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Abstract

Both the Greenland and Antarctic ice sheets are experiencing increased levels of melt, con-

tributing to potentially devastating sea level rise. Therefore, quantifying future changes to

the contemporary ice sheets is imperative to understand and mitigate the risks associated

with their demise. Uncertainty within projections of ice sheets under different climate sce-

narios is large. Palaeo-ice sheets left behind a wealth of information on past ice extents,

timing and flow directions. By looking to the past and using data to validate and constrain

numerical model simulations, numerical models of present-day ice sheets can be improved,

and the uncertainty within projections of ice mass loss and sea level rise can be reduced.

Here, I focus on and simulate the last Scandinavian Ice Sheet between 40 and 5 thou-

sand years ago, as well as the surrounding ice sheets over Eurasia, to find a model input

parameter space that is optimised to fit the available flow geometry. In this thesis, I present

a new Bayesian framework that takes an initial perturbed parameter ensemble for the last

Eurasian Ice Sheet Complex, compares it to past observed flow directions and identifies an

updated parameter sampling routine on a reduced parameter space so as to improve the

overall model-data match of future ensembles. To quantitatively compare and score ob-

served flow geometry from glacial landforms to model simulations in a statistically rigorous

way, a new model-data comparison tool is presented: the Likelihood of Accordant Lineations

Analysis (LALA) tool. This work could be used further to develop a robust simulation of

the Scandinavian Ice Sheet, as well as other palaeo-ice sheets, optimised to flow geometry

and to simulate data-driven spin-ups for use in ice sheet projections.

xv



xvi ABSTRACT



Acknowledgements

My first thanks is to my supervisor, Jeremy Ely. Thank you for meeting me when I became

convinced objects can’t move and helping me add fluff to my ‘concise’ writing style. I will

always be grateful for your support when I decided to take on the world in the middle of

my PhD and for agreeing to take on a Maths student in the first place.

I would also like to thank my supervisor and PI, Chris Clark, for the ‘big picture’

meetings and for introducing me to the world of lamb farming. I will always remember my

first lamb, Percy, and will never forget the peanut pasta in Greenland. You still owe me a

new toothbrush.

Thank you to all my PalGlac pals: Frances for teaching me how to make pretty maps,

Ben for the Peak District fieldwork chaos and Helen for teaching me how to swim and

introducing me to the world of spas in Budapest. To Bryony, thank you for taking me for

coffee and hosting cosy craft nights. Thank you to my mum, dad, and Emma for supporting

me in my journey as a perpetual student and for always being at the end of the phone when

I need you.

Tess, you have quickly become my best friend, and I have loved having you as my dance

partner, housemate, and conference buddy. I look forward to getting our nails done together

for many more years to come.

Finally, to Alex. Thank you for being there for me in the hard times and pushing me

when you knew I needed it. You always believed in me more than I believed in myself.

xvii



xviii ACKNOWLEDGEMENTS



Chapter 1

Introduction

1.1 Ice sheets

An ice sheet is defined as a sufficiently large mass of ice built up by snowfall and hosted

on a landmass or grounded in shallow sea and is typically defined as larger than 50,000

km2 (on Climate Change , IPCC). Ice sheets grow and retreat over timescales of decades to

millenia. Historically, there have been periods with colder climates, known as glacial periods,

followed by interglacial periods that are comparatively warmer. Ice sheets are more prevalent

in the glacial periods, and globally, the interglacial periods tend to have significantly less

ice mass but not necessarily none. Glacial periods occurred regularly every 41,000 years

until about 1.4 Ma (million years ago), where this periodicity lengthened to 100,000 years

(Lisiecki and Raymo, 2007). These glacial-interglacial cycles are caused by three main states

of the Earth’s orbit: eccentricity, which is how elliptical the Earth’s orbit is; obliquity, which

is how tilted the Earth’s axis is; and precession, which is the direction of the Earth’s tilt

(Benn and Evans, 2014a). In combination, these three factors cause major changes in the

amount of solar radiation that reaches the Earth, leading to colder climates when the solar

radiation is low and warmer climates when it is high. In the current interglacial period,

known as the Holocene, trends of temperature increases are consistently being recorded and

are broadly attributed to the greenhouse effect brought on by anthropogenically related

increases in carbon emissions (Pörtner et al., 2022).

Whilst the Earth is experiencing an interglacial period, there are still two modern ice

sheets: the Greenland Ice Sheet and the Antarctic Ice Sheet. The Greenland Ice Sheet

covers approximately 80% of the island it sits on and contains 7.4 m of sea level equivalent

1
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(Morlighem et al., 2017). It is predominantly terrestrial, meaning the ice terminates on land.

The other contemporary ice sheet, the Antarctic Ice Sheet, covers 98% of the land beneath

and, unlike the Greenland Ice Sheet, is marine-based, as the majority of its perimeter

terminates in the ocean. The Antarctic Ice Sheet contains 61% of the Earth’s freshwater

and would raise the average sea level by around 58 m if it were to fully melt (Morlighem et al.,

2020). Clearly, due to the amount of fresh water and potential to significantly increase sea

level, the future of these ice sheets is imperative to understand. Anthropogenically induced

climate change is speeding up the melting of these ice sheets and is expected to continue with

increasing intensity if carbon emissions are not reduced (Pörtner et al., 2022). Rising sea

levels would cause increased flooding in coastal areas worldwide, destroying infrastructure

and natural habitats (Pörtner et al., 2022). Predicting the future behaviour of the current

ice sheets, based on various emissions scenarios, is vital to prepare for and reduce the impacts

of increased melting.

During the last glacial period (approximately 115 ka to 11.7 ka, where 1 ka represents a

thousand years before 1950), there were expansive ice sheets over North America, Europe,

Greenland and Antarctica, as shown in Figure 1.1 (Batchelor et al., 2019). In the Northern

Hemisphere, ice sheets reached their maximums approximately between 26 and 19 ka (Clark,

P., et al., 2009). These ice sheets that existed in the past are known as palaeo-ice sheets.

Having already deglaciated, the evidence left behind by these palaeo-ice sheets may help

us understand how ice sheets retreat. Whilst the observational record of contemporary

ice sheets is only decadal in length, palaeo-ice sheets provide centennial to millennial scale

records of ice sheet behaviour. Learning about past ice sheet behaviour and being able to

validate that understanding increases the fidelity and confidence in predictions made about

future ice sheets under the effects of climate projections.

1.2 Observational record of palaeo-ice sheets

Palaeo-ice sheets leave behind a rich observational record, giving insights into their past be-

haviour. This record can be broadly grouped into three types: geomorphology (landforms),

sediments and relative sea level indicators. In this thesis, I will focus on the former two,

as relative sea level indicators have been more commonly used in the past (Patton et al.,

2017; Tarasov et al., 2012) and as the geomorphology and sediments provide an immedi-

ate and direct comparison model-data comparison compared to the relative sea level effects

take several thousand years to appear. The evidence left behind by palaeo-ice sheets helps

scientists reconstruct different aspects of the history of these ice sheets. It also provides a

method to validate numerical ice sheet models to check their efficacy.
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Figure 1.1: Estimated extents of Northern Hemisphere palaeo-ice sheets at the last glacial

maximum, approximately 20,000 years ago (taken from Batchelor et al. (2019)).

A landform is an identifiable and discrete feature of the terrain and can be formed

in many different ways, including by an ice sheet. Of the landforms left behind by ice

sheets, subglacial bedforms, such as drumlins, ribs and mega-scale glacial lineations, are

perhaps the most indicative of past ice conditions. The genesis of drumlins is highly debated

(e.g. Boulton, 1987; Clark, 2010; Fowler, 2000; Hindmarsh, 1998; Shaw, 1983; Smalley,

1981; Smalley and Unwin, 1968), but regardless of their formation, their alignment with

former ice flow direction allows us to infer past ice flow directions. Such glacial lineations

can be grouped together, in flowsets, if they are spatially and directionally similar, and

assumed to have formed in the same event (Clark, 1997; Hughes et al., 2014). Relative

timings of lineation formation can sometimes be inferred dependent on whether or not

they are found to be superimposed (knows as cross-cutting) on one another at specific

locations (Clark, C.D., et al., 2009). Cross-cuttings occur if one set of lineations form

on top of another and from this, the relative age order of the flowset formation can be

determined. By understanding cross-cutting relationships, the flow evolution of an ice sheet

can be deciphered. Unfortunately, due to the techniques available for assessing absolute

ages, subglacial bedforms cannot be dated, as they were formed beneath an ice sheet, where

life cannot be sustained, and light and exposure to cosmic rays required for the current

dating techniques is not available.

Sediment is transported under (subglacially), within (englacially) and on the surface

(supraglacially) of an ice sheet. When the location of the ice sheet margin is sustained, the
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transported sediment can be released to form a ridge called a moraine, making a landform

record of the margin position. Moraines can also be formed by the ice mass pushing loose

sediment together during an advance and leaving the ridge as the ice retreats. There are

several distinct types of moraines that form at different areas of an ice sheet (Benn and

Evans, 2014b; Bennett and Glasser, 2011). Terminal moraines, in particular, are formed at

the front of an ice sheet at the maximum extent of the ice (Barr and Lovell, 2014). Any

moraines formed at the front of an ice margin but behind the terminal moraine are termed

recessional moraines. Hence, due to how the ridges form, moraines indicate where a former

ice margin was, the extent at the time of moraine formation and the shape of an ice sheet’s

recession. As terminal and recessional moraines were formed in front of an ice sheet, there

is the possibility of dating them and retrieving an absolute formation date.

Moraines and lineations are examples of landforms created by ice sheets that give specific

information about the movements of a former ice sheet, namely the extent and flow direction.

Previously, landforms were recorded in field surveys with researchers working on an area

of interest. More commonly now, satellite imagery is used, allowing for remote mapping

of these features. The mapping tends to be done systematically and extensively, to cover

the whole area of interest. Butcher et al. (in prep) has developed a new method to map

large areas systematically, without the need to map every single feature. Figure 1.2 shows

the flow directions captured from this mapping (Boyes et al., 2023; Butcher et al., in prep),

that will be described further in Chapter 4. Once these different observations have been

collated for a specific area, whether that be on a whole ice sheet scale or more locally, the

relative movements of the ice sheet can be determined (Andrews, 1982; Chandler et al.,

2018; Stokes et al., 2015). This can involve filling in any gaps, working out relative timings

and combining multiple forms of evidence to make inferences.

Although the geomorphological record is useful for describing past ice sheet behaviour

and providing relative ages, for example, cross-cutting relations, they do not provide absolute

ages for the timings of said behaviours. Samples taken from features of the observational

record can be dated, and utilised to infer when it formed. There are various techniques

for absolute geochronological dating, including: radiocarbon dating, Optically Stimulated

Luminescence (OSL) and Cosmogenic Nuclide (CN) dating.

Carbon is an abundant element in the atmosphere and has both stable and non-stable

isotopes: atoms of the same element and same number of protons, but with differing numbers

of neutrons and hence varying atomic weights. Carbon-14 is a non-stable, radioactive isotope

that combines with oxygen in the atmosphere and then transfers to living organisms. The

amount of carbon-14 contained in an organism is fixed during its life and then begins to

decay after death at a steady rate (Libby, 1954). By calculating the amount of this isotope
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Figure 1.2: Locations and inferred directions of lineation product, taken from Butcher et al.

(in prep).
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remaining in an organic sample, the carbon-14 age can be found, representing the time

since the organism died. The carbon-14 age must then be calibrated to give an equivalent

calendar age. As the ratio of carbon-14 and carbon-12 has varied over time this calibration

is not trivial. Projects such as IntCal (Reimer et al., 2020) for the Northern Hemisphere,

take absolute dates which are independent from the radiocarbon samples and work out how

the raw carbon-14 age relates to a useable calendar date. For dating relevant in a glacial

context, samples are collected from near moraines, for example. The calculated date is then

assumed to be an ice-free time as living organisms are unable to survive beneath the ice

sheet. Radiocarbon dating can date organics as old as 55 ka, and so is appropriate for

timings needed from the last glacial maximum (LGM) onwards.

OSL dating exploits the natural radioactivity of sediments and how this affects minerals

such as quartz (Preusser et al., 2009) and feldspar (Krbetschek et al., 1996). When sediment

is buried, luminescence begins to grow as the electrons in the minerals become excited due

to the exposure to radiation (Duller, 2008). Due to the natural radiation, these electrons

then get trapped within imperfections in the crystal lattice (Preusser et al., 2008). The

longer the sample is buried, the higher the number of trapped electrons. By calculating

the equivalent dose, which is the amount of radiation the sample has been exposed to, and

dividing by the dose rate, which is location dependent and is the amount of radiation per

thousand years the sample would have been exposed to, gives the sample age (Duller, 2008).

The samples for OSL must be carefully obtained and not exposed to sunlight as this resets

the signal through a process called bleaching and the age is lost. This also means that

it is assumed the sample was buried at the time of interest and not re-exposed since. To

calculate the number of trapped electrons in a sample, and hence the equivalent dose, a

light source is applied, giving the electrons enough energy to escape as photons and this can

be measured. This style of dating is used in glacial environments (Fuchs and Owen, 2008)

at sites with known past ice margins where glacial sediment would have been deposited,

such as pro-glacial lakes (e.g. Luethgens et al., 2011). Compared to radiocarbon dating, this

method can date much older samples, up to around 100 ka.

Cosmic rays are charged, high-energy particles that are constantly entering the Earth’s

atmosphere. Upon doing so, when these particles hit exposed rock, a spallation reaction

occurs which splits nuclei of specific elements and cosmogenic nuclides are formed. The

resulting isotopes of different elements can be counted, and the ratio of one isotope to

another can be used to calculate the amount of cosmogenic nuclides and hence an exposure

age. There are many isotopes created in this process, each with different half-lives. Utilising

this property allows relatively old and young ages to be dated with increased accuracy, up

to 10 million years old. This method is known as Cosmogenic Nuclide dating. Relevant to
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glaciation ages, boulders from moraines and erratics can be dated, assuming they have been

exposed since deposition (Small et al., 2017).

Experts often use all the available lines of evidence combined with their expert interpre-

tation to reconstruct the former flow conditions and margin positions of a palaeo-ice sheet

through time (e.g. Batchelor et al., 2019; Clark et al., 2022, 2012; Hughes et al., 2014).

When absolute ages are collected, reconstructions of ice sheets can include timings at which

they reached certain extents. Considering the subglacial landform record alone can provide

relative chronologies, but lacks these absolute timings.

Whilst empirical reconstructions are informative to what the ice previously looked like,

reconstructions achieved in this way lack a physics basis. This means that certain variables

such as ice velocity and thickness, are missing and cannot be reconstructed using the ob-

served data. In contrast, numerical ice sheet models are based on approximations of the ice

physics and can be used to reconstruct past ice sheets.

1.3 Ice sheet modelling

Numerical modelling enables us to examine how different processes affect ice sheets and

predict how they might behave in the future. Both contemporary and palaeo-ice sheets

are important to model. Modelling contemporary ice sheets gives insights into how the

Greenland and Antarctic ice sheets may respond to various climate projections by modelling

into the future. By modelling palaeo-ice sheets, the plethora of data left behind by the past

ice mass can be used to validate the model outputs and explore parameterisations and model

set-ups that give realistic outputs based on the evidence.

Modelling of ice sheets is conducted for two purposes: prognostic and diagnostic. Prog-

nostic modelling is used to predict the future of the current ice sheets (e.g. Davies et al.,

2014; Goelzer et al., 2013, 2020), or to hindcast palaeo-ice sheets (e.g. Patton et al., 2017,

2016; Pollard et al., 2016). Prognostic modelling of the contemporary ice sheets is used to

predict how they may react and change according to future climate scenarios (e.g. Davies

et al., 2014; Goelzer et al., 2020; Payne et al., 2004). Diagnostic modelling, on the other

hand, is used to learn about specific physical processes occurring within the ice sheet (e.g.

Pollard et al., 2015; Tulaczyk et al., 2000).

Prognostic and diagnostic modelling of palaeo-ice sheets has the advantage of being vali-

dated against the observational record, which does not exist in full for the contemporary ice

sheets. The record for the contemporary ice sheets relies on satellite imagery and fieldwork

and is only decadal, whereas the palaeo-record consists of landforms and geochronological

data which span centuries to many millennia.
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To use numerical ice sheet models, a certain number of unknown parameters and bound-

ary conditions must be first inputted by the user. For example, information containing

topography or geothermal heat flux may be required. Other values, such as the exponent

in the ice flow law, must be chosen as the precise values for different modelling scenarios

are unknown. Estimated ranges for the input parameters are decided upon based on ex-

pert knowledge and by findings of other studies. The required parameters hold a specific

uncertainty as the true value is unknown. The climate parameters have an especially high

uncertainty due to the difficulty of replicating and estimating. These uncertainties need to

be reduced as much as possible to improve predictive accuracy. Learning which parameters

can cause the highest variation in model output is typically done using a sensitivity analysis,

highlighting which parameters are more or less important to changing the model output,

thus informing the user as to which parameters are the most important to target to reduce

uncertainty. Conversely, the parameters that affect the variation in output the least can

be discarded, reducing the parameter space considerably and speeding up model computa-

tional time. Methods to identify the most and least important parameters are discussed in

Chapter 4.

Models use defined parameter values to solve the differential equations that determine

the physics of the ice sheet, discussed in Chapter 2. Ice flow can be modelled using the Stokes

equations, encapsulated in so-called full Stokes models. Due to computational limitations,

some simplifications need to be made when solving the physics behind an evolving ice sheet

(Mahaffy, 1976) and different levels of complexity of ice sheet models, shown in Figure

1.3, are available for differing contexts. The full Stokes model is the most complex and

representative of all processes. This model is useful for simulating small areas and time

frames but requires too much computational time and power to use in most cases. For

example, modelling a small glacier over a short period of time can be feasible using a high

level of sophistication, whereas modelling a whole ice sheet glaciation on a continent-wide

scale would need a more basic approach. Hence, a variety of different models are needed

for these various applications. The simplest models are reliant on the small depth-to-width

ratio that is reasonable to assume for most ice masses and hence this approximation is

called a shallow approximation. Two of the simplest ice flow models using the shallow

approximation are the Shallow Ice Approximation (SIA) (Hutter, 1982) and the Shallow

Shelf Approximations (SSA) (Weis et al., 1999). These only model the ice sheet or ice

shelf flow, respectively. Many studies have used an SIA model to simulate ice flow (e.g.

Greve, 1997; Ritz et al., 1996; Rutt et al., 2009), but studies using an SSA model alone are

uncommon (e.g. MacAyeal et al., 1996).

Coupling the two shallow approximations gives a hybrid model. Together, the SIA and



1.3. ICE SHEET MODELLING 9

Simulate evolution
through time

Focus on a 
particular process

Figure 1.3: Hierarchy of numerical ice sheet models and adaptations that can be made,

taken from Davies (2020).
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SSA can better approximate ice flow at the grounding line. The SIA is applied to grounded

ice with minimal sliding, whereas the SSA is applied to the floating shelves. A combination

of both is applied around the grounding line, where ice flow velocity increases. An example

of a hybrid model is the Parallel Ice Sheet Model (PISM). PISM is a popular, open-source ice

sheet model that can be used for continental ice sheets over long periods of time (e.g. Bochow

et al., 2023; Hill et al., 2022; Reese et al., 2023). The first papers using this model were

published in 2007 (Bueler, Brown and Lingle, 2007), and there have been over 200 papers

published since (the PISM authors, n.d.) (as of March 2024). PISM solves the shallow stress

balance approximations, valid for small depth-to-width ratios, to calculate the updated ice

dynamics as time progresses. The SIA is applied to grounded ice with minimal sliding,

whereas the SSA is applied to the floating shelves. This model uses an adaptive time step

method, meaning the stress balance equations are solved when a set of stability conditions

are reached. The adaptive time steps reduce any unnecessary calculations and thus speed

up the simulation. A combination of these factors makes PISM a good model for palaeo-ice

sheets as it provides an appropriate level of detail as well as can complete simulations within

computational power and time restrictions over large domains and timescales. PISM is the

model chosen for this thesis, and its underpinning physics are described in detail in Chapter

2.

Higher-order models are one step up in complexity from hybrid models and contain

extra stress terms and therefore require more computational time and power (Blatter, 1995;

Pattyn, 2003). Work has been done to improve the computation of these models (e.g.

Blatter, 1995; Colinge and Blatter, 1998; Larour et al., 2012a; Pattyn, 2003), as numerical

stability has been historically hard to reach (e.g. van der Veen, 1989; van Der Veen and

Whillans, 1989). As computational power increases, the use of higher-order models has

increased, and open-source models are now available such as the Ice Sheet System Model

(Larour et al., 2012a).

The most complex models solve the Stokes equations, outlined in Chapter 2, which are

the most comprehensive representation of an ice mass and, because of this, are the most

computationally expensive models. An example of these so-called full Stokes models is the

Elmer/Ice model (Gagliardini, 2022). Elmer/Ice produces a highly detailed output but is

only feasible to run on short timescales and small areas.

Ice sheet modelling has a long history, with work starting in the 1950s. The first studies,

in both the 1950s and 1960s, constructed the basis for the physics of numerical modelling

of ice flow. Glen (1955) undertook laboratory experiments to discover a proportional re-

lationship between ice flow and stress leading to the formulation of Glen’s flow law. Nye

(1952) gave simplified ways to look at ice flow over bedrock, Weertman (1957) looked at how



1.3. ICE SHEET MODELLING 11

obstacles restrict sliding, and Lliboutry (1968) found equations for friction at the base of the

ice mass. The first attempts of numerical modelling began in the late 1960s (e.g. Campbell

and Rasmussen, 1969; Mahaffy, 1976; Rasmussen and Campbell, 1973). Since then, numer-

ical models have undergone a huge shift in complexity due to improved understanding and

increased computational capacity. In the early stages, two-dimensional models were cre-

ated, mainly focussing on ice sheet extent, with perfectly plastic ice assumed and a steady

state (e.g. Budd and Jenssen, 1975; Reeh, 1984). Mahaffy (1976) created one of the first

three-dimensional ice sheet models that modelled ice flow and was an early example of an

SIA model, based on simplifications derived in previous decades (e.g. Glen, 1955; Lliboutry,

1968; Nye, 1952; Weertman, 1957).

Models originally were basic and quite limited in their applications. By the late 80s,

early 90s, the effect of ice temperature on ice flow was incorporated into numerical models

with thermomechanical coupling as well as time dependence (e.g. Hindmarsh et al., 1989;

Huybrechts, 1990). Limitations in computing power restricted the model resolutions (e.g.

Budd and Jenssen, 1989; Huybrechts and Oerlemans, 1988). The increase in the number

of models available led to the need to test their reliability and repeatability. The accuracy

of these models was assessed in a series of model intercomparison projects. These projects

provided a benchmark for modellers to validate their code and compare their models in a

standardised way. The first inter-model comparison compared the success of five ice shelf

models (MacAyeal et al., 1996). Subsequently, model intercomparison projects became an

important tool to enable careful comparison between models. In its first phase, the European

Ice Sheet Modelling INiTiative (EISMINT) looked at SIA models and experimented with

fixed and moving ice sheet margins (Huybrechts and Payne, 1996). The second iteration of

EISMINT used similar experiments to the first to investigate the effects of thermomechan-

ical coupling (Payne et al., 2000). The Ice Sheet Model Intercomparison Project (ISMIP)

followed on from EISMINT. It focussed on four key topics: higher-order models (Pattyn

et al., 2008), Heinrich events (Calov et al., 2010), marine ice sheet models (Pattyn et al.,

2012) and ice dynamics response to warming for contemporary ice sheet models (Seroussi

et al., 2020).

By the 2000s, computational capabilities had significantly improved, which led to the

emergence of open-source ice sheet models complete with documentation and user support

(e.g. Bueler and Brown, 2009; Larour et al., 2012a). With the addition of support and easy

access to ready-made ice sheet models, more researchers have the opportunity to complete

modelling studies without the need to create a model from scratch each time. As knowledge

and computer power have improved more recently, numerical modelling began to account for

processes that have not previously been included (e.g. DeConto and Pollard, 2016) as well as
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new parameterisations (e.g. Lazeroms et al., 2018). Varying resolutions across the domain

have been investigated to increase details in areas of interest, for example, the grounding

line, but keeping the computational cost low by using a coarse resolution elsewhere (e.g.

Cornford et al., 2013).

Ice sheet models require many unknown parameter inputs before simulations can be

completed. As the exact values are not known, ranges for each parameter are tested. To

explore the parameter space, perturbed parameter ensembles are used, where each parameter

is changed to a different value within the set range for a set number of simulations. Once

the ensemble is completed, the simulations that best match the available data should be

identified. For ice sheet modellers, empirical reconstructions are a powerful resource that can

be used to validate simulations. Visual comparisons between simulations and reconstructions

are commonplace; however, quantitative comparisons are currently limited. In Chapter

3, I present a tool that quantitatively compares model simulations to the observed flow

directions.

1.4 Eurasian Ice Sheet Complex

The EISC was made up of three separate ice sheets, which joined and separated throughout

the last glacial (Hughes et al., 2016), shown in Figure 1.4. They were the British-Irish Ice

Sheet (BIIS), the Scandinavian Ice Sheet (SIS) and the Svalbard-Barents-Kara Ice Sheet

(SBKIS), all of which reached their maximum extents independently (Patton et al., 2016).

The combined ice mass reached 5.5 Mkm2 at its maximum (Hughes et al., 2016) and was

thought to contain 20 m sea level equivalent of water (Patton et al., 2017). The EISC

is the ice sheet complex focussed on in this thesis, with the most attention paid to the

Scandinavian component and mainly over its core area due to the large amount of physical

evidence constraining its last glaciation. With this evidence, the success of model simulations

can be assessed and used to improve the model-data fit.

The oxygen isotope ratio measures the fluctuations between amounts of oxygen-18 com-

pared to oxygen-16. These fluctuations are stored in deep ocean cores and can be assessed

by laboratory analyses. The ratio is linked to changes in climate and the glacial/interglacial

periods (Raymo et al., 2018; Shackleton, 1973). Based on this, as well as observations and

numerical modelling efforts, it is thought that there have been ice sheets growing and melt-

ing over Europe consistently in glacial periods (Batchelor et al., 2019). The Eurasian Ice

Sheet Complex (EISC) reached two maxima over the last glacial cycle. One was in Marine

Isotope Stage (MIS) 4 and one after this in MIS2. The last glacial maximum, occurring

at MIS2 is the focus of this thesis, so the timescale modelled in this thesis is restricted to
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Figure 1.4: Outline of the maximum extent of the Eurasian Ice Sheet Complex (EISC) as

determined in Hughes et al. (2016).
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between 40 ka and 5 ka, encompassing ice sheet fluctuations in MIS2. Also, only simulat-

ing from 40 to 5 ka allows for a modelling study with a reasonable resolution and a more

complex model than could be used otherwise.

Whilst landform mapping has been carried out in various regions across the domain of

the last EISC (e.g. Boulton et al., 2001; Bowen et al., 2002; Dongelmans, 1996; Glückert,

1974; Greenwood et al., 2016; Punkari, 1997), the approaches and outputs vary, and so

model-data comparison becomes difficult. The PALGLAC project, which has funded the

research for thesis, sought to reconstruct the SIS and so mapped the area in a systematic

and consistent way. The data produced can therefore be used confidently to validate model

simulations without having issues with inconsistent/missing data.

Previous modelling efforts have been performed on the EISC, using different levels of

model complexity and with different project aims. A summary of the previous modelling

studies is given in Table 1.1. The majority of past projects have a prognostic focus (Arnold

and Sharp, 2002; Clason et al., 2014; Payne and Baldwin, 1999), using a model to test

hypotheses of landform genesis or investigating the effect of processes that may impact the

contemporary ice sheets. Prognostic modelling using the EISC or parts of the EISC has the

advantage of being able to substantiate hypotheses with a wealth of evidence that is not

available for the contemporary ice sheets.

The studies that use diagnostic modelling either model a part of the EISC (Clason

et al., 2016; Fastook and Holmlund, 1994; Näslund et al., 2003), or model the whole area

but the build-up and retreat separately (Boulton et al., 2003; Patton et al., 2017, 2016).

Studies that restrict the domain to the SIS vary greatly in modelled timescales. Näslund

et al. (2003) models the last 120 ka whilst Fastook and Holmlund (1994) looks specifically

at the Younger Dryas. With such vastly different timescales come different goals. For

example, Näslund et al. (2003) had to use a coarse model grid of 70 × 100 km2 which is

more computationally efficient but would not be able to capture complexities in regional

areas. This approach produces an overview of the glaciation without the fine detail. Fastook

and Holmlund (1994) used a higher resolution of 50× 10 km2 which was possible due to the

shorter timescale considered.

As the EISC covers such a large domain, simple models tend to be the preference for

work on the area (Clason et al., 2014; Forsström and Greve, 2004; Payne and Baldwin, 1999;

Siegert and Dowdeswell, 2004). However, some work has been done with a more complex

ice sheet model in Patton et al. (2016) and Patton et al. (2017). Patton et al. (2016) set out

to model the growth of the EISC from 37 to 19 ka using a Blatter-Pattyn model (Blatter,

1995; Pattyn, 2003). Blatter-Pattyn models more closely represent the Stokes equations than

either SIA or SSA, but are still relatively computationally efficient. The use of this model
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Table 1.1: Summary of previous modelling attempts of the whole EISC or solely the SIS.

Reference Model type Purpose Notes

Fastook and
Holmlund
(1994)

Finite-element Diagnostic Modelled the SIS around the Younger Dryas
(approximately 12.9 ka to 11.7 ka), finding that the

Baltic ice stream was important to match the
model to the evidence. Achieved by changing the

basal conditions.

Payne and
Baldwin (1999)

Thermomechanically
coupled 3D model

Prognostic Explaining certain formation of observed landforms.
The simple model set-up was used as the aim was
to test a hypothesis and not to accurately replicate

the ice sheet.

Arnold and
Sharp (2002)

2D, time-dependent
with hard-bed basal

hydrology

Prognostic Aims to replicate complex patterns of past flow
directions not normally captured by modelling.

Näslund et al.
(2003)

From Fastook and
Chapman (1989)

Diagnostic Modelled the SIS over the Weichselian glaciation
(approximately 120 ka to present). Rose diagrams
were used to compare modelled and observed flow

directions.

Boulton et al.
(2003)

Thermomechanically
coupled 3D model

Diagnostic Simulated the last glacial cycle (from 120 ka) and
focussed on the formation and effect of ice

streaming.

Forsström and
Greve (2004)

SICOPOLIS from
Greve (1997)

Diagnostic Early sensitivity analysis, making one change per
simulation and comparing output to a default

simulation.

Siegert and
Dowdeswell

(2004)

SIA coupled with a
basal sediment

deformation model

Diagnostic The climate input was changed until the modelled
LGM extent matches the geological evidence.

Clason et al.
(2014)

SICOPOLIS Prognostic Uses the SIS as a proxy to the Greenland ice sheet
to test the impacts of the surface meltwater effect.

Patton et al.
(2016)

Blatter-Pattyn
model

Diagnostic Models the build-up of the last EISC and
qualitatively compares the output to the data.

Patton et al.
(2017)

Blatter-Pattyn
model

Diagnostic Models the deglaciation of the last EISC, starting
from the LGM modelled in Patton et al. (2016).

Gudlaugsson
et al. (2017)

SICOPOLIS Prognostic Investigates model sensitivity of the last EISC to
the subglacial hydrology.

Åkesson et al.
(2018)

ISSM Diagnostic Regional model with high-resolution (1 km) grid on
the grounding line and coarser resolution elsewhere
(10 km). Finds a warming ocean input triggers the
retreat of the grounding line in several fjords but

cannot be attributed to the full retreat.
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allowed Patton et al. (2016) to simulate the EISC over a long time with a 10 km resolution.

Model simulations were performed with different parameter values, and a simulation that

was deemed optimal based on empirical evidence was chosen. This optimal model was then

used in Patton et al. (2017) with updated parameter values and continued to simulate the

deglaciation of the ice sheet, from 23 to 8 ka. This simulation was validated against a range

of observations, e.g. lineations, geochronological data and relative sea level metrics. In

my study, I will attempt to model the whole glaciation, keeping the parameters constant

between the glaciation and deglaciation (differing from the approach of Patton et al. (2016)

and Patton et al. (2017)), hoping to find an optimal parameter set.

A couple of the studies (Clason et al., 2014; Forsström and Greve, 2004) use the SImula-

tion COde for POLythermal Ice Sheets (SICOPOLIS) model (Greve, 1997), which is a simple

SIA implementation of ice flow. Using this model will take a shorter amount of time and

less computer power but with less detail. Getting the balance of detail and computational

efficiency is important and depends on the research question being considered.

One thing all of these studies (outlined in Table 1.1) have in common is that the analysis

is mostly qualitative when comparing the simulations to the observational record, visually

comparing the model to the data. Some studies perform a more quantitative comparison,

using the currently published tools (e.g. the Automated Flow Direction Analysis (AFDA)

tool) (e.g. Patton et al., 2017, 2016).

In this thesis, the full build-up and deglaciation will be modelled without changing pa-

rameters at the LGM, as was the case in Patton et al. (2017). Model-data comparisons

will take a quantitative approach with statistical backing (see below), which is so far under-

utilised in ice sheet modelling (Chapter 3).

1.5 Bayesian inference

Statistics is broadly split into two ways of thinking, frequentist and Bayesian, both of which

can be useful in different situations (e.g. Fornacon-Wood et al., 2022). Frequentist statistics

keep parameters at fixed values; probabilities are seen as frequencies. In contrast, Bayesian

statistics considers parameters to be their own random variables; they are not fixed and are

subjective (O’Hagan, 2008). Frequentist statistics also assumes that the data is repeatable,

whereas Bayesian sees data as fixed. Bayesian inferences provide a distribution for the

parameters, i.e. how likely each probability is. For example, consider a die unknown to

be fair or not, where in this context a fair dice would mean rolling any number has equal

probability. A frequentist statistician would assign the probability of rolling a 6, say, as the

frequency of a 6 appearing as the die is rolled a lot of times. A Bayesian statistician could
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start by assigning a flat probability distribution to the rolling of a 6, so that rolling a 6 is

thought to be any probability. As the die was rolled, this data would be incorporated into

the probability distribution and continuously updated as more data becomes available.

The root of Bayesian statistics is Bayes’ Theorem, where for two events E and F ,

P (E|F ) =
P (F |E)P (E)

P (F )
. (1.1)

Bayes’ theorem describes how conditional probabilities are related, which proves useful

when deriving conditional distributions used in Bayesian statistics. When approaching a

problem where Bayesian inference will be used, with data X and parameter vector θ, first,

a prior distribution is set. A prior distribution, p(θ), considers any knowledge or beliefs the

statistician may have before any data is observed. If no prior information is available, an

uninformative prior can be chosen instead. Once the data has been collected, the likelihood

of the data given certain parameters, p(X|θ), can be calculated. The aim of Bayesian

inference is to find the posterior distribution, p(θ|X), which calculates the distribution of

the parameters given the observed data. Using Bayes’ Theorem (Equation 1.1), the posterior

distribution can be derived as

p(θ|X) =
p(X|θ) p(θ)

p(X)

∝ p(X|θ) p(θ) (1.2)

where proportionality can be used as p(X) =
∫
p(θ) p(X|θ) dθ has no dependence on the

parameter vector θ.

Bayesian statistics provides flexibility: the probability distributions can be easily up-

dated as more or new data becomes available and allows inference even with data that

cannot be repeated. Therefore, this type of inference is good for this context, as new data

is regularly published and data, such as individual landforms, are not repeatable, so the lo-

cation and orientation cannot be reobserved in the same way as a dice can be reobserved if

rerolled. Thus far, Bayesian approaches have rarely been combined with ice sheet modelling,

although they have started to become more common (e.g. Edwards et al., 2021; Pollard et al.,

2016). In other fields, however, it is commonplace to see. Engineering, medicine and com-

puter science have been using Bayesian statistics in studies since the 1960s (e.g. Borko and

Bernick, 1964; Florentin, 1962; Talbot and Harrison Jr, 1966).

Bayesian inference is a useful tool and the underpinning of several Chapters in this thesis

(Chapters 3, 4 and 5). Ice sheet modelling often has a high-dimensional parameter space
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where the effect of each parameter, and how the parameters may affect the model output

in combination is largely unknown and needs to be explored. If certain parameters do not

largely affect the model output, they could be discarded to reduce the dimensionality of the

parameter input space (Chapter 4). Model surrogates, such as emulators, can fill in gaps

by predicting the model output given a specified parameter input (Chapter 5).

1.6 Aims and objectives

1.6.1 Aim of thesis:

Combine ice sheet modelling with Bayesian inference to simulate the flow of the last Scan-

dinavian Ice Sheet.

1.6.2 Objectives:

1. Create a statistically rigorous model-data comparison tool to compare model-simulated

and inferred past ice flow direction.

2. Run a perturbed ensemble of simulations of the Eurasian Ice Sheet complex using the

Parallel Ice Sheet Model.

3. Complete a sensitivity analysis to determine which model input parameters are the

most important for influencing ice flow directions judged against empirical observations

of flow. Explore and determine which parameters can be discarded to reduce the

dimensionality of the parameter space.

4. Use a Gaussian process emulator to optimise the parameter sampling design and iden-

tify model simulations that best explain the documented flow geometries.

5. Run new simulations to find an optimal model to fit the collated data on ice flow.

1.7 Thesis structure and relation to published work

The field of palaeo-glaciology suffers from a lack of statistical rigour and could better use

Bayesian inference methods. This thesis seeks to address this gap by outlining a workflow

that can optimise the parameter space according to a model-data match. Here, the aim is

to improve the flow geometry model match over the Eurasian Ice Sheet complex, but the

methods outlined could also be applied to other domains and other types of evidence left
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behind by palaeo-ice sheets. Chapter 2 starts by describing the equations used to model

ice flow and how PISM makes simplifications so that simulations over long timescales and

large domains are computationally feasible. The design of the initial perturbed parameter

ensemble is described. Then, Chapter 3 outlines a new model-data comparison tool, the

Likelihood of Accordant Lineations Analysis (LALA) tool, for past and modelled flow direc-

tions. This work is published in Archer et al. (2023) and uses data from Ely et al. (2024).

The results of the initial ensemble are presented in Chapter 4, and then the scores of the

simulations using LALA are calculated. The sensitivity of the model input parameters to

various outputs is then investigated. Chapter 5 builds a Gaussian process emulator and

uses a history matching process to find input parameter sets that score highly using LALA,

without testing all parameter combinations within PISM. Chapter 6 outlines a perturbed

parameter ensemble calibrated to the flow geometry with an updated parameter sampling

routine, compares the two ensemble results and discusses the implications of this work.

Finally, Chapter 7 summarises and concludes the thesis.
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Chapter 2

Experimental design and setup
of the Parallel Ice Sheet Model
and initial testing

2.1 Introduction

As the climate continues to warm, the need to understand how ice sheets react to this

anthropogenically caused warming becomes imperative (Pörtner et al., 2022). Numerical

ice sheet models can be used to predict future ice sheet behaviour based on different climate

scenarios (e.g. DeConto and Pollard, 2016; Kopp et al., 2017). However, the uncertainty in

predictive models is large (Bamber et al., 2019), and it is difficult to verify the results. One

method for reducing this uncertainty is to validate models by simulating palaeo-ice sheets.

Palaeo-ice sheets have left behind a geological record of past ice dynamics (Stokes et al.,

2015). This means that when modelling past ice sheets, the model results can be compared

to the observed data to assess the success of the model. In this thesis, the focus is to look at

modelling palaeo-ice sheets in order to learn more about the important mechanisms driving

different parts of past ice masses (Chapter 1). This in turn could help improve the predictive

capabilities of forward modelling. Throughout this thesis, I have used a numerical ice sheet

model, the Parallel Ice Sheet Model (PISM) (Bueler and Brown, 2009; Winkelmann et al.,

2011) to produce simulations of the last Eurasian Ice Sheet Complex (EISC) across the

last 40 ka. Numerical models take a range of approximations of ice flow. The approach in

PISM is that of a hybrid model, combining shallow-shelf and shallow-ice approximations, the

details of which are described in Section 2.2. Numerical models require certain boundary

21
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conditions and parameter inputs to solve the underlying ice flow equations. Often, the

exact values of these parameters are unknown, and a range of values need to be sampled.

An ensemble of model simulations is used in this thesis to explore the parameter space, by

perturbing the parameter values for each ensemble member.

In this chapter, I start by deriving the underlying physics used within PISM to simulate

ice flow (Section 2.2). Then, I describe the input parameters and boundary conditions this

thesis explores (Section 2.3). I report results from the initial ensemble experiment, which

were qualitatively checked against observations to ensure the model was working effectively

(Section 2.4). This led to the development of a parameterization for the precipitation to

account for continentality, described in Section 2.4.2. Finally, Section 2.5 describes the

perturbed ensemble design methods used in this project and outlines how many simulations

will be run in each chapter. The list of parameters and ranges that will be explored for each

is also summarised in this section.

2.2 Ice flow physics in PISM

Flow of an ice mass is described by the Stokes equations, which are derived from the Navier-

Stokes equations. First, we define u = (u, v, w)T to be the velocity vector, where u, v

represent the horizontal velocities and w represents the vertical velocity, ρ is the density of

ice, g is the acceleration due to gravity, p is pressure and η is viscosity. The Navier-Stokes

equations for mass and momentum for Newtonian fluids are

∇ · u = 0, ρ
Du

Dt
= ρg −∇p+ η∇2u, (2.1)

respectively.

For ice sheets, we can estimate the likely orders of magnitudes for the terms in Equation

2.1. Calculating the Reynolds number, which is the ratio of inertial to viscous forces,

indicates whether the flow of a fluid is turbulent or laminar, i.e. moving in layers. In this

case, the Reynolds number is very small, suggesting ice flows in a laminar manner, and so

the Navier-Stokes equations can be simplified by removing the terms relevant to inertial

stresses. From this, the Stokes equations (Stokes, 1843) can be derived and are given as

∇ · u = 0, 0 = ρg −∇p+∇ · τ . (2.2)

where τ is the deviatoric stress tensor which defines the amount of deformation in each

direction.

Solving the underlying physics of how ice and ice sheets flow is extremely complex and
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requires a lot of computer power and time. There are ice sheet models which solve all of

the Stokes equations (e.g. Gagliardini, 2022). However, due to their computational expense,

these ‘Full-Stokes’ models can only be implemented for short time scales or small glaciers.

Several approximations can be made to simplify the Stokes system, meaning larger areas

and time scales can feasibly be modelled numerically.

The main approximation relies on an ice mass’s relatively small depth-width ratio. The

model approximations following this concept are called shallow approximations for this

reason. First, a shallow-ice approximation (SIA) can calculate the velocity of grounded

ice. In particular, an SIA model works well in areas where basal sliding is at a minimum.

The second shallow approximation is a shallow-shelf approximation (SSA), which is used in

areas where side stresses are more of a focus. This approximation is especially important in

fast-flowing areas like ice streams, and for ice shelves where the ice is not grounded and the

SIA is ill-posed. PISM combines these two shallow approximations to effectively calculate

the velocities across different portions of an ice sheet, which the approximations on their

own would be unable to do. This combination is why PISM is often referred to as a hybrid

model.

2.2.1 Mass continuity

One important concept that PISM uses is that mass must be conserved. In this case, the

stronger condition of the mass having a continuous flow must be upheld and so a mass

continuity equation can be derived. Bueler and Brown (2009) gives the kinematic equations

at the surface and the base of an ice sheet; in other words, how the surface and base of each

ice column change over time. We define x = (x, y, z)T to be the direction vector, where x,

y are the horizontal directions and z is the vertical direction. Let h represent the surface

elevation and b represent the bed elevation. Let M be the accumulation and S be the basal

melt rate. Then,

∂h

∂t
= M + wh −

uh

vh

 · ∇h,

∂b

∂t
= S + wb −

ub

vb

 · ∇b.

(2.3)

We define the ice thickness to be H = h − b. Then, to calculate how the ice thickness

changes over time, we use
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∂H

∂t
=

∂h

∂t
− ∂b

∂t
. (2.4)

Substituting in Equations 2.3 into Equation 2.4 gives

∂H

∂t
= (M − S) + (wh − wb)−

uh

vh

 · ∇h+

ub

vb

 · ∇b

 . (2.5)

To simplify the equation further, we use the incompressibility property of ice. This

property ensures that the density of the ice is kept constant. Incompressibility can be

written succinctly as ∇ · u = ∂u
∂x + ∂v

∂y + ∂w
∂z = 0. By integrating this condition vertically, we

get

∫ h

b

∂w

∂z
dz = −

∫ h

b

[
∂u

∂x
+

∂v

∂y

]
dz

wh − wb = −

(
∂

∂x

∫ h

b

u dz − uh
∂h

∂x
+ ub

∂h

∂x
+

∂

∂y

∫ h

b

v dz − vh
∂h

∂y
+ vb

∂h

∂y

)

wh − wb = −

 ∂

∂x
(Hū) +

∂

∂y
(Hv̄)−

uh

vh

 · ∇h+

ub

vb

 · ∇b

 .

This can then be simplified by settingHū to be the horizontal ice flux,Q and

u·

v·

 = u·,

leaving us with the equation

wh − wb = −∇ ·Q+ uh · ∇h− ub · ∇b. (2.6)

Substituting the above (Equation 2.6) into Equation 2.5 gives

∂H

∂t
= M − S −∇ ·Q. (2.7)

In PISM, this is how the ice thickness is calculated numerically over the spatial domain

at each time point.

2.2.2 Energy conservation

There are three sources of energy transfer arising from ice flow which for the purposes of

PISM can be combined into a single equation defining the conservation of energy; advec-

tion, conduction and the heat transferred through strain. Advection is the transfer of heat
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Figure 2.1: Depiction of a grid box in an ice column and the advection flux that occurs in

the x direction.

caused by the ice moving and conduction is the transfer of heat caused by atoms vibrat-

ing and colliding with other atoms, passing on heat. Firstly, the values for the advection

and conduction in the x direction, with the y and z directions calculated using the same

procedure, will be derived. The advection flux through one column of ice is

Advectionx = ρcp

(
uT − (uT +

∂

∂x
uT dx)

)
(2.8)

= −ρcp
∂

∂x
uT dx, (2.9)

where cp is the specific heat capacity of ice and T is the ice temperature. An illustration of

this flux for one ice column in the x direction is shown in Figure 2.1.

For the flux of the conductivity,

Conductionx = k
∂T

∂x
dx, (2.10)

where k is the conductivity of the ice. We define FDx, FDy, FDz and Σx, Σy, Σz be the

total flux deficit and the heat transferred by strain in each direction x, y, z respectively.

Then
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FDx = −ρcp
∂

∂x
uT dx+ k

∂T

∂x
dx+Σx dx. (2.11)

Combining the flux deficits in each direction, the conservation of energy in one column

of ice, can be derived

∂

∂t
(ρcpT dx dy dz) = FDx dy dz + FDy dx dz + FDz dx dy

∂T

∂t
ρcp = FDx + FDy + FDz

∂

∂t
(ρcpT dx dy dz) = −ρcp

(
∂

∂x
uT dx+

∂

∂y
vT dy +

∂

∂z
wT dz

)

+

(
∂2T

∂x2
dx+

∂2T

∂y2
dy +

∂2T

∂z2
dz

)
+Σ,

where Σ = Σx +Σy +Σz. Simplifying further,

∂

∂t
(ρcpT dx dy dz) = −ρcp(u · ∇T ) + k∇2T +Σ. (2.12)

In PISM, Equation 2.12 is simplified again omitting the second order partial deriva-

tives in the conduction term in the x and y directions due to the shallow approximation.

Also, the calculation for Σ is simplified compared to a Full Stokes model using the same

approximation. Hence, in PISM, the equation accounting for the conservation of energy is

∂T

∂t
ρcp = −ρcp(u · ∇T ) + k

∂2T

∂z2
+Σ. (2.13)

2.2.3 Basal melt

The standard melting point for ice is defined to be 273.15 K in PISM. However, when ice is

under pressure, the melting point is altered. The more pressure applied, the freezing point

lowers, and therefore the ice melts more easily. In PISM, the pressure melting point is a

linearly decreasing function subtracting ice thickness multiplied by a parameter representing

the dependence of melting point due to depth away from the normal melting point. At the

base of the ice, the pressure melting point is especially important. Combined with the

original ice temperature and the thickness of the ice sheet, there may be basal melting, or

freeze-on in the opposite scenario. The ice melted at the base of the ice sheet is stored in
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the till. The basal melt rate, S, is described in PISM as

S∆t =
cp
L

∫ b+100

b

(T̃ (t+∆t)− T ∗)

[
0.2

b+ 100− z

100

]
dz, (2.14)

where t is time, L is the latent heat of fusion for ice, T̃ (t+∆t) is the predicted ice temperature

for a small time step ∆t and T ∗ is the pressure melting temperature for ice. The pressure-

adjusted temperature is calculated at each point in an ice column, z. The equation for T ∗

is

T ∗ = T0 − 8.66× 10−4(h− z), (2.15)

where T0 is the melting temperature for ice and 8.66 × 10−4 K m−1 represents how the

melting point of ice depends on depth (Bueler and Brown, 2009).

Once the basal melt rate has been calculated, the amount of meltwater stored in the

substrate beneath the ice sheet can be found. PISM records this amount of stored water as

a representative thickness, W . Over time, this changes as follows

∂W

∂t
= S +Kmelt

(
∂2W

∂x2
1

+
∂2W

∂x2
2

)
. (2.16)

Adding the right-hand term accounts for the diffusion of some of the meltwater from

other columns of ice. The parameter Kmelt is half of the square of the diffusion distance for

the meltwater thickness, given to be 20 km, divided by the diffusion time for the meltwater

distance, given to be 1000 years, and so has the value

Kmelt =
1

2

(
20

1000

)2

= 0.0002.

Equivalently, Equation 2.16 means the meltwater thickness is given by the basal melt

rate with added diffusion, modelled with a Normal distribution, with mean 20 and variance

10002. The model then adjusts the temperature of the ice columns to be no higher than the

pressure melting point.

2.2.4 SIA stress balance

As there is a small depth to width ratio with continental ice sheets, as is being studied here,

the Stokes equations (Stokes, 1843) can be simplified to a shallow approximation. In the

interior of an ice sheet, where the ice is grounded, the ice is very slow moving as there is

little to no basal slip. For these parts of the ice sheet, the SIA stress balance is used to

calculate the flow.
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The SIA stress balance is given by the equation from Bueler and Brown (2009)

(
∂u1

∂z
,
∂u2

∂z

)
= −2(ρg)nSIAA(T ∗)(h− z)nSIA |∇h|nSIA−1∇h, (2.17)

where nSIA is the flow exponent for the SIA stress balance and A(T ∗) is the ice softness de-

pending on the pressure-adjusted temperature of ice. The horizontal velocity field, (u1, u2),

given by the SIA model can be obtained by integrating the above equation vertically, giving

(u1, u2) = −2(ρg)nSIA |∇h|nSIA−1∇h

∫ z

b

A(T ∗)(h− ζ) dζ. (2.18)

In the version of PISM used in this study, the enhancement factor, ESIA, is incorporated

into Equation 2.18 as well (Winkelmann et al., 2011).

2.2.5 SSA stress balance

When ice begins to float, becoming ice shelves, an SSA stress balance is required as the

assumptions used for the SIA are no longer valid, as drag occurs at the sides rather than

at the bottom as in the previous section. The SSA stress balance is defined by the pair of

equations

∂

∂x

[
2ν̄H

(
2
∂ν1
∂x

+
∂ν2
∂y

)]
+

∂

∂y

[
ν̄H

(
∂ν1
∂y

+
∂ν2
∂x

)]
+ τb,1 = ρgH

∂h

∂x
(2.19)

∂

∂x

[
ν̄H

(
∂ν1
∂y

+
∂ν2
∂x

)]
+

∂

∂y

[
2ν̄H

(
∂ν1
∂x

+ 2
∂ν2
∂y

)]
+ τb,2 = ρgH

∂h

∂y
(2.20)

which are solved for the SSA horizontal velocity field (v1, v2), using the vertically averaged

viscosity, ν̄,

ν̄ =
B̄

2
(ESSA)

− 1
nSSA

[
1

2
ϵ̇ij ϵ̇ij +

1

2
ϵ̇2ii

] 1−nSSA
2nSSA

. (2.21)

Here, B̄ is the vertically averaged ice hardness, τb,i is the basal shear stress, nSSA is the

flow law exponent for the SSA stress balance and ϵ̇ is the strain rate tensor. The parameter

ESSA is the enhancement factor for the SSA model. The enhancement factors, both for

the SIA and the SSA, are included to encapsulate the anisotropic property of ice, whereby

the properties of ice are directionally dependent. Solving the above equations is much more

computationally expensive than the SIA counterpart.
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Figure 2.2: Locations where the two stress balances, shallow-ice and shallow-shelf approx-

imation (SIA and SSA respectively), are used on their own or in combination. The red

indicates the SSA component, and the blue the SIA component. Taken from Winkelmann

et al. (2011).

2.2.6 Combined stress balance

At each time step and in every grid cell, both the SIA and SSA are calculated. Then,

in PISM, the overall stress balance combines the SIA and SSA stress balances by simply

adding them together. The different areas of an ice sheet can broadly be categorised into

three areas. There is grounded ice, which for the EISC is the majority of the ice. Grounded

ice near the interior of the ice sheet has negligible basal sliding, and as such, the SSA stress

balance is also negligible. When sliding becomes more significant and ice velocity increases,

ice streams form. Ice streams are where the importance of the SIA stress balance starts

to decrease and the SSA stress balance becomes more significant. For marine-terminating

areas of the ice sheet, there is the possibility for ice shelves to form. At the point the ice

starts to float, the SSA stress is used as there is no basal drag and thus, the SIA stress

no longer captures the relevant processes. The locations where the two stress balances are

most important are shown in Figure 2.2.

2.2.7 Basal mechanics

The fast-moving sections of ice sheets achieve high velocities through basal sliding. Because

of this, geology plays an important role regarding how much friction the ice sheet’s base must

overcome to slide, which in turn affects the ice surface elevation and thickness. The sliding

law used in this study to calculate the basal shear stress, τb, is a power law, dependent on

a velocity threshold value, uthreshold, and an exponent, q, as follows.
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τb = −τc
u

uq
threshold|u|1−q

, (2.22)

where u = (u1 + v1, u2 + v2) and τc is the yield stress. For the yield stress, a map of

values was input into PISM with the domain area categorised. The map, from Pollard

et al. (2023) outlines the sections of varying surface characteristics, obtained using satellite

imagery, sediment thickness maps and geological mapping, and is shown in Figure 2.3. Five

categories were identified: offshore sediment, thick sediment, thin sediment, bedrock and

areas where ice streams could form. These five values, as well as the exponent q described

in Equation 2.22, were also perturbed in the ensemble.

2.3 Input parameters and boundary conditions

In order to solve the ice flow equations given in Section 2.2 and simulate the growth and

retreat of an ice sheet, input values must be chosen, and initial model design choices need to

be determined. For the initial model simulations (outlined later in Section 2.5), a horizontal

model resolution of 16 km was used with a view to performing higher resolution simulations

when the parameter space has been narrowed down. Vertically, the resolution is spaced

quadratically, providing a higher resolution output at the base of the ice (on the order of

10s of metres) compared to further up the ice column (in the order of 100s of metres), where

changes to the basal temperature are less important. These resolutions give a good amount

of detail for their purpose whilst still completing simulations in a reasonable time. The

model simulations are run from 40 ka to 5 ka, giving a complete glaciation and subsequent

deglaciation. Spatial outputs, such as ice velocity and thickness per grid cell, are produced

every 100 years, and one-dimensional outputs, such as total ice volume across the whole

area, are produced every 10 years. Often, only one of either the advance or retreat of an

ice sheet is simulated (e.g. Gandy et al., 2021; Patton et al., 2017, 2016), so this study

aimed to see if both could be modelled successfully in one simulation. The input datasets

for boundary conditions and parameter ranges for specific processes are described in the

following sections.

2.3.1 Climate forcing

Climate input is one of the most important and most uncertain boundary conditions when

modelling palaeo-ice sheets (Stokes et al., 2015). Climatic conditions determine the mass-

balance of the ice sheet (Section 2.3.2), and thus govern its size and extent. To calculate

mass balance, precipitation levels as well as air temperature both need to be considered.
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Bed Categories
Ice stream
Offshore sediment
Thick sediment
Thin sediment
Bedrock

Figure 2.3: Categorisations of land types for assigning basal shear stress, across the model

domain, data from Pollard et al. (2023). The default values used for the basal shear stresses

and the ranges which are perturbed in the ensemble are given in Table 2.2. Modern country

outlines are shown in grey.
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The Palaeo-climate Modelling Intercomparison Project Phase 3 (PMIP3) created snapshot

climate datasets using various orbital configurations and concentrations of greenhouse gases

for both temperature and precipitation (Braconnot et al., 2012). From this, monthly snap-

shots are derived, showing the two metrics at the LGM, taken to be 21 ka in PMIP3, and

at 1850 AD, which is preindustrial (PI) or the time before anthropogenic carbon emissions

were produced. There are nine different simulations available for the LGM alone. To en-

capsulate each of these simulations in our ensemble, a weighted average could be used for

both temperature and precipitation inputs at the PI and LGM snapshots. Using a weighted

average input would require 36 weighting parameters to account for the nine different mod-

els at two snapshots and for each of the precipitation and temperature inputs. This adds a

huge amount of extra model simulations to fill the parameter space adequately.

Two methods were used to sample the modelled climates from PMIP3 efficiently. First,

we consulted Niu et al. (2019), who simulated the ice cover at 21 ka for the Northern Hemi-

sphere, which is approximately the LGM for the EISC, and considered output from nine

of the PMIP3 models. Figure 2.4, taken from Niu et al. (2019), shows these results. From

this output, it can be seen that some of the climate models make either far too much or far

too little ice cover over Europe. The climate models that create unrealistic amounts of ice

cover are ignored for this study. The models kept for this study are COSMOS-ASO (Budich

et al., 2010; Raddatz et al., 2007; Roeckner et al., 2003, 2004; Valcke et al., 2006; Wetzel

et al., 2004), IPSL-CM5A-LR (Kageyama et al., 2013a,b), MIROC-ESM (Ohgaito et al.,

2013; Sueyoshi et al., 2013) and MPI-ESM-P (Giorgetta et al., 2013; Jungclaus et al., 2013;

Man et al., 2014) from the Freie Universitaet Berlin, Institute for Meteorology, the Institut

Pierre-Simon Laplace, the Japan Agency for Marine-Earth Science and Technology, Atmo-

sphere and Ocean Research Institute (The University of Tokyo) and National Institute for

Environmental Studies, and the Max-Planck-Institut für Meteorologie, respectively. Only

considering these four simulations reduces the initial number of weighting parameters from

36 down to 16.

The second approach to further reduce the dimensionality within the climate input, was

to perform a Principal Component Analysis (PCA). This considered the spatial variation of

temperature and precipitation between the four model outputs considered. PCA reduces the

input parameter space whilst still containing a large percentage of the variation between the

model simulations. A PCA projects the original datasets into a new coordinate system, so

each component is independent. These components are ordered by the amount of variance

each contains. Depending on the proportion of variance required, some of the components

may be found to contribute very little and can be discarded without losing too much of the

total information contained by the original data.
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Figure 2.4: Adapted from Niu et al. (2019), showing modelled ice thickness in the North-

ern Hemisphere at 21 ka driven by nine different climate models. The COSMOS-ASO,

ISPL-CM5A-LR, MIROC-ESM and MPI-ESM-P climate models, circled in green, produce

a reasonable level of ice cover over Europe at this time, so these four are kept and the

remaining PMIP3 simulations are discarded for this study.



34 CHAPTER 2. EXPERIMENTAL DESIGN AND SETUP OF PISM

A weighted average of the climate models is required, represented by

a1M1 + a2M2 + a3M3 + a4M4

where each ai is the weighting of the model, Mi, for i ∈ {1, . . . , 4}. After the PCA is carried

out, a model of the form

α1P1 + · · ·+ αkPk

will be used where the Pi are the principal components and the αi are the new weightings,

with i ∈ {1, . . . , k} where k < 4 is the number of principal components needed to retain an

appropriate proportion of the variance. This technique has been shown to work similarly in

Turner (2020).

Four PCAs were performed for both the precipitation and temperature data at both the

LGM and PI times. The outcome of the PCAs was that only seven principal components

are needed to retain around 73% of the total variance, outlined in Table 2.1. Without the

PCA, 16 weighting parameters would have to be included in the parameter study, four for

each snapshot and type of data. More parameters require more model simulations to explore

the unknown parameter space properly, thus the PCA approach appears to be a promising

method for reducing computational costs.

Whilst the PMIP3 simulations are a useful starting point, they only provide a monthly

snapshot for the LGM and PI periods, whereas the model simulations need a climate input

for every year between these snapshots as well. To interpolate between these values, a

glacial index approach was implemented. This approach utilises an ice core, specifically

GRIP (Anderson and Leng, 2004), which indicates the ratio (δ18O) of Oxygen-18 (18O) to

Oxygen-16 (16O) isotopes over time. An ice core contains trapped bubbles of air, frozen at

different points in time. The air bubbles provide a record of δ18O throughout time and can

be used as a climate proxy. The GRIP core was used as it is the nearest available record

to the study area over the time period in question (Figure 2.5). At each point in time, the

Table 2.1: Summary of climate principal components and the variance they capture, per-

turbed in the initial experiments.

Climate input Number of Principal
Components

Percentage of Variance
Captured (%)

LGM Precipitation 2 78
PI Precipitation 2 78

LGM Temperature 2 84
PI Temperature 1 51
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glacial index, I(t), is calculated using the following equation

I(t) =
δ18O(t)− δ18OPI

δ18OLGM − δ18OPI
, (2.23)

for t ∈ [40, 5] ka. The index is then used to adjust the temperature and precipitation rates

for the time steps of interest each month to account for seasonal climate variation. Let

Tmon(t, x, y) and Pmon(t, x, y) represent the monthly temperature and precipitation rates at

each time, t, and location, x, y. Then, using equations from Niu et al. (2019)

Tmon(t, x, y) = Tmon(PI, x, y) +
Tmon(LGM,x, y)− Tmon(PI, x, y)

ILGM − IPI
I(t) (2.24)

and

Pmon(t, x, y)

= max

{
P ∗
mon(PI, x, y) +

Pmon(LGM,x, y)− P ∗
mon(PI, x, y)

ILGM − IPI
I(t), 0

}
, (2.25)

where

P ∗
mon(PI, x, y) = Pmon(PI, x, y)eβh(t,x,y)

which undoes the elevation correction at present day, described below.

In general, precipitation levels are reduced as elevation increases. PISM corrects for this

using a decay rate parameter, β, to adjust the precipitation based on the surface elevation,

h. The corrected monthly precipitation levels, P cor
mon(t, x, y), are given as

P cor
mon(t, x, y) = Pmon(t, x, y)e

−βh(t,x,y).

Similarly, we use a lapse rate γT to adjust the temperature given a certain elevation

(Hinck et al., 2022). This reduces the calculated temperature by a linear factor of the

change in elevation, where the factor is the lapse rate. The glacial index calculations are

performed automatically in an extended version of PISM created and documented in Hinck

et al. (2022).
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Figure 2.5: Glacial index I(t) from the GRIP core over the time frame used within this

study. The times at which there are PMIP3 simulations are marked on in blue, at 21 ka

and 1850 AD.

2.3.2 Positive-degree day model

An ice sheet’s size is primarily determined by the surface mass balance. The surface mass

balance of an ice sheet describes the amount of ice being added, or accumulated, compared

to the amount of ice being lost, or ablated. Surface accumulation occurs when precipitation

falls as snow or when water freezes onto the ice sheet. Surface ablation occurs through

melting and then the surface meltwater can either runoff or can refreeze back onto the ice

mass. To calculate the surface mass balance, the snowfall as well as the melt need to be

calculated. For this study, a positive-degree day (PDD) model is used for this purpose.

The precipitation input has already been defined using the PMIP3 simulations as de-

scribed in Section 2.3.1. However, the mass balance, the difference between accumulation

and ablation, also needs to be determined. For times when the prescribed temperature is

over 2°C, any precipitation falls as rain, and at times where the temperature is below 0°C,

precipitation falls as snow. Between these temperatures, a linear relationship is used to

determine the amounts of each precipitation. For example, if the temperature is 1°C, half

the precipitation will fall as snow, and the other half will fall as rain. To account for daily

variability, a small addition to the temperature is included based on the standard deviation

of the temperature input. A Normal distribution with this standard deviation is sampled,

and this value is used as the added temperature variability.

The original PDD model was formulated by Reeh (1991). This yields a double integral,

integrating over both temperature and time. When this PDD model was first implemented

into ice sheet models, it was assumed that it had to be solved numerically. This added
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a large computational expense to running simulations. Calov and Greve (2005) proved

that the temperature integral could, in fact, be solved analytically and therefore only the

remaining time integral needed to be solved numerically. This sped up the computation of

the PDD model significantly, estimated at a 90% increase in efficiency (Calov and Greve,

2005). The formulation used in PISM comes directly from Calov and Greve (2005) and is

written as

PDD =

∫ A

0

σ√
2π

exp

(
−T 2

ac

2σ2

)
+

Tac

2
erfc

(
−Tac

σ
√
2

)
dt, (2.26)

where σ is the standard deviation of temperature, Tac represents the seasonal temperature

changes over a year, and A is the time period to evaluate the PDD model over. The final

term includes a complementary error function that Calov and Greve (2005) define to be

erfc =
2√
π

∫ ∞

0

e−x′
dx′.

Every week in the model simulation, the total snow accumulation and the number of

days with temperatures over freezing are summed, called the positive-degree days. Once

these values have been obtained, the new snow depth can be calculated

SnowDeptht+1 = SnowDeptht +Accumulation.

From these values, the snow melt and ice melt can be calculated using two parameters,

Fs and Fi respectively, that are varied in the ensemble that define how much melt occurs

per PDD

SnowMeltmax := PDD × Fs.

If the maximum snow melt is less than the current snow depth, then the calculated melt

of snow is removed and none of the below ice is melted. If the maximum snow melt is more

than the current snow depth, all the snow is melted and the ice melt is computed as follows

IceMelt :=

(
PDD − SnowMeltmax

Fs

)
Fi.

PISM also allows for a specified proportion of the melted ice and snow, kept at a constant

60% for all simulations (Ritz, 1997), to refreeze rather than all running off. Through this

process the runoff and the surface mass balance are both updated within the simulation.

The runoff is the total snow and ice melt with the refreeze subtracted and the surface mass

balance is simply the difference between the accumulation and the runoff.
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2.3.3 Grid definition and initial conditions

There are several input files provided to PISM to start the simulation. These inputs are often

of varying resolutions and are also sometimes incomplete. Before any transient calculations

are performed, PISM bootstraps the input files, ensuring all are at the correct resolution

as well as interpolating for any missing variables. To specify the resolution that we want

the output to be calculated at, there are several parameters that have to be defined. These

will stay the same for each member in an ensemble, but the resolution will change between

experiments.

We can isolate the domain we wish to simulate, but this needs converting into a grid

compatible with a computer model. To do this we define a grid that represents the domain

with different dimensions depending on the level of detail needed, an example of this is

shown in Figure 2.6. The model grid requires four directions to be specified, x and y

giving the horizontal dimensions, and z and bz representing the vertical directions, from

the bed upwards and the bed downwards, respectively. Both dimensions are in metres

in each direction (defined as Lx, Ly, Lz and Lbz), as well as the number of grid cells

(defined as Mx, My, Mz and Mbz) to determine the model resolution. Figure 2.7 shows the

domain considered for this project. The domain is specified with Lx as 3696 km, and Ly

as 5600 km. The corresponding number of grid cells are 231 for Mx, and 350 grid points

for My. These values were chosen for the initial simulations to have a 16 km horizontal

resolution. Vertically, we create 51 quadratically spaced layers above the bed, Mz, of which

the maximum ice thickness cannot exceed 10000 m, Lz. Below the bed, 11 equally spaced

layers, Mbz, span 2000 m, Lbz.

The model simulations all start at 40 ka, which is thought to be a relatively ice-free

time over Europe. However, there is evidence that there was a small ice mass across the

Scandinavian Mountains in Norway around this time (e.g. Lambeck et al., 2010), so this

is included in the initial PISM inputs to account for this. The initial ice thickness of this

Norwegian ice mass is taken from a perfectly-plastic ice sheet model (Gowan et al., 2016)

conducted by Ely et al. (2024) and Bradley et al. (2023).

2.3.4 Topography and glacio isostatic bed depression

Ice flow is also dependent upon basal topography. Basal topography for this study was

taken from GEBCO Bathymetric Compilation Group (2019). The dataset was gridded to

a horizontal resolution of 1 km, but this resolution was regridded to match the resolution

of different model experiments throughout this thesis to increase computational efficiency.

The model domain spans 46°N to 90°N and −15°E to 110°E, outlined in Figure 2.7.



2.3. INPUT PARAMETERS AND BOUNDARY CONDITIONS 39

Figure 2.6: An example model grid scheme that can be used within PISM. In this example,

Mx = 3, My = 2 and Mz = Mbz = 1. The values for Lz and Lbz are given in metres and

set the vertical resolution. The base of the ice is identified by the thick black line.

As an ice sheet increases in size, the mass causes the bed to depress and the local sea

level to rise. Conversely, if the ice sheet then shrinks, the ground experiences uplift, and the

local sea level will fall. A bed deformation model is included within PISM to account for

these effects. The Lingle-Clark bed deformation model, described in Lingle and Clark (1985),

considers two layers below the bed, the lithosphere and the upper mantle and calculates how

ice of a certain mass deforms the bed. The model uses the flexural rigidity or force needed

to bend the lithosphere and the viscosity and density of the upper mantle. Classically, a

simpler model is used, one that does not take into account the viscosity of the asthenosphere,

however the Lingle-Clark model does not decrease computational efficiency (Bueler, Lingle

and Brown, 2007) as a fast Fourier transform can be used for quick computation.

Ice sheets around the globe have two effects on the sea level around our modelled ice

sheet. First, the overall sea level is affected by the total size of all ice sheets. The bigger the

total mass of ice sheets, the less water in the oceans and therefore, the worldwide sea level

is lower. When the ice sheets are smaller, the opposite is true. Secondly, other ice sheets

(e.g. Antarctica and the Laurentide ice sheets) create a gravitational attraction around the

ice, pulling water towards them. As PISM is not run on a global scale, these effects are not

included. To account for these processes, model data from Bradley et al. (2023) is used with

the EISC removed from the model to include these sea level changes.
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Figure 2.7: Domain considered for model experiments.
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Figure 2.8: Geothermal heat flux input, taken from Patton et al. (2016), data originally

from Pollack et al. (1993).

2.3.5 Basal shear stress at the ice sheet bed

When the basal shear stress applied by the ice sheet, τb, exceeds the basal yield stress,

τc, the ice sheet starts to slip. As outlined in Section 2.2.7, five different basal yield stress

categories were determined, shown in Figure 2.3, and assigned values, given in Table 2.2.

The default values were chosen to ensure the ice stream areas had the lowest value, and were

therefore the slippiest, and the areas identified as bedrock had the highest value, and were

the hardest parts for the basal shear stress to exceed the yield stress. In each simulation,

each of the five categories are perturbed, such that the categories have the same value, i.e.

all ice streams across the domain have the same yield stress. The yield stress values that

are perturbed in the ensemble are given in Table 2.2.

2.3.6 Basal heat flux

Convection allows heat from the Earth’s mantle to reach the surface, which is called geother-

mal heat flux. The amount of geothermal heat varies across the world (Pollack et al., 1993).

A heat flux map is an important input to include as areas with higher geothermal heat will

melt the ice much faster than areas with lower flux. The input for this was taken from

Patton et al. (2016), originally gridded from Pollack et al. (1993), and is shown in Figure

2.8.

2.3.7 Marine terminating areas of the ice sheet

Marine terminating ice sheets can also lose mass through melt at the terminus. Two factors

that are pivotal for determining this melt are ocean temperature as well as salinity. A higher

ocean temperature can increase the melt rate of ice shelves, and high ocean salinity causes
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ice to float more easily.

The amount of heat flux, Qheat, between the ocean and the ice depends on the difference

in temperature between the ocean and the temperature required for the ocean to freeze at

a certain depth below the surface, To − Tf , as well as the ocean density, ρo, the specific

heat capacity of the ocean, cpo
, the thermal exchange velocity, U , and a tuning parameter,

Fmelt. These are combined to calculate heat flux as

Qheat = ρocpo
UFmelt(To − Tf ) (2.27)

The tuning parameter has been included in order for the heat flux to match observed

data (Martin et al., 2011) and will be varied in the ensemble (see Table 2.2 described later).

Within PISM, there is a set of four options commonly used together, especially by

researchers at the Potsdam Institute. These have been shown to work well for Antarctica and

have also been used in this study. The conditions remove icebergs that cause computational

issues (kill icebergs, see Winkelmann et al. (2011)), allow ice shelves to grow across a

portion of a grid cell (part grid, see Albrecht et al. (2011)), calculate basal melt around

the grounding line (subgl, see Feldmann et al. (2014)) and on an ice shelf edge uses a stress

boundary condition (cfbc, see Winkelmann et al. (2011)).

Marine ice sheets flow into the ocean and under certain conditions, ice can begin to grow

out over the water and become a floating ice shelf. When the salinity of the ocean is high,

the freezing and melting points of ice are lowered, making an ice shelf harder to form. The

thinner the floating ice, the more likely it is to break off the main ice sheet and become

an iceberg. This is called calving. Many processes drive calving, e.g., from melting under

an ice shelf and crevasse propagation, across different settings, e.g. land and marine (Benn

et al., 2007). Due to a lack of understanding behind the mechanics of these processes, the

parameterisations used within numerical models do not fully encapsulate the complexities

calving is thought to contain (e.g. Choi et al., 2018). In this study, I have chosen to use a

thickness-based parameterisation of calving. While more complex calving laws are available

in PISM, this choice was made for simplicity, and that this thesis does not directly focus on

understanding such processes. This approach sets a value, Hcr, that specifies the minimum

thickness (in metres) that an ice shelf can be without it being removed. The values chosen

for the ensemble experiment are based on observations of marine-terminating ice masses

that found that ice shelves experiencing calving rarely have a thickness of less than 200 m

(Albrecht et al., 2011) and the range of values explored for Hcr are given in Table 2.2.



2.4. INITIAL EXPERIMENTS 43

2.3.8 Ice flow parameters

The ice flow equations, described in Section 2.2, require several parameters namely the

enhancement factor (described in Section 2.2.5) and the exponent in both the flow law

for the SIA (Equation 2.18) and the SSA (Equation 2.21) stress balances, as well as the

exponent in the sliding law (Equation 2.22). When varying the stress balance parameters,

the values for the SIA and SSA are kept the same within a simulation but varied across the

ensemble (Table 2.2).

2.4 Initial experiments

2.4.1 Results

With all of the parameters outlined in previous sections, 21 have been identified to change

within the ensemble experiments. After running 42 preliminary test simulations, both the

modelled southern margin and to the east in the Barents Sea were consistently too big,

extending around 400 km beyond limits known from geological evidence (Figure 2.9). In-

terestingly, the southern extent rarely changed with different parameter combinations. The

percentage of the initial 42 simulations, sampled with a Latin hypercube method described

in Section 2.5.2, that cover the domain at 21 ka is shown in Figure 2.9 and is compared to

the reconstructed margins for the same time from Hughes et al. (2016). From this, it was

suspected that a key process was not being represented in the current model setup. As there

was too much ice growing, it seemed likely that there was a problem with the precipitation

input and it was found that previous studies modelling the BIIS found similar results, (e.g.

Boulton and Hagdorn, 2006). As a test to confirm whether the precipitation input was the

cause of the invariably large extent, the model was run with half the original precipitation.

Whilst this altered input did not solve the whole extent problem, it did go some way to

reduce it. Given that the southern margin is furthest from the main source of moisture, the

Atlantic Ocean, the effects of continentality were expected to be important, as discussed

below.

2.4.2 Accounting for continentality

The equilibrium line depicts the point where the accumulation and ablation levels are equal,

i.e. no ice mass is gained or lost. The altitude of the equilibrium line increases for ice masses

further inland (Chorlton and Lister, 1968, 1971). This effect is called continentality. To

account for this effect within the model, a curve is used to represent precipitation decay
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Figure 2.9: The percentage ice cover at 21 ka summarised from a preliminary 42 member

Latin hypercube ensemble, overlaid with the minimum, maximum and most-credible (in

blue, purple and pink respectively) LGM extents derived by Hughes et al. (2016), based on

geological evidence. Note that these simulations predict ice extent considerably exceeding

the southern and eastern margins of the known ice sheet.

dependent on distance away from the continental shelf break in the Norwegian Sea. The

equation of the curve is

y =
80

1 + exp (mx− 5)
+ 20 (2.28)

with m being the gradient of the curve, and x being the calculated distance, shown in Figure

2.10. This curve was chosen so that the reduction in precipitation never exceeds 80% and

decays at an appropriate rate over the distances considered. Three boxes, separating the

three ice sheets (BIIS, SIS and SBKIS), are being considered with different decay rates

outlined in Figure 2.11.

An initial experiment was run to ensure the new parameters were having the desired effect

of reducing the ice extent. The ice thickness output at 21 ka of this initial experiment is

provided in Figure 2.12 and shows the reduced ice extent compared to the original ensemble

seen in Figure 2.9. Hence, the four planned parameters for the precipitation PCA can be

removed and replaced with the three new parameters from the precipitation decay approach

to account for continentality. This reduces the parameter space from 21 parameters to 20.

Figure 2.11 shows the ranges of decay gradients considered for each of the areas. In the

large ensemble, the three gradient parameters have ranges: mbrit ∈ [9, 30], mscandi ∈ [5, 10]

and mbarents ∈ [0.5, 2].
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Figure 2.10: The blue to yellow gradient shows the distance from the continental shelf break,

represented by the grey line north of Britain and Norway. The continental shelf break is

drawn up until the inferred influence of the thermohaline circulation. The domain is split

into three areas roughly matching the three ice sheets being modelled, the British-Irish Ice

Sheet, the Scandinavian Ice Sheet and the Svalbard-Barents-Kara Sea Ice Sheet indicated

by a, b and c, respectively.
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Figure 2.11: Subdomains for applying the continentality effect. The lines within each of the

three sections represent the default gradient given in Table 2.2.
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Ice thickness
(m)
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0

Figure 2.12: Ice thickness at 21 ka from a simulation using the default parameters (see Table

2.2) including the precipitation gradient parameters to account for the continentality effect

of declining precipitation away from the ocean. The blue line shows the most credible ice

extent according to Hughes et al. (2016).
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Table 2.2: Parameters and ranges of interest that will be explored in the initial perturbed

ensembles.

Parameter
Parameter
Symbol

Range
Explored

Default
Value

Flow exponent nSIA/nSSA [2, 4] 3

Flow enhancement ESIA/ESSA [0.5, 3] 1.75

Sliding law exponent q (0, 1) 0.5

Calving thickness threshold Hcr [50, 300] 175

PDD snow Fs [2, 5] 3.5

PDD ice Fi [5, 10] 7.5

Thin till yield stress

τc

[60, 100] 80

Thick till yield stress [30, 70] 50

Offshore sediment yield stress [10, 30] 20

Bedrock yield stress [100, 150] 125

Ice stream yield stress [5, 20] 12.5

Principal component weightings
for temperature (see Table 2.1)

αi [−1, 1] 0

Precipitation decay gradients

mbrit [9, 30] 15

mscandi [5, 10] 7

mbarents [0.5, 2] 1

Melt factor Fmelt [0.005, 0.05] 0.0275

Temperature lapse rate γT [0.04, 0.09] 0.065

Precipitation decay rate β [40, 100] 70

2.5 Ensemble design and sampling

I have identified 20 parameters that need to have a value assigned in order for the ice

flow equations to be solved (Table 2.1 and Table 2.2). In the section below, I explore the

parameter space that needs to be considered in the perturbed ensembles, then in Section

2.5.2, I look into different sampling techniques for creating the said ensemble and then in

Section 2.5.3, I outline the ensemble I run for use throughout the rest of the thesis.

2.5.1 Parameter ranges

In Sections 2.2 and 2.3, 20 parameters have been identified to include in the perturbed

ensemble. The range of values chosen for each parameter was determined by looking at a

previous study that achieved reasonable results over the BIIS (Ely et al., 2024). Each of

the parameters that will be perturbed in this study and the associated values are shown in

Table 2.2.
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2.5.2 Sampling methods

When starting to run numerical model simulations with unknown parameters, it is important

to explore the parameter space to learn how the parameters affect model output and try

to find the optimum parameter values. There are a number of different sampling methods

available. In this thesis, two are considered; one-at-a-time sampling and Latin hypercube

sampling. The former is considered a local sampling technique, and the latter is a global

sampling technique. The differences between the two methods are discussed below.

One-at-a-time sampling

A common sampling method within glaciology is termed one-at-a-time (OAT) sampling.

All parameters are given a set, default value and then in each simulation one parameter is

changed to an extreme value, either the minimum or maximum value in the range. There

are several limitations to this method, discussed fully in Chapter 4, but the main issue is

that this method cannot capture the interactions that may occur between parameters.

Latin hypercube sampling

Different from the previous method, a Latin hypercube sample varies all of the parameters

in every simulation (McKay et al., 1979). The method systematically samples so that the

parameter space is more fully explored and investigates the effects that multiple parameters

can cause when interacting. Each parameter range is split uniformly into a specified number

of strata. The number of strata dividing the parameter ranges should match the number of

simulations required for the sample. For every parameter range, each value in each stratum

is included in exactly one sample. Figure 2.13 shows an example of a Latin Hypercube

design sample in two dimensions with five input samples that comply with this design.

An extension to this sampling approach is to require the condition that the minimum

distance between points is maximised. The maximin criterion ensures the sample points are

spread across the parameter space in the most optimal way to explore the effects of different

parameter combinations (Jones and Johnson, 2009).
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Figure 2.13: An example Latin hypercube design for sampling across a parameter space

with two parameters and five input samples that comply with the design, shown as coloured

circles.

2.5.3 Number of experiments

In Chapter 4, an initial ensemble will be performed. For this ensemble, 200 model simula-

tions will be completed with parameter inputs sampled uniformly according to a maximin

Latin hypercube design. Then, in Chapter 6, a further 130 simulations will be performed

with a new sampling routine and a reduced parameter space, described throughout this

thesis.

2.6 Summary

In this chapter, I have summarised the main components and underlying physics that make

PISM run and the approximations that have been made to reduce the computational cost

and time frame that simulations will take to perform. Notably, several of the parameters

are poorly constrained, exemplifying the need for performing perturbation experiments to

fully explore the parameter space and find the most likely parameter values and ranges.

The largest uncertainty is likely the climate input. To account for this, I use a PCA for the

temperature input, outlined in Section 2.3.1, and a precipitation reduction gradient based

on the effect of continentality for the precipitation input, discussed in Section 2.4.2. The
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total number of parameters that will be explored in the large ensemble in Chapter 4 is

20. The large ensemble will be comprised of 200 simulations, and the parameters will be

sampled using a Latin hypercube design. As seen in Section 2.5, a Latin hypercube design

allows the parameter interactions to be investigated, as opposed to an OAT approach which

is commonly used in this field.
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Notation for Chapter 2

Symbol Description

A(T ∗) Ice softness for ice at pressure adjusted temperature

B̄ Vertically averaged ice hardness

b Bed elevation

bz Specifying the vertical direction below the bed

cp Specific heat capacity of ice, cpo
is the specific heat capacity of the ocean

ϵ̇ Strain rate tensor

FDx Total flux deficit in the x direction

g Acceleration due to gravity

H Ice thickness

h Surface elevation

η Viscosity

I(t) Glacial index function

Kmelt Parameter calculated as half the squares value of diffusion distance

k Conductivity of ice

L Latent heat of fusion for ice

Lx,Ly,Lz,Lbz Number of metres in directions x, y, z and bz that defines the PISM grid

M Accumulation

Mx,My,Mz,Mbz Number of grid points in directions x, y, z and bz that defines the PISM grid

ν̄ Vertically averaged viscosity

Pmon(t, x, y) Monthly precipitation rates

p Pressure

ρ Density of ice, ρo is the density of the ocean

Q Horizontal ice flux

Qheat Heat flux

S Basal melt rate

Σ Heat transferred by strain

σ Standard deviation of temperature

T Temperature of ice, To is the ocean temperature and Tf is the temperature
for the ocean to freeze

T ∗ Temperature of ice adjusted for pressure

Tmon(t, x, y) Monthly temperature rates

Tac Seasonal temperature changes over a year

t Time

τb Basal shear stress

τ = (τij) Deviatoric stress tensor

U Thermal exchange velocity

u = (u, v, w)T Velocity vector, where u, v are horizontal velocities and w is vertical velocity

uthreshold Velocity threshold for sliding

W Representative stored water thickness

x = (x, y, z)T Direction vector
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Chapter 3

Assessing ice sheet models
against the landform record:
The Likelihood of Accordant
Lineations Analysis (LALA)
tool

3.1 Introduction

The information left behind by palaeo-ice sheets provides a long-term record of ice sheet be-

haviour (Clark et al., 2018) which, if unlocked, has great potential to be used to improve the

predictive ice sheet models essential to forecasting the fate of ice sheets in our warming world

(e.g. Edwards et al., 2021; Goelzer et al., 2013; Lipscomb et al., 2021; Nowicki et al., 2020),

and our reconstructions of past ice sheets (e.g. Andrews, 1982; Stokes et al., 2015). Quanti-

tative comparisons between numerical model simulations and palaeo-ice sheet evidence are

becoming more commonplace (e.g. Ely et al., 2021; Gandy et al., 2019, 2021; Tarasov et al.,

2012), replacing qualitative descriptions of fit to evidence (e.g. Boulton and Hagdorn, 2006;

Siegert and Dowdeswell, 2004). This shift is prompted by a need to quantify the degree-of-fit

between models and evidence to assess output uncertainty, and is facilitated by an increase

in computing power enabling sufficient resolution within simulations for comparison to take

place. However, the use of quantitative model-data comparison tools in palaeo-ice sheet

modelling experiments are far from routine. This is at least partially a consequence of the

underdevelopment of model-data comparison tools.

53
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The most abundant landform evidence left behind by palaeo-ice sheets are subglacial

lineations (henceforth lineations). Often thought of as the separate categories of drumlins

(e.g. Menzies, 1984), crag and tails (e.g. Dowdeswell, Todd and Dowdeswell, 2016), and

mega-scale glacial lineations (MSGL) (Clark, 1993), lineations can be broadly defined as

streamlined hills, formed at the ice-bed interface. Lineations are typically on the order

of 100-1000 m in length, though they can reach several kilometres in the case of MSGL

(Spagnolo et al., 2014). The origin of subglacial lineations, especially drumlins, has garnered

much scientific debate and is an active field of research, see Ely et al. (2022). However,

general agreement can be found amongst geomorphologists on two factors: i) lineations are

streamlined in the direction of ice flow, and thus represent former ice flow direction at a

point in time during the lifecycle of an ice sheet; and ii) lineations form under warm-based

conditions, conducive to the transport of subglacial material. Two further observations

help glacial geomorphologists reconstruct the past behaviour of ice sheets. First, lineations

typically occur in fields of regular arrangement with similar orientation and morphology

(Clark et al., 2018), although isolated examples do also exist (Evans et al., 2015). As such,

lineations can be grouped into flowsets, larger regions of a palaeo-ice sheet bed thought to

represent an ice sheet flow event (Clark, 1997). Second, sets of lineations can be observed

to cross-cut each other, with younger forms superimposed upon those formed during older

flow events (Clark, 1993). Such cross-cutting relationships enable a sequence of ice flow

orientations to be deciphered. On this basis, the interpretation of lineations has provided

much insight into the operation of palaeo-ice sheets (e.g. Dyke, 2008; Greenwood and Clark,

2009; Hughes et al., 2014; Stokes et al., 2009).

Despite being a pervasive and information-rich source of data on palaeo-ice sheet be-

haviour, lineations are underutilised in palaeo-ice sheet modelling experiments. There have

been initial approaches for incorporating observed lineations into model-data comparisons,

however, these lack statistical rigour. The first attempt at building a tool for comparing

simulated ice flow directions and those derived from observations of lineations was devel-

oped by Li et al. (2007). The Automated Flow Direction Analysis (AFDA) tool provides

a measure of the degree-of-fit between simulated and observed flow directions throughout

the duration of an ice sheet simulation (Li et al., 2007). Two metrics are calculated from

gridded datasets of simulated and observed flow directions. The resultant mean difference

aims to provide a measure of the overall directional offset between simulation and data,

whilst residual variance is used as a measure of the level of agreement between the shape

of the two flows. Ely et al. (2021) subsequently developed a workflow for assessing whether

cross-cutting relationships were replicated, whereby model-data agreement was declared if

a simulation was able to replicate flow directions in the correct sequence.
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Despite its existence, uptake of AFDA has been low. As of February 2023, a Google

Scholar search indicated that Li et al. (2007) had been actively used in six studies which

use the tool within ice sheet model experiments. This may reflect the tool being ahead of

its time, as ice sheet simulations have only recently been able to simulate the detailed flow

fields recorded in lineations. It may also be due to certain weaknesses of AFDA, which are

aimed to be addressed in this work. The lack of a comprehensive and formal statistical un-

derpinning to AFDA makes decisions about the degree-of-fit between an ice sheet simulation

and observed lineation data highly subjective. A declaration of a model-data match requires

user-defined thresholds in resultant mean difference and residual variance (Ely et al., 2021).

This hinders comparison between simulations.

The need to run many computationally expensive simulations has started to encourage

statistical surrogates to be incorporated into ice sheet modelling workflows (Edwards et al.,

2021). Empirical data from ice sheets has not yet been used to refine a model parameter

space to improve the model-data fit. One approach to do this is to use an emulator with

a metric encapsulating the fit of each model simulation to the empirical data. Model-data

comparison tools therefore became a big point of interest. The binary fit/no-fit metric of

AFDA is unsuitable for emulation, which requires a more refined, continuous, and rigorous

measure of fit as well as the inability to compare simulations within an ensemble directly.

Hence, in this chapter, I present a novel scoring method for comparing observed lineations

with numerical model output. I have created Python functions and code to run this method

with typical model output, netCDF files, and include a written, worked example and the

same example implemented in code. This work is published in Archer et al. (2023).

This chapter is laid out as follows. In Section 3.2 an overview of the Likelihood of

Accordant Lineations Analysis (LALA) and how the tool scores a simulation against a record

of observed lineations is outlined. A simple example is worked through in Section 3.2.9 to

illustrate the method. A key component explored in this chapter is how to incorporate

uncertainty into the scoring process. In Section 3.4, the uncertainty occurring between

different people interpreting the observational record differently is investigated and then

results of the experiment are discussed in Section 3.4.2. Finally, LALA is used to score an

ensemble of the British-Irish Ice Sheet, in Section 3.5.

The new tool, LALA, is provided in Archer et al. (2023) as a Python script (v3.0+)

along with a tutorial that works through synthetic examples of observed lineation locations

and directions, and ice sheet model output that can be found at https://github.com/

rosiearcher/LALA-Tool. It is built to handle netCDF files of ice sheet model simulations

and observations of lineation formation. NetCDF files are a common format for ice sheet

model output and is also the format of PISM output which is the numerical ice sheet model
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used in this thesis. An overview of the statistical underpinning of LALA is provided in

Section 3.2 below.

In brief, LALA considers that lineations were formed under specific subglacial conditions,

and aligned with the ice flow direction at the time of their formation. The likelihood that the

observed lineations were formed by a prescribed ice sheet simulation is calculated, providing

an assessment of that specific simulation’s quality-of-fit. Typically, I expect this tool will be

used to compare different simulations within a large ensemble, perhaps representing a range

of hypothetical forcings and ice sheet parameter selections, to identify those simulations that

are most likely and hence narrow down the plausible range of forcings and parameters. The

output from LALA can, however, also be considered on a per-flowset basis, as demonstrated

later in Section 3.5, where the tool is applied to simulation of the BIIS. The relative timings

of lineations can be inferred from the observational record and are a valuable addition

to learning about the timings of past flow directions of palaeo-ice sheets. Accounting for

these cross-cutting relationships is currently beyond the scope of LALA, but would be an

interesting extension to explore. In this application of LALA, only a single point in the

centre of each flowset is considered, which may not represent flow across complex flowsets

with curving directions. Equally, users of LALA could score each model cell a flowset covers

and check for coherent temporal matches.

3.2 A probabilistic model for the likelihood of flowset
formation

LALA is built upon a rigorous statistical foundation: a simple probabilistic model, based

upon three initial assumptions regarding the formation of lineations, that provides a link

between an ice sheet and its resultant lineations. Having constructed this probabilistic

model, the LALA tool and the score for any ice sheet simulation follow directly. Suppose that

observations of lineations are gridded to the scale of the ice sheet model output in question

to compare, which correspond to n flowsets across the overall study region X , a complete

or partial palaeo-ice sheet bed. These flowsets are observed at locations x1, . . . , xn and

are accompanied by estimates of their inferred directions θ1, . . . , θn. Given these observed

flowsets, providing paired (xi, θi)
n
i=1 information, the aim is to score any simulated ice sheet

M to assess its level of agreement with the observations across the simulated time period T .

This score is obtained by evaluating the log-likelihood of the ice sheet under consideration,

l(M |(xi, θi)
n
i=1), according to directional and locational model-data match.

Throughout this chapter, I will denote an ice sheet, M , at time t and location x as

M(x, t). This M(x, t) is effectively output of an ice sheet simulation at a specific time step
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and location and might consist of many variables, e.g., ice thickness, basal and englacial ve-

locity (speed and direction), thermal regime, and mass balance. Given an ice sheet M(x, t),

over locations x ∈ X and times t ∈ T , three assumptions are made regarding the creation

of flowsets.

The first assumption is that ice cover is required for lineation formation. At any time t

when a location x is covered by ice, there is a small probability that lineations could form

in that location. This probability of forming lineations may depend upon the location, the

time, and the properties of the ice sheet at that time. Denote the probability of lineation

formation at location x and time t as λ(x, t,M(x, t)). This will critically depend upon the

properties of the ice sheet under consideration and the location x.

Secondly, assume that the formation of lineations are completely independent from one

another in both space and time (conditional on the value of λ). This assumption likely

holds at the scale of an ice sheet that is considered here, though note that at the scale of

neighbouring lineations, interactions between lineations may occur (Ely et al., 2018).

The last assumption is that lineations align with ice flow direction. Intuitively, the

lineations will align (at least approximately) with the ice flow at the point they are formed.

However, from lineation morphology alone, it can be difficult to ascertain the upstream and

downstream ends of a lineation (Spagnolo et al., 2011, 2010), especially in regions which

experienced a complex ice flow history. Thus, the tool allows for orientations to be exactly

opposite of those prescribed by the user (i.e., the lineations could record ice flow in the

exact opposite direction). This assumption could be relaxed in future versions of LALA, to

account for regions where ice flow direction is well known.

Under these initial assumptions, the flowsets form what is known as a marked, inhomo-

geneous, Poisson point process (Kingman, 1993). A Poisson point process can model the

occurrence of random, independent events over a defined space. An intensity function is as-

sociated with the point process and defines the rate at which events appear in the set space.

In this case, to make the tool as flexible as possible, an inhomogeneous intensity function

is specified so that the intensity can be non-constant function across the space. For LALA,

the intensity function will depend on the location, time and the simulation output and will

be denoted as λM = λ(x, t,M(x, t)). A marked Poisson point process utilises the same idea,

with the added benefit of attaching an extra piece of information to each point, in this case:

direction. Here, lineations are the points, with the orientations of the lineations being the

marks, and the model domain is the space where the formation of lineations is considered.

The associated rate that is attached to this Poisson process is calculated from the expected

number of lineations in the domain over time divided by the number of time-integrated

plausible areas for lineation formation, and the inhomogeneous property allows for the rate
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to vary with respect to space and time. For any subregion A and time interval (a, b] the

number flowsets formed N(A, (a, b]) will follow a Poisson distribution with mean

Λ(A, (a, b]) =

∫
A

∫ b

a

λ(x, t,M(x, t)) dt dx,

that is to say, N(A, (a, b]) ∼ Po(Λ(A, (a, b])).

Given a set of n observed flowsets at locations x1, . . . , xn and with estimated paired

directions θ1, . . . , θn, the Poisson point process model can be used to calculate the log-

likelihood of any particular ice sheet. This log-likelihood is the score of one simulation

calculated by the LALA tool. Those ice sheets with greater log-likelihoods are more likely

than those ice sheets with lower log-likelihoods in the sense that they make the observed

lineations (in terms of both location and direction) more probable. The full details on

constructing the log-likelihood can be found in Section 3.2.7, but an intuitive explanation

of the main elements is provided below.

The study region should be restricted to those areas which have been assessed for lin-

eations (i.e., the location has been checked, and it is known whether the location has, or

does not have lineations). Those regions which have not been mapped (and hence where the

existence, or absence, of lineations is unknown at an ice sheet model resolution) should not

be included in the tool or form part of the study area X . When scoring an ice sheet against

the flowsets, the value of the ice sheet in this unmapped area should also be discarded.

3.2.1 Overview of scoring direction and location

The rate of lineation formation at a specific point and time, λ(x, t,M(x, t)) can, in principle,

depend upon multiple variables: the location, the time, the properties of the ice sheet and

properties of the sediment. However, for the initial implementation of LALA and to simplify

the intuitive explanation below, the dependence on these other variables is reduced so that

λ(x, t,M(x, t)) has two states: i) potential for lineation formation and ii) impossible for

lineation formation.

The conditions for which the formation of lineations is possible is a debated topic (for a

recent review, see Ely et al. (2024)), however, this is not a discussion to be solved in this

thesis. For the purposes of this chapter, and used subsequently, a simplistic set of conditions

is decided upon. The conditions for formation are that at a specified time and location, ice

must be present and grounded, as well as thicker than 10 m and have a velocity higher than

10 ms−1. For ease of notation, these conditions will henceforth be referred to as the set S.

Other users of LALA can change or adapt S, based on what the user deems important for

formation. In the two-state version of λ(x, t,M(x, t)), set
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λ(x, t,M(x, t)) =

λ, if (x, t,M(x, t)) ∈ S

0, otherwise

(3.1)

for some constant λ. A description of how to choose the value of λ is given in Section

3.2.8. Whilst the focus will be on the two-state approach described above, a more general

λ(x, t,M(x, t)) can also be used.

The final score given by LALA for each ice sheet simulation is based on likelihoods and

is made up of two parts. First, the likelihood associated with the number and locations of

flowsets is calculated. This accounts for the amount of time the simulated ice sheet has the

correct conditions for flowset formation over the domain. The second part is the likelihood

that accounts for the closeness of the orientation match of the observed and simulated flow

directions. The method for calculating these two likelihoods is described below.

3.2.2 Number and locations of flowsets

The first two of the assumptions taken in this chapter (ice cover and the complete inde-

pendence of lineation forming events) imply that for any ice sheet M , the number and

locations of the flowsets follow an inhomogeneous Poisson point process (Kingman, 1993).

Let N as the random variable representing the number of observed flowsets. Under this

model, the number of flowsets for a particular ice sheet follows a Poisson distribution with

mean
∫
X λM (x) dx = ΛM (X ). To compute the likelihood of forming n flowsets in the loca-

tions x = (x1, . . . , xn)
T where they were observed, under this model for N , first, split the

likelihood up into components that are simpler to find.

LM (λ(x, t,M(x, t)) |x) ∝ P (N = n)× LM (N = n, λ(x, t,M(x, t) |x). (3.2)

Next, both of the above components can be calculated. Using the probability mass func-

tion of the Poisson distribution outlined above, the first component can be found directly.

P (N = n) =
ΛM (X )n exp−ΛM (X )

n!
. (3.3)

The second component in Equation 3.2 is effectively calculating the likelihood of one

flowset forming at each location where they have been observed. Therefore,



60 CHAPTER 3. ASSESSING ICE SHEET MODELS AGAINST LANDFORMS

LM (N = n, λ(x, t,M(x, t) |x) ∝ Λ(x1)∫
X ΛM (x) dx

× · · · × Λ(xn)∫
X λM (x) dx

=

n∏
i=1

Λ(xi)∫
X λM (x) dx

=
1

ΛM (X )n

n∏
i=1

Λ(xi).

(3.4)

Hence the locational component of the final LALA score can be calculated as

LM (λ(x, t,M(x, t)) |x1, . . . , xn) ∝
ΛM (X )n exp−ΛM (X )

n!
× 1

ΛM (X )n

n∏
i=1

Λ(xi)

=

[
n∏

i=1

ΛM (xi)

]
e−ΛM (X ).

(3.5)

Here, in the simplified two-state λ case (as described above), the term ΛM (X ) reduces to

λAM (X ), where AM (X ) is the total time and area that has the potential to form flowsets, in

other words, meets the conditions required by the ice sheet M . The term ΛM (X ) integrates

these individual values over the whole study area and effectively calculates the total “time

× area” rate where the ice sheet simulation has the potential to form lineations.

Given the same lineation formation rate λ(x, t,M(x, t)), larger ice sheets (covering

greater areas where lineation formation is possible) will be expected to create more lin-

eations than smaller ice sheets. Additionally, the inclusion of the term ΛM (xi) = λAM (xi)

in Equation 3.5 highlights that it is more likely to see lineation formation in locations where

the ice sheet has remained for longer. This will be reflected in the scores given to different

ice sheet simulations. Solely in terms of scoring the location of the lineations, greater scores

will tend to be given to those models where the ice sheet persists over the lineation locations

and penalises simulations that extend beyond the data reconstructed glaciated area through

time, as defined by the user.

3.2.3 Flowset orientation

In addition to considering the fit to the locations of the observed lineations, the tool also

seeks to assess the fit between the orientations of the observed lineations and the simulated

ice sheet. Suppose that there is a flowset which forms at location xi and time t⋆i . The tool

assumes that the orientation of the resultant flowset aligns with the direction of ice flow in
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Figure 3.1: The probability density function of three various von Mises distributions with

the same mean, 0, and three different shape parameter values, κ. As κ increases then the

distribution becomes more concentrated around its mean. Here angles are shown in degrees

(360° is 2π radians).

the location at the point of formation. Specifically, the observed orientations θi are modelled

according to a von Mises distribution (von Mises, 1981). The von Mises distribution provides

a distribution for angles that is an approximate analogue of the Normal distribution. The

von Mises distribution requires two parameters to be specified, a mean that the distribution

is centred around µ(xi, t
⋆
i ), and a concentration parameter κ, that controls the width of the

distribution. Angles used within this distribution have to be measured in radians (where

360° is 2π radians), but I have described the worked example (Section 3.2.9) in degrees for

simplicity. Examples of the von Mises probability density function for different values of

κ are shown in Figure 3.1 (also using degrees). The selection of κ is discussed in Section

3.4.4, but can be exploited to incorporate sources of uncertainty into the model. To formally

derive the likelihood for the orientation model-data match, two sources of uncertainty need

to be thought about and then formulated into the model.

The first source of uncertainty comes from how the resolution of the ice sheet model,

which may be much larger than the size of a flowset, compares to the true direction a flowset

it is representing, denoted as ϕi. Conditional on lineation formation occurring at time t and

location xi, a flowset will be created (independently of other flowsets) that has a direction
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related to the basal flow direction of the ice sheet at point of creation. The flowsets therefore

constitute a marked Poisson point process, with the mark being their direction. Specifically,

assume that ϕ, will be distributed according to a von Mises distribution as

fvonM (ϕi|µ(xi, t), κ2) =
exp (κ2 cos(ϕi − µ(xi, t)))

2πI0(κ2)
.

Here κ2 denotes the concentration of the true flowset around the simulated ice flow

direction, and µ(xi, t) denotes the simulated ice flow direction at location xi and time t.

Each flowset has an estimated direction θi based on mapping. Assume that the observed

θi can either relate to the underlying angle ϕi of the flowset, or the opposite direction ϕi+π.

The scientist describing the flowset may equally report the direction as being upstream

or downstream due to their morphology. This mapping may lead to some measurement

uncertainty in the estimate θi and this second source of uncertainty also needs to be included

in the tool. The density of θi|ϕi is

f(θi|ϕi) =
1

2
fvonM (θi|ϕi, κ1) +

1

2
fvonM (θi|ϕi + π, κ1).

Here κ1 relates to the accuracy of the observed past ice flow direction compared to the

true past ice flow direction.

For simplicity in modelling, the observational uncertainty in lineation direction reported

by the mapper is combined with the variability around the ice flow direction at time of

formation, into one parameter κ. When the lineation is formed by an ice sheet M , a slight

approximation leads to a final observation model for θ of:

fM (θi|µ(xi, t
⋆
xi
)) =

1

2
fvonM (θi|µ(xi, t

⋆
xi
), κ) +

1

2
fvonM (θi|µ(xi, t

⋆
xi
) + π, κ) (3.6)

where t⋆xi
denotes the time of the formation that led to the flowset at xi and κ is a con-

centration term combining both the observational and regridding components of variability,

discussed in Section 3.4.4.

Due to the morphology of lineations, LALA accounts for inferred observed directions

occurring in the reported direction or the exact opposite direction. This leads to modelling

the observed direction θi as

fM (θi|µ(xi, t
⋆
i ), κ) =

1

2
fvonM (θi|µ(xi, t

⋆
i ), κ) +

1

2
fvonM (θi + π|µ(xi, t

⋆
i ), κ), (3.7)

where
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fvonM (θi|µ(xi, t
⋆
i ), κ) =

exp (κ cos(θi − µ(xi, t
⋆
i )))

2πI0(κ)

is the probability density function of a von Mises distribution and I0(κ) is the modified

Bessel function of order 0 that, when multiplied by 2π, ensures the distribution integrates

to 1 as required.

In reality, the precise time t⋆i at which the lineations were formed in location xi is

unknown. All that is known is that it must have formed at one of the times when the

ice sheet met the flowset forming conditions. To assess the overall directional fit, the tool

must therefore average over all the times when lineations could be formed. Precise details

are given in Equation 3.11 but, in the simplified two-state case for λ(xi, t,M(xi, t)), the

likelihood of a particular ice sheet model M in terms of the agreement between the observed

and simulated direction of flowset i is calculated as

L(M,xi|θi) = f(θi|xi,M) =
1

TM (xi)

∫
TM (xi)

fM (θi|µ(xi, t), κ) dt, (3.8)

where TM (xi) represents the time steps at location xi where lineation formation is deemed

possible.

Here µ(xi, t) is the orientation of ice flow in model M at location xi at time t, and

fM (θi|µ(xi, t), κ) is the mixture of the von Mises and flipped von Mises with location µ and

concentration κ as described in Equation 3.7. To combine these directional components, the

likelihood for each individual flowset is multiplied together, over all the n flowsets within

LALA.

L(M,x|θi) ∝
n∏

i=1

{∫
TM (xi)

fM (θi|µ(xi, t), κ) dt

}
. (3.9)

Intuitively, this directional likelihood component to LALA will provide greater scores to

those ice sheets where, when lineation formation is possible at location xi, the ice sheet flow

aligns precisely with the observed direction of the lineations. Low scores will be obtained

for those ice sheets that, when lineation formation is possible, have flow directions that lie

at odds with the observed direction of the flowsets.

3.2.4 Log-likelihood of {xi, θi}ni=1

To calculate the log-likelihood of any hypothetical ice sheet M given the number, locations,

and directions of the flowsets observed in the study region X , the components described

above are combined, and the natural logarithms are taken. In the case of the simplified two-

state lineation formation model, and excluding the possibility that a lineation may have
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formed outside the period of study, the final log-likelihood for a simulation M becomes:

l(M |{xi, θi}ni=1) =

[
n∑

i=1

log

{∫
TM (xi)

fM (θi|µ(xi, t), κ) dt

}]
−
∫
X
ΛM (x) dx. (3.10)

The first component of this log-likelihood (within the square brackets of Equation 3.10),

relating to the fit of the simulated ice flow direction compared to the flowset orientation,

can be used as an intuitive indicator for which flowsets are contributing the most to the

final score. This can be used as a way to judge the flowsets which fit well to a simulation

and which do not. This idea is explored further in Section 3.5.

3.2.5 For a generalised λ(xi, t,M(xi, t))

So far, a two-state version of λ(xi, t,M(xi, t)) has been described based on a set of conditions

S, however, a generalised version can be written. In a general case, the rate can be varied

over time and space in any way and is not restricted to values of either 0 or λ. The generalised

log-likelihood can therefore be written as

l(M |{xi, θi}ni=1) =

[
n∑

i=1

log

{∫
T
fM (θi|µ(xi, t), κ)λ(xi, t,M(xi, t)) dt

}]
−
∫
X
ΛM (x) dx. (3.11)

3.2.6 Accounting for lineations that occurred outside the simula-
tion period

I anticipate that LALA may be used for a wide range of model-data comparison experi-

ments, with different time periods and areas. As such, some study areas may contain glacial

lineations which were formed outside of the time period being simulated by the ice sheet

model (e.g., during a prior glacial, or later/earlier during the same glaciation). Additionally,

it is possible that lineations may have formed as a result of processes that are poorly rep-

resented in the ice sheet model, or there may be an insufficiently high temporal resolution

of the simulation output to capture all lineation forming events, i.e., lineation formation

occurred between simulation time steps. Without additional interpretation of the evidence,

such possibilities cannot be ruled out. This possibility is accounted for in LALA by assign-

ing a small, but statistically relevant, probability, p, that any observed lineation may be

unrelated to the ice sheet simulation that is to be tested.

To allow for the possibility that some of the observed flowsets forming outside of the

study an additional, independent, Poisson point process over the same region X but over a

(pseudo)-time period (−1, 0] with intensity λ⋆(x) is introduced. Here the intensity depends

only upon the location x, typically, λ⋆(x) = 0 would be expected in deep ocean locations, or
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where the topography is such that flowsets are impossible. LALA assumes that formation

of lineations created from this additional point process lead to flowsets that lie uniformly

in any direction, i.e., the true direction ϕ of any flowset created in this pseudo-time period

has probability density

fout(ϕ) =
1

2π
.

This additional Poisson point process aims to represent the possibility a flowset may have

been created outside the realm of the study (before the time t = 0 when simulations start).

In any sub-region A, the number of (unrelated) flowsets also follows a Poisson distribution

with mean

Λ⋆(A) =

∫
A
λ⋆(x) dx.

Users are able to specify the probability, p, that any given lineation relates to such a pre-

study ice sheet. The rate of the additional Poisson point process, λ⋆(x), is chosen adaptively

to incorporate the user-selected probability. An explanation of how to find the appropriate

value λ⋆(x) is given below.

Rather than choose a value for λ⋆(xi) directly, instead specify p, the prior probability that

an observed flowset arises from outside the study’s scope. The number of flowsets created

by the ice sheet M(x, t) over the study period T and region X follows a Poisson distribution

with mean Λ(X , T ). The number of flowsets created by the (pseudo-time) ice sheet to

represent formation for reasons not considered in the study has a Poisson distribution with

mean Λ⋆(X ). Therefore the chosen value of λ⋆(xi) is selected by setting

Λ⋆(X ) =
p

1− p
Λ(X , T ).

Typically λ⋆(xi) = λ⋆ is chosen for regions where lineation formation is possible, and

zero otherwise. Hence Λ⋆(X ) = λ⋆Apre(X ) where Apre(X ) is the area where lineations could

form within the overall study region X outside of the time period T . The default is to select

p = 0.01, meaning approximately one in every 100 pieces of lineation data may have formed

outside of the chosen time period.

3.2.7 Final log-likelihood l(M |{xi, θi}ni=1)

To find the final log-likelihood, including the outlier possibility, the locational and directional

components need updating. Due to their independence, the point process for ice sheet M

(over times T = (0, T ]) and the outlier point process (to represent potential earlier ice
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sheets, over times Tpre) can be combined to obtain another marked inhomogeneous Poisson

point process. For this combined process, the underlying distribution for N(X , T + Tpre) is

Po(Λ(X , T ) + Λ(X ). Hence, based on Equation 3.5, the likelihood of seeing the n flowsets

in locations x1, . . . , xn across the study period and including the outlier process is

f(x1, . . . , xn|M) ∝
n∏

i=1

{Λ(xi) + Λ⋆(xi)} e−(Λ(X ,T )+Λ⋆(X )),

where Λ(xi) =
∫ T

0
λ(xi, t,M(xi, t)) dt.

Conditional on the flowset locations, the likelihood of the observed directions θi can also

be calculated for i = 1, . . . , n. This is achieved by first conditioning on t⋆xi
the time of the

flowset formation at location xi. Giving,

f(t⋆xi
|xi,M) =

{ λ(xi,t
⋆
xi

,M(xi,t
⋆
xi

))

Λ(xi)+Λ⋆(xi)
for t⋆ ∈ (0, T ], i.e., formed by an ice sheet M ;

λ⋆(xi)
Λ(xi)+Λ⋆(xi)

for t⋆ ∈ (−1, 0], i.e., unrelated to the study.

Then, conditional on the time t⋆xi
that the flowset in location xi is formed, the distribution

of θi is known. The updated likelihood f(θi|xi,M) can be derived as

f(θi|xi,M) ∝ f(t⋆xi
|xi,M) f(θi|t⋆xi

, xi,M) (3.12)

= fT (t
⋆
xi
, xi,M)

∫
T
fM (θi|µ(xi, t

⋆
xi
)) dt+ fTpre(t

⋆
xi
|xi,M) fout(θ), (3.13)

where fM (θi|µ(xi, t
⋆
xi
)) is given in Equation 3.6. Hence, the likelihood of θi|xi,M is found

to be

f(θi|xi,M) =
1

Λ(xi) + Λ⋆(xi)

[∫ T

0

fM (θi|µ(xi, t
⋆
xi
))λ(xi, t

⋆
xi
,M(xi, t

⋆
xi
)) dt+

Λ⋆(xi)

2π

]

Putting together both the location and direction information, the final log-likelihood for

ice sheet M is found to be

l(M |{xi, θi}ni=1) =

[
n∑

i=1

log ν(θi|xi,M)

]
− {(Λ(X , T ) + Λ⋆(X ))} (3.14)

where
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ν(θi|xi,M) =

∫ T

0

fM (θi|µ(xi, t
⋆
xi
))λ(xi, t

⋆
xi
,M(xi, t

⋆
xi
)) dt+

λ⋆(xi)

2π
.

3.2.8 Parameter selection

The use of LALA requires several tool parameters to be determined. The tool allows users

to select suitable values based on their expert knowledge, however, the following proposes

some automated choices which are used in the rest of this chapter.

The rate of lineation formation at a location xi and time t is defined to be λ(x, t,M(x, t)).

The choice of λ(x, t,M(x, t)) is critical to LALA’s final log-likelihood. In the absence of

detailed expert information, the two-state approach described above is suggested, whereby

lineation formation is assumed impossible (i.e., λ(x, t,M(x, t)) = 0) if the location x at time

t does not meet the conditions given in Section 3.2.1. Otherwise, lineation formation is

assumed to be possible and λ(x, t,M(x, t)) is taken to be some constant λ. The conditions

for the impossibility of lineation formation are at the discretion of the user, however the

conditions stated in Section 3.2.1 are used in this thesis.

Similarly, let λ⋆(x) be the rate of lineation formation outside the study period. This

parameter allows for the possibility of some observational evidence having formed separately

from the ice sheet model set-up being scored by LALA. To find this value, first, create

a grid matching the simulation domain area that indicates areas where conditions were

conducive to lineation formation. For example, users may want to consider limiting to

areas of the palaeo-ice sheet bed where there is adequate sediment available for lineation

formation. Furthermore, regions of the simulation domain that cover the deep ocean cannot

form lineations as an ice sheet may be unable to ground there. To rule out these areas where

lineation formation is impossible, set λ⋆(x) = 0 where the formation is impossible and λ⋆(x)

to be some constant λ⋆ elsewhere. This rate also depends on the user-defined probability p,

described below.

In such a two-state model, however, it is still required to select an appropriate value for λ

during times of potential lineation formation and λ⋆ for times outside the simulation period.

To assign these values, a suggested method is to first choose an initial ice sheet simulation,

M†, that approximately accords with other palaeo information such as ice extent or volume.

Then, the expected number of flowsets is EM† [N ], where N is the random variable described

in Section 3.2.2. This expected number is exactly the rate parameter of the distribution of

N , ΛM† , (by standard properties of the Poisson distribution) and this can be separated into

two components: a component accounting for flowsets formed during the study period, T ,

and those formed outside of T . The decomposed ΛM† can be written as
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ΛM† = ΛM†(X , T ) + Λ⋆(X ). (3.15)

Then, select the rate, ΛM† , so that the expected number of flowsets formed in simulation

M†, EM† [N ], is equal to the number of flowsets actually observed in the region of study, n,

as below

EM† [N ] = ΛM† = n.

Each component in Equation 3.15 can be calculated using ΛM†(X , T ) = λAM†(X , T ) and

Λ⋆(X ) = λ⋆Apre(X ) as outlined in Section 3.2.2. AM†(X , T ) is defined as

AM†(X , T ) =

∫ ∫
TM† (xi)

dt dx

and effectively integrates, both spatially and temporally, the region when the ice sheet

simulation M† can form flowsets. Apre(X ) is then the area where formation could have

been plausible outside of the simulated time period.

Using the value p described in Section 3.2.6 which is the probability of a flowset forming

outside of the study period, the relation EM†(Npre) = pEM†(N) = np is assumed, i.e. the

expected number of flowsets formed outside of the study period is calculated as the total

number of expected flowsets, n, multiplied by the probability of forming outside the study

period, p. From this, the following relation can be formed

Λ⋆(X ) = λ⋆Apre(X ) = np

which can be rearranged to give the value of λ⋆

λ⋆ =
np

Apre(X )
. (3.16)

The user is able to specify the value of p as they see fit, however, the default for LALA

is to select p = 0.01 (i.e., out of 100 observed flowsets, one may be expected to have been

formed outside of the study area). By substituting the above relations into Equation 3.15,

the expected number of flowsets can be written as

n = λAM†(X , T ) + λ⋆Apre(X ). (3.17)

Finally, using the value of λ⋆ and rearranging Equation 3.17, λ can also be found

λ =
n− λ⋆Apre(X )

AM†(X , T )
. (3.18)
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This plausible value λ is then fixed and used for the scoring of all ice sheet simulations

under consideration by the tool. An important note is that the value of Λ⋆(X ) will stay the

same for every simulation as it only depends on the area possible for pre-study formation and

λ⋆, but Λ(X , T ) will change with each simulation as it depends on the value of AM (X , T ).

LALA also has the capability to demand a certain level of conformity in modelled and

observed flow directions using the concentration parameter κ. As shown in Figure 3.1, the

value of the concentration parameter, κ, changes the shape of the von Mises distribution,

demanding a higher level of directional accordance if κ is large. The appropriate value of

κ, a measure of the acceptable direction for an ice sheet simulation, is dependent upon two

components. The first component relates to the variation in observer measurement of the

true lineation direction - that any mapper introduces a level of individual measurement

error. The second pertains to the uncertainty regarding the relationship between the true

(mean) direction of a flowset and that of the numerically modelled ice flow of simulation

M within the grid cell. This second component itself consists of two parts - that multiple

lineations orientations are summarised into a single flowset at the scale of an ice sheet grid;

and that the numerical ice sheet model output is somewhat coarse and may not represent

localised variation in ice flow direction within a grid cell (within any grid cell, the direction

of ice flow at a more localised scale may vary from the overall flow direction within the cell).

These two components are considered, and a practical method for choosing a value of κ is

explored in Section 3.4.4.

All of the parameters defined above are dimensionless. When using this tool, the values

of κ and p can be changed according to how the user wants to use the tool. The values of

λ(x, t,M(x, t)) and λ⋆(x) can also be changed. For λ(x, t,M(x, t)) especially, the conditions

under which the user believes lineations are able to form can be altered. If the assumptions

include the same properties as investigated here, i.e. thickness, velocity and grounded ice,

but different values are wanted, there is a pre-defined function that can be used to change

the values. If extra conditions are to be included, the easiest method is to create a binary

map with the area at each time step that meets the user’s extended conditions and use this

in place of the area calculated in the LALA tool.

In practice, the ice sheet model simulation will consist of individual time steps defined

on a grid rather than over continuous time and space. Hence when testing an ice sheet

model simulation, the integrals used so far will be replaced by discrete sums (over the grid

cells, time steps, or both).
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3.2.9 Worked example

To demonstrate the principles of LALA, a worked example is presented here. Consider a

simulation, M , with a 5 by 5 grid cell domain, one flowset and three time steps. In Figure

3.2, the grid cells at each of the three time steps that could feasibly form a flowset are shown,

following the conditions previously set out regarding grounded ice, minimum velocity and

thickness. The location of the flowset is indicated in Figure 3.2 by a cross. Figure 3.3

indicates the difference in the simulated flow direction and the observed direction inferred

from the geomorphological evidence. The observed direction for flow, assumed to be parallel

to past flow direction is taken to be 45°. While the directions are shown in degrees for this

illustrative example, calculations in LALA (and all of the equations presented in this paper)

are actually conducted in radians (as mentioned in Section 3.2.3). LALA will perform this

transformation from degrees to radians for the user if the input variable for radians is set

to False. For this example, the value κ = 5 is arbitrarily chosen.

First, the values of λ and λ⋆, the rate of lineation formation during the study and in the

pre-study respectively, need to be calculated using a simulation from within the ensemble.

This simulation, say M†, can be identified through comparison to other metrics, such as

ice extent (see Section 3.5). Assume that in the pre-study any grid cell could have formed

a flowset, and so Apre(X ) = 25, and a value for AM†(X , T ) of 42 for the time-integrated

plausible area for lineation formation for the simulation M† is chosen arbitrarily for this

example. A more formal method for choosing AM†(X , T ) is discussed in Section 3.5. The

values of λ and λ⋆ are the same for each model simulation in the ensemble, using the fixed

model simulation M†. Under the Poisson process model, the number of flowsets expected

from simulation M† over the three time step study period, combined with the pre-study, is

1 as there is one flowset under consideration. In total therefore, according to simulation M†

EM† [N ] = 42λ+ 25λ⋆ = 1. (3.19)

Taking the default value p = 0.01, an assumption that there is a 1% probability that a

flowset has formed outside the realm of the study is taken. This leads to the relationship

EM† [Npre] = pEM† [NT +Npre] = pEM† [N ], (3.20)

where Npre is the number of flowsets formed in the pre-study, NT is the number of flowsets

formed in the study time frame and N is the random variable representing the observed

total number of flowsets. The expected number of flowsets formed in the pre-study is

pEM† [N ] = 25λ⋆. Hence,
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Implausible

Plausible

time = 1 time = 2 time = 3

Flowset

Figure 3.2: Three simulated time steps created to illustrate the use of plausible areas for

lineation formation. The grid represents a 5×5 domain, and each box is coloured either blue

or pink dependent on whether the location is deemed to be plausible or implausible, respec-

tively, for the formation of lineations (i.e. grounded ice that exceeds minimum thresholds

of ice velocity and thickness). By counting the total number of blue squares over the three

time steps, the value AM (X , T ) = 35. The location of the flowset to be scored is marked

with a black cross.

λ⋆ =
pEM† [N ]

Apre(X )
=

0.01× 1

25
= 0.0004. (3.21)

Using Equation 3.19 and substituting the value for λ⋆, λ can also be calculated

λ =
EM† [N ]−Apre(X )λ⋆

AM†(X , T )
=

1− (25× 0.0004)

42
= 0.0236. (3.22)

These values of λ and λ⋆ are fixed for the scoring of the other simulations from the same

study. Now the log-likelihood for the location and number of lineations component can be

calculated, using AM (X , T ) = 35 counted from the example simulation, M , shown in Figure

3.2,

Λ(X , T ) + Λ⋆(X ) = AM (X , T )λ+Apre(X )λ⋆ = 0.8359. (3.23)

From Figure 3.2, it can be seen that flowset formation is only plausible at t = 2 and

t = 3. Now, the likelihood that the simulation at these two time steps could have formed

the flowset can be calculated, based on the direction of ice flow compared to the lineation

direction. The true location of the observed flowset is indicated as x1, the corresponding

orientation of the flowset as θ1 and the simulated flow direction at location x1 and time step

t⋆ as µ(x1, t
⋆). At time step 2,

fM (θ1|µ(x1, 2)) =
1

2
(fvonM (θ = 45°|µ = 135°, κ = 5) + fvonM (θ = 45 + 180°|µ = 135°, κ = 5))

= 0.0058
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time=1 time=3time=2

θ = 30° θ = 90°
θ = 0°

Figure 3.3: Three time steps showing the difference between the simulated ice flow direction

and the inferred lineation direction created to illustrate how LALA scores an ice sheet

simulation. The observed flowset is represented by the blue boxes with the black arrows

showing the orientation given at the middle of the flowset. The simulated flow direction is

indicated by the grey lines. The difference between the observed and modelled flow direction

is indicated for each time step.

and at time step 3,

fM (θ1|µ(x1, 3)) =
1

2
(fvonM (θ = 45°|µ = 45°, κ = 5) + fvonM (θ = 45 + 180°|µ = 45°, κ = 5))

= 0.4336.

Intuitively, this highlights that the ice flow of simulation M at time t = 3 better aligns

with the flowset than the ice flow at time t = 2. These values at the two time steps are then

summed and multiplied by the rate of formation. The term λ⋆

2π to account for unrelated

flowsets is also added, to calculate the directional component for the likelihood (outlined in

Section 3.2.6), giving

ν(θ1|x1,M) = λ (fM (θ1|µ(x1, 2)) + fM (θ1|µ(x1, 3))) +
λ⋆

2π
= 0.0104.

The component, ν(θ1|x1,M), can be used in isolation to compare which flowsets con-

tribute the most to the final score, and so can indicate which flowsets agree with the simu-

lation the best.

The final log-likelihood for this model simulation is then the difference between the

directional and locational components. Note, the logarithm of the directional component

needs to be taken, but the location component is already in the correct form.

l(M |{x1, θi}ni=1) = log(ν(θ1|x1,M))− (Λ(X , T ) + Λ⋆(X )) = −5.40. (3.24)

Alone, a single value calculated from Equation 3.24 is of limited use. But, through

multiple comparisons to simulations, the log-likelihood calculated by LALA can be used
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to compare ensemble members. Those simulations with greater log-likelihoods would be

considered more likely to have generated the observed lineations; while those with lower

log-likelihoods are less likely.

3.3 Practical application and considerations when using
LALA

Here I briefly describe a workflow for using LALA. The initial intention and subsequent

design of LALA was for comparing multiple ice sheet simulations, to identify fit to the

geomorphological record. However, I anticipate that LALA could also be used to analyse

which flowsets fit the best within a single model run, or the timing of best-fit between a

simulation and the landform record. The code for LALA is available from https://github.

com/rosiearcher/LALA-Tool. A synthetic example is included with the code.

Data preparation

Observed data of the flow direction of the former ice sheet in question must be collated. Lin-

eation mapping across the study area should be grouped into flowsets (Clark, 1999): groups

of lineations thought to form at similar times due to their proximity, similar morphology,

and orientation (Greenwood and Clark, 2009; Hughes et al., 2014). Currently, a single pixel

located at the centre of each flowset should be used within LALA. Expert interpretation

is required for choosing this point for complicated flowsets and special attention should be

given to the relative size of the flowsets compared to the model resolution. The flowset data

should take the form of a netCDF grid, with the same resolution and extent as the model

simulation output. Each flowset should be represented by one layer of the netCDF file,

making the data a three-dimensional array with the flowset number as a dimension. This

makes the individual flowsets more accessible and removes any overlapping lineation data

(i.e., where lineations from two flowsets occupy the same grid cell, perhaps cross-cutting). A

netCDF of the ice sheet simulation output is also required. This should contain the following

variables over every simulated time step, with their standard names in PISM provided in

brackets: basal velocity magnitudes in the u and v directions (uvel and vvel), ice thickness

(thk), ice speed (velsurf mag), and a mask of ice extent (mask). Finally, users can specify

a third input netCDF file, which contains information pertaining to the regions where lin-

eations are likely to have formed. In the absence of this file, the whole domain is presumed

equally likely to have conditions conducive to lineation formation in the pre-study.
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Code structure

LALA is written in Python (v3.0+), and requires the libraries numpy, pandas, netCDF4

and scipy. Users can call LALA from the command line, where all input parameters and

paths to files can be specified. The user-defined parameters required as inputs are shown

in Table 3.1. As a first step, LALA reads the relevant variables from the input netCDF

files (Section 3.3) and converts them to numpy arrays. Iterating through each time step

of the ice sheet simulation, LALA first calculates the simulated flow direction. The tool

reads in the u and v velocity components from the model simulation, and then calculates

the angle of the flow using standard trigonometry. To limit calculations to all regions where

lineation formation is deemed possible, LALA identifies the locations which exceed the

input thickness and velocity thresholds. These are defined by the user as minimum possible

conditions for lineation formation (Table 3.1). The next step is to integrate the area where

lineation formation is possible through time for the study area, as well as the area of possible

lineation formation for the pre-study. The possible formation area for an ensemble member

M† thought to have a plausible size based upon other metrics is calculated and used to

adaptively select values for λ and λ⋆ that will then be applied for the whole ensemble.

Next, for each model run, LALA calculates the likelihood of the flowsets forming at each

location. For each flowset, times where formation is possible are found and then scored

across those time steps to form the directional likelihood (Equation 3.7). The directional

likelihoods are summed over time for the n flowsets. The final likelihood sums the natural

logarithms of each flowset score and sums to give the log-likelihood, and then the likelihood

of locations is subtracted from this to give a score for the simulation (Equation 3.10). As

output, LALA provides a Microsoft Excel (.xlsx) file with each model simulation number

and its associated final log-likelihood score.

3.4 Defining the tolerance between modelled and ob-
served flow directions

As demonstrated in the above sections, κ acts as a precision parameter for comparing

simulated and observed flow directions. Higher values of κ will produce a lower tolerance

for model-data misalignment, and vice versa. There are two aspects of the model-data

comparison procedure that contribute to the value of κ that the user should define when

using LALA: i) observational variability in the reported mean orientation of a flowset; and

ii) uncertainty in the relationship between the mean flowset orientation and the (typically

coarse) output of an ice sheet simulation (consisting of both the uncertainty introduced
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Table 3.1: Inputs that need to be provided by the user to score ice sheet model simulations

using LALA.

Parameter Description
Lineation file Path to a netCDF file containing information on observed

flow directions
Simulation file Path to a netCDF file of an ice sheet simulation to be

tested
(must contain variables listed in Section 3.3)

Lineation-
conditions file

Path to a netCDF file containing information on whether
an area is conducive to lineation formation

κ Tolerance parameter when comparing observed and
simulated model

p Probability of lineations not relating to the study area or
period (Section 3.2.6)

Thickness
condition

Minimum simulated ice thickness under which lineations
could form

Velocity condition Minimum simulated ice speed under which lineations
could form

when regridding lineation data to model resolution and the additional localised variability

in the flow of an ice sheet within any grid cell around its overall, more coarsely modelled,

mean cell flow direction). An experiment was conducted to provide insight into these two

components and determine suitable values for κ.

3.4.1 Comparison experiment of lineation mapping between differ-
ent mappers

Observations of palaeo-ice flow direction derived from glacial lineations are often mapped

manually from digital elevation data (e.g. Finlayson et al., 2014; James et al., 2019; Leger

et al., 2020). One form of observational uncertainty when considering palaeo-ice flow direc-

tion is that which arises from human error; interpretation of the landform record may vary

from person to person. Here I discuss an experiment performed in collaboration with the ge-

omorphological mapping community to quantify this source of uncertainty (Section 3.4.2).

I then use the results from this experiment to examine the uncertainty from regridding

lineation data to the scale of an ice sheet model (Section 3.4.3).

Across the deglaciated terrains of palaeo-ice sheets, Digital Elevation Models (DEMs)

are available at different resolutions. This observational uncertainty experiment investigates

whether the resolution affects the mapping variation. An important consideration here, and

potentially for future users of LALA where different resolutions of data have been used

for mapping, is whether areas mapped with different resolutions of data require different

values of κ to account for the various uncertainties. To define inter-mapper uncertainty,
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Figure 3.4: Overview of areas used in the lineation mapping experiment.

expert mappers were invited to map the same areas. For the purposes of this experiment,

experts were defined as those who had conducted and published glacial geomorphological

mapping in the past, or PhD students currently conducting mapping projects. I wished to

investigate whether the resolution at which lineations are mapped affects the variation in

orientation (and hence might also require different values of κ for model-data comparison).

The experiment is designed for the common resolutions of DEMs (2 m and 30 m) available

for the EISC to work with the simulations performed in this thesis. Data from two areas of

Finland were used, both at a 2 m resolutions, and one area of Russia at the lower resolution

of 30 m. The location of these areas are shown in Figure 3.4. The areas were each split

into nine equally sized 5 × 5 km boxes. A selection of lineations were starred in each area

to indicate to mappers the selected lineations to map (Figure 3.5). A summary of the data

used, the resolutions and the number of lineations highlighted are given in Table 3.2. The

participants were asked to draw one crestline for each lineation in the suspected orientation

of flow and summary lines for each of the nine boxes that indicated their overall opinion of

the ice flow in the specified region. An example of the summary lines of flow direction for

one grid cell is shown in Figure 3.6. I received data from 24 participants.
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Figure 3.5: Maps of the three areas given to the observational error experiment participants.

The black points show the location of the lineations participants were asked to map. The

3 × 3 grid shows the sections where summary lines were requested. a) Area 1 located in

northern Finland. b) Area 2 located in central Finland. c) Area 3 in western Russia.

Table 3.2: Data used in the observational error experiment.

Area Horizontal Number of
Number Country DEM Name Resolution (m) Lineations

1 Finland National Land Survey of Finland DEM 2 90
2 Finland National Land Survey of Finland DEM 2 59
3 Russia Copernicus DEM GLO-30 30 59
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3.4.2 Uncertainty from mapping interpretation

The variability in the reported ice flow direction between the different participants, and for

each mapping resolution, were analysed across the boxes. I assumed that the summary di-

rections reported by each user within a box followed a von Mises distribution, with each box

having a potentially different mean direction µi but with the same concentration parameter

κ1 shared across all boxes of the same resolution. Using Markov Chain Monte Carlo I esti-

mated both the mean directions µi and shared κ1 to represent the intermapper variability

in assessing flowset direction for a particular resolution. An example of this variability is

shown in Figure 3.6.

Markov Chain Monte Carlo (MCMC) was used to estimate a set of von Mises parameters

that adequately represents the flowset variation observed with the experimental mapping

data in Section 3.5. These parameters are then used as the default choice for LALA. A

Markov Chain, a path which moves through different states, was generated according to

a Metropolis-Hastings (MH) algorithm (Hastings, 1970). The MH algorithm sampled a

random point from a proposed density function. The point is then either accepted as the

next state in the chain, or rejected, and a new sample point is tested. This is repeated until

the distribution of acceptable points stabilises to form a posterior distribution. From this

sampled posterior distribution, metrics such as the mean and variance can be calculated.

Several thousands of iterations are performed until the Markov Chain reaches its stationary

distribution. Examples of the Markov chains used for the analysis of area 2 are shown below

in Figure 3.7.

I refer to this experiment as the Multiple Means experiment. For the Multiple Means

experiment, first the two high resolution (2 m) mapping results were considered separately,

later treating them as a single population which allowed a single value of κ1 to be produced

representing this resolution. Results are shown in Table 3.3. The concentration (denoting

the level of mapping precision) for the lower-resolution data was significantly higher than for

mapping conducted at a high resolution. This suggests that at a lower resolution, there was

a very high level of directional agreement between participants. Several possibilities exist to

explain this. This may be a consequence of the nature of the two different study areas (i.e.,

the 30 m resolution test area may have happened to be simpler than the 2 m resolution).

Alternatively, the high resolution data may reveal more detail, representing a more complex

landform record that is harder to interpret precisely. Overall however, the values of κ1 are

very high for both resolutions, suggesting that for the areas this experiment was conducted

over, the reported summary directions were highly reproducible across mappers and that

intermapper variability is not a significant source of uncertainty for model-data comparison.
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Table 3.3: Values obtained from MCMC analysis of reported summary directions of lin-

eations across boxes within the intermapper experiment. Results are presented separately

for three different regions, two at a 2 m resolution and one at a 30 m resolution; as well as

combining the two 2 m resolution areas. Each box was permitted to have a different overall

mean direction.

Area Resolution (m) Multiple Means Multiple Means Combined
1 2 85

209.2
2 2 270
3 30 3000 N/A

3.4.3 Uncertainty between the direction of localised lineations and
overall grid cell flow direction

The second source of uncertainty that must be considered for the LALA tool is that which

results from the comparison of flow directions inferred at a lineation scale (generally 100s

of m in scale) with those directions provided by an ice sheet simulation which typically has

a much coarser output, representing mean ice flow direction at a several km scale. In the

case of the model simulations from the BRITICE-CHRONO project (Clark et al., 2022)

a 5 km horizontal resolution was used. These simulations are transient and run from 31

- 15 ka, outputting every 100 years, with the model domain covering both Britain and

Ireland. To assess the uncertainty in model-data comparison this reduction introduces, the
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Figure 3.6: One of the nine boxes from area 2 where the mapping participants seemed

to identify two overlapping directions. a) Hillshade of the area requested to be mapped,

with the specific lineations to be mapped starred. b) The summary lines from the 24

participants are indicated in blue. The extreme angles are highlighted in purple to emphasise

the difference between mappers. As the lines here indicate the inferred summary orientation

for each box, and not the specific marked lineations, the lines are placed centrally within

the box.
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variability of the individual lineations within a 5 × 5 km box around their overall mean

direction was considered. Boxes of this size were chosen to match the resolution of the

BRITICE-CHRONO ensemble.

A single mapper’s inferred directions for each of the 208 lineations were selected and

then separated into 27 groups based on the 5× 5 km box that contained them (see Figure

3.5). It was assumed that each group could have a different overall mean direction for the

lineations, corresponding to the box’s overall flow direction. The individual lineations within

any box were then modelled by a von Mises distribution, with the appropriate box-dependent

mean direction but the same concentration κ2 for all boxes. MCMC was again performed

estimating both the mean direction for each box and the value of κ2. The posterior estimate

for κ2, across all 27 boxes and 208 lineations, was found to be approximately 92. This

approach to estimating κ2 accounts for variability in flow direction within a grid box. For

large flowsets, perhaps recording highly variable flow directions, users may wish to either

decrease the value of κ2 to account for such complexity or subset a flowset into multiple

grid boxes.

3.4.4 Combining the two components of directional variability

To use LALA for comparison of observed flowset direction with the output of numerical

ice sheet models, the two components of uncertainty (κ1 and κ2) described above have

to be combined into a single von Mises concentration parameter κ in Section 3.2.3. The

experiment above indicates that intermapper (observer) variability in the reported flowset

direction is very small (with extremely high values of κ2). Consequently, the appropriate

overall κ will be dominated by the variability introduced due to the need to compare flow
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directions at a highly-localised lineation scale with the coarser output of a numerical ice

sheet model (which only has a resolution on a scale of several km). Therefore, an overall

value of κ = 90 was selected for implemention of LALA. This value will be used to judge

goodness-of-fit between an observed flowset and the flow direction of an ice sheet simulation.

In a later version of LALA, I would however endeavour to vary κ spatially, accounting for

areas of complex ice flow that likely require a lower concentration value.

3.4.5 Other potential sources of uncertainty in model-data com-
parison

The parameter κ captures the uncertainty in the directional component of the likelihood

calculated by LALA. However, in any model-data comparison there are additional sources of

uncertainty, related either to the numerical model utilised or the data itself (Ely et al., 2019).

Often, these sources of uncertainty are potentially more difficult to quantify. From a data

perspective, an uncertainty remains regarding the mechanics of lineation formation, which

are still debated (Ely et al., 2023). Though this chapter suggests reasonable conditions under

which lineations are formed and preserved, ultimately users of LALA may wish to alter these

according to any further insights gained in this field. Furthermore, through the parameter

p, LALA accounts for the misclassification of lineations from outside of the simulated time

period. However, in an ideal situation, such instances of misclassified lineations should be

removed from the dataset used to calculate the likelihood of ice sheet simulations. Model-

data comparisons, perhaps facilitated by LALA, may prove a fruitful means for identifying

any misfitting data, and act as a basis for reinterpreting the lineation record (see Section

3.5 for an example of this). From a modelling perspective, no ice-flow simulation is a

perfect representation of reality. All numerical models abstract the physics of ice flow

into approximations, and thus contain structural uncertainty related to the way this is

implemented within the model. Thus, the angles of ice flow produced by the model are

not perfect representations of the actual ice flow direction. Quantifying the impact of

different approximations of ice flow upon the resulting modelled angle is a large task, and

an important avenue for future research. A further uncertainty relates to the temporal

resolution of the model output. Again, this is considered by LALA in the parameter p,

which considers that lineation forming events could occur between modelled output time

steps. However, precisely how modelled angle changes over temporal timescales is unknown,

as are the precise timescales over which lineations form. As more insight is gained into

these additional sources of uncertainty, future model-data comparison tools or adaptations

of LALA may wish to take these into consideration.
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3.5 Application to the British-Irish Ice Sheet

To demonstrate the utility of LALA using real model simulations, here, LALA is applied to

an ensemble of simulations of the BIIS, from the BRITICE-CHRONO project (Clark et al.,

2022). This 200-member ensemble was run at 5 km horizontal resolution using the Parallel

Ice Sheet Model (PISM) (Winkelmann et al., 2011) – a hybrid shallow ice and shallow shelf

approximation numerical ice sheet model. The simulations are transient and run from 31 -

15 ka with a model domain covering Britain and Ireland (Clark et al., 2022). The ensemble

experiments varied ten parameters. The aim here is not to comment on the performance

of a particular ice sheet simulation, and its resulting parameter combination, but rather to

demonstrate the utility of LALA using a real example of ice flow simulations.

The BRITICE-CHRONO project (Clark et al., 2022) completed ice sheet-wide mapping

of glacial landforms of the BIIS (Clark et al., 2018). From the lineation data, flowsets were

constructed through grouping lineations thought to indicate similar past flow directions that

occurred during the same period of time (Greenwood and Clark, 2009; Hughes et al., 2014).

This flowset data was compiled in GIS, and converted into a netCDF to be used within the

LALA tool. Only flowsets deemed to have formed in the same flow event, referred to as

isochronous flowsets, were tested. A total of 94 flowsets were used here, 37 of which were

located in England, Scotland and Wales (Hughes et al., 2014), and 57 from Northern Ireland

and the Republic of Ireland (Greenwood and Clark, 2009). As the simulated ice sheets being

tested cover the entire last glacial, the time period during which the mapped lineations are

thought to have formed, the default value of p = 0.01 was used. Thus, in this application of

LALA, any observed flowset has a 99% probability that it was formed during the simulated

period.

To apply LALA, the appropriate values for the two parameters which define the rate of

lineation formation must be calculated (Section 3.2.8). For this example, these are referred to

as λ⋆
BC(x), the rate of lineation formation across the BIIS outside of the simulated period,

and λBC(x, t,M(x, t)), the rate of lineation formation across the BIIS during the study

period. For λ⋆
BC(x), LALA is supplied with a binary mask defining regions where lineation

formation is possible (assigned a value of 1, which LALA later translates to λ⋆
BC (Section

3.2.8)), and impossible (assigned a value of 0). The latter ruled-out regions were defined as

those that were deemed to be insufficient sediment for lineation formation, offshore regions

as these were not covered by Greenwood and Clark (2009) and Hughes et al. (2014), and

regions beyond 50 km of the presumed limit of the BIIS (Clark et al., 2022). Hence, the

total number of grid cells where lineations might occur was summed to be Apre(X ) = 7801.

Using this, and the number of observed flowsets (n = 94) the value of λ⋆
BC can be calculated

as
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λ⋆
BC = p

n

Apre(X )
=

94

100× 7801
. (3.25)

To estimate the parameter λBC , the valueA(X , T ) must be calculated, the time-integrated

area which meets the lineation formation criteria previously formulated. One could envisage

estimating A(X , T ) via a number of means, dependent upon the user’s opinion regarding

lineation formation and the availability of information regarding the overall extent and tim-

ing of glaciation across an area. For example, an empirical reconstruction could be used to

inform about the time for which each cell was covered by ice. However, such reconstructions

often lack information about the prevalence of other conditions thought to be important for

lineation formation, such as basal thermal regime. The approach here is to utilise an initial

simulation, M†, that scored well at matching the independent data of ice margin position

(Li et al., 2008) and geochronological constraints (Ely et al., 2019). M† is therefore of the

approximate size and produced reasonable ice coverage for the BIIS. For simulation M†, the

total number of grid cells (area) over time that meet the conditions for potential lineation

formation (e.g. thickness, velocity, sediment availability) is AM†(X , T ) = 6094155. This is

used to select λBC for the ensemble of simulations

λBC = (1− p)
n

AM†(X , T )
=

99

100
× 94

6094155
. (3.26)

These two rates, λ⋆
BC(x) and λBC(x, t,M(x, t)), were then used in LALA to calculate the

log-likelihood of each simulation from the ensemble. For the remaining input parameter, κ,

the value 90 is taken, derived from the observational uncertainty experiment (Section 3.4.4).

To assess the utility of LALA, I visually inspected how a range of simulations compared

to the reconstructed ice extents of Clark et al. (2022), at the 1 ka temporal resolution at

which the reconstructed limits are provided. An example of this comparison, for the simu-

lations which had the highest and lowest log-likelihoods, is shown in Figure 3.8. Note that

for illustrative purposes in Figure 3.8 only a single time step, 21 ka BP, is demonstrated,

whereas the visual assessment accounted for the time variance of the ice sheet geometry.

Visual assessment of all 200 simulations within the ensemble, showed that the best-fitting

simulation identified by LALA performed reasonably well in comparison to the ice extenets

in Clark et al. (2022). Furthermore, the worst simulation exceeds the maximum recon-

struction for almost the entire perimeter and is comparable in performance to other poorly

performing models identified through qualitative means. The best-performing simulation

(Figure 3.8a) has an extent that matches the reconstructed ice margin extent for the ma-

jority of its perimeter. In comparison, the extent of the worst performing model (Figure

3.8b) is consistently too large when compared to the empirical reconstruction. This confor-
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mity between reconstructed and simulated ice sheet geometry reflects how LALA produces

a higher log-likelihood for simulations that produce lineation forming conditions (velocity,

ice thickness and grounded extent) over the model domain, and penalises simulations that

spread over an extent which is too large. The best fitting simulation (Figure 3.8a) also

showed the overall best directional score, and vice versa for the worst fitting simulation.

As LALA considers more than just flow direction alone, a quantitative comparison between

LALA and AFDA is not currently possible. However, note that higher-ranked simulations

by LALA were also those assessed to fit more flowsets by AFDA.

A further utility of LALA is to consider which flowsets are more readily matched and

those which are less often matched. To do so required isolation of only the component of

the log-likelihood that relates to the flow direction (Equation 3.7). When scoring a whole

model simulation, LALA sums the values obtained by Equation 3.7 to calculate the final

log-likelihood. To give an indication of the best-matched flowsets across the ensemble,

instead keep the Equation 3.7 values separate. Then, each flowset will have a value for

each model simulation. In this application, these values were summed from each of the

simulations on a per-flowset basis. The nature of this comparison may provoke iterative

conversations between those who collect and collate data, and the numerical modeller: is

the match, or lack of, a consequence of the model, the nature of the of data, or some other

factor? In Figure 3.9 the flowsets are ranked from best to worst fit over time. Although

the evidence for these flowsets here is not revisited, there are some notable features of this

map. First, a number of the poorly-fitted flowsets are narrow and small features (e.g. FS58

in the Republic of Ireland, FS24 on the border between Northern Ireland and the Republic

of Ireland, and FS47 in Northern Ireland). These flowsets were perhaps poorly chosen for

model-data comparison, as their narrow size may be below what is feasibly resolved by the

model. In western Scotland, FS24 is composed of two distinct patches of lineations, which

cross the fjord topography. Perhaps these lineations have been incorrectly grouped together,

or the model is unable to recreate flow counter to the valley topography. The reasons for

the well matched flowsets may be highly variable, as their character and distribution seem

to lack geographic, topographic or geometric similarity (Figure 3.9). Another possibility to

consider is that these flowsets are looser constraints on ice sheet models, or the ensemble

simulation is particularly good at replicating these flow directions. Such possibilities should

be considered in future work.
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Figure 3.8: Modelled extents of the BIIS at 21 ka BP in two different simulations. The

final log-likelihood score for each simulation is indicated below. Note that this figure shows

just one time step, but the final scores are cumulative over all time steps. The lines denote

the maximum (red), optimum (yellow) and minimum (green) reconstructed extent of the

BIIS from Clark et al. (2022). The faint white-line is the grounding line or ice margin. A)

The best-fit simulation. Note how much of the perimeter of the ice sheet is close to the

‘optimum’ reconstruction. B) The worst-fitting simulation. Note how the ice sheet extent

is too large compared to the empirical reconstruction. The time-integrated score for each

simulation given by LALA is below. The better scoring model simulation for flow was also

better at getting the timing and extent correct.
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Figure 3.9: Ranked fit of all flowsets over all 200 model simulations, as picked out by LALA,

with the arrows indicating the direction of the past ice flow being compared to the model

output, and the colour of the arrow representing the rank such that the blue matches the

best and the red matches the worst.

3.6 Summary

Rigorous tools for comparing numerical simulations of palaeo ice sheet behaviour and avail-

able data constraints can greatly aid in model improvement. Here a new method for deter-

mining the log-likelihood of an ice sheet simulation matching flow geometry given a set of

mapped subglacial lineations was presented. This tool, named the Likelihood of Accordant

Lineations Analysis (LALA) tool, considers both the orientation and spatial distribution

of lineations across a palaeo-ice sheet area. To achieve this, the statistical underpinning of
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considering lineation formation to be a marked, inhomogeneous, Poisson point process was

used. Unlike previous tools, LALA provides a continuous numerical output (rather than

a binary yes or no), suited for emulating ensembles of simulations. The main purpose of

LALA is to provide a means for comparing ice sheet simulations within an ensemble, as-

signing each simulation with a log-likelihood, such that the best-fitting simulations can be

identified. To demonstrate the underpinning of LALA, a toy example of its application was

provided.

Several parameters are required as a user input to run LALA. As LALA is designed to

be adaptable, these can be changed by the user depending upon assumptions of lineation

formation and to adapt to different experimental circumstances. Here, a number of reason-

able starting points for assigning these parameters are provided. This includes an analysis

of an experiment which quantified the observational error that arises from multiple expert

mappers interpreting former ice flow directions from the landform record. This uncertainty

was found to be small, especially compared to the uncertainty that arises from the differ-

ing resolutions of subglacial lineations (100s of m) to the scale of an ice sheet model grid

(several km), which was found to be much larger. Finally, to demonstrate the utility of

LALA, the tool was applied to an ensemble of simulations of the British-Irish Ice Sheet and

observations of lineations from the literature. This application highlights how LALA can

be used to distinguish between simulations within an ensemble and, in the future, find more

plausible parameter spaces for ice sheet simulations.
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Notation for Chapter 3

Symbol Description

A Plausible area for flowset formation

θi Observed direction of flowset i

I0(κ) A scaling constant in the probability density function of the von Mises
distribution. It is the modified Bessel function of order 0.

κ Concentration parameter for the von Mises distribution, that accounts for
variability in regridding and observational error

Λ Mean of Poisson distribution describing the number of flowsets formed

λ The rate of the Poisson point process across the studied time period

λ⋆ The rate of the Poisson point process outside of the studied time period

M An ice sheet simulation

M† An ice sheet simulation with a reasonable extent

µ(x, t) Direction of the simulated ice flow from ice sheet model output at a given
location x and time t

N Random variable representing the number of flowsets observed

n Number of flowsets observed in the study region

p Probability that a flowset formed outside of the simulated time period

S Set of conditions defined for possible lineation formation

TM Number of time steps where lineation formation is deemed possible

T Time period of the ice sheet simulation

t Specified time step

t⋆xi
True time when flowset formed at location xi

ϕ True value of flowset direction

X Study region

xi Location of flowset i



Chapter 4

Simulation sensitivity of model
parameters: evaluating
parameter contribution to
influencing ice flow direction

4.1 Introduction

The parameter space defined in Chapter 2 has 20 dimensions, meaning it would take an

unfeasible amount of computational expense and time to explore fully. The parameters

that have been perturbed are required to run PISM, but may only have a small impact on

the output when the values are varied across the prescribed ranges. If a parameter does

not cause significant changes in the output, then there is little benefit to including the

parameter in further perturbed parameter ensembles. Therefore, testing which parameters

are important to vary and which ones insignificantly alter the model simulation output is of

great interest. Here, I use the word ‘important’ when referring to parameters that greatly

impact how much the model output varies.

A sensitivity analysis calculates how much the different input parameters affect a chosen

predictor variable. Historically, in glaciology, the ‘one-at-a-time’ (OAT) sampling method

is used (e.g. Goelzer et al., 2013; Hubbard, 2006; Zweck and Huybrechts, 2005), but there

are issues with using sensitivity analysis on these samples. The OAT sampling technique

explores a very small portion of the parameter space and thus has the potential of missing

the full effects of the parameters. Also, using this sampling method means the ability to

89



90 CHAPTER 4. SIMULATION SENSITIVITY OF MODEL PARAMETERS

calculate the effects of parameter interactions, how much parameters may affect the output

in combination, is lost (Saltelli et al., 2019). Sensitivity analyses using an OAT design

are a type of local sensitivity analysis that has the limitations described above, but there

are global methods available that can overcome some of these problems. Global sensitivity

analyses are not new and have been used in many disciplines, for example in medicine (e.g.

Hickson et al., 2011; Wu et al., 2013), engineering (e.g. Hall et al., 2005; Liu et al., 2006)

and biochemistry (e.g. van Riel, 2006; White et al., 2000) and even in the wider field of

geoscience (e.g. Butler et al., 2014; Harper et al., 2011; Kelleher et al., 2013; Nossent et al.,

2011) but are rarely used in glaciology. There has historically been a general problem with

interpreting the results of sensitivity analyses: the findings are very specific to the model

and model set-up and do not say anything about the physical process underlying the model

in question (Pilkey and Pilkey-Jarvis, 2007; Saltelli et al., 2019). Therefore, it is important

to emphasise that, for example, any inferences made using the results in this chapter only

apply to the EISC modelled over 40 to 5 ka with the set-up outlined in Chapter 2.

Several sensitivity analysis methods are available, some with larger simplifications and

faster run times, others with more complexity or additional metrics. The decision on the

method required for a certain study can be made by considering the assumptions that can be

made using the specific model. For example, if it is likely that the model will respond linearly

to the predictor variables, then a linear regression-based approach could be appropriate, but

this is not often the case with more complex models. There is also a decision to be made

between local and global sensitivity analyses. A local method assesses the sensitivity of small

changes in the underlying function, whereas a global method calculates sensitivity over the

entire input parameter space. For this Chapter, the focus is on using Generalised Additive

Models (GAMs, explored later) to underpin the analysis as the method can generate the

sensitivity efficiently and works well on high-dimensional inputs (Strong et al., 2014).

The aim of this Chapter is to showcase the benefits of using a Latin hypercube sampling

method compared to a OAT approach and apply a sensitivity analysis to the large perturbed

parameter ensemble given in Chapter 2. Section 4.2 explains the method of variance-based

sensitivity analyses and how GAMs can be used to complete this analysis. Outputs with

which to test the sensitivity of the model are also outlined. Section 4.3 presents the sensi-

tivity analysis results for four different aspects of the simulated ice sheet. The results of the

sensitivity analysis are used in Chapter 6 when refining the parameter input space for the

calibrated to flow geometry ensemble, which is rarely done to reduce the dimensionality of

models generally (Sun and Hahn, 2006; van Werkhoven et al., 2009) and to my knowledge

yet to be done in glaciology.
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4.2 Method

4.2.1 Experimental design

When performing perturbed parameter ensembles, as discussed in Chapter 2, the design of

the samples should be carefully considered. As the model can only be run a finite number

of times, the largest amount of the unknown parameter space must be explored in the

smallest number of simulations. The large ensemble that was completed with the set-up

outlined in Chapter 2 utilised input parameters sampled using a maximin Latin hypercube

(see Section 2.5.2). Commonly in glaciology, (e.g. Goelzer et al., 2013; Hubbard, 2006) a

simpler sampling procedure is used and is known as OAT sampling. The OAT method keeps

the parameters at a fixed value, other than the one parameter of interest which is set to

either the maximum or minimum value. As such, the OAT method naturally creates an

ensemble of simulations with double the number of members compared to the dimension of

the parameter space.

The OAT method, however, has many flaws. The first one is that compared to a Latin

hypercube sampling method, described in Section 2.5.2, the OAT design explores a tiny

fraction of the parameter space. It is also not possible to evaluate interactions, which can

be shown by considering the design matrix. Let there be two parameters with ranges [p, q]

and [r, s] and default values a and b respectively. To visualise this, this can be written in

matrix form, such that for some model outputs y,

V ar(y) = βX + ε (4.1)

where β = (β0, β1, β2, β3)
T represents the vector of sensitivity effects and ε is a vector

containing error terms. The matrix X is a design matrix describing the parameter values

for each experiment. In an OAT design, a pairwise interaction design matrix could look like

X =


1 p b pb

1 q b qb

1 a r ar

1 a s as

 . (4.2)

with 4 simulations represented by each row of the matrix.

To find a value for the interaction effect, β3, an estimate of the coefficients, β̃, must be

found. Standard results state that the formula to find the estimates is

β̃ = (XXT )−1XTy. (4.3)
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Solutions for the above equation cannot be found if the matrix XXT cannot be inverted.

It can, therefore, be shown that there are no solutions to find the interaction terms, thus

limiting the utility of this design. Using several matrix properties, it can be proven that

det(XXT ) = 0, where det represents the determinant of a matrix: a scalar calculated from

the values in the matrix that if zero, implies the matrix is not invertible. The relevant

properties state that for a matrix, A, of size n×m:

1. The rank of the matrix must be rank(A) ≤ min{n,m}.

2. If rank(A) < min{n,m}, then det(A) = 0.

3. If rank(A) = a, then rank(AT ) = a.

4. The determinant of the product of two matrices is the same as multiplying the deter-

minants of the two matrices before multiplication det(ATA) = det(AT ) det(A).

To find the rank of a matrix, the matrix needs to be reduced to row echelon form. This

can be done as follows

X =


1 p b pb

1 q b qb

1 a r ar

1 a s as


r2→r1−r2
r3→r1−r3
r4→r1−r4−−−−−−−→


1 p b pb

0 p− q 0 b(p− q)

0 p− a b− r pb− ar

0 p− a b− s pb− as


r2→r2/(p−q)

r3→(p−a)r2−r3
r4→(p−a)r2−r4−−−−−−−−−−→


1 p b pb

0 1 0 b

0 0 r − b a(b− r)

0 0 s− b a(b− s)


r3→r3/(r−b)

r4→(s−b)r3−r4−−−−−−−−−−→


1 p b pb

0 1 0 b

0 0 1 −a

0 0 0 0



From this, the rank of the matrix can be seen to be 3 < 4 and hence, by property 2,

det(X) = 0. By property 3 and 4, the transverse also has a rank of 3 and so det(XT ) = 0,

hence det(XXT ) = det(X) det(XT ) = 0, as required. This idea extends to larger matrices

as adding more parameters does not affect that two rows will be linearly dependent on each

other so the matrix can never have full rank. Conversely, in the Latin hypercube design, the
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design matrix will always have full rank as all the rows are linearly independent, meaning a

solution to the interaction terms can be found.

The subject of a minimum number of simulations required for performing a sensitivity

analysis is widely discussed and whilst there is no consensus on the number of simulations

that should be completed, Loeppky et al. (2009) argues that using ten times the number of

parameters (10p) is sufficient. This informal rule has been used effectively in many studies

when using Gaussian process emulation (discussed in Chapter 5) (e.g. Chapman et al., 1994;

Johnson et al., 2015; Jones et al., 1998), and so I have followed this idea here and complete

200 simulations as there are 20 parameters to perturb.

4.2.2 Variance-based sensitivity analysis using regression

Variance-based sensitivity analyses are based on the decomposition of variance of a function,

V ar(Y ) = E(V ar(Y |Xi)) + V ar(E(Y |Xi)), (4.4)

where Xi represents each parameter in the perturbation experiment and Y represents an

output of interest. The term V ar(E(Y |Xi)) is often referred to as the explained term, as it

calculates how much of the total variance can be explained by a parameter Xi. The term

E(V ar(Y |Xi)) represents the remaining variance that is not explained by the specifically

chosen parameter.

Sobol’ (1993) proposed an index to represent the effect that a certain input parameter

has on the function output using ideas from variance decomposition. This index is known

as the main effect index, mE, and can be calculated for each parameter by

mEXi =
V arXi

(E(Y |Xi))

V ar(Y )
, (4.5)

given in Strong et al. (2014). This formulation follows naturally from Equation 4.4, looking

solely at the term calculating the variance explained by the parameter, standardised by

dividing by the total variance in the output. Explicitly, the numerator calculates how much

the expected value of a chosen parameter given the output varies. This is divided by the total

variance in the output. The numerator can be calculated by approximating the conditional

expectation to the regression line. Then, the estimated values are fitted to the regression

line. The regression problem can be solved using GAMs.

The interaction effects may be important to the variance of the model output as two

or more inputs may work together to change the output. The amount of variation of the

conditional expectation of the output given the inputs in question is considered to calculate
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these values and the main effect index of the chosen inputs subtracted from this value. The

pairwise interaction effect, interactions between two parameters, can be calculated with the

method described in the next section. The formula for the pairwise interactions, iE is

iEXi,Xj
=

V ar(E(Y |Xi, Xj))

V ar(Y )
− (mEXi

+mEXj
), (4.6)

for two parameters Xi and Xj .

4.2.3 Generalised additive models

GAMs are an extension of Generalised Linear Models (GLMs) first described by Nelder and

Wedderburn (1972), and GLMs are an extension of linear models, first attributed to Carl

Friedrich Gauss. To show how these techniques relate to each other, I will first start by

explaining the theory behind linear models and then build on that to reach GAMs.

Linear models can be written in the form y = Xβ + e, where y are the observations,

X is a design matrix describing the independent variables, β are the coefficients of the

outlined model, and e are the normally distributed errors, with constant variance and mean

0. In other words, linear models assume that the predictions, yi, are normally distributed

conditional on a fixed input point, xi, with a constant variance. The normality condition is

restrictive, and extensions are needed to account for other relationships.

Seemingly counter-intuitively, the term linear in this context does not necessarily dictate

the regression line being a straight line. The linearity property refers to the coefficients of

the predictor variables and not the predictor variables themselves. For example,

yi = β0 + β1x
3
i + β2w

2
i + ei (4.7)

may have squared and cubed terms, but these terms are the predictor variables. The

coefficients, βi, are linear and so the regression line is classed as a linear model. However,

yi = eβ0xi + β2
1wi + ei (4.8)

is a nonlinear model, as the coefficients (eβ0 and β2
1) are nonlinear.

Nelder and Wedderburn (1972) extended this idea by allowing the errors on the predic-

tions to follow any distribution within the exponential family, including normal, exponential

and Poisson distributions. Instead of the mean directly relating to a linear combination of

the predictor variables as in linear models (µi = xT
i β), now a function of the mean relates
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to the linear predictor

g(µi) = xT
i β. (4.9)

The function g(·) is called the link function and links the parameter of a probability

distribution in the exponential family to the linear predictor. The extension of linear models

to GLMs allows for many more distributions to be modelled. However, GLMs still work on

the assumption that the distribution parameter relies on a linear predictor.

Generalised linear models were then extended by Hastie and Tibshirani (1987) into

generalised additive models. GAMs are used to represent a function of the expected values

using the sum of smooth functions, not necessarily linear, relating to each predictor variable.

In the case of my simulations, the predictor values are the input parameters, of which there

are 20,

g(E(Y )) = s0 + s1(x1) + s2(x2) + · · ·+ s20(x20), (4.10)

where the si are smooth functions.

The formulation of GAMs is more flexible than their GLM predecessor as the distribution

between the predictor variables and predictions is not required to be linear.

4.2.4 Metrics

One rationale for undertaking a sensitivity analysis is because the model is so computation-

ally expensive to run, and so reducing the number of simulations needed is a high reward.

One of the reasons for the computational expense is the huge output each simulation pro-

duces. Typically in GAM sensitivity analyses, a single metric is used to calculate the main

effects. In this Chapter, I will complete sensitivity analyses to investigate four different

aspects of the modelled ice sheet: ice volume, ice velocity, ice shelf extents and the model-

data flow match. One-dimensional metrics need to be derived from the spatial and temporal

outputs.

To investigate the parameters that affect the simulated ice volume, a Principal Compo-

nent Analysis (PCA) to reduce the temporal dimensionality of the output data is created.

A PCA (method described fully in Section 2.3.1) still contains a large amount of output

information but in a reduced number of dimensions. For a PCA of the simulated ice volume,

I reduce the number of temporal dimensions, and rather than individually analyse the 355
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time steps recorded by the model, I only take the first principal component, which contains

87% of the total variance.

For the ice velocity of the simulated ice sheet, a second metric was derived. To do this,

the time step with highest ice mass was isolated and the median velocity of all the grounded

ice at this time step is found. Also, at this time step, the percentage of ice shelf pixels

compared to the grounded ice pixels is calculated to see how the parameter inputs affect the

size of the ice shelves. The number of ice shelf pixels, pIS , and grounded ice pixels, pGI are

counted, and then the percentage of ice shelf pixels of the total amount of ice is calculated

as

p =
pIS

pIS + pGI
.

This metric is used as it compares the amount of ice shelf pixels to the amount of grounded

pixels. Using this metric instead of the number of ice shelf pixels alone, means the relative

amount of ice shelf pixels is encapsulated rather than just a larger ice mass also having

larger ice shelves.

Finally, the score from LALA (Chapter 3) that quantifies the model-data match of the

observed and modelled flow directions will be calculated. The details of how LALA is applied

to the EISC are expanded on in the section below (Section 4.2.5). As the focus of my thesis

is to find an optimal model simulation that matches the observed past flow directions as

accurately as possible, the sensitivity analysis using the LALA scores will be used to decide

on the parameters to keep and use in further modelling experiments (Chapter 6).

4.2.5 Application of LALA to simulations of the ice sheet complex

Before using LALA, two values are required to be computed (Chapter 3). The first one

is the time-integrated total area of an ideal model run (equivalent to A†(X , T ) in Section

3.2.9). To do this, the DATED-1 reconstructions (Hughes et al., 2016) of ice extent and

timing were used and compared to the model grid. The number of grid cells occupied by

the reconstruction is calculated and extrapolated to match the time steps used in the model

simulations every 100 years.The reconstructions in DATED-1 do not quite cover the whole

time period I have modelled, but the database does contain reconstructions for the four

time periods 38-34 ka, 32-30 ka, 29-28 ka, 27 ka as well as a reconstruction for every 1000

years from 25 to 10 ka. The missing two missing time steps 33 ka and 26 ka are taken to

be the same as the closest previous reconstructed time step available, so 34 ka and 27 ka

respectively. As the DATED-1 reconstructions end at 10 ka, for the time period after this,

I looked to Patton et al. (2017), whose previously modelled EISC showed the last ice was
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present at 8.7 ka BP. For the time before the DATED-1 reconstructions (starting at 38 ka),

a nominal value is used to represent the ice caps on the Scandinavian mountains that the

model was forced with. The final value for A†(X , T ) is therefore calculated to be 3,009,320

grid cells over simulated time.

The second value that needs to be calculated is the area in which lineations could have

formed (equivalent to Apre(X ) in Section 3.2.9). In this application, the criteria followed

are areas where lineations have been mapped and terrestrial areas where the substrate is

sediment rather than bedrock. This value was calculated using the yield stress map and an

outline of the areas looked for lineations over Fennoscandia and Russia (explained below).

The value for this is 5164.

Across my study region, many researchers have studied and mapped glacial features

(e.g. Clark et al., 2018; Glückert, 1973; Hättestrand et al., 2004). However, recent releases

of higher-resolution data have not been widely used, and previous studies are not mapped

systematically, making use of the previous data in LALA difficult. The PALGLAC project,

which has also funded this PhD investigation, has created a consistent product of inferred

flow direction across the Fennoscandian region using high-resolution (2 m) DEMs combined

with data across the Kola Peninsula (Boyes, 2022; Boyes et al., 2023). An optimised sam-

pling technique has been developed, see Butcher et al. (in prep), splitting the domain into

hexagons and using representative sampling, as shown in Figure 4.1. The first lineations are

mapped according to 25 km2 hexagons, and a subset of the represented flow directions are

recorded. In a second round of mapping, larger 100 km2 hexagons are considered, with flow

directions added in areas not searched in the first round, and cross-cuts being accounted

for. Then, flow summary lines are drawn based on a visual analysis. The flow summary

lines have been termed linkages and are the flow direction data that will be compared to

the model simulations using LALA. This process was followed over Norway, Sweden and

Finland. The linkages in northwest Russia are drawn directly rather than following the

exact process described above. As this product is only currently available over Scandinavia

and Russia (Boyes et al., 2023; Butcher et al., in prep), see Figure 1.2, all other areas of the

model domain are not checked for a model-data match.

The product created (Butcher et al., in prep) is then manually assigned to the model grid,

separating the directions into each grid cell, making it possible to compare the simulations

to the data. Cross-cutting relations are preserved in multiple layers and are each scored over

each time step. The ability to incorporate the chronology of the cross-cuts is not currently

within the scope of LALA.
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Figure 4.1: The multi-scale grid of hexagons used for sampling the domain. Ice flow direc-

tions inferred from landforms are first mapped in the smaller hexagons (25 km2) with the

aim to capture a sample of lineations (represented by the grey lines) that are representative

of the population of local flow directions as well as including any cross-cutting relation-

ships. Only the white, smaller hexagons are initially mapped, and the grey hexagons are

omitted. At a later pass, further flow directions are added in areas omitted in the first

pass (represented by the orange lines) using the larger hexagons (100 km2) ensuring missed

cross-cutting relationships are captured. Taken from Butcher et al. (in prep).



4.3. RESULTS 99

4.3 Results

4.3.1 Model results

Of the 200 model simulations designed for the initial ensemble described in Chapter 2, 182

completed successfully. The remaining 18 failed as the stress balances could not be resolved.

Ideally, the full ensemble would have been obtained so as to observe the parameter space as

effectively as possible. Unfortunately, that has not been possible here, but, as over 90% of

the simulations were completed the majority of the parameter space has been covered and

so the analysis can continue. The input parameter sets and the LALA scores are presented

from highest to lowest LALA score in Appendix A.

Using the LALA tool, as set out in Section 4.2.5, the most and least successful simulations

according to the flow geometry over Scandinavia can be isolated. The best simulation had

a LALA value of −101,608 and the worst simulation scored −134,050. The simulated ice

thickness at five time steps (31 ka, 26 ka, 21 ka, 16 ka and 11 ka) for these two simulations

are presented in Figure 4.2, with the most credible ice extents, as inferred by Hughes et al.

(2016). Considering each time step in turn for the best simulation:

• 31 ka . The BIIS and the SIS are already joined in the model simulation, which is

not inferred at this time step in the data. The modelled BIIS is generally too large,

as is the modelled SIS in the east and west margins, but simulated ice is missing on

the southernmost part compared to what the data suggests. The modelled ice is also

grounded off the Scottish coast and northern coast of Norway.

• 26 ka . The modelled BIIS has ice slightly too far south compared to the empirical

evidence. The modelled SIS is quite well represented but, again, compared to the

data informed reconstructions (Hughes et al., 2016), slightly too large. The modelled

SBKIS has some ice missing over the western block extending from Svalbard, and an

unexpected ice sheet has grown in the north.

• 21 ka . In this time step, the simulated ice has grown very thick, and a large amount

of ice has grounded off the northern European coast. The modelled SIS has a good fit

to the extent data, as does the western coast of the SBKIS.

• 16 ka . Once again, the simulated BIIS is too large in all directions and data suggests

that it should have separated from the SIS but is yet to do so. The modelled SIS has

a reasonable southern extent. The modelled SBKIS has grown too far east, and there

is a small portion of missing ice in the northern part of the expected extent.
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• 11 ka . The modelled BIIS has almost completely disappeared, with just some small

ice caps remaining in Scotland. The simulated SBKIS is now grounded in the Barents

Sea, which was predicted but expected earlier. There are large simulated ice shelves off

the north coast of Norway, and a remaining section of grounded ice in the Norwegian

Sea.

The worst simulation grows far too early, having already reached LGM size at 31 ka.

The ice remains at around the same extent for the next 15,000 years. At 11 ka, the BIIS

has shrunk, but the SIS and the SBKIS are both still large and connected.

By separating out the LALA scores, such that each grid cell in the lineation product

(Butcher et al., in prep) effectively has its own score before being summed for the final score,

the pattern of model-data match can be seen. The scores across all perturbed ensemble

members are combined. As some grid cells have multiple layers and would unfairly weight

certain areas, the mean of the layers is taken. Figure 4.3 shows these results. The best

matches occur in a strip from central Norway east across central Sweden and Finland all

the way to south of the Kola Peninsula. The northern parts of Norway and Finland also

have areas of good matches. The worst matches overwhelmingly occur in the southernmost

areas of Norway, Sweden and Finland.
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Figure 4.2: The modelled ice thickness for the simulations that scored the lowest a) and the

highest b) using LALA at five time steps. Data-driven reconstructions taken from Hughes

et al. (2016) are shown in blue.
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-3091 11
Figure 4.3: Total LALA scores across all the ensemble members based on grid cell. The

grid cells with the lowest scores are in red and the best scores are in blue. Note that as the

LALA score is calculated using continuous distributions, the likelihood can exceed one and

thus the log-likelihood can be greater than zero.
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Table 4.1: Parameters and assigned categories.

Category Parameter Name Parameter
Symbol

Flow
Flow exponent n

Flow enhancement E

Calving Calving thickness threshold Hcr

Sliding

Thin till yield stress τ thinc

Thick till yield stress τ thickc

Offshore sediment yield stress τoffshorec

Bedrock yield stress τ bedrockc

Ice stream yield stress τstreams
c

Sliding law exponent q

Precipitation

Precipitation decay gradient for
Britain

mbritain

Precipitation decay gradient for
Fennoscandia

mscandi

Precipitation decay gradient for the
Barents Sea

mbarents

Precipitation decay rate β

PDD snow Fs

PDD ice Fi

Temperature

One principal component weighting for
temperature at PI

αPI
1

Two principal component weightings
for temperature at LGM

αLGM
1 /αLGM

2

Melt factor Fmelt

Temperature lapse rate γT

Dummy
Dummy variable randomly sampled
from a uniform distribution in [−1, 1]

4.3.2 Individual parameter contributions to the model output

In Figure 4.4, the main effects indices are calculated for the large ensemble using the four

metrics described in Section 4.2.4. I have grouped the parameters and colour-coded them

accordingly on the bar charts to more easily spot patterns of parameters that are important

for different outputs, described in Table 4.1. A dummy variable that randomly samples a

point across a uniform distribution in the range [−1, 1] is added to the parameter design

during the sensitivity analysis. The dummy variable acts as an efficacy test as, if the model

estimated a large main effect for a variable known not to affect the simulation output, there

may be a problem with the method.

Figure 4.4a shows the main effects for the PCA of ice volume. From this analysis, the

flow exponent is found to be the most important, explaining over 75% of the variance of

the output. The precipitation decay gradient over Fennoscandia can explain around 10% of

the variance and the remaining parameters are relatively small. The analysis regarding the
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median ice velocity at the largest ice mass time step, shown in Figure 4.4b, has a more even

spread of the variance across the parameters. Whilst the flow exponent is still relatively

important in this analysis, it is the only one where the flow exponent parameter does not

have the highest main effect value. Instead, the exponent in the basal shear stress power

law takes the highest main effect value. Also important for affecting the ice velocity is the

Fennoscandian precipitation adaptation. Overall, the main sensitivity of the ice velocity is

built up of more parameters than the rest of the analyses.

Figure 4.4c uses a metric to explore the amount of ice shelf pixels created in the same time

step as for the ice velocity metric. Then, this value p is used as a metric to test the sensitivity

of the model to forming ice shelves. The main effect of the flow exponent for this output

is similar to the main effect for the ice volume PCA, in that the value is much higher than

the rest of the main effects. The heat flux tuning parameter is the second most important

main effect, which does not have a large effect in any other analyses. Unexpectedly, the

calving parameter does not have a large impact on the amount of ice shelves, as shown

by the small main effect value. Presumably, as the analysis here focuses on the terrestrial

lineations, parameters concerning marine environments are deemed less important. This

highlights the importance of interpreting the results within the realms of the study, e.g.

concrete conclusions about marine locations cannot be made without considering any of the

marine evidence.

The final panel, Figure 4.4d, shows the main effects indices for each input parameter

when using the score calculated using LALA. Once again, the flow exponent main effect

is the largest, but not as significantly different as previous analyses. In this analysis, the

temperature parameters from the PCA have a heightened importance, where they have not

mattered as much before. Overall, the flow exponent seems to be important for many of the

aspects of the simulated ice sheet, and the parameters for the temperature lapse rate and

calving threshold are the least important.
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Figure 4.4: The main effect index bar charts for four different metrics of the sensitivity

analysis. The metrics used are a) PCA of ice volume; b) the median ice velocity at the time

step with the largest ice mass; c) the percentage of ice shelves compared to total ice at the

time step with the largest ice mass; and d) the scores obtained by using LALA.



106 CHAPTER 4. SIMULATION SENSITIVITY OF MODEL PARAMETERS

4.3.3 Pairwise parameter contributions to the model output

As described in Section 4.2.2, the pairwise interaction effects can be calculated. The values

of the pairwise interaction effects are shown in Figure 4.5.

For the PCA, the highest number of interaction effects are found (Figure 4.5a). The

flow law exponent, whilst having the largest main effect index, has the fewest number of

interactions. The precipitation gradient over Britain, however, has the highest number of

interactions and interacts with all parameters except for the flow law exponent. The dummy

variable has a relatively large interaction effect value of around 7% with the offshore sediment

yield stress. As such, the interaction effects focussed on here will exceed this value. The

PDD melt rate for ice interacts with the flow law enhancement factor, and the precipitation

gradient over Britain interacts with both the offshore sediment yield stress and the first

principal component for the LGM temperature. All three of these interaction effects have

values over 8%.

A contrast to the ice volume metric interactions is the number of interaction effects for the

median ice velocity (Figure 4.5b) and the percentage of ice shelves (Figure 4.5c) as these are

both much less influential. The median velocity measure has only three interaction effects,

between yield stress for thick sediments and the dummy variable as well as the principal

component for the PI temperature interacting with both the yield stress for bedrock and

the precipitation decay gradient over Britain. The values of the first two interaction effects

described are approximately the same, and as one of these includes the dummy variable,

they could both be reasonably assumed to be within error. The interaction between the PI

temperature and the precipitation decay gradient over Britain is larger at about 5%. For the

percentage of ice shelves metric, three parameters interact with the enhancement factor for

the flow law: two of the principal components, one for the PI temperature and the first one

for the LGM temperature, and the heat flux tuning parameter. The yield stress for offshore

sediment and thin sediment, as well as the precipitation decay gradient over Britain and the

second principal component for LGM temperature, are also calculated to interact, and all

five of these interactions are calculated to have approximately the same magnitude of effect

(around 3%). A slightly larger interaction is found between the same principal component

and the bedrock yield stress.

There is an array of interaction effects when using the GAM sensitivity analysis method

with the LALA scores, as shown in Figure 4.5d. There is one supposed interaction with the

dummy variable and the precipitation decay gradient over Britain, calculated to be about

5%, and so I will only describe the interactions with values above this. The exponent in

the flow law interacts with the precipitation decay gradient over Britain and Scandinavia.

Interaction effects with the flow law exponent only seem to occur with the LALA scores,
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Figure 4.5: The pairwise interaction effects using the four metrics. The metrics used are a)

PCA of ice volume; b) the median ice velocity at the time step with the largest ice mass;

c) the percentage of ice shelves compared to total ice at the time step with the largest ice

mass; and d) the scores obtained by using LALA.
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other than some small effects with the ice volume metric. There are two larger interactions,

both over 8%, between the PDD melt rate for ice and the exponent in the basal shear stress

power law, and the PDD melt rate for snow and the precipitation decay rate.

4.4 Discussion

4.4.1 Initial model simulations

The best simulation according to LALA, shown in Figure 4.2, had a relatively successful

extent match for the SIS even though the ensemble was only optimised and scored using the

flow directions. Areas of mismatch for the SIS seem to largely be due to the BIIS having

grown too thick too quickly, leading to unusual areas of grounded ice in the deep Norwegian

Sea. The SBKIS eventually, at 11 ka, reached an extent that more closely matches the

predicted extent at 21 ka. The simulation that scored the poorest, grew to be very large

quickly and stayed approximately the same size for the duration of the simulation. The

extent is reasonably accurate at the 21 ka time step. This suggested that LALA is penalising

simulations for growing too large for too long, which was one of the aims of the tool because

the score includes a term for the area of possible lineation formation and does not just score

matching flow directions.

Figure 4.3 identified the southern areas of the linkage area as having the worst model-

data fit. Working out the reasons for this could be of great use for improving numerical

models to capture these pieces of data. But what could have caused this pattern of model-

data fit? One idea is that, at the edges of the ice extent, the ice sheet’s movement is more

complicated (ice is thinner and extra sub-marginal processes may occur) and unlikely to be

accurately modelled, especially at a relatively low resolution, as was used in this ensemble.

Alternatively, it may be that this southern region was actually very complex dynamically

because the ice flow and margins were, in the real world, interacting with marine and

lake water bodies for long periods of time. By contrast, the west-east band of good fit

to the north is more topographically simple (flat) and was often covered with grounded

ice. Further north, where the ice divide may have migrated, the matches are less strong,

suggesting difficulties for the model in capturing the flow variations. In short, it seems

that the degree of matching varies spatially, potentially guided by where the ice sheet had

stability for long amounts of time compared to areas that were often dynamically changing.

Having identified the simulation that best matches the flow direction data from the

initial ensemble, comparisons can be made to other modelling studies of the EISC. Figure

4.6 illustrates the closest matching time steps from Patton et al. (2016) and Patton et al.
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(2017) model simulation to the ones used in Figure 4.2. The extents obtained in Figure 4.2

are very different to those in Figure 4.6, but the aims of the two studies are quite different

up to this point. Patton et al. (2016) presents an optimal simulation having manually tuned

the input parameters and validated the results against several types of evidence. My study

has sampled the parameter space using a Latin hypercube design and tested the outputs

solely against the flow direction data. At this point, the best fitting simulation that I have

presented (Figure 4.2) is not the final step or the best possible simulation, just the best so

far. A further ensemble will be performed in Chapter 6, implementing the results found

in this chapter and Chapter 5 to improve the model-data fit. The main aim is to fit the

orientation data and investigate if, by matching this data well, other data such as ice extent

will fit as well.

4.4.2 Sensitivity analysis indices

When considering the various precipitation gradients and their effect on simulated ice vol-

ume, changing the gradient for the Fennoscandian region was found to have had the largest

effect on the variance of the ice volume out of the three different gradients. The three parts

of the EISC all contribute to the overall ice volume. The BIIS is the smallest ice sheet within

the complex, so ice volume changes in this section will only make a small difference to the

overall value. The SIS is the largest part of the ice sheet complex and so the main effect of

the precipitation gradient over this area makes sense to be important to the variance of the

ice volume.

The ice sheet covering the Barents Sea is now known to have been extensive, covering

a large area (Montelli et al., 2023). In my model set-up however, only around 26% of the

total simulations had grounded ice in the Barents Sea at 21 ka. Exploring this further, by

extracting the parameter inputs of the simulations that produced grounded ice in the Barents

Sea, the parameters seemed to have no obvious relation: there are no specific parameter

values that seem to drive the formation of this ice. None of the parameters in the sliding

group, including the basal yield stress values, contribute greatly to the total of the main

effects.

Whilst the main effect indices seem to identify only a few important parameters, the

pairwise interactions suggest that more of the parameters may contribute considerably to

the variance of the ice volume principal component. The precipitation gradient over Britain

seems particularly important to include in potential future simulations even when it may

have been discarded if considering the main effect index alone. Similarly, the PDD melt rate

for ice and the enhancement factor for the flow law could have been ignored for subsequent
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Figure 4.6: A simulation of EISC from Patton et al. (2016) and Patton et al. (2017), edited

to extract time steps closest to the ones studied in this chapter.
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simulations, but the interaction effects suggest they may be important when considering

the ice volume. These findings highlight the importance of investigating both the main and

interaction effects indices.

The calving parameter has minimal impact on the total variance for all four metrics

investigated in this chapter, shown in Figure 4.4. There are also no interaction effects of

note including the calving parameter. From this, either the calving process may not be a

big driver in this setup or the calving parameterisation used in these simulations may not

be best suited for this application. This is surprising, as the SBKIS was predominantly

marine-based and thus suggests calving processes would have a large role to play in the

evolution of the ice sheet. Petrini et al. (2020) simulated the deglaciation of the SBKIS and

found that the ocean warming had the largest effect on the retreat of this ice sheet. The

study described in Petrini et al. (2020) does differ from my study in the sense that Petrini

et al. (2020) does not attempt to grow the SBKIS, and instead starts with an ice sheet

already in place at the LGM matching the empirical reconstruction from (Hughes et al.,

2016).

As expected, the parameters controlling the ice flow, the exponent and the enhancement

factor of the flow law, impact the variance of the ice velocity, with approximately 20% com-

bined main effects. The six sliding parameters also have an increased variance contribution,

but the exponent for the basal shear stress is especially important. Both of these results

are unsurprising, as more sliding should lead to faster ice velocities and vice versa. Interest-

ingly, the precipitation main effects contribute to the total variance more than the combined

temperature parameters.

There are very few interaction effects for the median velocity, and all relate to precipi-

tation, PI temperature and different yield stresses. The interactions, when considering the

percentage of ice shelves, involve temperature, precipitation, yield stresses and the flow law

enhancement factor. The value of these effects is quite small, but considering the small

number of main effects that seem significant, the interactions may be more informative.

4.4.3 Simulated flow direction and reducing the parameter space

Reconstructing ice flow direction was the main focus of this thesis, and thus, the sensitivity

analysis using the LALA scores will inform parameter selection in later chapters. Whilst the

flow law exponent is the most significant contributor to the overall score variance, as it is for

almost all of the other results, other parameters provide quite large portions of the variance

as well. The main effect indices for the temperature principal components are all larger

than the previous results. Of these, the component for the PI temperature has the smallest
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Table 4.2: Parameters to be kept constant in the second wave of simulations and the per-

centage each parameter contributes to the variance of the LALA scores.

Parameter
Main Effect

Value

Flow enhancement 0.8%

Calving thickness threshold 1.3%

Offshore sediment yield stress 1.5%

Precipitation decay gradient,
Britain

2.2%

Precipitation decay gradient,
Barents

0.7%

Melt factor 0.7%

Temperature lapse rate 1.2%

main effect index at around 7%, the first component for the LGM contains 10.8% and the

second component 17%. In total, the three temperature principal components contribute to

around 35% of the variance.

In Hill et al. (2021), ice sheet modelling experiments are conducted to predict the contri-

bution to sea level from the Filchner-Ronne basin on the Antarctic Ice Sheet under different

climate scenarios. In contrast to the work presented here, when performing sensitivity tests,

they found that the precipitation input contributed more to the change in global mean

sea level than temperature input consistently over different representative concentration

pathways considered. The precipitation input in Hill et al. (2021) was the largest variance

contributor of all the parameters, and the parameters for the sliding law exponent and the

flow law exponent hardly contribute at all. These differences highlight the importance of

performing individual analyses for different model set-ups and applications.

The surface mass balance of the simulated ice sheet in this study is controlled by a PDD

model, as explained in Chapter 2. The sensitivity analysis has indicated that the rate at

which ice melts has a larger impact on the model-data flow match than the rate of snow

melt. Presumably, this is because the layer of ice is thicker than that of snow, and so the

ice melting has a bigger impact over the entire modelled ice sheet than the snow melt.

By ordering the main effect indices from largest to smallest, approximately 97% of the

variance of the LALA scores can be explained by 13 of the parameters. Using this informa-

tion, the 7 remaining parameters are discarded from the next perturbed parameter ensemble

and kept constant at their default values, given in Table 2.2. The main effect values for the

less important parameters (Table 4.2) are also all below the value calculated for the dummy

variable (described in Section 4.3.2), which is a good indication that the values could be

explained by randomness.
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4.4.4 Reflections for future applications

Currently, the results of sensitivity analyses are used to identify areas of uncertainty in a

model (e.g. Hill et al., 2021; Zweck and Huybrechts, 2005) but not completed before running

subsequent ensembles. Here, I have used the results to reduce the parameter space by 35%,

thus saving computational resources for future ensembles. Limited examples where results

from sensitivity analyses are used to reduce the initial parameter space can be found across

scientific fields, e.g. chemical engineering (Sun and Hahn, 2006) and hydrological modelling

(van Werkhoven et al., 2009). Sensitivity analysis in glaciology (and further afield) is, at

this time, underutilised as a method to reduce the dimensionality of the parameter space

before running refined ensembles.

4.5 Summary

The sensitivity analysis used here has been demonstrated to constrain an ice sheet model

parameter space, reducing the dimensions from 20 to 13. The reduction in dimensionality

reduces the number of simulations required to fill the parameter space adequately, and

thus, future ensembles can be completed in a shorter amount of time with fewer computer

resources.

The four sensitivity analyses representing four different aspects of the simulated ice

sheet all identified the flow law exponent as being an important parameter to include in

the ensemble. In contrast and somewhat surprisingly, the calving parameter is consistently

identified as a parameter that hardly contributes to the variance. Apart from the flow law

exponent and the calving parameter, the importance of the other parameters varies widely

between metrics.
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Notation for Chapter 4

Symbol Description

A(T ∗) Ice softness for ice at pressure adjusted temperature

Apre(X ) Area where lineations could form within the overall study region X outside of
the studied time period T

A†(X , T ) Integrated area over time of an ideal ice extent for the EISC

iE Pairwise interaction effect between two parameters

mE Main effect index for an input parameter

p Percentage of modelled ice shelf pixels compared to the total number of ice
pixels

pGI Number of modelled grounded ice pixels

pIS Number of modelled ice shelf pixels

X Random variable representing the input parameters

Y Random variable representing the model output given certain input
parameter sets

y Values of model output for certain input parameter sets



Chapter 5

Emulating the flow of the last
Eurasian Ice Sheet Complex

5.1 Introduction

Whilst numerical models are a powerful tool for ice sheet modelling, they are limited by high

computational expense and long run times. For models with large input parameter spaces,

this means there are gaps in the output simulations, as sampling sufficient parameter space

is unfeasible due to computational limitations. An emulator is a statistical tool that acts

as a surrogate of the original model and, in essence, can fill in the output for gaps in the

unsampled input parameter space. A selection of numerical model runs are taken to train or

build the emulator, comparing the parameter inputs that produce a certain output. Then,

the emulator can estimate or predict the outputs for untested input parameters. It runs

separately from the model and can produce results in a fraction of the time. Emulators have

been used for a variety of different applications, from an HIV study in Uganda (Andrianakis

et al., 2015) to wind engineering (Moonen and Allegrini, 2015). An emulator can then be

combined with a history matching process (Andrianakis et al., 2015) to narrow down the

non-implausible input parameter space. History matching uses expectations and variances,

both simple and efficient calculations, to iteratively remove areas of the parameter space

based on whether they fit the model output and observations well enough (Craig et al.,

1997).

To model large palaeo-ice sheets over glacial timescales requires large computer resources.

Compromises are usually either made by using approximations to the physics implemented

in a model (e.g. Clason et al., 2014) or by performing a narrow range of simulations with

115
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Parameter
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Figure 5.1: A flowchart adapted from Andrianakis et al. (2015) demonstrating how the

emulator bypasses the main model. There are four areas of uncertainty, emulator uncertainty

(Vc), ensemble variability (Vs), model discrepancy (Vm) and observation uncertainty (Vo).

a more sophisticated model (e.g. Åkesson et al., 2018; Patton et al., 2017). The hybrid

model used in this thesis, as described in Chapter 2, is computationally expensive. Ideally,

thousands of model simulations would be completed to fully understand how each parameter

and parameter combinations affect the output. However, a single simulation in PISM across

the EISC and over 35,000 years took anywhere from a couple of days to a few weeks to

complete on approximately 20 computer cores. The time and computer power required make

it unfeasible to complete thousands of simulations; hence, smaller ensembles are performed

instead. This restriction requires a reduction in the parameter space that can be explored,

and techniques to compensate for this are therefore required.

Emulation allows for the exploration of the range of parameters without the need for an

increase in computational resources. An emulator is a statistical representation of a model,

working with a small number of training simulations and then filling in the gaps separately

from the model, increasing efficiency. A statistical emulator takes the model output and

finds a function that can reproduce the required output (Grow and Hilton, 2014). There

are different types of statistical surrogates, but this thesis focuses on emulation with a

Gaussian process foundation. A Gaussian process is a continuous and infinite extension of a

multivariate normal distribution. When sampling from a multivariate normal distribution,

the output is a vector of finite dimensions. A sample from a Gaussian process gives a

continuous function. This property allows for confidence intervals to be formed. This study

will look to create a Gaussian process emulator for use on the EISC. As the emulator bypasses

solving the differential equations in the model, it runs much faster and so can be run many

more times than would be reasonable to run the whole model, demonstrated in Figure 5.1.

The emulator can be used in combination with a history matching process (Andrianakis

et al., 2015), which is a method that aims to find the set of inputs which match a particular

observation (or set of observations). The resulting parameter set can then be used in the ice

sheet model to give better, closer to the data, model outputs in a shorter amount of time.
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a) b)

Figure 5.2: a) The number of publications per year from 1994 to 2023 according to a

Scopus search with the key search term ‘Gaussian process emulation’. b) The breakdown of

disciplines of the publications.

A Scopus search in February 2024 shows a recent uptake in paper publications using

Gaussian process emulators in various fields (Figure 5.2a). However, the use of emulation

within glaciology has been limited (Figure 5.2b). Some studies in glaciology touch on this,

having used statistical techniques to compare palaeo-data and ice sheet model output (e.g.

Pollard et al., 2016; Tarasov et al., 2012). Emulation is increasingly being used for defining

the uncertainty of predictions into the future of ice sheet behaviour (e.g. Edwards et al.,

2021; Hill et al., 2021; Ritz et al., 2015; Wernecke et al., 2020), but the use of Gaussian

process emulators to compare palaeo-ice sheet models and data, is thus far underutilised.

In contemporary glaciology, Ritz et al. (2015) explored the potential effects of the Marine

Ice Sheet Instability (MISI) on the sea level contribution from the Antarctic Ice Sheet. Ice

mass change over time was used to weight the best model outputs compared to the present

day, and then statistical models were used to measure the probability of MISI occurring.

Edwards et al. (2019) used a Gaussian process emulator to estimate future contributions

to sea level rise by the Antarctic Ice Sheet under different Representative Concentration

Pathways (RCP). Wernecke et al. (2020) looks at the rise in sea level contribution from the

Antarctic Ice Sheet using the BISICLES ice sheet model and by using ice sheet thickness

observations to calibrate an emulator and a history matching process, a higher proportion of

the input space was sampled in a relatively short time than by running the ice sheet model

alone. Processes such as MISI, which causes grounding line retreat, can be tested thoroughly

using statistical methods. Hill et al. (2021) used polynomial chaos expansion to create a

surrogate model for their ice flow model. The focus of the study was to investigate the levels

of contribution to global mean sea level associated with a specific area in Antarctica under

different RCP climate scenarios. The study also tracked the propagation of uncertainties

through the model’s input parameters. Hence, emulation is proving to be a useful tool in

contemporary glaciology.
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The emulator approach in the palaeo-glaciology field has only limited examples. Tarasov

et al. (2012) uses an artificial neural network emulator to study the contribution to meltwater

pulse 1a from the North American ice complex using training metrics such as relative sea

level, marine limits and geodetic data. Pollard et al. (2016) takes an ensemble of a hybrid

ice sheet model outputs focussing on the deglaciation of the West Antarctic Ice Sheet and

compares a simple averaging method to more advanced techniques such as emulators and

MCMC to find the best parameter fits for four separate parameters. This simple technique

was found to work comparably to the more advanced version, but this is mainly due to

the fact that only four parameters were considered with a large ensemble containing 625

members. Most recently, Pollard et al. (2023) used Gaussian process emulation to refine an

input parameter space of simulations of the penultimate glaciation of the EISC. Thus, the

use of emulation in palaeo-glaciology is somewhat limited and underutilised.

The aim of this Chapter is to produce an emulator and find parameter sets that would

be conducive to creating simulations that score well using LALA. The Chapter starts in

Section 5.2 by outlining the model simulations and scoring each using the LALA tool to

assess the model-data compatibility of the observed and modelled flow directions. I then

describe the two main methods of Gaussian process emulation and history matching, acting

as a surrogate to the PISM model. Section 5.3 reveals the best prior model for the emulator

and new parameter sampling distributions, optimised to find the best model-data match

according to the ice flow data. The results from the statistical surrogate model are presented,

as well as what this means for PISM re-runs that are employed later in the thesis. Section

5.4 discusses the implications and insights gained from the emulator.

5.2 Method

5.2.1 Model simulations

A 200-member perturbed parameter ensemble, described in Chapter 2, was simulated using

a Latin hypercube design. The simulations were performed over a large domain containing

Britain, Ireland, Fennoscandia, Russia, Northern Europe and the Barents Sea. Once com-

pleted, each simulation outputs two files: one with spatial metrics every 100 years and one

with summary metrics every 10 years. The spatial outputs include the ice thickness and

velocity in each grid cell, whilst the summary outputs include the ice volume and mass of the

whole simulated ice mass. Both of these outputs will be useful for visualising and comparing

the simulations. However, the LALA score (Chapter 3) will be used within the emulator as

the project aims to find a parameter set that best captures the past flow directions.
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Figure 5.3: A flowchart showing how the emulator framework operates for this specific

project.

5.2.2 Emulation

After the simulations have been completed and scores from LALA have been obtained

(Chapter 3), an emulator can now be used (Figure 5.3). In this thesis, I focus on Gaussian

process emulation, which I describe below. This relies on Bayesian inference, the principals

of which are discussed more fully in Section 1.5. The basic principle starts with some

test points, X, used to form a prior distribution that represents any information known

about the underlying distribution before any data is observed. The prior distribution can

be uninformative if little is known about the distribution before observing any data. Then

training data, y, at input points X ′, are observed. The joint distribution between the test

and training distributions is calculated. Using conditioning, the posterior distribution is

derived and represents the distribution of the test points whilst knowing the location of

the training points. When using Gaussian processes within Bayesian inference, Gaussian

(also commonly known as normal) distributions are used. Gaussian distributions have the

useful property of being closed, meaning that conditioning on, or marginalising, the new

distribution will also be Gaussian, making calculations simpler.

To illustrate the method of emulation using Gaussian processes, a toy example is pre-

sented with one dimension to make visualisations easier. In practice, the emulator will be

predicting across 20 dimensions - one for each parameter included in the perturbed ensemble.
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According to Bayesian methodology, a prior distribution must first be defined. As Gaus-

sian processes are being used, the prior distribution will be distributed with a multivariate

normal distribution with mean vector, µ, and covariance matrix, Σ. The standard choice

for the mean vector is 0 and will be used for the prior here, as seen in Rasmussen et al.

(2006). To form a covariance matrix, a function known as a kernel is used to generate values

according to the assumed shape of the distribution. For example, the relationship may be

deemed linear and so a linear kernel can be used or if it is assumed the distribution has sharp

peaks and troughs, a periodic kernel can be chosen. In this example, a squared exponential

kernel has been chosen to generate the covariance matrix for the prior distribution. The

squared exponential kernel function takes two points, say xi and xj , and outputs

k(xi, xj) = σ2
f exp

(
− (xi − xj)

2

2l2

)
, (5.1)

where σf and l are hyperparameters controlling the height and length of the wavelengths

of the samples. Both of the hyperparameters will be tuned to find optimised values to best

account for the data when using the model, but for the prior, the values l = 2 and σ2
f = 0.5

are taken. For the set of test points, X, and hyperparameter values, this kernel generates a

covariance matrix shown in Figure 5.4. The prior distribution is now fully defined and can

be written as pX ∼ GP(0,K(X,X)). Notice that in this case the prior distribution indicates

the possible functions that could represent the data, rather than the more typical scenario

where the prior represents possible values for a certain parameter. Figure 5.5 plots several

samples taken from the prior distribution. The samples are centred around the mean and

around 95% of the curves are contained in [−2σf , 2σf ], as expected from the two-σ rule.
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Figure 5.4: A covariance matrix generated by a squared exponential kernel (see Equation

5.1) with parameters l = 2 and σ2
f = 0.5, between two points xi and xj both with values

between [−5, 5].

Figure 5.5: A selection of 12 samples taken from the prior distribution, pX(x), using a

squared exponential kernel. The samples are centred around the specified mean, 0, and

mostly fall between [µ− 2σf , µ+ 2σf ]. These bounds are plotted as dotted lines.
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Figure 5.6: A selection of 12 samples taken from the prior distribution, pX(x), using a

Matérn 5/2 kernel. The samples are centred around the specified mean, 0, and mostly fall

between [µ− 2σf , µ+ 2σf ]. These bounds are plotted as dotted lines.

Another kernel often used when emulating high-dimensional spaces is called the Matérn

kernel. The Matérn kernel has the form

k(xi, xj) = σ2 2
1−ν

Γ(ν)

(√
2ν

|xi − xj |
ρ

)ν

Kν

(√
2ν

|xi − xj |
ρ

)
(5.2)

where σ2, ρ and ν are parameters to be chosen, Γ(·) is the gamma function defined as

Γ(n) = (n− 1)! and Kν is the second kind modified Bessel function defined as

Kν(x) =

∞∑
m=0

1

m! Γ(m+ ν + 1)

(x
2

)2m+α

. (5.3)

Certain values of ν simplify the Matérn kernel and values of 1/2, 3/2 and 5/2 are

commonly used in an emulator context. For this study, a value of ν = 5/2 which simplifies

the kernel calculation to

k(xi, xj) = σ2

(
1 +

√
5d

ρ
+

5d2

3ρ2

)
exp

(
−
√
5d

ρ

)
(5.4)

with the hyperparameters to be optimised in the same way as before. Samples from the

Matérn 5/2 kernel are more jagged than the squared exponential kernel, as shown in Figure

5.6. Both the squared exponential and the Matérn kernel will be tested in Section 5.3, and

the predictive capabilities of each will be evaluated.
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Figure 5.7: The 30 “noisy” observations, or training data yi = f(xi) + εi, plotted alongside

the true function, f(xi), aiming to be predicted.

For this worked example, training data will be sampled from the function yi = f(xi)+εi

where f(xi) = sin(3xi) is the underlying, true function and has a small, normally distributed

error ε ∼ N (0, σ2
n) which are independent and identically distributed with mean 0 and

variance σ2
n

1, added. The squared exponential kernel is used and the domain is restricted

to [−5, 5]. A small amount of noise is added as this more closely represents a real situation.

Rarely do observed measurements exactly match the underlying true value and so this noise

needs to be accounted for. Thirty observations at the points x′
i are observed to have the

values yi, where i ∈ {1, . . . , 30}, are sampled, displayed in Figure 5.7. The distribution of

the training points according to the prior is pX′ ∼ GP(0,K(X ′, X ′) + σ2
nI).

The joint distribution between the test, X, and training values, X ′, based on the defined

prior distribution is as follows.

pX,X′ =

pX

pX′

 ∼ GP

(µX

µX′

 ,

K(X,X) K(X,X ′)

K(X ′, X) K(X ′, X ′) + σ2
nI

). (5.5)

By standard results of conditioning multivariate Normal distributions, proven in (for

example) Eaton (2007),

1There are two variances in this Chapter with different subscripts to make them distinct. The two
variances represent the vertical spread of functions about the mean in the Gaussian process and the variance
of the error around the data points denoted σ2

f and σ2
n, respectively.
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p(y |X,X ′,y) = GP
(
µX +K(X,X ′)[K(X ′, X ′) + σ2

nI]
−1(y − µX′),

K(X,X)−K(X,X ′)[K(X ′, X ′) + σ2
nI]

−1K(X ′, X)
)

(5.6)

is calculated to be the posterior distribution.

As the mean vectors, µX and µX′ , have been taken to be zero, and using the symmetry

property of K(X,X ′) = K(X ′, X)T the mean and covariance of the posterior distribution

can be written as
µ̃ = K(X,X ′) [K(X ′, X ′) + σ2

nI]
−1 y, (5.7)

Σ̃ = K(X,X)−K(X,X ′) [K(X ′, X ′) + σ2
nI]

−1 K(X,X ′)T . (5.8)

From the posterior distribution, which is a Gaussian process with mean µ̃ and covariance

Σ̃ defined above by Equations 5.7 and 5.8, samples can be taken in the same way as for the

prior distribution. A selection of these samples is shown in Figure 5.8. The updated sam-

ples from the posterior distribution show an improvement on the prior samples as the data

has now been considered. To improve the predictive capabilities of this model, the hyper-

parameters can be altered. These parameters can be optimised using maximum likelihood

estimation of the marginal distribution, pX′ , to give the best model fit. The log-likelihood

of the marginal distribution can be calculated as

log(p(y|X ′, l, σ2
f )) = log(GP(0,K(X ′, X ′) + σ2

nI). (5.9)

Figure 5.8: 12 samples from the posterior distribution, p(y | X,X ′,y) represented by the

coloured lines. The dotted lines represent the bounds calculated using the two-σ rule, and

the points are the training data shown in Figure 5.7.



5.2. METHOD 125

Figure 5.9: The mean from the optimised posterior distribution in blue, using the hyper-

parameter values l = 0.470 and σ2
f = 0.662. and the 95% confidence interval. The true

function is highlighted in purple.

Partial differential with respect to each hyperparameter of the marginal likelihood are

then maximised to find the optimum values for the two hyperparameters. In the case of the

example in Figures 5.5 and 5.7, the optimal hyperparameters are found to be l = 0.470 and

σ2
f = 0.662.

Figure 5.9, shows the optimised posterior distribution using these values. It is clear how

much of an impact this process has on improving the fit of the model closer to the data.

Optimising the hyperparameters is thus found to be incredibly important when estimating

the parameters of the ice sheet model.

For the emulator created for the ice sheet model, an important step is to scale the

input values to all be in the same range. As the kernels rely on the difference between the

parameter values, if some are orders of magnitude larger than others, these parameters will

be deemed overly important within the emulator. For this study, I have scaled all parameters

to be within [−1, 1] to account for this.

5.2.3 History Matching

Once the emulator has found a surface that fits and is optimised to the data, new parameter

sets can be found for a certain specified output using history matching. History matching is a

method to quantify how plausible certain inputs are to produce a given output (Andrianakis

et al., 2015) (Figure 5.3). This will help determine the optimum parameter inputs to score

the highest in LALA. In this section, the history matching method in Andrianakis et al.

(2015) is used and will be showcased following on from the worked example above. First,

the posterior distribution with optimised hyperparameters is evaluated at the vector of test
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points, x, and stored in the vector h(x). Using these results, an implausibility measure I(x)

can be calculated for the desired output to match, say z, using the following formula:

I(x) =
|z − E[h(x)]|

[Vo + Vc(x) + Vs + Vm]1/2
, (5.10)

where Vo, Vs and Vm are the observation uncertainty, ensemble variability and model dis-

crepancy respectively and are set to zero for simplicity in the toy example. Vc(x) is the

emulator uncertainty at the specified test points and so is equivalent to V[h(x)]. Figure 5.1

shows where the uncertainties come from in the numerical model and emulation workflow.

Breaking down this formula, the numerator finds the difference between the output being

investigated and the expected value of the posterior distribution at the test points. The de-

nominator sums the different sources of uncertainty and adjusts the implausibility measure

proportionally. With this measure, any test points where I(x) > c for some determined

value c would be considered implausible.

Say that in this example, the point of interest is z = 0.2. Figure 5.10 shows the averaged

optimised posterior distribution and highlights the output of 0.2 and visually shows the

inputs that could produce this value. For simplicity, take Vo, Vs and Vm to be zero. The

values for Vc(x) are in the leading diagonal in the covariance matrix for the optimised

posterior distribution. After finding h(x), the implausibility measure can be calculated,

and the implausible inputs can be identified. The threshold value c must be decided upon.

A common choice for the cut-off is c = 3 (e.g. Andrianakis et al., 2015; Vernon et al.,

2010), based on a theorem from Pukelsheim (1994) that states that for any continuous

and unimodal distribution, within 3σ of the mean will always contain at least 95% of the

probability mass. This rule can be used as the quantity |z − E[h(x)]| follows these criteria.

Hence,

|z − E[h(x)]| < 3σ (5.11)

where, σ = [Vo + Vc(x) + Vs + Vm]1/2. Rearranging this gives the inequality I(x) < 3 for

inputs considered non-implausible to achieve the output z.

The emulator will then be used to create a surface linking the input parameters to the

chosen LALA output, and then history matching will be used to evaluate new parameter

sets. This process will be repeated as new PISM simulations are performed to validate the

results. The workflow for this Chapter is shown in Figure 5.3.
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a) b)

Figure 5.10: a) The optimised posterior mean is calculated using the test points. The purple

line indicates the observed value of interest. b) The implausibility measure is evaluated at

each test point. The dotted blue line is drawn at I(x) = 3, which in the toy example is the

limit as to the values deemed implausible or not. The values that fall below the blue line

are possible to give the desired output when used within the original model as an input.

5.3 Results

5.3.1 Emulator results

After running the emulator, it becomes important to validate whether the estimations are

accurate. One method to assess if the estimations are precise enough is to use leave-one-out

validation. Leave-one-out validation is where the emulator is trained using all but one of

the inputs and then the removed input is used as a test. This is repeated for each of the

training inputs, and then the true and estimated LALA scores can be plotted against each

other. The aim is for the plotted points to be as close to the line y = x as possible (i.e. the

estimated output is as close to the true values as possible).

The first attempt to fit the emulator (using the prior mean and kernel from the worked

example) was not very successful and the leave-one-out validation showed that the emulator

was not producing accurate predictions, as shown in Figure 5.11a. Ideally, all the points

in the scatterplot in Figure 5.11a would cross the line y = x, which would represent that

the estimated LALA scores are the same as the true LALA scores. The first kernel choice

only correctly predicts 101 of the training points within error. Looking at the histogram,

Figure 5.11b, the emulator is missing the extreme lower values and over-estimating the

higher scores, giving a slight positive skew on the estimated value distribution compared to

a relatively symmetrical distribution for the true training values. To improve the predictive

capabilities of the emulator, the kernel was updated such that instead of having just one

length hyperparameter; each parameter had its own length hyperparameter that would be

optimised. Hence, the kernel now has 21 hyperparameters to optimise. The updated kernel

has the form
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k(x,x′) = σ2
f exp

(
−

20∑
i=1

(xi − x′
i)

2

2l2i

)
. (5.12)

Using this altered kernel, the leave-one-out validation is now shown in Figure 5.12.

The kernel with individual hyperparameters for each input slightly improves the simpler

kernel and predicts 110 of the training points correctly. The histogram comparing true and

estimated values is more accurate in the tails of the distribution but is now under predicting

the scores around the mean of the training points.

Another extension to the kernel to enhance the emulator’s predictions is to experiment

with a different prior mean. Up until this point, the prior mean was taken to be 0. The

extreme values are not being well predicted because where there is less data, the emulator

relies more heavily on the prior mean and so the predicted values are skewed higher than

they are. Instead of using the constant prior of 0, the value of E(y), the mean of the training

data, will be used, with results shown in Figure 5.13. The change of the prior mean has

once again improved the fit, although only slightly, now correctly predicting 118 points.

However, there is still a relatively large proportion, roughly 35%, of training points that are

not being accurately predicted using the emulator.
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Figure 5.11: Leave-one-out validation for the emulator using standard squared exponential

kernel with 2 hyperparameters. A total of 101 points were predicted correctly, within error.

a) Points in blue are deemed to have been accurately predicted as a point within error crosses

the line y = x. Points in red, however, are deemed to have not been predicted correctly

as no point within error crosses the line y = x. b) Green bars represent the true LALA

scores obtained by the initial ensemble, and purple bars represent the estimated scores using

leave-one-out validation.
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Figure 5.12: Leave-one-out validation for the emulator using adapted squared exponential

kernel with 21 hyperparameters. A total of 110 points were predicted correctly, within

error. a) Points in blue are deemed to have been accurately predicted as a point within

error crosses the line y = x. Points in red, however, are deemed to have not been predicted

correctly as no point within error crosses the line y = x. b) Green bars represent the true

LALA scores obtained by the initial ensemble, and purple bars represent the estimated

scores using leave-one-out validation.
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Figure 5.13: Leave-one-out validation for the emulator using adapted squared exponential

kernel with 21 hyperparameters and using a prior mean of E(y). A total of 118 points were

predicted correctly, within error. a) Points in blue are deemed to have been accurately

predicted as a point within error crosses the line y = x. Points in red, however, are deemed

to have not been predicted correctly as no point within error crosses the line y = x. b)

Green bars represent the true LALA scores obtained by the initial ensemble, and purple

bars represent the estimated scores using leave-one-out validation.
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Figure 5.14: Leave-one-out validation for the emulator using Matérn 5/2 with 21 hyperpa-

rameters and using a prior mean of E(y). A total of 174 points were predicted correctly,

within error. a) Points in blue are deemed to have been accurately predicted as a point

within error crosses the line y = x. Points in red, however, are deemed to have not been

predicted correctly as no point within error crosses the line y = x. b) Green bars represent

the true LALA scores obtained by the initial ensemble, and purple bars represent the esti-

mated scores using leave-one-out validation.

So far, I have focussed on the squared exponential kernel, but without a good fit by the

emulator, so now the Matérn kernel is tested to see if the predictive power of the emulator

improves. With a constant prior distribution of E(y) and the Matérn kernel, a much larger

number of points are correctly predicted, 174 points, shown in Figure 5.14. Finally, a linear

prior distribution combining all of the parameters was used within the Matérn kernel, giving

a slight increase in predictive capabilities, correctly predicting 175 points, once more, shown

in Figure 5.15. Hence, a Matérn 5/2 kernel with a linear prior distribution has given the

best predictions and thus is used as the basis of the emulator moving forwards.
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Figure 5.15: Leave-one-out validation for the emulator using Matérn 5/2 with 21 hyperpa-

rameters and using a linear prior distribution. A total of 175 points were predicted correctly,

within error. a) Points in blue are deemed to have been accurately predicted as a point

within error crosses the line y = x. Points in red, however, are deemed to have not been

predicted correctly as no point within error crosses the line y = x. b) Green bars represent

the true LALA scores obtained by the initial ensemble, and purple bars represent the esti-

mated scores using leave-one-out validation.
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Figure 5.16: Implausibility values calculated for each test sample, for the output value −10.

The horizontal yellow line marks the cut-off of I(x) = 3.

When calculating the implausibility measure, 10,000 new input parameter sets were

generated using a Latin hypercube design. Then, an output value of −10000 in LALA is

chosen to measure the implausibility of the new inputs in replicating this value. The 10,000

points and the corresponding implausibility values are plotted in Figure 5.16, with a cut-off

of 3 highlighted in yellow. In total, there are 633 test inputs that fall below the threshold.

Now that the test inputs that will score highly using LALA have been identified, infer-

ences about the parameters can be made. Plotting the 633 non-implausible inputs for each

parameter individually, the distribution of parameter values that score well using LALA are

mostly non-uniform, shown in Figure 5.17. The uniform sampling that was first performed

to sample parameter inputs for the initial ensemble (see Section 2.5.3) no longer seems ap-

propriate, so for future ensembles (Chapter 6), parameter inputs will be sampled using these

distributions.
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Figure 5.17: Distribution of each parameter in the non-implausible space determined by

the history matching process. Parameters with greyed-out histograms have been excluded

from the parameter space based on results in Chapter 4 due to their lack of importance in

affecting modelled outputs.
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5.4 Discussion

5.4.1 High dimensional prediction with an emulator

The best fitting emulator tested in this chapter used a Matérn 5/2 kernel with separate

hyperparameters for each parameter and a linear prior distribution. The emulator correctly

predicted 175 out of 182 LALA scores from the training simulations within error. Several

studies concur with the finding that the Matérn kernel is successful in high-dimensional

scenarios, as they better predict rougher surfaces (e.g. Johnson et al., 2015; Rasmussen

et al., 2006). It is likely a better assumption that a rougher surface is required to represent

the LALA scores in the 20 dimensional parameter space, as it is a complex model and hard

to tell if the output will be smooth in each dimension (some small changes may result in

drastic effects in the output). Whilst the errors are relatively large, as seen in Figure 5.15a,

the true and estimated LALA scores are comparable (Figure 5.15b). Almost all of the wrong

predictions fall below the line y = x and are therefore being underestimated. Although the

ideal situation would be that all points are correctly predicted, this seems unlikely with

such complicated physics controlling the underlying model. As the aim of the study is to

create model simulations with the highest score for LALA as possible and thus fitting the

lineations closely, underestimates are the better option for incorrect predictions. The use of

leave-one-out-validation is critical to ensure a successful emulator is created. Visualising the

predicted surface with high-dimensional surfaces is nearly impossible, so validation methods

that allow a visual check are vital.

Whilst emulation provides a powerful tool to act as a surrogate to the main numerical

simulator, choices for emulator set-up are important. The choice of the kernel and the prior

mean can all have large impacts on the predictive success of the surrogate, as seen in the

previous section. Ensuring the emulator accurately predicts the training data is imperative

to check the set-up is appropriate for the application. Comparing the results using the

squared exponential kernel and the Matérn kernel both using a prior mean of E(y), in

Figure 5.13 and Figure 5.14 respectively, shows the biggest improvement of 118 correctly

predicted points to 174. This suggests that when constructing an emulator, the choice of

kernel has the most weight when looking to improve predictability. The prior mean seems

to improve the emulator in smaller increments, so, whilst still important, the larger focus

should be on the choice of kernel.

5.4.2 Calibrating parameter distributions

For the initial ensemble, a maximin Latin hypercube design was used to sample from the

parameter ranges. As little information was known about the parameters at the start of
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the study, all values within a parameter range were considered to be equally plausible and

thus sampled uniformly. Now that the history matching procedure has been performed, the

non-implausible parameter sets have been identified, and the individual parameter ranges

can be plotted, shown in Figure 5.17. From this, it can be inferred that the parameters

should be sampled in the same way deemed plausible in Figure 5.17. This is a type of

Bayesian calibration (Kennedy and O’Hagan, 2001), but, to my knowledge, this is the first

time it has been used in this way.

In other studies (e.g. Eckert et al., 2010; Turner et al., 2023), a method called expert

elicitation (Oakley and O’Hagan, 2007) is used to determine the prior distribution of pa-

rameter ranges to sample. Expert elicitation can be a pragmatically difficult and lengthy

process; there are relatively few people who have the required expertise and the time to

partake in elicitation surveys. Here, I used a simple uniform distribution for all parameters,

with ranges found to work well in other settings (Ely et al., 2024). Using history match-

ing, distributions to sample from for future ensembles have been extracted automatically

(Figure 5.17) without having to spend time choosing more complex distributions initially.

This method is much faster and can utilise simulations that already needed to be run, so

no extra computational power or researcher time are required.

Certain distributions of non-implausible values for different parameters (Figure 5.17)

appear significantly different to the uniform distributions originally sampled in Chapter

2. For example, the principal components used for the temperature inputs denoted as

temp lgm z1, temp lgm z2 and temp pi z1 for the first and second components for the

LGM temperature input and the first component of the PI temperature input respectively.

The climate models that impact these values can be investigated using a biplot, shown in

Figure 5.18. A biplot visually represents the projected points onto the principal component

axes combined with vectors of each variable, which show the variables that have the most

impact on each principal component. For the LGM components, shown in Figure 5.18a, the

MPI model affects the first component in the positive direction and the MIROC model in the

negative direction. Similarly, the ISPL model affects the second component in the positive

direction and the COSMOS model in the negative direction. Figure 5.17 shows that the

first component is more likely to have a low value than a high value, so the MIROC model

contribution is more important to improving the LALA score than the MPI model. Following

the same logic, the ISPL contribution is the most important for the second component. The

PI temperature input is slightly right-skewed, meaning the MPI model holds slightly more

importance, but the skew is not as obvious as it is for the LGM components. Hence, the

contributions from the MIROC and ISPL models seem to be more important in increasing

LALA scores for the principal components of the LGM temperature input, and the MPI
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Figure 5.18: a) Biplot for the principal components for the LGM temperature input. b)

Biplot for the principal components for the PI temperature input. Sample of points projected

onto the principal component axes, shown as light blue circles. The vectors are shown as

blue lines, each representing one of the climate models. The length and direction of the

vector describe how much each model informs the principal components.

model contribution is more important in increasing LALA scores for the principal component

of the PI temperature input.

The exponent for the flow law, denoted flow exponent, also has an interesting distri-

bution (Figure 5.17). There is a peak on the far left of the range and a smaller peak in the

upper half of the range. The most common value used in ice sheet modelling studies is 3

(e.g. Gillet-Chaulet et al., 2012; Larour et al., 2012b; Pollard and DeConto, 2012), but from

the distribution I obtained for the flow law exponent parameter, it seems that this is an

unlikely value to obtain the model simulation I am aiming for. It is important to note that

whilst these results are interesting and the method new, the results are only valid for my

model set-up over the region and time periods I have modelled. Another study that follows

this workflow may find different parameters or parameter sampling distributions are needed

to achieve a good model-data match. For example, if another study were to model the EISC

over the last 40 ka using an alternative model to PISM or different boundary conditions

to mine then the exact sampling distributions found in this chapter are not guaranteed to

improve the flow geometry fit to the new model simulations. The workflow outlined in this

thesis would need to be performed with new initial simulations and analysis to find a flow

calibrated parameter space unique to the model set-up.

5.4.3 Wider use

In palaeo-glaciology, flow geometry is sometimes compared after an ensemble is produced

as a way to assess the success of the experiment (e.g. Ely et al., 2024; Gandy et al., 2021;
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Patton et al., 2016). As yet, this is the first time data explaining past flow patterns, or,

to my knowledge, any data at all, has been used to adjust the input parameter space.

This approach could be easily adapted to explore parameter spaces for data sources such

as geochronological timings or ice extents. Currently, the tools available to quantify the

model-data matches for these data (Ely et al., 2019; Li et al., 2008) cannot be used within

an emulator (Archer et al., 2023), and more work needs to be done to create compatible

metrics.

The ultimate aim should be to have model-data comparison tools that create metrics

that can be combined into one to represent the overall success of model simulations to all

available data. With an overall metric, an emulator can be built to predict parameter sets to

produce output simulations with good model-data matches over multiple types of evidence,

such as flow, timing and extent. Not only would this identify important parameter areas

but it could also help identify pieces of evidence poorly represented in the numerical models

that may need to be re-evaluated or areas within the domain that would benefit from further

investigation, e.g. collecting geochronological timings.

Overall, using data to refine the parameter space can improve ice sheet modelling twofold.

First, parameter ranges can be isolated and focussed on so that further simulations can most

effectively explore the relevant parameter space. Secondly, if past ice sheets can be modelled

effectively, uncertainty in future projections can be reduced.

5.5 Summary

In this Chapter, I have created an emulator that predicts 175 out of 182 LALA scores

correctly within error for the initial ensemble. Then, using a history matching process,

untested parameter input sets were identified and predicted to score highly with LALA. The

parameter sets that are thought to score well against the flow direction are then plotted to

see the likelihood of the parameter values within the range to update the sampling procedure.

This feeds into Chapter 6, where the new parameter distributions will be sampled, and a

flow calibrated ensemble will be run, looking to improve the LALA scores obtained.
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Notation for Chapter 5

Symbol Description

ε Vector of errors on the training data

f(·) True underlying function

h(·) Output of optimised posterior distribution

I(·) Implausibility measure

k(·, ·) Kernel function

l Kernel hyperparameter determining the wavelength of samples

µ Mean vector

Σ Covariance matrix

σ2
f Kernel hyperparameter determining the amplitude of the samples

σ2
n Variance of the observational error

Vc Uncertainty associated with the emulator

Vm Uncertainty associated with model discrepancy

Vo Uncertainty associated with observations

Vs Uncertainty associated with ensemble variability

X ′ Input points associated with the training data

X Test points

y Training data



Chapter 6

Flow calibrated model
simulations and discussion

6.1 Introduction

So far, I have created a model-data comparison tool to calculate how likely a model sim-

ulation is to explain the observed flow directions in Chapter 3, assessed the sensitivity of

the model input parameters to the flow directions in Chapter 4, and coded an emulator

to estimate a surface to fill in output gaps in the parameter space and then used history

matching to find input parameter sets that predict a high flow direction match in Chapter

5.

In this discussion chapter, I will describe and analyse the results of this new, flow cal-

ibrated ensemble. Next, I analyse the difference between the calibrated and the original

ensemble; what is different? I then compare the flow calibrated ensemble to ice extent and

timings using geomorphological and geochronological evidence and ask if the flow calibrated

ensemble has also improved the model-data fit to reconstructed ice extent and timing. Fi-

nally, I describe the wider implications of this work and potential future avenues to explore

following this thesis.

6.2 Set-up of the flow calibrated simulations

The model set-up for the refined simulations is based on the set-up defined in Chapter 2 with

adaptations based on the results from Chapter 4 and Chapter 5. These new flow calibrated

139
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simulations have three main changes: changing the range of the flow exponent parame-

ter, reducing the number of parameters, and no longer sampling the remaining parameters

uniformly.

The exponent in Glen’s flow law has proven to be an important parameter in this model

set-up and consistently plays a big role in the fluctuations of the outputs. Unfortunately,

higher values of this parameter also cause the simulations to take exponentially longer to

complete. Due to time constraints for this study, I reduce the range of this parameter

from [2, 4] to [2, 3]. From the implausibility measure, the number of simulations estimated

to score highly with LALA with a flow exponent between the updated range is over 50%,

including a large spike at the lowest end of the range, so there are still many parameter

inputs predicted to achieve the score being aimed for even with the space reduction.

Based on the sensitivity analysis performed in Chapter 4, there were 13 parameters

deemed to be most important and 7 that would be discarded for the second ensemble (Table

4.2). Compared to the uniform sampling done initially, an improved sampling method using

the history matching approach was described in Chapter 5. For the flow calibrated ensemble,

the new parameters will be sampled using a maximin Latin hypercube design with the

distributions found in Figure 5.17. As there are 13 remaining parameters, 130 simulations

were run, using the same ten times the number of parameters rule used previously for the

initial ensemble.

6.3 Flow calibrated simulation results

6.3.1 Successful simulations

Of the 130 simulations performed, 68 completed successfully. The remaining 62 simulations

failed, either due to isolated pixels growing to be unfeasibly thick and causing the simulation

to crash or for the stress balance equations being unable to resolve. A similar but smaller

subset of the initial ensemble simulations also failed with the same issues, as discussed in

Section 4.3.1. Most of the frequency distributions for each parameter look similar (Fig-

ure 6.1) when comparing the successful simulation’s parameter inputs to the distributions

sampled from in Figure 5.17. The one that looks the most different is the exponent for

the sliding law, denoted q exponent, shown in Figure 6.1. Looking at the low end of this

parameter range, there seem to be simulations missing with these values. When the value of

the q exponent is around zero, the fastest velocities will be calculated from Equation 2.22

and the ice sheet model can crash. If this study were completed again, I would reduce the

range of this parameter to have a minimum value larger than zero, as the simulations with
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the value of the sliding law exponent at the low end either fail or take a very long time to

complete.
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Figure 6.1: Distributions sampled for the flow calibrated ensemble represented by the out-

lined bars and the successful parameter values from the flow calibrated ensemble shown as

blue bars.
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6.3.2 Flow calibrated ensemble results

From the 68 successful simulations in the flow calibrated ensemble, summary metrics can be

derived to explore overall patterns of the ensemble at different time steps. Figure 6.2 contains

five metrics at the five time steps considered in previous chapters. The summary metrics

for every simulated one thousand years are given in Appendix B. The input parameter sets

for the flow calibrated ensemble are presented in order of their LALA scores from best to

worst in Appendix C. The calculated metrics in Figure 6.2 are the percentage of grounded

ice, the mean ice thickness, the standard deviation of thickness, the mean velocity and the

coefficient of variation for velocity all per grid cell (16× 16 km). The coefficient of variance

is the ratio between the mean and the standard deviation, and the higher the value, the

higher the dispersal from the mean.

• Grounded ice percentage: All of the simulations have already joined the BIIS and the

SIS by 31 ka and this saddle remains until 11 ka where almost all the simulations have

separated into the two ice sheets. The timing of the ice grounding in the SBKIS is

more variable, but persists until the end of the majority of simulations. Most of the

simulations produce two separate ice masses in the SBKIS region, one in the east and

one in the west. The joining of these two ice masses happens in some simulations.

In those simulations where joining does happen, this occurs at different time steps.

The Baltic Sea, in the flow calibrated simulations, has grounded ice much less often

than in the original ensemble. Grounded ice percentages exceeding 50% are found

in between the British Isles and Iceland. This is surprising given that the present-

day water depths here may point to ice accumulation over the Faroe Islands and/or

problems with this aspect of the simulations.

• Ice thickness: The area surrounding the southern coast of Norway had consistently

thick ice, but with little variance across the simulations. Most of the ice thickness

variation occurs off the northern coast of Britain and Norway, where either thick ice

forms or no ice forms at all.

• Ice velocity: The fastest flowing ice tends to be north of the North Sea but migrates

to the SBKIS towards the end of the simulations. As only terrestrial data was used

to assess the model-data match, marine areas are likely under-represented and could

affect the simulations identified to be the best flow data fit.
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Figure 6.2: Summary variables for all successful simulations in the flow calibrated ensemble

at five time steps, 31, 26, 21, 16 and 11 ka. The variables considered are the percentage of

grounded ice (%), average ice thickness (m), standard deviation of ice thickness (m), average

ice velocity (m/a) and the coefficient of variation of velocity. The horizontal resolution is

16× 16 km.
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Ice volume variation over time, for all the simulations of the flow calibrated ensemble

is shown in Figure 6.3, generally reaching a maximum at around 13 ka. This is later

than often cited (e.g. Patton et al., 2016), due to the timing of the modelled maximum

SBKIS coming much later than evidence suggests (Hughes et al., 2016). The ice volume

for the best-performing simulation according to LALA is shown in green in Figure 6.3 and

is approximately in the middle of the minimum and maximum simulation between 40 and

20 ka. Between 20 and 13 ka the best-performing simulation is closer to the top of the ice

volume range but for the remainder of the time returns to the middle of the simulations.

The overall maximum ice volume across the whole ensemble occurs at approximately 13

ka where all three ice sheets are present. The dip that occurs after this is when the BIIS

deglaciates. A second ensemble wide ice volume peak is reached at around 10 ka, where the

SIS readvances and the SBKIS fully ground across the Barents Sea. The remaining peaks

shown at the end of the time period are individual ensemble members that grow the SBKIS

late in the simulation.
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Figure 6.3: Ice volume variation over time for the whole grounded Eurasian Ice Sheet

Complex from the flow calibrated simulations. The green line represents the best scoring

LALA simulation, and the solid blue represents variation due to different simulations.
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6.4 Discussion

6.4.1 Did the flow optimisation routine improve LALA scores?

Plotting the LALA scores from the initial ensemble and comparing them to the scores

obtained from the second wave (Figure 6.4), the scores from the second wave seem to have

been improved from the original results. To formally confirm that the scores from the

second wave have been statistically significantly improved by the processes implemented in

the previous chapters, I perform a Student’s t-test. The Student’s t-test is a hypothesis test

used to determine if two samples have statistically significantly different means.

The null hypothesis, H0, and the alternative hypothesis, H1, are stated below

H0 : x̄1 = x̄2 (6.1)

H1 : x̄1 ̸= x̄2 (6.2)

where x̄1 = −11.75 is the mean of the scores from the initial ensemble and x̄2 = −10.90 is the

mean of the scores from the second ensemble. The assumption when using this hypothesis

test is that both samples follow a Gaussian distribution. Scores from the initial ensemble,

shown in purple in Figure 6.4, visually look to be normally distributed. To check the second

ensemble also conforms to this assumption and confirm that the initial ensemble does as

well, a Shapiro-Wilk normality test is performed. The Shapiro-Wilk normality test evaluates

the null hypothesis that a sample comes from a Gaussian distribution. When performing

this test on the initial ensemble and second ensemble, the p-values are both greater than

0.05, so there is no evidence to suggest the samples are not from a normal distribution.

Hence, the Student’s t-test is valid and can be continued. The test statistic needed to test

the hypotheses is

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(6.3)

where s1 = 0.55 and s2 = 0.46 are the standard errors and n1 = 182 and n2 = 62 are

the number of simulations both for the initial and second ensembles, respectively. The

degrees of freedom, denoted df , needed to determine the distribution the test statistic is to

be compared to is

df =
(s21 + s22)

2

s41
n1−1 +

s42
n2−1

. (6.4)
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Figure 6.4: Comparison of the scores from LALA for the initial ensemble, in purple, and

the second ensemble, in green.

Substituting the derived values into Equation 6.3, the test statistic is calculated to be

t = −12.77. Comparing this value to a Student’s t-distribution with 142.08 degrees-of-

freedom (calculated using Equation 6.4), the p-value can be obtained and is 1.67 × 10−22.

Hence, the null hypothesis can be rejected, and there is strong evidence to show the second

ensemble has a statistically significantly greater mean than the initial ensemble. Therefore,

the flow optimisation has significantly improved the LALA scores.

Visually comparing the model-data fit per grid cell, as shown in Figure 6.5, the flow

optimised simulations have improved some areas of fit, but had the opposite effect in others.

Areas 1 and 2 are less well matched in the flow calibrated ensemble, but not significantly.

Area 1 is a small area and had a bad fit in the initial simulations already, this poor match

has extended further to the north in the calibrated ensemble. The same has occurred in

area 2, where in the initial ensemble the poor model-data match fills only the centre of the

circled area (Figure 6.4a), but model-data match in area 2 of the calibrated ensemble fills

more of the circle (Figure 6.4b). These two areas in the north of the domain are presumably,

due to spatial proximity, affected by the SBKIS and the SIS, and as the simulations are only

calibrated to the SIS, a worse estimation of the SBKIS could be affecting these matches. The

change in the SBKIS between the two ensembles is discussed further in the sections below

(Section 6.4.2 and Section 6.4.4). Areas 3 and 4 have an improved fit in the flow calibrated

ensemble. The spatial patterns of good and bad model-data match are approximately the
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Figure 6.5: Comparison of LALA scores per grid cell from a) the initial ensemble and b)

the flow calibrated ensemble. The circled areas are areas where a considerable difference

between the ensemble scores are identified. Areas 1 and 2 have a worse fit in the flow

calibrated ensemble compared to the initial ensemble and areas 3 and 4 have an improved

fit.

same in the two ensembles (in areas 3 and 4), but in the flow calibrated ensemble, the

match has improved. The area in the south of Norway and Sweden, area 4, is the largest

area and has improved the most between the ensembles. The scores across the remainder of

the domain are approximately the same. As the areas of improvement are larger than the

areas of decreased model-data match, visually there seems to be an overall improved match.

6.4.2 How well does the flow calibrated ensemble explain the extent
and timing?

Figure 6.6 shows the percentage of grounded ice at 21 ka across all ensemble members of

the two sets of simulations: the initial ensemble and the flow calibrated ensemble. Com-

paring the two results, the eastern area of the SBKIS has ice cover less often in the flow

calibrated ensemble, which more closely matches the hypothesised extent, than in the initial

ensemble. The middle of the Barents Sea is also less often fully grounded at this time. Four

islands/archipelagos, Svalbard, Novaya Zemlya, Zemyla and Severnaya Zemyla, (locations

shown in Figure 2.7) are consistently covered in grounded ice in both ensembles. The latter,

Severnaya Zemyla, is not contained in the reconstructed extent of the EISC in Hughes et al.

(2016) but Patton et al. (2016) does simulate small ice caps over the islands. The amount
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Figure 6.6: The percentage of grounded ice over all the ensemble members for a) the initial

ensemble and b) the second wave of flow calibrated simulations at 21 ka. The most credible

ice extent at 21 ka inferred from the observational record in Hughes et al. (2016) is shown

in purple.

of data available to constrain the SBKIS is limited, so the predicted timings and extent

have low confidence (Hughes et al., 2016) and hence, no significant weight should be put on

aiming to match the extent at this time.

The flow calibrated ensemble, Figure 6.6b, better fits the southern margin of Fennoscan-

dia and Britain, but the join between the BIIS and the SIS continues to grow further south

than the data would suggest. The northern part where the two ice sheets join regularly

matches the derived extent. There is a cut-out in the ice sheet join that never fits with

either of the ensembles, but once again, there is limited evidence for this.

In the flow calibrated ensemble, (Figure 6.6b) ice is consistently growing out past the

reconstructed ice margin off the west coast of Ireland. A recent study (Clark et al., 2022)

has found evidence that this area, Porcupine Bank (location shown in Figure 2.7), had

grounded ice, differing from the reconstruction in Hughes et al. (2016). It is interesting

that the flow optimised ensemble has consistently grown ice over this area, as the initial

ensemble did not (Figure 6.6a). Ice is also more likely to ground off the northern coast of
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Figure 6.7: Ice thickness at five time steps from models produced in Bradley et al. (2023).

Scotland and Norway. Potentially, the prevalence of extra ice grounding in these areas may

be related. It seems that the flow calibrated ensemble has shifted the ice covering the BIIS

and SIS further north. This is highlighted most prominently in the southern BIIS margin

which now more closely matches the predicted extent, as well as the northern extent in

Norway consistently fills the predicted extent but struggles in the south eastern portion of

the SIS. This change could be a result of the new sampled distribution of the precipitation

gradient over Scandinavia, see Figure 6.1. The updated parameter distribution favours a

larger precipitation reduction (Figure 2.11). Unexpectedly, after optimising the parameter

space, the Baltic Sea has gone from almost always having grounded ice at 21 ka to filling

it much less often. The flow calibrated ensemble also occasionally misses parts of the Gulf

of Bothnia. This could also be due to the same reason as hypothesised above, but seems

unlikely due to not being very deep compared to the surrounding grounded areas (only

around 150 m). It is surprising though, given the initial ensemble always grounded ice in

these regions.

6.4.3 Does the best performing LALA simulation conform to em-
pirical reconstruction and to other modelling studies?

Reconstructing ice thickness based on empirical evidence is limited (e.g. Whitehouse, Bentley

and Le Brocq, 2012), and there are minimal examples for the EISC. Bradley et al. (2023)

used the ICESHEET model (Gowan et al., 2016), which is a perfectly plastic numerical

model, to simulate the EISC. The aim of this study was to simulate plausible ice thickness,

judged against sea level constraints and using the Hughes et al. (2016) reconstructed ice

extents and basal shear strength data from Clark et al. (2022). The modelled outputs are

in Figure 6.7. Comparing my simulations to the extent of this model is not useful, as the

extents of the Bradley et al. (2023) models are, by design, exactly the same as the Hughes

et al. (2016) extents. However, comparing the thicknesses has some merit. The Bradley

et al. (2023) model has a maximum thickness of approximately 2750 m (Figure 6.7) reached
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Figure 6.8: The best-performing simulations according to LALA when scored using a) link-

ages over Fennoscandia and b) linkages over Fennoscandia combined with flowsets over

Britain and Ireland. Estimated ice extents according to Hughes et al. (2016) are shown in

blue for each time step.
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over Norway and Sweden. My best simulation according to LALA (Figure 6.8a) has a

much larger maximum thickness at around 5500 m but achieves this off the north coast

of Britain and Ireland. This is a very thick estimation and higher even than the known

thickness estimated from the ICE-5G glacial isostatic adjustments model (Peltier, 2004),

which predicts a maximum thickness of 2500 m over the SIS. As noted earlier, my modelled

maximum ice thickness is in deep water beyond the empirically defined limits and so is

either suspect or the empirical estimates are wrong. The thickness in my simulation at the

same point and time (21 ka) has a maximum of only 1600 m, much lower than the estimated

2750 m from Bradley et al. (2023). It is not unexpected that my flow optimised modelling,

with no sea level constraints, differs from the most recent and arguably the best estimate of

ice thickness from Bradley et al. (2023) because, of course, this latter model was specifically

optimised for ice thickness to match sea level records. It raises the serious question of

whether my simulations grow too much ice and why this would be the case. Potentially,

the temperature input, found to have a large impact on the variance of the LALA scores in

Chapter 4 could have contributed to this. Clason et al. (2014) found success when using the

NGRIP core for the glacial index approach for the climate forcing, whereas in this study I

used the GRIP core (see Section 2.3.1). This may be something to explore if the simulations

are tuned to better fit other sources of empirical evidence.

The aim of the complementary studies Patton et al. (2016) and Patton et al. (2017)

was to find an optimal reconstruction compared to multiple forms of evidence by tuning

the parameter space. Again, this contrasts with my study, which focused on improving

the flow direction model-data match. However, the modelled ice extent from Patton et al.

(2017, 2016) is useful to compare to my flow optimised model as their model is not forced

to conform to observations, unlike Bradley et al. (2023). Interestingly, in my best scoring

simulation, the modelled ice sheet is too extensive and thick, but the modelling performed

by Patton et al. (2017, 2016) is not extensive enough. In these studies, the modelling is

tuned to attempt to conform to ice extents, but it is specifically noted that there was a

major problem over the North Sea where the model failed to sufficiently glaciate. When

they tuned the model to try and make it fit over the North Sea, the resulting ice extent and

thickness were too great. It thus seems, when considering both my simulation and that of

Patton et al. (2017, 2016), that there exists a problem in modelling the marine sectors of

the EISC, notably over the North Sea and adjacent shelves in deeper waters.
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6.4.4 Does improving simulations of the flow of the Scandinavian
Ice Sheet lead to simulations of neighbouring ice sheets that
better recreate their empirical ice extents?

The evidence used to score against past flow directions covers Fennoscandia, but the domain

of the model simulations covers the whole of the EISC. If there is a consistent set of flow

parameters for ice sheet modelling, perhaps improving flow of the SIS might also improve

simulations of the BIIS and SKBIS. Figure 6.8a contains the simulated ice thickness across

five time steps for the best-performing simulation according to LALA scoring with the

Fennoscandian linkages. This simulation has grounded ice exceeding the northern margin of

the ice sheet complex throughout, which has been discussed in Section 6.4.3. At 31 ka, the ice

sheet over Britain generally matches the reconstructed ice extent, with some ice extending

past the reconstructed extent and into Northern Ireland. The match to the reconstructed

SBKIS extent (at 31 ka) is a good fit over Svalbard and Zemyla with ice extending too far

East over Novaya Zemyla and ice covering Severnaya Zemyla which is not reconstructed

at all (see Figure 2.7 for location of named areas). The three ice sheets making up the

EISC are empirically reconstructed to be completely independent at this time step, but as

found in the majority of simulations (Figure 6.2) the BIIS and SIS join early in this best fit

simulation (Figure 6.8a). This joining occuring too early in the simulations suggests that

the climate input is not being represented in the model quite correctly. The precipitation

input change, discussed in Section 2.4.2, greatly improved the southern margin of the EISC

over land but may not have worked effectively in marine-based areas such as the North

Sea. areas. In future, the joins between the boxes indicating the precipitation gradient used

could be smoothed out (Figure 2.10), to investigate whether this had a role in the early join

between the SIS and BIIS.

Five thousand years later, at 26 ka, the modelled ice over the BIIS is smaller than the

reconstruction (Figure 6.8a). The western simulated ice extent does not quite stretch far

enough, and the ice predicted over Wales is completely missing (Clark et al., 2022). The

eastern sector of the SBKIS is almost completely missing and the western sector appears

to have approximately the correct area of ice, but is shifted too far west. The time step at

21 ka is similar, as in there is still missing ice over Wales and a lot of ice missing over the

Barents Sea (Jakobsson et al., 2014; Newton and Huuse, 2017; Winsborrow et al., 2010).

These areas of missing ice contrast significantly to the results of the initial ensemble, where

the ice was often far too south and west (Figure 4.2).

LALA penalises model simulations for growing too large, and these results seem to show

this aspect being relatively successful. Unfortunately, the flow calibrated model fails to

reproduce the full reconstructed extent of the SBKIS (Jakobsson et al., 2014; Newton and
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Huuse, 2017; Winsborrow et al., 2010), as was achieved, albeit too large, in the initial

ensemble (Figure 6.6). Perhaps this work suffers from the lack of evidence over SBKIS, as

in the sensitivity analysis, parameters that control this ice sheet may have been removed.

There is little chance for new evidence over the SBKIS as a large area of this is in Russian

controlled waters. One potential workaround for this is to use estimated flow directions

from reconstructions to reduce the weighting of the flow over SIS.

So far, the linkages over Fennoscandia have been considered when scoring model simu-

lations with LALA. To see if the inclusion of the flow data currently available over Britain

and Ireland improves the simulated ice extent, the flowsets, as described in Section 3.5, are

compared to the flow calibrated ensemble. As both outputs from LALA are log-likelihoods,

they can be combined by summing them. The scores from the Fennoscandian flow linkages

range approximately between [−120,000,−100,000] whilst the scores over Britain and Ire-

land, from flowsets are much smaller, approximately between [−1000,−900], due to less data

points being scored. If the scores were summed in their current state, the SIS score would

be weighted more greatly than the score for the BIIS. Hence, before the log-likelihoods are

summed, the scores are scaled to be in the same range. Figure 6.8b shows the simulated

ice thickness across the same time steps for the best-performing simulation when combining

the two LALA scores, the score for the Fennoscandian linkages and flowsets over the BIIS.

When scoring the flow directions with the flowsets over the BIIS, the southern margin

of the join between the BIIS and SIS conforms more to the empirical reconstruction. The

addition of the flowsets seems to have improved the fit of the SIS southern margin, which is

suspected to be due to the ice sheet coalescence between the BIIS and SIS having reduced

compared to the best fitting simulation when just using the Fennoscandian linkages. The

ice volume reduction in this area may make it less likely for the ice to sprawl as far south

as it previously had. Also potentially due to the ice volume reduction, the maximum ice

thickness in the best-performing simulation using both BIIS and SIS data is around 1000 m

less that just with the SIS flow data. This reduction in ice thickness brings my simulation

(Figure 6.8b) closer to the models in Bradley et al. (2023).

Figure 6.8a shows a slightly more successfully simulated SBKIS compared to the empir-

ical reconstruction, in the sense that grounded ice covers more of the Barents Sea compared

to Figure 6.8b, but as seen across all the simulations (Figure 6.2) the timing of this growth

does not match the empirical data. Another area that seems to have been captured with

the Fennoscandian linkages but not when including the BIIS flowsets is both the Gulf of

Bothnia and the Baltic Sea. With just the linkages, the best-performing simulation has

grounded ice across both of these regions, which is suggested by the observational data, but

when including the flowsets, ice never grows over the Baltic Sea and is patchy over the Gulf
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of Bothnia. Thus, improving the spatial distribution of data to include the BIIS has reduced

fidelity to the data over the SIS.

So, does including the British-Irish flowsets with the Fennoscandian linkages improve the

overall fit of the Eurasian Ice Sheet Complex? The answer is probably somewhat. However,

this is an imperfect experiment because I combined data that was not entirely consistent

across the domain; it varied according to the type and resolution of the data as well as the

protocol for summarising the glacial lineations. The flow data over the SIS are linkages and

cover almost the whole of Fennoscandia (Figure 1.2) whereas the data over Britain consists

of single points taken from the centre of flowsets (Figure 3.9). However, there are some

improvements when including the BIIS flowsets. Areas are improved when including the

flowsets, such as the margin south of Norway and Sweden, but other areas are missed, such

as the Gulf of Bothnia and the Baltic Sea. The timing and extent of the SBKIS does not

improve but are not radically different. It would be interesting to include flow evidence from

the Barents Sea area; however evidence in this area is sparse (e.g. Jakobsson et al., 2014;

Newton and Huuse, 2017; Winsborrow et al., 2010). I suspect that the simulated southern

ice margin for the best-performing simulation with both types of data (Figure 6.8b) better

conforms to the reconstruction because the data over the BIIS is included. The worse fit in

the Barents Sea seems to potentially have a more random element: the tool found the best

simulation for the BIIS and SIS areas, but as the model rarely fits the SBKIS extent in any

simulation it is hard to determine if the change in the choice of simulation has any regard

to this ice sheet.

6.5 Implications for reconstructing and simulating past
ice sheets

In this thesis, I have shown that the workflow of performing a sensitivity analysis to reduce

the dimensionality of the parameter space, emulating and history matching with evidence

of ice flow to update the parameter distributions to sample from, and performing another

ensemble is an effective method to find simulations with improved model-data matches.

Aside from the methodological developments, the most important aspect for any study

applying this or a similar workflow is the question to be answered by the modelling study. I

have improved the ensemble scores when comparing to flow direction over the SIS, and some

other model-data matches have been improved surrounding ice extents and timing, but some

areas have been made worse. The manual tuning of parameters becomes less important when

following this methodology compared to previous studies (e.g. Patton et al., 2017, 2016),

but comparing to other forms of evidence is still imperative as considering flow direction
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alone does not resolve all pieces of evidence.

Whilst this workflow can optimise the parameter inputs, the initial model setup is still

vital. If the model setup is not correct, there is only so far this workflow can succeed. Initial

testing can help inform if an aspect of the model design is producing completely unrealistic

simulations, and also the extent to which changing the parameters are causing variation in

the output of the simulations. In Chapter 2, I demonstrated this with a smaller ensemble

that was not varying the extent of the southern margin (Figure 2.9). If I had continued the

workflow with this setup, the results would not have been as clear as the precipitation input

was overriding all other variance in the output.

Findings could suggest where new evidence is most needed to reduce uncertainty in the

model to improve reconstructions of palaeo-ice sheets. Domain areas where evidence is

hard to find, either in regions where evidence is less likely to form (in oceanic areas) or

for geopolitical reasons are difficult to obtain (like Russia), can benefit from using model

results to inform the reconstruction. For example, the ice shelves and grounded ice off the

northern coast of Britain and Norway (Figure 6.6b) are not usually hypothesised. This

could be investigated further to ascertain if such grounded ice could have actually existed

here or whether the model is at fault. At this point in the study, concrete conclusions about

ice shelves cannot be made due to the lack of comparison to marine landforms, but is an

interesting line of enquiry for future studies. Also, if a model is optimised by the flow, more

confidence can be given to the flow directions modelled in areas lacking evidence for use in

reconstructions.

Palaeo-proxies for the extent of ice shelves are limited (Dowdeswell, Canals, Jakobsson,

Todd, Dowdeswell and Hogan, 2016; Smith et al., 2019). Numerical modelling is one av-

enue to explore the potential past ice shelf configurations. The ice shelves estimated by

this modelling study are extensive and regularly grounded with thick ice. Evidence and

numerical modelling studies demonstrate that during the penultimate glaciation ice shelves

could ground in ocean depths up to around 1280 m (Gasson et al., 2018). For the last

glacial cycle, few ice shelves have been hypothesised (although see Ely et al. (2024)). My

modelling predicts ice shelves could have been extensive, radiating out from the continental

shelf break and grounding on high points of the sea floor (Figure 6.8a). This may be due

to model deficiencies in ice-ocean interactions or may serve as an interesting hypothesis for

future data-based investigations.
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6.6 Potential avenues for future work

In this thesis, I have developed a procedure for scoring model simulations against flow

direction. Now that a model which recreates flow direction can be made with this procedure,

the outputs from the model could be useful for other applications. If the flow geometry is

correct, model simulations can be used to explore the movement of erratics and minerals

in Eurasia. Using the direction of ice flow and the geological makeup of the bed, the

transportation and final location of erratics and minerals could be located (Hooke et al.,

2013), which could be useful for future mineral prospecting work.

I have focussed on using a wealth of directional data available over the EISC. However,

there is a range of other constraints that could be used to validate and improve model simu-

lations, e.g. moraines, sea level data and geochronological evidence. In order to use this data

effectively in the same system, better model-data comparison tools are required. Creating a

model-data comparison tool for geochronological data needs careful consideration. A large

amount of expert judgement is required, both when deciding the context a date gives (ice

free, ice marginal etc) but also how reliable each piece of data is (Small et al., 2017). There

are also lots of different methods for determining the age of the geochronological evidence,

such as radiocarbon, optical stimulated luminescence or cosmogenic nuclides. Combining

all of these different contexts and methods is not trivial. If Bayesian model-data compar-

ison tools could be formed for all, or some, of the other pieces of evidence, they could be

easily combined by multiplying the likelihoods together to achieve one overall score which

could then be emulated. However, the variety of settings and geochronological techniques

from which ages are derived makes assigning a likelihood to a geochronological constraint a

non-trivial task.

The same system as performed in this thesis could be performed on modelling other ice

sheets. The Laurentide Ice Sheet is another palaeo-ice sheet with a large amount of flow

data (Dulfer et al., 2023; Stoker et al., 2024). The workflow described in this thesis could

be replicated with the Laurentide Ice Sheet or other palaeo-ice sheets with extensive flow

data. The Antarctic Ice Sheet also has observations of past ice flow (e.g. Anderson et al.,

2014). The ability to correctly simulate the past dynamics of ice sheets is important when

aiming to project the simulations into the future. Running an ice sheet from the past before

projecting into the future is called creating a spin-up (e.g. Fyke et al., 2014; Saito et al.,

2016). The spin-up state of a contemporary ice sheet model has implications for projections

of sea level rise (Aschwanden et al., 2013). The approach described in this thesis could be

an effective way to create spin-ups before performing projections. For example, LALA could

be used directly using velocity data over the Antarctic (Rignot et al., 2017) and Greenland

(Joughin et al., 2015) ice sheets, using the directions of the speeds over the ice sheet as a
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proxy to the landforms used in the applications of LALA over the SIS and the BIIS. This

seems to be an important area of study: quantifying how correctly replicating the history

of an ice sheet can reduce the uncertainty of future projections.

6.7 Summary

In this chapter, I discussed the main findings of my work, compared my results to investiga-

tions in the literature, and explored wider implications and future extensions following this

thesis. I have shown that the workflow used throughout my thesis has improved the model-

data match to flow directions. I have compared my best-performing simulations to other

modelling studies as well as to other forms of observational data, i.e. extent and timing. I

have discussed the implications of my work regarding the reconstruction and simulation of

palaeo-ice sheets, and future uses for the methods in this thesis.
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Chapter 7

Summary and conclusions

The aim of my thesis, stated in Chapter 1, was to ‘combine ice sheet modelling with Bayesian

inference to simulate the flow of the last Scandinavian Ice Sheet’. I had several objectives

to complete in order to achieve this.

Objective 1: Create a statistically rigorous model-data comparison
tool to compare model-simulated and inferred past ice flow direc-
tion

I conceptualised and created the Likelihood of Accordant Lineations Analysis (LALA) tool

to compare observed flow geometry from glacial landforms with simulated flow directions in

a statistically rigorous way (Chapter 3). The tool expands on a previous attempt at model-

data comparison tools for flow direction, the Automated Flow and Directional Analysis tool

(AFDA) by Li et al. (2007), and has two main advantages. First, it tackles the comparison

of flow directions in a more statistically robust manner, and second, it produces a continuous

output score rather than the binary yes or no fit produced by AFDA. This latter point was

essential because such a continuous quantification of fit permits the application of Bayesian

inference methods, such as emulation, to ice sheet modelling. LALA was tested and applied

to the British-Irish Ice Sheet (BIIS) (Section 3.5) using published flowsets to demonstrate

proof of concept and has now been published in Archer et al. (2023). The tool picked out the

best and the worst simulations from a previously run ice sheet model ensemble of the British-

Irish Ice Sheet (Clark et al., 2022). When compared to a reconstruction of the ice extent at

21 ka (Hughes et al., 2016), the best-performing simulation, according to LALA, was found

to better match the reconstruction compared to the worst-performing simulation. In this

case, flow optimising significantly improved the overall ice sheet simulation. Whilst LALA
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provides a step forward in statistically comparing observed and modelled flow directions,

there are still limitations and avenues for future work, such as not accounting for cross-

cutting relationships. Cross-cuts provide relative timings of past ice flow directions and

would be useful extra information to include in future versions of LALA.

Objective 2: Run a perturbed ensemble of simulations of the ice
sheet complex using the Parallel Ice Sheet Model

I tested and re-designed a model setup over 40 to 5 ka across a large domain over Eurasia,

using the Parallel Ice Sheet Model. Twenty parameters were identified as important for

varying within an ensemble across categories such as flow, calving, temperature, precipi-

tation, and sliding. Using this setup, I ran a 200 member perturbed parameter ensemble,

following the 10p rule, and using a maximin Latin hypercube design to ensure the largest

exploration of the parameter space possible in a small number of simulations. Of the 200

model simulations, 18 of these failed due to stress balances being unresolved numerically.

This seems to occur when the basal shear stress power law exponent had a value of around

0, so future work should adjust the initial constraints of this parameter to ensure the whole

ensemble is completed.

Objective 3: Complete a sensitivity analysis to determine which
model input parameters are the most important for influencing
ice flow directions judged against empirical observations of flow.
Explore and determine which parameters can be discarded to reduce
the dimensionality of the parameter space

Using the output from the initial ensemble in Objective 2, each simulation was scored against

observations using the LALA tool. I then performed a sensitivity analysis using generalised

additive models, which is a variance-based sensitivity analysis that can calculate main effect

indices (the contribution to the output variance by each input parameter) as well as the

pairwise interaction effects (the contribution to the output variance by two parameters

working in combination). The results obtained from the analysis were used to reduce the

parameter input space from 20 dimensions down to just 13 (Chapter 4) by determining the

least important parameters in explaining ice flow directions and other metrics on ice volume,

ice shelves and velocity. The exponent for the flow law was consistently picked out as being

the most important parameter affecting four different model outputs, concerning ice volume,

ice shelves, ice velocity and LALA scores. Conversely, the calving parameter was found to

have almost no effect on any of the four metrics considered. Presumably, this is an artefact

of optimising only to terrestrial landforms and omitting marine data. Including marine data
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could be an interesting line of research for future work.

Objective 4: Use a Gaussian process emulator to optimise the pa-
rameter sampling design and identify model simulations that will
better explain the documented flow geometries

In Chapter 5, I built a Gaussian process emulator and tested different kernels and prior

means to find a prior distribution that would best predict the calculated LALA scores (ob-

tained in Chapter 4 and shown in full in Appendix A). To test the efficacy of the emulator, I

used leave-one-out-validation, where I systematically removed one input parameter set from

the dataset and used the emulator to predict the remaining results. The best prior distribu-

tion I found predicted 175 out of 182 scores correctly within error (Figure 5.15) and used a

Matérn kernel with a linear prior mean. Then, using history matching, I identified untested

parameter inputs that should produce high LALA scores. By using these non-implausible

parameter sets, I updated the sampling distributions from the uniform sampling utilised in

the initial ensemble (Section 2.5.3) to match the distributions shown in Figure 5.17. By

using this emulation method, subsequent ensembles were found to have an improved chance

of simulating higher scores of LALA than the initial ensemble. This both demonstrates

the novelty of this approach using observed flow directions in ice sheet modelling and that

this method increases the chance of building improved simulations regarding flow geometry.

Further work could be done to investigate reducing the prediction errors in the leave-one-out

validation to improve the accuracy of the emulation and history matching process.

Objective 5: Run new simulations to find an optimal model to fit
the collated data on ice flow

Combining the results from Chapter 4, that reduced the input parameter space, and those

in Chapter 5, that flow calibrated the distributions for parameters to be sampled, all using

the new model-data comparison tool from Chapter 3, a new ensemble was designed. This

ensemble used 13 parameters and so 130 simulations were attempted. Of those, 68 simula-

tions were completed. I demonstrated statistically that the flow optimised ensemble was a

significant improvement in the model-data match scoring compared to the initial ensemble

that did not consider flow directions. Thus, I achieved my aim of using ice sheet modelling

and Bayesian inference in tandem to find simulations that best simulate the past flow geom-

etry of the last Eurasian Ice Sheet Complex. Whilst the flow direction model-data match

has been improved, the extent and timing do not match the available data. More work

is needed to include these data into the calibration process, aiming for a numerical model
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set-up optimised to fit all available strands of evidence.

7.1 Wider context and further work

For many decades, simulations of palaeo-ice sheets by ice sheet models have been entirely

separate investigations from those that reconstruct such palaeo-ice sheets by piecing together

the empirical observational record of their activity. More recently, specific tools have been

developed to quantitatively compare and score aspects of model simulations to the empiri-

cally reconstructed behaviour. This has mostly been achieved for ice extent and variations

over time (Li et al., 2008), for comparisons of ice thickness against sea level observations

(Bradley et al., 2023; Peltier, 2004) and with initial forays into comparing model simulations

against observations of palaeo-ice flow (Ely et al., 2021; Gandy et al., 2019). Furthermore,

some ice sheet modelling investigations have taken a data calibrated approach whereby em-

pirical datasets are used to guide or nudge an ice sheet model simulation to hopefully more

correct solutions. Notable examples of these are Tarasov et al. (2012) for the Laurentide Ice

Sheet, Whitehouse, Bentley, Milne, King and Thomas (2012) for the Antarctic Ice Sheet,

and Clark et al. (2022) and Ely et al. (2024) for the British-Irish Ice Sheet. None of these

recent advances have used ice flow in the data calibration modelling workflow. The main

achievement of this thesis is in further advancing data modelling interactions, specifically in

relation to ice flow geometry.

More specifically, LALA, a statistically rigorous tool for scoring modelled flow directions

against the observational landform record has been devised, built, tested and applied. Ap-

proaches using Bayesian inference, while widely applied in other fields such as medicine,

engineering and computer science (e.g. Borko and Bernick, 1964; Florentin, 1962; Talbot

and Harrison Jr, 1966), have now, in this thesis, been applied to ice sheet modelling. This

has been achieved via sensitivity analyses to reduce the parameter space, and emulation

that seeks to find the model parameter combinations that best explain the observed flow

geometry. Creating and simulating a new, flow calibrated ensemble using the optimised

parameter sampling scheme found that improved ice sheet simulations could be realised.

For the first time, Bayesian inference has been used to calibrate the flow geometry in an ice

sheet model workflow. It has been demonstrated and analysed for the specific case of the

Scandinavian Ice Sheet within the wider Eurasian Ice Sheet Complex.

Ultimately, I hope these advances and their discussion prompt further work integrating

other types of observational evidence into ice sheet modelling, such as ice extents and tim-

ings. Using the methodology presented here, improving model simulations based on their

model-data fit is possible. Other palaeo-ice sheets, including the Laurentide, Antarctic and
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Greenland ice sheets, could also be modelled and optimised in the same way presented in

this thesis. For the Scandinavian Ice Sheet specifically, the immediate plans of the PAL-

GLAC project (led by CD Clark at the University of Sheffield), is to re-run the highest

scoring, flow optimised model simulation produced in this thesis, subjected to climate and

mass balance nudges to better match the reconstructed ice extent. The aim is to yield a

preferred simulation that satisfies the empirically reconstructed ice extent and timing con-

straints while remaining faithful to the flow geometry observations. If achieved, this could

provide an improved reconstruction of this ice sheet and be used in sea level, glacial isostatic

and glaciological investigations, as well as for a better understanding of erratic and mineral

dispersal by ice flow and possible use in mineral exploration.
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Ritz, C., Fabre, A. and Letréguilly, A. (1996), ‘Sensitivity of a Greenland ice sheet model to

ice flow and ablation parameters: consequences for the evolution through the last climatic

cycle’, Climate Dynamics 13, 11–23.



184 BIBLIOGRAPHY
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Appendix A Initial ensemble parameter inputs and LALA

scores

Model

Number

E n q Hcr Fs Fi τs
c τb

c τo
c τtk

c τtn
c αLGM

1 αLGM
2 αPI

1 mbr ms mba Fmelt γT β LALA

Score

128 1.273 2.068 0.942 68.325 2.761 9.978 11.791 148.770 22.345 51.903 82.492 -0.187 0.156 -0.442 10.193 9.180 0.757 0.020 0.076 94.954 -101608

121 0.740 2.001 0.428 287.469 2.822 7.950 17.543 120.666 11.975 39.579 71.884 0.010 0.253 -0.480 10.287 6.211 1.354 0.022 0.062 44.095 -104411

130 1.623 3.964 0.382 60.278 2.287 9.726 12.088 127.797 29.781 35.022 87.402 -0.905 0.942 -0.414 25.240 9.845 1.418 0.017 0.053 88.935 -105111

119 1.784 3.910 0.038 256.569 4.987 5.086 17.950 109.904 17.685 55.063 95.900 -0.889 0.571 -0.657 17.171 9.851 1.965 0.022 0.060 56.388 -105817

67 2.147 2.033 0.749 88.418 4.290 5.451 14.584 137.927 16.248 33.143 66.049 -0.954 -0.494 -0.679 16.277 6.545 1.292 0.024 0.087 80.669 -106468

9 1.364 2.089 0.228 196.829 4.182 8.071 16.350 142.465 20.919 52.918 64.426 -0.220 0.426 -0.476 28.852 8.200 1.739 0.033 0.056 99.320 -106595

189 1.751 3.865 0.349 270.094 3.106 6.254 15.920 139.190 28.510 56.679 74.878 -0.335 0.785 0.215 28.498 9.778 1.604 0.027 0.044 82.507 -107021

43 1.962 3.500 0.009 166.570 4.328 8.414 10.464 147.829 22.803 45.974 89.399 0.788 -0.534 -0.341 12.058 9.119 0.946 0.022 0.072 41.803 -107630

30 1.649 3.449 0.010 255.592 2.769 8.386 10.950 144.951 16.388 44.426 85.318 0.052 -0.528 0.959 11.469 8.763 1.067 0.010 0.072 42.796 -108053

3 2.002 2.551 0.122 105.385 3.621 8.267 13.813 127.455 19.609 53.566 65.184 -0.327 0.989 -0.226 22.630 7.440 1.796 0.014 0.072 49.463 -108253

136 2.285 2.016 0.086 123.982 3.116 9.170 19.424 103.986 13.858 54.156 64.990 -0.342 -0.562 -0.598 16.065 6.012 1.167 0.040 0.070 65.897 -108472

70 0.965 3.660 0.551 263.267 2.053 8.451 9.316 129.901 25.211 42.756 92.137 -0.779 0.922 -0.290 25.051 8.045 1.801 0.041 0.043 69.202 -108572

101 0.980 3.715 0.225 265.356 3.406 9.595 12.250 117.995 11.455 33.747 71.364 -0.633 0.244 -0.111 25.371 7.483 0.825 0.044 0.088 42.415 -108743

153 2.370 3.726 0.308 221.296 4.891 9.797 9.789 144.605 14.666 47.963 64.708 -0.388 0.887 0.169 23.349 7.644 1.254 0.028 0.058 67.974 -109160

171 0.853 2.079 0.805 140.361 4.791 7.495 15.805 149.933 13.007 44.683 97.729 -0.278 -0.965 -0.331 29.578 8.283 0.916 0.029 0.078 49.739 -109397

140 0.752 2.571 0.740 178.065 4.429 7.038 19.070 142.022 23.673 33.823 83.490 -0.071 0.900 -0.186 16.445 6.511 1.940 0.029 0.087 90.911 -109726

179 0.815 2.331 0.292 253.666 3.450 7.987 13.962 147.444 14.731 43.124 89.831 -0.565 0.873 -0.123 20.923 6.870 1.704 0.049 0.071 62.568 -109739

68 2.757 2.376 0.052 100.855 2.032 5.382 17.382 134.940 29.417 30.075 60.875 0.703 0.939 -0.770 11.214 6.973 0.899 0.047 0.089 54.408 -109941

21 1.104 2.183 0.078 145.471 2.485 7.380 12.165 142.695 25.966 66.168 62.504 0.838 -0.111 -0.866 26.294 9.449 0.931 0.036 0.054 40.883 -109988

10 0.878 2.023 0.482 278.651 2.794 8.687 10.674 104.220 20.007 61.139 85.967 0.968 -0.345 0.872 29.798 7.757 1.146 0.026 0.061 79.857 -110030

66 1.038 3.193 0.102 154.137 4.926 8.138 16.991 122.461 19.989 48.552 76.537 0.727 0.314 -0.577 17.207 8.488 1.687 0.046 0.084 55.668 -110224

28 0.690 3.936 0.726 201.487 2.907 6.493 10.193 107.490 16.792 59.766 64.123 -0.876 0.524 -0.682 23.707 8.569 1.784 0.008 0.056 93.593 -111026

93 1.738 2.841 0.959 160.551 4.774 9.188 18.295 146.826 24.252 40.076 62.126 -0.372 0.856 -0.038 20.230 8.310 1.871 0.013 0.059 60.636 -111095

51 1.688 2.159 0.656 167.768 3.437 9.521 7.776 149.231 15.290 57.746 66.240 -0.052 0.955 -0.422 14.262 9.750 0.754 0.024 0.069 53.690 -111515

166 2.648 2.867 0.059 102.616 3.565 7.972 8.293 148.670 12.993 41.027 79.149 -0.047 -0.243 0.631 24.191 9.207 0.535 0.032 0.087 57.915 -111819

173 1.017 2.201 0.005 77.172 3.495 5.010 9.249 125.168 21.097 60.881 63.483 -0.704 -0.352 -0.158 18.205 7.167 1.990 0.038 0.047 46.450 -112229

73 2.708 3.985 0.234 285.557 4.526 8.122 9.862 126.883 16.914 54.666 97.265 -0.070 0.808 -0.822 16.566 6.332 0.577 0.031 0.063 46.949 -112508

96 0.521 2.461 0.100 75.866 3.899 8.234 16.241 117.607 28.158 67.115 83.836 0.951 -0.224 -0.876 22.763 8.451 0.796 0.045 0.062 79.001 -112634

42 0.719 3.783 0.477 262.056 2.747 7.740 12.547 129.573 13.523 55.216 72.590 -0.547 0.224 0.195 20.410 9.511 0.733 0.042 0.059 98.637 -112728

46 2.549 3.457 0.368 138.321 3.272 7.132 6.147 112.070 15.982 43.224 76.769 0.243 0.849 -0.959 21.233 9.345 1.758 0.039 0.081 43.296 -112907

167 2.510 2.057 0.159 109.178 4.379 5.784 12.416 108.609 29.038 53.969 90.994 -0.836 -0.205 -0.841 22.351 5.442 1.383 0.027 0.049 91.310 -112978

125 2.988 3.949 0.929 111.184 4.106 8.086 12.834 108.973 13.431 51.096 75.782 -0.597 0.120 -0.646 14.510 9.283 1.107 0.042 0.064 46.615 -113027
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26 1.841 2.111 0.606 249.730 3.031 7.201 18.474 110.157 19.214 30.223 90.783 -0.620 0.199 -0.370 12.973 8.380 0.545 0.019 0.071 52.996 -113143

33 0.797 2.642 0.032 195.531 2.269 7.783 9.086 133.039 15.676 53.266 96.082 -0.028 -0.277 0.823 28.812 8.631 0.942 0.021 0.081 60.000 -113446

39 2.568 3.656 0.541 275.267 3.202 7.654 16.479 106.243 18.576 63.937 78.884 -0.152 0.520 -0.440 26.830 7.059 0.629 0.041 0.069 81.347 -113914

172 1.224 2.142 0.784 282.418 3.276 5.889 13.167 101.284 27.478 51.201 80.145 -0.141 0.167 -0.795 11.139 9.012 1.566 0.008 0.041 61.335 -113945

157 0.575 2.952 0.799 73.432 2.936 7.579 7.085 128.583 14.508 39.759 81.066 -0.123 0.994 -0.251 22.155 5.994 1.590 0.045 0.048 70.421 -113974

107 2.360 2.274 0.717 220.574 2.236 9.037 18.688 112.530 24.085 35.440 60.232 -0.963 0.497 0.681 21.355 8.864 1.544 0.011 0.086 71.214 -114196

54 1.317 3.844 0.216 155.795 4.946 5.316 13.719 130.758 19.405 44.238 78.215 -0.933 -0.992 0.329 22.330 6.975 0.563 0.023 0.061 61.081 -114384

123 1.889 2.281 0.073 189.509 4.312 6.583 19.198 101.758 18.486 49.383 75.448 0.569 -0.592 0.662 27.974 8.066 1.216 0.010 0.068 55.466 -114463

150 2.978 2.104 0.181 162.132 3.798 7.111 11.564 144.493 26.012 53.666 80.576 0.233 -0.128 0.442 25.808 5.888 0.585 0.038 0.057 87.895 -114516

192 2.158 3.116 0.344 149.020 4.148 9.069 12.681 127.544 21.438 34.106 99.277 0.045 0.262 0.095 22.721 9.807 0.891 0.008 0.090 40.285 -114532

124 1.920 2.295 0.972 127.320 2.883 7.518 10.725 119.544 27.163 55.796 84.681 -0.744 0.608 0.898 12.387 6.390 0.648 0.005 0.046 77.376 -114581

146 2.079 2.503 0.259 294.657 3.066 7.720 18.106 131.483 17.708 43.525 63.020 -0.850 0.174 0.238 26.007 8.697 1.398 0.014 0.045 89.701 -114596

152 1.472 2.840 0.310 98.540 3.318 8.732 11.204 149.341 18.144 69.813 69.104 -0.485 0.416 0.462 21.467 7.463 1.273 0.032 0.061 76.498 -114636

86 0.924 3.108 0.931 180.902 2.306 7.676 14.966 149.599 10.685 64.101 84.142 -0.502 0.206 0.983 29.051 9.313 1.778 0.039 0.079 71.699 -114666

154 2.462 2.960 0.147 64.803 4.392 6.040 14.994 128.247 24.599 57.154 73.385 0.574 0.460 -0.303 23.968 7.547 0.636 0.021 0.069 62.376 -114703

95 2.865 2.800 0.889 231.590 3.717 8.152 5.873 132.722 16.147 67.389 85.571 -0.807 0.394 0.736 20.786 9.724 1.263 0.033 0.079 86.037 -114750

74 1.976 3.677 0.280 95.777 2.209 7.816 15.977 136.689 11.532 48.619 80.371 -0.451 -0.471 -0.102 27.347 7.797 1.950 0.025 0.043 79.364 -114799

186 2.230 2.979 0.562 295.611 4.354 6.927 13.390 103.443 15.899 58.735 69.919 0.095 0.862 0.402 18.975 9.367 1.464 0.016 0.082 92.325 -114834

195 1.003 3.748 0.841 85.621 2.392 6.571 10.786 136.189 10.087 38.838 70.716 -0.671 0.076 0.028 29.334 7.196 1.042 0.011 0.062 50.704 -114992

117 2.887 2.223 0.517 289.044 4.445 5.844 19.601 140.645 13.633 67.874 73.894 0.080 0.552 -0.556 16.175 6.317 1.982 0.047 0.082 46.267 -115042

59 2.128 3.739 0.920 192.970 4.508 9.500 8.943 138.487 23.780 42.151 96.735 0.186 0.736 -0.905 13.443 8.355 0.809 0.021 0.060 86.563 -115044

56 2.924 3.922 0.912 228.554 3.681 7.905 15.623 135.411 22.984 66.955 97.888 -0.170 0.547 0.589 26.586 7.501 1.749 0.044 0.081 88.415 -115120

40 2.689 2.473 0.406 78.990 4.857 5.698 11.120 113.595 17.094 35.701 73.004 -0.787 0.904 -0.463 10.780 7.286 0.655 0.030 0.066 80.983 -115153

60 1.326 2.752 0.722 62.280 4.865 9.903 5.130 130.669 13.941 45.647 99.002 0.226 0.723 0.301 19.454 6.837 1.269 0.047 0.079 45.920 -115182

113 0.599 3.592 0.900 131.870 3.869 6.135 16.804 137.575 28.930 60.787 99.642 -0.668 -0.087 0.281 24.875 8.442 1.022 0.013 0.080 48.916 -115199

185 0.836 2.819 0.916 273.539 4.572 6.207 14.733 142.843 16.002 31.361 75.208 -0.826 -0.079 -0.580 28.063 5.524 1.678 0.030 0.046 42.161 -115306

135 2.331 2.778 0.764 162.708 4.069 6.643 5.511 134.450 20.611 32.240 94.761 -0.119 0.439 0.150 17.978 9.990 1.160 0.011 0.053 88.253 -115381

99 2.964 3.289 0.769 119.362 2.828 8.571 14.358 128.804 19.572 43.675 90.153 -0.698 -0.334 -0.900 25.643 8.228 1.310 0.044 0.055 47.893 -115626

144 2.103 3.006 0.862 182.340 3.698 9.354 8.135 134.506 25.573 46.166 72.680 0.451 0.304 -0.852 26.408 6.753 1.926 0.034 0.055 74.998 -115680

65 2.320 3.244 0.681 192.468 4.965 6.024 13.234 100.432 23.802 40.885 74.452 -0.427 0.042 -0.619 26.117 7.904 0.861 0.012 0.083 45.486 -115694

180 2.896 2.219 0.788 54.460 2.546 7.251 9.420 123.588 20.434 52.622 81.630 0.507 0.634 -0.931 19.587 6.236 1.229 0.049 0.075 76.710 -115795

198 1.764 3.852 0.334 144.077 2.243 5.038 8.425 119.885 14.200 50.051 77.781 0.886 -0.176 -0.963 9.118 7.245 1.722 0.037 0.078 59.554 -115853

176 2.670 2.124 0.168 239.404 3.597 7.752 7.420 129.319 24.977 30.919 66.403 -0.262 0.698 0.100 12.700 5.968 1.196 0.020 0.083 96.077 -115929

111 1.161 2.317 0.389 93.506 2.728 9.600 14.020 140.919 14.325 48.825 88.446 -0.420 0.916 -0.995 9.844 7.100 0.909 0.006 0.054 91.078 -115940

127 1.056 2.654 0.829 159.725 4.466 7.838 8.743 118.172 13.302 63.127 71.142 -0.819 -0.543 -0.737 23.223 9.396 1.726 0.050 0.054 84.984 -115951

196 2.654 3.477 0.804 247.898 2.338 8.515 19.359 115.165 27.281 40.681 81.951 -0.586 0.327 0.400 17.758 5.852 1.615 0.045 0.065 40.933 -116009

14 0.512 3.328 0.503 94.732 2.153 6.519 6.741 102.061 12.350 58.535 67.354 -0.473 -0.015 -0.533 16.493 6.743 1.491 0.009 0.067 49.267 -116015

69 2.062 2.258 0.050 206.230 4.972 6.809 17.811 120.306 18.919 61.497 92.559 -0.870 0.473 0.576 22.984 5.421 0.838 0.024 0.058 84.618 -116092

116 2.248 3.767 0.965 299.667 4.706 6.998 12.039 145.548 15.091 68.467 65.413 -0.217 0.488 0.601 12.285 9.097 0.625 0.012 0.054 81.424 -116142

88 1.491 3.633 0.022 66.158 4.194 5.207 14.762 115.838 13.779 35.880 83.648 0.000 -0.936 0.336 18.735 6.916 0.521 0.030 0.077 70.668 -116259

159 2.857 2.048 0.253 228.863 3.186 9.893 7.265 100.859 27.563 36.876 96.460 -0.757 -0.773 -0.504 18.366 5.386 0.524 0.034 0.048 91.679 -116266

44 2.790 2.568 0.142 194.004 4.483 8.890 12.965 125.676 26.950 60.520 76.156 0.349 0.293 -0.015 25.438 9.232 1.319 0.016 0.066 41.539 -116293

149 2.741 2.995 0.128 223.261 3.961 9.571 6.065 125.849 12.613 65.347 80.609 0.105 -0.296 -0.296 18.575 8.810 1.426 0.037 0.061 86.453 -116294

63 2.529 3.512 0.948 187.200 3.456 8.764 15.084 118.414 22.125 62.684 94.146 -0.551 0.684 0.763 22.896 5.594 1.183 0.019 0.065 58.969 -116416
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170 0.926 3.700 0.372 243.460 3.381 6.159 18.213 110.683 15.404 37.886 74.134 0.735 0.963 -0.833 9.285 9.886 0.816 0.043 0.053 50.902 -116515

36 2.784 3.435 0.451 114.092 3.335 8.962 18.861 114.750 25.405 42.317 65.901 0.528 0.815 -0.549 18.067 7.854 0.806 0.029 0.044 93.807 -116594

37 1.377 2.164 0.997 185.175 3.756 7.562 11.969 121.891 26.598 31.948 95.513 0.875 0.599 -0.710 14.192 8.520 1.051 0.040 0.080 67.357 -116774

112 1.127 3.022 0.173 266.725 4.649 8.433 15.469 125.372 28.677 54.549 91.128 -0.606 -0.921 -0.071 21.910 7.686 1.540 0.015 0.084 63.793 -116835

108 2.398 3.308 0.028 142.016 2.888 9.314 15.174 134.195 10.157 33.563 62.856 0.170 0.758 0.370 20.091 5.646 0.505 0.026 0.042 94.259 -116863

109 1.348 3.565 0.687 157.922 2.410 8.491 8.622 147.213 20.164 52.450 67.869 0.332 0.679 0.904 27.862 8.844 1.760 0.034 0.048 78.763 -116943

190 0.683 3.872 0.263 81.097 3.358 6.969 11.608 133.998 23.546 58.896 81.315 -0.097 0.536 0.865 11.656 5.216 1.898 0.036 0.071 57.351 -116973

169 1.444 2.200 0.361 72.099 2.510 9.635 16.868 105.832 12.245 32.852 86.933 -0.947 -0.405 0.933 10.860 6.684 1.825 0.043 0.060 72.430 -117005

182 1.522 3.361 0.326 115.302 3.811 9.420 14.644 113.149 18.623 49.108 85.197 -0.795 -0.705 0.802 9.513 9.260 0.514 0.050 0.084 47.600 -117032

8 1.680 2.099 0.324 62.635 4.544 7.226 10.398 112.268 18.898 38.549 86.761 0.637 0.275 0.531 13.737 6.706 0.988 0.041 0.053 72.904 -117038

129 1.851 3.032 0.630 116.640 3.998 8.808 6.958 121.177 28.446 34.757 92.784 -0.361 -0.259 0.341 25.514 8.950 1.618 0.048 0.073 69.567 -117207

134 1.831 2.593 0.674 179.519 2.081 5.184 14.864 111.893 17.471 49.923 80.800 -0.193 0.769 -0.499 15.244 7.926 0.726 0.008 0.084 68.319 -117223

49 2.624 2.242 0.198 127.659 4.460 9.379 9.958 113.943 23.252 54.849 68.258 -0.317 -0.398 -0.058 13.359 7.824 1.439 0.010 0.057 77.601 -117299

100 0.726 3.058 0.540 251.869 4.668 6.399 6.439 114.243 29.513 57.895 89.760 -0.302 0.349 -0.945 10.400 8.607 1.915 0.016 0.090 82.724 -117394

6 2.771 3.817 0.597 91.450 4.593 6.704 16.123 117.152 27.659 61.922 63.860 -0.134 -0.468 -0.394 19.236 9.544 0.967 0.033 0.047 95.457 -117498

75 1.533 2.727 0.834 202.648 2.603 8.837 15.569 132.837 24.486 65.504 77.095 -0.974 -0.635 0.435 15.321 5.085 1.993 0.006 0.085 63.366 -117527

118 2.722 2.749 0.162 280.597 2.364 8.578 6.838 141.655 12.881 62.032 87.165 -0.202 -0.137 0.674 27.546 8.669 1.519 0.034 0.063 93.252 -117529

178 1.437 2.134 0.936 243.946 2.451 7.328 5.968 108.460 28.351 47.275 98.485 -0.241 -0.947 0.049 18.290 6.422 0.606 0.038 0.068 68.865 -117546

197 0.894 2.611 0.692 112.053 4.848 6.442 13.573 105.372 17.191 41.925 89.002 -0.236 0.189 -0.145 18.503 9.055 1.559 0.049 0.050 80.231 -117584

47 0.626 3.333 0.459 207.701 2.631 5.343 9.426 138.684 16.595 45.511 90.445 -0.431 0.335 -0.765 17.668 7.609 1.484 0.019 0.083 97.007 -117585

191 1.735 3.831 0.041 206.957 2.274 8.359 14.254 111.744 14.945 35.222 93.639 0.415 -0.303 0.562 9.364 9.966 1.414 0.006 0.044 87.376 -117698

85 1.579 3.552 0.392 274.671 3.223 6.892 11.711 145.027 19.361 69.205 76.369 -0.925 -0.446 0.245 10.657 7.382 0.699 0.012 0.051 43.801 -117839

183 1.901 3.127 0.866 259.348 2.696 9.293 8.310 120.888 17.287 56.077 98.243 0.422 0.660 0.740 23.140 8.335 1.448 0.018 0.048 50.202 -117953

35 1.233 2.489 0.240 242.071 4.220 8.312 6.011 148.475 16.805 38.023 67.573 -0.167 0.137 0.416 19.363 7.312 1.956 0.023 0.068 92.018 -118049

132 1.551 2.178 0.604 250.446 2.523 8.786 9.025 144.169 10.859 61.768 88.877 0.535 0.110 0.560 21.622 8.929 0.883 0.018 0.042 61.799 -118052

164 2.449 2.683 0.440 269.459 4.747 8.222 11.831 119.256 18.719 34.492 82.257 0.492 0.713 -0.193 28.697 5.019 0.974 0.032 0.052 53.876 -118082

7 1.717 3.887 0.437 137.178 3.535 8.706 6.275 107.854 29.103 58.274 98.609 -0.520 -0.411 0.134 27.787 5.135 1.457 0.048 0.075 65.477 -118127

52 1.403 3.343 0.116 52.699 2.061 9.441 16.713 139.872 20.240 32.426 68.524 0.168 -0.588 0.615 21.968 9.404 1.665 0.049 0.088 62.951 -118173

34 2.590 3.548 0.568 212.747 4.499 9.767 17.283 133.356 11.801 31.703 60.465 0.777 0.971 0.503 26.660 7.404 0.961 0.040 0.046 62.174 -118194

145 1.673 3.586 0.353 277.186 4.686 5.851 5.602 111.499 21.242 37.678 73.413 -0.518 -0.217 0.859 23.693 6.198 1.283 0.043 0.086 52.705 -118198

16 1.999 3.213 0.192 200.318 3.548 8.291 16.257 100.707 20.745 49.491 87.338 0.068 0.741 -0.004 13.214 6.131 1.364 0.027 0.060 73.391 -118246

1 1.651 2.712 0.298 291.575 3.616 7.001 15.304 131.814 13.136 63.659 79.462 0.641 0.797 0.591 13.601 9.697 1.846 0.033 0.045 58.421 -118258

31 2.033 3.290 0.758 129.802 4.369 5.402 13.449 101.609 24.781 56.458 75.855 0.557 0.617 -0.975 26.852 7.891 1.649 0.036 0.075 57.401 -118394

38 1.081 2.321 0.062 150.816 4.679 8.991 6.223 106.988 21.764 31.195 68.917 0.308 0.582 0.620 10.100 5.349 1.371 0.028 0.087 71.079 -118419

138 1.000 2.761 0.214 297.098 4.026 5.622 14.493 143.080 22.788 51.686 61.326 -0.895 -0.390 0.074 29.896 6.671 1.141 0.041 0.089 67.150 -118602

156 1.545 3.180 0.988 156.306 4.016 7.445 12.889 116.068 25.169 47.625 72.349 0.600 0.657 -0.813 27.240 6.605 0.774 0.046 0.040 64.299 -118815

194 1.072 3.358 0.424 236.663 2.681 7.420 10.312 146.250 11.195 32.776 81.473 0.193 0.373 -0.757 16.731 6.947 1.862 0.036 0.089 51.926 -118824

55 2.934 2.384 0.618 290.220 4.174 8.193 9.188 114.366 27.780 64.640 61.429 -0.683 -0.573 0.425 16.913 6.883 1.839 0.041 0.070 54.843 -118945

77 2.098 2.347 0.791 271.966 3.966 9.234 17.689 132.052 12.740 37.201 66.754 0.468 0.360 0.179 14.606 8.541 0.780 0.049 0.081 50.036 -119106

105 1.609 2.680 0.731 184.512 3.051 6.092 5.023 104.866 22.254 64.250 77.577 0.208 0.626 -0.093 9.789 5.849 1.529 0.007 0.057 84.003 -119140

199 0.644 2.369 0.238 297.623 2.656 6.532 10.895 124.338 11.661 64.801 91.670 0.037 0.507 0.995 15.139 5.167 1.851 0.025 0.076 60.394 -119157

147 1.876 3.521 0.592 204.106 2.594 5.944 7.488 128.266 25.662 52.172 82.155 0.756 0.564 -0.041 10.531 9.596 0.872 0.035 0.070 87.098 -119165

87 1.295 2.782 0.584 279.021 2.860 7.063 18.030 104.547 18.295 41.510 76.985 -0.017 -0.154 -0.383 29.144 9.487 1.011 0.046 0.050 44.669 -119302

181 1.420 3.095 0.203 164.618 3.886 9.121 9.718 141.849 23.363 50.426 85.714 0.859 -0.973 -0.744 21.067 9.744 1.112 0.040 0.043 99.679 -119531
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98 2.264 3.172 0.083 148.289 2.807 7.323 18.789 108.116 21.183 68.609 77.924 0.366 0.401 -0.702 21.529 5.819 1.174 0.011 0.045 78.316 -119707

165 1.928 3.403 0.707 233.687 2.577 7.188 7.604 126.371 20.807 68.051 93.009 0.518 -0.762 0.777 20.721 8.126 1.509 0.048 0.067 56.961 -119733

158 2.837 3.606 0.648 138.972 4.077 7.453 18.919 141.343 26.399 42.811 77.369 0.214 0.649 -0.728 24.043 5.540 0.546 0.027 0.056 78.470 -119750

72 1.147 2.358 0.573 216.362 2.991 9.948 8.009 127.081 29.908 51.434 64.277 0.482 0.148 0.186 21.171 9.912 1.498 0.023 0.052 76.287 -119762

177 2.216 2.589 0.737 213.863 3.424 5.232 5.685 143.386 10.336 36.306 90.394 -0.647 0.058 0.483 19.778 9.140 1.131 0.045 0.041 77.137 -119829

160 1.970 3.825 0.107 50.264 3.256 6.843 12.478 119.169 11.310 48.213 62.253 0.917 -0.196 0.528 21.810 5.111 1.431 0.009 0.064 56.102 -119942

91 0.616 2.538 0.396 212.431 3.301 5.583 6.709 117.426 24.179 52.333 69.489 0.396 0.824 0.693 20.635 9.471 1.316 0.021 0.077 55.035 -119974

120 0.603 3.468 0.269 87.112 4.093 6.247 17.126 107.561 11.278 39.172 93.837 0.110 -0.281 -0.180 15.542 7.589 1.833 0.047 0.086 64.554 -120119

61 0.953 3.207 0.825 55.919 4.721 9.664 15.705 126.652 17.599 57.323 62.618 0.973 0.774 -0.663 24.288 5.483 1.200 0.018 0.041 80.035 -120259

161 2.514 3.389 0.114 187.636 4.918 6.868 15.366 105.037 10.251 54.290 71.507 0.842 -0.751 -0.205 18.866 8.900 0.571 0.014 0.059 60.913 -120266

139 2.477 3.894 0.068 121.487 2.617 9.813 7.962 116.868 14.863 45.266 92.349 0.405 -0.009 0.277 22.100 5.044 1.330 0.043 0.043 64.662 -120322

48 2.209 3.397 0.968 70.276 2.952 7.613 7.884 130.456 18.022 58.052 98.159 0.377 0.013 -0.403 24.841 9.620 1.773 0.032 0.057 63.673 -120334

137 0.704 3.414 0.247 68.897 3.994 8.658 5.761 118.534 17.926 39.324 70.924 0.814 -0.651 -0.165 26.015 5.711 1.632 0.038 0.078 96.681 -120475

114 1.287 2.915 0.499 173.424 4.600 5.809 6.560 135.150 12.435 46.571 94.253 -0.445 0.038 0.458 11.571 8.078 0.659 0.011 0.052 84.348 -120506

5 0.945 3.683 0.873 173.936 3.852 6.068 17.602 104.346 26.194 59.357 88.067 0.073 0.452 -0.804 28.630 5.612 1.356 0.043 0.067 77.930 -120599

18 1.095 2.517 0.840 166.240 2.218 6.762 14.117 146.638 16.633 32.105 69.701 -0.081 0.836 0.255 11.409 9.641 0.596 0.026 0.051 83.659 -120783

22 2.465 3.166 0.532 168.839 3.925 6.794 8.485 143.570 23.470 62.497 86.269 0.317 0.130 -0.325 24.357 7.090 1.677 0.041 0.058 85.633 -120870

151 0.908 2.696 0.376 134.256 2.138 9.467 18.139 141.204 25.857 69.154 87.635 0.472 0.082 0.966 25.152 5.284 0.685 0.007 0.047 74.755 -121108

84 0.870 2.401 0.611 59.196 4.630 9.693 10.127 140.465 23.044 56.238 88.790 0.616 -0.147 0.844 11.871 8.411 1.942 0.007 0.071 90.546 -121150

92 2.603 3.620 0.576 133.648 4.264 9.219 5.392 135.955 12.594 30.517 93.247 0.672 0.098 0.721 19.166 8.275 1.892 0.028 0.072 70.011 -121168

79 1.480 3.378 0.853 217.947 3.749 5.136 11.027 136.903 14.004 65.075 65.723 -0.911 -0.861 -0.212 23.871 9.040 1.884 0.022 0.089 43.482 -121223

62 1.798 3.279 0.651 136.112 2.475 8.945 19.679 139.378 14.435 64.511 79.958 -0.033 -0.059 0.716 11.821 8.001 0.747 0.039 0.077 51.317 -121224

23 1.238 3.152 0.644 216.076 3.502 7.097 19.866 135.638 19.069 47.061 91.844 -0.291 -0.265 0.266 19.007 8.784 0.614 0.006 0.044 73.013 -121276

45 0.668 2.935 0.556 240.391 3.578 5.637 9.631 147.679 21.904 67.593 95.161 -0.991 -0.823 -0.369 24.562 6.160 1.079 0.031 0.085 45.119 -121335

175 2.631 3.698 0.135 152.999 2.988 8.030 12.614 116.672 21.511 36.703 94.521 0.947 0.233 -0.693 29.385 5.368 1.337 0.023 0.059 64.951 -121471

89 0.803 2.448 0.179 177.432 2.002 5.964 18.554 111.203 29.281 60.256 60.647 -0.534 -0.064 -0.278 14.813 7.993 0.675 0.019 0.049 94.817 -121631

20 2.576 3.315 0.282 101.804 4.623 6.652 13.048 124.031 24.645 67.754 74.637 -0.103 -0.799 0.117 12.500 8.589 1.092 0.018 0.074 98.410 -121653

15 0.529 2.660 0.637 89.590 3.920 9.259 7.139 136.321 25.003 66.406 82.930 0.280 0.065 0.784 17.015 8.155 0.768 0.034 0.088 40.521 -121689

94 0.568 2.633 0.715 258.188 4.811 6.900 16.551 146.129 15.362 66.771 97.180 0.356 -0.047 -0.250 20.499 9.655 0.999 0.005 0.075 65.550 -121881

25 0.558 3.020 0.678 199.259 4.221 7.525 7.364 103.065 25.747 36.454 71.790 -0.355 -0.318 -0.069 28.212 6.104 1.227 0.016 0.051 74.072 -121883

102 1.176 2.945 0.753 267.800 2.711 7.159 16.064 121.350 24.307 44.843 98.868 -0.498 -0.693 -0.517 10.971 7.717 1.478 0.038 0.046 75.637 -122159

57 0.841 3.043 0.907 77.507 3.665 8.347 18.972 123.500 12.149 59.972 84.332 0.389 0.706 0.971 23.575 5.236 1.074 0.015 0.058 98.819 -122165

174 2.912 2.426 0.414 84.371 4.902 5.757 13.857 118.842 28.884 65.904 60.028 -0.629 -0.601 0.050 28.412 7.972 1.473 0.017 0.045 93.083 -122247

104 2.843 2.703 0.660 57.721 3.375 5.514 7.641 130.121 23.164 34.979 70.338 -0.729 -0.432 0.701 22.519 7.559 1.573 0.039 0.076 87.614 -122491

58 1.708 2.896 0.271 284.505 4.409 6.285 10.065 116.440 10.756 55.800 78.680 -0.465 -0.510 -0.267 12.788 6.637 1.388 0.006 0.055 52.153 -122638

76 2.344 2.395 0.493 56.317 2.095 9.711 14.386 139.681 14.125 63.527 91.443 -0.768 -0.818 0.834 15.048 5.185 0.711 0.046 0.074 48.390 -122791

64 1.454 2.459 0.530 254.500 3.050 5.428 17.001 106.659 21.328 37.593 86.067 -0.652 -0.165 0.149 17.459 6.578 1.212 0.024 0.073 66.421 -122842

80 2.423 3.223 0.899 99.796 4.822 6.328 11.463 102.266 10.965 40.327 79.771 0.323 -0.490 0.039 15.821 5.696 0.704 0.020 0.082 58.604 -122865

162 0.658 3.061 0.817 113.200 3.652 8.605 13.696 131.124 18.395 66.279 70.074 -0.284 -0.677 0.062 14.906 5.929 1.343 0.035 0.065 95.680 -122929

2 1.871 2.267 0.700 234.125 3.143 8.530 7.194 102.683 19.765 31.546 67.181 0.712 -0.366 -0.637 17.388 8.743 0.670 0.013 0.085 92.544 -123000

27 1.505 2.903 0.317 219.976 3.474 9.331 8.769 145.771 29.692 68.396 79.205 0.587 -0.789 -0.987 19.613 7.750 1.820 0.022 0.052 97.902 -123097

12 1.197 2.234 0.511 107.288 2.177 5.560 16.445 138.062 19.819 45.053 83.058 0.936 -0.623 0.004 29.628 7.031 0.921 0.014 0.062 66.357 -124650

78 2.262 3.073 0.463 104.308 2.845 8.004 19.964 131.644 27.862 38.671 72.177 0.450 -0.183 0.354 9.538 7.201 0.854 0.042 0.066 85.478 -124908

13 2.677 2.418 0.189 170.131 4.131 6.688 5.223 132.391 15.194 43.985 96.829 0.288 -0.739 0.495 29.787 7.349 1.709 0.015 0.070 58.077 -124922
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81 1.356 2.872 0.848 96.345 3.837 5.982 9.554 115.331 26.421 53.044 61.017 -0.406 -0.687 0.083 15.955 6.060 1.903 0.047 0.073 52.587 -124963

148 2.021 3.750 0.667 146.905 2.193 6.317 11.429 124.530 12.065 44.060 96.226 0.125 -0.914 0.389 13.690 5.321 1.026 0.030 0.079 90.028 -125111

187 2.199 3.485 0.857 264.186 2.446 7.895 18.637 124.845 28.233 41.316 87.841 0.806 0.285 0.756 19.839 8.706 1.583 0.031 0.078 74.369 -125125

24 2.382 2.308 0.405 292.846 3.125 5.158 8.885 105.611 29.370 34.282 84.866 -0.990 -0.953 -0.522 9.660 9.930 1.557 0.010 0.068 97.664 -125244

155 2.500 2.492 0.208 260.803 4.045 8.641 11.268 103.697 22.494 30.772 89.486 0.260 -0.103 0.311 11.060 6.266 0.881 0.017 0.064 72.377 -125387

32 1.031 2.734 0.471 74.348 3.950 5.053 15.780 109.532 22.649 40.416 63.299 0.153 -0.460 -0.624 25.758 6.462 0.834 0.026 0.066 75.702 -125575

131 1.635 2.521 0.585 209.373 2.558 7.366 5.231 138.994 27.990 50.716 69.277 0.133 -0.511 -0.918 9.062 7.262 0.787 0.025 0.063 53.269 -125809

41 2.943 3.427 0.877 126.023 3.524 5.291 13.324 122.055 26.881 68.813 82.611 -0.257 -0.612 0.520 24.444 5.762 0.849 0.031 0.047 88.703 -126811

188 1.302 2.792 0.301 245.158 2.323 8.912 11.363 126.211 15.761 63.363 74.384 0.904 -0.025 -0.355 27.658 5.789 1.240 0.009 0.080 59.331 -127055

115 2.819 2.627 0.773 143.443 3.008 9.536 19.305 120.046 26.642 42.506 73.681 0.798 -0.841 -0.131 26.487 6.091 1.599 0.015 0.074 73.735 -127609

0 1.209 2.888 0.419 190.734 3.640 7.291 6.417 114.836 25.340 61.235 95.234 0.742 -0.376 -0.920 16.861 7.143 1.639 0.017 0.080 89.283 -127905

168 1.946 2.859 0.892 287.944 4.731 5.654 10.608 109.230 21.885 62.232 68.753 0.658 -0.557 0.223 12.032 5.567 1.972 0.020 0.050 94.368 -127965

126 2.065 2.549 0.954 171.332 3.732 5.106 13.500 115.501 10.424 57.426 99.478 -0.575 -0.800 0.546 12.234 5.907 0.554 0.025 0.086 68.692 -128123

17 2.404 2.926 0.775 90.243 4.559 6.468 15.261 123.170 27.066 56.893 61.742 0.684 0.001 -0.883 12.592 6.047 1.527 0.035 0.083 51.450 -128921

184 2.040 2.985 0.984 51.631 2.118 6.180 6.615 100.081 19.191 60.145 94.906 0.023 -0.853 0.811 27.024 8.905 1.097 0.012 0.056 71.830 -128973

133 1.174 2.823 0.979 224.124 3.324 9.078 16.688 137.315 13.239 55.477 93.509 0.865 -0.032 0.295 13.925 8.189 1.008 0.025 0.069 44.486 -129997

29 1.810 2.432 0.813 210.083 2.025 6.610 12.336 110.905 17.815 59.563 92.815 0.667 -0.909 0.641 14.747 9.162 1.657 0.043 0.051 47.451 -133732

11 1.595 2.606 0.507 198.384 2.357 5.707 8.191 121.521 16.473 36.001 99.967 0.828 -0.325 0.917 13.110 8.978 0.695 0.037 0.082 85.051 -134050

4 2.176 3.792 0.880 120.542 2.922 5.546 6.926 122.740 11.748 33.334 95.660 0.696 -0.725 0.477 27.144 6.281 1.245 0.019 0.073 83.325 FAILED

19 2.960 3.535 0.355 81.421 2.122 9.145 19.781 101.243 24.876 47.402 78.467 0.925 -0.740 -0.789 14.133 6.783 1.300 0.048 0.067 69.986 FAILED

50 0.779 3.977 0.431 176.219 4.279 7.631 17.332 106.411 26.762 46.227 75.053 0.543 -0.895 -0.607 28.258 6.489 1.924 0.014 0.088 75.252 FAILED

53 1.125 3.997 0.138 183.247 4.122 5.274 9.881 102.785 22.585 48.055 68.058 0.439 0.351 0.885 19.965 7.849 0.605 0.007 0.049 48.402 FAILED

71 2.166 3.959 0.153 230.094 2.532 6.746 14.153 113.294 23.937 59.056 84.435 0.267 -0.711 0.658 24.732 6.813 1.699 0.017 0.042 41.226 FAILED

82 2.118 3.641 0.525 226.030 3.781 5.481 19.717 107.028 20.530 46.950 78.172 0.598 -0.982 -0.453 15.417 5.457 1.877 0.031 0.065 44.827 FAILED

83 0.766 3.771 0.285 235.659 2.970 6.104 19.532 129.024 21.622 50.233 61.965 0.298 -0.831 0.928 27.410 9.561 1.117 0.035 0.064 82.963 FAILED

90 0.549 3.808 0.548 152.457 2.429 9.843 19.102 110.394 26.287 62.974 63.709 0.996 -0.094 0.797 17.829 6.434 0.723 0.008 0.055 97.402 FAILED

97 1.392 3.149 0.625 247.000 3.173 6.367 18.378 143.828 28.712 65.744 86.472 0.623 -0.429 0.122 15.643 5.275 1.055 0.037 0.042 67.767 FAILED

103 1.824 3.235 0.018 108.735 4.310 5.359 5.319 133.713 10.512 50.811 72.866 -0.714 -0.650 -0.563 12.998 7.673 1.737 0.014 0.050 66.796 FAILED

106 1.254 3.132 0.094 283.425 2.390 9.863 5.580 123.991 29.810 38.233 66.995 0.763 -0.667 -0.234 17.569 5.673 1.810 0.029 0.040 96.157 FAILED

110 2.553 3.901 0.633 118.513 3.232 8.864 17.482 112.878 15.554 46.623 91.320 0.983 0.210 0.365 23.469 8.109 1.647 0.028 0.076 96.827 FAILED

122 2.289 3.571 0.469 227.208 4.235 9.007 8.551 122.798 11.049 41.605 88.238 0.143 -0.876 0.016 20.314 5.069 0.980 0.029 0.077 81.893 FAILED

141 1.564 3.257 0.338 122.558 3.161 7.861 12.725 140.228 17.375 69.765 83.358 -0.393 0.024 -0.021 10.002 7.017 1.127 0.045 0.063 99.712 FAILED

142 2.429 3.081 0.445 238.093 2.661 9.972 17.884 145.447 27.322 49.743 70.559 -0.734 0.383 0.205 15.855 5.737 1.035 0.013 0.041 56.517 FAILED

143 2.307 3.624 0.695 82.555 3.089 5.924 17.161 137.089 22.019 69.571 65.207 0.003 0.447 -0.087 29.178 6.571 1.179 0.026 0.049 54.254 FAILED

163 2.811 3.505 0.990 130.425 3.825 6.406 10.532 148.159 28.040 37.185 67.788 0.899 -0.889 -0.310 13.941 7.366 0.950 0.036 0.085 90.104 FAILED

193 2.736 3.267 0.486 66.405 4.783 5.747 7.718 109.357 20.330 39.916 97.407 -0.848 -0.238 0.941 14.391 6.351 1.407 0.009 0.074 82.250 FAILED
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Appendix B Flow calibrated ensemble
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Figure B.1: Summary metrics for the flow calibrated ensemble every one thousand simulated

years. The variables considered are the percentage of grounded ice (%), average ice thickness

(m), standard deviation of ice thickness (m), average ice velocity (m/a) and the coefficient

of variation of velocity.
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Appendix C Flow calibrated ensemble parameter inputs and

LALA scores

Model

Number

n q Fs Fi τs
c τb

c τtk
c τtn

c αLGM
1 αLGM

2 αPI
1 ms β LALA

Score

24 2.007863 0.860196 0.004889 0.006445 18.50879 131.881 52.73085 94.01515 -0.80255 0.909833 -0.86197 6.132171 41.54881 -99938

27 2.047126 0.004889 0.002532 0.008239 6.305647 146.2656 35.4611 72.22064 -0.67519 0.312053 -0.91965 9.527009 65.92187 -100474

35 2.004108 0.453337 0.004082 0.009354 8.609901 141.5007 52.99522 98.87187 -0.83438 0.981969 -0.22258 9.289256 40.27689 -100867

54 2.014215 0.343315 0.003847 0.007208 11.01503 144.1656 42.03689 97.91012 -0.74891 0.915153 -0.77722 8.44711 77.89626 -101102

22 2.033683 0.343057 0.003006 0.005424 8.204957 118.5336 41.34034 75.8934 -0.29546 0.884719 -0.92209 9.606295 84.35379 -101883

120 2.037418 0.357052 0.004062 0.008371 7.014879 102.5009 50.18169 60.09906 -0.85053 0.205129 -0.29813 9.533521 69.37533 -102094

41 2.007358 0.248453 0.002127 0.007842 19.40598 148.6386 69.32074 62.6381 -0.74408 0.76325 0.213936 9.299953 43.27975 -102433

17 2.038562 0.385082 0.00384 0.007681 11.18707 109.7135 39.89804 86.06154 0.095381 0.78999 0.012519 9.397 57.27747 -102823

10 2.038122 0.357563 0.004533 0.008379 10.87038 125.1522 50.26582 70.21364 -0.93355 0.33967 -0.30229 8.278606 81.14734 -102983

103 2.053953 0.000488 0.003906 0.006569 19.42617 102.8515 31.12734 97.34977 0.467888 0.582119 0.690433 9.659626 63.86758 -103518

47 2.018409 0.881602 0.002424 0.007629 8.919677 107.0969 58.42011 60.26377 -0.69068 0.511201 -0.60901 8.988797 53.08618 -104257

52 2.020356 0.688252 0.00316 0.006058 6.38042 125.6631 55.43247 98.81852 -0.73703 0.229198 0.51244 9.617446 49.10062 -104398

90 2.05705 0.629419 0.003458 0.005277 16.54465 117.9802 42.54685 76.68749 -0.81164 0.806054 -0.76602 9.839767 81.1061 -104419

69 2.090011 0.207702 0.002224 0.007594 12.99062 142.9995 60.91901 76.32142 -0.35833 0.900477 -0.7841 8.970156 96.60489 -104440

104 2.127336 0.109139 0.003842 0.007279 19.04227 104.044 50.29052 94.60996 -0.94362 0.241262 0.305569 8.229633 44.74694 -105077

23 2.020612 0.370541 0.003307 0.008296 10.90526 120.3293 36.60443 77.80568 -0.82906 0.915472 0.538086 6.252438 43.35441 -105211

96 2.112495 0.317641 0.002584 0.009498 8.092198 116.4095 53.11965 88.18363 -0.76637 0.527598 -0.70711 9.348413 72.67551 -105441

112 2.035176 0.416786 0.004514 0.008743 11.40729 143.1047 49.82954 89.57306 -0.37336 0.665457 -0.17484 5.91191 99.07352 -105442

71 2.100652 0.380635 0.003757 0.009741 18.10519 112.118 34.16456 82.35656 -0.70802 0.717632 -0.26715 8.129121 62.91417 -105742

57 2.031295 0.533677 0.004168 0.008259 11.82692 135.1426 66.14856 98.01043 -0.56402 0.372292 -0.20266 7.197071 59.9731 -105767

32 2.060149 0.331779 0.004204 0.00807 5.719453 117.4741 34.16142 90.77095 -0.10611 0.459664 0.646122 8.378958 45.4442 -105805

5 2.050677 0.895073 0.004858 0.006785 16.8897 142.6959 34.32577 67.09194 -0.00189 0.478894 0.038926 9.354766 46.79537 -106104

128 2.013671 0.729183 0.004584 0.009946 15.99176 135.4208 68.43355 86.13641 -0.45441 0.086353 0.407096 5.792383 79.15446 -106438

1 2.088437 0.393597 0.003568 0.005972 18.99053 143.9463 41.25723 70.28267 -0.80912 0.074047 -0.82906 9.615336 59.36576 -106460

74 2.143592 0.211086 0.004688 0.005783 13.72389 112.883 38.34627 98.38507 -0.35873 0.90252 -0.88312 8.328421 91.81074 -106569

55 2.106556 0.719978 0.004513 0.009465 19.78883 123.988 50.51588 82.91346 -0.40567 0.924321 0.131101 8.947177 47.26836 -107114

117 2.070363 0.235098 0.003739 0.005559 12.04053 109.9328 44.8797 73.21628 -0.28474 0.983985 -0.34071 5.26969 70.23034 -107167

46 2.097166 0.749424 0.004886 0.009943 19.78753 144.5984 66.03364 91.53935 -0.82363 0.582683 -0.48499 7.156432 79.12365 -107519

81 2.079108 0.864217 0.003992 0.008029 18.68723 143.0276 43.41716 73.10446 0.25346 0.881235 0.435753 7.241257 70.60641 -107666

129 2.100762 0.73248 0.004563 0.0074 6.525551 135.5978 38.11004 97.81458 -0.69172 0.700914 -0.57905 7.862117 91.89882 -107741

95 2.058956 0.449014 0.003616 0.006139 18.42952 149.0572 52.1753 92.02732 -0.95615 -0.2499 -0.84693 7.68604 57.76814 -108096

80 2.066477 0.309842 0.004854 0.008366 15.91913 121.7657 63.37137 89.73483 0.905114 0.156144 -0.75114 7.980592 80.06278 -108506
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68 2.583476 0.099466 0.004492 0.007706 18.98193 135.441 58.86893 73.73977 -0.76443 0.86344 0.503857 8.771704 45.56822 -108681

59 2.931535 0.083873 0.002309 0.008721 11.5723 133.8605 38.39039 82.16089 -0.61306 0.602711 -0.18799 9.587231 79.10229 -108685

97 2.269258 0.423014 0.003536 0.009453 14.82459 130.5069 30.56941 70.44886 -0.56296 0.81368 -0.48028 9.046072 87.69512 -108777

11 2.080493 0.256317 0.003059 0.005792 18.14914 148.5723 42.05858 66.44267 0.704687 0.480922 -0.48216 8.863331 51.78706 -109236

122 2.824067 0.342779 0.002655 0.008468 9.990188 139.4382 43.39173 69.66529 -0.94267 0.321081 -0.27537 9.493347 68.29748 -109366

50 2.807033 0.360011 0.003663 0.009869 7.819497 145.4596 61.91362 87.6739 -0.95233 0.969013 0.468225 9.432686 98.07431 -109600

2 2.95162 0.345994 0.004981 0.009788 17.87066 148.9177 69.71726 81.26392 -0.25727 0.872034 -0.21405 9.670043 76.96708 -109943

0 2.97382 0.193668 0.002835 0.007426 10.56615 142.8392 40.98742 85.95776 -0.83898 0.27774 -0.32107 7.417191 88.23619 -110019

29 2.124177 0.560751 0.004038 0.007953 13.31317 138.4685 35.03789 97.26631 -0.96541 0.773379 0.634695 5.652966 84.84751 -110190

109 2.97134 0.321366 0.00219 0.00738 18.3464 144.8382 51.87376 80.16281 -0.89409 0.790055 0.123131 8.429261 84.76132 -110284

73 2.061204 0.550111 0.004373 0.008167 16.01193 106.5205 50.15202 84.90211 -0.61766 -0.27303 -0.43019 7.201459 77.53363 -110443

77 2.142575 0.964847 0.003958 0.006805 16.36834 141.9965 30.62015 97.31441 -0.99639 0.614905 0.170991 7.225547 49.92397 -110573

107 2.881213 0.108586 0.004376 0.008114 7.066421 137.1367 64.23886 98.65935 -0.75475 0.142069 -0.82615 7.263328 56.22484 -110845

92 2.064417 0.317946 0.002163 0.00603 10.38246 118.4181 40.51256 61.8906 -0.38818 0.542506 0.738604 5.431713 60.09626 -110967

101 2.601019 0.981148 0.004454 0.009741 15.27172 112.5546 58.95101 85.09291 -0.713 0.902175 -0.55519 8.501359 75.51498 -111070

19 2.165054 0.231234 0.003613 0.007564 14.00193 144.8674 36.59126 95.60853 -0.89997 -0.75849 -0.17091 9.946097 60.78688 -111173

45 2.492369 0.271797 0.003927 0.006508 9.370295 128.9368 44.22139 74.95126 -0.76702 0.586383 0.410836 9.430362 82.05107 -111260

85 2.14503 0.964359 0.004254 0.007196 7.495626 128.2828 53.31018 60.77243 -0.64519 0.487109 -0.3196 7.208312 44.30162 -111339

125 2.691845 0.976452 0.004095 0.009296 8.412357 107.1634 60.03495 78.74517 -0.97437 0.498331 -0.91286 9.097397 57.60471 -111358

105 2.882876 0.410217 0.004118 0.009613 13.75692 142.1561 36.58044 62.05478 -0.26397 0.621126 -0.56303 8.375492 89.41132 -111916

16 2.064063 0.423307 0.002418 0.008651 5.475844 147.5578 43.98015 93.85679 -0.52144 -0.69524 -0.33686 7.608338 71.58191 -111928

93 2.226584 0.38459 0.003704 0.009976 10.9914 107.9557 30.39198 98.95269 -0.08749 0.623094 -0.18667 6.614988 62.74742 -112085

60 2.897333 0.332138 0.002633 0.009098 8.254404 108.1523 43.08468 63.11844 -0.2669 0.673722 -0.26938 7.743914 62.20641 -112926

39 2.999798 0.109307 0.003717 0.005008 5.605536 139.5233 69.85466 85.69346 0.076862 0.408866 -0.25053 9.912738 46.30146 -112964

48 2.86708 0.290721 0.003746 0.009494 19.23782 130.8843 43.70377 96.24725 -0.16699 0.529895 0.083681 9.249521 94.32237 -112985

124 2.836573 0.392396 0.003886 0.0053 9.408194 149.3912 58.57925 96.34791 -0.88749 0.490615 0.618454 9.739957 54.69656 -113011

127 2.52002 0.494668 0.002432 0.009545 12.43233 130.3103 35.30059 67.51353 -0.9702 0.456651 0.914413 9.229922 65.7886 -113093

6 2.488034 0.069032 0.002154 0.007517 9.655335 113.6708 30.43631 80.28442 -0.0019 0.225439 -0.56361 9.23739 85.5013 -113350

100 2.324975 0.266047 0.002497 0.006881 19.28839 125.6674 62.67653 66.62434 -0.99666 -0.13909 0.970491 9.678665 44.85066 -113723

13 2.611617 0.910633 0.002136 0.008472 12.37147 122.6552 54.29203 84.45688 -0.61804 0.978429 -0.26953 7.88776 48.25494 -114321

21 2.288059 0.33997 0.003738 0.005884 11.57757 108.5859 56.14344 95.31701 -0.09596 0.087432 -0.34627 8.84919 43.57045 -114804

34 2.628698 0.745741 0.002891 0.007499 12.59507 130.1018 55.51597 87.10276 -0.17795 0.712379 -0.95877 8.351084 98.79496 -115460

26 2.873858 0.586672 0.003078 0.006074 13.22397 144.1373 60.01965 84.29255 -0.69194 0.274487 -0.54138 9.358836 72.7133 -115853

115 2.919151 0.279192 0.00465 0.009453 7.382794 134.9458 39.18651 96.73078 -0.6729 -0.97154 0.246304 7.534141 56.29626 -118101

62 2.645301 0.732117 0.003321 0.009376 15.30329 144.4833 36.58305 73.18407 -0.26932 -0.2783 -0.71305 6.674194 44.63043 -120128

36 2.771994 0.313139 0.002203 0.00795 10.72501 100.5513 63.23813 77.76672 -0.08045 -0.67145 0.048401 9.987711 68.49605 -120669

3 2.050907 0.074004 0.002422 0.0097 5.974312 107.7606 36.42226 66.31029 -0.48395 0.654801 -0.60588 6.126989 53.55859 FAILED

4 2.05228 0.007339 0.002134 0.008224 11.94296 124.1769 55.98165 66.48189 -0.34754 -0.16307 -0.2112 5.65981 54.1719 FAILED

7 2.094108 0.109848 0.002487 0.007306 8.354892 143.237 37.93247 86.42043 -0.9465 0.698864 -0.50781 6.340434 50.34646 FAILED

8 2.159733 0.035425 0.002529 0.006492 14.00942 100.3083 35.70561 84.94713 -0.31393 0.669868 0.638042 8.524859 97.10389 FAILED

9 2.071913 0.032062 0.002081 0.006003 14.14777 131.4817 47.19368 70.70016 -0.01718 0.999867 -0.26989 8.70735 41.31043 FAILED

12 2.089592 0.065915 0.002907 0.007193 6.857984 144.7101 57.10159 70.99235 -0.67226 0.352283 0.272952 5.01917 54.98647 FAILED

14 2.097479 0.04215 0.003265 0.009203 10.61346 108.1666 43.25188 80.47019 -0.73145 0.827299 -0.98162 5.969012 81.42551 FAILED

15 2.25849 0.086684 0.004637 0.009418 14.89686 146.2391 68.81697 91.24841 -0.37456 0.888559 -0.74013 9.161424 67.82877 FAILED
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18 2.772732 0.169543 0.003876 0.007851 18.62232 112.6958 46.69628 93.90249 -0.88728 0.909742 -0.28023 6.438428 95.583 FAILED

20 2.289735 0.045509 0.002375 0.007389 19.27815 100.8011 44.62666 82.38927 -0.24092 -0.49449 -0.75915 9.149064 81.01452 FAILED

25 2.040026 0.064104 0.003002 0.006001 15.17118 133.1834 49.05861 95.47636 -0.86691 0.787662 0.025106 8.862661 54.30698 FAILED

28 2.05382 0.093481 0.002081 0.009593 11.98832 143.6985 67.34662 78.45668 -0.3315 -0.43675 -0.74276 9.472983 49.79434 FAILED

30 2.002702 0.097599 0.003667 0.009262 16.07581 144.4357 51.01734 84.90216 -0.98322 0.855115 0.635755 7.630204 91.99637 FAILED

31 2.801364 0.074311 0.002712 0.007338 9.494184 122.1896 60.06629 72.24522 -0.3929 0.90086 0.506196 8.306711 91.93764 FAILED

33 2.189027 0.050168 0.002927 0.009091 14.83478 138.2908 66.81656 85.43041 -0.23225 0.73816 -0.9312 6.279871 91.84853 FAILED

37 2.153252 0.036306 0.003249 0.008952 12.65898 138.1438 69.66009 88.25197 -0.08194 -0.27425 -0.82072 8.850886 43.35346 FAILED

38 2.755966 0.021074 0.004767 0.007259 19.72869 119.4849 44.62611 82.19828 -0.95597 0.533395 -0.20888 9.369299 66.92202 FAILED

40 2.911252 0.008394 0.00464 0.009493 17.25575 128.6625 57.272 76.94253 0.430583 0.454682 -0.26431 5.8532 52.38156 FAILED

42 2.085674 0.122338 0.004125 0.009743 12.70861 142.4622 64.54324 85.79147 -0.45112 0.608213 0.346529 5.164304 98.78577 FAILED

43 2.033842 0.213132 0.002138 0.008355 11.73458 142.4285 59.08091 90.34158 -0.59906 0.984129 -0.54771 6.839031 87.47645 FAILED

44 2.001705 0.054454 0.004961 0.00593 11.3266 117.4867 69.1447 97.9668 -0.85849 0.738601 -0.29353 9.898232 74.77779 FAILED

49 2.124402 0.055895 0.002795 0.005418 19.61831 129.0766 68.4905 69.45838 -0.4911 -0.42081 0.650046 6.902984 51.80187 FAILED

51 2.042458 0.012846 0.003477 0.007712 7.175458 148.9436 68.26987 75.74699 -0.87901 0.954842 0.137287 7.54912 48.2858 FAILED

53 2.005037 0.130327 0.003328 0.009035 17.55171 139.406 69.34497 84.00318 -0.90695 0.590139 -0.70552 9.914518 48.55276 FAILED

56 2.352439 0.142663 0.003231 0.006994 19.38516 119.292 31.68866 93.36134 -0.97776 0.671217 0.505735 8.770239 91.46719 FAILED

58 2.113802 0.165588 0.004171 0.00991 10.92035 135.2095 65.55156 97.299 -0.09468 0.738261 0.167821 8.689755 47.38587 FAILED

61 2.311667 0.005435 0.00462 0.007243 16.24752 148.4434 60.17063 74.76163 0.149152 0.923338 0.24553 8.377548 85.89436 FAILED

63 2.055988 0.014627 0.003079 0.008297 7.042075 131.1893 37.59057 66.33624 -0.08748 0.984468 0.977257 8.820005 44.15889 FAILED

64 2.161231 0.049115 0.002416 0.007224 8.577951 129.3348 60.57991 87.35854 0.025817 0.40897 -0.41911 5.593482 43.15531 FAILED

65 2.182724 0.068893 0.002769 0.008631 15.64599 120.8009 61.83913 93.18112 0.131823 0.605633 -0.9751 8.979868 89.60455 FAILED

66 2.015213 0.180353 0.003346 0.008341 14.96893 127.9714 59.20482 88.56704 0.661934 0.404105 -0.05293 6.203773 45.70086 FAILED

67 2.128193 0.15076 0.004486 0.009804 18.4587 126.3754 50.46133 68.28926 0.432113 0.654844 -0.27727 5.522999 76.44808 FAILED

70 2.031208 0.092951 0.003387 0.006484 8.467784 139.6689 42.07425 81.03382 -0.93813 0.055689 -0.86506 5.921028 99.27499 FAILED

72 2.185582 0.117214 0.004848 0.007312 10.37854 139.8039 69.13573 67.83016 -0.56102 0.518742 -0.99043 8.946482 94.10683 FAILED

75 2.087518 0.129001 0.002461 0.006399 14.42171 120.7735 69.18014 88.72703 -0.67877 0.024102 0.235776 8.63435 51.7024 FAILED

76 2.031358 0.237895 0.004948 0.009462 10.09516 136.8594 51.16146 77.74461 -0.70818 0.927692 -0.94834 9.345564 60.81446 FAILED

78 2.062992 0.202516 0.002233 0.009692 18.38291 132.2018 56.11939 93.70682 -0.18833 0.729565 0.143373 5.946863 77.92862 FAILED

79 2.099632 0.066914 0.004128 0.006003 10.43741 125.6764 31.90092 88.98292 -0.65061 0.543 -0.51655 9.532594 92.69423 FAILED

82 2.056744 0.128091 0.002444 0.008136 14.57907 149.2603 33.74733 60.18525 -0.31641 -0.76486 0.158729 6.997579 92.81665 FAILED

83 2.063834 0.002944 0.003256 0.009313 19.80194 140.3154 36.62525 81.95026 -0.99472 0.691777 -0.64664 5.210628 53.01187 FAILED

84 2.015845 0.010168 0.004446 0.009933 16.59966 149.0812 56.62118 91.39539 -0.96479 0.175982 -0.90211 9.796568 40.05214 FAILED

86 2.044648 0.208221 0.003319 0.007637 9.011311 109.135 64.62658 87.70453 -0.82687 0.918333 -0.83558 5.98496 96.27788 FAILED

87 2.094138 0.068121 0.004543 0.007771 10.54065 125.2464 33.05033 68.75655 -0.3625 0.057153 0.834465 7.480034 70.91911 FAILED

88 2.197474 0.163626 0.002207 0.007765 11.13022 123.3438 49.41188 82.82507 -0.85837 0.70672 -0.20257 7.55262 86.35757 FAILED

89 2.027814 0.25529 0.003204 0.008125 8.997606 129.1763 32.40491 96.08466 -0.51797 0.788006 -0.6194 7.303975 46.64087 FAILED

91 2.077985 0.019437 0.003676 0.008246 5.577685 144.4788 39.10019 85.11691 -0.96545 0.208828 -0.50971 5.534185 73.66058 FAILED

94 2.036503 0.00211 0.003817 0.009692 7.411343 135.6039 66.14553 63.05272 -0.98528 0.759458 -0.55997 8.565018 63.2432 FAILED

98 2.035453 0.185459 0.004945 0.00725 8.647146 133.7981 59.33346 80.17791 -0.51525 0.509634 -0.9139 5.191787 73.32091 FAILED

99 2.139822 0.096743 0.003798 0.009971 16.34302 112.0444 41.23736 99.49463 -0.20869 0.300584 -0.85564 8.479853 62.73241 FAILED

102 2.037868 0.159436 0.004518 0.009165 7.622013 135.5052 68.92229 64.65227 -0.66549 0.619232 0.348288 5.344626 49.37595 FAILED

106 2.109385 0.032619 0.00318 0.006296 7.89015 140.6494 46.71363 72.73519 0.33191 -0.62839 -0.33265 9.33727 73.00527 FAILED

108 2.070443 0.022775 0.004113 0.007132 9.31922 111.2695 40.33315 86.99134 -0.51584 -0.7302 0.780753 8.968642 54.78648 FAILED
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110 2.279263 0.090268 0.004383 0.009267 16.45292 106.8025 37.75229 98.13299 -0.31002 0.723268 -0.92382 8.472544 77.93766 FAILED

111 2.124556 0.052926 0.003658 0.00895 13.72756 137.4267 38.09451 75.67283 -0.3547 0.464091 0.482822 8.359412 96.58085 FAILED

113 2.880966 0.097821 0.003099 0.008293 7.560044 112.5101 54.1695 92.4302 -0.75527 0.98096 0.165945 9.41692 53.83132 FAILED

114 2.074921 0.032824 0.002298 0.009366 15.91176 138.4439 34.32683 78.58217 -0.61084 0.403201 -0.84929 9.899393 66.50538 FAILED

116 2.574337 0.173832 0.002009 0.005674 9.095003 112.941 59.25878 99.72044 -0.78488 0.415625 -0.4191 8.798947 55.88947 FAILED

118 2.048547 0.188035 0.004547 0.00763 15.82866 139.1427 36.37894 85.88782 0.275996 0.438024 -0.6795 7.940653 51.96716 FAILED

119 2.097884 0.026792 0.004788 0.00702 11.20599 144.2193 52.56404 75.63597 -0.21947 0.546538 0.720165 6.901445 44.34301 FAILED

121 2.038245 0.037834 0.002331 0.007909 17.20347 102.5018 56.47802 89.35523 -0.70384 0.906933 0.681533 5.751378 45.86774 FAILED

123 2.359959 0.010109 0.004397 0.009556 16.56983 123.3937 68.12972 83.19441 -0.20501 0.939344 -0.26696 8.332017 60.95441 FAILED

126 2.114491 0.086541 0.00267 0.009092 5.483569 121.6482 59.4401 76.04739 -0.49807 0.455902 -0.97126 9.228307 82.4398 FAILED


