarity of demonstrations to

the test data, ensuring a semantically cohesive prompt.

• Discrepancies Between Simulations and Real-World Applications: Conducting AL

simulations in a research context diverges substantially from real-world AL appli-

cations. It remains uncertain whether research-derived conclusions will generalize

seamlessly to practical settings. We provide extensive arguments indicating that

simulation results could represent either a lower or upper bound of real-world

performance. Nevertheless, it is evident that several specific issues within simu-

lation experiments need to be addressed, with experimental decisions requiring

transparency and careful consideration.

These insights highlight the intricate nature of advancing active learning methodologies

within the realm of natural language processing, raising several compelling avenues for
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future investigation:

• How can contemporary large language models (LLMs) be fully leveraged within

an active learning framework? Can they serve as models-in-the-loop without

necessitating weight adjustments (i.e., no training)? Alternatively, can we exploit

smaller, faster, and more cost-effective versions of these models?

• Is it feasible to employ LLMs as annotators to enhance simulation quality or mit-

igate the need for human intervention? What are the implications for reliability

and the generation of unbiased outcomes?

• While we have addressed the active learning problem in the context of in-context

learning, numerous unexplored dimensions remain. How can we devise efficient

strategies for multiple-round active learning to select demonstrations? How can

the selection of subsequent demonstrations be influenced by those previously cho-

sen? Furthermore, how can these strategies be implemented in scenarios where

access to the test set is restricted, thereby hindering the assurance of semantic

similarity with the test data?

Active learning, although heavily reliant on model training and algorithmic modeling,

is fundamentally a data-driven research domain. The ultimate goal extends beyond

merely developing a well-performing, data-efficient model; it encompasses the creation

of an actively acquired labeled dataset that endures the test of time. Given the en-

during importance of labeled data, especially in light of the training requirements for

contemporary large language models (LLMs), the role of active learning in generating

high-quality datasets assumes heightened significance. As discussions increasingly cen-

ter on responsible AI, regulatory frameworks, autonomous agents, and the imperative

of aligning LLMs with human values, active learning emerges as a pivotal method for

addressing these evolving challenges. Consequently, the advancement of active learning

methodologies is imperative to navigate the complexities that lie ahead.
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Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D.,
and Smith, N. A. (2020). Don’t stop pretraining: Adapt language models to do-
mains and tasks. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8342–8360, Online. Association for Computational
Linguistics.

Hachey, B., Alex, B., and Becker, M. (2005). Investigating the effects of selective
sampling on the annotation task. In Proceedings of the Ninth Conference on Com-
putational Natural Language Learning (CoNLL-2005), pages 144–151, Ann Arbor,
Michigan. Association for Computational Linguistics.

Haffari, G., Roy, M., and Sarkar, A. (2009). Active learning for statistical phrase-based
machine translation. In Proceedings of the Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 415–423.



98 Bibliography

Hassan, S. and Alikhani, M. (2023). D-CALM: A dynamic clustering-based active
learning approach for mitigating bias. In Rogers, A., Boyd-Graber, J., and Okazaki,
N., editors, Findings of the Association for Computational Linguistics: ACL 2023,
pages 5540–5553, Toronto, Canada. Association for Computational Linguistics.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M. (2011). Bayesian active
learning for classification and preference learning. ArXiv.

Hu, J. and Neubig, G. (2021). Phrase-level active learning for neural machine trans-
lation. In Proceedings of the Sixth Conference on Machine Translation, pages 1087–
1099, Online. Association for Computational Linguistics.

Hu, M., Zhang, Z., Zhao, S., Huang, M., and Wu, B. (2023a). Uncertainty in natural
language processing: Sources, quantification, and applications.

Hu, Q., Guo, Y., Xie, X., Cordy, M., Ma, L., Papadakis, M., and Traon, Y. L. (2023b).
Active code learning: Benchmarking sample-efficient training of code models.

Karisani, P., Karisani, N., and Xiong, L. (2022). Multi-view active learning for short
text classification in user-generated data. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pages 6441–6453.

Kasai, J., Qian, K., Gurajada, S., Li, Y., and Popa, L. (2019). Low-resource deep
entity resolution with transfer and active learning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5851–5861, Florence,
Italy. Association for Computational Linguistics.

Kirsch, A., Rainforth, T., and Gal, Y. (2021). Test distribution-aware active learning:
A principled approach against distribution shift and outliers.

Kirsch, A., van Amersfoort, J., and Gal, Y. (2019). BatchBALD: Efficient and diverse
batch acquisition for deep bayesian active learning. In Neural Information Processing
Systems, pages 7026–7037.

Konyushkova, K., Sznitman, R., and Fua, P. (2017). Learning active learning from data.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Systems.
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