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Abstract

This thesis contains a collection of results that lie primarily in the intersection
of model theory and finite combinatorics. The two main areas of combinatorics
that make an appearance in the pages to follow are Structural Ramsey Theory
and Extremal Graph Theory.

Chapter 3 focusses on interactions between model theory and structural Ramsey
theory. There, I essentially present two new results. The first is an extension
of Scow’s theorem connecting generalised indiscernibles and Ramsey classes,
and the second is a construction of a strict hierarchy of “local” Ramsey classes.

In Chapter 4, the focus switches, momentarily, to pure model theory, and spe-
cifically Classification Theory, in the sense of Shelah. This chapter investigates
dividing lines characterised by collapses of indiscernibles and transfer principles
for products of structures for such dividing lines. Structural graph theory also
shows up in the last section, dealing with bounds on the twin-width of classes
of products of graphs.

In Chapter 5, I present results on extremal graph theory, in particular, Za-
rankiewicz’s problem, restricted to model-theoretically tame contexts. These
include semibounded o-minimal structures, models of Presburger arithmetic,
and some Hrushovski constructions.

Finally, there is a chapter with two smaller results that both fall, at least in
my opinion, within the broader context of intersections of model theory and
combinatorics which closes the thesis.

Keywords: Model Theory, Classification Theory, Structural Ramsey Theory,
Extremal Graph Theory.

Mathematics Subject Classification: Primary: 03C45, 05D10. Secondary:
03C52, 03C64, 05C35.

ix



x



Contents

Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Copyright declarations . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Global Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1
1.1 A Very Broad Introduction . . . . . . . . . . . . . . . . . . . . 1
1.2 A Slightly Less Broad Introduction . . . . . . . . . . . . . . . . 3
1.3 An (incomplete) List of Results . . . . . . . . . . . . . . . . . . 4

2 Global Preliminaries 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Some General Model Theory . . . . . . . . . . . . . . . . . . . 12
2.3 Some Dividing Lines . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Combinatorial Geometries . . . . . . . . . . . . . . . . . . . . . 20
2.5 (Structural) Ramsey Theory . . . . . . . . . . . . . . . . . . . . 23
2.6 (Generalised) Indiscernibles . . . . . . . . . . . . . . . . . . . . 28
2.7 A World of Structures . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Very Standard Classes of Structures . . . . . . . . . . . 32
2.7.2 (Ordered) Hypergraphs . . . . . . . . . . . . . . . . . . 33
2.7.3 More Exotic Examples . . . . . . . . . . . . . . . . . . . 34
2.7.4 Hrushovski’s ab initio Constructions . . . . . . . . . . . 37
2.7.5 o-Minimal Expansions of Ordered Groups . . . . . . . . 38
2.7.6 Presburger Arithmetic . . . . . . . . . . . . . . . . . . . 40

3 Generalised Indiscernibles and Ramsey Theory 43
3.1 Introduction to Part 1 . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Local Preliminaries for Part 1 . . . . . . . . . . . . . . . . . . . 46
3.3 Expansions in Infinitary Logic . . . . . . . . . . . . . . . . . . . 48

xi



3.3.1 Infinitary Morleyisations . . . . . . . . . . . . . . . . . . 49
3.3.2 Quantifier-Free Type Morleyisation . . . . . . . . . . . . 50
3.3.3 Quantifier-Free type Isolators . . . . . . . . . . . . . . . 51

3.4 Existence of indiscernible sequences . . . . . . . . . . . . . . . . 52
3.5 Removing Assumptions From Scow’s Theorem . . . . . . . . . 56

3.5.1 The qfi assumption . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 Removing the order assumption, in the countable case . 58
3.5.3 Reduction to the countable case . . . . . . . . . . . . . 59

3.6 Around Local Finiteness . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Introduction to Part 2 . . . . . . . . . . . . . . . . . . . . . . . 68
3.8 Local Preliminaries for Part 2 . . . . . . . . . . . . . . . . . . . 70
3.9 Kay-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.10 Local Ramsey properties for Kay-graphs . . . . . . . . . . . . . 78
3.11 Orders in 2-Ramsey classes . . . . . . . . . . . . . . . . . . . . 87
3.12 Local Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 90

4 On Products of Structures 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Local Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Reducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.2 More Amalgamations . . . . . . . . . . . . . . . . . . . 97
4.2.3 Product constructions . . . . . . . . . . . . . . . . . . . 98
4.2.4 More Dividing Lines . . . . . . . . . . . . . . . . . . . . 103

4.3 Indiscernible Collapses and Coding Configurations . . . . . . . 108
4.3.1 Indiscernibles Collapsing . . . . . . . . . . . . . . . . . . 108
4.3.2 K-Configurations . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Ramsey Theory Through Collapsing Indiscernibles . . . . . . . 119
4.5 Transfer Principles . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5.1 Transfers in Full Products . . . . . . . . . . . . . . . . . 131
4.5.2 Transfers in Lexicographic Sums . . . . . . . . . . . . . 137

4.6 Ultraproducts and Twin-width . . . . . . . . . . . . . . . . . . 155
4.7 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.8 Local Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 160

5 Around Zarankiewicz’s Problem 161
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2 Local Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 169

xii



5.2.1 (Weak) Local Modularity . . . . . . . . . . . . . . . . . 169
5.2.2 Combinatorial Setup . . . . . . . . . . . . . . . . . . . . 171

5.3 Abstract Zarankiewicz’s Problem . . . . . . . . . . . . . . . . . 172
5.4 Semibounded Zarankiewicz’s Problem . . . . . . . . . . . . . . 178

5.4.1 Short Closure . . . . . . . . . . . . . . . . . . . . . . . . 179
5.4.2 The Structure Theorem . . . . . . . . . . . . . . . . . . 183
5.4.3 Semibounded Szemerédi-Trotter . . . . . . . . . . . . . 188
5.4.4 The Main Semibounded Theorem . . . . . . . . . . . . . 191

5.5 Zarankiewicz’s Problem in Presburger Arithmetic . . . . . . . . 192
5.5.1 Saturated models of Presburger Arithmetic . . . . . . . 193
5.5.2 The Standard Model . . . . . . . . . . . . . . . . . . . . 198

5.6 Zarankiewicz’s Problem in Hrushovski Constructions . . . . . . 220
5.6.1 Local Preliminaries: One-Based Theories . . . . . . . . 220
5.6.2 Linear Zarankiewicz bounds and Gridless Quasidesigns . 222

6 Odds and Ends 229
6.1 Introduction to Part 1 . . . . . . . . . . . . . . . . . . . . . . . 230
6.2 Local Preliminaries for Part 1 . . . . . . . . . . . . . . . . . . . 230
6.3 Reducing the Number of Variables . . . . . . . . . . . . . . . . 232
6.4 Collapsing the Monadic NIPk Hierarchy . . . . . . . . . . . . . 235
6.5 Introduction to Part 2 . . . . . . . . . . . . . . . . . . . . . . . 242
6.6 Local Preliminaries for Part 2 . . . . . . . . . . . . . . . . . . . 243
6.7 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 244

A Mekler’s construction 249
A.1 The Very Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 249
A.2 The Important Facts . . . . . . . . . . . . . . . . . . . . . . . . 252
A.3 Some Final Corollaries . . . . . . . . . . . . . . . . . . . . . . . 253

References 254

xiii





List of Figures

1.1 The Map of The Universe [Con]. . . . . . . . . . . . . . . . . . 4

2.1 Example of Binary Branching D-Relation. . . . . . . . . . . . . 36
2.2 A large (abstract) cyclically ordered D-relation. . . . . . . . . . 37

4.1 The Monadic NIP Forbidden Configuration . . . . . . . . . . . 107
4.2 The graphs C (top) and D (bottom) . . . . . . . . . . . . . . . 139
4.3 A non-reasonable Ramsey structure. . . . . . . . . . . . . . . . 140

5.1 K4,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.2 Szemerédi-Trotter lower bound configuration (k = 10). . . . . . 190

6.1 Coding the subset I = {(0, 2), (1, 2), (3, 1)}. . . . . . . . . . . . 237

xv





Chapter 1

Introduction

‘Logic issues in tautologies, mathematics in identities, philosophy in
definitions; all trivial, but all part of the vital work of clarifying and
organising our thought’

Frank P. Ramsey, The Foundations of Mathematics

1.1 A Very Broad Introduction

This is not a thesis on the philosophy of mathematics. That being said, the
results I will present in the following pages were often driven by a somewhat
philosophical principle, which I want to talk about upfront.

Guiding Philosophy. Combinatorial truths, no matter how elementary they
may sound, are usually true for “deep” reasons.1 The language of model theory
is particularly well-equipped to help us uncover these reasons, thus allowing us
to:

(a) Gain a more fundamental understanding of combinatorics; and (b) Prove
combinatorial results in the generality they deserve.

What follows is a brief discussion of this guiding principle with a non-mathematical
audience in mind. For my more mathematically minded reader(s), especially
those with time constraints, I suggest skipping right ahead to the next sections.

There are two questions that should spring to mind when reading the guiding
1The word deep is often used by mathematicians to describe a result whose proof requires

a lot more mathematical machinery than its statement.
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2 Introduction

philosophy above: “What does he mean by a combinatorial truth?” and: “What
is the language of model theory?” I will start by addressing the latter and then
expand on the former through a couple of examples.

In the introduction to his excellent book [Hod93], Wilfrid Hodges attempts to
define what model theory is. He gives the following definition:

“Model theory is the study of the construction and classification of structures
within specified classes of structures” .

The key tool in both the construction and classification aspects of model
theory is the focus on definable sets, in the sense of first-order logic. Once we
make the concession that the sets which can be described using formulas built
with universal/existential quantifiers, function and relation symbols are the
interesting ones, model theory offers us a unified way of viewing structures
which at first sight may seem unrelated: By examining how similarly their
definable sets behave. For example, in the eyes of a model theorist, linear
independence in vector spaces and algebraic independence in (algebraically
closed) fields look the same.

This is a rather brief (and maybe somewhat mysterious) introduction to model
theory. Admittedly, model theory means many different things to many different
people, and this was my attempt to say something that would be more-or-less
universally accepted. This does have the unfortunate side-effect that what
I said might be rather devoid of any actual content. Hopefully, though, if
somebody who is not a model theorist is reading this, I managed to pique their
interest. To that person, I would say that much more discussion can be found
in [Poi00], and many more examples in [Hod93], so I will stop here.

As for combinatorial truths, this is an even broader umbrella. The aspects of
combinatorics that will be of interest in this thesis are (structural) Ramsey
theory and Exrtemal Graph Theory. In a sense, Ramsey theory is a formalisation
of the idea that “absolute disorder is inevitable”: Somehow, if we look at large
enough combinatorial objects (say graphs), then they will necessarily contain
some structured (e.g. homogeneous) subobject. On the other hand, it is slightly
harder to give a very high-level description of extremal graph theory, but here
is Bollobás’s description, from [Bol78]:

“In extremal graph theory one is interested in the relations between various
graph invariants [...], and also in the values of these invariants which ensure
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that the graph has a given size.”

A classical instance, and one which will be of interest later on, is the following:
What can we say about the number of edges of a graph on n vertices if we
know that this graph does not have a fixed graph as a subgraph? This is the
problem of determining the extremal number of a given graph (with respect to
the fixed omitted subgraph). Questions of this form have been puzzling graph
theorists for at least 80 years. Hopefully, this will become clearer in the later
chapters of this thesis.

Now that we are converging closer to the same page...

1.2 A Slightly Less Broad Introduction

One of the most successful themes of modern model theory, essentially starting
with the work of Morley but later vastly generalised by Shelah, is on the
classification side. Central here is the concept of a dividing line. Concisely
put, a dividing line is a (local) combinatorial property of definable sets whose
presence separates the class of all first-order theories into two sides, a tame side
and a wild side. The theories on the tame side of a dividing line should all come
with strong positive structural results, while those on the wild side should, in
some concrete sense, be much more complicated. This idea of drawing dividing
lines on the “map” of first-order theories is perhaps the reason why Hrushovski
called model theory “the geography of tame mathematics”.

As geographers, we really ought to have a map. Fortunately, G. Conant
undertook this task and gave us one:

In Section 2.3, I will discuss some of the regions of the map above in more
detail.

Apart from the plethora of beautiful structural results for tame theories that
Shelah was aiming for, it has become evident that the dividing line methodology
has rich applications in many fields of mathematics outside of mathematical
logic, such as algebraic geometry (for instance, in [Hru96] Hrushovski proved
the Mordell-Lang conjecture in any characteristic, using techniques originating
from stability theory).

On the combinatorial side of things, Breuillard, Green, and Tao crucially used
Hrushovski’s Lie model theorem from [Hru12], a general theorem whose proof is
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Figure 1.1: The Map of The Universe [Con].

based on techniques from local stability theory, to obtain a complete description
of finite approximate groups in an arbitrary group G. In recent years, the
dividing line methodology has been shown to play an important role in graph
theory, pinpointing, for example, in very precise ways the various restricted
contexts in which one can obtain strong forms of Szemerédi’s regularity lemma,
starting with the work of Malliaris and Shelah, in [MS14]. Of course, I have left
out many important connections between model theory and combinatorics. For
instance, as Laskowski observed in [Las92], model theorists had unknowingly
been talking about theories with bounded VC-dimension from as early as 1971
when the notion of the Independence Property was introduced by Shelah.

Let me now briefly introduce the results that will occupy the remainder of this
thesis.

1.3 An (incomplete) List of Results

It is standard to present the main results of a mathematical work in the
first chapter, and this is what I will do in the next pages. Of course, the
terminology involved has not yet been introduced, and I will not make any
serious attempts to formally introduce it here. Thus, the results may appear
somewhat apocryphal. In any case, I will do my best to present them with a
brief introduction/discussion. Significantly more discussion will, of course, be
given in the actual body of the thesis.
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Chapter 3: Generalised Indiscernibles and Ramsey Theory

A very important tool that model theorists sometimes take for granted is
(order-)indiscernible sequences. The key property behind their ubiquity is that
given any sequence indexed by an infinite linear order, one can always realise
its Ehrenfeucht-Mostowski type (EM-type) by an order indiscernible sequence.
This is essentially an application of Ramsey’s theorem and compactness.

It turns out that the connection between indiscernibles indexed by arbitrary
structures, so-called generalised indiscernibiles, and structural Ramsey theory
is very deep. Indeed, the main theorem of [Sco15] states that, under some
technical assumptions, N -indexed indiscernibles have the modelling property
(the analogue of being able to find an indiscernible sequence realising a given
EM-type) if, and only if, Age(N ) is a Ramsey class (i.e. satisfies a structural
analogue of Ramsey’s theorem). In [MP23b], which is a joint work with N.
Meir, we pass through “tame” expansions in infinitary logic to strengthen
Scow’s result, by removing all the technical assumptions. More precisely, we
obtain the following:
Theorem (Theorem A). Let N an infinite, locally finite structure. Then
Age(N ) is a Ramsey class if, and only if, N -indexed indiscernibles have the
modelling property.

We then use the theorem above to extend a known result about Ramsey classes
to show that every Ramsey class consists of (essentially) ordered structures:
Theorem (Theorem B). Let C be a Ramsey class of finite L-structures. Then
there is an L∞,0-formula (i.e., a possibly infinite Boolean combination of
quantifier-free L-formulas) that defines an order on all structures in C.

In [MP23a], which is also a joint work with N. Meir, a more local/combinatorial
approach is taken, and we examine finitary approximations to the Ramsey
property. By considering an interesting class of reducts of (generically ordered)
random k-hypergraphs, the (generically ordered) Kay-graphs, which are higher-
arity analogues of the well-studied class of two-graphs, we find the exact
breaking point of the Ramsey property in these reducts, and show the following
strict hierarchy of finitary approximations to the Ramsey property:
Theorem (Theorem D). For all k ∈ N≥1, there is a class C of finite ordered
structures, which is Ramsey up to k, but not up to k + 1.
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Chapter 4: On Products of Structures

In [MPT23], which is a joint work with N. Meir and P. Touchard we take the
rather novel approach of using generalised indiscernibles in structural Ramsey
theory further. Using collapsing indiscernibles as a witness for the Ramsey
property, we obtain a general “non-Ramsey” criterion, answering a question of
P. Simon.2 More precisely:
Theorem (Theorem G). Let M be a homogeneous n-ary ℵ0-categorical struc-
ture in a finite relational language, and let N be a non-n-ary reduct of M in a
finite relational language. Then Age(N ) is not a Ramsey class.

As a consequence of the above theorem, we can easily deduce the following
general result about reducts of the generically ordered random k-hypergraph:
Theorem (Theorem H). Any proper reduct of the generically ordered random
k-hypergraph which is not interdefinable with DLO is not Ramsey.

In the same work, we also focus on transfer principles for products of structures.
One of the goals of this project is to study which combinatorial configurations
(viz. dividing lines) can be passed from two structures to their product. Our
main tool is a complete characterisation of generalised indiscernible sequences
in various kinds of products of structures, based on the behaviour of said
sequences in the factors. For example, we obtain the following results for
lexicographic sums of structures (a construction which generalises the wreath
product of graphs).
Theorem (Theorem K). Let M be an LM-structure and N = {Na}a∈M be
an M-indexed collection N of LN-structures. For

P ∈ {NIPn, indiscernible-triviality, monadic NIP, n-distality},

we have that both M and the common theory of {Na : a ∈ M} have P if, and
only if, the lexicographic sum M[N] has P .

The key tool in the proof of the theorem above is, again, generalised indiscernible
sequences. The general principle to keep in mind is that the uncollapsed
indiscernibles that can exist in models of a theory give us a lot of information
about “combinatorial traces” that the theory can see.

2Private correspondence.
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Chapter 5: Around Zarankiewicz’s Problem

Let me now discuss a very differently flavoured area of combinatorics, in which
model-theoretic considerations have been shown to play an important role. To
set the stage, recall the following well-known combinatorial question.
Question (Zarankiewicz’s Problem, 1951). What is the maximum number
of edges (in terms of the number of vertices) a bipartite graph3 can have, if
it is Kr,r-free (i.e. it does not contain the complete bipartite graph Kr,r as a
subgraph) for some r ∈ N?

This question is known as Zarankiewicz’s Problem. The upper bounds for
arbitrary graphs and hypergraphs were given by Kővari-Sós-Turán and by
Erdős, respectively. The picture, however, drastically changes if we restrict
our attention to families of graphs that arise in algebrogeometric contexts. An
important idea to keep in mind is that a lot of constructions used to prove
sharp upper bounds in combinatorics are done in algebraic structures, and
model theory can be used to show that the presence of algebra is, in a sense,
inevitable. An example is given below.

One of the theorems in [Bas+21], essentially says that if E ⊆ Rd1 × Rd2 is a
Kr,r-free semilinear relation (or, put in more model-theoretic terms, a Kr,r-free
relation definable in ⟨R,+, <⟩), then E ⊆ Rd1 × Rd2 has linear Zarankiewicz
bounds. More precisely, there is some α ∈ R>0 such that for every finite subset
B ⊆ Rd1 × Rd2 we have that |E ∩ B| ≤ α|B|. Moreover, using a deep result
about o-minimal structures, the so-called Trichotomy Theorem of Peterzil and
Starchenko [PS98], it is shown that if in some expansion of ⟨R,+, <⟩ this is
not the case, then that expansion must define a field, on some interval.

This leads to the following question: Is there a “Zarankiewicz-like principle”
that guarantees the existence of a definable full field, i.e. a field that is not
contained in any bounded interval? In joint work with P. Eleftheriou, we
answer this question positively, by considering eventually linear relations
(say, relations definable in Rsbd, the expansion of ⟨R,+, <⟩ by all bounded
semialgebraic subsets). In this case, we focus not on the definable relations
that are Kr,r-free, but instead, on those that are Kr,r-free, when we restrict
our attention to N-distant complete graphs, i.e. complete bipartite graphs

3Throughout this section I will restrict my attention to bipartite graphs, for the sake
of notational simplicity, but all the results mentioned have natural “k-partite hypergraph”
analogues.
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whose vertices (on each part of the partition) are at distance at least N from
each other. We dub such relations KN

r,r-free, and prove that if we restrict
our attention to eventually linear KN

r,r-free graphs, then optimal bounds are
achieved.
Theorem (Theorem O). Let M = ⟨M,<,+, . . . ⟩ be a saturated o-minimal
expansion of an ordered group, and assume that M is semibounded. Then, for
every (parameter-)definable E ⊆ Md1 × Md2, there is an α ∈ R>0 such that
if the infinite bipartite graph (Md1 ⊔Md2 , E) is Ktall

∞ -free4, then for every tall
finite grid B = B1 ×B2 ⊆ Md1 ×Md2 we have:

|E ∩B| ≤ αn,

where n = max{|B1|, |B2|}.

Moreover, such bounds can be used to characterise the existence of full fields
in a saturated o-minimal expansion of an ordered group. More precisely:
Theorem (Theorem P). Let M be a saturated o-minimal expansion of an
ordered group. Then the following are equivalent:

1. M is semibounded.

2. (“Linear” Zarankiewicz bounds) There is some N ∈ M>0 such that: For
all definable binary relations E ⊆ Md1 × Md2 there is α ∈ R>0, such
that if the infinite bipartite graph (Md1 ⊔Md2 , E), does not contain any
infinite complete bipartite subgraphs, then for every finite N -distant grid
B = B1 ×B2 ⊆ Md1 ×Md2 we have:

|E ∩B| ≤ αn,

where n = max{|B1|, |B2|}.

3. (Full fields) There is no field definable on the whole of M .

In the same work, we extend some of the more abstract results of [Bas+21] to
obtain a general theorem about graphs omitting (geometrically) independent
complete subgraphs in (weakly) locally modular pregeometries. As a corollary,
we obtain an optimal result for graphs definable in Presburger arithmetic (see
below) and in some Hrushovski constructions.

4Recall that a positive element t in a semibounded o-minimal expansion of an ordered
group is tall if there is no field definable on the interval (0, t).
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Theorem (Theorem Q). Let E ⊆ Zd1 × Zd2 be a binary relation definable in
Presburger arithmetic. If E is Kr,r-free for some r ∈ N then there is a real
number α ∈ R>0 such that for all finite B = B1 ×B2 ⊆ Zd1 × Zd2 we have

|E ∩B| ≤ αn,

where n = max{|B1|, |B2|}.

The Rest of the Thesis

The rest of this thesis has two more chapters:

• Chapter 2 contains background that is used everywhere in the thesis,
sets up notation and is my attempt to put some of the later results in
context.

• Chapter 6 contains a two smaller results, which I will discuss in more
detail there.

Dependencies All (remaining) chapters of this thesis refer to results and
terminology introduced in Chapter 2, but apart from that Chapters 3 to 6 are
mostly independent of each other, except that some results of Chapter 3 are
mentioned in Chapter 4.

Since the main chapters enjoy such a degree of independence, I have chosen to
keep them as self-contained as possible (apart from global preliminaries), thus
including a small introduction at the beginning of each of them, and briefly
recalling facts/notation from previous chapters when necessary. Thus, it is
possible (and perhaps even recommended) for the reader to start reading from
the beginning of whichever of Chapters 3 to 6 seems more appealing to them
at a given time and refer back to Chapter 2 if/when needed.





Chapter 2

Global Preliminaries†

‘The sun shone, having no alternative, on
the nothing new.’

Samuel Beckett, Murphy

2.1 Introduction

When I started writing this document, I had the hope that it would be a
piece of writing accessible to anyone, regardless of their background, provided
they did not have any time constraints.1 I must, however, admit that I have
certainly failed in this regard, and I will indeed need to assume that the reader
of this thesis is a mathematical logician familiar with model theory. That being
said, in this chapter, I will try to summarise a lot of background material that
will be useful when reading the rest of this thesis. This chapter is also here
to set up a lot of the notation that will be persistent and (to the best of my
abilities) will also be consistent throughout the thesis.

†This chapter, as hinted by the narrator of Murphy, contains no new results. It also does
not contain all the background material required for reading the remainder of this thesis. It
does, however, contain a superset of the intersection of preliminary material required for all
the main chapters – I’ve opted to keep the more specialised background closer to where it
will be used. To avoid making this chapter completely dry, I’ve included a couple of proofs
I consider nice (which is not to say that I do not consider the proofs omitted equally nice,
but choices had to be made). That being said, I recommend the reader familiar with the
material indicated by the titles of the sections to just skip forward.

1To be completely honest, I had hoped that my recently/soon-to-be retired parents (who
are not mathematicians and whose knowledge of English is somewhat limited) would be able
to get something out of this piece of writing.

11
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These “global preliminaries” are divided into six sections. More precisely:

1. General Model Theory – This little section is only here to fix the
model-theoretic notation that will be used in the remainder of the thesis.
I assume the reader is familiar with [TZ12, Chapters 1-5]. Much of the
material regarding indiscernibles, from [TZ12, Chapter 5], will be recalled
in the (Generalised) Indiscernibles subsection.

2. Some Dividing Lines – In Chapter 1 I included a picture of the Map of
the Universe, and here I will quickly introduce some of the most classical
(in my opinion) regions of that map (apologies simple theories, but you
will not be included).

3. Combinatorial Geometries – An abstract overview of combinatorial
geometries (matroids) will be given here, mainly to fix some notation
and terminology.

4. Structural Ramsey Theory – This section gives a quick overview of
structural Ramsey theory, starting from Ramsey’s theorem and ending
with the Kechris-Pestov-Todorčević correspondence.

5. (Generalised) Indiscernibles – This section discusses various forms
of indiscernibility. It ends rather abruptly (and somewhat surprisingly)
without giving Scow’s theorem. This will be done later, I promise.

6. A World of Structures – This section, which occupies the most sig-
nificant part of the preliminaries, contains what could reductively be
described as “just a long list of structures”. But, if classification theory
is interesting, it is because of the citizens of the various regions it maps
out, and in this subsection, I want to introduce some of them.

With all this out of the way, let’s get going.

2.2 Some General Model Theory

Throughout this thesis, the letter L (and primed versions) will always refer to
a first-order language.2 (possibly multisorted). Languages will sometimes be
identified with the collection of formulas or sentences built with their symbols,

2A first-order language is just a collection of symbols for relations, functions, and constants
Symbols of the first two kinds come with an associated arity, and constant symbols can be
viewed as 0-ary functions.



Some General Model Theory 13

depending on the context. The letters M,N , . . . will typically denote infinite
structures with domain M,N, . . . , respectively, and sometimes the operator
dom will be used to do this explicitly. If M is an L-structure and A ⊆ M ,
then L(A) is the language L with fresh constant symbols for the elements of
A. These are interpreted as the elements they are named after. Usually, the
letters A,B, . . . will be reserved for finite(ly generated) structures with domain
A,B, . . . , and sometimes finite structures may be identified by their domain.
If A ⊆ M, then ⟨A⟩M denotes the smallest substructure of M that contains
A, that is, the substructure of M generated by A. When somewhat relevant, I
will try to distinguish between elements and tuples, but this will not always be
the case.3

In general, the rest of the model-theoretic notation throughout the thesis is
either explained or standard. For example, given an L-structure M, a tuple
ā ∈ Mn and a subset A ⊆ M , I will denote by tpM(ā/A) the type4 of ā over
A in M, and if M is understood, then the subscript will be dropped. I will
always write tpM(ā) for tpM(ā/∅). I will similarly write qftpM(ā) for the
quantifier-free type of ā in M, that is, the set of all quantifier-free L-formulas
ϕ(x̄) such that M ⊨ ϕ(ā). If ∆ ⊆ L is a set of formulas in free variables from
x̄ I will write tp∆

M(ā) for the restriction of tpM(ā) to ∆-formulas, that is:

tp∆
M(ā) = {ϕ(x̄) ∈ tpM(ā) : ϕ(x̄) ∈ ∆ or ¬ϕ(x̄) ∈ ∆}.

Sometimes ∆ will be all of L, and in this case, the superscript will appear if
multiple languages are present, to (hopefully) improve readability.

Sequences indexed by a structure I are just functions from the domain of I.
Sometimes I will write (ai : i ∈ I) to point out that we are working with an
I-indexed sequence, i.e. that the I structure on I matters, but sometimes,
when there are two different relevant structures I, I ′ on the same domain I, I
may only write (ai : i ∈ I). Hopefully, this will not cause any confusion.

Often, monster models (see [TZ12, Chapter 6]) of a given L-theory T will be
employed. The letter M (or I, J, . . . ) will be reserved for monster models; these
are κ(M)-saturated and κ(M)-homogeneous models of T , for some “very big”
cardinal κ(M) (where “very big” just means bigger than the cardinality of

3For instance, the distinction is rather irrelevant when working in an eq expansion (see
[Pil96, Chapter 1]).

4In general, when I say type (resp. quantifier-free type), I mean a complete type (resp.
quantifier-free type). Partial types will be called partial.
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any other model of T that will be discussed). Any cardinal µ < κ(M) is then
small. All models of T are thought of as small elementary substructures of the
monster, and domainless elements are assumed to live in some monster, and
the notation ⊨ ϕ, for an L-sentence ϕ, is short for M ⊨ ϕ.

Before closing this little section, here’s the (Engeler,) Ryll-Nardzewski(, Sven-
onius) theorem:
Theorem 2.2.1 (Ryll-Nardzewski). Let L be a countable language, T a com-
plete L-theory with infinite models. Then, the following are equivalent:

(1) Any two countable models of T are isomorphic (i.e. T is ℵ0-categorical).

(2) T has a countable model M such that Aut(M) is oligomorphic.5

(3) For each n ∈ N, the set STn is finite.

(4) For each n ∈ N, every p ∈ STn is isolated.6

2.3 Some Dividing Lines

The story of classification theory starts in the mid-1960s with Morley’s famous
categoricity theorem, which confirmed a conjecture of Vaught:
Theorem 2.3.1 ([Mor65]). Let T be a countable theory. If T is ℵ1-categorical,
then T is κ-categorical for all κ ≥ ℵ1.

Recall that if T is a complete theory and κ a cardinal, then I(T, κ) (the
spectrum function) denotes the number of models of T of cardinality κ, up to
isomorphism. In this notation, Morley’s theorem says that:

I(T ; ℵ1) = 1 =⇒ ∀κ ≥ ℵ1 I(T ;κ) = 1

Perhaps even more interesting than Morley’s result is the beautiful theory that
started being developed for its proof (and evolved into much more). Indeed, in
the proof of Morely’s theorem, one encounters things like Morley rank,7 strong
minimality,8 abstract notions of independence, and more. See, for instance,
[TZ12, Chapters 5 and 6].

5The action of Aut(M) on n-tuples has finitely many orbits for all n ∈ N.
6There is a formula ϕ ∈ p which implies all other formulas in p, equivalently, p is an

isolated point in the Stone space ST
n .

7Cantor-Bendixon rank in the space of types.
8Recall: A structure M is minimal if every (parameter-)definable subset of M is either

finite or cofinite. A theory T is strongly minimal if every model of T is minimal.
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Morley’s other important contribution to the development of classification
theory was that he made the following two big conjectures:

(1) Let T be a countable theory, then I(T ;κ), as a function of κ is non-
decreasing, when κ ≥ ℵ1.

(2) There is a version of the Categoricity Theorem for uncountable theories.

Shelah confirmed both of these conjectures [She90], and took an especially
radical approach in proving (1): He decided to describe all possible (uncount-
able) spectra of (countable) first-order theories; a complete classification was
actually achieved in [HHL00], using some tools from descriptive set theory.
In this quest to describe the possible spectra of first-order theories, various
important dividing lines naturally arose. Perhaps the most important one is
stability.

Unless otherwise stated, throughout the rest of this subsection, T will always de-
note a complete L-theory and M ⊨ T a κ(M)-saturated and κ(M)-homogeneous
(monster) model of T , for some very big cardinal κ(M). Also, unless otherwise
stated, all (tuples of) elements and subsets will come from this monster model
and will be small, i.e. of size less than κ(M).

Stability

Unfortunately, due to the lack of space and time, the discussion of stable theories
will be rather short in this thesis. Fortunately, many authors have done an
excellent job exposing it. I would certainly recommend [TZ12, Chapter 8],
[Pil96], [Bal17], [Mak84]. Let me at least recall the definition:
Definition 2.3.2 (Order Property, Stability). We say that a formula ϕ(x̄; ȳ)
has the order property in T if there exist (āi : i ∈ N) and (b̄i : i ∈ N) such that:

⊨ ϕ(āi, b̄j) if, and only if, i < j.

We say that T is stable if no formula has the order property in T .

After introducing indiscernibles, I will give another equivalent characterisation
of stable theories. For now, let’s briefly look at a generalisation of stable
theories:
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The Independence Property

The notion of NIP, originating in the work of Shelah, has been studied in the
past decades, but over the past few years, applications of NIP in combinatorics
have resulted in a “revived” focus on NIP theories, and the definition is standard.
Again, I will restrict myself to simply giving the definition, and I will direct
the reader to [Sim15], for a lot more information.
Definition 2.3.3 (Independence Property, NIP). We say that a formula ϕ(x̄; ȳ)
has the independence property in T if there exist (āi)i∈N and (b̄I)I⊆N such that:

⊨ ϕ(b̄I , āi) if, and only if, i ∈ I.

We say that T is dependent or NIP (No Independence Property) if no formula
has the independence property in T .

The stable theories live within the NIP theories, but so do many other interesting
classes of theories. I’ll first discuss o-minimality.

o-Minimality

The class of o-minimal theories (“o” for order), was introduced by Pillay and
Steinhorn in [PS86], as a way of generalising the work of van den Dries on Rexp,
and at the same time as an “ordered” analogue of strong minimality. Since its
introduction, o-minimality has been at the intersection of model theory with
other areas of pure mathematics (ranging from point counting, through the
Pila-Wilkie theorem, all the way to interactions with Hodge theory, say in the
work Tsimerman). The standard reference for an introduction to o-minimality
is [Dri98]. In the remainder of this section, I will recall a lot of the definitions
and results that I will need later on.

Well, first of all, I suppose, I should define o-minimality:
Definition 2.3.4. Let M = ⟨M,< · · · ⟩ be an ordered structure. We say that
M is o-minimal if any definable (with parameters) subset of M is a finite union
of points and intervals.

Unlike minimality (which is not a property of Th(M)), o-minimality is an
elementary property (so we don’t need to talk of “strong o-minimality”). This
is actually a consequence of the so-called Cell Decomposition Theorem, which
is what I will discuss next.

The Cell Decomposition Theorem is one of the central structural results in
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o-minimal theories. I will give a statement of the theorem shortly, but first, I
need to introduce cells.
Notation 2.3.5. The following notation will be persistent (unless otherwise
stated) throughout this thesis. Let M be a structure m,n ∈ N with m ≤ n.
I will write π̂m : Mn → Mm for the natural projection map onto the first m
coordinates and πm : Mn → M for the projection onto the m-th coordinate.
Sometimes I will view Mn as a product

∏r
i=1M

di , for some r ∈ N≥2 and
d1, . . . , dr ∈ N≥1 with

∑r
i=1 di = n. In this case (and this will be made clear

from the context), for j ∈ [r] I will write π̂j : Mn →
∏j
i=1M

di for the projection
map onto the first

∑j
i=1 di coordinates and πj : Mn → Mdj for the projection

map onto the coordinates indexed by dj .

Before introducing cells I will have to actually introduce some more notation.
For a definable set X ⊆ Mm, I will write:

C(X) := {f : X → M : f is definable and continuous},

and
C∞(X) = C(X) ∪ {±∞},

where ∞ and −∞ are viewed as constant functions on X. For f, g ∈ C∞(X),
the notation f < g simply means that for all x ∈ X we have that f(x) < g(x),
and in this case:

(f, g)X := {(x, y) ∈ X ×M : f(x) < y < g(x)} ⊆ Mm+1.

In this notation:
Definition 2.3.6. Let (i1, . . . , in) ∈ {0, 1}n be a sequence of zeroes and ones.
We define a (i1, . . . , in)-cell C ⊆ Mn, recursively, as follows:

Base case: If C ⊆ M is a (i1)-cell, then it has one of the of the following forms:

• A (0)-cell is just a singleton {a} ⊆ M .

• A (1)-cell is an open interval (a, b) ⊆ M , where a, b ∈ M ∪ {±∞}

Inductive part: Suppose that for n ∈ N and (i1, . . . , in) ∈ {0, 1}n we have
defined (i1, . . . , in)-cells. Then:

• An (i1, . . . , in, 0)-cell is a set C ⊆ Γn+1 of the form:

{(x, t) ∈ Mn+1 : x ∈ D,α(x) = t},
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where D = π̂n(C) is a (i1, . . . , in)-cell and α ∈ C(D).

• An (i1, . . . , in, 1)-cell is a set A ⊆ Γm+1 of the form:

{(x, y) ∈ Mn+1 : x ∈ D,α(x) < y < β(x)},

where D = π̂n(C) is a (i1, . . . , in)-cell, α < β ∈ C∞(X), i.e. a set of the
from (α, β)D, for D an (i1, . . . , in)-cell and α < β ∈ C∞(D).

A cell in Mn is an (i1, . . . , in)-cell for some (i1, . . . , in) ∈ {0, 1}n.

Now that we have cells, let’s define decompositions:
Definition 2.3.7. A cell decomposition of Mn is a special kind of partition of
Mn into finitely many cells, defined recursively, as follows:

Base case: A cell decomposition of M is a collection:

{(−∞, a1), (a1, a2), . . . , (ak,+∞)} ∪ {{a1}, . . . , {ak}} ,

where a1 < · · · < ak.

Inductive part: A cell decomposition of Mn+1 is a finite partition C of Mn+1

into cells, such that the set of projections:

π̂n(C) := {π̂n(C) : C ∈ C}

is a cell decomposition of Mn.

Okay, with all this covered, we have the following theorem:
Theorem 2.3.8 (Cell Decomposition Theorem).

(1) Given any definable sets X1, . . . , Xn ⊆ Mn there is a cell decomposition
of Mn compatible9 with each of X1, . . . , Xn.

(2) If f : A → M is a definable function, with A ⊆ Mn, then there is a cell
decomposition C of Mn compatible with A such that whenever C ∈ C is a
cell contained in A we have that f |C is continuous.

One can easily obtain a version of uniform Cell decomposition, for definable
families. From this, we get the following:

9Recall: A cell decomposition C of Mn is compatible with a set X if each cell in C is
either contained in X or in its complement.



Some Dividing Lines 19

Theorem 2.3.9. Let {Xb : b ∈ I} be a definable family. Then there is some
N ∈ N such that for all b ∈ I the set Xb has a decomposition into at most N
parts.

Another important consequence of o-minimality, in expansions of ordered
groups is definable choice:
Theorem 2.3.10 (Definable Choice). Let M be an o-minimal expansion of
an ordered (abelian) group and {Xb : b ∈ I} be a definable family of subsets of
M. Then there is a unary definable function f such that for all b ∈ I, if Xb is
non-empty then f(b) ∈ Xb.

A recent generalisation of o-minimal thoeries is distality, which I shall now
introduce:

Distality

Distality was introduced by P. Simon in [Sim13]. In a certain sense, the notion
of distality was meant to capture the “purely unstable”10 NIP structures.
Apart from o-minimal theories (which are all distal), there are many more
natural examples of distal structures (e.g. Presburger arithmetic, the Qp, and
more). There is prolific literature on distality and its applications (e.g. in
combinatorics), and many equivalent definitions of distality are used. Let me
give one:
Definition 2.3.11. The theory T is called distal if for every indiscernible
sequence (ai : i ∈ Q) in M and every tuple b ∈ M|b| such that (ai : i ∈ Q \ {0})
is indiscernible over b we have that (ai : i ∈ Q) is indiscernible over b.

For more details on distal structures, excellent references are [Sim21, Chapter 9],
as well as [Asc+22].
Remark 2.3.12. Let T be a distal theory and M ⊨ T . Then, every totally
indiscernible sequence (see Definition 2.6.1) in M is constant.
Example 2.3.13. Here are some basic examples of distal and non-distal
theories:

• Total linear orders are distal.

• Meet-trees (T,≤ ∧) are not distal, in general. For instance, the complete
theory of a dense meet-tree is not distal: let r ∈ T and (ai : i ∈ Q) are

10For example, a necessary condition for a theory to be distal is that it admits no infinite
stable quotient.
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distinct elements such that ai ∧ aj = r for every i ̸= j. Then (ai : i ∈ Q)
is totally indiscernible (over r).

That’s all for dividing lines, at least for now. More will be discussed in later
chapters (especially in Chapter 4).

2.4 Combinatorial Geometries

This section is self-contained and does not involve much model theory. Here I’ll
try to summarise the basic terminology of combinatorial geometries (also known
as matroids) that will be needed later on. Combinatorial geometries bring
together many areas of pure mathematics and have a rich history; for more on
this, I refer the reader to [CR74]. For a quick introduction to pregeometries
with proofs I recommend [TZ12, Appendix C] and [Cas08]. Indeed, part of the
material in this section, although standard, is based on the latter reference.
Definition 2.4.1 (Closure Operator, Pregeometry). Let Ω be a (possibly
infinite) set and cl : P(Ω) → P(Ω) a function such that for all elements a, b ∈ Ω
and all subsets A,B ⊆ Ω we have that:

(1) (Reflexivity). A ⊆ cl(A).

(2) (Transitivity). If X ⊆ cl(Y ) then cl(X) ⊆ cl(Y ).11

(3) (Finite Character) cl(A) =
⋃
A′ cl(A′), where the union ranges over

all finite subsets A′ of A.

Then, we call cl a closure operator on Ω and refer to subsets of Ω which belong
to the set {cl(X) : X ⊆ Ω} as closed. If in addition to (1),(2), and (3), cl also
satisfies:

(4) (Exchange) If a ∈ cl(Ab) \ cl(A), then b ∈ cl(Aa).

for all elements a, b ∈ Ω and all subsets A,B ⊆ Ω, then we say that (Ω, cl) is a
pregeometry.

The prototypical example of a pregeometric closure operator is linear span in
vector spaces.
Definition 2.4.2. Let (Ω, cl) be a pregeoemtry and A ⊆ Ω. We say that A is:

(1) (cl-)independent if for all a ∈ A we have that a ̸∈ cl(A \ {a}).
11Equivalently, cl(X) = cl(cl(X)), assuming (Finite Character), which implies

(Monotonicity).
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(2) a (cl-)generating set if Ω = cl(A).

(3) a (cl-)basis if it is a cl-independent cl-generating set.

By (Finite Character), a set A ⊆ Ω is cl-independent if, and only if, every
finite subset of A is cl-independent.
Fact 2.4.3. Every pregeometry has a basis. Moreover, all bases of a pregeometry
have the same cardinality.
Definition 2.4.4. Let (Ω, cl) be a pregeometry and fix a subset C ⊆ Ω. We
obtain two new pregeometries:

(1) The localisation of Ω at C (or relativisation of Ω to C): This is the
pregeometry (Ω, clC) where clC : A 7→ cl(A ∪ C), for all A ⊆ Ω.

(2) The restriction of Ω to C: This is the pregeometry (C, clC), where
clC : A 7→ cl(A) ∩ C, for all A ⊆ Ω.

Definition 2.4.5. Let (Ω, cl) be a pregeometry. The cl-rank of (Ω, cl) is
the cardinality of a basis of (Ω, cl). We denote this by cl-rk(Ω), in case we
need to be more specific about the closure operator on Ω we may write
cl-rk((Ω, cl)). Given a subset C ⊆ Ω, we define cl-rk(C) := cl-rk((C, clC)) and
cl-rk(Ω/C) := cl-rk((Ω, clC)).

Often, in literature, what was defined as the cl-rank of a pregeometry (Ω, cl)
is referred to as the dimension of (Ω, cl). This choice of terminology is made
to prevent confusion, since the term (cl-)dimension will be used later (see
Definition 5.3.4).
Fact 2.4.6. Let (Ω, cl) be a pregeometry and C ⊆ Ω. If A is a basis of (Ω, clC)
and B is a basis of (C, clC), then A ∪B is a basis for (Ω, cl). In this case, we
say that A is a basis over C and B is a basis of C. In particular, this implies
that:

cl-rk(Ω) = cl-rk(Ω/C) + cl-rk(C).

Now for a localised version of Definition 2.4.2:
Definition 2.4.7. Let (Ω, cl) be a pregeoemtry and A,C ⊆ Ω. We say that A
is:

(1) (cl-)independent over C if for all a ∈ A we have that a ̸∈ cl(AC \ {a})
(equivalently, if A is clC-independent in the localisation of Ω at C).

(2) a (cl-)generating set over C if Ω = cl(A ∪ C).
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(3) a (cl-)basis over C if it is cl-independent over C and a cl-generating set
over C.

One of the most important consequences of the axioms of a pregeometry is
that they give rise to a notion of independence:
Definition 2.4.8. Let (Ω, cl) be a pregeometry and A,B,C ⊆ Ω. We say that
A is independent from B over C if for all finite A0 ⊆ A we have that:

cl-rk(A0/C) = cl-rk(A0/BC).

This gives rise to a ternary independence relation |⌣ on subsets of Ω as follows:

A |⌣
C

B if, and only if, A is cl-independent from B over C,

for all subsets A,B,C ⊆ Ω.
Remark 2.4.9. The following are equivalent:

(1) A |⌣C
B.

(2) For all A′ ⊆ A, if A′ is independent over C then it is also independent
over BC.

Fact 2.4.10. Let (Ω, cl) be a pregeometry. Then |⌣ satisfies the following
conditions, for all A,B,C,D ⊆ Ω:

(1) (cl-Independence). A |⌣C
B if, and only if cl(AC) |⌣C

cl(BC)

(2) (Monotonicity). If A |⌣C
B then for all A0 ⊆ A and B0 ⊆ B we have

that A0 |⌣C
B0.

(3) (Symmetry). A |⌣C
B if, and only if B |⌣C

A.

(4) (Transitivity). A |⌣C
BD if, and only if, A |⌣C

B and A |⌣CB
D.

(5) (Non-Degeneracy). If A |⌣C
B and d ∈ cl(AC) ∩ cl(BC) then d ∈

cl(C).

One of the most important examples of a closure operator often appearing
naturally in model theory is the algebraic closure operator, acl, which recall is
defined as follows, in a given L-structure M:

acl(A) := {b : ∃ϕ ∈ L(A) s.t. ϕ(M) is finite, and b ∈ ϕ(M)}.

In many interesting cases, such as strongly minimal theories and o-minimal
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theories this is, in fact, a pregeometry.

There is more to be said about combinatorial geometries, and some of it will
be said in Chapter 5.

2.5 (Structural) Ramsey Theory

In this section I will discuss the basics of structural Ramsey theory. This will
be in no way a complete exposition of the theory, it’s far from even being a
complete introduction. An excellent introductory source, with a lot of examples,
and many proofs (even of classical results) is Bodirsky’s survey article, [Bod15].

Ramsey’s Theorem

Before going deeper into the structural side of structural Ramsey theory, I find
it helpful (psychologically, perhaps) to take a more historical approach and
discuss a little bit of classical Ramsey theory.

In [Ram30] Frank P. Ramsey needed “certain theorems on combinations” to
prove his chief theorem (a result on the decidability of certain fragments of
first-order logic, which was certainly fashionable in the 1930s). According to
him, the combinatorial results in his paper “have an independent interest”. It
turns out that from Ramsey’s “theorems on combinations” sprung an entire
area of mathematics... That’s probably all I should say about the early days of
Ramsey theory (apart from Ramsey’s theorem, of course, which will be stated
below). For a colourful and highly informative discussion of the beginnings of
Ramsey theory I recommend [GS90].

Before stating Ramsey’s theorem, I will need to introduce some notation. Let
κ, λ be ordinals and ν, ρ be cardinals. The goal is to define the following:

κ → (λ)νρ, (ER)

which is often referred to as the Erdős-Rado partition arrow (read: “kappa
arrows lambda nu rho”).

Let A be a set and ν, ρ be cardinals. Then:

•
(A
ν

)
:= {B ⊆ A : |B| = ν}.

• A ρ-colouring of a set A is simply a (surjective) function χ : A → [ρ].
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• Let χ :
(A
ν

)
→ [ρ] be a ρ-colouring of the ν-element subsets of A. A subset

X ⊆ A is called χ-monochromatic (or monochromatic/homogeneous when
χ is understood) if: ∣∣∣∣im(χ ↾(X

ν )

) ∣∣∣∣ = 1,

that is, if there is some colour i ∈ ρ such that for all Y ∈
(X
ν

)
we have

that χ(Y ) = i.

Now, (ER) is short for the following statement: “For every ρ-colouring of the
ν-element subsets of κ there is a homogeneous subset of order-type λ”.
Theorem 2.5.1 (Ramsey’s Theorem – Infinite Version). For all k, r ∈ N:

ω → (ω)kr .

By an easy application of compactness, one obtains the following:
Corollary 2.5.2 (Finite Ramsey – Finite Version). For all n, k, r ∈ N there is
some N ∈ N such that:

N → (n)kr

Structural Generalisations

In a (very formal) sense, which I hope becomes clear in the following, the finite
version of Ramsey’s theorem is really a theorem about the class of all finite
linear orders. Intuitively, it says that given any finite linear order (of size n)
and any linear order (of size k) inside the original, there is a big linear order
(of size N) such that no matter how we r-colour its k-element (increasing)
suborders, there will be a homogeneous suborder of size n.

Central to structural Ramsey theory is the idea that many classes of structures
(not just linear orders) satisfy analogous versions of Ramsey’s theorem. To
make this precise, I will need to introduce some terminology.

Fraïssé Classes

Notation 2.5.3. Given L-structures A,B, I will write
(A
B

)
for the set of all

embeddings of B into A. Sometimes, this notation is used to denote the set of
all isomorphic copies of B in A. Of course, in general, these two sets need not
be equal. In the second part of Chapter 3, I will look at the relation between
“isomorphic copies” and “embeddings” more closely. There, the notation will
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shift slightly and I will write Emb(B,A) for the set of all embeddings of B into
A, and

(A
B

)
for the set of all substructures of A that are isomorphic to B.

Nevertheless, in the context of the Embedding Ramsey Property (see Defini-
tion 2.5.5(4)), all classes will necessarily consist of rigid12 structures, and thus
isomorphic copies and embeddings coincide, making the change in notation
somewhat irrelevant and purely cosmetic.

Now, let’s look at the structural analogue of the Erdős-Rado partition arrow:
Definition 2.5.4 (Structural Erdős-Rado Partition Arrow). Let A,B,C be
L-structures (and without loss of generality assume that A ⊆ B ⊆ C) and let
r ∈ N. We write:

C → (B)Ar

if for each colouring χ :
(C
A

)
→ r = 0, . . . , r − 1 there exists some B̃ ∈

(C
B

)
such

that χ ↾
(B̃
A

)
is constant.

Finally, the following definitions are all well-known and important:
Definition 2.5.5 (HP, JEP, AP, ERP). Let L be a first-order language and C
a class13 of L-structures. We say that C has the:

(1) Hereditary Property (HP) if whenever A ∈ C and B ⊆ A we have that
B ∈ C.

(2) Joint Embedding Property (JEP) if whenever A,B ∈ C there is some
C ∈ C such that both A and B are embeddable in C.

(3) Amalgamation Property (AP) if whenever A,B,C ∈ C are such that A
embeds into B via e : A ↪→ B and into C via f : A ↪→ C there exist a
D ∈ C and embeddings g : B ↪→ D, h : C ↪→ D such that g ◦ e = h ◦ f .

(4) Embedding Ramsey Property (ERP) if whenever A,B ∈ C are such that
A ⊆ B, then there is some C ∈ C such that C → (B)A2 .

Remark 2.5.6. One may wonder why in Definition 2.5.5(4), only 2-colourings
are considered. It is fairly easy to see, by a standard induction argument, that
if C has ERP (as defined above) then for all r ∈ N and all A,B ∈ C such that
A ⊆ B, there is some C ∈ C such that C → (B)Ar .
Definition 2.5.7 (Fraïssé Class). We say that a countable class C of (iso-
morphism types of) finite L-structures is a Fraïssé Class if it has HP, JEP, and

12Recall: An L-structure M is called rigid if it has no non-trivial automorphisms.
13Throughout this thesis, all classes of structures will be assumed to be closed under

isomorphisms.
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AP.

Recall that for a structure M, the age of M, denoted by Age(M), is the
class of isomorphism types of finitely generated substructures of M. In this
thesis, a structure M will be called homogeneous if every isomorphism between
finitely generated substructures of M extends to an automorphism of M (some
authors refer to this property as ultrahomogeneity, and restrict their attention
to countable structures, which is not an assumption I am making, in this
thesis). An L-structure M is called locally finite if for any finite A ⊆ M we
have that ⟨A⟩M is finite.

The following celebrated theorem connects most of the notions defined above:
Fact 2.5.8 (Fraïssé’s Theorem). Let C be a non-empty Fraïssé class. Then
there exists a unique, up to isomorphism, countable homogeneous L-structure
M such that Age(M) = C.
Notation 2.5.9. In the notation of Fact 2.5.8, we will write Flim(C) to denote the
unique, up to isomorphism, countable homogeneous M such that Age(M) = C.
Definition 2.5.10 (Ramsey Class). We say that an isomorphism-closed class
of finite L-structures, C, is a Ramsey Class if it has HP, JEP, and ERP.
Example 2.5.11. In this updated terminology, Ramsey’s theorem says that
the class of all finite linear orders is a Ramsey class.

The following theorem of Nešetřil tells us that AP is a necessary condition
for a class to be Ramsey. So countable Ramsey classes are necessarily Fraïssé
classes.
Theorem 2.5.12 ([Neš05, Theorem 4.2(i)]). Let C be a Ramsey class. Then C
has AP.

A natural generalisation of ERP comes from the notion of Ramsey degrees,
which roughly says that even if we cannot always find monochromatic copies
of our structures, we have some “global” control over the number of colours
that are needed. More precisely:
Definition 2.5.13. Let C be a class of L-structures and A ∈ C. Given d ∈ N,
we say that A has Ramsey degree d (in C) if d is the least positive integer such
that for any B ∈ C with A ⊆ B there is some C ∈ C such that B ⊆ C and for
any r ∈ N and any colouring χ :

(C
A

)
→ r there exists some B̃ ∈

(C
B

)
such that

|im(χ ↾
(B̃
A

)
)| ≤ d.

Note here that often in the literature the notion just defined is referred to as a
small Ramsey degree, to distinguish between it and the so-called big Ramsey
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degrees. I will not be discussing big Ramsey degrees here; see, for instance,
[Maš21] for a relevant discussion.

The following Remark 2.5.14 is essentially a restatement of the definition:
Remark 2.5.14. In these terms, C has ERP if, and only if, for all A ∈ C we
have that A has Ramsey degree 1.
Fact 2.5.15 ([Bod15, Lemma 2.9, and Corollary 2.10]). Let C be a class of
finite structures. Then, for all A ∈ C, the Ramsey degree of A is at least
|Aut(A)|. In particular, if C has ERP, then all members of C are rigid (cf.
Fact 3.8.2).

The following fact is well known. It follows from a simple compactness argu-
ment.
Fact 2.5.16. Let M be a locally finite structure. Then, the following are
equivalent:

(1) M has ERP.

(2) For all finitely generated substructures A ⊆ B ⊆ M we have that M →
(B)A2 .

Topological Dynamics

To close this section, let me give a quick overview of the central theorem
of Kechris-Pestov-Todorčević, from [KPT05]. First, recall that a topological
group is just an abstract group (G, ·) together with a topology on G such
that both the group operation operation and the inversion are continuous. An
action of a topological group G on a topological space X is called continuous
if it is a continuous function G×X → X. If X is a compact Hausdorff space
then a continuous action of G on X is called an G-flow. A topological group
G is extremely amenable if every G-flow has a fixed point.

Automorphism groups are closed subgroups of symmetric groups and thus
inherit a natural topology (the topology of pointwise convergence).
Fact 2.5.17 ([KPT05, Theorem 4.8], [Bod21, Theorem 11.2.2]). Let C be
a Fraïssé class, M = Flim(C), and G = Aut(M). Then, the following are
equivalent:

(1) The group G is extremely amenable.

(2) C consists of rigid structures and has ERP.
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(3) C is a Ramsey class and M admits an Aut(M)-invariant linear order,
that is, there exists a linear order ⪯ on M such that for all i, j ∈ M and
all σ ∈ Aut(M) we have that i ⪯ j if, and only if σ(i) ⪯ σ(j).

2.6 (Generalised) Indiscernibles

As in the previous section, before reviewing generalised indiscernibles, it is
sensible to discuss their more classical ancestors, indiscernible sequences and
indiscernible sets (sometimes referred to as totally indiscernible sequences).
Intuitively, an indiscernible set is a set of tuples from a structure all of whose
subsets cannot be told apart using first-order logic, and an indiscernible
sequence is a sequence of tuples where the same conclusion holds only of its
increasing subsequences. More formally:
Definition 2.6.1. Let, M be a first-order structure, A ⊆ M and I a linear
order. We say that a sequence14 I = (āi : i ∈ I) of (same-length) tuples15 from
M is:

(1) An order-indiscernible sequence over A (or simply an indiscernible se-
quence over A) if for all n ∈ N and all increasing sequences i1 < · · · <
in, j1 < · · · < jn from I we have that:

tp(āi1 , . . . , āin/A) = tp(āj1 , . . . , ājn/A).

(2) A totally indiscernible sequence over A (or, to the same extent, an indis-
cernible set over A) if for all n ∈ N and all {i1, . . . , in}, {, j1, . . . , jn} ∈

(I
n

)
we have that:

tp(āi1 , . . . , āin/A) = tp(āj1 , . . . , ājn/A).

Remark 2.6.2. When A = ∅, I will skip the “over ∅” part. Note that some
authors (including, unfortunately, the younger self of the author of this thesis)
sometimes call a sequence which is indiscernible over A an A-indiscernible
sequence. For reasons that will become apparent when generalised indiscernibles
show up, this will not be done in this thesis.

Here is the promised alternative characterisation of stability:
14Recall that formally a sequence is just a function from I to some Cartesian power of M .
15Throughout this thesis, unless otherwise stated, all sequences will consist of same-length

tuples, and this is the last page on which the phrase “same-length” appears.
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Theorem 2.6.3 ([She90, Theorem II.2.13]). Let T be a first-order theory.
Then, the following are equivalent:

(1) T is stable.

(2) Every order-indiscernible sequence in a model of T is totally indiscernible.

Arguments using indiscernible sequences, instead of arbitrary ones, are usually
much easier to carry out, since one may, at their leisure, exchange (finite)
subsequences of elements with other ones in the sequence. Therefore, indiscern-
ibles bring a very welcome form of uniformity to our arguments. That being
said, if this were everything about indiscernibles, that probably wouldn’t be
enough to care too much about them. The amazing thing is that given any
sequence I in a first-order structure, one can always find (perhaps at the cost
of moving to an elementary extension) an indiscernible sequence I′ which in a
well defined way nicely approximates the increasing behaviour of I. To make
this more precise, we need the concept of Ehrenfeucht-Mostowski types.
Definition 2.6.4. Let M, A, and I = (ai : i ∈ I) be as in Definition 2.6.1. The
Ehrenfeucht-Mostowski type of I over A, denoted EM-tp(I/A) is the following
partial type (in ℵ0-many variables):

EM-tp(I/A) := {ϕ(x1, . . . , xn) ∈ L(A) : ∀i1 < · · · < in ∈ I,

M ⊨ ϕ(āi1 , . . . , āin), n ∈ N}.

Intuitively, EM-tp(I) contains all the common behaviours of increasing finite
subsequences of I. Let I = (I,<) and J = (J,<) be linear orders. We say
that an I-indexed sequence I = (ai : i ∈ I) realises the EM-type over A of
a J -indexed sequence J = (bj : j ∈ J), denoted I ⊨ EM-tp(J/A), if for all
n ∈ N and all i1 < · · · < in we have that (ai1 , . . . , ain) ⊨ ϕ(x1, . . . , xn), for all
ϕ ∈ EM-tp(J/A).
Remark 2.6.5. It should be clear that I is indiscernible over A if, and only if
EM-tp(I) is a maximally consistent set of L(A)-formulas.

The following result is so folklore that it is sometimes (e.g. in [TZ12, Lemma 5.1.3])
referred to as the standard lemma. Many model theorists also refer to applica-
tions of the standard lemma by using the phrase “by Ramsey and compactness”,
a phrase that is ubiquitous in model theory papers. The reason why will,
hopefully, be evident from the proof I will sketch below.
Theorem 2.6.6 (The Standard Lemma). Let I and J be two infinite linear
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orders. For any parameter sets A,B and any sequence I = (āi : i ∈ I) there is
a sequence J = (b̄j : j ∈ J) which is indiscernible over B and

J ⊨ EM-tp(I/A).

Proof (sketch). By Ramsey’s theorem and compactness. More precisely, ob-
serve that we can write down a set of L(AB)-formulas Σ(x̄j : j ∈ J ) which
says that any realisation of Σ is indiscernible over B and realises EM-tp(I/A)
(this requires a bit of notational care, but can be done). It then suffices to
show that such a set Σ(xj : j ∈ J ) is satisfiable.

By compactness, it suffices to show that all finite subsets of Σ are satisfiable,
and we can observe that this boils down to showing that for every finite set ∆
of L(B)-formulas, there is an infinite subset X of I such that every increasing
subsequence of elements from X indexes elements which have the same ∆-type.

By Ramsey’s theorem, such a subset X always exists. Indeed, let n be the
maximal number of free variables appearing in formulas of ∆ and colour the
n-element subsets of I according to the ∆-type of the elements of I that they
index (in increasing order). Since ∆ is finite, there are only finitely many
∆-types, and thus Ramsey’s theorem applies. So, we can find an infinite
monochromatic subset for this colouring, and the result follows.

Now that we have the basics of indiscernible sequences down, we can move
on up to generalised indiscernibles. These objects were first introduced by
Shelah in [She90, Section VII.2], as a tool to study the tree property (which
will not be discussed here). These notions have proven to be an important tool
in classification theory, for instance in the study of other tree properties (see,
[KK11] and [KKS13]). In Chapter 4 I will discuss how generalised indiscernibles
can been used to define new dividing lines.

The main new idea here is that there is no need to index our sequences by
linear orders (or unordered sets). Since sequences are just functions from the
domain of the indexing structure to some Cartesian power of the structure we
are working in, the indexing structure may be any first-order structure our
hearts desire. Here’s how to make this formal:
Definition 2.6.7 (Generalised Indiscernibles). Let L′ be a first-order language
and N an L′-structure. Given an N -indexed sequence of tuples I = (āi : i ∈ N )
from M, and a small subset A ⊆ M, we say that I is an N -indexed indiscernible
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sequence over A or simply that I is N -indiscernible over A if for all n ∈ N and
all sequences i1, . . . , in, j1, . . . , jn from N we have that:

If qftpN (i1, . . . , in) = qftpN (ij , . . . , jn)

then tpM(āi1 , . . . , āin/A) = tpM(āj1 , . . . , ājn/A).

If A = ∅, we say that I is simply an N -indiscernible sequence.
Remark 2.6.8. Henceforth, as is usual, when discussing indiscernibles, I will
not speak of (generalised) indiscernibility over a small set A ⊆ M. This is, of
course, since (when relevant) we can add constants naming A to L reducing
this to indiscernibility over ∅ (in the L(A)-structure M, where the new constant
symbols are naming the elements of A).
Example 2.6.9. It should, at this point, be clear that if N = ⟨N, <⟩ (or, more
generally, N is any infinite linear order), then N -indiscernible sequences are
simply indiscernible sequences. If N = ⟨N,=⟩ (or, more generally, N is any
infinite set in the language of pure equality), then N -indiscernible sequences
are simply totally indiscernible sequences.

The conclusion of the Standard Lemma is that for any sequence I one can
find an indiscernible sequence J realising EM-tp(I). Any good theorem serves
better as a definition, so let’s turn its conclusion into one. There are many
ways of going about this, but the following terminology is essentially due to
Scow [Sco12].
Definition 2.6.10 (The Modelling Property). Let L′ be a first-order language,
N be an L′-structure, and I = (āi : i ∈ N ) be an N -indexed sequence of tuples
from M.

(1) Given an N -indexed sequence of tuples J = (b̄i : i ∈ N ) from M, we say
that J is (locally) based on I if for all finite sets of L-formulas ∆ ⊆ L,
all n ∈ N and all i1, . . . , in from N there is some j1, . . . , jn from N such
that:

(a) qftpL′
N (i1, . . . , in) = qftpL′

N (j1, . . . , jn)

(b) tp∆
M(b̄i1 , . . . , b̄in) = tp∆

M(āj1 , . . . , ājn)

(2) We say that N -indiscernible sequences have the modelling property in T

if for each N -indexed sequence I = (āi : i ∈ N ) of tuples from M ⊨ T

there exists an N -indiscernible sequence J (locally) based on I.

(3) We say that N -indiscernible sequences have the modelling property if for
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all first-order theories T , they have the modelling property in T .

The phrase “N -indiscernible sequences have the modelling property” will
usually be abbreviated by “N has the Modelling Property” (and often even by
“N has MP.16”)
Remark 2.6.11. It should be clear that when N ⊨ LO, then an N -indexed
indiscernible sequence J is locally based on an N -indexed sequence I if, and
only if, I has the same EM-type as J. So, in this case, the modelling property
is precisely the conclusion of the Standard Lemma.

If this section feels like it’s missing something, this is because it is. The
connections between the Modelling Property and Structural Ramsey theory
will be one of the central themes of Chapter 3.

2.7 A World of Structures†

In this section, my goal is to introduce most of the dramatis personae of the
thesis, that is, the structures (or classes of structures) that will be showing up
in the subsequent chapters. The material here is more-or-less well-known, but
this is a good opportunity to fix notation.

2.7.1 Very Standard Classes of Structures

Pure sets.

The easiest (infinite) first-order structure one can imagine is a pure set, that
is, an infinite set, in the empty language.17 I will write CE for the class of all
finite sets (in the language of pure equality). Of course, CE is a Fraïssé class,
but since its members are far from rigid, it is not a Ramsey class. It is easy to
see, by quantifier elimination, that Flim(CE) is strongly minimal.

Linear and Cyclic Orders

One step up the complexity hierarchy we get CLO, the class of all finite linear
orders. This one is a Ramsey class (by Ramsey’s theorem), and Flim(CLO) is

16This should not be confused with the initials of the authors of [MP23b],[MP23a].
†Parts of this section appeared in [MPT23]. I am very grateful to Pierre Touchard both

for making the lovely pictures that appear in [MPT23], and for letting me include them here.
17The equality symbol is always interpreted as true equality and is always assumed to be

present.
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the (unique up to isomorphism) countable dense linear order without endpoints,
(Q, <). This is an o-minimal (NIP, distal, unstable) structure.

Recall that a (strict) cyclic order CO on a set X is a ternary relation such
that, for all x, y, z, w ∈ X:

(1) CO(x, y, z) → CO(y, z, x);

(2) CO(x, y, z) → ¬CO(x, z, y)

(3) CO(x, y, z) ∧ CO(y, y, w) → CO(x, y, w);

(4) if x, y, z are distinct, then CO(x, y, w) or CO(x,w, y).

I will write CCO for the class of all finite cyclic orders. This is a Fraïssé class
whose Fraïssé limit is one of the three proper reducts.18 of (Q, <))

2.7.2 (Ordered) Hypergraphs

One more step up the complexity hierarchy we have CHn and COHn , for n ∈ N,
the classes of all finite n-hypergraphs and all finite ordered n-hypergraphs,
respectively. These will now be discusses in more detail.

Fix m ∈ N. Let L0 = {Ri : i < m} where each Ri is a relation symbol of arity
ri, for each i < m. A hypergraph of type L0 or L0-hypergraph is a structure(
A, (Ri)i<m

)
such that, for all i < m:

• (Uniformity): If Ri(a0, . . . , ari−1) then all a0, . . . , ari−1 are distinct.

• (Symmetry): If Ri(a0, . . . , ari−1) then for any permutation σ ∈ Sri we
also have Ri

(
aσ(0), . . . , aσ(ri−1)

)
.

The point is that each Ri is interpreted in A as an ri-ary “hyperedge” relation,
i.e. Ri ⊆ [A]ri .

Let L+
0 = L0 ∪ {<}. If M = (A, (Ri)i<m, <) is an L+

0 -structure whose L0-
reduct is an L0-hypergraph and < is interpreted as a linear order in M , then
we say that M is an ordered L+

0 -hypergraph.

Let C be the class of all linearly ordered finite L0-hypergraphs. Then, C is a
Fraïssé class and its Fraïssé limit is the ordered random L+

0 -hypergraph, whose
order is isomorphic to (Q, <).

18Discussed in more detail in Subsection 4.2.1
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Fact 2.7.1 ([NR77]). For any finite L+
0 , let C be the class of all ordered

L+
0 -hypergraphs. Then C is a Ramsey class.

In particular, if L+
0 = {<,R}, where R is a single relation symbol of arity n we

call an ordered L+
0 -hypergraph an ordered n-uniform hypergraph. The Fraïssé

limit of the class of ordered n-uniform hypergraphs is the ordered random
n-uniform hypergraph, which we denote by OHn.
Remark 2.7.2. A first-order L0-structure ⟨M,<,R⟩ is a model of Th(Flim(COHn))
if, and only if:

• ⟨M,<,R⟩ is an ordered n-uniform hypergraph, in the sense above.

• ⟨M,<⟩ is a model of DLO.

• For all finite disjoint subsets A0, A1 ⊆ Mn−1 and any b0, b1 ∈ M such
that b0 < b1, there is some b ∈ M such that:

– b0 < b < b1.

– For every (a0,1, . . . , a0,n−1) ∈ A0, and (a1,1, . . . , a1,n−1) ∈ A1, with
that a0,i and the a1,i pairwise distinct, we have that:

R(b, a0,1, . . . , a0,n−1) and ¬R(b, a1,1, . . . , a1,n−1).

In particular, an ordered random 1-hypergraph is a dense linear order with a
dense co-dense subset. I will denote the ordered random 2-hypergraph OH2

by OG (since 2-hypergraphs are just graphs).

At times I will need to consider the structures obtained from OHn by “forgetting”
the order < (in the terminology of Subsection 4.2.1, the language reducts to
L = {R}). These will be denoted by Hn (and for n = 2 by G).

2.7.3 More Exotic Examples

I will now introduce two well-known homogeneous structures:

• The C-relation; and

• Its reduct, the D-relation.19

19We (meaning the authors of [MPT23]) are indebted to D. Bradley-Williams for his
valuable comments on D-relations and D-related issues.
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I will be rather succinct in the exposition here, but these are extremely
interesting structures, and for more details, I recommend [Cam90, Section 5.1],
[AM22], and [BJP16].

Generalised Chain Relations
Definition 2.7.3 ([BJP16, Paragraph 3.3]). A ternary relation C(x; y, z) on a
set X is called a C-relation if for all a, b, c, d ∈ X we have that:

(1) C(a; b, c) → C(a; c, b);

(2) C(a; b, c) → ¬C(b; a, c);

(3) C(a; b, c) → (C(a; d, c) ∨ C(d; b, c));

(4) a ̸= b → C(a; b, b).

We say that a C-relation is derived from a binary tree or that it is binary
branching if, in addition, for all distinct elements a, b, c ∈ X we have that:

5. C(a; b, c) ∨ C(b; a, c) ∨ C(c; a, b).

Let ≺ be a total order on X. We say that ≺ is convex for C if for all a, b, c ∈ X,
if C(a; b, c) and a ≺ c, then either a ≺ b ≺ c or a ≺ c ≺ b. We denote by COC

the class of all convexly ordered finite binary branching C-relations.
Fact 2.7.4 ([Bod15, Theorem 5.1]). The class COC is a Ramsey class.

In particular, COC is a Fraïssé class. I will write OC for Flim(COC).

Generalised Direction Relations
Definition 2.7.5 ([BJP16, Paragraph 3.4]). A quaternary relation D(x, y; z, w)
on a set X is called a D-relation if for all x, y, z, w, a ∈ X we have that:

1. D(x, y; z, w) → D(y, x; z, w) ∧D(x, y;w, z) ∧D(z, w;x, y);

2. D(x, y; z, w) → ¬D(x, z; y, w);

3. D(x, y; z, w) → (D(a, y; z, w) ∨D(x, y; z, a));

4. (x ̸= z ∧ y ̸= z) → D(x, y; z, z).

Similarly to Definition 2.7.3, we say that a D-relation is derived from a binary
tree or that it is binary branching if, in addition for any four elements x, y, z, w ∈
X, if at least 3 of them are distinct, then we have:

(5) D(x, y; z, w) ∨D(x, z; y, w) ∨D(x,w; y, z).
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Remark 2.7.6. From a binary tree, we obtain such a D-relation on the set of
leaves by setting, D(a, b; c, d), for distinct a, b, c, d, if the paths between a and
b and between c and d are disjoint. For instance, if a, b, c and d are arranged
as follows:

b

a

c

d

Figure 2.1: Example of Binary Branching D-Relation.

then D(a, b; c, d) holds.
Definition 2.7.7. A cyclic order CO on a binary D-relation X is convex for
D if for all distinct x, a, b, c ∈ X:

CO(a, b, c) ∧ CO(c, x, a) → D(x, a; b, c) ∨D(a, b; c, x).

x

c

a

b

c

b

x

a

Equivalently, we have for all distinct a, b, c, d ∈ X,

CO(a, b, c) ∧ CO(b, c, d) → ¬D(a, c; b, d).

Graphically, this means that the following configuration doesn’t occur:

c d
b

a

We shall denote by CCOD the class of all convexly ordered finite binary branching
D-relations.
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Figure 2.2, below, has an abstract representation of a finite structure in CCOD

which will hopefully be helpful:

Figure 2.2: A large (abstract) cyclically ordered D-relation.

The following fact is probably well-known. A proof can be found in the
preliminaries of [MPT23]
Fact 2.7.8. The theory of dense cyclically ordered binary branching D-relations
is complete, ℵ0-categorical, and admits quantifier elimination in the language
{D,CO}. It follows that CCOD = Age(M) is a Fraïssé class, where M is the
unique homogeneous countable model of the theory of dense cyclically ordered
binary branching D-relations.

I will return to these classes in section 4.4 (Example 4.4.16), to discuss how,
unlike COC, the class CCOD is not a Ramsey class, even if one expands it by a
generic order.

2.7.4 Hrushovski’s ab initio Constructions

This subsection contains a quick review of the basic ab initio Hrushovski
construction. The material here is classical, and the exposition is based on
the sources from which I learnt it. More precisely, this section is based mostly
on [Eva13] and [Zie13], and to a lesser extent [TZ12, Section 10.4]. I would
recommend these sources (e.g., [Eva13, Section 3.4]) for historical remarks on
the construction. Related to Hrushovski constructions (by work of Baldwin
and Shelah [BS97]), and generic structures, but not related to the work in this
thesis, is the excellent [Spe01].

Fix integers r ≥ 2 and m,n ≥ 1. Let C denote the class of all finite r-uniform
hypergraphs and recall the definition of Hrushovski’s predimension function,
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δ : C → Z, on C:
δ(B) = n|B| −m|RB|.

When A ⊆ B are structures in C, I shall, as is common, write A ≤ B if
δ(A) ≤ δ(B′) for all A ⊆ B′ ⊆ B, and define

C0 = {B ∈ C : ∅ ≤ B}.

By C̄0 I will denote the class of structures all of whose finite substructures are
in C0 and naturally extend ≤ on C̄0, by setting A ≤ B if, and only if A∩X ≤ X

for all finite X ⊆ B.
Theorem 2.7.9 ([Hru93]). There is a unique M0 ∈ C̄0 such that:

(1) M0 is the union of a ≤-chain of structures in C0.

(2) For all finite X ≤ M0 and all finite A ∈ C0 such that X ≤ A there is an
embedding α : A → M0 such that α ↾X= id and α(A) ≤ M0.

The structure M0 is ω-stable and ω-saturated.

This M0 shall be referred to as the generic structure for the class (C0,≤).

2.7.5 o-Minimal Expansions of Ordered Groups

In this section, I will give a quick overview of o-minimal expansions of ordered
groups. Recall that an ordered group is a group (G, ·, 1) equipped with a binary
operation < such that for all x, y, z ∈ G we have that:

x < y =⇒ x · z < y · z, and z · x < z · y

It is well known that an o-minimal ordered group is abelian, divisible and
torsion-free. Thus, I will write such groups with additive notation, and forego
the word abelian.

A beautiful and important result about o-minimal expansions of ordered groups
is the celebrated Trichotomy theorem of Peterzil and Starchenko [PS98]. First
some terminology:
Definition 2.7.10. Let M = ⟨M,<,+, . . . ⟩ be an o-minimal structure. An
element a ∈ M is called non-trivial if there is an open interval I containing
a and a parameter-definable function F : I × I → M such that F is strictly
monotone in each variable. A point is called trivial if it is not non-trivial. A
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group interval is a structure ⟨[−p, p], <,+, 0⟩, where p ∈ M belongs to a convex
type-definable ordered group (G,+, <), and p > 0.

Intuitively, the trichotomy theorem tells us that every point in a saturated
o-minimal structure is either trivial (“only sees the order structure”), belongs
to a (closed) group interval, or belongs to an open interval on which there is a
definable field. More formally:
Theorem 2.7.11 (Trichotomy Theorem). Let M be a saturated o-minimal
structure. Given a ∈ M one and only one of the following occurs:

(1) a is trivial.

(2) The structure that M induces in some convex neighbourhood of a is an
ordered vector space over a division ring. Furthermore, there is a closed
interval containing a on which a group is definable.

(3) The structure that M induces on some open interval around a is an
o-minimal expansion of a real closed field.

Thus, if M = ⟨M,<,+, . . . ⟩ is an expansion of an ordered group, there are
naturally three mutually exclusive possibilities. I will first state them and then
define them.

• M is either linear.

• M is semibounded (and non-linear).

• M expands a real closed field.

The third possibility is rather self-explanatory, but the first two certainly
require a formal definition.
Definition 2.7.12. Let Λ be the set of all partial ∅-definable endomorphisms
of ⟨M,<,+, 0⟩,20 and B the collection of all bounded parameter-definable sets
of M. Then, we say that:

(1) M is linear ([LP93]) if every definable subset of M is already definable
in the structure ⟨M,<,+, 0, {λ}λ∈Λ⟩.

(2) M is semibounded ([Edm00; Pet92]) if every definable subset of M is
already definable in the structure ⟨M,<,+, 0, {λ}λ∈Λ, {B}B∈B⟩.

Obviously, if M is linear then it is semibounded. The following are known:
20That is, maps of the form f : (a, b) → M such that f(x+ t) − f(x) = f(y + t) − f(y),

for all x, y ∈ (a, b) and all t ∈ M such that x+ t, y + t ∈ (a, b).
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Fact 2.7.13 ([PS98],[Edm00]).

(1) M is linear if, and only if, there is no real closed field defined on an
interval.

(2) M is semibounded if, and only if, M does not expand a real closed field
whose universe is an unbounded interval of M, if, and only if, M does
not expand a real closed field.

Example 2.7.14. An important example of a semi-bounded nonlinear struc-
ture is the expansion of the ordered vector space ⟨R, <,+, 0, {x 7→ λx}λ∈R⟩
by all bounded semialgebraic sets. Another important example is ⟨R, <
,+, 0, · ↾[0,1]2⟩, the expansion of the ordered vector space by the graph of
multiplication, restricted on [0, 1]2. Here, it is clear that we can define mul-
tiplication on any bounded interval; however, this cannot be done uniformly,
so if R ⊨ Th(⟨R, <,+, 0, · ↾[0,1]2⟩) is a saturated model we see that there is no
field definable on all of R.

2.7.6 Presburger Arithmetic

Presburger arithmetic is the theory of the structure ⟨Z, <,+, 0⟩, in the natural
language LPres = {<,+, 0}. It will sometimes be denoted by TPres. A brief
history of Presburger arithmetic can be found in [Haa18, Section 1]. It is clear
that TPres is not o-minimal (it is distal) but it enjoys a lot of similarities with
o-minimal theories, one of which is a cell decomposition theorem, which I will
recall below.
Definition 2.7.15. Let X ⊆ Γn. A function α : X → Γ is called linear (on
X) if there exist γ ∈ Γ, integers a1, . . . , an ∈ Z, positive integers s1, . . . , sn ∈
N>0 and non-negative integers e1, . . . , en ∈ N with ei ∈ {0, . . . , si − 1}, for
i ∈ {1, . . . , n}, such that:

• X ⊆
∏n
i=1(ei + siZ);

• For all x ∈ X we have that:

α(x) =
n∑
i=1

ai

(
xi − ei
si

)
+ γ.

The main structural result about sets definable in models of Presburger arith-
metic is the Cell Decomposition Theorem (Theorem 2.7.17), due to Cluckers
[Clu03]. For this, I will first need to introduce the notion of Presburger cells.
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Definition 2.7.16. Let (i1, . . . , in) ∈ {0, 1}n be a sequence of zeroes and ones.
We define a (i1, . . . , in)-Presburger cell (or simply (i1, . . . , in)-cell) C ⊆ Γn,
recursively, as follows:

Base case: If C ⊆ Γ is a (i1)-cell, then it has one of the of the following forms:

• A (0)-cell is just a singleton {a} ⊆ Γ.

• A (1)-cell is an infinite set C of the form

{x ∈ Γ : α □1 x □2 β, x ≡ c (mod n)},

where □i are either ≤ or no condition, and n, c ∈ [0, n) are fixed integers.
We refer to (1)-cells as Presburger intervals.

Inductive part: Suppose that for m ∈ N and (i1, . . . , im) ∈ {0, 1}m we have
defined (i1, . . . , im)-cells. Then:

• A (i1, . . . , im, 0)-cell is a set C ⊆ Γm+1 of the form:

{(x, t) ∈ Γm+1 : x ∈ D,α(x) = t},

where D = π̂m(C) is a (i1, . . . , im)-cell and α : D → Γ is a linear function
of D.

• A (i1, . . . , im, 1)-cell is a set A ⊆ Γm+1 of the form:

{(x, t) ∈ Γm+1 : x ∈ D,α(x) □1 t □2 β(x), t ≡ c (mod n)},

where D = π̂m(C) is a (i1, . . . , im)-cell, α, β : D → Γ are linear functions
□i either ≤ or no condition, and n and c ∈ [0, n) are fixed integers, such
that:

Unbounded Fibres: The cardinality of the fibres Cx = {t ∈ Γ :
(x, t) ∈ C} cannot be bounded uniformly in x ∈ D by an integer.

To fix notation, given an (i1, . . . , in)-cell C ⊆ Γn we write Z(C) for the set
{k ∈ [n] : ik = 0} and D(C) for [n] \ Z(C).

Finally:
Theorem 2.7.17 (Cell Decomposition Theorem [Clu03, Theorem 1]). Let
X ⊆ Γn be an LPres-definable set, possibly over parameters A ⊆ Γ. Then there
is a finite partition P of X into Presberger cells, such that each C ∈ P is
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LPres(S)-definable.



Chapter 3

Generalised Indiscernibles and
Ramsey Theory†

‘Ravens, so we read, can only count up
to seven. They can’t tell the difference
between two numbers greater than eight.
First-order logic is much the same as ravens,
except that the cutoff point is rather higher:
it’s ω rather than 8.’

Wilfrid Hodges, Model Theory

Introduction

In Chapter 2, I gave a rather extensive introduction to two of the main themes
of the first part of this chapter, namely: (a) Structural Ramsey Theory; and
(b) Generalised Indiscernibles.

I tactfully avoided presenting how central the interaction between these two
concepts (which at first sight may seem disconnected from each other) is, at
least from the point of view of model theory. But fret not; this will be done in
detail in the first part of this chapter. In the second part of this chapter,

†This chapter is largely based on [MP23b] and [MP23a]. Both these papers were written
jointly with Nadav Meir, and at the time of writing, have been submitted for publication.
The contributions of both authors to these papers are equal, and the results are reproduced
here with the permission of Meir. The presentation I give follows the presentation in our
papers, with minor differences, which I will not point out.

43
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I will discuss a family of “local” versions of the Ramsey property, somewhat
motivated by the discussion that takes place in the first part.

Part 1: Practical and Structural Infinitary
Expansions

3.1 Introduction to Part 1

Recall from Section 2.5 that the original motivation behind what we now refer
to as “Ramsey’s theorem” was to show that certain fragments of first-order
logic are decidable, essentially through a weak form of indiscernibility (though,
of course, not under that name). On the other hand, as discussed in Chapter 2,
the fact that given any sequence indexed by a linear order, one can always
realise its EM-type by an indiscernible sequence is essentially an application of
Ramsey’s theorem and compactness.

Recently, Scow showed that the connection between generalised indiscernibility
and structural Ramsey theory is even deeper than the previous paragraph may
suggest. More precisely, the main theorem of [Sco15] states that under some
technical hypotheses, N -indexed indiscernibles have the modelling property if,
and only if, Age(N ) is a Ramsey class.

One of the main goals of Part 1 of this chapter is to strengthen Scow’s theorem
by showing that most of the technical assumptions made in [Sco15] are, in fact,
not necessary. More precisely:
Theorem A (Theorem 3.5.12). Let L′ be a first-order language and N an
infinite, locally finite L′-structure. Then, the following are equivalent:

1. Age(N ) is a Ramsey class.

2. N -indexed indiscernibles have the modelling property (Definition 2.6.10).

As an almost immediate corollary of Theorem A, it follows that every Ramsey
class admits an order, given by a union of quantifier-free types, extending a
known result for countable Ramsey classes, from [Bod15]. More precisely:
Theorem B (Corollary 3.5.13). Let N be an L′-structure such that Age(N ) is
a (not necessarily countable)1 Ramsey class. Then there is an Aut(N )-invariant
linear order on N , which is a union of quantifier-free types. More explicitly,

1That is, N does not necessarily contain countably many isomorphism types of each finite
structure.
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there is a (possibly infinite) Boolean combination of atomic and negated atomic
L′-formulas Φ(x, y) :=

∨
i∈I
∧
j∈Ji

ϕ
(−1)nji

ji
(x, y), such that Φ is a linear order

for every structure in Age(N ).
Remark 3.1.1. This result will be generalised in the second part of this chapter,
with a completely different proof, which is of independent interest.

Given an L′-structure N , in [MP23b] we introduce the following terminology:
we say that C := Age(N ) is L′

∞,0-orderable (see Definition 3.4.1), essentially, if
it satisfies the conclusion of Theorem B, that is, if there is a (possibly infinite)
Boolean combination of atomic and negated atomic L′-formulas which is a
linear order on every structure in C. We observe that this is the minimal
required condition so that for every theory T , there is some N -indexed indis-
cernible sequence in some sufficiently saturated model of T . For a more precise
statement, see Proposition 3.4.6, which lists multiple equivalent conditions for
the existence of N -indexed indiscernibles.

Finally, in [MP23b], we also introduce and discuss a generalisation of the
Ramsey Property, the finitary Ramsey Property (see Definition 3.6.1), which,
we argue, is the natural generalisation of the Ramsey Property to classes of
possibly infinite, not necessarily relational, structures. To this end, we show,
first of all, that Theorem A holds without the assumption of local finiteness
if one replaces “C is a Ramsey class” by “C is a finitary Ramsey class” (see
Theorem 3.6.8, for a more precise statement). In this direction, we also obtain
the following slight strengthening of the well-known correspondence of Kechris,
Pestov, and Todorčević, which was discussed in Section 2.5:
Theorem C (Theorem 3.6.6). Let M be a homogeneous L-structure. Then,
the following are equivalent:

1. Aut(M) is extremely amenable.

2. Age(M) is a finitary Ramsey class.

Structure of Part 1

In Section 3.2 I’ve included a useful result on Ramsey classes and the full
statement of Scow’s theorem since the latter will be used to derive Theorem A.
Then, Section 3.3 introduces a set of techniques based around “conservative”
expansions in infinitary logic, which are the main tools used in the proofs
of Theorem A and Theorem B. Section 3.4 discusses L∞,0-orderability as a
necessary and sufficient condition for the existence of N -indexed indiscernibles
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in (sufficiently saturated) models of arbitrary theories. Then, Section 3.5
combines all the previous results to prove Theorem A and Theorem B. In
Section 3.6 the finitary-Ramsey property is introduced, and classes that no
longer necessarily contain just finite structures come into the picture.

Local Notational Conventions

Unless otherwise stated, in this chapter, the word definable means defin-
able without parameters. The same convention applies when (quantifier-free)
types are discussed; that is, unless otherwise stated quantifier-free type means
quantifier-free type over ∅. The reader may have noticed that in the statements
of the results, I used the letter L′ rather than the usual L. Typically, L′ will
be the language used for indexing structures.

3.2 Local Preliminaries for Part 1

Let me start with a relatively elementary lemma, which is probably folklore,
but I wasn’t able to find a proof in the literature:
Lemma 3.2.1. Let C be a class of finite structures. Let A1, . . . An ∈ C be
structures contained in some B ∈ C, with Ai having (embedding) Ramsey degree
di, for all i ≤ n. Then, there is some C ∈ C such that B ⊆ C and for all
ri ∈ N and all sets of colourings {χi :

(C
Ai

)
→ ri : i ≤ n}, there is some B̃ ∈

(C
B

)
such that |im(χi↾( B̃

Ai
))| ≤ di, for all i ≤ n.

Proof. The proof is by induction on n. The base case is precisely the definition
of A1 having Ramsey degree d1 in C. For the inductive step, assume that we
are given A1, . . . , An+1, B ∈ C such that Ai ⊆ B and the Ramsey degree of Ai
is di, for all i ≤ n+ 1. By the inductive hypothesis, there is some C0 ∈ C such
that for all ri ∈ N, i ≤ n, and all sets of colourings {χi :

(C0
Ai

)
→ ri : i ≤ n},

there is some B̃ ∈
(C0
B

)
such that |im(χi↾( B̃

Ai
))| ≤ di, for all i ≤ n. Now, since

An+1 has Ramsey degree dn+1 in C, there is some C ∈ C such that for all
r ∈ N and all colourings χ :

(C
C0

)
→ r there exists some C̃0 ∈

(C
C0

)
such that

|im(χ
↾( C̃0

An+1
))| ≤ dn+1.

We claim that this C is the required structure. Indeed, suppose that we are
given ri ∈ N, i ≤ n + 1, and a set of colourings {χi :

(C
Ai

)
→ ri : i ≤ n + 1}.

Let C̃0 ∈
(C
C0

)
be such that |im(χ

↾( C̃0
An+1

))| ≤ dn+1. Then, by our choice of C̃0,
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there is some B̃ ∈
(C̃0
B

)
such that |im(χi↾( B̃

Ai
))| ≤ di, for all i ≤ n. But since

( B̃
An+1

)
⊆
( C̃0
An+1

)
, we must have that

∣∣∣∣∣im
(
χn+1↾( B̃

An+1
)

)∣∣∣∣∣ ≤
∣∣∣∣∣im

(
χ
↾( C̃0

An+1
)

)∣∣∣∣∣ ≤ dn+1,

as required.

The following useful little corollary is now immediate:
Corollary 3.2.2. Let C be a Ramsey class of finite structures. Then for all
i ≤ n, all A1, . . . An ∈ C and all B ∈ C such that Ai ⊆ B for each i ≤ n, there
is some C ∈ C such that for all sets of colourings {χi :

(C
Ai

)
→ [2] : i ≤ n},

there is some B̃ ∈
(C
B

)
such that χi↾( B̃

Ai
) is constant, for all i ≤ n.

The rest of this short section is dedicated to the statement of the main theorem
of [Sco15]. First of all, recall (or quickly learn) the following definition, also
from [Sco15]:
Definition 3.2.3 (qfi, [Sco15, Definition 2.3]). Let N be an L′-structure. We
say that N has qfi if for any quantifier-free type q(x) realised in N there is a
quantifier-free formula θq(x) such that Th∀(N ) ∪ θq(x) is consistent and:

Th∀(N ) ∪ θq(x) ⊢ q(x).

As commented in [Sco15], the name qfi refers to quantifier-free types (in
particular, realised quantifier-free types) being isolated, in the universal part of
the theory of N (and, in fact, by a quantifier-free formula). The main theorem
of [Sco15], which draws the deep connection between generalised indiscernibles
and Ramsey classes I promised in Section 2.6 and the introduction, is the
following:
Theorem 3.2.4 ([Sco15, Theorem 3.12]). Fix a first-order language L′ and
assume that L′ contains a distinguished binary relation symbol <. Let C be a
class of finite L′-structures and N an infinite, locally finite L′-structure with
qfi such that Age(N ) = C and ⟨N ,≤⟩ ⊨ LO (where LO expresses that ≤ is a
linear order). Then, the following are equivalent:

1. C is a Ramsey class.

2. N -indiscernibles have the modelling property.

In the following sections, I will explain how to eliminate both the order
assumption and the qfi assumption from Theorem 3.2.4.
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3.3 Expansions in Infinitary Logic

One central piece of machinery introduced in [MP23b] is the notion of infinitary
Morleyisations. These are, essentially, conservative expansions in a fragment
of the infinitary logic Lκ,λ (really, as it turns out, this fragment will be L∞,0),
which I feel obligated to briefly introduce.

Recall that for a language L and (not necessarily infinite) cardinals κ, λ, we
denote by Lpnf

κ,λ the collection of L-formulas of the form:

(Q1y1), . . . , (Qαyα)︸ ︷︷ ︸
α<λ

∨
β<ξ1

 ∧
γ<ξ2

ϕβ,γ(x̄, ȳ)

 , (⋆)

for cardinals ξ1, ξ2 < κ, and where each Qi is a first-order quantifier (i.e. ∀ or
∃), and each ϕβ,γ(x̄, ȳ) is an atomic or negated atomic L-formula, in finitely
many variables. When κ (resp. λ) is replaced by ∞, the intended meaning is
that the number of conjunctions/disjunctions (resp. quantifiers) is unbounded.
In this notation (by the prenex normal form theorem) traditional first-order
logic is concerned only with Lpnf

ω,ω-formulas, and Lpnf
∞,0 refers to arbitrarily large

conjunctions/disjunctions of quantifier-free formulas.
Remark 3.3.1. In general, for infinite cardinals κ and λ, one needs to distinguish
between:

• Lκ,λ, the usual infinitary logic, whose formulas are built inductively by
allowing for quantification over λ-tuples and conjunction/disjunction of
κ-many formulas; and

• Lpnf
κ,λ, as defined above.

The reason is that for κ ≥ ℵ1 the prenex normal form theorem may fail. That
being said, it follows immediately from the definitions that:

Lpnf
κ,0 = Lκ,0,

for any infinite cardinal κ, or κ = ∞. So, in this case, the superscript pnf will
be dropped.

Given an L-structure M, a set X ⊆ Mn is Lpnf
κ,λ-definable if there is a formula

Φ(x̄) as in (⋆) such that X = {ā ∈ M : M ⊨ Φ(ā)}.



Expansions in Infinitary Logic 49

3.3.1 Infinitary Morleyisations

When working in model-theoretic classification theory, it is common to focus
not on the syntactical properties of the definable sets in a given structure (e.g.
if they are definable using quantifier-free formulas) but on the complexity of
the lattice of its definable sets.

In particular, it is often easier to work in expansions of a given structure, in
which definable sets are easier to describe. Still, the complexity of the lattice
of definable sets and hence the notions of “tameness” and “wildness” (such as
the ones discussed in Section 2.3) remain unchanged.

The prototypical example of such a process is what is known as the Morleyisa-
tion, named after M. Morley, of Morley’s Theorem (Theorem 2.3.1). Given an
L-structure M, the Morleyisation produces an expanded language L̂ ⊇ L and
an L̂-structure M̂, on the same domain as M, with the properties that:

1. The L-definable sets in M are precisely the L̂-definable sets in M̂.

2. M̂ has quantifier elimination.

To achieve this, we do the obvious thing: we name every definable subset of
our structure by a new relation symbol! More precisely, L̂ ⊇ L, contains for
each L-definable X ⊆ Mn an n-ary relation symbol RX . We interpret the new
relation symbols in a natural way:

M̂ ⊨ RX(ā) if, and only if, ā ∈ X,

for all L-definable X ⊆ Mn and all ā ∈ Mn.

It is now an easy task to show that:

1. In the resulting structure, M̂, all definable sets can be defined by
quantifier-free formulas.

2. The L̂-definable sets in M̂ are precisely the L-definable sets in M.
Remark 3.3.2. Since many important model-theoretic properties of M (e.g.
categoricity, stability, NIP, and more) are, in fact, properties of the lattice of
the definable sets of M and not of the descriptive complexity of said definable
sets, all of these are preserved by Morleyisations. It is thus usual practice, when
working in classification theory, to assume that structures eliminate quantifiers
since they can always be Morleyised.
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In [MP23b], we introduce a more general form of this process. We then show
that our generalisation is again a “conservative expansion” in a very well-defined
sense, even though it may increase the complexity of the definable sets in the
structure.
Definition 3.3.3. Let κ, λ be (not necessarily infinite) cardinals, or ∞. We
define the Lpnf

κ,λ-Morleyisation of M to be the expansion M̂ of M to the
language:

L̂ := L ∪ {RX : X is an Lpnf
κ,λ-definable subset of Mn, for n ∈ N},

where we naturally interpret the new relation symbols as follows:

M̂ ⊨ RX(ā) if, and only if ā ∈ X,

for every Lpnf
κ,λ-definable subset X of M and every ā in M.

It should be immediately apparent that the Lω,ω-Morleyisation is just the usual
Morleyisation we’re all, by now, familiar with.

In [MP23b] we then focus our attention on a special kind of Lpnf
κ,λ-Morleyisation,

namely the L∞,0-Morleyisation. More precisely, we are concerned with two
special reducts of the L∞,0-Morleyisation. The following two subsections are
dedicated to these reducts.

3.3.2 Quantifier-Free Type Morleyisation

It will turn out that adding predicates for all L∞,0-definable sets is a somewhat
complicated procedure, and to discuss generalised indiscernibles, one need no
more than the preservation and reflection of equality of quantifier-free types
(as stated in Lemma 3.3.5 and Lemma 3.3.7). This is achieved in the following
way:
Definition 3.3.4. Let M be an L-structure. The quantifier-free type Morley-
isation of M is the expansion M̂qfi of M to the language

L̂qfi := L ∪ {Rp : p is a quantifier-free type realised in M},

where we interpret the new relation symbols in the natural way, that is:

M̂qfi ⊨ Rp(ā) if, and only if M ⊨ p(ā),
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for every ā ∈ M and every quantifier-free type p that is realised in M.

An obvious remark about the quantifier-free type Morleyisation (and more
generally about the L∞,0-Morleyisation), which will be relevant later, is that
equality of quantifier-free types does not change when one moves from M to
M̂qfi (or M̂). More precisely:
Lemma 3.3.5. Let M be an L-structure. Then, for all tuples ā, b̄ from M we
have that:

qftpM̂qfi
(ā) = qftpM̂qfi

(b̄) if, and only if, qftpM(ā) = qftpM(b̄).

Proof. On the one hand, if qftpM(ā) ̸= qftpM(b̄), then, by definition there
is a quantifier-free L̂qfi-formula (in fact, an atomic one) which witnesses this,
so qftpM̂qfi

(ā) ̸= qftpM̂qfi
(b̄). For the converse, suppose that qftpM̂qfi

(ā) ̸=

qftpM̂qfi
(b̄). Then, there must be some L̂qfi-quantifier-free formula ϕ which

belongs to the first type but not to the second. Without loss of generality,
we may assume that this formula is in L̂qfi \ L, for otherwise we would be
done immediately. Of course, if ā and b̄ agree on all atomic L̂qfi-formulas, then
qftpM̂qfi

(ā) = qftpM̂qfi
(b̄). So, in particular, there must be some Rp ∈ L̂qfi such

that:
M̂qfi ⊨ Rp(ā) ∧ ¬Rp(b̄).

But then, qftp(ā) = p and qftp(b̄) ̸= p, so qftpM(ā) ̸= qftpM(b̄), as required.

3.3.3 Quantifier-Free type Isolators

The conclusion of Lemma 3.3.5 is the crucial condition we need for our results.
It is often, though, convenient to work with relational structures rather than
arbitrary ones. To this end, let’s consider the smallest relational reduct of the
quantifier-free type Morleyisation of an L-structure. More precisely:
Definition 3.3.6. Let M be an L-structure. The quantifier-free type isolator,
or the L∞,0-isolator of M is the reduct, Miso, of M̂qfi to the language Liso =
L̂qfi \ L.

Explicitly, in the notation above, Liso is such that for every ā ∈ M, if p =
qftpM(ā), then there is a unique relation symbol Rp ∈ Liso such that for every
b̄ ∈ M:

Miso ⊨ Rp(b̄) if, and only if, qftpM(b̄) = p.
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Of course, as commented earlier, it is easy to see that the analogue of
Lemma 3.3.5 still holds for quantifier-free type isolators. I’ll write it down
explicitly below for bookkeeping purposes:
Lemma 3.3.7. Let M be an L-structure. Then, for all tuples ā, b̄ from M we
have that:

qftpMiso(ā) = qftpMiso(b̄) if, and only if, qftpM(ā) = qftpM(b̄).

Proof. This is essentially identical to the proof of Lemma 3.3.5.

In the following sections, as discussed in Section 3.1, this machinery will be
used to prove stronger versions of Scow’s theorem. The quantifier-free type
isolator construction, in particular, will be used to prove a variant of the
Kechris-Pestov-Todorčević correspondence.

3.4 Existence of indiscernible sequences

In this section, I will discuss necessary and sufficient conditions on an L′-
structure N for N -indiscernibles to exist in (sufficiently saturated) models of
arbitrary theories. The key definition of this section is the following:
Definition 3.4.1. Let C be a class of L′-structures. We say that C is L′

∞,0-
orderable if there is a (possibly infinite) Boolean combination of atomic and
negated atomic L′-formulas ϕ(−1)nji

ji
(x, y):

Φ(x, y) :=
∨
i∈I

∧
j∈Ji

ϕ
(−1)nji

ji
(x, y),

such that Φ defines a linear order on every structure in C, i.e. if there is an
L′

∞,0-formula which is a linear order on all structures in C. We say that an
L′-structure N is L′

∞,0-orderable if Age(N ) is L′
∞,0-orderable.

I will start with the following easy lemma:
Lemma 3.4.2. Let M1,M2 be structures in languages L1,L2, respectively,
on the same set M , such that:

qftpM1(ā) = qftpM1(b̄) ⇐⇒ qftpM2(ā) = qftpM2(b̄), (†)

for every ā, b̄ ∈ M . Then, the following are equivalent:

1. M1 has MP.
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2. M2 has MP.

Proof. Assume that (†) holds for M1 and M2 as in the statement. It suffices
to show that if M1 has MP, then so does M2, as the argument is symmetric.
So let T be a first-order theory and M ⊨ T a monster model of T which,
without loss of generality, is |M |+-saturated. Fix I = (ām : m ∈ M). Since
M1-indiscernibles have the modelling property, there is an M1-indiscernible
J = (b̄m : m ∈ M) which is based on I. By (†), J is also M2-indiscernible, and
the result follows.

The next corollary is an almost immediate consequence of the above:
Corollary 3.4.3. Let N be an L′-structure and let ⪯ be a linear order on N ,
given by a union of quantifier-free types. Let No = (N ,⪯). If No-indiscernibles
have MP, then N -indiscernibles have MP.

Proof. Since ⪯ is a union of quantifier-free types of N , we have that N and
No satisfy (†), from Lemma 3.4.2, and thus the result follows.

To see that, given an L′-structure N , the property that Age(N ) is L′
∞,0-

orderable is the minimal requirement for N -indiscernibles to exist in every
theory, one needs first to consider universal theories only:
Lemma 3.4.4. Given an L′-structure N and a universal2 L-theory T , the
following are equivalent:

1. There is some L-structure M ⊨ T and a non-constant N -indiscernible
sequence of singletons in M.

2. There is some L-structure M ⊨ T such that:

• N ⊆ M and ⟨N⟩M = M, where ⟨N⟩M denotes the L-substructure
of M generated3 by N (see Section 2.2).

• Every L-definable subset of M restricted to N is equal to an L′
∞,0-

definable subset of N .
Remark 3.4.5. When L is relational we have that ⟨N⟩M = N , so the lemma
actually gives us an L′

∞,0-definable model of T on N , where, by an L′
∞,0-

2Recall a theory T is called universal if it admits an axiomatisation T0 consisting of
universal sentences.

3Equivalently, the smallest L-substructure of M whose domain contains N .
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definable structure on N , I mean an L-structure M with the same domain as
N , such that each relation in L on M is given by an L′

∞,0-formula in N .

Proof. For the implication (2) =⇒ (1), observe that if T is a universal theory
and M ⊨ T is an L′

∞,0-definable structure on N , as in (2), then N is, by
definition, an N -indiscernible sequence of singletons in M, where each element
is indexed by itself.

For the implication (1) =⇒ (2), let M′ ⊨ T and (ai : i ∈ N ) be a non-constant
N -indiscernible sequence of singletons in M′, as in (1).

Since T is universal and {ai : i ∈ N } ⊆ M′ ⊨ T , it follows that

⟨{ai : i ∈ N }⟩M′ ⊨ T.

Let M = ⟨{ai : i ∈ N }⟩M′ . This shows the first item of (2). To simplify
notation, we identify ai with i, for all i ∈ N .

To prove (2), it suffices to show that every L-definable subset of M restricted
to N ⊆ ⟨i : i ∈ N ⟩M′ , is actually an L′

∞,0-definable subset of N .

To this end, given an L-formula ϕ(x1, . . . , xn), let

Ψϕ := {qftpN (i1, . . . , in) : i1, . . . , in ∈ N,M ⊨ ϕ(i1, . . . , in)} .

By definition of Ψ, if M ⊨ ϕ(i1, . . . , in), for some i1, . . . , in ∈ N , then
i1, . . . , in ⊨ p for some p ∈ Ψϕ. Conversely, by N -indiscernibility of (i : i ∈ N ),
if i1, . . . , in ⊨ p, for some p ∈ Ψϕ then M ⊨ ϕ(i1, . . . , in). Thus,

M ⊨ ϕ(ai1 , . . . , ain) if, and only if, N ⊨
∨
p∈Ψϕ

∧
ψ∈p

ψ(i1, . . . , in)

 ,
which concludes the proof.

Now for the main event of this section:
Proposition 3.4.6. Given an L′-structure N , the following are equivalent:

1. Age(N ) is L′
∞,0-orderable.

2. There is an infinite {≤}-structure M such that (M,≤) ⊨ LO and a
non-constant N -indiscernible sequence in M.
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3. There is an infinite {≤}-structure M such that (M,≤) ⊨ LO and a
non-constant N -indiscernible sequence of singletons in M.

4. For every L-theory T with infinite models and every sufficiently saturated
model M ⊨ T there is a non-constant N -indiscernible sequence in M.

5. For every L-theory T with infinite models, and every sufficiently satur-
ated model M ⊨ T there is a non-constant N -indiscernible sequence of
singletons in M.

6. For every universal L-theory T with infinite models and every sufficiently
saturated model M ⊨ T there is a non-constant N -indiscernible sequence
in M.

7. For every universal L-theory T with infinite models, and every sufficiently
saturated model M ⊨ T there is a non-constant N -indiscernible sequence
of singletons in M.

8. For every relational universal L-theory T with infinite models, there is
some L′

∞,0-definable model of T on N .

Proof. Notice that LO is a universal theory, so (8) =⇒ (1), (6) =⇒ (2), and
(7) =⇒ (3). Since order-indiscernible sequences exist in every theory with
infinite models, and if N is an ordered structure, then (N ↾ {<})-indiscernibility
implies N -indiscernibility, we have (1) =⇒ (4). The implications (4) =⇒ (5),
(5) =⇒ (7), (4) =⇒ (6), (6) =⇒ (7), and (2) =⇒ (3) are trivial. The
equivalences (1) ⇐⇒ (3) and (8) ⇐⇒ (7) are by Lemma 3.4.4. Thus, we have
the following digraph of implications:

(1)

(2) (8)

(3) (7)

(4) (6)

(5)

which is strongly connected.
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Since if N has MP, non-constant N -indiscernibles exist in every theory with
infinite models (as we may always start with a non-constant N -indexed sequence
and find an N -indiscernible sequence based on it) the proposition above gives
the following corollary, which unlike Fact 2.5.17 does not assume that Age(N )
is a countable class:
Corollary 3.4.7. Let N be an L′-structure with MP. Then N is L′

∞,0-
orderable.

This corollary will be used to show that the order assumption in Theorem 3.2.4
is not necessary. In particular, the key property from the corollary is that if
No is the L′

∞,0-definable ordered expansion of N then, for all tuples ā, b̄ from
N we have that qftpN (ā) = qftpN (b̄) if, and only if, qftpNo

(ā) = qftpNo
(b̄).

3.5 Removing Assumptions From Scow’s Theorem

The goal of this section is to show that in Theorem 3.2.4, the assumptions of:
1. N having qfi; and 2. N being linearly ordered, can be removed.

First, the qfi assumption is dealt with, in Subsection 3.5.1, by using quantifier-
free type Morleyisations. Then, the order assumption is removed when Age(N )
is countable, in Subsection 3.5.2, and finally, the countability assumption on
Age(N ) is lifted in Subsection 3.5.3. If the reader wants to skip ahead to the
main result and work backwards, they are directed to Theorem 3.5.12.

3.5.1 The qfi assumption

First, I’ll highlight some easy results regarding the quantifier-free type Morley-
isation. The next lemma follows from the definition of the quantifier-free type
Morleyisation:
Lemma 3.5.1. Let M be an L-structure. Then M̂qfi has qfi.

Proof. We need to show that every quantifier-free type which is realised in
M̂qfi is isolated (in the universal part of the theory of M̂qfi) by a quantifier-free
formula. To this end, let ā be a tuple from M , and write q(x̄) = qftpM̂qfi

(ā) for

the quantifier-free type of ā in M̂qfi. By definition of M̂qfi, the quantifier-free
type q(x̄) of ā in M completely determines q(x̄). Thus, q(x̄) is isolated by the
quantifier-free formula Rq ∈ L̂qfi.

The next lemma is the analogue of Lemma 3.4.2, for ERP:
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Lemma 3.5.2. Let M1,M2 be locally finite structures in languages L1 ⊆ L2,
respectively, on the same domain M . Assume that for all tuples ā, b̄ from M

we have that:

qftpM1(ā) = qftpM1(b̄) ⇐⇒ qftpM2(ā) = qftpM2(b̄). (†)

Moreover, assume that L2 \ L1 consists only of relation symbols. Then, the
following are equivalent:

1. M1 has ERP.

2. M2 has ERP.

Proof. It suffices to show that if M1 has ERP, then so does M2, since the other
implication can be proved in the same way. Let A ⊆ B be finite subsets of M ,
with fixed enumerations, say ā ⊆ b̄. Let Ai ⊆ Bi be the finite substructures of
Mi generated by A and B in Mi, for i ∈ {1, 2}. By assumption, for all ā′ ⊆ b̄

we have that:

qftpM1(ā′) = qftpM1(ā) ⇐⇒ qftpM2(ā′) = qftpM2(ā).

First, notice that since M1 has ERP, Age(M1) consists of rigid structures and
by (†) the same must be true for Age(M2). Observe now that since L2 \ L1

consists only of relation symbols we have that:(
B1
A1

)
=
{

⟨ā′⟩M1 : ā′ ⊆ b̄, and qftpM1(ā′) = qftpM1(ā)
}
,

and: (
B2
A2

)
=
{

⟨ā′⟩M2 : ā′ ⊆ b̄, and qftpM2(ā′) = qftpM2 , (ā)
}
,

so, by (†) we have a one-to-one correspondence between these two sets.

Since M1 has ERP, there is some finite C ⊆ M such that C1 → (B1)A1
2 , where

C1 is the substructure of M1 generated by C. But, arguing as above, we have a
one-to-one correspondence between

(C1
A1

)
and

(C2
A2

)
, where C2 is the substructure

of M2 generated by C, and for every B′
i ⊆ Ci such that Bi ≃ B′

i we have a
one-to-one correspondence between

(B′
1

A1

)
and

(B′
2

A2

)
. Thus, by unpacking the

definitions, it follows C2 → (B2)A2
2 , as required.

It is now almost immediate that the qfi assumption from Theorem 3.2.4 can
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be removed. More precisely:
Corollary 3.5.3. Theorem 3.2.4 holds without assuming that N has qfi.

Proof. By Lemma 3.3.5 we have that N and N̂qfi satisfy the assumptions of
Lemmas 3.4.2 and 3.5.2. Thus, it suffices to show that the corollary holds for
N̂qfi, but this is immediate from Theorem 3.2.4 and Lemma 3.5.1.

3.5.2 Removing the order assumption, in the countable case

Lemma 3.5.4. Let N be an infinite locally finite L′-structure with ERP and
assume that Age(N ) is countable. Then N is L∞,0-orderable.

Proof. First, by Theorem 2.5.12, it follows that Age(N ) is a Fraïssé class, so
we may consider N ′ := Flim(Age(N )). By [Bod15, Proposition 2.25], which
states that homogeneous structures whose ages are Ramsey classes admit
automorphism-invariant linear orders, we obtain an Aut(N ′)-invariant order ⪯
on N ′.

It is then clear, from the fact that N ′ is homogeneous that ⪯ is given by a
(possibly infinite) Boolean combination of atomic or negated atomic L′-formulas,
thus Age(N ′) = Age(N ) is L′

∞,0-orderable.

Let Φ(x, y) be the L∞,0-formula which defines ⪯ on N ′. We claim that Φ(x, y)
defines a linear order on N , as well. By construction, Age(N ) = Age(N ′) = C,
and Φ(x, y) defines a linear order on each A ∈ C. Suppose that Φ(x, y) does
not define a linear order on N , then there is a finite substructure A ⊆ N on
which Φ(x, y) is not a linear order, but A ∈ C, contradicting the assumption
that Φ(x, y) defines a linear order on all A ∈ C.

Combining the lemma above with Theorem 3.2.4 the following two corollaries
can be deduced straightforwardly. I have opted to state them separately
because the countability assumption appears only in the first.
Corollary 3.5.5. Let N be an infinite locally finite L′-structure such that
Age(N ) is countable. If N has ERP, then it has MP.

Proof. Observe that if Age(N ) is a countable Ramsey class, then Lemma 3.5.4
gives an L′

∞,0-definable linear order ⪯ on N . Since (N ,⪯) is an expansion of
N by a union of quantifier-free types, it follows that N and (N ,⪯) satisfy the
assumptions of Lemmas 3.4.2 and 3.5.2.
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Thus, by Lemma 3.5.2, we have that (N ,⪯) has ERP, since N has ERP. But
then, by Corollary 3.5.3 we have that (N ,⪯) has MP. Finally, by Lemma 3.4.2,
N has MP.

Corollary 3.5.6. Let N be an infinite locally finite L′-structure. If N has
MP, then N has the ERP.

Proof. By Corollary 3.4.7 we may also assume that N is linearly ordered and
still has MP, since the order is L′

∞,0-definable (again by Lemma 3.4.2, as in
the previous proof). So, the result follows from Corollary 3.5.3.

3.5.3 Reduction to the countable case

The main technical result of this subsection is the following proposition:
Proposition 3.5.7. Let N be an L′-structure, and let {Ni : i ∈ I} be L′-
structures, such that:

1. N =
⋃
i∈I Ni.

2. For every finite A ⊆ N , there is some i ∈ I, such that A ⊆ Ni.

If for all i ∈ I we have that Ni has MP, then N has MP.

First, recall the following definition from [Sco15], which is a partial type, which,
as its name suggests, enforces that an N -indexed sequence is N -indiscernible.
Definition 3.5.8 ([Sco15, Definition 2.10]). Let L and L′ be first-order lan-
guages and fix an L′-structure N . We define IndN

L to be the following partial
type in an N -indexed sequence of variables (xi : i ∈ N ):

IndN
L (xi : i ∈ N ) :=

{
ϕ(xi1 , . . . , xin) → ϕ(xj1 , . . . , xjn) : n < ω, ī, j̄ ∈ Nn,

qftpN (̄i) = qftpN (j̄), ϕ(x1, . . . , xn) ∈ L
}
.

The following is [Sco15, Definition 2.11] in disguise (see Remark 3.5.10). The
idea behind this definition is a general notion of what it means for a partial type
to be finitely satisfiable along a sequence indexed by an arbitrary structure.
Definition 3.5.9. Let L and L′ be first-order languages, M an L-structure,
and N an L′-structure. Let Σ(x̄i : i ∈ N) be a (possibly partial) L-type in M,
and let I = (āi : i ∈ N ) be an N -indexed sequence of |x̄i|-tuples from M. We
say that Σ is finitely satisfiable in I if for every finite Σ0 ⊆ Σ and every finite
A = {i1, . . . , in} ⊆ N , there is a finite B = {j1, . . . , jn} ⊆ N , such that:
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(1) qftpN (i1, . . . , in) = qftpN (j1, . . . , jn), and

(2) (āj1 , . . . , ājn) ⊨ Σ0 ↾{x̄i1 ,...,x̄in} .
Remark 3.5.10. Let me comment here that the only difference between the
definition above and [Sco15, Definition 2.11], is that in [Sco15], the analogous
(2) asks that:

(āj1 , . . . , ājn) ⊨ Σ ↾{x̄i1 ,...,x̄in},

that is, it does not range over the finite subsets Σ0 ⊆ Σ. Of course, by
compactness, the two definitions are equivalent in any |N |+-saturated structure.
Lemma 3.5.11. Fix an L′-structure N , and a (not necessarily indiscernible)
N -indexed sequence I = (āi : i ∈ N ), in a sufficiently saturated structure.
Then, the following are equivalent:

(1) IndN
L is finitely satisfiable in I.

(2) There is an N -indiscernible J = (bi : i ∈ N ) that is (locally) based on I.

Proof. The implication (1) =⇒ (2) is precisely [Sco15, Proposition 2(6)].

The implication (2) =⇒ (1) follows almost immediately from local basedness
and generalised indiscernibility. Indeed, pick an arbitrary finite subset Σ0 ⊆
IndN

L and (i1, . . . , in) ⊆ N . Since J is an N -indiscernible based on I, there is
some (j1, . . . , jn) ⊆ N , such that:

(a) qftpN (̄i) = qftpN (j̄);

(b) tpΣ0
M (bi1 , . . . , bin) = tpΣ0

M (aj1 , . . . ajn).

Since (bi1 , . . . , bin) ⊨ Σ0 ↾{xi1 ,...,xin}, by the (generalised) indiscernibility of J,
it follows that (aj1 , . . . , ajn) ⊨ Σ0 ↾ {xi1 , . . . , xin}.

Now for the proof of Proposition 3.5.7.

Proof of Proposition 3.5.7. Let I = (ai : i ∈ N ) be an N -indexed sequence of
tuples from M. To show that N has MP, we need to produce an N -indiscernible
sequence J which is locally based on I. By Lemma 3.5.11, it suffices to show
that IndN

L is finitely satisfiable in I.

To this end, let Σ0 ⊆ IndN
L be a finite set, and (i1, . . . , in) ⊆ N . We need to

find some (j1, . . . , jn) ⊆ N such that:

qftpN (i1, . . . , in) = qftpN (j1, . . . , jn) and (aj1 , . . . , ajn) ⊨ Σ0 ↾{xi1 ,...,xin} .
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By assumption, there is some substructure Nl ⊆ N such that {i1, . . . , in} ⊆ Nl,
and Nl-indiscernibles have MP.

Thus, we know that IndNi
L is finitely satisfiable in the subsequence

I ↾ Nl := (aik : ik ∈ Nl),

which, by our assumption on Nl, contains the part of I indexed by (i1, . . . , in).
This, by definition, means that there is some (j1, . . . , jn) ⊆ Nl such that:

qftpNl
(i1, . . . , in) = qftpNl

(j1, . . . , jn) and (aj1 , . . . , ajn) ⊨ Σ0 ↾{xi1 ,...,xin}

However, since Nl is a substructure of N , it follows that

qftpNl
(̄i) = qftpN (̄i),

for all tuples ī from Nl. Hence, the witnesses of the finite satisfiability of IndNl
L ,

witness the finite satisfiability of IndN
L , and we are done.

At this point, all the required tools for the proof of Theorem A have been
developed, so let’s put everything together:
Theorem 3.5.12. Let L′ be a first-order language and N an infinite, locally
finite L′-structure. Then, the following are equivalent:

1. N has ERP.

2. N has MP.

Proof. The implication (2) =⇒ (1) was already proved in Corollary 3.5.6. For
the implication (1) =⇒ (2), observe that since Age(N ) is a Ramsey class, we
can find countable L′-structures (Ni : i ∈ I), for some indexing set I, satisfying
the conditions of Proposition 3.5.7, i.e. such that:

1. N =
⋃
i∈I Ni.

2. For every finite A ⊆ N , there is some i ∈ I, such that A ⊆ Ni.

3. For every i ∈ I we have that Age(Ni) is a Ramsey class.

To obtain the Ni, we proceed as follows. Let (Ai : i ∈ I) be some enumeration
(not necessarily countable) of all finitely generated substructures of N . For each
finitely generated substructure Ai we construct Ni as follows. Let Bi

0 := Ai,
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and then take Ci0 ∈ Age(N ) to be an L-structure as in the conclusion of
Corollary 3.2.2, with respect to all finitely generated substructures A1

0, . . . , A
n
0

of Bi
0. Let Bi

1 := Ci0 and repeat this process inductively, to obtain (Bi
j : j ∈ N).

Let Ni :=
⋃
j∈NB

i
j . By construction, Age(Ni) is still a Ramsey class, and it is

easy to see that Ni is countable, since it is the union of an increasing chain of
finite structures. Then, by Corollary 3.5.5, for each i ∈ I, since Age(Ni) is a
countable Ramsey class, Ni has MP. From Proposition 3.5.7 we can conclude
that N has MP.

As an immediate corollary of Theorem 3.5.12 and Corollary 3.4.7 we obtain
the following:
Corollary 3.5.13. Let N be an L′-structure with the embedding Ramsey
property. Then N is L′

∞,0-orderable.

3.6 Around Local Finiteness

So far in this chapter, all classes considered have been classes of finite L′-
structures, or, to the same extent, classes of the form Age(N ), where N is a
locally finite L′-structure. This umbrella assumption will be dropped in this
section, to deal with the embedding Ramsey property in the wider context of
structures that are not necessarily locally finite.

Let N be an (arbitrary) L′-structure and let C = Age(N ). Given an L′-
structure M ∈ C and finite subsets A ⊆ B of M , we overload the notation

(B
A

)
to mean: (

B

A

)
:=
{
Ã ⊆ B : qftp(Ã) = qftp(A)

}
.

Of course, in the definition above, different permutations of Ã with the same
quantifier-free type as A give rise to two different elements of

(B
A

)
. Since, in

the discussion that follows, I will be interested in classes consisting of rigid
structures, this subtlety will not be important.
Definition 3.6.1 (f-ERP). Let C be a class of (not necessarily finitely gener-
ated) L′-structures. We say that C has the finitary Embedding Ramsey Property
(f-ERP) if for any M ∈ C and any finite subsets A,B ⊆ M there are an N ∈ C
and a finite subset C ⊆ N such that C → (B)A2 . We say that an L′-structure
M has the finitary Embedding Ramsey Property (f-ERP) if Age(M) the finitary
Embedding Ramsey Property.
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The analogue of Definition 2.5.10, for f-ERP is the following definition:
Definition 3.6.2. Let C be a class of L′-structures. We say that C is a finitary
Ramsey class if C has HP, JEP, and f-ERP.
Remark 3.6.3. If C is a class of finite structures, then C has f-ERP if, and only
if, C has ERP. In particular, for any locally finite (e.g. relational) L′-structure
N we have that Age(N ) is a Ramsey class if, and only if it is a finitary Ramsey
class.

The following proposition is the natural generalisation of Fact 2.5.16. There are
various folklore proofs of Fact 2.5.16, e.g. [Bod15, Proposition 2.18]. The proof
given below is based on an argument I learned from [Ram20, Lemma 1.35].
Before proving it, I will need to introduce one more definition:
Definition 3.6.4 (Embedding Local Finiteness). An L-structure M has the
embedding local finiteness property if for any finitely generated N ⊆ M and
finite A ⊆ N we have that

(N
A

)
is finite. More generally, an isomorphism-closed

class C of L-structures with HP has the embedding local finiteness property if
for all N ∈ C and all finite A ⊆ N we have that

(N
A

)
is finite.

Proposition 3.6.5. Let M be a structure with the embedding local finiteness
property. Then, the following are equivalent:

1. M has f-ERP.

2. For all finite subsets A ⊆ B ⊆ M we have that M → (B)A2 .

Proof. Suppose, first, that Age(M) has f-ERP, and let A ⊆ B ⊆ M , be finite
sets. Let N ∈ Age(M) be such that A ⊆ B ⊆ N . Since Age(M) has f-ERP,
there is some N ′ ∈ Age(M) and a finite subset C ⊆ N ′ such that C → (B)A2 .
Thus, it is clear, by the definitions, that M → (B)A2 .4

Suppose that Age(M) does not have f-ERP. Then, by definition, there is some
N ′ ∈ Age(M) and finite subsets A ⊆ B ⊆ N ′ such that for all N ∈ Age(N ) and
all finite subsets C ⊆ N we have that C ̸→ (B)A2 . That is, for all N ∈ Age(M)
and all finite C ⊆ N there is a colouring:

χN,C :
(
C

A

)
→ 2

such that χN,C restricted to any B̃ ∈
(C
B

)
is non-constant.

4Observe that the embedding local finiteness property was not used in the proof of this
implication.
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We wish to show that for all finitely generated N ⊆ M and all finite C ⊆ N

there is a colouring χ⋆N,C :
(C
A

)
→ 2 such that for all B̃ ∈

(C
B

)
we have that

χ ↾(B̃
A) is non-constant. Since A ⊆ B are finite, from this we can conclude that

M ̸→ (B)A2 .

Given a finitely generated N ⊆ M define:

XN := {N ′ ∈ Age(M) : N ⊆ N ′}.

Of course, if N1, N2 ⊆ M are finitely generated substructures then:

XN1 ∩XN2 = {N ∈ Age(M) : N1 ⊆ N} ∩ {N ′ ∈ Age(M) : N2 ⊆ N ′}

= X⟨N1∪N2⟩

̸= ∅.

Thus {XN : N ∈ Age(M)} generates a filter on Age(M), which we can extend
to an ultrafilter U on Age(M). Now, given a finitely generated substructure
N ⊆ M and a finite subset C ⊆ N define a colouring:

χ⋆N,C :
(
C

A

)
→ {1, 2}

Ã 7→

1 if {N ′ ∈ Age(M) : N ⊆ N ′, χN ′,C(Ã) = 1} ∈ U

2 otherwise.

Of course, since U is an ultrafilter this is well-defined, since the two colours
partition XN into two disjoint sets and thus only one of them can be in U .

To finish the proof, take some finitely generated N ⊆ M and some finite C ⊆ N

by (2) we have that χ⋆N,C is constant, say with value 1, on some B̃ ∈
(C
B

)
. Then,

by embedding local finiteness, and our assumption we have that:

⋂
Ã∈(N

A)
{N ′ ∈ Age(M) : N ⊆ N ′, χN ′,C(Ã) = 1} ∈ U

and thus:

XN ∩
⋂

Ã∈(N
A)

{N ′ ∈ Age(M) : N ⊆ N ′, χN ′,C(Ã) = 1} ∈ U .
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Since U is an ultrafilter, it follows that:

XN ∩
⋂

Ã∈(N
A)

{N ′ ∈ Age(M) : N ⊆ N ′, χN ′,C(Ã) = 1} ≠ ∅.

Any N ′ ∈ Age(N ) in the intersection above is a finitely generated substructure
of M containing A ⊆ B̃ ⊆ C such that χN ′,C ↾(B̃

A) is constant, which is a
contradiction.

The rest of this section, is an attempt to convenience the reader that f-ERP is
the “correct” generalisation of ERP, to classes of not necessarily finite structures.
The point is that the main results about ERP for classes of finite structures
generalise, almost immediately, to arbitrary structures, if one replaces ERP
with f-ERP. In particular, in this context, we have analogues of both the
Kechris-Pestov-Todorčević correspondence and of Theorem 3.5.12 but we have
now dropped all local finiteness/countability assumptions from M.
Theorem 3.6.6. Let M be an homogeneous L-structure. Then, the following
are equivalent:

1. Aut(M) is extremely amenable.

2. M has the finitary embedding Ramsey property.

This theorem essentially follows from [KPT05], in the case where M is countable,
and in the general case, it essentially appears5 in [KP22]. It could also be
proved by combining the results of [Bar13] with the proof of the main theorem
of [KPT05]. Nonetheless, it is possible to give an alternative (completely
rigorous proof) which showcases the power of the techniques introduced in
Section 3.3.

The theorem will follow from the next remark:
Remark 3.6.7. Let M be an L-structure. Recall that by Miso we denote its
L∞,0-isolator, introduced in Definition 3.3.6.

1. Clearly Aut(M) = Aut(Miso). In particular, Aut(M) is extremely amen-
able if, and only if, Aut(Miso) is extremely amenable.

2. M has the f-ERP if, and only if Miso has ERP. This follows easily from
Lemma 3.3.7.

5As was pointed out in private correspondence by Krupiński where a definition a posteriori
equivalent to f-ERP appears, see [KP22, Section 1.5]
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Proof of Theorem 3.6.6. Given the two remarks above, the theorem follows
from Fact 2.5.17, applied to Miso, which is always relational, and is homogen-
eous, if, and only if, M is homogeneous.

It is also possible to use the notion of f-ERP that was just introduced to remove
all assumptions from Scow’s theorem. This is the following theorem, which
is, in a sense, the most general version of correspondence between generalised
indiscernibles and Ramsey classes:
Theorem 3.6.8. Let L′ be a first-order language and N an L′-structure. Then,
the following are equivalent:

1. N has the finitary embedding Ramsey property.

2. N has the modelling property.

Proof. Immediate. Simply apply Lemma 3.4.2, Lemma 3.3.7, and Theorem 3.5.12,
to Niso.
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***

– End of Part 1 –
***
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Part 2: All these Approximate Ramsey Prop-
erties

3.7 Introduction to Part 2

The main novelty of [MP23a] is the definition of a local Ramsey class. This will
be given formally in Section 3.10, but in order to summarise the main results of
this part, I shall now describe it, somewhat informally. Fix k ∈ N. We say that
a class of finite structures, C, is a k-Ramsey class (resp. embedding k-Ramsey
class) or, to the same extent, that C is Ramsey up to k (resp. embedding
Ramsey up to k) if the following assertion holds for all A ∈ C with |A| ≤ k:

(⋄A) For all B ∈ C with A ⊆ B, there is a C ∈ C such that for all n-colourings
χ of the substructures of C isomorphic to A (resp. embeddings of A in
C), there is a copy of B in C (resp. embedding of B in C) on which χ is
constant.

Given this “definition”, the following statements should be obvious:

(1) If C is a Ramsey class, then it is a k-Ramsey class, for all k ∈ N≥1.

(2) For all k ∈ N≥1, if C is Ramsey up to k + 1, then it is Ramsey up to k.

So “Ramsey up to k” is a local version of the Ramsey property. My first goal
in this part of the chapter is to prove that the implications in (2), above, are
strict. More precisely, I will show the following:
Theorem D (Corollary 3.10.17). There is a class of finite ordered structures
that is Ramsey up to k but not up to k + 1, for all k ∈ N≥2.

I have already pointed out in Section 2.5 that different authors use the term
Ramsey class to refer to two non-equivalent notions: structural Ramsey classes
and embedding Ramsey classes — the difference being whether the objects that
are coloured are “isomorphic substructures” or “embeddings”. However, these
two notions coincide for classes of ordered structures (or more generally, for
classes of rigid structures), so in the theorem above we capture both.

In the previous part of this chapter, I stated and proved a generalisation of a
well-known fact that if M is a (countable) homogeneous structure whose age
is a Ramsey class, then there exists a linear order on the domain of M which
is preserved by all automorphisms of M (this was Theorem B, in Part 1). The
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second main result of [MP23a] is a generalisation this theorem, by showing
that the conclusion follows only from assuming that Age(M) is embedding
Ramsey up to 2. More precisely:
Theorem E (Theorem 3.11.1). Let C be a class of finite structures. If C is
embedding Ramsey up to 2 (see Definition 3.8.4) then there is a possibly infinite
Boolean combination of atomic formulas Φ(x, y) which defines a linear order
on all structures in C.

As observed in the first part of this chapter, L∞,0-orderability (the conclusion of
Theorem E) is a naturally arising condition in various model-theoretic contexts
(cf. Section 3.4). In [MP23a], we also observe that classes of finite structures
which are L∞,0-orderable must necessarily consist of rigid structures, but not
all classes of finite rigid structures are L∞,0-orderable (see Example 3.11.3).

Structure of Part 2

After some more local preliminaries in Section 3.8, the remainder of this
chapter is organised as follows: In Section 3.9, Kay-graphs are introduced.
These generalise two-graphs to higher arities and as shown in Section 3.10
serve as the constructions used to prove Theorem D. Finally, Section 3.11 has
a proof of Theorem E.

Local notational conventions

Given finite structures A and B, I will momentarily deviate from the notation
introduced in Section 2.5, and write

(B
A

)
the set of all substructures of B that

are isomorphic to A and by Emb(A,B) the set of all embeddings of A into B.
Hopefully this change in notation is not too disruptive.

Let k ∈ N≥2. Recall from Section 2.7 that a k-hypergraph is a structure
H = (V ;R), where R is a k-ary relation symbol such that for all x1, . . . , xk ∈ V

we have that:

• if (x1, . . . , xk) ∈ R then |{x1, . . . , xk}| = k; and

• if (x1, . . . , xk) ∈ R then, for all σ ∈ Sym(k) we also have(
xσ(1), . . . , xσ(k)

)
∈ R.

More concisely, if H = (V,R) is a k-hypergraph, then R ⊆
(V
k

)
, where

(V
k

)
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denotes the collection of all k-element subsets of V (this may also be denoted
by [V ]k). I may write {v1, . . . , vk} ∈ R to mean (v1, . . . , vk) ∈ R, and vice
versa. In this part of the chapter only relational languages will be considered.
For such a language L, if H is an L-structure and R ∈ L I will sometimes write
R(H) (or even just R if H is understood) for the set of realisations of R in H.

3.8 Local Preliminaries for Part 2

Let’s start by formally defining some terminology mentioned in the previous
section, and recalling some terminology from Section 2.5.
Definition 3.8.1. Let C be a class of finite structures, and k ∈ N≥1. We
say that A ∈ C has structural ( resp. embedding) Ramsey degree at most k
if for every B ∈ C and every n ∈ N there is some C ∈ C such that for every
colouring χ :

(C
A

)
→ [n] (resp. χ : Emb(A,C) → [n]) there is B′ ∈

(C
B

)
(resp.

B′ ∈ Emb(B,C)) with |Im
(
χ
↾(B′

A )

)
| ≤ k.

Recall the following well-known fact (a proof of which can be found in [Zuc15,
Corollary 4.5]) connecting structural and embedding Ramsey degrees:
Fact 3.8.2. Let C be a class of finite structures, and A ∈ C. Then, A has
structural Ramsey degree k if, and only if, A has embedding Ramsey degree
k|Aut(A)|.

We call A ∈ C a Ramsey object (for C) if it has embedding Ramsey degree at
most 1. Thus, A is a Ramsey object for C if, and only if it is rigid and has
structural Ramsey degree 1.
Remark 3.8.3. Connecting this new terminology with the terminology intro-
duced in Chapter 2, a class C of finite structures has the Embedding Ramsey
Property if every structure in C is a Ramsey object.

Now for the main definition:
Definition 3.8.4. For k ∈ N≥1 we say that a class C of finite structures has
the k-Embedding Ramsey Property (k-ERP) if every structure of size k in C is
a Ramsey object.

The following useful little corollary is a essentially a restatement of Corol-
lary 3.2.2, for k-ERP:
Corollary 3.8.5. Let C be a class of finite structures and assume that C has
k-ERP. Then for all i ≤ n, and A1, . . . An ∈ C with |Ai| = k and all B ∈ C
such that Ai ⊆ B for each i ≤ n, there is some C ∈ C such that for all sets of
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colourings {χi :
(C
Ai

)
→ [2] : i ≤ n}, there is some B̃ ∈

(C
B

)
such that χi↾( B̃

Ai
) is

constant, for all i ≤ n.

3.9 Kay-graphs

Recall that given an ordered graph G = (V ;R,≤), the ordered two-graph of G
is defined to be the ordered 3-hypergraph K(G) =

(
V ;R(3),≤

)
, on the same

ordered vertex set (V ; ≤), with hyperedge relation R(3) defined as follows:

R(3)(x1, x2, x3) ⇐⇒
∣∣∣∣∣
{

{i, j} ∈
(

[3]
2

)
: {xi, xj} ∈ R

}∣∣∣∣∣ ≡ 1 (mod 2),

Two-graphs have been investigated deeply in the last 50 years. See, for instance,
[Sei91], for an excellent survey. Here, a higher-arity generalisation of two-graphs
will be given. This appears implicitly in [Tho96]. The generalisation to higher
arities is probably what the reader should expect it to be:
Definition 3.9.1. Given a k-hypergraph H = (V ;R) we define the Kay-graph
of H to be the (k + 1)-hypergraph K(H) =

(
V ;R(k+1)

)
on the same vertex

set V as H with hyperedge relation R(k+1) defined as follows:

R(k+1)(x1, . . . , xk+1)

⇐⇒
∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R

}∣∣∣∣∣ ≡ k + 1 (mod 2).

We similarly define the ordered Kay-graph of an ordered hypergraph. If H is a
class of (ordered) k-hypergraphs we will write K(H) for the class of all (ordered)
Kay-graphs of hypergraphs from H, that is K(H) := {K(H) : H ∈ H}.

In the remainder of this section, only unordered Kay-graphs will be discussed,
but all the arguments easily go through if one considers ordered Kay-graphs,
instead.

Let P (k) be the class of all finite (k + 1)-hypergraphs (V ;R) satisfying the
following condition:

(†) For all V0 ∈
( V
k+2
)

the induced (k + 1)-subhypergraph (V0, R↾V0) has
|R↾V0 | ≡ k (mod 2).

Recall from Section 2.7 that CHk
is the class of all finite k-hypergraphs. In this

notation:
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Proposition 3.9.2. Let k ∈ N≥2. Then P (k) = K(CHk
).

Before proving this proposition, I will prove a technical lemma, which will be
useful later on. First, to fix some notation:

Given H ∈ (V ;S) ∈ P (k) and any fixed vertex ⋆ ∈ V we define the induced
k-hypergraph as the hypergraph on vertex set V with k-ary hyperedge relation
S⋆ ⊆

(V
k

)
, given by:

S⋆(x1, . . . , xk) ⇐⇒

S(x1, . . . , xk, ⋆), if ⋆ ̸∈ {x1, . . . , xk}

always, if ⋆ ∈ {x1, . . . , xk},

for all {x1, . . . , xk} ∈
(V
k

)
.

Lemma 3.9.3. Let (V ;S) ∈ P (k), and fix a vertex ⋆ ∈ V . Then,

K((V ;S⋆)) = (V ;S),

where K(V, S⋆) is the induced Kay-graph
(
V ;S(k+1)

⋆

)
of (V ;R⋆).

Proof. Let (V ;S) ∈ P (k) and fix ⋆ ∈ V . To simplify notation, let R = S⋆.
In this notation we wish to show that the induced Kay-graph K((V ;R)) =(
V ;R(k+1)

)
is precisely (V ;S).

For bookkeeping purposes, observe that if {x1, . . . , xk+1} ∈
(V \{⋆}
k+1

)
then we

have:

R(k+1)(x1, . . . , xk+1)

⇐⇒
∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R

}∣∣∣∣∣ ≡ k + 1 (mod 2)

⇐⇒
∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik , ⋆} ∈ S

}∣∣∣∣∣ ≡ k + 1 (mod 2)

⇐⇒
∣∣∣S↾{x1,...,xk+1,⋆}) \ {x1, . . . , xk+1}

∣∣∣ ≡ k + 1 (mod 2),

(3.1)

essentially, by unfolding the definition of R = S⋆ and R(k+1).

With this out of the way, recall that our goal is to prove that(
V ;R(k+1)

)
= (V ;S),

where R = S⋆. Explicitly, we need to show that for all {x1, . . . , xk} ∈
( V
k+1
)

we
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have that:

(x1, . . . , xk+1) ∈ R(k+1) if, and only if,(x1, . . . , xk+1) ∈ S.

To this end, fix some arbitrary {x1, . . . , xk} ∈
(V
k

)
. We consider two cases.

Case 1. {x1, . . . , xk+1} ∈
(V \{⋆}
k+1

)
.

First, assume that (x1, . . . , xk+1) ∈ R(k+1). Since (V ;S) ∈ P (k), by (†), the
induced subhypergraph

(
{x1, . . . , xk+1, ⋆};S↾{x1,...,xk+1,⋆}

)
of (V ;S) must have:

|S↾{x1,...,xk+1,⋆}| ≡ k (mod 2)

Since (x1, . . . , xk+1) ∈ R(k+1), we know, by Equation (3.1) that:

|S↾{x1,...,xk+1,⋆}) \ {x1, . . . , xk+1}| ≡ k + 1 (mod 2),

so we must have that {x1, . . . , xk+1} ∈ S, as claimed.

Conversely, suppose that (x1, . . . , xk+1) ∈ S. Then, by (†) the number of
hyperedges in the induced subhyphergraph

(
{x1, . . . , xk+1, ⋆};S↾{x1,...,xk+1,⋆}

)
of (V ;S) must be congruent to k, modulo 2. In particular, if∣∣∣∣∣

{
{i1, . . . , ik} ∈

(
[k + 1]
k

)
: {xi1 , . . . , xik , ⋆} ∈ S

}∣∣∣∣∣ ≡ k (mod 2),

then we cannot have that (x1, . . . , xk+1) ∈ S, contrary to our original assump-
tion. Hence:∣∣∣∣∣

{
{i1, . . . , ik} ∈

(
[k + 1]
k

)
: {xi1 , . . . , xik , ⋆} ∈ S

}∣∣∣∣∣ ≡ k + 1 (mod 2),

and thus, by Equation (3.1) we have that (x1, . . . , xk+1) ∈ R(k+1), as required.

Case 2. {x1, . . . , xk+1} ∈
( V
k+1
)
, and, without loss of generality, xk+1 = ⋆.

Suppose first that (x1, . . . , xk, ⋆) ∈ R(k+1). By definition of R we have that
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(xi1 , . . . , xik−1 , ⋆) ∈ R, for all {i1, . . . , ik−1} ∈
( [k]
k−1
)
, and thus

∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R

}∣∣∣∣∣
= k +

∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k]
k

)
: {xi1 , . . . , xik} ∈ R

}∣∣∣∣∣
=

k + 1 if {x1, . . . , xk} ∈ R

k otherwise.

But, since (x1, . . . , xk, ⋆) ∈ R(k+1), the cardinality of this set is congruent to k+1
modulo 2, so we must have that (x1, . . . , xk) ∈ R, and thus (x1, . . . , xk, ⋆) ∈ S,
as required.

Conversely, suppose that (x1, . . . , xk, ⋆) ∈ S. If (x1, . . . , xk, ⋆) ̸∈ R(k+1), then,
arguing as before we have that (x1, . . . , xk) ̸∈ R and thus (x1, . . . , xk, ⋆) ̸∈ S,
contradicting our assumption. Hence we must have that

(x1, . . . , xk, ⋆) ∈ R(k+1),

concluding the proof of the lemma.

Proof. We first observe that the inclusion P (k) ⊆ K(CHk
) follows immediately

from the previous lemma. Indeed let (V ;S) be a (k + 1)-hypergraph and
assume that (V ;S) ∈ P (k). We need to show that there is a k-hypergraph
H = (V ;R) such that (V ;S) = K(H). But, once we fix a vertex ⋆ ∈ V , by the
lemma above, we have that (V ;S) = K((V ;R⋆)).

We now move on to the inclusion K(CHk
) ⊆ P (k). We will prove by induction on

the cardinality of the hyperedge set of a finite k-hypergraph H = (V ;R) ∈ CHk

that K(H) ∈ P (k).

Let H = (V ;R) ∈ CHk
. First, note that if R = ∅ then we can easily see

that K(H) ∈ P (k). Indeed, if k ≡ 0 (mod 2) then R(k+1) = ∅ and hence(
V ;R(k+1)

)
∈ P (k), because (†) holds trivially for all (k+2)-element subsets of

V . Similarly, if k ≡ 1 (mod 2), then R(k+1) =
( V
k+1
)
, and hence

(
V ;R(k+1)

)
∈

P (k), because for every (k + 2)-element subset of V , the number of (k + 1)-
hyperedges is

(k+2
k+1
)

≡ k + 2 ≡ k (mod 2), and thus (†) holds.

Now, for the inductive step, assume that:
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(IH) For any hyperedge {x1, . . . , xk} ∈ R we have that:

K((V ;R′)) ∈ P (k),

where R′ = R \ {(x1, . . . , xk)}.

We need to show that K((V ;R)) ∈ P (k).

Indeed, let {y1, . . . , yk+2} ⊆ V . We need to show that in the induced subhy-
pergraph: (

{y1, . . . , yk+2};R(k+1)
↾{y1,...,yk+2}

)
we have that ∣∣∣R(k+1)

↾{y1,...,yk+2}

∣∣∣ ≡ k (mod 2).

By (IH) we know that K((V ;R′)) ∈ P (k), so this is the case for(
{y1, . . . , yk+2};R′(k+1)

↾{y1,...,yk+2}

)
,

where, as in (IH), R′ = R \ {(x1, . . . , xk)}. Of course, if {x1, . . . , xk} ̸⊆
{y1, . . . , yk+2} then(

{y1, . . . , yk+2};R(k+1)
↾{y1,...,yk+2}

)
=
(
{y1, . . . , yk+2};R′(k+1)

↾{y1,...,yk+2}

)
,

and we are done.

Thus, we may assume that {x1, . . . , xk} ⊆ {y1, . . . , yk+2}. To simplify notation,
assume that {y1, . . . , yk+2} = {x1, . . . , xk, y1, y2}.

We consider the (k + 1)-hyperedges in:(
{x1, . . . , xk, y1, y2};R′(k+1)

↾{x1,...,xk,y1,y2}

)
.

These are associated with (k+ 1)-element subsets of {x1, . . . , xk, y1, y2}, in the
following way:

• Let n1 be the number of k-hyperedges of R′ on the set {x1, . . . , xk, y1},
without the hyperedge {x1, . . . , xk}.

• Let n2 be the number of k-hyperedges of R′ on the set {x1, . . . , xk, y2},
without the hyperedge {x1, . . . , xk}.

• Let nI3 be the number of k-hyperedges of R′ on the subsets {xj : j ∈
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I} ∪ {y1, y2}, for I ∈
( [k]
k−2
)
.

Then, since, by definition, to check if a (k+ 1)-subset forms a hyperedge in the
Kay-graph, we simply need to check the parity of the number of its hyperedges
mod 2, we have that the total number of (k + 1)-hyperedges in:(

{x1, . . . , xk, y1, y2};R′(k+1)
↾{x1,...,xk,y1,y2}

)
is precisely:

n1 (mod 2) + n2 (mod 2) +
∑

I∈( [k]
k−2)

(
nI3 (mod 2)

)
,

when k is even and:

(n1 + 1) (mod 2) + (n2 + 1) (mod 2) +
∑

I∈( [k]
k−2)

(
(nI3 + 1) (mod 2)

)
.

when k is odd.

In particular, by our inductive hypothesis, we have that:

n1 + n2 +
∑

I∈( [k]
k−2)

nI3 ≡ k (mod 2),

when k is even and:

(n1 + 1) + (n2 + 1) +
∑

I∈( [k]
k−2)

(nI3 + 1) ≡ k (mod 2),

when k is odd.

Now, recall that R = R′ ∪ {x1, . . . , xk}, and after adding the hyperedge
{x1, . . . , xk} toR′ the number of hyperedges in the induced graph on {x1, . . . , xk, y1, y2}
will be:

(n1 + 1) + (n2 + 1) +
∑

I∈( [k]
k−2)

nI3 ≡ k (mod 2),

when k is even, and similarly:

((n1 + 1) + 1) + ((n2 + 1) + 1) +
∑

I∈( [k]
k−2)

(nI3 + 1) ≡ k (mod 2),
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when k is odd, and thus the result follows.

Proposition 3.9.4. For all k ∈ N≥2 the class K(CHk
) is a Fraïssé class.

Proof. We start with the following easy claim:

Claim 1. Let Hi = (Vi, Ri), for i ∈ [2] be k-hypergraphs such that H1 is an
induced k-subhypergraph ofH2 thenK(H1) is an induced (k+1)-subhypergraph
of K(H2).

Proof of Claim 1. We need to show that for all x1, . . . , xk+1 ∈ V1 we have that
K(H1) ⊨ R(k+1)(x1, . . . , xk+1) if, and only if, K(H2) ⊨ R(k+1)(x1, . . . , xk+1).
Since H1 is an induced subhypergraph of H2, by definition we have that:

H1 ⊨ R(xi1 , . . . , xik) if, and only if H2 ⊨ R(xi1 , . . . , xik).

Hence:

{
{i1, . . . , ik} ∈

(
[k + 1]
k

)
:{xi1 , . . . , xik} ∈ R(H1)

}
=
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R(H2)

}
,

and the result follows. ◀

By Proposition 3.9.2, it suffices to show that for all k ≥ 2, the class P (k) is
a Fraïssé class. We only show that P (k) has AP, since the argument for JEP
is similar. Let Ki = (Vi, Si) ∈ P (k) be finite Kay-graphs and suppose that
we have embeddings f1 : K0 ↪→ K1 and f2 : K0 ↪→ K2. Fix a point ⋆ ∈ V0

(if V0 = ∅ we can fix two points ⋆i ∈ Vi, and run the argument given below,
amalgamating over a single point) and let Hi = (Vi;Ri), where Ri = (Si)⋆, is
the induced k-hypergraph, as defined in page 72.

Now, by Lemma 3.9.3, we have that K(Hi) = Ki, for i = 1, 2. Now, since the
class of all k-hypergraphs has the free amalgamation property, let H ∈ CHk

be
the free amalgam of H1 and H2 over H0. By the the first claim, we have that
Ki = K(Hi) embed into K(H), and these embeddings preserve the inclusions
K0 ⊆ Ki, for i ∈ [2]. Since K(H) is a Kay-graph, we have that K(H) ∈ P (k),
and the result follows.
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3.10 Local Ramsey properties for Kay-graphs

To prove Theorem D, I will first need to recall some machinery which appears6

in [Zuc15]. To keep notation consistent, throughout this section, let L ⊆ L⋆

be relational languages and C, C⋆ classes of finite structures in L and L⋆,
respectively, such that C⋆ is an expansion of C (i.e. for each A⋆ ∈ C⋆ there is
some A ∈ C such that A = A⋆↾L). The main object of interest will be pairs of
classes of structures of the form (C⋆, C).
Definition 3.10.1. We say that C⋆ is a reasonable expansion of C if for any
A,B ∈ C, embedding f : A ↪→ B, and expansion A⋆ ∈ C⋆ of A, then there is
an expansion B⋆ ∈ C⋆ of B such that f : A⋆ ↪→ B⋆ is an embedding.
Fact 3.10.2 ([KPT05, Proposition 5.2]). If C and C⋆ are Fraïssé classes then
C⋆ is a reasonable expansion of C if, and only if Flim(C⋆)↾L = Flim(C).
Definition 3.10.3. We say that C⋆ is a precompact expansion of C if for all
A ∈ C the set {A⋆ ∈ C⋆ : A = A⋆↾L} is finite.
Definition 3.10.4. We say that C⋆ has the expansion property for C if for any
A⋆ ∈ C⋆ there is some B ∈ C such that for any expansion B⋆ ∈ C⋆ of B, there
is an embedding f : A⋆ ↪→ B⋆.

One more definition:
Definition 3.10.5. We call (C⋆, C) an excellent pair if C⋆ is a reasonable
precompact expansion of C with the expansion property (for C) and C⋆ has
ERP.

The main result on excellent pairs that will be needed is the following:
Fact 3.10.6 ([Zuc15, Proposition 5.8]). Let (C⋆, C) be an excellent pair. Then,
every A ∈ C has finite Ramsey degree. Moreover, the Ramsey degree of A is
equal to the number of expansions of A in C⋆.

As in Section 2.7, let COHk
denote the class of all finite ordered k-hypergraphs.

As discussed in Chapter 2, it is a well-known fact (due to [NR77], but also
proved independently in [AH78]) that COHk

has ERP. Given an ordered k-
hypergraph H = (V,R,≤), I will, in the remainder of this section, write
E(H) =

(
V ;R,R(k+1),≤

)
, for the expansion of H by the Kay-graph it induces,

and E(COHk
) for the class {E(H) : H ∈ COHk

}.
6I was informed by S. Todorčević, that really the development of this machinery should be

attributed to Nešetřil and Rödl, or Kechris, Pestov and Todorčević, but the exact statements
(and terminology) I will recall in this section appear (with proofs) in Zucker’s paper, which
serves as an excellent entry-point to the theory, and has the appropriate attributions.
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Let me start with the following straightforward remark:
Remark 3.10.7. Since, for all H ∈ COHk

we have that E(H) is quantifier-freely
definable from H, the fact that COHk

has ERP implies that E(COHk
) also has

ERP.

In the sequel, L = {S,≤} will be the language of K(COHk
), and L⋆ = {R,S,≤}

the language of E(COHk
).

The goal of the next few propositions is to show that (E(COHk
),K(COHk

)) is
an excellent pair, for k ∈ N≥2. I’ll prove each of the individual requirements
separately, and then collect them all in Corollary 3.10.16.

Let’s start with the easiest one:
Proposition 3.10.8. The expansion (E(COHk

),K(COHk
)) is precompact.

Proof. To see that the expansion is precompact observe that if A ∈ K(COHk
)

the number of k-hyperedge relations that we could expand A by (not necessarily
so that the resulting expansion is in E(COHk

) is precisely 2|(V (A)
k )|, and hence

{A⋆ ∈ E(COHk
) : A = A⋆↾L} is finite.

More generally, in the notation of Definition 3.10.5, it is easy to see, essentially
from the proof above, that any expansion C⋆ of C is precompact if L⋆ \ L is
finite.

Before moving to the expansion property, I will need to introduce some ter-
minology:
Definition 3.10.9. LetA = (V ;R,S,≤) ∈ E(COHk

). We define the complement
of A, denoted A, to be

A :=
(
V ;R′, S′,≤

)
∈ E(COHk

),

where R′ :=
(V
k

)
\R and S′ :=

((V
k

)
\R

)(k+1)
.

Lemma 3.10.10. Let A = (V ;R,S,≤) ∈ E(COHk
) and A = ((V ;

(V
k

)
\R,S′,≤))

the complement of A, as defined above. Then:

1. S′ =
( V
k+1
)

\ S if, and only if, k ≡ 0 (mod 2).

2. S = S′ if, and only if, k ≡ 1 (mod 2).

Proof. Let A = (V ;R,S,≤) ∈ E(COHk
) and V0 ∈

( V
k+1
)

be arbitrary. We have
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that:∣∣∣∣∣
((

V0
k

)
\R

)
↾V0

∣∣∣∣∣ =
(
k + 1
k

)
− |R ↾V0 | ≡ k + 1 − |R ↾V0 | (mod 2).

Thus
∣∣∣((V0

k

)
\R

)
↾V0

∣∣∣ ≡ 0 (mod 2) if, and only if, V0 ∈ S. So, if k ≡ 0 (mod 2)
we have that S′ =

( V
k+1
)

\ S and if k ≡ 1 (mod 2) we have that S′ = S, as
claimed.

Next, I will deal with the expansion property:
Proposition 3.10.11. For all k ∈ N≥2 the pair (E(COHk

),K(COHk
)) has the

expansion property.

Proof. Let A⋆ ∈ E(COHk
). We need to show that there is some B ∈ K(COHk

)
such that for any expansion B⋆ ∈ E(COHk

) of B, there is an embedding
f : A⋆ ↪→ B⋆. To this end, let Ã := A⋆ ⊔ A⋆, where A⋆ is the complement of
A⋆.

Now, since E(COHk
) has ERP, let D ∈ E(COHk

) be such that:

D →
(
Ã
)([k−1],≤)

2

and take D+ = D ⊔ {⋄}, where ⋄ is some new vertex, not in V (D), with
k-hyperedge relation given by:

R(D+) := R(D) ⊔
{

{⋄} ⊔ {x1, . . . , xk−1} : {x1, . . . , xk−1} ∈
(
V (D)
k − 1

)}
.

Observe that by construction of D+, for any x1, . . . , xk ∈ V (D) we have that:

D+ ⊨ R(k+1)(x1, . . . , xk, ⋄) if, and only if, D+ ⊨ R(x1, . . . , xk). (3.2)

To see this, note that by definition D+ ⊨ R(k+1)(x1, . . . , xk, ⋄) if, and only if:∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R

}∣∣∣∣∣ ≡ k + 1 (mod 2),
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where xk+1 = ⋄. But:
∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R

}∣∣∣∣∣
=
∣∣∣∣∣
{

{i1, . . . , ik−1} ∈
(

[k]
k − 1

)
: {xi1 , . . . , xik−1 , ⋄} ∈ R

}∣∣∣∣∣+ t

where t = 1 if, and only if, D+ ⊨ R(x1, . . . , xk). Since in D+, the vertex ⋆

forms a k-hyperedge with all (k − 1)-element subsets, we have that∣∣∣∣∣
{

{i1, . . . , ik−1} ∈
(

[k]
k − 1

)
: {xi1 , . . . , xik−1 , ⋄} ∈ R

}∣∣∣∣∣ =
(

k

k − 1

)
= k.

Thus D+ ⊨ R(k+1)(x1, . . . , xk, ⋆) if, and only if, t = 1, as claimed.

We claim that B = D+ ↾L witnesses the expansion property for A. Indeed, let
us write B = (V (D)⊔{⋄}, S,≤), and let B⋆ = (V (D)⊔{⋄};R⋆, S,≤) ∈ E(COHk

)
be some expansion of B.

Observe that, by definition, the (k + 1)-hyperedge relation S of B⋆ is precisely
the Kay-graph relation of D+. In particular, for all x1, . . . , xk ∈ V (D) we have
that:

D+ ⊨ R(k+1)(x1, . . . , xk, ⋄) if, and only if, B⋆ ⊨ S(x1, . . . , xk, ⋄). (3.3)

We need to show that there is an embedding f : A⋆ ↪→ B⋆. Consider the
following colouring of the (k − 1)-element substructures of D ⊆ D+ (these are
just linear orders), which depends on the expansion B⋆ of B:

c :
(

D

([k − 1],≤)

)
→ {1, 2}

(d1 ≤ · · · ≤ dk−1) 7→

1 if {d1, . . . , dk−1, ⋄} ∈ R⋆

2 otherwise.

Since D → (Ã)([k−1],≤)
2 , there is some Ã′ ∈

(D+\{⋄}
Ã

)
such that c↾Ã′ is constant.

By our choice of Ã we have that Ã′ ≃ A⋆ ⊔ A⋆. To simplify notation, let us
write A⋆ ⊔A⋆ for Ã′ ⊆ D+. We consider the two possible outcomes separately:

Case 1. im(c↾Ã′) = {1}. In this case we claim that for all {x1, . . . , xk} ∈
(A⋆

k

)
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we have that:

D+ ⊨ R(x1, . . . , xk) if, and only if, B⋆ ⊨ R⋆(x1, . . . , xk),

in particular A⋆ ↪→ B⋆.

By Equations (3.2) and (3.3) we have that:

D+ ⊨ R(x1, . . . , xk) if, and only if, B⋆ ⊨ S(x1, . . . , xk, ⋄),

thus, it suffices to show that:

B⋆ ⊨ S(x1, . . . , xk, ⋄) if, and only if B⋆ ⊨ R⋆(x1, . . . , xk)

By definition, after putting xk+1 = ⋄ we have that B⋆ ⊨ S(x1, . . . , xk, ⋄) if,
and only if,

|
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R⋆

}
| ≡ k + 1 (mod 2),

but:∣∣∣∣∣
{

{i1, . . . , ik} ∈
(

[k + 1]
k

)
: {xi1 , . . . , xik} ∈ R⋆

}∣∣∣∣∣
=
∣∣∣∣∣
{

{i1, . . . , ik−1} ∈
(

[k]
k − 1

)
: {xi1 , . . . , xik−1 , ⋄} ∈ R⋆

}∣∣∣∣∣+ t,

where t = 1 if, and only if, B⋆ ⊨ R⋆(x1, . . . , xk). Since im(c↾Ã′) = {1} we have
that ∣∣∣{{i1, . . . , ik−1} ∈

( [k]
k−1
)

: {xi1 , . . . , xik−1 , ⋆} ∈ R⋆
}∣∣∣ =

( k
k−1
)

= k (3.4)

So, we conclude that:

B⋆ ⊨ S(x1, . . . , xk, ⋄) if, and only if, B⋆ ⊨ R⋆(x1, . . . , xk),

as claimed.

Case 2. im(c↾Ã′) = {2}. The argument will now vary slightly, depending on
whether k is even or odd. We consider the two cases separately:

Assume k is even. In this case we again claim that for all {x1, . . . , xk} ∈
(A⋆

k

)
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we have that:

D+ ⊨ R(x1, . . . , xk) if, and only if, B⋆ ⊨ R⋆(x1, . . . , xk),

which shows that A⋆ ↪→ B⋆.

The argument here is identical to the one given in Case 1, above, with the only
difference that instead of Equation (3.4), we have that:∣∣∣∣∣

{
{i1, . . . , ik−1} ∈

(
[k]
k − 1

)
: {xi1 , . . . , xik−1 , ⋄} ∈ R⋆

}∣∣∣∣∣ = 0,

since im(c↾Ã′) = {2}. Again, this forces t = 1, and the result follows as before.

Assume k is odd. In this case we claim that for all {x1, . . . , xk} ∈
(A⋆

k

)
we have

that:
D+ ⊨ ¬R(x1, . . . , xk) if, and only if, B⋆ ⊨ R⋆(x1, . . . , xk).

Since k is odd, we know that the (k + 1)-hyperedge relation on A⋆ is the same
as the (k + 1)-hyperedge relation on A⋆, by Lemma 3.10.10. In particular, this
means that A⋆ ↪→ B⋆.

Again, by Equations (3.2) and (3.3) it suffices to show that:

B⋆ ⊨ S(x1, . . . , xk, ⋄) if, and only if B⋆ ⊨ ¬R⋆(x1, . . . , xk)

Arguing as in Case 1, B⋆ ⊨ S(x1, . . . , xk, ⋄) if, and only if,∣∣∣∣∣
{

{i1, . . . , ik−1} ∈
(

[k]
k − 1

)
: {xi1 , . . . , xik−1 , ⋄} ∈ R⋆

}∣∣∣∣∣+ t ≡ 0 (mod 2)

where t = 1 if, and only if B⋆ ⊨ R⋆(x1, . . . , xk). Since im(c↾Ã′) = {2}, just like
the even case, we have that∣∣∣∣∣

{
{i1, . . . , ik−1} ∈

(
[k]
k − 1

)
: {xi1 , . . . , xik−1 , ⋄} ∈ R⋆

}∣∣∣∣∣ = 0

and hence B⋆ ⊨ S(x1, . . . , xk, ⋄) holds if, and only if, t = 0. So, we conclude
that:

B⋆ ⊨ S(x1, . . . , xk, ⋄) if, and only if B⋆ ⊨ ¬R⋆(x1, . . . , xk),

as claimed.
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Finally, I will be dealing with reasonability.
Remark 3.10.12. It is well-known that for k = 2, the structure Flim(E(COH2))
is precisely the expansion of the random graph by the universal homogeneous
two-graph. In particular, in this case, it is immediate that:

Flim(E(COH2)) ↾S= Flim(K(COH2)),

so the reasonability of (E(COH2),K(COH2)) follows from Fact 3.10.2 and Pro-
position 3.9.4.
Proposition 3.10.13. For all k ∈ N≥2, the expansion (E(COHk

),K(COHk
)) is

reasonable.

Before going through the details of the proof, let me state a nice corollary:
Corollary 3.10.14. For all k ∈ N≥2 we have that:

Flim(E(COHk
)) ↾S= Flim(K(COHk

)).

Proof. By Proposition 3.9.4 we know that K(COHk
is a Fraïssé class. Thus, the

corollary is immediate from Fact 3.10.2 and Proposition 3.10.13.

The following useful little remark justifies some of the terminology that I shall
be using in the proof.
Remark 3.10.15. Let A = (VA, RA), B = (VB, RB) be k-hypergraphs. An
injection f : VA ↪→ VB is an embedding of the Kay-graph K(A) = (VA, R(k+1)

A )
into the Kay-graph K(B) = (VB, R(k+1)

B ) if, and only if, f preserves the parity
of k-hyperedges in every (k + 1)-element subset of VA, that is, if, and only if,
for every {v1, . . . , vk+1} ∈

( VA
k+1
)

we have that:∣∣∣RA ↾{v1,...,vk+1}

∣∣∣ ≡
∣∣∣RB ↾{f(v1),...,f(vk+1)}

∣∣∣ (mod 2).

Proof of Proposition 3.10.13. The proof7 is by induction on k ∈ N≥2. To fix
notation, let Hk = Flim(COHk

)) and Kk = Flim(E(CHk
)) ↾S . It suffices to

show that Kk is homogeneous, for then, by Proposition 3.9.4 we have that
Kk = Flim(K(CHk

)) and the result follows by Fact 3.10.2.

We shall prove, by induction on k ∈ N≥2, the following statement:

(†)k For all finite k-hypergraphs A = (VA, RA) ⊆ Hk = (Vk, Rk) and all
7For notational convenience, we shall ignore the order in this proof, and prove the result

for unordered Kay-graphs. The proof with the order is essentially identical.
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injections f : VA ↪→ Vk which preserve the parity of k-hyperedges on
every (k + 1)-element subset of A there is some σ ∈ Aut(Kk) such that
f = σ ↾VA

.

The base case is, essentially, Remark 3.10.12. For the inductive step, we
follow the proof of [Tho96, Theorem 2.6(2)]. In the notation of [Tho96,
Theorem 2.6(2)], we consider only the case where X = {k − 1}, and we shall
prove that in this case N = k− 1 and Φk

{k−1} = {k+ 1}). In fact, the argument
is a special case of Thomas’s argument, and one need only note that in the case
X = {k − 1} can avoid the use of Ramsey’s theorem and start the inductive
step at N = k − 1.

So, let n ∈ N≥3, and assume that (†)k−1 holds. We shall prove (†)k, by
induction on |VA|. The result is clear when |VA| = k − 1, since in Hk all
(k − 1)-element subsets have the same quantifier-free types.

So, suppose that (†)k is true whenever |VA0 | ≤ n and let (VA, RA) ⊆ Hk be a
finite k-hypergraph with |VA| = n+ 1 and f : VA ↪→ Vk be an injection that
preserves the parity of k-hyperedges in every (k + 1)-element subset of A. To
fix notation, let VA = VA0 ⊔ {⋆}. By induction we can find some σ0 ∈ Aut(Kk)
such that σ0 ↾VA0

= f . Let A⋆0 be the following (k − 1)-hypergraph:

A⋆0 :=
(
VA0 , R

⋆
A0

)
,

where:
{v1, . . . , vk−1} ∈ R⋆A0 : ⇐⇒ {v1, . . . , vk−1, ⋆} ∈ RA,

that is, in the terminology of [Tho96], A⋆0 is the the (k− 1)-hypergraph induced
on A0 by ⋆. Let g := σ−1

0 ◦ f : VA ↪→ Vk (so that g ↾VA0
is just the identity)

and let B⋆
0 be the following (k − 1)-hypergraph:

B⋆
0 :=

(
VA0 , R

⋆
B0

)
,

where:
{v1, . . . , vk−1} ∈ R⋆B0 : ⇐⇒ {v1, . . . , vk−1, g(⋆)} ∈ RA,

which we can view as an arbitrarily chosen but fixed finite (k−1)-subhypergraph
of Hk−1. This induces an injection:

g⋆ : A⋆0 ↪→ Hk−1.
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We start with the following relatively easy claim:

Claim 1. The map g⋆ preserves the parity of (k − 1)-hyperedges in every
k-element subset of A⋆0.

Proof of Claim 1. Let {v1, . . . , vk} ∈
(VA0
k

)
. By unfolding the definitions we see

that: ∣∣∣Rk−1 ↾{g⋆(v1),...,g⋆(vk)}

∣∣∣ =
∣∣∣Rk ↾{g(v1),...,g(vk),g(⋆)}

∣∣∣− t,

where t = 1 if {g(v1), . . . , g(vk)} ∈ Rk, and t = 0, otherwise. Similarly that:∣∣∣R⋆A0 ↾{v1,...,vk}

∣∣∣ =
∣∣∣RA ↾{v1,...,vk,⋆}

∣∣∣+ t′,

where t′ = 1 if {v1, . . . , vk} ∈ Rk, and t′ = 0, otherwise. Observe now that since
on VA0 we have that g is simply the identity, it follows that t = t′. Moreover,
since g = σ−1

0 ◦ f and both σ−1
0 and f preserve the parity of k-hyperedges on

(k + 1)-element subsets of VA, we have that:∣∣∣Rk ↾{g(v1),...,g(vk),g(⋆)}

∣∣∣ ≡
∣∣∣RA ↾{v1,...,vk,⋆}

∣∣∣ (mod 2),

so the claim follows. ◀

By the claim above and (†)k−1 there is some τ0 ∈ Aut(Kk−1) such that g⋆ =
τ0 ↾VA0

. By [Tho96, Theorem 2.5] we know that this map is induced by a
switch8 with respect to some (k − 2)-element set X. In particular, there is
some τ ∈ Aut(Kk) such that g = τ ↾VA

, since we can consider the map induced
by a switch with respect to X ∪ {⋆} (see, for instance, the proof of [Tho96,
Proposition 1.21]). Finally, taking σ := σ0 ◦ τ ∈ Aut(Kk) gives us the inductive
step.

Let’s put everything together:
Corollary 3.10.16. The pair (E(COHk

),K(COHk
)) is excellent.

Proof. We know, from Remark 3.10.7, that E(COHk
) has ERP. In Proposi-

tion 3.10.8 we showed that it is precompact; in Proposition 3.10.11 we showed
8Recall: Let A = (VA, RA), B = (VB , RB) be finite k-hypergraphs and X ∈

(
A
i

)
, where

i ∈ {0, . . . , k − 1}. A switch with respect to X ([Tho96, Definition 1.9]) is a bijection
π : VA → VB such that for all Y ∈

(
A
k

)
we have that π ↾Y is an isomorphism if, and only if

X ̸⊆ Y . Now, it is an almost immediate consequence of [Tho96, Theorem 2.5] that Aut(Kk)
is precisely the closed subgroup of Sym(Vk) generated by Aut(Hk) and all π ∈ Sym(Vk) which
are switches with respect to some (k − 1)-subset of Vk.
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that it has the expansion property; and in Proposition 3.10.13 we showed that
it is reasonable.

At this point, the main theorem of this part of Chapter 3 is an almost immediate
corollary. Indeed:
Corollary 3.10.17. Let k ∈ N≥2. Then K(COHk

) has k-ERP but not (k + 1)-
ERP.

Proof. By Corollary 3.10.16, (E(COHk
),K(COHk

)) is an excellent pair, so ap-
plying Fact 3.10.6, for all A = (V, S,≤) ∈ K(COHk

) we have that the Ramsey
degree of A is equal to the number of expansions of A in E(COHk

). Observe that
if |V (A)| ≤ k then S(A) = ∅, since hypergraphs are assumed to be uniform.
Now, if |V (A)| ≤ k − 1, then A has a unique (trivial) expansion in E(COHk

),
namely A⋆ = (V ; ∅, ∅,≤). On the other hand, if |V (A)| = k, then A has two
expansions in E(COHk

), namely A⋆1 = (V ; {V }, ∅,≤) and A⋆2 = (V ; ∅, ∅,≤).

Remark 3.10.18. Since the classes in Corollary 3.10.17, above, consist of ordered
structures, the embedding Ramsey property and the structural Ramsey property
coincide. Thus, if one considers the corresponding local versions to the structural
Ramsey property, instead of the embedding Ramsey property, Corollary 3.10.17
is still applicable.

3.11 Orders in 2-Ramsey classes

This section is devoted to the proof of Theorem E.
Theorem 3.11.1. Let C be a class of finite structures. If C has JEP and
2-ERP, then C is L∞,0-orderable.

Proof. By using the quantifier-free type Morleyisation, introduced in Section 3.3,
we may assume that all quantifier-free types that are realised are isolated, in all
structures in C. Let Q be the set of quantifier-free L-formulas in two variables
isolating every quantifier-free type in two variables which is realised in some
member of C.

Abusing notation, let C/ ∼= be a set of representatives of structures in C under
the equivalence relation of isomorphism. Let:

L′ := L ∪ {<} ∪
⋃

A∈C/∼=
A,



88 Generalised Indiscernibles and Ramsey Theory

where < is a binary relation symbol and each a ∈
⋃
A∈C/∼=A is a constant

symbol. Let T be the following L′-theory:

LO ∪
⋃

A∈C/∼=
Diag(A)

∪ {∀x1∀x2∀y1∀y2 (Q(x1, y1) ∧Q(x2, y2) → (x1 < y1 ↔ x2 < y2)) : Q ∈ Q}

where LO expresses that the new binary relation symbol < is a linear order.
To prove the theorem it suffices to show that T is (finitely) satisfiable since
in this case we have that that some (not necessarily finite) intersection of
quantifier-free types linearly orders all structures in C. By JEP, it suffices to
show that:

LO ∪ Diag(B)

∪ {∀x1∀x2∀y1∀y2 (Q(x1, y1) ∧Q(x2, y2) → (x1 < y1 ↔ x2 < y2)) : Q ∈ Q}

is satisfiable for every B ∈ C.

Given B ∈ C, let A1, . . . , An be the set of all substructures of B of size 2, and
for each i ≤ n fix an enumeration {a1

i , a
2
i } of Ai.

Let C ∈ C be as promised from Corollary 3.8.5. Now let Ĉ be an expansion
of C to L ∪ {<} such that < is a linear order and for every i ≤ n, define a
colouring:

χi :
(
C

Ai

)
→ {0, 1}

{a1
i , a

2
i } 7→

0 if a0
i < a1

i ,

1 if a1
i < a0

i ,

where the ordering is taken in Ĉ. Let B′ ∈
(Ĉ
B

)
be such that χi is constant

on
(B′

Ai

)
, for all i ≤ n. The resulting B′, with the ordering < inherited from Ĉ

satisfies

LO ∪ Diag(B)

∪ {∀x1∀x2∀y1∀y2 (Q(x1, y1) ∧Q(x2, y2) → (x1 < y1 ↔ x2 < y2)) : Q ∈ Q}

Indeed, suppose that we are given b1, b2 ∈ B′, then, for some i we have that
{b1, b2} = Ai. Then for all c1, c2 ∈ B′, if we have that B′ ⊨ Q(b1, b2)∧Q(c1, c2),
for all Q ∈ Q then {c1, c2} ≃ Ai, hence χi({b1, b2}) = χi({c1, c2}). But since
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χi↾(B′
Ai

) is constant, we must have that b1, b2 and c1, c2 have the same order.

Proposition 3.11.2. Let C be a class of finite L-structures. If C is L∞,0-
orderable, then every A ∈ C is rigid.

Proof. Let A ∈ C and let Â be the expansion of A to L ∪ {⪯} where ⪯ is a
binary relation symbol and for all a, b ∈ A we have that a ⪯ b if, and only
if Φ(a, b), where Φ is a Boolean combination of atomic and negated atomic
formulas linearly ordering all structures in C. Then Aut(A) = Aut(Â), but
since Â is a finite linearly ordered structure, it is rigid, and hence A must also
be rigid.

To conclude Chapter 3, I will give an example of a class of finite rigid structures
which is not L∞,0-orderable. This example is due to Cameron, and was
communicated to Meir and me by Macpherson:
Example 3.11.3. Let L := {R,C}, where R is a binary relation symbol
and C is a ternary relation symbol. Let C be the class of finite L structures
where R is a tournament and C is a C-relation derived from a binary tree
(see Section 2.7 for the relevant definitions). It is an easy observation that
all elements of C are rigid (since the automorphism groups of finite structures
with C-relations derived from binary trees are 2-groups and the automorphism
groups of tournaments have odd order). It is also fairly clear that C is an
amalgamation class since C ↾R and C ↾C both have the strong amalgamation
property. If M = Flim(C) admitted an Aut(M)-invariant linear order ⪯, then
by homogeneity and antisymmetry, ⪯ would be a union of quantifier-free types
in two variables x, y. Therefore ⪯ would be definable using only equality and
R. So if M2 := M↾{R}, then ⪯ would be Aut(M2)-invariant. Notice that M2

is the random tournament, which does not admit an invariant linear order (e.g.
a 3-cycle is not rigid).
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Chapter 4

On Products of Structures†

4.1 Introduction

I hope that in the last chapter I was able to convenience the reader that
generalised indiscernibles highlight a strong link between model theory and
structural Ramsey theory. This chapter, based on [MPT23], uses generalised
indiscernibles as tools to prove results in both structural Ramsey theory and
model theory.

All the way back in Chapter 2, I discussed some classical (i.e. relatively old)
dividing lines. In a certain light, the various definitions of dividing lines
given there (in Section 2.3) must seem rather ad hoc, especially for someone
encountering them for the first time. Hence, a theme from a sort of “meta-
classification theoretic” point of view is to systematically study dividing lines.
Thus, rather than explicitly studying the tame and wild theories, according to
some dividing line, it is conceivable to make the object of study the dividing
lines themselves.

One of the starting points of the research presented in this chapter was to
examine the behaviour of various dividing lines through the prism of transfer
principles in some natural product constructions. I will discuss all of this in
more detail in the remainder of this introduction. The dividing lines studied

†This chapter is based on [MPT23]. This manuscript was written jointly with Nadav
Meir and Pierre Touchard, and at the time of writing is being prepared for submission. The
contributions of all three authors to the results in this chapter are equal, and the results are
reproduced here with the permission of Meir and Touchard. As in Chapter 3, the presentation
I give here is largely new and differs from the arXiv version, and the differences will not be
pointed out.
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in this chapter admit definitions based on (generalised) indiscernible sequences.
Some of them (e.g. NIP, distality) have already shown up and others will
appear here for the first time (e.g. monadic NIP). A rather important way
of defining dividing lines (at least as far as this chapter is concerned) will be
introduced in the following paragraph.

Generalised Dividing Lines Various methods have been proposed as a
uniform way of generalising and extending existing and well-studied dividing
lines (see, for instance, [GHS17] and [GM22]). In this chapter, the focus will
be on the approach taken in [GHS17] and developed further in [GH19], which
provides a uniform scheme of dividing lines arising from coding classes of finite
structures: Given a class of finite structures, K, let NCK be the class of all
first-order theories that do not code all the members of K in a uniform manner
(see Subsection 4.3.2 for the precise definition), and CK, the complement of
NCK, in the class of all first-order theories.

The study of dividing lines of the form NCK, where K is a Ramsey class,
inevitably leads to the notion of FLim(K)-indexed indiscernibles. This deep
connection between generalised indiscernibles and structural Ramsey theory
was the topic of the previous chapter. In this chapter, I will present con-
nections between these notions and the study of dividing lines arising from
coding Ramsey structures. Intuitively, the existence of “uncollapsed” FLim(K)-
indiscernible sequences (see Definition 4.3.3) for a Ramsey class K in some
model of a first-order theory T indicates that T can somehow ‘see a trace’ of K
and therefore T cannot be in NCK, and vice versa (see Theorem 4.4.3, which
generalises [GH19, Theorem 3.14]). The main tool for analysing dividing lines
of the form NCK will be various notions of indiscernible collapse.

The starting point of understanding dividing lines in this way is Shelah’s well-
known theorem that in a stable theory every indiscernible sequence is totally
indiscernible, and, in fact, this property characterises the class of stable theories
(see Theorem 2.6.3). Results of this nature have been shown for various other
dividing lines, and essentially amount to instances of Theorem 4.4.3 with the
appropriate class K for each dividing line.

Transfer principles A transfer principle for a given theory T and a (model-
theoretic) property P is a statement of the following form: A model M of
T has property P if, and only if, some simpler structures related to M have
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property P . A great example comes from the celebrated Ax-Kochen-Ershov
theorem, which states that Henselian valued fields of equicharacteristic zero
are model complete relative to their residue fields and value groups1. There is
an extensive literature in model theory that focuses on such transfer principles,
for they are often an essential step toward characterising models with a given
property.

At the same time, transfer principles give us information on how “well-behaved”
a theory is. For instance, the theorem of Delon, which states that equicharac-
teristic zero Henselian valued fields transfer NIP from the residue field to the
valued field itself [Del81], suggests that this class of valued fields is well-behaved
for the model theorist. Analogous transfers for this class concerning many
other dividing lines are known (or at least expected to be true).

The study of theories/classes of structures that are well-behaved with respect
to a given dividing line is an active topic of research. In [MPT23], we take
another approach and use transfer principles as a tool to reveal whether a
dividing line itself is a well-behaved one. Our guiding principle is that a given
dividing line is a “well-behaved” one if some natural transfer principles hold.
More precisely, we are interested in the following general question:

Question. Let P be some notion of tameness (e.g. a dividing line). Is it true
that two structures M and N are tame with respect to P if, and only if, their
full product, M ⊠ N (see Definition 4.2.4), and their lexicographic product,
M[N ] (see Definition 4.2.7), are tame with respect to P?

I’ll now discuss this chapter’s main results and leave it to the reader to see
how they relate to the question above.

Main Results

As I have already mentioned, generalised indiscernibles, coding configurations,
and Ramsey classes are closely interconnected notions. This connection was
first established by Guingona and Hill for structures in finite relational language
[GH19, Theorem 3.14]. The first main theorem of [MPT23] gives a more general
version of this result:

1This thesis is not concerned with the model theory of valued fields, so I will let this
statement remain somewhat mysterious. Nevertheless, if the reader is after sources demystify-
ing the Ax-Kochen-Ershov theorem, there is a plethora of excellent introductory notes in the
model theory of valued fields, such as [Mar08], and more specifically on the Ax-Kochen-Ershov
theorem [dEl23]
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Theorem F (Theorem 4.4.3). Let I be an ℵ0-categorical Fraïssé limit of a
Ramsey class. Then the following are equivalent for a theory T :

1. T ∈ NCAge(I).

2. T collapses I-indiscernibles.

We then use generalised indiscernibles as a criterion to show that certain classes
cannot be Ramsey. More precisely:
Theorem G (Theorem 4.4.10). Let J be an n-ary homogeneous ℵ0-categorical
structure, for some n ∈ N. Let I be a non n-ary reduct of J . Then, Age(I) is
not a Ramsey class.

From this we obtain the following:
Theorem H (Theorem 4.4.13). Any proper reduct of the generically ordered
random k-hypergraph which is not interdefinable with DLO is not Ramsey.

Next, we provide a negative answer to a question asked in [GP23, Section 7]
and [GPS21, Question 4.7] about the linearity of the hierarchy given by coding
K-configurations. Let me explain: In [GPS21], the authors observe that one
has the following strict inclusions:

CCE ⊃ CCLO ⊃ CCOG = CCOH2
⊃ CCOH3

⊃ · · · ⊃ CCOHn
⊃ · · ·

where, recall from Section 2.7, that:

• CE is the class of all finite sets (in the language of pure equality).

• CLO is the class of all finite linear orders.

• COG the class of all finite ordered graphs.

• COHn the class of all finite ordered n-hypergraphs.

The question then becomes the following:

Question. Are there any other classes of the form CK? If so, do these classes
remain linearly ordered under inclusion?

We answer the first part of this question positively and the second part of this
question negatively, as follows:
Theorem I (Example 4.5.4). Building on the notation above, let COC be the
class of finite convexly ordered binary branching C-relations (see Section 2.7),
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and let COG ⊠ COC be the full product the classes COG and COC (see Defini-
tion 4.2.4). Then:

CCE ⊃ CCLO

⊃
CCOG

⊃
CCOC

⊃

⊃
CCOG⊠COC ⊃ · · · .⊈

⊉

Thus, the NCK hierarchy is not linearly ordered.

We then turn our attention to transfer principles. One of our main tools is a
characterisation of generalised indiscernibles in terms of generalised indiscern-
ibles in the factors, in full products (Proposition 4.5.5) and lexicographic sums
(Proposition 4.5.24).

We immediately obtain transfer theorems for dividing lines characterised by
generalised indiscernibility. These results are summarised below:
Theorem J (Corollary 4.5.8, Corollary 4.5.10, Proposition 4.5.11). Let M,
N be structure in respective languages LM and LN . For

P ∈ {NIPn, n-distal, indiscernible triviality}2

the following are equivalent:

1. M and N have P .

2. The full product of M and N , M ⊠ N , has P .

Similarly:
Theorem K (Corollary 4.5.23, Proposition 4.5.24, Corollary 4.5.26, Proposi-
tion 4.5.29). Let M be an LM-structure and N = {Na}a∈M be a collection N

of LN-structures indexed by M. For:

P ∈ {NIPn, n-distal, indiscernible triviality, monadic NIP}3

the following are equivalent:

1. M and the common theory4 of {Na : a ∈ M} have P .

2. The lexicographic sum of M and N, M[N], has P .
2See Definition 4.2.17.
3See Definition 4.2.16.
4That is, the theory of any ultraproduct of the class.
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Notice that in particular, monadic NIP transfers in lexicographic sums. We
apply this result to generalise one of the results of [PS23], to lexicographic
sums of ordered graphs of bounded twin-width. More precisely, once we obtain
a result characterising ultraproducts of classes of lexicographic products, which
is interesting in its own right (Proposition 4.6.1), we prove the following:
Theorem L (Corollary 4.6.5). Let C1 and C2 be two hereditary classes of
finite graphs with bounded twin-width. Then, the class of graphs consisting of
lexicographic sums of graphs from C1 and C2 has bounded twin-width.

Structure of the chapter

Sections 4.2 and 4.3 contain all the relevant terminology and background
definitions needed for the remainder of this chapter. In Section 4.3, some
preliminary results regarding coding configurations and collapsing indiscernibles
are proved. Then, in Section 4.4 we prove Theorem F and Theorem G. We
then devote Section 4.5 to proving Theorem J and Theorem K. In Section 4.6
we use the monadic NIP case in Theorem K to prove Theorem L. We conclude
the paper with some open questions, in Section 4.7.

4.2 Local Preliminaries

4.2.1 Reducts

Often, when people refer to a reduct of an L-structure M, they mean a language
reduct, that is, a structure M′ on the same domain as M, which is obtained
from M by forgetting some of the symbols in L (this was, in fact, the way
the word reduct was used in the previous chapter). The notion of reduct we
work with in [MPT23] is a more general one, sometimes also referred to as a
definable or first-order reduct. More precisely:
Definition 4.2.1. Let M and M′ be structures on the same domain.

• We say that M′ is a first-order reduct of M if every definable subset of
M′ is definable in M, without parameters.

For simplicity, henceforth (unless otherwise stated), the word reduct should be
understood to mean “first-order reduct”, in the sense just defined.5 If M′ is a
reduct of M we also say that M is an expansion of M′.

• We say that M and M′ are interdefinable, if each is a reduct of the other.
5Some authors refer to this relation as ∅-definable reduct.
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• We say that M′ is a quantifier-free reduct of M if it is a reduct of M
and for all tuples ā, b̄ from M we have that qftpM(ā) = qftpM(b̄) if, and
only if, qftpM(ā) = qftpM(b̄).

• We say that M0 and M1 are quantifier-free interdefinable if each is a
quantifier-free reduct of the other.

Reducts of structures and, in particular, reducts of homogenous structures, play
an important role in this chapter, as they will be used to construct dividing
lines between tame and wild structures.

To give some additional context, recall Thomas’s conjecture:
Conjecture (Thomas, [Tho96]). If M is a countable homogeneous struc-
ture in a finite relational language, then M has finitely many reducts (up to
interdefinability).

This conjecture has been verified for many well-known examples. For instance,
in [Cam76] it is shown that (Q,≤) has 3 proper6 reducts up to interdefinability
(this was already mentioned in passing, in Section 2.7); in [Tho91] it is shown
that the random graph has 3 proper reducts up to interdefinability; in [BPP15]
it is shown that the ordered random graph has 42 proper reducts up to
interdefinability. The general case remains open.

Let R(M) be the set of reducts of a structure M (up to interdefinability), and
define a partial order ⊏r on R(M) as follows:

R ⊏r S if, and only if, R is a reduct of S.

This makes (R(M),⊏r) into a lattice.7 Moreover, the lattice (R(M),⊏r) is
precisely the dual lattice of ({Aut(R) : R ⊏r M},≤), the former being precisely
the set of closed (with respect to the product topology) subgroups of Sym(M)
which contain Aut(M) (as discussed in Section 2.5).

4.2.2 More Amalgamations

In Section 2.5, I defined the Amalgamation Property. For the purposes of this
chapter, I need to define two well-known strengthenings:
Definition 4.2.2. A class of structures CC has the:

6Proper meaning different from the structure itself and an infinite set.
7Recall, a lattice is a partially ordered set in which any two elements have a meet and a

join. The dual of a lattice is the lattice obtained by reversing the partial order.
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1. The Strong Amalgamation Property (SAP) if whenever A,B,C ∈ CC are
such that A embeds into B via e : A ↪→ B and into C via f : A ↪→ C

there exists some D ∈ CC and embeddings g : B ↪→ D, h : C ↪→ D such
that g ◦ e = h ◦ f , and moreover for all b ∈ B and c ∈ C, if g(b) = h(c),
there is some a ∈ A such that e(a) = b and f(a) = c.

2. The Free Amalgamation Property (FAP) if it consists of structures in a
relational language L such that for all A,B,C ∈ CC with C = A ∩B the
free amalgam of A andB over C, denoted A⊗CB, is in CC, where A⊗CB is
the L-structure where for all R ∈ Sig(L) we have that RA⊗CB = RA∪RB.

Remark 4.2.3. For classes of relational structures, we have (FAP)⇒ (SAP) ⇒
(AP), and both implications here are strict.

4.2.3 Product constructions

Let me now introduce the two product constructions8 which will be central in
this chapter:

1. The full product (Definition 4.2.4); and

2. The lexicographic sum (Definition 4.2.7).

Each of these constructions comes with a relative quantifier elimination result,
which will be used later to describe generalised indiscernibles in full products
and lexicographic sums, in terms of generalised indiscernibles in their factors.
This description, as discussed in the introduction of this chapter, is a crucial
tool we use in [MPT23], in order to prove transfer principles.

Full Product

Definition 4.2.4. For i ∈ {1, 2}, let Mi be an Li-structure (possibly multisor-
ted) with main sort Mi. We define the full product9 of M1 and M2, denoted
M1 ⊠ M2, to be the multisorted structure:

(M1 ×M2,M1,M2, {πMi : M1 ×M2 → Mi : i = 1, 2})

where:
8When discussing products of structures, it will always be assumed that these structures

are in disjoint languages.
9This notion of product should not be confused with the Feferman product (of two

structures); full products are equipped with projection maps, which cannot always be
recovered in the Feferman product.
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• The sorts M1 and M2 are equipped with their respective Li-structure.

• For i ∈ {1, 2}, πMi : M1 ×M2 → Mi is the natural projection.

We denote by LM1⊠M2 the corresponding language (which contains disjoint
copies of L1 and L2).

The full product M1 ⊠ M2 is sometimes called the direct product (since
Aut(M1 ⊠ M2) is isomorphic to the direct product of Aut(M1) and Aut(M2))
and can be described in a one-sorted language. However, the multisorted
approach has the following immediate advantage:
Fact 4.2.5. In the notation above M1 ⊠ M2 eliminates quantifiers relative to
M1 and M2.

Proof (Sketch). We may Morleyise M1 and M2, so, without loss, we may
assume that they eliminate quantifiers in their respective languages L1 and L2,
which we may assume are relational. We prove the fact by induction on the
complexity LM1⊠M2-formulas. Let ϕ(x̄) ∈ LM⊠M2 :

• If ϕ = R for some R ∈ Li, then, by definition:

M1 ⊠ M2 ⊨ ϕ(x̄) ⇐⇒ Mi ⊨ ϕ(πi(x̄)).

• If ϕ(x, y) is x = y, then, again, by definition:

M1 ⊠ M2 ⊨ ϕ(x, y) ⇐⇒ M1 ⊨ ϕ(π1(x, y)) ∧ M2 ⊨ ϕ(π2(x, y)).

• If ϕ is of the form ¬ψ or ψ1 ∧ψ2, then the fact follows from the induction
hypothesis.

• Finally, assume ϕ(x̄) is of the form ∃y ψ(x̄; y). We may assume ψ is in
disjunctive normal form, and by induction hypothesis, we may actually
assume that

ψ(x̄; y) =
∨
i∈I

∧
j∈Ji

θi,j(x̄; y),

where I, {Ji}i∈I are finite and each θi,j is an atomic or negated atomic
formula. As disjunctions commute with existential quantifiers, we may
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actually assume that

ψ(x̄; y) =
∧
j∈J

θj(x̄; y).

Finally, since equalities in M1 × M2 correspond to a conjunction of
equalities in M1 and M2, we may assume ψ is

ψ(x̄; y) = ψ1(π1(x̄; y)) ∧ ψ2(π2(x̄; y)).

But then, by definition, we have that:

M1 ⊠ M2 ⊨ ∃y (ψ1(π1(x̄; y)) ∧ ψ2(π2(x̄; y))) ⇐⇒

M1 ⊨ ∃yψ1(π1(x̄; y)) and M2 ⊨ ∃yψ2(π2(x̄; y)),

and the result follows.

We extend this definition to classes of structures:
Definition 4.2.6. Let C1 and C2 be two classes of structures. We denote by
C1 ⊠ C2 the smallest hereditary class of structures containing C ⊠ D for all
C ∈ C1 and D ∈ C2.

Lexicographic Sum and Product

The lexicographic sum of relational structures was studied by Meir in [Mei16].
It is a method of constructing an L-structure M[N ] from two L-structures
M and N , where L is a relational language, in a way that generalises the
lexicographic (wreath10) product of graphs.
Definition 4.2.7. Let M be an LM-structure and N = {Na : a ∈ M} be a
collection N of LN-structures indexed by M . The lexicographic sum of N with
respect to M, denoted by M[N], is the multisorted structure with:

• A main sort S, with base set
⋃
a∈M{a} ×Na.

• A sort for the structure M,

• The natural projection map v : S → M .
10Consider automorphism groups, again!
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We equip the main sort with an L•,N-structure, where L•,N is just a copy of
LN (with an extra •, in order to distinguish the symbols from those in the Na),
as follows:

• For each n-ary relation symbol P ∈ LN we set:

P
M[N]
• := {((a, b1), . . . , (a, bn)) : a ∈ M and Na ⊨ P (b1, . . . , bn)} .

• For each n-ary function symbol f ∈ LN we set:

f
M[N]
• ((a1, b1), . . . , (an, bn)) :=

(a1, f
Na(b1, · · · , bn)) if a1 = · · · = an,

u otherwise.
.

where u is a fresh constant symbol (interpreted as a new element, outside of
the above domains) which stands for undefined.

Finally, M[N], is the multisorted structure:

(S,M, v : S → M).

where S is taken with the L•,N-structure defined above, and M with its LM-
structure. We write LM[N] for the multisorted language of the lexicographic
sum.

If there is some LN-structure N such that for all a ∈ M we have that Na
∼= N ,

we denote the lexicographic sum by M[N ], and we call it the lexicographic
product of M and N .11

Remark 4.2.8. Notice that the projection to the second coordinate is not in
the language of the lexicographic product. But, to simplify notation, whenever
a ∈ M we identify Na with {a}×Na and write Na ⊨ ϕ(c) for c = (a, n) ∈ M[N]
and ϕ an LN-formula such that Na ⊨ ϕ(n).
Notation 4.2.9. The sort M in M[N] can come with additional structure: we
can define predicates

PM
ϕ := {a ∈ M : Na ⊨ ϕ} (⋆)

for all LN-sentences ϕ. For technical reasons, these predicates will not generally
be added in the language LM[N], but they will play an important role in the
next sections.

11Observe that M[N ] is a reduct of M ⊠ N .
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Again, we extend the definition to classes of finite structures:
Definition 4.2.10. Let C1 and C2 be two classes of finite structures. We
denote by C1[C2] the class of lexicographic sums C[(Dc)c∈C ] where C ∈ C1 and
Dc ∈ C2 for every c ∈ C.

Before giving the promised relative quantifier elimination result of lexicographic
sums, I need to briefly discuss how elementary extensions of these objects look
like.

Elementary extensions For the remainder of this paragraph, assume that
M[N] is expanded as in Notation 4.2.9. Any complete 1-type p ∈ STh(M)

1 (∅)
is, of course, an ultrafilter on the set of ∅-definable subsets of M . By Łos’s
theorem, the theory of an ultraproduct

∏
U Na depends only on the ultrafilter U ,

in particular, thinking of 1-types as ultrafilters we can view such ultraproducs
as
∏
p Na, for p ∈ STh(M)

1 (∅). Abusing notation, this may also be denoted by
Np.

An elementary extension of M[N] will necessarily be of the form M̃[Ñ] where
M̃ is an LM-structure and Ñ is a collection of LN-structures {Ñã : ã ∈ M̃}
such that:

• M̃ is an elementary extension of M in LM ∪ {Pϕ}ϕ∈LN
, where Pϕ are

the sentences from (⋆);

• For a ∈ M, we have that Ña is an elementary extension of Na;

• For ã ∈ M̃ \ M, we have that Ñã is elementary equivalent to the
ultraproduct

∏
p Na where p = tp(ã) ∈ STh(M)

1 (M).

Now for the relative quantifier elimination result:
Fact 4.2.11. Consider the lexicographic sum S := M[N] of a class of LN-
structures N := {Na}a∈M with respect to an LM-structure M. Assume that

1. For all sentences ϕ ∈ LN, the set {a ∈ M : Na ⊨ ϕ} is ∅-definable in M,
as in (⋆);

2. For all p ∈ STh(M)
1 , Np =

∏
p Na admits quantifier elimination in LN.

Then M[N] eliminates quantifiers relative to M in LM[N].

For a proof, the reader can refer to [Mei16, Theorem 2.7].
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4.2.4 More Dividing Lines

This subsection can be seen as a continuation of Section 2.3. Unless otherwise
stated, T will always denote a complete L-theory and M ⊨ T a κ(M)-saturated
and κ(M)-homogeneous (monster) model of T , for some very big cardinal κ(M),
just like in Chapter 2. Again, unless otherwise stated all (tuples of) elements
and subsets will come from this monster model and will be small, i.e. of size
less than κ(M).

Higher arity Generalisations of NIP

In Section 2.3, I introduced the Independence Property, and the relatively
tame class of structures which do not have it, the NIP theories. Now, I will
introduce a natural way of generalising NIP to structures of “higher arity”.
This notion (just like NIP) is due to Shelah, originally introduced in [She14].
As an abstract model-theoretic dividing line, it was later studied in more detail
in [CPT19]. This is one of the prototypical examples of a dividing line arising
from generalised indiscernibles.
Definition 4.2.12 (n-Independence Property, NIPn). We say that a formula
ϕ(x̄; ȳ1, . . . , ȳn) has the n-Independence Property, IPn (in T ) if there exist
(ā1
i
⌢ . . .⌢āni : i ∈ N) and (b̄I : I ⊆ Nn) such that:

⊨ ϕ(b̄I ; ā1
i1 , . . . , ā

n
in) if, and only if, (i1, . . . , in) ∈ I.

We say that T is n-dependent or NIPn if no formula has IPn in T .
Remark 4.2.13. It is easy to observe that NIP1 corresponds precisely to NIP.

The following proposition is standard. I include a short proof in this thesis,
because it will hopefully make some things clearer in Chapter 6.
Proposition 4.2.14. Let T be a first-order theory. If T is NIPn for some
n ∈ N then T is NIPn+1.

Proof. Suppose that T has the (n+ 1)-independence property. Then, by defini-
tion, there is a formula ϕ(x̄; ȳ1, . . . , ȳn, ȳn+1) and sequences (ā1

i
⌢ . . .⌢āni

⌢ān+1
i :

i ∈ N) and (b̄I : I ⊆ Nn+1) such that:

⊨ ϕ(b̄I ; ā1
i1 , . . . , ā

n+1
in+1

) if, and only if, (i1, . . . , in+1) ∈ I.

For i < n write z̄i for ȳi and write z̄n for the concatenation ȳn
⌢ȳn+1. Let
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ψ(x̄, z̄1, . . . , z̄n) be ϕ(x̄, ȳ1, . . . , ȳn+1) and define a sequence of tuples (c̄1
i
⌢ · · ·⌢c̄ni :

i ∈ N) just as we did for the variables, by letting c̄ji be āji for all j < n and all
i ∈ N and c̄ni be āni ⌢ān+1

0 for all i ∈ N. Define (d̄I)I⊆Nn by d̄I = b̄I′ , where

I ′ = {(i1, . . . , in, 0) : (i1, . . . , in) ∈ I},

for each I ⊆ Nn. Then, by construction, we have that:

⊨ ψ(d̄I , c̄1
i1 , . . . , c̄

n
in) if, and only if, ⊨ ϕ(b̄I′ , ā1

i1 , . . . , ā
n
in , ā

n+1
0 )

if, and only if, (i1, . . . , in, 0) ∈ I ′

if, and only if, (i1, . . . , in) ∈ I,

as required.

Moreover, for all n ∈ N the inclusion of NIPn in NIPn+1 is strict, witnessed
by the random (n+ 1)-hypergraph, which is NIPn+1, but not NIPn (e.g. the
random graph has IP, but is NIP2, etc). This is now well-known, and follows
essentially from [CPT19, Proposition 6.5]. Later in this chapter, a different
viewpoint on this fact will be given.

In the next subsections, I shall also recall the definitions of various classes of
theories contained in NIP and NIPn.

Higher arity Generalisations of Distality

Distality was briefly introduced in Section 2.3. Akin to NIPn, there is a more
recent higher arity generalisation of distality, called n-distality, introduced
by Walker in [Wal23]. To give his definition, I will need to introduce some
terminology first.

Let I be an (order-)indiscernible sequence (b̄i : i ∈ I) indexed by an infinite
linear order I = (I,<). Suppose I0 + · · · + In is a partition of I corresponding
to a Dedekind partition12 I0 + · · ·+ In of I. Let A be a sequence (ā0, . . . , ān−1),
where |b̄i|= |āj | for all i ∈ I and j < n.

We say that A inserts (indiscernibly) into I0 + · · · + In if the sequence remains
12That is, a partition into Dedekind cuts, meaning that each of the pieces of the partition

is non-empty and has no maximal or minimal element.
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indiscernible after inserting each āi at the ith cut, i.e. the sequence:

I0
⌢(ā0)⌢I1

⌢(ā1)⌢ · · ·⌢In−1
⌢(ān−1)⌢In

is indiscernible. Moreover, for any A′ ⊆ A, we say that A′ inserts (indiscernibly)
into I0 + · · · + In if the sequence remains indiscernible after inserting each
āi ∈ A′ at the ith cut. For simplicity, we may say that A (or A′) inserts into I

when the partition of I under consideration is clear.
Definition 4.2.15 ([Wal23, Definitions 3.5 and 3.13]). For m > 0 and an
indiscernible sequence I, we say that the Dedekind partition I0 + · · · + Im+1

is m-distal if every sequence A = (ā0, . . . , ām) which does not insert into I

contains some m-element subsequence which does not insert into I. A theory
is m-distal if all Dedekind partitions of indiscernible sequences in the monster
model are m-distal.

As discussed in [Wal23], a theory is 1-distal if, and only if, it is distal, in fact,
this is essentially the original definition of distality, from [Sim13, Section 2.1]
and n-distality is a reasonable generalisation of distality (assuming NIPn is a
reasonable generalisation of NIP), as every n-distal theory is NIPn.

Monadic NIP

Another, differently flavoured, strengthening (i.e subclass) of NIP comes from
the notion of monadic NIP. Monadic NIP was introduced by Baldwin and Shelah
in [BS85], but the study of monadically NIP theories has seen a resurgence
in recent years, both from the point of view of pure model theory (see, for
instance, [BL21]), and from the point of view of theoretical computer science
(see, for instance, [Bon+22a]).
Definition 4.2.16 (Monadic NIP). We say that T is monadically NIP if, for
every M ⊨ T and every language expansion M′ of M by unary predicates, we
have that M′ is NIP.

It is not immediately clear from the definition above that if M is such that
every language expansion of M by unary predicates is NIP, then every model
of Th(M) is monadically NIP. This follows from Fact 4.2.19, below. Before
stating that theorem, some further model-theoretic machinery needs to be
introduced. The following definition is due to Braunfeld and Laskowski, [BL21]:
Definition 4.2.17 (Indiscernible triviality). We say that T has indiscernible
triviality for any (order-)indiscernible sequence (āi : i ∈ N), and every set B of
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parameters, if (āi : i ∈ N) is indiscernible over each b ∈ B then (āi : i ∈ N) is
indiscernible over B.

The following definition originating from [She14] is a strengthening of NIP:
Definition 4.2.18 (dp-rank, dp-minimality). Fix n ∈ ω. An ICT-pattern of
depth n consists of a sequence of formulas (ϕi(x̄, ȳ) : i ≤ n) and an array of
parameters (āji : i ∈ ω, j ≤ n) such that for all η : [n] → ω we have that:{

ϕj
(
x̄, ājη(j)

)
: j ≤ n

}
∪
{

¬ϕj
(
x̄, āji

)
: j ≤ n, i ̸= η(j)

}
is consistent. We say that T has dp-rank n if there is an ICT-pattern of depth
n, but no ICT pattern of depth n + 1 (in the monster model of T ). We say
that T is dp-minimal if it has dp-rank 1.

These notions have been intensively studied see e.g. [CS19], [KOU13]. The
reader will find in the literature various alternative ways of defining dp-
minimality. For instance, in [OU11], it is shown that T is dp-minimal if
and only if it is inp-minimal and NIP.

The following is one of the central theorems of [BL21], which includes a
“Shelah-style forbidden-configuration” characterisation of monadic NIP.
Fact 4.2.19 ([BL21, Theorem 4.1]). Let T be a first-order theory. Then, the
following are equivalent:

(1) T is monadically NIP.

(2) For all M ⊨ T , we cannot find an L-formula ϕ(x̄, ȳ, z), sequences of tuples
(āi : i ∈ ω), (b̄j : j ∈ ω), and a sequence of singletons (ck,l : k, l ∈ ω),
from M such that:

M ⊨ ϕ(āi, b̄j , ck,l) if, and only if, (i, j) = (k, l).

(3) T is dp-minimal and has indiscernible triviality.

Here is a representation of the forbidden configuration from Fact 4.2.19(2):
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b̄3 c0,3 c1,3 c2,3 c3,3

b̄2 c0,2 c1,2 c2,2 c2,3

b̄1 c0,1 c1,1 c1,2 c3,2

b̄0 c0,0 c1,0 c2,0 c3,0

ā0 ā1 ā2 ā3

Figure 4.1: The Monadic NIP Forbidden Configuration

Suppose that M is a sufficiently saturated structure with IP. Then it is a well-
known fact that we can find a formula ϕ(x, ȳ), where |x| = 1, that witnesses
IP in M. If we are allowed to use unary predicates (or to add parameters
[Sim21]), then the following result, from [BS85, Lemma 8.1.3] shows that we
can achieve more:13

Fact 4.2.20. If M is a sufficiently saturated structure with IP, then there is
a monadic expansion N of M and a formula ϕ(x, y) with |x| = |y| = 1 which
witnesses that N has IP.

In particular, the following corollary follows immediately from the fact above
and the fact that monadic expansions of monadic expansions are monadic
expansions:
Corollary 4.2.21. If T is not monadically NIP, then there is a monadic
expansion of some M ⊨ T which has IP witnessed by a formula ϕ(x, y) with
|x| = |y| = 1.
Example 4.2.22. I’ll close this section by revisiting Example 2.3.13, to give
some examples that one can keep in mind when discussing monadically NIP
structures.

• Linear orders are monadically NIP.

• Meet-trees (T,≤ ∧) are monadically NIP. This follows from [Sim11,
Proposition 4.7], where it is shown that coloured meet-trees (that is,
monadic expansion of meet-trees) are dp-minimal, so in particular NIP.

The careful reader may wonder why at this point I’m not defining a higher arity
generalisation of monadic NIP (say monadic NIPn). This will be explained in
Chapter 6.

13In Chapter 6 this result will be generalised to NIPn theories.
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4.3 Indiscernible Collapses and Coding
Configurations

4.3.1 Indiscernibles Collapsing

In Section 2.6, I introduced generalised indiscernibles, and in the introduction
to this chapter I promised to discuss how we can use them to construct new
dividing lines.

I will follow the approach of Guingona, Hill, and Scow [GHS17]. Morally,
the starting point is Theorem 2.6.3, which recall stated that if T is a stable
theory, then a given sequence is order-indiscernible if, and only if, it is totally
indiscernible, and this equivalence, in fact, characterises stability. As I will
discuss in detail later in this chapter, this sort of phenomenon, which is made
precise in the following definitions, can be used as an alternative definition for
several dividing lines.
Lemma 4.3.1. Let I and I ′ be two structures on the same domain, and
assume that I ′ is a quantifier-free reduct of I. Then, any I ′-indiscernible
sequence is an I-indiscernible sequence.

Proof. Indeed, let I be the domain of I and I ′ and let I = (āi : i ∈ I) be a I ′-
indiscernible sequence. If qftpI(i1, . . . , in) = qftpI(j1, . . . , jn), then since J is
a quantifier-free reduct of I we have that qftpJ (i1, . . . , in) = qftpJ (j1, . . . , jn),
and since I is J -indiscernible it follows that tp(āi1 , . . . , āin) = tp(āj1 , . . . , ājn).
Thus I is I-indiscernible.

Of course, the converse need not always hold, and when it does hold, it is
usually the conclusion of a strong structural result. Thus, in [MPT23] we turn
it into a definition.
Definition 4.3.2. Let I and I ′ be two structures such that I ′ is a reduct of I.
We say that a theory T collapses I-indiscernibles to I ′-indiscernibles if every
I-indiscernible sequence in the monster model is an I ′-indiscernible sequence.

We say that T collapses I-indiscernibles if it collapses any I-indiscernible
sequence to an I ′-indiscernible sequence, where I ′ is a strict14 quantifier-free
reduct of I.

14A strict quantifier-free reduct of I is any reduct of I which is not quantifier-free
interdefinable with I. It is allowed to be a pure set.
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In [GH19], a slightly different definition trying to capture the same concept
was given. More precisely:
Definition 4.3.3 (Non-collapsing indiscernibles [GH19, Definition 3.2]). Let
I be a structure and let T be a theory. A sequence (ai : i ∈ I) of elements in
a model M of T is a non-collapsing indiscernible if

qftpI(i1, . . . , in) = qftpI(j1, . . . , jn) if, and only if,

tp(ai1 , . . . , ain) = tp(aj1 , . . . , ajn),

for all i1, . . . , in, j1, . . . , jn ∈ I.

The definition above was given under the assumption I is a homogeneous
structure in a finite relational language. The following lemma shows that,
in this context (in particular, when I is ℵ0-categorical), the two definitions
coincide. Example 4.3.6 shows that Lemma 4.3.4 fails in general.
Lemma 4.3.4. Let I be a homogeneous ℵ0-categorical structure in a countable
language, let M be some structure and (āi : i ∈ I) be an I-indiscernible
sequence in M. Then the following are equivalent:

(1) (āi : i ∈ I) is non-collapsing, according to Definition 4.3.3.

(2) For all reducts I ′ of I such that (āi : i ∈ I) is I ′-indiscernible, we have
that I and I ′ are quantifier-free interdefinable.

Proof. Let LI ,LM be the respective languages of I,M. Observe that since I
is ℵ0-categorical, every reduct of I must be ℵ0-categorical too.

First, we prove the implication (1) =⇒ (2): Let I ′ be a reduct of I and
assume that (ai : i ∈ I) is I ′-indiscernible. Since I is ℵ0-categorical and
homogeneous, it has quantifier-elimination. Thus, it suffices to show that,
for every LI-formula ϕ(x1, . . . , xn) there exists a quantifier-free LI′-formula
ψ(x1, . . . , xn) such that for all i1, . . . , in ∈ I we have that:

I ⊨ ϕ(i1, . . . , in) if, and only if, I ′ ⊨ ψ(i1, . . . , in).

By I ′-indiscernibility, Definition 4.3.3, and quantifier elimination in I we have
that:
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qftpI′(i1, . . . , in) = qftpI′(j1, . . . , jn)

=⇒ tp(āi1 , . . . , āin) = tp(āj1 , . . . , ājn)

=⇒ qftpI(i1, . . . , in) = qftpI(j1, . . . , jn)

(4.1)

for all i1, . . . , in, j1, . . . , jn ∈ I. That is, equality of quantifier-free types in I ′

implies equality of (quantifier-free) types in I.

Of course, since I has quantifier-elimination and I ′ is a (quantifier-free) reduct
of I we can deduce that:

qftpI′(i1, . . . , in) = qftpI′(j1, . . . , jn) ⇐⇒

tpI(i1, . . . , in) = tpI(j1, . . . , jn)
(4.2)

Given ϕ(x1, . . . , xn), by the Ryll-Nardzewski theorem, there are finitely many
complete n-types p1, . . . , pk ∈ SI

n(∅) such that:

I ⊨ ϕ(x̄) ↔
k∨
i=1

pi(x̄). (4.3)

By ℵ0-categoricity of I ′, there are only finitely many complete quantifier-free
types. Thus, by Equation (4.1) for each pi, there are complete quantifier-free
types qi,1, . . . , qi,li in I ′ such that:

I ′ ⊨
li∨
j=1

qi,j(i1, . . . , in) ⇐⇒ I ⊨ pi(i1, . . . , in),

for all i1, . . . , in ∈ I. In fact, by Equation (4.2) we can deduce that li = 1, for
each p ∈ §I

n(∅). At this point we are essentially done, since, by Equation (4.3)
there are finitely many quantifier-free types q1, . . . , qm such that

I ′ ⊨
m∨
j=1

qj(i1, . . . , in) ⇐⇒ I ⊨ ϕ(i1, . . . , in) (4.4)

for all i1, . . . , in ∈ I, and since I ′ is ℵ0-categorical, we may replace each qj in
(4.4) by an isolating formula, so ϕ is ∅-quantifier-free-definable in I ′, and the
result follows.
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Now for the implication (2) =⇒ (1): We need to show that given any I-
indiscernible sequence (ai : i ∈ I) we have that:

qftp(i1, . . . , in) = qftp(j1, . . . , jn) ⇐⇒ tp(ai1 , . . . , ain) = tp(aj1 , . . . , ajn),

for all i1, . . . , in, j1, . . . , jn ∈ I.

To this end, we start by constructing a reduct I ′ of I. Let P be the set of
all complete n-types p in M, realised by an n-tuple from (ai : i ∈ I) (for all
n ∈ N). Let LI′ be the language consisting of an n-ary relation symbol Rp for
every n-type p ∈ P.

We interpret these relations in I ′ in the natural way, that is, for every n-type
p ∈ P and every i1, . . . , in ∈ I we set

I ′ ⊨ Rp(i1, . . . , in) : ⇐⇒ (ai1 , . . . , ain) ⊨ p

By construction, (ai : i ∈ I) is I ′-indiscernible, and in fact, by construction we
have that:

qftpI′(i1, . . . , in) = qftpI′(j1, . . . , jn) ⇐⇒

tp(ai1 , . . . , ain) = tp(aj1 , . . . , ajn).
(4.5)

Notice, now, that since (ai : i ∈ I) is I-indiscernibile, by definition, (and
quantifier elimination in I) we have that equality of types in I implies equality
of types in P. In particular, since, by ℵ0-categoricity of I, there are only
finitely many n-types in I, for each n ∈ N (all of which are isolated), for every
p ∈ P there are LI-formulas ψp,1, . . . , ψp,k(ϕ) such that:

I ⊨
k(ϕ)∨
j=1

ψϕ,j(i1, . . . , in) ⇐⇒ (ai1 , . . . , ain) ⊨ p

⇐⇒ I ′ ⊨ Rp(i1, . . . , in).

So I ′ is a reduct of I. Therefore, by Item (2), I and I ′ are quantifier-free
interdefinable.



112 On Products of Structures

Finally, let i1, . . . , in, j1, . . . , jn ∈ I be such that:

tp(ai1 , . . . , ain) = tp(aj1 , . . . , ajn).

Then, by (4.5) we have that:

qftpI′(i1, . . . , in) = qftpI′(j1, . . . , jn).

Since I and I ′ are quantifier-free interdefinable, this implies that:

qftpI(i1, . . . , in) = qftpI(j1, . . . , jn),

as required.

The following example shows that, in general, a collapsing I-indiscernible
sequence (in the sense of Definition 4.3.3) may collapse (in the sense of Defini-
tion 4.3.2) to an I ′-indiscernible sequence where I ′ is a strict quantifier-free
reduct of I.
Example 4.3.5. Let BR = (V,E,R) be the countable random bipartite graph
B = (V,E) equipped with a two-class equivalence relation R, for the partition.
We may index B by itself, with the indexing structure viewed as a BR-structure,
(v : v ∈ BR). Clearly (since we are just indexing B by itself), this sequence is
BR-indiscernible, but it is not uncollapsing, in the sense of Definition 4.3.3, since
equality of (quantifier-free) types in B does not imply equality of (quantifier-
free) types in BR (e.g. any two vertices which are not joined have the same
type in B, but there are two different types of vertices which are not joined in
BR).

Thus, in the sense of Definition 4.3.2, the sequence collapses to a B-indiscernible
sequence. One can then see that it cannot collapse any further, that is,
(g : g ∈ B) is an uncollapsing B-indiscernible sequence.

The following example shows that Lemma 4.3.4 does not hold in general:
Example 4.3.6. Let N be the natural structure on N in the full set-theoretic
language LF , i.e. the language which for every A ⊆ Nn, contains an n-ary
relation symbol RA ∈ Sig(LF ), and all A ⊆ Nn we naturally interpret:

RN
A (a1, . . . , an) ⇐⇒ (a1, . . . , an) ∈ A.
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Observe that N is ℵ0-categorical15 (though Theorem 2.2.1 cannot be applied
here, since LF is uncountable) and homogeneous. Let NS be the (language)
reduct of N to the language LS ⊂ LF consisting only of unary predicates for
the singleton sets, i.e. LS := {R{a} : a ∈ N}.

Then N codes any countable structure M, and is, thus, in particular unstable.
On the other hand, NS is strongly minimal, and in particular, stable. Thus
clearly, N is not a reduct of NS . To see that the equivalence in Lemma 4.3.4
fails, observe that:

1. The sequence (i : i ∈ N ) is a non-collapsing N -indiscernible sequence in
N , in the sense of Definition 4.3.3.

2. N collapses N -indiscernibles to NS indiscernibles according to Defini-
tion 4.3.2. (In fact, every N -indiscernible sequence in any model of any
theory is also an NS-indiscernible sequence.)

Let’s briefly remind ourselves why all of this is happening: An analogue of
Shelah’s theorem characterising stable theories as those that collapse order-
indiscernible sequences to indiscernible sets was proved by Scow for NIP in
[Sco12], and her result was generalised in [CPT19] to NIPn, for n > 1.
Fact 4.3.7 ([CPT19, Theorem 5.4]). Let COHn+1 be the ordered random (n+1)-
hypergraph. Then, the following are equivalent, for a first-order theory T :

1. T is NIPn.

2. T collapses COHn+1-indiscernibles into order-indiscernibles.

4.3.2 K-Configurations

One of the goals of this chapter is to develop the study of transfer principles
for forbidding K-configurations. Forbidding K-configurations offers a unified
way of describing tameness conditions that arise from coding combinatorial
configurations, such as the Order Property and the Independence Property,
and I hope I can convince the reader that this notion provides an interesting
schema for defining new dividing lines.

15This is not immediately obvious, but the point is that in N we have uncountably (in fact,
continuum) many infinite subsets Xi, any two of which have finite intersection. In particular,
in any model with a non-standard element a each of these sets would have a non-standard
element xi greater than a (note that < is definable in N ), and since the intersection of any
two distinct Xi’s is finite, all these new elements must be distinct.
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The notion of K-configurations originates from the work of Guingona and Hill
[GH19], and was developed further in [GPS21]. In this section, fix a relational
first-order language L0, and an arbitrary first-order language L. Throughout,
unless otherwise stated, K will denote an isomorphism-closed class of finite
L0-structures.
Definition 4.3.8 (K-configuration, [GPS21, Definition 5.1]). An L-structure
M admits (or codes) a K- configuration if there exist an integer n, a function
I : Sig(L0) → L and a sequence of functions (fA : A ∈ K) such that:

1. for all A ∈ K, fA : A → Mn,

2. for all R ∈ Sig(L0), for all A ∈ K, for all a ∈ Aar(R),

A ⊨ R(a) ⇔ M ⊨ I(R)(fA(a)).

A theory T admits a K-configuration if some model M ⊨ T admits a K-
configuration. We denote by CK the class of theories which admit a K-
configuration, and by NCK the class of theories which do not admit a K-
configuration.
Remark 4.3.9. In the definition above, parameters do not appear at any point.
This is for good reason. Recall the classical fact from stability theory that if a
formula ϕ(x̄, ȳ; c̄), for some constants c̄, has the order property in M ⊨ T , say
witnessed by (āi : i ∈ N), (b̄i : i ∈ N), then there is a parameter-free formula
ψ which has the order property in T – of course ψ is just ϕ(x̄, ȳ⌢z̄) and the
order property is witnessed by (āi : i ∈ N), (b̄⌢i c̄ : i ∈ N).

This is a general feature of coding configurations, in particular, in particular if
some L-structure M admits a K-configuration viewed as an L(M)-structure
(i.e. if M admits a K-configuration with parameters) then, M admits K-
configuration as an L-structure (i.e. without parameters, so, in the sense of
the definition above).
Example 4.3.10. Recall that CLO and CCO denote respectively the class of
finite linear orders and finite cyclic orders, CCOD denotes the class of finite
cyclically ordered D-relations and COC the class of (convexly) ordered finite
binary branching C-relations. One can observe that any structure admits a
CCO-configuration if, and only if, it admits a CLO-configuration. In particular
NCCCO = NCCLO . This is, of course, because after naming one constant a
dense cyclic order is interdefinable with a standard linear order (see previous
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remark about naming constants). Similarly, any structure admits an CCOD-
configuration if, and only if, it admits COC-configuration. Therefore NCCCOD =
NCCOC .

The following proposition is rather useful:
Proposition 4.3.11. Let K be a class of (not necessarily finite) structures.
Then

CK = CAge(K) = CHC(K),

where Age(K) denotes the class of all finitely generated substructures that embed
in some structure in K, and HC(K) denotes the hereditary closure of K.

In particular, for a structure M we have that CM = CAge(M), where CM := C{M}.

Proof. Since Age(K) = Age(HC(K)), it suffices to show the first equality (as
we may replace K with HC(K) to obtain the second).

For the inclusion CK ⊆ CAge(K), suppose that T ∈ CK, witnessed by I and
(fM)M∈K. For every A ∈ Age(K) fix some MA ∈ K and embedding eA : A ↪→
MA; then letting fA := fM ◦ eA, we get an Age(M)-configuration.

For the inclusion CAge(K) ⊆ CK, suppose that T ∈ CAge(K). Fix I and (fA : A ∈
Age(K)) as promised; then, for all M ∈ K, the type in |M|-variables

T ∪ { I(R)(xa1 , . . . , xan) : R ∈ L(K), M ⊨ R(a1, . . . , an)}

∪ {¬I(R)(xa1 , . . . , xan) : R ∈ L(K), M ⊨ ¬R(a1, . . . , an)}

is finitely satisfiable, and therefore satisfiable by compactness.

In light of Proposition 4.3.11 above, given a structure M, we overload notation,
and write CM for CAge(M) = C{M}, and similarly NCM for NCAge(M) = NC{M}.

The following remark about coding quantifier-free formulas will be used in a
couple of places later on in this chapter:
Remark 4.3.12. Let M be an L-structure and assume that N is an L′-
structure which admits an M-configuration, witnessed by I, f . Let ϕ(x̄) =∧
i∈A

∨
j∈B ψi,j(x̄) be a quantifier-free L-formula, where each ψi,j(x̄) is an

atomic or negated atomic formula. In particular, for each ψi,j(x̄), we can define
J(ψi,j) to be I(ψi,j) if ψi,j is a relation symbol, and ¬I(ψi,j) if ψi,j is a negated
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relation symbol. Then, by definition:

M ⊨ ϕ(a) if, and only if, N ⊨
∧
i∈A

∨
j∈B

J(ψi,j)(f(a)),

for all a ∈ M.

A somewhat different approach to coding K-configurations is the focus of
Walsberg in [Wal22]. There, the relevant notion is called trace definability
and it is seen as a weak form of interpretability. I will not be discussing trace
definability further in this thesis, except to say that from the point of view of
trace definability, the following proposition is immediate, but if one works with
(coding) K-configurations, some proof is required.
Proposition 4.3.13. Let N be an LN -structure. If an LM-structure M is
interpretable in N and M admits a K-configuration, then N also admits a
K-configuration. In particular, the class NCK is closed under bi-interpretability.

Proof. Assume that N interprets M. There is a definable set D ⊆ Nm, a
definable equivalence relation ∼ on D and a bijection M ≃ D/ ∼ which
interprets M. This induces a map ∗ : LM → LN which associates to any
LM-formula ϕ(x) an LN -formula ϕ∗(x∗) interpreting it (where |x∗| = m× |x|).
Let s : M → Nm a section of the natural projection D → D/ ∼ (where we
identify M with D/ ∼).

If M admits a K-configuration via:

(I : Sig(L0) → LM, (fA : A → Mn : A ∈ K)) ,

then N also admits a K-configuration, via:

(∗ ◦ I : Sig(L0) → LN , (s ◦ fA : A → Mnm : A ∈ K)) .

Indeed, by unravelling the definitions, we have that:

A ⊨ R(a) ⇔ M ⊨ I(R)(fA(a)) ⇔ N ⊨ I(R)∗(s(fA(a))),

for all R ∈ Sig(L0) for all A ∈ K for all a ∈ Aarity(R).

The following corollary is almost immediate:
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Corollary 4.3.14. The following classes cannot be of the form NCK, for any
K:

1. The class of dp-minimal structures.

2. The class of monadically NIP structures.

3. The class of distal structures.

This follows from the fact the properties above are either not closed under
bi-interpretability or under taking reducts.16 For instance, an infinite set S in
the language of pure equality is bi-interpretable with the full product S ⊠ S
which has dp-rank 2. It is well-known that distality is not preserved under
taking reducts. For example, ⟨Q, <⟩ is distal, but its reduct to the language of
pure equality is not.

A version of the following lemma appears in [GP23, Proposition 5.4(4)], under
the assumption the classes are strong amalgamation classes, and M is a Fraïssé
limit of such a class. In [MPT23], we show that these requirements are not
needed and we provide a more elementary proof.
Lemma 4.3.15. Let M be a structure with quantifier elimination and K a
class of not necessarily finite structures. Then the following are equivalent:

(1) M ∈ CK.

(2) CM ⊆ CK.

Proof. For (1) ⇒ (2) suppose that M ∈ CK and N ∈ CM. Let I, f witness
that M admits a K-configuration, and J, g witness that N admits an M-
configuration. By quantifier elimination, we may assume that I(R) is quantifier-
free for all R ∈ Sig(K). It is clear, using Remark 4.3.12, that g ◦ f and J ◦ I
witness that N admits a K-configuration. For (2) ⇒ (1), observe that clearly
M ∈ CM and therefore, by assumption M ∈ CK.

Fact 4.3.16 below was originally stated for classes of finite structures. However,
notice that:

• Age(K1 ⊠K2) = Age(K1) ⊠ Age(K2).

• Age(K1[K2]) = Age(K1)[Age(K2)].
16It is clear from the definition of NCK that if M ∈ NCK and N is a reduct of M then

N ∈ NCK.
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• Age(K1 ⊔ K2) = Age(K1) ⊔ Age(K2).

Therefore, by Proposition 4.3.11, we may phrase Fact 4.3.16 in the fullest
generality:
Fact 4.3.16 ([GPS21, Theorem 4.27]). Let K1,K2 be classes of structures in
disjoint finite relational languages L1,L2, respectively. Then

CK1⊠K2 = CK1[K2] = CK1⊔K2 = CK1 ∩ CK2 .

The fact above was originally phrased under a slightly weaker assumption
that K1 and K2 both containing structures of size n, for every n ∈ N. In
[MPT23], we note that this requirement is only needed when considering free
superposition (which I’ve tactfully avoided including here): For the full product
and lexicographic product it is precisely [GPS21, Corollary 5.16] and [GPS21,
Corollary 5.12], respectively. The fact above also did not include the disjoint
union, however, this equality is almost trivial.
Theorem 4.3.17. Let N be a structure and let N1,N2 be quantifier-free reducts
of N such that N = N1 ∨ N2 in the lattice of quantifier-free reducts of N , up to
interdefinability (e.g. Aut(N ) = Aut(N1) ∩ Aut(N2), when N is ℵ0-categorical).
Then CN1 ∩ CN2 = CN .

Proof. The inclusion CN ⊆ CN1 ∩ CN2 follows almost immediately, from the
fact that Ni is a quantifier-free reduct of N , for i ∈ [2], and does not require
the assumption that N = N1 ∨ N2. Suppose that T ∈ CN and let M ⊨ T be a
model admiting an N -configuration, witnessed by I, f . Since N1 is a quantifier-
free reduct of N for each R ∈ LN1 , there is a quantifier-free LN -formula ϕR
such that N ⊨ ϕR(a) if, and only if, N1 ⊨ R(a), for all a ∈ R. Let I(ϕR) be as
in Remark 4.3.12 and define

J : Sig(LN1) → LM

R 7→ I(ϕR).

It is clear that f, J witness that M ∈ CN1 . Similarly, M ∈ CN2 , and the result
follows.

For the inclusion CN1 ∩ CN2 ⊆ CN , let T ∈ CN1 ∩ CN2 . Observe that since
N = N1 ∨ N2, there is a structure N ′ which is interdefinable with N such
that LN ′ = LN1 ∪ LN2 . By Proposition 4.3.13 we may assume that N = N ′.
Let Mi ⊨ T and let Ii, fi be a coding of Ni in Mi, for i ∈ {1, 2}. By taking
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a common elementary extension, we may assume M1 = M2 = M. Then
fi : Ni → Mni for some n1, n2 ∈ N. Let f : N → Mn1+n2 be defined as f1

⌢f2,
i.e. f(a) := f1(a)⌢f2(a) for all a ∈ N . Let πi be the obvious projection of
Mn1+n2 onto Mni , for i ∈ {1, 2}. Then, for every i ∈ {1, 2} and every R ∈ Li,
let I(R) := Ii ◦ πi. By construction, I, f is an N -configuration in M.

Theorem 4.3.17 can be seen as a generalisation of Fact 4.3.16 in the context of
the following remark:
Remark 4.3.18. Let K be any class of structures, and CE be the class of all
finite sets. Then:

CK = CK⊠CE = CK[CE] = CCE[K] = CK⊔CE .

We can then deduce all the equalities in Fact 4.3.16 using that, up to quantifier-
free interdefinability, we have the following, in the lattice of quantifier-free
reducts:

• M[CE] ∨ CE[N ] = M[N ],

• M ⊠ CE ∨ CE ⊠ N = M ⊠ N ,

• M ⊔ CE ∨ CE ⊔ N = M ⊔ N .

4.4 Ramsey Theory Through Collapsing
Indiscernibles

The main result of this section is Theorem 4.4.10, which roughly says that (ages
of) “higher arity” reducts of ℵ0-categorical homogeneous structures cannot
have the Ramsey property. Surprisingly, the proof of the theorem is not
combinatorial but uses exclusively model-theoretic tools, notably the notion of
collapsing indiscernibles.

Let’s start by recalling that, under some mild hypotheses, the notions of NCK

and theories collapsing generalised indiscernibles are closely related. More
precisely:
Fact 4.4.1 ([GH19, Theorem 3.14, Corollary 3.15]). Let I be the Fraïssé limit
of a Ramsey class with the strong amalgamation property, in a finite relational
language. Then the following are equivalent for a theory T :

1. T ∈ NCI .
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2. T collapses I-indiscernibles.

Suppose moreover that I is unstable and I< has the Ramsey property, where I<

is the free superposition17 of Age(I) and CLO. Then the above are equivalent
to the following:

3. T collapses I<-indiscernibles.

The first equivalence above will be used later, in order to prove our transfer
principles. For instance, as observed in [GH19, Example 3.16] the following is
essentially a consequence of Fact 4.3.7 combined with Fact 4.4.1:
Fact 4.4.2. Let COHn+1 be the class of finite ordered (n+ 1)-hypergraphs. Then
the following are equivalent for a first-order theory T :

1. T is NIPn.

2. T is NCCOHn+1
.

The path to Theorem 4.4.10 is through Fact 4.4.1, which will be used as a
sort of criterion to witness the Ramsey property in a given class of structures.
More precisely, if given a homogeneous Fraïssé limit I, there is a theory T

which codes I but collapses I-indiscernibles, it must then be the case that I is
not Ramsey.

First, I will give a slightly more general version of the equivalence between
1 and 2, from Fact 4.4.1. The underlying assumption in [GH19] is that all
classes are in a finite relational language. In fact, the theorem may fail when
infinite languages are involved. (See Example 4.4.4 below.)
Theorem 4.4.3. Let I be an ℵ0-categorical Fraïssé limit of a Ramsey class, in
a finite relational language. Then the following are equivalent for a theory T :

(1) T ∈ NCI .

(2) T collapses I-indiscernibles.

Proof. To fix notation, say T is an L-theory, and I is an LI-structure. Observe
that since I is, by assumption, an ℵ0-categorical Fraïssé limit, by Lemma 4.3.4,
the notion of collapsing I-indiscernibles (in the sense of Definition 4.3.2)
and the notion of not having non-collapsing I-indiscernibles (in the sense of

17Recall: The free superposition of classes C1 and C2 in (disjoint) languages L1 and L2,
respectively, is the class C1 ⋆ C2 of all L1 ⊔ L2-structures whose language reduct to Li is in Ci,
for i = 1, 2. When C1 and C2 have the strong amalgamation property their free superposition
is again an amalgamation class (with SAP), see [Cam90, Example 3.9].
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Definition 4.3.3) coincide, so they will be used interchangeably throughout the
proof.

We start with the implication (1) =⇒ (2): We argue by contraposition. Suppose
that T does not collapse I-indiscernibles. Then, by definition there is some
M ⊨ T and a non-collapsing I-indiscernible (āi : i ∈ I), in M. Without loss
of generality we may assume that M is Morleyised. We wish to show that
T ∈ CI , so we must find some m ∈ N, a function J : Sig(LI) → L and a
function f : I → Mn such that:

I ⊨ R(a) ⇐⇒ M ⊨ J(R)(f(a)),

for all R ∈ Sig(LI) and all a ∈ Iar(R).

The idea is to code the configuration along the non-collapsing sequence (āi :
i ∈ I), that is, to use the function J : i 7→ āi, for i ∈ I (so m = |āi|).

To this end, let R ∈ LI be an n-ary relation symbol. Since I is ℵ0-categorical
and finitely homogeneous it has quantifier-elimination, so there are finitely
many complete quantifier-free types p1, . . . , pk ∈ SI

n(∅), such that:

I ⊨ R(i1, . . . , in) ⇐⇒ I ⊨
k∨
j=1

pj(i1, . . . , in) (4.6)

for all i1, . . . , in ∈ I.

At this point, we have that:

qftp(i1, . . . , in) = qftp(j1, . . . , jn) ⇐⇒

tp(āi1 , . . . , āin) = tp(āj1 , . . . , ājn)
(4.7)

for all i1, . . . , in, j1, . . . , jn ∈ I.

The point is that for each quantifier-free type pj in (4.6) there is a complete
type qj ∈ SM

n (∅) such that:

I ⊨ R(i1, . . . , in) ⇐⇒ (āi1 , . . . , āin) ⊨
k∨
j=1

ψqj (x̄1, . . . , x̄n), (4.8)
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for all i1, . . . , in ∈ I.

Let MI be the structure M expanded by an m-ary relation symbol S, where
m = |āi|, naming precisely the elements of the sequence (āi : i ∈ I), and let
LI := L ∪ {S} We start with the following claim:

Claim 1. The sequence (āi : i ∈ I) remains indiscernible in the structure MI.
In particular, it is a non-collapsing indiscernible.

Proof of Claim 1. Suppose not. Then there are i1, . . . , in, j1, . . . , jn ∈ I and
an LI-formula ϕ(x̄1, . . . , x̄n) such that:

qftp(i1, . . . , in) = qftp(j1, . . . , jn)

and
MI ⊨ ϕ(āi1 , . . . , āin) ∧ ¬ϕ(āj1 , . . . , ājn).

We prove that this is impossible by induction on the complexity of ϕ(x̄1, . . . , x̄n).
It is obviously impossible for quantifier-free formulas, and, in fact, it suffices to
check that it is impossible when ϕ(x̄1, . . . , x̄n) is of the form:

∃ȳ(ȳ ∈ S ∧ ψ(x̄1, . . . , x̄n, y)).

Of course, if S does not appear in a formula ϕ(x̄1, . . . , x̄n), then since (āi : i ∈ I)
was I-indiscernible in M, ϕ(x̄1, . . . , x̄n) will not be witnessing that it is not
indiscernible in MJ. Moreover, it is clear that we can move all quantifiers, to
only need to consider formulas as above. Suppose that there is such a formula
and i1, . . . , in, j1, . . . , jn ∈ I such that:

qftp(i1, . . . , in) = qftp(j1, . . . , jn)

and:

MI ⊨ ∃ȳ(ȳ ∈ S ∧ ψ(āi1 , . . . , āin , y)) ∧ ¬∃ȳ(ȳ ∈ S ∧ ψ(āj1 , . . . , ājn , y))

In particular, there is some k ∈ I such that:

MI ⊨ ψ(āi1 , . . . , āin , āk).

Since I is homogeneous there is an automorphism σ of I sending il to jl for
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all l ∈ {1, . . . , n}. Then:

qftp(i1, . . . , in, k) = qftp(j1, . . . , jn, σ(k)),

and by induction we have that:

MI ⊨ ψ(āj1 , . . . , ājn , āσ(k))),

contradicting the fact that:

MI ⊨ ¬∃ȳ(ȳ ∈ S ∧ ψ(aj1 , . . . , ajn , y)).

The claim then follows. ◀

In particular, by the claim above, Equations (4.7) and (4.8) hold in MI.

Now, let I be the structure induced by MI on the set {āi : i ∈ I}. It is easy
to check that I has quantifier-elimination.

Since I is ℵ0-categorical, it has finitely many complete (quantifier-free) n-types,
for all n ∈ N, and thus by (4.7), and since J has quantifier-elimination it follows
that types in MI determine (quantifier-free) types in I. So I has finitely many
complete n-types for all n ∈ N, and thus I is also ℵ0-categorical. Therefore, by
replacing the types qj in (4.8) by complete types in the induced structure I, we
can assume that each qj is isolated (along the sequence), by some L-formula in
ψqj . Replacing each qj with ψqj in (4.8) we get that

I ⊨ R(i1, . . . , in) ⇐⇒ I ⊨
k∨
j=1

qj(ai1 , . . . , ain),

for all i1, . . . , in ∈ I.

Since the domain of I is precisely the range of the function f : I → M|āi|, it
follows that:

I ⊨ R(i1, . . . , in) ⇐⇒ M ⊨
k∨
j=1

qj(f(i1), . . . , f(in)),

Thus, setting J(R) :=
∨k
j=1 ψqj , gives us that M ∈ CI , as required.18

18Observe that the Ramsey assumption was not used in this implication. It will, however,
be used in the converse.
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Now for the implication (2) =⇒ (1): Again we argue by contraposition. Suppose
that T ∈ CI . Then, we can find some M ⊨ T , some m ∈ N, a function
J : Sig(LI) → L and a function f : I → Mn, which we shall view as an
I-indexed sequence (f(i) : i ∈ I) such that:

I ⊨ R(i1, . . . , im) ⇐⇒ M ⊨ J(R)(f(i1), . . . , f(im)),

for all m-ary R ∈ LI and all i1, . . . , im ∈ I.

Since I is ℵ0-categorical and homogeneous, all quantifier-free n-types p ∈ SI
n(∅)

are isolated by a quantifier-free formula ψp(x1, . . . , xn). Then, trivially, for all
p ∈ SI

n we have that:

tpM(f(i1), . . . , f(in)) = tpM(f(j1), . . . , f(jn)) =⇒

M ⊨ J(ψp)(f(i1), . . . , f(in)) ↔ J(ψp)(f(j1), . . . , f(jn)),
(4.9)

for all i1, . . . , in, j1, . . . , jn ∈ I, where J(ψp) is constructed as in Remark 4.3.12.

In particular, it follows that:

tpM(f(i1), . . . , f(in)) = tpM(f(j1), . . . , f(jn)) =⇒

qftpI(i1, . . . , in) = qftpI(j1, . . . , jn),
(4.10)

for all i1, . . . , in, j1, . . . , jn ∈ I, and by (4.9), the implication in (4.10) is
expressible in L, that is, if (āi : i ∈ I) is some I-sequence (locally) based on
(f(i) : i ∈ I), then (4.10) holds along that sequence too.

Since I is Ramsey, we can find, in some elementary extension N ≽ M, an
I-indiscernible sequence (āi : i ∈ I) which is based on (f(i) : i ∈ I), by
Theorem A. Since this sequence is I-indiscernibile, we have that:

qftpLI (i1, . . . , in) = qftpLI (j1, . . . , jn) =⇒

tpL(āi1 , . . . , āin) = tpL(āj1 , . . . , ājn),
(4.11)

for all i1, . . . , in, j1, . . . , jn ∈ I. Since (āi : i ∈ I) is based on (f(i) : i ∈ I), it
follows from (4.9) and (4.10) that:
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tpM(āi1 , . . . , āin) = tpM(āj1 , . . . , ājn) =⇒

qftpI(i1, . . . , in) = qftpI(j1, . . . , jn).
(4.12)

Thus, combining (4.11) and (4.12), we see that the sequence (āi : i ∈ I) is non-
collapsing, and hence, by Lemma 4.3.4, T does not collapse I-indiscernibles.

Without the assumption that the indexing structure is in a countable lan-
guage,19 the previous theorem can fail. In fact, this was already substantially
discussed in Example 4.3.6, but it’s worth revisiting, even briefly.
Example 4.4.4. Let N be the set N equipped with its full set-theoretic
structure, and NS be its reduct to unary predicates for singleton sets.

We can see that NS doesn’t collapse N -indiscernibles (in the sense of Defini-
tion 4.3.3) but we clearly have that NS ∈ NCN .

Let’s now move on to Theorem 4.4.10. I think it’s useful to start with a
motivating example.
Example 4.4.5. Let OH3 = Flim(COH3) be the random ordered 3-hypergraph,
and let I = (av : v ∈ OH3) be any OH3-indiscernible in ⟨Q, <⟩ indexed by
OH3. It’s rather easy to see that I collapses to an order-indiscernible sequence.
On the one hand, this follows from the fact that ⟨Q, <⟩ is NIP, but the most
intuitive way of seeing this is that ⟨Q, <⟩ is a binary structure, while OH3 is
a ternary one, and an uncollapsed OH3-indiscernible would leave a trace of
“arity 3” in (Q, <).

Soon, I will present the natural generalisation of the example above. More
precisely: An n-ary structure must automatically collapse indiscernibles indexed
by an m-ary structure, for any m > n.

First, recall the definitions:
Definition 4.4.6. Let M be a relational L-structure. We say that M is:

1. n-ary, for n ∈ N, if it admits quantifier elimination in a relational
language that consists only of relation symbols of arity at most n.

2. irreflexive20 if for all relation symbols R in L and tuples ī ∈ Mar(R), we
have that M ⊨ ¬R(̄i) if an element occurs twice in ī.

19Of course, the example is actually a non-Ramsey indexing structure. Since such structures
don’t have the modelling property it would be rather foolish to expect them to behave well
with respect to indiscernibility.

20This was called uniformity in Section 2.7.



126 On Products of Structures

The following remark is clear.
Remark 4.4.7. Given a relational language L and an L-structure I, we may
always find an L′-structure I ′ such I and I’ are quantifier-free interdefinable,
and I ′ is irreflexive. Moreover, this can be done in such a way that the
notion of quantifier-free type remains the same: for all tuples ī, j̄ we have
qftpL(̄i) = qftpL(j̄) if, and only if, qftpL′ (̄i) = qftpL′(j̄).

Intuitively, we can split up any non-irreflexive n-ary relation R into m-ary
(for m ≤ n) irreflexive ones, defined as the subsets of R on which the various
combinations of coordinates of R are equal.

For instance, suppose that R ∈ L is a binary relation symbol. To obtain an
irreflexive structure we introduce two new relation symbols, R1 and R2, where
R1 is unary and R2 is binary, interpreted as:

R1(x) if, and only if, R(x, x),

and:
R2(x, y) if, and only if, R(x, y) ∧ x ̸= y.

The same process (with significantly more notation) can be used for relations
of any arity. Clearly, this produces a structure with the same quantifier-free
types, i.e. a quantifier-free interdefinable structure.

Now, the promised generalisation of Example 4.4.5:
Proposition 4.4.8. Fix n ∈ N. Let L be a relational language and L≤n be the
sublanguage consisting of symbols of arity at most n. Let I be an irreflexive
L-structure and I ′ the (language) reduct of I to L≤n. Then any n-ary structure
M collapses I-indiscernibles to I ′-indiscernibles.

Proof. Let LM be a relational language with symbols of arity at most n, in
which M admits quantifier elimination. Let (āi : i ∈ I) be an I-indiscernible
in M. We need to show that (āi : i ∈ I) is I ′-indiscernible. By quantifier
elimination, it is enough to check that, for any relation R ∈ LM, (āi : i ∈ I) is
I ′-indiscernible with respect to the formula21. R(x1, . . . , xar(R)). Consider two
ar(R)-tuples ī = (i1, . . . , iar(R)) and j̄ = (j1, . . . , jar(R)) such that qftpL≤n

(̄i) =
qftpL≤n

(j̄).

21This means the obvious thing: A sequence I = (āi : i ∈ I) is I-indiscernible with respect
to a formula ϕ if for all tuples ī, ī′ from I with the same quantifier-free type we have that
tpϕ(āī) = tpϕ(āī′ ), where tpϕ(x̄) denotes the ϕ-type of x̄
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Since I is irreflexive and ī has at most n elements, we have

qftpL≤n (̄i) ⊢ qftpL(̄i),

and similarly for j̄. In particular, it follows that qftpL(̄i) = qftpL(j̄), and thus,
by I-indiscernibility, for any two subtuples āī of āi1⌢ · · ·⌢aiar(R) and āj̄ of
āj1

⌢ · · ·⌢ajar(R) , such that |āī| = |āj̄ | = n, consisting of corresponding elements
we have that

M ⊨ R(āī) ↔ R(āj̄),

and the result follows.

One example illustrating Proposition 4.4.8 has already been given, but here
are a couple more, that will be useful later on:
Example 4.4.9. The examples below are concerned with (convexly ordered)
binary branching C- and D-relations. Recall (or find out, in case you skipped
it) that these classes of structures were introduced in Section 2.7.

1. Let I = Flim(COC) be the binary branching C-relation equipped with a
convex order. Then any binary structure M collapses I-indiscernibles to
order-indiscernibles. Since COC is Ramsey, by Theorem 4.4.3, M ∈ NCCOC .

2. Let I = Flim(CCOD) be the binary branching D-relation equipped with
a convex cyclic order. Then any ternary structure M collapses I-
indiscernible to cyclically ordered-indiscernibles.

Theorem 4.4.10. Let J be an n-ary ℵ0-categorical structure in a finite rela-
tional language L′, and let I be a non-n-ary reduct of J which is homogeneous
in a finite relational language L. Then Age(I) is not a Ramsey class.

Proof. Since I is a reduct of J , it is also ℵ0-categorical and by assumption
it is homogeneous, so I is the Fraïssé limit of its age. Assume I is Ramsey.
Since I is a reduct of J , clearly J ∈ CI , therefore, by Theorem 4.4.3, J
does not collapse I-indiscernibles. On the other hand, since J is n-ary, by
Proposition 4.4.8, it collapses I-indiscernibles to I ↾L≤n

-indiscernibles, where
L≤n is the sublanguage of L consisting of symbols of arity at most n. Since,
by assumption I is not n-ary, I ↾L≤n

is a strict reduct of I, and thus we have
a contradiction.

Example 4.4.11. It follows immediately from the theorem above that CC
of all C-relations (without a linear order) is not Ramsey, since it is the age
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of a ternary reduct (Q, C) of the binary structure (Q, <). Of course, we
already knew that this class was not Ramsey (as it is not ordered). Once I’ve
developed a little more machinery, the theorem above will be put to good use
in Theorem 4.4.13.

For the remainder of this section, for n ∈ N, let LHo
n

= {R,<} be a language
with a binary relation symbol < and an n-ary relation symbol R (this was
called L+

0 in Section 2.7, and I hope the change in notation is not too annoying).
By an LHo

n
-structure I shall always mean a structure in which < is a (total)

linear order and R is a uniform symmetric n-ary relation (i.e. LHo
n

structures
are ordered n-uniform hypergraphs, in the sense of Section 2.7).
Proposition 4.4.12. Let n ≥ 2 and let M be an ℵ0-categorical homogeneous
LHo

n
-structure and N be a reduct of M. If N is a strict reduct of M and a

proper expansion of M ↾ {<} then N is not n-ary.

Proof. Since N is a proper reduct of M and Aut(N ) preserves <, we must
have that Aut(N ) does not preserve R, otherwise, since N is ℵ0-categorical, R
would be definable in N . Therefore, there are a1, . . . , an ∈ M and g ∈ Aut(N )
such that:

M ⊨ R(a1, . . . , an) ∧ ¬R(g(a1), . . . , g(an)).

Since R is symmetric, after possibly permuting the ai’s, we may assume that
a1 < · · · < an, and thus, since g preserves < we have that g(a1) < · · · < g(an).

Claim 1. For all x1, . . . , xn and y1, . . . , yn from M such that x1 < · · · < xn and
y1 < · · · < yn, there is some f ∈ Aut(N ) such that yi = f(xi) for all 1 ≤ i ≤ n.

Proof of Claim 1. If M ⊨ R(x1, . . . , xn) ∧ R(y1, . . . , yn), then, since M is
homogeneous there is some f ∈ Aut(M) ≤ Aut(N ) such that yi = f(xi), and
the claim follows. Thus, without loss of generality, we may assume that:

M ⊨ R(x1, . . . , xn) ∧ ¬R(y1, . . . , yn).

In particular, there are f1, f2 ∈ Aut(M) ≤ Aut(N ) such that f1(xi) = ai and
f2(g(ai)) = yi for all 1 ≤ i ≤ n. By construction, f = f2 ◦ g ◦ f1 is as required.
◀

Thus, for all m ≤ n, all <-increasing m-tuples in N satisfy the same relations
in N , so the only non-trivial definable relation in N of arity at most n is <.
As N is a proper expansion of M ↾ {<}, this implies N is not n-ary.
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Theorem 4.4.13. Let n ∈ N and N be a non-trivial reduct of OHn, other
than DLO. Then M is not Ramsey.

The proof of Theorem 4.4.13 will make use of Theorem B. I restate it below:

Theorem B. Let C be a Ramsey class of L′-structures and N an L′-structure
such that Age(N ) = C. Then there is an Aut(N )-invariant linear order on N
which is the union of quantifier-free types.

Proof of Theorem 4.4.13. Assume towards a contradiction that N is Ramsey.
Then, by Theorem B, there is a linear order ◁ on N which is a union of
quantifier-free types in N . As N is a quantifier-free reduct of OHn, we see
that ◁ is a union of quantifier-free types in OHn.

Claim 1. The order ◁ is either < or >.

Proof of Claim 1. This is clear when n ≥ 3, since R is uniform and thus the
only quantifier-free types in two variables in M are x < y and x > y. As ◁ is
antisymmetric, it cannot be equivalent to x < y ∨ x > y.

We now discuss the case where n = 2. In this case, the only quantifier-free
types in M are:

1. x < y ∧R(x, y).

2. x > y ∧R(x, y).

3. x < y ∧ ¬R(x, y).

4. x > y ∧ ¬R(x, y).

A straightforward check gives that the only unions of the types above that
define a linear order in the random graph are the following:

(x < y ∧R(x, y)) ∨ (x < y ∧ ¬R(x, y))

and
(x > y ∧R(x, y)) ∨ (x > y ∧ ¬R(x, y)),

again, it follows that ◁ is either < or >. ◀

By Claim 1, we have that N is a proper expansion of OHn ↾ {<} and a strict
reduct of OHn. Therefore, by Proposition 4.4.12, N is not n-ary. By [Tho96,



130 On Products of Structures

Theorem 2.7] we know that N is homogeneous in a finite relational language,
therefore by Theorem 4.4.10, N is not Ramsey.

Remark 4.4.14. In fact, a careful analysis of the proof of Theorem 4.4.13 gives
a slightly more general result. This is stated below.
Corollary 4.4.15. Let n ≥ 2 and let M be an ℵ0-categorical homogeneous LHo

n
-

structures. If M is not interdefinable with (M,<1, <2), where <1 and <2 are
two (independent) linear orders, then every proper quantifier-free reduct N of
M, which is homogeneous in a finite relational language and not interdefinable
with M ↾ {< } is not Ramsey.

Proof. In the case n = 2, in the proof of Claim 1 in Theorem 4.4.13, the only
other unions of quantifier-free types that we would need to consider are:

(x < y∧R(x, y))∨(x > y∧¬R(x, y)) and (x > y∧R(x, y))∨(x < y∧¬R(x, y)).

But, if either of the formulas above defines a linear order on M, then M is
interdefinable with a structure (M,<1, <2), where <1 and <2 are independent
linear orders, which is a contradiction.

By [Bod15, Proposition 2.23], the class of finite cyclically ordered binary
branching D-relations CCOD is not Ramsey, since no total order is definable in
FLim(CCOD). We can see that, adding a generic order will not suffice to turn
the class into a Ramsey class:
Example 4.4.16. The free superposition22 CLO ∗ CCOD is an amalgamation
class, but is not a Ramsey class. Indeed, FLim(CLO ∗ CCOD) is a reduct of
FLim(CLO ∗ COC). The latter is ternary, while the former is not. Therefore, by
Theorem 4.4.10, the former is not Ramsey.

4.5 Transfer Principles

Let’s now take a rather sharp turn, and use some of the machinery discussed
earlier in this chapter to study transfer principles for products, full and lexico-
graphic, with respect to the various dividing lines from Subsection 4.2.4. The
common point of most of these properties is that they admit characterisations
involving indiscernibility. Thus, the main tool for the transfer principles will

22See Fact 4.4.1.
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be a description of indiscernible sequences, for full and lexicographic products,
in terms of sequences in the factors.

4.5.1 Transfers in Full Products

First, full products. The upshot of this subsection is that the full product
behaves extremely nicely with respect to the notion of collapsing indiscernibles
to a specified reduct, but not necessarily for the dividing line arising from
coding structures. It is fairly easy to describe indiscernible sequences in a full
product M1 ⊠ M2 (this will be done in Proposition 4.5.5). Before that, I will
give some negative results.

First, observe that the full product of structures M1 ⊠ M2 is almost never
monadically NIP (or, for that matter, by the results of Chapter 6, monadically
anything).

One can find a proof of the following proposition in [Tou23, Proposition 1.24].
Proposition 4.5.1. Assume Mi is NIP for i ∈ {1, 2}. We have M1 ⊠ M2 is
NIP of dp-rank dp-rk(M1) + dp-rk(M2).

From this, it is easy to deduce the following:
Corollary 4.5.2. A full product M1 ⊠ M2 of infinite structures is never
monadically NIP.

Proof. From Proposition 4.5.1, it follows that if both M1 and M2 are infinite,
then dp-rk(M1 ⊠ M2) ≥ 2, and hence M1 ⊠ M2 is not dp-minimal, hence, by
Fact 4.2.19 it is not monadically NIP.

Remark 4.5.3. Indeed, M1 ⊠M2 is monadically NIP precisely when one of the
structures is finite and the other is monadically NIP.

The next example illustrates another negative result. More precisely, it illus-
trates that NCK is not always closed under full products.
Example 4.5.4. Let COG be the class of all finite ordered graphs, and COC be
the class of all finite convexly ordered binary branching C-relations. Consider
the product COG ⊠ COC of the two classes, as in Definition 4.2.6. On the one
hand, OG = Flim(COG) is in NCCOC because the random ordered graph is binary,
and therefore collapses Flim(COC)-indiscernibles to order-indiscernibles (see
Example 4.4.9). To see why this is relevant, recall that by Fact 4.3.16 we have
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that CA⊠B = CA ∩ CB, so if OG ∈ CCOG⊠COC then OG ∈ CCOC , contradicting the
previous statement. Thus OG ∈ NCCOG⊠COC .

The generic ordered binary branching C-relation, OC = Flim(COC), is known
to be NIP, and therefore it is in NCCOG . So, again, arguing as in the previous
paragraph, OC ∈ NCCOG⊠COC . However, since OG ⊠ OC = Flim(COC ⊠ COC), it
follows that OG ⊠ OC ∈ CCOG⊠COC .

Example 4.5.4 above shows in particular that the hierarchy of CK-configurations
is not linearly ordered. Since OG /∈ CCOC and OC /∈ CCOG , and both OG and
OC have quantifier elimination, Lemma 4.3.15, gives the following:

CCE ⊃ CCLO

⊃
CCOG

⊃
CCOC

⊃

⊃
CCOG⊠COC ⊃ · · · .⊈

⊉

Above, following the notation introduced in Section 2.7, CLO is the class of all
finite linear orders, and CE is the class of all finite sets in the empty language.
To summarise the discussion in Example 4.5.4:

• CCOG ̸⊆ CCOC , since OG is in CCOG , but not in CCOC .

• CCOC ̸⊆ CCOG , since OC is in CCOC , but not in CCOG .

Intuitively, NCCOG⊠COC is not closed under full products because (OG ⊠ OC)-
indiscernibles can collapse to two “orthogonal” notions of indiscernibility,
namely OG-indiscernibles, and OC-indiscernibles.

This provides a negative answer to [GPS21, Question 5.6], and also the question
asked in [GP23, Section 7], as discussed in Section 4.1.

That’s all for negative results regarding full products. In what follows, I will
discuss how the situation from Example 4.5.4 (where we come across two
“orthogonal” notions of indiscernibility) is, in some sense, the worst that can
happen. The key tool is the following proposition:
Proposition 4.5.5. Let Mi be an Li-structure, for i ∈ {1, 2} and let I = (c̄i :
i ∈ I) be an I-indexed sequence, for some structure I, in M1 ⊠ M2. Then,
the following are equivalent for B ⊆ M1 ⊠ M2
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1. I is I-indiscernible over B in M1 ⊠ M2.

2. π1(I) := (πM1(c̄i) : i ∈ I) is I-indiscernible over πM1(B) in M1 and
π2(I) := (πM2(c̄i) : i ∈ I) is I-indiscernible over πM2(B) in M2.

Since the reader may not quite be used to products of structures, before
proceeding with the proof, I feel I should provide a bit of notational clarification:
Notation 4.5.6. Given a tuple c̄ = (c1

⌢ · · ·⌢cn) in M1⊠M2, the components ci
may be in any of the three sorts of M1⊠M2. Then πM1(c̄) denotes the subtuple
of c̄ (of size at most n) consisting of the projections πM1(ci) if ci ∈ M1 ⊠ M2,
and of the elements cj such that cj ∈ M1 (in the correct order). In particular,
to obtain πM1(c̄) we remove the components of c̄ that belong to the M2 sort,
project the components of c̄ that belong to the M1 ⊠M2 sort to M1, and keep
the rest of the tuple unchanged. Of course, π2(c̄) is obtained analogously.

Proof. By relative quantifier elimination (Fact 4.2.5), any formula ϕ(x̄, b̄)
in LM1⊠M2(B) is equivalent modulo the theory of M1 ⊠ M2 to a Boolean
combination of formulas of the form:

ϕ1(πM1(x̄), πM1(b̄)) ∧ ϕ2(πM2(x̄, πM1(b̄)).

where ϕ1(x̄1, ȳ1) is an L1-formula and ϕ2(x̄2, ȳ2) is an L2-formula.

Given I = (c̄i : i ∈ I) in M1 ⊠ M2, checking whether (c̄i : i ∈ I) is
I-indiscernible over B is equivalent to checking whether (c̄i : i ∈ I) is I-
indiscernible with respect to the formulas ϕi(πMi(x̄), πMi(b̄)), for i ∈ {1, 2}.
But this is precisely if, and only if πi(I) is I-indiscernible over πMi(B) in Mi,
and the result follows.

So, Proposition 4.5.5 almost immediately gives transfer principles for full
products and dividing lines which can be described by indiscernible collapses.
This will come from the following corollary:
Corollary 4.5.7. Let I be an L-structure and I ′ a reduct of I. Then, the
following are equivalent, for any Li-structures Mi, where i ∈ {1, 2}:

1. The full product M1 ⊠ M2 collapses I-indiscernibles to I ′-indiscernibles.

2. Both M1 and M2 collapse I-indiscernibles to I ′-indiscernibles.

Proof. On the one hand, if both M1 and M2 collapse I-indiscernibles to I ′-
indiscernibles, then, given any I-indiscernible I = (c̄i : i ∈ I) in M1 ⊠M2, we
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have that both π1(I) and π2(I) are I-indiscernible and hence I ′-indiscernible,
in M1, and M2, respectively. Thus, by Proposition 4.5.5, I is actually I ′-
indiscernible.

On the other hand, suppose that M1 ⊠ M2 collapses I-indiscernibles to I ′-
indiscernibles. Given any I-indiscernible sequence J = (āi : i ∈ I) of n-tuples
in M1, fix some b ∈ M2 and let c̄i = ((ā1

i , b)⌢ · · ·⌢(āni , b)), for each i ∈ I.
Clearly the constant sequence (b : i ∈ I) is I-indiscernible and thus, by
Proposition 4.5.5 I := (c̄i : i ∈ I) is I-indiscernible in M1 ⊠M2. In particular,
it is I ′-indiscernible, and hence, by Proposition 4.5.5, again, π1(I) = J is I ′-
indiscernible in M1, so M1-collapses I-indiscernibles to I ′-indiscernibles. An
identical argument shows that this is also the case for M2, and this concludes
the proof.

The following corollary is now immediate from Corollary 4.5.7 combined with
the characterisation of NIPn via an indiscernible collapse (Fact 4.3.7).
Corollary 4.5.8 (NIPn transfer for full products). Let Mi be an Li-structure,
for i ∈ {1, 2}. For all n ∈ N, the following are equivalent:

(1) The full product M1 ⊠ M2 is NIPn.

(2) Both M1 and M2 are NIPn.

Somewhat similarly:
Proposition 4.5.9. Let Mi be an Li-structure, for i ∈ {1, 2}. Then, the
following are equivalent:

(1) The full product M1 ⊠ M2 is distal.

(2) Both M1 and M2 are distal.

Proof. First, suppose that M1 ⊠ M2 is distal and let (ai : i ∈ Q) be an
indiscernible sequence in M1 and fix some tuple b̄ from M1 such that (ai : i ∈
Q \ {0}) is indiscernible over b̄ = (b1, . . . , bk). Pick any element c ∈ M2. Then,
by Proposition 4.5.5, the sequence ((ai, c) : i ∈ Q) is indiscernible in M1 ⊠M2

and ((ai, c) : i ∈ Q\{0}) is indiscernible over (b̄, c) = (b1, c)⌢ · · ·⌢(bk, c). Since
M1 × M2 is distal, it follows that ((ai, c) : i ∈ Q) is indiscernible over (b̄, c),
and thus, again by Proposition 4.5.5, (ai : i ∈ Q) is indiscernible over b̄, so M1

is distal. Similarly, M2 must also be distal.

To prove the other implication, assume that M1 and M2 are both distal, and
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let ((ai, bi) : i ∈ Q) be a sequence in M1 ⊠ M2, and B a set of parameters in
M1 ⊠ M2 such that:

• ((ai, bi) : i ∈ Q) is indiscernible.

• ((ai, bi) : i ∈ Q \ {0}) is indiscernible over B,

By the characterisation in Proposition 4.5.5, we have:

1. (ai : i ∈ Q \ {0}) is indiscernible over πM1(B);

2. (ai : i ∈ Q) is indiscernible.

1’. (bi : i ∈ Q \ {0}) is indiscernible over πM2(B);

2’. (bi : i ∈ Q) is indiscernible.

Since M1 and M2 are distal, we can deduce that:

• (ai : i ∈ Q) is indiscernible over πM1(B);

• (bi : i ∈ Q) is indiscernible over πM2(B).

Again by Proposition 4.5.5, ((ai, bi) : i ∈ Q) is indiscernible over B. This shows
that M1 ⊠ M2 is distal and concludes the proof.

Similarly, one can show more generally that m-distality also transfers to the
full product.
Corollary 4.5.10. Let Mi be an Li-structure, for i ∈ {1, 2}. For all m ∈ N,
the following are equivalent:

(1) The full product M1 ⊠ M2 is m-distal.

(2) Both M1 and M2 are m-distal.

The proof follows essentially the same structure as that given for (1-)distality,
just above it. The notion of m-distality will be discussed again in Proposi-
tion 4.5.29, where an analogous argument will be provided for lexicographic
products.

Even though monadic NIP does not transfer to lexicographic products, indis-
cernible triviality does, and this is the content of the next proposition:
Proposition 4.5.11. Let Mi be an Li-structure, for i ∈ {1, 2}. Then, the
following are equivalent:

(1) The full product M1 ⊠ M2 has indiscernible triviality.
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(2) Both M1 and M2 have indiscernible triviality.

Proof. Observe first that any model of Th(M1 ⊠ M2) is a full product of
models of Th(M1) and Th(M2), so we may thus assume that M1 ⊠ M2 is
a monster model. To show that a structure M has indiscernible triviality, it
suffices to show that if a sequence (āi : i ∈ N) from M is indiscernible over two
tuples b̄ and b̄′, then it is indiscernible over {b̄, b̄′}. Of course, since formulas
can only use finitely many variables, it follows then that if (āi : i ∈ I) is
indiscernible over each element of some set B, it has to be indiscernible over
all of B. Observe also that (āi : i ∈ N) is indiscernible over b if, and only if,
the sequence (āi⌢(b̄) : i ∈ N) is indiscernible.

With these technical remarks out of the way, suppose that M1 ⊠ M2 has
indiscernible triviality, fix b̄, b̄′ ∈ M1, and let (āi : i ∈ N) be an indiscernible
sequence in M1 which is indiscernible over both b̄ and b̄′. Let c ∈ M2 be
arbitrary. By Proposition 4.5.5, the sequences:

((āi, c)⌢(b̄, c) : i ∈ N)) and ((āi, c)⌢(b̄′, c) : i ∈ N),

where (āi, c) := (a1
i , c)⌢ · · ·⌢(a|āi|

i , c) (and similarly for b̄, b̄′), are indiscernible.

Since M1 ⊠ M2 has indiscernible triviality, it follows that

((āi, c)⌢(b̄, c)⌢(b̄′, c) : i ∈ N)

is indiscernible, and thus, by Proposition 4.5.5 again, so is

(āi⌢(b̄)⌢(b̄′) : i ∈ N).

Thus, M1 has indiscernible triviality. An analogous argument shows that the
same must be true for M2.

Conversely, suppose that both M1 and M2 have indiscernible triviality, let
(āi : i ∈ N) be an indiscernible sequence of tuples in M1 ⊠ M2 and b̄ =
(b̄1, b̄2), b̄′ = (b̄′

1, b̄
′
2), with b̄i, b̄

′
i ∈ Mi, be tuples of parameters in M1 ⊠ M2

such that (āi : i ∈ N) is indiscernible over both b̄ and b̄′. By the characterisation,
(πM1(āi)⌢(b̄1) : i ∈ N) and (πM1(āi)⌢(b̄′

1) : i ∈ N) are indiscernible in M1. By
indiscernible triviality of M1:

(πM1(āi)⌢(b̄1)⌢(b̄′
1) : i ∈ N)
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is indiscernible in M1. Similarly:

(πM2(āi)⌢(b̄2)⌢(b̄′
2) : i ∈ N)

is indiscernible in M2, and by the characterisation again:

((āi)⌢(b̄1, b̄2)⌢(b̄′
1, b̄

′
2) : i ∈ N)

is indiscernible in M1 ⊠ M2, and this concludes the proof.

4.5.2 Transfers in Lexicographic Sums

Now for lexicographic sums. To fix some notation, throughout this subsection
(unless otherwise stated) S will be the lexicographic sum of an LM-structure
M and a class of LN-structures N := {Na}a∈M, as in Definition 4.2.7, under
the hypothesis discussed in Notation 4.2.9:

For ϕ ∈ LN, the set {a ∈ M : Na ⊨ ϕ} is ∅-definable in M. (⋆)

This technical assumption ensures that the induced structure on the M -sort in
S is exactly the LM-structure M (this is a consequence of Theorem 4.2.11).
For instance, (⋆) holds trivially in the case of a lexicographic product. Since
most of the notions that will be considered are preserved under taking reducts,
this is a mostly harmless assumption.

As in the case of full products, the main tool for transfer principles will be
a description of the generalised indiscernible sequences of M[N] in terms of
generalised indiscernibility in M and Ni. But, unlike the full product, some
assumptions will have to be made on the kinds of indexing structures that are
considered. This will be illustrated in the following example:
Example 4.5.12. Let M be an infinite set, in the language of pure equality,
say M = ω and N be a countably infinite set equipped with an equivalence
relation with two infinite equivalence classes, say N = R ⊔ B, where R and
B are disjoint copies of ω. The lexicographic product M[N ] is essentially
an infinite set equipped with two equivalence relations E1, E2 such that all
Ei-classes for i = 1, 2 are infinite, E2 refines E1 and each E1-class is refined by
exactly two E2-classes. To fix notation, we may write

M[N ] =
⊔

({i} × ({rji : j ∈ ω} ⊔ {bji : j ∈ ω})),
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and for (w, x), (y, z) ∈ M[N ] we have:

• (w, x)E1(y, z) if, and only if, w = y.

• (w, x)E2(y, z) if, and only if w = y and either (x = rjw) ∧ (z = rkw) or
(x = bjw) ∧ (z = bkw), for some j, k ∈ ω.

Let J = M[N ] and I be the reduct of M[N ] to LJ = {E1}, i.e. an infinite set
equipped with an equivalence relation with infinitely many infinite equivalence
classes.

Consider the sequence:

A =
((

(i, rji ) : j ∈ ω
)
⌢
(
(i, bji ) : j ∈ ω

)
: i ∈ ω

)
.

We may view this as a J -indexed sequence in M[N ], where J = M[N ] is
taken with the same enumeration as A. By quantifier elimination in M[N ],
this sequence is J -indiscernible. On the other hand, it is easy to see that if we
view this sequence as an I-indexed sequence, with the same enumeration, it is
not I-indiscernible.

Let us consider the “factors” of the sequence A, that is, the sequences:

• v(A), consisting of the first coordinates of the elements appearing in A,
with the same enumeration, so:

v(A) = ((i : j ∈ ω)⌢(i : j ∈ ω) : i ∈ ω).

• Ai, for i ∈ ω, consisting of the second coordinates of elements in A whose
first coordinate is i, so:

Ai = (rji : j ∈ ω)⌢(bji : j ∈ ω)

We can view both sequences above as I-indexed sequences in M and N ,
respectively. In both cases, we can make sure that the sequences are I-
indiscernible (for v(A) we make sure that whenever two elements are equal
they are in the same E1-class, and for Ai we make sure that the E1-classes
refine the equivalence relation of N ).

Intuitively, the previous example shows that it is possible to have a J -indexed
sequence in a lexicographic product whose components are J -indiscernible, but
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which is not J -indiscernible. The first step towards the results of this subsection
is to investigate conditions on I that allow for a relatively simple characterisa-
tion of I-indiscernibles in a lexicographic sum in terms of I-indiscernibles in
the factors.

First, to fix some terminology, given a structure I, define the following relations
on {0, 1} × I:

E(C) := {{(ϵ, i), (1 − ϵ, i)} : i ∈ I, ϵ ∈ {0, 1}} ,

and
E(D) := {{(ϵ, i), (ϵ, j)} : i, j ∈ I, ϵ ∈ {0, 1}}.

Let C and D be the graphs on {0, 1} × I with edge relation E(C) and E(D),
respectively. These are shown below:

{1} × I

{0} × I

{1} × I

{0} × I · · ·

· · ·

Figure 4.2: The graphs C (top) and D (bottom)

Definition 4.5.13. We call a structure I a reasonable indexing structure or
simply reasonable if given any graph G = ({0, 1} × I,R) whose vertex set
is {0, 1} × I, such that R((ϵ0, i), (ϵ1, j)) depends only on qftpI(i, j) and on
ϵ0, ϵ1 ∈ {0, 1}, one of the following holds:

1. R is connected (i.e. there is a path joining any two vertices of {0, 1} × I),

2. R is contained in C (i.e. it is a subgraph of ({0, 1} × I, C)),

3. R is contained in D (i.e. it is a subgraph of ({0, 1} × I,D)).

It is clear that the structure M[N ] from Example 4.5.12 is not reasonable. Of
course, that structure does not have the modelling property. The next example
shows that, as a matter of fact, I having the modelling property does not
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imply that I is a reasonable indexing structure.
Example 4.5.14. An infinite linear order (M, <) equipped with an equivalence
relation E with infinitely many, infinite, <-convex equivalence classes is not
a reasonable indexing structure. Indeed, consider the graph ({0, 1} × M,R)
where for a, b ∈ M and ϵ0, ϵ1 ∈ {0, 1}, R((ϵ0, a), (ϵ1, b)) if, and only if, aEb and
ϵ0 ̸= ϵ1.

{0} × M

{1} × M

· · ·

· · ·

Figure 4.3: A non-reasonable Ramsey structure.

One sees that the edge relation of this graph depends only on the quantifier-free
type of the nodes, but this graph does not satisfy any of the conditions 1,2 and
3 of Definition 4.5.13.

The definition of reasonability may, at first sight, seem rather ad hoc. It turns
out that this is not quite the case, and modulo some mild assumptions, I is
reasonable precisely when it is primitive. Recall that a permutation group G

acting on a set Ω acts primitively if the only G-invariant equivalence relations
on Ω are trivial (i.e. equality and universality). In the context of first-order
structures:
Definition 4.5.15 (Primitivity). We say that an L-structure M is primitive
if Aut(M) acts primitively on M. Explicitly, M is primitive if, and only if,
the only Aut(M)-invariant equivalence relations on M are trivial.
Proposition 4.5.16. Let I be an infinite homogeneous structure in a finite
relational language. Then, the following are equivalent:

(1) I is reasonable,

(2) I is primitive.

Proof. First for the implication (1) =⇒ (2): Assume I is reasonable, and
let E be a non-trivial Aut(I)-invariant equivalence relation on I. Since I is
homogeneous, in a finite relational language, E must be quantifier-free definable.
Now, we may define the graph R on {0, 1} ×M as follows: For a, b ∈ I and
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ϵ0, ϵ1 ∈ {0, 1},
R((ϵ0, a), (ϵ1, b)) if and only if aEb.

By definition, the edges between the nodes (ϵ0, a), (ϵ1, b) depend only on the
quantifier-free type of a, b, and the ϵi. Since E is non-trivial there is a class
with at least two elements; thus, the graph is not contained in the graphs C,D
from Definition 4.5.13. It follows that the graph must be connected. But then,
by transitivity of E, we must have that aEb for all a, b ∈ I. Thus, E is the
universality equivalence relation, contradicting our initial assumption.

Now, for the implication (2) =⇒ (1): Assume I is not reasonable. Then, by
definition, we can find a graph R on {0, 1} × I such that R((ϵ0, a), (ϵ1, b))
depends only on ϵ0, ϵ1 and on the quantifier-free type of a, b, which is not
connected, and not included in the graphs C and D from Definition 4.5.13.
We can define two equivalence relations Eϵ, for ϵ ∈ {0, 1}, by setting aEϵb if,
and only if, (ϵ, a) and (ϵ, b) are joined by an R-path. By assumption on R, it
follows that Eϵ is Aut(I)-invariant. If either E0 or E1 is not trivial, then I is
not primitive, so we are done. Thus, we may assume, without loss of generality,
that they both are trivial.

Claim 1. It is not the case that both E1 and E2 have a single equivalence class.

Proof of Claim 1. Suppose not, then there are no edges of the formR((0, a), (1, b)),
for otherwise the graph would be connected. But then, the graph would be
included in D, which is absurd. ◀

Claim 2. If E1 has one equivalence class and E0 has only singleton classes,
then I is not primitive.

Proof of Claim 2. First, since G is not included in the graph D from Defini-
tion 4.5.13, there must be at least one edge of the form

R((0, i), (1, j)).

Moreover, for all i, i′ ∈ I such that:

R((0, i), (1, j)) and R((0, i′), (1, j′))

then, since by assumption jE1j
′, there is an R-path connecting (1, j) and

(1, j′), by definition of E1, but then we have an R-path connecting (0, i) and
(0, i′), and thus iE0i

′, which implies that i = i′, by assumption on E0.
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Thus there must be exactly one element (0, i) which connects with some
elements (1, j) on the top row.

{1} × I

{0} × I . . .
· · ·

. . .

(0, i)

Then, we have a non trivial Aut(I)-invariant equivalence relation E given by

E(j′, j) if and only if (j = i = j′) or (j ̸= i ̸= j′),

where i ∈ I is the unique element for which there exist j ∈ I such that
R((0, i), (1, j)), thus I is not primitive. ◀

By symmetry, the result also follows if E0 has one equivalence class and E1

has only singleton classes.

Since we have assumed that both E0 and E1 are trivial and we have shown
that they cannot both be universal, and that if one of the two is universal
and the other is trivial with only singleton equivalence classes then I is not
primitive, we may assume now that both E0 and E1 are trivial with singleton
classes.

In particular, this means that R is the edge relation of a bipartite graph.

Let a, b ∈ I. We say there is a jump from a to b if R((0, a), (1, b)), as shown in
the figure below:

{1} × I

{0} × I · · ·

· · ·

(0, a)

(1, b)

Observe that, by assumption on R, for any σ ∈ Aut(I) and any a, b ∈ I, if
there is a jump from a to b then there will also be a jump from σ(a) to σ(b).

We see that, given that E1 is trivial with singleton classes, an element can
jump to at most one element. Towards a contradiction, suppose not then there
is some vertex with two different edges to {1} × I, say R((0, a), (1, b)) and



Transfer Principles 143

R((0, a), (1, b′)), but then (1, b) and (1, b′) lie on the same path, which is a
contradiction.

{1} × I

{0} × I · · ·

· · ·
(1, b′) (1, b′)

(0, a)

If an element does not jump to any other element, we can define a two-class
Aut(I)-invariant equivalence relation as follows: one class for jumping elements
and one class for non-jumping elements. Similarly, if there is some b ∈ I
such that no element jumps to b, we can again define an analogous two-class
Aut(I)-invariant equivalent relation.

Thus, without loss of generality, we may assume that we have a well-defined
bijection j : I → I given by a 7→ b, when a jumps to b. We have the following
Aut(I)-invariant equivalence relation ∼j given by:

a ∼j b if, and only if, there is an integer n ∈ Z such that jn(a) = b.

Clearly, there must exist elements a ̸= b such that a jumps to b, otherwise R
would be contained in the graph C from Definition 4.5.13. Thus, the equivalence
relation ∼j has a non-singleton class. If ∼j is not universal, i.e. has at least
two classes, then we are done. Otherwise, there is exactly one class, and we
may consider the equivalence relation ∼j2 given by the squared function j2,
which has exactly 2 disjoint equivalence classes. We showed that I is not
primitive.

Lemma 4.5.17. Let I be a transitive23 Fraïssé limit of a free amalgamation
class C of finite relational structures, possibly endowed with a generic order.
Then I is a reasonable indexing structure.

Proof. Let G be a graph on {0, 1} × I with edge relation R((ϵ0, i), (ϵ1, j))
that depends only on the quantifier-free type of (i, j) and ϵ0, ϵ1 ∈ {0, 1}.
Assume that G is not included in either C or D. We need to show that G is
connected. Letting i0, i′0 ∈ I be two distinct points, we will show that there is

23Recall that a structure M is called transitive if Aut(M) acts transitively on M.
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a path between (0, i0) and (0, i′0). The other paths from (ϵ0, i0) and (ϵ1, i′0) for
ϵ0, ϵ1 ∈ {0, 1} can be found similarly.

Claim 1. There exist i, i1 ∈ I such that i ̸= i1 and there is a path of length at
most 2 between (0, i) and (0, i1) and such that the path has one of the following
forms:

(1, i1)

(0, i) (0, i)

(1, i1)

(0, i)

(1, i1)

or or

(Case 1) (Case 2) (Case 3)

Proof of Claim 1. The fact that there are distinct i, i1 ∈ I for which there is a
path of length at most 2 between (0, i) and (1, i1) follows immediately from
the fact that G is not included in C or D. So, we must argue that the path
between (0, i) and (0, i1) has one of the three forms from the statement of the
claim.

To this end, suppose that we are not in the first case for any i ̸= i1. Then
G does not contain edges of the form R((0, i), (1, j)), for i ̸= j. Since G is
not contained in either C or D it must contain at least one edge of the form
R((1, i), (1, j)) and at least one edge of the form R((0, i), (1, i)) or at least one
edge of the form R((0, i), (0, j)) and at least one edge of the form R((0, i), (1, i)).
In the first case, it must contain all edges of the form R((0, i), (1, i)), since by
transitivity qftpI(i) is constant, for all i ∈ I, and thus it contains the second
path, while in the latter case arguing similarly we see that G contains the third
path. ◀

For the rest of this proof, we assume that we are in Case 1 of the claim, since
the argument below will work identically for Cases 2 and 3.

By transitivity, we may assume that i0 = i. By transitivity, again, there is
some i′1 with qftpI(i0, i1) = qftpI(i′0, i′1). Without loss of generality, in what
follows we assume that i1 < i0, in I, and the case i0 < i1 follows by an almost
identical argument.

By freely amalgamating {i0, i′0, i1} and {i0, i′0, i′1} over {i0, i′0} we can find a
structure K = {k0, k

′
0, k1, k

′
1} in C such that:
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1. qftpL(i0, i′0) = qftpL(k0, k
′
0);

2. qftpL(i0, i1) = qftpL(k0, k1) = qftpL(k′
0, k

′
1);

3. There are no relations between k1 and k′
1 in K.

Now, since I is homogeneous, there is some σ ∈ Aut(I|L) such that σ(k0) = i0

and σ(k′
0) = i′0. We let i2 := σ(k1) and i′2 := σ(k′

1). It is now immediate, by
construction, that

qftpI|L(i0, i1) = qftpI|L(i0, i2) = qftpI|L(i′0, i′2),

and that there are no relations between i2 and i′2.

Since the order in I is generic, we can choose, in I, i2, i′2 so that i2 < i0 and i′2 <
i′0. In particular, this means that qftpI(i0, i1) = qftpI(i0, i2) = qftpI(i′0, i′2).
So, by assumption on R, we have that:

R((0, i0), (1, i2)) and that R((0, i′0), (1, i′2))

We now use free amalgamation again, this time amalgamating {i0, i2} and
{i′0, i′2} over i0, which we identify with i′0, since they have the same quantifier-
free type, and we obtain a structure P = {p0, p2, p

′
2} ∈ C where:

1. qftpL(p0, p2) = qftpL(i0, i2);

2. qftpL(p0, p
′
2) = qftpL(i0, i′2);

3. There are no relations between p2 and p′
2 in P .

But observe that this means that qftpL(i2, i′2) = qftpL(p2, p
′
2), so there is an

automorphism σ ∈ Aut(I|L) such that σ(p2) = i2 and σ(p′
2) = i′2.

Let j0 := σ(p0):

(1, i1)

(0, i0)

(1, i2) (1, i′1)

(0, i′0)

(1, i′2)

(0, j0)

. . . . . .
{0} × I

{1} × I

Then we have that:

qftpI|L(i0, i1) = qftpI|L(j0, i2) = qftpI|L(j0, i′2),
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and, again, since the order is generic, we may assume that j0 > i2, i
′
2. It follows

that
qftpI(i0, i1) = qftpI(j0, i2) = qftpI(j0, i′2).

Thus, G contains the path: R((0, i0), (1, i2)), R((1, i2), (0, j0)), R((0, j0), (1, i′2)),
and R((1, i′2), (0, i′0)) as required.

Remark 4.5.18. As an aside, combining Proposition 4.5.16 and Lemma 4.5.17
gives an extension of [MT11, Lemma 2.6] (which states that transitive Fraïssé
limits of free amalgamation classes are primitive), to transitive Fraïssé limits
of free amalgamation classes with a generic order. It was pointed out to
me by Macpherson that an argument analogous to the one given in [MT11,
Lemma 2.6] could be used to prove the lemma above. This would be done
using D.G. Higman’s criterion that a transitive permutation group H acting
on a set X is primitive if and only if, for every orbit Ω of H on unordered pairs
from X, the orbital graph24 ΓΩ with vertex set X and edge set Ω is connected.
Such a proof works (and is rather simpler than the proof given above), but it is
my feeling that the proof above illustrates better the definition of a reasonable
structure.

Under this assumption of reasonable index sequence, it is now possible to
describe the I-indiscernible sequences in the lexicographic sum S:
Proposition 4.5.19. Let M be an LM-structure, N = {Na}a∈M be a collec-
tion of LN-structures indexed by M and let S = M[N]. Let I be a reasonable
homogeneous indexing structure, and let I = (ci : i ∈ I) be a sequence of tuples
of length λ (not necessarily finite) in S. For a ∈ M, denote by Ia := (cai : i ∈ I)
the sequence of subtuples cai := (cκ0,i, cκ1,i, · · · ) ⊆ ci consisting of all the ele-
ments cκj ,i of ci such that v(cκj ,i) is equal to a. Then:

I. If (ci : i ∈ I) is I-indiscernible, then for all κ < λ and all distinct
i, j ∈ I, if v(cκ,i) = v(cκ,j), then the sequence (v(cκ,i) : i ∈ I) is constant.

We denote by A ⊆ M the subset of elements a ∈ M such that for some κ < λ

and all i ∈ I, v(cκ,i) = a. In this notation we have that:

II. The following are equivalent, for any B ⊆ S:

1. The sequence I is I-indiscernible over B.

2. The following conditions hold:
24The graph whose edge set is given by an orbit Ω of H on unordered pairs from X.
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(a) For all a ∈ A, the sequence Ia is I-indiscernible in Na over
B ∩ Na.

(b) The sequence v(I) := (v(ci) : i ∈ I), where v(ci) denotes the
tuple v(cκ,i)κ<λ, is I-indiscernible over v(B) in M and tp(ci)
is constant.

Proof.

I. Fix κ < λ and consider the graph G on {0, 1} × I whose edge relation is
defined as follows:

R((ϵ0, i), (ϵ1, j)) if, and only if, v(cκ,i) = v(cκ,j),

for any ϵ0, ϵ1 ∈ {0, 1}.

Since (ci : i ∈ I) is I-indiscernible, it follows that in G whether
R((ϵ0, i), (ϵ1, j)) holds depends only on qftp(i, j). Suppose that for some
distinct i, j ∈ I we have that v(cκ,i) = v(cκ,j). Thus, since I is reasonable,
the graph G must be connected, since we have R((0, k)(1, k)), for all
k ∈ I, and by assumption R((0, i), (0, j)), and R((0, i), (1, j)). Thus, by
construction, this means that (v(cκ,i) : i ∈ I) is constant.

II. First, we deal with 1 =⇒ 2 (the less interesting implication). Suppose
that I = (ci : i ∈ I) is I-indiscernible over B in S.

(a) Let a ∈ A (where a is as in the statement of the proposition). Given
i1, . . . , in, j1, . . . , jn ∈ I such that qftp(i1, . . . , in) = qftp(j1, . . . , jn),
we have that

tp(ci1 , . . . , cin/B) = tp(cj1 , . . . , cjn/B),

and hence:
tp(caī , /B ∩ Na) = tp(caj̄/B ∩ Na),

where ca
ī

is the concatenation of subtuples of cik (for k ≤ n) whose
valuation is a.

(b) By Proposition 4.5.16, I is primitive, and therefore transitive, so,
for all i, j ∈ I we have that qftp(i) = qftp(j). We must thus have
that tp(ci) = tp(cj). The fact that v(I) is indiscernible over v(B) is
shown exactly as in (a) above.
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Now for 2 =⇒ 1. Let (ci : i ∈ I) be a sequence of tuples of size λ
satisfying 2. Let ϕ(x0, . . . ,xn) be an LM[N]-formula, where |x0| = · · · =
|xn−1| = λ. We denote by x the tuple x0, . . . ,xn−1. Once we Morleyise
the structures M and Np for p ∈ STh(M)

1 , we may assume, by relative
quantifier elimination (Fact 4.2.11) that ϕ(x1, . . . ,xn) is equivalent to a
Boolean combination of formulas of the form:

– v(xκ,l) = v(xκ′,m) for some m < l < n, κ, κ′ < λ,

– P•(x̂), for P ∈ LN and subtuples x̂ of x,

– P (v(x̂)), for P ∈ LM and subtuples x̂ of x.

So, it suffices to check indiscernibility with respect to each formula
ψ(x1, . . . ,xn) as above. More precisely, for all i0, . . . , in ∈ I and all
i′0, . . . , i

′
n ∈ I such that qftp(̄i) = qftp(ī′) we have to show that

S ⊨ ψ(c̄ī) ↔ ψ(c̄ī′).

We start with the following, easy claim:
Claim 1. Fix κ0, . . . , κn < λ. Let i0, . . . , in ∈ I not all equal. If

v(cκ0,i0) = · · · = v(cκn,in) = a,

for some a ∈ M, then for all i ∈ I, we have that v(cκ0,i) = · · · = v(cκn,i) =
a.
Proof of Claim 1. For n = 1, the result follows immediately from Defini-
tion 4.5.13 applied to the graph G on {0, 1} × I, with edge relation given
by:

R((ϵ0, i), (ϵ1, j)) if, and only if, v(cκϵ0 ,i
) = v(cκϵ1 ,j

).

Clearly, in G whether R((ϵ0, i), (ϵ1, j)) holds depends only on qftp(i, j)
and ϵ0, ϵ1, by indiscernibility of I. Since i0 ̸= i1, the graph G is not
contained in C, and since the graph has edges between {0} × I and
{1} × I, it is not contained in D. Thus, G is connected.

The statement for n > 1 follows by inductively repeating this argument,
assuming, without loss of generality, that i0 ̸= i1. ◀

If i0, . . . , in are all equal to some i, then, since (tp(ci) : i ∈ I) is constant,
for any formula ψ(x0, . . . ,xn), ψ(cκ0,i, . . . , cκn,i) holds if, and only if,
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ψ(cκ0,i′ , . . . , cκn,i′) holds for all i′ ∈ I.

We may now assume that i0, . . . , in are not all equal.

– Formulas of the form v(xκ0,i0) = v(xκ1,i1). We assumed that i0 ̸=
i1 and by the previous claim, for any κ0, κ1 < λ we have that
v(cκ0,i0) = v(cκ1,i1) = a for some a ∈ M if, and only if, for all i′ ∈ I,
v(cκ0,i′) = v(cκ1,i′) = a. Thus, this case follows.

– Formulas of the form P•(cκ0,i0 , . . . , cκn,in). If v(cκ0,i0), . . . , v(cκn,in)
are not all equal, then by the previous claim, for all i′0, . . . , i′n ∈ I

with same quantifier-free type in I, v(cκ0,i′0
), . . . , v(cκn,i′n) are not all

equal. In particular, for any i′0, · · · , i′n with the same quantifier-free
type as i0, · · · , in, P•(cκ0,i′0

, . . . , cκn,i′n) doesn’t hold.

Thus, we may assume that there is a ∈ M such that v(cκ1,i) = · · · =
v(cκn,i) = a for all i ∈ I. This means that cκ1,i, . . . , cκn,i ∈ cai . Then,
since, by assumption, (cai ) is I-indiscernible in Na, we have that:

Na ⊨ P (cκ0,i0 , . . . , cκn,in) if, and only if, Na ⊨ P (cκ0,i′0
, . . . , cκn,i′n),

for any i′0, i
′
1, . . . , i

′
n with the same quantifier-free type in I. This

shows that (ci : i ∈ I) is I-indiscernible with respect to the formula
P•(cκ0,i0 , . . . , cκn,in), as required.

– Formulas of the form P (v(cκ0,i0), · · · , v(cκn,in)) where P ∈ LM. This
case is clear by the assumption that (v(ci1))i∈I is I-indiscernible in
M.

This concludes the proof.

Remark 4.5.20. In the literature, it is sometimes the case that indiscernibles
indexed by imprimitive (i.e. non-reasonable) structures are considered (see, for
instance, [GHS17, Theorem 5.8] for a nice characterisation of NTP2 theories).
Partial results in this direction have already been obtained jointly with Meir
and Touchard, and the full imprimitive case will be presented in future work.

Following the structure of the previous subsection on full products, the propos-
ition above gives the following:
Corollary 4.5.21. Let M be an LM-structure, N = {Na}a∈M be a collection
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N of LN-structures indexed by M and let S = M[N]. Let I and J be two
reasonable homogeneous indexing structures, such that J is a reduct of I. Then,
the following are equivalent:

(1) S collapses I-indiscernibles to J -indiscernibles.

(2) For all p ∈ STh(M)
1 , Np collapses I-indiscernibles to J -indiscernibles,

and M collapses I-indiscernibles to J -indiscernibles.

Proof. As a monster model of Th(S) still is a lexicographic sum of a model
of Th(M) with models Th(Np) where p ∈ STh(M)

1 , so we may assume that
S = M[N] is a monster model. Let (ci : i ∈ I) be an I-indiscernible sequence
in S. By Proposition 4.5.19, and using the same notation, we have that:

1. For all a ∈ A, the sequence (cai : i ∈ I) is I-indiscernible in Na over
B ∩ Na.

2. The sequence (v(ci) : i ∈ I), where v(ci) denotes the tuple v(cκ,i : κ < λ),
is I-indiscernible over v(B) in M and tp(ci) is constant.

By assumption, M and Na for all a ∈ M collapse I-indiscernible sequences to
J -indiscernible sequences. In particular, we have:

1. For all a ∈ A, (cai : i ∈ I) is J -indiscernible in Na over B ∩ Na.

2. The sequence (v(ci) : i ∈ I) is J -indiscernible over v(B) in M and tp(ci)
is constant.

By Proposition 4.5.19, (ci : i ∈ I) is a J -indiscernible sequence in S. This
concludes the proof.

Observe that NCK is stable under reducts, and thus Example 4.5.4 also applies
to lexicographic products. More precisely:
Remark 4.5.22. Let M be the ordered random graph and N the convexly
ordered C-relation, as in Example 4.5.4. Then M[N ] is in CCOG⊠COC which by
Fact 4.3.16 is actually equal to CCOG[COC]. But, as we have already seen M is
in NCCOC ⊂ NCCOG⊠COC and N is in NCCOG ⊂ NCCOG⊠COC .

Applying Corollary 4.5.21 to the specific case of CHn+1-indiscernibles, where
CHn+1 is the ordered random (n+ 1)-hypergraph, since the latter is primitive,
gives:
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Corollary 4.5.23 (NIPn transfer for lexicographic sum). Let M be an LM-
structure, N = {Na}a∈M be a collection of LN-structures indexed by M and
let S = M[N]. For all n ∈ N, the following are equivalent:

(1) The lexicographic product S is NIPn.

(2) Both M and Np, for all p ∈ STh(M)
1 are NIPn.

Since for positive integers m > n, if M is NIPn, then it is NIPm, it is easy to
see that a lexicographic product M[N ] of an NIPm structure M with an NIPn
structure N is NIPmax(n,m).

Next, I shall show that indiscernible triviality transfers to lexicographic sums.
In the proof of the proposition below, I will need to make use of Assumption
(⋆), from page 137. Let me briefly recall it:

For ϕ ∈ LN, the set {a ∈ M : Na ⊨ ϕ} is ∅-definable in M. (⋆)

The point is that if S = M[{Na}a∈M] is a lexicographic sum satisfying (⋆),
then, for any a, a′ ∈ M, if tp(a) = tp(a′) then Na ≡ Na′ . With this out of the
way, let’s get into the proof.
Proposition 4.5.24. Let M be an LM-structure, N = {Na}a∈M be a collec-
tion of LN-structures indexed by M and let S = M[N]. Then, the following
are equivalent:

(1) The lexicographic product S has indiscernible triviality.

(2) Both M and Np, for all p ∈ STh(M)
1 , have indiscernible triviality.

Proof. Again, we may assume that we are working in a monster model. Note,
also, that may work with indiscernible sequences indexed by (Q, <), which is a
homogeneous reasonable structure, rather than indiscernible sequences indexed
by (N, <).

First, suppose that S has indiscernible triviality.

• M has indiscernible triviality: Let (āi : i ∈ Q) be an (order)-indiscernible
sequence of k-tuples in M and let b, b′ ∈ M such that (āi : i ∈ Q) is
indiscernible over b and over b′. We wish to show that it is indiscernible
over {b, b′}. Without loss of generality, we may assume that all elements
of the tuples in (āi : i ∈ Q) are distinct, that is, for all i, i′ ∈ Q and
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all j, j′ ≤ k we have that aji ̸= aj
′

i′ . Observe also that by (⋆) and
indiscernibility of (āi : i ∈ Q) it follows that for all i, i′ ∈ Q and all
j ≤ k we have that N

aj
i

≡ N
aj

i′
. Pick, for each i ∈ Q and j ≤ k an

element cji ∈ N
aj

i
, so that when elements are chosen from elementarily

equivalent structures, they can be chosen to satisfy the same arbitrarily
chosen but fixed 1-type (which is possible since we are working in a
monster model). For each i ∈ Q and each j ≤ k fix an element cji ∈ N

aj
i

realising our fixed type, and let (āi, c̄i) = (a1
i , c

1
i )⌢ · · · ⌢ (aki , cki ). By

construction, the sequence ((āi, c̄i) : i ∈ Q) satisfies the two conditions of
II.2 of Proposition 4.5.19, and is therefore indiscernible over (b, c) and
over (b′, c′), for any c ∈ Nb and c′ ∈ Nb′ , in S. Since S has indiscernible
triviality, it follows that it is indiscernible over {(b, c), (b′, c′)}, and thus
by Proposition 4.5.19 again, (āi : i ∈ Q) is indiscernible over {b, b′}, as
required.

• Np has indiscernible triviality, for all p ∈ STh(M)
1 : Fix some p ∈ STh(M)

1
and let a ∈ M realise p. Consider a sequence of k-tuples (c̄i : i ∈ Q) from
Na, which is indiscernible over b ∈ Na and over b′ ∈ Na. The sequence
((ā, c̄i) : i ∈ Q), where (ā, c̄i) := (a, c1

i )⌢ · · ·⌢(a, cki ) for each i ∈ Q,
satisfies the two conditions of II.2 of Proposition 4.5.19, and is therefore
indiscernible over (a, b) and over (a, b′). Since S has indiscernible triviality,
it follows that this sequence is indiscernible over {(a, b), (a, b′)}, and using
Proposition 4.5.19 again, it follows that (c̄i : i ∈ Q) is indiscernible over
{b, b′}, as required.

For the other implication, let (c̄i : i ∈ Q) be a sequence of k-tuples in S, which
is indiscernible over b ∈ S and over b′ ∈ S. Then, of course, both (c̄i⌢b : i ∈ Q)
and (c̄i⌢b′ : i ∈ Q) are indiscernible in S. For a ∈ M denote by ba the second
coordinate of b, if v(b) = a, and the empty word ∅, otherwise (and similarly for
b′a). By Proposition 4.5.19, and using the same notation, we have:

1. For all a ∈ A the sequences (c̄ai ⌢ba : i ∈ Q) and (c̄ai ⌢b′a : i ∈ Q) are
indiscernible in Na .

2. (v(c̄i)⌢v(b) : i ∈ Q) and (v(c̄i)⌢v(b′) : i ∈ Q) are indiscernible in M and
tp(c̄i⌢b) and tp(c̄i⌢b′) are constant.

Since, by assumption, the Na’s and M have indiscernible triviality we have
that:
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1. For all a ∈ A the sequences (c̄ai ⌢ba⌢b′a : i ∈ Q) is indiscernible in Na.

2. (v(ci)⌢v(b)⌢v(b′) : i ∈ Q) is indiscernible in M.

Finally, by relative quantifier elimination and the above, tp(c̄i⌢b⌢b′) is constant.
So, by Proposition 4.5.19, we get that (c̄i⌢b⌢b′ : i ∈ Q) is indiscernible, and
thus S has indiscernible triviality, as claimed.

The next goal is to prove a transfer principle for monadic NIP. Indiscernible
triviality has just been dealt with, so by Fact 4.2.19, it remains to show that
dp-minimality transfers to lexicographic products. Thankfully, this was handled
by Touchard:
Fact 4.5.25 ([Tou21, Theorem 2.16]). Let M be an LM-structure, N =
{Na}a∈M be a collection of LN-structures indexed by M and let S = M[N].
Then:

bdn(S) = sup
(
{bdn(M)} ∪

{
bdn(Np) : p ∈ STh(M)

1

})
.

In particular,25 the following are equivalent:

(1) The lexicographic product S is inp-minimal.26

(2) Both M and Np, for all p ∈ STh(M)
1 , are inp-minimal.

Putting Fact 4.2.19, Proposition 4.5.24, Corollary 4.5.23 (for n = 1) and
Fact 4.5.25 together:
Corollary 4.5.26 (Transfer Principle For Monadic NIP Structures). Let M
be an LM-structure, N = {Na}a∈M be a collection of LN-structures indexed
by M and let S = M[N]. Then, the following are equivalent:

(1) The lexicographic product S is monadically NIP.

(2) Both M and Np, for all p ∈ STh(M)
1 , are monadically NIP.

Remark 4.5.27. Observe (it will be useful later) that Assumption (⋆) is not
actually required for Corollary 4.5.26, as if M is monadically NIP, then the
expansion of M by unary predicates for the sets {a ∈ M : Na ⊨ ϕ}, as ϕ
ranges over LN-sentences will be automatically monadically NIP, by definition.

25The operator “bdn” above refers to burden, a notion introduced by Adler in [Adl07].
The precise definition is not relevant for the rest of the thesis, so I shall omit it and refer
the reader to Adler’s pre-print for more information. What matters for the purposes of this
thesis is the rest of the statement.

26The notion of inp-minimality was introduced by Shelah in [She90, Chapter 3]. Again,
the precise definition is not terribly important for our purposes. It suffices to recall the
well-known fact that within NIP theories inp-minimality coincides with dp-minimality (see,
for instance, [Adl07]).
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Example 4.5.28. Given two meet-trees T1 and T2, the lexicographic product
T1[T2] is a meet-tree with an equivalence relation. By Corollary 4.5.26 and
Example 4.2.22, it is monadically NIP. More generally, any meet-tree with
finitely many equivalence relations E0, . . . , En such that Es+1 refines Es for
s < n is monadically NIP.

The final result of this section is the promised transfer of m-distality to
lexicographic products.
Proposition 4.5.29 (m-Distality transfer for lexicographic product). Let M
be an LM-structure, N = {Na}a∈M be a collection of LN-structures indexed
by M and let S = M[N]. For all n ∈ N, the following are equivalent:

(1) The lexicographic product S is m-distal.

(2) Both M and Np, for all p ∈ STh(M)
1 , are m-distal.

Proof. Without loss, we may assume that S = M[N] is a monster model. As in
the proof for indiscernible triviality, we may assume that we are working with
sequences indexed by (Q, <), rather than an arbitrary infinite linear order.

First, suppose that S is m-distal.

• M is m-distal: Let I = I0 +· · ·+Im+1 be an indiscernible sequence in M,
which is partitioned into m+2 subsequences (all of which are without loss
indexed by (Q, <)), and let c̄ be an (m+1)-tuple. Following the analogous
argument in Proposition 4.5.24, we can produce an indiscernible sequence
I′ = I′

0 + · · · + I′
m+1 in S and lift c̄ into an (m+ 1)-tuple c̄′ in S, so that

v(I′) = I and v(c̄′) = c̄. If c̄ does not insert indiscernibly into I, then, by
Proposition 4.5.19 c̄′ will not insert indiscernibly into I′, and since S is
m-distal this means that an m-subtuple of c̄′ does not insert indiscernibly
into I′. Taking valuations, this means that an m-subtuble of c̄ does not
insert indiscernibly into I.

• Np is m-distal, for all p ∈ STh(M)
1 : The argument here is identical

(in structure) to the one given in Proposition 4.5.24. Given any se-
quences/elements in Na (for a ⊨ p), consider the corresponding elements
in the lexicographic sum, with first coordinate a. By Proposition 4.5.19,
all indiscernibility properties transfer, and this implication follows.

For the other direction, let I = I0 + · · · + Im+1 be an indiscernible sequence
partitioned into m+ 2 subsequences (all of which are without loss indexed by
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(Q, <)). Let c̄ = (c0
⌢ · · ·⌢cm+1) be an (m + 1)-tuple from S that does not

insert indiscernibly into I. So, by definition, the sequence:

I′ = I0 + c0 + · · · + cm + Im+1

is not indiscernible in S. By Proposition 4.5.19, and using the same notation,
we have the following cases to consider:

• Case 1 . For some a ∈ A, I′
a is not indiscernible in Na. Then, since Na is

m-distal, there is a m-subtuple of c̄ which does not insert indiscernibly
into Ia (which is an indiscernible sequence in Na).

• Case 2 . The sequence v(I′) is not indiscernible in M. Then, since M is
m-distal, there is an m-subtuple of v(c̄) which does not insert indiscernibly
into v(I).

• Case 3 . The sequence of types of elements in I′ is not constant. Since I

was indiscernible, this means that there is an element ci ∈ c̄, which does
not have the same type as the elements in I.

In all cases, there is an m-subtuple of c̄ which does not insert indiscernibly into
I. Indeed, in the first two cases this is by Proposition 4.5.19, and in the third
case, we find in fact a single ci which does not insert indiscernibly into I.

4.6 Ultraproducts and Twin-width

Finally, the transfer principles for monadic NIP discussed in the previous section
will now be applied to construct new “algorithmically tame” hereditary27 classes
of graphs from given ones. In this section, algorithmically tame shall mean “of
bounded twin-width” (a notion which should be taken as a black box).

The notions in this section are rather disconnected from the rest of this thesis,
so the reader may take the view that they are indeed interesting in good faith.
For a general introduction and precise definitions, a good reference is [Bon+21],
where the notion of twin-width was introduced. For a basic background in
parametrised complexity theory (which is not strictly necessary to understand
the results in this section, but could aid in putting them in some context) one
may consult [FG06].

27Recall: A class C of graphs is hereditary if it is closed under induced subgraphs.
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The next proposition shows that an ultraproduct of the class of lexicographic
sums of two classes is isomorphic to a lexicographic sum of ultraproducts of
these classes. More precisely:
Proposition 4.6.1. Fix a cardinal κ and U an ultrafilter on κ. Let C1 and
C2 be two classes of (not necessarily finite) structures in languages LC1 and
LC2 , respectively. Let (Gi[H i

g])i<κ be a sequence of lexicographic sums in C1[C2].
Then we have: ∏

U

(
Gi
[
H i
g

])
≃
(∏

U
Gi
)

[Hg] ,

where, for each g = [(gi)]U , Hg =
∏

U H
i
gi

.

Proof. First, notice that Hg doesn’t depend on the choice of representative
(gi)i of g = [(gi)]U .

Each Gi[H i
g] for i ∈ κ carries a definable (through the projection v) equivalence

relation ∼:
(g, h) ∼ (g′, h′) if, and only if, g = g′.

Of course, by Łos’s theorem, ∼ is an equivalence relation on M =
∏

U

(
Gi[H i

g]
)
,

and for a = [((gi, hi))i]U and b = [((g′
i, h

′
i))i]U in M we have:

M ⊨ a ∼ b ⇐⇒
{
i : Gi[H i

g] ⊨ (gi, hi) ∼ (g′
i, h

′
i)
}

∈ U

⇐⇒ (gi)i = (g′
i)i mod U .

Similarly, if P ∈ LC1 , for any tuple a = [((gi, hi))i]U ∈ M:

M ⊨ P (v(a)) ⇐⇒
{
i : Gi[H i

g] ⊨ P (v(gi, hi))
}

∈ U

⇐⇒
{
i : Gi ⊨ P (gi)

}
∈ U .

It follows that M/ ∼ is isomorphic to
∏

U G
i.

It remains to show that each equivalence class is isomorphic to an ultraproduct
of structures in C2. Fix a = [(gi, hi)]U ∈ M. By the above, for any b ∈ M we
have that M ⊨ a ∼ b if, and only if, b has a representative in

∏
i∈κ{gi} ×H i

gi
.

Thus the class [a]∼ of a is an isomorphic copy of Hg =
∏

U H
i
gi

.

Definition 4.6.2. A class C of structures is called monadically NIP if any
ultraproduct of structures in C is monadically NIP.
Corollary 4.6.3. Let C1 and C2 be two classes of structures that are monadically
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NIP. Then their lexicographic sum is monadically NIP.

Proof. This follows immediately Corollary 4.5.26, the fact that monadic NIP
is closed under reducts and Proposition 4.6.1.

It is conjectured (see, for instance, [Gaj+20, Conjecture 8.2]) that for hereditary
classes of graphs, under a mild assumption from descriptive complexity theory
(namely that FPT ̸= AW[⋆], which, in particular, implies that first-order model
checking for the class of all graphs is not tractable), the algorithmic tameness
condition of having fixed-parameter tractable model checking coincides with the
class being monadically NIP. There is strong evidence for this conjecture. In
particular, in joint work with Braunfeld, Dawar, and Eleftheriadis [Bra+23],
we show that the conjecture is, in fact, true for monotone28 classes of relational
structures, by using some nice (canonical) Ramsey arguments and Gaifman
graphs, but this is perhaps a story for another day. More importantly, the
conjecture is shown to be true for hereditary classes of ordered graphs [Bon+22a].
More precisely, the latter result is the following:
Fact 4.6.4 ([Bon+22a, Theorems 1 and 3]). Let C be a hereditary class of
finite, ordered binary structures. Then, the following are equivalent:

1. C is monadically NIP.

2. C has bounded twin-width.

3. (Assuming FPT ̸= AW[⋆]) Model-checking first-order logic is fixed-parameter
tractable on C.

It is a fact that any finite graph G can be expanded by a total order resulting
in an ordered graph of the same twin-width (see [Bon+21] or [ST21] for an
explicit argument), but it is well-known that finding these orders is hard to do
in a computationally efficient manner. In any case, given a class C of graphs
with bounded twin-width we can assume that C consists of ordered graphs and
still has bounded twin-width. Moreover, given any graph G, the twin-width of
any (induced) subgraph of G is at most that of G (see [Bon+21]). In particular,
given a class of graphs C with bounded twin-width we may assume that C is
hereditary.

One of the results in [Bon+22b] is that the lexicographic product of two graphs
28Recall: A class of relational structures is called monotone if it is closed under not

necessarily induced substructures.
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of bounded twin-width has bounded twin-width. This was expanded for various
other product notions (always involving two graphs) in [PS23]. Here the former
result is generalised to lexicographic sums of graphs with bounded twin-width.
More precisely we obtain the following:
Corollary 4.6.5. Let C1 and C2 be two classes of finite graphs with bounded
twin-width. Then, the reduct of C1[C2] to the language of graphs has bounded
twin-width.

Proof. Without loss of generality, we may assume that C1 and C2 consist of
ordered graphs and are hereditary. By Fact 4.6.4, it follows that C1 and C2 are
monadically NIP. Now, by Corollary 4.6.3, it follows that the class C1[C2], in
which there is a natural total order coming from the orders from C1 and C2 is
monadically NIP, and thus, its reduct to the language of ordered graphs is a
monadically NIP hereditary class of ordered graphs. Thus, by Fact 4.6.4 it has
bounded twin-width, as claimed.

4.7 Open Questions

To finish off this chapter, I will collect here some open questions. Recall that a
structure M admits a distal expansion if it is a reduct of a distal structure.
With respect to some combinatorial properties, it is more relevant to ask if a
structure has a distal expansion, rather than if the structure itself is distal.
Clearly, given two structures each of which has a distal expansion, their full
product will also have a distal expansion. However, the other direction remains
unclear.
Remark 4.7.1. An expansion of M1 ⊠ M2 is not necessarily a reduct of a
full product of expansions of M1 and M2. Assume |M1| = |M2| and let
f : M1 → M2 be a bijection. Then (M1 ⊠ M2, f) cannot be such a reduct,
as its theory implies |M1| = |M2|.

This motivates the following question:
Question 1. Assume that a full product M1 ⊠ M2 admits a distal expansion.
Do both M1 and M2 admit a distal expansion?

In Subsection 4.2.4, I recalled the fact that indiscernible triviality and dp-
minimality characterise monadically NIP structures. As I mentioned there,
dp-minimality cannot be characterised in terms of (forbidding) coding con-
figurations, since it is not closed under bi-interpretations, but one can ask if
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there is a natural non-coding class strictly contained in NIP, that contains all
monadically NIP structures. A natural candidate for such a class would be
that of NIP structures with indiscernible triviality. This leads to the following
question:
Question 2. Is it possible to characterise indiscernible triviality in terms of
collapsing indiscernibles or in terms of forbidden coding configurations?

Finally, the following question naturally relates to the classification of homo-
geneous NIPn structures:
Question 3. Given an integer n ≥ 2, is there a homogeneous countable
structure with the Ramsey property, that is NIPn, but not n-ary?

Positive examples will give, by Proposition 4.4.8, some new instances of ho-
mogeneous countable structures M and N such that NCN and NCM are not
included in each other.

More generally, one can ask about the structure of the NCK-hierarchy - say,
when K ranges over the class of all homogeneous countable structures. By
Fact 4.3.16 and Example 4.5.4, it is a rooted meet-tree, with a countable
ascending chain and an antichain of size at least two. One can then reformulate
[GPS21, Question 4.7]:
Question 4. What is the width29 of the NCCK-hierarchy?

29Recall: The width of a poset is the maximal cardinality of any antichain.
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Chapter 5

Around Zarankiewicz’s
Problem†

5.1 Introduction

In this chapter, I will switch gears and discuss extremal graph theory in model-
theoretically tame contexts. The combinatorial input in this chapter is the
well-known problem of Zarankiewicz, which I will recall in the following.

Zarankiewicz’s problem first appeared (at least in print) in the problems section
of the 1951 Colloquium Mathematicum, [51]. It was Problem 101:

Soit Rn, où n > 3, un réseau plan formé de n2 points rangés en n lignes1 et n
colonnes.

Trouver le plus petit nombre k2(n) tel que tout sous-ensembles de Rn formé de
k2(n) points contienne 4 points situés simultanément dans 2 lignes et dans 2
colonnes de ce réseau.

D’une façon générale, trouver le plus petit nombre naturel kj(n) tel que tout sous-
ensembles de Rn formé de kj(n) points contienne j2 points situés simultanément

†This chapter is based on joint work with Pantelis Eleftheriou, which at the time of
writing is being prepared for submission. The contributions of both authors to the results in
this chapter are equal, and the results are reproduced here with the permission of Eleftheriou.
Fact 5.4.4, Fact 5.4.5 and Fact 5.4.11, which appear in this chapter, are due to Eleftheriou
and Mennuni (private correspondence, [EM24]), and I thank them for allowing me to include
them here.

1Thanks to Christian d’Elbée for making sure lines and linen stay apart despite my mild
dyslexia.
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dans j lignes et dans j colonnes de ce réseau.

Okay, but this does not quite sound like a problem in graph theory (the first
difficulty might be that it is in French), so let’s cast it as one (and state it in
English this time). To fix notation, I will write Ks,t to denote the complete
bipartite graph with s vertices on one part and t vertices on the other.2

Figure 5.1: K4,5

A graph G will be called Ks,t-free if it does not contain Ks,t as a subgraph.
Zarankiewicz’s problem is the following:
Question (Zarankiewicz’s Problem (for graphs3)). For n ∈ N, what is the
maximum number of edges a Ks,t-free bipartite graph on n vertices can have
(in terms of n, s and t)?

A little bit of intuition behind this question may be helpful here. We should
understand complete graphs as being dense and bounds on the number of
edges of graphs as a sparsity condition. Thus, we are trying to find how sparse
a given graph must be if it does not contain a fixed dense subgraph.

Zarankiewicz’s problem is famously open in general, but much progress has
been made in the last 70 years. To simplify the exposition, I will only focus
on the case where s = t = k, for some k ∈ N. The reader is referred to [Bol78,
Section V.1.2] for a more detailed history, with proofs (at least for results
published before 1978).

The first significant step was taken by Kővári–Sós–Turán in [KST54], where
they proved the following:

2Formally (up to isomorphism) Ks,t := ([s] ⊔ [t], {(i, j), (j, i) : i ∈ [s], j ∈ [t]})
3Of course, it doesn’t take a lot to see that this question has a natural hypergraph

generalisation (as discussed in Chapter 2, hypergraphs are understood to be r-partite and
r-uniform).
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Theorem. There is some α ∈ R>0 such that for all bipartite graphs G = (V,E)
with |V | = n, we have that if G is K2,2-free, then:

|E| ≤ αn
3
2 .

In [Erd64], Erdős showed that the proof of [KST54] works for arbitrary k ∈ N,
and generalised this result to r-hypergraphs (here the configuration that is
omitted is the complete r-partite r-uniform hypergraph with ki elements on
the ith part, denoted Kk1,...,kr ).
Theorem. There is some α ∈ R>0 such that for all r-partite hypergraphs
H = (V,R) with |V | = n, we have that if H is Kk,...,k-free, for some k ∈ N,
then:

|R| ≤ αnr−
1

kr−1 .

Moreover, there exist r-partite hypergraphs on n vertices which are Kk,...,k-free
such that:

|R| ≥ nr−
C

kr−1 ,

for sufficiently large C, independent of n, r, and k.

The “moreover” part was proved using Erdős’s probabilistic method, and it
shows that if one wants a result for the class of all graphs, then they can’t
expect the exponent in the theorem above to be “significantly” improved. So
it’s perhaps better to turn our attention to graphs that arise in more restricted
contexts, particularly contexts that are in some sense geometric. One of the
most influential results in this area is the celebrated Szemerédi-Trotter theorem,
from [ST83]. I’ll recall a slightly simplified version below.
Theorem. Let P be a set of points in R2, and L a set of lines in R2. Write
I(P ;L) for the incidence relation between P and L, that is:

I(P ;L) := {(p, l) ⊆ P × L : p ∈ l},

and write I(n;m) for:

max{I(P ;L) : P is a set of n points in R2, and L a set of m lines in R2}.

Then:
|I(n;n)| = O

(
n

4
3
)
,
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and this bound is tight.

To see how this is relevant, note that I(P ;L) can be seen as the edge relation4

of a bipartite graph with vertex set P ⊔ L. This graph is easily seen to be
K2,2-free, and the general Kővári–Sós–Turán bound would tell us that:

|I(n;n)| = O
(
n

3
2
)
,

and since 4
3 <

3
2 , the Szemerédi-Trotter is a real improvement of the Kővari-

Sós-Turán upper bound.

Bringing us closer to the historical present, a nice blend of recent model-
theoretic and combinatorial techniques has yielded generalisations of the
Szemerédi-Trotter theorem in a variety of geometrically tame settings, such as
semialgebraic [Fox+17], o-minimal, and more generally distal [CGS20] graphs.

The starting point of the work in this chapter are the recent results of Basit,
Chernikov, Starchenko, Tao, and Tran, who considered semilinear hypergraphs
in [Bas+21]. In particular, they made a link between Zarankiewiecz’s problem
and a classical theme in model theory, that of recognising the existence of defin-
able algebraic structure from combinatorial data (e.g. the Group Configuration
Theorem).

Motivated by some of the ideas in [Bas+21] and recent literature from the
so-called semibounded o-minimal structures, in joint work with Eleftheriou,
we introduce and prove an abstract version of Zarankiewiecz’s problem for
hypergraphs whose vertices are “far apart” from each other in a certain sense
made precise via a pregeometric closure independence (Theorem N). Applied
to short closure independence from semibounded structures, our abstract result
yields the same bound as in the case of semilinear hypergraphs in [Bas+21],
but for uniformly distant hypergraphs (Theorem O). Furthermore, we obtain a
combinatorial way to recognise the existence of an unbounded field definable in
o-minimal structures (Theorem P). All these results (and more) will be stated
more precisely in the following subsection.

4The observant reader will have noticed that this relation is not symmetric, but I still
called it a graph. This will be a theme in this chapter, where any time a non-symmetric
relation is referred to as an edge/hyperedge relation of a graph/hypergraph, one should really
consider its symmetrisation. This process does not affect, of course, definability (when that
is relevant), and it only increases the cardinality of a relation by a constant, which will be
implicitly incorporated appropriately to the asymptotic bounds.
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First, let me recall the setting of [Bas+21]. A set X ⊆ Rn is called semilinear
if it is a finite union of sets defined using linear inequalities [Bas+21, Defini-
tion 1.4]. Equivalently, in model-theoretic terminology, X is semilinear if it
is definable in the real ordered vector space Rvec = ⟨R, <,+, {x 7→ rx}r∈R⟩
(and again equivalently, if, and only if, X is definable in a linear o-minimal
structure expanding ⟨R, <,+⟩, as discussed in Chapter 2). In [Bas+21] they
prove:
Theorem ([Bas+21, Corollary 5.12]). Let r ∈ N≥2, and assume that X ⊆
Rd =

∏
i∈[r] Rdi is semilinear and is Kk,...,k-free for some k ∈ N. Then for any

r-hypergraph H of the form (V1, . . . , Vr;X ∩
∏
i∈r Vi), for finite Vi ⊆ Rdi with∑

i∈[r] |Vi| = n, we have that:

∣∣∣X ∩
∏
i∈r

Vi
∣∣∣ = Or,k

(
nr−1

)
.

This statement explains the connection of definability with extremal combin-
atorics: We are interested in finite hypergraphs whose vertex sets need not
be (parameter-free) definable, but their hyperedge relation is induced by a
definable relation, on which we have imposed a global (in this case, “sparsity”)
assumption on that relation.

A converse of the above theorem is also proved in [Bas+21] and, together
with the trichotomy theorem for o-minimal structures [PS98], establishes
the following link to the theme of recognising definable fields (see [Bas+21,
Definition 5.3, Corollary 5.11] for a precise statement): Suppose R is a saturated
o-minimal structure. Then the following are equivalent:

• Every Kk,...,k-free, for some k ∈ N, hypergraph X definable in R satisfies
the conclusion of [Bas+21, Corollary 5.12].

• R does not define a real closed field.

This is, in my opinion, sufficient context to understand the main results of
this chapter, which involve semibounded o-minimal structures. The same joint
work on which this chapter is based also contains results about hypergraphs
definable in models of Presburger arithmetic, stable one-based theories, and ab
initio Hrushovski constructions. All of these are summarised below.
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Summary of Main Results

The first two actual results in this chapter concern Zarankiewiz’s problem
in a fairly abstract (pregeometric) setting. First, I need to make a little
terminological remark:

Terminology. Throughout this section, an r-grid refers to a Cartesian product
of r-many sets. Intuitively, restricting an infinite r-ary relation to a finite
grid gives a finite r-partite hypergraph. It is to hypergraphs obtained in this
manner that the results apply.

The first result, stated below, is a general counting theorem, which intuitively
says that under some technical assumptions on a given relation E (cl-tightness,
and (cl-Uniform Bounds), both explained later) one should expect to get
“linear”5 bounds on the hyperedges of finite hypergraphs whose edge relation is
induced by E:
Theorem M (Theorem 5.3.5). Let M an L-structure, A ⊆ M be a subset,
and cl a closure operator on M. Let E := {Eb : b ∈ I} be an A-definable
family of r-ary relations Eb ⊆

∏
i∈[r]M

di, for fixed d1, . . . , dr ∈ N. Let C
be a class of finite grids in

∏
i∈[r]M

di such that cl and C satisfy a uniform
finiteness assumption C of grids (see Assumption 2 on page 176, for the precise
statement). Then, there is an α = α(E) ∈ R>0 such that for every b ∈ I, if Eb
is cl-tight (see Definition 5.3.1), then for every grid B = B1 × · · · × Br ∈ C,
we have:

|Eb ∩B| = αnr−1,

where n = max{|Bi| : i ∈ [r]}.

To apply this result, in practice, there should be some underlying geometry
(in the sense of Section 2.4) which morally looks more like the geometry of a
vector space rather than that of a field and ensures that hypergraphs omitting
K∞ (the infinitary analogue of Kk1,...,kr ) are cl-tight. More precisely:
Theorem N (Corollary 5.3.6). Let M an L-structure, A ⊆ M be a subset,
and cl a closure operator on M which behaves similarly to acl in weakly locally
modular pregeometric structures (see Assumption 1 on page 173 for more
details). Let E := {Eb : b ∈ I} be a uniformly A-definable family of r-ary

5The justification behind the term linear is that in the case of graphs, i.e. when r = 2,
the bounds are of the form O(n), so they really are linear.
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relations Eb ⊆
∏
i∈[r]M

di, for fixed d1, . . . , dr ∈ N. Let C be a class of finite
grids in

∏
i∈[r]M

di such that cl and C satisfy a uniform finiteness assumption
C of grids (see Assumption 2 on page 176 for the precise statement). Then,
there is an α = α(E) ∈ R>0 such that for every b ∈ I, if Eb is Kcl

∞-free (see
Section 5.3), then for every grid B = B1 × · · · ×Br ∈ C, we have:

|Eb ∩B| = αnr−1,

where n = max{|Bi| : i ∈ [r]}.

This abstract machinery will be applied in three different contexts:

1. Semibounded o-minimal expansions of ordered groups.

2. Presburger arithmetic.

3. Stable one-based theories and Hrushovski constructions.

I’ll now state the rest of the results in this order.

First, for semibounded o-minimal expansions of ordered groups, the abstract
machinery is applied to a closure operator called the short closure (Defini-
tion 5.4.3) to give the following result:
Theorem O (Corollary 5.4.17). Let M = ⟨M,<,+, . . . ⟩ be a saturated o-
minimal expansion of a group, and assume that M is semibounded. Let
E = {Eb : b ∈ I} be a parameter-definable family of partitioned r-ary relations:

Eb ⊆
∏
i∈[r]

Mdi .

Then, there is an α = α(E) ∈ R>0 such that for every b ∈ I, if Eb is Ktall
∞ -free

(See Section 5.4), then for every tall finite grid B = B1 × · · · ×Br ⊆
∏
i∈[r]M

di

(see Section 5.4, for the precise definitions) we have:

|Eb ∩B| = αnr−1,

where n = max{|Bi| : i ∈ [r]}.

In fact, the conclusion of Theorem O characterises semibounded o-minimal
structures. This is the content of the following theorem:
Theorem P (Theorem 5.4.19). Let M = ⟨M,<,+, . . . ⟩ be a saturated o-
minimal expansion of a group. Then, the following are equivalent:
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1. M is semibounded.

2. There is some N ∈ M>0 such that: For every parameter-definable family
of E = {Eb : b ∈ I} of partitioned r-ary relations, where:

Eb ⊆
∏
i∈[r]

Mdi ,

there is an α = α(E) ∈ R>0 such that for every b ∈ I, if Eb is KN
∞-

free (see Subsection 5.4.3), then for every N-distant finite grid B =
B1 × · · · ×Br ⊆

∏
i∈[r]M

di, we have

|Eb ∩B| = αnr−1,

where n = max{|Bi| : i ∈ [r]}.

3. (Cf. the Szemerédi-Trotter theorem, from before) There is some N ∈ M>0

such that: For every parameter-definable E ⊆ Md1 ×Md2 there is some
positive real number β < 4

3 , such that if E is KN
∞-free, then for every

N -distant finite grid B = B1 ×B2 ⊆ Md1 ×Md2, we have

|E ∩B| ≤ αnβ,

where n = max{|B1|, |B2|}.

4. There is no parameter-definable field on the whole of M .

Moving on to Presburger arithmetic:
Theorem Q (Theorem 5.5.38). Let Γ ⊨ Th(⟨Z, <,+, 0⟩) be a model of Pres-
burger arithmetic. Let E ⊆

∏
i∈[r] Γdi, for fixed d1, . . . , dr ∈ N be a ∅-definable

r-ary relation. Then, there is some α = α(E) ∈ R>0 such that if E is Kk,...,k-
free (for some k ∈ N), then then for every finite grid B ⊆ Γd1 × · · · × Γdr , we
have

|E ∩B| ≤ αnr−1,

where n = max{|Bi| : i ∈ [r]}.

In the context of n.f.c.p. stable one-based theories (the new terminology will
be explained later on in this chapter), the following result is obtained:
Theorem R (Theorem 5.6.12). Let T be a stable one-based theory that does
not have the finite cover property, and M ⊨ T an ℵ1-saturated model of T .
For every partial type (possibly over parameters), p(x1, . . . , xr), consistent with
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T there is some α = α(p) ∈ R>0, such that if p(M) does not contain the
Cartesian product of r infinite sets (in the appropriate sorts – i.e. is K∞-free),
then for every finite B = B1 × · · · ×Br ⊆

∏r
i=1M

xi we have that:

|p(B1, . . . , Br)| ≤ αnr−1,

where n = max{|Bi| : i ∈ [r]}.

And finally, using a result of Evans [Eva05], the theorem above gives the
following:
Theorem S (Corollary 5.6.13). Let M be an ab initio Hrushovski construction.
For every partial type (possibly over parameters), p(x1, . . . , xr), consistent with
T , there is some α = α(p) ∈ R>0 such that if there is some k ∈ N such that p(M)
does not contain the Cartesian product of r sets of size k (in the appropriate
sorts – i.e. is Kk,...,k-free), then for every finite B = B1 × · · · ×Br ⊆

∏r
i=1M

xi

we have that:
|p(B1, . . . , Br)| ≤ αnr−1,

where n = max{|Bi| : i ∈ [r]}.

Structure of this Chapter

This chapter is organised as follows. In Section 5.2, I will give some more back-
ground, which should ease the exposition of the rest of the chapter (the focus
will be on weak local modularity and some general combinatorial machinery).
Then, in Section 5.3, I will present the proofs of Theorem M and Theorem N,
in Section 5.4 the proofs of Theorem O and Theorem P, in Section 5.5 the
proof of Theorem Q, and finally in Section 5.6 the proofs of Theorem R and
Theorem S.

5.2 Local Preliminaries

5.2.1 (Weak) Local Modularity

In this subsection, I will give some general background on weak local modularity
and linear6 o-minimal expansions of ordered groups. The material presented

6Somewhat unfortunately, the term linear has two different uses in this area of model-
theoretic literature. In the context of (strongly) minimal theories, linearity is a condition
on the rank of the canonical bases of plane curves (see[Pil96, Definition II.2.4]) and, in the
context of o-minimal structures it refers to the trichotomy theorem [PS98], discussed in
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here is not new and is largely based on [BV12] and [BV10].

The notion of weak local modularity was introduced in [BV10], in the context
of lovely pairs of geometric structures, as a generalisation of one-basedness
(see Subsection 5.6.1), which, in turn, essentially generalises the behaviour
(i.e. modularity) of linear span in vector spaces. General discussion about the
connections between weak local modularity, local modularity, one-basedness,
and other related notions can be found in [BV10; BV12].

Recall that a theory T is pregeometric if for all M ⊨ T , the algebraic closure,
acl, satisfies (Exchange) in M (and thus is a pregeometry, in the sense of
Definition 2.4.1).
Definition 5.2.1. Let T be a pregeometric theory. We say that T is weakly
locally modular if for all saturated M ⊨ T and all small A,B ⊆ M there is
some small C ⊆ M such that:

AB |⌣
∅
C and A |⌣

acl(AC)∩acl(BC)
B,

where |⌣ denotes acl-independence.

If having many equivalent characterisations is evidence that a definition is
natural, then weak local modularity certainly seems like a natural definition.
Indeed, in [BV12, Theorem 2.20], the reader can find an extended list of
equivalences of weak local modularity for (mostly geometric7) theories. The
most important consequence of weak local modularity for our purposes is the
following, which follows from [BV10, Proposition 6.8, Theorem 6.10(4)]:
Fact 5.2.2. Let T be a complete o-minimal theory expanding a DLO. Then,
the following are equivalent:

1. T is weakly locally modular.

2. T is linear in the sense of Definition 2.7.12 (i.e. if there is no field
interpretable in any model of T , by Fact 2.7.13).

Chapter 2. More discussion is provided in [BV10; BV12].
7See Section 5.3, for the definition of a geometric theory. While working on this project,

it was observed that many of the equivalences in [BV12] hold with the weaker assumption
that the theory is pregeometric, but expanding on this is beyond the scope of this chapter.
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5.2.2 Combinatorial Setup

Before moving on to the main results, I will need to fix some general combinat-
orial notation. Let A =

∏r
i=1Ai be the Cartesian product of r-many finite sets

A1, . . . , Ar. For s ≤ r we write δrs(A) to denote the following quantity:

δrs(A) :=
∑

1≤i1<···<is≤r

 s∏
j=1

|Aij |

 ,
so that:

• δr1(A) =
∑r
i=1 |Ai|, and

• δrr =
∏r
i=1 |Ai|.

The most important quantity in this chapter will be δrr−1(A):

δrr−1(A) =
∑

1≤i≤r

 ∏
j∈[r]\{i}

|Aj |

 .
It is clear that when n = max{|Ai| : i ∈ [r]} then δrr−1(A) ≤ rnr−1. The
observant reader who likes to look ahead may have noticed that the statements
of the main results as written in Section 5.1 differ slightly from the statements
that will appear in the following sections. This inequality justifies why.

Let M be an L-structure, and r ≥ 2 and d1, . . . , dr be positive integers.
An r-ary definable relation of type d1, . . . , dr (possibly over parameters), is
simply a subset E ⊆ Md, where d =

∑r
i=1 di, given by partitioned L-formula

ϕ(x1, . . . , xr) (again, possibly over parameters), where |xi| = di for i = 1, . . . , r.
I will refer to E as Kk-free for k ∈ N ∪ {∞} (this is short for Kk,...,k-free if for
all Ai ⊆ Mdi with |Ai| = k (or |Ai| ≥ ℵ0 if k = ∞), for i ∈ [r], there is some
(a1, . . . , ar) ∈

∏
i∈[r]Ai, such that M ⊨ (a1, . . . , ar) ̸∈ E, i.e. if

∏r
i=1Ai ̸⊆ E.

Let M be an L-structure. Following the terminology of [Eva05], I shall call an
r-ary relation E sparse in M if there is a real number α ∈ R>0 such that for
all Ai ⊆ Mdi , for i ∈ [r], we have:

|E ∩
r∏
i=1

Ai| ≤ αδnn−1

(
r∏
i=1

Ai

)
.

Definition 5.2.3. Let M be an L-structure. We say that M has linear
Zarankiewicz bounds (resp. strong linear Zarankiewicz bounds) in M if for
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every r-ary definable relation E ⊆
∏r
i=1M

|xi| (possibly over parameters) the
condition (LZ) (resp. (SLZ)) holds, where:

(LZ) If E is Kk-free for some k ∈ N then E is sparse in M.
(SLZ) If E is K∞-free then E is sparse in M.

A theory T has (strong) linear Zarankiewicz bounds if every M ⊨ T has (strong)
linear Zarankiewicz bounds.

5.3 Abstract Zarankiewicz’s Problem

In this section, I will give a proof of Theorem M, which is essentially one of
the main tools that will be used in the remainder of this chapter. This section
is structured as follows:

• First, I will attempt to draw a connection between abstract pregeometries
(other than the usual acl) and model theory. This will be done by imposing
additional (axiomatic) assumptions (Assumption 1) on the pregeometric
closure operator and the independence relation it induces.

• Another ingredient needed for the proof of Theorem M, is a slight gener-
alisation of a technical lemma from [Bas+21], which will be presented
next.

• The final ingredient needed for the proof of Theorem M, which is an
assumption that, in a sense, generalises uniform finiteness (elimination
of the quantifier ∃∞) will then be given and discussed.

• Finally, I will put everything together, give a proof of the main theorem
(Theorem 5.3.5), and deduce Theorem N.

Throughout this section, let M be an L-structure and cl a pregeometric closure
operator on M . Let |⌣ = |⌣

cl be the induced notion of independence, as
discussed in Chapter 2. Note that since |⌣ is a notion of independence that
arises from a closure operator, it will automatically satisfy all the properties
given in Fact 2.4.10.

The following assumptions on cl and |⌣ are meant to capture that cl be-
haves “rather well” with definable sets and that |⌣ behaves similarly to
acl-independence in weakly locally modular theories.



Abstract Zarankiewicz’s Problem 173

Assumption 1. We assume that cl satisfies the following properties, for all
A,B,C,D ⊆ M :

1. (cl-Definability). For all a, b ∈ M , if a ∈ cl(Ab), then there is an
L(A)-formula ϕ(x, y) such that M ⊨ ϕ(a, b), and whenever M ⊨ ϕ(a′, b′),
we have that a′ ∈ cl(Ab′).

2. (Extension). If A |⌣C
B, then for all d ∈ M there is some A′ ∈ M

such that A′ ≡BC A and A′ |⌣C
Bd.

3. (Weak Local Modularity, under the assumption that M is satur-
ated). For all small subsets8 A,B ⊆ M there is some small C ⊆ M such
that:

C |⌣
∅
AB and A |⌣

cl(AC)∩cl(BC)
B

Here, perhaps, a little bit of elaboration may be needed. The (cl-Definability)
assumption does not say that the closure of a set is definable, but rather, that
whenever a ∈ cl(Ab), there is an A-definable set X containing (a, b) and such
that whenever (a′, b′) ∈ X we have that a′ ∈ cl(Ab′). Observe that acl always
satisfies this assumption. Indeed, if a ∈ acl(Ab), then there is a formula ϕ(x, b)
with parameters from A such that:

M ⊨ ϕ(a, b) ∧ |ϕ(x, b)| = n,

for some n ∈ N. Then, taking ψ(x, y) to be the L(A)-formula given by
ϕ(x, y) ∧ (|ϕ(M,y)| = n), we clearly have that M ⊨ ψ(a, b), and whenever
M ⊨ ψ(a′, b′), it follows that ϕ(x, b′) is an algebraic set containing a′, i.e.
a′ ∈ acl(Ab′). As for the (Extension) assumption, this is needed to be able
to define the cl-dimension of a parameter-definable set (see Definition 5.3.4)
and to have that be independent of the choice of parameters. The (Weak
Local Modularity) assumption is precisely what one would expect, given
Definition 5.2.1, and it will be shown in action in the next proposition. First, I
will need to introduce an additional definition:
Definition 5.3.1. Let r ∈ N≥2 and d1, . . . , dr ∈ N>0, and A ⊆ M . We say
that E ⊆

∏r
i=1M

di is cl-tight over A if whenever ā = (a1, . . . , ar) ∈ E there is
some j ≤ r such that aj ∈ cl(Aā ̸=j), where ā ̸=j denotes the subtuple of ā with
aj removed.

8A subset A of a κ-saturated structure M is called small if |A| < κ.
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In the notation of Definition 5.3.1, above:

• An r-grid B = B1 × · · · ×Br ⊆
∏r
i=1M

di is called cl-independent over A
if Bi is cl-independent over A, for each i ≤ r.

• A relation E ⊆
∏r
i=1M

di is called Kcl
∞-free if it does not contain any

infinite cl-independent grids.

The next proposition is a more abstract and slightly generalised version of
[Bas+21, Lemma 5.5]. The main differences are that:

1. The proposition below works for an arbitrary closure operator satisfying
Assumption 1, rather than acl in weakly locally modular structures (as
given in [Bas+21]); and

2. The assumption is weakened from K∞-free to Kcl
∞-free (of course every

K∞-free relation is automatically Kcl
∞-free, but the other implication

need not hold).

The proof is a straightforward adaptation of the argument in [Bas+21], so only
a sketch will be provided here.
Proposition 5.3.2. Let M be a saturated L-structure, cl a closure operator
on M and assume that cl, and the independence relation |⌣ it induces satisfy
Assumption 1. Let r ∈ N≥2 and fix positive integers d1, . . . , dr, and an r-ary
A-definable relation E ⊆

∏
i∈[r]M

di. If E is Kcl
∞-free then E is cl-tight over

A.

Proof (Sketch). The proof is essentially the same as that of [Bas+21, Lemma 5.5].
We must only note that the proof given in [Bas+21] uses precisely the con-
ditions from Assumption 1 to construct a copy of Kcl

∞ inside E. I shall give
a sketch of the proof for the sake of keeping the main chapters of this thesis
somewhat self-contained.

• Step 1. Assume toward a contradiction that E is not cl-tight over A.
This gives a tuple ā = (a1, . . . , ar) ∈ E such that ai ̸∈ cl(Aā̸=i) for all
i ∈ [r], where ā ̸=i = (a1, . . . , ai−1, ai+1, . . . , ar).

• Step 2. By (Weak Local Modularity) we obtain, for each i ∈ [r] a
set Ci such that:

Ci |⌣
∅
Aā and ai |⌣

cl(aiCi)∩cl(ACi ā̸=i)
Aā̸=i.



Abstract Zarankiewicz’s Problem 175

and by (Extension) we may assume that:

Ci |⌣
∅
Aā

⋃
j<i

Ci,

for all i ∈ [r]. Thus, by (Transitivity) we have that:

⋃
i∈[r]

Ci |⌣
∅
Aā.

• Step 3. By Step 2, (Symmetry), and (Transitivity):

ai |⌣⋂
i∈[r] cl(ACā̸=i)

ā̸=i,

for all i ∈ [r]. Moreover, by (Transitivity), we have that:

ai ̸∈ cl

 ⋂
i∈[r]

cl(ACā̸=i)

 ,
where C =

⋃
i∈[r]Ci.

• Step 4. By induction, using the previous steps, (Symmetry), (Transitivity),
and (Non-Degeneracy) build sequences Ii = (aij : j ∈ N), for i ∈ [r]
such that:

– For all i ∈ [r] and all j ∈ N we have that aij ≡Aā̸=i
ai.

– For all distinct j, j′ ∈ N and all i ∈ [r] we have that aij ̸= aij′ .

– aij ̸∈ cl(Aai<j).

Putting everything together, we have constructed a Cartesian product of infinite
cl-independent over A sets contained in E. This is the desired contradiction.

Moving on. Recall that a theory T is called geometric if acl is a pregeometric
closure operator in all models of T , and T eliminates the quantifier ∃∞. The
latter condition means precisely that: For all M ⊨ T and all formulas ϕ(x, y),
where |x| = 1 the set:

{b ∈ M |y| : |ϕ(M, b)| ≥ ℵ0}

is definable. The following remark gives a more useful (at least for some
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combinatorial applications) characterisation of elimination of ∃∞:
Remark 5.3.3. T eliminates ∃∞ if, and only if, for all formulas ϕ(x, y) where
|x| = 1, there is some kϕ ∈ N such that for any M ⊨ T and every b ∈ M |y|:

ϕ(M, b) ≤ kϕ ⇐⇒ ϕ(M, b) is finite.

My next goal in this section is to give a condition which generalises elimination
of ∃∞. To this end, I will first need to introduce the notion of cl-dimension.
Recall that cl-rk(a/A) is the minimal cardinality of a subtuple a′ of a such that
cl(a ∪A) = cl(a′ ∪A).
Definition 5.3.4. Let M be an L-structure and cl a pregeometric closure
operator satisfying 1 and 2, from Assumption 1. Given a parameter-definable
set X ⊆ Md we define its cl-dimension, denoted cl-dim, as follows:

cl-dim(X) := max{cl-rk(a/A) : a ∈ X},

where A is some set of parameters over which X is defined.

Note that, as observed previously, since cl satisfies (Extension) cl-dim(X) is
well-defined and does not depend on the choice of parameters in the definition
of X.
Assumption 2. In addition to Assumption 1 we may also impose the following
assumption on the closure operator cl, for a fixed class C of finite subsets of∏r
i=1M

di.

4. (C-Uniform Bounds) Let {Xb : b ∈ I} be a (parameter-)definable family
of subsets Xb ⊆

∏r
i=1M

di . Then, there is N ∈ N such that for every b ∈ I,
every i ∈ [r], every Y = Y1 × · · · × Yr ∈ C and every ā = (ā1, . . . , ār) ∈
πi(Xb), if cl-dim((Xb)ā̸=i

) = 0 then |(Xb)ā̸=i
∩ Yi| ≤ N , where (Xb)ā̸=i

denotes the set {x̄ ∈ Mdi : (ā1, . . . , āi−1, x̄, āi+1, . . . , ār) ∈ Xb}.

This was the last assumption needed for the proof of Theorem M:
Theorem 5.3.5. Let M an L-structure, A ⊆ M be a subset, and cl a closure
operator on M satisfying (cl-Definability). Let {Eb : b ∈ I} be a uniformly
A-definable family of r-ary relations Eb ⊆

∏
i∈[r]M

di, for fixed d1, . . . , dr ∈ N.
Let C be a class of finite grids in

∏
i∈[r]M

di such that cl satisfies (C-Uniform
Bounds). Then there is α ∈ R>0, such that for every b ∈ I and k ∈ N, if Eb
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is cl-tight, then for every grid B ∈ C, we have:

|Eb ∩B| ≤ αδrr−1(|B|).

Proof. Let {Xb : b ∈ I} be as above. By adding constants to the language of
M for the elements of A, we may assume that {Eb : b ∈ I} is ∅-definable (this
is only to simplify the notation). Fix N ∈ N as guaranteed by (C-Uniform
Bounds), with respect to C. Explicitly, N is such that for every b ∈ I,
every i ∈ [r], every grid B = B1 × · · · × Br ∈ C and every ā ∈ πi(Eb), if
cl-dim((Eb)ā) = 0 then |(Eb)ā ∩ Bi| ≤ N , where, again πi(Eb) denotes the
projection of Eb to the coordinates indexed by di and (Eb)ā denotes the fibre
of Eb above ā.

Let b ∈ I be such that Eb is cl-tight. Then, for every ā = (a1, . . . , ar) ∈ Eb, the
set {a1, . . . , ar} is cl-dependent over b. That is, for all ā = (a1, . . . , ar) ∈ Eb

there is some i ∈ [r] such that ai ∈ cl(ā̸=ib).

By (cl-Definability), there is a b-definable set Xā such that ā ∈ Xā, and for
every ā′ = (a′

i, . . . , a
′
r) ∈ Xā, we have a′

i ∈ cl(ā′
̸=ib). Moreover, without loss of

generality, we may assume that Xā ⊆ Eb. Hence, we can write:

Eb =
⋃
ā∈Eb

Xā.

By compactness, there is a finite subset of Eb, say {ā1, . . . , ān} such that:

Eb =
n⋃
j=1

Xāj ,

and by construction, for each j ∈ [n] there is some ij ∈ [r] such that for every
ā = (a1, . . . , ar) ∈ Xāj we have that aij ∈ cl(ā̸=ijb). In particular, for every
ā ∈ πij (Xaj ) we have that:

cl-dim
(
(Xāj )ā̸=ij

)
= 0,

and this holds for all j ∈ [n].

Claim 1. We may assume that n ≤ r.

Proof of Claim 1. Suppose that for j, j′ ∈ [n] we have that if ij = ij′ = i ∈ [r].
Then, the b-definable set X ′ := Xaj ∪Xaj′ ⊆ Eb still witnesses that for every
ā = (a1, . . . , ar) ∈ X ′, we have ai ∈ cl(a̸=ib), so we may replace Xāj and Xāj′
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with X ′. ◀

More intuitively, our construction goes as follows: Since Eb is cl-tight, for
each ā ∈ Eb we must be able to find a fibre which is cl-dependent. Then, by
(cl-Definability), we can find a b-definable set Xā witnessing this dependence.
Then, using compactness on the union of all these sets, we obtain that Eb
decomposes into finitely many of Xā, and by the claim above, we may, in fact,
assume that it decomposes to at most r many.

Now, to conclude the argument, let B = B1 × · · · × Br ∈ C. Then, since
Xāj ⊆ Eb, for all j ∈ [n], by our choice of N we have that:

|Eb ∩B| ≤
n∑
j=1

|Xāj ∩ (B1 × · · · ×Br)| ≤ n×Nδrr−1(B)

≤ (rN)δrr−1(B).

Hence, for any b ∈ I, if Eb is cl-tight, then, for any B ∈ C we have that
|Eb ∩B| < αδrr−1(B), where α = rN , and this concludes the proof.

From the theorem above and Proposition 5.3.2 the following corollary is
immediate:
Corollary 5.3.6. Let M be an L-structure, A ⊆ M be a subset, and cl a
closure operator on M satisfying Assumption 1. Let {Eb : b ∈ I} be a uniformly
A-definable family of r-ary relations Eb ⊆

∏
i∈[r]M

di, for fixed d1, . . . , dr ∈ N.
Let C be a class of finite grids in

∏
i∈[r]M

di such that cl satisfies (C-Uniform
Bounds). Then there is α ∈ R>0, such that for every b ∈ I and k ∈ N, if Eb
is Kcl

∞-free, then for every grid B ∈ C, we have:

|Eb ∩B| ≤ αδrr−1(|B|).

5.4 Semibounded Zarankiewicz’s Problem

In this section, I will return to semibounded o-minimal structures, which
were briefly introduced in Chapter 2. This section culminates in Theorem P,
which will be a corollary of Corollary 5.3.6, the Trichotomy for o-minimal
expansions of ordered groups, and a semibounded version of (the lower bound
of) the Szemerédi-Trotter theorem. First, I will have to discuss the short
closure operator (which will be the closure operator of choice), and the Cone
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Decomposition Theorem, for semibounded structures (which will be used to
prove that the short closure is weakly locally modular). To get us started,
though, let’s fix some notation and terminology.

Throughout this section, let M = ⟨M,<,+, 0, . . . ⟩ denote a non-linear semi-
bounded o-minimal expansion of a group, and fix an element 1 > 0 such that
some real closed field whose universe is (0, 1) and whose order agrees with < is
definable in M. This ∅-definable field will be denoted by R.
Notation 5.4.1. We denote by Mlin = ⟨M,<,+, 0, {λ : λ ∈ Λ}⟩, where Λ is the
set of all partial ∅-definable endomorphisms of ⟨M,<,+, 0⟩, the linear reduct
of M. A set definable in Mlin is called semilinear.

5.4.1 Short Closure

Following [Pet09], an interval I ⊆ M is called short if there is a parameter-
definable bijection between I and (0, 1); otherwise, it is called long. The point
is that short intervals are precisely the ones on which there is a parameter-
definable real closed field:
Fact 5.4.2 ([Pet09, Corollary 3.3]). Suppose that M is saturated. An open
interval I ⊆ M is short if, and only if there is a parameter-definable real closed
field with domain I.

It is now easy to extend the definitions of short and long9 to:

• Elements of M: An element a ∈ M is called short if either a = 0 or
(0, |a|) is a short interval; otherwise, it is called tall.

• Tuples from M: A tuple a ∈ Mn is called short if |a| := |a1| + · · · + |an|
is short, and tall otherwise.

• Definable subsets of M: A definable set X ⊂ Mn (or, to the same extent,
its defining formula) is called short10 if it is in definable bijection with a
subset of (0, 1)n; otherwise, it is called long.

Let me now introduce one of the main tools used in the proof of Theorem P,
the short closure, which was originally introduced in [Ele12]:
Definition 5.4.3. For A ⊆ M , we define the short closure of A, denoted

9Which, as we shall see, will be replaced by the word tall when referring to elements or
tuples.

10Of course, by Fact 5.4.2, for n = 1, the two definitions are equivalent.
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scl(A), as follows:

scl(A) = {a ∈ M : there is an A-definable short interval containing a}.

Fact 5.4.4 ([EM24]). Let I ⊆ M be an A-definable short interval. Then, there
is an A-definable bijection between I and R.11

Proof (Sketch). By translating I, we may assume that I = (0, a), where a ∈
M>0 is a short element. By definition, there is a parameter-definable bijection
f : (0, a) → R. Say f is given by the formula ϕ(x, y, b0), for some b0 ∈ M , and
let:

X = {b ∈ M : ϕ(x, y, b) defines a bijection between (0, a) and R}.

Clearly X is A-definable. By definable choice there is some b ∈ X ∩ dcl(A),
and thus ϕ(x, y, b) gives an A-definable bijection between I and R.

The first goal of this subsection is to prove that scl is a weakly locally modular
pregeometric operator.
Fact 5.4.5 ([EM24]). Let A ⊆ M . Then:

scl(A) = acl(AR).

Proof (Sketch). On the one hand, suppose that a ∈ dcl(AR). By definition,
there is an A-definable map f such that a ∈ f(b), for some k-tuple b from R.
Of course f(Rk) is short for any k ∈ N, and since R is ∅-definable, it follows
that there is an A-definable short set containing a, so a ∈ scl(A).

For the converse, let X be an A-definable short interval containing a. By
Fact 5.4.4 there is an A-definable bijection from X to R, and thus a ∈ dcl(AR),
as required.

In particular, since o-minimal expansions of ordered groups are geometric, it
follows that scl defines a pregeometry on M . This was already observed in
[Ele12, Lemma 5.5], but the characterisation offered by Fact 5.4.5 will be useful
later on.

Now that we know that scl is a pregeometry, in order to deduce Theorem P,
11Recall that R is the ∅-definable real closed field on (0, 1) whose order agrees with <.



Semibounded Zarankiewicz’s Problem 181

it remains to show that it satisfies Assumption 1, and Assumption 2, for an
appropriately chosen class of grids.12

The (cl-Definability) and (Extension) assumptions are easier to deal with:
Lemma 5.4.6. Let M be a semibounded (nonlinear) expansion of a group.
Then scl satisfies the (cl-Definability) assumption.

Proof. This is [Ele12, Remark 5.3], which is essentially [Pet09, Corollary 3.7(3)].
The idea is, really, the same as for the proof that acl satisfies (cl-Definability).
Still, intuitively, instead of forcing the number of realisations to be finite, we
force the distance between realisations and parameters to be short. More
precisely, if a ∈ scl(Ab), then there is a formula ϕ(x, y) such that M ⊨ ϕ(a, b)
and ϕ(x, b) is short. We can find a short element k ∈ M such that ϕ(x, b)
has length at most k, and by [Pet09] such a k exists in dcl(∅). Thus, (cl-
Definability) is witnessed by

ϕ(x, y) ∧ “ϕ(M,y) has length at most k′′.

Let’s also get (Extension) out of the way:
Lemma 5.4.7. Let M be a semibounded (nonlinear) expansion of a group.
Then scl satisfies the (Extension) assumption.

Proof. This is essentially [Ele12, Lemma 5.7]. The argument is again a straight-
forward adaptation of the proof of the analogous result for acl.

To prove that scl is weakly locally modular, the strategy that will be followed
is to reduce the problem to Mlin. By Fact 5.2.2 we know that acl is weakly
locally modular in Mlin, so (by the following lemma) it suffices to show that
scl is a localisation (c.f. Definition 2.4.4(1)) of acllin, where acllin denotes the
algebraic closure in the linear reduct of M.
Lemma 5.4.8. Let cl be a pregeometric closure operator on a saturated struc-
ture M satisfying Assumption 1 and let X ⊆ M be a small set.

12Spoiler alert (although it was already spoiled in the introduction): It will be the tall
grids.
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Then, the localisation of cl at X, that is:

clX : A 7→ cl(AX),

also satisfies Assumption 1.

Proof. The only non-trivial condition we need to check is (Weak Local
Modularity). Let A,B ⊆ M be small sets. Throughout the rest of the proof,
we will write |⌣

cl for the independence relation induced by cl and |⌣
clX for

the independence relation induced by clX , the localisation of cl at X. We wish
to show that given small A,B ⊆ M there is a set C ⊆ M such that:

C
clX
|⌣
∅
AB and A

clX
|⌣

cl(AC)∩cl(BC)
B.

By applying (Weak Local Modularity) to the small sets AX = A ∪ X

and BX = B ∪X there is a small set C ⊆ M such that:

C
cl
|⌣
∅

(AX)(BX) and AX
cl
|⌣

cl(AXC)∩cl(BXC)
BX,

We claim that this is the required set C witnessing that clX satisfies (Weak
Local Modularity). Observe that:

A
cl
|⌣
X

B if, and only if A
clX
|⌣
∅
B.

Now, by (Monotonicity) and (Transitivity), since C |⌣
cl
∅ (AX)(BX), it

follows that C |⌣
cl
X
AB, and thus

C
clX
|⌣AB.

Similarly, since cl(AXC) = clX(AC), cl(BXC) = clX(BC), and using (Monotonicity)
again, since

AX
cl
|⌣

cl(AXC)∩cl(BXC)
BX

we have that
AX

cl
|⌣

clX(AC)∩clX(BC)
BX,
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so in particular

A
clX
|⌣

clX(AC)∩clX(BC)
B,

and the result follows.

Thus, it remains to show that scl is a localisation of acllin. Keeping in mind that
this is the goal, let’s take a deeper dive into semibounded o-minimal structures.

5.4.2 The Structure Theorem

First, I’ll need to recall some definitions; these will start easy and culminate
in the definitions of (normalised) k-long cones and almost linear functions.
These notions will be the crucial building blocks in the Structure Theorem
(Theorem 5.4.14). The material in this subsection can be found in [Ele12],
which contains additional discussion.

Again, throughout this subsection, M = ⟨M,<,+, 0, . . . ⟩ will always be an
o-minimal expansion of a group. Recall that a partial endomorphism of
⟨M,<,+, 0⟩ is a map f : (a, b) → M such that:

f(x+ t) − f(x) = f(y + t) − f(y),

for all x, y ∈ (a, b) and all t ∈ M such that x + t, y + t ∈ (a, b). Throughout
this section, Λ will denote the set of all ∅-definable partial endomorphisms of
⟨M,<,+, 0⟩. If v̄ = (v1, . . . , vn) ∈ Λn is an n-tuple of partial endomorphisms,
then dom(v) := ∩ni=1dom(vi). Of course, if t ∈ dom(v̄) then we write v̄t for
(v1t1, . . . , vntn) ∈ Mn. I will usually drop the “overlining” for tuples of partial
endomorphisms.
Definition 5.4.9. We say that v1, . . . , vk ∈ Λn are M-independent if for all
t1, . . . , tk ∈ M with ti ∈ dom(vi) we have that:

k∑
i=1

viti = 0 =⇒ t1 = · · · = tk = 0.

Now, a long cone is defined as follows:
Definition 5.4.10. Let k ∈ N. A k-long cone C ⊆ Mn is a definable set of
the form:

C =
{
b+

k∑
i=1

viti : b ∈ B, ti ∈ Ji

}
,
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where:

• B ⊆ Mn is a short cell.

• v1, . . . , vk ∈ Λn are M -independent.

• J1, . . . , Jk are long intervals of the form (0, ai), for ai ∈ M>0 ∪ ∞, with
Ji ⊆ dom(vi).

A long cone is simply a k-long cone for some k ∈ N.13 We say that the long
cone C is normalised if for all x ∈ C there are unique b ∈ B and ti ∈ Ji such
that x = b+

∑k
i=1 viti. In this case, we write:

C = B +
k∑
i=1

viti|Ji.

A long subcone of a long cone C is a long cone contained in C.

In what follows, all “long cones” are assumed to be normalised, and all “cones”
are assumed to be long. Thus, those words will often be dropped without
further warning. The crucial thing to keep in mind is that the structure
theorem (Theorem 5.4.14, below) gives us a decomposition into normalised
cones.
Fact 5.4.11 ([EM24]). Let C = B+

∑k
i=1 viti|Ji ⊆ Mn be a normalised k-long

cone. If C is A-definable, then so are all of B and J1, . . . , Jk.

Proof (Sketch). By definable choice, we can find an element a ∈ C such that
a ∈ dcl(A). To fix notation, say that a = b+

∑k
i=1 viti.

• Fix i ≤ k and let ai ∈ M be such that Ji = (0, ai). Then:

ai = sup{|s− t| : s, t ∈ M,a+ svi, a+ tvi ∈ C}.

To see this, on the one hand, suppose that s, t ∈ M are such that
a + svi, a + tvi ∈ C, then a + svi = b +

∑
j∈[k]\{i} vjtj + (ti + s)vi ∈ C,

and since C is normalised it follows that ti + s ∈ (0, ai). Similarly
ti + t ∈ (0, ai). Thus, it follows that |s− t| ≤ ai. Conversely, if a ≥ |s− t|
for all s, t ∈ M such that a+ svi, a+ tvi ∈ (0, ai), then arguing similarly
we see that ai ≤ a.

13Observe that a short cell is just a 0-long cone.
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• Similarly, since C is a normalised cone, we have that:

B = {b ∈ Mn : ∃ti ∈ Ji, b+ viti ∈ C},

and since J1, . . . , Jk are A-definable, by the previous item, it follows that
B is A-definable.

Definition 5.4.12. Let C = B+
∑k
i=1 viti|Ji be a k-long cone, and f : C → M

a definable continuous function. We say that f is almost linear with respect to
C if there are:

• partial endomorphisms µ1, . . . , µk ∈ Λ; and

• an extension f̃ of f to the set:{
b+

k∑
i=1

viti : b ∈ B, ti ∈ Ji ∪ {0}
}
,

such that for all b ∈ B and all ti ∈ Ji ∪ {0} we have that:

f̃

(
b+

k∑
i=1

viti

)
= f̃(b) +

k∑
i=1

µiti.

Remark 5.4.13 ([Ele12, Remark 2.12]). In the notation of the definition above,
since C is normalised, f̃ and µ1, . . . , µk are all uniquely determined by f and
C. In particular, f̃ is continuous, so we may identify it with f .

And now, the promised Structure Theorem:
Theorem 5.4.14 (Structure Theorem [Ele12, Theorem 3.8]). Let X ⊆ Mn be
an A-definable set. Then:

1. X is a finite union of A-definable long cones.

2. If X is the graph of an A-definable function f : Y → M , for some
Y ⊂ Mn−1, then there is a finite collection C of A-definable long cones,
whose union is Y and such that f is almost linear with respect to each
long cone in C.

Lemma 5.4.15. Let M be a semibounded nonlinear expansion of a group.
Then, scl is weakly locally modular.
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Proof. By Fact 5.4.5 and Lemma 5.4.8, it suffices to show, for every A ⊆ M

that
acl(AR) = acllin(A acl(R)),

where R = (0, 1).

Let A ⊆ M . If a ∈ acllin(A acl(R)), then a ∈ acl(Adcl(R)) which is, of course,
equal to acl(AR).

Conversely, suppose that a ∈ acl(AR), since acl = dcl in M, we can, without
loss of generality, find a tuple c from A and an R-definable function such that
a = f(c).

By the Structure Theorem, we may assume that there is an R-definable
normalised cone C = B +

∑k
i=1 viti|Ji containing c, and an almost linear, with

respect to C, function f : C → Mn. So:

c = b+
k∑
i=1

viti, (5.1)

for some b ∈ B and ti ∈ Ji, and

a = f(b) +
k∑
i=1

µiti, (5.2)

for some µi ∈ Λn.

By Fact 5.4.11, B is R-definable, hence f(b) ∈ dcl(R). Moreover, by Equa-
tion (5.1), and since cones are normalised, every ti ∈ dcllin(cb) ⊆ dcllin(Adcl(R)).
Hence, by Equation (5.2) we have that a ∈ dcllin(Adcl(R)), which is, of course,
equal to acllin(Adcl(R)), and we are done.

Before moving on to the next lemma, I need to introduce two new terms:

• A tall grid: Fix positive integers r ≥ 2 and d1, . . . , dr ∈ N. Let B =
B1 × · · · ×Br ⊆

∏r
i=1M

di , where Bi ⊆ Mdi , for i ∈ [r], be an r-grid. We
say that B is tall if for all i ∈ [r] and all distinct points x, y ∈ Bi we
have that |x− y| is tall.

• A Ktall
∞ -free relation: We say that E ⊆

∏r
i=1M

di is Ktall
∞ -free if it does

not contain any tall grid B1 × · · · ×Br, such that |Bi| ≥ ω, for all i ∈ [r].
Lemma 5.4.16. Let M be a semibounded expansion of a group, A ⊆ M ,
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and {Xb : b ∈ I} an A-definable family of subsets Xb ⊆
∏r
i=1M

di. Let C
be the class of all finite tall grids in

∏r
i=1 Mdi. Then, there is N ∈ N such

that for every b ∈ I, every i ∈ [r], every ā = (ā1, . . . , ār) ∈ Xb, and every
Y = Y1 × · · · × Yr ∈ C, if (Xb)ā̸=i

is short then |(Xb)ā̸=i
∩ Yi| ≤ N , where

(Xb)ā̸=i
denotes the set {x̄ ∈ Mdi : (ā1, . . . , āi−1, x̄, āi+1, . . . , ār) ∈ Xb}.

In particular, scl and C satisfy (C-Uniform Bounds).

Proof. By the uniform Cell Decomposition theorem (Theorem 2.3.9), for each
i ∈ [r] there is some Ni such that for all b ∈ I and all ā ∈ Xb we have that
(Xb)ā̸=i

is a union of at most Ni open, connected cells. If (Xb)ā̸=i
is short for

some b ∈ I, some i ∈ [r], and some ā ∈ Xb then all these cells are necessarily
short.

We start with the following claim:

Claim 1. No open connected short set can contain two elements whose difference
is tall.

Proof of Claim 1. Indeed, let C be an open connected short set and suppose
that a ∈ C. We claim that:

C = {a′ ∈ C : |a− a′| is short},

from which, of course, the claim follows. Since C is an open connected set, it
suffices to show that {a′ ∈ C : |a− a′| is short} is clopen. Indeed, let a′ ∈ C

and take a short open box B that contains a′. Then for every c ∈ B ∩ C, we
have |a′ − c| short, and hence:

|a− c| = |a− a′ − (a′ − c)| is short ⇐⇒ |a− a′| is short.

Thus, both C and its complement are open, and the result follows. ◀

By the claim above, it follows that if (Xb)ā̸=i
is short for some b ∈ I, some

i ∈ [r], and some ā ∈ Xb then (Xb)ā̸=i
contains at most Ni-many elements

whose differences are tall (one for each of the Ni-many short cells in the
decomposition of (Xb)ā̸=i

). Thus, taking N = max{Ni : i ∈ [r]} gives the
result.

Putting everything together:
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Corollary 5.4.17. Let M = ⟨M,<,+, . . . ⟩ be a saturated o-minimal expansion
of a group. If M is semibounded and nonlinear, then for every parameter-
definable family {Eb : b ∈ I} of partitioned r-ary relations, where:

Eb ⊆
∏
i∈[r]

Mdi

there is some α ∈ R>0, such that: For every b ∈ I, if Eb is Ktall
∞ -free, then for

every tall finite grid B ⊆
∏
i∈[r]M

di, we have

|Eb ∩B| ≤ αδrr−1(B).

Proof. We have spent the last few pages proving that:

1. scl satisfies Assumption 1 (this was Lemmas 5.4.6, 5.4.7 and 5.4.15). It
is also clear by the definitions that if a relation E is Ktall

∞ -free, then it is
Kscl

∞ -free (as the difference between any two scl-independent tuples must
be tall).

2. scl together with the class C of all finite tall grids satisfy Assumption 2
(this was Lemma 5.4.16).

Thus, the result is an immediate application of Corollary 5.3.6.

5.4.3 Semibounded Szemerédi-Trotter

I’ve already mentioned the Szemerédi-Trotter theorem in the introduction to
this chapter. In this subsection, I will discuss the “easy” part of this theorem,
namely the lower bound, which tells us that for arbitrarily large n ∈ N there is
an arrangement of n points and n lines on the plane which have at least n

4
3

incidences. First, let me introduce some useful terminology:

Fix N ∈ M>0. I will define the following terms (which will also appear in
Section 5.5):

• N -distant grid: Fix positive integers r ≥ 2 and d1, . . . , dr ∈ N. Let
B = B1 × · · · × Br ⊆

∏r
i=1M

di , where Bi ⊆ Γdi , for i ∈ [r] be an
r-grid. We say that B is N -distant if for all i ∈ [r] and all distinct points
x, y ∈ Bi we have that |x− y| > N .

• KN
∞-free relation: We say that E is KN

∞-free if it does not contain any
N -distant grid B1 × · · · ×Br such that |Bi| ≥ ω, for all i ∈ [r].
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Proposition 5.4.18 (Semibounded Szemerédi-Trotter). Let M = ⟨M,<

,+, . . . ⟩ be an o-minimal expansion of an ordered group. Let F ⊆ M be an
open interval and suppose that there is a parameter-definable real closed field
on F whose order agrees with <. Let I ⊆ F 2 × F 2 be the bipartite relation
given by:

I(x0, y0; a, b) if, and only if “(x0, y0) lies on the line y = ax+ b′′.

For all N ∈ F>0 there is an N -distant grid B ⊆ F 2 × F 2 such that:

|I ∩B| = Ω(|B|4/3).

Proof. The proof is a minor adaptation of the usual proof of the lower bound
from the Szemerédi-Trotter theorem. We follow the proof from [Mat13, Propos-
ition 4.2.1]. The proof from [Mat13] lets us, for arbitrarily large n, construct
n points and n lines on the real plane, with at least 1

4n
4/3 incidences. In our

context, this just says that there are arbitrarily large grids B ⊆ F 2 × F 2, such
that

|I ∩B| ≥ 1
4n

4/3.

We claim that with just a small tweak in the proof, we can always find such
grids which are moreover N -distant, for any N < |F |. To this end, choose
r, s ∈ F>0 such that r, s > N .

The construction from [Mat13] is as follows:

P =
{

(x, y) : x ∈ {0, 1, . . . , k − 1, }, y ∈ {0, 1, . . . , 4k2 − 1}
}

and
L =

{
(a, b) : a ∈ {0, 1, . . . , 2k − 1}, b ∈ {0, 1, . . . , 2k2 − 1}

}
.
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Figure 5.2: Szemerédi-Trotter lower bound configuration (k = 10).

We define:

P ′ = P =
{

(x, y) : x ∈ {0, r, . . . , (k − 1)r, }, y ∈ {0, rs, . . . , (4k2 − 1)rs}
}

and

L′ =
{

(a, b) : a ∈ {0, s, . . . , (2k − 1)s}, b ∈ {0, r, . . . , (2k2 − 1)rs}
}
.

Clearly, for any x, y, a, b ∈ F we have that

y = ax+ b ⇐⇒ yrs = (ax+ b)sr = (as)(xr) + brs

that is,
I(x, y, a, b) ⇐⇒ I(xr, ysr, as, brs),

and since the map (x, y, a, b) 7→ (xr, ysr, as, brs) is a bijection, we get

|E ∩ (P × L)| = |E ∩ (P ′ × L′)|.

It remains to check that P ′ and L′ are N -distant.

To this end, let (x, y), (x′, y′) ∈ P ′ be distinct points. If x ̸= x′ then x = k1r,
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x′ = k2r for some integers k1, k2, and thus |x−x′| = |k1 −k2|r > N . The same
argument, with rs in place of r, works when y ̸= y′, and the check is analogous
for L′.

5.4.4 The Main Semibounded Theorem

I have now gathered all the ingredients to deduce the main theorem of this
section; all that remains is to put them together.
Theorem 5.4.19. Let M = ⟨M,<,+, . . . ⟩ be a saturated o-minimal expansion
of a group. Then, the following are equivalent:

(1) M is semibounded.

(2) There is some N ∈ M>0 such that for every parameter-definable family
of E = {Eb : b ∈ I} of partitioned r-ary relations, where:

Eb ⊆
∏
i∈[r]

Mdi

there is some α ∈ R>0, such that: For every b ∈ I and k ∈ N, if Eb is
KN

∞-free, then for every N -distant finite grid B ⊆
∏
i∈[r]M

di, we have

|Eb ∩B| ≤ αδrr−1(B).

(3) There is some N ∈ M>0 such that for every parameter-definable E ⊆
Md1 × Md2 there is some positive real number β < 4

3 such that if E is
KN

∞-free, then for every N -distant finite grid B ⊆ Md1 ×Md2, we have

|E ∩B| ≤ α|B|β.

(4) There is no field parameter-definable on the whole of M .

Proof.

• (1) =⇒ (2): If M is non-linear then this is precisely Corollary 5.4.17,
with N ∈ M>0 any tall element. If M is linear then this follows (for any
N ∈ M>0) by [Bas+21, Corollary 5.11] (see Section 5.1).

• (2) =⇒ (3): To see this, observe that when r = 2 we have that r − 1 = 1
and 1 < 4

3 .
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• (3) =⇒ (4): This follows from Proposition 5.4.18. Indeed, arguing by
contraposition, if there were a parameter-definable field F on the whole
of M , then using the point-line incidence relation on F we would be able
to definably break the 4

3 bounds on the class of all N -distant grids, for
any N ∈ M , with a K2,2-free (so, in particular, KN

∞-free) relation.

• (4) =⇒ (1): This is precisely Fact 2.7.13(2).

5.5 Zarankiewicz’s Problem in Presburger
Arithmetic

I’ll now change the setting and move from (semibounded) o-minimal structures
to models of Presburger arithmetic. It would perhaps be useful for the reader
to look back to Chapter 2 to remind themselves of the notation and main
background results of Presburger arithmetic that will be used throughout this
section.

For the remainder of this section, Γ = ⟨Γ, <,+⟩ will always denote a model
of Presburger arithmetic, TPres = Th(⟨Z, <,+⟩), in the natural Presburger
language LPres := {<,+}.

The main result of this section is Theorem Q. In the terminology discussed in
Subsection 5.2.2, I will actually present the proof of the following:
Theorem. Let Γ ⊨ TPres. Then:

(1) [Theorem 5.5.38] Γ has linear Zarankiewicz bounds.

(2) [Corollary 5.5.39] If Γ is ℵ1-saturated then Γ has strong linear Za-
rankiewicz bounds.

This section is essentially entirely devoted to the proof of the theorem above.

This subsection is structured as follows:

(a) Since (2) follows easily from (1) and saturation, the main focus is on
proving (1).

(b) In Subsection 5.5.1, I will present how to deduce from Corollary 5.3.6 a
version of (2), for Z-distant grids. This is Theorem 5.5.1.
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(c) I will then present a reduction of (1) from Theorem 5.5.1, by first introdu-
cing a notion of N -internal points, for N ∈ N, (in Subsection 5.5.2) and
proving that for all N ∈ N every Presburger cell (see Definition 2.7.16)
has an N -internal point. By considering dilations of boxes around N -
internal points (for all N ∈ N), one can then produce N -distant grids (as
in Section 5.4) with the same grid configuration (see Definition 5.5.24)
as any given grid. This is enough to build an “increasing sequence of
counterexamples”, and deduce (1) from Theorem 5.5.1.

5.5.1 Saturated models of Presburger Arithmetic

I’ll first state the main result of this subsection and explain the new terminology
after the statement.
Theorem 5.5.1. Let Γ ⊨ TPres be ℵ1-saturated. Let {Eb : b ∈ I} be a
definable family, where Eb ⊆

∏r
i=1 Γdi, for fixed positive integers r ≥ 2 and

d1, . . . , dr ∈ N, for all b ∈ I. Then, there is some α ∈ R>0 such that for all
b ∈ I, if Eb is KZ

∞-free, then for any finite Z-distant grid B ⊆
∏r
i=1 Γdi we

have that:
|Eb ∩B| ≤ αδrr−1(|B|).

The new terms that appeared in the statement above are, of course, the
following:

• A Z-distant grid: Fix positive integers r ≥ 2 and d1, . . . , dr ∈ N. Let
B = B1 × · · · ×Br ⊆

∏r
i=1 Γdi , where Bi ⊆ Γdi , for i ∈ [r] be an r-grid.

We say that B is Z-distant if for all i ∈ [r] and all distinct points x, y ∈ Bi

we have that |x− y| > Z.

• A KZ
∞-free relation: We say that E (as in the statement of Theorem 5.5.1)

is KZ
∞-free if it does not contain any Z-distant grid B1 × · · · ×Br such

that |Bi| ≥ ω, for all i ∈ [r].
Lemma 5.5.2. Let {Xb : b ∈ I} be an A-definable family of subsets Xb ⊆∏r
i=1 Γdi, and C the class of all finite Z-distant grids in

∏r
i=1 Γdi. Then,

there is N ∈ N such that for every b ∈ I, every i ∈ [r], every Y = Y1 ×
· · · × Yr ∈ C and every ā = (ā1, . . . , ār) ∈ πi(Xb), if (Xb)ā̸=i

is finite then
then |(Xb)ā̸=i

∩ Yi| ≤ N , where, as before (Xb)ā̸=i
denotes the set {x̄ ∈ Γdi :

(ā1, . . . , āi−1, x̄, āi+1, . . . , ār) ∈ Xb}.

In particular, acl and C satisfy (C-Uniform Bounds).
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To prove the lemma above, a version of Theorem 2.7.17 for definable families
is needed (and given this, we can argue similarly to Lemma 5.4.16). This is
not handled explicitly in [Clu03], and with the definition of cells considered in
[Clu03] (i.e. Definition 2.7.16), it is not possible to obtain such a version.

To obtain a uniform statement a slightly more general version of Presburger
cells needs to be introduced. This is done below. Intuitively, the new definition
allows for (i1, . . . , in, 1)-cells to be finite (i.e. Presburger intervals are no longer
necessarily infinite, and (i1, . . . , in, 1)-cells don’t need to have arbitrarily large
fibres). More precisely, Definition 2.7.16 is adapted as follows:
Definition 5.5.3 (Generalised Presburger Cells). A generalised Presburger
cell is defined exactly as in Definition 2.7.16, with the following adjustments:

• (1)-cells are allowed to be finite sets of the form:

{x ∈ Γ : α □1 x □2 β, x ≡ c (mod n)},

where □i are either ≤ or no condition, and n, c ∈ [0, n) are fixed integers.

• In the construction of (i1, . . . , im, 1)-cells, from Definition 2.7.16, the
Unbounded Fibres condition is dropped.

Remark 5.5.4. In [Clu03], one of the uses of Presburger cells is as a character-
isation of the dimension of definable sets (see [Clu03, Corollary 1]). This is no
longer true if one considers generalised Presburger cells.

Since Presburger cells are, by definition, generalised Presburger cells, it is clear
that Theorem 2.7.17 holds after replacing “Presburger cells” with “general-
ised Presburger cells”. Intuitively, the new cell decomposition is obtained by
grouping (i1, . . . , in, 0)-cells together, when appropriate.

The advantage of generalised Presburger cells is that fibres above elements
(in their projections) remain generalised Presburger cells. This fact and an
argument analogous to the situation in o-minimal structures (see, e.g. [Dri98,
Section 3.3]) will provide a uniform cell-decomposition result for definable
families.

First, some notation:
Notation 5.5.5. Given a set A ⊆ Γm+n, we denote by π̂m(A) the projection of
A onto the first m coordinates. For b ∈ π̂m(A) we write Ab for the fibre of A
above b, that is:

Ab := {a ∈ Γn : (b, a) ∈ A}.
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In the notation just introduced, the following is a direct adaptation of [Dri98,
Proposition III.3.5]:
Lemma 5.5.6.

(1) Let C ⊆ Γm+n be a generalised Presburger cell, and a ∈ π̂m(C). Then
Ca is a cell in Γn.

(2) Let D be a decomposition of Γm+n into generalised Presburger cells and
a ∈ Γm. Then, the collection:

Dα := {Ca : C ∈ D such that a ∈ π̂m(C)}

is a decomposition of Γn into generalised Presburger cells.

Proof. As noted in [Dri98], (2) follows from (1). For the proof of (1), we
argue by induction on n. For n = 1, the result follows from the definition of
generalised Presburger cells. Indeed, suppose that C ⊆ Γm+1 is a generalised
Presburger cell and a ∈ π̂m(C). We must consider two cases:

• Case 1. Suppose that C is a generalised (i1, . . . , im, 0)-cell. By definition,
it is of the form:

{(x, α(x)) : x ∈ D},

for a linear function α : D → Γ and a generalised Presburger cell D ⊆ Γm.
If a ∈ π̂m(C), then Ca = (a, α(a)) and this is a (0)-cell.

• Suppose that C is a generalised (i1, . . . , im, 1)-cell. By definition, it is of
the form:

{(x, y) : x ∈ D,α(x) < y < β(x), y ≡ t (mod r)},

for linear functions α, β : D → Γ, a generalised Presburger cell D ⊆ Γm,
and positive integers r ∈ Z>0 and t ∈ {0, . . . , r − 1}. If a ∈ π̂m(C), then:

Ca = {y : α(a) < y < β(a), y ≡ t (mod r)},

which is a generalised (1)-Presburger cell.

Now, for the inductive step. Suppose that the result holds for generalised
Presburger cells D ⊆ Γm+n, and let C ⊆ Γm+(n+1) be a generalised Presburger
cell. Consider the projection map π1 : Γm+(n+1) → Γm+n. In this notation,
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π̂m◦π̂1 : Γm+(n+1) → Γm is precisely the projection onto the first m coordinates.
Again, we consider two cases:

• Case 1. If C is a generalised (i1, . . . , im, im+1, . . . , im+n, 0)-cell, say:

C = {(x, α(x)) : x ∈ D},

for a linear function α : D → Γ and a generalised (i1, . . . , im+n)-cell
D ⊆ Γm+n, for any a ∈ π̂m(C) we have that:

Ca = {(x, αa(x)) : x ∈ Da},

where Da is a generalised Presburger cell, by induction and αa(x) =
α(a, x).

• Case 1. If C is a generalised (i1, . . . , im, im+1, . . . , im+n, 0)-cell, say of
the form:

{(x, y) : x ∈ D,α(x) < y < β(x), y ≡ t (mod r)},

for linear functions α, β : D → Γ, a generalised Presburger cell D ⊆ Γm+n,
and positive integers r ∈ Z>0 and t ∈ {0, . . . , r − 1}. If a ∈ π̂m(C), then:

Ca = {(x, y) : x ∈ Da, αa(x) < y < βa(x), y ≡ t (mod r)},

where Da is a generalised Presburger cell, by induction and αa(x) =
α(a, x), βa(x) = β(a, x).

The following corollary can now be deduced following word-for-word the proof
of [Dri98, Corollary III.3.6]:
Corollary 5.5.7. Let {Eb : b ∈ I} be a definable family. Then, there is some
NE ∈ N such that for all b ∈ I the set Eb has a partition into at most NE

generalised Presburger cells.

Proof of Lemma 5.5.2. Let {Xb : b ∈ I} be an A-definable family of subsets
Xb ⊆

∏r
i=1 Γdi . By the previous corollary, for each i ∈ [r] there is some Ni ∈ N

such that for all b ∈ I and all ā = (ā1, . . . , ār) ∈ Xb the set (Xb)ā̸=i
has a

partition into at most Ni generalised Presburger cells. Suppose that for some
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b ∈ I we know that (Xb)ā̸=i
is finite. Then, (Xb)ā̸=i

is contained in at most Ni

copies of Zdi , for otherwise it would necessarily be infinite, since if a generalised
Presburger cell contains two points whose distance is greater than Z, then
that cell must be infinite. Thus for any Z-distant set Y ⊆ Γdi we have that
|(Xb)ā̸=i

∩Y | ≤ Ni, and the result follows by taking N := max{Ni : i ∈ [r]}.

Proof of Theorem 5.5.1. To deduce Theorem 5.5.1 from Corollary 5.3.6 it suf-
fices to show that:

(1) acl is weakly locally modular in TPres.

(2) Any relation E that is KZ
∞-free is Kacl

∞ -free.

(3) acl together with the class C of finite Z-distant grids satisfy (C-Uniform
Bounds).

This is the last instance in this section where I will be discussing generalised
Presburger cells. From now on, the word “cell” (or “Presburger cell”) will refer
to a cell in the sense of Definition 2.7.16.

For (1), we adapt the argument of [BV10, Proposition 6.9], where the authors
show that linear o-minimal structures are weakly locally modular. Our argu-
ment is essentially the argument given there, with a few differences that will be
pointed out. First, we need the following easy fact about definable functions
in Presburger arithmetic:

Fact 5.5.8. Let a, b ∈ Γ and suppose that b ∈ dcl(a) \ dcl(∅). Then, there is
an ∅-definable linear function f defined on a Presburger interval C around a
such that f(a) = b, and f is strictly monotone on C.

Proof of (1). First, we remark that in [BV10, Proposition 6.9], the authors
prove the following:

(†) For any singletons a, b and tuple c from a saturated model M ⊨ T if
a ∈ acl(b, c) then there exists a tuple u in M and a singleton d ∈ acl(c, u)
such that u |⌣ abc and a ∈ acl(b, d, u).

In [BV10, Theorem 4.3], the authors show that if T is a geometric theory, then
5.5.1 is equivalent to weak local modularity. It is an easy observation that the
proof of [BV10, Theorem 4.3] does not, in fact, require the assumption that
T is geometric, and it suffices to assume that T is pregeometric.14 Thus, for

14We thank A. Berenstein and E. Vassiliev for confirming this.
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Presburger arithmetic, (†) suffices to prove (1).

The proof of (†) is word-for-word the same as in [BV10, Proposition 6.9], after
replacing the use of “continuity” in the o-minimal context, with “linearity” in
models of Presburger arithmetic, and the group interval (b1, b2) with Γ, and
using Fact 5.5.8 where appropriate. The use of [BV10, Proposition 6.8] is
replaced by the fact that Γ is P -independent for any lovely pair15 (Γ, P ), which
is trivial.

For (2), one need only note that every acl-independent grid is Z-distant.
Indeed, let B = B1 × · · · ×Br be an r-grid with each Bi ⊆ Γdi infinite and acl-
independent. If x = (x1, . . . , xdi

), y = (y1, . . . , ydi
) ∈ Bi are acl-independent,

then they cannot be in the same copy of Z, for otherwise there would be a
0-definable element z = (z1, . . . , zdi

), such that x+ z = y, and thus y ∈ acl(x),
so B is Z-distant.

Finally, (3) was proved in Lemma 5.5.2.

The remainder of this section is devoted to deducing Theorem Q from The-
orem 5.5.1.

5.5.2 The Standard Model

As I discussed previously the remainder of this section will be dedicated
to deducing Theorem Q, which asserts that any model of TPres has linear
Zarankiewicz bounds (meaning, for the class of all finite grids – not necessarily
Z-distant) from Theorem 5.5.1. To this end, I will start working in an arbitrary
model Γ ⊨ TPres, and at some point (which I will make clear) I will switch
to working in the standard model, that is ⟨Z, <,+, 0⟩. Since the statement of
Theorem Q is first-order, it will suffice to develop some of the machinery only
for ⟨Z, <,+⟩.

Internal Points

Let C ⊆ Γn be a Presburger cell, and N ∈ N. In this subsection, I will
first define what it means for a point x ∈ C to be an N-internal point of
C (Definition 5.5.12), for N ∈ N. The main result of this subsection is that

15Lovely pairs of models of Presburger arithmetic are an interesting topic, but since their
only relevance in this thesis is this one instance, I will omit the definition and direct the
reader to [BV10] for all relevant discussion.
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N-internal points exist, for every Presburger cell C ⊆ Γn, and every N ∈ N
(Proposition 5.5.22). This is a key ingredient in the proof of the main result of
the Dilations subsubsection.

To get started, I will discuss a notion of cell description for a Presburger cell
C ⊆ Γn. To this end, I will need to fix some notation.

Congruences of cells Given an (i1, . . . , in)-cell C ⊆ Γn it is straightforward
to construct two sequences:

r(C) = (r1, . . . , rn), e(C) = (e1, . . . , en),

where ri ∈ N>0 and ei ∈ {0, . . . , ri − 1} for i ∈ {1, . . . , n}, are such that:

(⋆) For all i ∈ {1, . . . , n} we have that πi(C) ⊆ ei + riZ and πi(C) contains
only consecutive elements of ei + riZ. That is, for all x ∈ πi(C) there is
some y ∈ πi(C) such that |x− y| = ri.

The details of the construction of r(C) and e(C) are left to the reader. Given
a cell C ⊆ Γn with r(C) = (r1, . . . , rn) we refer to ri as the i-th congruence of
C.

Cell descriptions Given an (i1, . . . , in)-cell C ⊆ Γn a cell description of C
is a triple d = (r, e, ᾱ), where:

1. r = r(C) = (r1, . . . , rn).

2. e = e(C) = (e1, . . . , en)

3. α = (αik : k ∈ Z(C), k ≥ 2) consists of linear maps of the form:

αik(x1, . . . , xik−1) =
ik−1∑
j=1

aikj

(
xj − ej
rj

)
+ γik ,

such that:
π̂ik(C) = {(x, αik(x)) : x ∈ π̂ik−1(C)}.

Given an (i1, . . . , in)-cell C ⊆ Γn, we write D(C) for the set of all cell descrip-
tions of C. Observe that 1-dimensional cells have a unique cell description.

Given a cell description d = (r, e, ᾱ) of a cell C ⊆ Γn and m ∈ {1, . . . , n}
we write dm for the m-dimensional cell description of π̂m(C) given by the
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restriction of d, that is:

dm = (r ↾m, e ↾m, ᾱ ↾ik≤m).

Let’s now define N -boxes relative to a given Presburger cell C, around a point
x ∈ C.

Boxes relative to cells around points Let d = (r, e, ᾱ) be a cell description
of an (i1, . . . , in)-cell C ⊆ Γn. We say that x ∈ Γn satisfies d if:

• xi ≡ ei (mod ri) for all i ∈ {1, . . . , n}.

• πik(x) = αik(π̂ik−1(x)) for all k ∈ Z(C) such that k ≥ 2.

The next remark is clear:
Remark 5.5.9. Let C ⊆ Γn be a cell. For any d ∈ D(C) and any x ∈ C we have
that x satisfies d.
Definition 5.5.10. Let C ⊆ Γn be an (i1, . . . , in)-cell and d = (r, e, ᾱ) ∈ D(C)
be a cell description of C. Given a point x ∈ Γn which satisfies d, and a natural
number N ∈ N we define the N-box of type d around x, denoted BN (x, d),
recursively, as follows:

Base case: If C ⊆ Γn is an (i1)-cell then BN (x, d) is defined as follows:

• If i1 = 0 then BN (x, d) := {x}.

• If i1 = 1 then BN (x, d) := x+ r1[−N,N ].

Inductive part: Suppose we have defined N -boxes for all cells in Γn−1. Then
BN (x, d) is defined as follows:

• If C is an (i1, . . . , in−1, 0)-cell then:

BN (x, d) := {(x0, αn(x0)) : x0 ∈ BN (π̂n−1(x), dn−1)}.

• If C is an (i1, . . . , in−1, 1)-cell then:

BN (x, d) := BN (π̂n−1(x), dn−1) × (πn(x) + rn[−N,N ]).

The following is not too hard to verify:
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Remark 5.5.11. Let C ⊆ Γn be an (i1, . . . , in)-cell, d ∈ D(C), and N ∈ N. If x ∈
Γn satisfies d, then, for any k ∈ Z(C), k > 1, and any x0 ∈ BN (π̂ik−1(x), dik−1)
we have that αik(x0) is a well-defined expression. In particular, the expression
“αn(x0)” in (i1, . . . , in−1, 0)-case in the inductive part of Definition 5.5.10, above,
is well-defined.

When the cell description of C we are working with is understood, I will simply
write BN (x,C) rather than BN (x, d).

I shall now give the key definition of this section:
Definition 5.5.12. Let C ⊆ Γn be a cell and x ∈ C. Given N ∈ N, we say
that x ∈ C is an N -internal point of C (or simply that x is N -internal in C)
if BN (x,C) ⊆ C.
Remark 5.5.13. An elementary inductive argument shows that the definition
of N -internal points does not depend on the choice of cell description for C
that we pick.

In light of the previous remark, and to simplify the exposition, I will adapt the
following convention.

Convention. In the sequel, every Presburger cell C ⊆ Γn will come with an
arbitrarily chosen and fixed cell description d ∈ D(C). Sometimes, abusing
terminology, I will refer to this cell description as the cell description of C,
even though it is not unique. The choice of cell description does not affect any
parts of the arguments. When taking projections, the convention is that they
will be the projection of the fixed cell description. It is also always implicitly
assumed that whenever we write BN (x,C), for a point x ∈ Γn, not necessarily
in C, then x satisfies the cell description of C.
Definition 5.5.14. Let C ⊆ Γn be a cell and x ∈ C. Given y ∈ Γn and N ∈ N
we say that y is within N from x (relative to C) if y ∈ BN (x,C).

In both Definition 5.5.12 and Definition 5.5.14 I will omit reference to C when
it is clear from the context.

Now that I have introduced all the required terminology, in the remainder of
this subsection, I will build towards Proposition 5.5.22. This task is divided
into three smaller subsubsections:

• Preparatory Lemmas, where I will present the proof of two small geometric
results, used in the sequel.
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• Intersections of would-be fibres, where I will present how to almost find
N -internal points.

• Existence of N -internal points, where I will put everything together.

So let’s get started.

Preparatory Lemmas

Lemma 5.5.15. Let C ⊆ Γn be an (i1, . . . , in)-cell. Fix N ∈ N and let y ∈ Γn

be a point satisfying the cell description of C. Then, there is some M ∈ N such
that:

BN (y, C) ⊆ y + r(C)[−M,M ]n.

Proof. We prove this by induction on n. It is immediate for (0)-cells and
(1)-cells, and in the inductive step it is by definition and inductive hypothesis
when C is an (i1, . . . , in−1, 1)-cell.

In the case where C is an (i1, . . . , in−1, 0)-cell, by definition, we have that:

BN (y, C) = {(x0, α(x0)) : x0 ∈ BN (π(y), π̂n−1(C))}.

By inductive hypothesis there is some M0 ∈ N such that:

π(BN (y, d)) = BN (π(y), π̂n−1(C)) ⊆ π(y) + r(π̂n−1(C))[−M0,M0]n−1.

Let M = max{M0,M1}, where

M1 = | max(πn(BN (π(y), π̂n−1(C))))| + | min(πn(BN (π(y), π̂n−1(C))))|

Then:
BN (x, π̂n−1(C)) ⊆ x+ r(C)[−M,M ]n,

as required.

And for my next trick:
Lemma 5.5.16. Let C ⊆ Γn be a cell and α : C → Γ be a linear function on
C. For all T ∈ N there is a function M : N → N such that for all x ∈ C we
have that:

max{α(y) : y ∈ BT (x,C)} = α(x) +M(T ).

Moreover, if α is non-constant on C, then M is strictly increasing in T .



Zarankiewicz’s Problem in Presburger Arithmetic 203

Proof. We prove this by induction on n. The base case is immediate from the
definitions of BT (x,C) ⊆ Γ and the linearity of α.

For the inductive step, assume that:

(IH): For all cells D ⊆ Γn−1 and all linear functions β : Γn−1 → Γ defined on
D we have that: For all T ∈ N there is a function M : N → N such that
for all x0 ∈ D we have that:

max{β(y) : y ∈ BT (x0, D)} = β(x0) +M(T ).

Moreover, if β is non-constant on D, then M is strictly increasing.

We now consider two cases. To simplify notation, given a cell C ⊆ Γn we shall
write π(C) for the cell π̂n−1(C) ⊆ Γn−1.

Case 1. Suppose that C is an (i1, . . . , in−1, 0)-cell. Then C is of the form
{(y, γ(y)) : y ∈ π(C)}, for some linear map γ : Γn−1 → Γ. By definition,
BT (x,C) = {(y0, γ(y0)) : y0 ∈ BT (π(x), π(C))}, so:

max{α(y) : y ∈ BT (x,C)} = max{α((y0, γ(y0))) : y0 ∈ BT (π(x), π(C))}.

By applying (IH) to π(C) and the linear function α′ : Γn−1 → Γ given by
α′ : y0 7→ α((y0, γ(y0))), the existence of M(T ) follows. For the moreover part,
observe that if α is non-constant on C, then α′ is non-constant on π(C), and
we are done by (IH).

Case 2. Suppose that C is an (i1, . . . , in−2, 1)-cell. To fix notation, let α(x) =∑n
i=1 ai

(
xi−ei
ri

)
+ c, and let α′ : Γn−1 → Γ be the linear function obtained by

restricting α to the first (n−1)-coordinates, that is α′(y) =
∑n−1
i=1 ai

(
yi−ei
ri

)
+c.

By (IH) there is some M1 ∈ N such that:

max{α′(y) : y ∈ BT (π(x), π(C))} = α′(π(x)) +M1

By the base case, for (1)-cells, there is some M2 ∈ N such that:

max{α′′(x) : x ∈ πn(x) + rn[−T, T ]} = α′′(x) +M2,

where α′′ : Γ → Γ is the linear function α′′ : x 7→ an
(
x−en
rn

)
. Then, taking

M = M1 +M2 gives the first part of the result. For the moreover part, if α
is non-constant on C then at least one of α′ and α′′ must be non-constant on
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C. If α′ is non-constant then the fact that M(T ) is strictly increasing follows
immediately from (IH), while if α′ is constant but α′′ is not, it follows from
linearity of α′′.

Intersections of would-be fibres

For the remainder of this subsubsection fix an (i1, . . . , in−1, 1)-cell C of the
form:

C = {(x, xn) : x ∈ π(C), α(x) < xn < β(x), xn ≡ en (mod rn)},

where:

• x = (x1, . . . , xn−1),

• α(x), β(x) are linear functions,

• π(C) := π̂n−1(C) ⊆ Γn−1 is an (i1, . . . , in−1)-cell,

• rn is a positive integer and en ∈ {0, . . . , rn − 1}.

Let’s also fix here the notation for the linear functions α, β : Γn−1 → Γ:

α(x) =
n−1∑
i=1

ai

(
xi − ei
ri

)
+ cα, and β(x) =

n−1∑
i=1

bi

(
xi − ei
ri

)
+ cβ.

For simplicity, throughout this subsection, I will work under the assumption
that ai, bi ̸= 0, and ai ̸= bi for all i ∈ {1, . . . , n − 1}. This assumption can
be made without loss of generality (all the results still hold without this
assumption, with proofs essentially identical to the ones we give when ai or bi
are equal to 0 or when ai = bi, but we need to be careful in our calculations,
to exclude terms that evaluate to 0 from denominators of fractions).

Let r(C) = (r1, . . . , rn) and e(C) = (e1, . . . , en). Given x ∈ Γn−1 such that
xi ≡ ei (mod ri) we write wCx for the following set of points:

wCx := {y ∈ Γ : α(x) < y < β(x), xn ≡ en (mod rn)}.

Remark 5.5.17. If x ∈ π(C) then wCx = Cx, where Cx denotes the fibre of C
above x.
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By definition, wCx is the fibre above x in the set:

wC =
{

(x, y) : x ∈
n−1∏
i=1

(ei + riZ), α(x) < y < β(x), y ≡ en (mod rn)
}

If x ̸∈ π(C), but xi ≡ ei (mod ri) for all i ∈ {1, . . . , n − 1}, then we refer to
wCx as the would-be fibre of C above x.

Let y ∈ Γn−1 be a point satisfying the cell description of π(C). We write
SN (y, C) for the following set of points:

SN (y, C) :=
⋂

z∈BN (y,π(C))
wCz.

The following remark is immediate, from the definitions:
Remark 5.5.18. Fix N ∈ N. Given x = (x1, . . . , xn−1) ∈ Γn−1 such that
xi ≡ di (mod ri) for all i ∈ {1, . . . , n− 1} then for all y ∈ r(π(C))[−M,M ]n−1,
where M ∈ N, we have that xi ≡ ei (mod ri). Thus wCy is well-defined,
in the sense that the expressions ‘α(y)’ and ‘β(y)’ are meaningful, for all
y ∈ r(π(C))[−M,M ]n−1, for M ∈ N, and so, in particular, also, for all
y ∈ BN (x, π(C)).

Intuitively, SN (x,C) is the intersection of the would-be fibres of C, ranging
over all points in the N -box of type π(C) around x. The situation is clear
when x is an N -internal point of π(C). In particular, we have the following
easy lemma:
Lemma 5.5.19. Suppose that x ∈ π(C) is N-internal and |SN (x,C)| > 2N .
Then, there is an N -internal point in C.

Proof. To see this, observe that when x is an N -internal point of π(C), by
definition BN (x, π(C)) ⊆ π(C). Thus:

SN (x,C) =
⋂

y∈BN (x,π(C))
Cy.

Since |SN (x,C)| > 2N , we must have that there exists some y0 ∈ Cx such that
y0 + rn[−N,N ] ⊆ SN (x,C). In particular, we get that:

BN (x, π(C)) × (y0 + rn[−N,N ]) = BN ((x, y0), C) ⊆ C,

that is, (x, y0) is N -internal.
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Lemma 5.5.20. Let C ⊆ Γn be an (i1, . . . , in−1, 1)-cell, as above. For all
N ∈ N there is some NC ∈ Z such that for all y ∈ Γn−1 satisfying the cell
description of π(C) we have that:

|SN (y, C)| ≥ |wCy| +NC

Proof. In the notation of the statement, above, let M ∈ N be such that
BN (y, π̂n−1(C)) ⊆ y+ r(π(C))[−M,M ]n−1, as in Lemma 5.5.15. Then, clearly:

SN (y, C) ⊇
⋂

u∈r[−M,M ]
wCy+u,

where, to simplify notation, r = r(C).

Now, by linearity, we have that the size of the intersection on the right-hand side,
above, depends only on the would-be fibres in the “corners” of y+r[−M,M ]n−1.
More precisely:

⋂
u∈r[−M,M ]

wCy+u =
⋂

u∈r{−M,M}n−1

wCy+u.

For any u ∈ r{−M,M}n−1, by definition, we have that wCy+u is simply:

(α (y + u) , β (y + u)) ∩ (en + rnZ).

In particular:

⋂
u∈r{−M,M}n−1

wCy+u = {x ∈ Γ : αmax < x < βmin, x ≡ en (mod rn)}

where
αmax = max({α(y + u) : u ∈ r{−M,M}n−1})

and
βmin = min({β(y + u) : u ∈ r{−M,M}n−1}).

Straightforward calculations show that:

αmax = α(y + ua), and βmin = β(y + ub),
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where for all i ∈ {1, . . . , n− 1}:

(ua)i =

M if ai > 0;

−M if ai < 0
, and (ub)i =

M if bi < 0;

−M if bi > 0
.

Let N ′
C denote the following quantity:

N ′
C := M

∑
i∈Nβ

bi −
∑
i∈Pβ

bi

+M

∑
i∈Nα

ai −
∑
i∈Pα

ai

 ,
where Pα = {i ∈ [n− 1] : ai > 0}, Nα = {i ∈ [n− 1] : ai < 0}, and Pβ, Nβ are
defined similarly.

It is not hard to see, by unfolding the definitions, that:

βmin − αmax =
(
n−1∑
i=1

(
yi − ei
ri

)
(bi − ai) + cβ − cα

)
+N ′

C .

Since, by definition:

wCy =
{
y′ ∈ en + rnZ : α(πn−1(y)) < y′ < β(πn−1(y))

}
it follows that:

|wCy| =
∣∣∣∣∣
{
y′ ∈ Z :

n−1∑
i=1

ai

(
yi − ei
ri

)
+ cα < y′ <

n−1∑
i=1

bi

(
yi − ei
ri

)
+ cβ

}
∩ (en + rnZ)

∣∣∣∣∣ ,
in particular:

|wCy| ≥
⌊

1
rn

(
n−1∑
i=1

(
yi − ei
ri

)
(bi − ai) + cβ − cα

)⌋
,

we have that:

∣∣∣∣ ⋂
u∈r{−M,M}n−1

wCy+u

∣∣∣∣ > |Cy| +
⌊
N ′
C

rn

⌋
.

The lemma then follows from the equation above, by taking NC to be
⌊
N ′

C
rn

⌋
.
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The following is a corollary of the lemma above and Lemma 5.5.16:
Corollary 5.5.21. Let C ⊆ Γn be an (i1, . . . , in−1, 1)-cell. For all N ∈ N there
is some T = T (N) ∈ N such that for all x ∈ π(C) there is a point y ∈ BT (x,C)
such that |SN (y, C)| > 2N .

Proof. Fix N ∈ N and define the linear function:

γ : Γn−1 → Γ

x 7→ β(x) − α(x).

There are two cases to consider here:

• If the function γ is constant, then, by definition of (i1, . . . , in−1, 1)-cells,
we must have that γ(x) is infinite, for all x ∈ π(C). In this case, for
every x ∈ π(C) we have that

SN (x,C) ≥ |Cx| +NC > 2N,

where NC ∈ N is as in Lemma 5.5.20, since |Cx| infinite, and N ∈ N.

• If the function γ is non-constant, then by Lemma 5.5.16, for all T ∈ N
there is some M = M(T ) ∈ N such that for all x ∈ π(C):

max{γ(y) : y ∈ BT (x, π(C))} = γ(x) +M,

and, M(T ) is increasing in T . In particular, there is some T ∈ N such
that M(T ) > rn(2N −NC), where NC is as in Lemma 5.5.20. Then, for
all x ∈ C there is some y ∈ BT (x, π(C)) such that:

γ(y) = γ(x) + rn(2N −NC).

Thus, it follows that:

|wCy| ≥
⌊
β(y) − α(y)

rn

⌋
=
⌊
γ(y)
rn

⌋
> 2N −NC ,

since γ(x) > 0, as x ∈ π(C). Combining this with Lemma 5.5.20, it
follows that SN (y, C) > 2N , as claimed.
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Existence of Internal Points

Finally, it’s time to prove that N -internal points exist.
Proposition 5.5.22 (Existence of Internal Points). Let C ⊆ Γn be a cell.
Then, for all N ∈ N there is an N -internal point x ∈ C.

Proof. The proof is by induction on n. We first discuss the base case. Let
N ∈ N be arbitrary. Then the result is clear if C is a (0)-cell, since it contains
a single point, which is N -internal for all N ∈ N. The result is also clear if C is
a (1)-cell, which is unbounded above and below, since in this case every point
in C is N -internal. Now, if C is bounded below (resp. above), then there is a
least (resp. max) point x ∈ C which is not N -internal, and since C is infinite,
we are done.

Now, for the inductive step:

(IH): For all N ∈ N and for all (i1, . . . , in−1) cells D ⊆ Γn−1, D contains an
N -internal point.

Fix N ∈ N. We consider the cases of (i1, . . . , in−1, 0)- and (i1, . . . , in−1, 1)-cells
separately.

• Case 1. Let C ⊆ Γn be an (i1, . . . , in−1, 0)-cell, say C = {(x, α(x)) : x ∈
D}, for some (i1, . . . , in−1)-cell D = π(C) and some linear function α. By
inductive hypothesis, D contains an N -internal point, say y0. But then,
by unfolding the definition of an N -internal point for a (i1, . . . , in−1, 0)-
cell, we see that the point (y0, α(y0)) is N -internal.

• Case 2. Let C ⊆ Γn be an (i1, . . . , in−1, 1)-cell. By Lemma 5.5.20, there
is some NC ∈ N such that:

|SN (y, C)| ≥ |wCy| +NC

for all y ∈ Γn−1 satisfying the cell description of π(C). By Corollary 5.5.21
we can find some T such that for every x ∈ π(C) there is some y ∈
BT (x, π(C)) such that |wCy| > 2N − NC . Observe that for such y we
have that:

|SN (y, C)| > |wCy| +NC > 2N.

Now, by (IH) there is a 2K-internal point x0 ∈ π(C), where K =
max{N,T}. In particular, by our choice of x and K, there is a K-
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internal point y ∈ BT (x0, π(C)) with |SN (y, C)| ≥ 2N . Since we chose
K ≥ N , the result follows from Lemma 5.5.19.

Dilations

In this subsection I will present a proof of a “grid dilation” result (Proposi-
tion 5.5.37), which intuitively states that given any grid, inside a Presburger
cell C, and any N ∈ N, we can find, in C an N -distant grid with a “stronger”
configuration (see Definition 5.5.34) than the original grid.
Notation 5.5.23. To facilitate exposition and avoid repetitions, throughout
this subsection, we fix the following notation, which persists throughout this
section:

• Positive integers d1, . . . , dr ∈ N>0.

• For each j ∈ {1, . . . , r} we write nj =
∑j
i=1 di, and we set n0 = 1.

• For simplicity we write n for nr =
∑r
i=1 dr.

• For each j ∈ {1, . . . , r}, by the coordinates indexed by dj we mean the
coordinates nj−1, . . . , nj .

• For each j ∈ {1, . . . , r} we write π̂dj
for the projection map to the

coordinates indexed by dj , so π̂dj
: Γn → Γdj .

Let’s start by discussing in more detail some of the basic properties of grids.

About Grids Throughout this section an r-grid means, unless otherwise
stated, an r-grid with respect to d1, . . . , dr, i.e. a set B ⊆ Γn of the form:

B = B1 × · · · ×Br,

where Bj ⊆ Γdj , for all j ∈ {1, . . . , r}.

Recall the following general definition:
Definition 5.5.24 (Grid configuration). Let B,B′ ⊆ Γn. We say that B and
B′ have the same grid configuration with respect to d1, . . . , dr if there exist
enumerations {b1, . . . , bm} and {b′

1, . . . , b
′
m} of B and B′, respectively, such

that for all k, l ∈ {1, . . . ,m} and j ∈ {1, . . . , r}, we have

π̂dj
(bk) = π̂dj

(bl) if, and only if, π̂dj
(b′
k) = π̂dj

(b′
l).
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Example 5.5.25. It is easy to see that if B = B1 ×· · ·×Br is an n1 ×· · ·×nr-
grid and B′ = B′

1 × · · · ×B′
r is an n′

1 × · · · × n′
r-grid then B and B′ have the

same grid configuration if, and only if ni = n′
i, for all i ∈ [r].

The following remark is immediate from the definition of having the same grid
configuration:
Remark 5.5.26. Let B,B′ ⊆ Γn and suppose that B and B′ have the same grid
configuration with respect to d′

1 = 1, . . . , d′
n = 1. Then they have the same

grid configuration with respect to d1, . . . , dr.

Given an arbitrary subset B ⊆ Γn we have a natural way of building from it an
r-grid, the generated r-grid of B (with respect to d1, . . . , dr), denoted Gen(B),
namely:

Gen(B) :=
r∏
j=1

π̂dj
(B).

Lemma 5.5.27. If B,B′ ⊆ Γn have the same grid configuration (with respect
to d1, . . . , dr) then Gen(B) and Gen(B′) have the same grid-configuration (with
respect to d1, . . . , dr).

Proof. To see this, given enumerations {b1, . . . , bm} and {b′
1, . . . , b

′
m} of B and

B′ respectively, for each j ∈ {1, . . . , r} define Bj := {π̂dj
(b1), . . . , π̂dj

(bm)}
and B′

j := {π̂dj
(b′

1), . . . , π̂dj
(b′
m)}. Then, by definition Gen(B) =

∏r
j=1Bj and

Gen(B′) =
∏r
j=1B

′
j , and since B and B′ have the same grid configuration, for

all j ∈ {1, . . . , r} we have that |Bj | = |B′
j |.

Set βj = |Bj |, and for each (i1, . . . , ir) ∈
∏r
j=1{1, . . . , βj} let bi1,...,ir ∈ Γn be

the element whose coordinates indexed by dj are precisely bij and define b′
i1,...,ir

analogously. Consider the following enumerations {bi1,...,in : (i1, . . . , ir) ∈∏r
j=1{1, . . . , βj}} and {b′

i1,...,in : (i1, . . . , ir) ∈
∏r
j=1{1, . . . , βj}} of Gen(B) and

Gen(B′), respectively. By unfolding the definitions, and since B and B′ have
the same grid configuration we can see that these enumerations witness that
Gen(B) and Gen(B′) have the same grid configuration.

Growing Fix a (i1, . . . , in)-cell C ⊆ Γn, a point x ∈ C and positive integers
k,N ∈ N. We define the k-fold dilation of BN (x,C), denoted kBN (x,C) to
be the subset of BkN (x,C) consisting of “every k-th point” in each interval of
BkN (x,C). More precisely:
Definition 5.5.28 (k-fold Dilation). In the notation above, we define kBN (x,C)
recursively as follows:
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• If C is a (0)-cell, then kBN (x,C) := BkN (x,C) = C.

• If C is a (1)-cell, then kBN (x,C) := x+ kr1[−N,N ].

Once we have defined kBN (x,C) for (i1, . . . , in−1)-cells, we define:

• If C is a (i1, . . . , in−1, 0)-cell of the form {(x0, α(x0)), x0 ∈ π(C)}, then

kBN (x,C) := {(x0, α(x0) : x0 ∈ kBN (π(x), π(C))}

• If C is a (i1, . . . , in−1)-cell then:

kBN (x,C) := kBN (π(x), π(C)) × (πn(x) + krn[−N,N ])

Observe that whenever j ∈ D(C), the distance between any two points in
πj(kBN (x,C)) is at least k. In particular, given (⋆) (from page 199) the
following is easy to see:
Remark 5.5.29. Let k,N ∈ N and x ∈ C. Then kBN (x,C) is k-distant, but
observe that even if BN (x,C) is a k-distant set (meaning that for all i ∈ [r]
and all distinct a, b ∈ πi(BN (x,C)) we have that |a − b| ≥ k), this does not
mean that Gen(BN (x,C)) is necessarily a k-distant grid (for a fixed choice of
d1, . . . , dr ∈ N). The point of the next lemma is that an appropriate dilation
ensures that this will be the case.
Lemma 5.5.30. Let C ⊆ Γn be an (i1, . . . , in)-cell and x ∈ C. For all k ∈ N
there exists some k′ ∈ N such that for all N ∈ N

n∏
i=1

πi(k′BN (x,C))

is k-distant.

The following lemma will be used in the proof:
Lemma 5.5.31. Let C ⊆ Γn be an (i1, . . . , in)-cell and x ∈ C. Let f : C → Γ
be a linear function on C. For all k ∈ N there is some k′ ∈ N such that for
N ∈ N and all distinct z, z′ ∈ k′BN (x,C) we have that if f(z) ̸= f(z′) then
|f(z) − f(z′)| ≥ k. Moreover, if k′′ ≥ k′, then for all z, z′ ∈ k′′BN (x,C) we
have that |f(z) − f(z′)| ≥ km.

Proof. We argue by induction on n, and we will show the slightly stronger
assertion that
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(⋆) For all k ∈ N there is some k′ ∈ N such that for all N ∈ N and all distinct
z, z′ ∈ k′BN (x,C) there is some m ∈ N such that

|f(z) − f(z′)| = km.

Moreover, if k′′ ≥ k′, then for all z, z′ ∈ k′′BN (x,C) we have that
|f(z) − f(z′)| ≥ km.

The base case is trivial when C is a 0-cell and when C is a 1-cell, without loss
of generality we may assume that C = d + rΓ, for some r ∈ Z>0 and some
r ∈ {0, . . . , r − 1}, and that

f : C → Γ

x 7→ a
x− d

r
+ γ,

for some a ∈ Z and γ ∈ Γ. Let k′ = kr. Then, for any N ∈ N and any
two distinct z, z′ ∈ k′BN (x,C), by definition of k′BN (x,C) we have that
|z − z′| = k′m0 = krm0, for some m0 ∈ N. Thus:

|f(z) − f(z′)| =
∣∣∣a(z − d)

r
− a

a(z′ − d)
r

∣∣∣ =
∣∣∣a(z − z′

r

) ∣∣∣
= k|am0|,

as required (putting m = |am0|). The moreover part is immediate.

For the inductive step, suppose that (⋆) holds for all (i1, . . . , in−1) cells C0 ⊆
Γn−1. More precisely:

(IH) For all cells C0 ⊆ Γn−1, all x0 ∈ C, all k ∈ N and all linear functions
f0 : C0 → Γ there is some k′

0 ∈ Γ such that for all N ∈ N and all distinct
z0, z

′
0 ∈ k′

0BN (x0, C0) we have that if f0(z0) ̸= f0(z′
0) then there is some

m0 such that |f0(z0) − f0(z′
0)| = km0. Moreover, if k′′

0 ≥ k′
0, then for all

z0, z
′
0 ∈ k′′BN (x,C) we have that |f(z0) − f(z′

0)| ≥ km0.

Let C ⊆ Γn be a cell, x ∈ C, and to fix notation, say that:

f(z) =
n∑
i=1

ai(zi − di)
ri

+ γ,

for all z ∈ C, for some ai, ri ∈ Z, di ∈ {0, . . . , ri − 1}, γ ∈ Γ. We need to
consider two cases:
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• Case 1. Suppose that C is an (i1, . . . , in−1, 0)-cell and f : C → Γ a linear
function. To fix notation, say:

C = {(x, α(x)) : x ∈ π(C)}.

Observe that since C ⊆ dom(f), for all x = (x1, . . . , xn−1) ∈ π(C) and
all i ∈ [n − 1] we have that xi ≡ di (mod ri). Thus, without loss of
generality, we can write α in the following form:

α(x) =
n−1∑
i=1

bi(xi − di)
ri

+ δ

Then, for any z ∈ C we have that:

f(z) =
n−1∑
i=1

ai(zi − di)
ri

+
(
n−1∑
i=1

bi(xi − di)
ri

+ δ

)
+ γ

=
n−1∑
i=1

(ai + bi)(xi − di)
ri

+ (γ + δ),

and the result follows immediately from (IH).

• Case 2. Suppose that C is an (i1, . . . , in−1, 1)-cell. Define two functions:

f0 : π̂n−1(C) → Γ

z 7→
n−1∑
i=1

ai(zi − di)
ri

+ γ,

and
f1 : πn(C) → Γ

z 7→ an(z − dn)
rn

,

so that for all z ∈ C we have that:

f(z) = f0(π̂n−1(z)) + f1(πn(z)).

By (IH), there is some k′
0 such that for N ∈ N and all distinct z0, z

′
0 ∈

k′
0BN (π̂n−1(x), πn−1(C)) then there is some m0 ∈ N such that |f0(z0) −
f0(z′

0)| = km0. We can argue as in the base case for (1)-cells to find some
k′

1 such that for all N ∈ N and all distinct z1, z
′
1 ∈ k′

1BN (πn(x), πn(C))
there is some m1 ∈ N such that |f1(z1) − f1(z′

1)| = km1.
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Let k′ = k′
0k

′
1, and pick arbitrary z, z′ ∈ k′BN (x,C). Observe that by

definition we have:

π̂n−1(z), π̂n−1(z′) ∈ k′BN (π̂n−1(x), C)

⊆ k′
0Bk′

1N
(π̂n−1(x), C),

and thus there is some m′
0 such that

|f0(π̂n−1(z)) − f0(π̂n−1(z′))| = km′
0.

Similarly:
πn(z), πn(z′) ∈ (πn(x) + k0k

′
1rn[−N,N ])

⊆ (πn(x) + k′
1rn[−k0N, k0N ])

and thus there is some m′
1 such that

|f1(πn(z)) − f1(πn(z′))| = km′
1.

Putting everything together:

|f(z) − f(z′)| = |[f0(π̂n−1(z)) + f1(πn(z))] − [f0(π̂n−1(z)) + f1(πn(z))]|

= |f0(π̂n−1(z)) − f0(π̂n−1(z)) + f1(πn(z)) − f1(πn(z))|

= |km′
0 + km′

1|

= k|m′
0 +m′

1|,

as required. The moreover part follows easily, from the analysis above
and (IH), since, if k′′ ≥ k′ then for all z, z′ ∈ k′′BN (x,C) we clearly (as
in the (1)-cell case) have that:

|f1(π̂n−1(z)) − f0(π̂n−1(z′))| ≥ km′
1,

and by the moreover part of (IH) we have that:

|f0(π̂n−1(z)) − f0(π̂n−1(z′))| ≥ km′
0,

and thus |f(z) − f(z′) ≥ k(m′
0 +m′

1).

This concludes the proof.

Now the proof of Lemma 5.5.30 is almost immediate:
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Proof of Lemma 5.5.30. Observe, first, that if the conclusion of the lemma
holds for some k′ ∈ N, then, it holds for any k′′ > k′. More precisely:

Claim 1. Suppose that for some k′ ∈ N we have that:

n∏
i=1

πi(k′BN (x,C))

is k-distant, and let k′′ > k′. Then:

n∏
i=1

πi(k′′BN (x,C))

is k-distant

Proof of Claim 1. This follows by easy induction and the moreover part of the
previous lemma. ◀

Returning now to the proof of the lemma, we argue by induction on n and the
structure of BN (x,C). The base case is again trivial. Assume now that the
result holds for (i1, . . . , in−1)-cells. More precisely:

(IH): For all (i1, . . . , in−1)-cells C0 ⊆ Γn−1, all k,N ∈ N there is a k′
0 ∈ N such

that:
n−1∏
i=1

πi(k′
0BN (x,C))

is k-distant.

We have to consider two cases:

• Case 1. Suppose that C is an (i1, . . . , in−1, 0)-cell. Then, by (IH) we get
some k′

0 and by Lemma 5.5.31 we get some k′
1. Take k′ = max{k′

0, k
′
1},

and the result follows.

• Case 2. Suppose that C is an (i1, . . . , in−1, 1)-cell. By (IH) we get some
k′

0. Then taking k′ = max{k′
0, k} gives the result.

Lemma 5.5.32. Let x, y ∈ C and k,N ∈ N. Then BN (x,C) and kBN (y, C)
have the same grid configuration, with respect to d′

1 = 1, . . . , d′
n = 1.

Proof. Fix k,N ∈ N. We prove this by induction on n and the structure
of BN (x,C). Trivially, all singleton sets have the same grid configuration.
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Moreover, it is clear (taking the increasing enumeration) that x+ r1[−N,N ]
and y + kr1[−N,N ] have the same grid configuration. Assume now that the
result holds for (i1, . . . , in−1)-cells. More precisely:

(IH): For all (i1, . . . , in−1)-cells C0 ⊆ Γn−1 and all x0, y0 ∈ Γn−1 there are enu-
merations {b1, . . . , bm} and {b′

1, . . . , b
′
m} of BN (x0, C0) and kBN (y0, C0)

such that for all l, l′ ∈ {1, . . . ,m} and j ∈ {1, . . . , n − 1} we have that
πj(bl) = πj(bl′) if, and only if, πj(b′

l) = πj(b′
l′).

If C is an (i1, . . . , in−1, 0)-cell, then we can enumerate BN (x,C) and kB(y, C)
with the enumerations induced by the enumerations we obtained from (IH).
If, on the other hand, we have that C is an (i1, . . . , in−1, 1)-cell, then we can
enumerate BN (x,C) and kB(y, C) as lexicographic products of the enumer-
ations from (IH) and the increasing enumerations of πn(x) + rn[−N,N ] and
πn(y) + rnk[−N,N ], respectively. In each case we can easily see that the given
enumerations witness that these sets have the same grid configuration.

The following is an immediate consequence of Remark 5.5.26 and Lemma 5.5.32:
Corollary 5.5.33. Let x, y ∈ C and k,N ∈ N. Then BN (x,C) and kBN (y, C)
have the same grid configuration, with respect to d1, . . . , dr.

The next definition will be crucial in Proposition 5.5.37.
Definition 5.5.34 (Z-stronger grid). Given an r-ary relation E ⊆

∏r
i=1 Γdi ,

and r-grids B,B′ ⊆
∏r
i=1 Γdi with the same grid configuration, we say that

B′ is Z-stronger, for E, than B if (in the notation of Definition 5.5.24) for all
k ∈ {1, . . . , l}, if bj ∈ E then b′

j ∈ E.
Lemma 5.5.35. Let y be an N-internal point of C. Let B0 ⊆ C such that
B0 = Gen(B0) ∩ C and B′ ⊆ BN (y, C). If B0 and B′ have the same grid
configuration, then Gen(B′) is Z-stronger for C than Gen(B0).

Proof. By Lemma 5.5.27 we know that Gen(B′) and Gen(B0) have the same
grid configuration. Since y is N -internal we know that B′ ⊆ BN (y, C) ⊆ C

and thus, for any point b ∈ Gen(B0), if b ∈ C then b ∈ B0 and hence the
corresponding point in the enumeration of Gen(B′) will belong to C.

In order to prove the main result of this subsection I will need one final
preparatory lemma.
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Boxes and Dilations This is the point in the argument where I will have to
switch from Γ being an arbitrary model of TPres to Γ being the standard model
of TPres. For the remainder of this section fix an (i1, . . . , in)-cell C ⊆ Zn.
Lemma 5.5.36 (in the standard model). Let B be a finite r-grid. Then, there
is some x ∈ C and some M ∈ N such that:

B ∩ C ⊆ BM (x,C)

Proof. Let B = B1 × · · · × Br be an r-grid, where Bj ⊆ Zdj , for each j ∈
{1, . . . , r}. Let M0 ∈ N be the maximum distance between any two distinct
points in B; this exists since B is a finite subset of Zn. Let b = max{|Bj | : j ∈
{1, . . . , r}}. By Lemma 5.5.30 there exists some M ∈ N such that for all x ∈ C

we have that:
n∏
i=1

πi(M1Bb(x,C))

is M0-distant. Observe that M1Bb(x,C) ⊆ BM1×b(x,C).

Let x ∈ B ∩C be arbitrary (if the intersection is empty then the lemma follows
immediately). We claim that B ∩ C ⊆ BM1×b(x,C). Suppose that y ∈ B ∩ C.
Since y ∈ C, by definition, y satisfies d for any d ∈ D(C). Thus, to show
that y ∈ BM1×b(x,C) it suffices to show that for all i ∈ D(C) we have that
|xi − yi| < M0 × b.

Since B is M0-distant and not (M0 + 1)-distant, for each j ∈ {1, . . . , r} we
know that max{π̂dj

(y)i − xi : i ∈ {nj−1, . . . , nj}} < M0, so we are done.

Now, I can finally put everything together.
Proposition 5.5.37 (Grid Dilations, in the standard model). Let B ⊆ Zn be
a finite r-grid. For all N ∈ N there is an r-grid BN ⊆ Zn which is N -distant
and Z-stronger for C than B.

Proof. Let B be some r-grid. Observe that it suffices to show the proposition
for grids of the form B = Gen(B0), where B0 = B ∩ C. If B is such a grid,
then since B = Gen(B ∩ C), we have that:

B0 = B ∩ C = Gen(B ∩ C) ∩ C = Gen(B0) ∩ C.

Let N ∈ N. By Lemma 5.5.36 we know that B∩C ⊆ BM (x,C) for some x ∈ C
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and some M ∈ N. Let k ∈ N be such that for all L ∈ N the set Gen(kBL(x,C))
is N -distant; this exists, by Lemma 5.5.30. Let y ∈ C be a kM -internal point
of C, which exists by Proposition 5.5.22. By Corollary 5.5.33 we know that
BM (x,C) and NBM (y, C) have the same grid configuration (with respect to
d1 = · · · = dn = 1, and thus, with any d1, . . . , dr, by Remark 5.5.26). Let
B′ ⊆ kBM (y, C) correspond (via the enumeration witnessing that BM (x,C)
and NBM (y, C) have the same grid configuration) to the points in B∩C. Then
Gen(B′) is N -distant, by our choice of k and has the same grid configuration
as Gen(B ∩ C). Finally, since y was kM -internal, by Lemma 5.5.35 we have
that Gen(B′) is Z-stronger than Gen(B ∩ C).

The Main Presburger Theorem

Theorem 5.5.38. Let Γ be a model of Presburger arithmetic and E ⊆
∏
i∈[r] Γdi

a ∅-definable set, for fixed d1, . . . , dr ∈ N. Let C be the class of all finite r-grids
in
∏
i∈[r] Γdi. Then, there is α ∈ R>0, such that for every k ∈ N, if E is

Kk-free, then for every grid B ∈ C, we have:

|E ∩B| ≤ αδrr−1(B).

Proof. Observe that for all k ∈ N the statement “E is Kk-free” as well as the
statements “|E ∩B| ≤ αδrr−1(B)” for fixed α ∈ R>0 and fixed sizes B1, . . . , Br,
where B = B1 × · · · ×Br, are expressible in first-order. Thus, it follows that if
the conclusion of the theorem is true in Z, it must be true in any Γ ⊨ TPres.

By the Cell Decomposition Theorem, it suffices to prove this when E is a cell,
and by the previous observation we may assume that E ⊆ Zn. The proof is
an easy compactness argument, based on grid dilations (Proposition 5.5.37).
Assume toward a contradiction that for all α ∈ R>0 there exists an r-grid Bα

such that |E ∩ Bα| > αδrr−1(Bα). For all N ∈ N and α ∈ R>0 let ϕN,α(x) be
the formula expressing that x is an N -distant r-grid with the has the same
configuration as Bα (for a fixed given enumeration of Bα), and also that x
is Z-stronger for E than Bα, so |E ∩ Bα| > αδrr−1(Bα). By compactness
and Proposition 5.5.37 the set Σα(x̄) = {ϕN,α(x) : N ∈ N} is satisfiable. In
particular, there is some saturated Γ ≽ Z a Z-distant r-grid B such that
|EΓ ∩ B| > αδrr−1(B). Since we can do this for all α ∈ R>0, we have a
contradiction to Theorem 5.5.1.
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From the theorem above, we can immediately deduce the following improved
version of Theorem 5.5.1 for ∅-definable sets, by saturation:
Corollary 5.5.39. In the context of Theorem 5.5.38, assume in addition that
Γ is ℵ1-saturated. Then, there is α ∈ R>0, such that if E is K∞-free, then for
every grid B ∈ C, we have:

|E ∩B| ≤ αδrr−1(|B|).

5.6 Zarankiewicz’s Problem in Hrushovski
Constructions

In this section, I shall present a proof of Theorem R and Theorem S. The latter
result is particularly interesting, because, in a sense, it gives a new class of
examples of structures in which definable hypergraphs have linear Zarankiewicz
bounds, structures whose geometry is not (weakly) locally modular. Of course,
these structures still do not interpret infinite fields, so Theorem S hints at
the possibility that the existence of (interpretable) fields is the “essential”
obstruction to linear Zarankiewicz bounds.

This section is structured as follows:

(a) In Subsection 5.6.1 I give a very quick recount of the necessary background
on stable one-baesed structures, and recall one of the main results of
[Eva05].

(b) Then Subsection 5.6.2 has the proofs of Theorem R and Theorem S.

5.6.1 Local Preliminaries: One-Based Theories

Throughout, fix a complete stable L-theory T . Everything will take place
inside a monster model M ⊨ T eq, and thus I will not distinguish between real
and imaginary elements. Admittedly, the exposition in this subsection is rather
terse, and I will only mention the definitions and facts that are needed for
the proof of Theorem R. That being said, there is a rich theory lurking in the
background, and a good starting point (with references and proofs) on stable
one-based theories is [Pil96, Chapter 4].
Definition 5.6.1. We say that T is one-based if for all small algebraically
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closed subsets A,B ⊆ Meq we have that:

A |⌣
A∩B

B.

And now for something completely different:

A pseudoplane is an incidence structure consisting of two sorts of objects, points
and lines, such that:

1. Every point lies on infinitely many lines.

2. Every line contains infinitely many points.

3. No two distinct lines intersect at infinitely many points.

4. No two distinct points lie at the intersection of infinitely many lines.

In the language of geometric stability theory, this can be expressed as follows:
Definition 5.6.2. We say that the set of realisations of a complete type
r(x, y) = tp(p, ℓ/∅) is a complete type-definable quasidesign (in T ) if:

1. p /∈ acl(ℓ).

2. ℓ /∈ acl(p).

3. For any ℓ ̸= ℓ′ the set {p : M ⊨ r(p, ℓ) ∧ r(p, ℓ′)} is finite.

We say that the set of realisations of r(x, y) is a complete type-definable
pseudoplane, if, in addition, we also have that:

4. For any p ̸= p′ the set {ℓ : M ⊨ r(p, ℓ) ∧ r(p′, ℓ)} is finite.

This is the exact geometric configuration whose absence characterises one-based
theories, amongst the stable ones. More precisely:
Theorem 5.6.3 ([Pil96, Proposition 4.1.7]). The following are equivalent for
a stable theory T :

1. T is one-based.

2. There is no complete type-definable quasidesign in T .

3. There is no complete type-definable pseudoplane in T .
Remark 5.6.4. One-basedness is preserved after naming (small sets of) para-
meters.
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The following result of Evans gives a connection between stable one-based
theories and Hrushovski constructions (discussed in Chapter 2).
Theorem 5.6.5 ([Eva05, Theorem 1.9]). Let M0 be an ab initio Hrushovski
construction in the language L = {R}. Then, there is a stable one-based
trivial16 L′-structure N0, for a language17 L′ ⊇ L, whose language reduct to L
is isomorphic to M0.

5.6.2 Linear Zarankiewicz bounds and Gridless Quasidesigns

Let M be an L-structure and fix positive integers n ∈ N and d1, . . . , dn. By an
n-ary partial type (possibly over parameters), I shall mean a consistent, with
Th(M), set of partitioned formulas π(x1, . . . , xn) in free variables x1, . . . , xn,
where the xi are allowed to be (finite) tuples. Generalising some of the
machinery introduced in Section 5.2, a partial type will be called Kk-free for
k ∈ N ∪ {∞} (this is short for Kk,...,k-free) if for all Ai ⊆ Mxi with |Ai| = k

(or |Ai| ≥ ℵ0 if k = ∞), for i ∈ [n], there is some (a1, . . . , an) ∈
∏
i∈[n]Ai, such

that (a1, . . . , an) ⊭ π(x1, . . . , xn).

Let M be an L-structure. Following the terminology of [Eva05], an n-ary
partial type π(x1, . . . , xn) will be called sparse in M if there is a real number
α ∈ R>0 such that for all Ai ⊆ Mdi , for i ∈ [n], the following holds:

|

(a1, . . . , an) ∈
∏
i∈[n]

Ai : (a1, . . . , an) ⊨ π(x1, . . . , xn)

 | ≤ αδnn−1 (A) .

We may recast the definition of linear Zarankiewicz bounds to partial types,
rather than just definable sets:
Definition 5.6.6. Let M be an L-structure. We say that M has strong linear
Zarankiewicz bounds for partial types in M if for every n-ary partial type
π(x1, . . . , xn) (possibly over parameters) the condition (SLZ) holds, where:

(SLZ) If π is K∞-free then π is sparse in M.

A theory T has (strong) linear Zarankiewicz bounds for partial types if every
M ⊨ T has (strong) linear Zarankiewicz bounds.

16Recall: A stable theory T is called trivial if for any three tuples a, b, c of elements and any
set A of parameters (from the monster model of T ), if a, b, c are pairwise forking-independent
over A, then a, b, are independent over Ac, see [Goo91].

17More precisely, L′ is the language of oriented hypergraphs, described in detail in [Eva05,
Definition 1.2, Remark 1.3].
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The following remark follows immediately from the definitions:
Remark 5.6.7. If M has (strong) linear Zarankiewicz bounds for partial types
and N is a reduct of M then N has (strong) linear Zarankiewicz bounds for
partial types.

The remark above leads to the following natural question:
Question 5. Suppose that M has (strong) linear Zarankiewicz bounds (for
partial types) and N is interpretable in M. Is it the case that N has (strong)
linear Zarankiewicz bounds (for partial types)?

Throughout the rest of this subsection, again, everything will be taking place
inside a monster model M of a theory T , which will be assumed to have
elimination of imaginaries (i.e. a monster model of T eq). Thus, when a model
is not mentioned, it should be understood that we are in M.

I will start by giving the following variant of quasidesigns (which were briefly
discussed in Subsection 5.6.1). Here, rather than enforcing that the intersection
of two distinct “lines” contains finitely many “points” I will instead enforce
that the intersection of any infinite set of pairwise distinct “lines” contains
finitely many “points”. More precisely:
Definition 5.6.8. We say that the set of realisations of partial type r(x, y)
defines a partial gridless-quasidesign if:

1. p ̸∈ acl(ℓ), whenever (p, ℓ) ⊨ r(x, y).

2. ℓ ̸∈ acl(p), whenever (p, ℓ) ⊨ r(x, y) .

3. For all sets {ℓi : i ∈ N} consisting of pairwise distinct elements (in the
y-sort) the set {p : M ⊨

∧
i∈N r(p, ℓi)} is finite.

When r(x, y) = tp(a, b/∅) is a complete type, we speak of complete gridless
quasidesigns.
Remark 5.6.9. Let r(x, y) be a partial gridless quasidesign. Then, by com-
pactness there is some N ∈ N such that for all sets {ℓi : i ∈ N} consisting of
pairwise disinct elements in the y-sort the set {p : M ⊨

∧
i≤N r(p, ℓi)} is finite.

To see this, suppose that this is not the case. Then, for all N ∈ N there is a set
{ℓi : i ∈ N} of pairwise distinct elements in the y-sort such that for all M ∈ N
the set {p : M ⊨

∧
i<N r(p, ℓi)} has size at least M . Thus, the set:

Σ(yi : i ∈ N) = {yi ̸= yj : i ̸= j ∈ N} ∪
{

|
∧
i<N

r(x, yi)| ≥ M : M,N ∈ N
}
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is finitely consistent. A realisation of Σ gives us an infinite set {ℓi : i ∈ N}, of
pairwise distinct elements of the y-sort for which the set {p : M ⊨

∧
i∈N r(p, ℓi)}

is infinite.

On the way to the main theorem, I shall first show that stable one-based
theories omit complete gridless quasidesigns.
Proposition 5.6.10. If a theory T has a complete gridless quasidesign then
T has a complete quasidesign. In particular, if T is a stable one-based theory,
then T does not have a complete gridless quasidesign.

Proof. The proposition follows from compactness and standard tricks. Suppose
towards a contradiction that a stable one-baesed theory T admits a complete
gridless quasidesign, say r(x, y). Our goal is to construct a complete quasidesign
in T , contradicting Theorem 5.6.3.

Observe that, since r(x, y) is a gridless quasidesign, by definition, for all
infinite sets L = {li : i ∈ N} of elements in the y-sort p ∈ acl(L). Thus,
by compactness, there is some maximal N ∈ N and elements ℓ1, . . . , ℓN such
that p ⊨

∧
i≤N r(x, ℓi) and p /∈ acl(ℓ1, . . . , ℓN ). That is, for all N ′ > N and

{ℓi : i ≤ N ′}, distinct elements, if p ⊨
∧
i≤N ′ r(x, ℓi), then p ∈ acl(ℓ1, . . . , ℓN ′).

Let ℓ̄ = ‘{ℓ1, . . . , ℓN}’ ∈ Meq and s(x, ȳ) = tp(p, ℓ̄). Then, for any realisation
(b, c̄) of this type we have that b /∈ acl(c̄) and c̄ /∈ acl(b). Moreover, if c̄1 =
‘{c1

1, . . . , c
N
1 }’ ̸= c̄2 = ‘{c1

2, . . . , c
N
2 }’, then, by our choice of N the set {p′ :

p′ ⊨ s(x, c̄1) ∧ s(x, c̄2)}, is finite. Thus, s(x, ȳ) is a complete quasidesign,
contradicting the one-basedness of T .

Proposition 5.6.11. Let T be a stable one-based theory without the finite
cover property, and let M ⊨ T eq be an ℵ1-saturated model. Let π(x1, . . . , xn) ⊆
Md1 × · · · × Mdn be a partial type over a small set of parameters B. If
π(x1, . . . , xn) is K∞-free, then for any (a1, . . . , an) ⊨ π(x1, . . . , xn) there is
some i ∈ [n] such that ai ∈ acl({aj : j ∈ [n] \ {i}}, B).

In particular, in the terminology of Definition 5.3.1 p is acl-tight.

Proof. Without loss of generality, we may assume that B = ∅ (this is only to
simplify notation). Suppose that π(x1, . . . , xn) is as in the proposition, and
assume, towards a contradiction, that the conclusion of the proposition is
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false. Then, there is some realisation ā = (a1, . . . , an) ⊨ π(x1, . . . , xn) such
that ai /∈ acl(ā ̸=i) for all i ∈ [n].

Since T is one-based, we know that:

acl(ai) |⌣
acl(ai)∩acl(ā̸=i)

acl(ā ̸=i),

for all i ∈ [r]. Let D =
⋂
i∈[r] acl(ā̸=i), and observe that for all i ∈ [n]

we have that acl(ai) ∩ acl(ā ̸=i) ⊆ D ⊆ acl(ā̸=i), so, by Monotonicity and
Transitivity we have that

ai |⌣
D

ā̸=i,

for all i ∈ [n].

Let si(xi) = tp(ai/D), and observe that D = acl(D), since it is the intersection
of algebraically closed sets. Since D is algebraically closed in Meq and T is
stable, si(xi) is stationary for i ∈ [r], and thus we can consider their Morley
product.

Essentially by definition of the Morley product, since (a1, . . . , an) are a forking-
independent over D tuple, we have that:

tp(a1, . . . , an/D) = s1(x) ⊗ · · · ⊗ sn(x).

Now, take a Morley sequence in s1(x) ⊗ · · · ⊗ sn(x), say:

A := ((at1, . . . , atr) : t ∈ ω) ⊨ (s1(x) ⊗ · · · sn(x))⊗ω

Each coordinate Ai := (ati : t ∈ ω) is a Morley sequence in si(x), since ⊗ is
associative, and since by assumption these types are non-algebraic, each Ai is
infinite. Finally, since T is stable, ⊗ is commutative, so for all (at11 , . . . , atnn ) ∈∏
i∈[r]Ai we have that:

(at11 , . . . , atnn ) ⊨ tp(a1, . . . , an/D).
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In particular,
∏
i∈[n]Ai ⊆ π(x1, . . . , xn), which is a contradiction.

Recall that a stable theory T does not have the finite cover property if T eq

eliminates the quantifier ∃∞ (see, for instance, f.c.p. Theorem [She90, The-
orem II.4.4(8)]).

In [Eva05, Proposition 3.1], Evans proves that if T is a complete stable one-based
theory that does not have the finite-cover property, then any type-definable
pseudoplane π(x, y) is sparse, that is, there is some α ∈ R>0 such that for all
finite A×B we have that:

|{(a, b) ∈ A×B : (a, b) ⊨ π(x, y)}| ≤ αδ2
1(A×B).

First, it is easy to observe that the proof of [Eva05, Proposition 3.1] actually
shows that if T is as above, then any type-definable quasidesign π(x, y) is
sparse. The proof of this is word-for-word the same as the proof that Evans
gives.

Now, to relate this result with the combinatorial notion of linear Zarankiewicz
bounds for partial types introduced at the beginning of this subsection, one
need only make the following observation: Evans’s proof yields that for any
binary partial type π(x, y) (in a stable one-based theory T which does not have
the finite cover property) if π(x, y) is K2,∞-free (or K∞,2-free) then π(x, y) is
sparse in M ⊨ T .

Proposition 5.6.10 gives the following generalisation of Evans’s result. The
argument below is similar to the proof of Theorem 5.3.5.
Theorem 5.6.12. Let T be a stable one-based theory that does not have the
finite cover property. Then:

(1) If M ⊨ T eq is an ℵ1-saturated model of T then M has strong linear
Zarankiewicz bounds for partial types.

(2) T has linear Zarankiewicz bounds (for definable sets).

Proof. Given (1), we can deduce (2) by an easy reduction. Indeed, suppose
that M ⊨ T and ϕ(x1, . . . , xn) is Kk-free. Let N ≽ M be an ℵ1-saturated.
Clearly, the set of realisations of ϕ in N remains Kk-free, and is thus K∞-free.
By (1), it has linear Zarankiewicz bounds.

So, it remains to prove (1). Our argument is standard, and analogous to
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both [Bas+21, Theorem 5.6] and [Eva05, Proposition 3.1]. Let π(x1, . . . , xn)
be K∞-free. By Proposition 5.6.11, for all (a1, . . . , an) ⊨ π(x1, . . . , xn) there
is some i ∈ [n] such that ai ∈ acl({aj : j ∈ [n] \ {i}}). By elimination of
∃∞, whenever ai ∈ acl({aj : j ∈ [n] \ {i}}) this is definable by a formula.
More precisely, we can find formulas ϕ1,k(x1, . . . , xn), . . . , ϕn,k(x1, . . . , xn) and
natural numbers mi,k, for some index set K, such that:

M ⊨
∧
i∈[n]

∀x1 · · · ∀xi−1∀xi+1 · · · ∀xn∃<mi,kxiϕi,k(x1, . . . , xn),

for all k ∈ K, and:

M ⊨ π(x1, . . . , xn) →
∨
k∈K

 ∨
i∈[n]

ϕi,k(x1, . . . , xn)

 .
So, by compactness, there is some formula ρ(x1, . . . , xn) ∈ π(x1, . . . , xn), for-
mulas ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn) such that:

M ⊨ ρ(x1, . . . , xn) →
∨
i∈[n]

ϕi(x1, . . . , xn).

and
M ⊨

∧
i∈[n]

∀x1 · · · ∀xi−1∀xi+1 · · · ∀xn∃<mxiϕi(x1, . . . , xn),

for some natural number m ∈ N.

Claim 1. ρ(x1, . . . , xn) is sparse.

Proof of Claim 1. To see this, let Ai ⊆ Mxi be finite sets. Then, for every
(a1, . . . , an) ∈

∏
i∈[m]Ai such that M ⊨ ρ(a1, . . . , an) there is some i ∈ [n] such

that M ⊨ ϕi(a1, . . . , an). Thus, we have that:

|{(a1, . . . , ai−1, ai+1, . . . , an) : M ⊨ ρ(a1, . . . , an)}| ≤ m.

Thus, |ρ(A1, . . . , An)| ≤ mδnn−1(
∏
i∈[n]Ai), as claimed. ◀

Since ρ(x1, . . . , xn) ∈ π(x1, . . . , xn) it follows that π(x1, . . . , xn) is also sparse.
This concludes the proof.

So, the following corollary is now immediate:
Corollary 5.6.13. Let M be an ab initio Hrushovski construction (as briefly
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discussed in the previous section). Then, any partial type in n variables
consistent with Th(M) has linear Zarankiewicz bounds in M.

Proof. By [Eva05, Subsection 3.2], the theory of the structures from The-
orem 5.6.5 has nfcp. The result now immediate from Theorem 5.6.5, Re-
mark 5.6.7, and Theorem 5.6.12.



Chapter 6

Odds and Ends

‘All this happened, more or less.’

Kurt Vonnegut, Slaughterhouse-Five

Introduction

This chapter is divided into two independent parts. In the first part, I
will discuss some results around NIPn (see Definition 4.2.12) and monadic
expansions, as hinted in Subsection 4.2.4. In the second part,1 I will discuss
the transfer of generalised indiscernibility (cf. Chapter 4) in Mekler groups. I
have opted to keep the second part of this chapter relatively short and less
self-contained than what (I hope) the rest of this thesis has been. That said,
the reader can find all necessary terminology concerning Mekler groups in
Appendix A.

1This is a relatively small part of the larger project [BPT24], which is co-authored with
B. Boissonneau and P. Touchard
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Part 1: Monadic NIPk and Coding Random
Hypergraphs

6.1 Introduction to Part 1

In this section, I will present a proof of the following result:
Theorem T (Corollary 6.4.6). Let T be a complete first-order L-theory. Then,
the following are equivalent:

(1) T is monadically NIPn for some n ∈ N≥1.2

(2) T is monadically NIPn, for all n ∈ N≥1.

As a key step towards the theorem above, I will also give a detailed proof of
the following, claimed in [Sim21], without proof:
Theorem U (Theorem 6.3.1). Let T be a complete first-order L-theory and
M ⊨ T a monster model of T . Then, the following are equivalent for all
n ∈ N≥1.

(1) T is NIPn.

(2) For any A ⊆ M, all L(A)-formulas ϕ(x, y1, . . . , yn) where |x| = |y1| =
· · · = |yn| = 1 are NIPn.

Also, a combinatorial construction of the 3-partite 3-uniform hypergraph inside
a monadic expansion of the random graph will be given (Corollary 6.4.4).

For the remainder of this part, unless otherwise stated, T will be a fixed
complete first-order theory and everything will be taking place inside a monster
model M ⊨ T .

6.2 Local Preliminaries for Part 1

I’ve already discussed in Chapter 4 how (ordered) random hypergraphs relate
to higher arity generalisations of NIP. To keep this chapter somewhat more
self-contained, I shall recall some facts mentioned in Chapter 4, but perhaps in
a bit more detail.

2Recall from Definition 4.2.16 that a theory T is monadically NIP if for every M ⊨ T
and every language expansion M′ of M by unary relation symbols we have that M′ is NIP.
Analogously, T is monadically NIPn if in the previous sentence we replace “NIP” by “NIPn”.
In light of Theorem T, monadic NIPn does not really deserve a proper definition.
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In Definition 4.3.8, I defined what it means for an L-structure M to encode
a K-configuration. It will be relevant, for the purposes of this part of the
thesis, to “localise” this definition, and think about the formulas I(R), from
Definition 4.3.8 – that is, the formulas which “encode” the relations R of
structures in K. With this in mind, a formula ϕ(x1, . . . , xn) encodes an n-
partite n-uniform hypergraph H = (V,R, P1, . . . , Pn) (where P1, . . . , Pn are
predicates for the parts of H) if there is a H-indexed set (av : v ∈ V ) such
that:

⊨ ϕ(av1 , . . . , avn) if, and only if, {v1, . . . , vn} ∈ R,

for all vi ∈ Pi.

Recall from Section 2.7 that Hn is the random n-uniform hypergraph. I will
write Hp

n for the random n-partite n-uniform hypergraph, and OHp
n for the

ordered random n-partite n-uniform hypergraph. I didn’t explicitly define
these structures in Section 2.7, but they are the natural objects their names
suggest. Throughout this section Lp

n,< will denote a language with n unary
relation symbols P1, . . . , Pn and a binary relation symbol <.

The first result I will need from [CPT19] is the following:
Fact 6.2.1 ([CPT19, Proposition 5.2]). Let ϕ(x, y1, . . . , yn) be an L-formula.
Then, the following are equivalent:

(1) ϕ has IPn.

(2) ϕ encodes every (n+ 1)-partite (n+ 1)-uniform hypergraph.

(3) ϕ encodes Hp
n+1 as a partite hypergraph.

(4) ϕ encodes Hp
n+1 as a partite hypergraph, by a Hp

n+1-indiscernible sequence.

The other result from [CPT19] that will be useful in the sequel is the following:
Fact 6.2.2 ([CPT19, Lemma 6.2]). Let ϕ(x, y1, . . . , yn) be a formula. Then,
the following are equivalent:

(1) ϕ has IPn.

(2) There are b and (ag)g∈OHp
n

such that:

(a) The sequence (ag)g∈OHp
n

is Lp
n,<-indexed indiscernible, that is, when

viewed as a sequence indexed by the language reduct of OHp
n, where

we “forget” the hyperedge relation, the sequence is a generalised
indiscernible.
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(b) ϕ(b, y0, . . . , yn−1) encodes OHp
n on the ag, respecting the partition

in their indexing. That is:

⊨ ϕ(b, agi0
, . . . , agin−1

) if, and only if, OHp
n ⊨ R(gi0 , . . . , gin−1),

for all gi ∈ Pi.

Finally, I will need to recall the following, from [CH21]:
Fact 6.2.3 ([CH21, Theorem 2.12(2)]). The first order theory T has NIPn
if, and only if, all L-formulas ϕ(x̄, y1, . . . , yn) where |y1| = · · · = |yn| = 1 are
NIPn.

A slightly weaker version of this fact, where checking for IPn is reduced to
checking the condition for formulas ϕ(x; ȳ1, . . . , ȳn) where |x| = 1 was implicit
in Shelah’s work, but given a detailed proof in [CPT19, Theorem 6.4].

6.3 Reducing the Number of Variables

The main theorem of this section is mentioned in [Sim21, Remark 4], but given
there without proof. Recently,3 Itay Kaplan asked if a formal proof has been
given, and, to the best of my knowledge, the details have not been filled out
before.

The proof I give below is essentially an adaptation of the argument of Simon,
which mainly involves replacing the use of [Sim21, Lemma 1], used there for
the NIP case, with Fact 6.2.1, which is needed for the argument to work in the
general case. Moreover, a part of the argument of the NIP case, in [Sim21] uses
a characterisation of the independence property in terms of picking out a dense
co-dense subset of Q via an indiscernible sequence, a result which is not true
in this form for higher arity independence properties. To patch this up, the
proof below uses the natural analogue of this, which was stated in Fact 6.2.2
(i.e. [CPT19, Lemma 6.2]). With all that being said, let’s get to the proof.
Theorem 6.3.1. Let T be a first-order L-theory and M ⊨ T a monster model
of T . For a positive integer n ∈ N≥1, the following are equivalent:

(1) T is NIPn.

(2) For any A ⊆ M, all L(A)-formulas ϕ(x, y1, . . . , yn) where |x| = |y1| =
· · · = |yn| = 1 are NIPn.

3In person, during the Final GeoMod Conference.

https://fgallinaro.github.io/geomod-conference.github.io/
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Proof. The direction (1) =⇒ (2) is true by definition, so we only need to show
that (2) =⇒ (1). The proof is by (strong) induction on the length of the object
variable, x̄, and we argue essentially by minimal counterexamples.

Fix a positive integer n ∈ N≥1 and assume that T has IPn, but for some
k ∈ N>0 all formulas ϕ(x̄, y1, . . . , yn) with |x̄| ≤ k and |y1| = · · · = |yn| = 1
are NIPn. Note that, from Fact 6.2.3, we know that it suffices to check such
formulas only. If we can show, given a formula (possibly over some parameters)
ψ(z̄, w1, . . . , wn) with IPn that there is a formula ψ′(z̄′, w1, . . . , wn) (again,
possibly over parameters, which need not be the same as the parameters in ψ)
with |z̄′| < |z̄| which also has IPn, then, by induction, the result follows.

To this end, suppose that ψ(z̄, w1, . . . , wn) has IPn, with |z̄| = m. To simplify
notation, assume that ψ is over ∅ (i.e. that we have added the parameters of
ψ to the language). Then, by Fact 6.2.1 we have that ψ encodes Hp

n+1 as an
(n+ 1)-partite hypergraph, by a Hp

n+1-indiscernible sequence, i.e. we can find
a sequence (b̄i, a1,i, . . . , an,i)i∈Q such that:

⊨ ψ(b̄i, a1,i1 , . . . , an,in) if, and only if, Hp
n+1 ⊨ R(i, i1, . . . , in)

and such that (b̄i, a1,i, . . . , an,i)i∈Q is Hp
n+1-indexed indiscernible. By the

standard lemma, we may assume that this sequence is, in addition, order-
indiscernible.

We split this sequence up into (b̄i)i∈Q and (a1,i, . . . , an,i)i∈Q and for each i ∈ Q
we write bi for the first element of the tuple b̄i, that is, bi := b0

i . We split the
argument into two cases:

1. Case 1. The sequences (bi)i∈Q and (a1,i, . . . , an,i)i∈Q are mutually indis-
cernible.4

2. Case 2. The sequences (bi)i∈Q and (a1,i, . . . , an,i)i∈Q are not mutually
indiscernible.

We will show that in each of the two cases above we can construct a formula
ψ′(z̄′, w1, . . . , wn) with |z̄′| < |z̄| which also has IPn.

Case 1. If the sequences (bi)i∈Q and (a1,i, . . . , an,i)i∈Q are mutually indiscernible,
then clearly the sequence (a1,i, . . . , an,i)i∈Q is indiscernible over {b0}. In this
case, using the extension property of Hp

n+1 and indiscernibility it is not hard to
4By which I mean that each sequence is indiscernible over the other.
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show that the L(b0)-formula ψ′(z̄′, w1, . . . , wn) given by fixing b0 in ψ, that is:

ψ′(z2, . . . , zm;w1, . . . , wn) := ψ(b0, z2, . . . , zm;w1, . . . , wn)

has IPn.

Indeed, observe that the sequence (a1,i, . . . , ai,n)i∈Q is, in fact, an Lp
n,<-indexed

indiscernible (in the sense described in Fact 6.2.2) and by the extension property
of the random (n+ 1)-ary ordered hypergraph the set

{(i1, . . . , in) : ψ(b̄0, a1,i1 , . . . , an,in)}

is, essentially, the hyperedge relation of the (ordered) n-partite n-uniform
hypergraph on (a1,i, . . . , ai,n)i∈Q. In particular, by Fact 6.2.2, it follows that
ψ′(z̄′;w1, . . . , wn), as defined above, has IPn.

Case 2. If the sequences (bi)i∈Q and (a0,i, . . . , an−1,i)i∈Q are not mutually
indiscernible, then, by definition this means that there must be some m ∈ ω

and sequences i1 < · · · < im, j1 < · · · < jm and i′1 < · · · < i′m, j′
1 < · · · < j′

m

such that:

tp(bi1 , . . . , bim , āj1 , . . . , ājm) ̸= tp(bi′1 , . . . , bi′m , āj′
1
, . . . , āj′

m
).

Since the sequence we started with was Hp
n+1-indiscernible, it follows that

(bi, a1,i, . . . , an,i)i∈Q is also an Hp
n+1-indiscernible sequence (it is simply a sub-

tuple of the original sequence). This means that the indices above define
two different finite (n + 1)-uniform (n + 1)-partite hypergraphs with m ver-
tices in each part of the partition. To fix notation, let H⋆ = (V⋆, R⋆) where
V⋆ = {bi1 , . . . , bim} ∪ {āj1 , . . . , ājm}, and R⋆ is the induced hyperedge relation
from the coding of Hp

n+1, and H ′
⋆ is defined analogously.

Since these two hypergraphs are different, they must differ in at least one
hyperedge, say {k1, k2, . . . , kn+1} ∈ R⋆, but {k1, k2, . . . , kn+1} ̸∈ R′

⋆.

First, we consider V⋆ with the vertices which lie in the hyperedge distinguishing
H⋆ and H ′

⋆ removed, that is:

U = {bij ∈ V⋆ : ij ̸= k1} ∪ {āij ∈ V⋆ : ij /∈ {k2, . . . , kn+1}}
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Now, we define:

V0 = {bj : j ∈ (k1 − 1, < k1 + 1), bj ≡U bk1}

× {a1,j : j ∈ (k2 − 1, k2 + 1), a1,j ≡U a1,k2}

× . . .

× {an,j : j ∈ (kn+1, kn+1 + 1), an,j ≡U an,kn+1}.

We can view V0 as the vertex set of an infinite (n+ 1)-partite (n+ 1)-uniform
hypergraph with hyperedge relation given by that of the (n+ 1)-partite (n+ 1)-
uniform random hypergraph coded by (the indexing set of) (b̄i, a1,i, . . . , an,i)i∈Q

restricted to this subset. This is, of course, again a copy of the (n+ 1)-partite
(n+ 1)-uniform random hypergraph.

By construction, for any tuple (bj , a1,l1 , . . . , an,ln) ∈ V0 we have that

tp(bj , a1,l1 , . . . , an,ln/U)

depends only on whether (j, l1, . . . , ln) is a hyperedge in Hp
n+1, again since the se-

quence we started with was Hp
n+1-indiscernible. Let ē := (bj , a1,l1 , . . . , an,ln) ∈

V0 be such that {j, l1, . . . ln} is a hyperedge and write p(z, w̄) for tp(ē/U) and
ē′ := (bj′ , a1,l′1 , . . . , an,l′n) ∈ V0 be such that {j′, l′1, . . . l

′
n} is not a hyperedge

and write q(z, w̄) for tp(ē′/U).

In this notation, since p ̸= q, we can find a formula ψ′(z, w1, . . . , wn) ∈ p(z, w̄)
which does not belong to q(z, w̄) and hence, for all (j, l1, . . . , ln) ∈

∏n
i=1(ki −

1, ki + 1) we have that:

⊨ ψ′(bj , a1,l1 , . . . , an,ln) if, and only if R(j, l1, . . . , ln),

that is, ψ′ encodes the hyperedge of a random (n+ 1)-partite (n+ 1)-uniform
graph on V0, since p was precisely the type of (n+ 1)-tuples which formed a
hyperedge. This concludes the proof.

6.4 Collapsing the Monadic NIPk Hierarchy

Let’s take a closer look at the NIPk hierarchy. It’s easy to see (Proposi-
tion 4.2.14):

NIP = NIP1 =⇒ NIP2 =⇒ · · · =⇒ NIPk =⇒ NIPk+1 =⇒ . . .



236 Odds and Ends

As I said near Proposition 4.2.14, that proof was only given so that it is clear
how in Corollary 6.4.4 one may obtain, definably but with monadic parameters,
a copy of the 3-partite 3-uniform hypergraph inside the random graph.

Moreover, as already discussed in Chapter 4 all of these implications are strict,
at each point the random (k + 1)-hypergraph witnesses this strictness, as it is
NIPk+1 but has the k-independence property. This follows immediately from
the fact that the random (k + 1)-hypergraph has quantifier elimination and
the following fact:
Fact 6.4.1 ([CPT19, Proposition 6.5]). If T has elimination of quantifiers,
then in order to check that T is NIPn it suffices to check that every atomic
formula ϕ(x, ȳ1, . . . , ȳn) with |x| = 1 is NIPn.

If one considers monadic expansions, this is no longer the case. The first strict
implication above says precisely that the random graph has the Independence
Property, i.e. it is not NIP1, but is NIP2. In the next lemma I will present a
proof that the random graph is not monadically NIP2. Indeed:
Lemma 6.4.2. There exists a monadic expansion of the random graph which
has the 2-Independence Property.

Proof. Let G+ = (V ;E,P0, P1, Q) be an expansion of the random graph by
three unary predicates, P0, P1, and Q. Pick P0 and P1 to name two disjoint
and infinite subsets of V . To be more concrete, although this is not strictly
necessary, we can assume that for i ∈ {0, 1} we have that each Pi is countable,
with fixed enumeration (vj,i)j∈ω. Moreover we can choose P0 and P1 to be
independent sets with no edges between them. We will describe how Q is
chosen later on in the proof.

Let Gk = (Vk,0 ⊔ Vk,1, Ek), for k ∈ K, be a fixed enumeration of all finite
bipartite graphs with no isolated vertices whose vertex set is a finite subset of
(ω × {0}) ⊔ (ω × {1}). Note that this is not taken up to isomorphism. Observe
that we have a one-to-one correspondence between such bipartite graphs and
the finite subsets of ω × ω. Indeed, each graph Gk corresponds to the subset
Ik ⊆ ω × ω, where:

(a, b) ∈ Ik if, and only if, (a, 0) ∈ Vk,0, (b, 1) ∈ Vk,1 and {(a, 0), (b, 1)} ∈ Ek.

Our goal is to construct the following configuration in G+:

For each k ∈ K we want to choose a “fresh” clique Knk
(i.e. different from
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all the cliques we have already chosen) where nk = |Ek| + 1, none of whose
vertices are in P0 ⊔ P1 and such that:

• For each (a, b) ∈ Ik there is a unique vertex of Knk
whose only neighbours

in P0 ⊔ P1 are va,0 and vb,1 (recall that (vi,0)i∈ω and (vi,1)i∈ω are our
fixed enumerations of P0 and P1, respectively); and

• There is a vertex vIk
in the clique which has no neighbours in P0 ⊔ P1,

and is not connected to any of the previously chosen vertices.

Once we have chosen Knk
, we add it to the predicate Q. At the end, we will

have a collection of distinct cliques KI , for each finite I ⊆ ω × ω, such that
each clique “codes” a bipartite graph on (a subset of) P0 ⊔P1, and has an extra
vertex vI , which will be the “representative” of the clique. For example, the
construction for the subset I = {(0, 2), (1, 2), (3, 1)} would be:

Q

. . .

vI

. . .

v0,0

v1,0

v2,0

v3,0

v4,0

v0,1

v1,1

v2,1

v3,1

v4,1

P0 P1

...
...

Figure 6.1: Coding the subset I = {(0, 2), (1, 2), (3, 1)}.

Now, assuming that we can construct the configuration described previously,
we claim that G+ has IP2. Indeed, let ϕ(x, y0, y1) be the following formula:

(P0(y0) ∧ P1(y1)) ∧ (∃z) (Q(z) ∧ E(x, z) ∧ E(z, y0) ∧ E(z, y1))

Then, for each finite I ∈ P(ω × ω), and any (a, b) ∈ ω × ω we then have that:

G+ ⊨ ϕ(vI , va,0, vb,1) if, and only if, (a, b) ∈ I.
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We need the two monadic predicates here to be able to code the existence of two
coordinates – the same configuration could be defined in the normal random
graph G. In that case, we would have that the formula ϕ′(x, y0, y1), given by
removing the unary predicates from ϕ(x, y0, y1), is such that G ⊨ ϕ(vI , va,0, vb,0)
if (a, b) ∈ I, but not the other way round.

Of course, if we can construct the configuration described above, then it follows,
by compactness, that G+ is not monadically NIP2.

Formally, we construct this configuration in some elementary extension of G,
by the extension property of the random graph and compactness. As above,
let Gk = (Vk,0 ⊔ Vk,1, Ek) be our enumeration of all finite bipartite graphs with
no isolated vertices with vertex a finite subset of (ω × {0}) ⊔ (ω × {1}).

We construct the cliques Knk
, as described above for each k ∈ K, by induction,

as follows:

• Step 1 . Given k ∈ K, let:

{{a0,k, b0,k}, . . . , {aek,k, bek,k}},

be an enumeration of the edges of Gk, where ek = |Ek|. Then, consider
the set of formulas Σk (x0, . . . , xek

) given by:
∧
i<ek

 ∧
k<ek

E(xi, va0,k,0) ∧ E(xi, vb0,k,1)

(if i=k)
 ∪

 ∧
0≤i ̸=j≤ek

E(xi, xj)


∪
{ ∧

i<ek

(∃!z0)(P0(z0) ∧ E(xi, z0)) ∧ (∃!z1)(P1(z1) ∧ E(xi, z1))


∧ (∀v) (P0(v) ∨ P1(v) → ¬E(xek

, v))
}

∪


 ∧
i<ek

(vn ̸= xj)

 ∧Q(vn) → ¬E(vn, x) : n ∈ ω

 ,
where (vn : n ∈ ω) is an enumeration of the vertex set of G. Of course:

– The first line in the definition of Σk says that each edge of Gk is coded
by a vertex in {x0, . . . , xek−1} and that the vertices {x0, . . . , xek

}
form a clique.

– The second and third lines say that each but one of the xi is
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connected to exactly one vertex in P0 and exactly one vertex in P1,
and that xek

is connected to no vertices in P0 ⊔ P1.

– Finally, the fourth line says any vertex of G, in particular, any vertex
in P0 ⊔ P1, other than {x0, . . . , xek−1} connected to xek

is not in Q.

Clearly, the set Σk(x0, . . . , xek
) is finitely satisfiable, by the theory of the

random graph. Hence by compactness there is an elementary extension
G′ of G, in which we can find some realisations for this set of formulas, but
of course this means that we can find a countable elementary extension
G′ in which Σk(x0, . . . , xek

) has a realisation, and thus, by ω-categoricity
of G, we can find a realisation in G.

• Step 2 . Once we have found the vertices of Knk
in G, we add all of them

to the predicate Q and continue, by repeating the argument in Steps 1
and 2 for the next k ∈ K.

The result then follows.

Remark 6.4.3. We can carry out a similar argument to show that the random
graph is not monadically NIPk for any k > 1. In this case we add new predicates
P0, . . . , Pk−1 and Q and repeat the argument. For the higher-arity argument,
we again use cliques in Q to “code” graphs on the subsets of

∏
i<k ω × {i},

where the i-th coordinate is coded by the predicate Pi.

Combining Lemma 6.4.2 with Fact 6.2.1 the following interesting corollary is
immediate:
Corollary 6.4.4. The 3-partite 3-uniform hypergraph is definable in a monadic
expansion of the random graph.

In particular:
Theorem 6.4.5. Let T be a theory which has the k-independence property for
some k ≥ 1. Then some monadic expansion of T has the (k + 1)-independence
property.

Proof. From Theorem 6.3.1 we can find, in a monadic expansion of T a formula
ϕ(x, y0, . . . , yk−1) which has the k-independence property and such that x and
y0, . . . , yk−1 are singletons, rather than using parameters. We use monadic
predicates which name singleton sets. Then, from Fact 6.2.1 it follows that
ϕ(x, y0, . . . , yk−1) encodes Hp

k+1, as a partite hypergraph. We now work inside
the Hp

k+1 encoded by ϕ. Since this has the k-Independence Property, from
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Proposition 4.2.14 it follows that it has the Independence Property. Hence,
using [BS85, Lemma 8.1.3] in some monadic expansion, we can find a formula
ψ(x, y) with x, y both singletons which has the independence property. Again
using Fact 6.2.1 this means that ψ(x, y) encodes the random bipartite graph Gp

(the random bipartite graph). Once more, we work inside the random bipartite
graph Gp encoded by ψ(x, y). Our goal is to find a monadic expansion of this
Gp and a formula in this expansion which encodes the random graph. To fix
notation, write Gp = (V0 ⊔ V1, E).

By the extension property of Gp, using a similar argument as the one in Step
2 of Lemma 6.4.2, we can find, inside Gp an infinite subset of vertices of V1

such that any two of them belong to exactly one path of length 2 (i.e. a graph
of the form P2 = ({v1, v2, v3}, {{v1, v2}, {v2, v3}})) and no two of these paths
pass through the same vertex of V2. Let P be a unary predicate naming this
subset of V1 and let Q be a unary predicate naming the vertices in V2 adjacent
to vertices in P . The upshot is that for each pair of vertices u, v ∈ P there is
a unique vertex w{u,v} in Q such that u, v and wu,v form a path of length 2.
Independently for each pair of vertices u, v ∈ P remove w{u,v} from Q with
some fixed positive probability, say 1

2 . Then, the formula χ(x, y) given by:

(∃w)(Q(w) ∧ E(x,w) ∧ E(w, y))

defines, with probability 1 the edge relation of a random graph on P , hence the
graph given by (P, χ(x, y)) is a random graph inside G2,p. Using Remark 6.4.3
this is not monadically NIPl for any l ∈ N, so in particular it is not monadically
NIPk+1. Hence T has the (k + 1)-independence property, as claimed.

Combining the theorem above with Proposition 4.2.14, it follows that in
monadic expansions the NIPk hierarchy collapses, more precisely:
Corollary 6.4.6. A theory T is monadically NIPk for some k ∈ N if, and
only if, it is monadically NIPl, for all l ∈ N.
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***

– End of Part 1 –
***
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Part 2: Murphy’s Law for 2-Nilpotent Groups†

6.5 Introduction to Part 2

An important aspect of Shelah’s classification theory is, very roughly speaking,
based on the idea that the presence/absence of simple combinatorial data (e.g.
linear orders, random graphs, and more) can give us a lot of information on
the “complexity” of a given theory (e.g. stability, NIP, and more).

The dichotomies given by the presence/absence of combinatorial configurations
allow model theorists to divide (hence the name “dividing lines”) the class of
all first-order theories into smaller regions, which can then be studied in more
detail. Since the various regions of the model-theoretic universe are defined
using combinatorial data, it is often the case that building combinatorial
examples inhabiting each region is a much easier task than building purely
algebraic ones.

Mekler’s construction is now a classical technique for building a purely algebraic
structure (a 2-nilpotent group of exponent p, for a fixed odd prime p ∈ N) from
a purely combinatorial one (a “nice” graph).5

The goal of this little section is to push this idea to its logical extreme,
generalising the aforementioned results, and showing that Mekler’s construction
really does preserve the presence/absence of all interesting combinatorial data.
So, in a sense, Murphy’s law does indeed hold for the class of 2-nilpotent
groups of exponent p – at least from the point of view of dividing lines that
are characterised through generalised indiscernibles.

The main result is the following:
Theorem V. Let I be an ℵ0-categorial Fraïssé limit of a Ramsey class in a
finite relational language, and J a proper reduct of I, also in a finite relational
language. For every nice graph C:

†The main result in this section is part of larger joint work with Blaise Boissonneau and
Pierre Touchard [BPT24].

5All the material around Mekler’s construction is now standard, and a classical reference
is [Hod93, Appendix A.3], all notation used in this section that is not introduced will be
generally consistent with the notation from Hodges, and to avoid including a rather long
preliminary section, which contains precisely the material from that book (and definitely
does not live up to the standards of Hodges’s exposition), I direct the reader there for the
relevant material.

https://en.wikipedia.org/wiki/Murphy%27s_law
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If:

• I has specific collapsing (see Definition 6.6.2) to J

• Th(C) collapses I-indiscernibles to J -indiscernibles

Then:

• Th(M(C)) collapses I-indiscernibles to J -indiscernibles.

Combining this with [ACT23, Lemma 4.14, Theorem 4.15], one can construct
the first known examples of NFOPk pure groups, for all k ∈ N>2, confirming an
expectation of Abd Aldaim, Conant, and Terry [ACT23, Remark 2.13]. This
is handled with more care in [BPT24].

6.6 Local Preliminaries for Part 2

Before reading this section, I suggest the reader takes a brief look at Appendix A
to remind themself of the definitions and familiarise themself with the notation.
Through this section, C will be a nice graph, and M(C) its Mekler group.

Recall the following key lemma from [CH19]:
Fact 6.6.1 ([CH19, Lemma 2.14]). Let M a saturated model of Th(M(C)). Let
X be a transversal and KX ≤ Z(M) be such that M = ⟨X⟩ ×KX . Let Y and
Z be two small subsets of X and h̄1, h̄2 two tuples in KX .

If:

• There is a bijection f : Y → Z which respects the 1ν-, p-, 1ι-parts , the
handles, and tpΓ(Y ν) = tpΓ(f(Y )ν).

• tpKX
(h̄1) = tpKX

(h̄2).

Then:

• There is an automorphism σ ∈ Aut(M) extending f such that σ(h̄1) = h̄2.

In [CH19], amongst other results, the authors essentially show the following
([CH19, Theorem 4.7]): If, for some nice graph G, every model of Th(G)
collapses Hk-indiscernibles (where Hk is the random k-partite hypergraph) to
Pk-indiscernibles (where Pk is the random k-partite set), then so must every
model of Th(M(G)). Below, their argument is adapted for the general case of
collapsing I-indiscernibles (in place of Hk-indiscernibles) to J -indiscernibles
(in place of Pk-indiscernibles).
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Definition 6.6.2 (Specific collapsing). Let I be an ℵ0-categorical Fraïssé
limit of a Ramsey class and J a proper reduct of I. We say that I has
specific collapsing to J if for all theories T , and all M ⊨ T , every collapsing I-
indiscernible sequence in M, is (a possibly collapsing) J -indiscernible sequence.

Let’s start with two easy lemmas:
Lemma 6.6.3. Let T be a stable theory, I an ℵ0-categorial Fraïssé limit of a
Ramsey class in a finite relational language, and J a proper reduct of I. If I
has specific collapsing to J then every model of T collapses I-indiscernibles to
J -indiscernibles.

Proof. Since I is Ramsey, it expands a linear order, and since T is stable, we
must have that, in models of T , I-indiscernibles collapse to the reduct of I
where we forget the order. By specific collapsing, this means that in models of
T , I-indiscernibles collapse to J -indiscernibles.

Lemma 6.6.4. Let M and N be structures such that N is interpretable in
M. Let ϕ(x̄) define the domain of N in Meq (modulo the definable equivalence
relation ∼). Let I be an indexing structure and (āi : i ∈ dom(I)) an I-
indiscernible sequence such that M ⊨ ϕ(āi) for all i ∈ I. Then ([āi]∼ : i ∈
dom(I)) is an I-indiscernible sequence in N .

Proof. Let i1, . . . , in, j1, . . . , jn ∈ I be such that:

qftpI(i1, . . . , in) = qftpI(j1, . . . , jn).

Since the sequence (āi : i ∈ dom(I)) is I-indiscernible, it follows that

tp(āi1 , . . . , āin) = tp(āj1 , . . . , ājn)

and hence, in Meq, we have that tp([āi1 ]∼, . . . , [āin ]∼) = tp([āj1 ]∼, . . . , [ājn ]∼),
and the result follows.

6.7 The Main Theorem

Theorem 6.7.1. Let I be an ℵ0-categorial Fraïssé limit of a Ramsey class in
a finite relational language, and J a proper reduct of I, also homogeneous in a
finite relational language. For every nice graph C:

If:
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• I has specific collapsing to J

• Th(C) collapses I-indiscernibles to J -indiscernibles

Then:

• Th(M(C)) collapses I-indiscernibles to J -indiscernibles.

Proof. Assume toward a contradiction that Th(C) collapses I-indiscernibles
to J -indiscernibles but Th(M(C)) does not. Since both I and J are finitely
homogeneous, without loss of generality they are both k-ary, for some k ∈ N.
By appropriately padding the symbols in LI and LJ , the respective languages
of I and J , we may assume that they all have arity exactly k. Moreover, since
I has quantifier elimination we can also assume that LJ ⊆ LI .

By assumption, we can find a model M ⊨ Th(M(C)) and an I-indiscernible
sequence B = (bi : i ∈ dom(I)) in M which is not J -indiscernible. Since I has
specific collapsing to J , this must mean that B is non-collapsing. In particular,
for all (i1, . . . , ik), (j1, . . . , jk) ∈ dom(I)k we have that

qftpI(i1, . . . , ik) = qftpI(j1, . . . , jk) ⇐⇒ tp(bi1 , . . . , bik) = tp(bj1 , . . . , bjk).

Claim 1. For every k-ary relation symbol R ∈ LI we can find an Lgrp-formula
ϕR such that for all i1, . . . , ik ∈ I we have that:

M ⊨ ϕR(bi1 , . . . , bik) if, and only if, I ⊨ R(i1, . . . , ik).

Proof of Claim 1. First, since I is ℵ0-categorical there are finitely many
quantifier-free k-types in Th(I), say p1, . . . , pn. For every k-ary relation symbol
R ∈ LI there is a subset PR ⊆ {p1, . . . , pn} such that R belongs to every
type in P and to no types in {p1, . . . , pn} \ P. For each p ∈ {p1, . . . , pn}
let ψp be its (quantifier-free) isolating formula, and let ψR be the formula∨
p∈PR

ψp ∧
∧
q ̸∈PR

¬ψq. Then:

I ⊨ ψR(i1, . . . , ik) if, and only if, I ⊨ R(i1, . . . , ik).

Now, since B is an uncollapsed I-indiscernible, for each quantifier-free k-type
p of I there is a unique k-type q of M in B, corresponding to the k-tuples
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from B indexed by k-tuples from I whose quantifier-free type is p. For each
such type we can find an Lgrp-formula ϕp separating it from the rest.

Given a relation symbol R ∈ LI , which belongs to a (unique) Boolean combin-
ation of isolating formulas ψR, as discussed above, take ϕR to be the formula∧∨

ϕϵii , i.e. the corresponding Boolean combination of Lgrp-formulas ϕp. ◀

Fix κ to be |T |+ and I ≽ I be an elementary extension of I with |I| = κ.
Without loss of generality, we may assume that M is saturated. Since I
is Ramsey, I-indiscernibles have the modelling property (by the generalised
standard lemma, Theorem 3.5.12), so by compactness/saturation we can
actually find, in M, an I-indexed indiscernible sequence A = (ai : i ∈ dom(I))
which is based on B. Let J ≽ J be the elementary extension of J given by
taking the LJ -reduct of I.

Claim 2. The sequence (ai : i ∈ dom(I)) is not J-indiscernible.

Proof of Claim 2. Since (ai : i ∈ dom(I)) is not J -indiscernible, we can find
i1, . . . , ik, j1, . . . , jk ∈ dom(I) such that qftpJ (i1, . . . , ik) = qftpJ (j1, . . . , jk)
and tp(bi1 , . . . , bik) ̸= tp(bj1 , . . . , bjk). Let ∆1 ⊆ tp(bi1 , . . . , bik), and ∆2 ⊆
tp(bj1 , . . . , bjk) be two finite sets of Lgrp-formulas such that ∆1 ∪ ∆2 is incon-
sistent.

Since (ai : i ∈ dom(I)) is based on (bi : i ∈ dom(I)) and I ≽ I, given
l1, . . . , lk ∈ I such that qftpI(l1, . . . , lk) = qftpI(i1, . . . , ik), we can find a tuple
i′1 . . . , i

′
k ∈ I such that qftpI(l1, . . . , lk) = qftpI(i′1, . . . , i′k) and thus

tp∆1(al1 , . . . , alk) = tp∆1(bi′1 , . . . , bi′k) = tp∆1(bi1 , . . . , bik).

Similarly, we find m1, . . . ,mk such that qftpI(m1, . . . ,mk) = qftpI(j1, . . . , jk)
and

tp∆2(am1 , . . . , amk
) = tp∆2(bj1 , . . . , bjk).

But, by construction qftpJ(l1, . . . , lk) = qftpJ(m1, . . . ,mk) and thus (ai : i ∈
dom(I)) is not J-indiscernible. ◀

Using essentially [CH19, Proposition 2.18], we may write M in the form
⟨X⟩ × ⟨H⟩, where X is a transversal and H ⊆ M a set which is linearly
independent over [M,M].

After fixing an enumeration of dom(I), and rearranging A to be in the form
(ai : i < κ), we express the elements in A as Lgrp-terms built up from elements
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of X and H, as follows: For each λ < κ let tλ be an Lgrp-term, and x̄λ, h̄λ be
finite tuples from X and H, respectively, such that aλ = tλ(x̄λ, h̄λ).

By passing to a cofinal subsequence of A of cardinality κ in the fixed enumera-
tion (recall that we set κ = |T |+) we can find a term t ∈ Lgrp such that for all
λ < κ we have tλ = t. Since, each x̄λ is a tuple from X, we can assume that
it is of the form x̄νλ

⌢x̄pλ
⌢x̄ιλ (as discussed in Appendix A), where we simply

list all elements of x̄λ of the corresponding types. We may also append the
handles of the elements in the tuple x̄pλ to the beginning of x̄νλ (so that the
handle of the j-th element of x̄pλ is the j-th element of x̄νλ, and we allow for
repetition of elements).

Thus, at this point, after rearranging, we have an I-indiscernible sequence
(t(x̄i, h̄i) : i ∈ dom(I)). Of course, since I ≼ I, we may actually work with
the subsequence (t(x̄i, h̄i) : i ∈ dom(I)). By construction, this sequence
is I-indiscernible, and arguing as in Claim 2, (x̄i⌢h̄i : i ∈ dom(I)) is not
J -indiscernible.

By Claim 1 and the fact that A is based on B, for any R ∈ Σ = LI \LJ , which
is non-empty since J is a strict reduct of I, we can find an Lgrp-formula ϕR
such that:

M ⊨ ϕR(ai1 , . . . , aik) if, and only if, I ⊨ R(i1, . . . , ik).

Now, let Γ(M) be a saturated model of Th(C), containing all the elements
(x̄νi : i ∈ dom(I)), which we now view as graph vertices. Since Γ(M) is
interpretable in M, this sequence remains I-indiscernible, by Lemma 6.6.4,
and since Th(G) collapses I-indiscernibles to J -indiscernibles this is actually
a J -indiscernible sequence in Γ. Similarly, let H be a saturated model of
Th(⟨H⟩), in the language of groups. By Fact A.2.2(2) we know that Th(⟨H⟩) is
stable and has quantifier elimination. From the quantifier elimination, it is easy
to see that (h̄i : i ∈ dom(I)) remains I-indiscernible in H, and since Th(⟨H⟩)
is stable, from Lemma 6.6.3, we have that (h̄i : i ∈ dom(I)) is J -indiscernible
in H.

Since the sequence (x̄i⌢h̄i : i ∈ dom(I)) is not J -indiscernible, there are
i1, . . . , ik, j1, . . . , jk ∈ dom(J) such that qftpJ (i1, . . . , ik) = qftpJ (j1, . . . , jk)
and tp((x̄i1⌢h̄i1), . . . , (x̄ik⌢h̄ik)) ̸= tp((x̄j1⌢h̄j1), . . . , (x̄j1⌢h̄j1)). Of course,
by I-indiscernibility of the sequence we must have that qftpI(i1, . . . , ik) ̸=
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qftpI(j1, . . . , jk), so there exists some relation symbol R ∈ LI such that:

I ⊨ R(i1, . . . , ik) ∧ ¬R(j1, . . . , jk).

In particular, by Claim 1, we can find an Lgrp-formula ϕR such that:

M ⊨ ϕR((x̄i1⌢h̄i1), . . . , (x̄ik
⌢h̄ik)) ∧ ¬ϕR((x̄j1⌢h̄j1), . . . , (x̄j1⌢h̄j1))

But, observe that at this point we are in the following situation:

• Since qftpJ (i1, . . . , ik) = qftpJ (j1, . . . , jk) and the sequences (x̄νi : i ∈
dom(I)) and (h̄i : i ∈ dom(I)) are J -indiscernible we have that:

tpΓ(x̄νi1 , . . . , x̄
ν
ik

) = tpΓ(x̄νj1 , . . . , x̄
ν
jk

)

and
tp⟨H⟩(h̄i1 , . . . , h̄ik) = tp⟨H⟩(h̄j1 , . . . , h̄jk)

• The map sending x̄il⌢h̄il 7→ x̄jl
⌢h̄jl respects the 1ν-, p-, 1ι-parts, and

the handles.

Thus, by applying Fact 6.6.1, we can extend this map to an automorphism
σ ∈ Aut(M) sending (x̄il⌢h̄il) to (x̄jl⌢h̄jl) for all l ∈ {1, . . . , k}, which is a
contradiction.



Appendix A

Mekler’s construction

To keep this thesis a bit more self-contained, I have opted to include a brief
exposition of Mekler’s construction below. This construction gives us a way
of building a group from any structure in a finite signature (it is well-known
that it suffices to do this for graphs) in a way that preserves many important
model-theoretic properties (see Fact A.3.1 and corollary A.3.4) originates from
[Mek81]. The discussion here is largely lifted from [BPT24], but contains
additional details which can be found in [Hod93, Appendix A.3] and [CH19].
Nothing in this section is original, and the reader can find everything presented
here (probably written more nicely) in the aforementioned sources.

A.1 The Very Basics

Recall from Section 2.7 that a graph is just a structure C (to avoid confusion, I
will try to keep graphs denoted by C and groups denoted by G, when discussing
Mekler’s construction) in a relational language with a single binary relation,
which in this section will be denoted by E, such that E is irreflexive and
symmetric.
Definition A.1.1. A graph C = (V,E) is called nice if it satisfies the following
properties:

1. |V | ≥ 2;

2. For any two distinct vertices v1, v2 ∈ V there is some vertex u ∈ V \
{v1, v2} such that {v1, u} ∈ E and {v2, u} ̸∈ E;

3. There are no triangles or squares in the graph.

249
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For any graph C and (a fixed) odd prime p, let M(C) be the 2-nilpotent group
of exponent p which is generated freely in the variety of 2-nilpotent groups of
exponent p by the vertices of C, with only relations those imposing that two
generators commute if and only if they are connected by an edge in C.

If C is a nice graph, we call M(C) the Mekler group of C. More generally, we say
that a group G is a Mekler group if there is a nice graph C such that G ≡ M(C).
An axiomatisation of the theory of Mekler groups can be found in [Hod93,
Appendix A.3].

Let me now recall some (standard) terminology.

Fix a nice graph C with Mekler group M(C) and let G be a 2-nilpotent exponent
p group such that G ≡ M(C). To fix some notation, I will write Z := Z(G) for
the centre of M(C), and for g ∈ G, I will write CG(g) for the centraliser of g in
G.
Definition A.1.2 (Equivalence relations ∼ and ≈). We define the following
two (∅-definable) equivalence relations on G:

1. Centraliser : For all g, h ∈ G we define g ∼ h if, and only if, CG(g) =
CG(h).

2. Powers modulo centre: For all g, h ∈ G we define g ≈ h if, and only if,
there is some c ∈ Z and some α ∈ {0, . . . , p− 1} such that h = gαp.

Remark A.1.3 ([Hod93, Lemma A.3.3]). The equivalence relation ≈ refines ∼,
that is, for all g, h ∈ G, if g ≈ h then g ∼ h.
Definition A.1.4. Let g ∈ G. We say that:

1. g is of type q, for q ∈ N if [g]∼ splits into exactly q-many ≈-classes.

2. g is isolated if every non-central element that commutes with g is ≈-
equivalent to g.

An element g ∈ G of type q ∈ N is said to have type qι if it is isolated and type
qν otherwise.
Remark A.1.5. For all q ∈ N, each of the sets of elements of type q, qι and qν

in M(C) are ∅-definable, since ∼ and ≈ are ∅-definable.

The next fact follows from [Hod93, Lemmas A.3.6-A.3.10]:
Fact A.1.6. All non-central elements of G can be partitioned into four different
(∅-definable, by the previous remark) classes:
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1. Elements of type 1ν .

2. Elements of type 1ι.

3. Elements of type pν .

4. Elements of type (p− 1)ν .

Furthermore, all elements of type p− 1 can be written as the product of two
∼-inequivalent elements of type 1ν .
Definition A.1.7 (Handle). For every element g ∈ G of type p we call an
element b of type 1ν which commutes with g a handle of g. If g, g′ ∈ G are
elements of type p with handles b, b′, respectively, we say that they have the
same handle if b ∼ b′.
Remark A.1.8 ([CH19, Fact 2.5]). The handle of g ∈ G is definable from g, up
to ∼-equivalence.
Notation A.1.9. We denote by Eν , Ep and Eι the sets of elements of type, 1ν ,
p and 1ι, respectively.
Remark A.1.10. Both the centre of a Mekler group G as well as the quotient
G/Z(G) are essentially Fp-vector spaces. So, as is usual when discussing
Mekler groups, independence over some supergroup of Z(G) will refer to linear
independence (in the corresponding Fp-vector space).
Definition A.1.11 (Transversal). Let G be a Mekler group. A transversal of
G is a set X which can be written as the union of three disjoint sets Xν , Xp,
and Xι where:

• Xν is a subset of Eν linearly independent over Z and maximal for this
property.

• Xp is a subset of Ep linearly independent over ⟨Z,Eν⟩ and maximal for
this property.

• Xι is a subset of Eι linearly independent over ⟨Z,Eν ,Ep⟩ and maximal
for this property.

Remark A.1.12. Every Mekler group G admits a transversal X, and all elements
of G can be written as a finite product:

ar1
1 · · · arn

n g
s1
1 · · · gsm

m wt11 · · ·wtkk z,

where ai ∈ Xν , gi ∈ Xp, wi ∈ Xι, z ∈ Z and ri, si, ti are in {0, . . . , p− 1}.
Fact A.1.13 ([CH19, Lemma 2.7]). For every small set of tuples x, there is a
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partial type ϕ(x) such that G |= ϕ(x) if, and only if, x can be extended to a
transversal of M.

A.2 The Important Facts

Again, in this section, C will be a fixed nice graph, and unless otherwise stated,
G will be a model of Th(M(C).

Here’s how to interpret the graph from the group:
Fact A.2.1 ([CH19, Fact 2.8], essentially [Hod93, Corollary A.3.11]). There is
an interpretation Γ such that for any G ⊨ Th(M(C)) we have that Γ ⊨ Th(C).
More specifically, the graph Γ(G) = (V,R) is given by:

• V := {g ∈ G \ Z : g is of type 1ν}.

• R := {{[g]∼, [h]∼} : [g, h] = 1}.
Fact A.2.2 ([Hod93, Theorem A.3.14, Corollary A.3.15]). Let X be a trans-
versal in G. Then:

(1) There is a subgroup of Z, denoted KX such that:

G = ⟨X⟩ ×KX .

(2) The group KX is an elementary abelian p-group. In particular, Th(KX)
is stable and has quantifier-elimination.

(3) If G is saturated and uncountable then both the graph Γ(G) and the group
KX are also saturated.

(4) If G is saturated then every automorphism of Γ(G) can be lifted to an
automorphism of G

Fact A.2.3 ([CH19, Proposition 2.18]). There is a partial type π(x̄; ȳ) in
Th(M(C)) such that the following are equivalent for any ā ∈ G|x̄| and any
b̄ ∈ G|ȳ|:

(1) G ⊨ π(ā, b̄).

(2) ā can be extended to a transversal X and there is a subset H ⊆ Z contain-
ing b̄ which is linearly independent over [G,G] such that G = ⟨X⟩×⟨H⟩.
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A.3 Some Final Corollaries

For historical purposes, let me now summarise some of the known model-
theoretic properties that are preserved by Mekler’s construction:
Fact A.3.1. A Mekler group M has the property P if and only if its associated
graph C has the property P , where P is one of the following properties:

• λ-stability for every cardinal λ, [Mek81; Hod93];

• CM-triviality [Bau02];

• The NIPn, for every n ∈ N, [CH19];

• The tree property of the second kind, [CH19];

• The first and second strict order properties, [Ahn20];

• The anti-chain property, [AKL22].

Moreover, in [BPT24] we develop a “relative quantifier elimination” from
Mekler groups down to their nice graphs, and using this we are able to prove
the following two theorems:
Theorem A.3.2 ([BPT24, Theorem B]). Let M ≼ M′ be an elementary pair
of Mekler groups of respective graphs C and C′.

1. M is stably embedded1 in M′ if and only if C is stably embedded in C′.

2. M is uniformly stably embedded in M′ if and only if C is uniformly stably
embedded in C′.

and:
Theorem A.3.3 ([BPT24, Theorem A]). Let I be a Ramsey structure, and J
a reduct of I. Let M be a Mekler group and C its associated nice graph. Then,
the following are equivalent:

1. C collapses I-indiscernibles (resp. to J -indiscernibles).

2. M(C) collapses I-indiscernibles (resp. to J -indiscernibles).

I have chosen not to present the main methods we developed in [BPT24] in
this thesis as they involve long and delicate relative quantifier-elimination

1Recall: Let T be a complete theory. An elementary pair M ⪯ N is called stably embedded
if for every formula ϕ(x, b) with b from N , there is a formula ψ(x, c) with c from M such that
ϕ(N , b) = ψ(M, c). The pair is called uniformly stably embedded if, in addition, the choice of
the formula ψ(x, z) depends only on ϕ(x, y), and is independent of the parameters b.
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arguments which do not, in my opinion, fit in well with the rest of the themes
of my thesis. I have, however, included Theorem 6.7.1, a slightly weaker version
of Theorem A.3.3, which also appears in [BPT24].

As a final aside, from Theorem A.3.3 we can easily derive with the methods
developed in this thesis (Theorem 4.4.3, to be precise) the following corollary,
which fits rather neatly with some of the themes presented in Chapter 4:
Corollary A.3.4. Let K be a Ramsey class in a countable language with an
ℵ0-categorical Fraïssé limit, and let C be a nice graph. Then, the following are
equivalent:

(1) C ∈ NCK.

(2) M(C) ∈ NCK.
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