
 

 

THE COORDINATION CHEMISTRY OF 

FUNCTIONALISED POLY(PYRAZOL-1-YL)BORATE 

LIGANDS AND THE PHOTOPHYSICAL PROPERTIES 

OF CYANIDE-BRIDGED D-F HYBRIDS 

 

 

 
 

 

Graham M. Davies 
 

A Thesis submitted to the University of Sheffield in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy  

 
 

Department of Chemistry      

University of Sheffield 

Sheffield S3 7HF         December 2006 

 59,970 words



 
____________________________________________________________________ 

 ii

 
ABSTRACT 

 
 
The content of this thesis is concerned with two distinctly independent areas of 
research: (i) the synthesis and study of new poly(pyrazol-1-yl)borate ligands and 
their metal complexes; (ii) crystallographic and photophysical studies of new d-f 
hybrid complexes. 
 

Chapter One is divided into three parts: Part one gives a general introduction 
to poly(pyrazol-1-yl)borate chemistry along with a concise and up-to-date review of 
those ligands containing substituents in the C3 position of the pyrazolyl ring; part two 
provides a brief introduction into the physical properties of lanthanide(III) metal 
ions, as well as describing the practical applications of their individual spectroscopic 
properties; and part three contains a brief review on the structural chemistry of 
cyanide-bridged coordination polymers. 

 
Chapter Two describes the syntheses of four new scorpionates: dihydro-

bis[3-(4-pyridyl)pyrazol-1-yl]borate (Bp4py); dihydro-bis[3-(3-pyridyl)pyrazol-1-
yl]borate (Bp3py); hydro-tris[3-(4-pyridyl)pyrazol-1-yl]borate (Tp4py) and hydro-
tris[3-(3-pyridyl)pyrazol-1-yl]borate (Tp3py).  A series of X-ray crystallographic 
studies reveals a range of mononuclear, dinuclear and polymeric coordination 
complexes with various metal ions. 

  
Chapter Three describes a range of structural and photophysical studies on 

lanthanide(III) complexes of poly(pyrazol-1-yl)borate ligands.  New mixed-ligand 
lanthanide(III) complexes with various combinations of the anionic ligands Tp2py, 
Bp2py and dibenzoylmethane (dbm) were prepared and structurally characterised.  
Photophysical studies on the isostructual series [Ln(Bp2py)(dbm)2] (Ln = Pr, Nd, Er, 
Yb) show characteristic near-IR luminescence from the lanthanide ion.  Near-IR 
luminescence was also demonstrated from the complexes [Ln(Bp2py)2(NO3)] and 
[Ln(Tp2py)(NO3)2] (Ln = Pr, Er), upon suitable excitation of the ligand 
chromophores.  

 
Chapter Four describes the structural and photophysical properties of new 

cyanide-bridged d-f coordination polymers.  Structural and photophysical studies are 
presented for a series of Ru-Ln complexes based on the [Ru(bipy)(CN)4]2- donor unit 
connected to a Ln(III) energy-acceptor via cyanide bridges (where bipy is 2,2’-
bipyridine and Ln = Pr, Nd, Er, Yb).  Structural and photophysical studies were also 
performed on [Cr(CN)6][Ln(DMF)4(H2O)2] complexes, in which the lanthanide ion 
(Ln = Nd, Yb) acts as the energy acceptor from the hexacyanochromate 
chromophore.  The structures of [Cr(CN)6][Ln(H2O)2] (Ln = Gd, Yb) and 
K2[Ru(phen)(CN)4] (where phen = 1,10-phenanthroline) are also presented.  
 
 Chapter Five gives a brief review of the field of X-Ray Crystallography with 
analysis of the history and theory of the technique, as well as an overview of its 
practical aspects used in this work.  A few crystal structures solved by the author, 
and independent of the topics in this thesis, are also reported.   
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M  Metal 
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Ln  lanthanide 

Me  Methyl 

Et  Ethyl 

i-Pr  iso-Propyl 

t-Bu  tertiary-Butyl 
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transfer  
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transfer   
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Experimental techniques and terms 

EI   electron impact 
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a,b,c Unit cell dimensions 
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U  Unit cell volume 
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F(000)  No. electrons per unit cell 

S  Goodness-of-fit 

Fo, Fc Observed and calculated 

structure factors 
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respectively) 
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ABBREVIATIONS - Poly(pyrazolyl)borates 
 
The initial abbreviation system for poly(pyrazolyl)borates by was introduced by 

Curtis.1  Tp and Tp* are used to depict [HB(pz)3]¯ and [HB(3,5-Me2pz)3]¯ 

respectively, for they are the most widely used members of the ligand system.  

Following the introduction of the ‘second generation’ poly(pyrazolyl)borates, the 

system was expanded by Trofimenko2 to accommodate the rapid growth of new 

ligands that were being synthesised. 

 

Homoscorpionates: The basic tris(pyrazolyl)borate core is represented by Tp, with 

any non-hydrogen substituents in the 3-position denoted by a superscript.  For 

example, TpMe is [HB(3-Mepz)3]¯ and Tpi-Pr is [HB(3-isopropylpz)3]¯; a 5-

substituent follows the 3-substituent in superscript, separated by a comma (e.g.     

Tpi-Pr,Me is [HB(3-isopropyl-5-methylpz)3]¯.  When both 3- and 5-substituents are 

identical, the R group is followed by a ‘2’ (e.g. [HB(3,5-Ph2pz)3]¯ = TpPh2); 4-

substituents are denoted by a superscript 4R, which follows the 3-substituent by a 

comma (e.g. [HB(3-isopropyl-4-bromopz)3]- = Tpi-Pr,4Br. 

 

Heteroscorpionates: These ligands are abbreviated ‘Bp’ with 3-, 4- and 5-

substituents catalogued in an analogous manner to those of Tp as above.  NB: Any 

non-hydrogen substituents on the boron atom of either scorpionate system are 

denoted before the abbreviation (e.g. diethylbis(pyrazolyl-1-yl)borate = Et2Bp).  

Reference to scorpionate systems in general are denoted by a superscript ‘x’ (e.g. Tpx 

and Bpx).3 

 

X-Ray Structures 

Within this report, pictorial representations of crystal structures have been shown 

without hydrogen atoms as an aid to clarity.  Full lists of both bond lengths and 

angles are contained within the rich text format (.rtf) files of Appendix 3.  
 
 

1. M. D. Curtis, K. –B. Shlu, W. M. Butler. Organometallics, 1983, 2, 1475. 
 
2. S. Trofimenko, Chem. Rev., 1993, 93, 943. 
 
3. There remain a few scorpionate systems that do not follow this abbreviation system.  For 

example Tpa is used to describe hydrotris(4,5-dihydro-2H-benz[g]-indazol-2-yl)borate. 
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Introduction 

 

This chapter provides a general introduction to the various fields concerned with the 

works of this thesis.  Section One deals with the nature and synthesis of the 

poly(pyrazolyl)borate ligands, charting the history of their coordination chemistry 

with a particular focus on the development of the second-generation ligands.  Section 

Two introduces the lanthanide ions, describing the physical properties of those in the 

+3 oxidation state and how these can be harnessed for use in practical applications; 

whilst Section Three covers a brief review of coordination polymers based on the 

cyanide-bridge motif. 

 

Any specific topics that have not been addressed in this introduction will be 

discussed at the beginning of the relevant chapter.  

 

1.1 Poly(pyrazolyl)borates 

 

1.1.1 The Ligand  

 

Poly(pyrazolyl)borates were first introduced to the literature in 1966 by Trofimenko.1  

They are a unique class of ligand in that the multiple binding sites they offer are 

enhanced by the negative charge on the boron atom, making them especially 

attractive for metal ion coordination.  This, along with the simplicity of their system, 

has made them a popular and well-established class of ligand, whose library to date 

consists of over 200 individual, novel members, spanning almost 2000 publications.2 

 

At the heart of the poly(pyrazolyl)borate system is a tetra-substituted boron atom, 

accommodating between two and four pyrazole rings through boron-nitrogen bonds 

in a tetrahedral array.  Coordination to a metal ion then occurs through those nitrogen 

atoms occupying the 2-position of the individual pyrazole rings, with the most 

commonly synthesised systems being the bis- and tris-(pyrazolyl)borate ligands (n = 

2 and 1 respectively, Fig. 1.1.1).   
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Fig. 1.1.1 – General formula of a poly(pyrazolyl)borate (n = 0, 1, 2) 

 

 

1.1.2 Substitution Rights 

 

In addition to the boron atom, the pyrazole rings offer a vast number of substitutable 

positions, making the poly(pyrazolyl)borates incredibly versatile.  Substitution at the 

3-, 4- or 5-positions of the rings with different R-groups has a significant bearing on 

the coordination number and geometry of their metal complexes, as well as directly 

influencing their physical and chemical properties.  Thus, poly(pyrazolyl)borates can 

often be designed to meet the requirements or limitations of a particular metal. 

   

The most obvious effects are seen with substituents at the 3- and 5-positions (Fig. 

1.1.1).  Those at the former offer steric hindrance to the ligand’s central cavity, 

restricting metal ion coordination; or, once a metal is coordinated, these substituents 

can also serve to ‘screen’ the metal, controlling its accessibility to external reagents.  

Those at the C5 position provide steric protection to the boron atom, and as the 

boron-hydrogen bond(s) are susceptible to chemical attack,3 this may help to stabilise 

the ligand and its complexes.  In addition to this, repulsion between 5R-substituents 

may serve to narrow the ‘bite’ angle of the nitrogens available for metal 

coordination.  No immediate steric effects are transformed from substitution at the 4-

position as it is equally remote from both metal ion and boron atom.  
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1.1.3 The Synthesis 

 

1.1.3.1  Poly(pyrazolyl)borates 

 

Poly(pyrazolyl)borates may be prepared from a variety of boron sources, yet the 

most convenient route is through the borohydride ion.4  Synthesis proceeds by 

thermolysis of the appropriate pyrazole and an alkali metal borohydride (e.g. KBH4) 

to form a melt.5  The degree of boron substitution is temperature dependent, and by 

using an appropriate excess of pyrazole and heating for long enough in the correct 

temperature range, one can synthesise bis-, tris- and (in the case of 5-unsubstitued 

pyrazoles) tetrakis(pyrazolyl)borates (Fig. 1.1.2 and Table 1.1.1).  The bis-

substitution reaction is the first to occur - even with a pyrazole molar deficiency, the 

mono-substituted boron analogue [H3B(pz)] is never formed. 

 

 
 

Fig. 1.1.2 – Synthesis of the poly(pyrazolyl)borates 

- (N-N) represents the third pyrazole ring seen edge-on 
 

 

 

 

 

 

 

 
 

Table 1.1.1 – General conditions for subsequent pyrazolyl substitution 

    Equivalents of        Reaction Temp  Product   IR B-H Stretch 
        Pyrazole            /°C (melt)                         /cm-1 
_________________________________________________________________ 
 

3  ≤ 125    [H2B(pzx)2]- 2200-2500 
 

3.5  ≤190    [HB(pzx)3]- 2500 
 

4  > 220    [B(pzx)4]- N/A 
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Hydrogen gas is liberated as reaction proceeds, and the synthesis of many 

poly(pyrazolyl)borates involves measuring the quantity of gas evolved to follow the 

reaction rate, as well as its extent of completion.4  The pure product is obtained by 

sonicating the melt with toluene to remove the excess pyrazole, and filtering.  In 

addition to the melt pathway, the ligands may be formed by refluxing the reagents in 

a solvent with an appropriate boiling point.  This serves to prevent over-substitution, 

which is commonplace in a melt due to the build up of localised heat.   

 

The degree of substitution and the success of the reaction can also be checked in the 

final product by IR spectroscopy, as each poly(pyrazolyl)borate has a characteristic 

B-H vibration pattern at ca. 2500 cm-1 (Table 1.1.1)          

 

1.1.3.2  Pyrazoles 

 

Cyclo-condensation of the appropriate 1,3-dicarbonyl compound with hydrazine is 

typically employed in this synthesis, and pyrazoles are usually obtained in excellent 

yield (Fig. 1.1.3).   

 

 
 

Fig. 1.1.3 – Pyrazole synthesis 

 

4R-substituents can be introduced to the isolated pyrazole via electrophilic 

substitution,6 whilst 3R- and 5R-groups are introduced in the preparation of the 

dicarbonyl reagent.  This is typically a Claisen condensation of the appropriate 

ketone and ester, employing NaOMe as a base (Fig. 1.1.4).5   
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Fig. 1.1.4 – 1,3-dicarbonyl synthesis via Claisen condensation 

 

It is important to remember that poly(pyrazolyl)borates are, when isolated, the anion 

components of an alkali metal salt.  Consequently, they are soluble in alcohols and 

polar solvents (Bpx more so than Tpx), fairly soluble in water, and pretty much 

insoluble in alkanes and non-polar aromatics (again, Bpx more so than Tpx, where x is 

any pyrazole substituent).  The nature of the 3-, 4-, and 5-substituents may be 

changed to vary these degrees of solubility, and the solubility in organic solvents is 

enhanced when the alkali metal is replaced with Tl(I).4 

 

1.1.4 Steric Effects 

 

1.1.4.1  The Cone Angle (α) 

 

Many steric influences arise from varying the nature of the R-substituents.  The most 

widely used method of characterising these ‘steric effects’ is the ‘cone angle’ – a 

system originally developed by Tolman for describing symmetric phosphine ligands, 

in which the apex angle of the cylindrical cone is 2.28 Å from the phosphine atom 

(Fig. 1.1.5a).7  Its application to poly(pyrazolyl)borates (Fig. 1.1.5b) does provide a 

useful measure of the steric effect, but as with the phosphines, occasional 

intermeshing of substituents can warp the ligand’s shape, distorting it from ideal 

symmetry.    
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     (a)            (b) 

 

Fig. 1.1.5 – (a) Tolman’s original cone angle (α = 2θ) and 

(b) The poly(pyrazolyl)borate cone angle (α = 360 - θ) 

 

Trofimenko and co-workers have determined analogous ‘cone angles’ for Tpx 

derivatives containing 3R substituents and established a steric hierarchy for the 

various Tpx ligands.4,8,9  The size of a cone angle is not only ligand dependent, but is 

also affected by the length of the bonds between nitrogen donors and metal ions.  

Because of this metal ion dependence, and the fact that transition metals can adopt 

different geometries with these ligands, Trofimenko employed Tl(I) as the reference 

metal in these structural characterisations.10  This is further justified by the fact that 

all TpxTl complexes - expect for [Tl(TpCpr)], see later - are monomeric and 

isostructural.4 

 

A small cone angle indicates large steric repulsion from the 3R substituents, and 

subsequently suggests that the metal is more susceptible to approach from external 

reagents.  This degree of steric crowding is mirrored in the cone angle scale when the 

3R substituents are of a non-planar nature, yet the case is not so simple when planar 

substituents are employed.   Hydrotris(4,5-dihydro-2H-benz[g]-indazol-2-yl)borate 

(Tpa) for example, has a rather large cone angle (262°), which is almost equal to that 

of hydrotris(3-t-butylpyrazol-1-yl)borate, Tpt-Bu (265°).  However, it readily forms 

complexes in the form of [Tpa
2M] with octahedral metals, in preference to those of 

[TpaMX] where X is a coordinated anionic counter ion.8  Tpt-Bu on the other hand, 

forms solely complexes of the latter type, containing only one Tp ligand (Fig. 

1.1.6).11   
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      (a)        (b) 

 

Fig. 1.1.6 – Metal complexes of (a) Tpa and (b) Tpt-Bu 

 

1.1.4.2  The Wedge Angle (β)     

 

As we have seen, ligands that may have similar cone angles do not necessarily 

display the same chemistry, and the cone angle principle is limited to use of the non-

planar 3R substituents.  There is however, a more suitable alternative in the ‘wedge 

angle’.  This is a quantitative measure of the wedge-shaped space between pyrazole 

rings - the space where nucleophilic attack upon a coordinated metal is permitted 

(Fig. 1.1.7).  A bulky substituent will minimise the wedge angle, decreasing the 

chance of approach by external reagents.   

 

 
 

Fig. 1.1.7 – The wedge angle (β) viewing down the B-M bond 
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The preferential dimer formation of Tpa is now justified by a large wedge angle of 

44°,8 whilst that of Tpt-Bu is a mere 29°.4   

 

Planar substituents are free to rotate about the σ-bond and so complicate the 

measuring of wedge angles.  Nonetheless, once measured, the wedge angle correlates 

more effectively with the properties of such ligands although most early publications 

quote cone angles.4     

 

1.1.5  Shake Hands with a Scorpion! 

 

When coordinated, poly(pyrazolyl)borates are always at least bidentate and 

consequently, display a characteristic mode of binding upon complexation: a six 

membered ring formed by the apical boron, the 1- and 2-nitrogen atoms and the 

metal centre.  Because of the varying bond angles and distances involved, this ring is 

consistently in a boat formation of varying depth.  Whilst the pseudoequatorial R 

group points away from the metal (and we have an approximately linear R-B-M 

axis), the pseudoaxial R1 group is able to curl towards the metal where it will serve 

to: i) bond to the metal, or ii) interact with the metal in an agostic fashion, or iii) 

screen the metal (Fig. 1.1.8a)      

 

On the basis of this model, Trofimenko10 coined the term ‘Scorpionate’ likening the 

coordination behaviour of the pyrazolylborates to the hunting manners of the 

scorpion: the creature grabs its prey with its two identical claws [(pzx)2] before it 

may, or may not, proceed to ‘sting’ its prey with its tail (R1), (Fig. 1.1.8b).   

 

The close relationship between bis- and tris(pyrazolyl)borates is clearly evident from 

this analogy, and the versatility of poly(pyrazolyl)borate chemistry can therefore be 

related to the varying nature of the sting.  
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   (a)           (b) 

 

Fig 1.1.8 – (a) The coordination mode of poly(pyrazolyl)borates 

(b) the scorpion analogy 
 

The scorpionate family can be divided into two distinct groups: 

 

 Homoscorpionates – in which the pseudoaxial group R1 is identical to the 

other two ‘claws’ giving the ligand local C3v symmetry. 

 

 Heteroscorpionates – The ‘sting’ is performed (if at all) by an R1 group that 

is different from those that form the 6-membered boat ring.  Remarkably, 

despite the wealth of controllable variables available in heteroscorpionates, 

these remain the lesser studied of the family groups by a large margin.  

Although activity has increased over the past decade, up until 1993 only 5% 

of all known scorpionate publications dealt with this family group.10 

 

1.1.6 Homoscorpionates  

 

The ease with which scorpionates could be synthesised made them extremely popular 

after their introduction in 1966.  Such was the extent of this popularity, that research 

for the next 20 years was confined to the roles of Tp and Tp* alone (Fig. 1.1.9a and 

1.1.9b respectively).  It was not until 1986 that 3R substituents (other than Me) were 

incorporated into Tp ligands for the first time.12 
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              (a)              (b) 

                      
Fig. 1.1.9 – (a) Tp and (b) Tp* 

 

The work in this thesis is concerned with scorpionates bearing 3R substituents (the 

so-called ‘second generation’ scorpionates), and so a more detailed review of their 

chemistry will follow.     

 

1.1.6.1  Tp and Tp* - First Generation Scorpionates 

 

The coordination behaviour of these first-generation scorpionates is entirely metal 

dependent.  Due to the large wedge angles they possess (ca. 70° each), divalent 

octahedral transition metals readily form the full-sandwich Tp2M complexes, and 

their tetrahedral complexes [TpMX] show great tendency to self-convert to the 

sandwich form as well.13   

 

The reason is the complexes are extremely labile, and gentle heating of the reaction 

mixtures is, at most, enough to induce the transformation.14  For example, the 

complex [TpCoCl] is formed under anhydrous conditions using CoCl2 and KTp, yet 

after standing for 30 minutes at room temperature in DCM, starts to precipitate 

CoCl2 and reverts to the [Tp2Co] sandwich (Fig. 1.1.10).15   
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Fig. 1.1.10 – Disproportionation of [Tp2Co] 

 

The tridentate nature of the ligands is removed upon coordination with square planar 

metals, leaving one pyrazole arm pendant in such complexes as [Tp2Pd].16  The 

ligands’ lability is evident in solution however as rapid interchanging of coordinating 

pyrazole rings results in only one pyrazole group being observed in the NMR 

spectrum.    

 

Whilst their chemistry with first-row transition metals appears limited, the first-

generation scorpionates have found considerable popularity as spectator ligands with 

the remaining d-block metals.  Scorpionates function as nitrogen σ-donors with little 

tendency to accept electron density from the metal,17 and offering this uniquely large 

amount of electron density has enabled Tp and Tp* to form stable complexes with 

metals of unusually high oxidation states.  For example, complexes ranging from 

Mo(0) in [TpMo(CO)3]¯ to Mo(VI) in [TpMoO2X] have been synthesised with relative 

ease.18, 19   

 

Once coordinated, the ligands have no tendency to interfere with any further 

reaction(s) at the metal centre, and this permits the use of their complexes in catalytic 

cycles.  For example, [RuTp(PhCN)2Cl] is catalytically active in the hydrogenation 

of methyl acrylate;20 [RuTp*(COD)H] catalyses the reduction of unactivated ketones 

to alcohols by hydrogen transfer from alcohols in basic media;21 and [RuTp(PPh3)2H] 

is an effective catalyst for the dimerization of terminal alkynes to give enynes.22 
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1.1.6.2  The Second Generation 

 

The ‘second-generation’ scorpionates were ‘born’ in 1985 with the synthesis of 

hydrotris(3-methylpyrazoyl-1-yl)borate (TpMe) in an attempt to avoid formation of 

the recurring octahedral sandwich complexes, although the methyl bulk proved 

insufficient to prevent this.23  Sufficient bulk was found however in Tpt-Bu, providing 

the first examples of stable tetrahedral coordination with a tris(pyrazolyl)borate 

ligand (Fig. 1.1.11).11   

 

Such [Tpt-BuMX] complexes were formed with all first row transition metals earning 

the ligand the nickname of ‘tetrahedral enforcer’, although 5-coordination was later 

observed by using bidentate anions such as nitrate.24  Whilst no full-sandwich 

complexes were observed with the first row transition metals, the importance of the 

cavity’s degree of encapsulation became apparent when octahedral dimer complexes 

were formed on reaction with the larger d-block metals of molybdenum and 

tungsten.4  

 

 
 

Fig. 1.1.11 – Crystal structure of [(Tpt-Bu)Co(NCS)] 

 

The addition of a methylene spacer in hydrotris(3-neopentylpyrazol-1-yl)borate 

(TpNp), permitted a greater flexibility for the substituents via rotation about three C3-

CH2 bonds, allowing the t-butyl group to either crowd the metal, or face away from it 

(Fig. 1.1.12).   
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On coordination, the latter was preferable, and sandwich complexes were evident,25 

but by tethering the t-butyl groups in hydrotris(7-tert-butylindazol-2-yl)borate 

[Tp3Bo,7tBu], it was possible to force their direction towards the cavity.26  

 

 
Fig. 1.1.12 – Potential coordination modes of TpNp 

 

 

 
 

Fig. 1.1.13 – Crystal structure of [(Tp3Bo,7tBu)Tl] 

 

From the structure of the Tl(I) complex (Fig. 1.1.13), this gave a large calculated 

cone angle of 261°, mainly due to steric repulsions, and because the thallium(I) ion 

was completely surrounded by the substituents, further reaction with additional metal 

salts was reluctant to occur under similar conditions.   
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Reaction with Co(SCN)2 under elevated temperatures, however, resulted in 

metamorphosis of the ligand to give [HB(3-tert-butyl-indazol-2-yl)2(3-tert-butyl-

indazol-1-yl)] (Tp3Bo,7tBu*).  Here, one of the ligand’s arms undergoes rearrangement, 

coordinating to the boron atom via the N2 atom of the pyrazole ring (Fig. 1.1.14), 

forming a less hindered isomer that can accommodate the metal ion in a 

[(Tp3Bo,7tBu*)Co(NCS)] complex.  Such ligand rearrangement had already been seen 

in some octahedral second-generation homoscorpionates, such as hydrotris(3-

isopropylpyrazol-1-yl)borate (Tpi-Pr)6 and (TpNp)25 but this was the first example of 

such behaviour on formation of a tetrahedral complex.   

 

The cone angle for this complex was calculated at 305° (using the two un-rearranged 

7-tert-butylindazolyl groups).  Whilst this value suggests no sandwich complexes can 

form, from the fact that reaction conditions have to be made more vigorous to induce 

any reaction, and that the ligand must rearrange in order to accommodate the metal, 

it was proposed26 that in this ligand, the steric limit for effective coordination with 

the scorpionates had now been reached and that this ligand was a true ‘tetrahedral 

enforcer.’  

 

 
 

Fig. 1.1.14 – Crystal structure of Tl[Tp3Bo,7tBu*] 
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The first planar 3R-substituents were employed in the synthesis of hydrotris(3-

phenylpyrazol-1-yl)borate (TpPh).  The freedom of rotation about the pyrazolyl-

phenyl bonds provided a less hindered environment for the metal ion than the Tpt-Bu 

ligand, and although monomeric complexes were formed, they were of a solvated 

nature (e.g. [TpPhCo(SCN)(THF)], Fig. 1.1.15),12 with full-sandwich complexes still 

apparent in some instances.27  

 

 
 

Fig. 1.1.15 – Crystal structure of [(TpPh)Co(NCS)(THF)]  

 

The ligand of hydrotris(3-{p-tolyl}pyrazol-1-yl)borate (TpTol), in which the 3R 

substituent is a para-methyl substituted phenyl ring, was analogous to TpPh, but the 

methyl group protruded slightly further beyond the coordinated metal ion.  

Surprisingly though, this extra methyl bulk was sufficient enough to prevent 

coordination of a second TpTol ligand, and monomeric [TpTolMX] complexes were 

readily formed.28  Whilst no full sandwich complexes were observed, it was evident 

that close approach by additional TpTol ligands was still possible (Fig. 1.1.16).29  

 

In order to reduce the phenyl-pyrazole rotation, mesitylene substituents were 

incorporated into hydrotris(3-mesitylpyrazol-1-yl)borate (TpMs), with the additional 

methyl groups successfully ensuring that only tetrahedral complexes were obtained.30  

To date, this ligand still has the smallest wedge angle of all the second-generation 

scorpionates (7°).   
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(a) (b)          

 

Fig. 1.1.16 – Crystal structure of [TpTolTl].  

(a) Scenic view, (b) 3-fold Axial View 

 

Another way of restricting the phenyl-pyrazole rotation was to tether the rings 

together with –(CHn)- linkers, forcing the rings to be coplanar, and lead to a more 

predictable environment about the metal centre.  An ethene tether did not provide 

strict coplanarity as it zig-zagged across the plane of the pyrazolyl ring; a methylene 

tether achieved coplanarity, but the resulting expansion of the ‘bite’ in this manner 

assured coordination by external reagents.8   

 

Strict coplanarity without bite angle change was eventually obtained with an ethyne 

spacer (Fig. 1.1.17), making each pyrazolyl arm totally rigid, although the resultant 

chemistry was altered.  For whilst the reaction of TpPh with [Mo(CO)2(MeCN)2Cl(η3-

CH2CMeCH2)] permitted the formation of [Mo(CO)2(TpPh)(η3-methallyl)] with κ3-

coordination, the ethyne-tethered analogue showed only κ2-coordination behaviour in 

the same complex, with an agnostic B-H-Mo interaction to achieve an 18-electron 

structure (Fig 1.1.17),2,9 with the steric bulk of the η3-methallyl group preventing κ3-

coordination.  

 

Coplanarity between the phenyl substituents and the pyrazole rings was removed 

altogether in the ligands of hydrotris(3-(9-anthryl)pyrazol-1-yl)borate (TpAnt), and 

hydrotris(3-(1-napthyl)pyrazol-1-yl)borate (TpNt) (Fig. 1.1.18).3, 31, 32   
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The shear steric vastness of these substituents eliminated any possibility of full-

sandwich complex formation, forming solely [TpxMX] species.   

 

 
 

Fig. 1.1.17 – Ethene, methylene, and ethyne spacers: Tethering of the phenyl substituents 

 

 
Fig. 1.1.18 – TpAnt  

 

In attempts to change the solubility of the ligands and their complexes, TpCpr,33 TpCbu, 

TpCpe,34 and TpCy
,
35 were synthesised offering various sizes of hydrophobic pockets 

to the metal ion (the superscript refers to 3-Cyclo-propyl, butyl, pentyl, and hexyl 3R 

substituents respectively).   
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Little steric hindrance was offered by the cyclopropyl groups (β = 68°), regularly 

affording octahedral dimers, whilst the cyclohexyl groups (β = 46°) required higher 

temperatures to achieve the same feat, namely κ2-coordination in square planar 

[Cu(TpCy)2],36 and κ3-coordination in [Co(TpCy)2] in which all three substituents’ 

tertiary hydrogens pointed away from the central cavity in the solid state.35  TpCpr 

gave a unique result37 in its structure with Tl(I), of a perfect Tl4 tetrahedron with 

each face capped by a TpCpr (Fig. 1.1.19).  

 

The intermediate ligands TpCbu and TpCpe (β = 51 and 46° respectively), afforded 

regular mixtures of both tetrahedral and octahedral complexes, the latter being 

mostly heteroleptic with other Tp-based ligands with smaller substituents.34  As 

found with TpCy, excessive heating of dimeric complexes often resulted in the 

isomerism of the ligands’ arms to the 5-position of the pyrazole ring.          

 

 
 

Fig. 1.1.19 – Crystal structure of [(TpCpr)4Tl4] 
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1.1.6.3  Additional Donors – the Next Generation? 

 

Initially, a lot of emphasis had been placed on using 3R substituents to promote the 

formation of monomeric species, and the aliphatic nature of such substituents had 

ensured that the scorpionates would continue to coordinate in bidentate (Bp) or 

tridentate (Tp) fashion.   

 

The inclusion of additional donors in the substituents offers even more scope for 

variation in the coordination behaviour of poly(pyrazolyl)borates.  Hydrotris(3-(2’-

thienyl)pyrazol-1-yl)borate (TpTn) was the first example of this new area.38  The 

pyrazolyl nitrogens still functioned as donor atoms, but no interaction was observed 

between the coordinated metal and the sulphur atoms.  In the solid state, the thienyl 

rings remained in a transoid relationship to the pyrazolyl rings, and formation of 

sandwich complexes was still evident with octahedral metals (Fig. 1.1.20). 

 

 
 

Fig. 1.1.20 – Crystal structure of [(TpTn)2Co2] 
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Hydrotris(3-(2-pyridyl)pyrazol-1-yl)borate (TpPy) however, has three additional 

nitrogen donors that do result in the ligand being hexadentate.  This was 

demonstrated in several complexes, most notably in those of lanthanides and 

actinides, as they seemed to be an ideal fit for the cavity.   

 

The first reported example of the hexadentate behaviour of TpPy was in the complex 

[TpPyEu(MeOH)2F][PF6] where the six donor atoms of the ligand satisfy two thirds 

of the metal’s coordination requirements.39  Some high coordination numbers have 

been obtained with TpPy - for reaction of an f-block metal with two equivalents of the 

ligand results in a cation with an icosahedral N12 coordination environment (Fig. 

1.1.21).40   

 
Fig. 1.1.21 – Crystal structure of the cation of [(TpPy)2U]I 

 

Complexation of the ligand with d-block metals offers some nice examples of 

unusual coordination modes as well.  A tetranuclear tetrahedron [TpPy
4Mn4]4+ is 

formed on reaction with Mn(OAc)2,41 whilst Cu(I) induces formation of a 

[TpPy
2Cu3][PF6] structure (Fig. 1.1.22).42  The structure of [TpPyCu(H2O)][PF6] 

shows a square pyramidal copper(II) ion with the base formed by two coordinated 

arms of the ligand, whilst the third chelates with the proton of an axial water 

molecule instead of coordinating to the metal (Fig. 1.1.23).43   
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Monomeric complexes with Co(II),44 Pb(II),45 and Tl(I),46 are also known, and an 

[Ag3TpPy
2]+ cluster exists with silver.46 

 

    
 

Fig. 1.1.22 – Crystal structure of the cation of [(TpPy)2Cu3][PF6] 

 

 
Fig. 1.1.23 – Crystal Structure of the cation of [(TpPy)Cu(H2O)][PF6] 

 

The use of additional donor 3R substituents has become increasingly popular over 

recent years and remains an important part of the future of poly(pyrazolyl)borates.   
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Mixed-donor species are now regularly synthesised, incorporating sulphur and 

oxygen atoms in addition to the pyrazolyl nitrogen donors.  κ6-coordination is not 

always observed however.  TpAn for example, where TpAn is hydrotris[3-(2-

methoxyphenyl)pyrazol-1-yl]borate, shows some unique trinucleating behaviour with 

Ag(I), but in none of the complexes with d-block metals do the methoxy groups 

participate in coordination (Fig. 1.1.24).47  With the sulphur analogue, coordination 

is observed by two of the three sulphur atoms in a complex with Cu(II).48   

 

           
 

Fig. 1.1.24 – Crystal structure of the cation of [(TpAn)2Ag3][ClO4] 

 

Again, the coordination behaviour is clearly metal dependent, for the Tl(I) complex 

of hydrotris[3-(carboxypyrrolidido)pyrazol-1-yl]borate (TpCpd) cannot show 

hexadentate coordination with a tetrahedral metal.  However the same ligand readily 

fulfils its potential with samarium, forming a [(TpCpd)2Sm]+ species, albeit with one 

of the six arms pendant due to steric crowding (Fig. 1.1.25).49 
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Fig. 1.1.25 – Crystal structure of the cation of [(TpCpd)2Sm][PF6] 

 

A new approach to the incorporation of additional donor atoms into the Tp core is the 

inclusion of hydrogen bonding substituents.  The ester groups employed in 

TpCO2Et,Me, where the methyl 5R-substituents are present solely to protect the B-H 

bond, provide both steric bulk and hydrogen bonding groups which can be directed 

towards the central cavity.50  On reaction with divalent metal ions, this leads to the 

stabilisation of discrete, well-defined metal-aquo complexes, with a counter anion in 

close proximity.  Water molecules are held within the cavity between the pyrazolyl-

ester arms, and share their hydrogen atoms between a mixture of carbonyl oxygens 

and nearby perchlorate ions (Fig. 1.1.26) (cf the behaviour of a pendant pyrazolyl-

pyridine arm in Fig. 1.1.23).   

 

The inclusion of water molecules in the cavity of second-generation Tpx ligands is a 

common occurrence43,48,51 and promotes these complexes as good examples of model 

compounds for the study of metalloenzymes and enzymes of the vicinal oxygen 

chelate (VOC) superfamily.  This superfamily comprises structurally related proteins 

that provide a metal coordination environment with two or three open (vacant) or 

readily accessible coordination sites to promote direct electrophilic involvement of 

the metal ion in catalysis.52   
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Such coordination sites are not always vacant in aqueous media, often being 

occupied by metal-bound water molecules, although these are generally labile and 

can easily be displaced from the metal ion by incoming substrates.   

 

 
 

Fig. 1.1.26 – Crystal structure of [(TpCO
2

Me,Me)M(H2O)3][ClO4] 

(only one perchlorate ion is shown in full ) 

 

On the other hand, metal-bound water molecules are potential nucleophiles, but 

metal-bound hydroxides are much more powerful as such, and are generally thought 

to be the active species involved in hydrolytic metalloenzymes.  In attempts51 to 

convert the [(TpCO2Me,Me)M(H2O)x][ClO4] complexes to metal-hydroxo species by in 

vivo deprotonation, L2M sandwich complexes were formed - although this result was 

metal ion dependent, with Ni(II), Co(II) and Mn(II) all forming the [L2M] dimer, 

whilst Zn(II) and Cu(II) forming a hydroxo-bridged [LM(OH)]2 dimer. 

 

1.1.7. Heteroscorpionates 

 

In the absence of a pyrazole arm, the Tpx ligands undoubtedly lose a degree of 

functionality.  However, the resultant heteroscorpionate ligands Bpx offer a greater 

versatility with the two substituents at the boron atom, in addition to the 3-, 4-, and 5-

positions of the pyrazole rings.   
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There are three main sub-areas of heteroscorpionate ligands: H2B(pz)2, HRB(pz)2, 

and R2B(pz)2, where R can either be an alkyl or aryl group which may, or may not, 

contain a heteroatom.  This area of scorpionate chemistry has remained largely 

untapped since the first synthesis of KBp,53 although the last few years have seen an 

increase in its exploration – made all the more popular with the introduction of the 

analogous poly(pyrazolyl)methane system,54 in which the boron atom is replaced by 

a carbon, thus removing the ligand’s negative charge.  This section gives a 

comprehensive review of the recent advances in the heteroscorpionates, with a focus 

on those with heteroatom-containing 3R substituents.   

    

1.1.7.1  H2B(pz)2 

 

The earliest Bpx systems were synthesised using identical conditions to their Tpx 

counterparts, by adjusting the stoichiometry of the pyrazole and borohydride sources 

accordingly.  Bp equivalents of most of the 3-substituted Tpx systems discussed in 

Sections 1.1.6.1 and 1.1.6.2, have been synthesised with similar steric effects being 

observed (Table 1.1.2), but due to the lack of the ligands’ functionalities, such 

studies have been largely restricted to structural investigations.   

 

Heteroscorpionate Reference 

Bp 53 

Bp* 13 

Bpi-Pr 6 

BpMe 6 

Bpt-Bu 11 

BpPh 11 

BpPh2 55 
 

Table 1.1.2 – Early Bpx ligands 

 

First-row transition metals readily form [(Bp)2M] complexes with Bpx ligands, with 

both square planar (Cu2+, Ni2+) and tetrahedral (Co2+, Zn2+, Mn2+, Fe2+) geometries 

being observed,6,13,53 whilst larger trivalent lanthanide ions form [(Bp)3Ln] 

complexes with the smaller 3R-substituted pyrazoles.56  
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An interesting observation is made in the complex of [Bp*Mo(CO)2(C3H5)] where 

Bp* is hydrobis(3,5-dimethylpyrazol-1-yl)borate,57 for whilst it initially appears to be 

a 16-electron complex, (Bp*, 2CO, allyl, and Mo each contributing 4 electrons 

respectively using a ‘charged ligand’ count), an agostic B-H-Mo interaction is seen 

to occur (Fig. 1.1.27).  This is quite favourable in complexes with a multiply 

hydrogen-substituted boron,58  and this B-H-Mo bond can be considered a hydrogen-

bridged 2-electron, 3-centre bonding arrangement, supplying two additional electrons 

to increase the count to an 18-electron configuration, accounting for the stability of 

this and analogous systems.59  It is worth noting that this agostic interaction can only 

be achieved due to the geometry of the coordination ‘boat’ (Fig. 1.1.7).   

 

 
 

Fig. 1.1.27 – Crystal structure of [Bp*Mo(CO)2(η3-allyl)]  

 

Such interaction is not limited to 16-electron configurations; the complex of [(Bpt-

Bu,i-Pr)2Co], for example, contains two very short (1.95 Å) agostic B-H-Co bonds.60  

The geometry of the structure is initially viewed as square planar, however when the 

agostic bonds are considered, the geometry becomes octahedral (Fig. 1.1.28a).  The 

same effect is observed in the complex of [(Bp)3Y] which achieves 9-coordinate 

geometry through these bonds (Fig. 1.1.28b).61  
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(a)      (b) 

 

Fig. 1.1.28 – (a) Crystal structure of  [(Bpt-Bu,i-Pr)2Co] and (b) Crystal structure of  [(Bp)3Y] 

 

The presence of the BH2 group makes this type of ligand more hydrolytically labile 

than the Tp analogues, and consequently, complexes with easily reducible cations 

such as Pd(II) and Ag(I) are very unstable.4  This reducing ability can however be 

harnessed, and some [Bp2M] complexes have been used as reducing agents of 

cyclohexanone and cyclohex-3-enone with moderate success62.  The complexes of 

[Bp2Fe] and [Bp2Mn] were also noted as being air-sensitive,53 yet this sensitivity was 

removed in the same complexes of Bp*, presumably due to the screening effect of the 

3-Me groups.13 

 

The most impressive results with the Bpx ligands come from the multidentate 

systems of BpPy and dihydrobis[3-{6’-(2,2’-bipyridyl)}pyrazol-1-yl]borate (BpBipy).  

The potentially tetradentate BpPy shows a variety of coordination modes, varying 

from complete κ4-coordination in [(BpPy)2Pb], to κ2-coordination in [(BpPy)Tl] (Fig. 

1.1.29).63  

 

Lanthanide complexes of the general formula [(BpPy)2LnX] were readily synthesised, 

including [(BpPy)2Ln(NO3)] and [(BpPy)2Ln(DMF)]+,64 and a unique example of 

anion-templated self-assembly was shown upon the reaction of BpPy with Co2+ and 

sodium perchlorate (Fig. 1.1.30).65   
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The mass spectrum of this product mixture showed a fragment of formula 

[Co8(BpPy)12(ClO4)]3+, which was confirmed by X-ray crystallography to be an 

M8L12 wheel with a perchlorate anion residing in its centre. 

 

 
 

Fig. 1.1.29 – Crystal structure of [BpPyTl] 

 

 
 

Fig. 1.1.30 – Crystal structure of the cation of [Co8(BpPy)12(ClO4)][ClO4]3 
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The hexadentate nature of BpBipy was exploited in its coordination with potassium 

and first-row transition metals.66,67  Its [(BpBipy)2M2][BF4]2 complexes showed an 

octahedral dinuclear array, held in place by two ligands in a rigid double-helical 

arrangement which also included aromatic stacking between the ligands (Fig. 

1.1.31).   

 

The lanthanide complex of [(BpBipy)Gd(NO3)2] provides the only example of a 

monomeric complex with this ligand with BpBipy acting as a near-planar hexadentate 

chelate; apart from (BpBipy)Tl in which the ligand coordinated in κ3-fashion.67  

 

 
 

Fig 1.1.31 – Crystal structure of [(BpBipy)2Cu2][BF4]2 

 

1.1.7.2  R2B(pz)2 

 

Replacement of the hydrogen atoms of H2B(pz)2 with either alkyl or aryl groups, 

removes the reducing power that the BH2 group possesses.  Complexes can then be 

prepared with reduction-prone metals such as Pd2+ and Ag+.  Agostic B-C-H-M 

interaction is still possible, but these can easily be broken by the approach of external 

donors.55   
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Suitably sized R-groups can often block both the space above and below the plane of 

the molecule.  This phenomenon explains the behaviour of [Et2Bp]2Ni, which forms 

no inner sphere coordination bonds with pyridine, ammonia or amines, in contrast to 

[H2Bp]2Ni.13  An 18-electron configuration is correspondingly achieved in the 

complex of [(Et2Bp)Mo(CO)2(C7H7)], but this time through a 2-electron, 3-centre C-

H-Mo agostic interaction.68  

 

Increasing the length of the R groups serves to heighten the lipophilicity of the 

scorpionate, drastically changing its physical properties; as is observed with Bu2Bp, 

which has no structural characterisations because of the difficulty in obtaining 

crystalline complexes.4  The rigidity of the substituents in (BBN)Bp, however, seems 

to prevent such a physical change, where it forms a rigid cage backbone on the boron 

atom (BBN = 9-Bora-bicyclo[3,3,1]nonane).  This directs a single tertiary hydrogen 

atom towards the metal ion (Fig 1.1.32), which helps to stabilise octahedral 

[{(BBN)Bp}2M] complexes as well as that of [(BBN)BpTl].69     

 

 
 

Fig 1.1.32 – Structural diagram of [(BBN)BpM] 

 

Complexes of heteroscorpionates with planar substituents on the boron such as 

Ph2Bp have shown great stability, but have never shown any C-H-M agostic 

interaction.  The reason is the relationship between the phenyl rings: one bisects the 

angle between the pyrazolyl ring planes, whilst the other lies orthogonal to this angle, 

as in the complex of [(Ph2Bp)2Ni] (Fig 1.1.33).70  The absence of any 2-electron, 3-

centred bonds also means that complexes such as [(Ph2Bp)Mo(CO)2(η3-

CH2CMeCH2)] maintain a 16-electron configuration.71   
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It is also worth noting that whilst the complex [(H2Bp)Ag] is air-sensitive, the 

analogue [(Ph2Bp)Ag] is very stable,72 suggesting that the stability of scorpionate 

complexes result from a combination of steric effects and not just solely from the 3R, 

4R, and 5R substituents.  

 

 
Fig 1.1.33 – Crystal structure of [Ph2Bp]2Ni  

 

Substituting the boron atom with an alkyl group is also practiced in homoscorpionate 

chemistry, and an interesting result is observed in the analogue of PhTpt-Bu - its 

thallium(I) salt shows the loss of symmetrical tridentate coordination, and one 

pyrazolyl group rotates by ca. 90° to offer its N1 for coordination to the thallium ion 

via the nitrogen p-orbital component of the pyrazole’s aromatic π-system (Fig. 

1.1.34).  This is a consequence of the large metal ion widening the face of the cavity 

on coordination and pushing the pyrazole hydrogen(s) towards the phenyl ring, 

which subsequently forces the pyrazole to rotate.  Needless to say, this behaviour is 

not observed with the much smaller lithium(I) ion.73 
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Fig. 1.1.34 – Crystal structure of [(PhTpt-Bu)Tl] 

 

1.1.7.3  R(Z)B(pz)2 

 

Recent activity in heteroscorpionate chemistry has seen the inclusion of a heteroatom 

(Z) in one of the non pyrazolyl-based boron substituents.  This activity is more 

common in the poly(pyrazolyl)methane scorpionates due to the ease with which 

ligands can be synthesised, and has been employed in the replication of many 

enzyme systems.74  Poly(pyrazolyl)borates, on the other hand, are limited to this 

application as synthesis needs to start from a boron source already substituted with 

the appropriate R group, and not a borohydride ion.  One exceptional method, 

however, is the in situ reaction of protic reagents with the dihydrobis scorpionate.   

 

Complexes of [(Bpt-Bu)ZnR] and [(Bpt-Bu,i-Pr)ZnR] react with ketones to give 

functionalised products from insertion of the carbonyl group into the B-H bond, 

giving a synthetic route to N,N,O ligands (Fig. 1.1.35).75  Carbon dioxide can also 

undergo insertion into a B-H bond in this manner.76  

 
Fig. 1.1.35 – Ketone insertion in BH2 groups 
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1.1.8 Scorpionates – a Summary  

 

There are many avenues of research which have been explored with the 

poly(pyrazolyl)borates, and there are still many more to delve into.  Whilst it appears 

the first-generation homoscorpionates are entering retirement, the second generation 

‘boom’ is still very much alive, with the inclusion of additional donor atoms in the 

3R substituents being a prime area of research.   

 

The greater versatility offered by heteroscorpionates has seen their chemistry 

gradually gain interest over the past decade.  This is very much a ‘fresh’ field of 

research in comparison to the Tpx ligands and it remains likely that much interest 

will be focused on this family group, especially for the preparation of enzyme active 

site models.       

 

In light of the inclusion of extra heteroatoms, for all members of the scorpionate 

family the most scope lies in attaching substituents that can be deprotonated to form 

complexes ranging from tridentate to hexadentate with charges of –1 to –4 such as 

that illustrated in Fig. 1.1.36.  These ligands, with a higher negative charge and 

harder donor sets, should make for stronger coordination behaviour between metal 

ions and donor atoms, depending on the metal ion.  Such studies are already 

underway, once again spearheaded by Trofimenko.2   

 

 
 

Fig 1.1.36 – [(TpCONHt-Bu)M] 
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1.2 Lanthanides 

 

1.2.1 Introduction 

 

The term ‘lanthanide’ is associated with the top half of the elements located in the f-

block of the periodic table, and encompasses those from lanthanum (La) to lutetium 

(Lu).  Their history dates back to 1794 when a Finnish chemist, J. Gadolin, 

discovered that a sample of yttrium oxide was impure, and was found to additionally 

contain various oxides of what we now know as erbium and terbium.77  The 

lanthanides all naturally occur as mixtures of oxides and all have the same silvery 

appearance (Fig. 1.2.1).  Many more impure oxides were discovered over the years, 

and because of their similar chemical properties, it took over a century to isolate all 

of the individual lanthanides.   

 

 
 

Fig. 1.2.1 – Erbium (the appearance is typical of the lanthanides) 
 

Whilst the ‘actinides’ make up the bottom half of the f-block elements, with the two 

halves collectively known as the ‘inner transition metals’,78 they bear no relevance to 

the works in this thesis, and will not be discussed further.  Throughout this thesis, 

unless specified, the term Ln will be used to represent the lanthanides in general. 

 

1.2.2 The Lanthanide Contraction 

 

As we progress across the lanthanide series from lanthanum (Z = 57) to lutetium (Z = 

71), gradually filling the nucleus with more protons and neutrons, additional 

electrons are placed in the 4f orbitals.  The 4f orbitals are a seven-fold degenerate 

series, and there are two ways to represent them: the cubic set, and the general set.   
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The former is the more commonly used as it is readily related to tetrahedral, 

octahedral and cubic ligand fields, and shall be the preferred method of discussion in 

this work.   

 

The cubic set comprises of fx3, fy3, fz3, fxyz, fz(x2-y2), fy(x2-z2), and fx(y2-z2) atomic orbitals  

and Fig. 1.2.2 illustrates the shapes of the fz3 (a), fxyz (b), and fy(x2-y2) (c) orbitals.  A 

cube is superimposed in b, to depict how the lobes of these orbitals relate to a cubic 

set: the lobes of fxyz point to the corners of the cube, whilst the lobes of fx3 and fy3 are 

like fz3 but point along their respective x- and y-axes.  fz(x2-y2), fy(x2-z2), and fx(y2-z2) look 

like the fxyz orbital, but are rotated by 45° about the z, y, and x axes respectively. 

 

                   
a                                                 b                                              c 

 

Fig. 1.2.2 – Graphical depiction of (a) fz3; (b) fxyz; (c) fy(x2-y2)  orbitals.   

Reproduced from the ‘Sheffield University Orbitron’ with permission from M. J. Winter.  

 

By comparison to the 6s and 5d orbitals, the 4f orbitals are relatively small and are 

enveloped by the former two, becoming deeply buried within the atom and are 

therefore unperturbed by surrounding donor atoms (Fig. 1.2.3).  Consequently, the 4f 

electrons are not available for covalent bonding, causing the coordination geometries 

of lanthanide complexes to be determined by steric effects of the ligands, rather than 

crystal field considerations.  The 4f electrons are also relatively poor at screening the 

outermost electrons from the nucleus, for as we increase the atomic number of the 

lanthanides, the positive charge of the nucleus increases and whilst we continue to 

place electrons in an ineffective 4f orbital ‘screen’, the outermost electrons 

continually become attracted towards the nucleus.  The net effect is a contraction in 

the radii of the lanthanides as we traverse across the series, more commonly known 

as the ‘lanthanide contraction’ (Table 1.2.1).   
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Fig. 1.2.3 - Radial probability functions for the 4f, 5s, 5p and 6s orbitals of Gd(I)  

Reproduced Ref.79 

 

   Electronic Configurationa   
Atomic No. Name Symbol Atom Ln(III) Radiusb  µeff

c 
          Ln(III) / Å   

       
57 Lanthanum La 5d16s2 [Xe] 1.17 0 
58 Cerium Ce 4f15d16s2 4f1 1.15 2.56 
59 Praseodymium Pr 4f36s2 4f2 1.13 3.62 
60 Neodymium Nd 4f46s2 4f3 1.12 3.68 
61 Promethium Pm 4f56s2 4f4 1.11 2.83 
62 Samariam Sm 4f66s2 4f5 1.1 1.55 - 1.65 
63 Europium Eu 4f76s2 4f6 1.09 3.4 - 3.5 
64 Gadolinium Gd 4f75d16s2 4f7 1.08 7.94 
65 Terbium Tb 4f96s2 4f8 1.06 9.7 
66 Dysprosium Dy 4f106s2 4f9 1.05 10.6 
67 Holmium Ho 4f116s2 4f10 1.04 10.6 
68 Erbium Er 4f126s2 4f11 1.03 9.6 
69 Thulium Tm 4f136s2 4f12 1.02 7.6 
70 Ytterbium Yb 4f146s2 4f13 1.01 4.54 
71 Lutetium Lu 4f145d16s2 4f14 1 0 

              
 

Table 1.2.1 – Selected properties of the lanthanides and their ions.  
aOnly the valence shell electrons are stated - bvalues taken from Ref.80 

cMagnetic moments determined by Van Vleck method - values taken from Ref. 81  
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The effect is so pronounced, that the radius of Lu(III) (100.1 pm) is comparable to 

that of yttrium(III) (104 pm) despite their atomic numbers differing by over 50 %.  

This similarity in size causes these two ions to have similar properties, and yttrium is 

generally found to occur in Nature with the lanthanides.  Collectively, yttrium and 

the lanthanides are referred to as the rare earth metals, despite La, Ce and Nd all 

being more abundant than lead. 82 

 

1.2.3 The State of Energy 

 

The first three ionisation energies for the lanthanides are comparatively low, making 

the elements highly electropositive.  However, the energy required to remove a 

fourth electron is much greater than the sum to remove the first three, and this extra 

energy, in the vast majority of cases, cannot be recovered by bond formation.77   

 

Removal of valence electrons from a 6s, 5d or 4f orbital results in the stabilisation of 

that orbital, but the 4f orbitals are stabilised to a greater extent, meaning that once 

three electrons have been removed, the 6s and 5d orbitals are both empty.  The next 

removable electrons are held so close to the nucleus that they may almost be deemed 

chemically inaccessible.  Consequently, the chemistry of the lanthanides is largely 

restricted to the Ln3+ ions. 

 

1.2.3.1  Energy Levels and Magnetic Properties     

 

Each individual electron is characterised by its own unique set of four quantum 

numbers: principal quantum number n, angular momentum l, the spin quantum 

number s, and the magnetic quantum number m.  However, when an electron is not 

‘free’, but is deemed to be part of an atom, the angular momentum associated with its 

spin, couples with the angular momentum generated by its orbital motion.  This 

‘spin-orbit’ coupling is a naturally occurring phenomenon in orbitals, and increases 

along the series f > d > p for a given primary quantum shell.  The states produced by 

the coupling of the electrons’ momenta can be classified by the Russell-Saunders83 

scheme. 
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The scheme considers that the angular momentum of all the individual electrons’ 

spins (ms) all couple together to give a total spin angular momentum (denoted by the 

quantum number, S).  Likewise, their individual orbital angular momenta (ml) all 

couple to generate a total orbital angular momentum (denoted by the quantum 

number, L).  Both of these values are found by the addition of the individual 

momenta vectors.  The overall total angular momentum (J) resulting from the spin-

orbit coupling, is found by vectorial addition of both S and L, so that J = S + L.   

 

                  
L 0 1 2 3 4 5 6 7 
State Symbol S P D F G H I K 
                  

 

Table 1.2.2 – State symbols of total orbital angular momentum, L 

 

The various atomic and ionic energy levels available to an electron can be 

represented by a ‘term symbol’: (2S+1)LJ where (2S+1) is the spin multiplicity of the 

term, and the value of L is determined from the series in Table 1.2.2 (note that the 

spin multiplicity term, S, is not to be confused with the state symbol for L = 0).  The 

various levels of the term are denoted by J, which may take on any value between [L 

+ S], [L + S - 1], [L + S - 2] … [L - S]. 

 

The most important level is the ground term, which is the lowest energy term (i.e. 

where an electron would most like to be).  As there are many possible terms arising 

from the different combinations of L and S, Hund’s84 rules are employed to govern 

which one is the ground term: 

 

 The value of (2S+1) must be the highest value possible. 

 If there is more than one term with the same value of (2S+1), that with the 

highest value of L is the ground state. 

 For a shell less than half full, J is as low as possible; for a shell more than 

half full, J is a high as possible.  
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Nd3+ illustrates an example: The electronic configuration of this ion is f3 and its three 

unpaired electrons offer a total spin angular momenta of 3/2.  Therefore, S = 3/2, and 

the spin multiplicity of the term will be 4.   

 

For an f electron l = 3, which implies that ml can be an integral value between +3 and 

-3, and so filling the f orbitals according to the Aufbau principle gives a total orbital 

angular momenta of (3 + 2 + 1), which means L = 6 which has the symbol I.  J can 

therefore have any of the values of (6 + 3/2), (6 + 3/2 - 1) … (6 - 3/2), which is 15/2, 13/2, 
11/2 or 9/2.  This gives us four different term symbols to work with, and using Hund’s 

rules, we can deduce that, as the shell is less than half full, the term symbol for the 

ground state is 4I 9/2.   

 

Fig. 1.2.4 shows the energy level schemes for all the Ln3+ ions.  The magnitude of 

the separation between adjacent states of a term is an indication of the strength of the 

spin-orbit coupling and as there is a consistently large spin-orbit coupling observed 

across the Ln3+ series, from the lack of interaction between f electrons and ligands, 

the effective magnetic moment (µeff) of these elements depends on both L and S and 

not just S (as is the case with first row transition metals).  Magnetic moments of all 

lanthanide(III) ions are calculated employing the ground states of the ions in Eq. 1.1 

and agree well with those determined from experiment (Table 1.2.1), with the 

exception of Eu3+ and Sm3+ which see small population of low lying excited states at 

room temperature.85  Upon consideration of these, a better correlation is observed.  

 

µeff = g {J(J+1)}1/2 BM         Eq. 1.1 

 

where  g   =  S(S+1) + 3J(J+1) - L(L+1)                      Eq. 1.2 

         2J(J+1) 
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1.2.4 Spectroscopic Properties     

 

Electronic transitions in Ln3+ ions involve the redistribution of electrons between the 

ground state and the various excited states of the f orbitals.  All these states are 

housed within the same orbitals, and therefore have the same parity (symmetry 

properties about an inversion centre), and as such transitions between these states are 

not permitted to occur in accordance with the electric dipole ‘Laporte’ selection 

rules.86  

 

However, due to molecular vibration, the f orbitals can undergo a temporary change 

of symmetry.  During this new (transient) geometry, one or more of the f orbitals 

temporarily has the same symmetry as a d orbital, which relaxes the selection rule to 

permit transition, because a ‘forbidden’ f-f transition now has some ‘allowed’ f-d 

character.  In order for this molecular vibration to occur however, significant 

interaction between the orbitals and the surrounding environment must take place, 

and as the 4f orbitals are very much contracted this ‘vibronic coupling’ is much 

weaker in Ln3+ systems than in the d orbitals of transition metal complexes, and so 

are the corresponding electronic transitions that we observe.   

 

As the f orbitals are well shielded and unperturbed by surrounding ligands, their 

absorption spectra are always characteristically clear, sharp and well-defined 

regardless of the lanthanide’s environment.  This means that crystal field effects are 

almost non-existent in lanthanide compounds compared to spin-orbit coupling effects 

and typical field splittings reach ≈ 100 cm-1, whereas the opposite is true with 

transition metals, where crystal field splittings can reach tens of thousands cm-1. 

 

In addition to f-f transitions, many of the lanthanide(III) ions give rise to the f-d 

transitions of [Xe]4fn → [Xe]4fn-15d1, which are formally permitted by Laporte rules, 

and normally found in the UV region.  Ln3+ ions vary in their absorption strengths 

across the spectral regions (UV, visible, IR), giving rise to their characteristic 

colours, whilst certain ones, such as Eu3+, have no strong absorption in the visible 

region, and thus appear colourless.  Table 1.2.3 shows some of the spectroscopic 

properties of the Ln3+ ions as hydrated salts.  
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Fig. 1.2.4 – Energy levels for lanthanide(III) ions. The black and white semi-circles represent the 

lowest fluorescent and highest non-fluorescent levels respectively.  Reproduced from Ref .87 
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Ln3+ No. of Unpaired  Ground State  Colour 

  Electrons Term Symbol   
    

La 0 1S0 Colourless 

Ce 1 2F5/2 Colourless 

Pr  2 3H4 Green 

Nd 3 4I9/2 Lilac 

Pm 4 5I4 Pink 

Sm 5 6H5/2 Yellow 

Eu 6 7F0 Colourless 

Gd 7 8S7/2 Colourless 

Tb 6 7F6 Pale Pink 

Dy 5 6H15/2 Yellow 

Ho 4 5I8 Yellow 

Er 3 4I15/2 Rose Pink 

Tm 2 3H6 Pale Green 

Yb 1 2F7/2 Colourless 

Lu 0 1S0 Colourless 
        

 

Table 1.2.3 – Selected Spectroscopic Properties of Ln3+ ions 
 

1.2.4.1  Lanthanide Luminescence 

 

The term ‘luminescence’ is used to describe the emission of electromagnetic 

radiation of a compound, after it has been electronically excited.  Emissions usually 

occurs in the infrared (IR), visible and ultraviolet (UV) regions of the 

electromagnetic spectrum.  Excited states of the lanthanides can be quite high 

relative to the ground state and population is readily achievable by inter-system 

crossing (ISC) from the excited state(s) of organic ligands (chromophores) bearing 

fully allowed π → π* transitions.88,89  This process is known as sensitisation or the 

‘antenna effect’ and gets round the problem of the low extinction coefficients of f-f 

transitions which make direct excitation so inefficient.  Fig 1.2.5 illustrates typical 

lanthanide luminescence via this method. 
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Fig. 1.2.5 – Jablonski diagram for lanthanide(III) luminescence via  

sensitisation with a chromophore.  

 

The electron promoted in the excited ligand singlet state may either return directly to 

the ground state (ligand fluorescence) or follow a non-radiative path to a ligand 

triplet state (ISC).  From here, the electron can again return to the ground state 

(ligand phosphorescence), or perform a second successive non-radiative inter-system 

crossing to populate a nearby excited-state of the Ln3+ ion.  At this point, the overall 

energy drop has been too much for the electron to return to the ligand states, and it is 

now destined to return to the ground state; either by non-radiative emission down a 

series of successive energy levels, or straight to the ground state causing Ln3+ 

luminescence if the gap is large enough. 
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Both of these pathways occur to different degrees depending on the metal ion and the 

majority of Ln(III) ions have excited states that lie lower in energy than the triplet 

excited states of typical chromophores, giving rise to efficient energy transfer.   

 

Some ions (Eu3+, Tb3+, Yb3+ and Dy3+) have few energy levels between their excited 

states and ground states, resulting in strong metal-ion based luminescence.  Others 

such as La3+ (f0) and Lu3+ (f14) have effectively ‘filled’ f orbitals, and so no 

fluorescence is observed in the visible or IR regions.  The rest of the Ln3+ ions have a 

large number of excited levels between their excited states and the ground state, 

subsequently promoting energy loss via the non-radiative path, giving rise to weak 

luminescence.  A special case is observed in Gd3+ (f7), which has its lowest 

luminescent state located above typical ligand triplet states (approx. 32,000 cm-1 in 

the UV region, Fig. 1.2.3), making metal-ion luminescence a rarer occurrence.   

 

1.2.4.2  Quenching  

 

Coordinated water molecules and alcohol ligands provide a facile pathway for Ln3+ 

ions to deactivate as the electronic excitation energy of the lanthanide can be 

effectively transferred to these O-H oscillations.90  Prior to energy absorption, the 

OH-bearing molecule is in its lowest vibrational state (v’’ = 0), and afterwards, is 

promoted to a higher state (v’).  According to the Frank-Condon principle,91 such a 

transition occurs without a change in the nuclear framework, and so we can depict 

the transition as a simple vertical line between two potential energy curves (Fig. 

1.2.6).  There is not just one vibrational state the molecule can reach, but several, and 

which one is reached depends on how much energy is absorbed in the transition.  As 

the vibrational levels increase (v’ = 1, 2, 3, 4…), the degree of overlap between these 

levels and the ground vibrational state (v = 0) lessens, and so does the probability of 

promoting the molecule to that vibrational level.  
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Fig. 1.2.6 –Quantum mechanical version of the Frank-Condon principle 

(R = internuclear separation, E = energy) 

 

The energies of some of the O-H overtones are comparable with the excited-state 

energy levels of many Ln3+ ions, and in such systems a vibronic coupling occurs 

between the two sets of levels.  The presence of these additional OH energy levels 

between the excited state and ground state of the metal ion makes the non-radiative 

pathway much more favourable to an excited electron than the direct return to the 

ground state, thus quenching the lanthanide luminescence. 

 

This effect of luminescence quenching is very pronounced and is more so for O-H 

groups directly coordinated to the metal ion, than for those from surrounding 

solvents in the second coordination sphere, although this depends on the coordination 

environment, the distance, and how many solvent molecules have access to the metal 

centre.   
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This pattern is general in all lanthanide ions, and luminescence lifetimes of 

complexes in the solid state are typically longer,90 as are lifetimes obtained in dry 

solvents devoid of O-H oscillators.  All O-H oscillators act independently towards 

this de-excitation, and the rate of quenching is directly proportional to the number of 

oscillators in the first coordination sphere only.92  Those in more remote spheres 

have a much weaker contribution and are often ignored to a first approximation.  

 

 
 

Fig. 1.2.7 – Vibronic coupling between electronic energy levels of Tb(III) and  

vibrational levels of O-H and O-D oscillations  
 

If the quenching molecule consists of heavier atoms, the energy gaps between the 

vibrational levels decrease.  As shown in Fig. 1.2.7, the energy of the (vOH = 4) 

vibrational level of O-H (approx. 19,000 cm-1) is just below the 5D4 energy level of 

Tb3+ (approx. 20,000 cm-1), and this comparability in energy favours ISC by the 

excited electron to the (vOH = 4) level, reducing the fluorescence to the 7F5 level of 

the lanthanide.   
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By contrast, a similar degree of vibration with O-D is reached at its sixth vibrational 

level (vOD = 6).  However, this higher vibrational level has a much smaller overlap 

with the (vOD = 0) level, making it less likely to be populated in D2O solutions.93  

Consequently, when OH is replaced with OD-based solvents, the 5D4 → 7F5 

fluorescence remains strongly observed, with a drastic reduction in energy transfer to 

the solvent vibrations.  Luminescence lifetimes of Ln(III) ions in solution are always 

optimised by use of deuterated solvents.94     

 

Following excitation, the decrease of luminescence usually follows an exponential 

path.  The corresponding experimental reciprocal excited-state lifetime is also the 

exponential rate constant (τ -1obs) and consists of several terms (Eq. 1.3) 

 

τ -1obs
   = (τ -1nat) + (τ -1nr) + (τ -1OH)                                   Eq. 1.3 

 

Where (τ -1
nat) is the natural rate constant for the emission of photons; (τ -1

nr) is the 

rate constant for non-radiative de-excitation which does not involve O-H oscillators; 

and (τ -1
OH) is the rate constant for non-radiative energy transfer resulting from 

vibronic coupling with O-H oscillators in the first coordination sphere. 

 

τ -1
OH is always quite significant.  For example, for Eu3+(aq) ion, (τ -1

nat) is 0.19, (τ -

1
nr) is 0.25, and (τ -1

OH) is 9.5 ms-1.90  This quenching efficiency increases as the gap 

between the excited state and the highest component of the ground state of the metal-

ion decreases (Fig. 1.2.4).  The difference in this gap for Tb3+ is 14,800 cm-1 and 

12,200 cm-1 for Eu3+, and explains why the value of  (τ -1
OH) is less for Tb3+        

(2.15 ms-1). 

 

1.2.4.3  Working out the Waters  

 

It is possible to deduce the number of O-H oscillators in the first coordination sphere 

of an Ln3+ complex, by measuring the independent luminescence lifetimes in both 

H2O and D2O solutions.  The rate constant for the de-excitation in H2O is: 

 

KH2O = Knat + ΣKnr + KOH            Eq. 1.4 
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Where KH2O is the observed decay rate in H2O, Knat is the natural radiative rate 

constant, ΣKnr is the sum of the rate constants for all other non-radiative de-excitation 

processes, and KOH is the rate constant for non-radiative de-excitation by O-H 

oscillations. 

 

In D2O, the KOH term disappears to give:  

 

KD2O = Knat + ΣKnr           Eq. 1.5 

 

Where ΣKnr also includes any de-excitation by O-D oscillators.  The difference 

between the two rate constants in H2O and D2O, is KOH.   

 

KH2O – KD2O = KOH          Eq. 1.6 

 

The values of KH2O and KD2O are equal to the respective values of (τ -1
H2O) and (τ -1

 

D2O) – i.e. the rate constant for depopulation of the excited state.  These can then be 

used in Eq. 1.7 (Horrocks equation) to determine how many water molecules (q) are 

coordinated to the lanthanide ion. 

 

q = A [KOH]           Eq. 1.7     

 

Where A is a proportionality constant for a given Ln3+ ion, determined by 

comparisons of calculated values in the solid state, and actual values determined by 

crystal structures.  The estimated uncertainty in q is typically ± 0.5.92  N-H, C-H, and 

C=O oscillators also have a quenching effect on the luminescence, but not to the 

extent of O-H harmonics.95 
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1.2.5   Applications of Lanthanides 

 

1.2.5.1  Magnetic Resonance Imaging (MRI) 

 

MRI is one of the most important tools in diagnostic medicine because of its non-

invasive nature, and has featured in the assessment of abnormalities in the blood-

brain barrier, kidney clearance and tumour targeting.96  The technique makes use of 
1H NMR imaging in the detection of the protons of water molecules. 

 

The water content of human tissue does not vary much through our bodies: we 

consist of at least 60 % water in which approximately 57 % is intra cellular and 43 % 

is extra cellular, and so tissue differentiation is not permitted on this value.  A two-

dimensional image can be obtained however, by spatially encoding the protons in the 

water molecules that reside about a specific tissue.  This is achieved by placing the 

subject in a magnetic field gradient to induce resonance amongst all the protons, 

whose frequency depends on their spatial location.   

 

The protons resonate and return to their equilibrium along the Z-axis with time T1 

(the longitudinal relaxation time) and along an orthogonal axis with time T2 (the 

transverse relaxation time), both of which differ between tissue types.97  Tissues in 

which the protons have a short relaxation time will generally show up as clearer 

images, and it is beneficial to try to enhance the image contrast in order to 

distinguish between healthy and diseased tissues (Fig. 1.2.8).98 

 

  
 

Fig. 1.2.8 – MRI of breast before (a) and after (b) injection of [Gd(DPTA)]2- 

The second image clearly shows a fiboadenoma not detected with mammography.99 
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The relaxation times of water protons decrease substantially when the molecule is in 

close proximity to a highly paramagnetic complex – a process known as ‘relaxivity’, 

and the Gd3+ ion is a prime candidate for an MRI contrast agent, possessing seven 

unpaired electrons, a large magnetic moment and a long electron spin relaxation time 

(10-9.5 s).  The relaxation time of water protons decreases by a factor of 106 when 

coordinated to a Gd3+ ion100 which would lead to a huge enhancement in the intensity 

of the image associated with the molecules.  However the free Gd3+ ion itself is toxic, 

and so must be held in a suitable complex that is kinetically stable and unlikely to 

dissociate during its time in the body.101  Such complexes should also be carefully 

designed so that they successfully hold the metal ion, whilst allowing one or two 

water molecules to enter the first coordination sphere in order to provide the 

necessary relaxivity. One commonly used complex is gadolinium-

tetraazacyclododecanetetraacetic acid [Gd(DOTA)-] (Fig. 1.2.9).        

 

              
 

Fig. 1.2.9 – (a) Schematic diagram of Gd(DOTA)-  

 (b) Crystal structure showing the Gd3+ held by the carboxylic acid groups with  

one water molecule coordinated on the exposed face of the metal ion 

 

1.2.5.2   Lanthanide Shift Reagents (LSRs)  

 

Ln3+ ions are Lewis acids, and as such are very susceptible to association with Lewis 

bases.  Lanthanide tris(β-diketonates) are a good example of this, readily forming 

labile adducts of the form [Ln(diket)3L] with bases such as alcohols.85 
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Upon formation of these adducts, a pseudocontact occurs between the coordinated 

base (L) and the lanthanide ion, and because of the high paramagnetism of the metal 

ion, this induces a dipolar shift in the protons of the bound Lewis base, with the 

greatest shifts occurring on those closest to the lanthanide ion.102  This results in the 

spreading out and ‘simplification’ of NMR spectra that is otherwise complicated by 

overlapping resonance signals.  

 

LSRs are also used to shift the resonances of other nuclei.  In high resolution NMR 

spectra, resonance signals of 7Li+, 23Na+ and 39K+ ions are shifted by paramagnetic 

complexes such as thulium(III) and dysprosium(III) salts of 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) (DOTP)8- (Fig. 

1.2.10)103,104  These alkali metal ions are also readily found in cellular compartments 

and living tissue, maintaining trans-membrane electrical potentials.85   

 

 
 

Fig. 1.2.10 – Schematic diagram of (DOTP)8- 

 

However, the cations are found on the intra- and extra-cellular compartments, both 

existing as aquo ions from which it is impossible to distinguish between the two as 

their identical environments produce identical chemical shifts.  The problem is 

overcome in using anionic LSRs that weakly bind to the alkali metal ions.      

 

Suitable LSRs must obviously be stable under physiological pH, and posses a large 

magnetic moment to induce the shift in resonance for the nucleus being observed.   
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A high negative charge on the ligand is also desirable to bind the lanthanide ion, and 

the overall negative charge of the complex prevents it from crossing the 

phospholipidic membrane, keeping its distribution about the extra-cellular space 

where those alkali metal ions reside.  The shifts are then applied only to those of one 

side of the membrane, making it possible to distinguish between the two types of 

alkali metal ion.  [Dy(DOTP)]5- for example, has been used to study 23Na+ in rat 

liver.103, 105   

    

The negative charge on the ligand arms needs to be concentrated as close to the Dy3+ 

ion as possible, in order to bring the Na+ ion towards it and ensure a good 

pseudocontact.96  In addition to this, the monitored cations of LSRs do not enter the 

first coordination sphere of the lanthanide ion, unlike MRI agents, and so it is 

acceptable for all the lanthanide’s coordination sites to be occupied by donor atoms 

on the ligand.   

 

LSRs are much less used nowadays due to the development and wide availability of 

high field NMR spectroscopy and two-dimensional correlation spectroscopy 

(COSY), but are still consistently used in resolving the NMR of chiral molecules.  

The most commonly used chiral LSR reagent is [Eu(facam)3], where facam is tris(3-

(trifluoromethylhydroxymethylene)-(+)-camphorate) (Fig. 1.2.11).     

 

 
 

Fig. 1.2.11 – Schematic diagram of [Eu(facam)3] 
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Like the tris(β-diketonate) complexes, Eu(facam)3 still forms adducts with Lewis 

bases, yet in a racemic mixture of base (L’), the adducts [Eu(facam)3(R-L’)] and 

[Eu(facam)3(S-L’)] will be formed.  Whilst the initial R- and S-L enantiomers cannot 

be distinguished in NMR, these new diastereoisomer adducts can, enabling 

enantiomeric excess to be determined by integration of the resolved resonances.85  

 

1.2.6   Near Infrared Luminescence 

 

The near infra-red (NIR) region is the part of the electromagnetic spectrum located 

between the visible and the infra-red regions (ca.  700 – 1500 nm).  In recent years, 

there has been a marked increase in the activity of NIR luminescence generated from 

f-f transitions in Pr3+, Nd3+, Er3+, Yb3+ ions.  This is attributed to developments in the 

detection of NIR emission spectra as their lifetimes are much shorter than those of 

Eu3+ and Tb3+ (nanoseconds to microseconds).  This is generally a weak emission 

compared to those of Eu3+ and Tb3+ due to the reduced separation between excited 

and emissive states which provides non-radiative quenching by molecular vibrations 

(Fig. 1.2.4). 106   

 

The practical applications of NIR luminescence rest largely in two areas: 

telecommunications and biological imaging.   

 

1.2.6.1 Telecommunications 

 

Optical fibres have a central core made out of silica glass along which light travels 

from one end of the fibre to the other via total internal reflection.  This is only 

possible due to the mirror-like cladding that encases the silica core, which in turn is 

coated in a buffer (Fig. 1.2.12).   
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Fig. 1.2.12 – Composition of an optical fibre 

Reproduced from Ref.107 
 

In order for the fibre to work, the wavelength of light being transmitted must be 

within the region that corresponds to the window of transparency in the silica, so that 

it can reach the mirrored cladding and be reflected back into the core.  Because the 

cladding does not absorb any of the light, it is able to travel a sizable distance along 

the fibre; however silica glass contains a large amount of impurities, particularly 

hydroxide ions, which cause the signal strength to ebb away over long distances.  

This extent of signal degradation (attenuation) depends on the quality of the silica 

glass and the wavelength of light used, (850 and 1550 nm light degrades at 70 and 10 

percent/km respectively),107 but can be overcome by applying a special coating of 

doping molecules at regular intervals along the fibre, which is then regularly pumped 

by a laser.   

 

When the degraded light signal hits the coating, this gives rise to a series of ‘doped’ 

molecules along the coating, which in turn use the energy of the pumping laser to 

effectively become lasers themselves.  The molecules then proceed to emit light at 

the same wavelength as the incident light, but at a much stronger emission, thus 

amplifying the original signal.    

 

As Fig. 1.2.13 shows, narrow windows of transparency exist in the silica glass at ca. 

1300 and 1550 nm.   
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These energies are closely matched by the wavelengths of luminescence from Pr3+ 

and Er3+ (1330 and 1550 nm respectively, highlighted on Fig. 1.2.13 as green and 

pink circles),106 making them particularly attractive for potential doping molecules.   

 

 
Fig. 1.2.13 – Windows of transparency in silica fibres 

Reproduced from Ref.108 

 

Awareness in this area has risen drastically since the development of the Internet, 

which puts a huge demand for high transmission speeds between network portals.  

Erbium(III) doped fibre amplifiers (EDFA) are very popular in this context and are 

used to boost 1550 nm light along the lengths of such fibres.109  More recently, Nd3+ 

has been exploited within polymeric wave-guides to amplify light signals at 1060 

nm.110     

 

1.2.6.2 Biological Imaging 

 

Biological imaging makes use of NIR luminescence as these photons can penetrate 

deep into tissue without causing damage to the tissue itself, and there is little loss in 

signal intensity as photons are not readily absorbed by this medium.111   
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Both human tissue and water vary in the amount of radiation they absorb and let 

through depending on the wavelength of energy used, and these trends are plotted in 

Fig. 1.2.14.   Whilst water lets the most radiation through at ca. 550 nm, the 

absorption coefficient of tissue is still quite high at this wavelength (approx. 10 cm-1) 

due to the presence of porphyrins in the tissue (e.g. haemoglobin).  

 

 
 

Fig. 1.2.14 – Absorption of energy by tissue and water 

Reproduced from Ref.112 

 

The optimum region for radiation transparency in tissue-water systems appears at 

800-1000 nm (indicated by a purple circle on Fig. 1.2.14), where the coefficient of 

tissue is at a minimum ca. 3 cm-1 and that of water is still relatively minuscule at 0.03 

cm-1.112  This enables efficient detection of the radiation from outside the tissue, 

whilst causing minimal biological interference.   

 

Although NIR luminescent organic dyes are currently used for this technique, they 

undergo rapid decomposition upon photoexcitation which prevents their use over 

long exposures.   
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In contrast, lanthanide complexes are much more stable, and their well-defined and 

long-lived emission bands enable the removal of background fluorescence through 

time-gating (Section 1.2.7), giving rise to better resolved images.111  Both Nd3+ and 

Yb3+ luminesce strongly in the transparency window region at 880 and 980 nm 

respectively and are the subjects of much research for this very reason.106 

    

1.2.7  Time-Gating Measurements 

 

The lifetimes of lanthanide luminescence are quantified by using a technique known 

as time gating, which was first reported back in 1997 when the luminescence lifetime 

of aqueous Nd3+ was recorded.113   

 

The technique makes use of the antenna effect explained in Section 1.2.4.1.  A fast 

light pulse is used to excite a chromophore which itself has a very short excited state 

lifetime decay, (typically in the order of nanoseconds) compared to that of the metal-

ion (Fig. 1.2.15, pink curve).  As this excited state decays, the energy transfer to the 

metal ion begins and reaches a maximum at point β, before luminescence from this 

metal ion begins (red curve).   

 

 
Fig 1.2.15 – Time-resolved fluormetric measurements 
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By commencing data collection a certain amount of time after excitation of the probe 

(delay time), the background light provided by a chromophore’s own fluorescence 

(or the short-lived fluorescence from tissue in biological media) is almost reduced to 

zero, and this has two distinct benefits:  

 

i) the contrast in images will be improved enabling us to observe much more 

intricate details114 (Fig. 1.2.16); and  

 

ii) we can measure the lifetime of the decay solely from the metal ion (latter 

half of the red curve).  Because the metal ion based luminescence decay is 

always of an exponential nature, the half life (t1/2) of the decay lifetime can 

always be calculated from commencing data collection after time t = 0.  

 

 
(a)                                                    (b) 

 

Fig. 1.2.16 – Luminescence image of a 10 EURO note with a delay time of (a) 0 sec, and (b) 1µs.   

The latter shows the removal of the fluorescence from the blue background,  

and just that of the Eu3+ on the stars 
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1.3 Coordination Polymers Based on Cyanide Bridges 

 

1.3.1  The Field  

 

The term ‘coordination polymer’ refers to the infinite extension of molecules, in a 

given direction, through the aid of linkages formed by coordinate bonds.  In its own 

right, this occupies a large percentage of today’s research in inorganic chemistry and 

relies exclusively on the use of X-Ray crystallography (see Chapter 5) to help 

determine the intricate details of the structures.  Complexes therefore need to be 

available as single crystals, during the formation of which the components assemble 

and the dimensionality is determined.     

 

Dimensionality is dependent on two things: i) the geometry of the metal ion, and ii) 

the orientation (and type) of donor atoms.  In principle, it should be easy to predict 

the geometry of architectures where metal ions have the tendency to adopt definite 

coordination geometries, but as we shall see in chapters 2 and 4, this is not always 

the case.  By judicious choice of a ligand to remove one or more donor sites from the 

metal ion(s), control over the topology and geometry of the network can be gained.115  

One of the most common choice of such ligands in today’s research is based on the 

diimine chelate. 

 

Whilst such control allows the design of some diverse architectures, it also gives rise 

to a vast range of functional materials, particularly when the metal centres retain 

their original electronic and spectroscopic characteristics.  Current research on 

coordination polymers finds their use in molecular absorption,116 and electrical 

conductivity,117 and catalysis.117    
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1.3.2 The Cyanide (CN)- Bridging Ligand   

 

The cyanide group is a small, versatile ligand with uninegative charge residing over 

its atoms, and is often employed in synthesis initially as the anion to an alkali metal 

(KCN) or as a complementary base to a proton (HCN).   

 

Its preference in coordinating to metal ions stems from its characteristics of being a 

strong σ-donor and a good π-acceptor.  Because of the negative charge, the cyanide 

anion bonds strongly with metals in high oxidation states, but as a weak acceptor of 

electron density, it is unable to stabilise complexes with lower oxidation states to the 

same extent.118  It is also extremely poisonous as the CN- group can coordinate more 

strongly than oxygen to the iron(III) metal ion in cells, removing their means of 

getting energy from adenosine triphosphate ATP, causing the cell to starve.  In this 

context, cyanide can function as a ligand, available to bond either in a monodentate 

fashion, or a bidentate one in which it bridges between metal centres.  This helps to 

maintain a conjugated network between metal centres which can then, for example, 

be used to synthesise conductive materials.119 

 

IR stretches of cyanide bonds in metal complexes fall in the region of 2000-2250   

cm-1 with the lower values diagnostic of a terminal-bonded CN, and higher values 

diagnostic of a linear bridging CN.120  The energy of the CN vibration acts as a direct 

probe of the electron denisty on a coordinated metal ion and can be monitored using 

time-resolved infra red spectroscopy, making it possible to follow internal energy-

transfer in multinuclear complexes if they contain CN ligands.121  Transition metal-

cyanide complexes are often solvatochromic as well, interacting with the surrounding 

solvent molecules via the externally directed lone pair on the N atom.  This alters the 

σ-donor / π-acceptor ability of the other end of the ligand and hence its ligand field 

strength.  This often gives metal-cyanide complexes different coloured appearances 

in different solvents as their UV-VIS absorption bands vary with the degree of 

interaction of the solvent with the cyanides.122 
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1.3.3   Cyanide-Based Coordination Polymers  

 

1.3.3.1   Prussian Blue 

 

The most celebrated metal-cyanide complex is Prussian blue, also known as ferrous 

hexacyanoferrate (Fe4[Fe(CN6]3.xH2O).  Ironically, in 1704, its creator Driesbach 

was actually looking to synthesise a red pigment for use on the military uniforms of 

German officers, but instead succeeded on arranging Fe3+ and Fe2+ ions in a unique 

way that caused them to absorb light at the other end of the visible spectrum.   

 

Prussian blue has widely become regarded as the first example of a synthetic 

coordination compound and whilst there had been several postulations as to the 

structure of the complex, its crystal structure was not determined until 1977, in which 

it was determined as face centred cubic.123 

 

There are many analogous structures to that of Prussian blue involving different 

combinations of metal ions, but all have the same fundamental principle of six 

cyanide bonds surrounding the octahedral metals.  Communication between metal 

ions can also give long-range magnetic ordering to these complexes.124  The general 

formula of these types of compounds is An[B(CN)6].(H2O)m where A is a high spin 

metal ion and B is a low spin metal ion with the linkage order of A-N≡C-B extending 

along the x ,y, and z-axes (Fig. 1.3.1).   

 

 
 

Fig. 1.3.1 – General Prussian blue face-centred cubic structure 

carbon = red, nitrogen = blue, metal B = purple, metal A = yellow 
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The magnetic interaction between A and B may be either antiferro- or ferro-

magnetic, with spin alignment in antiparallel or parallel fashions respectively.  This 

magnetic behaviour is eradicated should the complex be subjected to temperatures 

beyond a value known as the ‘critical value’ Tc.125   

 

1.3.3.2  Hoffman Clathrates 

 

Square planar d8-metal ions have also featured heavily in cyano-group coordination 

polymers, again in the typified form of A[B(CN)4].  Structural studies have been 

performed on complexes where B = Ni2+, Pt2+, Pd2+ and Au3+, and all show the flat 

cyano-anion acting as a bridge between two A metals through two trans-cyanide 

groups.126  This results in one-dimensional polymer chains which are then cross-

linked by the remaining cyanide groups hydrogen bonding to guest molecules 

sandwiched between the layers (Fig. 1.3.2).  A more familiar term for these 

complexes is ‘Hoffman Clathrates’.   

 

 
 

Fig. 1.3.2 – Crystal structure of [Cd(en)2Ni(CN)4].2PhNH2 

 

A clathrate itself is a compound which consists of a cage-structure in which one type 

of molecule is trapped inside the cage of other molecules.  Obviously in these d8-

based cyanide compounds there is no cage structure, but Hoffman clathrates realise 

the inclusion of guest molecules in these complexes is possible.  The general form of 

a Hoffmann clathrate is [A(en)2B(CN)4].2G where G represents the guest molecule 

and en is ethylenediamine.   
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Hoffman-type analogues exist with different ligands about A, but the principle is the 

same with the replacement ligand blocking two donor sites on the A metal ion.  In 

some cases, two-dimensional polymer sheets are formed between the B(CN)4 unit 

and the A metal, with guest molecules sandwiched between these layers.127    

 

Steric repulsion from the inorganic frameworks restricts the size and shape of guest 

molecules, which have included biphenyl,127 water,128 phenol, and aniline,129 and in 

some cases gaseous guests can be removed and exchanged in the solid state network 

without it losing its crystallinity.126d  Whilst molecular porosity appears useful in this 

respect, analytical data of such complexes are often misleading due to their abilities 

to undergo surface absorption and zeolitic bonding to organic substrates.123 

 

1.3.3.3   Cyanide-Bridged Lanthanide-Transition Metal Hybrids 

 

In replacing the A metal in the A-N≡C-B bond with a lanthanide ion, the predictable 

topology of the complex is removed, as the lanthanide ions have highly variable 

coordination geometries.  Few complexes have been reported with combinations of 

octahedral hexacyanometallates with lanthanides, but each show formation of a 1-D 

chain with the lanthanide ions bridged on opposite sides by the cyanide anions.130  

 

Shore has done extensive work on M-CN-Ln coordination networks, prepared by the 

simple metatheses of lanthanide chlorides and K2[M(CN)4] in DMF.131  In this 

context, the chemistry of Ln(II) ions is limited to Yb(II), Sm(II) and Eu(II), and 

reaction products of this series are isostructural in forming 1-D ladders in which 

three of the four cyanide groups bond to three separate Ln(II) ions (Fig. 1.3.3)  

 

 
 

Fig. 1.3.3 – Crystal structure of {(DMF)4Eu[Ni(CN)4]} 
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The trivalent lanthanide ions generate a wide range of structural types depending on 

the proportions of cyanometallate and lanthanide used.  Scheme 1.3.1 shows those 

obtained with a 3:2 addition, whilst Figures 1.3.4 and 1.3.5 show those obtained on 

1:1 and 1:2 additions respectively.  In the case of the latter, both structures have their 

charges neutralised by the inclusion of K+ or NH4
+ ions in the crystal lattice.  

 

 
 

 

Scheme 1.3.1 – Repeating unit combines to give 1-D chains as either 

(a) double strand or (b) single strand 

 

 
 

Fig. 1.3.4 – 1-D chain-like array formed on equimolar addition of reagents 
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     (a)                (b)  

 

Fig. 1.3.5 – Different topologies formed on 1:2 additions of Ln(III) and [M(CN)4]2- ions: (a) 2-D 

puckered sheets of 12-membered rings and (b) 1-D negatively charged columns by pure cis 

binding cyanide bonds.   

 

Of course, these complexes do not have to be formed just by the addition of two 

components, and it is perfectly possible to obtain novel topologies by the separate 

addition of lanthanide ions, transition metal ions and cyanide salts in a three 

component metathesis.  On doing this with Gd3+, Cu+ and KCN in a 1:6:3 ratio in 

DMF, Shore produced an anionic 3-D network of [Cu6(CN)9] units which played 

host to several [Gd(DMF)8] cluster cations (Fig. 1.3.6a).  Surprisingly though, upon 

repeating the synthesis with K[Cu(CN)2] and Gd3+ (i.e. pre-combined Cu+ and KCN), 

a 2-D extended sheet was formed comprising both metal ions (Fig. 1.3.6b).132    

 

              
   (a)             (b) 

 

Fig. 1.3.6 – Crystal structures of (a) {[Gd(DMF)8][Cu6(CN)9.2DMF]} showing the trapped 

cations and (b) 2-D extended layer of {Gd2(DMF)8Cu4(CN)10} 
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1.4   Summary & Overview 

 

This section has provided an introduction to the three areas explored in this thesis:  

Section one provided an overview of poly(pyrazolyl)borate chemistry, with a focus 

on those with additional donor atoms on the 3-subsitutents of the pyrazolyl ring; 

section two illustrated the physical properties of the lanthanide(III) ions, with a 

particular focus on their spectroscopic characteristics; and section three gave a brief 

review of some current research in coordination polymers that incorporate cyanide as 

bridging ligands.   

 

The aims of this thesis fall in several categories:  In chapter 2 we continue to explore 

the chemistry of the scorpionates where the 3-pyrazole substituent is replaced with a 

3N- or 4N-pyridyl group; chapter 3 examines the structural and photophysical 

behaviour of lanthanides with the anionic tetradentate ligand [Bp2py]¯ and 1,3-

diketonate molecules; chapter 4 describes the synthesis, structural characterisation 

and luminescence properties of coordination networks based on a combination of 

tetracyanoruthenate(II) or hexacyanochromate(III) units with lanthanide(III) ions; 

whilst chapter 5 offers a detailed review of the practice of X-ray crystallography 

including the history of the technique, the theory, and the current technology 

employed; as well as a few independent crystal structures solved by the author. 

 

An experimental section can be found at the end of each chapter, and the thesis 

concludes with a summary of the findings within each chapter, and suggestions for 

future work. 
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2.1 Introduction 

 

As we saw in the previous chapter, the addition of substituents in the 3-position of 

pyrazole rings has completely revolutionised the coordination chemistry of the 

scorpionates; and the inclusion of donor atoms in these substituents allows the 

ligands to successfully bind to metals with a high number of coordination sites, such 

as lanthanides.  No ligands have demonstrated this better than those based on the 

Tp2py and Bp2py cores (whose chemistry we continue to explore in chapter 3).1 

 

These scorpionates are formed by the attachment of pyridyl substituents to the 

pyrazole rings at their 2-position, thus giving the pyridyl-pyrazole arm the ability to 

chelate to metal atoms (Fig. 2.1.1a).  On coordination to a scorpionate, the metal ion 

will always be held in the pocket of pyrazole nitrogens (Npz), and we can see that by 

attaching the pyrazole ring (Npy) to the 3-position of the pyridyl unit (Fig. 2.1.1b) it 

becomes obvious that the chelating ability is removed.  If a distant association with 

the metal ion is not possible for the pyridyl donor in this situation, electronic 

repulsion between Npy and Npz will subsequently force the arm into a transoid 

arrangement.  Any possible association of Npy with the same Npz-held metal ion is 

negated when the pyrazole substituent is shifted further round to the 4-position (Fig. 

2.1.1c).               

 

N

N
N

B

N

N
N

B

N

N
N

B

 
(a)      (b)      (c) 

 

Fig. 2.1.1 – Varying the position of the pyrazole ring 

 

In this chapter, we describe the synthesis of several new scorpionate ligands based on 

the above pyridyl-pyrazole arms, and their complexes with various metal ions.  By 

shifting the location of the pyridyl nitrogen away from the central cavity of the 

scorpionate, it was hoped that it would coordinate to an external metal ion, which 

could give rise to polymeric coordination behaviour.   
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We were encouraged by the results observed with dihydrobis-[3-(2-pyrazinyl)-

pyrazol-1-yl]borate2 in which an externally orientated nitrogen donor of a [L2Pb] 

complex coordinated to the metal ion of a second identical complex (Fig. 2.1.2).   

 

 
 

Fig. 2.1.2 – Crystal structure of lead(II) dihydrobis-[3-(2-pyrazinyl)-pyrazol-1-yl]borate 

 

The new scorpionates we discuss here are: dihydro-bis[3-(4-pyridyl)pyrazol-1-

yl]borate (Bp4py); dihydro-bis[3-(3-pyridyl)pyrazol-1-yl]borate (Bp3py); hydro-tris[3-

(4-pyridyl)pyrazol-1-yl]borate (Tp4py) and hydro-tris[3-(3-pyridyl)pyrazol-1-

yl]borate (Tp3py) (Fig. 2.1.3).  These ligands and their complexes were synthesised 

and characterised by the author whilst at the Universities of Sheffield and Bristol.   

 

The related ligands tetrakis[3-(4-pyridyl)pyrazol-1-yl]borate (Tkp4py) and tetrakis[3-

(3-pyridyl)pyrazol-1-yl]borate (Tkp3py) and their complexes were synthesised and 

characterised by Martin Duriska and Dr. Stuart Batten at Monash University, 

Australia, and will be included in discussions for comparison, as these ligands are 

directly related to the previous four and thus complete the series.  A joint paper on 

this work has recently been published, and contains a more detailed review of these 

two ligands.3  From here onwards, we refer to the scorpionates by their shorthand 

notation (given in parenthesis).     
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Fig. 2.1.3 – Structural diagrams of [Bp4py]-, [Bp3py]-, [Tp4py]- and [Tp3py]- 

  

2.2 Results and Discussion 

 

2.2.1 Synthesis of the Scorpionates 

 

2.2.1.1  Pyridyl-pyrazoles (pypz) 

 

In synthesising the pyridyl-pyrazole arm, we replicate Lin and Lang’s4 facile 

conversion of acetyl groups to pyrazole groups that was employed in the synthesis of 

3-(2-pyridyl)pyrazole (2pypz).1j  The synthesis is outlined in Scheme 2.2.1 using 4-

acetylpyridine as the reagent.   

 

 
 

Scheme 2.2.1 – The synthesis of  4-pyridylpyazole 
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Reaction of 4-acetylpyridine with an excess of dimethylformamide-dimethylacetal 

(DMF-DMA) afforded the intermediate 3-dimethylamino-1-pyridin-4-yl-propenone 

(I) in excellent yield.  Subsequent reaction with hydrazine converts this into the 

pyrazole (II).  Further recrystallisation of the product improved its purity, but in turn 

depleted their yields. 

 

2.2.1.2  The Scorpionates 

 

In accordance with the methods published by Trofimenko,5-7 a suitable excess of 

pypz was heated with KBH4 to promote bis- or tris-substitution of the boron atom 

and form the Bp or Tp scorpionates respectively.  The reaction conditions were 

varied accordingly, with higher temperatures and longer reaction times employed to 

achieve the higher degrees of substitution.  Despite the rather liquid texture of 3pypz 

and the solid texture of 4pypz, this common ‘melt’ method was suitable for the 

synthesis of all our scorpionates.  Reaction details are summarised in Table 2.2.1.  

Unless stated, for each scorpionate and subsequent complex, satisfactory elemental 

analysis, mass spectra and NMR data were obtained (see Section 2.3).  

 

Scorpionate pypz:KBH4 
Temp 
/ °C 

Duration 
/ h 

    

Bp4py 2.5:1 175 0.5 
Bp3py 2.5:1 140 2 
Tp4py 3.5:1 230 3.5 
Tp3py 3.6:1 215 2 

 
Table 2.2.1 – Reaction conditions for the new scorpionates 

(See Section 2.3 for further details) 

 

2.2.2 Crystallographic Studies of 3pypz and 4pypz 

 

2.2.2.1 4pypz 

 

Single crystals of both 3pypz and 4pypz were grown by diffusion of pentane into a 

concentrated CH2Cl2 solution of the ligand.  4pypz crystallises in the monoclinic 

space group P21/c, with one independent molecule in the asymmetric unit.   
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Within the crystal, the ligand forms a one-dimensional chain in a direction that 

bisects both the a and c axes of the unit cell.  The chain propagates via H-bonding 

between the pyridyl nitrogen and a pyrazole hydrogen [NH(2)⋅⋅⋅N(9) (2.034 Å), 

N(2)⋅⋅⋅N(9) = 2.899(1) Å] as the ligands lie head (pz) to tail (py) along the chain, 

with alternate chains extending in the opposite direction (i.e. T → H → T → H vs T 

← H ← T ← H).  Bonding through the lone pyrazole nitrogen and a pyridyl 

hydrogen [CH(7)⋅⋅⋅N(1) = 2.716 Å, C(7)⋅⋅⋅N(1) = 3.528(2) Å] connects adjacent 

chains, giving rise to a two-dimensional sheet.  Fig. 2.2.1 shows the ligands pack 

themselves in a herringbone-type arrangement, the torsion angle between the 

pyrazole and pyridyl rings of the ligand being 29.5°.   

 

 
 

Fig. 2.2.1 – Packing diagram showing the arrangement of 4pypz in the crystal 
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2.2.2.2 3pypz 

 

The main difference in the crystal of 3pypz is the presence of two independent 

molecules in the asymmetric unit.  The same one-dimensional chain propagation 

occurs through Npy⋅⋅⋅H-Npz hydrogen bonding [NH(102)⋅⋅⋅N(8) = 1.857(23) Å, and 

NH(2)⋅⋅⋅N(108) = 1.963 Å where N(2)⋅⋅⋅N(108) = 2.892(3) Å] with the chains 

bisecting the a and b axes of the unit cell.  Torsion angles between the pyrazole-

pyridyl rings are 11.9° and 23.7° for the N(1)-N(8) and N(101)-N(108) ligands 

respectively.   

 

An adjacent chain follows the opposite head to tail arrangement and the two are held 

together by hydrogen bonding through CH(103)⋅⋅⋅N(1) (2.665 Å) [C(103)⋅⋅⋅N(1) = 

3.564(3) Å] to form a wave-like pairing (Fig. 2.2.2).  This interaction is also helped 

by π-stacking between the overlapping N(8) pyridyl rings (3.363 Å separation, offset 

by 1.197 Å with a centroid-centroid distance of 3.544 Å).  These pairings are then 

held by H-bonding through the CH(9)⋅⋅⋅N(101) bond (2.692 Å) [C(9)⋅⋅⋅N(101) = 

3.336(3) Å] to give the overall herringbone appearance as observed with 4pypz.   

 

 
 

Fig. 2.2.2 – Cross linking of 1D chains in the crystal structure of 3pypz 

 

This ligand has also been shown to crystallise as a polymorph in the orthorhombic 

space group Pna21, where perfectly flat chains of the same head to tail alignment 

connect themselves in a zig-zag fashion via H-bonds between the lone pyrazolyl 

nitrogen and a pyridyl hydrogen.3 
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2.2.2.3   [Co(4pypz)Cl2]⋅4MeCN 

 

Whilst the coordination chemistry of 2pypz with transition metals has featured in the 

literature, such studies arose from in situ decomposition of the Tp2py ligand – an 

occurrence not uncommon among the scorpionates.8,9   

 

Resultant structures have included both neutral10,11 and deprotonated11-13 2pypz 

species, with the former generating mononuclear complexes, and the latter (having 

terdentate character) giving rise to more complex polynuclear architectures.  In 

addition to having a bidentate chelating site, the terdentate ligand can use its third 

donor to bridge to a second metal ion, although no evidence suggests this favours the 

generation of infinite regular arrays.  Relocation of the pyridyl nitrogen in 4pypz 

gives the ligand an appearance reminiscent of 4,4’-bipyridine,14 with its two donors 

at opposing ends of the bridging ligand.  Lindoy and Kepert recently described the 

coordination chemistry of 4-(4-pyridyl)pyrazole, in which the pyridyl donor lies 

equidistant of both pyrazole nitrogens.15  In our 4pypz system, the pyrazole nitrogens 

lie to the same side of the pyrazole ring and the ligand does not have twofold 

symmetry.  

 

Reaction of 4pypz with anhydrous CoCl2 in MeCN gave a deep blue solution from 

which purple crystals readily appear after a few moments.  The crystal structure was 

solved in the tetrahedral space group I4 and is shown in Fig. 2.2.3.   

 

In their studies, Lindoy and co-workers noted that there are three possible modes of 

coordination that pyridyl-pyrazole ligands can take: (i) Neutral - where the pyrazole 

NH is maintained; (ii) Anionic – where the pyrazole NH is deprotonated; and (iii) 

Cationic – where the pyridyl N becomes protonated.  Whilst he observed both 

anionic and cationic forms [using Co(II) nitrate], our structure illustrates the neutral 

binding mode: The cobalt(II) metal centre retains both chloride ions [average Co⋅⋅⋅Cl 

= 2.487 Å] and has four 4pypz ligands about its equatorial plane.     

 

 

 



Chapter Two – New Scorpionates 
____________________________________________________________________ 

 83

 

 
Fig. 2.2.3 – Crystal structure of [Co(4pypz)4Cl2]⋅4(MeCN) 

Flack parameter = 0(10) 

 

Metal ion coordination occurs through the pyridyl donors with a Co(1)⋅⋅⋅N(1) bond 

length of 2.166(16) Å and only one 4pypz arm is located in the asymmetric unit, with 

the Co(II) ion residing in the centre of the unit cell - the cobalt(II) displays near 

perfect octahedral geometry. 

 

In relation to the mean plane of the four pyridyl nitrogens, the pyridyl and pyrazole 

rings are twisted 46.3° and 26.6° respectively, and 20.0° with respect to each other.  

The pyrrolic nitrogen atoms form the vertices of a perfect square with a N(10)-

N(10)-N(10) angle of 90.00° and N(10)-N(10) side length of 11.935(3) Å, offset 7° 

to the square outline of the unit cell.  The mean plane of the four N(10) donors lies 

0.273 Å below that of the four pyridyl donors. 

 

In the absence of an inversion centre, each pyrazole ring is orientated to face the 

same side of the four Npy donor plane, and the pyrrolic hydrogen atoms bond to the 

chloride ions of separate [Co(4pypz)Cl2] units [NH(10)⋅⋅⋅Cl(1) = 2.409Å; 

N(10)⋅⋅⋅Cl(1) = 3.261(2) Å].   
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The chloride ion has four of these bonds about it arranged in a perfect square (Fig. 

2.2.4), and as the Cl-Co-Cl line lies parallel to the c-axis, the network extends along 

both a- and b-axes of the unit cell.  In addition to this, the network also extends along 

the c-axis because of the orientation of the pyrazole rings, giving an overall three-

dimensional coordination network.  Selected bond lengths and angles are given in 

Table 2.2.2.  

 
Fig. 2.2.4 – Packing diagram of [Co(4pypz)4Cl2]⋅4MeCN  

Viewing down the c-axis 

 

Co(1)-N(1A)  2.1658(16) 
Co(1)-Cl(2)  2.3976(14) 
Co(1)-Cl(1)  2.5759(13) 

  
N(1A)-Co(1)-N(1B) 174.78(12) 
N(1A)-Co(1)-N(1C) 89.881(6) 
N(1A)-Co(1)-Cl(2) 92.61(6) 
N(1A)-Co(1)-Cl(1) 87.39(6) 
Cl(2)-Co(1)-Cl(1) 180 

 
Table 2.2.2 – Selected bond lengths (Å) and angles (°) for [Co(4pypz)4Cl2]⋅4MeCN 
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Hydrogen bonding also occurs between a pyrazole hydrogen and the nitrogen atom 

of a lone MeCN solvent molecule [CH(8)⋅⋅⋅N(22) = 2.607 Å, C(8)⋅⋅⋅N(22) = 3.363(4) 

Å].  Four such interactions occur in the unit cell, all orientated in the same direction 

(Fig. 2.2.3).   

 

These solvent molecules reside in the channels created in the coordination network 

and are arranged in a spiral manner as we progress through the channel with a 

separation of 5.0 Å between the N(22) atoms (Fig. 2.2.5).  During elemental 

analyses, samples continued to lose weight and measurements were taken on samples 

that had remained on the balance for 30 min.  Results show that in this time, MeCN 

had evaporated which was confirmed by the absence of C≡N stretches in the IR 

spectrum. 

 

 
 

Fig. 2.2.5 – Packing diagram of [Co(4pypz)4Cl2]⋅4MeCN showing the solvent molecules. 

Viewing down the c-axis 
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2.2.3 Thallium(I) Salts of Scorpionates based on the 4pypz Motif 

 

All scorpionates were initially synthesised as the potassium salts and successfully 

purified.  For the purposes of structural characterisation these were then converted to 

the Tl(I) salts as TlTp complexes tend to crystallise more easily than KTp 

complexes, and Tl(I) is also taken to be the default reference metal in such 

discussions of scorpionates.7  

 

Reaction of the potassium-scorpionate salt with one equivalent of Tl(OAc) in 

methanol afforded the desired products as white precipitates, and X-Ray quality 

crystals were grown from diffusion of ether vapour into a concentrated DMF solution 

[Tl(Bp4py)] or by slow evaporation of a concentrated CH2Cl2-MeOH solution of the 

complex [Tl(Tp4py)].   

 

2.2.3.1  Tl(Bp4py) 

 

Fig. 2.2.6 shows that this complex does display the coordination polymer behaviour 

that we were hoping for in the solid state.  The metal ion, whilst being chelated by 

the two pyrazole nitrogens (average Npz⋅⋅⋅Tl distance = 2.696 Å), is also coordinated 

to the pendant 4-pyridyl group of a second Tl(Bp4py) unit [N(109)⋅⋅⋅Tl(1) =    

2.678(7) Å].  Only one of the ligand’s two 4-pyridyl units coordinates to the Tl(1) 

metal ion, giving rise to the formation of a one dimensional polymeric chain along 

the b-axis, and as the Bp4py is bent at 110.48° (due to the hybridisation of the boron 

atom), this chain is helical (Fig. 2.2.7).  

 

 
Fig. 2.2.6 – Crystal structure of Tl(Bp4py) showing the labelling system  

Flack parameter = -0.020(14) 
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Fig. 2.2.7 – One-dimensional helical polymer of Tl(Bp4py) viewing down the c-axis 

[Tl, green; B, purple; N, blue; C, black]  

 

With three nitrogen donors about it (two pyrazole and one pyridyl), the metal ion 

resides in a pyramidal three-coordinate environment.  This environment is common 

in Tl-scorpionate complexes,16-18 but mainly with Tp-based ligands as Bp-based 

scorpionates appear to favour coordination through the two pyrazole nitrogens and an 

agostic Tl⋅⋅⋅H interaction from a B-H bond on the same ligand.19,20  The pyramidal 

arrangement suggests that the thallium’s lone pair is stereochemically active in 

completing the tetrahedral array of electron pairs about the metal ion,21 yet the N-Tl-

N angles are considerably compressed compared to the tetrahedral ideal (Table 

2.2.3)  (attributed to the steric requirements of the ligand).      
 

Tl(1)-N(102) 2.641(6) 
Tl(1)-N(109) 2.678(7) 
Tl(1)-N(113) 2.751(7) 
  
N(102)-Tl(1)-N(109) 77.4(2) 
N(102)-Tl(1)-N(113) 84.5(2) 
N(109)-Tl(1)-N(113) 82.1(2) 

 

Table 2.2.3 – Selected bond lengths (Å) and angles (°) for Tl(Bp4py) 
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To assist packing, the pyridyl groups are twisted with respect to the pyrazole rings at 

angles of 4° and 26° for the units containing N(109) and N(120) respectively, with 

the former unit assisting in building up the polymer chain.  Whilst the 4-pyridyl 

group containing N(120) does not coordinate to a metal ion, N(120) does form a 

hydrogen bond with a pyridyl hydrogen of a separate Tl(Bp4py) unit 

[CH(107)⋅⋅⋅N(120) = 2.515 Å, C(107)⋅⋅⋅N(120) = 3.359(13) Å].  This holds the 

helical chains in a ‘sheet’ (Fig. 2.2.8) with the stacking of these sheets forming the 

complete structure of the crystal.     

 

It is worth noting that these one-dimensional chains are also chiral, and that the chiral 

space group (P21) of the crystal system indicates that it comprises only chains of the 

same chirality, rather than a racemic mixture.  The solubility of the complex in DMF 

implies that the polymer breaks up into its monomer units in solution, with loss of 

the N(109)⋅⋅⋅Tl(1) bond.  This was confirmed when 1H NMR studies showed only the 

one set of protons at low-temperature, indicating that all pyridyl groups were in the 

same environment when in solution.  

 

 
Fig. 2.2.8 – Sheet of one-dimensional chains   

Viewing down the b-axis 

 

2.2.3.2    Tl(Tp4py) 

 

As a monomer, the complex Tl(Tp4py) is reminiscent of the functionalised bowl-

shaped ligands synthesised by Fujita and co-workers to template the formation of 

capsules.22   
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Whilst the base of their bowl was made of a mesitylene unit, and ours a boron atom, 

the sides of the bowl and the functionalised ‘rim’ comprise the same 4-pyridyl units 

and their nitrogen atoms respectively.  However, the crystal structure of Tl(Tp4py) 

shows that capsule formation is not possible when the metal ion in the cavity has a 

vacant coordination site (Fig. 2.2.9).   

 

 
 

Fig. 2.2.9 – Crystal structure of Tl(Tp4py) showing approach of an external unit 

Flack parameter = 0.031(10) 

 

Even though there are now three pyridyl-pyrazole arms surrounding the metal ion, 

the large wedge angle of the complex (average Npz-B-Npz value = 75.4°, where Npz is 

the non-boron bound nitrogen) still permits the 4-pyridyl group of a separate 

monomer unit to coordinate and again build up a one dimensional chain, this time 

along the c-axis [Fig. 2.2.10, N(131)⋅⋅⋅Tl(1) = 2.978(8) Å].  This is also reminiscent 

of the Tl(Tptol) complex synthesised by Ferguson (Fig. 1.1.16), where the cavity was 

still sufficiently large for the toluene group on a separate complex unit to fill it, even 

though it did not contain any donor atoms.17       

 

The bridging Npy⋅⋅⋅Tl bond is quite long compared to the average Npz⋅⋅⋅Tl values 

(2.98 Å vs. 2.66 Å respectively) forming through the two ligating arms with the 

largest wedge angle (those arms containing N(121) and N(141), at 78.53°).   
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As with the Tl(Tptol) complex,17 the metal ion here is held in a pyramidal geometry 

by the three pyrazole donors and the Npy⋅⋅⋅Tl bond is very much a side-on 

coordination, occurring directly opposite the N(102)⋅⋅⋅Tl bond - the longest of the 

Npz⋅⋅⋅Tl bonds at 2.791(7) Å.  With the Tl(I) lone pair, the geometry about the metal 

centre becomes a distorted square-based pyramid. 

 

 
 

Fig. 2.2.10 – One-dimensional polymeric chain formation in Tl(Tp4py)  

View along the a-axis 

 

All three pyridyl groups are twisted from their neighbouring pyrazole rings by 29, 27 

and 35° for the rings containing N(151), N(111) and N(131) respectively, with the 

largest twist present on the one coordinating to Tl(1) [N(131)].  No helical formation 

is apparent in the chain, as the steric bulk of the Tp4py ligands do not favour such 

behaviour; instead the chain has a side-to-side ‘rocking’ appearance as it extends 

parallel to the c-axis (Fig. 2.2.11).  

 

As we found with Tl(Bp4py) only one pyridyl group coordinates to a metal ion, and 

there seems to be no second- nor third-dimension polymeric behaviour induced by 

having two additional 4-pyridyl groups.   



Chapter Two – New Scorpionates 
____________________________________________________________________ 

 91

 

However, as Fig. 2.2.11 shows, both N(151) and N(111) pyridyl groups participate in 

CH⋅⋅⋅N hydrogen bonding to atoms in adjacent chains [CH(135)⋅⋅⋅N(151), 

CH(145)⋅⋅⋅N(111), CH(105)⋅⋅⋅N(111) at 2.455, 2.398 and 2.732 Å respectively; with 

C(135)⋅⋅⋅N(151), C(145)⋅⋅⋅N(111), C(105)⋅⋅⋅N(111) at 3.242(15), 3.319(15) and 

3.648(15) Å respectively] giving rise to a stacking of sheets in the crystal motif.  

Selected bond lengths and angles are given in Table 2.2.4.   

 

Tl(1)-N(122) 2.577(8) 
Tl(1)-N(142) 2.609(9) 
Tl(1)-N(102) 2.791(7) 
  
N(122)-Tl(1)-N(142) 77.9(3) 
N(122)-Tl(1)-N(102) 72.3(2) 
N(142)-Tl(1)-N(102) 67.3(2) 

 

Table 2.2.4 – Selected bond lengths (Å) and angles (°) for Tl(Tp4py) 

 

The chiral space group Pc indicates again that the crystal comprises only chains of 

the same chirality, as was the case with Tl(Bp4py), and it is worth noting that both 

complexes form these chiral chains whilst the units themselves are achiral.  Chiral 

coordination polymers have found use in enantiomeric selection of small organic 

molecules23 and catalysis24 and can be formed through non-covalent interactions of 

chiral ligands,25 or through the spontaneous self-assembly (as in our case) of achiral 

ligands.26,27  Such non-centrosymmetric, polymeric crystal systems, may also meet 

the criteria for displaying second-order nonlinear optical properties.28,29     

 
Fig. 2.2.11 – View of the one-dimensional chain along the c-axis 
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2.2.3.3   Tl(Tkp4py) 

 

Batten and Duriska3 achieved tetra-substitution of the boron atom by using a 4:1 

excess of pyridyl-pyrazole and heating the reaction mixture to 250 °C.  Whilst the 

Tl(I) ions sits in the usual Npz pocket, a fourth Npz⋅⋅⋅Tl bond is not possible because 

the sp3-hybridisation of the boron atom directs the nitrogen [N(171)] away from the 

metal ion (Fig. 2.2.12a).  Only two pyridyl nitrogens [N(111) and N(131)] interact 

with adjacent metal ions, making the Tl(I) centres five coordinate, although the 

geometry about the metal ions is in fact distorted octahedral with the inclusion of the 

lone pair (Fig. 2.2.12b).  

 

      
(a)            (b) 

 

Fig. 2.2.12 – (a) Crystal structure of Tl(Tkp4py)  

(b) Geometry about the Tl(I) ion [viewing down the Tl(1)-B(1)-N(161) bond] 

 

N(111) and N(131) bridge the metal ions of adjacent [Tl(Tkp4py)] units in 

perpendicular directions to produce a chiral two-dimensional sheet.  This can be seen 

in Fig. 2.2.13 in which the non Tl(I)-coordinating pyridyl-pyrazole arms have been 

removed for clarity.   
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Fig. 2.2.13 – Two dimensional sheet formed by N(131) and N(111)  

bridging Tl(1) in perpendicular directions 

 

Reaction of [KTkp4py] with Ag(I) sees two pyridyl donors bond to the metal ion, but 

this time at the expense of a Npz⋅⋅⋅M bond, leaving a distorted tetrahedral geometry 

about the metal centre.  A more detailed description of this and the Tl(I) structure can 

be found in our joint publication.3  

 

2.2.4   Other Metal Salts of Scorpionates based on 4pypz 

 

2.2.4.1   Re(Tp4py)(CO)3 

 

Given the likeness of our Tp4py system to that of the Fujita bowl,22 we hoped to find a 

suitable metal that would allow us to isolate a 1:1 metal:ligand complex devoid of 

polymeric behaviour.  The uncoordinated pyridyl nitrogens would then give the 

complex the potential to act as a ‘functionalised’ bowl. 
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Following a similar method to the preparation of [(Tp)Re(CO)3] by McCleverty et 

al,30 the title complex was produced in good yield by the reaction of KTp4py and one 

equivalent of Re(CO)5Cl in thf.   

 

The carbonyl stretches in the IR spectrum were similar to those obtained for 

[(Tp*)Re(CO)3]30 and [(Tp)Re(CO)3],31 indicating a fac-tricarbonyl arrangement, 

which was to be expected given the geometry of the pyrazole donors.7  X-Ray quality 

crystals were grown by the slow evaporation of a concentrated acetone solution of 

the complex.   

 

Data for the crystal structure (Fig. 2.2.14) were collected and the structure solved by 

Professor Michael Hurthouse and Dr Simon Coles at the University of Southampton. 

 

 
 

Fig. 2.2.14 – Crystal structure of [Re(Tp4py)(CO)3], viewing down the b-axis 

 

 

The reaction is accompanied by formation of KCl and the displacement of two CO 

molecules by the scorpionate to give a fac-N3(CO)3 coordination environment about 

the rhenium(I) centre (selected bond lengths and angles given in Table 2.2.5).   
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The complex has 3-fold symmetry (crystallising in the hexagonal space group P63), 

with the carbonyl groups pointing between the pyridyl-pyrazole arms to minimise 

steric and electronic repulsions.  The pyridyl substituents reside almost at right 

angles to the pyrazole rings (91.7°) and the Re(I) atom sits 1.7 Å out of the plane of 

the three Npz donors [N(2)⋅⋅⋅Re(I) = 2.229(12) Å].   

 

Re(1)-C(10) 1.980(16) 
Re(1)-N(2)  2.229(12) 

  
C(10)-Re(1)-C(10A) 86.9(6) 

C(10)-Re(1)-N(2) 94.8(5) 
C(10)-Re(1)-N(2B) 178.0(5) 
N(2)-Re(1)-N(2A) 84.0(5) 

 
Table 2.2.5 – Selected bond lengths (Å) and angles (°) for [Re(Tp4py)(CO)3] 

 

Graham Motson (in the McCleverty/Ward group) had previously synthesised the 

analogous Tp2py complex without the displacement of additional carbonyl groups, 

even though the pyridyl donors point towards the metal centre in the perfect 

orientation for coordination.3  This suggests that the {Re(CO)3}+ unit has a high 

stability and explains why none of the 4-pyridyl groups in the Tp4py complex undergo 

coordination to a second metal centre - unlike the cases we have previously seen with 

+1 metal ions.  However, they do undergo hydrogen bonding to neighbouring 

complexes, which are stacked directly above and below each other, with a separation 

of 1.24 Å, and held partly in place by the CH(5)⋅⋅⋅N(11) interaction (2.763 Å).   

 

The hydrogen bond N(11)⋅⋅⋅H(15) at 2.766 Å [N(11)⋅⋅⋅C(5) = 3.367(22) Å] connects 

the chains together and gives rise to the packing motif illustrated in Fig. 2.2.15, 

where it can be seen that a network of N(11)⋅⋅⋅H(15) bonds outline the shape and 

define the walls of hexagonal channels with an approximate diameter of 9 Å.  The 

network occurs between neighbouring complexes on progressive planes rather than 

the same plane, and the hexagonal periphery is formed by viewing down the c-axis of 

a one-dimensional helical array of six [Re(Tp4py)(CO)3] units (illustrative of the 

crystal’s chiral space group, Fig. 2.2.16).      
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Fig. 2.2.15 – Packing diagram of [Re(Tp4py)(CO)3], viewing down the c-axis 

Spurious electron density and all hydrogen atoms bar H(15) have been removed for clarity 

 

The hexagonal channels may contain disordered solvent molecules as residual 

electron density peaks in the lattice which could not be modelled, and presumably 

correspond to disordered solvent molecules, were removed from the data set using 

the SQUEEZE function from PLATON.32  

 

2.2.4.2  Cu2(Tp4py) 

 

Reaction of KTp4py with one equivalent of [Cu(MeCN)4]PF6 in methanol produced a 

green precipitate which was found to be insoluble in most common solvents.  Heavy 

sonication in DMF encouraged partial solubility however, and slow diffusion of 

diethyl ether into this solution produced X-ray quality crystals. 
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(a)                (b) 

 

Fig. 2.2.16 – [Re(Tp4py)(CO)3]: (a) viewing down the c-axis  

(b) side on view of the same six molecules.  

Selected pyridyl-pyrazole arms and hydrogen atoms have been removed for clarity. 

 

Elemental analysis of the green powder was inconsistent with any foreseeable 

‘simple’ formulation, whilst FAB mass spectra indicated peaks at m/z 508 and also at 

1016, indicative of 1:1 and 2:2 Cu:Tp4py complexes respectively.  A UV/VIS 

spectrum of the complex in DMF showed a weak transition at 641 nm, indicative of a 

metal-centred Cu(II) d-d transition, with a characteristically small molar extinction 

coefficient (ε ≈ 30 M-1 cm-1)33 suggesting that the reaction mixture contained either 

{Cu(Tp4py)}+ or {Cu2(Tp4py)2}2+ cations.  It is well known however that mixtures of 

Cu(I) and Cu(II) can exist in solution,34 and upon single crystal formation the 

complexes crystallises in the form of a 2:2 complex, but in the Cu(I) oxidation state 

(Fig. 2.2.17). 

 

In the crystal, the pyridyl nitrogen N(151) of one Cu(Tp4py) unit coordinates to an 

adjacent metal ion to complete a pseudo-tetrahedral N4 donor array about the Cu(1) 

metal, which is already held by the three Npz donors, resulting in a centrosymmetric 

dimer.     
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Fig. 2.2.17 – Crystal structure of [Cu2(Tp4py)2]  

 

The average Npz⋅⋅⋅Cu(1) distance is 2.120 Å, and the metal ion sits 1.204 Å above the 

mean plane of these donors whilst bonding to the N(151) atom at a distance of 

1.965(3) Å to form the dimer.  The resultant ‘box’ formed between Cu(1)-N(142)-

Cu(1A)-N(142A) has an approximate area of 21 Å2.  Selected bond lengths and 

angles are given in Table 2.2.6.  

 

Cu(1)-N(151A) 1.965(3) Cu(1)-N(122) 2.110(3) 
Cu(1)-N(102) 2.062(2) Cu(1)-N(142) 2.187(3) 

    
N(151A)-Cu(1)-N(102) 134.27(10) N(151A)-Cu(1)-N(142) 110.20(10) 
N(151A)-Cu(1)-N(122) 127.36(11) N(102)-Cu(1)-N(142) 91.36(10) 
N(102)-Cu(1)-N(122) 90.54(10) N(122)-Cu(1)-N(142) 90.68(10) 

 
Table 2.2.6 – Selected bond lengths (Å) and angles (°) for [Cu(Tp4py)]2 

 

Torsion angles vary depending on the arm concerned, with the N(151) pyridyl ring 

twisted 57° from the mean plane of the N(141) pyrazolyl ring, and 34° [N(111)] and 

27° [N(131)] torsion angles for the other two substituents.  There is also a 3.466 Å 

separation between the bridging N(151) pyridyl rings with an offset overlap of 1.164 

Å (centroid-centroid distance = 3.716 Å), suggesting that the structure is formed with 

the help of π-π stacking.   
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N(111) bonds with H(156) from the pyridyl ring of a neighbouring dimer unit 

[CH(156)⋅⋅⋅N(111) = 2.586 Å, C(156)⋅⋅⋅N(111) = 3.225(45) Å] to form a channel of 

stacked dimer units along the b-axis.  Cross linkage of these channels is then 

performed by bonding between N(131) and H(125) at 2.550 Å [N(131)⋅⋅⋅C(125) = 

3.466(34) Å] connecting the channels across the ac face of the unit cell (Fig. 2.2.18).   

 

 
 

Fig. 2.2.18 – Packing diagram of [Cu2(Tp4py)2] viewing down the b-axis 

Selected H atoms and the N(111)-containing pypz arm have been removed for clarity 

 

Such 2:2 dinuclear complexes are a familiar occurrence in supramolecular chemistry, 

resulting from the complementary interaction of two identical components whose 

units contain a pendant donor atom and a metal ion with a vacant coordination site.  

Both Hannon35 and Champness36 observed this in their researches, with Hannon’s 

ligand designed specifically to eliminate polymeric formation, and Champness’ 

dimer resulting from an absence of suitable anions to template cage formation.  In 

both cases, the external donor was a pyridyl unit (2- or 4-pyridyl respectively). 

 

Batten and co-workers discovered that this bridging behaviour of Tp4py can lead to 

remarkable cage–type architectures.37  What is remarkable about their structure (Fig. 

2.2.19) is it contains eight Tp4py ligands with fourteen copper metal centres – eight 

Cu(I) ions and six Cu(II) ions (shown in pink and blue respectively) – with neutrality 

achieved by perchlorate counter anions.  A Cu(I) ion resides in each Tp4py cavity 

whilst the pyridyl donors occupy one corner of the dx2-y2 orbital of the Cu(II) square 

plane, giving a cubic structure with a {Cu(I)Tp4py} unit at each corner and a Cu(II) 

ion in the centre of each face, with a perchlorate ion occupying the central cavity.    
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Fig. 2.2.19 – Crystal Structure of [Cu14(Tp4py)8][ClO4]12  

Reproduced with permission from Dr Stuart R. Batten 

 

2.2.5 Thallium(I) Salts of Scorpionates based on the 3pypz Motif 

 

Tl(I) complexes of Bp3py and Tp3py were prepared from the K+ salts of the ligands in 

a similar manner to those of the 4pypz scorpionates (Section 2.2.3).  X-Ray quality 

crystals were grown from the layering of isopropyl ether onto a concentrated CH2Cl2 

[Tl(Bp3py)] or CH2Cl2-MeOH [Tl(Tp3py)] solution of  the complex.   

 

2.2.5.1 Tl(Bp3py) 

 

Shifting the pyrazole ring to the 3-position on the pyridyl group removes the C2 

rotation axis of the latter, relative to the pyrazole group, with the consequence that 

there are now two conformations the pyridyl-pyrazole arm can now adopt – cisoid or 

transoid (Fig. 2.2.20).   

N

N

N N
N N

BB  
             (a)                 (b) 

 

Fig. 2.2.20 – Cisoid (a) and transoid (b) arrangements in 3pypz 
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Tl(Bp3py) crystallises with two independent molecules in the asymmetric unit; each 

Bp3py unit has one arm in a transoid arrangement and the other in a cisoid 

arrangement (Fig. 2.2.21).  The pyridyl ring containing N(31) was found to be 

disordered over two closely spaced sites, and has been modelled as such with 51 % : 

49 % site occupancies.   

 

All four of the pyridyl donors in the asymmetric unit coordinate to the Tl(I) of an 

adjacent complex unit, and as the N(11)⋅⋅⋅Tl(1)⋅⋅⋅N(111) and N(31)⋅⋅⋅Tl(2)⋅⋅⋅N(131) 

bonds both extend along parallel paths, this results in a helical one-dimensional 

polymer along the a-axis (Fig. 2.2.22). 

 
 

Fig. 2.2.21 – Crystal structure of Tl(Bp3py)⋅0.5CH2Cl2 showing the two crystallographically 

independent monomer units (the disordered component is shown in red) 

 

The metal ion is ‘pinched’ by the two Npz donors - average Npz⋅⋅⋅Tl distance = 2.653 

Å, Tl(1) and 2.613 Å, Tl(2) – and forms a third bond with the pyridyl nitrogen of the 

second crystallographically independent monomer [Tl(1)⋅⋅⋅N(11) = 2.758(9) Å or 

Tl(2)⋅⋅⋅N(131) = 2.709(10) Å].  As it stands, the metal ion appears to be held by a 

pyramidal array of donors, with the Tl(1) lone pair completing a tetrahedron 

geometry. 
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Fig. 2.2.22 – One-dimensional polymer of Tl(Bp3py)⋅0.5CH2Cl2 viewing down the b-axis 

 (only one of the disordered components is shown) 

 

However, a fourth (rather long) bond is formed to the pyridyl nitrogen of the same 

crystallographically independent unit [Tl(1)⋅⋅⋅N(111) = 2.985(10) Å, Tl(2)⋅⋅⋅N(31A) 

= 2.900(28) Å], giving rise to a distorted trigonal bipyramidal geometry, with the 

axial positions occupied by both pyridyl donors and the lone pair in an equatorial 

position with the pyrazole donor atoms (Fig. 2.2.23).  Selected bond lengths and 

angles are given in Table 2.2.7.    

 
 

Fig. 2.2.23 – Distorted Trigonal bipyramidal geometry about the  

metal centre in Tl(Bp3py)⋅0.5CH2Cl2  
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N(2)-Tl(2)  2.601(8) Tl(1)-N(102)  2.650(9) 
N(22)-Tl(2)  2.624(8) Tl(1)-N(122)  2.654(8) 
Tl(2)-N(131)  2.709(10) Tl(1)-N(11)  2.758(9) 
    
N(2)-Tl(2)-N(22) 81.5(3) N(102)-Tl(1)-N(122) 78.5(3) 
N(2)-Tl(2)-N(131) 76.9(3) N(102)-Tl(1)-N(11) 83.4(3) 
N(22)-Tl(2)-N(131) 81.5(3) N(122)-Tl(1)-N(11) 76.0(3) 

 
Table 2.2.7 – Selected bond lengths (Å) and angles (°) for [Tl(Bp3py)]⋅0.5CH2Cl 

 

Neighbouring chains reside approximately 3 Å from each other in the crystal and 

have the same internal helical arrangement of monomer units, albeit in opposite 

directions.  The complex crystallises in the centrosymmetric space group P21/c 

showing that the crystal contains an equal number of chains of both helical 

orientations (unlike the Bp4py complex).  As with all the Tl(I) complexes we have 

seen so far, the crystal’s solubility in strong donor solvents such as DMF suggests 

that the polymer breaks up in solution.    

 

2.2.5.2 Tl(Tp3py) 

 

The monomer unit of Tl(Tp3py) appears basically identical to the Tl(I) salts of Tptol 

and Tp4py, and indeed Tp2py (bar the relocation of the pyridyl nitrogens).17,38  Whilst 

the average Npz⋅⋅⋅Tl bond lengths of these complexes were 2.578, 2.659 and 2.691 Å 

respectively, that of Tl(Tp3py) is larger at 2.828 Å.  Also, in Tl(Tp4py) the metal ion 

sat 1.924 Å out of the Npz mean plane, and this value again increases in Tl(Tp3py) to 

2.039 Å. 

 

These changes in Tl-Npz bond length are related to the presence of bridging pyridyl 

groups from other monomers.  For example, in Tl(Tptol), the average Npz⋅⋅⋅Tl bond 

length was 2.585 Å; in Tl(Tp2py), the pyridyl nitrogens also (albeit weakly) bond to 

the metal ion which results in lengthening of the Npz⋅⋅⋅Tl bonds for electroneutrality 

reasons; whilst in Tl(Tp4py), coordination of a pendant pyridyl unit from an adjacent 

monomer again results in long Tl⋅⋅⋅Npz bonds.   
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In Tl(Tp3py), an extra three external pyridyl units are able to approach the metal ion 

from three different monomer units: N(111), N(131) and N(151) (Fig. 2.2.24).  

Although the average Npy⋅⋅⋅Tl bond length is 3.140 Å, the combined effect of three of 

these Tl⋅⋅⋅Npy bonds lengthens the Npz⋅⋅⋅Tl bonds to an average of 2.828 Å – an 

adjustment necessary to maintain electroneutrality within the complex.  

 

 
 

Fig. 2.2.24 – Crystal structure of Tl(Tp3py) showing the labelling scheme 

 

Only one Tl(Tp3py) monomer resides in the asymmetric unit, with two of its arms in a 

transoid conformation and the third in a cisoid conformation.  The cisoid arm 

displays a higher torsion angle between the pyridyl-pyrazole planes (24°, compared 

to 17° and 19° for the N(131) and N(151) pyridyl rings respectively).   

 

These two bridging pyridyl donors result in formation of a polymer chain in a 

direction parallel to the ab face of the unit cell.  Pairs of N(151) pyridyl rings are 

situated 3.400 Å apart by additional π-stacking forces (offset by 1.398 Å with a 

centroid-centroid separation of 3.470 Å,  Fig. 2.2.25).  
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Fig. 2.2.25 – Extension of Tl(Tp3py) via N(131)-Tl(1)-N(151) bridging 

 

These one-dimensional chains are held together by the N(111)⋅⋅⋅Tl(1) bond which 

runs parallel to the c-axis at 3.368(3) Å, to give a two-dimensional sheet arrangement 

of chains which are then stacked in close proximity within the crystal (Fig. 2.2.26).   

 

 
 

Fig. 2.2.26 – Two-dimensional sheet in Tl(Tp3py) 

Viewing down the c-axis 

 

The three Npz and Npy donors about the metal ion do not represent any immediately 

obvious octahedral geometry, but there is a noticeably large vacant space on one side 

of the metal ion which is presumably filled by the lone pair of the metal ion, although 

no simple geometry can be determined for this arrangement.  Selected bond lengths 

and angles are given in Table 2.2.8. 
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Tl(1)-N(142) 2.756(3)   
Tl(1)-N(122) 2.783(3) N(142)-Tl(1)-N(122) 78.4(1) 
Tl(1)-N(102) 2.937(3) N(102)-Tl(1)-N(122) 67.8(1) 
Tl(1)-N(131A) 2.950(3) N(142)-Tl(1)-N(102) 73.0(1) 
Tl(1)-N(151B)  3.111(3)   

 
Table 2.2.8 – Selected bond lengths (Å) and angles (°) for [Tl(Tp3py)] 

 

It should be noted that Vahrenkamp previously synthesised a pair of Tp3py analogues 

with methyl substituents residing on either the pyridyl and/or pyrazolyl rings, and 

obtained crystal structures of their potassium salts.39  Due to the smaller size of the 

K+ ion compared to Tl(I), only one external pyridyl donor coordinates to the metal 

ion, acting in the same manner as N(131) in Tl(Tp3py), giving rise to 2:2 dimers as in 

Fig. 2.2.17, or 1:1 coordination polymers similar to that illustrated in Fig. 2.2.25.  In 

the case of the 2:2 dimer, a single water molecule also occupies the coordination 

sphere of the K+ ions, linking the units together via hydrogen bonding to nearby 

pyridyl donors.  Similar structures were also observed in the analogous Zn2+ complex 

but with a halide ion in place of the water molecule, removing cross linking of the 

coordination polymers.40   

 

2.2.5.3 Tl(Tkp3py) 

 

In a similar way to Tl(Tp3py), Tkp3py wraps three of its pypz arms around the Tl(I) ion 

with two having a transoid conformation and the other a cisoid conformation.  Batten 

and Duriska found the usual Tl⋅⋅⋅Npz coordination is adopted by two of the arms 

whilst one coordinates in an unusual η2 side-on manner through both Npz atoms.  

Such coordination behaviour has been seen before in poly(pyrazolyl)borate 

complexes where the B-Npz-Npz-M torsion angle lies between 75 to 92° (i.e. the 

pyrazolyl ring is ‘face-on’ to the metal ion, Fig. 2.2.27).41  In this example, the 

torsion is 95°. 

 

The metal ion further coordinates to three external pyridyl donors from three 

independent Tl(Tkp3py) units, effectively making the metal ion 7-coordinate.   
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The fourth 3pypz arm extends away from the cavity but this time, unlike in 

Tl(Tkp4py), the pyridyl donor, N(171), coordinates to a metal ion - the longest of the 

three Npy⋅⋅⋅Tl bonds.   

 

 
 

Fig. 2.2.27 – Crystal structure of Tl(Tkp3py) showing the labelling scheme 

 

Tl(Tkp3py) units pair up by the complementary pairing of N(131) atoms and another 

such pairing of N(111) donor atoms.  The former pairing has its pyridyl rings 

arranged parallel to each other in the same plane, whilst the latter dimer is assisted by 

a π-stacking interaction at 3.5 Å separations (Fig. 2.2.28).  The Npy donor of the 

longest Npy⋅⋅⋅Tl bond then connects these chains forming a two-dimensional sheet 

[N(171)⋅⋅⋅Tl(1) = 2.885(5) Å].  A more detailed analysis of the structure can be found 

in our joint publication.3  
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Fig. 2.2.28 – One dimensional chain of Tl(Tkp3py) viewing down the b-axis 

 

2.2.6   Other Metal Salts of Scorpionates based on 3pypz  

 

2.2.6.1     [Cd(Tp3py)(OAc)]2⋅1.5(DMF) 

 

In all the previous examples so far the metal ions employed in the scorpionate 

complexes have been unipositive and, in the case of Tl(1), have been quite variable 

in the geometry adopted about the metal centre.  If external pyridyl donors can 

approach the central cavity, then octahedral metal ions should offer a more defined 

arrangement of donors about themselves, and a higher oxidation state should see a 

move away from the 1:1 complexes we have already seen so many of. 

 

In [Re(Tp4py)(CO)3], we saw that the pyrazolyl pocket is a perfect fit for one face 

(fac-arrangement) of a pseudo octahedral geometry, yet Batten and Duriska 

discovered that a second pyrazolyl pocket could just as easily cap the other face 

when they reacted Ni(ClO4)2 with a slight excess of K(Tp3py), giving rise to a 

conventional 2:1 sandwich complex (Fig. 2.2.29).3   
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Fig. 2.2.29 – Crystal structure of Ni(Tp3py)2  

 

Indeed this sandwich behaviour has been observed in many octahedral complexes of 

simple Tp-based ligands,40,42 but in this case we are defeating the objective of fixing 

peripheral donor atoms to the pyrazolyl rings to build up multinuclear assemblies.  

Such sandwich coordination allows the metal ion’s geometry requirements to be 

satisfied with near-perfect octahedral geometry, and it seems likely that other 

octahedral metals will form these complexes if reacted with a suitable excess of tris-

based scorpionate.  The answer to avoiding this, and generating polynuclear species, 

appears to lie in blocking one or more of the metal ions coordination sites.   

 

In lowering the ratio of reagents to 1:1 in the reaction of Cd(OAc)2 with K(Tp3py), we 

observe a different behaviour (Fig. 2.2.30).  Whilst one Tp3py ligand does coordinate 

to the Cd(II) ion in its cavity, one of the acetate anions remains in the cavity as a 

bidentate ligand to the metal ion, creating a neutral complex.  With five of its six 

donor sites satisfied, the coordination sphere about the ion is completed with the 

pyridyl donor of a separate [Cd(OAc)(Tp3py)] unit, whose own Cd(II) ion is satisfied 

by a complementary pyridyl donation from the initial unit, effectively mirroring the 

dimer behaviour we observed with Cu2(Tp4py)2 [N(151)⋅⋅⋅Cd(1) = 2.386(4) Å].   
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The geometry about the metal is pseudo-octahedral with two oxygen donors from the 

acetate, one nitrogen from the external pyridyl ring and a fac-arrangement from the 

three Npz donors.  The two units in the dimer are related by an inversion centre 

associated with the triclinic space group P-1, and the separation between the bridging 

pyridyl rings is 3.317 Å (offset by 1.173 Å with a centroid-centroid distance of 3.645 

Å) - indicating a slight π-stacking interaction.   

 

 
Fig. 2.2.30 – Crystal structure of [Cd(Tp3py)(OAc)]2⋅1.5(DMF) 

 

Both N(131) and N(111) participate in hydrogen bonding – the former to a pyridyl 

hydrogen, H(116), and the latter to the methyl group of a disordered DMF molecule 

to give the overall packing structure: neighbouring dimer units regularly interspersed 

by DMF molecules.  Selected bond lengths and angles are given in Table 2.2.9.       
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Cd(1)-N(142)  2.315(4) Cd(1)-O(1)  2.351(4) 
Cd(1)-O(2)  2.325(4) Cd(1)-N(151A)  2.386(4) 
Cd(1)-N(122)  2.340(4) Cd(1)-N(102)  2.411(4) 
    
N(142)-Cd(1)-O(2) 113.75(13) N(122)-Cd(1)-N(151A) 90.31(13) 
N(142)-Cd(1)-N(122) 87.30(13) O(1)-Cd(1)-N(151A) 102.39(13) 
O(2)-Cd(1)-N(122) 157.91(14) N(142)-Cd(1)-N(102) 76.78(13) 
N(142)-Cd(1)-O(1) 166.79(13) O(2)-Cd(1)-N(102) 105.06(13) 
O(2)-Cd(1)-O(1) 56.18(13) N(122)-Cd(1)-N(102) 85.57(14) 
N(122)-Cd(1)-O(1) 103.95(13) O(1)-Cd(1)-N(102) 96.93(13) 
N(142)-Cd(1)-N(151A) 84.18(13) N(151A)-Cd(1)-N(102) 160.67(13) 
O(2)-Cd(1)-N(151A) 85.51(13)   

 
Table 2.2.9 – Selected bond lengths (Å) and angles (°) for [Cd(Tp3py)(OAc)]2⋅1.5(DMF) 
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2.3  Experimental  

 

2.3.1  Synthesis of Ligands 

 

3-(4-pyridyl)pyrazole 

 

This was prepared in two steps from 4-acetylpyridine as shown in Fig. 2.2.1.  In the 

first step, a mixture of 4-acetylpyridine (24.2 g, 0.2 mol) and N,N-

dimethylformamide-dimethylacetal (40 cm3) was heated to reflux for 2 h.  After 

concentration in vacuo, recrystallisation of the orange residue from CHCl3/hexane 

afforded an orange/yellow powder (intermediate A) in 58% yield. Chemical 

ionization MS: m/z 177 (M + H)+.  1H NMR (CDCl3): δ 8.64 (2H, d, J 5.9; pyridyl 

H2/H6), 7.79 (1H, d, J 12.5; alkene CH), 7.63 (2H, d, J 5.9; pyridyl H3/H5), 5.60 (1H, 

d, J 12.5 Hz; alkene CH), 3.12 (3H, s, Me), 2.89 (3H, s, Me).  13C NMR (CDCl3): δ 

186.31 (1C, carbonyl), 155.09 (1C, alkene CH), 150.08 (2C, pyridyl CH), 147.07 

(1C, pyridyl C), 121.07 (2C, pyridyl CH), 91.52 (1C, alkene CH), 45.19 (1C, CH3), 

37.30 (1C, CH3).  Found: C, 64.5; H, 6.8; N, 15.2.  Required for 

[C10H12N2O•0.5H2O]: C, 64.8; H, 7.0; N, 15.1%.  A mixture of A (20.3 g, 0.115 

mmol), ethanol (30 cm3) and hydrazine hydrate (30 cm3) was then heated to 60°C 

with stirring for 30 min.  After addition to cold water (130 cm3) and overnight 

refrigeration, the resulting off-white precipitate was filtered off, washed with copious 

amounts of water, and dried to give 3-(4-pyridyl)pyrazole in 77% yield.  Although 

characterisation data were satisfactory at this stage, the material could be further 

purified by vigorous washing with toluene (ultrasound cleaning bath) followed by 

recrystallisation from water.  X-Ray quality crystals were grown by diffusion of 

pentane into a concentrated DCM solution of the sample.  EI-MS: 145 (M+).  1H 

NMR (CDCl3): δ 11.68 (1H, br s, NH), 8.65 (2H, d, J 6.2, pyridyl H2/H6), 7.72 (2H, 

d, J 5.9, pyridyl H3/H5), 7.68 (1H, d, J 2.6; pyrazolyl), 6.76 (1H, d, J 2.2 Hz; 

pyrazolyl). 13C NMR (MeOD): δ 150.5, 149.8, 143.4, 131.6, 121.6, 104.4.  Found: C, 

66.3; H, 5.1; N, 29.2.  Required for C8H7N3: C, 66.2; H, 4.9; N, 29.0%. 
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 3-(3-pyridyl)pyrazole   

 

This was prepared in a similar manner to 3-(4-pyridyl)pyrazole (above), except using 

3-acetylpyridine as starting material.  A mixture of 3-acetylpyridine (24.2 g, 0.20 

mol) and N,N-dimethylformamide-dimethylacetal (40 cm3) was heated to reflux for 2 

h.  Removal of the solvent in vacuo delivered a brown sludgy residue, which was 

recrystallised, from CH3Cl/hexane to afford intermediate B as a yellow powder in 

94% yield. Chemical ionization MS: m/z 177 (M + H)+, 159 (M+ – H2O). 1H NMR 

(CDCl3): δ 8.95 (1H, s; pyridyl H2), 8.52 (1H, d, J 4.8; pyridyl H6), 8.05 (1H, d, J 

8.1; pyridyl H4), 7.70 (1H, d, J 12.5; alkene CH), 7.22 (1H, dd, J 4.8, 8.1; pyridyl 

H5), 5.54 (1H, d, J 12.5; alkene CH), 3.02 (3H, s; Me), 2.82 (3H, s; Me).  13C NMR 

(CDCl3): δ 186.21 (1C, carbonyl), 154.68 (1C, alkene, CH), 151.31 (1C, pyridyl, 

CH), 148.79 (1C, pyridyl, CH), 135.57 (1C, pyridyl, C), 134.98 (1C, pyridyl, CH), 

123.22 (1C, alkene, CH), 45.16 (1C, CH3), 37.32 (1C, CH3).  Found: C, 68.6; H, 7.2; 

N, 16.0.  Required for C10H12N2O: C, 68.2; H, 6.9; N, 15.9%.  Compound B (33.5 g, 

0.19 mol), ethanol (60 cm3) and hydrazine hydrate (60 cm3) was then heated to 65°C 

with stirring for 40 min. Removal of the solvent in vacuo afforded a dark orange oil.  

This was heated overnight whilst under vacuum and upon cooling formed either a 

beige hard solid of 3-(3-pyridyl)pyrazole in 85% yield.  X-Ray quality crystals were 

grown by diffusion of pentane into a concentrated DCM solution of the sample.  

Characterisation data were satisfactory at this stage, although the material could be 

purified further by recrystallisation from CH2Cl2/hexane. EI-MS: 145 (M+).  1H 

NMR (CDCl3): δ 9.06 (1H, s; pyridyl H2), 8.54 (1H, d, J 4.7; pyridyl H6), 8.08 (1H, 

d, J 8.1; pyridyl H4), 7.61 (1H, d, J 2.3; pyrazolyl), 7.30 (1H, dd, J 5.0, 7.9; pyridyl 

H5), 6.62 (1H, d, J 2.0; pyrazolyl). 13C NMR (CDCl3): δ 148.3, 147.0, 146.8, 133.3, 

131.9, 129.1, 123.8, 102.7.  Found: C, 66.4; H, 5.3; N, 29.1.  Required for C8H7N3: 

C, 66.2; H, 4.9; N, 29.0%. 

 

K(Bp4py) 

   

3-(4-Pyridyl)pyrazole (1.44 g, 9.9 mmol) and KBH4 (0.215 g, 4 mmol) were ground 

together thoroughly in a pestle and mortar and heated for 30 min in a Schlenk tube at 

175-180 °C under N2.  The mixture was stirred throughout, although this was 

hindered once melting occurred at 150 °C.   
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After cooling to r.t., toluene (30 cm3) were added and the mixture was agitated in an 

ultrasound cleaning bath for 20 min.  The suspension was filtered, and the solid was 

washed with hot toluene and hot hexane and then dried gave KBp4py as a white 

powder in 80% yield.  Negative-ion electrospray MS: m/z 301 [C16H14N6B]–.  1H 

NMR (MeOD): δ 8.43 (4H, d, J 6.2; pyridyl H2/H6), 7.82 (4H, d, J 6.6; pyridyl 

H3/H5), 7.61 (2H, d, J 2.2; pyrazolyl), 6.64 (2H, d, J 1.9; pyrazolyl). 13C NMR 

(MeOD): δ 150.5, 150.0, 144.9, 137.9, 121.6, 103.8.  11B NMR (MeOD): δ –7.59.  

Found: C, 53.9; H, 4.9; N, 23.7.  Required for [C16H14N6BK•H2O]: C, 53.6; H, 4.5; 

N, 23.5%. IR (cm-1): 2380m, 2263m, 1650w, 1604s, 1555w, 1483m, 1457m, 1420m, 

1357m, 1304w, 1247w, 1216w, 1175s, 1142s, 1093m, 1105m, 1050s, 996s, 956w, 

925w, 882w, 830s, 775s.  

 

K(Bp3py) 

 

A mixture of 3-(3-pyridyl)pyrazole (3.6 g, 24.7 mmol) and dried, freshly ground 

KBH4 (554 mg, 10.3 mmol) was heated in a Schlenk tube at 140 °C for 2 h under N2.  

The mixture was stirred throughout, although this was hindered once melting had 

occurred.  After cooling to r.t., toluene (30 cm3) and chloroform (25 cm3) were added 

and the mixture was agitated in an ultrasound cleaning bath for 20 min.  Eventually a 

white suspension was produced.  The mixture was filtered and the white solid was 

washed with warm toluene.  The white powder was then washed with several 

portions of hexane (total 50 cm3) before final washing with ether and overnight 

drying.  This gave KBp3py in 52 % yield.  Negative-ion electrospray MS: m/z 301 

[C16H14N6B]-.  1H NMR (MeOD): δ 8.94 (2H, d, J 2.4; pyridyl H2), 8.35 (2H, dd, J 

1.2, 4.8; pyridyl H6), 8.21 (2H, ddd, J 8.1, 3.4, 1.8; pyridyl H4), 7.61 (2H, d, J 2.1; 

pyrazolyl), 7.40 (2H, dd, J 4.9, 7.9; pyridyl H5), 6.53 (2H, d, J 1.8; pyrazolyl). 13C 

NMR (MeOD): δ 149.1, 147.6, 147.3, 137.8, 134.8, 133.1, 125.2, 102.8.  11B NMR 

(MeOD): δ –7.02.  Found: C, 54.7; H, 4.4; N, 23.7.  Required for 

[(C16H14N6BK)(H2O)0.5]: C, 55.0; H, 4.3; N, 24.1%.  IR (cm-1): 2373m, 2340m, 

2256m, 1599w, 1579w, 1486m, 1466w, 1424m, 1358m, 1309m, 1247w, 1174s, 

1139s, 1094m, 1050s, 1028m, 1006m, 950m, 898m, 853w, 810m, 756s, 723s, 709s. 
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K(Tp4py) 

 

3-(4-Pyridyl)pyrazole (0.96 g, 6.6 mmol) and KBH4 (0.108 g, 2 mmol) were ground 

together thoroughly in a pestle and mortar, and heated under N2 in a Schlenk tube, 

with stirring, at 230 °C for 3.5 h.  After cooling to r.t., 30 cm3 of toluene were added 

and the mixture was agitated in an ultrasound cleaning bath for 20 min. The 

suspension was filtered, and the solid was washed with hot toluene and hot hexane 

and then dried gave KTp4py as a white powder in 25% yield.  Negative-ion ES MS: 

m/z 444 [C24H19N9B]–.  1H NMR (MeOD): δ 8.50 (6H, d, J 6.2, pyridyl H2/H6), 7.88 

(6H, d, J 6.2, pyridyl H3/H5), 7.41 (3H, d, J 2.2, pyrazolyl), 6.80 (3H, d, J 2.4 Hz, 

pyrazolyl). 13C NMR (MeOD): δ 151.0, 150.1, 144.5, 136.7, 121.7, 104.3.  11B NMR 

(MeOD): δ 0.37.  Found: C, 57.8; H, 4.0; N, 25.0.  Required for [C24H19N9BK•H2O]: 

C, 57.5; H, 4.2; N, 25.1%.  IR (cm-1): 2418m, 1606s, 1487m, 1455m, 1420m, 1357m, 

1306w, 1252w, 1200s, 1175s, 1127w, 1107w, 1081s, 1053s, 996s, 958w, 831s, 763s. 

 

K(Tp3py) 

 

3-(3-Pyridyl)pyrazole (12.68 g, 87 mmol) and dried, freshly ground KBH4 (1.27 g, 

24 mmol) were heated in a Schlenk tube at 215 °C for 2 h under N2.  The mixture 

was stirred throughout, although this became more difficult once melting had 

occurred.  After cooling to r.t., toluene (40 cm3) and chloroform (40 cm3) were added 

and the mixture was agitated in an ultrasound cleaning bath for 20 min.  The mixture 

was periodically agitated with a glass rod, and sonicated for a further 20 mins, to 

produce a white suspension.  The mixture was filtered and the white solid washed 

with several portions of warm toluene and several portions of hexane before finally 

washing with ether, and overnight drying.  This gave K(Tp3py) in 73% yield.  

Negative-ion ES MS: m/z 444 [C24H19N9B]–.  1H NMR (MeOD): δ 8.97 (3H, d, J 2.1; 

pyridyl H2), 8.39 (3H, dd, J 1.5, 4.9; pyridyl H6), 8.25 (3H, ddd, J 1.8, 3.9, 8.1; 

pyridyl H4), 7.42 (3H, dd, J 5.2, 7.9; pyridyl H5), 7.34 (3H, d, J 2.1; pyrazolyl), 6.66 

(3H, d, J 2.1; pyrazolyl). 13C NMR (MeOD): δ 150.5, 148.1, 147.6, 136.6, 135.1, 

132.6, 125.3, 103.2.  11B NMR (MeOD): δ 1.21.  Found: C, 56.9; H, 4.1; N, 24.7.  

Required for [(C24H19N9BK)(H2O)1.5]: C, 56.5; H, 4.3; N, 24.7%.  IR (cm-1): 2460w, 

1572w, 1488w, 1462w, 1418m, 1359w, 1310w, 1238w, 1201m, 1177s, 1119m, 

1093m, 1046m, 1009m, 948m, 926w, 811m, 765s, 730s. 
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2.3.2 Synthesis of Complexes 

 

 [Co(4pypz)4Cl2]⋅4MeCN 

 

A solution of 3-(4-pyridyl)pyrazole (100 mg, 0.69 mmol) in MeCN (10 ml) was 

added to a solution of CoCl2 (22.4 mg, 0.17 mmol) in MeCN (10 ml) and the reaction 

mixture stirred once and filtered through celite.  Upon leaving to stand for a few 

moments, purple X-Ray quality crystals were seen to crash out of the filtrate.  After a 

few hours the crystals were filtered off and dried, to give 37 mg of opaque pink 

crystals (30% yield).  Found: C, 53.4; H, 4.2; N, 23.4. Required for 

[C32H28N12CoCl2]⋅0.5H2O: C, 53.4; H, 4.1; N, 23.4%. IR: 3287 (m); 1614 (s); 1556 

(w); 1496 (w); 1456 (m); 1424 (m); 1356 (w); 1290 (w); 1216 (m); 1178 (m); 1122 

(w); 1079 (w); 1039 (m); 1014 (m); 947 (m); 843 (s); 758 (s); 740 (s); 701 (s); 663 

(w); 622 (m) cm-1. 

 

Tl(Bp4py) 

 

Methanolic solutions of thallium(I) acetate (0.18 mmol) and KBp4py (0.18 mmol), 

both in 5 cm3 MeOH, were combined and stirred at r.t. for 40 min, during which time 

a white precipitate formed.  The solution was concentrated in vacuo and refrigerated 

for several hours before being filtered off and washed with MeOH to give a white 

powder.  Recrystallisation by diffusion of Et2O  vapour into a solution of the 

complex in DMF afforded colourless crystals suitable for X-ray diffraction studies.  

These were filtered off and washed with Et2O to give pure Tl[Bp4py] in 42 % yield.  

FAB-MS: m/z 507 [M+]; 358 [M+ - pyridylpyrazole unit].  Found: C, 37.8; H, 2.5; N, 

16.5. Required for [C16H14N6BTl]: C, 38.0; H, 2.8; N, 16.6%. IR: υB-H 2412, 2389, 

2264 cm-1. 1H NMR (DMSO-d6): δ 8.46 (4 H, m; pyridyl H2/H6); 7.68 (4 H, m; 

pyridyl H3/H5); 7.52 (2 H, d, J 2.1; pyrazolyl); 6.61 (2 H, d, J 2.1; pyrazolyl). 
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Tl(Bp3py) 

 

Methanolic solutions of K(Bp3py) (100 mg, 0.29 mmol) and thallium(I) acetate (78 

mg, 0.29 mmol) were combined and stirred at room temperature; no precipitate 

appeared.  Complete removal of the solvent left an off-white precipitate.  This was 

dissolved in CH2Cl2 (approx. 3 cm3) using ultrasound treatment to assist dissolution, 

and ether (10 cm3) was slowly added whilst the solution was stirring.   

 

The resultant white precipitate was filtered, and washed with ether to give Tl(Bp3py) 

in 65 % yield (96 mg).  X-Ray quality crystals were grown by layering of isopropyl 

ether onto a concentrated solution of the complex in DCM and allowing the layers to 

mix.  FAB MS: m/z 711 [M + Tl]+, 506 [M]+. Found: C, 37.6; H, 2.6; N, 16.5.  

Required for C16H14N6BTl: C, 38.0; H, 2.8; N, 16.6%}.  IR: υB-H 2372, 2252 cm-1. 1H 

NMR (DMSO-d6): δ 8.93 (2 H, dd, J 0.9, 2.1; pyridyl H2); 8.36 (2 H, dd, J 1.5, 4.9; 

pyridyl H6); 8.07 (2 H, ddd, J 2.0, 4.0, 8.0; pyridyl H4); 7.49 (2 H, d, J 2.1; 

pyrazolyl); 7.32 (2 H, ddd, J 0.8, 4.7, 7.9; pyridyl H5); 6.52 (2 H, d, J 2.1; pyrazolyl). 

 

Tl(Tp4py) 

 

Methanolic solutions of thallium(I) acetate (0.346 g, 1.33 mmol) and KTp4py (0.59g, 

1.33 mmol), were combined and stirred at r.t.  After 30 min. a white precipitate had 

started to evolve.  Diethyl ether (20 cm3) was added and stirring continued for an 

additional 15 min; this procedure was repeated once more.  The reaction mixture was 

refrigerated (5 ˚C) for several hours before filtration of the precipitate which was 

washed with ether to give Tl(Tp4py) as a white powder in 51% yield.  Colourless 

crystals, suitable for X-ray diffraction studies, were grown from slow evaporation of 

a CH2Cl2/MeOH solution of the complex.  FAB-MS: m/z 650 [M + H]+; 505 [MH+ - 

pyridylpyrazole unit].  Found: C, 44.3; H, 2.7; N, 19.4. Required for C24H19N9BTl: 

C, 44.4; H, 3.0; N, 19.4%. IR: υB-H 2441 cm-1. 1H NMR (DMSO-d6): δ 8.48 (6 H, dd, 

J 1.5, 4.5; pyridyl H2/H6); 7.72 (6 H, dd, J 1.7, 4.4; pyridyl H3/H5); 7.59 (3 H, d, J 

2.1; pyrazolyl); 6.71 (3 H, d, J 2.1; pyrazolyl). 
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Tl(Tp3py) 

 

Methanolic solutions of K(Tp3py) (150 mg, 0.31 mmol) and thallium(I) acetate (82 

mg, 0.31 mmol) were combined and stirred at room temperature for 20 mins.  A 

white precipitate appeared quickly.  Ether (10 cm3) was added and the mixture was 

refrigerated to ensure that precipitation was complete.  The white precipitate was 

filtered, washed with a little methanol and ether, and then dried to give Tl(Tp3py) in 

61% yield.  X-Ray quality crystals were grown by layering of isopropyl ether onto a 

concentrated solution of the complex in 50:50 DCM:MeOH and allowing the layers 

to mix.  FAB MS: m/z 650 [M + H]+.  Found: C, 44.6; H, 2.8; N, 19.3. Required for 

C24H19N9BTl: C, 44.4; H, 3.0; N, 19.4%.  IR: υB-H 2440 cm-1. 1H NMR (DMSO-d6): 

δ 8.97 (3 H, dd, J 0.8, 2.3; pyridyl H2); 8.41 (3 H, dd, J 1.7, 4.7; pyridyl H6); 8.12 (3 

H, ddd, J 1.9, 3.8, 7.9; pyridyl H4); 7.59 (3 H, d, J 2.1; pyrazolyl); 7.36 (3 H, ddd, J 

0.8, 4.7, 7.9; pyridyl H5); 6.64 (3 H, d, J 2.1; pyrazolyl). 

 

[Re(CO)3(Tp4py)]   

 

A mixture of K(Tp4py) (200 mg, 0.41 mmol) and Re(CO)5Cl (150 mg, 0.42 mmol) in 

THF (10 cm3) was stirred at room temperature for 72 hours.  The mixture was 

filtered through celite to remove the precipitate (KCl) and the solvent was then 

removed in vacuo to leave an oil.  CH2Cl2 (40 cm3) was added and the mixture was 

agitated for 10 mins in an ultrasound cleaning bath to generate a solid precipitate, 

which was filtered, washed with ether and dried to give [Re(CO)3(Tp4py)] in 67% 

yield.  X-Ray quality crystals were grown by slow evaporation of a concentrated 

acetone solution of the complex.  FAB MS:  m/z 716 [M+].  Found: C, 45.7; H, 3.1; 

N, 17.4.  Required for C27H19N9O3BRe: C, 45.4; H, 2.7; N, 17.6%.  IR: υB-H 2442 

cm-1, υCO 2019, 1881 cm-1. 
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[Cu2(Tp4py)2]   

 

Solutions of K(Tp4py) (67 mg, 0.14 mmol) and [Cu(MeCN)4][PF6] (52 mg, 0.14 

mmol) in MeOH (10 cm3 each) were combined and stirred at room temperature.  

After 30 min, a green precipitate was evident.  Ether (10 cm3) was added and stirring 

continued for 5 min, before the precipitate was filtered off and washed with methanol 

and ether.  The complex is essentially insoluble in all common solvents apart from 

dmf in which it is sparingly soluble; yellow X-ray quality crystals were grown by 

ether diffusion into a DMF solution of the complex.  FAB MS: m/z 1016 [M+], IR: 

υB-H 2444 cm-1. 

 

[(Tp3py)Cd(OAc)]2   

 

K(Tp3py) (0.31 mmol) and cadmium(II) acetate hydrate (0.31 mmol) were combined 

in dmf (5 cm3) and stirred at room temp for 20 min.  The reaction mixture was then 

filtered through celite and transferred to a Young’s tube where it was layered with 

diethyl ether.  After several days, this gave a generous crop of colourless X-ray 

quality crystals. Found: C, 48.9; H, 4.3; N, 19.5. Required for 

[(C24H19N9B)Cd(CH3CO2)2(DMF)2(H2O)3]: C, 48.7; H, 4.4; N, 19.6%.  IR: υB-H 

2450cm-1. 
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Complex  3-(4-pyridyl)pyrazole 3-(3-pyridyl)pyrazole  [Tl(Bp4py)] 
 
Empirical formula  C8H7N3 C8H7N3  C16H14BN6Tl 
Formula weight  145.17  145.17   505.51 
Temperature  150(2)K  150(2) K   100(2) K 
Crystal system  Monoclinic  Monoclinic  Monoclinic 
Space group  P21/c  P21/n             P21 
a /Å  6.9317(6)   15.009(2)   10.454(2)  
b /Å 9.0964(8)   5.8998(9)   6.3740(13)  
c /Å 11.0059(10)   16.526(3)   12.338(3)  
α /° 90  90   90 
β /° 92.2630(10)  91.308(3)   98.96(3) 
γ /° 90  90   90 
Volume /Å3 693.42(11) 1463.0(4)  812.1(3)  
Z 4  8   2 
Density (calculated) / Mg/m3 1.391 1.318  2.067  
Absorption coefficient / mm-1 0.090 0.085  9.954 
F(000) 304 608   476 
Crystal size / mm 0.61 x 0.55 x 0.21  0.40 x 0.35 x 0.50  0.18 x 0.10 x 0.09  
θ range for data collection 2.91 to 27.55°  1.81 to 27.53°   1.67 to 27.48° 
Reflections collected 7586 16023   9464 
Independent reflections 1590 [R(int) = 0.0213] 3347 [R(int) = 0.0931]  3693 [R(int) = 0.0455] 
Completeness to θ 99.1 %  99.2 %    100.0 % 
Data / restraints / parameters 1590 / 0 / 104  3347 / 0 / 207  3693 / 1 / 1225 
Goodness-of-fit on F2 S = 1.072   0.902   0.999 
R indices [for reflections with I>2σ(I)] R1 = 0.0414, wR2 = 0.1061  R1 = 0.0468, wR2 = 0.0994  R1 = 0.0370, wR2 = 0.0773 
R indices (for all data) R1 = 0.0440, wR2 = 0.1086  R1 = 0.1082, wR2 = 0.1200  R1 = 0.0407, wR2 = 0.0785 
Absolute Structure Parameter n/a n/a  -0.020(14) 
Largest diff. peak and hole 0.187 and -0.381 eÅ-3  0.161 and -0.233 e.Å-3  1.466 and -0.653 e.Å-3 
 
 
Table 2A          Crystallographic Data for the Complexes of Chapter 2 
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.   
Complex  [Tl(Tp4py)] [Re(Tp4py)(CO)3] [Cu2(Tp4py)2] 
 
Empirical formula  C24H19BN9Tl C27H19BN9O3Re  C24H19BN9Cu 
Formula weight  648.66  714.52   507.83 
Temperature  150(2)K  120(2) K   150(2) K 
Crystal system  Monoclinic  Hexagonal  Monoclinic 
Space group  Pc  P63             P21/n 
a /Å  8.7477(9)   14.468(2)   14.470(3)  
b /Å 16.5928(17)   14.468(2)   9.7387(17)  
c /Å 8.3841(9)   8.0751(16)   17.593(3)  
α /° 90  90   90 
β /° 96.281(2)  90   112.583(3) 
γ /° 90  120   90 
Volume /Å3 1209.6(2) 1463.9(4)  2289.1(7)  
Z 2  2   4 
Density (calculated) / Mg/m3 1.781 1.621  1.474  
Absorption coefficient / mm-1 6.708 4.195  0.987 
F(000) 624 696   1040 
Crystal size / mm 0.28 x 0.13 x 0.05  0.36 x 0.02 x 0.02  0.50 x 0.20 x 0.04  
θ range for data collection 1.23 to 27.47°  3.00 to 27.20°   1.56 to 27.52° 
Reflections collected 12713 10655   15501 
Independent reflections 5428 [R(int) = 0.0636] 2173 [R(int) = 0.1957]  5172 [R(int) = 0.0751] 
Completeness to θ 99.9 %  99.8 %    98.0 % 
Data / restraints / parameters 5428 / 2 / 316  2173 / 64 / 124  5172 / 0 / 317 
Goodness-of-fit on F2 S = 0.763  1.059   0.999 
R indices [for reflections with I>2σ(I)] R1 = 0.0337, wR2 = 0.621  R1 = 0.0734, wR2 = 0.1715  R1 = 0.0488, wR2 = 0.1029 
R indices (for all data) R1 = 0.0503, wR2 = 0.0837  R1 = 0.1034, wR2 = 0.1852  R1 = 0.0995, wR2 = 0.1220 
Absolute Structure Parameter 0.031(10) 0.06(4)  n/a 
Largest diff. peak and hole 0.761 and -0.794 eÅ-3  1.284 and -0.907 e.Å-3  0.521 and -0.368 e.Å-3 
 
 
Table 2B          Crystallographic Data for the Complexes of Chapter 2 
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.   
Complex  [Tl(Bp3py)]⋅0.5CH2Cl2 [Tl(Tp3py)] [Cd(Tp3py)(CH3CO2)]⋅1.5DMF 
 
Empirical formula  C16.5H15BN6ClTl C24H19BN9Tl  C30.5H32.50BN10.50O3.50Cd 
Formula weight  547.98  648.66   725.38 
Temperature  150(2)K  150(2) K   150(2) K 
Crystal system  Monoclinic  Monoclinic  Triclinic 
Space group  P21/c  P2(1)/n             P -1 
a /Å  8.1673(13)   9.2506(13)   9.5334(13)  
b /Å 16.983(3)   12.3819(17)   13.7358(18)  
c /Å 27.131(4)   19.887(3)   13.8959(19)  
α /° 90  90   70.983(2) 
β /° 92.016(3)  94.968(2)   84.410(2) 
γ /° 90  90   70.248(2) 
Volume /Å3 3760.8(10) 2269.3(5)  1619.0(4)  
Z 8  4   2 
Density (calculated) / Mg/m3 1.936 1.899  1.488  
Absorption coefficient / mm-1 8.743 7.151  0.726 
F(000) 2072 1248   740 
Crystal size / mm 0.46 x 0.16 x 0.08  0.48 x 0.25 x 0.13  0.30 x 0.20 x 0.20  
θ range for data collection 1.41 to 27.54°  1.94 to 27.55°   1.55 to 27.59° 
Reflections collected 41391 23976   18642 
Independent reflections 8548 [R(int) = 0.1369] 5118 [R(int) = 0.0488]  7263 [R(int) = 0.0579] 
Completeness to θ 98.4 %  97.8 %    97.0 % 
Data / restraints / parameters 8548 / 2 / 426  5118 / 0 / 320  7263 / 1 / 422 
Goodness-of-fit on F2 S = 1.019   1.027   0.975 
R indices [for reflections with I>2σ(I)] R1 = 0.0567, wR2 = 0.1187  R1 = 0.0263, wR2 = 0.0631  R1 = 0.0524, wR2 = 0.1198 
R indices (for all data) R1 = 0.1261, wR2 = 0.1451  R1 = 0.0322, wR2 = 0.0659  R1 = 0.0864, wR2 = 0.1326 
Largest diff. peak and hole 2.821 and -1.547 eÅ-3  1.891 and -0.920 e.Å-3  2.232 and -0.743 e.Å-3 
 
 
Table 2C          Crystallographic Data for the Complexes of Chapter 2 
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Complex  [Co(4pypz)4Cl2]⋅4MeCN   
 
Empirical formula  C40H40N16Cl2Co    
Formula weight  874.71    
Temperature  150(2)    
Crystal system  Tetragonal     
Space group  I4     
a /Å  15.649(2)        
b /Å 15.649(2)       
c /Å 8.653(2)     
α /° 90     
β /° 90     
γ /° 90     
Volume /Å3 2119.2(7)     
Z 2     
Density (calculated) / Mg/m3 1.371     
Absorption coefficient / mm-1 0.582    
F(000) 906    
Crystal size / mm 0.31 x 0.31 x 0.19     
θ range for data collection 1.84 to 27.52°    
Reflections collected 11871    
Independent reflections 2407 [R(int) = 0.0319]   
Completeness to θ 99.2 %     
Data / restraints / parameters 2407 / 1 / 138    
Goodness-of-fit on F2 0.969  
R indices [for reflections with I>2σ(I)] R1 = 0.0290, wR2 = 0.0672   
R indices (for all data) R1 = 0.0341, wR2 = 0.0692  
Absolute Structure Parameter 0(10)    
Largest diff. peak and hole 0.271 and -0.164 eÅ-3   
 
 
Table 2C          Crystallographic Data for the Complexes of Chapter 2 
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3.1 Introduction 

 

As mentioned in chapter one, the multidentate ligands bis[3-(2-pyridyl)pyrazol-1-

yl]dihydroborate (Bp2py) and tris[3-(2-pyridyl)pyrazol-1-yl]dihydroborate (Tp2py) 

(Fig. 3.1.1) have proven extremely popular in the studies of lanthanide ions.1  Their 

large cavity sizes are well suited to these metal ions, and they provide it with a set of 

hard-donor N atoms making their complexes both stable and easy to isolate.  Their 

highly encapsulating nature, particularly that of Tp2py which offers six N donors, 

often promotes the exclusion of solvent molecules from the metal ion’s coordination 

sphere2,3, and the ligands themselves have relatively few C-H oscillators in close 

proximity to the metal centre.  Both these phenomena help to optimise the lifetimes 

of the lanthanide luminescence by removing undesirable non-radiative pathways 

(Section 1.2.4.2).4,5   

 

 
                 [Tp2py]−                     [Bp2py]− 

 

Fig. 3.1.1 – Scorpionates of Tp2py and Bp2py 

 

In this chapter we continue to expand on this aspect of the ligands’ chemistry by 

studying their behaviour in a range of ternary lanthanide (III) complexes with (i) the 

1,3-diketonate ligand of the dibenzoylmethane anion (dbm−) (Fig. 3.1.2) and (ii) the 

nitrate anion (NO3
−).  The structural and chelating natures of these co-ligands 

respectively favour the exclusion of both C-H oscillators and solvent molecules from 

the metal centre,6 giving rise to mixed-ligand complexes whose luminescence 

lifetimes are maximised as far as possible.   
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Fig. 3.1.2 – Monoanion of dibenzoylmethane 

 

3.2   Results and Discussion 

 

3.2.1  Structural Studies of Tp2py Complexes 

 

Earlier studies by Graham Motson on the complexes of [Ln(Tp2py)(dbm)2] (where Ln 

= Nd, Tb, Yb), produced some questions on the behaviour of these systems when an 

inconsistency in the photophysical measurements was noticed.7  In the Nd complex, 

Motson observed an unusual rearrangement in the reaction mixture to afford a 

crystalline complex of 12-coordinate [Nd(Tp2py)2]+ cations and 8-coordinate 

[Nd(dbm)4]- anions, with the latter being a near-perfect example of cubic O8 

coordination geometry.  The 12-coordinate [Nd(Tp2py)2]+ species had already been 

observed with Nd(III),8 as well as Sm(III) and U(III),9 and whilst initial FAB results 

indicated formation of the [Nd(Tp2py)(dbm)2] species in solution, the rearrangement 

upon crystal growth was deemed to be driven by the potential coordinating ability of 

the pendant arm.  This prompted us to have a closer look at the series by synthesising 

the europium and praseodymium analogues.   

 

3.2.1.1  Synthesis of Complexes 

 

Reaction of the appropriate lanthanide(III) chloride with KTp2py and Hdbm (1:1:2) in 

MeOH and several drops of Et3N, gave rise to a coloured solution from which a 

precipitate was isolated after the addition of water.  Both elemental analysis and FAB 

mass spectrometry showed the complexes to be of the form [Ln(Tp2py)(dbm)2] 

(Table 3A).  Crystals suitable for X-Ray diffraction studies were grown over several 

days after the layering of hexanes onto a concentrated solution of the complex in 

CH2Cl2. 



Chapter Three – Lanthanides & Scorpionates  
____________________________________________________________________   

 130

 

3.2.1.2  [Eu(Tp2py)(dbm)2]  

 

As in the Tb complex,10 the environment about the Eu(III) centre comprises an 8-

coordinate N4O4 donor set made up from the two dbm ligands and two arms of the 

now tetradentate Tp2py ligand, whose third arm is uncoordinated and pendant (Fig. 

3.2.1).  

 

 
 

Fig. 3.2.1 – Crystal structure of [Eu(Tp2py)(dbm)2]  

 

Given the geometric constraints on the ligands and their bite angles, the geometry 

about the metal centre can be described as approximately square antiprismatic, with 

one square face defined by O(111)/O(115)/N(182)/N(191) and the other by 

O(141)/O(145)/N(162)/N(171), with mean deviations from the plane of 0.32 and 

0.17 Å respectively (Fig. 3.2.2a).  The former plane has an average edge length and 

corner angle of 2.89 Å and 87.15°, whilst the latter’s are 2.95 Å and 89.22°.  The 

angle between these two planes is 9.0°.   
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Alternatively, the structure can be viewed as a near-perfect equatorial belt of four 

nitrogen atoms N(162)/N(171)/N(182)/N(191) with axial ‘capping’ on both sides by 

the dbm oxygen pairs of O(111)/O(115) and O(141)/O(145) (Fig. 3.2.2b).  The N4 

and O4 planes deviate from the mean plane by 0.016 and 0.16 Å respectively, and the 

Eu metal ion sits 0.24 Å out of the N4 plane.   

 

 
         (a)                 (b) 

 

Fig. 3.2.2 – Geometry about the metal centre of [Eu(Tp2py)(dbm)2] 

 

The large steric bulk of both types of ligand favour the dbm units coordinating on 

opposite sides of the N4 plane and is no doubt a partial cause in forcing the third 

pyridyl-pyrazole arm away from the metal, which now resides in a trans-coplanar 

arrangement to minimise electrostatic repulsions between the nitrogen atoms (the 

torsion angle between pyrazolyl and pyridyl rings is 14.4°).  Selected bond lengths 

are given in Table 3.2.1, whilst bond angles can be found in Appendix 3.         

 

This ‘hypodentate’ behaviour of Tp2py has been seen before in many situations in its 

coordination chemistry to the f-block elements,10-12 and indeed the transition 

metals.13   
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As the f-block +3 metal cations have no directional influence on the arrangements of 

surrounding ligands (Section 1.2.2), coordination behaviour in such complexes is 

only affected by the aspects of (i) the size of the ligand(s), and (ii) the size of the 

metal ion.  Earlier works by Kanellakopulos and Takats showed that complexes of 

[Ln(Tp)3] were 9-coordinate in cases of Pr and Nd,14 but 8-coordinate when the 

smaller Yb metal was used,15 proving that the ionic radius of the lanthanide ion plays 

a decisive role in controlling the ligand coordination mode.  

 

Eu(1)-O(141) 2.328(4)  Eu(1)-N(162) 2.527(5) 
Eu(1)-O(111) 2.336(4)  Eu(1)-N(182) 2.535(5) 
Eu(1)-O(145) 2.348(4)  Eu(1)-N(171) 2.551(5) 
Eu(1)-O(115) 2.357(4)  Eu(1)-N(191) 2.570(5) 

 
Table 3.2.1 - Selected bond lengths (Å) for [Eu(Tp2py)(dbm)2] 

 

3.2.1.3  [Pr(Tp2py)(dbm)2] 

 

In synthesising the analogous Pr complex, we found that by using a larger metal ion, 

this ‘hypodentate’ ligand behaviour can be eradicated to leave us with the initially 

desired complex in which all three arms of Tp2py chelate to the metal centre.   

 

Elemental analysis confirmed the formation of [Pr(Tp2py)(dbm)2] and FAB mass 

spectrometry of the bulk sample gave a strong peak at 808 corresponding to the loss 

of one dbm unit to give the fragment {Pr(Tp2py)(dbm)}+ and a weaker signal at 1029 

suggested the presence of the {Pr(Tp2py)(dbm)2} unit, minus two hydrogen ions.  

Unit cell comparisons of several crystals suggested the structure (Fig. 3.2.3) was 

representative of the bulk sample. 

 

The five chelating groups all lie along the same axis as the B-H bond, and as all five 

are now coordinating, the metal centre is in a 10-coordinate N6O4 coordination 

environment, making this only the third example of such an environment about a Pr 

metal.2,16  The average bond lengths of Pr-Npz (2.652 Å), Pr-Npy (2.738 Å) and Pr-O 

(2.469 Å) remain unremarkable, but are each understandably larger than those of the 

Eu (2.531; 2.562; 2.343 Å) and Tb (2.506; 2.532; 2.321 Å) analogues.   
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Fig. 3.2.3 – Crystal structure of [Pr(Tp2py)(dbm)2] 

- The disordered component is shown with white bonds. 

 

 

There is also a degree of disorder about the C(52) atom on one of the dbm units, as 

illustrated on Fig. 3.2.3.  Here, both the phenyl and diketonate rings have been 

constrained to the ideal geometries and the disorder modelled over two independent 

sites at 0.486 % and 0.514 % site occupancies.  

 

The geometry about the metal centre does not fit any of the previously suggested 

‘ideal’ 10-coordination arrangements,17 but the best visual description is illustrated in 

Fig. 3.2.4 by viewing down the N(122)-Pr(1) bond.  With the pyrazolyl nitrogen 

N(122) in the centre of the picture at the ‘apex’, the two other pyrazole nitrogens, 

N(102) and N(142) form a pentagon with a pyridyl nitrogen, N(131), and an oxygen 

atom from each dbm unit, O(55) and O(21).   
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Fig. 3.2.4– Geometry about the metal centre of [Pr(Tp2py)(dbm)2] viewing down the N(122)-Pr 

bond (only one disordered component is shown) 

 

The average edge length and vertex angle for this pentagon are 2.818 Å and 107.6° 

respectively, using O(55); if O(55’) is used instead these figures become 2.871 Å and 

106.9°.   

 

The five atoms display an average deviation from the mean plane of 0.095 Å [using 

O(55)] or 0.180 Å [using O(55’)].  The pentagon is capped with the N(122) atom 

1.595 Å [O(55)] or 1.663 Å [O(55’)] above it, whilst on its other side resides a 

distorted square defined by atoms O(25)/N(151)/N(111)/O(51).   

 

Pr(1)-N(122)  2.595(3)  Pr(1)-O(55)  2.448(17) 
Pr(1)-N(142)  2.656(3)  Pr(1)-O(25)  2.454(2) 
Pr(1)-N(131)  2.656(3)  Pr(1)-O(51)  2.464(2) 
Pr(1)-N(102)  2.704(3)  Pr(1)-O(55')  2.492(17) 
Pr(1)-N(151)  2.754(3)  Pr(1)-O(21)  2.496(2) 
Pr(1)-N(111)  2.804(3)    

 

Table 3.2.2 - Selected bond lengths (Å) for [Pr(Tp2py)(dbm)2] 

 

 



Chapter Three – Lanthanides & Scorpionates  
____________________________________________________________________   

 135

 

This ‘square’ has an average length of 2.983 Å along its edges and an average angle 

of 89.5° at its corners, but is rather irregular with its corner angles varying from 

75.50° to 102.31°.  The mean deviation from this plane of four atoms is 0.135 Å.  

Selected bond lengths about the metal centre are given in Tables 3.2.2.      

 

3.2.2   Structural Studies of Bp2py Complexes 

 

Due to the varying coordination behaviour of the Tp2py ligand in the 

[Ln(Tp2py)(dbm)2] complexes, it is apparent that any photophysical studies on the 

series are complicated, with the behaviour of the complexes even more unpredictable 

in solution.  It is for these reasons that we have now replaced Tp2py with the 

tetradentate analogue Bp2py, in the hope that the absence of the third pyridyl-pyrazole 

arm will provide stable 8-coordinate species with no structural ambiguity, suitable 

for subsequent photophysical studies.   

 

In addition to this, such luminescence studies have seldom been performed on 

complexes containing Er and Pr metals, which are also luminescent in the near-IR 

region.  In order to expand this field we have synthesised the complexes of 

[Ln(Bp2py)2(NO3)] and [Ln(Tp2py)(NO3)2] (where Ln = Pr or Er).   

 

3.2.2.1  Synthesis of Complexes 

 

All complexes of the type [Ln(Bp2py)(dbm)2] were prepared in an identical manner to 

those of [Ln(Tp2py)(dbm)2] (Section 3.2.1.1), whilst those of [Ln(Bp2py)2(NO3)] and 

[Ln(Tp2py)(NO3)2] were prepared by the published methods via mixing methanolic 

solutions of the appropriate lanthanide(III) nitrate salt and KBp2py or KTp2py 

respectively.2,18,19  All complexes were subjected to subsequent precipitation and 

recrystallisation procedures.  Elemental analyses and FAB mass spectrometry 

indicated the above compositions (Tables 3A-3B), and X-Ray quality crystals were 

again grown by the layering of hexanes onto a concentrated CH2Cl2 solution of the 

complex. 
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3.2.2.2  [Ln(Bp2py)(dbm)2] (Ln = Pr, Nd, Eu, Gd, Tb, Er, Yb) 

 

All seven members of this series were shown to be both isomorphous and 

isostructural in sharing near identical unit cell dimensions and crystallising in the 

same space group (P21/c).  The geometries observed about the coordination spheres 

of the metal centres are identical to that observed in 8-coordinate [Eu(Tp2py)(dbm)2] 

(Fig. 3.2.5).   

 

In each case, there are two crystallographically independent molecules residing in the 

asymmetric unit, only one of which is shown in Fig. 3.2.5.  Whilst selected bond 

lengths and angles of both these molecules are given for all members in the series in 

Appendix 3, the two independent molecules are very similar to the extent that there 

is no need to describe them both.  Therefore, only one molecule is used in the 

following structural discussions.  In addition to this, we also limit these discussions 

to the extreme members of the series, Pr and Yb, with selected bond lengths for these 

complexes shown in Table 3.2.3. 

 

 
 

Fig. 3.2.5– Crystal structure of [Yb(Bp2py)(dbm)2]  
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In its previous chemistry with lanthanides,3,8,20 Bp2py has always coordinated all four 

of its nitrogen donors to the metal ion, and the [Ln(Bp2py)(dbm)2] system here is no 

exception.  As expected, the metal centres reside in an 8-coordinate N4O4 geometry 

which again can be viewed either as a square antiprismatic geometry, or as a N4 

equatorial belt capped either side by a pair of chelating oxygens with the four 

nitrogen atoms forming a near-perfect plane (Fig. 3.2.6).   

 

The mean deviation of the constituent atoms from the N4 plane is 0.0012 Å for the 

Yb structure and 0.0093 Å for that of Pr, with the metal ions sitting out of this plane 

by 0.197 and 0.279 ° respectively.  The Bp2py ligand itself cannot remain perfectly 

flat due to the sp3-hybridisation at the boron atom (also the case in the Tp2py 

systems).  Consequently the pyridyl rings are inclined at an angle of 33.8° to one 

another for the Yb complex, and 34.9° for the Pr complex. 

  

 
  

 Fig. 3.2.6 – Equatorial N4 belt about the Pr metal centre 
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Pr(1)-O(145)  2.390(2)  Yb(1)-O(145) 2.247(2) 
Pr(1)-O(111)  2.391(2)  Yb(1)-O(115) 2.256(2) 
Pr(1)-O(115)  2.397(2)  Yb(1)-O(111) 2.2743(18) 
Pr(1)-O(141)  2.403(2)  Yb(1)-O(141) 2.2879(19) 
Pr(1)-N(182)  2.589(3)  Yb(1)-N(182) 2.452(2) 
Pr(1)-N(162)  2.603(3)  Yb(1)-N(162) 2.466(2) 
Pr(1)-N(171)  2.627(3)  Yb(1)-N(171) 2.478(2) 
Pr(1)-N(191)  2.656(3)  Yb(1)-N(191) 2.509(2) 

 
Table 3.2.3 - Selected bond lengths (Å) for the complexes of [Pr(Bp2py)(dbm)2] and 

[Yb(Bp2py)(dbm)2] (data for only one of the two independent molecules is shown) 

 

In the case of Yb, the square antiprismatic geometry consists of two square planes 

comprising O(141)/O(145)/N(182)/N(191) [average edge (2.865 Å) and corner 

(87.6°)] and O(111)/O(115)/N(162)/N(171) [average edge (2.764 Å) and corner 

(86.9°)], which again, are far from perfectly square due to the bite constraints 

imposed by the ligands.   

 

As expected, there are slightly larger dimensions on the comparable square planes of 

the Pr structure [(2.878 Å / 87.5°) and (3.056 Å / 87.6°) respectively] although the 

corner angles of these square planes remain relatively similar.  The two square planes 

are near parallel with an angle of 6.1° (Yb) or 7.5° (Pr) between them (Fig. 3.2.7).     

 

 
 

Fig. 3.2.7 – Near parallel planes of square antiprismatic geometry 
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As the lanthanide series is traversed, the data show a progressive decrease in bond 

length and an increase in bite angle, consistent with the contraction of the ionic 

radius of the metal.  From the above discussions on changes in geometry, it is clear 

that ligand conformation in the [Ln(Bp2py)(dbm)2] systems, varies only slightly with 

the ionic radius of the lanthanide ion. 

 

Another common aspect of this series is the presence of a CH2Cl2 molecule, which 

lies astride a C2 axis and has been modelled with the appropriate disorder.  From a 

first glance, the purpose of this molecule appears to be assisting the packing 

arrangement of the complexes in the crystalline form through various Cl···H 

hydrogen bonds.   

 

However, the hydrogen atom(s) the chlorines choose to bond with vary throughout 

the series; ranging from bridging Hpz···Cl···Hpy bonds in the Pr complex (Fig. 3.2.8, 

average Cl···H = 2.961 Å) to single Hpy···Cl bonds in that of Yb (Fig. 3.2.9, average 

Cl···H =   2.927 Å).   

 

3.2.2.3  [Ln(Bp2py)2(NO3)] (Ln = Pr, Er) 

 

Both Er and Pr form isostructual complexes to the Tb, Nd and Yb analogues already 

published,8,18 with the displacement of two nitrate anions from hydrated [Ln(NO3)3] 

by two fully coordinating Bp2py units to give a 10-coordinate N8O2 donor 

environment about the metal centre (Fig. 3.2.10).  Two molecules of CH2Cl2 are 

present in the asymmetric units and absent from the first coordination spheres of the 

metal ions.   
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Fig. 3.2.8 – Disordered CH2Cl2 in the lattice of [Pr(Bp2py(dbm)2] 

 

 
Fig. 3.2.9 – Disordered CH2Cl2 in the lattice of [Yb(Bp2py(dbm)2] 
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Fig. 3.2.10 – Crystal structure of [Er(Bp2py)2(NO3)] 

 

Such similarities to the already published analogues do not warrant significant 

further discussions about their geometries, it is noticeable that these two complexes 

adopt the same coordination geometry about the metal centre as the 

[Pr(Tp2py)(dbm)2] complex described earlier.  This is shown in Fig. 3.2.11 with the 

erbium complex, viewing down the N(131)···Er(1) bond.   

 

The distorted five-sided pentagon comprises N(211)/N(202)/N(222)/N(231)/N(122) 

with an average side length and vertex corner of 2.864 Å and 107.6° respectively, 

with a mean deviation from this plane of 0.103 Å.  The Er atom resides 0.8931 Å 

below this plane and towards the approximate square base made up of the set 

N(102)/N(111)/O(301)/O(302), which itself has an average side length and vertex 

angle of 2.643 Å and 88.8° respectively.  
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Fig. 3.2.11 – Geometry about the metal centre in [Er(Bp2py)2(NO3)] viewing down  

the N(131)···Er(1) bond.  The N4 donor set of one Bp2py
 is coloured yellow, the other blue.  

 

From Fig. 3.2.12 it appears the Pr and Er complexes have opposite chirality from the 

arrangement of the ligands about the metal centres.  However, as neither these (nor 

the analogous complexes8,18) crystallise in chiral space groups, the complexes are 

likely to have crystallised in racemic mixtures, with the enantiomer solved in the 

asymmetric unit chosen at random.     

 

The expected decrease in metal-donor bond lengths between the Pr and Er analogues 

is observed (selected bond lengths are given in Tables 3.2.4), but here the 

contraction of the relative ionic radii has a distinctly marked effect on the structure.   

 

  Er(1)-N(102)   2.5067(19)   Er(1)-N(211)  2.593(2) 
  Er(1)-N(111)   2.840(2)   Er(1)-N(222)  2.525(2) 
  Er(1)-N(122)   2.452(2)   Er(1)-N(231)  2.929(2) 
  Er(1)-N(131)   2.5840(19)   Er(1)-O(301)  2.4612(18) 
  Er(1)-N(202)   2.4509(19)   Er(1)-O(302)  2.4923(18) 

 

Pr(1)-N(122)  2.589(5)  Pr(1)-N(222)  2.656(5) 
Pr(1)-N(102)  2.655(5)  Pr(1)-N(211)  2.732(5) 
Pr(1)-N(131)  2.720(5)  Pr(1)-N(231)  2.808(5) 
Pr(1)-N(111)  2.765(5)  Pr(1)-O(301)  2.577(5) 
Pr(1)-N(202)  2.587(5)  Pr(1)-O(302)  2.606(5) 
Pr(1)-N(300)  3.005(5)    

 

Table 3.2.4 - Selected bond lengths (Å) for the complexes of  

[Er(Bp2py)2(NO3)] and [Pr(Bp2py)2(NO3)] 
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Whilst the M···Npz bonds remain shorter on average to those of M···Npy, two of the 

Er···Npy bonds are especially long at 2.840(2) and 2.929(2) Å [to N(111) and N(231) 

respectively].  This is unlike the environment in the [Pr(Bp2py)2(NO3)] complex 

where Pr···Npy distances lay between 2.720(5) and 2.808(5) Å, and remarkably larger 

than the average Er···Npz bond length (2.484 Å).   

 

 
 

Fig. 3.2.12 – Optical isomers of [Pr(Bp2py)2(NO3)] (GREEN) and [Er(Bp2py)2(NO3)] (LILAC) 

 

Therefore, the expected contraction of the coordination environment resulting from 

the smaller ionic radius of Er(III,) results in steric congestion which is relieved by 

pushing two of the pyridyl ligands on the erbium complex further out of the 

coordination sphere.  Such a significant structural rearrangement could have 

repercussions on subsequent photophysical measurements.  

 

Crystal structures of the complexes [Ln(Tp2py)(NO3)2] (where Ln = Pr or Er) have 

already been described in detail,2 yet it is worth recalling that all three arms of the 

scorpionate ligand and both nitrate anions are chelating here to the metal centres, 

thus completing another example of a 10-fold N6O4 coordination geometry about the 

lanthanide ions.  No unusual bond distances were observed in this erbium complex.  
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3.2.3  Photophysical Studies of [Ln(Bp2py)(dbm)2] Complexes 

 

The electronic absorption spectrum of [Yb(Bp2py)(dbm)2] in CH2Cl2 is shown in Fig. 

3.2.13.  This spectrum is representative of the other six members of the 

[Ln(Bp2py)(dbm)2] series in that it shows three strong transitions in the UV/Visible 

region of the electromagnetic spectrum at: ca. 250, 297 ± 4, and 359 ± 3 nm.  The 

first two transitions can be attributed to ligand-centred π → π* transitions of the 

pyrazolyl and pyridyl rings,18 whilst the third at longer wavelength is attributed to a 

similar transition localised on the dbm molecule.21    

 

 
 

Fig. 3.2.13 – Electronic absorption spectrum of [Yb(Bp2py)(dbm)2] in CH2Cl2 solution.  

 

Due to their characteristic near-IR luminescence and subsequent practical 

applications (Sections 1.2.5-6), the luminescence spectra for those members of the 

series where Ln = Pr, Nd, Gd, Er, and Yb were recorded.   

 

As a consequence of their insolubility in H2O, measurements were performed in the 

anhydrous protic solvents of CH2Cl2, CH3OH and CD3OD, as well as in the solid 

state.  By using an excitation wavelength of 337 nm into the dbm-based transition, an 

electron should be promoted to an excited ligand singlet state (π → π*, Section 

1.2.4).  Those that collapse to the ligand triplet state and subsequently undergo 

intersystem crossing to the adjacent Ln(III) excited state, should then collapse to the 

ground state of the Ln(III) ion, giving rise to metal-ion based luminescence.   
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This emission can then be monitored (the results for the series [Ln(Bp2py)(dbm)2] are 

summarised in Table 3.2.5). 

 

 Emission lifetime τ / µs 

Complex solid state CH2Cl2 CH3OH CD3OD 

Yb 9.33 11.2 1.27, 8.95 12.5 

Er 1.39 1.88 0.85 (weak) 1.23 

Nd 0.74 0.69 0.18 0.59 

Pr 0.064 0.058 0.013 0.11 

 
Table 3.2.5 – Luminescence data for [Ln(Bp2py)(dbm)2] using 337 nm excitation 

 

3.2.3.1  [Yb(Bp2py)(dbm)2] 

 

The characteristic emission band22 of the only possible transition 2F5/2 → 2F7/2 is 

observed at 980 nm in all solvents with very long lived luminescence lifetimes – the 

longest of the series.  The lifetime of 11.2 µs achieved in CH2Cl2 is typical of such 

ytterbium-scorpionate complexes.8,18   

 

In CH3OH however, the emission is clearly resolved into two separate components 

with lifetimes of 1.3 and 9.0 µs (70 and 30 % weightings respectively).  This 

suggests the presence of two distinct species in methanolic solution, which are 

interconverting slowly on the luminescence timescale.  

 

It is likely that the shorter-lived luminescence arises from 

[Ln(Bp2py)(dbm)2(CH3OH)q], in which the presence of one or more coordinated O-H 

oscillators drastically reduces the luminescence lifetime by providing a non-radiative 

decay path for the energy in the Ln(III) excited state.  The relatively small ionic 

radius of Yb(III) (the smallest of all in the series), may be inducing the same 

behaviour observed by Takats13 in that the decrease in bond length between donor 

atoms and metal ion causes fluxional dissociation of a ligand’s donor atom.   
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Whilst this behaviour is not observed in the solid state (hence the observation of one 

long lived lifetime decay at 9.3 µs), it may be promoted in good donor solvents. 

  

The longer lived component at 9.0 µs is indicative of the originally unsolvated 

‘intact’ complex, with the small reduction in lifetime (compared to that in CH2Cl2) 

attributed to surrounding O-H oscillators in the second coordination sphere, whose 

deactivating effects are not as dramatic as those in the first coordination sphere.23  

Both lifetimes are independently observed here because the species’ luminescence 

decays faster than the time it takes for the two species (solvated and unsolvated) to 

interconvert.   

 

The presence of such clearly resolved ‘dual species’ has been seen before in similar 

Yb complexes,8 but whilst the luminescence lifetimes of Nd and Pr in CH3OH are 

also short-lived, we only see single species in these solutions.  This result is 

consistent with the rate of solvent exchange at the Yb centre being much slower in 

comparison to the earlier metals (Fig. 3.2.14) due to its smaller ionic radius,24,25 and 

thus the presence of two species in solution for the Pr and Nd complexes is not 

detectable by luminescence methods.  

 

 
 

Fig. 3.2.14 – Rates of solvent exchange of SO4
2- (ο) and H2O (•) on Ln(H2O)n

3+  

(Reproduced from Ref  24) 
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O-D oscillators have a poorer overlap with intermediate energy levels of Ln(III) ions 

than O-H (Section 1.2.4.2), and so changing the surrounding solvent to CD3OD 

restores the luminescence lifetimes by removing O-H oscillators from both the first 

and subsequent coordination spheres.  As CD3OD has equal dimensions to its non-

deuterated cousin, we can presume that both the species [Yb(Bp2py)(dbm)2] and 

[Yb(Bp2py)(dbm)2(CD3OD)q] exist in solution, but both now have similar lifetimes.  

Consequently, the two lifetimes are not sufficiently different to resolve into two 

separate components, and we observe a single luminescence decay in CD3OD 

solution with a luminescence lifetime of 12.5 µs.    

 

The value of ‘q’ in the formula [Yb(Bp2py)(dbm)2(CH3OH)q] can be calculated by 

comparing the luminescence lifetimes in the standard and deuterated solvents with 

Equation 3.1  

 

    q = A(K ) - B           Eq. 3.1 

 

A is a statistically pre-determined coefficient (characteristic of an individual 

lanthanide ion), and K is the change in luminescence decay rates in methanol-H4 and 

methanol-D4.  B is another pre-determined correction factor that considers decay 

effects from outer sphere contributors.  For Yb(III) in methanolic solutions,26 A is 

2.0 µs-1 and B is 0.1 µs -1 giving us     

 

q = 2(τMeOH
-1 – τMeOD

-1) – 0.1          Eq. 3.2 

 

As we cannot resolve the separate luminescence decays of [Yb(Bp2py)(dbm)2] and 

[Yb(Bp2py)(dbm)2(CD3OD)q], we have to assume that they both have the same 

lifetime decay of 12.5 µs.  By using the corresponding values for [Yb(Bp2py)(dbm)2] 

and [Yb(Bp2py)(dbm)2(CH3OH)q] in methanol-H4 (9.0 and 1.3 µs respectively) we 

can calculate that the values of q (and the approximate number of methanol 

molecules in the first coordination sphere) are 0 for [Yb(Bp2py)(dbm)2] and 1.3 for 

[Yb(Bp2py)(dbm)2(CH3OH)q], which sensibly approximates to 1.   
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3.2.3.2  [Nd(Bp2py)(dbm)2] and [Er(Bp2py)(dbm)2] 

 

Luminescence in both the solid state and in solution was observed for both of these 

complexes.  The Nd(III) complex showed the characteristic emission bands of 880, 

1055, and 1340 nm which correspond to transitions from the excited state of 4F3/2, to 

the emissive states of 4I9/2, 4I11/2, and 4I13/2 respectively.27  Emission at 1530 nm was 

seen for the Er(III) analogue, indicative of the 4I13/2 → 4I15/2 transition.28  Each decay 

fitted well to a single exponential curve, indicating the presence of a single 

luminescent species. 

 

Compared to the Yb(III) analogue, the luminescence lifetimes of these two 

complexes are remarkably small, being less than 1 µs for Nd(III) in both solution and 

the solid state.  This is to be expected as both Nd(III) and Er(III) have a greater 

manifold of intermediate excited states in their network of energy levels (Fig. 3.2.15) 

which increases the chance of energy deactivation to the ground state via 

radiationaless additional emissive states.   

 

 
 

Fig. 3.2.15 – Energy levels within selected lanthanide(III) ions 
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In addition to this, and especially in Nd(III), the energy gaps between these extra 

levels closely match the vibrational energies of C-H oscillators, providing another 

energy quenching pathway.29  As C-H bonds are readily present in both our 

scorpionate and dbm ligands, as well as in conventional solvents, Nd(III) 

luminescence lifetimes are more sensitive to their surroundings than the other Ln(III) 

ions, and they become highly dependent on the structure and environments of the 

coordinating ligand(s) in their complexes.  Consequently, values of A and B for 

Equation 3.2 have limited use, and we need to reconsider the factors in the equation.   

 

The ‘revised’ equation is Equation 3.3, in which the values of A and B are adjusted 

to account not only for the effect of replacing the solvents’ O-H groups with O-D 

oscillators, but CH3 with CD3 as well – something not considered in Equation 3.2.8 

 

q = 0.29(τMeOH
-1 – τMeOD

-1) – 0.4         Eq. 3.3  

 

Taking the values of 0.59 and 0.18 µs for the deuterated and non-deuterated species 

respectively, the value of q for [Nd(Bp2py)(dbm)2] is 0.7, which is right in between 

the values of 0 and 1.3 we achieved for the two Yb(III) species, suggesting that there 

is a partial degree of solvent coordination.  There are two separate theories to explain 

this:  

 

(i) If there are two species in solution (i.e. [Nd(Bp2py)(dbm)2] and 

[Nd(Bp2py)(dbm)2(CH3OH)q]) then their luminescence lifetimes are 

sufficiently similar to prevent them being resolved into two separate 

species; 

 

(ii) The rate of solvent exchange is occurring much faster than the 

timescale of the experiment, so a single averaged luminescence 

lifetime is observed.   

 

Given the vast quenching effect we have seen between the coordinated and 

uncoordinated Yb(III) species, the first theory is hard to justify in not seeing such 

species with Nd(III).   
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It is more likely that the exchange rate of solvent (much faster compared to that of 

Yb, Fig. 3.2.14) is sufficiently fast enough to warrant the observation of an ‘averaged 

out’ species in solution.  This behaviour has already been seen in similar studies of 

other lanthanide(III) ions.8 

  

At the time of writing, no relationship between inner sphere solvation number (q) 

and luminescence lifetimes has been proposed for Er(III) complexes, and as these are 

derived purely on statistical examples, it would be unwise to attempt a relation based 

on this single example.  

 

3.2.3.3  [Pr(Bp2py)(dbm)2]  

 

To date, there have been very few studies on the luminescence from Pr(III) 

complexes, with those already reported concentrating on the measurement and 

assignment of steady-state emission spectra.30-33   

 

Assignment of emission bands from Pr(III) is more complicated due to its plethora of 

energy levels, enabling transitions to occur from several excited levels (3P0, 1D2, and 
1G4, Fig. 3.2.16a) which emit in both the visible and near-IR regions.  In our system, 

luminescence was observed at 600, 1030 and 1440 nm.  The first of these values was 

recorded in CH2Cl2 only, and is shown to comprise several individual components 

(Fig. 3.2.16b).  These consist of two emission maxima at 603 and 610 nm, as well as 

some definite shoulders on both the high (594 nm) and low energy sides (620 and 

628 nm).   

 

Voloshin and co-workers also observed similar closely overlapping maxima at ca. 

605 and 610 nm in numerous β–diketonate-Pr(III) complexes, crediting them to the 

transitions of 1D2 → 3H4 and 3P0 → 3H6 respectively.30  In reference to our 

observations; this implies successful population of the 3P0 energy level by the triplet 

excited state of the dbm ligand.   
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But Voloshin also observed 3P0-based emissions from transitions to the 3H4 and 3F2 

levels (490 and 645 nm respectively) which we do not see in our system; signifying 

that the triplet state of the dbm ligand lies beneath the 3P0 excited state at 

approximately 20,000 cm-1, and is thus unable to populate the 3P0 level.  In this 

instance, the composite structure of the visible emission must arise from crystal field 

effects rather than from two overlapping transitions.  
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Fig. 3.2.16a                                                                        Fig. 3.2.16b 

     – Energy level diagram for Pr(III)                          - Emission spectrum of [Pr(Bp2py)(dbm)2] in 

                                                                                                           CH2Cl2 

 

As f-orbitals are so well shielded by the 5s and 5p orbitals, they are often deemed not 

to be perturbed by the approach and subsequent coordination of ligand molecules.  

This means that crystal field effects for Ln(III) ions are negligible when compared to 

those of early d-metals (between 1-10 % of those experienced by d-block metals) and 

are often ignored.  However, such effects have been noted before in Pr(III) systems 

with the 3H4 ground state level splitting into several closely spaced states.  In the 

presence of weak-field splitting ligands such as acetates, the separation between the 

new levels approximates to 100 cm-1.34  With our stronger-field ligand system this 

splitting is increased to almost 200 cm-1, as shown by the gap between the main 

components of the 600 nm emission band.   
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Fig. 3.2.17 shows a 3-dimensional image of the emission peaks in the near-IR region 

taken in the solid state (the results are identical for those in solution).  In collecting 

these time-resolved data, a cut-off filter was employed to remove signals below 850 

nm as our main focus is on near-IR luminescence; however, residual scattering from 

the visible emission peak gives rise to a weak component at ≈ 1210 nm (marked with 

* in the diagram) which subsequently passed through the filter.  Regardless of which 

near-IR transition was observed, the luminescence lifetimes were found to be the 

same, suggesting both emissions stem from a common excited state.     

 

 
Fig. 3.2.17 – Solid state time-resolved emission spectra in the near-IR region of 

[Pr(Bp2py)(dbm)2] 

 

The emission at ca. 1030 nm has already been reported in the related compounds of 

[Pr(TTA)3.2H2O]30, [Pr(FOD)3]31, and [La(1-x)PrxP5O14]35 varying slightly with the 

surrounding solvents, and is ascribed to the 1D2 → 3F4 transition.  No one however, 

has reported any emissions at lower energies.   

 

On the basis of the energy scheme in Fig. 3.2.16a, and assuming emission stems 

from the 1D2 excited state as well, the emission at 1440 nm (albeit weak) is assigned 

to 1D2 → 1G4.  This is also the only available level that energy from 1D2 can pass too 

with a lower energy transition. 
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The luminescence lifetimes in the various media show the expected quenching also 

observed in the other Ln(III) complexes, with the O-H oscillators in methanol-H4 (13 

ns) showing very efficient degrees of quenching compared to methanol-d4 (110 ns).  

Such a marked quenching effect on Pr(III) has been noted by Güdel and co 

workers,34 and understandably, the lifetimes in methanol-d4 are superior to the other 

media.  The degrees of quenching observed in the solid state stem from non-radiative 

pathways via vibrational dissipation throughout the lattice.       

 

3.2.4 Photophysical Studies of [Ln(Bp2py)2(NO3)] and [Ln(Tp2py)2(NO3)] 

Complexes 

 

With the exception of the absorption band at 359 nm, the UV spectra for these 

complexes mirror that shown in Fig. 3.2.13, with ligand centred π → π* transition 

pairings of ca. 254 and 295 nm; and 245 and 288 nm for the Bp2py and Tp2py 

complexes respectively.2,18  The ligand-centred triplet excited state level was again 

populated by excitation of the molecule at 337 nm into the tail of the UV absorption 

bands. 

 

3.2.4.1   Ln = Pr(III) 

 

Visible region steady-state luminescence spectra for [Pr(Bp2py)2(NO3)] is shown in 

Fig. 3.2.18, recorded in CH2Cl2 solution.  From previous studies with the Gd(III) 

analogue of the Tp2py complex,36 the energy of the ligand-centred triplet level of our 

pyridyl-pyrazole based ligand was found to reside at 23900 cm-1, higher than both 

the 1D2 (ca. 17000 cm-1) and 3P0 (ca. 21000 cm-1) excited states (see Fig. 3.2.16a).   

 

In these systems, this results in several additional transitions from the 3P0 level which 

the dbm-based triplet state could not populate.  Again, we assign these in comparison 

to the work by Voloshin and co-workers.30 
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Fig. 3.2.18 – Steady state luminescence from [Pr(Bp2py)2(NO3)] 

 

The dominant emission at 603 nm arises from the combination of overlapping 3P0 → 
3H6 and 1D2 → 3H4 transitions, whilst the smaller peak at 649 nm is attributed to 3P0 

→ 3F2.  Emissions at 490 and 530 nm stem from the 3P0 level as well, with transitions 

to 3H4 and 3H5, respectively.  The broad peak between 680 and 750 nm cannot be 

resolved completely because there are several energy transitions that fall into this 

range.  These include 3P0 → 3F3, 3P0 → 3F4, and 1D2 → 3H5 at least, with the overlap 

accounting for the broadness of the signal. 

 

Moving into the near-IR region, we again see 1D2-based luminescence occurring at 

1020 (3F4) and 1440 (1G4) nm energy.  Whilst both have already been assigned, 

further evidence that the 1440 nm transition originates from the 1D2 state as well is 

provided by both these emissions having lifetimes that are the same within 

experimental error. Emission peaks arising from different excited states of Pr(III) 

have shown to have significantly different lifetimes.37,38     

 

In the [Pr(Tp2py)(NO3)2] complex, the dominant transitions of 3P0 → 3H4 (489 nm); 
3P0 → 3H6 and 1D2 → 3H4 (602 nm) are still evident, with the noticeable differences 

being the splitting of the weaker signals at ca. 530 and 649 nm (Fig. 3.2.19).   

 



Chapter Three – Lanthanides & Scorpionates  
____________________________________________________________________   

 155

 

 
Fig. 3.2.19 – Steady state luminescence from [Pr(Tp2py)(NO3)2] 

 

As the 3P0 state is impervious to crystal field effects, the change in symmetry of the 

Pr(III) coordination environment in the Tp2py structure must induce a splitting in the 
3H5 and 3F2 states.  The separation between the new pairs of peaks is typically a few 

hundred cm-1, consistent with those induced by such effects.34  The near-IR 

transitions at 1020 and 1440 nm are again present. 

 

Even though both 1020 and 1440 nm transitions have identical half lives, we used the 

more intense (former) signal to estimate the luminescence lifetime of the complexes 

(Table 3.2.6) which, due to solubility restrictions, were performed in the solid state, 

and CH2Cl2 only.  The short lifetimes are in good agreement with those observed for 

[Pr(Bp2py)(dbm)2] earlier, and are reflective of the degree of quenching by C-H 

oscillators in solution, and vibrational effects in the lattice structure of the solid.  The 

presence of additional C-H oscillators on the dbm ligand explains this complex’s 

slightly smaller luminescence lifetimes.  Decays were indicative of a single species 

present for both complexes. 

 

It is worth noting in these Pr(III) complexes, that the solid state lifetimes are shorter 

than in solution, whereas the opposite is true with [Pr(Bp2py)(dbm)2].  This indicates 

that the vibrational manifolds of the nitrate complexes arising from their structures in 

the solid state, have a better overlap with the energy levels of Pr(III) than in the dbm 

complex.   
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Emission Lifetime τ /µs 

Complex CH2Cl2 solution solid state 

[Pr(Bp2py)2(NO3)] 0.11  0.073  

[Er(Bp2py)2(NO3)] 0.52, 1.64 1.20  

[Pr(Tp2py)(NO3)2] 0.056  0.054  

[Er(Tp2py)(NO3)2] 0.19, 1.49 1.59  

 
Table 3.2.6 – Luminescence lifetimes of the complexes [Ln(Bp2py)2(NO3)] and [Ln(Tp2py)(NO3)2]  

(Ln = Pr and Er) 

 

At this stage it is hard to say whether the main contribution comes from vibrations of 

the local environment, or those of the crystal’s global structure.  

 

3.2.4.2  Ln = Er 

 

The only expected emission at 1530 nm was observed in both Er(III) complexes 

(4I13/2 → 4I15/2) with luminescence lifetimes in solution (for both complexes) fitting 

best to a dual exponential decay.  These were 0.52 and 1.64 µs for the Bp2py complex 

and 0.19 and 1.49 µs for that of Tp2py, with the latter species in each case likely to be 

an unsolvated one.  Direct approach of a quenching CH2Cl2 molecule would at first 

appear difficult as both sets of complexes are 10-coordinate; however in Section 

3.2.2.3 it was noted that some Er···Npy distances were abnormally long suggesting 

that partial detachment of a pyridyl-pyrazole arm is likely, exposing a coordination 

site for interaction with solvent molecule(s).  This complication is not present in the 

solid state where all Er(III) ions are coordinatively saturated. 

 

The absence of dual exponential decay from both Pr(III) complexes in solution, 

suggests that there is less steric congestion about the metal centres, as they retain 

their 10-coordinate environments.  However, we must also consider the possibility 

that any transmutation between intact and solvated forms could occur on a time scale 

much faster than that of the instrument, and that we are only seeing an average decay 

for the two.   
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Indeed, this is true for all of the complexes reviewed in this chapter which have 

showed the presence of single emitting species in their respective media.  Any 

shorter-lived Pr(III)-based emission that may have arisen from partial solvation 

would be at the limits of our detection system and may not be detectable. 
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3.3 Experimental  

 

3.3.1 Synthesis of Complexes 

 

Potassium bis[3-(2-pyridyl)pyrazol-1-yl]dihydroborate (KBp2py),39 and Potassium 

tris[3-(2-pyridyl)pyrazol-1-yl]dihydroborate (KTp2py),40 were prepared according to 

the previously published methods.  

 

[Ln(Bp2py)(dbm)2] (Ln = Pr, Nd, Eu, Gd, Tb, Er, Yb)  

These complexes were all prepared in the same way.  Solutions of KBp2py (0.204 g, 

0.6 mmol) in CH3OH (5 ml) and the corresponding lanthanide trichloride hydrate 

(0.6 mmol) in CH3OH (5 ml) were combined at room temperature and stirred.  After 

several minutes, a solution of Hdbm (0.270 g, 1.2 mmol) in CH3OH (5 ml) was 

added to the mixture followed by 1 ml of Et3N.  The mixture was stirred for a further 

10 mins, after which the addition of 10-20 ml of H2O afforded off-white precipitates. 

 

These were isolated by filtration and washed with copious amounts of H2O and ether.  

Drying in vacuo gave the desired products in 70-90% yield.  Crystals suitable for X-

Ray studies were grown by layering hexanes onto a concentrated CH2Cl2 solution of 

the bulk products.  This slow recrystallisation technique also helped to increase the 

purity of the complexes, although with a reduction in their yields (53–65%).  

Characterisation data for these complexes are displayed in Table 3B.   

 

[Ln(Bp2py)2(NO3)] and [Ln(Tp2py)(NO3)2] (Ln = Pr, Er)   

These complexes were prepared in accordance with the previously described 

methods.2,10,18  Characterisation data are given in Table 3A. 

 

[Ln(Tp2py)(dbm)2] (Ln = Pr, Eu)   

These complexes were prepared in accordance with the previously described 

methods.10  Characterisation data are given in Table 3A 
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3.3.2 Physical Data for Complexes 

         Elemental analysis (%)a         

 

Complex   Colour  Yield (%)b   C    H    N    IRc   FAB MSd 

ν(BH)/cm-1   M+ /(m/z) 

 

[Eu(Tp2py)(dbm)2] Yellow  49  62.3 (62.2) 4.0 (4.0) 11.9 (12.1)  2444  1043, 820 (M+ - dbm) 

[Pr(Tp2py)(dbm)2] Green  67  62.2 (61.8) 4.0 (4.1) 12.0 (12.0)e  2444  1029, 808 (M+ - dbm) 

 

[Er(Bp2py)2(NO3)] Pink  34  45.7 (45.4) 3.4 (3.4) 21.1 (21.4)f  2401, 2288           769 (M+ - NO3) 

[Pr(Bp2py)2(NO3)] Green  37  45.1 (44.5) 3.2 (3.4) 20.7 (20.5)g  2403, 2276           743 (M+ - NO3) 

 

 
a Calculated values in parentheses.  b Final yields after slow recrystallisation from CH2Cl2/hexane.  c  Solid-state, as diamond ATR.   
d  Recorded with 3-nitrobenzyl alcohol as matrix; the molecular ions have the appropriate isotopic pattern in every case. 
e  These values are based on the presence of 1 molecule of H2O per complex molecule. 
f  These values are based on the presence of 0.25 molecules of CH2Cl2 per complex molecule.  
g These are based on the presence of one molecule of CH2Cl2 per complex molecule.  

 
 
Table 3A  Analytical and Physical Data for the Complexes of Chapter 3 
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        Elemental analysis (%)a         

 

Complex   Colour  Yield (%)b  C    H    N    IRc   FAB MSd 

ν(BH)/cm-1   M+ /(m/z) 

 

 

[Pr(Bp2py)(dbm)2]  Green  58  61.0 (61.1)  4.1 (4.0)  9.2 (9.2) f   2390, 2270   887 

[Nd(Bp2py)(dbm)2] Lilac  58  60.3 (60.8)  3.9 (4.0)  9.2 (9.2) f   2389, 2270   891 

[Eu(Bp2py)(dbm)2] Yellow  64  60.1 (60.3)  4.0 (4.0)  9.0 (9.1) f  2390, 2270   900 

[Gd(Bp2py)(dbm)2] Yellow  65   59.7 (59.9)  3.8 (3.9)  9.0 (9.1)    2390, 2271   905 

[Tb(Bp2py)(dbm)2] Yellow  64   60.0 (59.8)  4.0 (3.9)  8.7 (9.1) f   2389, 2270   906 

[Er(Bp2py)(dbm)2] Peach  54   59.6 (59.3)  3.9 (3.9)  8.8 (9.0) f  2389, 2271   914 

[Yb(Bp2py)(dbm)2]  Yellow  53   59.4 (58.9)  3.8 (3.9)  8.7 (8.9) f  2389, 2270   921 

 

 
--- See page 159 for key---  

 
 
Table 3B  Analytical and Physical Data for the Complexes of Chapter 3 
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Complex  [Eu(Tp2py)(dbm)2] [Pr(Tp2py)(dbm)2]  [Pr(Bp2py)(dbm)2] 
 
Empirical formula  C54H41BN9O4Eu C54H41BN9O4Pr   C46.25H36.50BC10.50N6O4Pr 
Formula weight  1042.73  1031.68   909.76 
Temperature  100(2)K  150(2) K   150(2) K 
Crystal system  Triclinic  Triclinic   Monoclinic 
Space group  P-1  P-1             P2(1)/c 
a /Å   11.4041(14)   11.6308(15)   19.2028(12)  
b /Å 14.1965(17)   11.9248(16)   26.5714(17)  
c /Å 16.391(2)   18.569(2)   18.1524(12)  
α /° 108.379(2)  96.558(2)   90 
β /° 91.613(2)  106.782(2)  117.7670(10) 
γ /° 110.797(2)  105.669(2)   90 
Volume /Å3 2324.7(5)  2321.9(5)    8195.6(9)  
Z 2  2   8 
Density (calculated) / Mg/m3 1.490 1.476  1.475  
Absorption coefficient / mm-1 1.407 1.108  1.274  
F(000) 1056  1048   3684 
Crystal size 0.125 x 0.225 x 0.05 mm  0.34 x 0.25 x 0.18 mm3  0.38 x 0.21 x 0.20 mm3 
θ range for data collection 1.64 to 27.49°  1.17 to 25.00°   1.20 to 27.53° 
Reflections collected 17759  22669   91231 
Independent reflections 9989 [Rint = 0.0676]  8143 [R(int) = 0.0320]  18617 [R(int) = 0.0753] 
Completeness to θ 93.5 %  99.8 %    98.6 % 
Data / restraints / parameters 9989 / 0 / 625  8143 / 230 / 680  18617 / 0 / 1087 
Goodness-of-fit on F2 S = 0.965  1.049   0.880 
R indices [for reflections with I>2σ(I)] R1 = 0.0509, wR2 = 0.0922  R1 = 0.0334, wR2 = 0.0706  R1 = 0.0385, wR2 = 0.0667 
R indices (for all data) R1 = 0.1063, wR2 = 0.1267  R1 = 0.0428, wR2 = 0.0744  R1 = 0.0743, wR2 = 0.0733 
Largest diff. peak and hole 0.764 and -1.422 eÅ-3  0.725 and -0.717 e.Å-3  1.007 and -0.865 e.Å-3 
 
 
Table 3C           Crystallographic Data for the Complexes of Chapter 3 
________________________________________________________________________________________________________________________________________________ 
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Complex  [Nd(Bp2py)(dbm)2] [Eu(Bp2py)(dbm)2]*  [Gd(Bp2py)(dbm)2] 
 
Empirical formula  C46.25H36.50BCl0.50N6O4Nd C46.25H36.50BCl0.50N6O4NEu C46H36BN6O4Gd 
Formula weight  913.09  920.81   904.87 
Temperature  100(2)K  100(2) K   100(2) K 
Crystal system  Monoclinic  Monoclinic  Monoclinic 
Space group  P2(1)/c  P2(1)/c             P2(1)/c 
a /Å  19.194(4)   19.21303(10)   19.2403(18)  
b /Å 26.548(5)   26.6410(2)   26.613(2)  
c /Å 17.996(4)   17.80700(10)   17.8124(16)  
α /° 90  90   90 
β /° 117.64(3)  117.45   117.1740(10) 
γ /° 90  90   90 
Volume /Å3 8123(3) 8087.48(9)  8114.1(13)  
Z 8  8   8 
Density (calculated) / Mg/m3 1.493 1.513  1.481  
Absorption coefficient / mm-1 1.364 11.830  1.687  
F(000) 3692  3716   3640 
Crystal size / mm 0.2 x 0.1 x 0.1  0.25 x 0.2 x 0.15  0.18 x 0.13 x 0.13  
θ range for data collection 1.42 to 27.49°  2.59 to 70.13°   1.19 to 27.56° 
Reflections collected 35906  55578   68424 
Independent reflections 18149 [Rint = 0.0656]  14537 [R(int) = 0.0379]  18339 [R(int) = 0.0559] 
Completeness to θ 97.4 %  94.5 %    97.8 % 
Data / restraints / parameters 18149 / 0 / 1075  14537 / 0 / 1069  18339 / 0 / 1045 
Goodness-of-fit on F2 S = 0.947  1.024   0.992 
R indices [for reflections with I>2σ(I)] R1 = 0.0533, wR2 = 0.0914  R1 = 0.0264, wR2 = 0.0662  R1 = 0.0377, wR2 = 0.0737 
R indices (for all data) R1 = 0.0951, wR2 = 0.1055  R1 = 0.0294, wR2 = 0.0677  R1 = 0.0655, wR2 = 0.0812 
Largest diff. peak and hole 2.122 and -1.237 eÅ-3  0.513 and -0.654 e.Å-3  1.255 and -1.241 e.Å-3 
 
 
Table 3D          Crystallographic Data for the Complexes of Chapter 3 
________________________________________________________________________________________________________________________ 
*Data Collection performed on Cu-anode Proteum® Diffractometer.   
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Complex  [Tb(Bp2py)(dbm)2] [Er(Bp2py)(dbm)2]  [Yb(Bp2py)(dbm)2] 
 
Empirical formula  C46.25H36.50BCl0.50N6O4Tb C46.25H36.50BCl0.50N6O4Er C46.25H36.50BCl0.50N6O4Yb 
Formula weight  927.77  936.11   941.89 
Temperature  100(2)K  150(2) K   100(2) K 
Crystal system  Monoclinic  Monoclinic  Monoclinic 
Space group  P2(1)/c  P2(1)/c             P2(1)/c 
a /Å 17.624(4)   19.232(3)   19.133(4)  
b /Å 26.721(5)   26.871(4)   26.895(5)  
c /Å 19.177(4)   17.501(2)   17.426(4)  
α /° 90  90   90 
β /° 116.84(3)  116.158   115.92(3) 
γ /° 90  90   90  
Volume /Å3 8058(3) 8117.8(18)  8065(3)  
Z 8  8   8 
Density (calculated) / Mg/m3 1.529 1.532  1.551  
Absorption coefficient / mm-1 1.841 2.153  2.405  
F(000) 3732  3756   3772 
Crystal size / mm 0.25 x 0.25 x 0.20 0.43 x 0.15 x 0.10 0.25 x 0.15 x 0.125  
θ range for data collection 1.50 to 27.50°  1.40 to 27.59°   1.18 to 27.48° 
Reflections collected 87683  65690   57155 
Independent reflections 17377 [Rint = 0.0361]  18254 [R(int) = 0.1952]  18498 [R(int) = 0.0314] 
Completeness to θ 93.9 %  97.0 %    100.0 % 
Data / restraints / parameters 17377 / 0 / 1063  18254 / 0 / 1063  18498 / 0 / 1079 
Goodness-of-fit on F2 S = 0.937  0.944   0.962 
R indices [for reflections with I>2σ(I)] R1 = 0.0263, wR2 = 0.0573  R1 = 0.0669, wR2 = 0.1324  R1 = 0.0270, wR2 = 0.0583 
R indices (for all data) R1 = 0.0364, wR2 = 0.0596  R1 = 0.1919, wR2 = 0.1852  R1 = 0.0404, wR2 = 0.0642 
Largest diff. peak and hole 1.313 and -0.447 eÅ-3  1.419 and -2.167 e.Å-3  0.915 and -0.699 e.Å-3 
 
 
Table 3E            Crystallographic Data for the Complexes of Chapter 3 
___________________________________________________________________________________________________________________________________ 
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Complex  [Pr(Bp2py)2(NO3)] [Er(Bp2py)2(NO3)]   
 
Empirical formula  C34H32B2Cl4N13O3Pr C34H32B2Cl4N13O3Er  
Formula weight  975.06  1001.41    
Temperature  150(2)K  150(2) K    
Crystal system  Monoclinic  Monoclinic   
Space group  P2(1)/n  P2(1)/n              
a /Å  10.414(3)   10.8892(16)    
b /Å 21.894(5)   20.125(3)    
c /Å 17.805(4)   18.381(3)    
α /° 90  90    
β /° 99.730(4)  105.919    
γ /° 90  90     
Volume /Å3 4001.3(17) 3873.6(10)   
Z 4  4    
Density (calculated) / Mg/m3 1.619 1.717   
Absorption coefficient / mm-1 1.538 2.498   
F(000) 1952  1988    
Crystal size 0.29 x 0.18 x 0.13 mm  0.26 x 0.20 x 0.16 mm3   
� range for data collection 1.49 to 27.57°  1.53 to 27.51°    
Reflections collected 41645  43030    
Independent reflections 9009 [Rint = 0.0985]  8809 [R(int) = 0.0316]   
Completeness to θ 97.1 %  98.9 %     
Data / restraints / parameters 9009 / 0 / 530  8809 / 0 / 524   
Goodness-of-fit on F2 S = 1.046  1.060    
R indices [for reflections with I>2σ(I)] R1 = 0.0677, wR2 = 0.1933  R1 = 0.0239, wR2 = 0.0556   
R indices (for all data) R1 = 0.0985, wR2 = 0.2181  R1 = 0.0310, wR2 = 0.0576   
Largest diff. peak and hole 2.415 and -2.306 eÅ-3  0.736 and -0.555 e.Å-3   
 
 
Table 3F             Crystallographic Data for the Complex of Chapter 3 
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4.1 Introduction 

 

4.1.1  Origins of d→ f Energy Transfer   

 

Chapter three has shown that the excitation of aromatic ligands in the UV/blue region 

(dbm-based transition ≈ 360 nm) can be used to stimulate near-IR emission from 

Ln(III) ions via a ligand to metal energy transfer.  One of the main reasons for the 

recent interest in near-IR luminescence is its possible application in medical 

diagnostics; because the longer emission wavelength (compared to Eu(III) and 

Tb(III) in the visible region) can penetrate tissue far more effectively than UV or 

visible light (Section. 1.2.6.2).1  In addition to the longer emission wavelength of 

near-IR emission, there is the adjoining possibility of using longer excitation 

wavelengths to sensitise the lanthanide luminescence, which again would be 

attractive to the application in obtaining the maximum penetration of the tissue and, 

in turn, an optimised near-IR emission.  It is also a lot more energy efficient, as using 

a 300 nm photon to stimulate 1500 nm emission from Er(III) for example, is clearly 

wasteful of energy. 

 

In light of this, there has been a surge of work in recent years aimed at designing 

complexes that display sensitised lanthanide luminescence via the absorption of light 

at longer wavelengths; largely based on the incorporation of transition metal-based 

chromophores into the complex.  The benefits of using a d-block metal to sensitise 

emission are multiple: (i) they have very strong charge-transfer absorptions over the 

visible and near-IR regions with variations in the metal ion, ancillary ligand(s) and 

its substituents being used to help tune the absorption wavelength; (ii) their broad 

absorption bands maximise the necessary spectral overlap with the necessary energy 

levels of the lanthanide(III) ions to aid energy transfer; (iii) they promote intersystem 

crossing after excitation to give the excited triplet states which in turn (iv) are long-

lived and thus encourage energy transfer to the lanthanide before the excited state 

collapses; (v) they do not degrade upon photochemical stimulation; and (vi) they 

have synthetic convenience.  This last quality is very important as the entire crux of 

the system depends on holding the d-block metal in a close enough proximity to the 

lanthanide ion in order to facilitate energy transfer.   
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An early synthetic strategy was to connect the d-block unit to the f-block unit by a 

bridging ligand, which was employed by van Veggel and co-workers in using 

ferrocenyl (Fig. 4.1.1a) or [Ru(bipy)3]2+ (Fig. 4.1.1b) units as the d-block 

chromophores.2  However, synthesis was appreciably complicated in such complexes 

with elaborate ligand designs, and because of the large metal-metal separation and 

lack of a conjugated pathway between the metal centres, the rate of energy transfer 

(kET) was relatively slow (kET(Ru→ Nd) ≈ 106 s-1 and kET(Ru→ Yb) ≈ 105 s-1).   

 

          
           (a)                  (b) 

 

Fig. 4.1.1 – Sensitised near-IR luminescence using (a) ferrocenyl or (b) [Ru(bipy)3]2+ units. 

 

4.1.2  Take the Shorter Bridge  

 

Work by Dr Nail Shavaleev of our group1,3-5 moved towards connecting both d- and 

f-block metal ions with a single short bridging ligand such as 2,2’-bipyrimidine (Fig. 

4.1.2a) or 5,6-dihydroxyphenanthroline (Fig. 4.1.2b) in which the ligand contains 

vacant, externally-directed bidentate sites.  This gave rise to shorter metal-metal 

distances with the centres separated by an unsaturated bridge, making d→f energy 

transfer faster and more efficient, compared to the earlier systems.  Recent work 

from other groups has used a metal-polypyridyl unit bound to a lanthanide ion, and is 

now a common strategy when synthesising d-f hybrids with the intention of energy 

transfer.6-8  

 

 

 



Chapter Four – Cyanide-Bridged d-f Hybrids 
____________________________________________________________________   

 171

 

            
       (a)       (b) 

 

Fig. 4.1.2 – Sensitised near-IR luminescence from d- and f-block units held by a common ligand 

 

Our attention turned to [Ru(bipy)(CN)4]2- as a suitable d-block chromophore (Fig. 

4.1.3), the choice of which follows from simple synthetic and photophysical 

considerations: (i) the negative charge of the unit means Ln3+ cations will be 

attracted towards it - the lone pairs on the cyanide nitrogens providing a sufficient 

means of promoting coordination; (ii) the resultant Ru-CN-Ln bridges are relatively 

short in comparison to other d-f systems we have already observed, and are also 

unsaturated; (iii) the 3MLCT lifetime of the [Ru(bipy)(CN)4]2- unit is relatively long 

and has a broad emission spectrum favouring overlap with the higher energy levels 

of near-IR Ln(III) emitters. 
 

 
 

Fig. 4.1.3 – Structural diagram of [Ru(bipy)(CN)4]2- 
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In this chapter we investigate the different complexes formed by the co-

crystallisation of K2[Ru(bipy)(CN)4] with Ln(III) cations (where bipy represents 

2,2’-bipyridine), with both structural and photophysical studies performed on the 

series.9  We also describe the crystal structure of K2[Ru(1,10-phenanthroline)(CN)4] 

for the first time,10 as well as the near-IR luminescence of Ln(III) ions, sensitised 

from hexacyanochromate(III) units.11   

 

4.2  Results and Discussion 

 

4.2.1  Structural Studies: [Ru(bipy)(CN)4]2- - Ln(III) 

 

4.2.1.1  Synthesis of Complexes 

 

K2[Ru(bipy)(CN)4] unit was first synthesised by Scandola and co-workers12 via the 

photochemical irradiation of potassium hexacyanoruthenate and 2,2’-bipyridine in 

aqueous methanol.  However, for these studies we adopted the modified method13 of 

refluxing the components in an acidic methanol:water solution, with the subsequent 

work-up identical to that of Scandola’s, often producing yields in excess of 70 %.   

 

Over a period of about 4-6 weeks, slow evaporation of the combined D2O solutions 

of K2[Ru(bipy)(CN)4] and lanthanide(III) chlorides in a 2:1 ratio yielded generous 

crops of orange/yellow single crystals that were suitable for X-Ray studies.  Their 

solid state IR spectra all showed two cyanide stretching vibrations in the expected 

region: one in the 2038-2050 cm-1 region comprising several overlapping 

components and a second just above 2100 cm-1.  D2O was employed as the 

crystallisation solvent to maximise the inherently weak near-IR lanthanide 

luminescence should the lanthanide centres contain any OH oscillators in their 

coordination spheres (Section 1.2.4.2). 
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Crystallographic studies and elemental analysis show there to be two distinct 

structural types adopted across the series (Ln = Pr, Nd, Gd, Er, Yb): (a) 

[{Ru(bipy)(CN)4}2{Ln(H2O)m}{K(H2O)n}]⋅xH2O in which one Ln3+ ion and one K+ 

ion balance the charge of two [Ru(bipy)(CN)4]2- units; and (b) 

[{Ru(bipy)(CN)4}3{Ln(H2O)4}2]⋅xH2O in which no K+ ions are required as three 

[Ru(bipy)(CN)4]2- units are charge-balanced by two Ln3+ ions.  In all cases, 

numerous water molecules reside in the crystal lattice.   Hereafter, the former series 

is abbreviated as Ru2LnK, and the latter series as Ru3Ln2. 

 

4.2.1.2  Ru2LnK - (Ln = Pr, Er, Yb) 

 

Reaction of [Ru(bipy)(CN)4]2- with praseodymium(III) or erbium(III) chloride 

produced the tetranuclear species Ru2LnK, albeit with a few slight differences 

between the two.   

 
Fig. 4.2.1 – Crystal structure of [{Ru(bipy)(CN)4}2{Pr(H2O)7}{K(H2O)4}]⋅10H2O  

O(4) lies behind the Pr(1) atom 
 

In Ru2PrK, two [Ru(bipy)(CN)4]2- units are linked to a {Pr(H2O)7}3+ unit via one 

end-on CN⋅⋅⋅Pr bond from each Ru-based unit [Pr(1)-N(16) = 2.538(6) Å] (Fig. 

4.2.1).  The average Ru⋅⋅⋅Pr separation is 5.627 Å (remarkably shorter than the 

M⋅⋅⋅Ln separations of our group’s previous d-f hybrids: 6.2-8.5 Å)1,3-5 with a Ru-Pr-

Ru angle of 96.46°.   
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In addition to the two cyanide groups, seven water molecules are bound to the Pr(III) 

ion making it 9-coordinate.  The geometry about the Pr(III) centre is capped square-

antiprismatic with one plane defined by O(1)/N(16)/N(16A)/O(1A) and the other by 

O(3)/O(2)/O(4)/O(2A) (mean deviation from plane = 0.000 and 0.076 Å 

respectively).  The two planes are separated by a distance of 2.435 Å with the Pr(1) 

atom 1.505 and 0.930 Å from the O(1)/N(16)/N(16A)/O(1A) and 

O(3)/O(2)/O(4)/O(2A) planes respectively (Fig. 4.2.2).  O(5) occupies the capping 

position, resting 1.633 Å above the O(1)/N(16)/N(16A)/O(1A) plane.   

 

An accompanying K+ ion is held in a pocket defined by four cyanide groups [two 

from either [Ru(bipy)(CN)4]2- unit, including those bound to the praseodymium(III)],  

preventing the Ru-based units from residing in an anti conformation with respect to 

the Pr(III) ion.  The K+ is effectively 8 coordinate with bonds formed to the C≡N 

bridges as well as four additional water molecules.   

 
 

Fig. 4.2.2 – Geometry about the Pr(1) atom of [{Ru(bipy)(CN)4}2{Pr(H2O)7}{K(H2O)4}]⋅10H2O  

O(5) is projected from the plane of the paper. 
 

This side-on π-mode of cyanide binding with alkali metals has been observed in the 

works of Rauchfuss and co-workers in employing such interactions in templating the 

formation of elaborate cyanometallate cages.14-16  
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One example sees the cyanide groups bridge two octahedral metals in forming the 

perimeter of the cage, whilst side-on binding occurs to an alkali metal ion residing in 

the centre of the cage (Fig.4.2.3a).  Analogous bonds were formed in the works of 

Gokel and co-workers when they observed the interactions of alkene/alkyne groups 

with alkali metal cations in both solution and the solid state (Fig.4.2.3b).17-19  

 

 
(a)      (b) 

Fig. 4.2.3 – π-bonding to alkali metal ions with (a) cyanides and (b) alkenes 

 

The plane of the four CN groups in Ru2PrK deviates 0.0579 Å from the mean, with 

K(1) sitting 0.3955 Å above this plane.  The C-N bond lengths are typical, and the 

average K-C bond lengths (3.22 Å) are slightly longer than those of K-N (3.05 Å), 

but both are comparable to the values found in Rauchfuss’20 and Gokel’s17 K+ 

complexes.  Due to the side-on bonding between K+ and the CN groups, the Ru-CN-

Pr bond is kinked slightly away from the 180° ideal, with the C(16)-N(16)-Pr(1) 

angle now at 166.7°.                          

 

The coordination geometry about the K+ ion is not simple, although it is reminiscent 

of the metal centre in [Ln(Bp2py)(dbm)2] systems with a central plane capped either 

side by a pair of oxygen atoms O(6)/O(6A) and O(7)/O(7A) (Section 3.2.2.1). Both 

of these water molecules hydrogen bond to neighbouring ones: O(6) bonds to both 

O(4) on the adjacent Pr atom, and O(1) on a second complex unit, whilst O(7) bonds 

to O(4S).   
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From this, the roles of the hydration spheres about both Pr and K centres becomes 

obvious: O(2) on the Pr(1) atom forms hydrogen bonds to N(15) and N(15A) on an 

adjacent complex unit [OH(2A)⋅⋅⋅N(15) = 1.998 Å, O(2)⋅⋅⋅N(15) = 2.849(9) Å] to 

form a regular alignment of Ru2PrK units, with a separation of 2.150 Å between 

Pr(1)/N(16)/N(16A) planes (Fig. 4.2.4); these chains are then held by hydrogen 

bonds formed between O(6)⋅⋅⋅O(1), O(7)⋅⋅⋅O(4S), O(4S)⋅⋅⋅O(4), whose non-bonded 

separations are 2.748(17), 2.169(17), 2.915(15) Å respectively.  The remaining 

lattice water molecules are also involved in a H-bonded network between each other; 

metal-bound water molecules; and cyanide nitrogens, as indicated by numerous non-

bonded contacts of < 3 Å, which again associates the Ru2PrK chains.   

 

Ru2PrK crystallises in the monoclinic space group P21/m with Pr(1), K(1), O(3), 

O(4), and O(5) all lying on the mirror plane.  Selected bond lengths are given in 

Table 4.2.1. 

 

 
 

Fig. 4.2.4 – Crystal structure of [{Ru(bipy)(CN)4}2{Pr(H2O)7}{K(H2O)4}]⋅10H2O  

showing the chain propagation through the H(2A)⋅⋅⋅N(15) bonds  
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Pr(1)-N(16) 2.538(6) K(1)-C(15) 3.246(7) 
Pr(1)-O(1) 2.542(6) K(1)-N(15) 3.056(7) 
Pr(1)-O(2) 2.483(5) K(1)-N(16) 3.046(6) 
Pr(1)-O(3) 2.499(9) K(1)-C(16) 3.202(6) 
Pr(1)-O(4) 2.620(7) K(1)-O(7) 2.853(10) 
Pr(1)-O(5) 2.572(8) K(1)-O(6) 2.865(13) 

 

Table 4.2.1 – Selected bond lengths (Å) for Ru2PrK 

 

Ru2ErK crystallises in the tetragonal space group Pca21 with a very similar structure 

to that of Ru2PrK (Fig. 4.2.5).  Two independent Ru2ErK units appear in the 

asymmetric unit, both near identical, and so only one is shown in the following 

figures.  A tetranuclear species is again formed with the lanthanide(III) ion being 

bridged by two cyanide groups N(116)/N(132) giving an average Ru⋅⋅⋅Er separation 

of 5.397 Å, yet in this case the smaller Er(III) ion only accommodates six water 

molecules about it in addition to the two cyanide nitrogens.   

 

 
 

Fig. 4.2.5 – Crystal structure of [{Ru(bipy)(CN)4}2{Er(H2O)6}{K(H2O)4}]⋅5H2O 

O(106) and O(105) belong to a second Pr atom not in this asymmetric unit 
 

With an eight coordinate environment, the geometry about the Er(III) centre is square 

antiprismatic, with one plane defined by N(116)/N(132)/O(101)/O(102) and the other 

by O(103)/O(106)/O(104)/O(105) (average deviations from the mean plane = 0.1233 

and 0.3584 Å respectively, Fig. 4.2.6).  The planes are separated by a distance of 

2.609 Å with the Er(III) ion resting approx. 1.30 Å from either plane. 
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Fig. 4.2.6 – Square antiprismatic geometry about the Er centre in Ru2ErK  

 

The main difference between this and the Ru2PrK structure is the environment of the 

associated K+ ion, for whilst both Ru-based units reside in a syn conformation with 

respect to Er(1), we do not observe the previous π-bonding behaviour of the 

cyanides.  Instead the lone pairs of the two end-on erbium-bound cyanide nitrogens 

are shared between the Er(III) and K+ (giving an average Er-N-K angle of 94.3°), 

with no further cyanide-K bonding apparent (K-C bond length ≈ 3.9 Å).  This is 

because the K+ ion sits 2.843 Å above the N(115)/N(116)/N(131)/N(132) cyanide 

plane, compared to 0.336 Å in the equivalent plane of Ru2PrK.  In addition to the 

two cyanide nitrogens, the K+ ion has six water molecules in its coordination sphere: 

four of which are terminal [O(107)/O(108)/O(109)/O(110)] with average K-O 

distance of 2.842 Å, whilst two [O(105)/O(106)] bridge the adjacent Er(III) ion and 

so have longer bonds to the K+ ion (average K⋅⋅⋅O separation = 3.126 Å).  There is no 

simple describable geometry about the K+ ion.  

 

The bridging oxygens and cyanide groups linking K and Er give rise to a one 

dimensional chain that propagates along the a-axis (Fig. 4.2.7).  The average K-N 

bond length (3.352 Å) is quite long compared to that of Ru2PrK indicating a weaker 

interaction, however it is still sufficient to displace the Ru-CN-Er vector from 

linearity with the C-N-Er angles ranging from 150-160°. 
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Fig. 4.2.7 – Crystal structure of [{Ru(bipy)(CN)4}2{Er(H2O)6}{K(H2O)4}]⋅5H2O  

showing the chain propagation through the bridging water molecules O(105) and O(106) 
 

Non-bonded contacts of 2.8-3.0 Å are found for O(103)-N(115), O(107)-N(114), 

O(109)-N(114) and O(108)-N(130) indicative of hydrogen bonding interactions 

between adjacent chains, showing how they are associated within the crystal.  

 

All of the previous comments apply to the second tetranuclear complex in the 

asymmetric unit as well, with bond lengths differ by negligible amounts between the 

two units.  Ru(3)⋅⋅⋅Er(2) and Ru(4)⋅⋅⋅Er(2) distances were found to be 5.345(6) and 

5.439(6) Å respectively.  Ten water molecules are located within the crystal lattice 

(i.e. five per Ru2ErK unit) which shows numerous O⋅⋅⋅O and O⋅⋅⋅N non-bonded 

distances of 2.6-3.0 Å, again indicative of a substantial hydrogen-bonded network.  

Selected bond lengths are given in Table 4.2.2. 
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Er(1)-O(106)  2.338(4) K(1)-O(105)  3.031(5) 
Er(1)-O(105)  2.341(4) K(1)-O(106)  3.222(5) 
Er(1)-O(102)  2.343(5) K(1)-O(107)  2.840(6) 
Er(1)-O(101)  2.351(6) K(1)-O(108)  2.882(7) 
Er(1)-O(104)  2.384(6) K(1)-O(109)  2.846(7) 
Er(1)-O(103)  2.386(5) K(1)-O(110)  2.801(8) 
Er(1)-N(132)  2.391(6) K(1)-N(132A)  3.344(7) 
Er(1)-N(116)  2.410(6) K(1)-N(116A)  3.360(7) 
Er(2)-O(1) 2.399(5) O(5)-K(2)  3.403(6) 
Er(2)-O(2) 2.326(5) O(6)-K(2)  2.964(5) 
Er(2)-O(3) 2.405(5) O(7)-K(2)  2.787(6) 
Er(2)-O(4) 2.375(6) O(8)-K(2)  2.900(6) 
Er(2)-O(5) 2.319(5) O(9)-K(2)  2.778(7) 
Er(2)-O(6)  2.354(4) O(10)-K(2)  2.857(6) 
Er(2)-N(32) 2.369(6) K(2)-N(16A)  3.331(7) 
Er(2)-N(16)  2.429(6) K(2)-N(32A) 3.303(7) 
Er(1)-K(1) 4.380(2) Er(2)-K(2) 4.415(2) 
Er(1)-K(1A) 4.267(2) Er(2)-K(2A) 4.247(2) 

 
Table 4.2.2 – Selected bond lengths (Å) for Ru2ErK 

 

Previously in our group, Dr Tom Miller had performed the 2:1 reaction with 

K2[Ru(bipy)(CN)4] and YbCl3⋅6H2O respectively, and obtained an identical structure 

to that of Ru2ErK, with a difference in the number of lattice waters.21  The Ru⋅⋅⋅Yb 

distances for the Ru2YbK complex were 5.32 – 5.44 Å, showing the marked effects 

of the lanthanide contraction across the Ru2LnK series.   

 

4.2.1.3  Ru3Ln2 – (Ln = Nd, Gd) 

 

Despite a 2:1 stoichiometry of the reagents, a 3:2 stoichiometry is observed in the 

crystalline products formed with Gd(III) or Nd(III) chloride.  As the two structures 

are isomorphous and isostructural, we will restrict our structural discussions to those 

of the neodymium(III) complex.  

 

The complex crystallises in the monoclinic space group P21/c with the asymmetric 

unit containing three crystallographically unique [Ru(bipy)(CN)4]2- units and two 

unique Nd(III) centres.  Fig. 4.2.8 shows the asymmetric unit, depicting a four-

member pseudo-square defined by Nd(1)-Ru(1)-Nd(2)-Ru(2) at the corners, with a 

single cyanide group along each side.   
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Nd⋅⋅⋅N distances range from 2.48-2.55 Å, whilst Nd⋅⋅⋅O distances range from 2.41-

2.55 Å, with no distinctions between either Nd(III) centre.  The square’s side length 

(and hence Ru⋅⋅⋅Nd separation) varies between 5.35-5.63 Å (average 5.46 Å) giving a 

slight increase in separation from the Ru2LnK structures by up to 0.2 Å.  Analogous 

distances decrease slightly in accordance with the lanthanide contraction in the 

Ru3Gd2 complex (Ru⋅⋅⋅Gd separation varies between 5.27-5.59 Å).  There are no K+ 

ions in these complexes, whose overall charge is balanced by the 3:2 stoichiometries, 

and no side-on π-bonding is observed by the cyanide groups.        

   

Each Nd(III) centre is surrounded by four end-on bound cyanide nitrogen atoms and 

four terminal water molecules, giving them an eight coordinate geometry and both 

Nd(1) and Nd(2) centres are found to be square antiprismatic (Fig. 4.2.9).  The 

planes of N(57)O(1)/N(55)/O(4), N(42)/N(25)/O(3)/O(2), N(58)/N(24)/O(6)/O(7), 

O(5)/N(41)/N(26)/O(8) have deviations of 0.291, 0.173, 0.302 and 0.055 Å from 

their respective means with the relevant Nd(III) ion equidistant of both planes.   

 

 
 

Fig. 4.2.8 – Crystal structure of the asymmetric unit of [{Ru(bipy)(CN)4}3{Nd(H2O)4}2]⋅11H2O  

Thermal ellipsoids are shown at the 40 % probability level, and the coordination sphere about 

Nd(2) is completed by N(24) and N(58) from adjacent units.  
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Fig. 4.2.9 – Different geometries about the two lanthanide centres in Ru3Nd2 

 

The structure’s main repeating unit is a set of five fused rings which propagate to 

form a complicated two dimensional network (Fig. 4.2.10).  As shown, the three 

central rings are each reminiscent of that shown in Fig. 4.2.8, and can be considered 

a ‘square’ with the Ru(2)/Nd(1)/Ru(1)/Nd(2) and Ru(3)/Nd(1)/Ru(3)/Nd(1) plane 

deviating 0.0288 Å from the mean; whilst the adjacent Ru(3)/Nd(2)/Ru(1)/Nd(1) 

plane deviates 0.5021 Å from the mean, and clearly appears buckled, thus adopting a 

butterfly-style conformation.   

 
Fig. 4.2.10 – Crystal structure of [{Ru(bipy)(CN)4}3{Nd(H2O)4}2]⋅11H2O 

showing part of the two-dimensional sheet structure arising from cyanide bridging.   

Only metal ions and CN bonds are displayed. 
 

These groups of five rings couple to each other through the Nd(2) ‘corners’ (Fig. 

4.2.11) to propagate into a two-dimensional sheet parallel to the bc face of the unit 

cell (Fig. 4.2.12).       
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Fig. 4.2.11 – Crystal structure of Ru3Nd2 showing three adjacent sets of the five-ring groups.   

Only metal ions and CN bonds are displayed. 

 

 
Fig. 4.2.12 – Propagation of Ru3Nd2 parallel to the bc face of the unit cell  

 

In viewing down the b-axis, Fig. 4.2.13 illustrates how the two-dimensional sheets 

are capped on either side by the bipyridine ligands.  Selected bond lengths for both 

Ru3Nd2 and Ru3Gd2 are given in Tables 4.2.3 and 4.2.4 respectively.  
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Fig. 4.2.13 – View of Ru3Nd2 viewing down the b-axis 

 

Nd(1)-N(25) 2.493(3) Nd(2)-O(7)  2.425(3) 
Nd(1)-N(42) 2.531(3) Nd(2)-O(5)  2.488(3) 
Nd(1)-O(2)  2.405(9) Nd(2)-O(8)  2.491(3) 
Nd(1)-O(3)  2.475(3) Nd(2)-O(6)  2.499(3) 
Nd(1)-O(1)  2.524(3) Nd(2)-N(58D)  2.506(3) 
Nd(1)-N(55B) 2.532(3) Nd(2)-N(24C) 2.550(3) 
Nd(1)-O(4)  2.554(3) Nd(2)-N(41) 2.533(3) 
Nd(1)-O(2A)  2.607(13) Nd(2)-N(26) 2.521(3) 

 
Table 4.2.3 – Selected bond lengths (Å) for Ru3Nd2 

 
Gd(1)-N(58) 2.461(7) Gd(2)-O(8)  2.338(6) 
Gd(1)-O(3)  2.409(7) Gd(2)-O(7)  2.414(6) 
Gd(1)-O(1)  2.439(13) Gd(2)-O(5)  2.418(6) 
Gd(1)-N(39A) 2.448(8) Gd(2)-O(6)  2.436(6) 
Gd(1)-O(4)  2.450(5) Gd(2)-N(57C)  2.462(8) 
Gd(1)-O(2) 2.481(6) Gd(2)-N(25C)  2.469(7) 
Gd(1)-O(1B) 2.485(19) Gd(2)-N(24A)  2.501(7) 
Gd(1)-N(41) 2.412(8) Gd(2)-N(42) 2.446(7) 

 
Table 4.2.4 – Selected bond lengths (Å) for Ru3Gd2 

 

In the previous work by Dr Miller,22 slow evaporation of the reaction mixture 

generated multiple crystal types that were distinguishable by colour and shape, (four 

types were isolated by the time the solvent had completely evaporated).  The samples 

of Ru2PrK Ru2ErK, Ru3Nd2 and Ru3Gd2 in this work all had their respective crops 

of crystals looking identical in shape and colour, with the same unit cell observed for 

several crystals in each sample.   
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However, in the case of Ru2PrK, whilst the sample contained the given structure as 

small orange crystals, the sample also contained a single, much larger yellow crystal 

which was found to have the structural form Ru3Pr2.  There is very little difference 

between this structure and those of the other Ru3Ln2 complexes, with the exception 

that one Pr centre [Pr(1)] has five water molecules in its first coordination sphere 

because of its larger ionic radius.  Consequently, the geometry about the two 

lanthanide centres is square antiprismatic for Pr(2) and capped-square antiprismatic 

for Pr(1) (Fig. 4.2.14).   

 

The same five-membered set of rings pack in the same manner as those of Ru3Nd2, 

with the Pr⋅⋅⋅N and Pr⋅⋅⋅O distances lying in the ranges of 2.50-2.57 and 2.44-2.91 Å 

respectively, and Ru⋅⋅⋅Pr separations varying between 5.37-5.65 Å, on average less 

than the Ru2PrK system, but consistent with the other two Ru3Ln2 systems.  

Selected bond lengths are given in Table 4.2.5.  For the purposes of photophysical 

studies, only the orange Ru2PrK crystals were analysed as the only Ru3Pr2 crystal 

had been contaminated during X-Ray studies.       

         
           (a)                (b) 

 

Fig. 4.2.14 – Coordination geometries about the two crystallographically independent 

lanthanide centres in Ru3Pr2: (a) capped square antiprismatic and (b) square antiprismatic 

 

In all three Ru3Ln2 systems, there are 10-11 lattice water molecules in each 

asymmetric unit (some disordered over two sites) which form hydrogen bonds 

between themselves, terminal cyanide nitrogen lone pairs, and the metal-bound water 

molecules.   



Chapter Four – Cyanide-Bridged d-f Hybrids 
____________________________________________________________________   

 186

 

Pr(1)-O(1)  2.578(2)  Pr(2)-O(6)  2.444(2) 
Pr(1)-O(2)  2.491(3)  Pr(2)-O(7)  2.507(3) 
Pr(1)-O(3)  2.529(4)  Pr(2)-O(8)  2.506(3) 
Pr(1)-O(4)  2.906(6)  Pr(2)-O(9)  2.519(3) 
Pr(1)-O(5)  2.545(2)  Pr(2)-N(41) 2.520(3) 
Pr(1)-N(26)  2.553(3)  N(57)-Pr(2) 2.538(3) 
Pr(1)-N(40) 2.558(3)  Pr(2)-N(56) 2.567(3) 
Pr(1)-N(42)  2.499(3)  Pr(2)-N(25)  2.552(3) 
Pr(1)-N(58)  2.503(3)    

 
Table 4.2.5 – Selected bond lengths (Å) for Ru3Pr2 

 

4.2.2  Photophyscial Studies: [Ru(bipy)(CN)4]2- - Ln(III) 

 

All photophysical studies were performed on solid state samples as it was deemed 

the coordination polymers would break up into their component parts in solution.  

 

4.2.2.1  Energy Transfer Theories 

 

There are two well-known theories that have been suggested to explain the 

mechanism of energy transfer via the antenna effect: The theory of Förster and the 

theory of Dexter.   

 

 
         (a)                          (b) 

 

Fig. 4.2.15 – Energy transfer mechanisms: (a) Förster and (b) Dexter. 
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Förster theory suggests a purely through-space energy transfer in which the 

oscillating electric dipoles of the excited ligand (L) and the metal (M) interact 

sufficiently to induce the excitation of an electron in the metal to higher energy 

levels, which subsequently falls back to the lower level(s) generating the 

luminescence (Fig. 4.2.15a).  The effect is an energy transfer that occurs over a 

distance appreciably greater than the sum of the individual components van der 

waals radii; therefore, whilst its occurrence depends on the strength of the oscillator 

overlap, it is not dependent on a short L-M separation, with kET proportional to r-6 

where r is the L-M separation. 

 

Dexter theory suggests a double electron exchange between the ligand and the metal 

(Fig. 4.2.15b) in which the higher energy levels of the metal are populated by the 

promoted electron of the ligand (first exchange) which then falls to the lower energy 

levels of the metal to give the luminescence.  At the same time, an electron from 

these levels is returned to the ground state of the ligand (second exchange) giving a 

concerted two electron exchange which allows the ligand to return to the ground state 

after excitation, and the metal to be promoted to an excited state.  The Dexter theory 

has a much stronger dependence on a shorter L-M separation as there must be a 

reasonable overlap of the L and M electron clouds in order for the double electron 

transfer to occur, with a kET relationship proportional to e-r.   

 

A common requirement to both theories is that sufficient overlap occurs between the 

emission spectrum of the donor and the emission spectrum of the acceptor, in order 

to favour a matching of the pertinent energy levels of the two units.  In order to 

ensure the process goes to completion, the donor excited state should be slightly 

higher in energy than that of the acceptor, typically >2000 cm-1 at room 

temperature.23  Even though our [Ru(bipy)(CN)4]2-/Ln(III) systems are not 

isostructural, the presence of different structural types should not cause any problems 

in performing photophysical studies, as energy transfer rates (kET) will be dominated 

by the shortest Ru⋅⋅⋅Ln contact regardless of the bulk structure.  If a Dexter 

mechanism is occurring, this will exploit the Ru-CN-Ln electronic coupling, leaving 

any remote lanthanide centres in the crystal to a have minimal contribution to the 

quenching of a Ru centre. 
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4.2.2.2  Choosing a Reference 

 

It is widely documented that the photophysical properties of the [Ru(bipy)(CN)4]2- 

unit are heavily influenced by its surrounding environment, with the interaction of 

the cyanide lone pairs with protic solvents increasing the ligand field strength, thus 

giving rise to higher energy, longer lived 3MLCT states.12,24  For these reasons, we 

decided against using K2[Ru(bipy)(CN)4] as our reference compound in determining 

the values of kET for the Ru-Ln complexes, as the interaction of the cyanide lone 

pairs with a heavy lanthanide centre needed to be accounted for.  The Ru3Gd2 

complex was the perfect choice for a reference complex as Gd(III) has its lowest 

excited state lying some 30,000 cm-1 higher in energy than its ground state, and some 

10,000 cm-1 higher in energy than the tail end of the Ru-based emission.  

Consequently, Gd(III) is unable to quench the Ru-based luminescence of the 

[Ru(bipy)(CN)4]2- unit whilst maintaining the general environment of the 

[Ru(bipy)(CN)4]2- units in interacting with 3+ metal centres.  

 

Whilst the luminescence of [Ru(bipy)(CN)4]2- in water occurs at ca. 640 nm,24 prior 

work by Miller21 showed that this shifts substantially to 584 nm in solid 

K2[Ru(bipy)(CN)4], and the luminescence for our Ru3Gd2 system occurs at a 

comparable maximum of 580 nm.  The interaction of the cyanide lone pairs with an 

electropositive metal ion clearly blue shifts the Ru luminescence, with the increase in 
3MLCT energy attributed to the increasing ability of the cyanide C terminus to act as 

a π acceptor.  

 

Despite there being three crystallographically unique Ru centres in the crystal 

structure, the Ru-based luminescence decay for Ru3Gd2 could be fitted to a single 

exponential decay with a half life (τ) of 550 ns, whilst the previous work21 showed 

solid K2[Ru(bipy)(CN)4] could be fitted to a dual exponential decay with lifetimes of 

751 ns and 2955 ns, (cf. 100 ns in aqueous solution),24 and it is here we identify the 

problems associated with performing such studies in the solid state, in that the crystal 

may contain defect sites or there may be surface effects in which luminescent centres 

at the surface of a crystal will be in different environments from those in the bulk.   
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As the 2955 ns lifetime of K2[Ru(bipy)(CN)4] has only a 5 % weighting, it was 

deemed that this was not representative of the bulk structure and that in fact, 751 ns 

(with a 95 % weighting) was reflective of the lifetime in the solid state.  The decrease 

in Ru-based luminescence lifetimes between K2[Ru(bipy)(CN)4] and Ru3Gd2 (≈ 200 

ns) shows that there is a clear quenching effect observed in having the Gd(III) 

centres coordinated to the cyanides.  This preliminary quenching is attributed to a 

slight vibrational quenching across the Ru-CN-Gd pathway and the easy dispersal of 

luminescence across the 2-D network in the crystal lattice, as each Ru centre has 

cyanide bridges to two or three Gd(III) centres. 

 

In all other cases, excitation of the [Ru(bipy)(CN)4]2- unit by 337 nm energy resulted 

in sensitised characteristic near-IR luminescence (840 and 1010 nm for Ru2PrK, 

1530 nm for Ru2ErK, and both 1055 and 1340 nm for Ru3Nd2).  980 nm emission 

was observed for the Ru2YbK complex by Dr Miller,21 and we include this result in 

the following discussion to obtain a complete picture of the [Ru(bipy)(CN)4]2- - 

Ln(III) series.   

 

 
 

Fig. 4.2.16 – Extents of Ru-based quenching attributed to the Ln(III) ions.   

Graph intensity scales are arbitrary and not identical to one another. 
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4.2.2.3  Emission Quenching by the Lanthanides 

 

In each complex there was some residual Ru-based luminescence centred at 570-580 

nm that had not been quenched by the lanthanide.  Fig. 4.2.16a shows the Ru-based 

luminescence for K2[Ru(bipy)(CN)4] (dashed line) and for Ru2YbK (solid line) 

showing the degree of quenching influenced by the presence of the Ln(III) centres.  

Fig. 4.2.16b shows the comparable degrees of Ru-luminescence quenching exhibited 

by lanthanide centres in Ru3Gd2, Ru2ErK, and Ru3Nd2 systems.  

 

Ru2YbK delivers the smallest degree of quenching of the Ln(III) systems compared 

to the Gd(III) reference, whilst Ru3Nd2 provides the greatest (i.e. least amount of 

Ru-based luminescence still apparent).  The series then, in order of efficiency of Ru 

luminescence quenching (and hence the efficiency of energy transfer to the 

lanthanide) can be reported as Nd > Pr > Er > Yb > Gd with reference to the graphs 

of Fig. 4.2.16 (the scales of both graphs are not comparable).   

 

The lifetimes of Ru-based luminescence were recorded for all systems at 700 nm 

using time-resolved measurements.  Only the Ru2YbK and Ru3Gd2 systems could 

have their Ru-based luminescence lifetime decays fitted to a single exponential 

decay, whilst the other systems all fitted dual decays with a heavily dominant short-

lived component.  These minor long-lived Ru luminescences were assumed to come 

from imperfections in the crystals and were ignored.  They actually have lifetimes in 

the regions of 300-500 ns which is comparable to the unquenched lifetime of Ru-

luminescence in the Ru3Gd2 system, and are therefore ascribed to a small proportion 

of [Ru(bipy)(CN)4]2- centres that are not coordinated to Ln(III) centres with no 

means of energy transfer.  Such environments may have arisen from defects in the 

crystal or surface effects as the samples were ground up to a powder prior to 

analysis.  The photophysical data collected are illustrated in Table 4.2.6.  

 

 

 

 

 

 



Chapter Four – Cyanide-Bridged d-f Hybrids 
____________________________________________________________________   

 191

 

    

Complex Ru-based emission 
(weighting) Ln(III)-based emission Ru → Ln(III)  

energy transfer rateb 
  τ, nsa τ, ns kET, s-1 
    

Ru3Gd2 550 (100 %) -- -- 
Ru2YbK 197 (100 %) 197 c 3 x 106  
Ru2ErK 76 (96 %) 437 (4 %) d 1 x 107 
Ru2PrK 22 (97 %) 273 (3 %) 22 e 4 x 107 
Ru3Nd2 5 (> 99 %) 439 (< 1 %) 45 f 2 x 108 

        
 

Table 4.2.6 – Photophysical data for the [Ru(bipy)(CN)4]2- - Ln(III) series 

 
a Recorded at 700 nm; b Determined using Eq 4.1; c Recorded at 980 nm – the Yb-based 

luminescence overlaps with the tail end of the Ru-based luminescence and this value is therefore 

subject to error; d Luminescence too weak to obtain meaningful value for τ; 
e Recorded at 1010 nm; f Recorded at 1055 nm. 

 

Knowing the lifetimes of residual Ru-based emissions in the presence of both a 

lanthanide which acts as an energy acceptor (τq) and Gd as reference, (τ), we can 

employ Eq. 4.1 to determine the rate of Ru → Ln energy transfer in the various 

systems. 

kET = 1/τq – 1/τ            Eq. 4.1 

 

Taking τ = 550 ns for the unquenched luminescence of Ru3Gd2, and employing the 

values shown in the second column of Table 4.2.6, we can deduce that for Ru3Nd2 

(i.e. the fastest quenching system):  

 

kET(Ru → Nd) = [(5 x 10-9)-1 - (550 x 10-9)-1] = 2 x 108 s-1 

 

Applying the same data manipulation for the rest of the series generates the values 

shown in column four of Table 4.2.6, which agree with the relative intensities 

displayed in Fig. 4.2.16.  
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There are relatively few examples of quantified d-f energy transfer rates in the 

literature, although the work by van Veggel in {[Ru(bipy)3]2+ / Yb(III)} and 

{[Ru(bipy)3]2+ / Nd(III)} hybrids offers sufficient means for comparison with our 

systems.2  The rate of kET = < 105 s-1
 for their Yb(III) system is an order of magnitude 

slower than our system, highlighting the combined effects of having a large Ru⋅⋅⋅Ln 

separation as well as the absence of a conjugated bridge.  A much faster energy 

transfer rate is observed in their Nd(III) system (kET = 1.1 x 106) as we also observe, 

although again the absolute value is low.  

 

4.2.2.4  Ru-Ln Overlap 

 

The vast difference in kET values for our series (spanning a difference of two orders 

of magnitude across the members) can be explained with reference to Fig. 4.2.17, 

which depicts the relevant energy levels of the near-IR emissive lanthanide ions.   

 

       
       

Fig. 4.2.17 – Relevant emissive and ground state energy levels for the luminescent Ln(III) ions.  

Those marked with an asterisk (*) are capable of accepting energy via Förster or Dexter 

mechanisms. 
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The range of the [Ru(bipy)(CN)4]2- emission spectrum is represented by the red box 

shown to the left of the graph (ca. 10,000 – 20,000 cm-1),9,24 placed in relation to the 

absorption spectrum of the Ln-acceptor energy levels.  As the series member with the 

shortest Ru⋅⋅⋅Ln separation (Ru2YbK) gives the slowest rate of energy transfer, it can 

be deemed that the small variation in Ru⋅⋅⋅Ln distances across the series will make 

only a minor contribution to the energy transfer.   

 

Those Ln(III) energy levels encompassed between the dotted blue lines should have 

sufficient overlap with the Ru-based emission, enabling a facile energy transfer, and 

we can therefore exclude any energy levels higher than 20,000 cm-1 as energy 

acceptors.  Previous studies25 show that an excited triplet donor should be at least 

1000 cm-1 higher in energy than the acceptor level of a lanthanide ion to ensure the 

energy transfer is exothermically driven and no thermally activated backwards 

transfer occurs at room temperature, and so we can discount any lanthanide energy 

levels above 19,000 cm-1 as facilitators of Ru → Ln energy transfer as well.  In 

addition to this, the low end of the Ru-based emission ends at 10,000 cm-1, enabling 

us to discount any energy levels below this energy as acceptors of emission.       

 

The emissive level of 2F5/2 of Yb(III) in Ru2YbK just overlaps with the low energy 

tail end of the Ru emission at 10,200 cm-1, and we see the characteristic f-f transition 

of 2F5/2 → 2F7/2 at 980 nm.21  This small overlap accounts for why this lanthanide has 

the slowest degree of quenching, when compared to Ru3Nd2, in which we have nine 

energy levels lying in the 10,000-19,000 cm-1 region of the Ru emission.  It is thus 

clear from this high density of acceptor levels why the Ru3Nd2 system is the fastest 

quencher.  The observed luminescence at 1055 and 1340 nm is attributed to the 4F3/2 

→ 4I11/2 and 4F3/2 → 4I13/2 transitions respectively.26  

 

From looking at Fig. 4.2.17 one might think that Er(III) would provide a faster rate 

of quenching than Pr(III), with four energy levels in the 10,000-19,000 cm-1 region 

compared to the two of Pr(III); however the data in Table 4.2.6 shows the reverse to 

be the case.   
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It is worth recalling at this stage that energy transfer can only occur via a Förster or 

Dexter mechanism, and these carry their own selection rules, namely the change in 

total angular momentum (∆J) between the emissive states and the ground states of 

the f-f transitions.  Förster pathways require ∆J values of 2, 4, or 6; whilst Dexter 

values are 0 or 1,5 and those levels that can act as energy acceptors whilst also 

permitting the ∆J values to change in accordance with either pathway are marked on 

Fig. 4.2.17 with an asterisk (*).   

 

In light of this, it is apparent that two of the acceptor levels of Er(III) which have 

good energetic overlap with the Ru emission (4F9/2 and 4I9/2), are excluded from 

participating in energy transfer as this would give ∆J a value of 3 from the ground 

state of 4I15/2.  This leaves only two viable energy acceptor levels (4S3/2 and 4I11/2).  In 

the Ru2PrK system, there are also only two viable levels (1D2 and 1G4), and whilst 

there is little difference in displacement between the two lower levels of these 

lanthanide ions, the 1D2 level of Pr(III) lies at about 17,500 cm-1 and consequently 

has a much better spectral overlap with the higher end of the Ru emission compared 

with the 4S3/2 level of Er(III) which lies at about 18,500 cm-1, and gives it a better 

gradient for energy transfer.  This explains the greater degree of quenching observed 

in Ru2PrK than Ru2ErK.  In fact, the 1010 nm luminescence in Ru2PrK arises from 

the 1D2 → 3F4 transition (which we assigned in chapter three), showing that direct 

population of the 1D2 state does indeed occur to a satisfactory degree, whilst no 

luminescence is observed in Ru2ErK that can be attributed to the 4S3/2 state.    

 

However, that is not to say that the 4S3/2 level in Er(III) is not populated as it will 

have a better overlap with the Ru emission than the lower 4I11/2 level which only just 

overlaps with the emission spectrum at 10,000 cm-1.  The higher state does however, 

have a gradient of less than 2000 cm-1 from the 3MLCT energy of the Ru unit and 

may be inefficient at quenching due to back energy transfer at room temperature.  

The observed luminescence of Ru2ErK at 1530 nm is attributed to the 4I13/2 → 4I15/2 

transition, and whilst the 4I13/2 level lies at about 7000 cm-1, it becomes populated via 

the offloading of energy from the higher levels by internal conversion, rather than 

direct acceptance from the Ru emission. 
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4.2.2.5  Alternate Transfer Rates 

 

The third column of Table 4.2.6 illustrates the lifetimes of the lanthanide-based 

luminescence for all members of the series.  The Ru-based emission for Ru2YbK 

was measured at 700 nm with a lifetime of 197 ns, and measuring the luminescence 

at 980 nm of the Yb(III) also produced a lifetime of 197 ns for this decay (assuming 

a single exponential decay component).  However, Ru2YbK did show a rise time 

component for the Yb-based luminescence of 160 ns (i.e. Ru → Yb energy transfer) 

the reciprocal of which suggests an energy transfer rate of 6 x 106 s-1.  This is higher 

than the value of 3 x 106 s-1 calculated using the Ru-based emission, but given the 

approximations involved in fitting these decays to single or dual exponential 

components, is within experimental error.9  Due to the limitations of the instrument, 

no rise times could be deduced for the other members of the series, although we can 

predict that the quenching trend of Nd > Pr > Er > Yb will be reproduced.     

 

 
 

Fig. 4.2.18 – Time-resolved luminescence profile for (i) Ru2YbK in the region 860-1060 nm and 

(ii) Ru2PrK in the region 750-1050 nm. 

 

Fig. 4.2.18 shows the overlapping Ru emission (a) with the 840 nm (b) and 1010 nm 

(c) components of Pr(III), also highlighting the inherent weakness of f-f transitions in 

comparison to 3MLCT transitions.  The longer wavelength component at 1010 nm is 

not as appreciably ‘contaminated’ and we can use this value to deduce a decay 

lifetime of 22 ns for the Pr-based luminescence.   
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The longer wavelength components in Ru3Nd2 are also free from Ru-based 

contamination, and both 1055 and 1340 nm emissions (Fig. 4.2.19) show a decay 

lifetime of 45 ns, indicative of emissions occurring from a common excited state (i.e. 
4F3/2).  These values indicate that the excited states of the lanthanides, once 

populated, are easily quenched by lattice vibrations.  In the case of Ru2ErK, the 

time-resolved emission spectrum (TRES) was noisy, due to the weakness of Er-based 

luminescence at 1530 nm.  An effort was made to fit the signal at this wavelength to 

a single exponential decay (somewhere between 200 and 100 ns), but all we can 

confidently say is that the decay lifetime for this luminescence is less than 200 ns.     

 

 
 

Fig. 4.2.19 – Time-resolved luminescence profile for Ru3Nd2 in the region 1000-1400 nm 

 

4.2.2.6  Quenching of Lanthanide Luminescence 

 

All complexes in this series have shown that the lanthanide ions complete their 

coordination spheres with a mixture of cyanide nitrogen donors and terminal water or 

D2O molecules.  Despite using D2O to maximise the lanthanide luminescence by 

removing O-H oscillators as quenching pathways (Section 1.2.4.2), the luminescence 

lifetimes of these complexes are appreciably less than those obtained for the 

[Ln(Bp2py)(dbm)2] complexes in chapter three.  For example, [Nd(Bp2py)(dbm)2] has 

a luminescence lifetime of 740 ns in the solid state, whereas that of the Nd(III) centre 

in Ru3Nd2 is 45 ns.  
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The previous works of our group1,4,5,27,28 have shown decay lifetimes of 10–11.5 µs 

for Yb(III); 1.0 µs for Nd(III); 1.2-1.6 µs for Er(III) and 0.05-0.07 µs for Pr(III) based 

molecular complexes that are devoid of water molecules in the solid state.  In light of 

this, we can only hypothesise that the weaker luminescence observed in the Ru-Ln 

series must arise from an alternative quenching mode to O-H vibrations.   

 

The obvious candidate is the C≡N vibrations, however these have relatively low 

energy vibrations (on a par with that of O-D oscillators),29 and so it is unclear as to 

why these should be the culprit.  An alternative theory to suggest would be the effect 

of having an interconnected network in the crystal lattice, which may dissipate 

luminescence energy by vibrations at a faster rate across the Ru-Ln system than in 

crystals where complexes reside in isolated locations and are not vibronically 

coupled to one another. 

 

4.2.3   Crystal Structure of K2[(phen)Ru(CN)4]⋅4H2O 

 

The complex unit K2[(phen)Ru(CN)4] was first synthesised by Horváth in 2002,30 but 

has not yet been structurally characterised.  The complex was made in identical 

fashion to that of K2[(bipy)Ru(CN)4] using 1,10-phenanthroline for the diimine 

ligand, and slow evaporation of a concentrated aqueous solution of the complex 

afforded single crystals suitable for X-Ray studies.  The complex was found to 

contain four water molecules in the lattice, rather than the two that Horváth had 

originally postulated (Fig. 4.2.20).  Selected bond lengths for the complex are given 

in Table 4.2.7.  

 

K(2)-O(103)  2.716(8) K(3)-O(101)  2.714(8) 
K(2)-O(103A) 2.751(8) K(3)-N(6B) 2.775(11) 
K(2)-N(5)  2.908(13) K(3)-N(6A)  2.788(13) 
K(2)-N(5B)  2.791(11) K(3)-N(3)  3.017(14) 
K(2)-N(6A) 2.983(13) K(3)-O(101A)  3.025(9) 
K(2)-N(2A)  3.005(13) K(3)-N(5)  3.029(12) 
K(2)-C(16A)  3.046(16) K(3)-C(13)  3.077(14) 
K(2)-C(14A)  3.073(14) K(3)-C(15)  3.133(15) 
K(2)-K(3)#1  4.367(3) K(3)-O(100)  3.229(7) 

 
Table 4.2.7 – Selected bond lengths (Å) for K2[(phen)Ru(CN)4]⋅4H2O  
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Fig. 4.2.20 – Crystal structure of K2[(phen)Ru(CN)4]⋅4H2O with some additional symmetry-

equivalent atoms included to complete the coordination spheres about the metal atoms 

 

The Ru(II) metal centre shows an unremarkable pseudo-octahedral geometry with 

the N-Ru-C and C-Ru-C angles deviating approximately 5° from ideal linear and 

perpendicular values; the Ru-C and Ru-N bond lengths are typical (Ru⋅⋅⋅N = 2.10-

2.12 Å, and Ru⋅⋅⋅C = 1.98-2.06 Å).  Each cyanide group coordinates to a K+ ion via a 

side-on interaction reminiscent of that seen in Ru2PrK (Fig. 4.2.1).  Our average K-

C and K-N bond lengths in the K2[(phen)Ru(CN)4] complex (3.1 and 3.0 Å 

respectively) are remarkably shorter than those in the [Rh(CN)3]-based K+ cages of 

Rauchfuss (both bond lengths average at 3.74 Å) but comparable with those based on 

the [Mo(CO)3(CN)3] motif.20  The average C-K-N angle for the complex is 21.9°. 

 

The four cyanide groups exhibit two types of binding in the complex, with the same 

type shown by those trans to each other.  The cyanide groups of N(2) and N(3) bond 

side-on to the one potassium ion [K(2) and K(3) respectively, average bond length = 

3.0 Å], whilst those of N(5) and N(6) bond side-on to K(3) and K(2) respectively 

(average bond = 3.0 Å), but also form two shorter bonds to two separate potassium 

ions through the cyanide N atoms only (average bond = 2.8 Å).   
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The potassium ions are also coordinated by two [K(2)] or three [K(3)] water 

molecules: Thus, K(2) is coordinated by two side-on cyanides, two water molecules, 

and two additional cyanide ligands via the N atoms only; whereas K(3) is in a similar 

coordination environment but with an additional water molecule.  

 

The extensive bridging coordination behaviour of the cyanide groups of N(5) and 

N(6) is quite remarkable, being C-bound to the Ru atom, CN side-on to one K+ ion, 

and having the terminal lone pair of the nitrogen atom shared between two additional 

K+ ions.  In addition to this, pairs of K(2) atoms and K(3) atoms are bridged by the 

water molecules of O(103) and O(101) respectively (average K-O distance = 2.8 Å).    

This bridging behaviour connects the K2[(phen)Ru(CN)4]⋅4H2O units, giving rise to a 

one-dimensional chain which propagates along the c-axis (Fig. 4.2.21). 

 

 
 

Fig. 4.2.21 – Propagation along the c-axis in K2[(phen)Ru(CN)4]⋅4H2O  

(Ru = brown; K = purple, N = blue, O = red, C = black). 
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These chains are then associated by hydrogen bonding between a phenanthroline 

hydrogen [H(7A)] and the oxygen atoms of the lone lattice water molecules 

[CH(7A)⋅⋅⋅O(102) = 2.49 Å, C(7)⋅⋅⋅O(102) = 3.375(15) Å], which in turn form H-

bonds to the water molecules with H(103) and H(101) [bond length to O(102) = 2.02 

and 2.09 Å respectively].      

 

4.2.4  Studies of [Cr(CN)6]- [Ln(III)] Systems (Ln = Nd, Gd, Yb) 

 

Lanthanide hexacyanometallates have been reported in the literature as early as 

190931 and to date include series in which cobalt(III),32 iron(III)33 and 

ruthenium(II)34 take the form of the octahedral metal ion.  The combination of 

hexacyanochromate(III) anions and lanthanide(III) cations has also featured, and first 

occurred in 1976 when Hulliger and co-workers prepared a full array of 

LnCr(CN)6⋅5H2O complexes to study their magnetic properties.35  Whilst no 

crystallographic data was available from this work, it was assumed that the structures 

were analogous to the LnFe(CN)6⋅5H2O complexes determined by Bailey.36  

However, this was subsequently disproved by Seto et al when they determined the 

structures of LaCr(CN)6⋅4H2O and SmCr(CN)6⋅3H2O via powder X-ray diffraction,37 

showing that the number of water molecules in the first coordination sphere of the 

lanthanide ion appeared to vary.     

 

4.2.4.1  [Cr(CN)6][Ln(H2O)2] (Ln = Gd, Yb) 

 

In an attempt to obtain single crystals of a LnCr(CN)6⋅xH2O series member and 

confirm the structure, we adopted the common method of combining equimolar 

amounts of K3[Cr(CN)6] with the lanthanide(III) chloride in water, allowing the 

solvent to slowly evaporate.  No previously reported works with this method quoted 

a yield, and in our case only a couple of long, thin crystals were obtained from the 

resulting deposit; however, these were suitable for X-ray studies.  Crystal structures 

of both Gd(III) and Yb(III) isomers were obtained and both complexes were found to 

be isostructual with molecular formulas of LnCr(CN)6⋅3H2O; but for the purposes of 

structural discussion, we restrict ourselves to the Yb(III) complex. 
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The complex crystallises in the orthorhombic space group Cmcm, giving a better data 

agreement than the monoclinic P21/m that Seto et al first proposed for 

SmCr(CN)6⋅3H2O via powder analysis.37  The ytterbium centre is 8-coordinate with a 

square antiprismatic geometry (Fig. 4.2.22) comprising two square planes formed by 

N4 and N2O2 vertices, perfectly parallel to each other, with the Yb(1) atom sat 1.251 

and 1.323 Å from the former and latter plane respectively.  The vertices of the N4 

plane are formed by cyanide bonds to four separate [Cr(CN)6]3- units [Yb(1)⋅⋅⋅N(1) = 

2.394(2) Å], whilst the N2O2 plane are formed by bonds to two water molecules 

[Yb⋅⋅⋅O(1) = 2.307(3) Å] and two more separate [Cr(CN)6]3- units.   

 

 
 

Fig. 4.2.22 – Crystal structure of Yb[Cr(CN)6(H2O)2]⋅H2O highlighting the coordination 

geometry about the lanthanide centre.  Hydrogen atoms and the lattice water have been 

removed for clarity. 

 

The structure extends along all three crystallographic axes through the cyanide 

groups of the Cr(III) unit, with alternate views along the a, b and c-axes shown in 

Fig. 4.2.23, 4.2.24 and 4.2.25 respectively.  None of the cyanide-Yb bonds remain 

linear in the structure, with respective Yb(1)-N(1)-C(1) and Yb(1)-N(2)-C(2) angles 

at 167.8 and 151.5°, and the bond lengths and angles about the Cr(III) centre unit are 

unremarkable [Cr-C = 2.068(3) Å, C-Cr-C = 89.9°].   
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With reference to Fig. 4.2.25 the Cr⋅⋅⋅Yb separation is 5.451(1) Å for those metals to 

the left and right of each other, and 5.581(1) Å for those diagonally related.     

 

 
Fig. 4.2.23 – View of Yb[Cr(CN)6(H2O)2]⋅H2O along the a-axis.   

Hydrogen atoms and the lattice water have been removed for clarity.  
 

The coordinated water molecule O(1) also helps the propagation of the polymer 

along the ac plane, by hydrogen bonding to the lattice water [OH(1)⋅⋅⋅O(1S) = 2.136 

Å, O(1)⋅⋅⋅O(1S) = 2.844(4) Å]; which itself is bonded to the axial cyanide group 

[OH(1S)⋅⋅⋅N(2) = 2.507 Å, O(1S)⋅⋅⋅N(2) = 3.269(6) Å] (Fig. 4.2.26).  Selected bond 

lengths for both Yb(III) and Gd(III) analogues are shown in Table 4.2.8 and 4.2.9 

respectively. 

Cr(1)-C(1)  2.068(3) 
C(1)-N(1)  1.157(4) 
N(1)-Yb(1)  2.394(2) 
N(2)-Yb(1)  2.432(4) 
Yb(1)-O(1)  2.307(3) 

 
Table 4.2.8 – Selected bond lengths (Å) for [Cr(CN)6][Yb(H2O)2]⋅H2O  

 

Cr(1)-C(1)  2.062(5) 
C(1)-N(1)  1.155(6) 
N(1)-Gd(1)  2.497(4) 
N(2)-Gd(1)  2.463(3) 
Gd(1)-O(1)  2.374(3) 

 

Table 4.2.9 – Selected bond lengths (Å) for [Cr(CN)6][Gd(H2O)2]⋅H2O  
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Fig. 4.2.24 – View of Yb[Cr(CN)6(H2O)2]⋅H2O along the b-axis.   

Hydrogen atoms and the lattice water have been removed for clarity.  
 

 

 
 

Fig. 4.2.25 – View of Yb[Cr(CN)6(H2O)2]⋅H2O along the c-axis.   

Hydrogen atoms and the lattice water have been removed for clarity.  
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Fig. 4.2.26 – View of Yb[Cr(CN)6(H2O)2]⋅H2O showing the hydrogen bonded network. 

 

4.2.5  Photophysical Studies of [Cr(CN)6][Ln(DMF)4(H2O)2] Systems 

 

Works by Otsuka,38 Fujita39 and Bignozzi40 et al have shown that Cr(III) can be 

employed in Ru(II)-Cr(III) and Os(II)-Cr(III) systems to accept energy transfer from 

the group 8 metal once excited, with emission readily being observed from the 2Eg → 
4A2g transition after sensitisation by energy transfer (13,100-14,400 cm-1, Fig. 

4.2.27). 

 
 

Fig. 4.2.27 – Ru(II)→Cr(III) energy transfer in various hybrid systems. 39 
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The 2Eg level varies in energy depending on the coordination sphere of the Cr(III), 

and in [Cr(CN)6] rests at ca. 13000 cm-1.  Bűnzli and co-workers41 have shown that 

the high energy levels of Eu(III) and Tb(III) can also populate the Cr(III) 2Eg state; 

however, they42 and Kaizaki43 have also showed the reverse can be achieved, with 

the populated Cr(III) transferring energy from the 2Eg level to the higher energy 

levels of near-IR emitting lanthanide(III) ions such as Yb(III) and Nd(III) (Fig. 

4.2.28).  The self-assembled [LnCrL3]6+ helicates used by Bűnzli (where L is a 

segmental ligand) had typical Cr-Ln separation distances of 9.36 Å and, not 

surprisingly, accompanying slow energy transfer rates [k(Cr→Yb) = 0.2 x 103 s-1], 

whereas the work by Kaizaki used a much shorter oxalate bridge to hold the 

components together at a separation of 5.63 Å,44 although no rate constants were 

determined for the energy transfer in this work. 

 

 
 

Fig. 4.2.28 – Cr → Ln(III) energy transfer. 

 

As shown in the [Ru(bipy)(CN)4]-Ln(III) systems earlier, the cyanide group is a very 

attractive bridging unit for promoting energy transfer between metal centres, yet 

suitable quantities of crystals were not obtainable in our YbCr(CN)6⋅3H2O synthesis, 

leaving us to find another system through which the Cr-CN-Ln bridge could be 

exploited.   
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The limitation rests with the lack of solubility for the K3[Cr(CN)6] and Ln(III) cation 

reagents in common solvents making it particularly difficult to obtain sufficient 

quantities of single crystals.  However, a suitable method was found via the works of 

Kautz45 and Ribas46 in which the Cr(III) and Ln(III) sources are combined in H2O 

and DMF solutions respectively, with slow evaporation generating copious amounts 

of yellow single crystals of the form [Cr(CN)6][Ln(H2O)2(DMF)4]⋅H2O.  The effect 

of luminescence quenching by DMF molecules in the first coordination sphere of the 

lanthanide ion is much less than for water molecules, but to ensure that the 

luminescence lifetime of the lanthanide ion was maximised, a D2O/DMF 

crystallisation mixture was used in the hope of replacing any coordinated H2O 

molecules with D2O.  In these syntheses, we employed Ln(NO3)3 hydrate salts.  

 

Crystal structures were obtained for [Cr(CN)6][Ln(H2O)2(DMF)4]⋅H2O where Ln = 

Nd(III), Gd(III), and Yb(III), and yet again we refer to the water molecules as H2O, 

although they are mostly D2O.  The complexes were isostructual to the Gd(III) 

analogue prepared by Ribas46 (intended for our use as a reference in determining 

energy transfer rates for these systems), with two water molecules attached to the 

lanthanide ion.   

 
 

Fig. 4.2.29 – Crystal structure of [Cr(CN)6][Yb(DMF)4(H2O)2]⋅H2O 
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The Yb(III) complex is shown in Fig. 4.2.29 and shows the lanthanide is in an 8-

coordinate N2O6 geometry consisting of four Yb-ODMF, two Yb-OD2O, and two Yb-

NCN bonds of average lengths 2.312, 2.310 and 2.440 Å respectively.  The square 

antiprismatic geometry is formed by two planes comprising O(15)/O(2)/O(25)/O(1) 

and N(1)/N(6)/O(35)/O(45) with respective average deviations from the mean of 

0.0759 and 0.3739 Å (Fig. 4.2.30).   

 

 
Fig. 4.2.30 – Square antiprismatic geometry about Yb(III) centre in 

[Cr(CN)6][Yb(DMF)4(H2O)2]⋅H2O. 

 

Whilst no immediate effect in ionic radius is observed between Nd(III) and Yb(III) 

analogues, the Pr(III) analogue of Kautz45 shows its ability to accommodate an extra 

water molecule about the lanthanide centre.  Selected bond lengths are given for the 

Nd(III) and Yb(III) analogues in Tables 4.2.10 and 4.2.11 respectively.      

 

N(1)-Nd(1)  2.580(6) 
N(6)-Nd(1)  2.560(7) 
Nd(1)-O(25)  2.408(5) 
Nd(1)-O(2)  2.414(5) 
Nd(1)-O(15)  2.415(5) 
Nd(1)-O(35)  2.434(5) 
Nd(1)-O(45)  2.442(5) 
Nd(1)-O(1)  2.458(5) 

 

Table 4.2.10 – Selected bond lengths (Å) for [Cr(CN)6][Nd(DMF)4(H2O)2]⋅H2O 
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N(1)-Yb(1)  2.434(3) 
N(6)-Yb(1)  2.445(3) 
Yb(1)-O(2)  2.288(2) 
Yb(1)-O(25)  2.300(2) 
Yb(1)-O(35)  2.308(3) 
Yb(1)-O(15)  2.313(2) 
Yb(1)-O(45)  2.327(3) 
Yb(1)-O(1)  2.331(3) 

 
Table 4.2.11 – Selected bond lengths (Å) for [Cr(CN)6][Yb(DMF)4(H2O)2]⋅H2O 

 

Both Cr(III) and Yb(III) units act as bridges to the other metal units forming a one 

dimensional chain along the b-axis with the Cr-Yb-Cr-Yb linkage in a form 

reminiscent of a sine wave (Fig. 4.2.31).  Adjacent chains are connected along the c-

axis by a series of hydrogen bonds such as N(5)-H(21), N(5)-H(22), N(5)-H(1S) and 

N(2)-H(2S), and whilst the bond lengths and angles about the [Cr(CN)6]3- unit are 

unremarkable, the Cr⋅⋅⋅Yb separation in the polymer is found at 5.58-5.59 Å - slightly 

shorter than those of  Kaizaki’s complexes.43   

 

 
 

Fig. 4.2.31 – Arrangement of -Cr-Yb-Cr-Yb- chain in [Cr(CN)6][Yb(DMF)4(H2O)2]⋅H2O. 

The same arrangement is observed in Gd(III) and Nd(III) systems. 

 

Sensitised Ln(III)-based emission was observed for both the Yb(III)- and Nd(III)- 

[Cr(CN)6] systems upon 337 nm excitation of the Cr(III) unit in the solid state.  The 

Cr(III)-based luminescence is completely quenched by the Ln(III) excited states at 

room temperature,42,43 the absence of which meant it was not possible to determine 

energy-transfer rates for these systems at room temperature, although we can 

postulate that the shorter internuclear separation and conjugated bridge would 

provide a faster means of transfer than those of Bűnzli’s helicates (kET(Cr→Yb) = 0.2 x 

103 s-1).42   
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Both systems displayed single exponential decays for the Ln(III)-based 

luminescence: the Yb(III)-based 2F5/2 → 2F7/2 emission at 980 nm was observed with 

a lifetime of 612 ns; and the Nd(III)-based emission was observed at both 880 and 

1055 nm, with the more intense latter transition (2F3/2 → 2I11/2) used to determine a 

lifetime of 100 ns.  Repeating the measurement on a second sample of the Nd(III)-

Cr(III) complex produced a lifetime of 112 ns, indicating the degree of error we can 

expect to find in recording a lifetime of this magnitude with our instrumentation. 
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4.3 Experimental 

  

4.3.1 Synthesis of K2[Ru(NN’)(CN)4] Salts 

 

4.3.1.1  General 

 

3-(2-Pyridyl)pyrazole47 was prepared according to the previously published methods.  

MeOH:H2O solutions were purged with nitrogen for approx. 30 min before the 

addition of reagents.  Potassium hexacyanoruthenate was dried in vacuo and flushed 

with N2 prior to use.  Solid State UV (i.e. crystals grinded up and sandwiched 

between two microscope slide covers), show a weak and broad double hump at 

approx. 500 – 300 nm corresponding to the MLCT.48  

 

K2[Ru(bipy)(CN)4]  

 

2,2-bipyridine (150 mg, 0.96 mmol) and Potassium hexacyanoruthenate (450 mg, 1.1 

mmol) were combined in a 1:1 methanol:water solution (60 ml in total) at pH 3.5 

(made from stock solution of 1:1 methanol:water with 5 drops of conc. H2SO4 per 

100 ml total of solution).  The reaction was stirred and refluxed at 120 °C for 3 days 

to leave an intense orange solution.  After cooling to room temperature, the reaction 

mixture was neutralised to pH 7 with K2CO3, and the solvent was removed in vacuo.  

The remaining residue was taken up in the minimum amount of water, and methanol 

added until all unreacted K4[Ru(CN)6] had crashed out.  This was filtered through 

celite and washed with methanol.  The filtrate was removed and the residue dissolved 

in the minimum amount of water.  Acetone was then added to generate a yellow 

precipitate.  The mixture was then filtered through celite, and the solid obtained by 

washing through with water.  Removal of the solvent and drying gave K2[Ru(2,2-

bipy)(CN)4] as an orange powder in 82 % yield (345 mg).  ES-MS (Negative ion, 

low cone voltage) [assignment]: 363 [Ru(2,2’-bipy)(CN)4H]¯; 401 [(Ru(2,2’-

bipy)(CN)4)K]¯;.  1H NMR (D2O): δ 9.15 (2H, d, J 5.2, H1), 8.22 (2H, d, J 7.9, H4), 

7.91 (2H, t, J 14.7, 7.3, H3), 7.47 (2H, t, J 13.1, 6.6, H2).   
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K2[(Phen)Ru(CN)4]⋅4H2O 

 

This was made in identical fashion to above with 1,10-phenanthroline (Phen) 

replacing bipy.  Following a three day reflux, the product was obtained in 49 % yield 

as an orange powder.  MS E/S (negative ion) [assignment]: 387 [(Phen)Ru(CN)4H]¯.  
1H NMR (D2O): 9.44 (2H, dd, J 1.4, 5.1, H2,9); 8.30 (2H, dd, J 1.4, 8.4, H4,7); 7.75 

(2H, dd, J 5.2, 8.2, H3,8); 7.64 (2H, s, H5,6).  IR υCN: 2037 (s), 2089 (w) cm-1.   

 

4.3.2  Synthesis of Ru(II)-Ln(III) Complexes 

 

D2O solutions of K2[Ru(2,2’-bipy)(CN)4] and lanthanide chloride hydrate (Ln = Pr, 

Nd, Gd, Er, Yb) in a 2:1 ratio (typically 30-40 mg of Ru-bipy reagent), were combine 

and the KCl precipitate filtered through celite.  Slow evaporation of the filtrate over a 

period of 2 – 3 weeks, resulted in a crop of crystals in varying yields up to 80%; 

which were filtered off and air-dried.   

 

Elemental analyses in all cases indicated the presence of several lattice water 

molecules in addition to the expected water ligands coordinated to the Ln3+ centres, 

in agreement with the crystal structures, although in some cases the number of water 

molecules detected by analysis was less than found in the crystal structure, indicating 

partial loss of lattice water molecules on drying the crystals.  Note that it is 

unfeasible to suggest which waters are deuterated 100%, 50% or not at all, and so all 

water hydrogens have been suggested as non-deuterated.  Yields were not optimised 

as we had found in earlier studies that allowing such solutions to evaporate too near 

to dryness resulted in a mixture of crystalline materials.21 

 

[{Ru(bipy)(CN)4}2{Pr(H2O)7}{K(H2O)4}]⋅7H2O.   

 

Found: C, 27.7; H, 3.9; N, 13.2%.  Calculated: C, 27.4; H, 4.3; N, 13.7%.  (Crystal 

structure has 10H2O).  IR (ν, cm-1): 3343 (br, s), 2485 (br, w), 2113 (w), 2037 (s), 

1600 (m), 1468 (m), 1444 (m), 1428 (m), 1312 (w), 1242 (w), 1157 (w), 763 (s), 734 

(m). 
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[{Ru(bipy)(CN)4}2{Er(H2O)6}{K(H2O)4}]⋅4H2O.   

 

Found: C, 28.2; H, 3.4; N, 14.1%.  Calculated: C, 28.5; H, 3.8; N, 14.2%.  (Crystal 

structure has 5H2O). IR (ν, cm-1): 3380 (br, s), 2501 (br, m), 2097 (m), 2040 (s), 

1599 (m), 1468 (m), 1441 (m), 1421 (m), 1311 (w), 1242 (w), 1152 (w), 763 (s), 733 

(m).  

 

 [{Ru(bipy)(CN)4}3{Nd(H2O)4}2]⋅11H2O.  

 

Found: 29.3; H, 3.3; N, 14.7%.  Calculated: 29.4; H, 3.6; N, 14.7%. IR (ν, cm-1): ≈ 

3600 (sh), 3290 (br, m), 2100 (m), 2046 (s), 1599 (m), 1468 (m), 1444 (m), 1421 

(m), 1312 (w), 1241 (w), 766 (s), 732 (m). 

 

 [{Ru(bipy)(CN)4}3{Gd(H2O)4}2]⋅10H2O.  

 

Found: 28.6; H, 3.2; N, 14.2%.  Calculated: 29.0; H, 3.6; N, 14.5%.  (Crystal 

structure has 11H2O). IR (ν, cm-1): ≈ 3600 (sh), 3290 (br, m), 2100 (m), 2046 (s), 

1599 (m), 1468 (m), 1444 (m), 1421 (m), 1312 (w), 1242 (w), 766 (s), 732 (m). 

 

4.3.3  Synthesis of Cr(III)-Ln(III) Complexes 

 

D2O solutions of K3[Cr(CN)6] and lanthanide chloride hydrate (Ln = Nd, Gd, Yb) 

were combined in a 1:1 ratio (30 mg of Cr(III) reagent), and slow evaporation of the 

solution over a period of 2–3 weeks, resulted in a thick opaque deposit containing a 

few colourless single crystals of the formulae [Cr(CN)6][Ln(H2O)2]⋅H2O.  

 

D2O solutions of K3[Cr(CN)6] and DMF solutions of lanthanide nitrate hydrate (Ln = 

Nd, Gd, Yb) were combined in a 1:1 ratio (30 mg of Cr(III) reagent), and slow 

evaporation of the solution over a period of 2–3 weeks, resulted in a crop of yellow 

plate-like single crystals of the formulae  [Cr(CN)6][Ln(DMF)4(H2O)2]⋅H2O.  Again, 

it is unfeasible to suggest which waters are deuterated 100%, 50% or not at all, and 

so all water hydrogens have been suggested as non-deuterated.   
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[Cr(CN)6][Gd(H2O)2]⋅H2O 

 

50 mg (0.15 mmol) of K3[Cr(CN)6] and 56 mg (0.15 mmol) of GdCl3⋅6H2O were 

combined in D2O (10 ml) and the solution allowed to slowly evaporate in a foil-

covered sample vial.  After several weeks an opaque deposit was formed which 

contained a one or two thin long crystals which were suitable for X-Ray studies.    

 

[Cr(CN)6][Yb(H2O)2]⋅H2O 

 

Made in identical fashion the Gd(III) analogue using 50 mg (0.15 mmol) of 

K3[Cr(CN)6] and 58 mg (0.15 mmol) of YbCl3⋅6H2O. 

 

[Cr(CN)6][Nd(DMF)4(H2O)2]⋅H2O 

 

30.2 mg (0.093 mmol) of K3[Cr(CN)6] was dissolved in D2O (4 ml) and combined 

with a solution of 40.7 mg (0.093 mmol) of Nd(NO3)3⋅6H2O in DMF (1 ml).  The 

resultant solution was allowed to slowly evaporate in a foil-covered sample vial open 

to air.  After several weeks yellow plate-like crystals appeared to give the product in 

42 % yield.  Found: C, 30.8; H, 4.8; N, 19.8%.  [Cr(CN)6][Nd(DMF)4(H2O)2]⋅H2O 

requires: C, 30.9; H, 4.9; N, 20.1%. 

 

[Cr(CN)6][Yb(DMF)4(H2O)2]⋅H2O 

 

Made in identical fashion to the Nd(III) analogue with Yb(NO3)3⋅6H2O, giving 

yellow plate-like crystals in 47 % yield.  Found: C, 29.6; H, 4.6; N, 18.9%.  

[Cr(CN)6][Nd(DMF)4(H2O)2]⋅H2O requires: C, 29.7; H, 4.7; N, 19.3%. 
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Complex  [{Ru(bipy)(CN)4}2{Pr(H2O)7}{K(H2O)2}]⋅9H2O          [{Ru(bipy)(CN)4}2{Er(H2O)6}{K(H2O)4}]⋅4H2O 
  
 
Empirical formula  C14H29K0.50N6O10.50Pr0.50Ru                       C56H92K2N24O30Er2Ru4   
Formula weight  640.51                        2398.54    
Temperature  150(2)K                        150(2) K    
Crystal system  Monoclinic                        Tetragonal   
Space group  P21/m           Pca21              
a /Å  9.006(2)                         17.226(13)     
b /Å 29.787(7)                         29.365(2)     
c /Å 9.505(2)                         17.2263(13)     
α /° 90                        90    
β /° 115.048(4)                        90    
γ /° 90                        90    
Volume /Å3 2310.0(10)                       8713.9(9)    
Z 4                        4    
Density (calculated) / Mg/m3 1.842                       1.828    
Absorption coefficient / mm-1 1.862                       2.764   
F(000) 1288                       4744    
Crystal size / mm 0.37 x 0.33 x 0.23                        0.42 x 0.40 x 0.40    
θ range for data collection 1.37 to 27.60°                        1.37 to 27.53°    
Reflections collected 26223                       96089    
Independent reflections 5376 [R(int) = 0.1236]                       19724 [R(int) = 0.1230]   
Completeness to θ 98.5 %                        99.5 %     
Data / restraints / parameters 5376 / 0 / 281                        19724 / 1 / 1064   
Goodness-of-fit on F2 S = 1.057                         1.031    
R indices [for reflections with I>2σ(I)] R1 = 0.0631, wR2 = 0.1733                         R1 = 0.0393, wR2 = 0.1029   
R indices (for all data) R1 = 0.0866, wR2 = 0.1958                         R1 = 0.0445, wR2 = 0.1062   
Largest diff. peak and hole 4.151 and -2.348 eÅ-3                         2.187 and -2.198 e.Å-3   
 
 
Table 4A          Crystallographic Data for the Complexes of Chapter 4 
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Complex  [{Ru(bipy)(CN)4}3{Nd(H2O)4}2]⋅11H2O                        [{Ru(bipy)(CN)4}3{Gd(H2O)4}2]⋅10H2O  
 
Empirical formula  C42H24N18O19Nd2Ru3                       C42H24N18O19Gd2Ru3   
Formula weight  1676.48                        1722.66    
Temperature  150(2)K                        150(2) K    
Crystal system  Monoclinic                        Monoclinic   
Space group  P21/c           P21/c              
a /Å  15.0504(14)                         14.9452(11)     
b /Å 13.7872(13)                         13.7769(10)     
c /Å 29.790(3)                         29.611(2)     
α /° 90                        90    
β /° 104.599(2)                        104.3020(10)    
γ /° 90                        90    
Volume /Å3 5982.0(10)                       5907.9(8)    
Z 4                        4    
Density (calculated) / Mg/m3 1.861                       1.937    
Absorption coefficient / mm-1 2.527                       3.047   
F(000) 3224                       3336    
Crystal size / mm 0.36 x 0.34 x 0.32                        0.23 x 0.14 x 0.08    
θ range for data collection 1.40 to 27.57°                        1.41 to 27.56°    
Reflections collected 66457                       67374    
Independent reflections 13644 [R(int) = 0.0405]                       13563 [R(int) = 0.2392]   
Completeness to θ 98.7 %                        99.2 %     
Data / restraints / parameters 13644 / 0 / 794                        13563 / 0 / 746   
Goodness-of-fit on F2 S = 1.042                          0.941    
R indices [for reflections with I>2σ(I)] R1 = 0.0290, wR2 = 0.0762                         R1 = 0.0567, wR2 = 0.1232   
R indices (for all data) R1 = 0.0403, wR2 = 0.0798                         R1 = 0.1119, wR2 = 0.1450   
Largest diff. peak and hole 0.951 and -0.809 eÅ-3                         1.617 and -1.886 e.Å-3   
 
 
Table 4B          Crystallographic Data for the Complexes of Chapter 4 
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Complex  [{Ru(bipy)(CN)4}3{Pr(H2O)4}{Pr(H2O)4}]⋅10H2O     K2[Ru(phen)(CN)4]⋅4H2O   
 
Empirical formula  C42H38N18O19Pr2Ru3                        C16H16N6K2O4Ru  
Formula weight  1683.93                         535.62    
Temperature  150(2)K                         150(2) K    
Crystal system  Monoclinic                         Monoclinic   
Space group  P21/n               Cc              
a /Å  15.0905(13)                          10.291(16)     
b /Å 13.8011(11)                          30.116(5)     
c /Å 29.895(3)                          6.6628(11)     
α /° 90                         90    
β /° 104.4530(10)                         101.862(3)    
γ /° 90                         90    
Volume /Å3 6026.7(9)                        2020.9(6)    
Z 4                         4    
Density (calculated) / Mg/m3 1.856                        1.760    
Absorption coefficient / mm-1 2.402                        1.224   
F(000) 3272                        1072    
Crystal size / mm 0.38 x 0.34 x 0.30                         0.20 x 0.10 x 0.10    
θ range for data collection 1.39 to 27.55°                         1.35 to 27.54°    
Reflections collected 66944                        11718    
Independent reflections 13739 [R(int) = 0.0335]                        4539 [R(int) = 0.0847]   
Completeness to θ 98.9 %                        99.4 %     
Data / restraints / parameters 13739 / 2 / 754                         4539 / 63 / 281   
Goodness-of-fit on F2 S = 1.050                          0.903    
R indices [for reflections with I>2σ(I)] R1 = 0.0284, wR2 = 0.0760                         R1 = 0.0548, wR2 = 0.1051   
R indices (for all data) R1 = 0.0360, wR2 = 0.0791                          R1 = 0.1008, wR2 = 0.1191   
Largest diff. peak and hole 1.178 and -1.133 eÅ-3                          1.021 and -0.983 e.Å-3   
 
 
Table 4C          Crystallographic Data for the Complexes of Chapter 4 
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Complex  [{Cr(CN)6}{Gd(H2O)2}]⋅H2O                       [{Cr(CN)6}{Yb(H2O)2}]⋅H2O  
 
Empirical formula  C1.50H2N1.50OGd0.25Cr0.25   C1.50H2N1.50OYb0.25Cr0.25  
Formula weight  109.36                         113.31    
Temperature  150(2)K                         150(2) K    
Crystal system  Orthorhombic                         Orthorhombic   
Space group  Cmcm               Cmcm              
a /Å  7.5491(11)                          7.4572(17)     
b /Å 13.0374(19)                          12.948(3)     
c /Å 14.022(2)                          13.898(3)     
α /° 90                         90    
β /° 90                         90    
γ /° 90                         90    
Volume /Å3 1380.1(4)                        1341.9(5)    
Z 16                         16    
Density (calculated) / Mg/m3 2.105                        2.243    
Absorption coefficient / mm-1 5.565                        7.750   
F(000) 824                        848    
Crystal size / mm 0.09 x 0.07 x 0.07                         0.30 x 0.10 x 0.10    
θ range for data collection 2.91 to 27.45°                         2.93 to 27.51°    
Reflections collected 4147                        7581    
Independent reflections 882 [R(int) = 0.0466]                        863 [R(int) = 0.0449]   
Completeness to θ 99.2 %                        99.1 %     
Data / restraints / parameters 882 / 3 / 51                         863 / 0 / 61   
Goodness-of-fit on F2 S = 1.044                          1.138    
R indices [for reflections with I>2σ(I)] R1 = 0.0242, wR2 = 0.0495                         R1 = 0.0179, wR2 = 0.0379   
R indices (for all data) R1 = 0.0291, wR2 = 0.0509                          R1 = 0.0205, wR2 = 0.0385   
Largest diff. peak and hole 0.663 and -0.857 eÅ-3                          1.065 and -0.697 e.Å-3   
 
 
Table 4D          Crystallographic Data for the Complexes of Chapter 4 
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Complex  [{Cr(CN)6}{Nd(H2O)2(DMF)4}]⋅H2O                       [{Cr(CN)6}{Yb(H2O)2(DMF)4}]⋅H2O                
   
Empirical formula  C18H34N10CrO7Nd                        C18H34N10CrO7Yb  
Formula weight  698.79                         727.59    
Temperature  150(2)K                         150(2) K    
Crystal system  Monoclinic                         Monoclinic   
Space group  P21/n               P21/n              
a /Å  13.2206(13)                          13.0556(11)     
b /Å 12.9636(14)                          12.7471(11)     
c /Å 18.8369(19)                          18.9654(16)     
α /° 90                         90    
β /° 109.538(2)                         109.8590(10)    
γ /° 90                         90    
Volume /Å3 3042.5(5)                        2968.5(4)    
Z 4                         4    
Density (calculated) / Mg/m3 1.526                        1.628    
Absorption coefficient / mm-1 2.095                        3.548   
F(000) 1408                        1448    
Crystal size / mm 0.17 x 0.16 x 0.08                         0.25 x 0.23 x 0.11    
θ range for data collection 1.65 to 27.55°                         1.66 to 27.53°    
Reflections collected 34153                        33128    
Independent reflections 6963 [R(int) = 0.3163]                        6779 [R(int) = 0.0487]   
Completeness to θ 99.1 %                        99.1 %     
Data / restraints / parameters 6963 / 10 / 364                         6779 / 0 / 364   
Goodness-of-fit on F2 S = 0.910                          0.981    
R indices [for reflections with I>2σ(I)] R1 = 0.0681, wR2 = 0.1458                         R1 = 0.0292, wR2 = 0.0652   
R indices (for all data) R1 = 0.1151, wR2 = 0.1674                          R1 = 0.0413, wR2 = 0.0690   
Largest diff. peak and hole 1.871 and -4.251 eÅ-3                          2.136 and -1.025 e.Å-3   
 
 
Table 4E          Crystallographic Data for the Complexes of Chapter 4 
 



Chapter Four – Cyanide-Bridged d-f Hybrids 
____________________________________________________________________   

 219

 

4.4. References 

 

1. N. M. Shavaleev, G. Accorsi, D. Virgili, Z. R. Bell, T. Lazarides, G. 

Calogero, N. Armaroli, M. D. Ward, Inorg. Chem., 2005, 44, 61. 

2. S. I. Klink, H. Keizer, F. C. J. M. van Veggel, Angew. Chem. Int. Ed., 

2000, 39, 4319.  

3. N. M. Shavaleev, Z. R. Bell, M. D. Ward, Dalton Trans., 2002, 3925. 

4. N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, 

M. D. Ward, Chem. Commun., 2003, 1134. 

5. N. M. Shavaleev, L. P. Moorcraft, S. J. A. Pope, Z. R. Bell, S. Faulkner, 

M. D. Ward. Chem. Eur. J., 2003, 9, 5283. 

6. A. Beeby, R. S. Dickins, S. FitzGerald, L. J. Govenlock, D. Parker, J. A. 

G. Williams, C. L. Maupin, J. P. Riehl, G. Siligardi, Chem. Commun., 

2000, 1183. 

7. S. J. A. Pope, B. J. Coe, S. Faulkner, E. V. Bichenkova, X. Yu, K. T. 

Douglas, J. Am. Chem. Soc., 2004, 126, 9490. 

8. P. B. Glover, P. R. Ashton, L. J. Childs, A. Rodger, M. Kercher, R. M. 

Williams, L. De Cola, Z. Pikramenou, J. Am. Chem. Soc., 2003, 125, 

9918.  

9. G. M. Davies, S. J. A. Pope, H. Adams, S. Faulkner, M. D. Ward, Inorg. 

Chem., 2005, 44, 4656. 

10. H. Adams, W. Z. Alsindi, G. M. Davies, M. B. Duriska, T. L. Easun, H. 

E. Fenton, J. –M. Herrera, M. W. George, K. L. Ronayne, X. -Z. Sun, M. 

Towrie, M. D. Ward, Dalton Trans., 2006, 39. 

11. T. L. Lazarides, G. M. Davies, S. J. A. Pope, H. Adams, S. Faulkner, M. 

D. Ward, Manuscript in Preparation. 

12. C. A. Bignozzi, C. Chiorboli, M. T. Indelli, M. A. Rampi Scandola, G. 

Varani, F. Scandola, J. Am. Chem. Soc., 1986, 108, 7872. 

13. N. Simpson. Ph. D Thesis, University of Bristol, 2001. 

14. K. K. Klausmeyer, S. R. Wilson, T. B. Rauchfuss, J. Am. Chem. Soc., 

1999, 121, 2705.  

15. M. L. Kuhlman, T. B. Rauchfuss, J. Am. Chem. Soc., 2003, 125, 10084. 

16. S. M. Contakes, T. B. Rauchfuss, Chem. Commun., 2001, 553.  

17. J. Hu, L. J. Barbour, G. W. Gokel, J. Am. Chem. Soc., 2001, 123, 9486. 



Chapter Four – Cyanide-Bridged d-f Hybrids 
____________________________________________________________________ 

                                                                                            220

 

18. G. W. Gokel, Chem. Commun., 2003, 2847. 

19. J. Hu, G. W. Gokel, Chem. Commun., 2003, 2536. 

20. S. M. Contakes, T. B. Rauchfuss, Angew. Chem. Int. Ed., 2000, 39, 1984 

21. T. A. Miller, J. C. Jeffery, M. D. Ward, H. Adams, S. J. A. Pope, S. 

Faulkner, Dalton Trans., 2004, 1524. 

22. T. Miller, Ph. D Thesis, University of Bristol, 2004. 

23. D. Parker, J. A. G. Williams, J. Chem. Soc. Dalton. Trans., 1996, 3613. 

24. N. R. M. Simpson, M. D. Ward, A. F. Morales, F. Barigelletti, J. Chem. 

Soc., Dalton Trans., 2002, 2449.  

25. (a) N. Sabbatini, M. Guardigli, J. –M. Lehn, Coord. Chem. ReV. 1993, 

123, 201; (b) N. Armaroli, G. Accorsi, F. Barigelletti, S. M. Couchman, J. 

S. Fleming, N. C. Harden, J. C. Jeffery, K. L. V. Mann, J. A. McCleverty, 

L. H. Rees, S. R. Starling, M. D. Ward, Inorg. Chem., 1999, 38, 5769. 

26. A. Beeby, S. Faulkner, Chem. Phys. Lett., 1997, 266, 116. 

27. G. M. Davies, R. J. Aarons, G. R. Motson, J. C. Jeffery, H. Adams, S. 

Faulkner, M. D. Ward, Dalton Trans., 2004, 1136. 

28. G. M. Davies, H. Adams, S. J. A. Pope, S. Faulkner, M. D. Ward, 

Photochem. Photobiol. Sci., 2005, 4, 829. 

29. M. A. Semenov, B. I. Sukhorukov, V. I. A. Maleev, L. I. Shabarchina, 

Biofizika, 1979, 24, 210. 

30. M. Kovàcs, A. Horvàth, Inorg. Chim. Acta., 2002, 335, 69. 

31. F. W. Robinson, J. Chem. Soc. Trans., 1909, 95, 1353. 

32. (a) C. James, P. S. Willand, J. Am. Chem. Soc., 1916, 38, 1497; (b) F. 

Hulliger, M. Landolt, H. Vetsch, J. Solid State Chem., 1976, 18, 307; (c) 

Y. Yukawa, S. Igarashi, T. Kawaura, H. Miyamoto, Inorg. Chem., 1996, 

35, 7399. 

33. (a) W. Xiaoyu, Y. Yukawa, Y. Masuda, J. Alloy and Compounds, 1999, 

290, 85; (b) D. F. Mullica, W. O. Milligan, R. L. Garner, Acta Cryst. 

1980, B36, 2561. 

34. D. F. Mullica, P. K. Hayward, E. L. Sappenfield, Inorg. Chim. Acta., 

1996, 244, 273. 

35. F. Hulliger, M. Landolt, H. Vetsch. J. Solid State Chem., 1976, 18, 283. 



Chapter Four – Cyanide-Bridged d-f Hybrids 
____________________________________________________________________ 

                                                                                            221

 

36. W. E. Bailey, R. J. Williams, W. O. Milligan, Acta. Cryst. 1973, B29, 

1365. 

37. Y. Seto, K. Umemto, T. Arii, Y. Masuda, J. Therm. Anal. Cal., 2004, 76, 

165. 

38. T. Otsuka, N. Takahashi, N. Fujigasaki, A. Sekine, Y. Ohashi, Y. Kaizu, 

Inorg. Chem., 1999, 38, 1340. 

39. I. Fujita, H. Kobayashi, J. Chem. Phys., 1973, 59, 2902. 

40. (a) C. A. Bignozzi, O. Bortolini, C. Chiorboli, M. T. Indelli, M. A. 

Rampi, F. Scandola, Inorg. Chem., 1992, 31, 172; (b) C. A. Bignozzi, M. 

T. Indelli, F. Scandola, J. Am. Chem. Soc., 1989, 111, 5192. 

41. M. Cantuel, G. Bernardinelli, D. Imbert, J. –C. G. Bünzli, G. Hopfgartner, 

C. Piguet, J. Chem. Soc., Dalton Trans., 2002, 1929.  

42. D. Imbert, M. Cantuel, J. –C. G. Bunzli, G. Bernardinelli, C. Piguet, J. 

Am. Chem. Soc., 2003, 125, 15698.  

43. M. A. Subhana, H. Nakatab, T. Suzukia, J. -H. Choia, S. Kaizaki, J. 

Lumin., 2003, 101, 307. 

44. T. Sanada, T. Suzuki, T. Yoshida, S. Kaizaki, Inorg. Chem., 1998, 37, 

4712. 

45. R. A. Combs, J. M. Farmer, J. A. Kautz, Acta. Cryst. 2000, C56, 1420. 

46. A. Figuerola, C. Diaz, M. S. E. Fallah, J. Ribas, M. Maestro, J. Mahia, 

Chem. Commun., 2001, 1204. 

47. P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis, 

L. H. Rees, and M. D. Ward, Inorg. Chem., 1997, 36, 10. 

48. H. Zeng, M. Kira, Y. Segawa, J. Phys. B: At. Mol. Opt. Phys., 1999, 32 

L225. 

 



Chapter Five – X-ray Crystallography 
____________________________________________________________________ 

                                                                                            222

 

 

 

 

             
  A. Bravais         W. Röntgen      W. Wein          M. von Laue  

 

 

 

X-ray Crystallography 

 

History, Theory and Technique 
 

 

 

 

         
       P. Ewald     W. Bragg         D. Hodgkin 

 

 

 

 



Chapter Five – X-ray Crystallography 
____________________________________________________________________ 

                                                                                            223

 

5.1  Introduction 

 

The application of X-rays to chemistry has enabled us to look into the interior of a 

molecule, in the solid state, and find out an overwhelming amount of structural 

information.  This chapter discusses the subject of X-ray crystallography, illustrating 

the theoretical aspects of the relationship with molecules, and the modern day 

practical procedures themselves that have been undertaken in this thesis.  It has been 

compiled with the aid of several references1 and websites,2 and some miscellaneous 

crystal structures solved by the author are included at the end of the chapter.   

 

5.2 The History 

 

5.2.1 Into Perspective 

 

Today, due to the advancing of computers, the solving of a crystal structure has 

become relatively routine.  The discoveries made by Dorothy Crowfoot Hodgkin 

offer a stark reminder of how complicated the process actually was: whilst having 

solved the structures of Penicillin (1945) and Vitamin-B12 (1956, Fig. 5.2.1), she is 

mainly credited with solving the structure of Insulin (a 777-atom hormone essential 

to the efficient metabolism of carbohydrates) a feat which took her 34 years to 

achieve (1935-1969).  The work helped to show how the hormone suppresses the 

symptoms of diabetes, and such was the value of her work that she was recognised 

with the Nobel Prize for Chemistry in 1964.  

 

 
Fig. 5.2.1 - Crystal structure of vitamin B12 
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5.2.2  In the Beginning… 

 

Whilst it is mainly Laue (1912) and Bragg (1915) that are associated with the 

application of X-rays to crystallography, there are three other previous events that 

also play their part: 

 

1890: The work of Fedorov and Schonflies shows that atoms and molecules in a 

crystal are arranged in a geometrical pattern with perfect regularity.  They calculate 

that the spacing of such patterns must be in the orders of 10-8 cm; 1895: X-radiation 

is observed for the first time on the evening of November 8th when Wilhelm Röntgen 

observes fluorescence upon discharging cathode rays onto a barium platinocyanide 

plate.  He is later to be awarded the first Nobel Prize for physics  in 1901; 1900: 

Wilhelm Wien uses early quantum theory to deduce that X-rays are a wave 

phenomena, and suggests they are a form of electromagnetic radiation with 

wavelengths of 10-9–10-10 cm.   

 

The spacing of molecules within a crystal was now seen to be comparable with the 

wavelengths of X-rays.  Later, Max von Laue realised that in a crystal, Nature had 

provided a perfect diffraction grating for X-rays, and in 1912 Laue and his co-

workers; Friedrich and Knipping successfully passed a narrow X-ray beam through a 

crystal of zinc sulphide to obtain a regular diffraction pattern.  Subsequent 

calculations proved there to be a relationship between the diffraction spots and the 

symmetry of the underlying crystal.  However, only a certain number of the 

diffraction spots expected for the crystal’s symmetry were observed on the 

photographic plate.  Laue hypothesised the X-ray beam contained specific 

wavelengths and that a diffracted beam only appeared when a certain criteria were 

met. The work earned him a Nobel Prize in physics (1914). 
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5.3 The Theory 

 

5.3.1 The Bragg Equation 

 

Points in a crystal lattice can be arranged in series of parallel planes, and in 1915 

William L. Bragg suggested that X-Ray diffraction was a reflection of the X-Rays 

from the planes of the crystal lattice (with the angle of incidence being equal to that 

of reflection).  He later surmised that waves scattered from adjacent lattice planes 

will be in phase (i.e. the difference in the paths travelled by these waves will be an 

integral multiple of the wavelength, nλ) giving rise to constructive interference.   

 

   n λ = 2 d sinθ         Eq. 5.1 

 

This relationship is summarised as the famous Bragg equation (Eq. 5.1), which has 

become fundamental to the field of modern crystallography winning both Bragg, and 

his father, the Nobel Prize that year (Fig. 5.3.1).  Constructive interference 

accompanies an observable intensity, and because the glancing angle θ corresponds 

to this intensity, d may then be calculated which can in turn be used to derive the unit 

cell dimensions and crystal symmetry. 

 

 
 

Fig. 5.3.1 - Diffraction between planes of atoms (where d is the perpendicular distance between 

the lattice planes in the crystal and θ is the angle of incidence of the X-ray beam) 
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5.3.2 The Generation of X-rays 

 

X-rays are produced whenever matter (for our purposes, a copper or molybdenum 

anode) is irradiated with a beam of high-energy charged electrons.  The interaction is 

so intense, that an inner orbital electron of the atomic matter is displaced; and an 

electron from an outer orbital will fall to replace the displaced electron.  As energy 

must be conserved, this results in the generation of an X-ray equal in energy to the 

energy of the transition.   

  

Fig. 5.3.2 shows the ejected electron is from the K-shell: if the replacement electron 

comes from the L-shell (i.e. orbital of principal quantum number, n = 2), a strong Kα 

X-ray is produced; if it is the M-shell (n = 3), a weaker Kβ X-ray is produced. 

 

Kα X-ray

Kβ X-ray

Electron displaced
from K-shell

Incoming electron

Nucleus

K

L

M

 
 

Fig. 5.3.2 - X-ray generation from a copper source 

 

The Kα radiation is of the highest intensity and is therefore used in standard X-ray 

diffraction work.  The availability of conventional sources limits us to using mainly 

copper or molybdenum metal targets whose Kα transitions generate X-rays with 

wavelengths of 1.5 and 0.7 Å respectively.   
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Both Kα and Kβ transitions occur to different extents, and passing the radiation 

through suitable materials that absorb Kβ radiation can give rise to monochromatic 

Kα beams.  This is an important process as the X-rays used in crystallography need 

to be as monochromatic as possible, in order to obtain accurate unit cell dimensions 

(see later).  The filtering process works on the basis that the photons emitted upon 

Kβ emission of the anode have the wavelength corresponding to the energy 

necessary to eject an electron from the K orbital of the filter’s atoms, with the effect 

that the unwanted Kβ radiation is effectively absorbed without reducing the intensity 

of the desired Kα radiation.  Generally, an element close in atomic number is used as 

a filter, for example copper anodes (Z = 29) use a nickel filter (Z = 28) and 

molybdenum anodes (Z = 42) use a zirconium (Z = 40) or Niobium (Z = 41) filter.   

 

5.3.3 The Unit Cell and the Crystal Lattice 

 

Any perfectly crystalline solid material will consist of an effectively infinite number 

of molecules, arranged in a very precise, regular array in 3-dimensions throughout 

the crystal. This network is in fact, the repetition of an individual structural unit, 

known as the unit cell, which is a parallelepiped (a solid six-sided block) that 

contains all the symmetry elements needed to regenerate the whole three dimensional 

pattern.  The contents of the unit cell can be a single atom, molecule, or even an 

assembly of molecules. 

 

 
Fig. 5.3.3 - The unit cell 
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Unit cells are designated by six parameters (Fig. 5.3.3): axis length a, b, c; and 

angles α, β, γ, such that where the angle between a and b is γ, a and c is β, and b and 

c is α.  Symmetry operations impose restrictions upon the values these parameters 

can take, and we find that because of these restrictions, crystal symmetry is broadly 

divided into seven types of crystal system (Table 5.3.1). 

 

Unit Cell Edge Lengths Internal Angles 
      

Triclinic (a ≠ b ≠ c) (α ≠ β ≠ γ) 
Monoclinic (a ≠ b ≠ c) (α = γ = 90) (β ≠ 90) 

Orthorhombic (a ≠ b ≠ c) (α = β = γ = 90) 
Tetragonal (a = b ≠ c) (α = β = γ = 90) 
Hexagonal (a = b ≠ c) (α = β = 90) (γ = 120) 

Rhombohedral (a = b = c) (α = β = γ ≠ 90 
Cubic (a = b = c) (α = β = γ = 90) 

 
Table 5.3.1 - The seven crystal systems 

 

By placing imaginary dots on the unit cell axes and performing symmetry operations, 

we can effectively generate a 3-dimensional arrangement of ‘points’ in real space, 

known as the crystal lattice.  The concept of the lattice is important when diffraction 

by a crystal is considered, for the condition that must be met in valid lattice 

symmetry, is that the view in a given direction is the same from each lattice point.   

 

Back in 1848, Auguste Bravais had determined that there were four types of lattice 

system that would satisfy these criteria, although not all are applicable to each of the 

seven types of unit cell (Fig. 5.3.4). 

 

 
Fig. 5.3.4 – Lattice types 

 

Primitive (P): The same environment is found only at each corner such that there 

will only be one lattice point per unit cell. 
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Non-Primitive (I, F, A, B, C): More than one lattice point will be found in the unit 

cell: body-centred (I), where the environments at each corner and the centre of the 

unit cell are the same; face-centred (F), where the environments at each corner and 

the centre of each face are the same; and finally centred (A, B, C) where equal 

environments are found at the corners, and at the centre of two opposing faces.  

Assignment of A, B, or C coincides with which two faces are bound (i.e. bound by 

the ac face gives B).  Consequently, there are a total of 14 distinct Bravais lattices 

(Table 5.3.2). 

 

Triclinic P    
Monoclinic P C   

Orthorhombic P C F I 
Tetragonal P I   
Hexagonal P    

Rhombohedral P    
Cubic P F I  

 
Table 5.3.2 – The 14 Bravais Lattices 

 

5.3.4 Symmetry and Space Groups 

 

Further discussion of crystallography requires the introduction of the concept of 

symmetry.  An object is said to be symmetrical if after some movement (operation) 

its orientation is indistinguishable from what it was initially.  Such movements might 

include rotation about an axis; reflection in a plane; and inversion through a point.  

The entity to which the operation is performed (e.g. an axis or a plane) is called a 

symmetry element.     

 

Such operations include: Rotation - This is a rotation of (360/n)° about a particular 

axis.  If n = 2, then this means a two-fold rotation because rotating the object 180°, 

twice, will return it to it’s original orientation; Identity - This is simply doing 

nothing to the object – every object has this symmetry operation; Reflection - This 

occurs across a mirror plane (plane of symmetry), converting a left-handed molecule 

into its right-handed isomer (or vice versa), such as changing a point from (x, y, z) to 

(x, -y, z);   
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Inversion - In this operation, with the origin of coordinates as the ‘centre of 

inversion’, every point (x, y, z) becomes (-x, -y, -z), and the final orientation is 

centrosymmetrically related to the initial one (i.e. related to the centre of inversion by 

symmetry).  The same inversion operation can also be expressed as the successive 

performances of other symmetry operations.  For example, a two-fold rotation about 

the c-axis, followed by reflection in the ab plane will give the same progression as a 

straight-forward inversion operation  

 

All of the above symmetry operations can be combined in 3-dimensions in 32 ways 

to form the collective crystallographic point groups.  But, there are also a few other 

point groups which are appropriate to other molecules that contain, for example, 5-

fold axes.   

 

5.3.5 Space Symmetry 

 

The previous operations all share the same characteristic in that they leave at least 

one point within the object fixed (hence the name point groups).  However, there are 

three more aspects of crystal symmetry which do not have this quality but are still 

valid symmetry operations. 

 

Translation - This is motion in a straight line along a plane.  Although all points in 

the molecule are translated to a different position in space, it is still in its original 

orientation and is an example of a space symmetry operation.  Translational 

symmetry is highly probable in all crystals as a single crystal should contain 

molecules or atoms arranged in a regular array along successive planes. 

   

Screw Axes - These are a combination of translation and rotation and are given the 

notation nr.  They involve a rotation of (360/n)°, combined with a translation parallel 

to the rotation axis by the fraction r/n, such as a 21 screw axis involves a 180° 

rotation and a translation of ½ a unit cell.  One or more repeat operations may be 

needed to bring the molecule back into its original orientation.  Other types of screw 

axes are possible for higher symmetry crystal systems such as 31 and 32. 
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Glide Planes - This is the other space symmetry operation which uses translation.  In 

this case reflection in a plane is followed by translation parallel to the plane.  The 

glide plane is referred to as an a-glide, b-glide, or c-glide, depending if the translation 

is a/2, b/2 or c/2 respectively; or an n-glide if the translation is (a+b)/2, (a+c)/2 or 

(b+c)/2, - i.e. half way along one of the face diagonals.  By default, the b-axis is set 

as the unique axis - in a monoclinic cell this is because the angle ß is unique, and so 

in a monoclinic cell, it is possible to obtain a-, c- or n-glide planes. 

 

In summary, symmetry operations come under two categories: proper and improper.  

The former employs a series of operations where more than one is needed to achieve 

the identity operation.  The latter, on the other hand, achieves this with a single 

operation.  The glide planes, screw axes, inversion, rotations and reflections 

described above can combine with respect to the 14 Bravais lattices to give the 230 

possible space groups - the 230 ways that a molecule can arrange itself within a 

crystal system.     

 

5.3.6 Systematic Absences 

 

The effect of translation in a crystal lattice can have the effect of moving atoms into 

positions where destructive interference occurs in the diffraction pattern.  This 

‘systematic absence’ of reflections is easily observed in the data set, and is always 

considered when selecting the crystal’s space group.    

 

In the case of a C-centred orthorhombic unit cell (Fig. 5.3.5a), diffraction from X-ray 

beams 1 and 2 will be in phase causing constructive interference and satisfying 

Braggs law.  Meanwhile, a body-centred lattice (Fig. 65.3.5b) has an interpenetrating 

set of atoms midway between the other two planes.  Therefore, the third X-ray beam 

is diffracted by this atom (unlike in the previous case).  
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Fig. 5.3.5 – (a) Diffraction in a unit cell (Orthorhombic C-centred, C) and  

(b) Diffraction in a unit cell (Orthorhombic Body-centred I) 

 

The path difference of this third diffracted X-ray will be half that of the other two 

and the net effect of this deflection is to cancel out that of an adjacent beam and no 

diffraction maxima is observed (i.e. the Bragg law is not satisfied at that particular 

index).  This gives rise to some more limiting conditions for crystallographic lattices 

(Table 5.3.3), where n is any integer (positive, zero or negative), so 2n just means an 

even number and constructive interference.  Thus, for example, for a reflection to be 

observed in a body-centred unit cell, the sum of all three indices must be even.  If the 

sum is odd, the reflection is zero (i.e. absent).  

 

Bravais Lattice Absences Observed intensity conditions 
   

Primitive P none none 
A-centred A (0, k, l) k + l = 2n 
B-centred B (h, 0, l) h + l = 2n 
C-centred C (h, k, 0) h + k = 2n 

Body-centred I (h, k, l) h + k + l = 2n 
Face centred F (0, k, l); (h, 0, l); (h, k 0) h, k, and l all even or odd 

 
Table 5.3.3 – Systematic absences for centred unit cells 

 

5.3.7 Reciprocal Space  

 

In 1913, Peter Paul Ewald suggested a graphical method to explain the diffraction 

effects his fellow physicist Max von Laue was observing.  This was, without him 

knowing it, a graphical method of solving the Bragg equation, and has since been 

used for interpreting diffraction patterns.   
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In order to do this we must approach the idea that our crystal lattice is, in fact, not 

real, and not in real space; But treat it as a ‘reciprocal lattice’ located in ‘reciprocal 

space.’  The distance between a stack of planes (d) in the real lattice is inversely 

related (i.e. the reciprocal of) to the position of a ‘point’ in reciprocal space.  The 

spacing of different stacks of planes will thus generate a reciprocal lattice structure.  

Diffraction may now be understood in terms of the relative movement of the ‘Ewald 

sphere’ with respect to the reciprocal lattice. 

 

 
 

Fig. 5.3.6 – The Ewald sphere in reciprocal space 

 

The Ewald sphere (Fig. 5.3.6) has a radius of 1/λ with the incident X-ray beam 

visualised as passing along its diameter.  The origin of the reciprocal lattice is 

positioned at the point where the incident beam emerges from the sphere, O.  

Whenever a reciprocal lattice point touches the surface of the sphere, the conditions 

for a reflected beam (i.e. Braggs’ equation) are satisfied.   

 

From the two-dimensional diagram we can see that CO represents the incident beam 

and CG is a diffracted beam.  The angle between them is 2θ.  OG is the vector g and 

in reciprocal space has magnitude 1/d (with d being the distance between planes in 

the real crystal lattice).  

 

 

 



Chapter Five – X-ray Crystallography 
____________________________________________________________________ 

                                                                                            234

 

Since CO = 1/λ, and g = 1/d:  

 

          2 × (1/λ) × sinθ = 1/d           Eq. 5.2  

 

Rearranging this gives Bragg's equation (when n = 1):  

 

     λ = 2 d sinθ           Eq. 5.1 

   

For any orientation of the crystal relative to the incident beam, it is therefore possible 

to obtain more reciprocal lattice points. 

 

5.4  The Technique 

 

5.4.1  Introduction 

 

This section relates to the practical crystallographic procedures and explains them in 

detail. Software used for the X-ray crystallographic determinations in this thesis is 

also discussed.  All structures reported in this thesis were carried out by the author, 

either at the University of Bristol or the University of Sheffield on a Bruker SMART 

CCD area detector.  Any variations of significance particular to a structure 

determination are detailed in the relevant experimental section(s). 

 

5.4.2 The Instrument 

 

Today, diffractometers are of the CCD area detector type.  A charge-coupled device 

(CCD) detector is a semi-conductor.  The instrument operates by incident X-rays 

diffracting by a crystal and the diffracted radiation falling onto a fluorescent 

phosphor plate (detector) covered in Ba F Br:Eu2+ crystals.  When the X-ray photons 

hit the plate, some of the Eu2+ ions are ionised to Eu3+ ions with some of the freed 

electrons becoming trapped in Br vacancies introduced into the crystal (collectively 

known as ‘F centres’).  These centres are then excited by a He-Ne laser (633 nm) 

which liberates the trapped electrons which return to the Eu3+ ions to generate 

excited Eu2+ ions.   
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The electronic transitions in these ions generates a luminescence with intensity 

proportional to that of the original X-ray.  This information is then read and 

converted into an electrical signal via a photomultiplier tube and displayed as a 

visible signal (reflection) via computer hardware.  So in fact, the direct recording of 

X-rays is not actually carried out!   

 

5.4.3  Crystal Growth and Selection 

 

There are many steps between preparing a crystal and interpreting its contents’ 

structure.  It goes without saying that the effects of a sub-optimal crystal will 

propagate through data collection, structure solution, and structure refinement to 

directly affect the result of the final structure interpretation.  Thus, the selection of a 

crystal of the best possible quality is compulsory!  

 

Crystals were grown from a variety of viable methods each specified in the 

discussion of the relevant chapter.  The importance of slow crystal growth can be 

understood in terms of molecules arriving at a surface.  If they arrive too fast, the less 

time they have to orientate themselves in relation to ones that are already there, and 

random accretion is more likely which can lead to non-single crystals (i.e. disordered 

or twinned) as was seen in the [Co(4pypz)4Cl2]⋅(MeCN)4 complex (Appendix 3). 

 

Crystals were initially inspected using binocular microscopes, with those free of 

defects and with the most isotropic shape selected for analysis (the latter requirement 

being to reduce absorption errors).  In order to obtain satisfactory data, the crystal 

will have to be completely swamped by X-rays, and as some diffractometers, such as 

a Bruker SMART,3 have a maximum X-ray collimator diameter of 0.8 mm, crystals 

should not have dimensions greater than 0.5 mm.  In some cases, crystals were cut to 

achieve these requirements and dousing them in paraffin or engine oil helped to 

remove dirt and other unwanted particulates prior to data collection. 
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5.4.4 Crystal Set-up 

 

The chosen crystal was mounted on a short glass fibre, 1.5-2.0 mm in length, which 

was then securely attached to the goniometer head, with the tip of the fibre making 

contact with the crystal ‘side-on’ in order to minimise the amount of glass fibre in the 

X-ray beam.  For low temperature experiments, a cold stream of nitrogen was passed 

over the crystal via a nozzle delivery system, allowing data collection to occur at 

temperatures of typically 150 -100 K.  The crystal was optically aligned in manual 

mode with a mechanical driver to be in the centre of the three diffractometer circles.  

This is necessary as the X-ray beam is extremely narrow.  The incident beam of X-

rays will then fall onto the crystal in a direction perpendicular to a unit cell axis 

about which the crystal will be rotated.  This axis is, of course, arbitrarily chosen.    

 

5.4.5  Matrix and Unit Cell Determination 

 

Providing that a 60 second 360˚ φ-rotation photograph (Fig. 5.4.1) showed a clear 

diffraction pattern, a set of data ‘frames’ were collected to determine an orientation 

matrix; where one frame is a still image of the crystal in a specific orientation 

relative to the three circles.  Generally, three regions of reciprocal space were 

collected, each consisting of 15-30 frames.  The crystal was rotated 0.3° about ω (the 

angle between the incident beam and the goniometer) between each frame and each 

frame having an X-ray exposure time of 10 seconds – although this was increased if 

the crystal was a weak diffractor.   

 

 
Fig. 5.4.1 – a 60 second Φ-rotation photograph 
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The centroids of each reflection were then computed, with those too low in intensity; 

too close to the beam stop shadow; and too close to the edge of the detector area 

being rejected.  The remaining ‘unique’ reflections were then indexed automatically 

to generate a Bravais lattice before a least-squares calculation was performed on the 

resultant orientation matrix to suggest a suitable unit cell. 

 

The orientation matrix itself is at the centre of all data collection.  In crystallography 

there are two important sets of dimensional axes: Those that define reciprocal space 

(a*, b*, and c*) and those that define the orientation of the crystal in real space (x, y, 

and z).  The orientation matrix relates the two.  In the former, for any values of (a*, 

b*, c*) in which the Bragg conditions are met for reflection, are represented as the 

corresponding Miller indices h, k, and l.  

 

The peak profiles for reflections over sequential frames (points appearing every 0.3°) 

were next analysed using computer-generated ‘rocking graphs’.  These plots of 

intensity against ω to provide any evidence of split peaks (Fig. 5.4.2) which indicate 

poor quality data (Fig. 5.4.2b) and which will only serve to make the later treatment 

of data more taxing.     

 

     
          (a)             (b) 

 

Fig. 5.4.2 – Rocking graphs showing split peak profiles  

(a) good data and (b) poor data  
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In addition to this, the quality of the data (and hence the crystal) was deduced by 

inspection of the histogram generated in addition to the unit cell.  The subsequent 

indexing process then assigned each ‘unique’ reflection with an hkl value to define 

its location in reciprocal space.  In theory, all indexes should be perfect integers; yet 

poor data can result in a ‘smearing’ from this ideal – the degree of which is 

determined by the histogram.  If a considerable number of reflections deviated more 

than 0.05 from their integer value, the data was rejected and another crystal tried. 

 

5.4.6 Data Collection 

 

Prior to April 2003, the default no. of frames used to collect a hemisphere of data 

was 1321, which consisted of four sets of 606, 435, 230 and 50 frames.  The initial 

three sets covered just over one hemisphere of reciprocal space, allowing some 

overlap of equivalent data.  The final set of 50 frames was an identical re-run of the 

first set of 50 frames of the initial 606, designed to reveal any crystal decomposition, 

loss of X-ray intensity or detector malfunction that may occur during the data 

collection. 

 

It was later noted,4 however, that this default hemisphere collection setting that 

accompanies SMART software, was in fact only a complete data set for high 

symmetry (orthorhombic or higher) and consequently, collecting data in this manner 

for monoclinic and triclinic systems, always resulted in some data, causing many 

crystal structures to be rejected for publication. 

 

The diffractometer was set to collect a complete dataset to 55.0 degrees in 2θ, and 

the total default number of frames collected for works in this thesis was 1800, 

consisting of 3 sets of 606 frames with φ = 0, 120, 240 for each set and the frames 

again measured in 0.3° about ω.  Frame times were typically 10-30 seconds giving a 

total data collection time of approximately 6-15 hours depending on the observed 

intensity of the reflections (Fig. 5.4.3).   
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Whilst increasing the exposure time per frame will increase the intensities observed, 

it is considered better practice to collect more frames of weakly-diffracted data, than 

to collect less frames of strongly diffracted data.  Specific details of data collection 

settings are given at the end of each relevant chapter.   

 

 
   

Fig. 5.4.3 – one frame of data (10 second exposure time) 

 

5.4.7 Data Reduction 

  

5.4.7.1  Integration 

 

Data was integrated with the Bruker SAINT5 program, using the orientation matrix to 

determine the position of all the reflections in reciprocal space.  The quality of the 

integration was measured by monitoring the errors of the spot centroids in x, y and z 

(i.e. the observed position of a reflection minus the position predicted from the 

suggested orientation matrix).  Ideally, such error values should consistently be ≤ 

0.25 degrees with correlation ratios of 0.65-0.8 (65–80 %), and SAINT tracks the 

gradual shifts of spot centroids from the expected positions and updates the 

orientation matrix accordingly.   

 

As was the case with unit cell determination, any reflections that fell outside of the 

boundaries of these ideal centroids, were discarded, giving rise to a collection of 

‘unique’ reflections.  The integrated data of each hemisphere were then merged and 

written to separate raw data files, before being collectively merged to a single raw 

data file. 
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5.4.7.2  Data Corrections 

 

The collective merged reflections are recorded in terms of their relative intensities 

(Ihkl) and as X-radiation is an electromagnetic wave, each intensity has its own 

unique combination of amplitude and phase, known as a structure factor (Fhkl).  

Structure factors can be used to calculate electron density maps, and we can then 

start to see what atoms are present in the structure.  However, the conversion is not a 

straightforward one, and we must apply corrections to the initial intensity data to 

account for situations which could otherwise contribute to a misleading structure 

factor:          

 

Lorentz Factor - To use our integrated data to solve a structure, we will require each 

reciprocal lattice point to make such a contact for the same amount of time with the 

Ewald sphere, yet unfortunately, data collection is not this ideal, and contact of some 

points is often prolonged, resulting in reflections with varying intensities.   

 

Polarisation - When the incident X-ray beam is produced by a conventional source 

and monochromatised using an appropriate filter, the nature of the beam is un-

polarised, yet when the beam is diffracted by a crystal it is partially polarised and this 

affects its resulting intensity.   

 

Heavy Atom - The presence of heavy atoms with high atomic numbers will also 

scatter the X-rays as their large electron clouds chip away at the beam, subsequently 

reducing the final intensities.   

 

Absorption - Partial absorption of the X-ray beam by the crystal itself can occur in a 

manner similar to that of filtering methods, and as the crystal dimensions increase, 

the resulting intensities drop.  Whilst the other factors are instrument specific and 

self-corrected, absorption is corrected by the Bruker SADABS6 program. 

 

Once these had been corrected for, structure factors were confidently generated. 
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5.4.8  Structure Solution and the Phase Problem 

 

When light is diffracted off an object, the lenses in our eyes recombine the resultant 

light waves enabling our brain to interpret what the object looks like, and in order to 

achieve this, both the phases and amplitudes of the diffracted waves are required.  

There is however no lens available that can directly recombine X-Rays, and so this 

technique works by our collecting diffraction patterns from a crystal and trying to 

suggest what atomic structure will generate such a pattern.   

 

However, the diffracted waves we have are recorded only in terms of their intensity 

(which is directly proportional to amplitude), leaving us with only half the necessary 

information - since Ihkl is proportionally related to the square of the structure factor 

[Fhkl]2, it is impossible to tell whether the overall phase of the intensity is + Fhkl or –

Fhkl.  This obstacle is overcome by using statistical mathematics to calculate a data 

set for a proposed structure, which is then compared to what data are actually 

observed.  There are two main techniques for solving this ‘phase problem’, both 

performed with the Bruker SHELXS7 programme. 

   

5.4.8.1  Patterson Synthesis  

 

Instead of using the amplitude itself, Fhkl, structure factors are replaced by the square 

of the amplitude (i.e. the square of the structure factor) [Fhkl]2 which consequently 

becomes a phase-less quantity, and can be used to generate a set of peaks (the 

Patterson map).  The peaks do not correspond to the positions of individual atoms but 

instead to vectors between pairs of atoms in the structure (i.e. the position of atoms 

relative to each other).  Thus, for every pair of atoms in the structure with 

coordinates: (x1, y1, z1) and (x2, y2, z2), there will be a peak in the Patterson map at 

the position (x1-x2, y1-y2, z1-z2) and also at (x2-x1, y2-y1, z2-z1), each atom giving a 

vector to the other.  The highest Patterson vector corresponds to the inter-atomic 

distance between the two heaviest atoms, and this peak is always located at the origin 

of the map.  The largest peaks correspond to the heavier atoms and will stand out 

clearly from smaller peaks if the structure contains few heavy atoms, enabling easy 

location of any atoms heavier than silicon.  The approximate positions of the lighter 

atoms can then be determined   
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In structures where there are a few significantly heavier atoms among many light 

atoms (e.g. metal coordination complexes), the heavier atoms are usually more 

readily resolved, compared to cases in which all atoms are very similar, and once 

they have been located, heavy atoms may serve as a phasing model from which the 

positions of other atoms can then be developed.  Thus, in recent years, common 

practice has been to infuse metal atoms into large structures where all atoms have 

roughly the same atomic number to aid structure solution (e.g. proteins).  

 

5.4.8.2  Direct Methods 

   

The method attempts to derive structure factor phases and electron locations directly 

from the diffracted X-ray intensities.  If a structure generates N reflections, 2N 

electron density maps can be calculated which represent all the possible 

combinations of phase signs for the N independent structure factors.  Only one of 

these 2N maps must show the true electron density, but it is a case of trial and error to 

determine which one it is! Thankfully, by applying a number of constraints to the 

electron density, it is a very possible feat to achieve.  The two most important 

constraints are: 

 

• The electron density map must never contain regions of negative electron 

density (i.e. the electron density should be zero or above in all regions - as 

negative electron density is a physical impossibility). 

 

• The electron density should not be smeared all over the map with little 

variation, but should be effectively zero in most areas and intense and sharp 

around atoms (i.e. the electron density map should be composed of discrete 

atoms). 

 

The success of the method is undoubtedly due to the development of computers in 

recent years, with a small number of initial phases being guessed and then used to 

calculate the phases of other reflections, based on various mathematical 

relationships.  If the results produce an electron density map that does not conform to 

the above constraints, then some or all of the initially guessed phases must be wrong.   
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Various combinations of initial phases are tried until a plausible electron density is 

obtained.  If the phases have been correctly assigned, several initial atom positions 

can be located.  The majority of structures in this thesis were solved using direct 

methods, and are specified in Appendix 3 otherwise. 

 

5.4.9 Structure Refinement 

 

Once all atoms had been assigned, a least squares refinement of the structural 

parameters was taken over the whole dataset between the observed │Fo│ and 

calculated │Fc│ structure factors using the Bruker SHELXL8 programme; with the 

intention of minimising the sum 

 

Σw(Fo
2 – Fc

2)2                      Eq. 5.3 

 

Several cycles of refinement are required before changes in parameters are 

insignificant and the data converges to a minimum.  The programme weights each 

individual reflection’s contribution to the sum according to its reliability based on 

experimental standard uncertainties.  As the relationship between data and 

parameters (the Fourier transform) is not linear, the weighting scheme, w, takes on 

the form: 

   

w         =                 1                                              Eq. 5.4 

            σc
2(Fo

2) + (aP)2 + bP 

 

Where   P = [Max(Fo
2,0) + 2Fc

2]                                Eq. 5.5 

         3 

 

σc
2(Fo

2)  is the variance in Fo
2, and the values a and b are constants specific to the 

dataset, chosen to minimise the variation in S (the goodness of fit) as a function of 

│Fo│.    
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Residual indices of wR2 (based on F2) and S were also calculated: 
 
 
    wR2 = ∑√(w(Fo

2 – Fc
2)2                               Eq. 5.6       

           ∑√(w(Fo
2)2 

 
    S = √{∑(w(Fo – Fc))/(m-n)}                    Eq. 5.7 
 
 
Where m is the number of observed reflections and n the number of parameters. 

 

For historical purposes, a residual R-factor was calculated, based on data of the 

quality Fo/σ(Fo) > 4.  The lower the R-factor, the better the agreement, and the more 

the structure geometry is optimised.  Therefore, when we ‘solve’ a crystal structure, 

we never directly manipulate the collected data, but suggest a model structure to best 

fit the observed data. 

 
    R1 = ∑|Fo - Fc|                                                    Eq. 5.8 
     ∑|Fo| 
 

When changes are made to the calculated ‘model’ structure, many of the structure’s 

parameters are changed.  These can include atomic position; atomic displacement 

parameters; and site occupancy factors.   We can also apply constraints or restraints 

to aid refinements.  Constraints (such as requiring atoms to lie in special positions) 

are conditions forced upon the refinement calculation by requiring certain parameters 

to have particular values instead of being free to take those which give the best 

agreement between observed and calculated diffraction patterns.  This is often the 

case when x-ray diffraction data are poor.  Restraints on the other hand, cover acts 

such as fixing a certain bond length or angle to be a specific value.  Applying a 

restraint will add to the no. of parameters being refined, but still allow the parameters 

to deviate from the ideal values. Performing any of the above will directly affect the 

values of │Fc│ whereas │Fo│ values will remain constant throughout. 

 

5.4.9.1  Anisotropy  

 

One of the most important parameter to refine is the atomic displacement parameter, 

U.  Atoms are not 100 % spherical in nature, but vibrate to different degrees about 

their mean positions in (x, y, z) to have a more ellipsoidal shape.   
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By making each atom anisotropic, we allow it to adopt this geometry to the extent it 

is comfortable with; this is indicated by the U values we obtain.  In addition to x, y, 

and z, each atom has six U parameters permitting additional axes of vibration and so 

making atoms anisotropic greatly increases the number of parameters to refine, 

however, the resulting model structure is far better.  The degree of thermal vibration 

in atoms is drastically reduced by carrying out the data collection at low temperature, 

giving rise to markedly better data sets.  Molecules or atoms that vibrate to the extent 

that they reside over more than one site (disordered) are treated accordingly with the 

appropriate amount of occupancy assigned per site.   

 

Once the data has been successfully converged and there are no obvious peaks to 

assign in the map, the information is summarised in the crystallographic information 

file (CIF), generated with the XCIF component of the SHELXTL program.  By 

applying a ‘CIF checker’programme,9,10 the CIF files for the structures in this thesis 

were checked against various criteria to see if they were suitable for publication.  

Any gross errors were taken on board and dealt with accordingly.  

 

5.5  Summary  

 

On November 8th 1895, Willhelm Röntgen made a valuable contribution to science.  

His X-rays has benefited all areas of the scientific community, and due to the efforts 

of many individuals, has resulted in a well developed, accurate, and reliable 

analytical technique for chemists.   

 

The field of crystallography is still growing however; whilst the development of 

computers has transformed this technique from the grey days of pen and paper, it 

appears evident that soon the solving of a structure will become a ‘black box’ 

procedure, inevitably leading to a greater production line of solutions and 

publications.  Whilst that may be commercially warranted, it goes without saying 

that the value of this technique cannot be appreciated without knowledge of 

Röntgen’s discovery, Laue’s crystal analogies, Braggs’ diffraction hypothesis and the 

application to modern instrumentation.   
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5.7  Miscellaneous Crystal Structures 

 

The following crystal structures were solved by the author at the University of 

Sheffield, yet have been omitted from the main context of this thesis. 

5.7.1  [Re(bpym)(CO)3Cl] 

The complex was synthesised in accordance to the preparative method11 by Miss 

Nina Depperman of the Ward group, and single crystals grown by the slow 

evaporation of a concentrated MeCN solution of the sample over a 7 day period.  The 

complex crystallises in the monoclinic space group P21/c and was solved by direct 

methods (shown in Fig. 5.7.1).  There is no disorder in the structure and all bond 

lengths and angles are unremarkable, and on a par with those in the complex 

[Re(CO)3Cl(í-bpym)Ln(fod)3].12  Selected bond lengths are given in Table 5.7.1. 

 
Fig. 5.71. – Crystal structure of [Re(bpym)(CO)3Cl] 

 

Re(1)-C(23)  1.915(6) Re(1)-N(1)  2.172(4) 
Re(1)-C(22)  1.928(6) Re(1)-N(8)  2.179(4) 
Re(1)-C(21)  1.931(6) Re(1)-Cl(1)  2.4922(16) 

 

Table 5.7.1 – Selected bond lengths (Å) for [Re(bpym)(CO)3Cl] 
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5.7.2  [Cu(Bp2py)(MeCN)][PF6] 

In attempts to reproduce the cyclic wheel of [Co8(Bp2py)12(ClO4)][(ClO4)3]13 and 

study the effects of different templating anions, KBp2py and Cu(II) acetate were 

combined in a 3:2 ratio in MeOH and stirred at room temperature for a few moments.  

Subsequent addition of and aqueous solution of KPF6 resulted in a blue precipitate 

which was filtered off and washed with copious amount of H2O.  Slow diffusion of 

diethyl ether into a concentrated solution of the product in MeCN afforded blue 

prism-like crystals suitable for X-Ray analysis.  The complex crystallises in the 

triclinic space group P-1 and was solved by direct methods. 

 
 

Fig. 5.7.2 – Crystal structure of [Cu(Bp2py)(MeCN)][PF6]⋅(MeCN). 

The lone solvent molecule has been removed for clarity. 

 

Fig. 5.7.2 shows the complex with the Cu(II) adopting an N5 square-based pyramidal 

geometry with the base formed by the N4 donor set of the scorpionate and capped by 

the coordinating solvent molecule. The N4 donor set consists of 

N(12)/N(21)/N(41)/N(32) and has an average deviation of 0.0219 Å from the mean, 

with the Cu(I) atoms sitting 0.325 Å out of the plane.  Selected bond lengths and 

angles are given in Table 5.7.2. 
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Cu(1)-N(32)  1.9438(17) N(32)-Cu(1)-N(12) 88.00(7) N(21)-Cu(1)-N(41) 106.90(7) 
Cu(1)-N(12)  1.9502(17) N(32)-Cu(1)-N(21) 160.03(7) N(32)-Cu(1)-N(201) 101.19(7) 
Cu(1)-N(21)  2.0749(17) N(12)-Cu(1)-N(21) 79.29(7) N(12)-Cu(1)-N(201) 108.80(7) 
Cu(1)-N(41)  2.0783(17) N(32)-Cu(1)-N(41) 79.75(7) N(21)-Cu(1)-N(201) 97.47(7) 
Cu(1)-N(201)  2.1897(19) N(12)-Cu(1)-N(41) 158.02(7) N(41)-Cu(1)-N(201) 91.55(7) 

 

Table 5.7.2 – Selected bond lengths (Å) and angles (°) for [Cu(Bp2py)(MeCN)][PF6] 

 

The molecules are associated by a series of hydrogen bonds: the lone MeCN forms 

bonds to both the fluorine and nitrogen atoms of the anion and solvent molecules 

respectively [CH(35)⋅⋅⋅N(301) = 2.529 Å, CH(3B)⋅⋅⋅F(6) = 2.465 Å, whilst 

C(35)⋅⋅⋅N(301) and C(303)⋅⋅⋅F(6) = 3.456(3) and 3.393(3) Å respectively], with the 

anion bonding with the boron-end of the scorpionate [CH(45)⋅⋅⋅F(1) = 2.534 Å, 

CH(46)⋅⋅⋅F(2)  = 2.651 Å; C(45)⋅⋅⋅F(1) and C(46)⋅⋅⋅F(2) = 3.400(3) and 3.419(3) Å 

respectively].     

 

A similar structure was proposed for the complex [Cu(Bp2py)(H2O)][PF6] with the 

water molecule capping the Cu(II) pyramid,14 and although analytical data were 

obtained to support this formulae, no crystal structure was available.  However, the 

previous structure of [Cu(Tp2py)(H2O)] suggests this to be the case.15 
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Complex  [Re(bpym)(CO)3Cl] [Cu(Bp2py)(MeCN)][PF6]⋅(MeCN) 
 
Empirical formula  C11H6N4O3ClRe C20H20N8BF6PCu    
Formula weight  463.85 591.76   
Temperature  150(2) 150(2)   
Crystal system  Monoclinic  Triclinic   
Space group  P21/c P-1    
a /Å  6.3142(6)    8.1212(14)    
b /Å 14.9944(13) 11.996(2)    
c /Å 13.5481(12) 12.993(2)    
α /° 90  89.760(3)   
β /° 102.725(2)  79.100(3)   
γ /° 90  75.483(3)   
Volume /Å3 1251.2(2) 1202.1(4)    
Z 4  2   
Density (calculated) / Mg/m3 2.462 1.635    
Absorption coefficient / mm-1 9.937 1.049   
F(000) 864 598   
Crystal size / mm 0.22 x 0.16 x 0.11  0.47 x 0.25 x 0.10   
θ range for data collection 2.05 to 27.53° 1.60 to 28.31°   
Reflections collected 10650 13534   
Independent reflections 2836 [R(int) = 0.0546] 5435 [R(int) = 0.0273]   
Completeness to θ 98.2 %  90.8 %   
Data / restraints / parameters 2836 / 0 / 181 5435 / 0 / 334   
Goodness-of-fit on F2 0.969 1.031 
R indices [for reflections with I>2σ(I)] R1 = 0.0299, wR2 = 0.0655 R1 = 0.0344, wR2 = 0.0846  
R indices (for all data) R1 = 0.0412, wR2 = 0.0708  R1 = 0.0432, wR2 = 0.0888  
Largest diff. peak and hole 1.904 and -2.222 eÅ-3  0.611 and -0.400 eÅ-3 
 
 
Table 5A          Crystallographic Data for the Complexes of Chapter 5 
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Thesis Summary & Suggestions for Further Work  
 

This work in this thesis has explored several areas:  

 

We have described the synthesis and coordination chemistry of several new bis- and 

tris-poly(pyrazol-1-yl)borate ligands that contain 3- and 4-pyridyl groups in the 3-

position of the pyrazole ring. An extensive series of complexes with these new 

ligands has been structurally characterised and revealed examples of discrete dimeric 

complexes as well as formation of 1-D chains and cross-linked 2-D and 3-D 

networks.  These ligands offer great scope for development of new metal-organic 

frameworks, some of which may have practical applications in the areas of second 

order non-linear optical effects and gas absorption/sensor materials.  We have the 

possibilities of both capsule and larger assembly formation by coordination through 

the peripheral nitrogen donors of discrete Tp-based ligands; and attachment of 

additional metal ions at the uncoordinated Npy donors in the polymeric species may 

enable us to synthesise polynuclear assemblies.  In addition to this, the pypz arms 

could be modified with additional donor substituents on the pyridyl rings, or the 

scorpionates ligand itself could be further developed to contain a mixture of pypz 

arms.  Such changes may lead to the formation of further novel molecular 

architectures.   

 

In the next piece of work, the straightforward co-crystallisation of [Ru(bpy)(CN)4]2- 

anions with Ln(III) salts has led to a range of coordination networks based on Ru-

CN-Ln bridging groups.  Photophysical studies on these complexes demonstrate 

photo-induced Ru-Ln energy transfer, with sensitized luminescence from the 

lanthanide units and simultaneous quenching of the 3MLCT Ru-based luminescence.  

The efficiency of the energy-transfer process in different Ru-Ln systems has been 

rationalised by a combination of spectral overlap effects and ∆J selection rules.  The 

rates of energy transfer span two orders of magnitude, with the effectiveness of the 

lanthanides’ quenching following the order Nd > Pr > Er > Yb.   
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Despite the replacement of Ln(III)-bound water molecules with D2O, the 

luminescence lifetimes of the Ln(III) centres are much shorter than expected, leaving 

us to the hypothesis that the excess quenching is a direct result of fast phonon 

delocalisation in the extended coordination lattice.  

 

This economic ‘one pot’ method of synthesising d-f hybrids may be varied in many 

ways to produce single crystals of such systems, which in turn may be probed in the 

solid state for their photophysical properties.  It has also proven possible for Cr(III)-

CN-Ln complexes, and may therefore lead to more studies on energy transfer within 

such systems.  The rate of crystal formation has also shown to be fundamental in 

determining the structure of the complex, often giving rise to heterogeneous samples, 

and offers plenty of scope to obtaining several diverse architectures from the same 

sample of components. 

 

As a final point, the thesis has also described the syntheses and photophysical 

properties of Bp2py- and Tp2py–based lanthanide(III) complexes based on metals 

displaying near-infrared luminescence, especially Pr(III).  These scorpionate ligands 

proved to be effective sensitisers in this manner, resulting in complexes with quite 

long luminescence lifetimes in the near-infrared region. 
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Chemicals 

 

All reagents (inc. solvents) were purchased from the usual commercial suppliers 

(Aldrich, Lancaster, Avocado) and were used as received. 

 

Elemental Analysis 

 

Elemental analysis for carbon, hydrogen and nitrogen were performed by the 

Microanalytical Laboratories at the University of Sheffield and the School of 

Chemistry of the University of Bristol.  Samples at the former institution were run 

using the Perkin Elmer 2400 CHNS/ O Series II Elemental Analyser, which uses a 

combustion method in a pure oxygen environment to convert the accurately weighed 

sample into the simple gases CO2, H2O, N2, SO2.  After reduction through pure 

copper, the resulting CHNS gases are then controlled to exact conditions of pressure, 

temperature and volume where upon the system uses a steady state wavefront 

approach to separate the controlled gases.  This approach involves separating a 

continuous homogenised mixture of gases through a chromatographic column.  The 

gases eluting off the column are measured as a function of their thermal conductivity. 

 

NMR Analysis 

 

NMR spectra were run on a Bruker AC-250 and Bruker AMX2-400. 1H spectra were 

measured at 250.13MHz and 400.13MHz respectively, whilst 13C spectra were 

measured at 62.90 MHz and 100.63 MHz respectively using the attached proton test. 

Chemical shifts are reported on the δ scale and are accurate to ± 0.01ppm for 1H 

spectra and ± 0.1ppm for 13C spectra.  Spectroscopic grade deuterated solvents were 

used (ca. 0.7 ml) and the spectra were calibrated using the solvent as an internal 

reference.  Typically 10 mg of sample were dissolved for 1H spectra and 20 mg for 
13C spectra.  11B spectra were recorded on a Bruker DRX-500 at 160.4MHz and are 

referred to external boron trifluoride etherate.   
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UV/VIS Spectroscopy 

 

These were performed on a Cary 50 spectrometer in a quartz cuvet of 1 cm path 

length.  Typical concentrations were 10-3 M and solvent background corrections were 

applied. 

 

Steady State Luminescence 

 

Solid State: Measurements were made using a PerkinElmer LS-55 spectrometer, 

fitted with a front surface accessory.  Solution: Weak concentrations of the 

appropriate complex were made in a suitable solvent and run in a 1 cm path length 

quartz cuvet, on a Perkin-Elmer LS-50 fluorimeter. 

   

Mass Spectroscopy 

 

Electron Impact (EI), Chemical Ionisation (CI) and Fast Atom Bombardment (FAB) 

mass spectra were recorded on a VG-Autospec magnetic sector instrument.  Negative 

Ion Electrospray (ES) were recorded on a Waters LCT spectrometer with typically 

low cone voltages.  

 

Infra Red Spectroscopy 

 

Solid state IR spectra were recorded on a Perkin-Elmer Spectrum RX I FT-IR 

spectrophotometer, equipped with a SensIR diamond ATR, over the range 4000 – 

500 cm-1. 

 

Luminescence Measurements (Solid-State) 

 

Solution: Light emitted at right angles to the excitation beam was focused onto the 

slits of a monochromator (Spex TRIAX320), which was used to select the 

appropriate wavelength.  
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Solid State: Measurements were made using powdered samples packed against a 

quartz window in a specially prepared die. For time-resolved and near-IR 

measurements, the whole assembly was held with the plane of the window at 30o to 

the incident radiation from a dye laser pumped by a pulsed nitrogen laser (PTI-3301). 

Light emitted at right angles to the excitation beam was focused onto the slits of a 

monochromator (PTI-120), which was used to select the appropriate wavelength.  

 

General: For all measurements, the sample was excited using a pulsed nitrogen laser 

(337 nm) operating at 10Hz.  The growth and decay of the luminescence at selected 

wavelengths was detected using a germanium photodiode (Edinburgh Instruments, 

EI-P) and recorded using a digital oscilloscope (Tektronix TDS220) before being 

transferred to a PC for analysis. Time resolved emission (TRES) spectra were 

obtained by measuring the growth and decay of the luminescence at each of a series 

of wavelengths. Luminescence lifetimes were obtained by iterative reconvolution of 

the detector response (obtained by using a scatterer) with exponential components for 

growth and decay of the metal centred luminescence, using a spreadsheet running in 

Microsoft Excel. The details of this approach have been discussed elsewhere.1  

 

1. A. Beeby, S. Faulkner, Chem. Phys. Lett., 1997, 266, 116. 
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Crystallographic Instrumentation 

 

For each complex a suitable crystal was coated with hydrocarbon oil and attached to 

the tip of a glass fibre, which was then transferred to a Bruker-AXS PROTEUM {for 

[Eu(L2)(dbm)2]⋅(CH2Cl2)0.25} (Cu-Kα radiation) or SMART-CCD (Mo-Kα 

radiation) diffractometer (for all other structures) under a stream of cold N2.  An 

Oxford Cryosystems low temperature system was used to carry out data collection at 

150K. 

 

All hydrogen atoms were either calculated, unless stated otherwise and assigned 

isotropic displacement parameters 1.2 times the Uiso value of the parent atom (except 

methyl hydrogens, which were assigned isotropic displacement parameters 1.5 times 

the Uiso of the parent atom).  In such instances, no estimated standard deviations 

(esd’s) are shown for hydrogen bond distances.  All π-π interactions (as well as the 

majority of pictorial representations of crystal structures) were calculated (and 

constructed) using Mercury.1  Such calculated distances again, do not contain esd’s.  

Average bond lengths have also not been displayed with esd values.  

 

The structure of [Re(Tp4py)(CO)3] was determined at the University of Southampton 

on a Nonius Kappa-CCD diffractometer using Mo-Kα radiation (λ = 0.71073 Å) 

from a Bruker-Nonius FR591 rotating anode X-ray generator.  The data were 

absorption corrected using SORTAV,2 before solution and refinement using 

SHELXS-973 and SHELXL-974 respectively  The data for this crystal were weak, 

and SQUEEZE5 was used to eliminate disordered solvent molecules that could not be 

modelled. 
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Alice came to a fork in the road.  "Which road do I take?" she asked. 
"Where do you want to go?" responded the Cheshire cat. 

"I don't know," Alice answered. 
"Then," said the cat, "it doesn't matter." 

 
-- Lewis Carroll, Alice in Wonderland 
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