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Abstract

In this thesis, mathematical models for the in vitro and in vivo dynamics of
the bacterium Bacillus anthracis, the causative agent of the disease anthrax,
are considered in Chapters 3 and 4. Additionally, the dynamics of infection
transmission for a pathogenic wild-type strain of a given virus and defective
interfering strain of the same virus within a closed population are also
considered in Chapter 5.

In Chapter 3, a two-compartment stochastic model is presented which de-
scribes the behaviour of toxin-producing bacteria and the corresponding
dynamics are analysed. Using a continuous-time Markov chain to describe
the model allows several summary statistics to be considered, such as the
number of toxin molecules produced during the lifespan of a bacterium.
This two-compartment model is applied to Bacillus anthracis and antibiotic
treatment. An attempt is made to quantify, for the first time, bacterial toxin
production by making use of data from an in vitro assay for a particular
strain of B. anthracis.

Then, in Chapter 4, the stochastic analog of a previously published model
of within-host anthrax infection is considered, allowing the computation of
the dose-response probabilities of this model. Furthermore, we then propose
a single model, in terms of delay differential equations, to explain the in

vitro dynamics of published experimental data of two strains of B. anthracis,
making use of a Bayesian approach for parameter calibration.

Within the last chapter of this thesis, Chapter 5, a compartmental epidemic
model of viral infection is introduced. This model explores the protection
afforded by the presence of a strain of virus composed of defective interfering
particles (DIPs) on an outbreak of the wild-type virus in a closed population.
A number of summary statistics are introduced and described for this model,
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followed by an investigation into their distributions and expectations for a
range of parameter regimes.
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Chapter 1

Introduction

In this thesis, two types of infection shall be considered. Chapters 3 and 4 are motivated

by the dynamics of anthrax infection, a disease caused by toxin-producing bacteria.

Chapter 5 considers the dynamics of a small, closed population being exposed to a virus

that exists in two strains, a pathogenic wild-type strain and a defective strain (composed

of defective interfering particles (DIPs)) that offers an individual some protection from

the wild-type strain.

1.1 Biological introduction

In the immune system, there exists multiple mechanisms that protect the individual from

infection via exposure to a pathogen. The first such line of defence is made up of physical

barriers, such as the skin and mucous membranes. However, if a pathogen manages

to enter the body it will be confronted with an innate immune response, involving

recruitment and activation of a wide range of cells to attempt to remove the pathogen.

One such example of the innate immune response will be discussed in Chapter 4 as part

of the model by Day et al. (2011). If the innate immune response is not sufficient to

clear the infection, there is another level of response known as the adaptive immune

response, which provides a specific response for the pathogen that has infected the body

(Sompayrac (2022)).
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1. INTRODUCTION

1.1.1 Anthrax

Anthrax is an infectious disease with a high mortality rate in the absence of treatment. It

is caused by the infection of a host with the gram-positive bacteria, Bacillus anthracis.

These bacteria are rod-shaped and usually form chains of bacterial cells as they multiply

in a suitable environment. However, if Bacillus anthracis finds itself within an adverse

environment it forms a dormant spore which can remain viable in soil, air and water

with a half-life of around 100 years (Goel (2015)). These spores wait until favourable

conditions are detected, usually within a host where the bacteria can sustain itself, and

begin to germinate into vegetative bacteria. The bacteria then replicate within the host

both intracellularly and extracellularly.

There are three main routes in which Bacillus anthracis usually enters a human host.

These routes will lead to different clinical forms of the disease, known as cutaneous,

gastrointestinal and inhalational anthrax. Cutaneous anthrax infection occurs when

Bacillus anthracis enters the body via an entry in the skin, such as a cut. This is by far the

most common type of anthrax, making up approximately 95% of cases (Chambers et al.

(2018)), but has the best prognosis as it can usually be resolved positively with timely

treatment and only approximately 20% of untreated cases are fatal. Cutaneous anthrax

often results in black lesions on the infection site which gives the disease its name, taken

from anthrakis, a Greek word for coal. Gastrointestinal anthrax generally occurs when a

host has ingested meat from an animal that was infected with the bacteria; this has overall

fatality rates of between 25% and 60%. Inhalational anthrax occurs when a host breathes

in spores of Bacillus anthracis. This thesis will exclusively consider anthrax infections

that occur inhalationally, for a few reasons. Firstly, this type of infection is extremely

dangerous and is usually fatal if not rapidly detected and treated (Cote et al. (2011)).

Even for cases where treatment is administered, the fatality rates can be high if treatment

is not delivered early enough after exposure and specifically before symptoms onset.

This is because the symptoms of anthrax are caused by toxins produced by bacteria

within the host and as such antibiotic treatments will not affect these if they have already

been produced. A complication of this need for early and effective treatment is that the

initial symptoms of inhalational anthrax are extremely similar to those of flu, so early

diagnoses are often difficult (Goel (2015)). Another reason that this thesis focuses on

inhalational anthrax is that Bacillus anthracis is viewed as potential biological terrorism

2



1.1 Biological introduction

threat as spores can be produced, preserved and then deliberately distributed via release

in the air, which could have a significant impact on both individuals infected with the

bacteria and economies of affected areas due to the high cost of decontamination. The

first confirmed case of anthrax as a bioterror agent occurred in the United States in 2001,

in which envelopes containing Bacillus anthracis spores were sent to members of the

media and politicians in the aftermath of the 2001 9/11 attacks. This led to 22 confirmed

cases of anthrax, 5 of which resulted in death and a cost of $320 million dollars in

decontamination costs (Jernigan et al. (2002), Schmitt & Zacchia (2012)).

1.1.1.1 Pathogenesis of inhalational anthrax

An inhalational anthrax infection Bacillus anthracis enters the host by being breathed

into the alveolar region of the lungs as spores. It is generally assumed that these spores

have no effect on the lung region itself (Hodges et al. (1965)). Within the lungs, these

spores are ingested by alveolar phagocytes attracted by the innate immune response of

the host. Once the phagocytes have ingested the spores, they migrate to the lymph nodes

in the mediastinum; however, within the phagocytes, the spores germinate and begin

producing new bacteria. At this stage the phagocytes can either kill all bacteria and

recover (Kang et al. (2005)), or enough bacteria will be produced that the phagocytes

rupture and the bacteria is released extracellularly into the lymph node region. Some

models such as the one proposed by Day et al. (2011), discussed in Chapter 4 of this

thesis, assume that in all cases the phagocytes are overwhelmed and release the bacteria.

Once Bacillus anthracis is exposed to the lymph node region via this rupturing process

it continues to multiply, which can cause oedema and haemorrhage of the mediastinal

lymph nodes. This causes symptoms in the host to begin to show, typically respiratory

problems due to fluid in the pleural cavity. As this bacteria is now extracellular it is also

possible for it to spread through the body via the bloodstream.

1.1.1.2 Anthrax toxins

B. anthracis produces virulence factors, which are, in this case, additional molecules

produced by the bacteria that can add to its effectiveness in propagating the disease by

inhibiting the immune system, entering host cells and then damaging or killing the host

cells. The genes in control of encoding these virulence factors are found on two plasmids

3
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in the cytosol of the bacteria, pXO1 and pXO2. pXO1 carries genes that encode the

production of three proteins which are commonly known as the anthrax toxin components.

These proteins are the protective antigen (PA), lethal factor (LF) and oedema factor (EF).

LF and EF are individually not toxic as they lack a mechanism to enter cells in isolation,

however in combination with PA they form toxins that can enter cells. PA and LF

combine to form lethal toxin, which causes cell death. PA and EF combine to form

edema toxin which has a suppressive effect on the immune system by preventing bacteria

to be phagocytosed by neutrophils (Banks et al. (2005)). PA molecules bind to receptors

on host cells, undergo cleaving and form a heptamer. This heptamer provides suitable

conditions for the LF and EF proteins to bind to, forming a complex. Once formed, the

complex is then taken into the cell via endocytosis where the toxins are released into

the host cell. This process is shown in Figure 1.1. The plasmid pXO2 is responsible

for encoding an anti-phagocytic capsule, which is a layer around the outside of the cell

wall which covers molecules on the bacteria’s cell surface that would cause an immune

response and as such, allows the bacteria to continue replicating and producing toxins

without being phagocytosed (Sharma et al. (2020)). The capsule produced by pXO2

is crucial in the pathogenesis of anthrax and without it, the host is much more capable

of resisting the disease. Due to this, strains of Bacillus anthracis that lack the pXO2

plasmid are used in vaccinations around the world. The UK and US use the Sterne strain

of Bacillus anthracis to produce their Anthrax Vaccine Precipitated (AVP) and Biothrax

(formerly known as Anthrax Vaccine Absorbed) vaccines respectively. In China the

vaccine used contains the A16R strain, which also produces anthrax toxins via plasmid

pXO1 but cannot encode the capsule. Zai et al. (2016) carried out experiments using

both the Sterne and A16R strain; we will discuss the results of Zai et al. (2016) in more

detail in Chapter 4.

1.1.2 Viruses and defective interfering particles

Viruses are infectious agents that cannot reproduce unless contained within a cell, but

once within a cell a virus can use the host cell machinery to replicate. The extracellular

virus particle, before entry into a host cell, is called a virion. Virions consist of a genome

(which can be DNA or RNA), surrounded by a protein coating called a capsid. Together,

the capsid and the nucleic acid core are called the nucleocapsid. Some viruses have their
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1.1 Biological introduction

Figure 1.1: The process of PA molecules binding to a receptor, undergoing furin cleaving
and forming a heptamer. This heptamer then binds LF and/or EF proteins (Hardenbrook
et al. (2020)) to form toxin complexes and undergoes endocytosis to enter the cell. Figure
taken from Sweeney et al. (2011).

nucleocapsid surrounded by a lipid envelope. The function of the capsid or envelope is

to protect the viral genome whilst it is extracellular and allow it to enter a susceptible

cell (Burrell et al. (2017), Strauss & Strauss (2008)). The proteins encoded within viral

genomes can be categorised into three major classes. The first class encoded are enzymes

required for replication of the genome. The second class are proteins that viruses must

encode for the assembly of progeny virions. The third and final major class of viral

protein, describes the case where viruses encode proteins that provide some protection

from the defense mechanisms of the host. For example, this type of protein may interfere

with the host’s immune response. Generally, in a viral infection, the virion will attach to

a host cell and become internalised into it; the viral nucleocapsid is then released into

the cytoplasm of the cell. Depending on the type of virus, the viral genome replication

process can begin in the cytoplasm; whereas some types of virus need to enter the nucleus

for replication to begin (Strauss & Strauss (2008)).

During this replication process viral particles can be produced that lack some components

of the viral genome, making them defective. However, not all of these defective particles

interfere with the virus. The incomplete particles which do interfere with the complete

virus are known as defective interfering particles (DIPs) if they satisfy the following

criteria (Reta (2017)):
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• The particles must contain the same structural proteins as the standard (wild-type
(WT)) virus they are derived from and are antigenically identical. This requires
that the DIP is simply a copy of the standard virus with some part of the viral
genome missing.

• The missing part of the viral genome in the DIP causes it to be defective; it cannot
replicate on its own as it lacks the capacity to produce all necessary viral proteins.

• However, DIPs can replicate during co-infections with the WT virus, also called
under these circumstances a ‘helper’ virus, which provides the missing protein(s)
needed for replication.

• During co-infections (i.e. WT virus and DIPs infecting the same cell), DIPs
interfere with the reproduction of their helper virus, which leads to there being
more DIP progeny than ‘helper’ virus progeny.

As these DIPs cannot replicate in the absence of the WT virus an individual infected
solely with the DIP will have the virus simply decay and they will revert to a healthy
state after some time. Due to the fourth criterion in the definition of a DIP, DIPs will
have a suppressive effect on a disease if co-infection occurs with the WT strain. This
is explained by the DIPs competing for intracellular resources with the WT particles,
possibly reducing the total WT viral load within the host, and therefore they have the
potential to mitigate the propagation of the disease (Reta (2017), Marriott & Dimmock
(2010)). Therefore a DIP strain being present within a population will engender some
level of protection from a WT strain; these dynamics will be investigated in Chapter 5.
Within this chapter no specific virus is considered; we consider a generic virus with a WT
and DIP strain as DIPs can be found for nearly all virus families (Rezelj et al. (2018)).
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Chapter 2

Mathematical background

This section introduces the mathematical definitions and methods that will be used in the

later chapters of this thesis are presented.

2.1 Probability theory

In this section, some of the core concepts from probability theory are introduced and

defined, as some of the work in analysing stochastic processes will be underpinned by

these definitions. These definitions can also be found in Chapter 1 of Allen (2010).

2.1.1 Conditional probability

In some cases in this thesis, it will be necessary to consider the effect that one event has

upon another; this is related to the definition of conditional probability, which is given

below.

Definition 2.1.1. Let A and B be events on a sample space, S, with P(B) > 0. The
conditional probability that event A occurs given that event B has occurred is given
by the formula

P(A|B) =
P(A ∩B)

P(B)
.
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It may be that knowing that event B occurs has no effect on the probability of event

A; in that case events A and B are said to be independent. If that is the case then

P(A ∩B) = P(A)P(B), and thus P(A|B) = P(A).

2.1.2 Random variables

A random variable is an unknown quantity, the value of which can be determined by

the outcome of some random event. Assume one such random variable, X . X is a

real-valued function defined on the relevant sample space, Ω:

X : Ω → R = (−∞,∞).

The set of values that X can take is known as the state space or support of X . If X has

a finite or countably infinite state space then it is known as a discrete random variable.

However, if X has a continuous interval for a state space then X is a continuous random

variable.

Definition 2.1.2. Suppose X is a real-valued random variable. The cumulative
distribution function (cdf) of X is the function FX : R → [0, 1], defined by

FX(x) = P(X ≤ x), x ∈ R.

Definition 2.1.3. Suppose X is a discrete random variable, with support S. The
probability mass function (pmf) of X is defined by

fX(x) = P(X = x), x ∈ S.

Definition 2.1.4. Suppose X is a continuous random variable, and there exists a
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2.1 Probability theory

non-negative integrable function fX : R → [0,∞) such that,

P(a ≤ x ≤ b) =

∫ b

a

fX(x)dx, a < b.

Then the function fX is called the probability density function (pdf) of X .

Definition 2.1.5. If X is a continuous random variable with pdf fX(x) and support
S, then the expectation of X is defined as

E[X] =

∫
S

xfX(x)dx.

If X is a discrete random variable with pmf fX , and support S, then the expectation
or mean of X is defined as

µX = E[X] =
∑
x∈S

xfX(x).

The definition of the expectation of a random variable can be extended to the expectation

of a function of a random variable, g(X). If X is a continuous random variable, with

support S, then the expectation of g(X) is

E[g(X)] =

∫
S

g(x)fX(x)dx.

If X is a discrete random variable, with support S, then the expectation of g(X) is

E[g(X)] =
∑
x∈S

g(x)fX(x).

There are also other summary statistics of a random variable, X , that will be needed for

analysis later in the thesis; namely the variance and moments of X . These statistics can

all be defined in terms of the expectation of X .
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The variance of X , denoted by σ2
X or Var(X) is given by

Var(X) = E
[
(X − µX)

2
]
= E[X2]− µ2

X .

The standard deviation of X is the square root of the variance,

σ =
√

Var(X).

The nth moment of X about the point a is

E [(X − a)n] .

It will also be necessary to make use of probability generating functions (pgfs) to anal-

yse stochastic processes. These are a specific sub-section of a wider class of generating

functions. Generating functions are defined for a discrete random variable, X , and their

definitions are extended to continuous random variables.

Definition 2.1.6. Suppose X is a discrete random variable, with state space S =

{0, 1, 2, . . . }. The probability generating function (pgf) of X is defined by

PX(z) = E[zX ] =
∞∑
x=0

P(X = x)zx,

for some z ∈ C, |z| ≤ 1.

The pgf generates the probabilities associated with the distribution by differentiating and

setting z = 0, to obtain,

P(X = k) =
1

k!

d(k)

dz(k)
PX(z)

∣∣∣∣
z=0

, k ≥ 0.

The mean and variance can also be found using the pgf:

P′
X(z)|z=1 =

∞∑
x=0

xP(X = x) = E[X].
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P′′
X(1) + P′

X(1)− |P′
X(1)|2 = E[X2]− E[X]2 = Var(X).

2.1.3 Discrete probability distributions

There are several well-known discrete probability distributions, some of which will be

used throughout the course of this thesis. Their pmfs are given in this section.

2.1.3.1 Bernoulli distribution

A random variable that follows the Bernoulli distribution (a Bernoulli random variable)

describes a single trial where the probability of success is p and the probability of failure

is 1− p, where 0 < p < 1. Its pmf is

fX(x) =


p, x = 1,

1− p, x = 0,

0, otherwise.

2.1.3.2 Binomial distribution

A random variable that follows the binomial distribution (a binomial random variable) is

obtained by taking the sum of n independent random variables that follow the Bernoulli

distribution. In effect, a binomial random variable can be thought of as the number of

successes, x, in n independent Bernoulli trials with a probability of success p in each. Its

pmf is

fX(x) =

{(
n
x

)
px(1− p)n−x, x = 0, 1, . . . , n,

0, otherwise,

where n is a positive integer.

2.1.3.3 Geometric distribution

A random variable that follows the geometric distribution (a geometric random variable),

can be interpreted as the number of failed independent Bernoulli trials before the first

success, where p is the probability of success. This distribution is biologically useful as

it can be used to describe the behaviour of bacteria within a host; such as when counting
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the number of times it will proliferate (a failure in this case) before dying (a success), as

we investigate in Section 3.3.3. Its pmf is

fX(x) = p(1− p)x, x = 0, 1, . . . .

2.1.4 The exponential distribution

It is not always possible to use discrete distributions to represent the behaviours of

biological agents; for example, the times involved in biological processes related to

an infection will lead to the study of continuous distributions. One such continuous

distribution, which will be useful for analysing continuous-time Markov chain models, is

the exponential distribution. In such models, the exponential distribution is associated

with the time between consecutive events.

Definition 2.1.7. The pdf of a random variable that follows the exponential distri-
bution, an exponentially distributed random variable, X ∼ Exp(λ), is given
by

fX(x) =

λe−λx, if x ≥ 0,

0, otherwise,

for some rate parameter λ > 0. The cdf of an exponentially distributed random
variable is given by

FX(x) = 1− e−λx, x ≥ 0.

The mean and variance of an exponentially distributed random variable are

E[X] =
1

λ
, Var(X) =

1

λ2
.

The exponential distribution has some key properties that make it extremely useful for

analysing stochastic processes. The first of which is the fact that it is memoryless.
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2.1.4.1 The memoryless property

Unique to the exponential distribution among continuous probability distributions, the

memoryless property states that the probability of an event occurring depends only on

the current state of the system, independent of what has come before. Namely, let us

consider an exponential random variable, X , with rate parameter, λ, which represents the

time until some event occurs. If one knows the event has not occurred up until time t1,

the probability that it does not happen during [t1, t2] is just the probability of the event

not occurring in a time period of length t2, (e.g., [0, t2]). Mathematically:

P (X ≥ t1 + t2 | X ≥ t1) = P(X ≥ t2), ∀t1, t2 > 0.

This can be shown using the definition of conditional probability and the formula for the

cdf of an exponential random variable:

P(X ≥ t1 + t2 | X ≥ t1) =
P (X ≥ t1 + t2 ∩X ≥ t1)

P(X ≥ t1)

=
P (X ≥ t1 + t2)

P(X ≥ t1)

=
1− FX(t1 + t2)

1− FX(t1)

=
e−λ(t1+t2)

e−λt1

= e−λt2

= P(X ≥ t2).

2.1.4.2 Competition between exponential random variables

The behaviour between two competing exponential random variables is also well-defined

and provides the basis for the Gillespie algorithm, which will be discussed in more detail

in Section 2.2.2.

Let us consider we are waiting for two independent exponentially distributed events to

occur. One event happens after X ∼ Exp(λ) and the other after Y ∼ Exp(µ). The

probability that event X occurs before event Y , P(X < Y ), can be found using the

definition of the pdf of a continuous random variable (Definition 2.1.4). As we are
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interested in P(X < Y ), this can be thought of as the scenario that P(0 ≤ X < Y ) and

P(0 ≤ Y ≤ ∞). Using this in conjunction with the specific pdf of an exponentially

distributed random variable (Definition 2.1.4) we obtain

P(X < Y ) =

∫ ∞

0

(∫ y

0

f(x)dx

)
f(y)dy

=

∫ ∞

0

∫ y

0

λe−λxdx · µe−µydy

= λµ

∫ ∞

0

[
−1

λ
e−λx

]y
0

e−µydy

= λµ

(
−1

λ

)∫ ∞

0

(
e−λy − 1

)
e−µydy

= −µ
(∫ ∞

0

e−(λ+µ)ydy −
∫ ∞

0

e−µydy

)
= −µ

([
− 1

λ+ µ
e−(λ+µ)y

]∞
0

− 1

µ

)
= −µ

(
1

λ+ µ
− 1

µ

)
= − µ

λ+ µ
+ 1

=
λ

λ+ µ
.

(2.1)

It can be shown similarly that P(Y < X) = µ
λ+µ

.

2.1.4.3 Time for an event to occur

One can also consider the time taken for any event to occur. If again, two independent

exponentially distributed variables, X ∼ Exp(λ) and Y ∼ Exp(µ) are defined but

now we are solely interested in the time it takes for either event to occur, we can define

Z = min{X, Y } as the time until either event X or Y occurs. It can be shown that Z

is also an exponentially distributed random variable by considering its cdf, P(Z ≤ z)

(from Definition 2.1.2).

P(Z ≤ z) = 1− P(Z > z) = 1− P(min{X, Y } > z) = 1− P(X > z, Y > z).
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As eventsX and Y are independent we know that P(X > z, Y > z) = P(X > z)P(Y >

z). This means we can use Definition 2.1.4 to show that

P(Z ≤ z) = 1− P(X > z)P(Y > z) = 1− e−λze−µz

= 1− e−(λ+µ)z.

Notice from Definition 2.1.4 that this is itself a cdf of an exponentially distributed random

variable with rate parameter λ+ µ. We can therefore say that

Z = min{X, Y } ∼ Exp(λ+ µ). (2.2)

Equations (2.1) and (2.2) are the basis of the Gillespie algorithm, which will be discussed

in further detail in Section 2.2.2.

Let us now consider the case where it is known which event happens first and investigate

the effect on the distribution of the time until an event occurs. Assume for now that it

is known that event X occurs first, X < Y . This means the distribution of interest is

Z|X < Y . Therefore the pdf of the random variable Z|X < Y can be considered as the

case that P(X < Y,Z > z).

P(X < Y,Z > z) = P(Y > X > z) =

∫ ∞

z

P(Y > x)λe−λxdx.

Using the fact that P(Y > x) = 1 − P(Y ≤ x) and the definition of the cdf of an

exponential random variable (Definition 2.1.4), it can be obtained that

P(X < Y,Z > z) =

∫ ∞

z

e−µxλe−λxdx

=
λ

λ+ µ

[
−e−(λ+µ)x

]∞
z

=
λ

λ+ µ
e−(λ+µ)z.

Note that, λ
λ+µ

= P(X < Y ) and e−(λ+µ)z = P(Z > z), showing that the probability

of event X happening before event Y and time taken for one of the events to occur are

independent. In other words, the time until the next event occurring is not impacted by

which event actually happens. The same logic follows if it is known that event Y occurs
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before event X .

2.2 Stochastic processes

Previous sections have covered the concept of a single random variable; for the biological

questions this thesis aims to investigate it is often required to consider a random process

that evolves through time. This leads to the definition of a stochastic process. The work

within this section is mainly based upon Chapters 5 and 6 of Allen (2010) and Chapter 6

of Kulkarni (2016).

Definition 2.2.1. A stochastic process is a collection of random variables, {X(t), t ∈
T}, indexed by parameter t which takes values in the parameter set T . The random
variables, X(t), take values in the set S, called the state space of the stochastic
process.

The parameter set T within this thesis will be a set of times, typically [0,∞), so thatX(t)

represents the state (e.g. size) of a population at time t, making this a continuous-time

stochastic process. Also note, that the random variables within the stochastic process can

either represent one population X(t), or multiple X(t) = (X1(t), X2(t), . . . ), in either

case following the same definition.

Within this thesis, the main stochastic processes under analysis will be continuous-time
Markov chains. Continuous-time is defined as above for a stochastic process. Markov
in this sense implies that the future of the system is dependant solely on the current state

of the system, independent of the past. This is known as the Markov property. Note

that the Markov property is facilitated by the memoryless property of the exponential

distribution that will be used for inter-event times. The term chain implies that the

random variables, X(t), take values in a discrete state-space; this is necessary as within

the thesis the random variables of concern X(t) will typically represent population sizes.

Definition 2.2.2. Let X = {X(t) : t ∈ [0,∞)} be a collection of discrete
random variables with values in a finite or infinite state space S, (for example
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S = {0, 1, 2, ..., N} or S = {0, 1, 2, ...}). Then the stochastic process X is called a
continuous-time Markov chain (CTMC) if it satisfies

P (X(tn+1) = in+1|X(t0) = i0, X(t1) = i1, ..., X(tn) = in)

= P (X(tn+1) = in+1|X(tn) = in) ,

for any set of real numbers such that 0 ≤ t0 ≤ t1 ≤ ... ≤ tn+1 and i0, . . . , in, in+1 ∈
S.

For every t ∈ [0,∞),X(t) is a random variable with probability mass function {pi(t), i ∈

S}, where

pi(t) = P(X(t) = i),

for any i ∈ S. The probability that the chain moves from state i at time s, to state j at

time t, with i, j ∈ S and t, s ∈ [0,∞) is defined as follows.

Definition 2.2.3. The transition probability for a CTMC, X, to get from state
X(s) = i to state X(t) = j at time t, with s, t ∈ [0,∞), s < t and i, j ∈ S, is
defined as

pij(s, t) = P(X(t) = j|X(s) = i).

These probabilities are referred to as homogeneous transition probabilities if they
only depend on the length of the time interval t − s and not particular values of s
and t. Hence,

pij(s, t) = pij(t− s) = P(X(t) = j|X(s) = i) = P(X(t− s) = j|X(0) = i).

The transition matrix, P(t), contains all transition probabilities from a state i to a
state j and is defined as

P(t) = (pij(t))i,j∈S,

where t ∈ [0,∞).

For general CTMCs, and for all CTMCs found within this thesis, the following property
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holds ∑
j∈S

pij(t) = 1, t ≥ 0, i ∈ S. (2.3)

This holds as the CTMC is a closed process, so if the process is at state i at time 0, it will

have to be at some state, j ∈ S, within the process at time t; therefore the summation of

transition probabilities over all possible states it can transition to will be 1.

The transition probabilities pij(t) of a CTMC can be used to define transition rates qij .
The transition probabilities pij(t) are assumed to be continuous and differentiable for

t ≥ 0 and at t = 0 where

pij(0) = 0,∀i ̸= j, and pii(0) = 1.

The transition rate, qij , is defined as

qij = lim
∆t→0+

pij(∆t)− pij(0)

∆t
= lim

∆t→0+

pij(∆t)

∆t
, for i ̸= j, (2.4)

qii = lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t
. (2.5)

Note that by definition, qij ≥ 0. It holds from Equation (2.3) that

1− pii(∆t) =
∑

j∈S,j ̸=i

pij(∆t) =
∑

j∈S,j ̸=i

[qij ·∆t+ o(∆t)],

which leads directly to the following expression for qii,

qii = − lim
∆t→0+

∑
j∈S,j ̸=i qij ·∆t+ o(∆t)

∆t

= −
∑

j∈S,j ̸=i

qij,

where
∑

j∈S,j ̸=i o(∆t) = o(∆t). Note that for any given i ∈ S,∑
j∈S

qij = 0.

Let P(t) be the transition matrix of a CTMC and I be the identity matrix of the same size.
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2.2 Stochastic processes

Then the infinitesimal generator matrix Q = (qij)i,j∈S is equal to

Q = lim
∆t→0+

P(∆t)− I
∆t

. (2.6)

Definition 2.2.4. The matrix of transition rates for a CTMC X with state space
S, Q = (qij)i,j∈S defined from Equations (2.4), (2.5) and (2.6), is known as the
infinitesimal generator matrix. For example for S ={0, 1, 2, . . . }, Q is equal to

Q =


q00 q01 q02 ...

q10 q11 q12 ...

q20 q21 q22 ...
...

...
...



=


−
∑∞

j=1 q0j q01 q02 ...

q10 −
∑∞

j=0,j ̸=1 q1j q12 ...

q20 q21 −
∑∞

j=0,j ̸=2 q2j ...
...

...
...

 .

The transition probabilities will change over time; the forward Kolmogorov differential

equations describe the rate at which they change.

Definition 2.2.5. The forward Kolmogorov differential equations are a set of
equations that describe the rate of change of the transition probabilities

dpij(t)

dt
=
∑
k∈S

qkjpik(t), i, j ∈ S.

This can be written in matrix form

dP(t)
dt

= QP(t).

This equation is also known as the master equation of the CTMC.

19



2. MATHEMATICAL BACKGROUND

W1 W2 W3 W4

T0 T1 T2 T3

Figure 2.1: One possible realisation of X that shows the jump times, Wi, and the inter-
event times Ti. Figure reproduced from Allen (2010).

It is also important when analysing stochastic processes to track the time taken between

each step or jump of the process. This is known as the inter-event time.

Definition 2.2.6. For a given CTMC, X = {X(t) : t ≥ 0}, with state space S,
denote the time of the nth event of X as Wn, with the assumption that W0 = 0. The
inter-event time, Tn, is the time between the nth event and the (n+ 1)th event of X,
or the time that the system stays in the state X(Wn):

Tn = Wn+1 −Wn.

Figure 2.1 shows one possible realisation of X and the corresponding inter-event times,

Tn. In order to calculate such sample paths of continuous-time Markov chains, the

distribution of Tn is needed. Let X(Wn) = i be the state that the CTMC jumps to at the

n-th jump. Assume that at jump n we have state i such that X(Wn) = i where i ∈ S.

Then the probability of leaving state i during [Wn,Wn +∆t] is defined as αi∆t+ o(∆t)

for some ∆t, where αi is the sum of the rates of all possible state changes out of state i,
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2.2 Stochastic processes

αi =
∑

j ̸=i qij . This can be written as

∑
j∈S,j ̸=i

pij(∆t) = αi∆t+ o(∆t).

Therefore the probability that no jump has occurred during time [Wn,Wn+∆t], meaning

that the probability of remaining in state i, is

pii(∆t) = 1− αi∆t+ o(∆t). (2.7)

Let Gn(t) be the probability that the process remains in state i for a time of at least t ≥ 0,

meaning that Tn > t. Therefore

Gn(t) = P(Tn > t).

If αi = 0, then state i is called absorbing, a state where if the process enters, it will not

leave. The process remains indefinitely in state i and Gn(t) = P(Tn > t) = 1 for all

t ≥ 0. Otherwise, for a sufficiently small ∆t, one has

Gn(t+∆t) = P(Tn ≥ t+∆t)

= P(Tn > t+∆t|Tn > t)P(Tn > t)

= pii(∆t)Gn(t)

= Gn(t)(1− αi∆t+ o(∆t)),

by applying Equation (2.7) in the final step. Subtracting Gn(t), dividing by ∆t and then

letting ∆t→ 0 leads to a differential equation for Gn(t),

d

dt
Gn(t) = −αiGn(t),

with initial condition Gn(0) = 1, as the first jump is guaranteed to occur after time t = 0.

This can be solved using separation of variables to obtain

Gn(t) = e−αit, t ≥ 0.
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This means that P(Tn ≤ t), the cumulative distribution function of Tn, is equal to

P(Tn ≤ t) = 1−Gn(t) = 1− e−αit, t ≥ 0.

This corresponds to the cdf of an exponentially distributed random variable with param-

eter αi, meaning that the inter-event time, Tn, is an exponentially distributed random

variable, Tn ∼ Exp(αi).

Theorem 1.2.1 Let X be a CTMC with state space S, X = {X(t) : t ∈ [0,∞)}, and
with a transition matrix P(t) = (pij(t))i,j∈S such that∑

j∈S,j ̸=i

pij(∆t) = αi∆t+ o(∆t),

and
pii(∆t) = 1− αi∆t− o(∆t),

for all i ∈ S and ∆t sufficiently small. Let us define Wn as the time of the nth
jump resulting in a change in the state of X. We can define the inter-event time as
Tn = Wn+1 −Wn. Given that X(Wn) = i, Tn is an exponential random variable
with parameter αi. The probability density function (pdf) for Tn is fTn(t) = αie

−αit

and its cumulative distribution function (cdf) is FTn(t) = 1− e−αit for t ≥ 0, where
αi =

∑
j∈S,j ̸=i qij = −qii. Therefore the mean and variance of Tn are

E(Tn) =
1

αi

, V ar(Tn) =
1

α2
i

, αi > 0.

2.2.1 The linear birth-and-death process

A well-known example of a CTMC widely used in mathematical biology is the birth-and-

death process. A birth-and-death process is defined as a CTMC, X = {X(t) : t ≥ 0},

where X(t) represents the size of some population at time t and has a state space

S = {0, 1, . . . }. S could be bounded for a finite state space but here S is considered to

be unbounded and therefore the state space is infinite. Generally a birth-and-death process
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2.2 Stochastic processes

restricts the possible transitions from the state i to the adjacent states, the interpretation

of which is a population which can either have a death (which occurs at rate µi) or a birth

(which occurs at rate λi). For a linear birth-and-death process, the rates are defined as

λi = iλ, µi = iµ,

for some λ, µ > 0. Here, 0 is an absorbing state as both λ0 and µ0 are equal to 0,

representing population extinction. The transition probabilities for this CTMC can be

defined for sufficiently small ∆t:

pij(∆t) = P(X(t+∆t) = j | X(t) = i)

=


iλ∆t+ o(∆t), if j = i+ 1,

iµ∆t+ o(∆t), if j = i− 1,

1− i(λ+ µ)∆t+ o(∆t), if j = i,

o(∆t)2, otherwise.

The transition rates are given by

qij =


iλ, if j = i+ 1,

iµ, if j = i− 1,

−i(λ+ µ), if j = i,

0, otherwise,

leading to the infinitesimal generator matrix

Q =


0 0 0 0 ...
µ −(λ+ µ) λ 0 ...
0 2µ −2(λ+ µ) 2λ ...
...

...
...

 .

2.2.2 The Gillespie algorithm

This section is based upon the work by Gillespie (1977).

The Gillespie algorithm allows one to get stochastic realisations of a CTMC, X, in terms

of simulations, which is useful when analytical work (e.g. computing probabilities pij(t)
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in an exact way) cannot be carried out. The algorithm works by exploiting the fact that the

inter-event time is exponentially distributed and independent of which state the process

changes to. Therefore the algorithm samples an inter-event time from an exponential

distribution, and then independently randomly selects a transition event from all possible

transitions from the current state according to their probabilities; then it updates the state

of the CTMC, the simulation time and then repeats the process. Sampling the inter-event

time from an exponentially distribution makes use of the following theorem, which is

given in Chapter 5 of Allen (2010).

Theorem 1.2.2 Let U be a uniform random variable defined on [0, 1] and T be a
continuous random variable defined on [0,∞). Then T = F−1(U), where F is the
cumulative distribution function (cdf) of the random variable T .

This theorem can be proved as follows: Since P(T ≤ t) = F (t), from the definition of

the cdf, we want to show that P(F−1(U) ≤ t) = F (t). Note, F−1 exists as F : [0,∞) →
[0, 1) is strictly increasing. Also, as U is a uniform random variable on [0, 1], it is known

that P(U ≤ x) = x for x ∈ [0, 1]. Therefore, for t ∈ [0,∞):

P(F−1(U) ≤ t) = P(F
(
F−1(U)

)
≤ F (t)) (as F is strictly increasing)

= P(U ≤ F (t))

= F (t).

The Gillespie algorithm samples the inter-event time by making use of this transformation

at each jump. Here an example is given to show how it works for the general inter-event

time, T , in a CTMC currently at state i. As defined in Theorem 1.2.1, Tn is an exponential

random variable and has cdf FTn(t) = 1− e−αit. Therefore, by Theorem 1.2.2:

T = F−1(U [0, 1])

= − 1

αi

log(1− U [0, 1])

= − 1

αi

log(U [0, 1]),

where we have used in the last step the fact that 1− U [0, 1] is itself a random uniform

variable on [0, 1].

24



2.2 Stochastic processes

Algorithm 2.1 shows how to obtain stochastic simulations using the Gillespie algorithm.

An explanation of each step of the Gillespie algorithm is as follows:

• Input initial conditions.
These are t = 0 and X(0) = i0 where i0 is the initial state of the CTMC.

• Evaluate the rates.
For each possible state j ∈ S, the jump from state i to state j occurs with
rate qij . The total propensity of the system at state i is given by the formula
αi =

∑
j∈S,j ̸=i qij . Some of these qij may be equal to 0 if state j is unreachable

from state i in a single jump. For example, in a birth-and-death process if i = 3

and j = 5, qij = 0 as only one-jump transitions between adjacent states are
allowed.

• Choose the inter-event time.
The inter-event time, ∆t, is sampled from an exponential distribution with
rate αi. To do this, one can sample a random number, u1, from the uniform
distribution on the interval (0,1) and compute

∆t = − log(u1)
αi

.

This ensures that the inter-event is being sampled from Exp(αi), as according
to Theorem 2.2.2.

• Choose a reaction to occur.
Assume there is a list of n possible reactions {1, . . . , n} with corresponding
rates {r1, . . . , rn}, where if reaction k represents the jump i→ j then rk = qij .
Each reaction k has a chance of being selected that is equal to its rate as a
proportion of the total sum of all rates; this utilises the property discussed in
Section 2.1.4.3 (namely Equation (2.1)). The way this is carried out is to create
sub-intervals θk of [0, 1], for k ∈ {1, . . . , n}, where

θk =

(∑k−1
j=0 rj

αi

,

∑k
j=0 rj

αi

]
,
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2. MATHEMATICAL BACKGROUND

with r0 = 0, and i is the current state of the process. Then a random number,
u2, is sampled from the uniform distribution in (0,1). u2 will be in one of these
sub-intervals θk and therefore, reaction k is chosen to occur. Reaction k moves
the process to state j.

• Update the system.
t→ t+∆t,

X(t) → j.

• If certain conditions are met (e.g the CTMC reaches a predetermined state or
a certain amount of time has passed) the algorithm stops, if not return to the
second step and repeat.

Algorithm 2.1: The Gillespie algorithm
Choose tmax, the maximum time we want to simulate to.
Set the initial time to be t = t0.
Set the initial state of the process to be x = x(t0) = x0.
Create an array that will retain all stages of the stochastic process, L = [[x0, t0]].
While t < tmax:

- Assign a number from 1, . . . , n to each possible state that the process can
jump to, j1, . . . , jn.

- Compute the propensity function α(x) =
∑n

i=1 qx,ji , where n is
the number of possible one-jump transitions from state x.

- Sample a random number from the uniform distribution over the unit
interval, u1 ∼ (0, 1), and set ∆t = − log(u1)

α(x) .
- Sample another uniform random variable over the unit interval, u2 ∼ (0, 1).

The state will move to state jk such that
∑k−1

i=1

qx,ji
α(x) ≤ u2 ≤

∑k
i=1

qx,ji
α(x) .

- Update the current state of the process to x = jk.
- Update the time to t = t+∆t.
- Add an entry to L with the new values for x and t.

Return L.
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2.3 Approximate Bayesian Computation

2.3 Approximate Bayesian Computation

A mathematical model representing a biological system would typically depend on some

parameters, θ. This section deals with the problem of estimating parameters, θ, from

some experimental dataset. In particular, we will explain the Approximate Bayesian

Computation (ABC) rejection algorithm and its more complex alternative Approximate

Bayesian Computation - Sequential Monte Carlo (ABC-SMC). For a given set of data

and a model, both ABC and ABC-SMC techniques aim to find a posterior distribution for

the model parameters by randomly sampling parameter values from a prior distribution,

comparing the model prediction for those parameters to given data according to some

distance measure, and accepting only the parameter choices that lie within a certain

distance threshold.

The ABC rejection algorithm samples parameters from the prior distribution for the

model parameters until a given number, N1, of parameter sets have been accepted;

whereas in ABC-SMC this is done as an iterative process, where both the sampling

distribution for the parameters and the accepted distance threshold are updated upon

each iteration. In more detail, the ABC-SMC algorithm starts with a predetermined prior

distribution, π(θ), and accepted distance threshold, ε, which runs until a certain number,

N2, of parameter choices are accepted, at which point the next iteration can be carried

out. Before starting the next iteration both the sampling distribution and the acceptance

threshold are updated. The accepted parameter sets in this iteration become the sampling

distribution of the next iteration. This process repeats until a number of iterations, T , are

completed. Throughout this thesis, upon sampling a parameter set from the accepted

parameter sets of the previous iteration, each parameter in the set is perturbed by adding

noise proportional to the range of accepted values for that parameter and the accepted

distance threshold for the next iteration is taken from the median returned distances of

the accepted parameters sets in its current iteration. However, in general, there are many

options for the perturbation method and choosing distance thresholds.

The ABC rejection algorithm returns one list of parameter sets of size N1, whereas the

ABC-SMC algorithm returns T lists of accepted parameter sets of size N2 where each

successive list improves the fit of the model to the data. This section is based on the work

by Turner & Van Zandt (2012) and Toni et al. (2009).
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2.3.1 The ABC rejection algorithm

The ABC rejection algorithm consists of a model, M , a sample size, N , an acceptance
threshold, ε, a parameter vector, θ, consisting of all individual parameters within M and
an associated prior distribution, π(θ).

A potential parameter set, θ∗, is obtained by randomly sampling from π(θ). This
parameter set θ∗ is used to simulate M which produces a prediction D∗ which is then
compared to the empirical dataset D we are trying to find a model for, using some
distance function ρ(D,D∗) which measures the difference between the dataset and the
model prediction. If ρ(D,D∗) < ε then the parameter set θ∗ is accepted. However,
if ρ(D,D∗) ≥ ε then θ∗ is rejected. The algorithm runs until the number of accepted
parameter sets reaches N , which leads to a sample of size N that represents the posterior
distribution of θ. This process is represented in Algorithm 2.2.

Algorithm 2.2: The ABC algorithm (Turner & Van Zandt (2012))
Create an empty list, L. Load model, M(θ), prior distribution, π(θ), desired
posterior sample size, N , empirical dataset, D, acceptance threshold, ε, and
distance function, ρ(D,D∗);

While len(L) < N :
Sample test parameter set θ∗ from the associated prior, π(θ);
Compute model prediction, D∗, using M(θ∗);
If ρ(D,D∗) < ε:

Accept θ∗ and add it to L;
Else:

Continue;
Return L;

2.3.2 The ABC-SMC algorithm

The ABC-SMC algorithm consists of a model, M , a sample size, N , a desired number
of iterations, T , a set of acceptance thresholds, ε = {ε1, . . . , εT} with ε1 ≥ · · · ≥
εT ≥ 0, a parameter vector, θ, consisting of all parameters within M and associated
prior distribution, π(θ). Within each iteration, parameter values are sampled from
the accepted parameters of the previous iteration and are then perturbed with a kernel
function. For example, a component-wise uniform perturbation kernel can be used, so
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that each component of the parameter set is perturbed independently in a uniform interval.

This perturbed parameter set is then used to calculate a prediction from the model D∗

and is accepted if ρ(D,D∗) < εt, where t is the current iteration. This generates a set

of intermediate samples of accepted parameters, θt, that gradually converge towards the

target posterior, θT . The ABC-SMC algorithm returns T accepted parameter sets of size

N each. This process is described in Algorithm 2.3

Algorithm 2.3: The ABC-SMC algorithm (Toni et al. (2009)
Load model, M(θ), prior distribution, π(θ), desired posterior sample size, N ,
desired number of iterations, T , empirical dataset, D, set of perturbation
kernels, {K2, . . . , KT}, set of acceptance thresholds, ε = {ε1, . . . , εT} with
ε1 ≥ . . . εT ≥ 0, and distance function, ρ(D,D∗);

Set the population indicator, t = 1;
While t ≤ T :

Set the particle indicator i = 1;
While i ≤ N :

If t = 1:
Sample θ∗∗ from π(θ);

Else:
Sample θ∗ from the previous population {θ(i)

t−1}, with weights
wt−1 and perturb the particle to obtain θ∗∗ ∼ Kt(θ|θ∗);

If π(θ∗∗) > 0:
Simulate model prediction, D∗ =M(θ∗∗);
If ρ(D,D∗) < εt:

Set θ(i)
t = θ∗∗ and calculate the weight for particle θ

(i)
t as

w
(i)
t =

1, if t = 1,
π(θ

(i)
t )∑N

j=1 w
(j)
t−1Kt(θ

(i)
t |θ(j)

t−1)
, if t > 1;

Set i = i+ 1;
Normalise the weights.;
Set t = t+ 1;

Return θ1, . . . ,θT ;
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2.3.3 Comparing the two algorithms

Let us look at a simple model with a simulated data-set to see how these two algorithms

work. Consider a logistic growth model (e.g. for a bacterial population) where B(t)

represents the number of bacteria (e.g. CFU ) at time t ≥ 0. The dynamics of this

population can be modelled as

dB(t)

dt
= rB(t)

(
1− B(t)

K

)
,

where r > 0 is the growth rate and K > 0 is the carrying capacity. The known solution

to this is (Tsoularis & Wallace (2002))

B(t) =
KB(0)ert

K +B(0)(ert − 1)
, t ≥ 0. (2.8)

Consider a given data set {D(t), t ∈ T = {0h, 4h, 8h, 12h, 16h, 20h, 24h}}, which

represents bacterial growth in an experimental set up. We aim to calibrate our model and

estimate unknown parameters (B(0), K, r) by leveraging this data set, and by using the

ABC and the ABC-SMC algorithms. To show how to do this, a synthetic data set was

produced by simulating Equation (2.8) at times t ∈ T , for illustrative parameter values,

B(0) = 100 CFU, K = 104 CFU, r = 0.5 hours−1 and adding noise proportional to the

size of B(t),

Bd(t) = B(t) + ε(t),

where ε(t) ∼ U(−0.1B(t), 0.1B(t)). As is often the case in experimental conditions,

we obtain replicates of the data at each time point. Here we take 5 replicates at each time

point and take the mean,

D(t) =
1

5

5∑
i=1

(Bi
d(t)),

and standard deviation, σ(t), at each t ∈ T and use this as our final dataset, D(t); see

Table 2.1. Here Bi
d(t) represents the i-th replicate of Bd(t). In order to provide the best

comparison between ABC and ABC-SMC we keep every step of the process the same,

other than the key differences detailed in the section above. This means that we use the
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Data 0h 4h 8h 12h 16h 20h 24h
B1

d(t) 100.1 625.2 3.71× 103 7.68× 103 9.29× 103 1.08× 104 9.92× 103

B2
d(t) 109.8 646.7 3.89× 103 7.68× 103 9.76× 103 9.99× 103 9.24× 103

B3
d(t) 101.0 704.6 3.29× 103 7.40× 103 9.34× 103 9.95× 103 9.97× 103

B4
d(t) 99.8 685.0 3.31× 103 8.17× 103 9.13× 103 1.07× 104 9.20× 103

B5
d(t) 96.1 702.0 3.35× 103 7.83× 103 1.04× 104 9.86× 103 9.39× 103

D(t) 101.4 672.7 3.51× 103 7.75× 103 9.28× 103 1.03× 104 9.54× 103

σ(t) 4.54 31.48 244.7 249.3 457.67 406.28 331.94

Table 2.1: The replicates of the simulated data, Bi
d(t), their mean, D(t), and their

standard deviation, σ(t), at each time point t ∈ {0, 4, . . . , 24}.

Parameter True Value Prior
B(0) 102 log10(B(0)) ∼ U(0, 4)
K 104 log10(K) ∼ U(3, 7)
r 0.5 r ∼ U(0, 2)

Table 2.2: True values and prior distributions considered for parameters B(0), K and r.

same distance function for both techniques, namely

ρ (D∗, D)2 =
∑
t∈T

(log10(D
∗(t))− log10(D(t))2 ,

where D∗ is the model prediction for any given parameter set θ, given by Equation (2.8).

We choose a distance function involving taking the log of the data as we aim to limit

the extent that the distance function will more heavily weight the later datapoints due to

their much greater magnitude. We also use the same priors for each parameter in both

algorithms. For the purposes of this example we aimed to choose ranges that were not

excessively large for speed but not so small that they were trivial for the algorithm to

find the optimal parameters. The chosen priors are detailed in Table 2.2.

In Figure 2.2 the results of the ABC rejection algorithm and the ABC-SMC algorithm

are shown. For the ABC-SMC algorithim we ran T = 10 iterations, accepting 500

parameter sets within each iteration and an initial distance threshold of ε0 = 10, where

each subsequent distance threshold, ε1, . . . , ε9, was chosen as the median of the distances

of the accepted parameter sets in the previous iteration. For the ABC rejection algorithm

we accepted 500 parameter sets with an acceptance threshold of ε = 0.276, which was
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Figure 2.2: A comparison of the median simulation predictions and 95% confidence
intervals (CI) for the accepted parameter values against the data (bars represent the
standard deviation) for both the ABC rejection algorithm (top) and for the ABC-SMC
algorithm (bottom).

the median distance of the accepted parameter sets of the 10th iteration of the ABC-SMC

algorithm. From Figure 2.2, we can see that both the ABC rejection algorithm and

ABC-SMC algorithm manage to capture the behaviour of the bacterial growth dynamics

well with a tight confidence interval. However, the ABC-SMC algorithm worked much

faster than the ABC algorithm (in the order of seconds and minutes, respectively); this

is due to the ABC-SMC algorithm exploring the parameter space iteratively which is

more efficient (as can be seen from the accepted parameter values region tightening

with subsequent iterations in Figure 2.3), which leads to fewer rejected simulations and

therefore a lower computational cost. To be precise, the 10th iteration of the ABC-SMC
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Figure 2.3: Posterior scatter plots of paired parameter values for the ABC rejection
algorithm (top row) and 5 selected iterations of the ABC-SMC algorithm (bottom row).
For the ABC-SMC plot, we have plotted the accepted parameter sets for iterations 2
(blue), 4 (orange), 6 (green), 8 (brown) and 10 (purple).

algorithm tested 1284 potential parameter sets to produce the posterior distribution

whereas the ABC rejection algorithm tested 2.08× 106 parameter sets to obtain its size

500 posterior distribution; this is a differential that can grow even wider for higher

dimensional parameter spaces which explains why we use ABC-SMC algorithms within

this thesis.

Figure 2.3 shows the pairwise scatter plots of the posterior distributions for the ABC

rejection algorithm and for 5 iterations of the ABC-SMC algorithm. We again see similar

behaviours to those we have just discussed, that both the ABC rejection algorithm and the

ABC-SMC algorithm are able to find suitable posterior distributions for our parameter

values (see Table 2.2 for the true values used to simulate the data). As mentioned above,

we can see the ABC-SMC algorithm finding more accurate posterior distributions with

each subsequent iteration. This allows the ABC-SMC algorithm to reach higher levels of

accuracy much faster than the ABC rejection algorithm. Another benefit of ABC-SMC

is that it does not require prior knowledge of an appropriate acceptance threshold to
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perform well; whereas to obtain a posterior distribution as accurate as shown in Figure
2.3, we needed to be aware of the acceptance threshold ε = 0.276.
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Chapter 3

Analysis of single-bacterium dynamics
in a stochastic model of toxin-producing
bacteria

In this chapter we stochastically model two bacterial populations which can produce

toxins. We propose to analyse this biological system by following the dynamics of a

single bacterium during its lifetime, as well as its progeny. The lifespan of a single

bacterium, the number of divisions that a bacterium undergoes, and the number of toxin

molecules that a bacterium produces during its lifespan are studied. The mean number of

bacteria in the genealogy of the original bacterium and the number of toxin molecules

produced by its genealogy are also computed. We illustrate the applicability of our

methods by considering the bacteria Bacillus anthracis under antibiotic treatment. We

quantify, for the first time, bacterial toxin production by exploiting an in vitro assay for

the A16R strain, and make use of the resulting parameterised model to illustrate our

techniques.

3.1 Introduction

Mathematical modelling has proven to be a robust tool to analyse biological systems of

relevance in infection and immunity at different scales, such as the molecular (López-
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Garcı́a et al. (2018)), intracellular (Carruthers et al. (2018)), within-host (Carruthers

et al. (2020)) and population levels (Britton (2010)). While deterministic models are

usually more amenable for mathematical analysis (Allen (2007)), stochastic approaches

are generally better suited for representing biological systems involving few individuals

(López-Garcı́a (2016)) or cells (Carruthers et al. (2020)), or when extinction events play

a crucial role (Brockwell (1986)). Markov processes, either in discrete or continuous

time, have been particularly exploited in these areas given their mathematical conve-

nience (Allen (2010)). While non-Markovian dynamics are typically more difficult to

analyse (Castro et al. (2018); Gómez-Corral & López-Garcı́a (2017)), the Markovian or

memoryless property usually allows for mathematical tractability and efficient numerical

simulations (Gillespie (1977)).

When considering a population of cells during an immune response, or bacteria during

infection, competition for resources is usually represented in terms of logistic growth

models (Allen (2007)). On the other hand, when individuals behave independently (e.g.

they do not compete for common resources), the theory of branching processes (Kimmel

& Axelrod (2002)) has been widely applied to follow these populations (of cells or

bacteria) over time. Multi-type branching processes (Kyprianou & Palau (2018)) allow

one to consider different types of bacteria, which might represent different phenotypes

(Choi et al. (2008)) or different spatial locations (e.g., tissues or organs) within the

body during an infection (Carruthers et al. (2020)). The complexity of these processes,

and their mathematical tractability, typically depends on the number of compartments

considered, and the number of potential events that can occur in the system (e.g., division

or death of bacteria, or bacterial movement across compartments) (Thakur et al. (1973)).

Novel technological developments have recently allowed for single cells to be precisely

followed, together with their progeny (Herzenberg et al. (2002); Johnson et al. (2009);

Krutzik & Nolan (2006); Westera et al. (2013)). This motivates the idea of mathematically

tracking single individuals in these stochastic systems, and to quantify summary statistics

related to the lifetime of a single individual (or bacterium in our case), and its progeny

or genealogy. In this chapter, we consider the genealogy of a bacterium to refer to

a bacterium itself along with all of its descendants. Analysing the dynamics of the

system by tracking a single individual has already been proposed in related areas such

as population dynamics (Gómez-Corral & López-Garcı́a (2015)) and, more recently,
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when analysing the stochastic journey of T lymphocytes in lymph nodes and blood (de la

Higuera et al. (2019)).

Although bacterial systems have been widely studied with stochastic methods in the

past (Carruthers et al. (2018, 2020)), less attention has been paid to the study of toxin-

producing bacteria. The production of toxins over time can be especially relevant for

specific bacteria for which the secreted toxins can cause suppression of the host’s immune

system, being a key component of pathogenesis in vivo (Banks et al. (2005)). In this

chapter, we illustrate our single-cell approach in a stochastic model of two types of

toxin-producing bacteria. Two types are considered to allow flexibility of the model;

bacteria could be changed due to differentiation during the replication process or by

exposure to an external agent; in our case study in Section 3.4.2 we consider the change

to be antibiotic binding of a Bacillus anthracis bacterium. We focus on computing

the expected lifespan of a single bacterium in this system, as well as the number of

toxin molecules secreted and the number of divisions undergone during its lifetime.

We also compute summary statistics that are directly related to the progeny of a single

bacterium, namely the number of bacteria in the progeny of a given bacterium and the

number of toxin molecules produced by its genealogy, where we define the genealogy

of a bacterium as the bacterium itself along with its progeny. We illustrate our results

by focusing on the bacteria Bacillus anthracis and the anthrax toxins. For the A16R

B. anthracis strain, we quantify for the first time the rate of protective antigen (PA)

production by exploiting data from an in vitro assay by Zai et al. (2016). We make use

of the resulting parametrised mathematical model to illustrate our techniques, and we

also consider antibiotic treatment.

The structure of this chapter is as follows. In Section 3.2 we introduce the mathematical

model. The single-bacterium representation is discussed in Section 3.3. A number of

summary statistics of interest related to a single bacterium and its progeny are studied

analytically in Section 3.3 and numerically in Section 3.4.1. Model calibration for

the A16R B. anthracis strain is carried out in Section 3.4.2 using data from an in vitro

assay, and the parameterised model is used in this section to illustrate our methodology.

Concluding remarks are provided in Section 3.5.
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Figure 3.1: Left. Diagram showing the dynamics of the two toxin-producing bacterial
populations. Right. Allowed transitions between states in X and their rates.

3.2 The mathematical model

Our interest is in modelling a system with two toxin-producing bacterial populations

(see Figure 3.1). Type i bacteria, i ∈ {1, 2}, can divide with rate λi, produce toxins with

rate γi, die with rate µi, or become type j bacteria, j ∈ {1, 2} j ̸= i, with rate νij . We

can thus develop a stochastic model of these events, as a continuous-time Markov chain

(CTMC) X = {(B1(t), B2(t), T (t)) : t ≥ 0}, where Bi(t) denotes the number of type i

bacteria at time t ≥ 0, i ∈ {1, 2}, and T (t) represents the number of toxin molecules at

time t ≥ 0. We assume that bacteria and toxins behave independently of each other, and

that toxins are degraded at rate ξ. The space of states of X is given by S = N3
0, where

we denote N0 = N ∪ {0}, and the possible one-step transitions between states in X are

depicted in Figure 3.1.

Since each bacterium behaves independently, one can analyse the dynamics of a single

bacterium without explicitly modelling the dynamics of the rest of the population. In

Section 3.3, we propose a methodology that focuses on analysing the dynamics of a

single bacterium and its progeny. In particular, and by means of first-step arguments,

we compute the lifespan of a single bacterium, the number of divisions that a bacterium

undergoes during its lifespan, and the number of toxin molecules that a bacterium

produces during its lifetime. We also compute the mean number of cells within the

progeny of the original bacterium and the number of toxin molecules produced by this

progeny. We note that a particular advantage of this single-bacterium approach is that
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∅
∅

∅

∅

∅
∅

Apoptosis∅

B1 bacteria

B2 bacteria

Figure 3.2: Example of a stochastic realisation of the population process, starting with
one type 1 bacterium. Solid arrows indicate the single bacterium being tracked in process
Y. In this realisation, the stochastic process Y visits states B1 → B1 → B1 → B2 →
B1 → B1 → ∅. Consecutive visits to the same state are due to bacterial division. Toxin
production is not explicitly depicted here but can occur during the process.

it can be implemented regardless of the complexity of the model, i.e., regardless of the

number of compartments in the model, or the number of events governing the toxin and

bacterial dynamics across compartments, as long as the dynamics of each bacterium is

independent of the rest of the population.

3.3 Dynamics of a single bacterium and its progeny

Instead of focusing on the population CTMC X, our interest in this section is in following

a single bacterium of type i during its lifespan. In particular, we consider a single

bacterium (either of type 1 or type 2) at time t = 0, and follow its dynamics during its

lifetime by considering the individual-level continuous-time Markov chain Y = {Y (t) :

t > 0}, where Y (t) represents the “state” of the bacterium at time t ≥ 0. By state, we

mean that the bacterium can be of type 1, type 2 or dead at any given time. Thus, Y is

defined on the state space S = {1, 2, ∅}, where i here represents the bacterium being of

type i at any given instant, and ∅ indicates the bacterium is dead. If the bacterium is of

type i at a given instant, meaning that Y is in state i, production of a toxin molecule does

not change its state, and Y remains in state i. If a division occurs, we randomly choose

one of the daughter cells and consider it to be our bacterium of interest, which remains

in state i.
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Figure 3.2 shows one realisation of the population dynamics, while the state of the

stochastic process Y only depends on tracking the original bacterium throughout its life-

time, which is depicted via solid arrows. When a division occurs, a daughter is randomly

chosen to represent the tracked bacterium of interest. In the following subsections, we

investigate a number of stochastic descriptors or summary statistics that relate to the

single bacterium, as well as some descriptors that refer to a given bacterium’s progeny or

genealogy.

3.3.1 Lifespan of a bacterium

For an initial bacterium of type i ∈ {1, 2}, we define its lifespan as Ti = inf{t ≥ 0 :

Y (t) = ∅|Y (0) = Bi}. We can ascertain various information about this descriptor Ti; in

this section we will use the Laplace-Stieltjes transform to find a probability generating

function for Ti, and then use this transform to find moments of Ti, such as the first order

moment which gives us the expectation of Ti.

3.3.1.1 The Laplace-Stieltjes transform

We consider the Laplace-Stieltjes transform of Ti given by

ϕi(s) = E[e−sTi ], Re(s) ≥ 0, (3.1)

which one can compute with first step arguments. We denote ϕ1(s) = E[e−sT1|Y (0) = 1]

and similarly ϕ2(s) = E[e−sT2|Y (0) = 2]. If Y is in state 1 at any given time, let 1 → 2

represent the event transitioning Y from state 1 to state 2 in its next jump, 1 ⟲ represent

a division event in its next jump, 1 7→ 1 represent a toxin being produced in its next jump

and 1 → ∅ represent the bacterium dying in its next jump. Also let ti denote the time

taken for this jump to occur.

By examining the events that could occur next and using the total expectation law, ϕ1(s)
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can be written as

ϕ1(s) = E[e−s(t1+T1)|Y (0) = 1, 1 ⟲] · P(1 ⟲)

+ E[e−s(t1+T1)|Y (0) = 1, 1 7→ 1] · P(1 7→ 1)

+ E[e−s(t1+T2)|Y (0) = 1, 1 → 2] · P(1 → 2)

+ E[e−st1 |Y (0) = 1, 1 → ∅] · P(1 → ∅).

Therefore the above equation is equivalent to

ϕ1(s) = E[e−s(t1+T1)|Y (0) = 1, 1 ⟲] ·
(

λ1
λ1 + γ1 + ν12 + µ1

)
+ E[e−s(t1+T1)|Y (0) = 1, 1 7→ 1] ·

(
γ1

λ1 + γ1 + ν12 + µ1

)
+ E[e−s(t1+T2)|Y (0) = 1, 1 → 2] ·

(
ν12

λ1 + γ1 + ν12 + µ1

)
+ E[e−st1|Y (0) = 1, 1 → ∅] ·

(
µ1

λ1 + γ1 + ν12 + µ1

)
.

(3.2)

The first term in this equation represents the case in which a division event takes place in

the next jump. In this case the lifespan of the bacterium can be expressed as the time

for this event to occur plus the remaining lifespan of the bacterium. This occurs with

probability λ1

λ1+γ1+ν12+µ1
. In the second term of the equation, where a toxin is produced

in the next jump, the lifespan can be expressed as the time for this event to occur plus

the remaining lifespan of the bacterium after this jump. In the third term of the equation,

where the bacterium changes to type 2 in the next jump, the lifespan of the bacterium

can be represented as the time taken for this event plus the remaining lifespan of the new

type 2 bacterium. In the case in which death occurs in the next jump, the lifespan of this

bacterium is solely the time taken for this event to occur.

Consider the term E[e−s(t1+T2)|Y (0) = 1, 1 → 2]; this is the expectation of the prod-

uct of two functions of two random variables. The component t1|1 → 2 considers

the event that has just happened, whereas T2|1 → 2 refers to the remaining lifes-

pan of the bacterium just after 1 → 2 occurred. By the Markovian property of a

CTMC this means that these two events must be independent of one another, leading to

E[e−s(t1+T2)|Y (0) = 1, 1 → 2] = E[e−st1|Y (0) = 1, 1 → 2]·E[e−sT2|Y (0) = 1, 1 → 2].
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This means that Equation (3.2) can be rewritten as

ϕ1(s) = E[e−st1|1 ⟲] · E[e−sT1 ] ·
(

λ1
λ1 + γ1 + ν12 + µ1

)
+ E[e−st1|1 7→ 1] · E[e−sT1 ] ·

(
γ1

λ1 + γ1 + ν12 + µ1

)
+ E[e−st1|1 → 2] · E[e−sT2 ] ·

(
ν12

λ1 + γ1 + ν12 + µ1

)
+ E[e−st1|1 → ∅] ·

(
µ1

λ1 + γ1 + ν12 + µ1

)
.

(3.3)

As the first jump occurs after an exponentially distributed time, we have (t1|1 ⟲) ≡

(t1|1 7→ 1) ≡ (t1|1 → 2) ≡ (t1|1 → ∅) ∼ Exp(λ1 + γ1 + ν12 + µ1).

This means that E[e−st1|1 → 2] is the Laplace-Stieltjes transform of Exp(λ1 + γ1 +

ν12 + µ1) (and similarly for the other cases), which is equal to λ1+γ1+ν12+µ1

λ1+γ1+ν12+µ1+s
; as the

Laplace-Stieltjes transform of an exponential random variable, X ∼ Exp(q) is known to

be E[e−sX ] = q
q+s

. Therefore Equation (3.3) is equivalent to

ϕ1(s) =

(
λ1 + γ1 + ν12 + µ1

λ1 + γ1 + ν12 + µ1 + s

)
ϕ1(s)

(
λ1

λ1 + γ1 + ν12 + µ1

)
+

(
λ1 + γ1 + ν12 + µ1

λ1 + γ1 + ν12 + µ1 + s

)
ϕ1(s)

(
γ1

λ1 + γ1 + ν12 + µ1

)
+

(
λ1 + γ1 + ν12 + µ1

λ1 + γ1 + ν12 + µ1 + s

)
ϕ2(s)

(
ν12

λ1 + γ1 + ν12 + µ1

)
+

(
λ1 + γ1 + ν12 + µ1

λ1 + γ1 + ν12 + µ1 + s

)(
µ1

λ1 + γ1 + ν12 + µ1

)
.

(3.4)

By cancelling terms and defining ∆i = λi + µi + γi + νij , i, j ∈ {1, 2}, j ̸= i, Equation

(3.4) leads to the following equation

ϕ1(s) =
λ1

∆1 + s
ϕ1(s) +

µ1

∆1 + s
+

γ1
∆1 + s

ϕ1(s) +
ν12

∆1 + s
ϕ2(s).
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This equation simplifies to

(µ1 + ν12 + s)ϕ1(s) = ν12ϕ2(s) + µ1. (3.5)

Symmetric arguments to the ones above allow one to find an equation for ϕ2(s),

(µ2 + ν21 + s)ϕ2(s) = ν21ϕ1(s) + µ2.

Interestingly, already we can see that these equations do not depend on the parameters λi

(division rate) or γi (toxin production rate). This is to be expected since the division and

toxin production events do not affect the lifespan of a bacterium, something we would

expect from inspecting the dynamics in Figures 3.1 and 3.2. By substituting one equation

into the other, we can find solutions for these ϕi(s), as shown below for ϕ1(s).

We start by rearranging the equation for ϕ2(s)

(µ2 + ν21 + s)ϕ2(s) = ν21ϕ1(s) + µ2,

⇒ ϕ2(s) =
ν21ϕ1(s) + µ2

µ2 + ν21 + s
.

Substituting this into Equation (3.5) gives

(µ1 + ν12 + s)ϕ1(s) = ν12

(
ν21ϕ1(s) + µ2

µ2 + ν21 + s

)
+ µ1.

Grouping the ϕ1(s) terms gives

(µ1 + ν12 + s)ϕ1(s)−
ν12ν21ϕ1(s)

µ2 + ν21 + s
=

ν12µ2

µ2 + ν21 + s
+ µ1

⇒
(
µ1 + ν12 + s− ν12ν21

µ2 + ν21 + s

)
ϕ1(s) =

ν12µ2

µ2 + ν21 + s
+ µ1.

To simplify this slightly, we introduce the notation

a(s) = 1− ν12ν21
(µ1 + ν12 + s)(µ2 + ν21 + s)

, (3.6)
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which makes the equation become

(µ1 + ν12 + s) a(s)ϕ1(s) =

(
ν12µ2

µ2 + ν21 + s

)
+ µ1,

leading to a solution of

ϕ1(s) = a(s)−1 1

µ1 + ν12 + s

(
ν12µ2

µ2 + ν21 + s
+ µ1

)
. (3.7)

Once again, we can use a symmetric process to arrive at a solution for ϕ2(s):

ϕ2(s) = a(s)−1 1

µ2 + ν21 + s

(
ν21µ1

µ1 + ν12 + s
+ µ2

)
. (3.8)

Before we use these solutions, it is worth noting how these complex solutions can

simplify greatly even under a single constraint for the bacterial system. For instance, if

the change from type 1 to type 2 bacterium was irreversible, so that ν21 = 0, one obtains

ϕ1(s) =
1

µ1 + ν12 + s

(
ν12µ2

µ2 + s
+ µ1

)
,

ϕ2(s) =
µ2

µ2 + s
.

Note that in this case T2 ∼ Exp(µ2), which is consistent with the expression for ϕ2(s)

above. This is an interesting case to consider since the bacterial conversion with rate ν12
and reversion rate ν21 = 0 represents the irreversible antibiotic treatment we consider in

Section 3.4.2.

3.3.1.2 Moments of the random variable Ti

In this section the moments of T1 will be computed in detail and the corresponding

results for T2 given, as the methodology is the same for both.

A key property of the Laplace-Stieltjes transform is that:

(−1)k
dk

dsk
ϕi(s)

∣∣∣∣
s=0

= E[T k
i ]. (3.9)
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Differentiating Equation (3.7) at s = 0 gives

ϕ′
1(0) =− a(0)−2

(
ν12ν21

(µ1 + ν12)(µ2 + ν21)2
+

ν12ν21
(µ1 + ν12)2(µ2 + ν21)

)
1

µ1 + ν12
×(

ν12µ2

µ2 + ν21
+ µ1

)
− a(0)−1 1

(µ1 + ν12)2

(
ν12µ2

µ2 + ν21
+ µ1

)
− a(0)−1 1

µ1 + ν12

µ2ν12
(µ2 + ν21)2

.

We can take a factor of −a(0)−1 and 1
µ1+ν12

from each term leaving us with

ϕ′
1(0) =− a(0)−1 1

µ1 + ν12

[
1

(µ1 + ν12)

(
ν12µ2

µ2 + ν21
+ µ1

)
+

µ2ν12
(µ2 + ν21)2

+ a(0)−1

(
ν12ν21

(µ1 + ν12)(µ2 + ν21)2
+

ν12ν21
(µ1 + ν12)2(µ2 + ν21)

)(
ν12µ2

µ2 + ν21
+ µ1

)]
.

Inside the square bracket we can substitute in the formula for a(0)−1 to get

ϕ′
1(0) =− a(0)−1 1

µ1 + ν12

[
1

(µ1 + ν12)

(
ν12µ2

µ2 + ν21
+ µ1

)
+

µ2ν12
(µ2 + ν21)2

+
1

(µ1 + ν12)(µ2 + ν21)− ν12ν21

(
ν12ν21
µ2 + ν21

+
ν12ν21
µ1 + ν12

)(
ν12µ2

µ2 + ν21
+ µ1

)]
.

This simplifies to

ϕ′
1(0) = −a(0)−1 1

µ1 + ν12

[
ν12

µ2 + ν21
+ 1

]
,

multiplying by −1 allows us to invoke Equation (3.9), leading to a solution for E[T1],

E[T1] = a(0)−1 1

µ1 + ν12

(
ν12

µ2 + ν21
+ 1

)
.

Similarly we can find that

E[T2] = a(0)−1 1

µ2 + ν21

(
ν21

µ1 + ν12
+ 1

)
.

Alternatively, we can instead return to a simpler form of the equation, namely Equation

(3.5). From this point, by multiplying Equation (3.5) by −1 and differentiating once with
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respect to s at s = 0, it is possible to calculate the expectation of T1. The result of this

follows.

−1 · d
ds

((µ1 + ν12 + s)ϕ1(s))

∣∣∣∣
s=0

= −1 · d
ds

(ν12ϕ2(s) + µ1)

∣∣∣∣
s=0

,

⇒ −1 · ϕ′
1(0) · (µ1 + ν12)− 1 · ϕ1(0) = −1 · ϕ′

2(0) · ν12.

By implementing Equation (3.9) we obtain the equation

E[T1] · (µ1 + ν12)− ϕ1(0) = ν12 · E[T2]. (3.10)

It can be shown using a similar process that

E[T2] · (µ2 + ν21)− ϕ2(0) = ν21 · E[T1]. (3.11)

Rearranging Equation (3.11) gives

E[T2] = (µ2 + ν21)
−1 (ϕ2(0) + ν21E[T1]) ,

and substituting this into Equation (3.10) gives

E[T1] · (µ1 + ν12)− ϕ1(0) = ν12 · (µ2 + ν21)
−1 (ϕ2(0) + ν21E[T1]) .

Grouping the E[T1] terms gives

E[T1]
(
(µ1 + ν12)−

ν12ν21
µ2 + ν21

)
= ν12 · (µ2 + ν21)

−1 ϕ2(0) + ϕ1(0). (3.12)

Recall the definition of ϕi(s) from Equation (3.1); therefore ϕi(0) = E[e0] = 1. Substi-

tuting this into Equation (3.12) gives

E[T1]
(
(µ1 + ν12)−

ν12ν21
µ2 + ν21

)
= ν12 · (µ2 + ν21)

−1 + 1.
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Making E[T1] the subject gives

E[T1] =
(
(µ1 + ν12)−

ν12ν21
µ2 + ν21

)−1(
ν12

(µ2 + ν21)
+ 1

)
=

(
µ2 + ν21

µ1µ2 + µ1ν21 + µ2ν12

)(
ν12

(µ2 + ν21)
+ 1

)
.

From Equation (3.6) we can find that

a(0)−1 =
(µ1 + ν12)(µ2 + ν21)

µ1µ2 + µ1ν21 + µ2ν12

⇒ a(0)−1

(
1

µ1 + ν12

)
=

(
µ2 + ν21

µ1µ2 + µ1ν21 + µ2ν12

)
.

And thus we have re-obtained the solution

E[T1] = a(0)−1 1

µ1 + ν12

(
ν12

µ2 + ν21
+ 1

)
.

Note that, if ν21 = 0 as in our case study in Section 3.4.2,

E[T1] =
ν12 + µ2

µ1µ2 + µ2ν12
.

We note that one can also use the Laplace-Stieltjes transform to find higher order

moments, one such example is the second order moment of a bacterium starting in

state 1. We can find this by using Equation (3.9), and differentiating Equation (3.5) twice.

This leads to
(µ1 + ν12)ϕ

′′
1(0) + 2ϕ′

1(0) = ν12ϕ
′′
2(0)

⇒ (µ1 + ν12)E[T 2
1 ]− 2E[T1] = ν12E[T 2

2 ].

We can follow a similar process to obtain

(µ2 + ν21)E[T 2
2 ]− 2E[T2] = ν21E[T 2

1 ].

By following a similar process for the first order moment: combining these into one

equation for E[T 2
1 ] and then substituting in the formulae for E[T1] and E[T2], it can be
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shown that

E[T 2
1 ] =

2a(0)−2

(µ1 + ν12)(µ2 + ν21)

(
ν12

µ2 + ν21

(
ν21

µ1 + ν12
+ 1

)
+
µ2 + ν21
µ1 + ν12

(
ν12

µ2 + ν21
+ 1

))
.

We can also use this equation to find the second order moment of the lifespan of a

bacterium starting in state 1 when ν21 = 0 which is given by

E[T 2
1 ] =

2

(µ1 + ν12)µ2

(
ν12
µ2

+
µ2

µ1 + ν12

(
ν12
µ2

+ 1

))
.

3.3.2 Number of toxin molecules produced by a bacterium in its
lifetime

The random variable that describes the number of toxin molecules produced by the

tracked bacterium during its lifetime is denoted by ωi, where the tracked bacterium is

initially of type i ∈ {1, 2}. This is an important descriptor for the model since toxins can

be one of the main causes of severe symptoms within a host. Within this section we shall

consider the probability generating function and use it to find moments of this descriptor

ωi. The probability distribution of ωi will also be considered.

3.3.2.1 Probability generating function of ωi

In the previous section, we use the Laplace-Stieltjes transform to find the moments of

Ti, as it was a continuous random variable. In this section, and moving forward, we will

be considering discrete random variables. Therefore, we can consider the probability

generating function of ωi to be defined as follows

ψi(z) = E[zωi ],

for |z| ≤ 1. By means of a first-step argument (similar to the ones above), one can show

that

(µ1 + γ1(1− z) + ν12)ψ1(z) = ν12ψ2(z) + µ1, (3.13)

(µ2 + γ2(1− z) + ν21)ψ2(z) = ν21ψ1(z) + µ2. (3.14)

Using a similar technique as described when finding the Laplace-Stieltjes transform of
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Ti, it can be shown that Equations (3.13)-(3.14) have the following solutions

ψ1(z) = b(z)−1 1

µ1 + γ1(1− z) + ν12

(
ν12µ2

µ2 + ν21 + γ2(1− z)
+ µ1

)
,

ψ2(z) = b(z)−1 1

µ2 + γ2(1− z) + ν21

(
ν21µ1

µ1 + ν12 + γ1(1− z)
+ µ2

)
,

with b(z) = 1− ν12ν21
(µ1+γ1(1−z)+ν12)(µ2+γ2(1−z)+ν21)

. Once again, we can consider the scenario

where ν21 = 0, a relevant consideration for applying the model to a B. anthracis model

in Section 3.4.2, which leads to simplified solutions. Namely,

ψ1(z) =
1

µ1 + γ1(1− z) + ν12

(
ν12µ2

µ2 + γ2(1− z)
+ µ1

)
,

ψ2(z) =
µ2

µ2 + γ2(1− z)
.

We note that in this case ω2 ∼ Geo( µ2

µ2+γ2
), which is consistent with the solution of

ψ2(z).

The mean number of toxin molecules produced by a single bacterium can be computed

from direct differentiation of ψi(z) with respect to z using the formula

dk

dzk
ψi(z)

∣∣∣∣
z=1

= E[ωk
i ].

This is very similar to the techniques described when finding the first-order moment of

Ti in Section 3.3.1. In particular, one can show that

E[ω1] = b(1)−1 1

µ1 + ν12

(
γ2ν12

µ2 + ν21
+ γ1

)
,

E[ω2] = b(1)−1 1

µ2 + ν21

(
γ1ν21

µ1 + ν12
+ γ2

)
.

We can also find the second-order moment of this descriptor using a similar technique.

As an example, under the constraint ν21 = 0, the second order moment of ω1 is

E[ω2
1] =

2γ21

(
µ1 +

µ2ν12
γ2+µ2

)
(γ1 + µ1 + ν12)

3 +
2γ1γ2µ2ν12

(γ2 + µ2)
2 (γ1 + µ1 + ν12)

2+
2γ22µ2ν12

(γ2 + µ2)
3 (γ1 + µ1 + ν12)

.
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3.3.2.2 Probability distribution of ωi

We can also attempt to find the probability distribution of ω1 by taking first-step argu-
ments. Let us begin by defining the following notation:

P(ωi = j) = ωi(j), j = 0, 1, 2, . . . ,

and taking first-step arguments for a bacterium starting in state 1.

ω1(0) =
λ1

λ1 + ν12 + γ1 + µ1

ω1(0) +
ν12

λ1 + ν12 + γ1 + µ1

ω2(0) +
µ1

λ1 + ν12 + γ1 + µ1

,

multiplying by (λ1 + ν12 + γ1 + µ1) and cancelling terms we get

ω1(0) =
ν12 · ω2(0) + µ1

ν12 + γ1 + µ1

. (3.15)

By a similar process it can be shown that

ω2(0) =
ν21 · ω1(0) + µ2

ν21 + γ2 + µ2

. (3.16)

By substituting Equation (3.16) into Equation (3.15) we obtain

ω1(0) =
ν12

ν21·ω1(0)+µ2

ν21+γ2+µ2
+ µ1

ν12 + γ1 + µ1

,

which becomes

ω1(0)(ν12 + γ1 + µ1)(ν21 + γ2 + µ2) = ν12ν21ω1(0) + ν12µ2 + µ1ν21 + µ1γ2 + µ1µ2.

As the ν12ν21ω1(0) terms on each side will cancel, by factorising each side of the equation
we can obtain a final equation for ω1(0).

ω1(0) =
ν12µ2 + µ1(ν21 + γ2 + µ2)

ν12(γ2 + µ2) + (γ1 + µ1)(ν21 + γ2 + µ2)
, (3.17)
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whilst ω2(0) is, similarly,

ω2(0) =
ν21µ1 + µ2(ν12 + γ1 + µ1)

ν21(γ1 + µ1) + (γ2 + µ2)(ν12 + γ1 + µ1)
. (3.18)

A similar process can be used to get a formula for ω1(1), but first recall the notation

∆1 = λ1 + ν12 + γ1 + µ1, therefore by taking first-step arguments

ω1(1) =
λ1
∆1

ω1(1) +
ν12
∆1

ω2(1) +
γ1
∆1

ω1(0) ⇒ ω1(1) =
ν12ω2(1) + γ1ω1(0)

ν12 + γ1 + µ1

.

Using the symmetry between ω2(1) and ω1(1) and substituting in we get

ω1(1) =
ν12

ν21ω1(1)+γ2ω2(0)
ν21+γ2+µ2

+ γ1ω1(0)

ν12 + γ1 + µ1

,

and rearranging leads to the solution

ω1(1) =
ν12γ2ω2(0) + γ1 (ν21 + γ2 + µ2)ω1(0)

(γ1 + µ1)(ν21 + γ2 + µ2) + ν12(γ2 + µ2)
.

In fact, we can show that the recursive relationship for ω1(n) is:

ω1(n) =
γ1(ν21 + γ2 + µ2)ω1(n− 1) + ν12γ2ω2(n− 1)

(γ1 + µ1)(ν21 + γ2 + µ2) + ν12(γ2 + µ2)
.

It is very difficult to obtain an analytic solution for ω1(n) for the general model with no

constraints on the parameters, but the recursive solution can be implemented numerically.

3.3.3 Number of division events in the lifespan of a bacterium

Let us consider now the number of times that the tracked bacterium divides during

its lifetime, Di, if this bacterium is originally of type i ∈ {1, 2}. We can define its

probability generating function as Φi(z) = E[zDi ] for |z| ≤ 1. Via first-step arguments,

Φi(z) satisfies the following equations:

∆1Φ1(z) = λ1zΦ1(z) + µ1 + γ1Φ1(z) + ν12Φ2(z),

∆2Φ2(z) = λ2zΦ2(z) + µ2 + γ2Φ2(z) + ν21Φ1(z).
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It can be shown, following a similar process to that in the previous section, that these
equations have solutions

Φ1(z) = c(z)−1 1

µ1 + ν12 + λ1(1− z)

(
µ2ν12

µ2 + ν21 + λ2(1− z)
+ µ1

)
,

Φ2(z) = c(z)−1 1

µ2 + ν21 + λ2(1− z)

(
µ1ν21

µ1 + ν12 + λ1(1− z)
+ µ2

)
,

with c(z) = 1− ν12ν21
(µ1+ν12+λ1(1−z))(µ2+ν21+λ2(1−z))

. We note that these expressions, as one
would expect, do not depend on the toxin production rate, γi. Following a similar process
to the one above, and using the formula

dk

dzk
Φi(z)

∣∣∣∣
z=1

= E[Dk
i ],

it can be shown that the average number of divisions are then given by

E[D1] = c(1)−1 1

µ1 + ν12

(
λ2ν12
µ2 + ν21

+ λ1

)
,

E[D2] = c(1)−1 1

µ2 + ν21

(
λ1ν21
µ1 + ν12

+ λ2

)
.

Once again, scenarios of interest might lead to simplified expressions. If one sets ν21 = 0,
as in the case of ν12 representing a non-reversible antibiotic treatment as in Section 3.4.2,
this leads to

E[D1] =
1

µ1 + ν12

(
λ2ν12
µ2

+ λ1

)
,

E[D2] =
λ2
µ2

.

This choice implies that D2 is a geometrically distributed random variable, where the
probability of death (thought of as success in this case) is µ2

λ2+µ2
, D2 ∼ Geo( µ2

µ2+λ2
). This

is consistent with the expression of E[D2].
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3.3.4 Number of bacteria in the progeny of a bacterium

We focus now on the random variable describing the number of bacteria in the progeny

of the original bacterium. We denote this number as Gi, with i indicating the original

bacterium type. To be precise, the initial type i bacterium is not included in Gi, we

consider a change of state (1 → 2 or vice versa) as a new bacterium being formed in the

new state and thus do include these transitions as the creation of a new progeny. When a

bacterium divides, we count both daughter bacteria as progeny. As an example, G1 = 15

in the particular realisation depicted in Figure 3.2. We can find the expectation of this

descriptor, again by using first-step arguments.

E[G1] =
λ1
∆1

(2 + 2E[G1]) +
ν21
∆1

(E[G2] + 1) +
γ1
∆1

E[G1],

where once again ∆i = λi + νij + γi + µi, i, j ∈ {1, 2}, j ̸= i. This rearranges to

E[G1](µ1 + ν12 − λ1) = 2λ1 + ν12(E[G2] + 1). (3.19)

We can also find a similar equation for E[G2]

E[G2](µ2 + ν21 − λ2) = 2λ2 + ν21(E[G1] + 1). (3.20)

These quantities will be positive and finite only if µ1 + ν12 > λ1 and µ2 + ν21 > λ2,

which are conditions that must be satisfied for the number of cells in the progeny to be

finite. We can find analytic solutions for E[G1] and E[G2] by substituting these equations

into one another, leading to

E[G1] = g−1 1

µ1 + ν12 − λ1

(
2λ1 + ν12

λ2 + 2ν21 + µ2

µ2 + ν21 − λ2

)
,

E[G2] = g−1 1

µ2 + ν21 − λ2

(
2λ2 + ν21

λ1 + 2ν12 + µ1

µ1 + ν12 − λ1

)
,

with

g = 1− ν12ν21
(µ1 + ν12 − λ1)(µ2 + ν21 − λ2)

.

In order for these averages to be positive, we also require g > 0. This leads to a third

condition for a positive and finite expected number of bacteria in the progeny (i.e. to
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avoid unlimited bacterial population growth)

ν12ν21
(µ1 + ν12 − λ1)(µ2 + ν21 − λ2)

< 1.

For the specific case when ν21 = 0, one gets

E[G1] = Ĝ1 =
1

µ1 + ν12 − λ1

(
2λ1 + ν12

λ2 + µ2

µ2 − λ2

)
,

E[G2] = Ĝ2 =
2λ2

µ2 − λ2
.

3.3.5 Number of toxin molecules produced by the genealogy of a
bacterium

Our interest is to mathematically describe a system of toxin-producing bacteria, thus,

we now compute the number of toxin molecules produced by the genealogy of the

original bacterium. To be precise, we consider the genealogy of a bacterium to consist

of the initial bacterium and all of its progeny. We then introduce Ωi as the number of

toxin molecules produced by the genealogy of an initial type i bacterium. We denote

its expectation value by Ω̂i = E[Ωi], for i ∈ {1, 2}. We note that the number of toxin

molecules produced by the genealogy of the single bacterium will be finite if and only

if the number of bacteria within the genealogy is finite. This condition is equivalent

to the number of progeny of a bacterium being finite. Therefore the conditions for a

finite number of bacteria in the progeny discussed in the previous section also need to be

satisfied for this descriptor. The expected values, Ω̂1 and Ω̂2, satisfy

(µ1 + ν12 − λ1)Ω̂1 = γ1 + ν12Ω̂2,

(µ2 + ν21 − λ2)Ω̂2 = γ2 + ν21Ω̂1,

with solutions

Ω̂1 = g−1 1

µ1 + ν12 − λ1

(
γ1 + ν12

γ2
µ2 + ν21 − λ2

)
,

Ω̂2 = g−1 1

µ2 + ν21 − λ2

(
γ2 + ν21

γ1
µ1 + ν12 − λ1

)
.
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When ν21 = 0, the equations simplify to

Ω̂1 =
1

µ1 + ν12 − λ1

(
γ1 + ν12

γ2
µ2 − λ2

)
,

Ω̂2 =
γ2

µ2 − λ2
.

We note that there exists a link between the expected number of toxin molecules produced

by a bacterium, the expected number of bacteria in the genealogy of a bacterium (the

number of progeny and the initial bacterium itself) and the number of toxins produced

by the genealogy. For instance, if we take the case when ν21 = 0, the average number of

bacteria in the genealogy of an original type 2 bacterium including this original bacterium,

is

E[G2] + 1 =
2λ2

µ2 − λ2
+ 1 =

µ2 + λ2
µ2 − λ2

,

see Section 3.3.4 for further detail. It is clear that, in this case, every bacterium in the

genealogy will be type 2 bacteria since ν21 = 0. Each of these type 2 bacteria will

produce, on average
γ2

λ2 + µ2

,

toxins before they decide their fate, which could be division or death. Note this is not

equivalent to E[ω2] when ν21 = 0 from Section 3.3.2; as here we consider the number

of toxin molecules produced before division or death whereas ω2 counts the number

of toxin molecules before death, since after a division event one of the daughter cells

was considered to be the original bacterium. Thus, the mean number of toxin molecules

produced by the genealogy of the original type 2 bacterium is

µ2 + λ2
µ2 − λ2

× γ2
λ2 + µ2

=
γ2

µ2 − λ2
,

which matches the above expression for Ω̂2.

3.4 Numerical results

In this section we shall consider the effect that relevant parameters have on the stochastic

descriptors described above. We will first carry out a global sensitivty analysis, to
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Fixed Parameter Parameter Value
λ1 0.8
µ1 1
γ1 1
λ2 0.8
µ2 1
γ2 1

Table 3.1: The baseline values for the parameters concerning type 1 and type 2 bacteria
within this model. All rates have units hour−1.

investigate the effect that the relationship between certain parameters can have on the

summary statistics analysed in Section 3.3. Once we have investigated this, we will look

at a case study of B. anthracis using in-vitro data from Zai et al. (2016) to try to find

estimates for the parameters relevant to state 1 (untreated bacteria) and then investigate

the effect of varying the parameters relevant to state 2 (antibiotic-bound bacteria).

3.4.1 Global sensitivity analysis

Within this section we shall impose no constraints on our parameters, and investigate

the effect that changing the relationships between our parameters can have on the

summary statistics analysed in Section 3.3. The conclusions we draw here will inform

the parameter regimes we will investigate when applying our model to the B. anthracis

case. In Table 3.1 the baseline values for parameters in the model are shown. Parameter

values for a type 1 bacterium were chosen, and we assume that unless being investigated,

the differentiation from a type 1 bacterium to a type 2 bacterium has no effect on the

corresponding parameters. The value of λ1 = 0.8 hour−1, was chosen as it is the given

extracellular bacterial growth rate of B. anthracis in Day et al. (2011). We chose here

µ1 = 1 hour−1 for illustrative purposes. γ1 = 1 hour−1 was chosen for illustrative

purposes so that on average a type 1 bacterium would produce 1 toxin within its lifespan.

As the rates of differentiation, ν12 and ν21, are varied in most plots, no baseline value for

these parameters are set.
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Figure 3.3: Average lifespan of a type 1 bacterium, E[T1], for varying values of ν12 and
ν21 with different values of µ2. Parameter units are hour−1.

3.4.1.1 Lifespan of a bacterium

We will investigate the effect of parameters on E[T1]. Firstly, we note that the division

rates, λi, and the toxin production rates, γi, for i ∈ {1, 2}, have no effect on E[T1].
This makes sense intuitively; if we are interested in one particular bacterium it is of no

consequence for its average lifespan if it makes many daughter bacteria or none. The

same logic applies to the number of toxins it produces. However, it is important for us to

investigate the effect that the death rates in each state and the differentiation rates have.

Figure 3.3 shows the effect that varying ν12, ν21 has for µ2 < µ1, µ2 = µ1 and µ2 > µ1.

As is to be expected, µ2 > µ1 shows a much shorter lifespan for the bacterium as it is

more likely to die as a type 2 bacterium. It is important to note that in the middle plot,

when µ2 = µ1, the average lifespan of the bacterium is fixed at E[T1] = 1. This is to be

expected as under those parameter values the bacterium dies at the same rate whether

it is a type 1 or type 2 bacterium. It is also important to note that when ν12 = 0, the

bacterium will always stay as a type 1 bacterium and as such both ν21 and µ2 have no

effect on the system; this explains the behaviour shown where as ν12 gets close to 0 on all

plots, E[T1] gets close to 1. The largest values of E[T1] are in the region where µ2 = 0.1,

ν12 is large and ν21 is small (corresponding to the bottom-right of the left plot). This

is the case where the bacterium dies slower as a type 2 bacterium, differentiates from

a type 1 to a type 2 bacterium quickly but differentiates back from a type 2 to a type 1

bacterium slowly; this results in the bacterium spending more time as a type 2 bacterium

where it expires at a slower rate so it makes sense this gives the largest expected lifespan.
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Figure 3.4: Average number of toxins produced in the lifespan of a type 1 bacterium,
E[ω1], for varying values of γ2, µ2, ν12 and ν21. Parameter units are in hours−1.

3.4.1.2 Toxins produced by a bacterium during its lifespan

Here, we focus on the average number of toxins produced by a type 1 bacterium during

its lifespan, E[ω1]. We retain our baseline values as shown in Table 3.1, with γ1 = 1

chosen for illustrative purposes so that a type 1 bacterium produces an average of 1 toxin

during its lifespan under no differentiation.

In Figure 3.4, we plot heatmaps of E[ω1] for varying values of γ2, µ2, ν12 and ν21. Here

we can see the impact that changing our parameters has on the expectation of ω1. We

can see that increasing γ2 has a dramatic effect on E[ω1], especially in the cases where

ν12 is large, ν21 is small and µ2 is small; this makes sense as those parametric regions

represent the cases where the bacterium will spend a long time in state 2, and therefore

γ2 will be more important for E[ω1] than γ1. This explains the interesting behaviour
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where in the bottom-left plot the bottom-right region has the smallest values but in the

top-right plot the bottom-right region has the largest values. In the middle plot we get the

behaviour that if the behaviour of a type 1 bacterium and a type 2 bacterium is identical

the rates of transition between these two types have no effect on the expected number of

toxins. We also see this behaviour in the top-left and bottom-right figures; therefore we

can note that as long as the ratio of γ2 and µ2 is the same as the ratio of γ1 and µ1 the

rates of transition between type 1 and type 2 bacteria have no impact on the distribution

of toxins. This makes sense as the descriptor ω1 is timeless; it concentrates only on the

number of toxins produced, regardless of how quickly this happens and therefore the

number of toxins expected to be produced will not change if toxins are produced 100

times quicker but if the bacterium is expected to die 100 times quicker. In all three of

these plots (in the top-left to bottom-right diagonal of Figure 3.4), the expected number

of toxins E[ω1] =
γ1
µ1

= γ2
µ2

= 1. This is also the case when ν12 = 0 and the bacterium

will never differentiate to a type 2 bacterium, explaining the behaviour at ν12 = 0 in all

nine plots.

One can instead focus on the probability distribution of ω1. In Figure 3.5 we plot the

probability distribution, {ω1(n), n = 0, 1, 2, . . . } for values up to n = 6. We notice that

as expected, when the proportion of γ2
µ2

= 1, the same as γ1
µ1

, the probability distribution

is not affected by the rates of transition between the two types of bacteria. We notice that,

as expected, when γ2 is smaller than µ2 the probability of producing 0 toxins increases

even if ν21 is large. This is because even if the bacterium is type 2 for a very small time;

within that small time it be more likely to die before producing any toxin molecules

than if it was a type 1 bacterium for that time. Naturally the converse is true; if γ2 > µ2

the probability of producing 0 toxins decreases. It is also clear that the impact of the

transition rate of a type 2 bacterium becoming a type 1 bacterium, ν21, on the probability

of 0 toxins being produced depends on this proportion γ2
µ2

. Namely, when γ2
µ2

< γ1
µ1

,

such as in the plot in the second row and first column, µ2 = 1, γ2 = 0.1, increasing the

transition rate ν21 makes it less likely that 0 toxins will be produced. This makes sense

as an increase in ν21 means that a bacterium will, on average, spend less time as a type 2

bacterium; therefore if a type 2 bacterium produces less toxins than a type 1 bacterium,

as in this case, the chance of producing 0 toxins decreases. The converse is true, when
γ2
µ2
> γ1

µ1
, such as in the plot in the second row, third column.
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Figure 3.5: The probability distribution of the number of toxins in the lifespan of a
bacterium, {ω1(n), n = 0, 1, 2, . . . } for values up to n = 6, for varying values of γ2, µ2

and ν21. In this plot ν12 is fixed to a value of 1 for illustrative purposes. Parameter units
are in hours−1.
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Figure 3.6: Average number of divisions undergone by a type 1 bacterium during its
lifespan, E[D1], for varying values of λ2, µ2, ν12 and ν21. Parameter units are in hours−1.

3.4.1.3 Divisions undertaken by a bacterium during its lifespan

Within Figure 3.6 we plot heatmaps of E[D1], the average number of divisions in a type

1 bacterium’s lifespan, for different values of λ2, µ2, ν12 and ν21. We do not vary γ2 as

the number of toxins produced by a bacterium has no effect on the number of divisions it

will undertake. Here we see behaviour we expect from analysis of previous summary

statistics. For example, we see that if the ratio of the division rate and death rate for

a type 2 bacterium, λ2

µ2
, is equal to the ratio of the division and death rates for a type 1

bacterium, λ1

µ1
, the transition rates, ν12 and ν21, do not impact the number of divisions a

bacterium would be expected to undergo during its lifespan. This makes sense as E[D1]

is a timeless quantity and as such, the time it takes for the bacterium to divide and die

is not important, only the number of divisions before death is. It is also clear that as λ2

µ2
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increases in relation to λ1

µ1
, we expect to see more divisions in the bacterium’s lifespan. In

particular, for the case that λ2

µ2
> λ1

µ1
, increasing the type 1 bacterium to a type 2 bacterium

transition rate ν12 causes more divisions as this will cause the bacterium to spend more

time as a type 2 where more divisions occur. Again, the converse is true, when λ2

µ2
< λ1

µ1
,

increasing the transition rate ν12 causes the expected number of divisions to decrease via

a similar logic.

3.4.1.4 Number of bacteria in the progeny of a bacterium

Here, we consider the expected number of bacteria in the progeny of a type 1 bacterium,

E[G1] = Ĝ1. Recall that the three criteria for a finite number of cells in the progeny are:

µ1 + ν12 >λ1,

µ2 + ν21 >λ2,
(3.21)

ν12ν21
(µ1 + ν12 − λ1)(µ2 + ν21 − λ2)

< 1.

We can therefore only investigate Ĝ1 for parameter regions where these criteria are

satisfied. Figure 3.7 shows the expected number of bacteria in the progeny of a type

1 bacterium, Ĝ1, for a variety of values for λ2, µ2, ν12 and ν21. γ2 is not investigated

as toxin production has no effect on the number of bacteria in the progeny. Firstly, we

note that as parameter values approach the threshold of the criteria for a finite number

of bacteria in the progeny the expected number of bacteria in the progeny becomes

large; this is to be expected as at the threshold the expected number of bacteria in the

progeny will be infinite. Secondly, as we would expect from our analysis of the expected

number of divisions E[D1], increasing the proportion λ2

µ2
, causes the expected number

of bacteria in the progeny to increase. Likewise, the converse is true. In the regions

where λ2 is smaller than µ2, increasing the transition rate of a type 1 bacterium becoming

a type 2 bacterium, ν12, compared to the rate at which a type 2 bacterium becomes a

type 1 bacterium, ν21, causes the average number of bacteria in the progeny to decrease.

However, one thing to note for all of these plots is that the average number of bacteria in

the progeny, Ĝ1, does not solely depend on the ratio of division rates against death rates;

this is as we count each transition (e.g a type 1 bacterium becoming a type 2 bacterium)

as one daughter bacterium being formed and as such this is added to the number of
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Figure 3.7: The expected value of the number of bacteria in the progeny for a given type
1 bacterium, Ĝ1, for various values of λ2, µ2, ν12 and ν21. Parameter units are in hours−1.
The unplotted regions are where the criteria for a positive and finite number of bacteria
in the progeny are not satisfied.
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bacteria in the progeny. This is particularly noticeable in the cases where the proportion

of λ2

µ2
= λ1

µ1
(the top-left to bottom-right diagonal in Figure 3.7) as in previous summary

statistics we would expect these plots to be transition rate homogenous; however for

this stochastic descriptor as both ν12 and ν21 increase so too does Ĝ1. This has a more

pronounced effect when ν12 and ν21 are larger than the rates of division and death, which

explains why the case where λ2 = 0.5λ1 and µ2 = 0.5 (top-left in Figure 3.7) has higher

values for Ĝ1 for large values of ν12 and ν21 than the corresponding values of ν12, ν21 for

the case where λ2 = 2λ1 and µ2 = 2 (bottom-right in Figure 3.7).

3.4.1.5 Number of toxins produced by a bacterium and its progeny

Finally, here we consider the average number of toxins produced by a type 1 bacterium

and all of its progeny, E[Ω1]. Again, this quantity is only valid if the criteria in Equations

(3.21) are satisfied. Figure 3.8 shows the expected number of toxins produced by a type

1 bacterium and its progeny, E[Ω1], for varying values of λ2, µ2, ν12 and ν21. This figure

is the counterpart to Figure 3.7 and as such shows similar behaviour, where the larger the

expected size of the progeny, the higher the expected number of toxins are and vice-versa.

There is different behaviour seen across the top-left to bottom-right diagonal in Figure

3.8 compared to Figure 3.7 however. The number of toxins produced by the genealogy

is not affected by the transition rates ν12 and ν21 in the middle plot; this is because the

division and death rates of type 1 and type 2 bacteria are identical in this case so having

more or less transitions between the two types of bacteria will not affect the number of

toxins produced. In the top-left plot of Figure 3.8, Ω1 increases as ν12 increases and as

ν21 increases, Ω1 decreases, whereas in the bottom-right plot the opposite occurs. This

can be explained as the overall toxin production will be larger when the bacteria spend

more time in a state where the toxin production rate is larger relative to the division

and death rates, corresponding to ν12 > ν21 in the top-left plot and ν21 > ν12 in the

bottom-right plot.

A limitation of this figure is that we are investigating the number of toxins produced,

without varying the relevant parameters, γ1 and γ2. Therefore, in Figure 3.9 we instead

consider varying γ1 and γ2 along the x-axis and y-axis of each plot. This requires

choosing fixed values of ν12 and ν21. So with a view to an application to B. anthracis we

select ν12 = 0.675 hour−1 for illustrative purposes (it is the value given to the antibiotic
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Figure 3.8: The expected value of the number of toxins produced by a type 1 bacterium
and its progeny, E[Ω1], for various values of λ2, µ2, ν12 and ν21. The toxin production
rate for a type 2 bacterium, γ2, was chosen to be equal to the toxin production rate of
a type 1 bacterium, γ1 = 1. Parameter units are in hours−1. The unplotted regions are
where the criteria for a positive and finite number of bacteria in the progeny are not
satisfied.
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Figure 3.9: The expected value of the number of toxins produced by a type 1 bacterium
and its progeny, E[Ω1], for various values of λ2, µ2, γ1 and γ2. Parameter units are in
hours−1. Transition rates ν12, and ν21 have fixed values of 0.675 and 0 respectively.

Ciprofloxacin contact rate by Day et al. (2011)) and ν21 = 0, representing irreversible

antibiotic-binding to the bacteria. Three axes in Figure 3.9 do not have plots as these

parameter regions do not satisfy the second criteria of Equations (3.21). As is to be

expected, as the parameters concerning toxin production, γ1 and γ2, increase we see

a marked rise in E[Ω1]. It is also significant that the rates of λ2 and µ2 have notable

impact even if their ratio remains the same. This is explained by the toxin production

rate becoming dominant as it increases if λ2 and µ2 are not sufficiently large. It is also of

note how sensitive E[Ω1] is to the value of γ1 and γ2, ranging from 10−2 to 101 in each

plot. This informs us that it will be crucial to find an acceptable value for γ1 and γ2 in

our case study in Section 3.4.2.
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3.4.2 Case study B. anthracis

We now make use of the previous results to analyse the behaviour of Bacillus anthracis

bacteria, which causes anthrax infection, in the presence of antibiotic treatment. We

assume non-treated fully vegetative Bacillus anthracis bacteria form the B1 compartment

in Figure 3.1, and the second compartment, B2, will represent bacteria affected by the

antibiotic. B. anthracis produces three anthrax exotoxin components (Liu et al. (2014)):

protective antigen (PA), lethal factor (LF) and edema factor (EF). The effectiveness of

the anthrax toxins in entering cells and causing symptoms is mainly due to the protective

antigen (PA) (Leppla (2000)), with which the other toxin components can form complexes

(Liu et al. (2014)). Therefore, we focus here on the production of PA when implementing

our methods. We consider an antibiotic treatment, such as Ciprofloxacin, that inhibits

bacterial division and triggers cellular death, so that µ2 ≥ µ1 and λ2 = 0. It is to be

expected that the production rate of toxin molecules by antibiotic-treated cells would

be at most equal to non-treated cells, and thus, we consider γ2 ≤ γ1. Bacteria become

treated at some rate ν12, and we set ν21 = 0 to indicate that the process is irreversible. In

Section 3.4.2.1 we leverage data from an in vitro assay for the A16R strain of B. anthracis

(Zai et al. (2016)) to inform our choice of parameters (λ1, µ1, γ1). On the other hand, a

global sensitivity analysis of model parameters (ν12, µ2, γ2) allows us in Section 3.4.2.2

to study the impact of treatment on the summary statistics introduced and analysed in

Section 3.3, illustrating the applicability of our techniques.

3.4.2.1 Parameter calibration

Zai et al. (2016) examine the growth of the A16R B. anthracis strain by measuring the

viable count of colony forming units (CFU) per mL in an in vitro assay for the following

time points: t ∈ {4h,8h,12h,16h,20h}. They also develop a sandwich ELISA and

cytotoxicity-based method to quantify the concentration of PA every two hours during

the experiment, from t = 4h to t = 26h. In order to exploit this data set, and to estimate

representative values for λ1, µ1 and γ1, we consider its corresponding deterministic

model (for the first compartment of non-treated bacteria)

dB

dt
= (λ1 − µ1)B,

dT

dt
= γ1B − ξT,
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where B(t) is the concentration [CFU/mL] of bacteria at time t, and T (t) the concentra-

tion [ng/mL] of PA. Experimental results shown in Figure 1 of Zai et al. (2016) detected

bacterial exponential growth during the first 12 hours of the experiment. The bacterial

population reaches a carrying capacity after this point, representing competition for

resources. Thus, since our interest (see Figure 3.1) is in the analysis of non-competing

bacteria, we focus here on the first period of the experiment: t ∈ [4h, 12h]. In particular,

we set λ1 = 0.8 hour−1 from Day et al. (2011), and use bacterial counts shown in Figure

1 of Zai et al. (2016) and toxin concentration measurements from Figure 4 of Zai et al.

(2016) to estimate the bacterial death rate, µ1, and the toxin production rate, γ1. Since the

dynamics of the toxin population is likely to be dominated by the production of toxins

from an exponentially growing bacterial population, we neglect toxin degradation and set

ξ = 0 in what follows. We acknowledge that this might lead to underestimating the rate

γ1. Yet, we note that the rate ξ has no effect on any of the summary statistics analysed in

Section 3.3.

Parameters µ1 and γ1 are estimated by using the Python programming language,

specifically the curve fit function from the scipy.optimize, which is based on

a non-linear least squares method. This leads to point estimates µ1 = 0.8− 0.4277 =

0.3723 hour−1 and γ1 = 4.6337 × 10−6 ng · CFU−1·hour−1. A comparison between

model predictions and observed measurements is provided in Figure 3.10. Finally, in

order to use our estimate for γ1 in the stochastic model from Figure 3.1, one needs to

convert units (from ng to number of molecules). To do this, we note that PA has a relative

molecular mass of 83, 000 (Petosa et al. (1997)). This means that 7.2×109 PA molecules

have an approximate weight of 1ng, so that γ1 = 3.3355×104 molecules· CFU−1·hour−1.

3.4.2.2 Summary statistics

We now perform a global sensitivity analysis on a subset of the model parameters for the

summary statistics of interest introduced in Section 3.3. We consider the stochastic model

of Figure 3.1 with baseline parameter values: µ1 = 0.3723 hour−1, λ1 = 0.8 hour−1

and γ1 = 3.3355× 104 molecules· CFU−1 ·hour−1, according to the calibration carried

out in the previous section. To analyse the role of antibiotic treatment (B1 represents

non-treated bacteria and B2 antibiotic-treated bacteria), we explore parameter regimes

with ν12 > 0, ν21 = λ2 = 0, µ2 ≥ µ1 and γ2 ≤ γ1.
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Figure 3.10: Model predictions compared to experimental observations by Zai et al.
(2016).

In Figure 3.11, we look at summary statistics directly related to the lifetime of a single

bacterium. We assume at time t = 0 we start with one non-treated bacterium. We first

carry out a sensitivity analysis for parameters µ2, ν12 and γ2. This allows one to analyse

the impact of treatment on the tracked bacterium during its lifespan. On the other hand,

even though we have a baseline value for µ1, we vary this parameter when considering

the number of divisions undergone by the tracked bacterium, for illustrative purposes.

The top-left plot in Figure 3.11 shows the impact of treatment on the mean lifespan

of the bacterium, E[T1], which varies between 1 and 3 hours for the parameter values

considered. Increasing antibiotic efficiency (in terms of larger values of µ2 and ν12) leads

to shorter lifespans. We note that if one assumes µ2 = µ1 = 0.3723 hour−1, no effect of

treatment on the lifespan is expected, and the value of ν12 (which is directly related to

the rate at which antibiotic can affect bacteria, as well as the concentration of antibiotic

present in the system) becomes irrelevant. Finally, increasing values of µ2 make the

value of ν12 increasingly relevant, as one would expect.

The top-right plot of Figure 3.11 shows the expected number of divisions undergone

by the bacterium, E[D1], for a range of µ1 and ν12 values. We note here that since

ν21 = λ2 = 0, µ2 has no effect on D1. Thus, we vary µ1 instead. As one would expect,
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Figure 3.11: Top-left. Expected lifespan [hours] of a bacterium. Top-right. Expected
number of divisions during its lifetime. Bottom. Expected number of toxin molecules
produced during its lifetime for different values of ν12 ∈ {1, 5, 10} (left to right). Units
for γ2, not provided in the plot, are molecules · CFU−1· hour−1.

70



3.4 Numerical results

increasing values of ν12 and µ1 lead to fewer divisions. We also note that in order for

the bacterial population to grow as a function of time, each bacterium (on average)

needs to undergo more than one division event. We highlight the value E[D1] = 1 by

a green line in Figure 3.11, which is achieved when ν12 + µ1 = λ1. The bottom row

in Figure 3.11 shows the effect of varying ν12, µ2 and γ2 on the expected number of

toxin molecules produced by a bacterium during its lifetime, E[ω1]. Increasing values

of µ2 and ν12 can have a significant effect on the number of toxin molecules produced.

The values γ2 = γ1 = 3.3355× 104 molecules · CFU−1 hour−1 and µ2 = µ1 = 0.3723

hour−1 represent no treatment effect for the tracked bacterium, and for these choices

the value of ν12 has no effect on E[ω1]. On the other hand, decreasing values of γ2 have

a significant effect on the predicted number of PA molecules produced, especially for

increasing values of ν12.

Figure 3.12: Top. Mean number of bacteria in the genealogy of a single bacterium,
where the genealogy is the bacterium and all its progeny. Bottom. Mean number of
toxin molecules produced by the genealogy of a single bacterium for different values of
ν12 ∈ {1, 5, 10} (from left to right). Units for γ2, not provided in the plot, are molecules
· CFU−1· hour−1.
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In Figure 3.12 we present summary statistics of relevance to the genealogy of a B1

bacterium. The top plot of Figure 3.12 shows the effect that parameters ν12 and µ1 have

on the mean number of cells in the genealogy of a single bacterium, 1 + Ĝ1. We note

that, in this plot, the white area corresponds to parameter combinations for which the

mean number of cells in the genealogy is not finite. This happens when λ1 ≥ µ1 + ν12.

Values of µ1 + ν12 larger but close to λ1 lead to increasing mean number of cells in

the genealogy, as one would expect. On the other hand, the bottom row of Figure 3.12

shows the effect on the number of toxin molecules secreted by the genealogy of a single

bacterium of varying µ2 and γ2. We investigate these parameter values for three different

choices of ν12 ∈ {1, 5, 10}. It is clear that γ2 has a large impact on the expected value Ω̂1,

which mimics the similar effect that γ2 has on its single-bacterium counterpart, E[ω1] (see

Figure 3.11). Figure 3.11 and Figure 3.12 show the significance of ν12 on the expected

number of toxin molecules produced. Interestingly, as ν12 becomes much larger than λ1,

we observe that E[ω1] approaches Ω̂1, since in this case 1 + Ĝ1 ≈ 1 represents the single

bacterium of interest.

3.5 Discussion

We have defined and analysed a two-compartment stochastic model for toxin-producing

bacteria. Our focus has been a number of summary statistics that relate to the lifetime of

a single bacterium (tracked over time) and its progeny. In particular, we have studied the

lifespan of the bacterium, the number of divisions undergone and the number of toxin

molecules produced during its lifetime, as well as the number of bacteria in its progeny,

and the number of toxin molecules produced by this progeny and the original bacterium

itself. We illustrated in Section 3.4 our methods by focusing on the growth of B. anthracis

bacteria in the presence of antibiotic treatment. To the best of our knowledge, this is the

first approach to quantify the PA production rate in this system. It is important to note

that as mentioned in Section 3.4.2.1, we have neglected the effect of PA degradation, ξ,

which will likely lead to an underestimate for our rate of PA production, γ1. We will use

the dataset considered in Section 3.4.2.1, by Zai et al. (2016), and other in vitro datasets

to better quantify PA production and degradation in Section 4.2.
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3.5 Discussion

We point out that, although the model considered in Figure 3.1 is relatively simple,
consisting only of two compartments of bacteria, our single-bacterium approach can
be applied to any network topology of compartments, as long as the bacteria behave
independently, so that the dynamics of a single bacterium can be effectively followed.
Implementing our techniques in more complex systems, such as those representing in vivo

infection and bacterial dissemination between different organs, remains the aim of future
work. We also note that, while we have analysed probability generating functions and
Laplace-Stieltjes transforms in Section 3.3, we have focused in practice, for simplicity
and brevity, on computing the first order moments for the summary statistics of interest.
However, this approach can be easily generalised to compute higher order moments or
probability mass functions.

Some potential areas of further investigation based on this work could be to incorporate
the behaviour of a toxin population, that is toxins being produced by the bacteria and
decaying at some rate, by making use of the PA production and degradation estimates
calculated in Section 4.2 to this model. This would be useful if we wanted to, for example,
investigate the probability that a bacterium produced enough toxins to reach some given
threshold value of toxins during the lifespan of its genealogy, a quantity that may be of
interest if it is known for a given pathogen the toxin concentration within the system upon
which symptoms are likely to start or when a hosts immune system may be overwhelmed.
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Chapter 4

Mathematical models of Bacillus
anthracis infection dynamics in vivo and
in vitro

There has been a wide range of research in modelling anthrax infection. Anthrax is

a disease, caused by exposure to the bacteria Bacillus anthracis, that encourages this

broad scope of research as it can be induced by a number of entry points. This chapter

focuses on inhalational anthrax infections, where the spores are breathed into the lungs

by an individual. This type of anthrax infection is extremely rare in modern life, but

has become a necessary topic of research due to its potential use as a biowarfare agent.

As anthrax is a disease with high lethality, in vivo data in humans is scarce; there have

been experiments where in vivo animal data has been obtained, for example in macaques

(Vasconcelos et al. (2003)) or rabbits (Pitt et al. (2001)). This animal data is useful for

understanding key mechanisms of the pathogenesis of an infection as well as obtaining

key data (such as LD50, the average lethal dose) for these animals. Biological knowledge

gained from animal studies and in vitro data will therefore be used to calibrate our

model parameters in this chapter. Two published sets of data are used in Section 4.2 and

these results are compared with novel in vitro data from our partners at Dstl in order to

draw conclusions about parameter values affecting population dynamics in an anthrax

infection.
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4.1 A within-host model of anthrax infection

In this section solely human infections will be considered, in which there has been

a substantial amount of research. This includes models of the infection throughout

the body (Albrink (1961)), the efficacy of different treatments (Plotkin & Grabenstein

(2008)) and some investigation into the best practical response to a release of B. anthracis

spores into a population (Inglesby et al. (2002)). One such deterministic model has been

proposed by Day et al. (2011), which incorporates a host inhaling a number of spores

into the lungs and then the spores migrating into the transmediastinal lymph nodes. In

the following subsections, this model will be introduced (Section 4.1.1), the results found

in the paper recreated (Section 4.1.2), and then this model will be used to develop a

stochastic counterpart to each stage of the model (Sections 4.1.3 and 4.1.4).

4.1.1 Deterministic model by Day et al. (2011)

Here, we present the deterministic model proposed by Day et al. (2011). This model

considers within-host anthrax infection dynamics in which spores of B. anthracis are

inhaled into the alveolar region. Once the spores arrive into the body, the alveolar

cells respond and phagocytose spores, attempting to destroy them. However, due to

the robustness of B. anthracis, the spores survive and thrive in these conditions; the

authors denote the new construct with the spore inside the alveolar cell as a “host cell”.

These host cells migrate to the transmediastinal lymph nodes (TMLN) region, while the

spore(s) inside the host cell germinates, leading to intracellular vegetative bacteria that

can then proliferate. Eventually these bacteria lyse the host cells and once they rupture,

extracellular bacteria are released into the lymph nodes.

Once the extracellular bacteria have been released into the lymph nodes, multiple pro-

cesses begin. The extracellular bacteria undergoes mitosis which enhances the infection.

This is inhibited by the host’s immune cells, including neutrophils that have been at-

tracted from the blood stream to the infected area. If bacteria remain in the system they

can begin to produce anthrax toxins which cause the symptoms and potentially death of

the host. If the infection is left untreated it is extremely likely this will result in death of

the host; treatment can greatly increase the chance of survival, with one study showing

a 0% survival rate without treatment up to an average of above 90% survival rate with
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treatment (Huang et al. (2015); Inglesby et al. (2002)). Although biologically anthrax

toxins are made up of at least three virulence factors, such as PA, EF and LF (see Section

1.1.1.2), this model represents them as one dimensionless quantity within the system.

In the first part of the model, depicted in Figure 4.1, the authors assume that an amount

of spores, S0, is inhaled. Once within the host, these spores are phagocytosed by the

alveolar cells, and these infected host cells, H , migrate to the TMLNs. Within these

cells, the spores germinate and become vegetative bacteria. These bacteria, once released

into the TMLNs, produce anthrax toxins.

The number of alveolar phagocytes is assumed to be in homeostasis before the infection,

at a value of sA
µA

, where sA is the number of alveolar phagocytes that arrive within the

system per hour and µA is the death rate of these phagocytes. Once the infection begins,

the uptake of spores into the cells happens rapidly. Due to this, it is assumed that the

number of alveolar phagocytes approaches a quasi-steady state given by the equation

A(t) =
sA

k2S(t) + µA

,

where k2 is the rate at which alveolar phagocytes phagocytose spores and S(t) is the

number of spores in the system.

Figure 4.1 depicts the different reactions (or events) that are considered within the

model. This figure also highlights two of the limitations of the model: namely that the

intracellular process within the host cell is not modelled and that anthrax toxins are

modelled as a single dimensionless quantity.

The first two equations within this model represent the first stage of the infection process,

where the host cells migrate from the lungs to the TMLN. This involves the populations

of the spores, S, the alveolar cells, A, and the combination of the two forming a host cell,

H . The evolution of the spores throughout time is represented by the equation

dS

dt
= −k2SA︸ ︷︷ ︸

Decrease caused by spores being
phagocytosed by resident cells

. (4.1)

As spores are phagocytosed, the number of host cells within the lungs varies according
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Figure 4.1: A pictoral representation taken from Day et al. (2011) of the model. In
the lung region, S represents spores, H are host cells and A represents the alveolar
phagocytes. In the TMLN compartment, Be represents extracellular bacteria, TA are
anthrax toxins, N represents neutrophils and E shows lymphocyte mediators.
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to the following equation

dH

dt
=

k2SA

ns︸ ︷︷ ︸
Increase as spores
are phagocytosed

−k3H︸ ︷︷ ︸
Migration of host cells

. (4.2)

The first term on the right hand side in this equation describes alveolar cells becoming

host cells by phagocytosing spores, with the assumption that each cell phagocytoses ns

spores. The second term describes the host cells leaving the alveoli by migrating to the

TMLNs, where k3 is the migration rate. For the purposes of this model, Day et al. (2011)

assumed that this migration term includes the process of bacteria germinating and lysing

the cells upon arrival into the TMLNs, releasing exactly nB bacteria into the system.

Let us consider the second stage of infection where host cells have arrived into the

TMLN region at rate k3. Although once released into the lymph nodes extracellularly,

bacteria and toxins can spread through the body via the blood stream, in this case it is

assumed that the dynamics of the infection within the TMLN system is representative of

the overall condition of the host. Namely, if the infection is sustained in this region it will

progress though the body and the converse is also true. This assumption has been backed

up by bodies of victims who have succumbed to anthrax; autopsies have consistently

shown inflammation of this region in fatal cases (Day et al. (2011); Shafazand et al.

(1999)). This section of the model represents the rate of change of four cell populations:

early lymphocyte mediators, E; extracellular anthrax bacteria, Be; Neutrophils, N ; and

anthrax toxins, TA.

The first population considered within the TMLN system is the early lymphocyte media-

tors which have an inflammatory effect on the cells in the region which serves to attract

neutrophils. The population of these lymphocytes evolves according to

dE

dt
= sE −µEE︸ ︷︷ ︸

Natural biological death
of lymphocytes

−k1BeE︸ ︷︷ ︸
Death induced by bacteria

, (4.3)

where sE is the source of lymphocytes, µE is the natural death rate of lymphocytes and

k1 is the rate of apoptosis of lymphocytes caused by Be. Of particular interest in terms

of anthrax pathogenesis is the parameter k1, as the biological processes it describes are
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dependant on lethal toxin, a combination of two secreted toxins by the vegetative bacteria,
namely protective antigen (PA) and lethal factor (LF). For example, it was shown by
Popov et al. (2002) that the rate at which macrophages are killed by Bacillus anthracis

is related to the level of lethal toxin in the system, whilst Friedlander (1986) found that
this suppression on the immune response was inhibited by a high pH environment. The
populations of protective antigen (PA) and lethal factor (LF), which combine to make
lethal toxin, are not explicitly modelled here, and the model takes k1 as implied by the
effect of some intracellular lethal toxin dynamics.

The model described by Day et al. (2011) assumes that when host cells migrate to
the TMLN system they rupture and release nB bacteria, which can then proliferate
logistically. Within this model, these extracellular bacteria can be killed by both the
early immune response (population E) and the neutrophil population (N ). Therefore,
the change in the population of Be is given by

dBe

dt
= k3nBH︸ ︷︷ ︸

Bacteria being
released from rupturing

host cells

+ k5Be

(
1− Be

BeMAX

)
︸ ︷︷ ︸
Extracellular bacterial growth

−k6EBe︸ ︷︷ ︸
Killing of bacteria by

early immune response

−k8NBe

1 + TA

ct1︸ ︷︷ ︸
Killing of bacteria by neutrophils

,

(4.4)
where k5 is the growth rate of bacteria, BeMAX is the carrying capacity of the bacteria
population, k6 is the rate at which resident immune cells cause death of bacteria, k8 is
the maximal rate at which neutrophils kill bacteria and ct1 is a measure of the inhibition
of neutrophil processes. Note that when TA(t) = ct1 the rate at which neutrophils kill
bacteria is half the maximal rate, therefore a smaller value of ct1 would indicate the
toxins have a stronger inhibitive effect.

Equation (4.3) shows that lymphocyte mediators in the TMLNs die of natural causes and
due to the presence of extracellular bacteria (which produce toxins). Day et al. (2011)
assume that the deaths of these lymphocytes attract neutrophils from the blood stream
which are effective at killing anthrax bacteria, therefore they assume that the population
of neutrophils evolves according to

dN

dt
=

k9BeEN0

1 + TA

ct2︸ ︷︷ ︸
Recruitment of neutrophils

by lymphocytes dying

+
k10NN0

1 + TA

ct3︸ ︷︷ ︸
Recruitment of neutrophils
by other primed neutrophils

−µNN︸ ︷︷ ︸
Natural death rate

. (4.5)
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In Equation (4.5), k9 is the rate at which neutrophils are activated byBe-caused death, N0

is a constant source of resting neutrophils (approximately 5500) in the TMLN system, ct2
and ct3 are both measures of the extent that anthrax toxins inhibit neutrophil responses,
k10 is the rate at which neutrophils are recruited by other activated neutrophils and µN is
the natural death rate of neutrophils. The first two terms show neutrophils arriving in
the TMLN due to signals sent by dying lymphocytes or by other neutrophils bringing
in reinforcements; both of these processes however are inhibited by the anthrax toxins
produced by the bacteria as shown in the denominator of each term.

Finally, the dynamics of the toxins is represented by

dTA
dt

= k4
Be

ctb +Be︸ ︷︷ ︸
Production of toxin

by extracellular bacteria

−µTA
TA︸ ︷︷ ︸

Natural decay of toxins

, (4.6)

where k4 is the maximal rate that extracellular bacteria produce toxins, ctb is the level at
which bacteria produce toxins at half the maximal rate and µTA

is the natural decay rate
of the anthrax toxin.

The parameter values proposed by Day et al. (2011) for this model are detailed in Table
4.1.

4.1.2 Results of the model

In this section, some of the numerical results presented by Day et al. (2011) are repro-
duced, along with some additional numerical results that are not discussed within the
scope of the paper.

Survival and death outcomes for the host are not explicitly factored into the model.
Instead, it is assumed that if the level of bacteria and neutrophils within the system
remains constantly high then the disease will overwhelm the host, resulting in host death,
but if these two quantities begin to decrease then it assumed that the host has begun to
deal with the infection and will survive. Due to the deterministic nature of the model,
there exists a threshold value for the initial dose of spores such that the system will switch
from a survival case to a death case if it is surpassed. This threshold was discussed but
the value was not explicitly reported by Day et al. (2011); it is shown here in Figure 4.2.
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Table 4.1: The values for the parameters within this model, justification for which are
found in Day et al. (2011, Table 1). The baseline initial conditions for this model were
S(0) = S0, H(0) = 0, E(0) = 2× 108, Be(0) = 0, N(0) = 0 and TA(0) = 0.

Fixed Parameter Parameter Value units
BeMAX 5× 1011 Be

ct1 , ct2 , ct3 1 TA-units
ctb 1000 Be

k1 10−5 B−1
e hour−1

k2 10−10 H−1 hour−1

k3 0.05 hour−1

k4 2 TA-units hour−1

k5 0.8 hour−1

k6 5× 10−10 E−1 hour−1

k8 6× 10−10 N−1 hour−1

k9 5× 10−10 B−1
e E−1 hour−1

k10 1× 10−5 N−1 hour−1

N0 5500 N
nb 5 Be

ns 3 S
sA 3× 108 Hhour−1

sE 1× 108 Ehour−1

µA 0.05 hour−1

µE 0.05 hour−1

µN 0.06 hour−1

µTA
2 hour−1
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Within Figure 4.2 we have an initial exposure of S(0) = 4270 and S(0) = 4271 spores

in blue and orange respectively. Therefore, for this deterministic model, the initial dose

threshold for a death case is 4271 spores. Note that within Figure 4.2 is that a limitation

of this deterministic model is shown; as S(0) = 4270 is given as a survival case but with

a sustained infection on a time scale of over 6 days, empirically we know that as anthrax

is a serious disease someone with a sustained infection like this does not have survival

guaranteed. This limitation of the deterministic model, where near the threshold values

we cannot quantify the probability of an outcome (survival or death), is motivation for

the stochastic version proposed in Sections 4.1.3 and 4.1.4.

It is clear that for low values of S0 a host will recover and for high values they will

die; however, within the model there is a key parameter, k3, which describes the rate at

which host cells migrate to the TMLN system. This is a key parameter as there are a

lot of implicit behaviours within this rate, such as the cell rupturing and releasing nB

bacteria, and k3 determines how quickly the inhaled spores develop into bacteria within

the host cell. Our knowledge of the disease anthrax is that it is extremely fast acting once

a host begins to show symptoms, therefore this rate k3 may determine the period of time

where treatment (not modelled within this section, but Day et al. (2011) do consider it in

their paper) will be most effective. Thus, in Figures 4.3 and 4.4 the impact of varying

k3 is explored for both a low dose of spores, S0 = 102, and a high dose, S0 = 104. For

the low dose of spores, in Figure 4.3, there is a peak for both the bacterial population

and the neutrophil population, after which the bacteria eventually returns to 0 and the

neutrophil count decreases. This is interpreted as a survival case, as the bacteria and

immune response have both returned to their baseline values. It is logical to expect that

there is some threshold value for spore exposure where an infected host will survive,

in fact it has been estimated that the dose of spores that one would expect to kill 50%

of humans would be between 8000-10,000 spores (Passalacqua & Bergman (2006)).

Alternatively, in Figure 4.4 an exposure to a high dose of spores is considered. This

corresponds to a mortality case where both neutrophil and bacteria levels tend towards a

limit where they remain, the neutrophil level reaching a cap shows the immune system is

exerting its maximum effect on the bacterial population and is not controlling it, therefore

we interpret this as a death case. Overall, it is clear that increasing k3, meaning that

bacteria arrive in the TMLNs at a faster rate, increases the rate at which the infection
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Figure 4.2: Case with initial spore exposure S(0) = 4270 (blue) and S(0) = 4271
(orange). The dynamics of cells in the lungs (spores and host cells) are shown in the top
section, and the dynamics in the TMLNs in the lower section. Solutions for Equations
(4.1)-(4.6).
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Figure 4.3: Case with initial spore exposure S(0) = 102. The three plots show different
values of k3, k3 = 0.05/hour (blue), k3 = 0.5/hour (orange) and k3 = 5/hour (green),
leading to survival. The dynamics of cells in the lungs (spores and host cells) are shown
in the top section, and the dynamics in the TMLNs in the lower section. Solutions for
Equations (4.1)-(4.6).
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Figure 4.4: Case with initial spore exposure S(0) = 104. The three plots show different
values of k3, k3 = 0.05/hour (blue), k3 = 0.5/hour (orange) and k3 = 5/hour (green),
leading to death. The dynamics of cells in the lungs (spores and host cells) are shown
in the top section, and the dynamics in the TMLNs in the lower section. Solutions for
Equations (4.1)-(4.6).
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progresses as well as increases the maximum number of bacteria within the TMLNs. For

example, in Figure 4.3 we see that the effect of increasing k3 from 0.05 to 5 increases the

maximum number of bacteria in the TMLNs from approximately 25 to just under 100.

This may have the effect of lowering the threshold number of spores inhaled to cause a

death case within this system, which is something that will be demonstrated in Figure

4.6.

As it is a key parameter, we further investigate the effect of this transition rate, k3, as was

done in Day et al. (2011, Figure 5). Firstly, Day et al. (2011) define the phagocytosis-

migration-germination (PMG) period of the infection within this model as the length of

time that it takes for the population of the host cells to drop below 50, which the authors

consider to be a negligible amount of cells within the system. Day et al. (2011) take

4, 30, 60, 90 days as the PMG periods of interest, and report the values of k3 these PMG

periods correspond to for an initial dose S(0) = 9000 in Day et al. (2011, Figure 5).

Using these published values as a reference point to validate our methods, we can find

the minimum value of k3 needed to obtain specific PMG periods for a variety of doses,

in order to replicate Day et al. (2011, Figure 5). The method for obtaining a value of

k3 is to use a grid-search method. Namely, for some given initial dose of spores, S(0),

we start with a small value of k3 = 0.0001 and calculate the deterministic solution for

S(t), H(t); we accept the value of k3 if the population of host cells, H(t), is less than

the threshold at the given time point (e.g for a PMG length of 4 days, after 96 hours). If

we do not accept the value of k3 we increase it by 0.0001 and repeat the process until

we accept a value of k3. In comparing the output of this grid-search to the values of k3
for S(0) = 9000, we hypothesise that the authors may have considered a threshold of

10 instead of 50. If we use 10 host cells as a threshold, we can show that the values of

k3 we find using our method correspond to the published values in Day et al. (2011) by

plotting the solutions for H(t) for the calculated k3, which we do in Figure 4.5. In any

case, this is a minor technical comment, since the difference between 10 host cells and

50 host cells is not major when considering a minimum initial exposure of 4500 spores.

Figure 4.5 shows the population of the host cells for an initial dose of 9000 spores with

the accepted parameter values of k3 for PMG periods of 4, 30, 60 and 90 days.

The previously described process can be repeated for the other initial spore doses in Day

et al. (2011, Figure 5), namely S(0) = 4500, 2× 104, 2× 109, to reproduce the figure
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Figure 4.5: Four deterministic solutions of the host cell population, H(t), after an initial
exposure of S(0) = 9000 spores, with corresponding values of k3, threshold value of 10
and relevant time points (4, 30, 60 and 90 days).
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PMG in days
4 30 60 90

S(0)

4500 0.0532 0.0070 0.0035 0.0024
9000 0.0606 0.0080 0.0040 0.0027

2× 104 0.0691 0.0091 0.0046 0.0031
2× 109 0.1426 0.0187 0.0094 0.0063

Table 4.2: Computed values of k3 (hours−1) for various PMG lengths and initial condi-
tions, S(0).

showing the outcomes for the given initial conditions and PMG periods. The values

for k3 we calculate for each initial condition and PMG length are given in Table 4.2.

Figure 4.6 shows that, as expected from Figures 4.3, 4.4 and 4.5, decreasing k3 (which

increases the PMG period) will have a notable effect on the survival threshold. This is

significant as it introduces another mechanism that treatments could seek to exploit to

improve mortality rates within sufferers of anthrax infections.

We can show the effect that the change in k3 will have on the deterministic simulations for

the full model. In Figure 4.7, we set S(0) = 4500 and use the values of k3 from the first

row in Table 4.2. We plot the dynamics of the populations, S(t), H(t), E(t), Be(t), N(t)

and TA(t) for an initial condition of S0 = 4500 spores. We chose these populations as

H(t) determines the PMG length, and the others are illustrative in showing the difference

between a survival case and a death case. We can see for the largest value of k3 we

calculated in Table 4.2 for 4500 spores (k3 = 0.0532 in blue) we get a death case where

bacteria reach their carrying capacity; whereas for the slower transition phases we obtain

survival scenarios. It is important to observe from the figures that the reasons for these

results are that the fast migration of host cells which rupture to produce extracellular

bacteria results in a rapid expansion in the bacterial population which causes a suppressive

effect on the immune cells; this suppression allows the bacteria to maintain its population

through the plateau before growing again exponentially when the immune response has

been defeated. In this section we have reproduced the model proposed by Day et al.

(2011) and determined that, due to its deterministic nature, there is a threshold for the

initial number of spores inhaled in which the system switches from a death case to a

survival case. We have shown the effect that k3 has on this survivability threshold and on

the model dynamics in Figures 4.6 and 4.7, respectively. However, a limitation of this
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Figure 4.6: Outcomes of the system for varying phagocytosis-migration-germination
(PMG) lengths and initial spore exposure, S(0).

type of deterministic model is that it is unrealistic to assume that each infection will have
the same dynamics; and therefore it will not be the case that survival is always achieved
if the threshold is not reached and that death occurs 100% of the time if it is. Therefore,
in the next sections we introduce a stochastic counterpart to the model proposed by Day
et al. (2011) to introduce this element of randomness and allow us to investigate the
probability of a survival outcome for a number of initial dose of inhaled spores.

4.1.3 A stochastic model of Bacillus anthracis spores in the lungs

The focus within this section is in proposing a stochastic counterpart of the within-host
deterministic model in Section 4.1.1 . To this aim, I consider first only the biological
processes occurring in the lungs (represented by Equations (4.1) and (4.2)). This limits
the two events that could occur to a spore being ingested by a phagocyte to create a host
cell, or a host cell migrating to the TMLN system.

We represent this stochastically in terms of a bidimensional CTMC X = {(S(t), H(t)) :

t ≥ 0} where S(t) represents the population of spores andH(t) represents the population
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Figure 4.7: Deterministic solutions of the model for selected populations with k3 =
0.0532 (blue), 0.007 (green), 0.0035 (orange), and 0.0024 (red), for initial dose of spores
S(0) = 4500. Dynamics of cells in the lungs (spores and host cells) are shown in the
plots above the line, and in the TMLNs below the line.
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of infected host cells. S(t) and H(t) are defined over the space of states S = {(s, h) ∈
N2

0 : 0 ≤ s ≤ S0, 0 ≤ h ≤ S0 − s}, where S0 = S(0) is the initial dose of spores

inhaled.

The transition probabilities can be defined as follows:

P{S(t+∆t) = s′, H(t+∆t) = h′|S(t) = s,H(t) = h} =
k2As∆t+ o(∆t),
k3h∆t+ o(∆t),
1− (k2As+ k3h)∆t+ o(∆t),
o(∆t),

if (s′ = s− 1, h′ = h+ δ),
if (s′ = s, h′ = h− 1),
if (s′ = s, h′ = h),
otherwise,

where

A =
sA

k2s+ µA

, and δ ∼ Bin
(
1,

1

ns

)
.

This means that the possible one-jump transitions that X can make are

(s, h)
k2sA−−−→ (s− 1, h+ δ)

(s, h)
k3h−−→ (s, h− 1)

,

We note that when a spore is phagocytosed with rate k2sA, a spore is always lost but

a host cell is not always created. A host cell is created with probability 1
ns

, as δ is a

Bernoulli (as number of trials, n = 1) random variable with probability of success 1
ns

.

The result of this is to retain the concept of ns being the average number of spores within

a host cell from Day et al. (2011). From our method of sampling, on average every ns

spores being absorbed will produce a new host cell. These host cells then migrate to

the TMLN system with rate k3. The time for the next event to occur, if the process is

at a given state (s, h) ∈ S at any given time, is sampled from t ∼ Exp(k2sA+ k3h). In

practice, we consider

t = − log(u1)
k2sA+ k3h

,

where u1 ∼ U(0, 1) from the Gillespie algorithm (see Section 2.2.2). Figure 4.8 shows

a comparison of the deterministic model and the proposed stochastic model. From this

figure we can see that the stochastic model accurately reflects the analytic solution of the

deterministic model of the lungs. This figure also effectively shows the fact that there
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Figure 4.8: This figure shows the deterministic model (black line) based upon Equations
(4.1) and (4.2) and three stochastic realisations (red, green and blue) that run until t = 24
hours, with initial conditions S(0) = 1000, H(0) = 0 and parameter values given in
Table 4.1.

is no randomness within the deterministic model, whereas the stochastic model does

change with each realisation.

The stochasticity of the CTMC allows one to capture the uncertainty in some of the

model outputs. For example, the time until the spores population goes to extinction,

T = inf{t ≥ 0 : S(t) = 0}, is a random variable in the stochastic process (since in

each stochastic realisation, T takes a different value). One way of approximating the

distribution of T is by sampling values of T by means of many stochastic simulations

(with the Gillespie algorithm). In Figure 4.9, we plot the distribution of T approximated

by means of 104 simulations of the stochastic process. 104 simulations were chosen as a

balance between a high number of simulations to appropriately capture the shape of the

distribution and the increase in computational time as a consequence of the increase in

the number of simulations. Figure 4.9 shows that while the simulations record a variety

of extinction times, the results are centred around the time that the deterministic solution

approaches zero (starting after 10 hours from Figure 4.8).
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Figure 4.9: Histogram of the probability distribution of T approximated by 104 stochastic
simulations, with S(0) = 1000.

4.1.4 A stochastic model of anthrax infection in the lungs and TMLN

Within this section, the aim is to expand the stochastic model to include the dynamics

within the TMLN region. To expand the system it is necessary to consider a continuous-

time stochastic process X = {(S(t), H(t), E(t), Be(t), N(t), TA(t)) : t ≥ 0} where

S(t) and H(t) are, as before, the spores and host cells in the lungs, and the other four

populations represent populations in the TMLN region; E(t) the lymphocyte mediators,

Be(t) represents extracellular bacteria, N(t) the neutrophils and TA(t) represents the

anthrax toxins. In this model anthrax toxins are included for their suppressive effect on

the immune response, but are modelled in an abstract way such that the units of this

population do not correspond to a physical measurement of the amount of toxins. Instead,

anthrax toxins within the model, TA(t), are a continuous quantity on a scale from 0 to 1,

representing the proportion of the maximal suppressive effect toxins have on the immune

system. As this population is not restricted to integer values, X is not currently a CTMC

even though it has the Markovian property. To work around this limitation, let us consider

Y = {(S(t), H(t), E(t), Be(t), N(t)) : t ≥ 0}, where the populations S,H,E,Be, N

are defined as before, and we evaluate the toxin population TA(t) separately. As TA(t) is
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a continuous quantity, we update it deterministically using equation

TA(t+∆t) =

(
k4

Be(t)

ctb +Be(t)
− µTA

TA(t)

)
∆t+ TA(t), (4.7)

based on Equation (4.6), where ∆t is a sufficiently small inter-event time for any given

jump in the Gillespie algorithm. If the returned inter-event time ∆t is not sufficiently

small this may not track the behaviour of the toxins accurately; this problem can be

avoided by splitting the time interval into multiple time intervals and using Equation

(4.7) multiple times to more accurately track its behaviour.

The other populations are slightly simpler as they take integer values. By considering

the terms within the differential equations in the deterministic version of the model the

following transition probabilities can be obtained:

P{S(t+∆t) = s′, H(t+∆t) = h′, E(t+∆t) = e′, Be(t+∆t) = b′, N(t+∆t) = n′|

S(t) = s,H(t) = h,E(t) = e, Be(t) = b,N(t) = n} =

k2As∆t+ o(∆t), (s′, h′, e′, b′, n′) = (s− 1, h+ δ, e, b, n),
k3h∆t+ o(∆t), (s′, h′, e′, b′, n′) = (s, h− 1, e, b+ nB, n),
sE∆t+ o(∆t), (s′, h′, e′, b′, n′) = (s, h, e+ 1, b, n),
(µE + k1b)e∆t+ o(∆t), (s′, h′, e′, b′, n′) = (s, h, e− 1, b, n),
k5b∆t+ o(∆t), (s′, h′, e′, b′, n′) = (s, h, e, b+ 1, n),(
k6be+ k5b

b
BeMAX

+ k8nb

1+
TA(t)

ct1

)
∆t+ (s′, h′, e′, b′, n′) = (s, h, e, b− 1, n),

o(∆t),(
k9beN0

1+
TA(t)

ct2

+ k10nN0

1+
TA(t)

ct3

)
∆t+ o(∆t), (s′, h′, e′, b′, n′) = (s, h, e, b, n+ 1),

µNn∆t+ o(∆t), (s′, h′, e′, b′, n′) = (s, h, e, b, n− 1),
1− (k2As+ k3h+ sE + (µE + k1b)e+

k5b+

(
k6be+ k5b

b
BeMAX

+ k8nb

1+
TA(t)

ct1

)
(s′, h′, e′, b′, n′) = (s, h, e, b, n),

+

(
k9beN0

1+
TA(t)

ct2

+ k10nN0

1+
TA(t)

ct3

)
+ µNn

)
∆t+

o(∆t),
o(∆t), otherwise.
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4.1.4.1 Limitations of the stochastic model

This model, even with the toxin population being modelled deterministically, is clearly

much more complicated than the model we developed solely for the lung parts; as such

there are some problems that arise. The first and foremost is that a system of this size

is extremely computationally expensive to run; the reason for this is twofold. Firstly,

there are now 8 possible state changes instead of 2 within the lung model; this in itself

would not be a great problem, but it is still worth noting that the added complexity does

have a computational cost. The second and more difficult problem to get around is the

magnitude of some of the rates of these reactions, and therefore how quickly a reaction

is likely to take place. Recall that the inter-event time is given by

∆t = − log(u1)∑
i ρi

,

where u1 is a random number between 0 and 1 and ρi is the rate at which each reaction

i occurs. Therefore the time between events, ∆t, is inversely proportional to the sum

of the rates of reactions that can occur. This causes an issue for events with high rates,

such as the third and fourth possible state changes, corresponding to the arrival or death

of an immune cell. For the parameter values being considered, these are both of orders

of magnitude 108 per hour at time t = 0, so the time for an event to occur just from

these two events is likely to be of order of 10−8 hours. This means that there is likely to

be tens of millions of events concerning solely the immune cell population each hour

from the first hour, which when we want to be able to consider days of exposure to

the disease has an extremely high computational demand. One solution is proposed

where we approach populations with higher orders of magnitude in a deterministic way.

This would especially lower the computational cost in the early time stages. Another

solution is proposed, known as the tau-leaping method (Gillespie (2001)), which carries

out approximate stochastic simulations, by allowing several reactions to occur in a single

time step.

However, before moving on to these solutions to the limitations discussed, for illustrative

purposes, we can compare the dynamics of this stochastic model with its determin-

istic counterpart when some parameter values are adjusted so that the computational
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limitations discussed above are mitigated. In Figure 4.10, we show the results of a deter-

ministic simulation against three stochastic simulations for adjusted parameter values.

For these results, we set the parameter concerning the source of the immune cells to

sE = 103, instead of 108 from Table 4.1 and the initial condition for the immune cells,

E(0) = 2× 104. This means that the ratio between sE and E(0) stays the same but on a

lower magnitude. This also means that the rates concerning the immune cell population

(arrival and death) are of order of magnitude 103.

From Figure 4.10, we can clearly see that the stochastic simulations are reflecting the

behaviour we see in the deterministic solution, which illustrates how the stochastic model

proposed is able to mimic its deterministic counterpart.

4.1.4.2 A hybrid approach for large size populations

As briefly discussed in the previous section, one possible solution to the high computa-

tional cost of simulating the model stochastically could be to solve some populations of

a high order of magnitude deterministically as we did previously with TA(t) (Equation

4.7). The justification for this is that if these populations are of a high order of magnitude

they are very likely to behave mostly deterministically.

This means that for each iteration of the Gillespie algorithm we could consider

TA(t+∆t) =

(
k4

Be(t)

ctb +Be(t)
− µTA

TA(t)

)
∆t+ TA(t),

E(t+∆t) = (sE − (µE + k1Be(t)E(t)))∆t+ E(t),

N(t+∆t) =

k9Be(t)E(t)N0

1 + TA(t)
ct2

+
k10N(t)N0

1 + TA(t)
ct3

− µNN(t)

∆t+N(t),

(4.8)

and the possible state changes for the stochastic variables are given by the transition

probabilities

P{S(t+∆t) = s′, H(t+∆t) = h′, Be(t+∆t) = b′|

S(t) = s,H(t) = h,Be(t) = b} =
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Figure 4.10: Deterministic solutions (black) against stochastic realisations for S(0) =
500, E(0) = 2 × 104, sE = 103 and other parameters as shown in Table 4.1. The
dynamics of cells in the lungs (spores and host cells) are shown in the top section, and
the dynamics in the TMLNs in the lower section.
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k2As∆t+ o(∆t), (s′, h′, b′) = (s− 1, h+ δ, b),
k3h∆t+ o(∆t), (s′, h′, b′) = (s, h− 1, b+ nB),
k5b∆t+ o(∆t), (s′, h′, b′) = (s, h, b+ 1),(
k6bE(t) + k5b

b
BeMAX

+ k8N(t)b

1+
TA(t)

ct1

)
∆t+ o(∆t), (s′, h′, b′) = (s, h, b− 1),

1− (k2As+ k3h+ k5b

+

(
k6bE(t) + k5b

b
BeMAX

+ k8N(t)b

1+
TA(t)

ct1

)
)∆t+ o(∆t), (s′, h′, b′) = (s, h, b),

o(∆t), otherwise.

In Figures 4.11 and 4.12, we set S(0) = 4000 and S(0) = 8000 respectively and use the

rest of the parameters as in Table 4.1. We then compare the dynamics of all simulated

variables over time between this hybrid approach and the fully deterministic counterpart.

We can see that the behaviour is captured relatively well for each of the populations in

both the survival and death case.

4.1.4.3 Tau-leaping simulations

The Gillespie algorithm is extremely useful but does have limitations; for example in

our case some of the populations are simply so large that events happen so often that

the time-step is extremely small, making it extremely computationally expensive to

calculate each step exactly over a period of hours or days. Gillespie himself proposed

an approximation algorithm (Gillespie (2001)) along with subsequent improvements;

the method that we will use (due to efficacy in tau selection) was proposed by Cao et al.

(2006). We will first explain the methodology used, alongside some of the justifications

for these adaptations before moving onto our results of applying the method.

Tau-leaping methodology

Consider a CTMC X = {X(t) = (X1(t), . . . , XM(t)); t ≥ 0}, representing the evolution

of M populations over time. X is defined over the state space S= {0, 1, 2, ...}M , and a

set of reactions R = {1, . . . , n}, which change the state of X(t), and associated rates

{α1, . . . , αn}. The magnitude of these rates depend on the state of X(t). Tau-leaping

allows one to simulate a stochastic realisation using an approximation of the Gillespie

algorithm to reduce the number of computations needed. The approximation consists of

considering a short jump in time, τ , in which it is assumed the rates do not change (in
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Figure 4.11: Deterministic solutions (black) against stochastic realisations for S(0) =
4000, the parameter values as in Table 4.1 with the immune cell, neutrophil populations
and level of toxins calculated at each time step of the Gillespie algorithm using Equations
(4.8). The dynamics of cells in the lungs (spores and host cells) are shown in the top
section, and the dynamics in the TMLNs in the lower section.
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Figure 4.12: Deterministic solutions (black) against stochastic realisations for S(0) =
8000, the parameter values as in Table 4.1 with the immune cell, neutrophil populations
and level of toxins calculated at each time step of the Gillespie algorithm using Equations
(4.8). The dynamics of cells in the lungs (spores and host cells) are shown in the top
section, and the dynamics in the TMLNs in the lower section.
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reality, they do change but size of τ is limited so that these changes are not significant).

Within this time period, τ , the number of times each reaction, j, in R occurs is sampled

from a Poisson random variable with mean and variance equal to αj(X(t))τ , where

αj(X(t)) is the value of αj at state X(t).

A bound on the time period, τ , is defined such that

|Xi(t+ τ)−Xi(t)| ≤ max{εiXi(t), 1}, i = 1, . . . ,M.

where Xi(t) corresponds to a given population in the process and εi corresponds to a

given bound for the propensity of population i. This ensures that within the time period

τ , each population, Xi, will not be forced to change by an amount less than one; if

εiXi(t) < 1 it is still possible that the population Xi(t) can move to an adjacent state

within the time period τ . The size of change in each population is otherwise bounded

upwards by the parameter εi. The parameter εi is given by the formula

εi =
ε

gi
.

Cao et al. (2006) suggest that the standard chosen value for ε is 0.03 so we shall use this

value going forward. gi is depends on the highest order of reaction in which species i

appears as a reactant. The order of the reaction is obtained from the number of reactants

in the event. For example, in the reaction in which a lymphocyte dies due to a reaction

with bacteria the rate is k1BeE. Therefore this would be a second order reaction, as two

molecules are required for this reaction, and gE = 2. Each of the reactions in the lungs

section of the model are first order (for S(t) and H(t), gi = 1), and the toxin population

is of first order, whereas the remaining populations after migration all have at least some

interaction with another population (but not all at the same time) so for these populations

gi = 2. With this bound for τ established, we can express each step in the tau-leap

algorithm using this equation:

X(t+ τ) = X(t) +
n∑

j=1

Pj(αjX(t)τ)Vj,

where X(t) = (X1(t), . . . , XM(t)), n is the total number of possible state changes in the

model, Pj(αj(X(t))τ) is the aforementioned Poisson random variable with mean and

102



4.1 A within-host model of anthrax infection

variance αj(X(t))τ for state change j and Vj is the vector representing the change that

state change j has on each variable.

In the case described in Section 4.1.4, M = 5,X = {(S(t), H(t), E(t), Be(t), N(t)) :

t ≥ 0} and n = 8. If we first consider the reaction that describes a spore being

phagocytosed and forming a host cell the associated vector, V1, would be (−1, δ, 0, 0, 0)

as population S(t) decreases by 1 and population H(t) increases by δ ∼ Bin
(
1, 1

ns

)
,

and all other populations are unchanged in the system for this reaction.

The benefit of tau-leaping is that it decreases the number of times that the rates of the

system need to be reset, thus decreasing the computational power needed. However, this

is only true if the right value of τ is chosen. If τ is too small there will not be a large

enough reduction in computational time to make it worthwhile using an approximation

of the Gillespie algorithm instead of an exact Gillespie algorithm; and if τ is too large

the big time differences between each step of the simulation would cause the rates to

alter a non-trivial amount between jumps, making the simulation lose a large degree of

accuracy. Therefore, it is crucial that τ is chosen carefully and efficiently. As an aside,

if τ is chosen such that only one jump is included in each time-step this recovers the

Gillespie algorithm.

To select a suitable τ , we begin in each iteration of the tau-leaping algorithm by separating

populations into one of two distinct categories, the non-critical and critical populations.

A critical population is defined as one which is below a certain threshold (here defined

as 10) such that care is needed in our selection of τ so as not to cause any population

to drop below zero. A tau-leaping algorithm considers that in each leap a single critical

reaction occurs exactly once and the non-critical reactions happen as many times as

possible while this condition is met.

Then a tau is selected via the following formula:

τ1 = mini∈NCrit

{
max{εiXi(t), 1}

|µi(Xi(t))|
,

max{εiXi(t), 1}2

σ2
i (Xi(t))

}
,

where NCrit is the set of indices of non-critical reactions, εi is given by 0.03
gi

as discussed

above, and µi(Xi(t)) and σ2
i (Xi(t)) are the expectation and the variance of the number

of transitions of species i at X(t) in time τ respectively.
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From there, three things can happen. The first outcome depends on the value of tau being

large enough that a non-trivial number of reactions will take place. This is monitored

by checking that τ > 10/
∑n

i (αi) where αi is the rate at which reaction i occurs. If

this condition is not fulfilled, an arbitrary number of iterations of a standard Gillespie

algorithm are carried out. In our model this number was chosen to be 100. If the condition

does hold then it is crucial that this choice of tau does not run the risk of sending a

population below zero. A second tau is chosen such that τ2 is a sample of an exponential

random variable with mean
1∑

i∈Crit αi

,

where Crit is the set of indices of reactions that concern critical populations. This second

tau is used to estimate the time taken for a critical reaction to occur.

As stated above, it is crucial to ensure that no more than one critical reaction occurs

between each time step, so τ = min{τ1, τ2} is used. If τ1 < τ2 it is assumed that no

critical reactions occur during this leap and the number of reactions during τ1, kj , of each

non-critical reaction is equal to Pj(αj(X(t))τ1). That is, a sample of a Poisson random

variable with mean αj(X(t))τ1 where αj is the rate of reaction j at X(t). However, if

τ1 > τ2 then it is assumed that exactly one critical reaction occurs in this leap. The

choice of critical reaction is determined by dividing the interval (0, 1) into segments,

where the size of the j-th segment assigned to critical reaction αj is given by

αj(X(t))∑
i∈Crit αi

.

We then choose a random variable by sampling from the uniform distribution between

0 and 1, find whichever interval this random variable lies in and then choose that

corresponding reaction to occur once and all other critical reactions to not occur. In this

case the number of times each non-critical reaction occurs during τ2, kj , is selected by

setting kj = Pj(αj(X(t))τ2), as described above.

For each jump the populations in X are updated using the equation X(t) = X(t)+kjVj +

Vc where kj is the number of times non-critical reaction j occurs, Vj is the effect that

non-critical reaction j has on each population and Vc is the effect that the selected critical

reaction has on the populations.
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As a final step it must be checked that no populations in X(t) have fallen below 0. If there

is a population below 0 the state changes must be undone and the processes repeated

with the selected tau being reduced by a half. This ensures that in the time it takes one

critical reaction to occur a non-critical reaction does not occur enough times to exhaust

its population.

4.1.4.4 Results of tau-leaping

The results of the tau-leaping algorithm generally approximate the output of the exact

Gillespie algorithm but resolves much quicker for larger sizes of populations and can

resolve issues at much longer time intervals. We define our code to run for time, T,

defined as
t1 =tmax

t2 =min{t ≥ 0 : Be(t) ≥ 108}

T =min{t1, t2}

(4.9)

where tmax is the maximum time we want the code to run over. The reason we introduce

t2 is that 108 is a sufficiently large population such that an infected individual is extremely

unlikely to recover without treatment (and therefore can be considered as a ‘death’ case

in this model), and this saves a high amount of computational cost whilst still allowing

us to confidently describe the system as a survival or death case.

We can compare the tau-leaping simulations to the solutions of the deterministic model

to validate its effectiveness. To illustrate this, we consider two marginal cases S(0) =

4250 and S(0) = 4500, chosen to be close to our deterministic critical threshold of

S(0) = 4271 from Figure 4.2. In Figures 4.13 and 4.14 we plot the pointwise me-

dian values across 1000 tau-leaping stochastic simulations for each population in the

model (S(t), H(t), E(t), Be(t), N(t), TA(t)), for initial conditions S(0) = 4250 and

S(0) = 4500 respectively. We keep all parameter values as they are in Table 4.1. From

these figures we can see that the tau-leaping simulations are able to closely match the

deterministic behaviour of the system. It is important to note that in Figure 4.14, by our

definition of T , the code ends if the bacterial population reaches 108, which is the cause

for the plateau and divergence once the bacteria reaches this limit. We once again see in

Figure 4.13 the behaviour we originally noticed in Figure 4.3, that a marginal survival
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Figure 4.13: The pointwise median of 1000 tau-leaping simulations (blue) and the
deterministic solutions (black) for a marginal survival case S(0) = 4250 and parameter
values as in Table 4.1. The dynamics of cells in the lungs (spores and host cells) are
shown in the top section, and the dynamics in the TMLNs in the lower section.

case will resolve to a survival case but only after an extended period of extracellular

bacteria being present in the system.

We can look at individual simulations for these initial conditions too, showing what is

happening to each population in detail. In Figure 4.15 we plot the individual simulations

from the tau-leaping algorithm for each population with an initial dose of spores S(0) =

4500. The populations S(t) and H(t) are extremely consistent across all simulations

which is reassuring as these populations have relatively low orders of magnitude and few

parameters describing their behaviour. We can see from the dynamics of the extracellular

bacteria population that the majority of these simulations result in an explosion in the
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Figure 4.14: The median of 1000 tau-leaping simulations (blue) and the deterministic
solutions (black) for a marginal death case S(0) = 4500 and parameter values as in Table
4.1. The bacterial population Be(t) is capped at 108; if the population reaches this limit
we assume that a death case has occurred. The dynamics of cells in the lungs (spores and
host cells) are shown in the top section, and the dynamics in the TMLNs in the lower
section.
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Figure 4.15: 1000 Tau-leaping simulations for a marginal death case S(0) = 4500.
The bacterial population Be(t) is capped at 108; if the population reaches this limit we
assume that a death case has occurred. The dynamics of cells in the lungs (spores and
host cells) are shown in the top section, and the dynamics in the TMLNs in the lower
section.
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Figure 4.16: Probability of infection from 103 tau-leaping simulations for each S(0).
The threshold for a death case for the deterministic model in Section 4.1.2 of S(0) = 4271
is shown via the black line.

population leading to what we consider as a death case, but not all the simulations do.

This allows us to begin to answer the question we posed when discussing Figure 4.2;

what is the probability that a simulation will result in a death case for the model for

a given initial dose? Answering this question is the reason this stochastic model can

be more informative than the deterministic model by Day et al. (2011), as if we had

an individual exposed to a initial dose of S(0) = 4000 spores, we have a probability

of them succumbing to the disease (we call this the response probability for a dose of

S(0) = 4000) rather than the model always predicting a survival scenario. This response

probability can also be informative when considering a variety of treatment options.

In Figure 4.16 we calculate the response probability for a number of initial spore doses,

centred around the threshold value for a death case from the deterministic model in

Section 4.1.2 of S(0) = 4271. We obtain this probability, p, by running 103 tau-leaping

simulations of the system. We calculate the proportion of simulations where the time that

the model ran for, T , is less than the maximum time we would allow it to run for, namely

T < tmax. This corresponds to the bacterial population, Be(t), reaching the threshold

109



4. MATHEMATICAL MODELS OF BACILLUS ANTHRACIS INFECTION
DYNAMICS IN VIVO AND IN VITRO

value, 108. Clearly, it is important that we choose a reasonable value for tmax to attempt

to capture all reasonable scenarios that would end as a death case; here tmax was chosen

to be 100 hours. Our justification for this is that if the infection has not progressed to the

threshold value at this time (slightly more than 4 days after infection) the host would be

reasonably expected to seek treatment and become much more likely to survive. We can

see from Figure 4.16 that the deterministic threshold value of initial spores, S(0) = 4271

gives just under a 50% chance of death. It is important to notice that the probability of

infection changes from 0 to 1 over a very small magnitude of spores (from S(0) = 3500

to S(0) = 5250) meaning that a precise quantification of an individual’s spore exposure

is extremely important.

One limitation is that we are still differentiating between a survival and death case by

simply looking at the size of the bacterial population, whereas we know that one of the

key drivers of symptoms and eventual death in the pathogenesis of anthrax infection

is the anthrax toxins, made up of PA, LF and EF. It is not possible to investigate these

individual toxin components in this model as the anthrax toxins are thought of as a single

dimensionless continuous quantity. This also makes it difficult to in future incorporate

an anti-toxin treatment into the model.

It is of note, that even within this model, which includes many biological processes

that describe the immune response to an anthrax infection, the behaviour of the anthrax

toxins are not captured. Therefore, within the next section, we aim to quantify toxin

production and decay by leveraging in vitro data with the aim of developing a model that

can incorporate these processes.

4.2 Quantifying toxin production and decay in vitro

A particular ingredient that is missing in order to incorporate the anthrax toxin into

within-host model, in a more quantitatively precise manner, is the quantification of toxin

production and decay. Thus, in this section, the aim is to leverage several in vitro datasets

in order to quantify this. To this end we will use previously published data as well as

novel experimental data provided by our industrial partners at Dstl.
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Figure 4.17: The mechanism by which PA83 proteins bind to cell receptors (purple) and
undergo cleaving to form PA63 (blue ovals) and PA20 (blue circle) proteins. The bound
PA63 proteins form a heptamer which LF (red) and/or EF (orange) proteins can bind to
in order to enter cells (yellow) via endocytosis.

Recall that there are three main components of the anthrax toxins: protective antigen

(PA), lethal factor (LF) and edema factor (EF). PA is responsible for binding to cells and

forming a heptamer that provides an environment that the LF and EF proteins can bind

to and then enter cells. In particular, we start with a PA83 protein which then undergoes

cleaving to split into PA63 and PA20 proteins. The PA63 component can then bind to

a CMG2 cell receptor, providing an environment where more PA63 proteins can bind

together to form what is known as a PA heptamer. This heptamer allows LF and EF to

bind to it at which point the heptamer can enter cells and cause toxic effects on the cell.

We show a pictoral representation of this process in Figure 4.17.

Therefore, when considering the concentration of anthrax toxins, we will focus on

studying the PA levels. This strategy is also borne out when thinking about potential

applications of our modelling approach; if we wanted to analyse the effects of an anti-

toxin treatment, some of the most common (such as Raxibacumab) operate by preventing

PA from binding to cells. Therefore, the relevant behaviour of the anti-toxin treatment

can still be captured if we only consider the PA component.

4.2.1 Experimental data and methods

We use experimental data from published studies by Zai et al. (2016) and Charlton et al.

(2007), as well as from experiments carried out by our industrial partners at Dstl. We will

discuss the experimental setup for the experiments carried out by our industrial partners

and some of the similarities and differences between the experiments in the other two
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datasets and explain the effect this may have on the data and results we obtain from each

dataset.

4.2.1.1 Growth of bacteria and viable counts

Here we describe the method used by Dstl to grow the bacteria and how they calculated

the number of bacteria present (the viable count CFU/ml).

The Dstl data was produced using the Sterne strain 34F2 of B. anthracis from the Porton

Down strain collection. Sterne (pXO1+, pXO2-) is un-encapsulated but retains the ability

to produce toxins and is used in the UK’s anthrax vaccine AVP. Starting with a working

stock containing 107 CFU/ml, 500 µl of Sterne spores was removed and inoculated into

50ml Brain Heart Infusion (BHI) broth in a 250ml Erlenmeyer flask to produce a culture

containing 105 CFU/ml. Sodium bicarbonate (Sigma-Aldrich) was then added to result

in a final concentration of 48 mM (Sirard et al. (1994)). The culture was contained in a

Biojar and a CO2 gas generator sachet (Scientific Laboratory Supplies) was added. The

CO2 sachet was replaced after 24 hours of use as per the manufacturer instructions. It

is important to note that both sodium bicarbonate and CO2 were added as both have

been shown to encourage the production of PA in vitro (Koehler et al. (1994); Sirard

et al. (1994)) by helping to simulate the in vivo environment (Koehler (2009)). The

culture was incubated at 37°C with continuous shaking at approximately 182 rpm. In

total there were three independent growth experiments performed in duplicate. The first

experiment had the culture sampled at 0, 1.5, 3.5, 4.25, 5, 6, and 7 hours post-inoculation,

in order to measure spore germination and bacterial growth at early stages of growth. In

the other two experiments the aim was to understand the behaviour of the system after

enough time had passed for the bacteria to begin to approach its carrying capacity for

the experimental setup; therefore the culture was sampled at 16, 18, 20, 22, 24, 40 and

48 hours post-inoculation. Upon each sampling, total viable counts were obtained by

plating serial 10-fold dilutions (100 µl aliquots) onto L agar in triplicate. In order to

count both the number of spores and vegetative bacteria within the culture, at each time

point another sample was taken, diluted and then heated to 70°C for 30 minutes with

vigorous shaking to kill vegetative cells (Turnbull et al. (2007)) but crucially not spores

that have not yet germinated. The number of vegetative cells in the original sample was

then calculated by subtracting the number of spores (the count in the heat treated sample)
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from the total CFU/ml (in the non-heat treated sample). In the experiments where we

investigated the behaviour of the system at longer time scales, the culture was also filter

sterilised at each time point by passing through a 0.22 µm syringe filter and stored at

-20°C before analysis using the automated western blot system, JessTM Simple Western

(ProteinSimple, San Jose CA, USA).

4.2.1.2 Automated western blot

The process to quantify the production of PA during the bacterial growth was done

using JessTM Simple Western. The benefit of JessTM is that the separation, probing

and detection of protein is automated in a single hands-free assay. A combination of

filter sterilised supernatant from the B. anthracis Sterne culture was mixed neat with

Fluorescent 5× master mix at a ratio of 4:1; these samples were then denatured by heating

statically to 95°C for 5 minutes. For all assays the 12-230 kDa Separation module (SM-

W004, ProteinSimple) and Anti-Mouse Detection Module (DM-002, ProteinSimple)

were used. Reagents were diluted and pipetted into the assay plate as per the manufacturer

instructions. JessTM aspirates the reagents into glass capillaries before separating the HRP-

conjugated MW ladder and sample by size. The sample proteins become immobilised to

the capillary wall before immunoprobing with 1 µg/ml monoclonal PA4 primary antibody

(2D4J, produced at Dstl) and HRP-conjugated anti-mouse secondary antibody was

carried out. Luminol-Peroxide was then added to the sample and the chemiluminescent

signal intensity from the PA target protein is output graphically and as a virtual blot

in the Compass Simple Western software (version 6.1.0, ProteinSimple). The signal

intensity generated by the target PA protein was then interpolated against a standard

curve of PA signal intensity. This standard curve is generated by taking recombinant

PA (PharmAthene, Inc.) and diluting in 0.1× Sample Buffer and Fluorescent 5× master

mix (ProteinSimple) to create samples with final concentrations ranging between 0.04

µg/ml - 5 µg/ml. Interpolating the target PA’s result along this standard curve allows the

concentration of PA at each time point of the Sterne growth experiment to be determined.

Default assay conditions for a chemiluminescent 12-230 kDa size assay were chosen

in the Compass Simple Western software; this included a sample separation time of 25

minutes and antibody incubation time of 30 minutes. Two negative system controls were
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run per assay, one containing no sample and the other containing no primary antibody to
check for cross-reactivity of reagents.

4.2.1.3 Previously published datasets

In addition to the experiments carried out at Dstl (described in Sections 4.2.1.1 and
4.2.1.2) we use in this section data from two previously published studies, by Zai et al.

(2016) and Charlton et al. (2007).

The authors of the first dataset, Zai et al. (2016), conducted similar experiments to
the ones carried out by Dstl (described above) and measured bacterial growth and PA
concentration for both the A16R strain and the Sterne strain of B. anthracis. Both strains
are un-encapsulated but retain the ability to produce the toxin proteins, which is why
they are used in anthrax vaccines (A16R in China and Sterne in the UK). Specifically,
Erlenmeyer flasks containing 100 ml of Luria-Bertani (LB) liquid medium were sterilized
by autoclaving at 121°C for 15 min and then warmed to 37°C prior to inoculation with
1 ml of B. anthracis culture. Once inoculated the flasks were then incubated at 37°C
with vigorous agitation for up to 28h. Viable counts and PA concentration were obtained
by taking culture supernatant samples throughout the time course. The data for the
viable counts (CFU/ml) and PA concentrations (ng/ml) of each strain are shown in
Zai et al. (2016, Figure 1B) and Zai et al. (2016, Figure 4A) respectively. One minor
difference between Zai et al. (2016) and the Dstl experiment is that Zai et al. (2016) used
a traditional western blot technique to qualitatively detect PA and then used an ELISA to
quantify the concentration of PA, whereas Dstl used a new automated western blot system
(JessTM) to quantify PA concentration. Zai et al. (2016) also conducted an experiment
where they obtained the viable counts of bacteria (CFU/ml) and PA concentrations
(ng/ml) from solutions where protease inhibitors were added to the flasks.

Charlton et al. (2007) simulated the UK anthrax vaccine manufacturing process, which
uses the Sterne 34F2 strain (the strain used in the Dstl experiments), and obtained in

vitro data on bacterial growth and PA concentration. Specifically, Thompson bottles had
450 ml of basal medium added and then were sterilized by autoclaving at 121°C for
15 min. The Thompson bottles were then warmed to 37°C prior to inoculation with 50
ml of a spore suspension with a concentration of 2 × 104 CFU/ml. This results in an
initial spore concentration in the Thompson bottles of 2× 103 CFU/ml. These Thompson
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bottles were then incubated statically at 37°C for up to 32 hours. At various time points,

three Thompson bottles were sacrificed, with the numbers of spore and bacterial CFU

in the culture being measured and the PA concentration of the culture supernatants of

these sacrificed bottles determined by using an antigen-capture ELISA. Individual bottle

sacrificing was used because repeated sampling from the same bottle was found to disturb

the growing cultures. The viable counts (CFU/ml) and the PA concentrations (µg/ml) are

shown in Charlton et al. (2007, Figure 1) and Charlton et al. (2007, Figure 4) respectively.

One of the main differences between the experimental methods of the Dstl experiment

and the ones used by Zai et al. (2016) is that whereas Dstl directly inoculated spores into

the assay culture, Zai et al. (2016) grew the B. anthracis bacteria for 24 hours prior to

this inoculation into the assay culture. Charlton et al. (2007) also directly inoculated

spores into the assay culture, however these spores had previously been heat activated

by heating the spore suspension at 60°C for 60 minutes, whereas the spores used in

the Dstl experiment had not been heat activated. Another key difference between the

experimental methods of the three studies is the type of culture medium used. Zai et al.

(2016) inoculated bacteria into 100ml of Luria-Bertani (LB) liquid medium, Charlton

et al. (2007) used basal medium, and Dstl used 50ml of BHI broth and also added sodium

bicarbonate and CO2. Finally, it may be important when interpreting the data to note that

Charlton et al. (2007) incubated statically, whereas both the Dstl and Zai et al. (2016)

experiments incubated with vigorous agitation.

4.2.2 Mathematical model

We want to investigate the specific dynamics of toxin production and decay, as this is a

key driver in the pathogenesis of anthrax infection. Our motivation is to develop a model

that is flexible enough to capture the behaviour of (at least) these two anthrax strains

across a variety of experimental setups and methods whilst remaining able to accurately

show the behaviour in each individual case. Therefore, we need to develop a model

that captures the behaviours of the populations shown in the data, whilst incorporating

biological processes that affect these populations in in vitro conditions. As the Zai et al.

(2016) experiments have data for both strains, as well as an additional dataset with the

presence of protease inhibitors, we begin by looking at that data.
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Figure 4.18: Figures taken from Zai et al. (2016). Top-left: Time course of the bacterial
CFU for the A16R and Sterne strains. Top-right: Time course of PA concentration for
the A16R and Sterne strains. Bottom: Time course of PA concentration for the A16R
strain in the experiment with protease inhibitors.

We can clearly see the classic sigmoidal shape for logistic growth in the bacteria popu-

lation so we propose a logistic growth differential equation for the vegetative bacterial

population
dV (t)

dt
= λV (t)

(
1− V (t)

K

)
.

However, the behaviour of the PA population is less standard. We note from Figure 4.18

that the PA growth begins to slow at a similar time as to when the bacterial population

begins to approach its carrying capacity. As bacteria stop producing PA as the bacterial

population approaches its carrying capacity there must be some limiting factor causing

this. We hypothesise that these bacteria may be unable to produce PA due to a lack of

resources of some kind which causes the bacteria to stop production. It was discussed

by Chiang et al. (2011) that a key factor in toxin production is the presence of glucose;

they found where glucose was not present the production and virulence of toxin genes

were inhibited greatly. Therefore we introduce a third population of “nutrients”, G(t),

normalised to the experimental setup, meaning that the nutrients start the experiment

with an initial concentration of G(0) = 1 and decays at a rate, α, proportional to the
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interaction between this nutrient population and the bacterial population,

dG(t)

dt
= −αV (t)G(t).

We also note that from Figure 4.18 (bottom row) that if protease inhibitors are added to

the system then the toxin population does not decay in the same way. It is believed some

of the PA will actively be digested due to proteases produced by the bacteria (Pflughoeft

et al. (2014)) and thus we need to introduce a mechanism of PA degradation in which the

rate of PA removal, ν, is assumed to also be proportional to the number of vegetative

bacterial CFU. We also need a second mechanism for the natural decay rate of PA, ν0.

Therefore our differential equation for the PA is

dP (t)

dt
= βV (t− τ1)G(t− τ1)− (ν0 + νV (t− τ2))P (t),

where τ1 represents the delay in toxin production caused by the time taken for vegetative

bacteria to produce PA, and τ2 represents the delay in toxin degradation due to the

vegetative bacteria taking time to produce the relevant proteases (not explicitly modelled)

which are able to degrade PA.

However, we need this model to be flexible enough to represent not only multiple strains

but various experimental conditions as well, so we also need to look at some of the other

processes not incorporated in the Zai et al. (2016) data.

One key feature of the Dstl data not incorporated by the Zai et al. (2016) data is that

Dstl has data for the spore population; we therefore need to introduce a time-dependent

variable in our model for the spores, S(t). It is known that B. anthracis spores cannot

replicate, but first must undergo processes collectively known as germination to convert

into a vegetative cell (Setlow (2003)). Therefore our differential equation for the spore

population is
dS(t)

dt
= −gS(t),

where g is the rate at which spores germinate. When a spore germinates, it produces a

single newly germinated bacterium, which will grow into chains of rod-shaped cells, with

each chain measured as 1 CFU in the experiments. However, it takes time for these newly

germinated bacteria to grow into a chain of cells. Thus we incorporate this in the model
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by splitting the bacterial population into two subpopulations, newly germinated bacteria,

N(t), and vegetative bacterial chains, V (t). The newly desporulated bacteria grow into

vegetative bacterial chains with rate m and the vegetative bacterial chains (measured in

CFU) proliferate at a rate which is modelled by logistic growth, as explained above.

Thus, we propose a deterministic delay differential equation (DDE) model of the in vitro

experiments described in Section 4.2.1, given by the following system of DDEs:

dS(t)

dt
= −gS(t),

dN(t)

dt
= gS(t)−mN(t),

dV (t)

dt
= mN(t) + λV (t)

(
1− V (t)

K

)
,

dG(t)

dt
= −αV (t)G(t),

dP (t)

dt
= βV (t− τ1)G(t− τ1)− (ν0 + νV (t− τ2))P (t).

(4.10)

We made the choice not to explicitly model the proteases as a population as there was no

available data for this. We can also represent the model graphically as in Figure 4.19.

The initial conditions of the model variables are given by,

S(0) = fS∗
0 , N(0) = εB∗

0 , V (0) = (1− ε)B∗
0 , G(0) = 1, P (0) = 0,

where S∗
0 and B∗

0 are the number of spores and bacterial CFU measured (or inferred)

at time zero, respectively. These depend on the experiment that is being modelled and

will be discussed in more detail when we look at each dataset in turn. It has been

observed in these type of experiments that often some small proportion of the initial

spores never germinate. Therefore, the parameter f represents the fraction of initial

spores that are able to desporulate, which are the ones represented by variable S(t) in

the model. The parameter ε represents the fraction of initial bacterial CFU that are in the

newly germinated state at time 0.
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Figure 4.19: A schematic representation of the model in Equation (4.10). Black arrows
represent species transitioning from one state to another, coloured arrows indicate that
a population contributes to a particular reaction, and the dashed arrow represents toxin
production.
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The only non-trivial steady state of the model is (S(∞), N(∞), V (∞), G(∞), P (∞))=

(0, 0, K, 0, 0). This state is stable, since all initial germinating spores and newly germi-
nated bacteria will eventually become vegetative bacteria and the population of vegetative
bacteria will approach the carrying capacity, K. Since the nutrients, G(t), are being used
up by the vegetative bacteria, this variable will approach zero, at which point no more
PA can be produced and the PA will also decay to zero.

4.2.3 Parameter calibration

We calibrate parameters to the data using the approximate Bayesian computation-
sequential Monte Carlo (ABC-SMC) algorithm described in Toni et al. (2009). The
details of this algorithm are given in Section 2.3.2. We obtained 2000 accepted parameter
sets for each dataset using 10 parallel versions of the ABC-SMC algorithm, each con-
sisting of 20 iterations with an accepted sample size of 200 parameter sets and collating
the last accepted set of parameter sets for each parallel version. We show the parameters
and their interpretation in Table 4.3 and show their units and our selected priors for each
parameter in Table 4.4.

Parameter Description

f Fraction of initial spores that are able to germinate

g Germination rate of spores into newly desporulated bacteria

ε Fraction of initial bacterial CFU that are newly desporulated

m Maturation rate of desporulated spores into vegetative bacteria

λ Rate of vegetative bacterial growth

K Bacterial carrying capacity (per ml)

α Rate that bacteria use up nutrients

β PA production rate

ν0 PA natural decay rate

ν PA decay rate induced by bacteria (due to proteases)

τ1 Time delay in PA production

τ2 Time delay in protease production and toxin degradation

Table 4.3: Parameters in the mathematical model along with their biological interpreta-
tions.
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Parameter Unit Prior

f - f ∼ U(0, 1)

g h−1 log10g ∼ U(−3, 1)

ε - ε ∼ U(0, 1)

m h−1 log10m ∼ U(−3, 1)

λ h−1 log10λ ∼ U(−1, 1)

K CFU log10K ∼ U(6, 9)

α (CFU · h)−1 log10α ∼ U(−12,−3)

β ng · (CFU · h)−1 log10β ∼ U(−7, 0)

ν0 h−1 log10ν0 ∼ U(−6, 0)

ν (CFU · h)−1 log10ν ∼ U(−15, 0)

τ1 h τ1 ∼ U(0, 15)

τ2 h τ2 ∼ U(0, 24)

Table 4.4: Parameters in the mathematical model along with their units, and prior
distributions.

Uniform priors are used for each parameter (log-transformed in some cases) over the

ranges in Table 4.4; we chose uniform priors over the parameter space so as to try to bias

parameter selection as little as possible from our prior. Once our parameters have been

selected and perturbed as described in Section 2.3.2, we move on to the model simulation

step of the ABC-SMC algorithm; here once we have our model prediction we add noise

to each simulated data point, to take into account measurement errors in the observed

data (Alahmadi et al. (2020)). In the noise we choose added errors that are independent

Gaussian with zero mean and standard deviation equal to the standard deviation of the

experimental data at the corresponding time-point. It is important to note that this model

is simultaneously being fitted to datasets of different types (bacterial CFU measurements

and PA measurements) with different units (CFU vs ng/ml) and of different magnitudes

(in the middle time points of our experiments bacteria is often of magnitude 107 and PA

is of magnitude 103). Therefore, the distance function, if it is to include both populations,

must consider quantities without units and still return values which are not adversely

affected by the scale differences. This is possible, but it is difficult to ensure that the

distance function does not give a higher priority to one of the populations. Therefore, we
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use two different distance functions which will measure the distances in each population

separately, meaning that we instead accept a parameter set if both distances fall below

their own respective acceptance threshold. Namely, we define the following distances to

compare model predictions with observed values.

D1 =
∑
t

(
log10

(
B∗

t

B(t)

))2

+

(
log10

(
S∗
t

S(t) + (1− f)S∗
0

))2

, (4.11)

D2 =
∑
t

(
P ∗
t − P (t)

)2

, (4.12)

where S(t) + (1 − f)S∗
0 , B(t) = N(t) + V (t), and P (t) are the model predictions

from Eq. (4.10) (plus noise) for the amount of spores (desporulating and dormant), total

bacterial CFU, and PA, respectively, at time t. B∗
t is the geometric mean of the observed

number of bacterial CFU at time t, and P ∗
t is the mean amount of PA observed at time t.

S∗
t is the geometric mean of the observed number of spores at time t, which we only use

for the Dstl dataset. We chose to use the log-transformed values for spore and bacterial

CFU predictions as these populations span a large range of magnitude. As stated above,

at each iteration of the ABC-SMC algorithm, two distance thresholds are generated from

the accepted distances from the previous iteration and parameter sets are only accepted if

D1 and D2 both fall below their respective distance thresholds.

4.2.3.1 Zai et al. (2016) dataset

Zai et al. (2016) conducted the experiments described in Section 4.2.1.3 using two

different strains of B. anthracis - A16R and Sterne. For each strain separately, we fit the

model in Eq. (4.10) to the data of viable counts and PA concentrations that they obtained,

shown in Zai et al. (2016, Figures 1B and 4A, respectively).

The reported data is useful but has limitations. For example, for both strains the first

data measurements given are at 4 hours and the initial conditions are not specified. Thus,

we propose to calculate the initial condition for the bacteria. We do this by first fixing

the bacterial population at t = 4 to the data point at that time; then we know that in

the early time points the bacterial population will not be large enough that competition

for resources will be much of a concern. Therefore, we assume at these time points
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the bacteria are undergoing exponential growth; under this assumption we can work

backwards to obtain the initial condition

B∗
0 =

B∗
4(

1− λε
λ+m

)
e4λ + λε

λ+m
e−4m

, (4.13)

where B∗
4 is the data value at 4 hours. Furthermore, we have assumed that there are no

spores present that are going to germinate, since it is reasonable to assume that all such

desporulating spores would have already desporulated during the 24 hours of bacterial

growth prior to inoculation into the assay culture. This means that we do not calibrate the

parameters f and g for the Zai et al. (2016) datasets, since these parameters determine

the dynamics of desporulating (or germinating) spores. We assume that there is no

PA present at time 0. In summary, the initial conditions of the model are taken to be,

S(0) = 0, N(0) = εB∗
0 (where B∗

0 is calculated from Eq. (4.13)), V (0) = (1 − ε)B∗
0 ,

G(0) = 1, and P (0) = 0.

A16R strain

For the A16R strain, an additional experiment was carried out by Zai et al. (2016), where

a protease inhibitors cocktail was added to the LB culture medium. The measurements

of PA concentration corresponding to this experiment are shown in the bottom row of

Figure 4.18. In order to model the PA concentration in this experiment, we add the

following equation to the system in Eq. (4.10),

dPi(t)

dt
= βV (t− τ1)G(t− τ1)− ν0Pi(t), (4.14)

with initial condition Pi(0) = 0. The variable Pi represents the PA concentration in an

experiment in which protease inhibitors have been added. This has most of the same

terms as the equation as for P (t), but we set ν = 0, as ν is the rate at which proteases

decay PA and we assume that proteases will not be contributing to the degradation of PA

due to the presence of protease inhibitors in the experiment. To include this additional

model variable and data into the distance function, we adapt our second distance function

to

D2 =
∑
t

(
P ∗
t − P (t)

)2

+

(
P ∗
i,t − Pi(t)

)2

, (4.15)
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Figure 4.20: Prior distributions (grey) and kernel density estimates of the marginal
posterior distributions (green) from fitting the model in Eq. (4.10) to the three datasets
for the A16R strain from Zai et al. (2016).

where Pi(t) is the model prediction (plus noise) for the amount of PA in an experiment

with protease inhibitors at time t and P ∗
i,t is the mean amount of PA observed at time t

in the experiment by Zai et al. (2016) using the A16R strain with protease inhibitors.

In Figure 4.20 we show the marginal posterior distributions for each parameter in the

accepted parameter sets of our ABC-SMC algorithm.

We can see clearly from Figure 4.20 that we can learn a significant amount about the re-

gions in which the majority of parameters lie from these marginal posterior distributions

of each parameter. For example, for this dataset we obtain very narrow distributions for

λ and K. On the other hand, ε and m have relatively wide posterior distributions; these

parameters determine the fraction of bacterial CFU that are initially newly desporulated

bacteria, and the rate at which these progress into vegetative bacteria, respectively. It is

perhaps unsurprising that we have not been able to learn significantly about these param-

eters, since the type of data used here does not allow one to distinguish between newly

germinated and vegetative bacterial CFU. We can also compare these accepted parameter

sets to the actual data by using the model predictions of the parameter sets. Figure 4.21

shows the predicted bacterial population and PA concentrations, both with and without

protease inhibitors, versus the in vitro observations for the A16R strain; the solid lines

represent the pointwise median of the model predictions from all parameter estimates

in the posterior sample obtained via ABC-SMC, and the shaded regions represent the
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Figure 4.21: Pointwise medians and 95% credible intervals of the model posterior
predictions for B(t) = N(t) + V (t), P (t), Pi(t) and G(t) (from left to right), using the
parameter posterior distribution shown in Figure 4.20. The A16R strain experimental
data used to fit the model are presented as mean ± standard error (SEM) from three
independent experiment runs, extracted from Zai et al. (2016, Figure 1B (viable counts),
Figure 4A (PA concentration), and Figure 7 (PA concentration in the presence of protease
inhibitors)).

95% credible intervals (CI) of these model predictions. We can feel confident that our

parameter calibration using ABC-SMC methods are working effectively as the model

predictions agree well with data for all variables; our mathematical model is able to

successfully explain the initial exponential bacterial growth reaching a carrying capacity,

the increase and peak of PA concentration followed by rapid decay, and incorporate the

impact of protease inhibitors in preventing a rapid decline in PA concentration when

protease inhibitors are present.

We can look at the pairwise correlation between each of these parameters, as shown in

Figure 4.22. This gives a good idea of which parameter pairs will be intrinsically linked

when assessing parameter sets suitability to be accepted by the code. A lot of these

correlations are unsurprising, for example the rate at which PA is produced in the system,

β, is positively correlated with the time delay it takes bacteria to produce PA, τ1. This

makes logical sense as if the delay is longer, the PA will have to be produced quicker to

reach the level observed in the data.

We can also look more closely at the pairs of parameters with a high absolute value of

correlation coefficient; we chose the threshold value to be a magnitude of 0.35. There are

therefore 5 parameter pairs that exceed the threshold for selection, and we look at all the

accepted parameter values for these parameters in Figure 4.23. These figures show that

some parameters depend on each other extremely closely, for example α and β; this is to
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Figure 4.22: The pairwise correlation coefficients within the accepted parameter sets,
the distributions for which are shown in Figure 4.20.

Figure 4.23: Selected pairwise parameter plots for the accepted parameter sets (those
pairs with an absolute value of the correlation coefficient greater than 0.35 in Figure
4.22).
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Figure 4.24: Prior distributions (grey) and kernel density estimates of the marginal
posterior distributions (green) from fitting the model in Eq. (4.10) to the two datasets for
the Sterne strain from Zai et al. (2016).

be expected as they govern the rate that bacteria use nutrients and the toxin production

rate respectively.

Sterne strain

From the measurements in Figure 4.18, it is observed that the Sterne strain bacteria

replicate faster and produce more PA than the A16R strain for these experiments. Hence

we would expect most of the model parameter values to differ slightly between the two

strains; it will be interesting how these differences manifest. The data acquired from the

experiment with protease inhibitors was very useful in the A16R calibration, as having a

dataset that removed the effect of protease decay on PA allowed us to more accurately

estimate the production rate of PA. Unfortunately, this kind of data is not available for

the Sterne strain. However, we believe that the value of the natural decay rate of PA, ν0,

which we were able to estimate using the A16R data, should be intrinsic to the PA protein

itself. Therefore, in theory, ν0 will not change due to the strain which produced the PA.

We use this understanding to set a value for this parameter from the A16R calibration

to be fixed when calibrating the model to the other datasets. In particular, from now

on we set ν0 to be equal to the median value from the posterior in Figure 4.20, giving

ν0 = 2× 10−4 h−1.

In Figure 4.24 we show the marginal posterior distributions of the parameters in green
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Figure 4.25: Pointwise medians and 95% credible intervals of the model posterior
predictions for B(t) = N(t) + V (t) (left) and P (t) (right), using the parameter posterior
distribution shown in Figure 4.24. The Sterne strain experimental data used to fit the
model are presented as mean ± SEM from three independent experiment runs, extracted
from Zai et al. (2016, Figure 1B (viable counts) and Figure 4A (PA concentration)).

against the prior distributions for these parameters. We endeavoured to layout these plots

in a similar way to Figure 4.20 for ease of comparison, and therefore we have a gap in

the second row and second column as we have a fixed value for ν0 and therefore have

neither a prior or posterior distribution for ν0. In Figure 4.25 we show the pointwise

median and 95% confidence interval for the 2000 simulations of the model, one for each

accepted parameter set obtained from the ABC-SMC algorithm, against the data from

Zai et al. (2016).

In general, the posterior distributions in Figure 4.24 for the Sterne strain calibration are

narrower than the ones in Figure 4.20 for the A16R strain, and this is reflected in narrower

95% credible intervals for the posterior predictions in Figure 4.25. The exceptions to this

are once again, ε and m, which, as discussed for the A16R strain, are difficult to learn

significantly about as the N(t) and V (t) populations are not differentiated in the data.

We have already discussed that the data for the Sterne strain results in higher bacterial

and PA counts, therefore it is unsurprising that here the Sterne strain bacteria divide

slightly faster and grow to a higher concentration, which is reflected in the posterior

distributions of the corresponding parameters, λ and K. Furthermore, we also observed

that the PA concentration data from Zai et al. (2016) shows a higher peak for the Sterne
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strain than the A16R strain. This does not manifest in a higher PA production rate per

CFU, as β is not estimated to be larger in the Sterne strain experiment. However, this

behaviour is incorporated via the rate of depletion of nutrients, α, as well as the delay

until PA production is initiated, τ1, as these are estimated to be very small. These changes

result in the model predictions being able to capture this increased PA yield. The peak of

PA concentration also occurs slightly earlier for the Sterne strain, reflected in smaller

estimated values of τ2. On the other hand, the slope of the subsequent decline in PA

concentration, and hence estimates of the parameter ν, are fairly similar between the two

strains.

In Figure 4.26 we present the pairwise correlation coefficients between the parameters

within our model for the accepted parameter sets. We can see that we have some very

strongly linked parameters. As we saw for the A16R strain, the parameters β and α are

once again strongly positively correlated (although to a much lower extent than for the

A16R data), and the delay for PA degradation to occur, τ2, is highly correlated with the

rate at which the PA is degraded by proteases from the bacteria, ν. This seems logical as

if the bacteria takes longer to degrade the proteases, they must do it faster once it has

started to get the observed behaviour. Similarly, the delay in toxin degradation, τ2, is

negatively correlated with the rate at which toxins are produced by the bacteria, β. For

these pairs of parameters, and other pairs with a high absolute value of the correlation

coefficient, we plot the pairwise scatter plots of the accepted parameter values in Figure

4.27.

We can see from the plot concerning α and β in Figure 4.27, that there appears to be very

little correlation between the two parameters until log10(α) becomes large enough, at

which point they become strongly correlated. The threshold at which log10(α) becomes

large enough to start this correlation effect is approximately −7.6, which was the smallest

value accepted for log10(α) in the parameter calibration for the A16R strain. We therefore

investigate the effect of splitting parameter sets into those which have a value of log10(α)

below −7.6 and those that have a value above this threshold in Figure 4.28. In the top

row of Figure 4.28, each plotted point represents an individual parameter set in the

Sterne strain posterior sample coloured depending on whether α is smaller (purple) or

larger (green) than the threshold value. As discussed, there is no significant correlation

between the value of α and the value of β below this threshold but a positive correlation
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Figure 4.26: The pairwise correlation coefficients within the accepted parameter sets,
the distributions for which are shown in Figure 4.24.

emerges above this threshold. A similar effect is seen between the value of α and ν; a

negative correlation is observed once α becomes larger than the threshold value. This is

because if nutrients are consumed faster (corresponding to a larger α), a larger maximal

PA production rate (β) and a slower rate of PA degradation (ν) are needed to describe

the data.

We can see from the middle row of plots in Figure 4.28, that whether the value of log10(α)

is above or below −7.6 does not have a large effect on the model fit to the bacteria,

whilst below the threshold value the fit to the PA data is slightly better than above the

threshold. However, note that there is one less dataset to help us obtain the correct

parameters in the Sterne set compared to the A16R set, namely there was no experiment

done with protease inhibitors. From the A16R data we can intuit that if this experiment

had been carried out it is possible that the PA population would remain constant instead

of decaying to 0. We can simulate the hypothetical scenario in which protease inhibitors

are added by removing the component of PA decay that involves bacterial proteases.

Mathematically this is equivalent to fixing the parameter ν = 0. In the bottom row we

show the predictions for the variables we do not have data for: the simulated nutrients,

and the hypothetical experiment where protease inhibitors were added to the experiment.
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Figure 4.27: Selected pairwise parameter plots for the accepted parameter sets. Parame-
ter pairs were selected if they had an absolute value of the correlation coefficient greater
than 0.35.
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Figure 4.28: Selected pairwise parameter plots and population levels over time for
parameter values of log10(α) below -7.6 (purple) and above -7.6 (green).
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We observe that nutrients are used up much more rapidly when α is larger and that there

will still be a relatively large proportion of nutrients left when α is smaller than this.

However, for our simulated experiment with protease inhibitors it is observed that for the

smaller α parameter region the PA population will continue to grow. This seems unlikely

to be realistic given our observations from the experiment with protease inhibitors for

the A16R strain. Therefore, an experiment using protease inhibitors would be crucial

to determine which case is reality. However, without this experiment it seems more

consistent with the A16R dataset that the rapid decay of toxins observed is due to the

depletion of nutrients and therefore we believe that the parameter region where log10(α)

is above −7.6 is the more realistic interpretation.

4.2.3.2 Charlton et al. (2007) dataset

In this section we fit our model (Equation (4.10)) to the data of bacterial counts and PA

concentrations obtained by Charlton et al. (2007), presented in Charlton et al. (2007,

Figures 1 and 4). One key experimental difference between the data presented within

Charlton et al. (2007) and the data within Zai et al. (2016) is that there is data provided

for the spore count. In Charlton et al. (2007, Figure 1) we can observe that the spore

counts of each bottle remained fairly constant throughout the 32 hours, approximately at

30% of the number of spores used to inoculate each bottle. We hypothesise that this is

likely to be because the spores were heat activated prior to inoculation, so would have

germinated quickly on contact with the glucose and amino acids of the culture media.

It is our understanding that by the time the first CFU measurements were obtained, the

spores still within the system would not go on to germinate during the timescale of

the experiment. Therefore, even though there is spore data presented in Charlton et al.

(2007), we do not use it in our subsequent model calibration, as the data concerning the

spores that germinate is not captured, similarly to Zai et al. (2016), and thus we do not

calibrate f and g from this experiment.

As there is no data provided for the initial conditions of the bacteria, we follow a similar

process to the one we carried out for the Zai et al. (2016) data. Here, we have fixed the

number of bacteria at 2 hours (the first reported measurement) in the model to be equal to

the data point at that time. We then set the initial conditions to S(0) = 0, N(0) = εB∗
0 ,
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V (0) = (1− ε)B∗
0 , and P (0) = 0, where

B∗
0 =

B∗
2(

1− λε
λ+m

)
e2λ + λε

λ+m
e−2m

.

Again, we fix the value of the natural PA decay rate to ν0 = 2× 10−4 h−1, which is the

median value obtained from the posterior in Figure 4.20.

We can compare the posterior distributions in Figure 4.29 to those in Figures 4.20 and

4.24, to see that the estimates for most parameters are fairly consistent between the

experiments of Charlton et al. (2007) and Zai et al. (2016). However some parameters

do differ in a significant way. For example, the rate of depletion of nutrients, α, and the

maximal per CFU PA production rate, β, are estimated to be higher in the Charlton et al.

(2007) experiment. It has been found that agitation can influence PA production by B.

anthracis, possibly due to a change in the dissolved oxygen concentration of the assay

culture (Mukhopadhyay (2008)). Therefore, a possible explanation for this increase in PA

production rate could be the method of static incubation implemented by Charlton et al.

(2007). Furthermore, within this data there is absence of an observed peak and subsequent

decline in PA concentration which was crucial in calibrating certain parameters in the

Zai et al. (2016) data. Therefore, calibration with the Charlton et al. (2007) dataset has

not allowed us to learn significantly about the value of τ2, representing the delay in the

production of proteases by the bacteria. Another notable difference between the datasets

is that the parameter ν, representing the rate of PA decay triggered by bacterial proteases,

is estimated to be lower in the Charlton et al. (2007) experiment than the Zai et al. (2016)

experiments, whilst having a relatively wide posterior distribution. This is expected; we

do not capture the behaviour of a rapid decay of PA as it has not been observed in the

Charlton et al. (2007) dataset, behaviour which is crucial for the estimation of ν. The

median model predictions with a 95% confidence interval along with the data in Charlton

et al. (2007) are presented in Figure 4.30. Within this figure it is clear the bacterial growth

curve takes longer to reach the carrying capacity, compared with the Zai et al. (2016)

experiments; this is to be expected since the initial amount of bacterial CFU is several

orders of magnitude lower. It could be that the accumulation of proteases is also delayed

in this experiment due to the lower level of bacteria in the initial conditions, which causes

134



4.2 Quantifying toxin production and decay in vitro

Figure 4.29: Prior distributions (grey) and kernel density estimates of the marginal
posterior distributions (green) from fitting the model in Eq. (4.10) to the Charlton et al.
(2007) datasets.

the lack of rapid decay in PA. Thus, it cannot be discounted that if measurements had
been taken beyond 32h, a PA decay might have been observed.

We can again see from Figure 4.31 that we once again have a strong relationship between
α, β and in this case τ1. The parameters τ2 and ν are less strongly correlated than in Zai
et al. (2016), although this is likely explained by the lack of significant learning about
τ2 for this dataset for the reasons previously discussed. We can further investigate these
correlations by plotting scatter plots of accepted parameter sets by pairs of parameters in
Figure 4.32. We can see that as log10(α) increases past the threshold value of −7.6 there
is strong correlation between α and β, however not many parameter sets are accepted
that have a value of log10(α) below the threshold value and as such it is not necessary to
investigate the different profiles of behaviour either side of the threshold as was done in
Figure 4.28.

4.2.3.3 Dstl dataset

In this section we fit the model in Equation (4.10) to the Dstl dataset provided by our
collaborators, which is reported in Table 4.5. It is important to note that within this
dataset we do include spore data within our model parameter calibration. The spores
within this dataset were not heat treated prior to inoculation into the assay culture and
they are observed to germinate much more slowly than in the Charlton et al. (2007)
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Figure 4.30: Pointwise medians and 95% credible intervals of the model posterior
predictions for B(t) = N(t) + V (t), P (t), Pi(t) and G(t) (from left to right), using the
parameter posterior distribution shown in Figure 4.29. The experimental data used to fit
the model are presented as mean ± standard deviation from three independent Thompson
bottles, obtained by Charlton et al. (2007). Numerical values were provided by Dr. Sue
Charlton via private communication.

Figure 4.31: The pairwise correlation coefficients within the accepted parameter sets,
the distributions for which are shown in Figure 4.29.
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Figure 4.32: Pairwise parameter plots for the accepted parameter sets with correlation
coefficient above the threshold magnitude of 0.35.
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experiment. Therefore, this is the first dataset in which we calibrate the germination

rate of spores, g, as well as the fraction of initial spores that are able to germinate, f .

Furthermore, initial spore and bacterial counts were obtained as soon as possible after

inoculation (1-2 minutes), so that we were able to fix the initial conditions of the model

using experimental measurements, instead of inferring them by working backwards from

a later time point. The initial conditions are therefore set to S(0) = fS∗
0 , N(0) =

εB∗
0 , V (0) = (1 − ε)B∗

0 , G(0) = 1, P (0) = 0, where S∗
0 and B∗

0 are the number of

spores and bacterial CFU measured at time zero, respectively. Once again, we fix the

value of the natural PA decay rate to ν0 = 2× 10−4 h−1.

Time (hours) log10(spores/ml) log10(bacterial CFU/ml) PA (ng/ml)
0 4.44± 0.09 4.34± 0.20 -

1.5 3.33± 0.14 4.73± 0.10 -
3.5 2.25± 0.18 5.48± 0.24 -
4.25 1.96± 0.59 5.74± 0.19 -

5 1.44± 0.12 6.20± 0.23 -
6 1.98± 0.64 7.05± 0.02 -
7 1.64± 0.66 7.45± 0.12 -

16 - 7.94± 0.06 194± 24

18 - 8.02± 0.03 386± 161

20 - 8.14± 0.02 1227± 511

22 - 8.18± 0.06 1950± 403

24 - 8.21± 0.14 2359± 289

40 - 7.96± 0.07 161± 0

Table 4.5: Data for the spore counts, bacterial counts, and PA concentration (mean ±
standard deviation) obtained at Dstl following the experimental methods described in
Section 4.2.1.

Figure 4.33 shows the prior and marginal posterior distributions of the parameters within

our model. We can see that these posteriors are more consistent with those of the Zai

et al. (2016) dataset than Charlton et al. (2007). This outcome is likely due to differences

between the Dstl experimental setup and the experimental setup in Charlton et al. (2007),

for example in the Dstl experiments spores were not heat activated prior to inoculation as
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they were in Charlton et al. (2007). However, despite the consistency in most parameters

between the Dstl data and Zai et al. (2016), we find that the delay in PA production

by each bacterial CFU and the delay in production of proteases by the bacteria, given

by τ1 and τ2, respectively, are estimated to be slightly longer in this experiment. This

may be because spores were directly inoculated into the assay culture at the start of

the experiment, whereas Zai et al. (2016) used a bacterial culture that had already been

growing for 24 hours.

The model predictions and data in Figure 4.34 show quicker bacterial growth and a

higher steady-state level of bacteria compared with the other experiments. Thus, while

the estimates for the parameters concerning this behaviour, λ and K, are fairly consistent

between the Zai et al. (2016) and Charlton et al. (2007) experiments, we estimate a faster

bacterial growth rate, λ, and a higher carrying capacity, K, for the Dstl dataset. One

possible explanation for this is that the BHI medium used in the Dstl experiment may

have been richer than in the other experiments, which would have enabled the bacteria to

divide faster and grow to a higher concentration.

We note that our estimates for the germination rate, g, are slightly higher than previous

estimates of this rate obtained by Williams et al. (2021), but the order of magnitude is

similar. Furthermore, our results predict that almost all initial spores will germinate, with

f estimated to be very close to 1. This is in contrast to the observations from Charlton

et al. (2007), where roughly 30% of spores did not germinate.

Figure 4.33: Prior distributions (grey) and kernel density estimates of the marginal
posterior distributions (green) from fitting the model in Eq. (4.10) to the Dstl datasets in
Table 4.5.
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Figure 4.34: Pointwise medians and 95% credible intervals of the model posterior
predictions for S(t) + (1− f)S∗

0 (left), B(t) = N(t) + V (t) (middle), and P (t) (right),
using the parameter posterior distribution shown in Figure 4.33. The experimental data
used to fit the model are presented as mean ± standard deviation from three independent
experiment runs, obtained from the Dstl experiment described in Section 4.2.1.

Figure 4.35: The pairwise correlation coefficients within the accepted parameter sets,
the distributions for which are shown in Figure 4.33.

Figure 4.35 shows again the strong relationship between α and β and each of these
with τ1. The relationship between the τ2 and ν is less strongly correlated than in the
Zai et al. (2016) experiment but more strongly correlated than in the Charlton et al.
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(2007) experiment; this is likely as the posterior for τ2 in Figure 4.33 has a peak at 20
hours that mirrors the behaviour from the experiments in Zai et al. (2016) but also has a
second small peak at approximately 10 hours that is not present in the Zai et al. (2016)
calibration. We can further investigate these correlations by plotting scatter plots of
accepted parameter sets by pairs of parameters in Figure 4.36, where again we focus on
the parameter pairs which have a correlation magnitude of over 0.35. We can see that the
relationships between these pairs of parameters are similar across the different datasets.
There are more pairs of parameters which are above our chosen threshold value of a
correlation magnitude above 0.35 in this dataset, one possible reason for which could be
inclusion of the spore data within this experiment and the additional parameters f and g.

In Figure 4.36 it can be observed that a strengthening in the correlation occurs between
α and β at approximately log10(α) = −7.6, which is consistent with behaviour seen
in calibrations for the Sterne dataset. Therefore, we investigate in Figure 4.37 the
differences in the system between the parameter sets with α either side of this threshold.
Values of α below this threshold show an extremely slow decay in the nutrient levels
of the system (population G(t)); this corresponds to the PA not reaching a steady state
in the simulated experiment with protease inhibitors. It is important to note that in this
experiment the values of α above the threshold (in green) have a much tighter confidence
interval in the behaviour of the PA than the values of α below the threshold (in purple).
These values where log10(α) > −7.6 appear to be more consistent across all datasets,
likely due to the depletion of nutrients being the main mechanism behind PA decay.
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Figure 4.36: Selected pairwise parameter plots for the accepted parameter sets, with
pairs of parameters selected if they had a pairwise correlation coefficient magnitude of
greater than 0.35.
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Figure 4.37: Selected pairwise parameter plots and population levels over time plots for
parameter values of log10(α) below -7.6 (purple) and above -7.6 (green).
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4.2.3.4 A summary comparison between datasets

Within this section we will summarise some of the key similarities and differences

between our model predictions and the various datasets. Overall, the general consistency

between most parameter estimates throughout the different experimental datasets, shows

how the model we have proposed is flexible enough to capture behaviour of a variety of

Bacillus anthracis strains or experimental conditions. In Table 4.6 we report summary

Parameter Zai (A16R) Zai (Sterne)

f N/A N/A
g N/A N/A
ε 0.44 (0.05, 0.89) 0.50 (0.06, 0.92)

m 0.12 (2× 10−3, 5.0) 0.14 (4× 10−3, 4.9)

λ 0.53 (0.47, 0.61) 0.62 (0.57, 0.68)

K 9× 106 (8× 106, 107) 107 (107, 1.1× 107)

α 2× 10−7 (4× 10−8, 2× 10−6) 2× 10−9 (6× 10−12, 5× 10−8)

β 10−4 (3× 10−5, 1× 10−3) 3× 10−5 (2× 10−5, 5× 10−5)

ν0 2× 10−4 (2× 10−6, 10−2) 2× 10−4

ν 6× 10−6 (5× 10−8, 8× 10−6) 3× 10−7 (3× 10−8, 3× 10−6)

τ1 3.8 (0.46, 7.8) 3.3 (1.14, 12.0)

τ2 13.6 (8.2, 17.9) 9.6 (4.2, 13.6)

Parameter Charlton (Sterne) Dstl (Sterne)

f N/A 0.997 (0.993, 0.999)

g N/A 1.84 (1.29, 2.84)

ε 0.47 (0.06, 0.90) 0.49 (0.07, 0.92)

m 0.12 (2× 10−3, 5.4) 0.09 (2× 10−3, 6.6)

λ 0.50 (0.48, 0.54) 0.93 (0.61, 1.22)

K 7× 106 (4× 106, 107) 8× 107 (5× 107, 2× 108)

α 3× 10−6 (2× 10−7, 6× 10−5) 4× 10−10 (3× 10−12, 9× 10−8)

β 3× 10−2 (10−3, 0.47) 9× 10−6 (2× 10−6, 3× 10−4)

ν0 2× 10−4 2× 10−4

ν 3× 10−11 (4× 10−15, 5× 10−7) 2× 10−8 (2× 10−9, 7× 10−7)

τ1 8.0 (1.97, 13.8) 9.0 (5.88, 12.9)

τ2 12.9 (1.5, 22.8) 18.1 (5.9, 23.3)

Table 4.6: A comparison between the means and 95% credible intervals of the posterior
distributions for each parameter after fitting the mathematical model to each dataset. The
values of ν0 in bold indicate fixed values that were used for calibration of the datasets.

statistics (mean and 95% credible intervals) for the posterior distributions obtained from

the different datasets, in order to facilitate comparisons.
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Figure 4.38: Box-plots showing the median, interquartile range, and range of each
marginal posterior distribution, to illustrate how the posterior estimates of each parameter
differ between datasets.
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A visual comparison between the posterior distributions of each dataset is shown in

Figure 4.38. For the parameters that determine the bacterial growth (the bacterial growth

rate, λ, and the carrying capacity, K), the estimates from the Zai et al. (2016) and

Charlton et al. (2007) datasets are fairly consistent, while the estimates from the Dstl data

are slightly higher, possibly due to a richer BHI medium in the experimental setup. On

the other hand, for parameters that influence the PA production and degradation (α, β, ν),

estimates from the Zai et al. (2016) and Dstl data seem consistent, while estimates from

the Charlton et al. (2007) data differ slightly. This is possibly due to the decay in the PA

not being observed in the Charlton et al. (2007) data. The estimates for τ1 are generally

consistent between the Charlton et al. (2007) and Dstl datasets, whereas the delay until

PA production is estimated to be much shorter for the Zai et al. (2016) data. This is likely

due to the fact that in the Zai et al. (2016) experiments, the bacteria had already been

growing for 24 hours prior to inoculation. The delay until protease production, τ2, is

estimated to be between 10-25 hours across all datasets, although Charlton et al. (2007)

has a wider spread in the posteriors as the effect of the proteases is not captured at the

time points in the data.

4.3 Discussion

In this chapter we have recreated the results of the model by Day et al. (2011), allowing

us to investigate how significant the rate at which bacteria are released into the lymph

nodes, k3 in the model, is in the progression of an anthrax infection. We have also

developed a stochastic analog of the model, using the Gillespie algorithm as a basis and

some approximative techniques that allow this stochastic model to capture the behaviour

for the population levels described by Day et al. (2011). This stochastic analog has

allowed us to investigate the response probability for a given initial number of spores,

allowing the basis for further investigation into this model and the capacity to expand its

scope.

A possible extension of this stochastic model could be to carry out sensitivity analysis

of the dose-response probabilities for parameters within the model, such as k3, the

rate at which bacteria is released into the lymph nodes. Another potential area of
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investigation is to incorporate antibiotic treatment, as was done in Day et al. (2011) or

via a pharmacokinetic-pharmocodynamic method, into the stochastic model.

We have developed and proposed a DDE model of in vitro dynamics of B. anthracis

growth and PA production and degradation, using a new experimental dataset obtained by

Dstl and making use of two other independent datasets by Zai et al. (2016) and Charlton

et al. (2007). Our aim is that the model we propose is flexible enough to accurately

capture the dynamics of various strains and culture conditions. To that end we have

carried out parameter calibration for each dataset by means of ABC-SMC (Toni et al.

(2009)). Many of the parameters are consistently estimated across different datasets, but

there are a few notable differences. For each of these differences we have tried to explain

possible causes for this, most likely due to the varying experimental conditions. For

example, as discussed above, the data from the Dstl experiment shows quicker bacterial

growth, reaching a higher steady-state level. We have hypothesised that this could be due

to differences in the culture medium used in the experiments. Furthermore, a much higher

PA yield was obtained in the Charlton et al. (2007) experiment, which is reflected in the

corresponding parameter estimates. This may be due to the method of static incubation

implemented by Charlton et al. (2007).

It is important to note that our proposed model distinguishes between natural PA decay

and the decay caused by proteases secreted by the bacteria, such as InhA1. This decay

due to proteases is implicitly included in the model via a term in which the rate of PA

removal is assumed to be proportional to the number of vegetative bacteria that were

present in the culture τ2 hours ago, where τ2 represents a delay taken for the bacteria to

produce proteases. We investigated the parameter governing the natural decay rate of PA,

ν0, explicitly due to an experiment carried out by Zai et al. (2016). In this experiment,

protease inhibitors were introduced to the system meaning that we assumed that the

decay rate of PA due to proteases was neglible, ν = 0. This allowed a more accurate

estimation of ν0. As this was the only experiment where we could isolate the rate ν0
in this way, we used the median value of ν0 for this experiment (with the A16R strain)

as a fixed parameter value for the other datasets. In the future, additional experiments

with protease inhibitors introduced to the system would help determine whether using

ν0 across experimental conditions and strains like this was valid. Additionally, protease

concentration is not explicitly modelled as a variable within our model, as we are limited
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in the available experimental data. However, if future experiments were able to obtain

protease measurements, then the model could be adapted to include a more detailed

description of the production of proteases, and their action on proteins produced by the

bacteria (e.g. PA). This would enable us to move away from an implicit term of PA

degradation in the model to a more explicit one. Computationally this may have a benefit

too, as we would not need to calibrate τ2 because this behaviour would be captured in

the rate of protease production.

Future investigations to expand the scope of this work could be to discover whether these

proteases that decay PA are also produced in vivo. The PA production rate predicted by

the in vitro modelling results presented here may also be accurate in vivo as the bacteria

should behave in a similar way. However, the degradation of PA is more uncertain within

a host because there will likely be some degradation due to bacterial proteases, as well as

proteases produced by the host.

The model variable that represents nutrient level is normalised by the initial nutrient

level for each experiment, so that G(0) = 1. However, the type and amount of nutrients

available to the bacteria will have varied significantly between the different studies. This

implies that the estimated value of the maximal per CFU PA production rate, β, will

depend on the nutrient availability in each individual experiment. In future, incorporating

measurements of specific nutrients would help to unify the interpretation of parameters

across studies. Furthermore, the model assumes that the per CFU PA production rate

is proportional to the amount of nutrients. However, the relationship between nutrient

level and PA expression by B. anthracis is likely to be more complicated than this. For

instance, intermediate nutrient levels may provide the best environment for maximal PA

production. Further experiments could be carried out with different specified nutrient

levels to quantitatively investigate the impact of nutrient level on PA expression. This

would assist in the calibration of parameters that describe the relationship between

nutrient level and PA expression and would also help to incorporate a more realistic

description of this relationship into a mathematical model.

We consider the behaviour of an explicit toxin population within this model as production

of the anthrax toxin proteins is a key factor in the within-host survival of B. anthracis.

Both lethal toxin and oedema toxin contribute to the severe symptoms suffered by a host
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infected by B. anthracis, since they impact numerous functions of the immune system,
for example by inhibiting the phagocytosis of bacteria by neutrophils. Quantifying
PA production and degradation in vitro is an important step towards gaining a fuller
understanding of in vivo toxin dynamics, since PA is the essential toxin component that
facilitates binding of the other toxin proteins to cell surfaces. If we were to investigate
the in vivo dynamics we may need to model the LF and EF populations too to monitor
their suppressive effect on the immune system, similar to the way the toxin population
worked in the model by Day et al. (2011), however for these in vitro experiments without
an immune response, the PA population captures the behaviour of the anthrax toxin
sufficiently.

A benefit of this mechanistic modelling approach is that we can extend and adapt the
model as we learn more about the dynamics of the populations and more data is generated.
This is evidenced in the development of our model to this date, how we were able to
incorporate separate terms in the decay rate of PA due to the experiment with protease
inhibitors in Zai et al. (2016). As this model can be adapted and extended, it would be
possible to use it and the parameter estimates obtained across the four datasets to form a
preliminary framework for future within-host modelling efforts for anthrax. For example,
if we wanted to calibrate a within-host anthrax model with animal study data we could
use the parameter estimates for bacterial growth rate and PA production rate as priors; in
fact this has already been shown by a collaborator in Williams (2022).

The understanding of PA dynamics gained through this work will also be valuable for
the development of future mechanistic within-host models that incorporate medical
treatments for anthrax, such as anti-toxin treatments. These type of models could be de-
veloped through coupling pharmacokinetic (PK) data that describes how the within-host
concentration of the treatment will change through time (Nagy et al. (2018); Subramanian
et al. (2005)), with a pharmacodynamic (PD) description of the binding rate of PA as a
function of anti-PA antibody concentration.
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Chapter 5

A stochastic model of viral transmission
in the presence of defective interfering
particles

5.1 Introduction

In previous chapters, we have implemented stochastic processes to model in vitro and

within-host infection dynamics. Here, we aim to show how similar methods can also

be used to model infection transmission dynamics at the population level. In particular,

we consider in this chapter how a wild-type (WT) virus spreads through a population

of individuals in the presence of defective interfering particles (DIPs). As described in

Section 1.1.2, DIPs lack some key components of the virus needed to replicate within

the host, due to deletions or mutations in their genome (Frensing (2015)). They thus

require co-infection with the WT virus, under these circumstances called a ‘helper’ virus,

in order to replicate (Perrault (1981)). The process of the WT strain helping the DIP

reproduce, however, interferes with the production of WT virus in a co-infected host,

leading to reduced WT viral load (Frensing (2015)), which can impact on prognosis (i.e

probability of recovery vs death, and timescales) as well as infectivity; this impact has led

to the study of DIPs as a potential therapeutic agent (Marriott & Dimmock (2010)). DIPs

can be studied at different macroscopic levels depending on the focus of the investigation.
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For example, there has been research into how the populations of WT-virus and the

DIP strain interact and compete for resources under in vitro experimental conditions

(Thompson & Yin (2010)). It is also of interest to analyse these interactions between WT

and DIP strains of the virus to investigate their impact as potential therapeutic agents,

for example for the virus SARS-CoV-2 (Locke et al. (2024)). While the field of viral

epidemic research has been investigated in great detail (Shil (2016)), there has been less

research into these epidemic models in the presence of a DIP strain of virus. Therefore,

within this chapter we will introduce a mathematical model at the population level to

investigate how the DIP impacts infectivity and outcomes when present in a closed

population with the WT virus.

The aim of this chapter is to introduce a compartmental epidemic model with susceptible

individuals who can be infected by the DIP-strain, WT-strain or co-infected and describe

summary statistics for the model. We are also interested in the impact of the DIP on

the outcomes for individuals infected with the WT-strain, either on its own or as a co-

infection, and as such track whether an individual recovers or dies. To be more precise,

we will investigate the effect that the DIP-related parameters in this model have on these

summary statistics, such as the number of individuals affected by the outbreak or the

cumulative number of co-infected individuals within the length of the outbreak.

5.2 Compartmental epidemic model

We consider a closed population of N individuals and aim to model the spread of WT

virus in this population in the presence of DIPs. In particular, we consider the following

assumptions:

• Each individual in the population can either be susceptible, DIP-infected, WT-

infected, co-infected or “removed” from the population (either through recovery or

death).

• DIPs lack the key components of the virus needed to replicate within the host,

therefore an individual only infected with a DIP would be asymptomatic and not

infectious.
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• Due to the previous assumption, DIPs in the absence of the WT virus decay, and a

DIP-infected individual would become susceptible again after some random time.

• A co-infected individual is infected with both the DIP and the WT virus.

• A co-infected individual can transmit either the DIP, the WT or both strains of the

virus during contact with another individual.

• WT-infected and co-infected individuals can either recover (gaining immunity) or

die.

We represent the dynamics considered under these assumptions via a continuous-time

Markov chain (CTMC) X = {X(t) = (S(t), ID(t), IW (t), IC(t)) : t ≥ 0}, where S(t)

represents the susceptible population and IW (t), ID(t) and IC(t) represent the number

of people infected with the WT-virus, the DIP or co-infected, respectively, at time t. We

note that since infected individuals can either recover or die, we can define R(t) and

D(t) as the number of recovered and dead individuals at time t respectively. Therefore,

S(t) + ID(t) + IW (t) + IC(t) +R(t) +D(t) = N,

for all times t ≥ 0. However, since removed individuals will not play any role in the

infection dynamics, they do not need to be explicitly considered as random variables in

the CTMC, X, and since R(t) +D(t) = N − S(t)− ID(t)− IW (t)− IC(t), ∀t ≥ 0.

We consider that the following events can occur within the system:

• DIP-infected individuals become susceptible individuals at rate δ, ID → S.

• Infection events:

– A susceptible individual becomes a WT-infected individual from contact with

a WT-infected individual with rate βW , S + IW → IW + IW .

– A DIP-infected individual becomes a co-infected individual from contact

with a WT-infected individual with rate βW , ID + IW → IC + IW .

– A susceptible individual becomes a WT-infected individual from contact with

a co-infected individual with rate ϕWβC , S + IC → IW + IC , where ϕW is
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the probability that a co-infected individual only passes on the WT strain
during infectious contact.

– A susceptible individual becomes a DIP-infected individual from contact
with a co-infected individual with rate ϕDβC , S + IC → ID + IC , where ϕD

is the probability that a co-infected individual only passes on the DIP strain
during infectious contact.

– A susceptible individual becomes a co-infected individual from contact with
a co-infected individual with rate (1− ϕW − ϕD) βC , S + IC → IC + IC .

– A DIP-infected individual becomes a co-infected individual from contact
with a co-infected individual with rate (1− ϕD)βC , ID + IC → IC + IC .

– A WT-infected individual becomes a co-infected individual due to contact
with a co-infected individual at rate (1− ϕW )βC , IW + IC → IC + IC .

• Removal events:

– A WT-infected individual recovers with rate εWρW , IW → R, where ρW is
the removal rate of a WT-infected individual and εW is the probability that a
WT-infected individual recovers.

– A WT-infected individual dies with rate (1− εW )ρW , IW → D.

– A co-infected individual recovers with rate εCρC , IC → R, where ρC is
the removal rate of a co-infected individual and εC is the probability that a
co-infected individual recovers.

– A co-infected individual dies with rate (1− εC)ρC , IC → D.

The CTMC, X, evolves over the space of states

S = {(s, id, iw, ic) ∈ N4
0 | s+ id + iw + ic ≤ N},

where N is the population size and N0 = N ∪ {0}. All possible one-step transitions
between states in X, corresponding to the different events described above, are depicted
in Figure 5.1.

These events, in particular, lead to the following non-null infinitesimal transition rates:
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βWSIW + ϕWβCSIC

βW IDIW + (1− ϕD)βCIDIC

(1− ϕW )βCIW IC
(1−

ϕ
W −

ϕ
D )β

C SI
C

δIDϕDβCSIC

εWρW IW

(1− εC)ρCIC

εCρCIC

(1− εW )ρW IW

S IW

ICID

D

R

Figure 5.1: The single-step transition diagram for the model.

q(s,id,iw,ic),n′ =



δid,
ϕDβCsic,
(βW iw + ϕWβCic)s,
(βC(1− ϕD)ic + βW iw)id,
βC(1− ϕW − ϕD)sic,
βC(1− ϕW )iwic,
(1− εW )ρW iw + εWρW iw,
(1− εC)ρCic + εCρCic,

if n′ = (s+ 1, id − 1, iw, ic), id > 0,
if n′ = (s− 1, id + 1, iw, ic), s > 0,
if n′ = (s− 1, id, iw + 1, ic), s > 0,
if n′ = (s, id − 1, iw, ic + 1), id > 0,
if n′ = (s− 1, id, iw, ic + 1), s > 0,
if n′ = (s, id, iw − 1, ic + 1), iw > 0,
if n′ = (s, id, iw − 1, ic), iw > 0,
if n′ = (s, id, iw, ic − 1), ic > 0,

for any (s, id, iw, ic) ∈ S. We note that states of the form (s, 0, 0, 0) are absorbing states,

representing the end of the outbreak. When one of these absorbing states is reached,N−s
represents the number of recovered or dead individuals, which is typically referred to as

the “size of the outbreak”. We also note that although states (s, id, 0, 0) are technically

not absorbing (as transitions to (s+ 1, id − 1, 0, 0) can occur due to DIP decay), when

we arrive in this state the outbreak has already finished, as the system is guaranteed to

eventually arrive at the absorbing state (s+ id, 0, 0, 0) due to DIP decay. Due to this, we

can consider these states as absorbing for the purpose of analysing the dynamics during

an outbreak.
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In the following sections stochastic descriptors of this model will be studied. In Section

5.2.1, the probability distribution of the number of infected individuals that recover and

die respectively, throughout the course of an outbreak, is studied. We also provide the

methodology of how an organisation of the space of states in S allows an algorithmic

approach to calculating this stochastic descriptor exactly. In Section 5.2.1.6, the expected

value of this descriptor is studied. Sections 5.2.2 and 5.2.3 describe the probability

distribution and mean of the cumulative number of co-infected individuals in an outbreak

and the exact reproduction number of a marked individual, respectively.

5.2.1 Size of the outbreak

If at any stage IW (t) + IC(t) = 0, then no individuals remain infected by the WT virus

and as DIP-infected individuals are thought to be asymptomatic, we say the outbreak has

finished. All individuals that have not been WT-infected or co-infected at the time the

outbreak finishes will eventually become susceptible, and X will reach an absorbing state

(s, 0, 0, 0). We could use this value of s to calculate the number of people affected by the

outbreak but the system may take some time to reach this state if there are a large number

of DIP-infected individuals in ID when the outbreak finishes. Still, we can define the

length of the outbreak as the time

τ = inf{t ≥ 0 : IW (t) + IC(t) = 0}. (5.1)

Our interest is in the random vector

(D(τ), R(τ)),

representing the number of dead and recovered individuals at time τ when the outbreak

finishes. The random variable that defines the size of an outbreak is

Y = R(τ) +D(τ) = N − S(τ)− ID(τ). (5.2)

However, it is more interesting to analyse the make up of this random variable Y , as it is

made up of individuals that have either recovered or died from the outbreak. We can do

this by considering a given initial state at time 0, meaning that our CTMC X is at state
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X(0) = (S(0), ID(0), IW (0), IC(0)) = (s, id, iw, ic). At this time, t = 0, we assume no

recoveries or deaths have occurred previoulsy. We can then compute the joint probability

mass function

α(s,id,iw,ic)(r, d) = P(R(τ) = r,D(τ) = d|S(0) = s, ID(0) = id, IW (0) = iw, IC(0) = ic),

(5.3)

for any (s, id, iw, ic) ∈ S and iw + ic ≤ r + d ≤ N . For any values of r and d that do

not satisfy this inequality, α(s,id,iw,ic)(r, d) is trivially 0. Since the outbreak ends when

IW (t) + IC(t) = 0, we also have

α(s,id,0,0)(0, 0) = 1,

α(s,id,0,0)(r, d) = 0, r + d > 0.

5.2.1.1 Organising the space of states S

In order to efficiently compute probabilities α(s,id,iw,ic)(r, d), we propose here to organise

the state space S in terms of subsets called “levels” and “sub-levels”, where levels,

L(i), are indexed by i, representing the total number of susceptible and DIP-infected

individuals in the system, s+ id = i. Sub-levels, L(i, j), within L(i) are indexed by j,

representing the total number of individuals infected with the WT-strain, either on its

own or via co-infection, iw + ic = j. Equivalently,

S =
N⋃
i=0

L(i), L(i) = {(s, id, iw, ic) ∈ S : s+ id = i}, 0 ≤ i ≤ N,

L(i) =
N−i⋃
j=0

L(i, j), L(i, j) = {(s, id, iw, ic) ∈ S : s+ id = i, iw + ic = j},

0 ≤ i ≤ N, 0 ≤ j ≤ N − i.

It is important to note that the outbreak ends at the first time, τ , that the system arrives

at IW (τ) + IC(τ) = 0. This is equivalent to the system arriving to any sub-level

L(i, 0), 0 ≤ i ≤ N. We note that states inside level L(i) can be listed as in Figure 5.2.

We can see that each sub-level L(i, j) has size #L(i, j) = (j + 1)(i+ 1). Therefore we
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L(i)
L(i, 0) L(i, 1) · · · L(i, N − i− 1) L(i, N − i)

(0, i, 0, 0) (0, i, 0, 1) · · · (0, i, 0, N − i− 1) (0, i, 0, N − i)
(1, i− 1, 0, 0) (0, i, 1, 0) · · · (0, i, 1, N − i− 2) (0, i, 1, N − i− 1)

(2, i− 2, 0, 0) (1, i− 1, 0, 1) · · · ...
...

... (1, i− 1, 1, 0) · · · (0, i, N − i− 1, 0)
...

(i, 0, 0, 0) (2, i− 2, 0, 1) · · · (1, i− 1, 0, N − i− 1) (0, i, N − i, 0)
⇓ (2, i− 2, 1, 0) · · · (1, i− 1, 1, N − i− 2) (1, i− 1, 0, N − i)

i+ 1 states
... · · · ...

...

(i, 0, 0, 1) · · · (i, 0, 0, N − i− 1)
...

(i, 0, 1, 0) · · · (i, 0, 1, N − i− 2) (i, 0, 0, N − i)

⇓ ... (i, 0, 1, N − i− 1)

2(i+ 1) states (i, 0, N − i− 1, 0)
...

⇓ (i, 0, N − i, 0)
(N − i)(i+ 1) states ⇓

(N − i+ 1)(i+ 1) states

Figure 5.2: Lexicographic ordering of the states within L(i).

can calculate the size of each level, #L(i),

#L(i) =
N−i∑
j=0

#L(i, j) =
N−i∑
j=0

(i+ 1)(j + 1) = (i+ 1)
(N − i+ 1)(N − i+ 2)

2

= (i+ 1)

(
N − i+ 2

2

)
.

We can also calculate the size of the space of states, #S.

#S =
N∑
i=0

#L(i) =
N∑
i=0

(i+ 1)

(
N − i+ 2

2

)
.

It is worth noting that the number of states in S can be computed differently. In particular,

it is clear that

S =
N⋃

n=0

{(s, id, iw, ic) ∈ N4
0 : s+ id + iw + ic = n},
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so that #S =
∑N

n=0 #S(n) where #S(n) is the number of compositions of n into 4
parts, which gives

#S(n) =

(
n+ 4− 1

4− 1

)
=

(
n+ 3

3

)
=

(
n+ 3

n

)
.

From this we can use the Hockey-stick identity to show that

#S =
N∑

n=0

#S(n) =
N∑

n=0

(
n+ 3

n

)
=

(N+3)−3∑
n=0

(
n+ 3

n

)
=

(
N + 3 + 1

N + 3− 3

)
=

(
N + 4

N

)
.

We can illustrate that these two methods of calculating the size of the space of states
are equivalent by way of example, here lets take a population of N = 3. From the first
method we have

#S =
3∑

i=0

(i+ 1)

(
3 + 2− i

2

)
= 1 ·

(
5

2

)
+ 2 ·

(
4

2

)
+ 3 ·

(
3

2

)
+ 4 ·

(
2

2

)
= 10 + 12 + 9 + 4 = 35,

and by the second method we have #S =
(
3+4
3

)
=
(
7
3

)
= 35.

5.2.1.2 Computation of probabilities α(s,id,iw,ic)(r, d)

In general, one can aim to compute probabilities α(s,id,iw,ic)(r, d) (from Equation (5.3))
for any initial state (s, id, iw, ic) and values r and d via a first-step argument. In particular,
by conditioning on the next even which can occur, one gets Equation (5.4).

159



5. A STOCHASTIC MODEL OF VIRAL TRANSMISSION IN THE PRESENCE
OF DEFECTIVE INTERFERING PARTICLES

α(s,id,iw,ic)(r, d) =
δid

∆(s,id,iw,ic)

α(s+1,id−1,iw,ic)(r, d) +
ϕDβCsic
∆(s,id,iw,ic)

α(s−1,id+1,iw,ic)(r, d)

+
(βW iw + ϕWβCic)s

∆(s,id,iw,ic)

α(s−1,id,iw+1,ic)(r, d)

+
βC(1− ϕW )iwic

∆(s,id,iw,ic)

α(s,id,iw−1,ic+1)(r, d)

+
βC(1− ϕW − ϕD)sic

∆(s,id,iw,ic)

α(s−1,id,iw,ic+1)(r, d)

+
(βC(1− ϕD)ic + βW iw) id

∆(s,id,iw,ic)

α(s,id−1,iw,ic+1)(r, d)

+
(1− εW )ρW iw
∆(s,id,iw,ic)

α(s,id,iw−1,ic)(r, d− 1)

+
εWρW iw
∆(s,id,iw,ic)

α(s,id,iw−1,ic)(r − 1, d)

+
(1− εC)ρCic
∆(s,id,iw,ic)

α(s,id,iw,ic−1)(r, d− 1)

+
εCρCic

∆(s,id,iw,ic)

α(s,id,iw,ic−1)(r − 1, d).

(5.4)

Within Equation (5.4) and throughout the rest of this chapter, ∆(s,id,iw,ic) is defined as

∆(s,id,iw,ic) =δid + ϕDβCsic + (βW iw + ϕWβCic)s+ βC(1− ϕW )iwic

+ βC(1− ϕW − ϕD)sic + (βC(1− ϕD)ic + βW iw) id

+ (1− εW )ρW iw + εWρW iw + (1− εC)ρCic + εCρCic.

(5.5)

From Equation (5.4), we can already see that the probabilities, α(s,id,iw,ic)(r, d), depend

on each other. Therefore, we aim to algorithmically solve this system of equations, which

consists of one equation for each possible initial state (s, id, iw, ic) ∈ S and pair of values

(r, d).

5.2.1.3 States in level L(0)

Let us first consider the states (s, id, iw, ic) ∈ L(0), so that s = id = 0. From our

model in Figure 5.1, we note that each WT and co-infected individual gets removed
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at rate ρW and ρC , respectively. When removal occurs, the individual either recovers

with probability εW for WT infections and εC for co-infections, or dies with probability

(1− εW ) for WT and (1− εC) for co-infections. Since these events occur independently

of each other, the number of recoveries arising from iw WT-infected individuals is

Binomial(iw, εW ) so that

α(0,0,iw,0)(r, iw − r) =

(
iw
r

)
εrW (1− εW )iw−r, 0 ≤ r ≤ iw,

α(0,0,iw,0)(r, d) = 0, r + d ̸= iw.

(5.6)

Similarly, we can show that for ic co-infected individuals the number of recovered

individuals follows a Binomial(ic, εC) so that

α(0,0,0,ic)(r, ic − r) =

(
ic
r

)
εrC(1− εC)

ic−r, 0 ≤ r ≤ ic,

α(0,0,0,ic)(r, d) = 0, r + d ̸= ic.

(5.7)

More generally, for other states (0, 0, iw, ic) ∈ L(0), with iw + ic > 0, we can use the

following recursive equation.

α(0,0,iw,ic)(r, d)∆(0,0,iw,ic) = εWρW iwα(0,0,iw−1,ic)(r − 1, d)

+ (1− εW )ρW iwα(0,0,iw−1,ic)(r, d− 1)

+ (1− ϕW )βCiwicα(0,0,iw−1,ic+1)(r, d)

+ εCρCicα(0,0,iw,ic−1)(r − 1, d)

+ (1− εC)ρCicα(0,0,iw,ic−1)(r, d− 1).

(5.8)

We can solve these hierarchically. First, consider the case where both populations are of

size 1:

α(0,0,1,1)(r, d)∆(0,0,1,1) = εWρWα(0,0,0,1)(r − 1, d) + (1− εW )ρWα(0,0,0,1)(r, d− 1)

+ (1− ϕW )βCα(0,0,0,2)(r, d)

+ εCρCα(0,0,1,0)(r − 1, d) + (1− εC)ρCα(0,0,1,0)(r, d− 1),

which we can solve analytically, as we have solutions for both only co-infected and WT

infected populations in Equations (5.6) and (5.7). If we then look at the case where we
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have 1 WT infected individual and 2 co-infected individuals we get

α(0,0,1,2)(r, d)∆(0,0,1,2) = εWρWα(0,0,0,2)(r − 1, d) + (1− εW )ρWα(0,0,0,2)(r, d− 1)

+ 2(1− ϕW )βCα(0,0,0,3)(r, d)

+ 2εCρCα(0,0,1,1)(r − 1, d) + 2(1− εC)ρCα(0,0,1,1)(r, d− 1).

Again, we now have terms on the right hand side that we already have solutions for. We
can repeat this procedure iteratively to find solutions for all cases where iw = 1 and
ic ∈ {1, . . . , N − 1}.

Now, let’s look at the case where iw = 2 and ic = 1:

α(0,0,2,1)(r, d)∆(0,0,2,1) = 2εWρWα(0,0,1,1)(r − 1, d) + 2(1− εW )ρWα(0,0,1,1)(r, d− 1)

+ 2(1− ϕW )βCα(0,0,1,2)(r, d)

+ εCρCα(0,0,2,0)(r − 1, d) + (1− εC)ρCα(0,0,2,0)(r, d− 1).

We have solutions to the first three terms from above and we have solutions to the final
two terms from Equation (5.6). We can therefore follow this to get solutions for all cases
where iw ∈ {1, . . . , N − 1} and ic = 1.

Now, let us consider an initial population of iw = 2, ic = 2. From first-step arguments,
we obtain the equation

α(0,0,2,2)(r, d)∆(0,0,2,2) = 2εWρWα(0,0,1,2)(r − 1, d) + 2(1− εW )ρWα(0,0,1,2)(r, d− 1)

+ 4(1− ϕW )βCα(0,0,1,3)(r, d)

+ 2εCρCα(0,0,2,1)(r − 1, d) + 2(1− εC)ρCα(0,0,2,1)(r, d− 1),

in which we have solutions to all terms. By direct inspection of these recursive equations,
we can use Algorithm 5.1 to solve them.
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Algorithm 5.1: An algorithm to calculate α(0,0,iw,ic)(r, d), for all pairs r, d such
that r + d = iw + ic.

For r = 0, 1, . . . , N :
For d = 0, 1, . . . , N − r:

For iw = 0, . . . , r + d:
ic = r + d− iw;
If r + d = 0 :

α(0,0,iw,ic)(r, d) = 1;
Else:

If iw = 0 :
Calculate α(0,0,0,ic)(r, d) using Equation (5.7);

Elif ic = 0 :
Calculate α(0,0,iw,0)(r, d) using Equation (5.6);

Else:
Calculate α(0,0,iw,ic)(r, d) using Equation (5.8);

Algorithm 5.1 allows us to obtain all probabilities in level L(0),

α(0,0,iw,ic)(r, d), (0, 0, iw, ic) ∈ L(0), r, d > 0.

5.2.1.4 States in level L(i), i > 0

We can now work to obtain probabilities, α(s,id,iw,ic)(r, d), for all other levels, L(i), i ∈
{1, . . . , N}. It is important to note that for all sub-levels L(i, 0), the outbreak ends and
the probability of initial states in L(i, 0) correspond to the boundary conditions for the
system of equations shown in Equation (5.4). In particular, for any 0 ≤ i ≤ N,

α(s,id,0,0)(0, 0) = 1,

α(s,id,0,0)(r, d) = 0, for r > 0 or d > 0,

for any state (s, id, 0, 0) ∈ L(i, 0). Next, we need to consider the relationship that
probabilities in each level L(i) have to those in other levels. We consider a general state
(s, id, iw, ic) ∈ L(i, j), s + id = i, iw + ic = j. By looking at Equation (5.4) we can
depict the relationships in Figure 5.3. These dependencies, along with the absorbing
states in L(i, 0), imply that once we have the probabilities for L(0), we can recursively
obtain the probabilities for the rest of the levels and sub-levels. In particular, we can
proceed as in Algorithm 5.2. In order to do (∗) from Algorithm 5.2, we proceed to solve
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α(s,id,iw,ic)(r, d)

L(i, j)

α(s+1,id−1,iw,ic)(r, d)

α(s−1,id+1,iw,ic)(r, d)

α(s,id,iw−1,ic+1)(r, d)

α(s−1,id,iw+1,ic)(r, d)

α(s−1,id,iw,ic+1)(r, d)

α(s,id−1,iw,ic+1)(r, d)

L(i, j) L(i− 1, j + 1)

α(s,id,iw−1,ic)(r − 1, d)

α(s,id,iw,ic−1)(r − 1, d)

α(s,id,iw−1,ic)(r, d− 1)

α(s,id,iw,ic−1)(r, d− 1)
L(i, j − 1)

Smaller r Smaller d

Figure 5.3: The dependencies of α(s,id,iw,ic)(r, d) from Equation (5.4). The arrow a→ b
represents that probability a depends on probability b in the system of Equations (5.4).

Algorithm 5.2: An algorithm to calculate α(s,id,iw,ic)(r, d).
For s = 0, id = 0 :

Use Algorithm 5.1 to calculate α(0,0,iw,ic)(r, d), for all possible values of
iw, ic, r and d;

For i = 1, 2, . . . , N :
For j = 1, . . . , N − i:

(∗) Compute α(s,id,iw,ic)(r, d) for (s, id, iw, ic) ∈ L(i, j)
and j ≤ r + d ≤ i+ j;
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the corresponding system of equations in a matrix-oriented fashion. Matrix equations
will be written at the sub-level. In particular, for states (s, id, iw, ic) ∈ L(i, j) and values
(r, d) such that j ≤ r + d ≤ i+ j, we can define vectors

αi,j(r, d) =



α(0,i,0,j)(r, d)
α(0,i,1,j−1)(r, d)

...
α(0,i,j,0)(r, d)
α(1,i−1,0,j)(r, d)

...
α(i,0,j,0)(r, d)


,

where αi,j(r, d) is a column vector that contains the probabilities α(s,id,iw,ic)(r, d) for
s + id = i and iw + ic = j. From the dependencies between equations for sub-level
L(i, j) in Figure 5.3, we can write

αi,j(r, d) = Ai,jαi,j(r, d) + bi,j(r, d) (5.9)

where Ai,j is the matrix of coefficients corresponding to jumps between states in sub-
level L(i, j), as discussed previously. Vector bi,j(r, d) contains independent terms in
the equation, corresponding to probabilities which have already been calculated within
the algorithm. In particular, the entries of bi,j(r, d) are calculated by the sum of the
terms in Equation (5.4) that depend on sub-levels L(i− 1, j + 1) and L(i, j − 1) (which
are previously calculated probabilities within Algorithm 5.2). We can therefore solve
Equation (5.9) numerically by using the linalg function from the numpy package in
Python.

In order to practically construct matrix Ai,j and column vector bi,j(r, d), we need to be
able to identify where each state lies within its sub-level. We can calculate the position of
a state, (s, id, iw, ic), in L(i, j), where i = s+ id and j = iw + ic, by defining a position
function based upon our lexicographic ordering in Figure 5.2. Therefore, position in the
list of states within the sub-level is given by

pos(s, id, iw, ic) = 1 + s(iw + ic + 1) + iw. (5.10)

This can be shown for generic state, (s, id, iw, ic) ∈ L(i, j), by looking at our ordering of
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sub-level L(i, j) with i = s+ id, j = iw + ic. The first state, which would have position
1, in the sub-level is (0, i, 0, j) and there are iw + ic + 1 states between this state and the
first time the first entry changes, (1, i− 1, 0, j). Therefore, there are s(iw + ij +1) states
between the first state and state (s, id, 0, j). As the next state is found by adding one to
the iw entry and taking one from the ic entry, it takes iw steps to get from state (s, id, 0, j)
to state (s, id, iw, ic), leading to the formula in Equation (5.10). Now that we have the
position function, a more detailed version of Algorithm 5.2 is given as Algorithm 5.3.
We notice that, although αi,j(r, d) contains positive probabilities for j ≤ r + d ≤ i+ j,
other values of (r, d) just represent boundary conditions with αi,j(r, d) = 0. Thus
practically when initialising the algorithm, it is useful to set αi,j(r, d) = 0 for all
r = 0, . . . , N, d = 0, . . . , N − r.

5.2.1.5 Long-lasting DIPs

We can now consider the interesting situation where the timescales of DIP decay (the
transition ID → S, controlled by parameter δ) are of a greater magnitude than the typical
expected duration of the outbreak. Then, one would be able to approximate the dynamics
of the system by setting δ = 0. In this situation our diagram of possible transition events
becomes the one in Figure 5.4.

We note that, within the S, ID, IW , IC compartments of the model, movement can only
occur to the right and down, with no “backward” reactions. This, together with Equation
(5.4), suggests the following recursive scheme to solve for the probabilities of interest:

1. Compute probabilities of the form α(0,0,0,ic)(r, d).

2. Compute probabilities of the form α(0,0,iw,ic)(r, d).

3. Compute probabilities of the form α(0,id,iw,ic)(r, d).

4. Compute probabilities of the form α(s,id,iw,ic)(r, d).

This can be computed in Python via Algoritm 5.4. As a result of the lack of backwards
transitions this algorithm is much more computationally efficient than Algorithm 5.3, as
we do not need to numerically solve a system or construct any matrices. Due to this it
will be possible to consider larger values of N under the constraint δ = 0.
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Algorithm 5.3: An algorithm to calculate αi,j(r, d).
i = 0;
Implement Algorithm 5.1 to compute vectors α0,j(r, d), where
(r, d) ∈ {(j, 0), . . . , (0, j)}

For i = 1, . . . , N :
j = 0;
For s = 0, . . . , i:

id = i− s;
iw = 0;
ic = 0;
(αi,0(0, 0))pos(s,id,iw,ic)

= 1;
For j = 1, . . . , N − i:

For s = 0, . . . , i:
id = i− s;
For iw = 0, . . . , j :

ic = j − iw;
If id > 0 :

(Ai,j)pos(s,id,iw,ic),pos(s+1,id−1,iw,ic) =
δid

∆(s,id,iw,ic)
;

If s > 0 :
(Ai,j)pos(s,id,iw,ic),pos(s−1,id+1,iw,ic) =

ϕDβCsic
∆(s,id,iw,ic)

;
If iw > 0 :

(Ai,j)pos(s,id,iw,ic),pos(s,id,iw−1,ic+1) =
(1−ϕW )βC iwic
∆(s,id,iw,ic)

;
For all (r, d) such that j ≤ r + d ≤ i+ j :

(bi,j(r, d))pos(s,id,iw,ic) =
[
(βW iw + ϕWβCic)s(αi−1,j+1(r, d))pos(s−1,id,iw+1,ic)

+ βC(1− ϕW − ϕD)sic(αi−1,j+1(r, d))pos(s−1,id,iw,ic+1)+

(βC(1− ϕD)ic + βwiw)id(αi−1,j+1(r, d))pos(s,id−1,iw,ic+1)

+ (1− εW )ρW iw(αi,j−1(r, d− 1))pos(s,id,iw−1,ic)

+ εWρW iw(α(i,j−1(r − 1, d))pos(s,id,iw−1,ic)

+ (1− εC)ρCic(αi,j−1(r, d− 1))pos(s,id,iw,ic−1)

+εCρCic(αi,j−1(r − 1, d))pos(s,id,iw,ic−1)

] 1

∆(s,id,iw,ic)

,

where terms in this equation are conditioned that all
co-ordinates in (s, id, iw, ic) are non-negative; else the terms
involving that particular state are 0;

For (r, d) such that j ≤ r + d ≤ i+ j:
Numerically solve Equation (5.9) to compute αi,j(r, d);
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Figure 5.4: The single-step transition diagram for the model under the assumption that
δ = 0.

Algorithm 5.4: An algorithm to calculate αi,j(r, d) when δ = 0.
i = 0;
Implement Algorithm 1.2 to compute vectors α0,j(r, d), where
(r, d) ∈ {(j, 0), . . . , (0, j)};

For i = 1, . . . , N :
j = 0;
For s = 0, . . . , i:

id = i− s;
iw = 0;
ic = 0;
(αi,0(0, 0))pos(s,id,iw,ic)

= 1;
For j = 1, . . . , N − i:

For s = 0, . . . , i:
id = i− s;
For iw = 0, . . . , j:

ic = j − iw;
For all (r, d) such that j ≤ r + d ≤ i+ j:

Calculate α(s,id,iw,ic)(r, d) using Equation (5.4);
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5.2.1.6 Mean size of the outbreak

We are going to consider the mean values of our removed populations at the end of the
outbreak

R̄(s,id,iw,ic) = E[R(τ)|S(0) = s, ID(0) = id, IW (0) = iw, IC(0) = ic],

D̄(s,id,iw,ic) = E[D(τ)|S(0) = s, ID(0) = id, IW (0) = iw, IC(0) = ic],

for any initial state, (s, id, iw, ic) ∈ S, and where τ is defined as in Equation (5.1). We
note that these quantities can be computed from the probability mass function given by
probabilities α(s,id,iw,ic)(r, d). However, computing the probabilities is computationally
expensive. If one is just interested in computing the mean values, they can be computed
directly via first-step arguments.

In this section we will discuss how to compute R̄(s,id,iw,ic) and D̄(s,id,iw,ic) for a given
initial state, (s, id, iw, ic) ∈ S. Let us first focus on R̄(s,id,iw,ic). One can follow a first-step
argument to obtain an equivalent equation to Equation (5.4); in particular:

R̄(s,id,iw,ic) =
δid

∆(s,id,iw,ic)

R̄(s+1,id−1,iw,ic) +
ϕDβCsic
∆(s,id,iw,ic)

R̄(s−1,id+1,iw,ic)

+
(βW iw + ϕWβCic)s

∆(s,id,iw,ic)

R̄(s−1,id,iw+1,ic) +
βC(1− ϕW )iwic

∆(s,id,iw,ic)

R̄(s,id,iw−1,ic+1)

+
βC(1− ϕW − ϕD)sic

∆(s,id,iw,ic)

R̄(s−1,id,iw,ic+1)

+
(βC(1− ϕD)ic + βW iw) id

∆(s,id,iw,ic)

R̄(s,id−1,iw,ic+1)

+
(1− εW )ρW iw
∆(s,id,iw,ic)

R̄(s,id,iw−1,ic) +
εWρW iw
∆(s,id,iw,ic)

(R̄(s,id,iw−1,ic) + 1)

+
(1− εC)ρCic
∆(s,id,iw,ic)

R̄(s,id,iw,ic−1) +
εCρCic

∆(s,id,iw,ic)

(R̄(s,id,iw,ic−1) + 1).

(5.11)
Note that the terms with +1 in them correspond to events where the recovery of an
individual occurs.
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5.2.1.7 Initial states in level L(0)

As we did before, consider first states of the form (0, 0, iw, ic) ∈ L(0). When either iw
or ic is 0, the mean values are given by a binomial distribution and are easy to calculate:

R(τ)|X(0) = (0, 0, iw, 0) ∼ Binomial(iw, εW ) ⇒ R̄(0,0,iw,0) = εW iw,

R(τ)|X(0) = (0, 0, 0, ic) ∼ Binomial(ic, εC) ⇒ R̄(0,0,0,ic) = εCic.

More generally, for other states in level L(0), (0, 0, iw, ic), with iw, ic > 0, one can use

the first-step equation

∆(0,0,iw,ic)R̄(0,0,iw,ic) =βC(1− ϕW )iwicR̄(0,0,iw−1,ic+1) + (1− εW )ρW iwR̄(0,0,iw−1,ic)

+ εWρW iw(R̄(0,0,iw−1,ic) + 1) + (1− εC)ρCicR̄(0,0,iw,ic−1)

+ εCρCic(R̄(0,0,iw,ic−1) + 1),
(5.12)

which leads to Algorithm 5.5.

Algorithm 5.5: An algorithm to calculate R̄(0,0,iw,ic).
For iw = 0, 1, . . . , N :

For ic = 0, 1, . . . , N − iw:
If iw + ic = 0:

R̄(0,0,iw,ic) = 0;
Elif ic = 0:

R̄(0,0,iw,0) = εW iw;
Elif iw = 0:

R̄(0,0,0,ic) = εCic;
Else:

Calculate R̄(0,0,iw,ic) using Equation (5.12);

5.2.1.8 States in level L(i), i > 0

In order to compute R̄(s,id,iw,ic) for more general states (s, id, iw, ic) ∈ S, for all other

levels of S, one can inspect Equation (5.11) to identify the dependencies between different

mean values for different initial states, shown in Figure 5.5.

These dependencies, along with the absorbing states in L(i, 0), imply that once we have

the mean values for L(0), we can recursively obtain the mean quantities for the rest of the
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R̄(s,id,iw−1,ic)

R̄(s,id,iw,ic−1)

L(i, j) L(i, j − 1)

R̄(s−1,id,iw+1,ic)

R̄(s−1,id,iw,ic+1)

R̄(s,id−1,iw,ic+1)

L(i− 1, j + 1)

Figure 5.5: The dependencies of R̄(s,id,iw,ic) from Equation (5.11).

levels and sub-levels. We can do this by defining column vectors for states in sub-levels

L(i, j) ordered lexicographically as before,

R̄i,j =



R̄(0,i,0,j)

R̄(0,i,1,j−1)
...

R̄(0,i,j,0)

R̄(1,i−1,0,j)
...

R̄(i,0,j,0)


,

for i = 1, . . . , N, j = 0, . . . , N − i. Then we can rewrite Equation (5.11) in matrix form

as

R̄i,j = Ai,jR̄i,j + bi,j, (5.13)

where matrix Ai,j is filled by first-step probabilities that remain in the same sub-level,

L(i, j), from Equation (5.11), and vector bi,j contains independent terms in Equation

(5.11), which correspond to values of R̄ for other initial states, accessible (in one jump)

from states in L(i, j) as described in Figure 5.5, which will have already been calculated
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within the algorithm. In particular,

bi,j =



...
(βW iw+ϕW βC ic)s

∆(s,id,iw,ic)
R̄(s−1,id,iw+1,ic) +

βC(1−ϕW−ϕD)sic
∆(s,id,iw,ic)

·R̄(s−1,id,iw,ic+1) +
(βC(1−ϕD)ic+βW iw)id

∆(s,id,iw,ic)
R̄(s,id−1,iw,ic+1)

+ (1−εW )ρW iw
∆(s,id,iw,ic)

R̄(s,id,iw−1,ic) +
εW ρW iw

∆(s,id,iw,ic)
(R̄(s,id,iw−1,ic) + 1)

+ (1−εC)ρC ic
∆(s,id,iw,ic)

R̄(s,id,iw,ic−1) +
εCρC ic

∆(s,id,iw,ic)
(R̄(s,id,iw,ic−1) + 1)

...


for a given state (s, id, iw, ic) ∈ S with s + id = i, iw + ic = j. This is the sum of the

terms in Equation (5.11) that depend on levels L(i, j− 1) and L(i− 1, j +1). This leads

to Algorithm 5.6.

If we again consider the case where DIPs last a longer time period than we would expect

the outbreak to occur over, we can simplify this algorithm in a similar manner to that

which we carried out when calculating the probabilities α(s,id,iw,ic)(r, d). In this situation,

we get the more efficient Algorithm 5.7.

We can now turn our attention to D̄(s,id,iw,ic), by following a first-step argument we can

obtain an equivalent equation to Equation (5.4). In particular,

D̄(s,id,iw,ic) =
δid

∆(s,id,iw,ic)

D̄(s+1,id−1,iw,ic) +
ϕDβCsic
∆(s,id,iw,ic)

D̄(s−1,id+1,iw,ic)

+
(βW iw + ϕWβCic)s

∆(s,id,iw,ic)

D̄(s−1,id,iw+1,ic) +
βC(1− ϕW )iwic

∆(s,id,iw,ic)

D̄(s,id,iw−1,ic+1)

+
βC(1− ϕW − ϕD)sic

∆(s,id,iw,ic)

D̄(s−1,id,iw,ic+1)

+
(βC(1− ϕD)ic + βW iw) id

∆(s,id,iw,ic)

D̄(s,id−1,iw,ic+1)

+
(1− εW )ρW iw
∆(s,id,iw,ic)

(D̄(s,id,iw−1,ic) + 1) +
εWρW iw
∆(s,id,iw,ic)

D̄(s,id,iw−1,ic)

+
(1− εC)ρCic
∆(s,id,iw,ic)

(D̄(s,id,iw,ic−1) + 1) +
εCρCic

∆(s,id,iw,ic)

D̄(s,id,iw,ic−1),

(5.14)

where the terms with +1 in Equation (5.14) correspond to events where the death of an

individual occurs. Notice that this equation is analogous to Equation (5.11), therefore

172



5.2 Compartmental epidemic model

Algorithm 5.6: An algorithm to calculate mean values R̄i,j for any
(s, id, iw, ic) ∈ S.

i = 0;
Implement Algorithm 5.5 to compute vectors R̄0,j , where j = 0, . . . , N ;
For i = 1, . . . , N :

j = 0;
For s = 0, . . . , i:

id = i− s;
iw = 0;
ic = 0;(
R̄i,0

)
pos(s,id,iw,ic)

= 0;
For j = 1, . . . , N − i:

For s = 0, . . . , i:
id = i− s;
For iw = 0, . . . , j :

ic = j − iw;
If id > 0 :

(Ai,j)pos(s,id,iw,ic),pos(s+1,id−1,iw,ic) =
δid

∆(s,id,iw,ic)
;

If s > 0 :
(Ai,j)pos(s,id,iw,ic),pos(s−1,id+1,iw,ic) =

ϕDβCsic
∆(s,id,iw,ic)

;
If iw > 0 :

(Ai,j)pos(s,id,iw,ic),pos(s,id,iw−1,ic+1) =
(1−ϕW )βC iwic
∆(s,id,iw,ic)

;
Fill vector bi,j as follows:

(bi,j)pos(s,id,iw,ic) =
[
(βW iw + ϕWβCic)s(R̄i−1,j+1)pos(s−1,id,iw+1,ic)

+ βC(1− ϕW − ϕD)sic(R̄i−1,j+1)pos(s−1,id,iw,ic+1)

+ (βC(1− ϕD)ic + βwiw)id(R̄i−1,j+1)pos(s,id−1,iw,ic+1)

+ (1− εW )ρW iw(R̄i,j−1)pos(s,id,iw−1,ic)

+ εWρW iw
(
(R̄i,j−1)pos(s,id,iw−1,ic) + 1

)
+ (1− εC)ρCic(R̄i,j−1)pos(s,id,iw,ic−1)

+εCρCic
(
(R̄i,j−1)pos(s,id,iw,ic−1) + 1

)] 1

∆(s,id,iw,ic)

,

where terms in this equation are conditioned that all
co-ordinates in (s, id, iw, ic) are non-negative; else the terms
involving that particular state are 0;

Calculate R̄i,j by numerically solving Equation (5.13);
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Algorithm 5.7: An algorithm to calculate vectors R̄i,j , when δ = 0.
i = 0;
Implement Algorithm 5.5 to compute vectors R̄0,j , where j = 0, · · · , N ;
For i = 1, . . . , N :

j = 0;
For s = 0, . . . , i:

id = i− s;
iw = 0;
ic = 0;
(R̄i,0)pos(s,id,iw,ic) = 0;

For j = 1, . . . , N − i:
For s = 0, . . . , i:

id = i− s;
For iw = 0, . . . , j:

ic = j − iw;
Calculate

(
R̄i,j

)
pos(s,id,iw,ic)

using Equation (5.11);

similar methods as used to find for R̄(s,id,iw,ic) can be used to find D̄(s,id,iw,ic), and

equivalent algorithms to Algorithms 5.6 and 5.7 can be obtained.

5.2.2 Number of co-infected individuals

The efficacy of DIPs as a mitigation strategy can be evaluated from the descriptors

previously analysed, for example by looking at how the presence of DIPs impacts on the

number of recovered and dead individuals during an outbreak. However, it is clear that

DIPs may be effective either because they prevent death very efficiently, or because they

spread across the population very efficiently. To better understand how many individuals

are affected by DIPs during an outbreak, one can study the random variable, C, where C

is the cumulative number of co-infected individuals during the outbreak (that is, during

[0, τ ]).

Our aim in this section is to analyse the probability mass function of C:

ξ(s,id,iw,ic)(n) = P (C = n | X(0) = (s, id, iw, ic)) , (s, id, iw, ic) ∈ S,

for n ≥ ic. It is important to note that if one starts the outbreak with ic co-infected

174



5.2 Compartmental epidemic model

βWSIW + ϕWβCSIC

βW IDIW + (1− ϕD)βCIDIC

(1− ϕW )βCIW IC
(1−

ϕ
W −

ϕ
D )β

C SI
C

δIDϕDβCSIC

ρW IW

ρCIC

S IW

ICID

Removed

Figure 5.6: The single-step transition diagram for the model where the particular
outcome of an infection (death or recovery) is not tracked.

individuals at state (s, id, iw, ic) ∈ S, we count these within C, and the support of random

variable C is {ic, ic + 1, . . . , s+ id + iw + ic}.

One can consider here the simplified diagram in Figure 5.6, since our interest is not on

the outcome of those infections (i.e., we can consider “removed” individuals, who have

either recovered or died). We also note that P(C = n) corresponds to the probability

of observing exactly n events identified by the orange arrow (where an IC infected

individual is removed) or n events identified by the purple arrows (where an individual

becomes an IC infected individual). These are equivalent as all co-infected individuals

are removed eventually; we will focus on the orange events to do the analysis of C, as by

counting these events we capture all co-infected individuals, including those co-infected

at the start of the outbreak, whereas if we counted purple events we would also need to

add on the initial number of co-infected individuals to calculate C. The analysis could be

done for the purple events though with this addition, and would produce the same results.

Thus, for a particular initial state (s, id, iw, ic) ∈ S, the number of co-infected individuals

observed during the outbreak, C, corresponds to the number of orange events (in Figure
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5.6) that occur during the outbreak. A first-step argument yields the following equation:

ξ(s,id,iw,ic)(n) =
δid

∆(s,id,iw,ic)

ξ(s+1,id−1,iw,ic)(n) +
ϕDβCsic
∆(s,id,iw,ic)

ξ(s−1,id+1,iw,ic)(n)

+
(βW iw + ϕWβCic)s

∆(s,id,iw,ic)

ξ(s−1,id,iw+1,ic)(n)

+
βC(1− ϕW )iwic

∆(s,id,iw,ic)

ξ(s,id,iw−1,ic+1)(n)

+
βC(1− ϕW − ϕD)sic

∆(s,id,iw,ic)

ξ(s−1,id,iw,ic+1)(n)

+
(βC(1− ϕD)ic + βW iw) id

∆(s,id,iw,ic)

ξ(s,id−1,iw,ic+1)(n)

+
ρW iw

∆(s,id,iw,ic)

ξ(s,id,iw−1,ic)(n)

+
ρCic

∆(s,id,iw,ic)

ξ(s,id,iw,ic−1)(n− 1),

(5.15)

where the last term in this equation represents a co-infected individual being removed

from the system.

We note that, for states in level L(0), one gets

∆(0,0,iw,ic)ξ(0,0,iw,ic)(n) =βC(1− ϕW )iwicξ(0,0,iw−1,ic+1)(n) + ρW iwξ(0,0,iw−1,ic)(n)

+ ρCicξ(0,0,iw,ic−1)(n− 1),
(5.16)

which allows one to propose Algorithm 5.8 (which is similar to Algorithm 5.5).

For more general states in other levels (s, id, iw, ic) ∈ L(i), i = 1, . . . , N , one needs to

think about the dependencies in Equation (5.15). However, we first look at states in a

given sub-level

L(i, j) = {(0, i, 0, j), (0, i, 1, j − 1), . . . , (0, i, j, 0), . . . , (i, 0, j, 0)}.

We note that, in order to study descriptor C, this organisation of states is not ideal, since

when calculating ξ(s,id,iw,ic)(n), only states with ic ≤ n should be considered, as if ic > n

then we know trivially that ξ(s,id,iw,ic)(n) = 0. It is therefore more convenient to define

sub-levels in a different way for this descriptor, as co-infected individuals play a special
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Algorithm 5.8: An algorithm to calculate probabilities ξ(0,0,iw,ic)(n).
For n = 0, . . . , N :

For ic = n, n− 1, . . . , 0:
For iw = 0, . . . , N − ic:

If ic = 0:
If n = 0:

ξ(0,0,iw,ic)(n) = 1;
If n > 0:

ξ(0,0,iw,ic)(n) = 0;
Else:

If n = 0:
ξ(0,0,iw,ic)(n) = 0;

If n > 0:
Calculate ξ(0,0,iw,ic)(n) using Equation (5.16);

role in C. Thus, we suggest to define L(i) as before (all states in S where s + id = i),

but consider new sub-levels L̃(i, j), where

L(i) =
N−i⋃
j=0

L̃(i, j), L̃(i, j) = {(s, id, iw, ic) ∈ S : s+ id = i, ic = j},

so that,

L̃(i, j) = {(0, i, 0, j), (0, i, 1, j), (0, i, 2, j), . . . , (0, i, N − i− j, j), (1, i− 1, 0, j),

(1, i− 1, 1, j), . . . , (1, i− 1, N − i− j, j), . . . , (i, 0, 0, j),

. . . , (i, 0, N − i− j, j)}.

We note that

#L̃(i, j) = (N − i− j + 1)(i+ 1),

and

#L(i) =
N−i∑
j=0

#L̃(i, j) =
N−i∑
j=0

(i+ 1)(N − i− j + 1) = (i+ 1)
N−i∑
j=0

(N − i− j + 1)

= (i+ 1)
N−i∑
k=0

(k + 1) =
N−i∑
k=0

(i+ 1)(k + 1) =
N−i∑
k=0

#L(i, k),
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using a transformation k = N − i− j. With this, we have shown that the new way of

defining sub-levels, L̃(i, j), is consistent with the previous way of defining sub-levels,

L(i, j), and level L(i) still has the same number of states, as expected.

We also need to be able to find the position of a state (s, id, iw, ic) within its sub-level

L̃(i, j). We can do this by analysing how many states will precede state (s, id, iw, ic)

within its sub-level. State (s, id, iw, ic) ∈ S, will be preceded by all states within that

sub-level with a lower value of s:

(0, i, . . . , . . . ) → (N − i− j + 1) states,
(1, i− 1, . . . , . . . ) → (N − i− j + 1) states,

...
...

(s− 1, id + 1, . . . , . . . ) → (N − i− j + 1) states,

which represents the s(N − i − j + 1) states that precede (s, id, iw, ic) with a lower s

value. There will also be states within L̃(i, j) which have the same s value as (s, id, iw, ic)

but a lower iw value. These are:

(s, id, 0, ic),
(s, id, 1, ic),

...
(s, id, iw − 1, ic),

which represent iw states preceding (s, id, iw, ic). Therefore the position of state (s, id, iw, ic)

in sub-level L̃(i, j) is given by the function:

˜pos(s, id, iw, ic) = s(N − i− j + 1) + iw + 1. (5.17)

Finally, we can note that the last state in L̃(i, j) is (i, 0, N − i− j, j), which is in position

˜pos(i, 0, N − i− j, j) = i(N − i− j + 1) +N − i− j + 1

= (i+ 1)(N − i− j + 1) = #L̃(i, j),

which is consistent with the size of sub-level L̃(i, j) computed above.

Thus we propose to organise the probabilities, ξ(s,id,iw,ic)(n), in column vectors
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ξ(s,id,iw,ic)(n)

L̃(i, j)

ξ(s−1,id,iw+1,ic)(n)

ξ(s−1,id,iw,ic+1)(n)

ξ(s,id−1,iw,ic+1)(n)
L̃(i− 1, j + 1)

L̃(i− 1, j)

ξ(s,id,iw,ic−1)(n− 1)

ξ(s+1,id−1,iw,ic)(n)

ξ(s−1,id+1,iw,ic)(n)

ξ(s,id,iw−1,ic)(n)

ξ(s,id,iw−1,ic+1)(n) L(i)

L(i− 1)

L̃(i, j − 1), n− 1 L̃(i, j) L̃(i, j + 1)

Figure 5.7: The dependencies of ξ(s,id,iw,ic)(n) from Equation (5.15).

ξi,j(n) =



ξ(0,i,0,j)(n)
ξ(0,i,1,j)(n)

...
ξ(0,i,N−i−j,j)(n)
ξ(1,i−1,0,j)(n)

...
ξ(i,0,N−i−j,j)(n)


, for 0 ≤ i ≤ N , and 0 ≤ j ≤ min(N − i, n).

We consider the relationship that each level L̃(i, j) has to other levels, in Equation (5.15).

This is shown for a general state (s, id, iw, ic) ∈ L̃(i, j), s+ id = i, ic = j, in Figure 5.7.

The dependencies shown in this figure suggest an iterative solution is needed.

Practically, we design an algorithm by realising that due to these dependencies, one

needs to ensure that smaller values of n, smaller values of i and larger values of j have

already been completed in each iteration. By following this recursive approach, one

solves Equation (5.15) for states within a given sub-level L̃(i, j) while only needing to

use probabilities for previous values of n, smaller i or larger j which have already been
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computed. Equation (5.15) can be written in matrix form as

ξi,j(n) = Ãi,jξi,j(n) + b̃i,j(n). (5.18)

That is, matrix Ãi,j contains one-step transition probabilities between states in L̃(i, j).

and b̃i,j(n) contains independent terms related to previously computed probabilities,

ξi′,j′(n
′) with (i′, j′, n′) ∈ {(i, j + 1, n), (i, j − 1, n− 1), (i− 1, j, n), (i− 1, j + 1, n)}.

This leads to Algorithm 5.9.

Finally, once again a direct inspection of Equation (5.15) shows that if DIPs last for a

longer timescale than the outbreak (using the approximation δ ≈ 0), one can solve these

equations iteratively in a scalar way. This leads to Algorithm 5.10.

5.2.3 Exact reproduction number

Finally, one can analyse the efficacy of DIPs by focusing on exact reproduction numbers.

This concept has been shown before in papers such as Artalejo & Lopez-Herrero (2013)

and López-Garcı́a (2016), which have defined this as the number (measured as a random

variable, rather than as an average) of secondary infections caused by a marked individual

during their infectious period. In particular, we define three key random variables:

RW : The number of infections involving the WT-strain caused by an initially marked

WT-infected individual during their infectious period (which could include some

time as a co-infected individual, if the individual becomes co-infected during their

infectious period).

RC(W ): The number of infections involving the WT-strain caused by an initially marked

co-infected individual during their infectious period.

RC(D): The number of infections involving the DIP-strain caused by an initially marked

co-infected individual during their infectious period.

These quantities track different transitions within Figure 5.1. In particular, for RW we

track the events S → IW and ID → IC , and under the circumstance that our initially

marked WT-infected individual eventually becomes co-infected, the event S → IC . For

RC(W ), we are interested in the events S → IW , S → IC and ID → IC . Whereas
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Algorithm 5.9: An algorithm to calculate ξi,j(n).
i = 0;
Implement Algorithm 5.8 to compute vectors ξ0,j(n), for all 0 ≤ j ≤ n ≤ N ;
For i = 1, . . . , N :

For j = 0, . . . , N − i;
For s = 0, . . . , i:

id = i− s;
For iw = 0, 1, . . . , N − i− j :

ic = j;
If id > 0 :

(Ãi,j) ˜pos(s,id,iw,ic), ˜pos(s+1,id−1,iw,ic) =
δid

∆(s,id,iw,ic)
;

If s > 0 :
(Ãi,j) ˜pos(s,id,iw,ic), ˜pos(s−1,id+1,iw,ic) =

ϕDβCsic
∆(s,id,iw,ic)

;
If iw > 0 :

(Ãi,j) ˜pos(s,id,iw,ic), ˜pos(s,id,iw−1,ic) =
ρW iw

∆(s,id,iw,ic)
;

For n = 0, . . . , N :
For i = 1, . . . , N :

For j = min(n,N − i),min(n,N − i)− 1, . . . , 1, 0:
If i = N :

Note that j would be 0.
If n = 0:

ξN,0(n) = 1#L̃(N,0);
Else:

ξN,0(n) = 0#L̃(N,0);
Else:

For s = 0, . . . , i:
id = i− s;
For iw = 0, . . . , N − i− j :

ic = j;

b̃i,j(n) ˜pos(s,id,iw,ic) =
[
βC(1− ϕW )iw (ξi,j+1(n)) ˜pos(s,id,iw−1,ic+1)

+ s(βW iw + ϕWβCic) (ξi−1,j(n)) ˜pos(s−1,id,iw+1,ic)

+ βC(1− ϕW − ϕD)sic (ξi−1,j+1(n)) ˜pos(s−1,id,iw,ic+1)

+ id (βC(1− ϕD)ic + βW iw) (ξi−1,j+1(n)) ˜pos(s,id−1,iw,ic+1)

+ρCic (ξi,j−1(n− 1)) ˜pos(s,id,iw,ic−1)

] 1

∆(s,id,iw,ic)

;

If iw = ic = id = n = 0:(
b̃i,j(n)

)
˜pos(s,0,0,0)

= 1;

Calculate ξi,j(n) by numerically solving Equation (5.18);
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Algorithm 5.10: An algorithm to calculate ξi,j(n), when δ = 0.
i = 0;
Implement Algorithm 5.8 to compute vectors ξ0,j(n), for all 0 ≤ j ≤ n ≤ N ;
For n = 0, . . . , N :

For i = 1, . . . , N ;
For j =min(n,N − i),min(n,N − 1)− 1, . . . , 1, 0:

If i = N :
Note that j would be 0.

If n = 0:
ξN,0(n) = 1#L̃(N,0);

Else:
ξN,0(n) = 0#L̃(N,0);

Else:
For s = 0, . . . , i:

id = i− s;
For iw = 0, . . . , N − i− j:

ic = j;
If iw + ic = 0 and n = 0:

(ξi,j(n)) ˜pos(s,id,iw,ic)
= 1;

Else:
Calculate (ξi,j(n)) ˜pos(s,id,iw,ic)

using Equation (5.15);
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for RC(D), the events S → ID, S → IC and IW → IC are tracked. It is important

to note that although, in principle, we could consider RC = RC(W ) + RC(D) as the

exact reproduction number for a co-infected individual, this would in fact “double count”

co-infection events (as both RC(W ) and RC(D) track these events). This does not cause

a problem, but is something to be aware of when investigating results.

The focus on exact reproduction numbers will be computing probability mass functions

for these random variables; namely

ηW(s,id,iw,ic)(w) =P(RW = w | X(0) = (s, id, iw, ic)),

(s, id, iw, ic) ∈ S, 0 ≤ w ≤ s+ id, iw ≥ 1.

ηC(s,id,iw,ic)(w, d) =P(RC(W ) = w,RC(D) = d | X(0) = (s, id, iw, ic)),

(s, id, iw, ic) ∈ S, 0 ≤ w ≤ s+ id, d ≥ 0, ic ≥ 1.

(5.19)

We note that one should consider d ≥ 0, where d is not bounded from above, due to the

decay of the DIP, ID → S. This transition means that, in theory, one could observe as

many DIP infections as possible during the infectious period and therefore d has no upper

bound. One can follow a first-step argument to form an equation for ηC(s,id,iw,ic)
(w, d),

namely Equation (5.20).

It is important to note that each event involving a co-infected individual within this first-

step argument is split into two scenarios: that it directly involves our marked individual

with probability, 1
ic

, and that it involves any other co-infected individual with probability
ic−1
ic

.

We note that the dependencies between probabilities arising from Equation (5.20) are very

similar to those in Equation (5.15), with probabilities for values (w, d) depending on some

of the ones for w−1 and/or d−1. This suggests that one can solve sequentially for (w =

0, d = 0) and then for n = 1, 2, . . . with w + d = n, while exploiting the dependencies

in Figure 5.8. We note that Figure 5.8 is structured in terms of the original sub-levels

L(i, j) (rather than L̃(i, j)). This is because sub-levels L̃(i, j) do not lead to a clear

recursive structure for the probabilities of interest. In particular, probabilities for states in

L̃(i, j) depend on probabilities for states in L̃(i, j − 1), L̃(i, j + 1), L̃(i, j), L̃(i− 1, j)

and L̃(i− 1, j + 1). Figure 5.8 suggests a recursive approach where one solves Equation
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∆(s,id,iw,ic)η
C
(s,id,iw,ic)(w, d) = δidη

C
(s+1,id−1,iw,ic)(w, d)

+ ϕDβCsic

(
1

ic
ηC(s−1,id+1,iw,ic)(w, d− 1)

+
ic − 1

ic
ηC(s−1,id+1,iw,ic)(w, d)

)
+

(
βW iw + ϕWβCic

ic − 1

ic

)
sηC(s−1,id,iw+1,ic)(w, d)

+ ϕWβCsic
1

ic
ηC(s−1,id,iw+1,ic)(w − 1, d)

+ βC(1− ϕW )iwic
ic − 1

ic
ηC(s,id,iw−1,ic+1)(w, d)

+ βC(1− ϕW )iwic
1

ic
ηC(s,id,iw−1,ic+1)(w, d− 1)

+ βC(1− ϕW − ϕD)sic
ic − 1

ic
ηC(s−1,id,iw,ic+1)(w, d)

+ βC(1− ϕW − ϕD)sic
1

ic
ηC(s−1,id,iw,ic+1)(w − 1, d− 1)

+

(
βW iw + βC(1− ϕD)ic

ic − 1

ic

)
idη

C
(s,id−1,iw,ic+1)(w, d)

+ βC(1− ϕD)ic
1

ic
idη

C
(s,id−1,iw,ic+1)(w − 1, d)

+ ρW iwη
C
(s,id,iw−1,ic)(w, d)

+ ρCic
ic − 1

ic
ηC(s,id,iw,ic−1)(w, d)

+ ρCic
1

ic
δw=0,d=0.

(5.20)
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ηC(s,id,iw,ic)
(w, d)

L(i, j)

ηC(s−1,id,iw+1,ic)
(w, d)

ηC(s−1,id,iw,ic+1)(w, d)

ηC(s,id−1,iw,ic+1)(w, d)

ηC(s−1,id,iw+1,ic)
(w − 1, d)

ηC(s−1,id,iw,ic+1)(w − 1, d− 1)

ηC(s,id−1,iw,ic+1)(w − 1, d)

ηC(s,id,iw−1,ic+1)(w, d)

ηC(s+1,id−1,iw,ic)
(w, d)

ηC(s−1,id+1,iw,ic)
(w, d)

ηC(s,id,iw−1,ic+1)(w, d− 1)

ηC(s−1,id+1,iw,ic)
(w, d− 1)

ηC(s,id,iw−1,ic)
(w, d)

ηC(s,id,iw,ic−1)(w, d)

L(i, j)

L(i, j − 1)

L(i− 1, j + 1)

Smaller w or d

Smaller w or d

Figure 5.8: The dependencies of ηC(s,id,iw,ic)
(w, d) from Equation (5.20).
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(5.20) for increasing values of w + d, increasing values of i and increasing values of j,
leading to Algorithm 5.11 from which we can obtain the joint probability distribution
of
(
RC(W ), RC(D)

)
. In order to fully implement Algorithm 5.11, we again define a

column vector ηC
i,j(w, d) which gives the probabilities ηC(s,id,iw,ic)

(w, d) for s + id = i

and iw + ic = j. From the dependencies shown in Equation (5.20) we can rewrite this
equation as

ηC
i,j(w, d) = Ai,jη

C
i,j(w, d) + bC

i,j(w, d), (5.21)

where Ai,j is defined as in Equation (5.9), corresponding to jumps between states in
sub-level L(i, j), and vector bC

i,j(w, d) contains the independent terms in Equation (5.20),
that depend on levels L(i− 1, j + 1) and L(i, j − 1).

Finally, one can analyse the probability distribution of RW , in terms of the probabilities
ηW(s,id,iw,ic)

(w) as defined in Equation (5.19). We note that this counts the amount of WT-
infections caused by a marked WT-infected individual until their removal, which includes
any WT-infections caused by this marked individual even if they become co-infected,
IW → IC → Removal. So, naturally, we expect probabilities ηW(s,id,iw,ic)

(w) to depend on
probabilities ηC(w, d). From now, we denote ηC(s,id,iw,ic)

(w) as the marginal probabilities
of RC(W ):

ηC(s,id,iw,ic)(w) =
∑
d

ηC(s,id,iw,ic)(w, d). (5.22)

A first-step argument for this leads to Equation (5.23). If an event involves a WT-infected
individual we say it directly involves our marked individual with probability 1

iw
and is

does not directly involve our marked individual with probability iw−1
iw

. The term involv-
ing ηC(s,id,iw−1,ic+1)(w) shows how ηW(s,id,iw,ic)

(w) probabilities rely on ηC(s,id,iw−1,ic+1)(w)

terms. We can, once again, depict the dependencies between the probabilities in Equation
(5.23) graphically, shown in Figure 5.9.
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∆(s,id,iw,ic)η
W
(s,id,iw,ic)(w) = δidη

W
(s+1,id−1,iw,ic)(w) + ϕDβCsicη

W
(s−1,id+1,iw,ic)(w)

+ (βW (iw − 1) + ϕWβCic)sη
W
(s−1,id,iw+1,ic)(w)

+ βW sη
W
(s−1,id,iw+1,ic)(w − 1)

+ βC(1− ϕW )ic
(
(iw − 1)ηW(s,id,iw−1,ic+1)(w)

+ηC(s,id,iw−1,ic+1)(w)
)
+ βC(1− ϕW − ϕD)sicη

W
(s−1,id,iw,ic+1)(w)

+ (βW (iw − 1) + βC(1− ϕD)ic)idη
W
(s,id−1,iw,ic+1)(w)

+ βW idη
W
(s,id−1,iw,ic+1)(w − 1)

+ ρCicη
W
(s,id,iw,ic−1)(w) + ρW (iw − 1)ηW(s,id,iw−1,ic)(w)

+ ρW δw=0.
(5.23)

We can represent Equation (5.23) using column vectors and matrices in a similar manner
to the one shown in Equation (5.21). Namely, we define a column vector ηW

i,j (w) which
gives the probabilities ηW(s,id,iw,ic)

(w) for s+ id = i and iw + ic = j. By making use of
this column vector, we can rewrite Equation (5.23) as

ηW
i,j (w) = Ai,jη

W
i,j (w) + bW

i,j(w), (5.24)

where Ai,j is again defined as in Equation (5.9), corresponding to jumps between states
in sub-level L(i, j). Vector bW

i,j(w) contains the independent terms in Equation (5.23),
that depend on levels L(i− 1, j + 1) and L(i, j − 1). We can then find solutions for this
equation for a given state (s, id, iw, ic) using Algorithm 5.12.
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ηW(s,id,iw,ic)
(w)

L(i, j)

ηW(s+1,id−1,iw,ic)
(w)

ηW(s−1,id+1,iw,ic)
(w)

ηW(s,id,iw−1,ic+1)(w)

ηW(s,id,iw−1,ic)
(w)

ηW(s,id,iw,ic−1)(w)

ηC(s,id,iw−1,ic+1)(w)

ηW(s−1,id,iw+1,ic)
(w)

ηW(s−1,id,iw,ic+1)(w)

ηW(s,id−1,iw,ic+1)(w)

ηW(s−1,id,iw+1,ic)
(w − 1)

ηW(s,id−1,iw,ic+1)(w − 1)

L(i− 1, j + 1)

ηC instead of ηW

Smaller w

L(i, j)

L(i, j − 1)

Figure 5.9: The dependencies of ηW(s,id,iw,ic)
(w) from Equation (5.23).
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Algorithm 5.11: An algorithm to calculate ηC
i,j(w, d), up to a desired value of

w + d = nmax.
For i = 1, . . . , N .

For j = 1, . . . , N − i;
For s = 0, . . . , i:

id = i− s;
For iw = 0, . . . , j :

ic = j − iw;
If ic > 0 :

If id > 0 :
(Ai,j)pos(s,id,iw,ic),pos(s+1,id−1,iw,ic) =

δid
∆(s,id,iw,ic)

;
If s > 0 :

(Ai,j)pos(s,id,iw,ic),pos(s−1,id+1,iw,ic) =
ϕDβCs(ic−1)
∆(s,id,iw,ic)

;
If iw > 0 :

(Ai,j)pos(s,id,iw,ic),pos(s,id,iw−1,ic+1) =
(1−ϕW )βC iw(ic−1)

∆(s,id,iw,ic)
;

For n = 0, . . . , nmax:
For w = 0, . . . ,min(n,N);

d = n− w;
For i = w,w + 1, . . . , N :

j = 0;
If n = w = d = 0:

For s = 0, 1, . . . , i:
id = i− s;(
ηC
i,0(w, d)

)
pos(s,id,0,0)

= 1;

For j = 1, . . . , N − i:
If i = 0:

For iw = 0, . . . , j:
ic = j − iw;
If ic = 0:(

ηC
0,j(w, d)

)
pos(0,0,iw,ic)

= δw=0,d=0;
Else:

(η0,j)
C (w, d)pos(0,0,iw,ic) =

[
βC(1− ϕW )iw

(
(ic − 1)

(
ηC
0,j(w, d)

)
pos(0,0,iw−1,ic+1)

+
(
ηC
0,j(w, d− 1)

)
pos(0,0,iw−1,ic+1)

)
+ ρW iw(η

C
0,j−1(w, d))pos(0,0,iw−1,ic)

+ ρC

(
(ic − 1)

(
ηC
0,j−1(w, d)

)
pos(0,0,iw,ic−1

+ δw=0,d=0)
]
×

1

∆(0,0,iw,ic)

;
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Else:
For s = 0, . . . , i:

id = i− s;
For iw = 0, . . . , j :

ic = j − iw;
If ic = 0:(

bC
i,j(w, d)

)
pos(s,id,iw,ic)

= δw=0,d=0;
Else:(

bC
i,j(w, d)

)
pos(s,id,iw,ic)

=
[
ϕDβCs

(
ηC
i,j(w, d− 1)

)
pos(s−1,id+1,iw,ic)

+ (βW iw + ϕWβC(ic − 1))s×(
ηC
i−1,j+1(w, d)

)
pos(s−1,id,iw+1,ic)

+ ϕWβCs(η
C
i−1,j+1(w − 1, d))pos(s−1,id,iw+1,ic)

+ βC(1− ϕW )iw(η
C
i,j(w, d− 1)pos(s,id,iw−1,ic+1)

+ βC(1− ϕD − ϕW )s ((ic − 1)×(
ηC
i−1,j+1(w, d)

)
pos(s−1,id,iw,ic+1)

+
(
ηC
i−1,j+1(w − 1, d− 1)

)
pos(s−1,id,iw,ic+1)

)
+ (βW iw + βC(1− ϕD)(ic − 1))id×(
ηC
i−1,j+1(w, d)

)
pos(s,id−1,iw,ic+1)

+ βC(1− ϕD)id
(
ηC
i−1,j+1(w − 1, d)

)
pos(s,id−1,iw,ic+1)

+ ρW iw
(
ηC
i,j−1(w, d)

)
pos(s,id,iw−1,ic)

+ ρCδw=0,d=0

+ρC(ic − 1)
(
ηC
i,j−1(w, d)

)
pos(s,id,iw,ic−1)

] 1

∆(s,id,iw,ic)

;

Numerically solve Equation (5.21);
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Algorithm 5.12: An algorithm to calculate ηW
i,j (w).

For i = 1, . . . , N .
For j = 1, . . . , N − i;

For s = 0, . . . , i:
id = i− s;
For iw = 1, . . . , j :

ic = j − iw;
If id > 0 :

(Ai,j)pos(s,id,iw,ic),pos(s+1,id−1,iw,ic) =
δid

∆(s,id,iw,ic)
;

If s > 0:
(Ai,j)pos(s,id,iw,ic),pos(s−1,id+1,iw,ic) =

ϕDβCsic
∆(s,id,iw,ic)

;

(Ai,j)pos(s,id,iw,ic),pos(s,id,iw−1,ic+1) =
(1−ϕW )βC(iw−1)ic

∆(s,id,iw,ic)
;

For w = 0, . . . , N :
For i = w,w + 1, . . . , N :

j = 0;
If w = 0:

For s = 0, 1, . . . , i:
id = i− s;(
ηW
i,0(w)

)
pos(s,id,0,0)

= 1;

For j = 1, . . . , N − i:
If i = 0:

For iw = 0, . . . , j:
ic = j − iw;
If iw = 0:(

ηW
0,j(w)

)
pos(0,0,iw,ic)

= δw=0;
Else:(

ηW
0,j(w)

)
pos(0,0,iw,ic)

=
[
βC(1− ϕW )ic

(
(iw − 1)

(
ηW
0,j(w)

)
pos(0,0,iw−1,ic+1)

+
(
ηC
0,j(w)

)
pos(s,id,iw−1,ic+1)

)
+ ρCic(η

W
0,j−1(w))pos(0,0,iw,ic−1)

+ ρW

(
(iw − 1)

(
ηW
0,j−1(w)

)
pos(0,0,iw−1,ic)

+ δw=0

)]
×

1

∆(0,0,iw,ic)

;
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Else:
For s = 0, . . . , i:

id = i− s;
For iw = 0, 1, . . . , j :

ic = j − iw;
If iw = 0:(

bW
i,j(w)

)
pos(s,id,iw,ic)

= δw=0;
Else:

(
bW
i,j(w)

)
pos(s,id,iw,ic)

=
[
(βW (iw − 1) + ϕWβCic) s

(
ηW
i−1,j+1(w)

)
pos(s−1,id,iw+1,ic)

+ βW s
(
ηW
i−1,j+1(w − 1)

)
pos(s−1,id,iw+1,ic)

+ βC(1− ϕW )ic
(
ηC
i,j(w)

)
pos(s,id,iw−1,ic+1)

+ βC(1− ϕW − ϕD)sic
(
ηW
i−1,j+1(w)

)
pos(s−1,id,iw,ic+1)

+ (βW (iw − 1) + βC(1− ϕD)ic) id×(
ηW
i−1,j+1(w)

)
pos(s,id−1,iw,ic+1)

+ βW id
(
ηw
i−1,j+1(w − 1)

)
pos(s,id−1,iw,ic+1)

+ ρCic
(
ηW
i,j−1(w)

)
pos(s,id,iw,ic−1)

+ ρW (iw − 1)
(
ηW
i,j−1(w)

)
pos(s,id,iw−1,ic)

+ ρW δw=0

]
×

1

∆(s,id,iw,ic)

;

Numerically solve Equation (5.24);
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5.3 Numerical results

In this section we are going to look at the stochastic descriptors discussed in Sections
5.2.1-5.2.3. For each descriptor we will investigate the effect of varying different
parameters that control the behaviour of the DIP on the corresponding summary statistics.
In addition, here we will use baseline values of each parameter within the model that will
stay constant unless they are the parameter being varied in each particular figure. The
baseline parameters (and the initial condition of the populations) are shown in Table 5.1.

Parameter Interpretation Baseline value Unit

N Population Size 40 #

δ DIP decay rate 1
4

weeks−1

βW WT-infection rate 3
N

weeks−1

βC Co-infection rate βW
3

weeks−1

ϕW WT-infection probability from a IC − S interaction 0.25 Unitless
ϕD DIP-infection probability from a IC − S interaction 0.25 Unitless
εW Recovery probability of WT-infected individual 0.9 Unitless

1− εW Death probability of WT-infected individual 0.1 Unitless

1− εC Death probability of co-infected individual 1−εW
3

Unitless

εC Recovery probability of co-infected individual 1− 1−εW
3

Unitless
ρW Removal rate of a WT-infected individual 1 weeks−1

ρC Removal rate of a co-infected individual 1 weeks−1

ID(0) The initial number of individuals in the DIP-infected population 0.5N #
S(0) The initial number of susceptible individuals in the total population N − ID(0)− 1 #

Table 5.1: The parameters in the model, their interpretation and the baseline values used
in the results unless explicitly stated.

It has been shown that the recovery period for a person infected with a WT-strain of flu
is approximately 6 days (Vaidya et al. (2015),De Serres et al. (2010)). This informed
the choice of 1

ρW
= 1 week in this model, which was chosen to give an average recovery

period of a week. We consider ρC = ρW since we make the assumption that the DIP
affects the infectivity of a co-infected individual, or their probability of recovery or death
rather than their removal timescales. We chose 1

δ
= 4 weeks from private communication

with our experimental collaborators at Dstl, to represent the fact that the lifetime of
defective interfering particles in a susceptible individual would likely be in the order of
days or weeks, rather than months or years. We chose ϕW = ϕD as a default choice as it
is not clear whether the DIP would be more or less likely to be passed on by a co-infected
individual than the WT virus. The value of 0.25 for these parameters was chosen such

193



5. A STOCHASTIC MODEL OF VIRAL TRANSMISSION IN THE PRESENCE
OF DEFECTIVE INTERFERING PARTICLES

R̄, D̄ ID(0) = 0.25N ID(0) = 0.5N ID(0) = 0.75N

IW (0) = 1 18.8, 1.75 15.2, 1.20 11.8, 0.8
IC(0) = 1 6.29, 0.490 5.21, 0.346 4.31, 0.247

Table 5.2: The mean number of recovered (R̄), and dead (D̄) individuals for the para-
metric choices and initial conditions as described in Figure 5.10.

that there is a 50% chance of a co-infected individual passing on both the WT and the

DIP strains.

The value βW = 3
N

was chosen such that without DIP protection, the basic reproduction

number would be 3. This was chosen to be sufficiently high so that under these conditions

an outbreak would be large enough such that varying DIP-related parameters would show

a tangible effect on the behaviour of the descriptors. The choice of (1− εW ) = 0.1 was

chosen to be representative of a pathogen with a high mortality rate (for comparison, it

was found by Donaldson et al. (2009) that the A/H1N1 strain of flu had a (1− εW ) =

0.0098 in the age range of 65+ during an outbreak in 2009). This allows us to investigate

the effects of varying εC on the outbreak outcomes. βC was chosen to give an approximate

basic reproduction number of 1 for the co-infected individuals and the baseline value of

εC was chosen such that the ratio of βW : βC matched the ratio (1− εW ) : (1− εC); this

assumes a symmetric impact on the infectivity rate and the recovery probability by the

DIP in a co-infected individual.

5.3.1 Size of the outbreak

In this section we will compute the probability distribution of (R(τ), D(τ)), in terms of

probabilities α(s,id,iw,ic)(r, d) for a wide range of parameter values and initial conditions.

This joint probability distribution will be plotted as lower-triangular heat-maps, as we

have the condition that r + d ≤ N .

Figure 5.10 and Table 5.2, show the probabilities, α(s,id,iw,ic)(r, d), and the mean values,

R̄ and D̄, of R(τ) and D(τ) for different initial number of DIP-infected individuals,

ID(0) ∈ {0.25N, 0.5N, 0.75N}, and the individual starting the outbreak either being

WT-infected (IW (0) = 1) or co-infected (IC(0) = 1). The entries which represent

the baseline parameter values in Table 5.1 are shown in bold in Table 5.2; we will use

this representation throughout this section. This allows us to track the impact that the
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Figure 5.10: Heatmaps showing log10(α(s,id,iw,ic)(r, d)) for different initial numbers of
DIP-infected individuals, ID(0) ∈ {0.25N, 0.5N, 0.75N}, and the individual starting
the outbreak either being WT-infected (IW (0) = 1) or co-infected (IC(0) = 1). Baseline
parameters as in Table 5.1. Initial states (S(0), ID(0), IW (0), IC(0)) = (N − ID(0) −
1, ID(0), 1, 0) (top row) or (N − ID(0) − 1, ID(0), 0, 1) (bottom row). Red triangles
represent the mean values of the random variables (R̄, D̄).
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R̄|r + d > 1, D̄|r + d > 1 ID(0) = 0.25N ID(0) = 0.5N ID(0) = 0.75N

IW (0) = 1 25.0, 2.31 20.1, 1.58 15.5, 1.03
IC(0) = 1 13.6, 1.11 11.0, 0.774 8.89, 0.539

Table 5.3: The conditional mean number of recovered (R̄|r+d > 1), and dead (D̄|r+d >
1) individuals for the parametric choices and initial conditions as described in Figure
5.11.

initial number of DIP-infected individuals, as well as whether the first infection is a WT-

infection or co-infection, has on the size of the outbreak. We can clearly see, and will see

repeated for all parameter choices, that the type of first infection has a significant impact

on the size of the outbreak. If the individual starting the outbreak is WT-infected the

outbreak is likely to be substantially larger than if the individual that starts the outbreak

is co-infected, which shows the impact that the DIP has as a mitigation at the population

level. From Table 5.2 we can see that in all cases the mean number of infections drops

from double to single figures between IW (0) = 1 and IC(0) = 1.

Now, looking at the effect of increasing the initial number of DIP-infected individuals, for

both initial infection types, we see that increasing the number of DIP-infected individuals

in the initial condition causes the mean size of the outbreak to decrease. This effect

is more pronounced on the predicted number of dead individuals which show a more

than 50% decrease from ID(0) = 0.25N to ID(0) = 0.75N , whereas the number of

recovered individuals also decreases but not by 50%. It is likely that this effect is caused

by the higher number of DIP-infected individuals leading to a larger number of infections

being co-infected individuals rather than WT-infected, which offers a higher recovery

probability.

It is important to note that Table 5.2 implies that in order to protect the population,

it is more effective to have the initial individual protected with the DIP, rather than

protecting more individuals at the population level (ID(0)). However, in practice, the

probability of a co-infected individual starting the outbreak is likely dependent on how

many individuals were originally protected by the DIP in the population, ID(0), when

the outbreak started.

If the initially infected individual is removed before infecting any other individual, there

is really no outbreak. Thus, it is of interest to analyse the size of the outbreak conditioned

on at least one infection event occurring. In Figure 5.11 and Table 5.3, we show the
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Figure 5.11: Heatmaps showing log10(α(s,id,iw,ic)(r, d)|r + d > 1) for different initial
numbers of DIP-infected individuals, ID(0) ∈ {0.25N, 0.5N, 0.75N}, and the individual
starting the outbreak either being WT-infected (IW (0) = 1) or co-infected (IC(0) = 1),
with the condition that at least one infection event occurs. Baseline parameters as in Table
5.1. Initial states (S(0), ID(0), IW (0), IC(0)) = (N − ID(0)− 1, ID(0), 1, 0) (top row)
or (N − ID(0) − 1, ID(0), 0, 1) (bottom row). Red triangles represent the conditional
mean values (R̄|r + d > 1, D̄|r + d > 1).
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R̄, D̄ 1
δ
= 2 weeks 1

δ
= 4 weeks 1

δ
= 8 weeks

IW (0) = 1 16.7, 1.47 15.2, 1.20 14.1, 1.02
IC(0) = 1 5.81, 0.441 5.21, 0.346 4.75, 0.279

Table 5.4: The mean number of recovered (R̄), and dead (D̄) individuals for the para-
metric choices and initial conditions as described in Figure 5.12.

probabilities, α(s,id,iw,ic)(r, d), and the mean values, R̄ and D̄, of R(τ) and D(τ) for

different initial numbers of DIP-infected individuals, ID(0) ∈ {0.25N, 0.5N, 0.75N},

and the individual starting the outbreak either being WT-infected (IW (0) = 1) or co-

infected (IC(0) = 1), conditioned on the first event within the system not being the initial

infected individual recovering or dying. We will denote these conditional probabilities by

α(s,id,iw,ic)(r, d)|r+ d > 1, and conditional mean values by R̄ | r+ d > 1, D̄ | r+ d > 1.

As expected, varying ID(0) and the type of initial infected individual shows similar

trends as those seen in Figure 5.10 and Table 5.2. However, the effect on the conditional

means is more pronounced. Now, for the case with the largest population protection

(ID(0) = 0.75N ), for IW (0) = 1, the conditional average size of the outbreak is,

(R̄ | r + d > 1) + (D̄ | r + d > 1) = 16.53, whereas without the guarantee of an

infection event occurring the average size of the outbreak is R̄ + D̄ = 12.6. Again, a

more pronounced effect on the conditional mean number of dead individuals is shown by

increasing the initial value of ID(0).

Figure 5.12 and Table 5.4, show the probabilities, α(s,id,iw,ic)(r, d), and the mean values,

R̄ and D̄, ofR(τ) andD(τ) for different rates at which the DIP protection in DIP-infected

individuals decays, δ ∈ {1
2
, 1
4
, 1
8
} weeks−1, and the individual starting the outbreak either

being WT-infected (IW (0) = 1) or co-infected (IC(0) = 1).

The rate of DIP decay has an effect on the mean size of the outbreak, although not as

large an effect on the size of the outbreak as changing the initial value of ID(0), meaning

that ensuring as many individuals are protected as possible is likely to be more effective

than increasing the length of protection for a smaller proportion. Increasing the length

of protection that the DIP gives causes the total number of infections to decrease and a

higher proportion of these infections to result in recovery. This will be due to the fact that

if the DIP decays slower, a larger proportion of infection events will lead to co-infected
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Figure 5.12: Heatmaps showing log10(α(s,id,iw,ic)(r, d)) for different rates at which
the DIP protection in DIP-infected individuals decays, δ ∈ {1

2
, 1
4
, 1
8
} weeks−1,

and the individual starting the outbreak either being WT-infected (IW (0) = 1)
or co-infected (IC(0) = 1). Baseline parameters as in Table 5.1. Initial states
(S(0), ID(0), IW (0), IC(0)) = (N − ID(0)− 1, ID(0), 1, 0) (top row) or (N − ID(0)−
1, ID(0), 0, 1) (bottom row). Red triangles represent the mean values of the random
variables (R̄, D̄).

199



5. A STOCHASTIC MODEL OF VIRAL TRANSMISSION IN THE PRESENCE
OF DEFECTIVE INTERFERING PARTICLES

Figure 5.13: Heatmaps showing log10(α(s,id,iw,ic)(r, d)) for different co-infection rates,
βC ∈ {βW , 2βW

3
, βW

3
}, and the individual starting the outbreak either being WT-infected

(IW (0) = 1) or co-infected (IC(0) = 1). Baseline parameters as in Table 5.1. Initial
states (S(0), ID(0), IW (0), IC(0)) = (N − ID(0) − 1, ID(0), 1, 0) (top row) or (N −
ID(0) − 1, ID(0), 0, 1) (bottom row). Red triangles represent the mean values of the
random variables (R̄, D̄).

R̄, D̄ βC = βW βC = 2βW
3

βC = βW
3

IW (0) = 1 20.9, 1.25 18.07, 1.25 15.2, 1.20
IC(0) = 1 18.3, 0.954 11.8, 0.709 5.21, 0.346

Table 5.5: The mean number of recovered (R̄), and dead (D̄) individuals for the para-
metric choices and initial conditions as described in Figure 5.13.

individuals rather than WT-infected individuals which will give a higher probability of

recovery.

Figure 5.13 and Table 5.5, show the probabilities, α(s,id,iw,ic)(r, d), and the mean values,

R̄ and D̄, of R(τ) and D(τ) for different co-infection rates, βC ∈ {βW , 2βW

3
, βW

3
}, and

the individual starting the outbreak either being WT-infected (IW (0) = 1) or co-infected

(IC(0) = 1). Varying the co-infection rate in this way reflects the level of infectivity

reduction the DIP gives in a co-infected individual; for example, when βC = βW , this

corresponds to the DIP giving no reduction in the infectiousness of an individual that is

co-infected. Conversely, when βC = βW

3
this is the case that the DIP makes a co-infected
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Figure 5.14: Heatmaps showing log10(α(s,id,iw,ic)(r, d)) for different probabilities of
the outcome of a IC − S infection interaction, ϕW < ϕD, ϕW = ϕD or ϕW > ϕD,
and the individual starting the outbreak either being WT-infected (IW (0) = 1)
or co-infected (IC(0) = 1). Baseline parameters as in Table 5.1. Initial states
(S(0), ID(0), IW (0), IC(0)) = (N − ID(0)− 1, ID(0), 1, 0) (top row) or (N − ID(0)−
1, ID(0), 0, 1) (bottom row). Red triangles represent the mean values of the random
variables (R̄, D̄).

individual 3 times less infectious than a WT-infected individual.

This reduction in infectivity (when βC < βW ) clearly has a large impact on the effec-

tiveness of the protection that DIP provides to a population. Reducing the infectivity of

a co-infected individual directly correlates to a reduction in the number of individuals

affected by an outbreak. It is interesting to note, however, that decreasing the infectivity

of a co-infected individual actually causes the proportion of individuals affected by the

outbreak that die to increase (although the expected absolute number of deaths is still

lower). This is something that any future endeavours to create Therapeutic Interfering

Particles (TIPs) will need to be mindful of, that a balance between protection and infec-

tivity is needed as if not enough people become infected with the protective DIP, it will

be less effective at the population level.

Figure 5.14 and Table 5.6 show the effect of varying the probability that a co-infected

individual passes on either the DIP-strain or the WT-strain. For this figure and throughout
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R̄, D̄ ϕW < ϕD ϕW = ϕD ϕW > ϕD

IW (0) = 1 14.0, 1.09 15.2, 1.20 16.3, 1.31
IC(0) = 1 3.17, 0.175 5.21, 0.346 7.16, 0.513

Table 5.6: The mean number of recovered (R̄), and dead (D̄) individuals for the para-
metric choices and initial conditions as described in Figure 5.14.

ϕW < ϕD ϕW = ϕD ϕW > ϕD

ϕW , ϕD 0.1, 0.4 0.25, 0.25 0.4, 0.1

Table 5.7: The precise values used when investigating the parameter regimes ϕW <
ϕD, ϕW = ϕD, ϕW > ϕD.

this section when investigating these parameter regimes we use the parameter values

for ϕW , ϕD shown in Table 5.7, which have been chosen so that (1− ϕW − ϕD) = 0.5

in all scenarios. We can see that the observed effect is consistent across both initial

infection types; increasing the probability that the WT-strain is passed (ϕW ) rather than

the DIP-strain (ϕD) causes the size of the outbreak to increase. This is expected as a WT-

infected individual is more infectious than a DIP-infected individual under the baseline

parameter values shown in Table 5.1. Increasing the probability that the WT-strain is

passed to an individual also means that the proportion of affected individuals within an

outbreak that die increases, as WT-infected individuals have a lower chance of recovery

than co-infected individuals.

5.3.2 Number of co-infected individuals

In this section the impact of varying pairs of parameters within the model on the stochastic

descriptor C, the cumulative number of co-infected individuals during the outbreak,

described in Section 5.2.2, will be investigated.

Figure 5.15 and Table 5.8 show the effect of varying the initial number of DIP-infected

individuals, ID(0) ∈ {0.25N, 0.5N, 0.75N} and the rate at which the DIP’s protective

C̄|IW (0) = 1, C̄|IC(0) = 1 ID(0) = 0.25N ID(0) = 0.5N ID(0) = 0.75N
1
δ
= 2 weeks 3.43, 2.47 5.21, 2.76 5.86, 2.86

1
δ
= 4 weeks 4.64, 2.82 6.62, 3.14 6.87, 3.14

1
δ
= 8 weeks 5.47, 3.08 7.40, 3.35 7.18, 3.21

Table 5.8: The mean number of co-infected individuals, C̄, for the parametric choices
and initial conditions as described in Figure 5.15.
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Figure 5.15: Histograms showing the probability distribution of C, {ξ(n), n =
0, . . . , 40}, for different initial numbers of DIP-infected individuals, ID(0) ∈
{0.25N, 0.5N, 0.75N}, a range of rates at which the DIP protection decays from a
DIP-infected individual, δ ∈ {1

2
, 1
4
, 1
8
} weeks−1, and the individual starting the out-

break either being WT-infected (IW (0) = 1) (red) or co-infected (IC(0) = 1) (pur-
ple). Dashed lines indicate the mean values, C̄. Baseline parameters as in Table
5.1. Initial states (S(0), ID(0), IW (0), IC(0)) = (N − ID(0) − 1, ID(0), 1, 0) (red)
or (N − ID(0)− 1, ID(0), 0, 1) (purple).
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C̄|IW (0) = 1, C̄|ID = 1 ID(0) = 0.25N ID(0) = 0.5N ID(0) = 0.75N

βC = βW 10.2, 12.5 14.4, 14.5 16.5, 15.7
βC = 2βW

3
7.09, 6.86 10.3, 8.07 11.5, 8.60

βC = βW
3

4.64, 2.82 6.62, 3.14 6.87, 3.14

Table 5.9: The mean number of co-infected individuals, C̄, for the parametric choices
and initial conditions as described in Figure 5.16.

effect on an individual decays, δ ∈ {1
2
, 1
4
, 1
8
} weeks−1, on the probability distribution

of the cumulative number, C, of co-infected individuals, {ξ(n), n = 0, . . . , 40}, and its
mean C̄, for the cases in which the initial infection is a WT-infection, IW (0) = 1, or a
co-infection, IC(0) = 1. It is interesting to note that varying 1

δ
has a small impact on C̄

for the initial condition IC(0) = 1, this is likely due to the fact that with these conditions
an outbreak has a high probability of being relatively small and as such, not many DIP-
affected individuals have the opportunity to decay to susceptible individuals during the
outbreak. However, varying 1

δ
has a larger effect on the mean value of C̄ for the initial

condition IW (0) = 1. This is related to the bi-modal shape of the red histogram for C,
which implies that the outbreak is more likely to be larger for this initial condition and
therefore the effect of DIP-infected individuals decaying to susceptible individuals will
have a larger impact on the cumulative number of co-infected individuals. As 1

δ
increases,

each of the red histograms are shifted to the right whilst retaining their bi-modal shape.
However, as the initial number of individuals in the DIP-infected population increases
the curve shifts to the right but instead of retaining its shape, it flattens and widens. This
is likely related to the fact that in order to observe more co-infections, more DIP-infected
individuals are required in the population.

Figure 5.16 and Table 5.9 show the effect of varying the initial number of DIP-infected
individuals, ID(0) ∈ {0.25N, 0.5N, 0.75N}, and the infection rate of a co-infected
individual, βC ∈ {βW , 2βW

3
, βW

3
}, on the probability distribution of the cumulative

number, C, of co-infected individuals, {ξ(n), n = 0, . . . , 40}, and its mean, C̄, for the
cases where the initial infection is a WT-infection, IW (0) = 1, or a co-infection, IC(0) =
1. It can be seen that varying βC has a significant impact on the distribution of the
cumulative number of co-infected individuals as we would expect. When βC is relatively
large (equal to βW ), the outbreak is very likely to be sustained and more co-infections are
likely to occur. Whereas when βC is relatively small (equal to βW

3
) the outbreak is much

more likely to be shorter and less co-infections will occur. This is reflected in the mean
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Figure 5.16: Histograms showing the probability distribution of C, {ξ(n), n =
0, . . . , 40}, for different initial numbers of DIP-infected individuals, ID(0) ∈
{0.25N, 0.5N, 0.75N}, a range of co-infection rates, βC ∈ {βW , 2βW

3
, βW

3
}, and the in-

dividual starting the outbreak either being WT-infected (IW (0) = 1) (red) or co-infected
(IC(0) = 1) (purple). Dashed lines indicate the mean values, C̄. Baseline parameters
as in Table 5.1. Initial states (S(0), ID(0), IW (0), IC(0)) = (N − ID(0)− 1, ID(0), 1, 0)
(red) or (N − ID(0)− 1, ID(0), 0, 1) (purple).
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Figure 5.17: Histograms showing the probability distribution of C, {ξ(n), n =
0, . . . , 40}, for different initial numbers of DIP-infected individuals, ID(0) ∈
{0.25N, 0.5N, 0.75N}, three different cases of probabilities of the outcome of a IC − S
infection event, ϕW < ϕD, ϕW = ϕD, or ϕW > ϕD with specific probabilities given in
Table 5.7, and the individual starting the outbreak either being WT-infected (IW (0) = 1)
(red) or co-infected (IC(0) = 1) (purple). Dashed lines indicate the mean values,
C̄. Baseline parameters as in Table 5.1. Initial states (S(0), ID(0), IW (0), IC(0)) =
(N − ID(0)− 1, ID(0), 1, 0) (red) or (N − ID(0)− 1, ID(0), 0, 1) (purple).

values, C̄, for both initial conditions. When the initial number of DIP-infected individuals

is increased, the mean expected number of co-infected individuals, C̄, also increases.

This, while seemingly counter-intuitive that more infections would be observed with

more protection at the population level, makes empirical sense as a DIP-infected person

only needs exposure to the WT to become co-infected and therefore a higher proportion

of all infections will be co-infection events.

Figure 5.17 and Table 5.10 show the effect that varying the initial number of DIP-

infected individuals, ID(0) ∈ {0.25N, 0.5N, 0.75N}, and the probability that a co-
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C̄|IW (0) = 1, C̄|IC(0) = 1 ID(0) = 0.25N ID(0) = 0.5N ID(0) = 0.75N

ϕW < ϕC 7.42, 2.30 6.34, 2.39 6.21, 2.35
ϕW = ϕC 4.64, 2.82 6.62, 3.14 6.87, 3.14
ϕW > ϕC 4.52, 3.20 6.80, 3.81 7.45, 3.95

Table 5.10: The mean number of co-infected individuals, C̄, for the parametric choices
and initial conditions as described in Figure 5.17.

C̄|IW (0) = 1, C̄|IC(0) = 1 1
δ
= 2 weeks 1

δ
= 4 weeks 1

δ
= 8 weeks

βC = βW 12.3, 13.0 14.4, 14.5 15.6, 15.4
βC = 2βW

3
8.36, 6.97 10.3, 8.07 11.3, 8.72

βC = βW
3

5.21, 2.76 6.62, 3.14 7.40, 3.35

Table 5.11: The mean number of co-infected individuals, C̄, for the parametric choices
and initial conditions as described in Figure 5.18.

infected individual will pass on solely the WT-strain, ϕW , or DIP-strain, ϕD, with

parameter regions ϕW < ϕD, ϕW = ϕD, or ϕW > ϕD (the specific values used for

ϕW and ϕD are given in Table 5.7), during an IC − S infection interaction, has on

the probability distribution of the cumulative number, C, of co-infected individuals,

{ξ(n), n = 0, . . . , 40}, and its mean, C̄, for the cases where the initial infection is a

WT-infection, IW (0) = 1, or a co-infection, IC(0) = 1. Interesting results can be seen

as ϕW increases relative to ϕD; when ID(0) = 0.25N we observe that ϕW increasing

causes the mean number of co-infected individuals to decrease for the initial condition

IW (0) = 1. This is likely due to the fact that for these parameter values and initial

conditions, the majority of individuals within the outbreak will be infected with the WT

and not exposed to the DIP. However, as the initial number of DIP-infected individuals

increases, increasing the value of ϕW relative to ϕD causes the mean number of co-

infected individuals to increase for both initial conditions. This can be explained by the

fact that ϕW increasing means that the WT strain is more likely to be passed on, and as

the population has a large number of DIP-infected individuals, it becomes likely that they

will become co-infected. It can also be observed that the number of initial DIP-infected

individuals has an effect on the distributions; in each case increasing this quantity both

shifts the distribution to the right and flattens it slightly, meaning that there is more likely

to be a larger number of co-infected individuals over a wider range.

Figure 5.18 and Table 5.11 show the effect that varying the infection rate for a co-infected

individual, βC ∈ {βW , 2βW

3
, βW

3
}, and the rate at which a DIP-infected individual has

207



5. A STOCHASTIC MODEL OF VIRAL TRANSMISSION IN THE PRESENCE
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Figure 5.18: Histograms showing the probability distribution of C, {ξ(n), n =
0, . . . , 40}, for different rates at which the DIP protection decays in a DIP-infected
individual, δ ∈ {1

2
, 1
4
, 1
8
} weeks−1, a range of co-infection rates, βC ∈ {βW , 2βW

3
, βW

3
},

and the individual starting the outbreak either being WT-infected (IW (0) = 1) (red)
or co-infected (IC(0) = 1) (purple). Dashed lines indicate the mean values, C̄.
Baseline parameters as in Table 5.1. Initial states (S(0), ID(0), IW (0), IC(0)) =
(N − ID(0)− 1, ID(0), 1, 0) (red) or (N − ID(0)− 1, ID(0), 0, 1) (purple).
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C̄|IW (0) = 1, C̄|IC(0) = 1 ϕW < ϕD ϕW = ϕD ϕW > ϕD

βC = βW 13.8, 12.1 14.4, 14.5 14.1, 15.5
βC = 2βW

3
9.66. 6.11 10.3, 8.07 10.4, 9.31

βC = βW
3

6.34, 2.39 6.62, 3.14 6.80, 3.82

Table 5.12: The mean number of co-infected individuals, C̄, for the parametric choices
and initial conditions as described in Figure 5.19.

their protection decay, δ ∈ {1
2
, 1
4
, 1
8
} weeks−1, has on the probability distribution of

the cumulative number, C, of co-infected individuals, {ξ(n), n = 0, . . . , 40}, and its
mean, C̄, for the cases where the initial infection is a WT-infection, IW (0) = 1, or a
co-infection, IC(0) = 1. It is interesting to note the seemingly counter-intuitive result
that as 1

δ
increases, and therefore individuals are more likely to have some protection

from the disease for longer, the mean cumulative number of co-infected individuals
actually increases. However, this remains a valid result since our focus here is not on
the number of individuals infected in total, but on the number of co-infected individuals.
Therefore, if individuals have a higher chance to be in ID (as the rate of DIP decay is
lower), then there is a higher probability of these individuals becoming co-infected as
they only need exposure to the WT strain. The result that as βC decreases the average
number of co-infected individuals decreases can be expected as the overall chance of an
individual being infected by a co-infected individual decreases. It is also notable and
intuitive that this effect is more pronounced in the case when IC(0) = 1. The histograms
themselves represent this behaviour too, as 1

δ
increases, each of the histograms are shifted

to the right whilst retaining a similar shape. Similarly, the histograms retain a similar
profile as βC decreases, whilst shifting to the left.

Figure 5.19 and Table 5.12 show the effect that varying the infection rate for a co-infected
individual, βC ∈ {βW , 2βW

3
, βW

3
}, and the probability that a co-infected individual will

pass on solely the WT-strain, ϕW , or DIP-strain, ϕD, has on the probability distribution
of the cumulative number, C, of co-infected individuals, {ξ(n), n = 0, . . . , 40}, and its
mean, C̄, for the cases where the initial infection is a WT-infection, IW (0) = 1, or a
co-infection, IC(0) = 1. One of the things to note is that similar behaviour to the results
in Figure 5.18 can be seen here. That is, in the top row where βC = βW , the mean, C̄,
is larger for the initial condition IW (0) = 1 in some parameter regions and larger for
the initial condition IC(0) = 1 in other parameter regions. It is interesting to note that
as ϕW becomes larger than ϕD, the mean number of co-infected individuals increases,
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Figure 5.19: Histograms showing the probability distribution of C, {ξ(n), n =
0, . . . , 40}, for different rates of infection for a co-infected individual, βC ∈
{βW , 2βW

3
, βW

3
}, three different cases of probabilities of the outcome of a IC−S infection

event, ϕW < ϕD, ϕW = ϕD or ϕW > ϕD (specific values given in Table 5.7), and the in-
dividual starting the outbreak either being WT-infected (IW (0) = 1) (red) or co-infected
(IC(0) = 1) (purple). Dashed lines indicate the mean values, C̄. Baseline parameters
as in Table 5.1. Initial states (S(0), ID(0), IW (0), IC(0)) = (N − ID(0)− 1, ID(0), 1, 0)
(red) or (N − ID(0)− 1, ID(0), 0, 1) (purple).
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5.3 Numerical results

Figure 5.20: Histograms showing the probability distribution of C, {ξ(n), n =
0, . . . , 40}, for different rates at which the DIP protection decays in a DIP-infected
individual, δ ∈ {1

2
, 1
4
, 1
8
} weeks−1, three different cases of probabilities of the outcome

of a IC − S infection event, ϕW < ϕD, ϕW = ϕD or ϕW > ϕD (specific values given in
Table 5.7), and the individual starting the outbreak either being WT-infected (IW (0) = 1)
(red) or co-infected (IC(0) = 1) (purple). Dashed lines indicate the mean values,
C̄. Baseline parameters as in Table 5.1. Initial states (S(0), ID(0), IW (0), IC(0)) =
(N − ID(0)− 1, ID(0), 1, 0) (red) or (N − ID(0)− 1, ID(0), 0, 1) (purple).

even though a susceptible individual becomes less likely to become infected with the

DIP. This is due to the higher probability of ϕW meaning that more individuals will be

WT-infected and, on average, the outbreak itself will be larger. Again as βC decreases,

the mean number of co-infected individuals decreases and the histogram shifts to the left

whilst retaining its bi-modal shape. As ϕW increases in relation to ϕD the histogram for

the initial condition IC(0) = 1 shows interesting behaviour. This histogram does not

shift to the right, but probabilities in the approximate region, n ∈ {25, . . . , 35}, become

more concentrated around the second peak.

211



5. A STOCHASTIC MODEL OF VIRAL TRANSMISSION IN THE PRESENCE
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C̄|IW (0) = 1, C̄|IC(0) = 1 1
δ
= 2 weeks 1

δ
= 4 weeks 1

δ
= 8 weeks

ϕW < ϕC 5.14, 2.25 5.21, 2.76 5.24, 3.20
ϕW = ϕC 6.34, 2.39 6.62, 3.14 6.80, 3.82
ϕW > ϕC 6.93, 2.45 7.40, 3.35 7.76, 4.20

Table 5.13: The mean number of co-infected individuals, C̄, for the parametric choices
and initial conditions as described in Figure 5.20.

Figure 5.20 and Table 5.13 show the effect that varying the rate at which a DIP-infected

individual reverts to a susceptible individual, δ ∈ {1
2
, 1
4
, 1
8
} weeks−1, and the probability

that a co-infected individual will pass on solely the WT-strain, ϕW , or DIP-strain, ϕD, has

on the probability distribution for the cumulative number, C, of co-infected individuals,

{ξ(n), n = 0, . . . , 40}, for the cases that the initial infection is a WT-infection, IW (0) =

1, or a co-infection, IC(0) = 1. The chance of no outbreak is the same for an initially

WT-infected individual but the histogram is pushed to the right as ϕW becomes larger in

proportion to ϕD, which is to be expected as WT is more infectious so there is more likely

to be a sustained outbreak. For IC(0) = 1, the probability of the outbreak causing no

further co-infected individuals decreases as 1
δ

increases. This is likely due to the fact that

DIP-infected individuals can only become co-infected in an infection event whereas a

susceptible individual could become WT-infected or DIP-infected rather than co-infected.

The mean number of co-infected individuals, C̄, increases by a small amount as 1
δ

is

increased, meaning that this decay rate affects the number of co-infected individuals.

This seems counter-intuitive, that a longer decay rate results in more infections; however,

this quantity does not represent the size of the outbreak, only the number of co-infected

individuals. So in tandem with the results regarding the size of the outbreak, this increase

just means a higher proportion of the infections are co-infections. As ϕW grows in

relation to ϕD, the mean number of co-infected individuals grows and the histogram is

pushed to the right whilst retaining its shape.

5.3.3 Reproduction number

In this section, the focus is on the effect that varying pairs of parameters within the model

has on the reproduction numbers RC(W ), RC(D) and RW , the stochastic descriptors

described in Section 5.2.3.
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5.3 Numerical results

Figure 5.21: Heatmaps showing the impact on log10(η
C
(s,id,iw,ic)

(w, d)) of different initial
numbers of DIP-infected individuals, ID(0) ∈ {0.25N, 0.75N}, and the rate at which
the protection afforded by the DIP decays in a DIP-infected individual, δ ∈ {1

2
, 1
8
}

weeks−1. Baseline parameters as in Table 5.1. Initial state (S(0), ID(0), IW (0), IC(0)) =
(N − ID(0) − 1, ID(0), 0, 1). Red triangles represent the mean values of the random
variables,

(
E
[
RC(W )

]
,E
[
RC(D)

])
.

5.3.3.1 A marked co-infected individual: RC(W ) and RC(D)

Here we consider the distribution of
(
RC(W ), RC(D)

)
, namely the probability of a

marked co-infected individual directly causing W wild-type infections and D DIP-

infections before the co-infected individual either recovers or dies.

Within Figure 5.21 and Table 5.14, the impact that changing the initial number of

DIP-infected individuals, ID(0) ∈ {0.25N, 0.75N}, and the rate at which the DIP

protection decays within a DIP-infected individual, δ ∈ {1
2
, 1
8
} weeks−1, has on the

probability distribution of the number of WT-infections, RC(W ), and DIP-infections,

RC(D), caused by a marked co-infected individual is studied.
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E
[
RC(W )

]
,E

[
RC(D)

]
ID(0) = 0.25N ID(0) = 0.75N

1
δ
= 2 weeks 0.695, 0.581 0.704, 0.339

1
δ
= 8 weeks 0.698, 0.542 0.708, 0.221

Table 5.14: The mean number of WT-infections, E
[
RC(W )

]
, and DIP-infections,

E
[
RC(D)

]
, caused by a marked co-infected individual for the parametric choices and

initial conditions as described in Figure 5.21.

E
[
RC(W )

]
,E

[
RC(D)

]
ID(0) = 0.25N ID(0) = 0.75N

βC = βW 1.83, 1.46 1.85, 0.661
βC = βW

3
0.697, 0.557 0.706, 0.268

Table 5.15: The mean number of WT-infections, E
[
RC(W )

]
, and DIP-infections,

E
[
RC(D)

]
, caused by a marked co-infected individual for the parametric choices and

initial conditions as described in Figure 5.22.

The heatmaps show the distribution of
(
RC(W ), RC(D)

)
; we can see that as the initial

number of DIP-infected individuals increases the number of DIP-infections tends to
have a slight reduction. This is also shown in the mean values where the E[RC(D)]

decreases when ID(0) increases. For ID(0) = 0.25N , as 1
δ

increases; we see that
E[RC(D)] decreases by a very small amount. However, when ID(0) = 0.75N , the same
increase in the DIP decay period takes a third off the mean value of RC(D). This is
likely due to the fact that DIP-infected individuals protection taking longer to decay
into susceptible individuals is more significant on the profile of the outbreak when the
susceptible population is already small. It is important to note that RC remains largely
unaffected by the changes to these parameters; this is largely intuitive as the wild-type
strain can infect either a susceptible individual or DIP-infected individual.

In Figure 5.22 and Table 5.15, the impact that changing the initial number of DIP-infected
individuals, ID(0) ∈ {0.25N, 0.75N}, and the infection rate for co-infected individuals,
βC ∈ {βW , βW

3
}, has on the number of WT-infections, RC(W ), and DIP-infections,

RC(D), caused by a marked co-infected individual is studied.

We can see that increasing ID(0) has a significant impact on the expected number of
DIP-infections, shifting the profile of the heatmap to the left and reducing the mean
number of these type of infections by two thirds. The number of WT-infections also
very slightly increases as this happens. This is likely as, under these conditions, it is
more likely that the first event that happens is a ID → IC WT-infection and less likely
that a S → IW infection is the first event, compared to the case that the initial number
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Figure 5.22: Heatmaps showing log10(η
C
(s,id,iw,ic)

(w, d)) for different initial numbers
of DIP-infected individuals, ID(0) ∈ {0.25N, 0.75N}, and the infection rate of a co-
infected individual, βC ∈ {βW , βW

3
}. Baseline parameters as in Table 5.1. Initial state

(S(0), ID(0), IW (0), IC(0)) = (N − ID(0)− 1, ID(0), 0, 1). Red triangles represent the
mean values of the random variables,

(
E
[
RC(W )

]
,E
[
RC(D)

])
.
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Figure 5.23: Heatmaps showing log10(η
C
(s,id,iw,ic)

(w, d)) for different initial numbers
of DIP-infected individuals, ID(0) ∈ {0.25N, 0.75N}, and the probability that a co-
infected individual passes on solely the WT-strain, ϕW , or the DIP, ϕD, in an IC − S
infection interaction, ϕW < ϕD or ϕW > ϕD (specific values given in Table 5.7).
Baseline parameters as in Table 5.1. Initial state (S(0), ID(0), IW (0), IC(0)) = (N −
ID(0)− 1, ID(0), 0, 1). Red triangles represent the mean values of the random variables,(
E
[
RC(W )

]
,E
[
RC(D)

])
.

of DIP-infected individuals is low. Newly co-infected individuals are less infectious

than newly WT-infected individuals and therefore the “competition” for our marked co-

infected individual is lower and as such, the average number of WT-infections increases

for our marked individual.

As expected, decreasing the rate of infection of a co-infected individual, βC , has a

pronounced effect on the number of both type of infections. This is reflected in the means

for both types of infections; see Table 5.15.

In Figure 5.23 and Table 5.16, the impact that changing the initial number of DIP-infected

individuals, ID(0) ∈ {0.25N, 0.75N}, and the probability of a co-infected individual
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E
[
RC(W )

]
,E

[
RC(D)

]
ID(0) = 0.25N ID(0) = 0.75N

ϕW < ϕC 0.568, 0.674 0.572, 0.324
ϕW > ϕC 0.821, 0.443 0.837, 0.213

Table 5.16: The mean number of WT-infections, E
[
RC(W )

]
, and DIP-infections,

E
[
RC(D)

]
, caused by a marked co-infected individual for the parametric choices and

initial conditions as described in Figure 5.23.

E
[
RC(W )

]
,E

[
RC(D)

]
1
δ
= 2 weeks 1

δ
= 8 weeks

βC = βW 1.84, 1.18 1.85, 0.985
βC = βW

3
0.700, 0.460 0.704, 0.382

Table 5.17: The mean number of WT-infections, E
[
RC(W )

]
, and DIP-infections,

E
[
RC(D)

]
, caused by a marked co-infected individual for the parametric choices and

initial conditions as described in Figure 5.24.

passing on solely the WT-strain, ϕW , or DIP-strain, ϕD, with parameters ϕW < ϕD or

ϕW > ϕD (specific values given in Table 5.7) has on the probability distribution of the

number of WT-infections, RC(W ), and DIP-infections, RC(D), caused by a marked

co-infected individual is studied.

We can see that increasing ID(0) has a significant impact on the expected number of

DIP-infections, shifting the profile of the heatmap to the left and reducing the mean

number of these type of infections by approximately half. Again, we see that the number

of WT-infections also very slightly increases as this change occurs. As is to be expected,

when a co-infected individual becomes more likely to pass on the WT-strain rather than

the DIP-strain, this is reflected in the means for both types of infections.

In Figure 5.24 and Table 5.17, the impact that changing the rate of infection for co-

infected individuals, βC ∈ {βW , βW

3
}, and the DIP-decay rate, δ ∈ {1

2
, 1
8
} weeks−1,

has on the probability distribution of the number of WT-infections, RC(W ), and DIP-

infections, RC(D), caused by a marked co-infected individual is studied.

We can see a clear effect when the rate of infection of a co-infected individual, βC ,

is decreased, lowering the expectation of both types of infection. As in Figure 5.21,

increasing the length of protection from the DIP reduces the number of DIP-infections

whilst slightly increasing the expected number of WT-infections.

Within Figure 5.25 and Table 5.18, the impact that changing the rate of infection for co-

infected individuals, βC ∈ {βW , βW

3
}, and the probability that a co-infected individual
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Figure 5.24: Heatmaps showing log10(η
C(w, d)) for differing rates at which the pro-

tection afforded by the DIP decays in a DIP-infected individual, 1
δ
∈ {2, 8} weeks, and

the rate of infection of a co-infected individual, βC ∈ {βW , βW

3
}. Baseline parameters

as in Table 5.1. Initial state (S(0), ID(0), IW (0), IC(0)) = (0.5N − 1, 0.5N, 0, 1). Red
triangles represent the mean values of the random variables,

(
E
[
RC(W )

]
,E
[
RC(D)

])
.

E
[
RC(W )

]
,E

[
RC(D)

]
ϕW < ϕD ϕW > ϕD

βC = βW 1.56, 1.30 2.10, 0.834
βC = βW

3
0.570, 0.499 0.830, 0.328

Table 5.18: The mean number of WT-infections, E
[
RC(W )

]
, and DIP-infections,

E
[
RC(D)

]
, caused by a marked co-infected individual for the parametric choices and

initial conditions as described in Figure 5.25.
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Figure 5.25: Heatmaps showing log10(η
C
(s,id,iw,ic)

(w, d)) for differing rates of infection of
a co-infected individual, βC ∈ {βW , βW

3
} and the probability that a co-infected individual

passes on solely the WT-strain, ϕW , or the DIP, ϕD, in an IC − S infection interaction,
ϕW < ϕD or ϕW > ϕD (specific values given in Table 5.7). Baseline parameters as
in Table 5.1. Initial state (S(0), ID(0), IW (0), IC(0)) = (0.5N − 1, 0.5N, 0, 1). Red
triangles represent the mean values of the random variables,

(
E
[
RC(W )

]
,E
[
RC(D)

])
.
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Figure 5.26: Heatmaps showing log10(η
C
(s,id,iw,ic)

(w, d)) for differing rates at which the
protection the DIP offers a DIP-infected individual decays, δ ∈ {1

2
, 1
8
} weeks−1 and the

probability that a co-infected individual passes on solely the WT-strain, ϕW , or the DIP,
ϕD, in an IC − S infection interaction, ϕW < ϕD or ϕW > ϕD. Baseline parameters
as in Table 5.1. Initial state (S(0), ID(0), IW (0), IC(0)) = (0.5N − 1, 0.5N, 0, 1). Red
triangles represent the mean values of the random variables,

(
E
[
RC(W )

]
,E
[
RC(D)

])
.

passes on solely the WT-strain, ϕW , or the DIP-strain, ϕD, with parameters chosen

such that ϕW < ϕD or ϕW > ϕD (specific values given in Table 5.7), has on the

probability distribution of the number of WT-infections, RC(W ), and DIP-infections,

RC(D), caused by a marked co-infected individual is studied.

Here we can clearly see the effects caused by varying the parameters. When the rate of

infection of a co-infected individual, βC , is decreased, the expectation of both types of

infection lowers significantly and the heatmap profile shifts towards the lower end of

the spectrum for both types of infection. We can also see that in the case that ϕW > ϕD,

WT-infections become more prevalent whilst DIP-infections decrease.

In Figure 5.26 and Table 5.19, the impact that changing the rate at which a DIP-infected
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E
[
RC(W )

]
,E

[
RC(D)

]
1
δ
= 2 weeks 1

δ
= 8 weeks

ϕW < ϕC 0.569, 0.557 0.571, 0.461
ϕW > ϕC 0.827, 0.365 0.832, 0.304

Table 5.19: The mean number of WT-infections, E
[
RC(W )

]
, and DIP-infections,

E
[
RC(D)

]
, caused by a marked co-infected individual for the parametric choices and

initial conditions as described in Figure 5.26.

E[RW ] ID(0) = 0.25N ID(0) = 0.75N
1
δ
= 2 weeks 2.339 2.474

1
δ
= 8 weeks 2.360 2.523

Table 5.20: The mean number of infections caused by a marked WT-infected individual,
E[RW ], for the parameter choices and initial conditions described in Figure 5.27.

individual reverts to a susceptible individual, δ ∈ {1
2
, 1
8
} weeks−1, and the probability

that a co-infected individual passes on solely the WT-strain, ϕW , or the DIP-strain, ϕD,

has on the probability distribution of the number of WT-infections, RC(W ), and DIP-

infections, RC(D), caused by a marked co-infected individual is studied. We see that

increasing the length of protection the DIP gives causes a reduction in DIP-infection

events whilst having a very small effect on the number of WT-infections. We also see

that when ϕW is greater than ϕD, as opposed to less than, the number of WT-infections

increases whilst the number of DIP-infections decreases.

5.3.3.2 A marked WT-infected individual: RW

The number of infections caused by a marked WT-infected individual, RW , is not

significantly affected by changes to the DIP-related parameters; therefore we shall show

the effect of varying one pair of DIP-related parameters for illustrative purposes only.

Figure 5.27 and Table 5.20 display the impact that changing the initial number of DIP-

infected individuals, ID(0) ∈ {0.25N, 0.75N}, and the rate at which a DIP-infected

individual reverts to a susceptible individual, δ ∈ {1
2
, 1
8
} weeks−1, has on the probability

distribution of the number of WT-infections caused by a marked WT-infected individual,

RW , and its mean, E[RW ].

As is to be expected, these DIP-related parameters do not have a significant impact

on the number of WT-infections by a marked individual. However, note that whilst

the impact is small, increasing the period over which the protection afforded by the
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Figure 5.27: Histograms showing the probability distribution of RW , {ηW(s,id,iw,ic)
, w =

0, . . . , 20} for different initial numbers of DIP-infected individuals, ID(0) ∈
{0.25N, 0.75N} and the rate at which the protection afforded by the DIP decays in a
DIP-infected individual, δ ∈ {1

2
, 1
8
} weeks−1. Initial state (S(0), ID(0), IW (0), IC(0)) =

(N−ID(0)−1, ID(0), 1, 0). Dashed lines indicate the mean value of the random variable,
E[RW ].
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5.4 Discussion

DIP decays increases the expected number of infections by our marked WT-infected

individual. This seems counter-intuitive, but can be explained by the fact that if there

are more DIP-infected individuals, there is a higher chance that a WT-infection creates a

co-infected individual than a WT-infected individual; this is beneficial to our WT-infected

individuals chances of causing an infection as WT-individuals are more infectious than

co-infected individuals. This logic also applies for the result showing that increasing the

initial number of DIP-infected individuals also increases E[RW ].

5.4 Discussion

We have defined and analysed a compartmental epidemic model of viral infection in the

presence of both a wild-type and defective interfering strain. This is an area of research

that has not been explored to a great depth previously, but building on previously well

known models of viral epidemic dynamics we aim to explore the effect of a DIP-strain of

virus on the number of individuals infected and their outcomes for an outbreak in a closed

population. Our interest in the impact the presence a DIP-strain of a pathogenic virus

can have is motivated by research being done into using defective interfering particles of

a given virus as a therapeutic agent (known as TIPs); this is being researched for viruses

such as SARS-CoV-2 (Locke et al. (2024)).

Our focus within this chapter has been investigating stochastic descriptors for the model,

such as the size of the outbreak or the cumulative number of co-infected individuals

over the course of the outbreak. In Section 5.2, the methods used to develop algorithms

capable of finding the probability distribution and expectation of these stochastic de-

scriptors were presented, as well as the algorithms themselves. These algorithms allow

complete probability distributions to be calculated for the summary statistics we consider.

Furthermore, in Section 5.3, we investigated the effect of varying different DIP-related

parameters on each of the summary statistics presented, with a view to understanding the

extent to which the characteristics of the DIP strain can impact the outbreak.

Our work shows that the characteristics of the DIP can have a profound impact on an

outbreak of a virus, with a higher proportion of the population being infected by the DIP

(75%) at the onset of the outbreak causing a marked decrease in the expected size of the
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outbreak compared to if the number of DIP-infected individuals was low (25%). This is
mirrored in the exact reproduction number

The work within this chapter is largely theoretical at its current stage, however one
potential extension would be to attempt to use published data to calibrate some of our
parameters in a more precise way.
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Chapter 6

Concluding remarks

In this thesis, mathematical models for in vitro and in vivo dynamics of the bacterium
Bacillus anthracis, the causative agent of the disease anthrax, have been considered. We
have also considered a model of viral epidemic dynamics for a pathogenic wild-type
strain of a given virus and defective interfering strain of the same virus within a closed
population.

In Chapter 3, a two-compartment stochastic model describing the behaviour of toxin-
producing bacteria has been defined and analysed. By making use of first-step arguments
we have studied several summary statistics, such as the lifespan of a bacterium or the
number of toxins produced by the bacterium and its progeny. Our methods have been
illustrated by focusing on the bacterium B. anthracis under the case of antibiotic treatment.
A potential avenue for further investigation is to use in vitro data to better calibrate
the parameters in the model for this scenario. Whilst we have only considered two-
compartments within the scope of this thesis, a particular strength of our methodology is
that it could be applied to any network of compartments, as long as the bacteria behave
independently. For example, in the future this could be applied in the case of B. anthracis

once it enters the blood stream and makes its way throughout a host.

We begin to consider quantifying the toxin production of B. anthracis in Chapter 3 and
extend this work in Chapter 4. We have developed and proposed a delay differential
equation model of in vitro dynamics of B. anthracis growth and PA production and degra-
dation, with the motivation of quantifying PA production and degradation in vitro. As PA
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is essential in binding other toxin proteins to cell surfaces, we believe that understanding

its dynamics in vitro is an important step towards gaining a fuller understanding of in

vivo toxin dynamics. A benefit of the approach we undertook is that the model can be

extended and adapted as further data is produced; this is shown by the incorporation of

separate decay terms of PA due to the experiment with protease inhibitors by Zai et al.

(2016) and its application to the other considered datasets.

In the work on the delay differential equation (DDE) model, we have made use of a

Bayesian approach to calibrating parameters and compared the results between four

separate in vitro datasets. The homogeneity of some parameters across the datasets,

such as the PA production rate, suggests that these parameter values could be used as

prior beliefs whilst considering corresponding parameters in a model of in vivo anthrax

infection.

We also have produced a stochastic analog of a previously published model of within-

host anthrax infection, by Day et al. (2011), within Chapter 4 by making use of an

approximation of the Gillespie algorithm, known as tau-leaping. This stochastic analog

allowed us to compute the response probabilities of the model for various initial spore

exposures, an important result that cannot be obtained from a deterministic model.

Within Chapter 5, a compartmental epidemic model of viral infection in the presence of

both a wild-type and defective interfering strain is introduced and analysed. This model

builds upon well known models of wild-type viral epidemics and expands their scope

to include DIP-infections and co-infections. The work in this chapter is motivated by

research into using defective interfering particles of a given virus as a therapeutic agent,

where the characteristics of the DIPs will have a significant impact on their efficacy, such

as in the case of SARS-CoV-2 (Locke et al. (2024)).

To analyse summary statistics of the compartmental epidemic model we use techniques

involving first-step arguments, as was also shown in Chapter 3. Here, the model is too

complex to find a closed analytic solution for the summary statistics directly, and we

therefore use these first-step arguments as the basis of an algorithmic approach to obtain

the probability distributions and expectations of our stochastic descriptors, such as the

number of individuals infected throughout the course of an outbreak or the reproduction

number for a marked co-infected individual. The developed algorithms are then used to
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demonstrate the impact of the DIP-related parameters on each of the summary statistics.
The work done in this chapter shows that the characteristics of the DIP strain have a
significant impact on the size and mortality rate of an outbreak of a pathogenic virus.
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Appendix A

Python codes

Some of the codes used within this thesis have been provided in a Github repository.

Here I will briefly explain the content of each code and the figures within the thesis they

were used to produce.

A.1 C3-Lifespan-of-a-bacterium

We calculate the analytic value of E[T1], from Section 3.3.1, along a grid of given values

of ν12 and ν21, for three different values of µ2. We then present these results in heatmaps

with an associated colourbar, which produces Figure 3.3.

A.2 C4-Tau-Leap-Dose-Response

This code makes use of the tau-leaping algorithm (see Section 4.1.4.3) as a stochastic

analog to the model described by Day et al. (2011). We carry out 1000 simulations

for a number of initial doses of spores and calculate the response probability for these

doses. The median of the simulations for each initial dose exposure is also calculated

and compared to the solution of the deterministic model. These correspond to Figures

4.13, 4.14, 4.15 and 4.16.
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A.3 C4-Dstl-ABC-SMC and C4-Dstl-Plotting

The first code (C4-Dstl-ABC-SMC) follows the ABC-SMC algorithm for 20 iterations
with a sample size of 200 parameter sets for the model described in Section 4.2. These
accepted parameter sets are saved and indexed for use in plotting in the next code (C4-
Dstl-Plotting). The code for plotting loads the saved parameter sets from 10 separate
runs of the ABC-SMC algorithm and uses these parameter sets to produce Figures 4.33,
4.34, 4.35 and 4.36.

A.4 C5-Size-Distribution

Here we algorithmically calculate αi,j(r, d), using Algorithm 5.3. We then use these
solutions to show the impact of varying the initial number of DIP-infected individuals in
the population, as well as presenting the differences between whether the individual that
started the outbreak was WT-infected or co-infected. This is shown in Figures 5.10 and
Figures 5.11.
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CARRUTHERS, J., LÓPEZ-GARCÍA, M., GILLARD, J.J., LAWS, T.R., LYTHE, G.
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LÓPEZ-GARCÍA, M. (2016). Stochastic descriptors in an sir epidemic model for hetero-

geneous individuals in small networks. Mathematical biosciences, 271, 42–61. 36,

180

235



REFERENCES
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