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ABSTRACT

This research endeavoured to advance the understanding of wheel/rail interface
adhesion and subsequently improve adhesion estimation and validation approaches in
railway operations. The study comprises of an extensive literature review that
established research gaps in wheel/rail adhesion studies, real-world railhead data
analysis, and the development of a Neural Network model integrated with a data
capturing tool. The literature review established the current understanding of low
adhesion, incorporating background studies on wheel/rail interface, low adhesion
mechanisms, and techniques for friction measurement and forecast. This aided the
selection of appropriate methodology employed in this research. The use of real-world
forward-facing images, railhead images, railhead friction and environmental data
obtained from Heritage Railway locations in the UK gave this research a unique view into
wheel/rail low adhesion mechanisms in the field. The Neural Network model was refined
to include these field data, enhancing its accuracy and adaptability. The integration of the
camera box (data capture tool designed), validated through testing done on rolling stock
at different locations, added practicality to the research. The outcome of this research
confirmed the feasibility and versatility of the friction estimation model combined with
the camera box for use in the rail industry. It is poised to enhance safety, operational
efficiency, and cost-effectiveness in the industry.
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CHAPTER ONE



1. INTRODUCTION

According to Department of Transport [1], rail travel is arguably one of the safest forms
of public transportation (excluding suicide related fatalities), having recorded 40 non-
suicide related fatalities in 2018/19 (which included 25 members of the public who could
have been level crossing users or trespassers) compared to the 1784 fatalities recorded
for road usage. Travelling by rail is also considered to be a greener mode of
transportation as it provides an electricity powered alternative. Figure 1.1 shows the
comparison of carbon footprint generated by different modes of transportation, with rail
travel accounting for the lowest carbon footprints.

Carbon footprint of travel per kilometer, 2022

The carbon footprint of travel is measured in grams of carbon dioxide-equivalents® per passenger kilometer. This
includes the impact of increased warming from aviation emissions at altitude.

246 g
171¢g

170 g

Domestic flight

Diesel car

Petrol car
Short-haul flight 151¢g
Long-haul flight 148 g

Motorbike

Bus (average)

Bus (local London)
Plug-in hybrid
Electric car

National rail

Tram

London Underground
Eurostar (to Paris)
Data source: UK Government, Department for Energy Security and Net Zero OurWorldInData.org/transport | CC BY

Note: Official conversion factors used in UK reporting. These factors will vary across countries depending on energy mix, transport
technologies, and occupancy of public transport. Data for aviation is based on economy class.

Figure 1. 1: Carbon footprints of different modes of transportation in the UK, 2022 [2]

Low adhesion in the wheel/rail interface has been recognised as one of the major causes
of delay in the railway industry. These delays may be caused by braking problems
resulting in signals passed at danger (SPADs) or station overruns which are also
significant safety concerns, or delays can result from poor traction. The effect of low
adhesion is said to cost an estimated £355m annually during autumn where roughly £290
million is the performance impact cost, £0.5 million is safety impact cost and £64 million
is spent on cleaning, management and prevention cost [3]. Low adhesion events cause
safety concerns and high-cost implication for the railway industry, which is why this
research is being done.



The railway industry currently has limited methods of adhesion forecasting with the
main validated method being the Met Office Adhesion index. The adhesion index uses a
bank of weather data readily available to the met office to predict wind speeds, possible
leaf falls and moisture/ice presence from weather forecast. This provides information
only related to weather and not the railhead state. It does not give real-time information
of railhead conditions which in reality holds more information for adhesion levels,
meaning the adhesion index does not have a high temporal resolution.

In order to effectively mitigate low adhesion, there is a need for a more accurate method
of adhesion forecasting. Therefore, a method that can estimate railhead adhesion levels
in real-time and give the exact location of the probable low adhesion section is required.

This adhesion estimation method will help to cut the costs of low adhesion mitigation and
delay related costs whilst improving the safety and confidence of the rail industry. If
implemented properly, it will ultimately make the rail system run more safely and
efficiently.

1.1 AIMS AND OBJECTIVES

The main aim of the project was to improve the understanding of wheel/rail interface
low adhesion mechanisms and to use it to improve adhesion forecasting by employing a
novel neural network model. This model was then implemented along sides a data
capture system designed specifically for on-train use.

The following objectives were set to aid the completion of the aim stated above:

e Reviewing academic literature and operational information from industry reports
to establish the current level of understanding of low adhesion; the role of leaf
layers and wet-rail phenomenon in this including techniques for measuring the
level of these contaminants on the rail head. Approaches for low adhesion
forecasting/prediction will also be investigated.

e Analysis of the rail head conditions in a variety of locations at different times to
assess levels of contamination and friction levels and gather data for the model.

e Development of the existing Neural Network model for friction prediction in such
a way that it incorporates rail head images and enhance it to include other
parameters and build-up the data sets used within the model.

e Development ofa simple tool for imaging the rail head and track surroundings and
for gathering environmental conditions on a railway vehicle.

e Carry out high speed test on the tool in conjunction with the friction prediction
tool to validate the output.



1.2 NOVEL ASPECTS AND POTENTIAL IMPACT

A significant aspect of the research involved analysing rail head conditions in various
locations at different times to assess relationship between environmental factors and
friction variations. This real-world data collection provided valuable insights into the
dynamic nature of low adhesion and laid foundation for the development of a neural
network for friction prediction. This involved incorporating rail head images,
environmental parameters (relative humidity, air, and rail temperature), and additional
parameters to improve the model's accuracy and adaptability.

A one-of-a-kind data capture system was developed which is not only useful for this
research but can potentially be used by rail industry to capture railhead temperature
with exact location output.

In summary, the research contributes unique insights into the understanding of adhesion
at the wheel/rail interface using real-world data and provides practical solutions for
improving adhesion forecasting in the rail industry. Its impact extends to enhancing
railway safety, efficiency, and reliability.

1.3 THESIS LAYOUT

Chapter 2 reviews of past work done on railhead friction which include wheel/rail
characteristics, low adhesion in the wheel/rail interface (causes, mechanism, layer
creations and measurement techniques), methods of low adhesion forecasting and an
introduction to the new friction prediction tool.

Chapter 3 summarises the approach used for each step taken in this research.

Chapter 4 analyses railhead temperature, humidity and friction data obtained from the
field visits. This included the methodology used in gathering the data, results obtained
from the data, discussion surrounding the implication of the results and trends noticed
and a conclusion.

Chapter 5 is outlining the process of the friction prediction tool development, and it
justifies the use of the Gaussian process. Validation and retraining of the prediction tool
were also discussed in this chapter.

Chapter 6 looks at the robustness of the prediction tool in terms of the types of image
formats it can process. Several images captured in-lab were fed into the prediction tool
were varied looking at the following parameters: image orientation; static/dynamic
image capture; image distance. The predictions resulting from the varied images were
analysed and discussed to show how flexible the prediction tool’s image processing is.

Chapter 7 details the steps and processes taken in designing the on-train data capture
system. It details the methodology used in testing the various designs development and
shows the resulting final design with reason. The final design was tested on 4 different
occasions, the results are a discussed in this chapter.



Chapter 8 discusses the results and implications of the work done from preceding
chapters.

Chapter 9 concludes the thesis with recommendations for future works and publications
arising from this research.



CHAPTER TWO



2. LITERATURE REVIEW

2.1 INTRODUCTION

The aim of the literature review was in the first part to give an overview of wheel/rail
tribology including the complex contact mechanics and fundamental friction and damage
mechanisms. The second part focuses on the problem of low adhesion in the wheel/rail
interface, typically seen in Autumn. Causes and mechanisms are outlined as well as ways
of predicting the interface conditions. Research gaps are detailed which support the
stated aims of the work in the introduction.

A paper grading technique was adapted from [4], it was used to rank the materials used
in the literature review based on the relevance to the sections of the literature review
they were used as well as in highlighting where gaps exist.

2.2 WHEEL/RAIL INTERFACE CHARACTERISTICS

The contact between the rail and wheels of a train is considered extremely
serious/important in terms of the safety and effective operation of the railway network.
The contact is expected to carry the weight of the train and transmit the braking and
traction forces [5]. The management of the contact mechanics of the wheel/rail interface
contributes to keeping operating costs down meaning the contact stresses low for wear
reduction and managing friction levels.

The wheel/rail contact is a more complex system when compared to other engineering
contact mechanisms. The complexity is mostly caused by the open nature of the system
and the dynamic nature of the external (environmental) conditions surrounding the
operations.

The contact characteristics such as the position, size and force vary along a distance of a
line for each wheel due to the different profiles on each caused by differences in rate of
wear on each wheel of the railway vehicle [6].

2.2.1 CONTACT MECHANICS

2.2.1.1 CONTACT LOCATION AND STRESS

The relative position of the contact between the wheel and the rail, which is
approximately equal to 1cm? in area, moves continuously as the train moves along a
section of the track. The wheel and rail profile play a key role in determining the exact
location of the contact. The location of the contact is also dependent on the degree of
curvature of the track as well as the wheel bogie design or position in the train, for
example if the wheel on the bogie is the leading or trailing one. On a straight track the
wheel tread remains in almost continuous contact with the rail head. The wheel flange
will intermittently make contact with the rail gauge as the wheelsets “hunt” or the train
enters a curve. Figure 2.1 shows the lead wheelset of the front bogie of the train turning
on a right-hand curve and the corresponding contact stress.



Figure 2. 1: Contact stress on the left and right wheel/rail contact [6]

Figure 2.1 shows the section of the right and left train wheel in contact with the rail gauge.
This diagram shows the stress concentrated on the inside (flange) of the rail wheel which
carries the major load at the cornering of the train.

The contact stress is responsible for critical issues in the rail operation such as wear and
rolling contact fatigue (RCF). RCF crack growth and shakedown limit (which is the load
limit below which the material retains its elasticity in a steady state [7]) are determined
by contact pressure and friction in the contact. Although, the friction can be controlled
with the use of friction modifiers.

The contact stresses experienced by the wheel and rail are dependent on the position of
the contact, as seen in Figure2.2, which gives a more detailed look into the cross-section
of the wheel and rail with the three probable regions of contact.

Region A

Figure 2. 2: Contact regions on the wheel/rail interface [6]



a) Region A This region represents the contact location between the wheel tread
and rail head. This most common location of contact as it usually occurs when
the train is moving on a length of straight track or curves with a very big radius.
This region is known to have the lowest contact stresses as it maintains the highest
possible area of contact as seen in Figure 2.3.

S

P

Figure 2. 3: Contact between the wheel tread and railhead

b) Region B: This region represents the contact location between the wheel flange
and the rail gauge corner. The contact stresses are usually much higher than that
of region I because the contact area in the region is much smaller (as seen below
in Figure 2.4) than region I's area of contact. This region produces a higher rate of
wear.

4
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Figure 2. 4: Contact between wheel flange and rail gauge corner

c) Region C: This region represents the contact location between the field side of
wheel and the rail. The contact location is the least probable to occur of the three
regions discussed. In the unlikely case of its occurrence, it will yield high contact
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stresses. The high stresses will cause unwanted wear which can result in wrong
wheelset steering[6].

The wheel or rail profile shape changes because the contact location is uneven over the
profiles of the wheel and rail which is caused by material flow and wear.

2.2.1.2 Contact pressure Solution/Mathematical model for Non-Conforming Elastic Bodies
Non-Conforming Elastic Bodies (Circular Contact area)

Hertz [8] analysis is the easiest means of defining the wheel/rail contact geometry and
resulting stress. In the Hertz analysis for “solids of revolution”, the train wheel and rail
can be taken as two perpendicularly positioned cylinders in contact with each other
therefore assuming a circular contact to simplify the case. Po (maximum contact pressure)
is given by Equation 2.1 below:
3 3FE?

Po= Vs T (2.1)
where it is assumed that the material for the rail and wheel are the same; F is the normal
load, E is the Young’s modulus and v is the Poisson ratio.

R is the effective radius given as:

1 1 1
E_R_1+R_2 (2.2)

Such that; R1 and R: are the wheel and rail contact radii [9].
Non-conforming Elastic Bodies (Elliptical Contact area)

Srivastava et al. [10] and Zong [11] stated that a contact area takes on an elliptical shape
when two elastic non-conforming bodies are held down against each other. For the
elliptical area having a semi major axis ‘a’ on the x-axis and minor axis ‘b’ on the y-axis, as
seen in Figure 2.5, the contact pressure distribution, P can be given as:

p=p(1-Z-2) (23)

Figure 2. 5: Pressure distribution across elliptical contact area [10]

where ‘d@’, ‘b’ and ‘Py’ are given as:
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. 3n P(K;+K5)|3
=m [ 4 (A+B) (2.4)
1
_ . [3r P +KD]3
b=n [ 4 (A+B) (2:5)
3F
Py = py— (2.6)

where ‘A’ and ‘B’ are positive geometric constants used whilst considering the wheel/rail
configuration. ‘m’and n’are tabular functions given by [12] and ‘Kz’ and ‘K2’ are constants
defined by Equations 2.7 and 2.8:

1-v3
K, = n;W (2.7)
_ 17
2= g, (2.8)

‘vw’and Vr’are Poisson’s ratio for the wheel and rail respectively and ‘Ew’and ‘Er’ are the
Young’s modulus of elasticity of the wheel and rail materials respectively.

The Hertzian approach Involves the following assumptions:

e The surfaces are non-conforming and continuous (Contact area much lesser that
radii of body).

e Effects of strain is negligible due to much smaller contact area than radii of body.
e The surfaces in consideration are frictionless.
e Individual solids can be considered as an elastic half-space.

2.2.1.3 OTHER METHODS OF DETERMINING THE WHEEL/RAIL CONTACT CONDITIONS
Other approaches built on the Hertz theory have been considered by different
researchers to analyse the wheel/rail conditions. Below are two other methods used:

FINITE ELEMENT METHOD (ANSYS)

FEM based simulations are tools that have been used to determine the distribution of
contact pressure, contact zones, and contact stresses which can be done based on
different wheel profiles and configurations of the wheel.

11
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Figure 2. 6: Wheel/rail assembly geometric model in ANSYS [10]

In work by Srivastava et al, the FEM (Ansys) mesh density, with a mesh element size of
1mm, was used around the contact region and has been discovered to have a direct
impact on the simulation solution accuracy [10]. A comparison was done using results
obtained from the Hertz contact theory method and the Ansys simulation done with a
geometrical model seen in Figure 2.6. Similar wheel/rail mechanical properties and
contact geometries, such as radius of curvature used in the theoretical method, were used
in designing the Ansys model.

The results from the Hertz analytical method showed that there was a decrease in stress
as the wheel profile radii increased, its increase consequently increased the ellipse
contact area width while the length is decreased. On the other hand, there was a
periodical fluctuation between a decrease and increase in the stress results obtained from
the FEM simulation. This trend was opined by [10] to be as a result of the near realistic
nature of the simulations, where the materials do not have linear limits nor have a half
space assumption. The Hertz contact model is based on both assumptions stated above.
Therefore, the FEM simulation is a more appropriate method of studying or analysing the
wheel/rail contact parameters when available.

NUMERICAL METHODS USING MATLAB

Huang et al. [13] used a simplified schematic diagram of the wheel/rail contact on a
straight stretch of track as seen in Figure 2.7, having ‘d’ as the distance between the centre
lines of the parallel running rail cross-sections, W is the axle load and T is the length of
the distance between both of the back wheel flanges.

12
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Figure 2. 7: Schematics of the wheel/rail contact [13]

Due to the complexity of finding the centre as a result of the varying relative position of
wheel and rail, a method was established by Huang et al. to determine the centre position
of the contact points in several contact situations. Using the x-y plane coordinate system
for the wheel tread section of the “China’s National Standard for Passenger Train Wheels
and Rails” a wheel/rail cross-section was drawn as seen in Figure 2.8.

wheel profile

Fi | - — A
rail profile K »n /

Figure 2. 8: Coordinate systems used for the section [13]

Points A through to K in Figure 2.8 are the partitioning points on the wheel surface profile,
with C being the vertex of the wheel flange. While points Ai through to F1 are the
partitioning points on the rail surface profile and the vertex of the rail profile is G.

It was stated the contact points of any two surfaces could be derived by solving the
equations of both profiles simultaneously and if a solution is non-existent, then the
surfaces are not in contact, as seen in Figure 2.9. In a case where the equation gives one
solution it means there is only one contact point, which is the desired solution but when
two or more solutions are produced then the surfaces have become immersed in each
other implying there are two or more contact points seen in Figure 2.9. This may be the
case when the wheel travels on curved tracks although this two-contact point scenario
happens rarely. The equation of profiles 1 and 2 can be given as y; = f;(x) and y, = f5(x)
respectively.
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Figure 2. 9: The relative position of the wheel and rail profiles [13]

The complex nature of the wheel/rail contact which consists of arcs and straight lines as
seen in Figure 2.8 makes it difficult to find the solutions using analytical methods, hence
MATLAB was used to create a numerical method [13].

The wheel profile mathematical equation y; = f;(x) was given as Equation 2.9:

[
25227 +¢lx — (~422840)),  —60.0 < x< — 422840
220.8243 + {/220° — [x — (-32)F, - 42.2840 < x< — 20.1944

498.9749 — /5007 — [x — (=32)°,  —20.1944 < x¥<9.5625

100.3593 — /1002 — (x — 1.25),  9.5625 < x<29.1531
P=017.775 - /147 — (x - 25.2466)°,  29.1531 < x<38.4025

x — 38.4025 g . -
12.9872 + W( 12.9872 + 15.6023), 38.4025 < x<39.3543
3 h ) RIK -

9.4454 + /182 — (x — 56.2686)",  39.3543 < x<49.4629

15.0 4 /127 — (x — 54.07°, 49.4629 < x<62.0

6.0557 4 /247 — (x — 46.0)", 62.0 < x<70.0

(2.9)

The rail profile’s cross-section equation y, = f,(x) was given as Equation 2.10:

—14.8408 + h — /132 =[x = [ = (=224108)F, - 35.3946 < x< — 25.3361
~80.1223 + h — /80* — [x — [ = (=7.3333), —25.3361 <x< —10.0
n= 300 + h — /3007 — (x — 1), = 10.0 < x<10.0

80.1223 + h — \/80° — (x — 1 - 7.3333)%.  10.0 < x<25.3361

14.8408 + h — /132 — (x — [ — 22.4108)%, 25.3361 < x<35.3946
y (2.10)
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SUMMARY

Both FEM and numerical method of wheel/rail contact analysis discussed here have their
strengths and weaknesses. One of the key notable points is that neither approach
discussed here take into account the contact surface roughness as they both based off the
Hertzian contact model with the assumption that contacting surfaces are perfectly
smooth. However, in reality, most surfaces are not perfectly smooth; they have
irregularities and roughness on various scales. Ignoring surface roughness in the Hertz
contact model can lead to several consequences, such as contact area size
underestimation and incorrect prediction of stress distribution [9].

The FEM analysis offers a 3-dimensional view of the wheel/rail contact, thereby showing
the von Mises stress distribution for the contact in 3 planes. This helps to locate the
initiation point for fatigue crack. With FEM stresses can be obtained at every point of the
contact, which makes it easier to highlight points of high stress visually. Given these
advantages, FEM has shown a trend of inconsistencies in analysis of complex shapes as
that presented in the wheel/rail contact, especially in the generation of meshes for such
shapes. This method shows promise as with advancement FE packages, complex shapes
can be refined better for analysis.

On the other hand, the numerical method covers a simplified analysis of the
wheel/contact using mathematical model on MATLAB and does not require 3-
dimensional model of the contact to be drawn out. This method considers varying contact
profile geometry just like the FEM. This method involves a lot of equation derivations and
calculations to obtain contact point coordinates and it is a lengthy process, meaning more
errors will be involved. This method also provides a contact stress distribution as in the
FEM but does not include a von Mises stress distribution. Due to it been a mathematical
model, an error correction factor can be included to improve the accuracy.

2.2.2 CREEP FORCE

As stated earlier the performance of the train is affected greatly by the wheel/rail
interactive (friction) forces, hence the performance is also determined by creepage which
is influenced by wheel and rail profile. Eadie et al. [14] also opined that parameters such
as wheel and rail roughness, Hertzian contact pressure and third body (interfacial layer)
shear strength amongst other factors impact the friction force.

Creep takes place when two rigid bodies are under axial compressive loads and can roll
over one another [15]. It must be noted that when influenced by gravity, usually referred
to as gravity railway (movement of carriages down a slope applying only force of gravity)
the wheel/rail components in contact produce elastic deformation, while the contact area
grows into an “elliptical contact spot”, hence proving the Hertz theory valid [15, 16],
consisting of adhesion and creep zones, as seen in Figure 2.10 below.
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Figure 2. 10: Depiction of the contact between the rail and train wheel with the
characteristics given as; v - velocity of the train body, w - angular velocity of the train wheel,
P - vertical forces acting on the train wheel, P! - vertical force acting on the rail and r -
radius of the rolling wheel

The wheel/rail contact has a combination rolling and siding contact as there is usually no
pure rolling. The angular velocity and linear velocity are not equal in a combine rolling
and sliding contact which brings about creep in the contact. Creep is also referred to as
slip.

When a driving torque of magnitude M is applied to the train wheel, a tangential force Fr
acting on the wheel contact surface is produced and an opposing tangential force Fir
acting on the rail contact surface, hence producing a forward motion of the wheel.
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Figure 2. 11: Relationship between creepage and creep force [15]

Monk-Steel et al. [17] define creepage as the “relative velocity divided by the rolling
velocity”. Bhardawaj et al. [15] define longitudinal creepage as the “ratio of the
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wheel/rail relative speeds and the rolling velocities” while lateral creepage is the
“change in lateral velocity per wheel forward velocity”. Spin creepage is also said to be
the ratio of the in wheel/rail rotational speed perpendicular to the contact with wheel
forward velocity. An increase in the three respective creepage brings about an increase
in shear stresses, if the shear stresses are greater than the creep force (normal force X
coefficient of friction), wheel slip will occur. Full slip occurs in the contact past the
saturation point shown in Figure 2.11 where the limiting friction force (traction force) is
reached and remains constant, regardless of slip.

The dependency of wheel/rail friction force on creepage as seen on the creep curve in
Figure 2.11 was discussed in [14] . Friction in the wheel/rail interface can be influenced
by several factors such as third body (Interfacial layer) shear strength, Hertzian contact
pressure and wheel and rail surface roughness among others. The creep curve shows that
the creep force which is a function of the friction coefficient y, increases as the creepage
(slip) increases moving from a pure rolling zone to a combination of rolling and sliding
until the creep force converges at complete slip (pure sliding), where the friction
coefficient becomes dominant.

Adhesion as a function of creep or simply the creep curve varies when there are third
body materials in the contact, in terms of the curve shape, initial slope and the adhesion
levels [18], which is shown in Figure 2.12.
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Figure 2. 12: Creep curves for different test conditions [19]

Gallardo-Hernandez & Lewis [19] carried out tests on different rail contamination
conditions to assess the adhesion/traction coefficient and slip relationships, as seen in
Figure 2.12. As can be seen, contaminants such as water and dry leaves and oil were seen
to significantly reduce the adhesion coefficient to below 0.1 with increasing slip when
compared to that of the dry railhead surface. The wet surface test also showed a decrease
in adhesion coefficient, and it was seen to have a significant drop when compared to the
dry surface result.
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2.2.3 METHODS OF FRICTION CONTROL

Understanding the adhesion or the friction between the wheel and rail is of utmost
importance in understanding many aspects of wheel/rail performance. Wear,
corrugation and rolling contact fatigue are some of the damages caused by high traction
between the rail and wheel. On the other hand, low friction or adhesion can potentially
cause safety issues when there is lowered traction making braking less effective and it
may also cause wheel slip conditions which will affect the operation of the train [14].

Therefore, controlling the levels of friction on the wheel/rail interface is of utmost
importance in order to maintain safety. This can be done to either reduce friction
(adhesion) or increase friction (adhesion).

There are 3 major categories of friction management products:

e Top of rail friction modifiers (ToR-FM).
e Traction enhancers
e Flange lubricants.

0.8

Dry Rail

N _
0.3

Lubricant

Coefficient of Friction (COF)

Figure 2. 13: Effects of friction modifiers on CoF [20]

Friction Modifiers

Generally, when discussing methods for friction reduction to reduce damage of energy
consumption, controlled lubrication is usually a common thought as a solution. However,
lubricants would negatively affect the braking and traction operations of the train and
cause damage to the wheel/rail interface. Friction modifier here refers to TOR-FM and
Traction enhancers. A friction modifier on the other hand is expected to provide the
appropriate intermediate friction coefficient of between 0.3 to 0.4 as seen in Figure 2.13
without the negative effects of a lubricant. Friction modifiers are additives that increases
or decreases the frictional properties of a lubricant. These include traction enhancers
which increase friction and specially formulated ‘TOR’ products to be deployed at low
adhesion hotspots.
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Therefore, Top of Rail Friction Modifiers (TOR-FM) are substances that can only reduce
high levels of friction under dry conditions (0.5-0.8) to a moderate level of friction (0.3-
0.4). However, a traction enhancer can increase low levels of friction [20].

Generally, friction modifiers are applied to the top of the rail using either a track side,
vehicle/train mounted or mobile systems applicator. There are different types of TOR-
FM, which are water based-solid suspension and just solid modifiers. Existing products
that use water based-solid suspension friction modifiers such as ‘KELTRACK’ to deliver
the desired level of friction between 0.3 - 0.35 [21]. The water in the mixture evaporates,
leaving behind the solid particles which combine with the third body layers on the
railhead creating a surface with the required friction level.

The KELTRACK TOR-FM has been found by Network Rail to reduce vibration and noise,
aid in the control of train on the rail track curvature and reduction of lateral loads [21].

A common form of traction enhancer is sand which is usually applied on the railhead from
train mounted applicators and may cause wear due to its abrasiveness, which is why it is
only applied when/if wheel slip is detected. It may also interfere with track signal
processing by isolating the track circuit. There are new types of traction enhancers in
form of sand gels and viscous water-based gels (usually applied using a track side
applicator) which reduced the effects of abrasive wear when applied on the railhead and
it do not interfere with track signals [5].

Top of Rail Lubricants (ToRL)

Lubricants such as greases are able to decrease the friction level in the wheel /rail contact.
They are mainly used to reduce the effect of wear between rail gauge face and the wheel
flanges and reduce noise caused by high friction. They can also be used on the top of the
rail, and if applied in the right amounts can give intermediate friction. There is a higher
risk with these though that they are over-applied which could result in low friction
causing braking/traction problems. Unlike friction modifiers, their carry-down distance
is shorter than 1600 m. This is because the grease is easily used up along the tracks
reducing the length of effectiveness.

ToRL can be classified into 3 categories:

e TOR Oil (oil-based TOR material)
e TOR Grease
e TOR Hybrid (oil and water-based material)

Using grease for top-of-rail friction control in lengths of track with a high rail curvature
has benefits of curve noise reduction; force reduction, meaning less RCF and gauge corner
cracking; rail and wheel wear reduction [22].
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2.3 LOW ADHESION IN THE WHEEL/RAIL INTERFACE
According to the Adhesion Working Group (AWG) [23], adhesion on the railway is simply
a measure of slipperiness or grip between the wheel and rail. This is defined by AWG as:

“The measure of adhesion values is approximately equal to the maximum possible rate of
deceleration of a given train, when expressed as the percentage of deceleration due to
gravity”. It is measured as the coefficient of friction and is usually represented by “n”.

Low adhesion is defined by the “Adhesion Working Group” as a p value lower than 0.09
[24]. Table 2.1 and Figure 2.14 shows the categories of adhesion levels with the
corresponding friction levels that define them.
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Figure 2. 14: CoF ranges (adapted from [20] by [25])
Table 2. 1: Definition of adhesion levels

Adhesion level Coefficient of Friction level

Good Greater than 0.15
Medium Between 0.1 to 0.15
Poor Between 0.05 to 0.09
Ultra-low Less than 0.05

The adhesion levels defined traditionally vary according to the weather conditions, such
as having p between 0.2 to 0.4 under ideal conditions of dry weather and clean
uncontaminated railhead. Whereas, in wet weather, a p value between 0.1 to 0.2 (even
with no railhead contaminant present) would be in line with expectations. According to
Table 2.1 under both conditions there should not be complications with braking, but poor
adhesion levels during full-service braking may occur occasionally. Specifically, during
the autumn when fallen leaves blown on the tracks are crushed and mixed with moisture
to form a thin film, Teflon like in nature, reducing the adhesion to levels as low as 0.01.

2.3.1 CAUSES OF LOW ADHESION

The main causes of low adhesion stated in the report presented by the RSSB, TUoS and
the Met Office [26]were determined as;
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e leaf contamination of the rail head during autumn and

e amixture of low levels of moisture on the railhead, iron oxide and/or wear debris
which is referred to as “Wet Rail Syndrome”. These characteristics are
considered as naturally occurring third body layers which also exist in dry
conditions. Low adhesion can also be experienced in dry conditions, where a thin
film of rust (usually a mixture of sub-micron Iron oxide and hydrated Iron oxide
particles). This thin film produced can cause low adhesion as it may carry some
amount of moisture and contaminant [27, 28].

Some other causes for low adhesion were determined but stated to be less common in
occurrence, such as

e improper flange lubrication.

e oil leakage from transitory diesel trains.

e presence of dust, commonly coal dust.

e leakage of hydraulic fluid from track machines.

e settling of contaminant on the track commonly from airborne aviation fuel close
to airports and chemical waste close to industrial estates.

With all the possible causes of low adhesion mentioned above, the largest and out of
human control cause has been recognised as the leaf contamination especially leaves that
are not easily broken down or decomposed. These leaves are usually drawn onto the
tracks by trains passing, the leaves settle on the track and are thereafter crushed by the
wheels of other passing trains onto the railhead. A hard layer of coating is formed on the
railhead with a Teflon texture when the compressed crushed leaves are mixed with
moisture commonly dew on the railhead. When dry, this coating can act as an electrical
insulator which leads to problems with the operation of track circuits used for train
detection for signalling purposes and when wet can act as a lubricant hence causing
problems with braking. It must be noted that under heavy water conditions, the crushed
leaf layer is softened and broken down by the effect of passing trains and finally washed
off then tracks by rain as simulated during the WILAC project [29].

2.3.2 LOW ADHESION MECHANISM

It is common knowledge that lubricants such as grease, fuel and oil reduce the adhesion
levels, but moisture, which would not be regarded as a lubricator, is also one of the causes
of low adhesion. This occurs when the moisture reduces the shear strength of the third
body such as oxides which the creates a slippery layer between the wheel and rail. The
implication of this is that dry rusty rail track and dry leaves on the railhead will not cause
low adhesion, but once a small amount of moisture is present on the surface, it becomes
an active site for low adhesion. The presence of ice is also known to lead to low adhesion,
this does not happen because of the slippery nature of ice, but as a result of the melting
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process which produces water on the rail head. Fulford [21] made mention that an
increased amount of humidity of the surrounding air affects the level adhesion by a small
amount, but the major changes are caused by water residue on the rail surface.

The Adhesion Working Group (AWG) carried out an extensive literature research to
create a knowledge map of low adhesion and an analysis was done on performance data
from a variety of sources [23]. The research done by the group involved a critical
assessment on the following factors, highlighted in the T1042 RSSB [24] report that are
believed to aid the understanding of underlying causes of low adhesion. The credibility
and quality of data was verified whilst inputting in the report.

These performance data were grouped into four areas which were then broken down
further into individual parameters as seen in Table 2.2 [24].

Table 2. 2: Performance data classification

S/N | Operational Data Parameters
1 Regional Environmental Parameters | Regional Air temperature
Regional Humidity

Regional Precipitation
Regional Leaf fall index

2 Local Environmental Parameters Local Air temperature
Local Humidity
Local Precipitation
Railhead leaf contamination
Railhead moisture
Railhead temperature

3 Track Related Parameters Track gradient
Rail type
Track topography
4 Rolling Stock Related Parameters Brake characteristics

Drivers report

Traction characteristics
Traction or braking demands
Driving policy

The parameters above play an important role in understanding the mechanisms of low
adhesion, as it gives an insight into the conditions surrounding the train and track when
low adhesion is experienced.

The two major causes for low adhesion proposed in the report are as follows (albeit other
factors may also play a role):

e Leaflayer formed on the railhead, sometimes combined with little moisture. They
create a reduced shear strength layer on the railhead. The conclusion was made
that this event occurs all through the day as the effects of this leaf fall and
precipitation can be experienced all day.
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e The interaction between morning dew and contaminants for example iron oxides,
this forms a solid lubricant/low adhesion paste on the railhead and is referred to
as “Wet-rail” phenomenon. They are known to be the cause of high incident rate
during morning peaks. White et al. [30] support this from data gathered from
reports of station overruns showing that this occurrence is on the rise in the early
hours of the morning and in the night, between the hours of 06:00 - 09:00 and
between 20:00 - 22:00 respectively as a result of dew present on the railhead. In
research carried out by [29], where water at different levels was added to a full-
scale tram test rig to understand how low levels of moisture contributed to the
adhesion levels, it was confirmed that the presence of wear debris and iron oxide
contributed to lowering of adhesion to “ultra-low” levels in the presence of low
moisture. [t was stated that this combination formed a third body layer that was
visible on inspection. This experiment supports the theory that a combination of
low moisture and oxides cause low adhesion.

The summary of the important information that was derived from the research done on
the T1042 report as presented by the AWG is as listed below|[23, 24]:

e the most effective low adhesion mitigation technique is the use of a “properly
functioning on-board sander” and the application of a water jetting on the track
for treatment.

e the performance data analysed proposes that an average colder temperature
might have a significant effect on the adhesion performance, which may be as
result of an increase in leaf fall during autumn.

e railhead contamination becomes a dominant wheel/rail adhesion characteristic,
when it is visibly present on the railhead.

e in cases of low moisture level on the railhead, the adhesion level can be notably
improved by application of only water.

2.3.3 LAYER CREATION
Leaves, small amount of moisture and oxide layer have been recognised as one of the
major causes of low adhesion events in the railway industry:

Leaves + low moisture

Autumn has been recognised as the season where severe low adhesion events have been
recorded due to increased number of leaf fall to the surrounding railheads which usually
accumulates to the side of the track as well. The accumulated leaves in the track
surrounding are swept to the bottom of passing trains by the wind created by the motion
of said passing trains. These leaves are then crushed by the wheels of the trains, leaving
behind a thin leaf layer on the rail head. The continuous crushing of the leaves by different
trains in transit creates a hard, Teflon-like, black leaf film which is capable of completely
covering the running length of the railhead. The leaves undergo a chemical reaction with

23



the rust formed on the railhead which are a form of iron oxides to form the black layer
[19, 21, 31].

This black film formed has a somewhat low shear strength which can reduce adhesion by
fully obstructing the contact between metals such as the contact between the wheel and
rail; it also forms an electrical insulation barrier.

Researchers made note of a thick hard layer of mulched leaves formed on the disc
surfaces used in assessing wheel/rail adhesion [19]. It was found that immediately after
the test for the wet leaves, the top layer was soft and dark. This layer was easy to remove,
leaving behind a harder compacted layer which proved extremely difficult to remove.

In other work it was stated that the mixture of the crushed leaf layer and low moisture
(which could be either dew, snow shower or light rain) posed a higher risk in terms of
the adhesion levels, as the black layer reduces the adhesion coefficient to about 0.1 while
the mixture reduces the adhesion coefficient to less than or equal to 0.05 [21]. These
levels of adhesion are much lower than the required operating values for braking and
traction which are as high as 0.09 and 0.2 respectively. This shows the significant effect
moisture has on the leaf layer in lowering the adhesion.

The composition of this leaf layer was analysed and found to contain basic elements of
the leaf just without the water, the basic elements contain a highly polymerised fatty acid
that is known to be an effective lubricant. Visible leaf pieces were seen on the black layer
found on the railhead which also consisted of a large amount of iron and iron oxides and
some water (which have been classified as the non-organic part of the layer leaving the
only organic matter as the dead leaf after investigation under an optical microscope).
Hence the components of the black layer can be said to be Iron, Iron oxide, Carbon (from
the leaf), Hydrogen and Oxygen.

Many other mixtures of material may be responsible for low adhesion on the railhead
other than leaves mixtures.

Wet-rail phenomenon

White et al. [30], made note that anumber of proposed low adhesion events were omitted
from the Network Rail incident data, possibly because there was no visible contamination
on the railhead (in this case "contamination"” means leaf material) This shows that there
are more plausible causes of low adhesion such as wet-rail phenomenon.

White & Lewis [32] stated that the analysis of the slippery black film layer usually present
after moist leaves have been crushed on the railhead was found to contain approximately
56% iron oxide. This information implies that wet-rail phenomenon can play a role in the
occurrence of low adhesion events if the iron oxides present in both the black film layer
and railhead contaminant has an effect on the adhesion levels. Although, it is only
considered as wet-rail phenomenon in the absence of leaf contamination, but this shows
the contribution oxides have to the railhead adhesion. It has also been noted that the

24



occurrence of low adhesion outside of the autumn season may be attributed to wet-rail
phenomenon, meaning the wet-rail phenomenon can act all year round. The formation of
iron oxide on the railhead can be attributed to either contact oxidation caused by high
temperature and high forces experienced in the wheel/rail contact or the oxidation from
environmental conditions such as high humidity, precipitation among others.

Unlike the black layer caused by the mixture of moisture and leaves, wet-rail
phenomenon is difficult to analyse or determine as it is hard to identify.

2.3.4 MEASUREMENT TECHNIQUES FOR LOW ADHESION (FRICTION)
The adhesion levels between the rail track and wheel is almost impossible to measure
directly, but the friction coefficient is easily measured from the rail surface [33].

Low adhesion measurements are considered important because it contributes to the safe
operation of the railway as well as improved performance. The RSSB [34] catalogue has
highlighted some of the reasons as given below:

e [mprovement of equipment and procedures used to mitigate the effect of low
adhesion which can be brought about by post incident analysis done to determine
the causes of previous issues.

e In order to safely operate trains in low adhesion conditions, the industry is
required to carry out risk assessments and have mitigation measures in place.
Reliable measurement techniques are required to facilitate the successful
development of a mitigation technique.

e Existing measurement techniques give the opportunity to simulate low adhesion
conditions, which help in giving the train driver the experience needed to
successfully handle real life low adhesion conditions if/when the driver
encounters such.

e The simulation of low adhesion conditions also helps to test effects of new
equipment on safety and performance.

There are several industry recognised methods of measuring friction on the rail head. The
major means of carrying out these measurements are with field data or lab tests.

The measurement techniques for low adhesion have been grouped into 3 parts (as seen
in Table 2.3), namely:

e Direct measures of low adhesion
e Indirect measures of low adhesion events
e Measures of weather and environmental parameters.

(Information used in this section is obtained from [34], except when stated otherwise.)
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Tablke 2. 3: Adhesionmeasurament tedhniques

Groups of

Measurement

Direct
measures of low
adhesion

Type

of Description
Measurement

On-Track Techniques; Vehicle attached

Vehicle-Bourne

Tribometer

Tribometer
Train

Load
Measuring
Wheel

The tribometer works on the
principle of a brake wheel
tribometer where the adhesion
levels are determined by
applying brakes to the wheel on
the tribometer until the wheel
starts to slip. It measures the
running surface and gauge
surface traction with the
measuring wheels, which sense
the normal force and braking
torque exerted [27].

The device provides four
measurements which are taken
simultaneously; these are the
friction on both rails, gauge face
and the railhead.

(see Figure 2.15)

The Tribometer train can
measure the longitudinal and
vertical forces with normal
operation of its suspension. The
vertical wheel/rail forces can
be included in the low adhesion
levels calculation with; the use
of a staticwheel load and if the
static wheel loads cannot be
estimated the vertical
wheel/rail forces should be
determined from the test
arrangement. If the speed of
measurement is less than 48
km/h (30 mile/h) the use of
static load will be enough, this
common occurrence in most
applications.

(see Figure 2.16)

This equipment serves as an
attachment to either service
vehicle or a specially built
tribometer. The wheels
measure the magnitude of the
lateral, vertical and
longitudinal force of wheel /rail
using a built-in strain gauge.
(see Figure 2.17)

Strain Gauged This measurement is relatively

Axle

recent work and is still being
investigated by the RSSB.

On-Track Techniques; Manually Handled

OnTrak
Tribometer

HO

The OnTrak tribometer is
designed to set an angle of
attack between its measuring
wheel and the railhead with a
range of 1-150 mrad to induce
lateral creepage with a
corresponding range of 0.1% to
15%.

The OnTrak’s measuring wheel
travels a distance of 300mm
along the length of the railhead
(back and forth). The friction
coefficient reading is derived
from an average of the result in

Advantages

The vehicle borne
tribometer has better
accuracy when

compared to a portable
tribometer.

They can be used for
simultaneous
measurement of both
rails and adjustment of
its wheel position is
possible.

A notable length of
track can be measured;
hence it is a fast method
of measurement.

The measurement
method of using a
braked wheel gives the
peak adhesion.
Measurement derived
can be built into the
railhead treatment
train.

It is not subject to
scaling effect, since it
provides a full-scale
adhesion. measurement
for the wheel/rail
interface.

The peak adhesion level
is obtained as well as
the adhesion profile.

A train measuring
system can provide the
adhesion profiles.

This method is not
subject to  scaling
effects, as it is a full-
scale method of
measuring the
wheel/rail adhesion
levels.

It is practical in use for
test purposes, because
it can be mounted on a
railhead treatment
train or fitted on a
service vehicle.

The peak adhesion level
can be obtained from
the measurement of a
full braking and/or
traction curve.

It is not subjected to
scaling effects because
it records force for full

scale wheel/rail
conditions.

Incorporation into a
railhead treatment

train is possible and it
may be suitably fitted
onto service trains.
Adhesion profile can be
obtained.

It is portable and can be
easily transported to a
test site, it doubles as an
on-track and in-lab
measuring method.

The tool provides
friction measurement
for the top, middle and
bottom of the gauge
corner.

A creep curve can be

plotted using the result
for the tool, as the creep
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Disadvantages

The vehicle borne tribometer
uses small scale wheels, hence it
suffers some scaling effects [27,
34]

In order to take measurements,
track possession is required,
which may cause disruption to
scheduled train services.

It is currently unusable on third
and fourth rail electrified lines
This method cost more than
using a portable tribometer
Transportation to problem site
is slow [26]

It requires a train path.

It is expensive [26].

The train used for case study on
the RSSB manual as at the time
of publishing was stated to be
obsolete, therefore it is not
readily available for use.

Results are affected by the
flange contact.

Transportation to a site is slow
due to its size.

The wheel/rail forces require
serious analysis and data
processing.

This method requires a train
path because of the scale.

The determination of the
wheel/rail forces require a
considerable amount of analysis
and data processing.

It is an expensive method which
is not readily available and
complicated to build.

The results from this method are
affected by flange contact.

The braking stage of the wheel
produces heat which must be
considered when using the
strain gauges.

When using a non-service train,
a train path will be required. Itis
still under development; hence
it is not readily available.

The wheel/rail forces require
serious analysis and data
processing, especially in terms
of separating forces acting on
the rotating assembly.

Results are affected by the
flange contact.

It is a new tool which means the
errors produced while using it
are not fully understood.

The measurement process can
be time consuming depending
on the amount repeats required
and the number of positions
measured on the railhead.

The repeatability and precision
of the tool have not been tested.
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Skid Resistance
Slider
Tribometer

Braked Wheel
Tribometer

Static Breakout
Friction
Tribometer

the 97th percentile in both
directions[14, 35].
(see Figure 2.18)

The Pendulum tribometer is a
solid example of a skid
resistance slider tribometer.
This tribometer is best suited
for laboratory use as it was
designed for use on the road,
therefore requiring a flat
surface for operation. The
pendulum tribometer can be
modified or a platform can be
fitted over that rail track to
carry out measurements on the
field [26]

The Pendulum tribometer
which has a rubber contact pad
functions on the energy loss
and swinging arm principle. It
has an entirely different
contact geometry with the
contact being in full slip when
compared to other tribometers.
Albeit, it has few similarities to
other portable tribometers, its
measurement has been proven
to be in agreement with other

portable tribometers from
comparative tests done [26, 36,
37].

(See Figure 2.19)

The friction level on the rail is
determined using a small,
braked wheel. It works on the
same principles of most
tribometers where a given
vertical force (F) is applied on
the rail from the wheel and the
applied and resulting/reactive
force (R) are measured. The
coefficient of friction is then
given as the ratio of the vertical
force and the reaction force i.e.,
F/R.

With the Braked wheel
tribometer, an increasing brake
torque is applied on the rail
surface to produce the required
slip [38, 39].

(see Figure 2.20)

This technique applies a
handheld tribometer which
provides a coefficient of friction
measurement at any angle. The
RSSB advises that this method
be used only for very coarse
assessment of friction
conditions.

(see Figure 2.21)

In-Lab Techniques

Pin-On-Disc

This is a method mainly used
for research related to friction
and wear, since it is designed in
a way it outputs the friction
between a rotating disc with a
loaded pin rotating against it.
The material used for the disc is
expected to have identical
properties with the track which
therefore the use of Rail steel.
The same principle applies to
the pin material (which is
Wheel steel) it has to be
identical with the properties of
the wheel.

(see Figure 2.22)

levels of the tool can be
changed. This makes it
easier to understand
the state of the railhead
It is a portable device,
relatively easy to
operate and is readily
available.

it doubles as an on-
track and in-lab
measuring method.

For a range of
contaminants, it
provides a notable
resolution between the

values for skid
resistance.
It is easy to use,

portable and is readily
available.

The result derived is the
peak adhesion level and
is subject to scaling
effects.

It can measure different
positions across the
railhead, since it can be
adjusted and is
portable.

The measurement
process per spot is fast,
because it takes
approximately 15 to 25
seconds to record one
adhesion level
measurement.

It has a short measuring
time of 5 seconds.

It can be applied on
very short rail
segments.

It is easy to use and
accessible.

The introduction of
contaminants is easy.

It is relatively easy to
use with an abundance
of tribological contacts

[40].

Measurements can be
repeated quickly.

Test conditions such as
the load and
environment can be
controlled.
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It is not suitable for use in the
field, requiring modification for
such applications.

It is not as easy to use compared
to other portable tribometers
due to its complex setup.

The skid resistance is measured
by the pendulum instead of the
rolling/sliding peak of adhesion
levels. Although a correlation
has been confirmed from the
comparison.

It is operated at a low speed,
which is at walking pace.

The application of simple scaling
factors cannot be made on the
results.

Due to the influence of rail
contamination, the values of
adhesion are high.

Electric traction can cause a cut
in power in the overhead line
during operation.

The results and scaling effects
are affected by the lubrication
and surface roughness of the
slider.

It gives a very coarse evaluation
of the sliding friction alone.

The type of slider used plays an
important role in the resolution
of results on different types of
contaminants. A rubber slider
may provide an improved
resolution compared to
chromium slider.

It is difficult to maintain a steady
state because the slider will not
be in full contact with the rail at
a curve.

The sliding speed is low. The
equipment has a maximum

sliding speed of 4m/s (9
mile/h).

Friction can only be recorded
under sliding conditions,
restricting the scope of
measurement.

The rig basically represents the
high slip phenomenon observed
in very tight curves. This is
because the rig mimics the slide
component of a partial sliding
wheel/rail contact which makes
it experience full sliding [41]
This method is preferable in the
testing of fluid type friction
modifiers or solutions for weed
killer. Scaling effects are present
since the contact area is 8 times
less than that of the actual
wheel/rail contact.

The maximum pressure in a
wheel/rail is 10 times larger
than the maximum contact
pressure of the machine.
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Twin Disc Test
Rig

Linear Full-
Scale-Wheel-
On-Rail-Rig

Full-scale rig
with rail loop

Indirect On-Train
EERNERIIOTA monitoring
adhesion events W)y ()g
(OTMR)
Train
Management
System (TMS)
Wheel Slip
Protect (WSP)
Measures (Ji Internet of
weather =11t Things;
environmental Moisture
parameters. Sensor
Internet of

Things; Leaf fall

This method uses two discs,
where the top disc has a given
diameter and the bottom disc is
selected based on the creep
percentage required to be
generated. A load is applied to
the discs till the peak contact
pressure is identical to the
contact pressure for a
wheel/rail contact.

(see Figure 2.23)

This is a real size depiction of
the train wheel on a test rig. It
is designed in a way that an
angle of attack is produced
relative to the wheel when the
wheel is rotated during traction
and braking.

(see Figure 2.24)

The HAROLD rig was designed
by researchers from UoS and
UoH. It consists of a Y25 freight
bogie with front wheelset
positioned on a rolling rail of
diameter 2m. Tread brakes are
used on the bogie. The braking
side is jacked up while the
other side is used for the
application of contaminants. To
test for friction, the brake force
isincreased gradually till a limit
is attained or when the WSP
activation vents the pneumatic
actuators [42].

(see Figure 2.25)

Data from the OTMR is usually
used to investigate accidents.
Braking rates distances and
time can be determined from
the analysis of the speed-time
output derived from the OTMR
data. The brakes rate can also
serve as indicator of the
adhesion levels over a stopping
distance.

The Bombardier Mitrac™ is an
example of a TMS. The system
can transmit real time data
from a train (such as the speed
profile and slip and slide event)
to a central location. This tool
provides similar data to the
OTMR but also functions as a
diagnostic tool.

Used on service vehicles, it
reports the occurrence and
location of wheel slide/spin
events possibly caused by low
adhesion to a central database.
The map on the left column is
an example of the WSP data
display in a control room; the
colour coded arrows on the
map represent the adhesion
conditions at that area. Green
represents good levels, yellow

and orange represent
intermediate levels and Red
represents low levels of
adhesion.

These sensors are planted on
the railhead to observe the rail
state using electrical
conductivity readings.

Static sensors are used to
monitor the amount of leaf fall
at a specific area

The introduction of
contaminants is easy.
Test conditions such as

the load and
environment can be
controlled.

Statistical variation of
the adhesion can be
determined by
conducting numerous
tests.

It is a widely used and
available machine for

research and
laboratory
consultancies.
Introduction of

contaminants to the is
easy because of the full-
scale nature.

Test conditions such as

the load and
environment can be
controlled.

Measurement can be
repeated in a short time
period.

It is not affected by
scaling effects as the

wheel/rail contact is
full scale.
Introduction of

contaminants to the is
easy because of the full-
scale nature.

It has a maximum speed
of 200km /h.

It is not affected by
scaling effects as the

wheel/rail contact is
full scale.

There is precise control
over the wheel-rail
creep.

It has good
repeatability for
measurements.

Test conditions such as
the load and
environment can be
controlled.

There are no scaling
effects, since the data is
from an actual train. All
trains are required to
have OTMR on-board,
therefore it is readily
available.

Provides
locations/mapping  of
slide and slip events.
Provides real time data.
There are no scaling
effects, and it is readily
available.

This system provides
real time data.

The system has no
scaling effects, since its
datais obtained from an
actual train.

The LAWS™ is readily
available

Mapping and statistics
data can be obtained
from the system.

It can be adapted for on-
board train monitoring

2

The percentage creep levels can
easily be affected by the high
rate of wear of the disc.

With usage of a crowned disc,
the contact pressure can be
affected as the disc wears down.
Scaling effects are present here
as the actual wheel/rail contact
is larger than the contact
present between the discs.

The testing of each percentage
creep level requires the usage of
a new disc or machined (re-
turned) disc.

The measurement process can
be slow as they operate at a low
speed of less than 5 mph.

Not all the data produced using
the rig has been validated.

It cannot be used for low
adhesion investigations on site
because of its size.

Manual download of data.
Expertise in data analysis is
required. It is a time-consuming
process. Data can only be
obtained for train acceleration
and braking process.

Data can only be obtained for
train acceleration and braking
process.

It is a time-consuming process
and experience is required in the
associated software.

Data can only be obtained for
train acceleration and braking
process.

It is a time-consuming process
and experience is required in the
associated software.

An indirect assessment of the
adhesion is obtained from the
LAWS™ via the
acceleration/deceleration data,
which means further analysis of
the data will be required.

It is only currently used for
research purposes
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Radar

Satellite
Observations

It uses scientific algorithms to
calculate high spatial and
temporal measure of rainfall

Images gotten from satellites
viewing tree canopies from
space. It can detect the colour
changes in the canopies which

The sensors provide a
precise measure of rail
fall, therefore making
the data reliable
Observations are
automatic over require
locations

It is not easily accessible unless
a licence is issued

Continuous cloud cover may
obstruct observation especially
during autumn.

It does not provide a direct

may signify when leaves have measure of leaf fall
fallen

Leaf Observer This system holds a record of High resolution direct

Network leaf fall from different tree measurementofleaffall

species over a period of two

decades in Great Britain. It aids

the analysis of amount of tree

canopy remaining during

autumn and tree species

identification

It is a location specific tool that ~Provides direct Observation is not necessarily

measures the amount of measurements of around the rail network.

moisture present. It is capable location specific

of measuring 0.2mm of rainfall precipitation states.

or more

Measurement of leaf fall is
influenced by observer bias.

Great Rain
gauge network

It does not directly measure the
amount of rainfall on the
railhead

Figure 2. 16: Tribometer train [43]

Tribo Head
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Frame

Figure 2. 20: Braked wheel handheld tribometer [34]

Figure 2. 18: OnTrak hand operated Tribometer [14]
Figure 2. 19: Skid resistance slider tribometer [34]

wear track

- Y

— ™ disk

sliding direction

Schematic diagram of a pin on disk test

Figure 2. 22: Pin-on-Disc [40]

Figure 2. 23: Twin disc test rig [34]

Figure 2. 21: Static Breakout Friction Tribometer [34]




Figure 2. 24: Linear Full-Scale-Wheel-On-Rail-Rig [34]

Huddersfield Adhesion & Rolling
Dynamics Rig (HAROLD) 2

Precise w-r creep control

2m diameter 4-segment rail

roller
(in-situ re-profiling)

Figure 2. 25: HAROLD Rig [42]




2.4 METHODS OF LOW ADHESION FORECASTING

2.4.1 MODELLING METHODS FOR LOW ADHESION

Low adhesion modelling creates a link between the wheel/rail contact states and the
train operational parameters in a mathematical model form [16]. These models generally
look at the creep force relationships under varying conditions, such as wet and dry. A
number of these low adhesion modelling methods are discussed below:

2.4.1.1 WATER-INDUCED LOW ADHESION CREEP FORCE (WILAC)

It has been established from various studies that water or moisture contributes to the
occurrence of low adhesion between the wheel/rail contact. This prompted the research
carried out by [18] which carried out tests using a full-scale tram wheel test rig to develop
a model for the creep force which has the capability of predicting the adhesion as a
function of the dryness or wetness of the railhead. The full-scale approach was used in
the approach because it is easier to introduce contaminants into the system (in this case
water).

Adhesion in rolling contact is controlled by two mechanisms in the existence of interfacial
fluids which are hydrodynamic lubrication and boundary lubrication. Mixed lubrication
is referred to as the area where the adhesion is controlled by the mechanism (transition
region). The dominance of the regions is dependent on the fluid viscosity, normal force,
contact patch size, the relative velocity between the surfaces and the surface roughness.

Trummer et al. [18] noted that from the maximum adhesion value in dry conditions at
low speed was found to be 0.35 and between 0.5 and 0.6 when measured with
locomotives with an axle load of 220kN and test rig experiment with axle loads of 44kN
and 67kN respectively. When an amount of water was applied to the tests with the other
conditions remaining the same the locomotive measured a maximum adhesion of 0.25
and the test rig's result showed a maximum adhesion level in the scale of 0.10 to 0.16 at
a speed of 100km/h. The difference noticed in the maximum adhesion value of the dry
and wet conditions proves that the presence of low moisture does lower the adhesion
level and poses a risk in the safe train operation.

The WILAC model puts more focus on the Wet-rail syndrome which is a mixture of low
moisture and iron oxides formed on the railhead, this is done in the absence of oil or
grease.

The test carried out by both researchers made use of a test rig as seen in Figure 2.26
which contained a full-scale tram wheel mounted by a swing arm and a roller onto a fixed
frame at the University of Pardubice.
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Figure 2. 26: Schematic of the tram wheel test rig [29]

The WILAC model is constructed around the Polach model which was built on theory of
boundary lubrication [18].

Trummer et al. [18] approached the test with four conditions in terms of wetness levels
of the surface which were:

e Dry with no water added,

e Damp?2 at a water flow rate of 25 pl/s,

e Dampl at a water flow rate of 35 pul/s and,
e Wet at a water flow rate of 350 pl/s.

These conditions simulated were to represent the various levels of moisture caused by
rainfall or a light drizzle as well as a typical dry day.

Results showed that under dry conditions the maximum adhesion level was at 0.4 which
is as expected for that condition but under wet conditions with a water flow rate of 35
ul/s the adhesion levels reduced to approximately 0.15 as seen in Figure 2.27 which is
categorised as low adhesion.

With a further reduction in the flow rate to 25 pl/s, as seen in Figure 2.27, the adhesion
levels dropped to 0.06 proving that adhesion reduces significantly under the influence of
low moisture and wear debris.
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Figure 2. 27: Graphical representation of results from WILAC model[18]

2.4.1.2 LEAF-INDUCED LOW ADHESION MECHANISMS

The Huddersfield Adhesion and Rolling Contact Laboratory Dynamics (HAROLD) rig data
was used in this model to simulate the effects of the mixture of leaves and moisture on
the railhead. A Polach creep model was used in conjunction with the HAROLD rig to
achieve the output. Figure (28) shows the detailed process used to create the LILAC
model.
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Figure 2. 28: LILAC system process [42]

The creation of the leaf layer is done by firstly wetting the leaf layers followed by slowly
rotating the rig as leaves are fed into the designed wheel/rail contact, which is
represented by rail loops and a bogie front wheelset. A normal load is applied to press
the leaves into the rail surfaces as the roller is rotated. It was noted that the black film
layer occurred only after sliding took place.

Results showed that an adhesion level as low as 0.01 was achieved in different braking
scenarios for wheel loads reaching 100kN. The results were found to be lower than those
obtained from the WILAC model and a control wet one as seen in Figure 2.29. It also
showed that the adhesion levels decreased slightly with an increase in the rolling speed,
as seen in Figure 2.30.
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Figure 2. 30: LILAC results under 60kN load with different rolling speed

The LILAC model has the capacity to study the behaviour of trains while in leaf layer
related adhesion events if multi-body dynamics models are implemented into it [42].

2.4.1.3 CONTACT MODEL USING MEASURED 3D SURFACES

This model is an improvement on a previous model by Zhu et al. [44] called CONTACT, it
involved using measured 3D wheel/rail surfaces to develop a numerical model which
could investigate the effect of water or oil contamination on wheel/rail adhesion when in
contact with various surface roughness. The CONTACT model only considered the
following:

e Normally loaded contact model
e Interfacial fluid model
e Rolling/sliding contact model

Zhu & Olofsson [45] developed the new model which consisted of the above three and
additional flash temperature model and local friction coefficient model. The new model
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can predict the local contact pressure, global adhesion coefficient, local tangential stress,
local flash temperature, local coefficient of friction and plasticity.

It was opined that most contact models done previously had been done based on the
assumption that the contact surfaces are perfectly smooth making it easier for the
implementation of Hertz theory which is suitable for vehicle dynamic simulation. In order
to vary the surface roughness broadly during numerical analysis, a statistical model was
employed giving a realistic depiction of the surface topography. The surface topography
differs due to wear which is dependent on the wheel/rail contact conditions and the
initial surface finishing.

The work done considered the real measured 3D surface samples sectioned out of actual
rail and wheel pieces under dry conditions [45]. Their model assumed stationary contact
with no spin and a unidirectional creep in the longitudinal direction.

0.4 0.39
ISR
035 = 0.385
2 03 Z ¥ o3 ettt ettt
E ¢ Present model £ B
=025 - /
“ / ——CONTACT § 078 ;4
E ., } $ ouw
7} 2 fr v 03
S *D g —o—Generated smooth
s 015 = 0365
= /
3 o0l 6 0.36 «~Low roughness
g <7 Higl }
- === HIgh roughness
< 0.05 s ¥ o o 0385 BIOVS
» * &
0 4 0.35

0 01 02 03 04 05 06 07 08 09 1 0506070809 1 11121314 1516171819 2
Creep (%) Creep (%)

Figure 2. 31: Graphs comparing adhesion coefficient trends for present and previous
CONTACT model [45]

The results obtained from the model were firstly compared to that of the previous
CONTACT model done by [44] and from the adhesion curves computed seen in Figure
2.31, the previous model had a higher adhesion coefficient than that of the one is discuss,
though the difference was little.

The results from the model showed that a surface with high roughness has a lower
adhesion coefficient than of low roughness and a smooth surface, although the difference
may not be significant as seen in Figure 2.31.

It was noted that an increase in speed reduced the adhesion coefficient as the surface
roughness increased.

2.4.1.4 MULTI-LAYER MODEL

This model was proposed by Olofsson [31], it takes into account the effects of crushed
leaves on the railhead. It was stated that leaves crushed by passing trains form a slippery
(Teflon-like) coating on the railhead which is an “easily sheared” surface layer when it
has undergone chemical reaction. This layer is usually visible to the naked human eye as
itis black in colour, and they are very difficult to remove.
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In the testing used to develop the model carried out by Olofsson, Glow Discharge Optical
Emission Spectrometry (GDOES) was used to profile the elemental depth of the surface
layers which was employed in analysing the “presumed chemically reacted surface layer”
and proving if it does actually exist. A controlled pin-on-disc was used to recreate the
wheel/rail contact for the experiment. This experiment was based in Stockholm, Sweden.
The test specimens were obtained from rail sections and wheel rolling stock that had
been used in local traffic.

The tests were carried out using a maximum contact pressure of 800 MPa and a sliding
velocity of 0.1m/s. The tests were run under different conditions for the rail surface,
which were:

e clean rail surface tested at 95% relative humidity.
e clean rail surface tested at 40% relative humidity.
e rail surface lubricated with elm leaves.

After the tests were carried out, a pin-on-disc machine was used to measure the frictions
on rail surface samples.
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Figure 2. 32: GDOES results for elm leaves under high humidity [31]

The results from this experiment (Figure 2.32) showed that the crushed elm leaves on
clean steel and low humidity had formed a chemically reacted layer that contained
Phosphorus and Calcium which is in agreement with the initial proposed theory that a
chemically reacted layer which acts as an easily sheared surface layer is present. This
model was also able to prove that the presence of high humidity on a clean rail surface
reduces the adhesion levels, which explains why reports of low adhesion incidences exist
without the visible hard black layer on the railhead. This has been explained by Olofsson
as the presence of an oxygen layer thick enough to act as an easily sheared surface layer.

36



2.4.1.5 KERNEL EXTREME LEARNING MACHINE (KELM) & PARTICLE SWARM
OPTIMISATION (PSO) - PSO-KELM

This model was developed by [16] proposing a combination of the PSO and KELM used
in analysing the traction performance of heavy haul locomotives aiming at analysing
adhesion states with real-time operational data. This involves using adjustable creep
velocity done by varying output torque of a traction motor, showing the performance of
the wheel/rail adhesion force. It was stated that the major challenge of modelling low
adhesion is the ability to recreate the actual condition in which the train operates, hence
the identification of the model’s precision is affected by uncategorised noises, uncertain
nonlinear parameters among other factors. The method proposed by Liu et al. [16] is a
combination of a network-based method KELM which combines extreme learning
machine functions with kernel functions and a swarm intelligence algorithm PSO, this is
expected to be adaptable to the changing nature of the environment conditions in terms
of the research, improving the identification performance. Although the model
parameters need to be adjusted manually for the different operating
environments/conditions.
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Figure 2. 33: Wheel/rail adhesion coefficient-creepcurve [16]

A new KELM-based wheel /rail adhesion identification model has been designed using
PSO to optimise the model parameters [16]. The creep velocity and wheel/rail adhesion
coefficients were designated as the inputs for the identification model. The model
processes an output of the following wheel/rail adhesion states (as seen in Figure 2.33):

e minor fault

e serious fault

e faultindication
e normal adhesion

The data used for the model was extracted from a RT-LAB Test stand which comprises of
a heavy-haul locomotive traction transmission sub-model designed using MATLAB-
Simulink and Mechanical sub-model designed using ADAMS-Rail. 3000 data types for
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different wheel/rail adhesion states were obtained from the wheelset of a single motor
drive by adjusting the torque output of the motor. It was concluded that the proposed
KELM-PSO model was able to attain an identification accuracy of 92.60% which is
significantly higher than existing methods of using only KELM (87%) or PSO-SVM
(85.11%). Therefore, the model was able to effectively identify the wheel/rail adhesion
states using optimised real-time data whilst improving the environmental flexibility.

2.4.2 EXISTING METHODS OF FORECASTING LOW ADHESION

Existing Adhesion forecast tools are founded on the principles of scientifically confirmed
causes of low adhesion such as moisture on the rail head and leaf contamination on the
railhead. These forecasts are usually communicated through a colour coded risk index,
alerting operators of the chances of low adhesion events. There are several potential
methods of forecasting low adhesion which will also be discussed in this section.

2.4.2.1 LOW ADHESION RISK FORECAST/ ADHESION INDEX (MET OFFICE TOOL)

This is a forecasting technique delivered by the Met Office [46] and is widely used across
the rail industry. Extensive weather and climate data are used to “accurately predict low
adhesion, leaf-fall and wind throw at high spatial and temporal resolutions for a certain
band of lead times. The predictions from the tool are used to prepare mitigation
strategies, reducing SPADS, station overrun among others.

The adhesion index approach takes into account the amount of leaf fall, tree density,
topography in conjunction with the weather elements such as; temperature, type of rain
and humidity levels of a specific area. The leaf fall is processed to a higher resolution to
give the different species of trees at the given area or station. It has been shown from the
work carried out by several researchers and then compiled by [4] that different species
of leaves have different effects on the adhesion level. The knowledge of the precise tree
species and the expected time of the leaves shedding around the specific station
contributes to the reliability of the adhesion index [47].

The result of data input in the adhesion index system is a colour coded prediction output
which is rated from good adhesion levels (that is low risk) to bad adhesion levels
(extremely high risk). The colour code assignment is as follows:

e (reen (0-2) Low risk, that is good adhesion level.
e Yellow (3-5) Medium risk, that is moderate adhesion level.
e Red (6-8) High risk, that is poor adhesion level.

e Black (9-10) Very high risk, that is extremely poor adhesion level.
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Figure 2. 34: Sample of adhesion risk index [47]

Figure 2.34 shows an example of the Met office’s adhesion index prediction using just the
colour codes.

Generally, the model can predict low moisture levels and leaf-fall on the railway network.
These predictions can be done 10 days in advance. It is capable of giving an hourly report
of the following parameter:

e Low adhesion risk
e Leaffall risk
e Traffic volume
e Wind-throw risk [48]
Advantages
o The tool combines both spatial and temporal resolution in its prediction.
e The tool is customised for specific routes; therefore, it will have good precision.

e It implements data on location and time of leaf fall, moisture levels with the
weather forecast to give a good quality forecast.

Limitations

e Itis notareal time tool but a prediction of events that may take place which will
be subject to change.

e Weather forecasts are not 100% accurate meaning the predictions may vary to
actual events.
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2.4.2.2 OPERATIONAL DATA BASED FORECAST

This method is based on work done by researchers [49] from the University of
Huddersfield and the Met Office. The case study of this research was the Birmingham
Cross City Line (BCCL). The project was aimed at using operational data to improve the
current adhesion forecast method.

The method developed is a combination of weather forecast data and On-Train Data
Recorder (OTDR). A motivation for this project is the plan for Automatic Train Operation
in the future, which will require ability to plan for and mitigate against low adhesion. The
OTDR data was employed to provide better understanding of the where and when the
wheel slip protection was activated during traction and various brake steps. The severity
of the recorded slip was also recorded. Line side moisture sensors were used to give a
high resolution of the observation network showing when the railhead was most likely
going to have some moisture at a site situated in close vicinity to a live operational
railway.

Weather observation data from the UK Met office was used to compensate for the data
(such as frost, dew, rainfall as soon on) that the isolated sensors did not provide.

The dates which had previously recorded the highest WSP activity were selected as the
case study days, since it had given a range of when to expect slip to occur. This led to
selection of the 13th, 15th, 29th of November and 8th December.

The team used weather data, leaf fall rate and WSP activity in comparison to the predicted
adhesion risk forecast. The work done here (see summary in Figure 2.35) validated that
the WSP activity is captured well by the adhesion forecasts, but some discrepancies
occurred in the timing of occurrence predicted. Meaning there was a mismatch in the
forecast and actual occurrence of wheel slip. It was also stated that the train drivers are
aware of the forecast and would have been driving carefully, therefore reducing the
likelihood of wheel slip occurring.

Low Adhesion Risk Profiles per Day
L
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Figure 2. 35: Example of adhesion index data from the Met Office:
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Green indicates a region of low adhesion index (High adhesion level).

Yellow indicates a region of moderate adhesion index (Medium adhesion level).

Red indicates a region of high adhesion index (Low adhesion level).

Black indicates a region of very high adhesion index (Exceptionally Low) [50] [49].

Advantages

The use of line side moisture sensors overcomes some of the limitations related to
capturing the spatial variation in the application of standard weather observation
sites.

e It included the use of vegetation data along the train route, although it was
outdated.

e The research confirms the influence of moisture and leaf containment on the
adhesion of the rail and wheel, contributing to WSP activities.

Limitations

e Unavailability of geolocation, although Train Describer and Train Running Under
System TOPS (TRUST) data were used to determine the location of each train and
the service it operated under.

e Limitation of OTDR data as it was only extracted from a limited number of trains
and a short span of days. This means that some wheel slip protection activity may
be missed during the study.

e Quality issues with OTDR data such as: a) varying speed calibrations between the
train cabs b) unrealistic records c) varying clock times between train cabs.

e Theuse of OTDRin live operational system is challenging due to the analysis being
very resource intensive.

e QOutdated vegetation data, this was the network rail vegetation data survey from
2009 to 2011.

e Low adhesion events recorded were reduced because of prior mitigation

implemented to the rail head.

2.4.2.3 ADHESION CONTROLLERS CONDITION ASSESSMENT TOOL (ACCAT)

This is a tool utilised by London Underground for the prediction of low adhesion on the
railhead for the central and metropolitan lines. The ACCAT tool implements the function
of Internet of Things (I10T).

This tool uses railhead moisture sensors which detect electrical resistance as a result of

water droplets that get on conductors planted on an insulating circuit board. This device
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is incorporated into the ACCAT, essentially the sensors report data on the level of
humidity on the railhead to the ACCAT. The tool also has the ability to consider the source
of fallen leaves and amount of rainfall as it is implemented into a weather station [51-53].

This tool was specifically designed for use on Automated Train Operation (ATO) and
provides a prediction of 3 to 6 hours prior to the incident occurrence.

Advantages

e ]OT components for moisture measurements are cheap.

e If properly implemented, it will deliver precise information.
Limitations

e Although individual components are cheap, it is expensive to implement due to
the cost data logging equipment, number of sensors needed to achieve desired
result and GSM communication.

e Itis not widely used despite its availability.

e Itis not a real-time source of information; hence it is difficult to implement into
decision making.

e Requires internet connection, therefore may not be applicable in remote areas.

2.4.2.4 RAIL SMART ADHESION DIGITAL SOLUTION (ADS)

This tool was developed in collaboration with the Met Office and the RSSB [54]. The
digital tool functions by collecting route and railhead conditions information from the
train drivers using the ADS app. This information input on the app is made visible for
other train drivers following the selected route as an initial input and will give “near-live
time” information of the adhesion conditions on the track. The data viewed on the app
also aids the train drivers in regulating the trains to best suit the conditions reported. The
information is also shared with the rail industry and may be used to plan mitigation
against delays and wheel flat causing events (low adhesion).

Advantages

e tis easy to use for both drivers and industry stakeholders.

e [t provides a near-real time report.

e It gives access to time series information on adhesion for research and analysis.
Limitations

e Itrelies on driver information which may be inaccurate.

e The information is not real time, therefore there may be discrepancies.
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2.4.2.5 SWEDISH TOOL

Within this tool designed by the weather trends in relation to the adhesion levels history
on the Stockholm underground rail system were used to predict adhesion [55]. It was
noted that the portion of the underground rail that was exposed to the effect of the
environmental condition (that is the portion of the track that is run in open air)
experienced more wheel flats, which could be said was caused by low adhesion in the
wheel/rail contact [30].

The method used here involved regular friction measurement taken from the “open-air”
site and measurements from cut out rail pieces to check the influence of leaves on the
track.

These measurements were focused on the months of June, September, October,
November (2008) and March (2009).

In the month of October, the leaf layers and black layer were clearly visible as seen in
Figure 2.36:

Leaf residue layer Black layer

Figure 2. 36: Figure showing October layers on Stockholm rail [55]
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Figure 2. 37: Plot showing the relationship between oxide layer thickness and friction levels
per month [55]
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An analysis on the thickness of the oxide layer also showed that a thicker layer of oxides
brings about a reduced level of friction as this was also found to be more prominent in
October as seen in Figure 2.37. This implied that an accurate prediction of the oxide layer
thickness can also mean predicting the friction level.

The plot in Figure 2.37 also showed that weather with above average rain and mist,
strong winds, frost/ice and decreasing temperatures influence the friction levels.

Advantages

e Provides a good history bank for previous low adhesion events.

e Thickness of oxide layers’ prediction can potentially be used to predict adhesion.
Limitations

e There is low accuracy due to persistent climate changes.

e [tisnotreal time.

e [t can only be used in region with similar weather conditions/patterns.

2.4.2.6 RAIL EYE SENSOR (OPTICAL SENSOR)

The tool design was based on the need to detect the contaminants such as leaves,
moisture and oil on the railhead. This design is intended to be a low friction prediction
tool for track sections, it considers factors such as weather, wheel/rail contact conditions
and biological pollution which are of benefit to railway operators [55].

Figure 2. 38: Rail eye sensor [56]

The optical sensor uses infrared spectroscopy to identify low friction conditions on a
track. The optical sensor used in Olofsson et al. [56] is called a "Rail eye" sensor and was
constructed by Sten L6fving optical sensors in Sweden.

Figure 2.38 shows the sensor design, it has two laser diodes of wavelength 1450nm and
1566nm. The laser diodes provide illumination on surfaces at their stated wavelength,
the light reflected off the surfaces is measured by the photodiodes at a sample rate of
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15Hz for a vehicle running at 15 ms-! (the frequency can be adjusted to suit the running
speed of the train). The specific type of contamination on the railhead can be classified
from the illumination of the rail surface with different wavelengths of light and the
recording of the amount of light reflected.

A pendulum test rig was used alongside the rail eye sensor to link the contamination
classification derived from the sensors to the friction value. The conclusion of the tests
carried by Olofsson et al. [56] was that the rail eye sensor successfully identified different
rail surface conditions including a blackish layer, wet rail, blackish + ice layer and dry rail
among others tested. The tests were performed whilst manually moving the sensor over
the railhead to capture data.

Advantages

e [t is capable of providing real-time estimation of adhesion level if successfully
implemented, that is when used in conjunction with the friction measurements
database, temperature and relative humidity information.

e It can give precise information on the type of contamination present on the
railhead, hence making mitigation easier and possibly cost effective.

Limitations

e C(ertain logistics such as the measuring frequency for a non-uniformly spread layer
of leaf contamination are unknown.

e The prototype has not been tested on an actual train; therefore, the viability of the
tool has not been confirmed.

e Detection points of the railhead surface can be lost due to the lateral dynamic force
which cause the wheel to move laterally on the rail.

e Numerous sensors may be required on the train which increases the amount of
data to be processed and consequently making it a lengthy process. The
development of a robust processor was suggested by Olofsson et al. [56] for quick
processing of signals received from the diodes.

2.4.2.7 PORTERBROOK TARGETED ADHESION MANAGEMENT USING ON-TRAIN DATA
The tool developed here by Porterbrook uses OTDR data and GPS from their train fleets
to determine location + causes of lost time and aid adhesion management. The adhesion
forecasting tool is still in the rollout stage with no current update. The Porterbrook
system can track the position and speed of the trains on their fleet via the use of passenger
Wi-Fi available on the trains. This system assists in pin-pointing Lost Time hotspots
which can be as a result of low adhesion on the tracks. The Lost Time hotspots data also
has the potential for analysing the sub-threshold delay and correlating track works data,
adhesion data, earthworks data among other forms of data to narrow down the exact
cause of the Lost Time [57].
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Advantages

e It has the potential to output real-time data.

e Provides other types of information that maybe useful for rail track management.
Limitations

e [t currently can only be used to track data from Porterbrook train on the Sussex
route specifically.

e The viability of the system has not been established.

e WSP data is restricted to trains with remote OTDR, and it does not have
information related to traction loss events.

2.4.2.8 INTRODUCTION TO THE PREDICTION MODEL.

A friction estimation/prediction tool has been designed in this work based on a
regression model, a neural network based and traditional image processing programme,
with the aim of estimating the value of friction on the rail tracks in real-time on board a
train. This tool will provide better accuracy than existing forecast tools, as it is a real-time
data which will be beneficial for the driver (with the tool on board) and successive
drivers.

Research reviewed in this literature review revealed that environmental factors such as
temperature and relative humidity are important elements in understanding low
adhesion mechanisms. Hence, these environmental characteristics need to be included in
the prediction model to fully capture their effects on adhesion. It is also important to
capture and analyse the railhead state as noted in the Rail Eye Sensor discussed in section
2.4.2.6.

A neural network-based regression model was previously created by a colleague at the
University of Sheffield for RSSB funded project CF-UOS-02. The model uses machine
learning (a regression model) to determine the relationship between the track
surrounding characteristics and the railhead data. Machine learning was chosen as it can
recognise patterns which would normally be difficult to recognise by conventional means
such as simple statistical models. These patterns can be seen in the relationship between
the mathematical data of temperature to non-mathematical data of the railhead images.

This work will look at training and optimising the prediction model and implementing
the model into an on-train data capture system..

The prediction model will require an input of the railhead images and/or forwardt facing
images and sensor data which include relative humidity, rail temperature, air
temperature, layer thickness, dew point and surroundings data. The railhead images will
be processed using traditional image processing techniques, infrared spectroscopy
(optical sensor) will not be utilised in this work but rather regular coloured images to
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make it easier for the prediction model classify and identify railhead states using the
colours seen on the railhead images. The forward facing images will be processed using
a pretrained convolutional neural network (CNN), which can then identify and classify
the amount of tree cover, type of terrain and colour of railhead layer. A regression model
(Gaussian) is used to analyse the collated sensor data and the processed images to predict
the probable level of adhesion on the rail track.

An input of numerous data collected over a specified period of time during autumn will
be used to develop the tool.

2.4.3 ADHESION FORECASTING COMPARISON MATRIX

Table 4 shows a matrix drawn to provide a visual representation of the key
characteristics of the existing methods of adhesion forecasting. It aids in understanding
the features lacking and features that work well in existing tools.

Table 2. 4: Adhesion “forecasting” matrix

R e e O e

Metres Stations Routes  Real time Hours Days

Rail/lineside
information
based

Weather forecast
+train
performance
based

Train
performance
based

Rail/lineside
information
based + weather
based

Uos m/fc learning
tool (NN tool)

Rail eye Sensor

MetOffice

Adhesion Index

Swedish Tool

Operational data
based forecast tool

ADS App by
(3squared)

Porterbrook

ACCAT

X

2.5 PAPER GRADING TECHNIQUE

X

TBC

Low-Medium

High — used over
many years,
verification process
in place

In process

Information
unavailable

TBC

Medium-High

Validation in
process

Only used at test
phase (noton a
real train}

Widespread use
in UK

still in design
phase

for validation and
improvement of
met tool

Information
unavailable

Validation in
process

Used by London
Underground on
the central line
and metropolitan
line

The paper grading method adapted from Ishizaka et al. [4] was used in this work. This
literature review has been written using information from several sources which include
and not limited to published journals, papers, technical reports, chapters in textbook and
conference proceedings. These materials/references were graded in order to show their
relevance to this research and also show possible knowledge gaps and areas for
improvement in this research. They were graded using Boolean values of Yes/No, where
yes is 1 point and No is 0 Point. The scoring system is not a grade of the quality of the
materials/references.
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A paper grading map (see Figure 2.39) was created to give/aid the visual understanding
of the relevance of these materials to sections in this review. The review was split into
four primary sections for the purpose of the grading; these sections are:

e Wheel/rail low adhesion

e Railhead measurement

e Low Adhesion forecasting techniques

e Wheel/Rail Interface friction modelling.

These primary sections have been split further into secondary sections as seen on the
map to give a more precise look at the relevancy.

The following criteria below were used to evaluate the materials:
e Isita peer reviewed publication?
e Actualisation of theory (full/scale testing)
e Weight of conclusions (are the conclusions sound?)
e Data backed theory (are the theories supported by data?)
e Full scale test backed theory.
e Small scale test backed theory.
e Field validation (has the method or data been validated in the field?)

Each source assessed is represented by their numbers in the list of references. The
highest possible scores for a material using the above criteria and the Boolean points are
7. The scores have been grouped into a category of three; 0-2 (C), 3-4 (B), 5-7 (A).
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2.6 SUMMARY

Several causes of low adhesion in the railway industry have been recognised such as the
wet-rail phenomenon and leaves on the rail. Although this has been recognised as part of
the culprit of low adhesion events, the exact details of how it occurs is still very much
under study. There are not many literatures available for adhesion mechanisms as it is a
topic that is still under study. It is expected that the measurements taken during the rail
track site visit will give an additional perspective into what conditions are needed for low
adhesion to occur.

Work has shown that different types of contaminants have varying effects on the
adhesion level [19]. This is really important in understanding low adhesion mechanism
and will play a role in identifying railhead states for friction prediction.

In this study, numerous friction measure methods were assessed and discussed. A
common issue that was identified was the size and/or precision of the equipment, it was
found that most of them with good precision (that is near real-life conditions) were big
in size. Hence, such methods are not easily mobile and would be difficult to transport
them to an active site for investigation. While the smaller (portable) tools commonly had
scaling problems which negatively affected the precision and accuracy of the readings.
Some other methods involved indirect measurement but involved extra skills to read the
data such as analytical skills and time consuming. A new tool called the On-trak Hand
Operated (HO) Tribometer, which was recently acquired by the university which has the
potential to combine the precision and accuracy of full-scale measurements rig, the
portability of the smaller tool and the robustness of some of the indirect methods. The
precision and accuracy of this tool has not been validated yet as it is a very new tool, and
it is intended to validate it through the course of this research. This is also an aspect of
work lacking records shown in the paper grading in Figure 2.39.

A considerable amount of work has been done by other researchers to create
mathematical models for different possible scenarios of low adhesion events to help
understand the conditions in which low adhesion occurs. Some of these models such as
the WILAC showed that there is a relationship between the presence of high humidity on
the railhead and low temperature in creating a suitable condition for the occurrence of
low adhesion. These models have given an understanding from field and laboratory tests
as to how low adhesion takes place and it will aid in the forecasting of low adhesion.

The forecasting tools identified in this review either do not have the ability to do real-
time or do not provide accurate information or do not take into consideration the
performance of the train or use streamlined information, as it is also seen to be lacking
on the paper grading analysis. None of them employ the use of machine learning process
which have the capability to revolutionise the process of predicting friction on the
wheel/rail interface. These factors affect the reliability of the tools and means there is a
gap that needs to be filled as all the tools discussed do not derive their information from
on-board a train with weather information. The Neural network tool which uses machine
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learning can potentially do both meaning it can bridge the gap between accuracy of
forecast and availability of on-board real time data with an inclusion of analysing the
trackside vegetation to possibly forecast leaves fall just like the Met Office tool does.
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CHAPTER THREE
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3. RESEARCH APPROACH

From the literature review carried out, it was established that there is a major gap that
needs to be researched further in the railhead friction prediction aspect of the rail
industry. In this work, different properties of the railhead will be considered to aid the
understanding of low adhesion occurrence and how it can best be predicted.

Previous work done by researchers in this field have shown that ultra-low friction is
mainly brought about by leaf layers which present a reduced shear strength layer and the
“wet-rail” phenomenon, which occurs when small amounts of moisture and oxides mix to
form a solid lubricant/low adhesion paste on the railhead. Although these have been
established as causes of low adhesion, the conditions in which they occur has not been
fully understood yet. Therefore, further work needs to be carried out to understand the
mechanism of low adhesion.

The approaches used in this work were:
1. Friction and Environmental data collection:

The work described here was done to further understand railhead adhesion (friction)
mechanism and ultimately use the information to predict railhead friction. In order to get
an understanding of actual in-service railhead friction variation, fiction values had to be
collected from the field.

Based on the literature reviewed on railhead friction measurement methods, the
pendulum tribometer was selected for use in this work because of its portability and ease
of transportation. Its measurements have been calibrated against the BR research trib.
train, hence giving a conversion factor with some confidence. Environmental data that
have been established in the literature review to be linked to the occurrence of low
adhesion was collected alongside the friction measurements.

Environmental data collected included:

e Air and railhead temperature,
e Relative humidity,

e Dew pointand

¢ (Contaminant layer thickness.

Relationships between the friction and environmental data (temperatures and relative
humidity) were analysed on graphical plot to show and aid the understanding of the
effects they have on the railhead friction. It also showed if they were significant variables
in the prediction of railhead friction.

Railhead and forward-facing images were captured from a handheld camera to record
the railhead state (such as leaf layer presence or moisture presence among other
possibilities), at the time of measurements.
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The friction, images and environmental data were used collectively in understanding low
adhesion mechanisms and looking at the viability of such data for friction prediction.

2. Prediction tool model:

After establishing the dependence of railhead friction on the railhead temperature, air
temperature and relative humidity, it was important to link the images showing the
railhead state to the other variables. The leading causes of low adhesion on the railhead
which were identified in section 2.2.1 as the presence leaf layers and wet-rail
phenomenon can be recognised from the railhead images, hence the importance.

The relationships shown between the railhead friction and environmental data were
expected to be non-linear due to nature of variations/unpredictability faced in a non-
control environment in field. Also, the images are a non-mathematical variable that
cannot be integrated into a simple statistical model.

Given the complexity of the types of variables being worked with, a Gaussian Regression
Model (GP Model) was deemed to be best suited in modelling the railhead friction
prediction tool. The other models considered were linear models and a supervised neural
network (SNN) model. The linear models were not considered, as the relationship
between the data being analysed in this work is not linear. A GP model was selected over
the SNN model because these are more established in processing smaller data sets, as
were available for this work, whereas the SNNs are known to encounter problems while
processing small data but does well with large datasets [58].

The GP model was the best fit for creating the prediction tool, as it can flexibly
accommodate large variables having non-mathematical functions, large amount of data
and random variables. Figure 3.1 shows the summary of the variable inputs for the model,
the data processes and the expected output from the model, basically how the proposed
railhead prediction tool will work.
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Figure 3. 1: Schematics for methodology
3. Model Sensitivity Analysis:

Sensitivity tests were carried in a laboratory for the prediction tool to show its limitations
and capacity. Here orientation and distances of camera to railhead were varied to show
how predictions reacts to changes in the image characteristics. It also informed the most
suitable way to capture the railhead images for the on-train design.

4. On-Train Data Capture:

The final step was to tie all the information garnered from the previous approaches and
create an innovative system capable of capturing the data stated as important in
understanding and forecasting railhead friction in approaches 1 and 2. While applying
the most appropriate railhead image capture format established from approach 3. These
all aided the creation of data capture system used on-board selected rolling stocks,
predicting railhead friction from a dynamic open-system.
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4. RAILHEAD DATA GATHERING AND ANALYSIS

4.1 INTRODUCTION

The aim of this section was to study/analyse the railhead condition in various locations
at different given times and days, assessing the levels of friction and contamination on
railhead.

This determined the parameters that influences the friction mechanism, therefore
providing information on the form of data required to predict friction in the friction
prediction model.

The data collected was also to be used to validate the friction prediction model proposed
in this work.

The environmental conditions, as suggested by the RSSB GM/GN2642 manual [34], were
recorded to analyse their influence on the adhesion levels. The environmental conditions
recorded were:

e Weather elements such as relative humidity, air temperature, rainfall level and
sunny, dry, mist or fog

¢ Railhead contamination thickness and
e Contaminant properties (Swabs or LIBS)

Other information that was recorded and/or considered in accordance with the RSSB
manual [34] was:

e Track information.
o Moisture level of the track.

o Site features, such as vegetation around track, proximity to factories, local lakes,
roads or airport.

e Railhead and forward-facing images.

The locations selected for the first set of track measurement were on the Ecclesbourne
Valley Rail (EVR), Midlands Railway and Peak Rail network. The locations used to obtain
data are outlined in Section 4.2.
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4.2 MEASUREMENT LOCATIONS
The train stations in the UK listed below were the locations of the measurements:

e Butterley, Derbyshire (Midland Railway)
e Wirksworth and Idridgehay, Derbyshire (EVR)
e Darley Dale, Derbyshire (Peak Rail)

They were selected because they were accessible, and they are less busy rail tracks
improving the safety factor of working line side and on track.

4.2.1 BUTTERLEY, Derbyshire (Midland Railway), UK:
Data was collected from this site on 4 different dates: 05-09-2019; 01-10-2019; 22-01-
2019; 14-11-20109.

The track side and path of measurements depicted by the red line (seen in Figure 4.1a)
had a sparse tree coverage at the time of the visits. The trees were at about a 7m distance
from both sides of the track and the only effect they had on some of the track sections was
shading caused by the overhead angle of the sun.

At the time of the visits there was no visible sign of the leaves near the track. A section of
the track is located across a very low traffic road which minimises the effects of
contaminants on the railhead.

4.2.2 WIRKSWORTH & IDRIDGEHAY, Derbyshire, (Ecclesbourne Valley Railway EVR),
UK:

Data was collected from these sites on the following dates: 14-08-2019; 28-08-2019; 16-
10-2019; 13-11-2020; 20-11-2020; 25-11-2020; 01-12-2020; 08-12-2020.

The track side has a dense tree coverage in the summertime and early autumn, the trees
lost most of their leaves by the end of November, hence a sparse tree coverage into the
winter (as shown in Figures 4.1b and 4.1c). The path of measurements is depicted by the
red line.
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vak Raill(Darley Dale Station)

(d)

Figure 4. 1: (a) Aerial view of Track at Butterley, “red line” showing measurement path
[59];,(b) Aerial view of track at Wirksworth, “red line” showing measurement path [60]; (c)
Aerial view of track at Idridgehay, “red line” showing measurement path and (d) Aerial view
of track at Darley Dale, “red line” showing measurement path [61]

The track sections that were measured were not located near the road (seen in Figure
4.1b). The rail tracks were still in use in 2019 (date of track visit), which meant the
railhead was relatively clean with little oxidation. However, visits in 2020 (during the
COVID-19 pandemic) meant the track was less used than normal and had a visible layer
of oxides on the railhead. The EVR lines were not operational during the lockdown, they
only had a few operational trains in a 9-month period, used to ‘warm up’ the trains and
for routine maintenance checks.
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4.2.3 DARLEY DALE, Derbyshire (Peak Rail), UK:
Data was collected from this site on the following dates: 02-10-2019 and 08-11-2019.

The track side had sparse tree coverage at the time of the visits, the trees hung over very
little of the track. There was tree shadow being cast over a section of tracks resulting in
protection from the sun, and likely less heat exposure during the day. The path of
measurements on the track (depicted by the red line) is located alongside a low traffic
road, seen in Figure 4.1d.

4.3 METHODOLOGY
The approach used for the field work has been categorised into:

e Equipment used for measurements,
e Measurement plans and
e Measurement procedures.

4.3.1 EQUIPMENT USED FOR MEASUREMENTS

PENDULUM TRIBOMETER

The pendulum tribometer (see Figure 4.2b) is a portable friction measurement tool and
is classified as a skid resistance slider tribometer. This pendulum tribometer was
originally created as a “Slip resistance meter/Pendulum tribometer” which functioned as
a measurement tool for slip resistance levels on different type of floors/pedestrian
surfaces and was used in slip incidents report [37, 62]. Lewis et al. successfully modified
a pendulum tribometer to a tool for measuring railhead friction as the tool functions on a
similar principle on which the Charpy impact test functions, which is an energy loss
principle [37]. The friction reading is taken when the rubber pad (d) on the
swing/pendulum arm head strikes the test material in the case the railhead, the contact
produces friction consequently producing an energy loss (Pendulum test value) which is
measured on the scale (a), as seen in Figure 4.2a.

(a)
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Figure 4. 2: (a) Pendulum tribometer schematics diagram, where a is the measurement
scale; b is the pendulum arm pivot (with adjustable height); c is the pendulum arm; d is the
rubber pad; e is carriage handle; f is the levelling screw; g is the Pendulum arm head [62];
(b) Fully labelled diagram of the pendulum tribometer and (c) Conversion of Skid resistance
to CoF measured by the Tribometer Train [34]

The choice of rubber slider used on the pendulum tribometer was the 96-rubber slider
(Four-s rubber). It was selected because of its hardness, which produced friction levels
similar to other existing test methods. The length of contact between the rubber pad and
the test surface (railhead), which is 127mm, was used to derive a formula used to convert
the Pendulum test value (PTV) to the friction coefficient, p [37]. The equation given as;
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110 1)1

Grv—3) (4.1)
Equation 4.1 was not used for conversion as the pendulum tribometer does not give an
accurate representation of the wheel/rail interface contact pressure as it uses a rubber
pad to strike a section of the railhead, as discussed in the literature review. However,
RSSB guidance on low adhesion friction measurements [34] reports work comparing the
friction values obtained from a pendulum tribometer and the British Railway Research
(BRR) Trib. Train at the same point on track at different conditions. The comparison
graph shows a linear trend line fit (see Figure 4.2c), and this showed a 93% confidence
level from the R*2value. This can be used to convert between pendulum measurements
and wheel/rail contact friction.

Hence, x = was used for the conversion of PTV to CoF

y
195.45

where: x is the CoF, and y is the PTV.

Giving the final equation in this form:

_ PTV
"~ 195.45

(4.2)

The pendulum tribometer is used alongside a platform, that is a wooden rail mount
pictured in Figure 4.4, which was designed to attach the pendulum tribometer to the rail
and to keep it in a stable position while carrying out the tests. The platform is a three-
point structure as seen in Figure 4.4, two of the points or slots in the case are placed on
the track while the third point which is at the rear rests on the sleeper or ground. The
third point can be adjusted with a screw to match the height of the rail [62].

THICKNESS GAUGE

Eddy current thickness gauge- A FN-Evo Paint gauge (see Figure 4.3a) was used to
measure the thickness of contaminant layer on the railhead, as the name implies. The tool
uses a ferromagnetic probe to measure contaminants or coatings found at the top of a
steel/ferrous base material. The calibration of the tool is done by checking the zero
reading on the manufacturer supplied ferromagnetic base plate. According to the RSSB
[34] in the presence of a black film (leaf layer) on the measuring surface, an average
reading of 42-44 pm is expected. Measurements were taken 5 times on different spots in
very close proximity to each other on each measurement points on the track to account
for thickness variation and to ensure repeatability of the measurement.
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Figure 4. 3: (a) Thickness gauge; (b) Infrared thermometer; (c) Go Pro camera

INFRA-RED THERMOMETER
A RS-8662 dual laser thermometer (see Figure 4.3b) was used to take the railhead
temperature, air temperature, dewpoint and relative humidity level.
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CAMERA
A Go-Pro Hero4 and Go-Pro Hero8 (see Figure 4.3c) was used to take railhead and
forward-facing images.

4.3.2 MEASUREMENT PLANS
The same measurement plans were used at each location because similar sets of data
were collected with the same equipment.

At each location a target minimum of 8 data points was set for the visit, in order to give
broad picture of the railhead condition along the track.

The following precautionary measures were taken at all locations before and while using
the pendulum tribometer [34, 63]

1. All necessary Personal Protective Equipment were worn while working with on
the rail track.

2. Social distancing between colleagues was observed on the track side to prevent
spread of COVID-19.

3. Commonly touched on the equipment was cleaned regularly to also help prevent
the spread of COVID-19

4. The manual for the Stanley Morgan Pendulum tribometer was consulted for
proper set up and use of the equipment.

5. It was ensured the pendulum counter was set to zero before every measurement
was taken.

6. Whilst using the pendulum tribometer to take friction readings, all forms of
interference with the swing/pendulum arm and the balance of the stand was
avoided.

7. The rubber slider was cleaned before the start of measurement to prevent
contamination.

8. The peak displacement value was monitored on the return swing to ensure the
value was not altered.

9. It was ensured that the swing/pendulum arm head mechanism was firmly
clamped after lowering or raising it, to keep it in a safe position.

4.3.3 MEASUREMENT PROCEDURES

The following procedures below were followed when using the pendulum tribometer to
take friction readings according to the RSSB (2008) [34] and BS 7976-2:2002+A1:2013
[63] guidelines.
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PRE-FRICTION MEASUREMENT STEP

1.

The Pendulum tribometer was visually inspected for damages or abnormalities
before assembling it in accordance with the user manual.

The Infrared thermometer was used to measure and record the relative humidity,
railhead and air temperature. This step was done before carrying out any test on
the railhead, because the presence of foreign objects (tribometer and mount) on
the rail surface would alter the original railhead temperature.

The thickness gauge was used to measure the thickness of contaminants, if there
was any present.

The track information was recorded and adapted front facing images were taken.

The wooden mount was placed on the rail, using the three points and it was
secured with a rear screw to the sleepers.

The pendulum tribometer was set on the wooden mount, over the railhead.

The swing/pendulum arm head was clamped securely in the spring-loaded
release mechanism.

The Go Pro camera was clamped on the pendulum frame to take the railhead
image. After the image was taken, the GoPro was detached as it will be an
obstruction for the swing/pendulum arm movement.

With the release mechanism engaged by the swing/pendulum arm, the base of the
pendulum tribometer was set to level using the three levelling screws and the
spirit level found on the base frame.

10. The fittings of each part of the pendulum tribometer were checked by swinging

the pendulum arm for any loose fits or potential damages.

11. The rubber slider was checked for wear and damages.

12. The zero setting was checked and adjusted if needed.

13. The contact length between the rubber pad and the railhead was set to

approximately 127mm [36, 37]

FRICTION MEASUREMENT STEP

1.

It is expected that a reference measurement should be made on an emery paper
to check the calibration of the tool (the slider rubber pad specifically). This was
not implemented in the track testing because the emery paper was unavailable
during testing time.

The swing/pendulum arm was placed in the release mechanism and the pointer
was brought to its starting position see Figure 4.4
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Figure 4. 4: Pendulum set in the start position for friction measurement

3. The swing/pendulum arm was released striking over the railhead position of
interest, and it was caught on return before the slider struck the railhead, see
Figure 4.5.

Figure 4. 5: Pendulum arm head striking the railhead (left) and pendulum arm caught
before return (right)

4. The swing/pendulum arm handle was lifted to ensure the slider pad would not
touch the railhead when returning to its release position, hence not altering the
reading taken previously.

5. The reading was recorded on data sheet designed specifically for these data
collection (data sheet shown in appendix A-1).
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6. Steps 3-5 were repeated 7 more times on the same position on the railhead to
ensure repeatability of the readings. (BS 7976-2:2002+A1:2013 recommended
recording the friction measurements 8 times per points [63])

7. The whole process of the pre-friction measurement and friction measurement
steps was repeated for each selected point on the track.

4.4 RESULTS & DISCUSSION

The railhead temperature (°C), Relative Humidity (%), and railhead friction (u/mu)
recorded from each site were collated for each measurement point (per day) to help
understand their relationships. The y data was plotted on the y-axis as the dependent
variable while the RH was plotted on the x-axis and railhead temperature was
represented on a colour map as independent variables, enabling visualization of effects
of RH and railhead temperature on p.

Not all the data plots from Butterley, Wirksworth and Idridgehay have not been included
individually, to avoid repetition. The omitted graphs have been included in Appendix A-
2.

4.4.1 WIRKSWORTH AND IDRIDGEHAY

RESULTS

Figures 4.6a through to 4.6j are plots of the resulting measurements and railhead images
taken at Wirksworth and Idridgehay. These figures generally show the effects of high
relative humidity in conjunction with railhead temperature on the railhead u. The
independent effect the relative humidity can have on the railhead p can also be seen.

Figure 4.6a shows a temperature range between 15.6°C - 16.9°C and a RH ranging
between 88.5% - 97% with u ranging between 0.09 - 0.16 for Wirksworth. Data on the
same date from Idridgehay shown in Figure 4.6b, shows a slightly higher temperature
range of 17.25°C - 19.0°C and RH 0of 97% - 100% with u ranging between 0.08-0.17 for a
wet day.

19200

50

a3

i)

Relative Humidiy (%)

o

=
o

=
o=

o o
o s
Radhead Temgeratune [(C]
=

wn
o

-

(a)

= =
- =
o
I
[
=]
.

oo Wh

8.0

% 5

%0

Relatie Humidity (%)

£ L]

K00

B OB OB
P L =
wn = T

- 18.00

- 17.T5

Railhead lemperature (L)

17 50

' 1783

(b)

Figure 4. 6: (a) p against relative humidity with a colour map representing railhead
temperature for Wirksworth on 14-08-2019 and (b) u against relative humidity with a
colour map representing railhead temperature for Idridgehay on 14-08-2019
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Figure 4.7a is a plot of the data from Idridgehay of artificially wetted railhead and the
natural railhead state, while Figure 4.7b shows railhead image samples of both railhead
conditions. The p ranged from 0.11 - 0.33 with railhead temperatures of 4.2°C - 5.0°C and
RH ranges of 71% - 79%.
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Figure 4. 7: (a) Plot of u against relative humidity with a colour map representing railhead
temperature for Idridgehay on 21-11-2019 and (b) Shaded dry railhead (left) and
artificially wetted railhead (right) at Idridgehay 21-11-2019

Wirksworth data collected on the same day is shown in Figure 4.8a with railhead
temperatures ranging from 1.7°C to 4.0°C and Influence of RH between 53.5% to 71%
resulting in a p of 0.12 - 0.33. Figure 4.8b shows image samples of the railhead state:
under dry conditions (left) and in a damp condition (right) highlighted in the plot shown
in Figure 4.8a.
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Figure 4. 8: (a) p against relative humidity with a colour map representing railhead
temperature for Wirksworth on 21-11-2019 and (b) Dry railhead (left) and damp railhead
(right) from Wirksworth on 21-11-2019

Figure 4.9a presents data collected on the same day from both sites with an upward
progression of environmental conditions with RH ranging from 60% to 78% and 69% to
80% with railhead temperatures of 3.6°C - 9.4°C and 7.8°C - 10.9°C for Wirksworth and
Idridgehay respectively. The state of the railhead showing visible oxidation present at the
time of data collection can be seen in Figure 4.9b.
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Figure 4. 9: (a) p against relative humidity with a colour map representing railhead
temperature for Wirksworth (left) and Idridgehay (right) on 13-11-2020 and (b) Railhead
image with visible oxidisation with u of 0.33 from Wirksworth on 13-11-2020

Table 4.1 summarises the data obtained from both locations on 20-11-20 and 08-12-20
represented on Figures 4.10a and 4.10b. It shows the minimum and maximum values for
u, RH and railhead temperature for each site.
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Figure 4. 10: (a) pu against relative humidity with a colour map representing railhead
temperature for Wirksworth (left) and Idridgehay (right) on 20-11-2020 and (b) u against
relative humidity with a colour map representing railhead temperature for Wirksworth
(left) and Idridgehay (right) on 08-12-2020
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Table 4. 1: Data from Wirksworth and Idridgehay on 20-11-20 and 08-12-20

Date Location u (Min-Max) RH/%  (Min- Railhead
Max) temp/C (Min-
Max)
20/11/2020 Wirksworth 0.197 64.5 3.0
0.259 87.5 5.8
20/11/2020 Idridgehay 0.199 88.4 6.3
0.259 93.7 7.8
08/12/2020 Wirksworth 0.180 59.7 -0.9
0.232 93.6 2.4
08/12/2020 Idridgehay 0.178 93.0 3.8
0.215 94.6 3.7
DISCUSSION

On 14-08-19 in Wirksworth, there was a small temperature range on the high side
between 15.6°C - 16.9°C and a high RH ranging between 88.5% - 97% with weather
conditions of heavy rainfall and wind, shown in Figure 4.6a. At this temperature the u
values recorded were lower than expected and this was due to the high RH levels caused
by the rainfall and the moisture deposited on the railhead. The lowest u of 0.097 was
recorded at the highest temperature and highest RH, 16.9°C and 97% respectively.

The u trend at Idridgehay on 14-08-19, seen in Figure 4.6b, was like that of Wirksworth
as they are located 3.7 miles apart with similar weather conditions. The lowest yurecorded
was 0.081 under light rainfall with 100% RH and railhead temperature of 18.2°C. This u
value is very close to the ultra-low friction region. In-lab tests carried out in [64] on a ball-
on-disc apparatus supported that a low amount of moisture (such as light rainfall)
brought about a significant drop in p, while flooding conditions did not cause any
noticeable drop in the u values.

Data presented in Figure 4.7a where two sections of the railhead were artificially wetted
at Idridgehay on 21-11-2019 resulting in a lower p of approximately 0.11 and 0.15
compared to the recorded range of 0.30 - 0.33 on the dry railhead in overcast conditions,
shown in Figure 4.7b.

While at Wirksworth on the same day a y of range 0.29 - 0.33 was recorded (shown in
Figure 4.8a) because the railhead was dry with overcast conditions, but a section of the
rail which was damp had a p of approximately 0.12, shown on Figure 4.8b. The cause of
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dampness at that point may be as result of its closeness to a field (vegetation) where
condensate from the plants may been dispersed by wind. In locomotive tests conducted
at the Vuz Velim test track which had a section alongside a farmland, a drop in traction
force was noted on that section citing moisture or visible leaf fall as the cause [65]. Both
the wet phenomenon (referring to when there is visible moisture on the railhead) and
damp phenomenon (referring to when there a moderate moisture coverage on the
railhead which may be visible or felt by touch) show the effect moisture presence on the
railhead has on lowering the p.

The unused rail tracks caused by the Covid-19 lockdown, resulted in some parts of the
railhead having slight oxidation which will have influenced the PTV readings and the u
values.

On 13-11-20 in Wirksworth (Figure 4.9a), it was sunny and dry, hence the u values
recorded were in the intermediate range of u between 0.258 - 0.327. A lower u of 0.183
was recorded on the same day, although not ultra-low but it was significantly lower than
the range recorded for the weather conditions. This can be attributed to some visible
oxidisation of the railhead at that point of measurement as seen in Figure 4.9b. Similar
results were recorded in Idridgehay, shown on the right-hand of Figure 4.9a, without the
oxidised railhead u data noted at Wirksworth.

From Table 4.1, on 20-11-20, the lowest u ranges were recorded at a combination of low
temperatures between 3°C - 3.9°C and RH of 78.5% - 80.6% at Wirksworth. The u levels
recorded were in the intermediate range corresponding with expected wet conditions.

At Idridgehay a higher RH of 93.7% was recorded with a corresponding pu of
approximately 0.24 within the intermediate y range likely due to the temperature of 7.3°C
not being low enough.

Data collected on 08-12-20 showed p values ranging between 0.180 - 0.219 and 0.178 -
0.214 for Wirksworth and Idridgehay respectively. The p values are similar to the
expected values for wet railhead between the low and intermediate range for y with high
RH levels reaching 94.6% at Idridgehay and 93.6% at Wirksworth.

The temperatures recorded at Wirksworth ranged between -0.9°C to 2.4°C with the
lowest p of 0.18 occurring at a temperature 0.19C and a RH of 67.3% under raining
conditions. Similar trends were noted as Idridgehay as the temperature reduced, and the
RH increase the u decreased as seen in the plot in Figure 4.10b right-hand side. This
suggests that lower temperatures also contribute to the occurrence of low adhesion.
These results were recorded without physical contamination meaning the presence of
contaminants will further increase the risk of low adhesion occurring. Research done on
simulating ice formation on a railhead using a pin-on-disc tribometer showed that in the
absence of ice/snow on the disc surface with a temperature range of temperature of 3°C
to -15°C, had low temperature embrittlement acting which was the main cause of wear
and increased friction. When an ice layer formed with the further temperature reduction
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to - 25°C, the ice layer condensed forming a layer of moisture on the surface which caused
the friction to drop, hence reducing wear [66]. The researchers also stated that with the
addition of snow crystals to the pin-on-disc test with an increasing temperature from -
25°Cto 3°C, the wear and friction levels reduced as the snow melted creating a lubricating
layer of water. This again proves the importance of high humidity and the presence of
moisture on the railhead in the creation of low adhesion in agreement with lab tests
carried out by [64, 67], while the effect of snow/ice becomes dominant when it melts
which can occur in reality by heat produced between the wheel/rail interface.

4.4.2 BUTTERLEY

RESULTS

Figures 4.11a through to 4.11c show the resulting measurement plots and railhead
images from Butterley and the independent effects of high humidity on the railhead
friction are highlighted.
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Figure 4. 11: (a) u against relative humidity with a colour map representing railhead
temperature for Butterley on 22-10-2019; (b) Dry railhead under shade (left) and damp
railhead under shade (right) at Butterley on 22-10-2019 and (c) u against relative humidity

with a colour map representing railhead temperature for Butterley on 01-10-2019

Figure 4.11a shows that a noticeable cluster of lower u values between 0.12-0.15 were
seen on 22-10-2019, around the region of high RH 72% -7 6% and lower temperatures
for late October 5°C-10°C compared to u of 0.30-0.32 recorded in the region of higher
temperature 10°C-16°C and lower RH 54%-62% where the railhead was visibly, dry
shown in Figure 4.10b.

Figure 4.11c shows data collected 01-10-19, temperatures were in the range of 13.5°C -
15°C combined with high RH of 70% - 90% due to drizzle at the time the measurements
were taken.

DISCUSSION

Work done by researchers on a Mini-traction machine showed that there was a
considerable decrease noticed in the u to between 0.1 - 0.15 with the rough specimen
used when submerged in water of 5°C compared the a u of approximately 0.20 for water
at 20°C [68]. Although this experiment does not give a representation of the field
conditions, it supports the occurrence of lower u under reduced temperature. Lower u
was recorded in a shaded and damp section of the track. It was noticed that there was a
temperature drop in the region (comprised of four data points circled in black) of the
lowest p which is the right conditions for dew formation where warmer temperatures
allow for moisture to be held in the air and a drop in the temperature (as seen on the
graph in Figure 4.11a) releases the moisture as dew [69]. This accounts for the higher RH
reading in that region. While the higher y values were recorded on a dry section of the
track.

A pof 0.16 on the plot was recorded at a medium RH of 62.2% and lower temperature of
2°C, has shown that even at low temperatures the RH must be high before any significant
drop in the u value is recorded. At this point the moisture content on the railhead had
reduced supported by the RH value recorded.
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Although the temperatures recorded (13.5°C - 15°C) with high RH (70% - 90%) on 01-
10-19 (seen in Figure 4.11c) are not classified as low, the data from the plot shows that if
the temperature were to have dropped further (on some points of the track) the friction
would potentially have reduced. The data shows the u reducing as the railhead
temperature reduces with the high RH in the presence of moisture.

The second lowest temperature recorded on the same date was 13.6°C with a RH of
74.5% which accounted for the lowest u of 0.125 recorded. This shows that low adhesion
can occur in warmer temperatures and with different railhead contaminants under the
right conditions, especially high RH on the railhead.

4.4.3 DARLEY DALE

RESULTS

Figure 4.12a shows pu readings measuring within a temperature range of 9°C - 16°C with
low RH. A standout i of 0.13 compared to range 0.22 - 0.38 was recorded, shown circled
on the image, the railhead image for the standout reading can be seen in Figure 4.12b
showing significant rust contamination.
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Figure 4. 12: (a) u against relative humidity with a colour map representing railhead
temperature for Darley Dale on 02-10-2019; (b) Corresponding railhead image for the
Darley Dale B of 0.13
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Measurements taken under shaded and sunny conditions were recorded in Figure 4.13a
at a temperature range of 7.5°C - 18.5°C and RH range of 50%-68%. Dry railhead
conditions yielded a u of 0.28 - 0.35, a sample of the dry sunny railhead can be seen in
the right-hand image of Figure 4.13b. A low u of 0.13 was recorded under shaded
conditions with dew present as seen in Figure 4.13b (left).
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Figure 4. 13: (a) u against relative humidity with a colour map representing railhead
temperature for Darley Dale on 08-10-2019 and (b) Railhead with dew present (left) and
railhead with exposure to the sun (right) at Darley Dale on 08-10-2019

DISCUSSION

The highest RH recorded on 02-10-2019 at Darley Dale of 64.5% with a temperature of
11.7°C produced the lowest u of approximately 0.13, shown in Figure 4.12a. Ideally, it is
expected that the u values should all be in the intermediate region as the railhead
conditions were dry with a combination of sunny and shade effects, but the lower u
reading stood out which was possibly caused by contamination of the railhead at that
point, which is very likely as a patch of grease was noticed on the railhead shown in Figure
4.12b. The temperature variation was caused by the transition to shady environment
from sunny environment. Shade and track orientation causes a drop in railhead
temperature [70].

On 08-10-2019, similar trends were noted as on the previous visit with similar weather
conditions. Although a lower p of 0.13 was recorded within the medium RH range of 59.7
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and railhead temperature of 8.7°C (see Figure 4.13a). The presence of dew due to the
drop in the temperature (this can promote the “wet-rail” phenomenon) on the rail section
explains the drop in u as the presence of moisture contributes to the reduced friction
value on the railhead if mixed with oxides, which were clearly present here shown in
Figure 4.13b [30].

4.5 SALISBURY DATA COLLECTION

Following the train crash in Salisbury Tunnel Junction, UK on 31 October 2021 when a
South Western passenger train travelling from London Waterloo to Honiton crashed into
another passenger train operated by Great Western travelling from Portsmouth Harbour
to Bristol Temple Meads, an opportunity arose to test/measure the railhead at the site of
the collision for low adhesion [71].
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Figure 4. 14: (a) Ariel image of the crash site at Salisbury Tunnel [71]; (b) Examples of black
leaf layer present on the railhead; (c) ) p against relative humidity with a colour map
representing railhead temperature for Salisbury Tunnel Junction 03-11-21

The site of the collision (see Figure 4.14a) appears to have a dense leaf coverage over the
rail tracks and leaf contamination/low adhesion becomes a suspect for the derailment
and crash. A colleague at the university named Tom Butcher went down to the crash site
on 3-11-21 to collect friction measurement using the Pendulum tribometer,
environmental data and railhead images. The images collected (see Figure 4.14b for
example) clearly showed that railhead was contaminated with black leaf layer and this
was confirmed to cause of the crash by the Rail Accident Investigation Branch (RAIB)
[71].

The data collected was analysed and plot as seen in Figure 4.14c to understand how and
why the low adhesion occurred. Given the fact that the information data collected
happened 3 days after the incident, the environment was not the same as the actual day
and the railhead condition may have also changed over that period.

The pendulum measurements were taken across 2 railhead conditions (natural state and
artificially wet). All the u measured for the artificially wet section was significantly lower
at 0.12 - 0.34 than the natural state at 0.23 - 0.72 which appeared to be dry. Before the
averages of the pendulum reading were calculated, the lowest u recorded on the wetted
rail section was 0.037 which falls in the category of ultra-low friction. This gives an
indication of the possible u that was experienced on the day of the incident.

The Salisbury data set highlighted the occasional poor repeatability experienced in using
the pendulum tribometer to measure contaminated railhead friction (see figures 4.15 (a-

)).
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Figure 4. 15: Salisbury contaminated railhead time series plots showing the 8 individual
Pendulum tests recorded before the standardised average was calculated. (a) Friction
measurements for a dry contaminated railhead. (b) Friction measurements for an
artificially wetted contaminated railhead. (c) Friction measurements for an artificially
wetted contaminated railhead.

Before the averages of the 8 pendulum friction readings were calculated, the individual
frictions measured at the beginning is seen to convey the lowest and possibly the actual
friction values of the rail head, especially for the wet railhead conditions shown in
Figures 4.15 (b) and (c). The subsequent friction measurements are seen to increase
because the pendulum tribometer’s rubber pad wipes off the contaminants and/or
moisture on the railhead, hence altering the railhead conditions and consequently the
friction value.

4.6 GENERAL DISCUSSION

These results have shown that relative humidity is an important factor in understanding
low adhesion on the railhead as seen from the data presented in this work. The variation
in the RH data makes the results unique, which is usually not considered in in-lab or
controlled environment testing. Further work should be considered for including
variations of RH levels for in-lab friction tests.

The RH and temperature were effectively taking at every point of friction measurement
because the pendulum tribometer is portable and can be moved easily from point to
point. Compared to in-lab test methods, where the railhead temperature is independent
of real weather elements. On the contrary, for on-field measurement techniques where
the railhead conditions are dependent on the weather element, but the exact
measurements of weather elements for a corresponding friction reading cannot be
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determined because the exact point of measurements on the railhead is not easy to
determine.

From the analysis done we can infer that the railhead friction is dependent on the relative
humidity, air and railhead temperature. Therefore, this informs that those 3 parameters
are key variables that should be considered in the prediction of railhead friction.

4.7 CONCLUSIONS

These data sets have successfully linked on-field weather elements to friction data,
with the use of the British railway research train conversion factor. This shows
that a friction predication tool can be design using the variables presented.

This data provides a better understanding of the variations that occur in the
railhead friction because of the open system nature of the wheel/rail interface
showing the unpredictable changes in environmental conditions.

At 75% RH and above low adhesion will be highly likely especially with the
presence of moisture on the railhead, even with warmer temperatures.

A significant drop in the railhead temperature leading to a rise in RH is seen to be
accompanied by a decrease in the adhesion level. This can be attributed to the
formation of dew (light moisture) on the railhead.

Data collected from the Salisbury tunnel incident was very important in
understanding the effects of the black leaf layers in combination with
environmental effects. This will be very useful in creating a robust friction
prediction tool.
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5. DEVELOPMENT OF FRICTION PREDICTION TOOL

5.1 INTRODUCTION

From Chapter 4, it was established that railhead friction is dependent on the railhead
temperature, air temperature and relative humidity. In order, to design a railhead friction
prediction software these variables are key to understanding adhesion and building an
accurate model. From the resulting plots in section 3.4, it is obvious that the relationship
between the variables is non-linear. Alongside these variables, railhead images will be
included for contaminant identification and possible differentiation between wet-rail
phenomenon at different temperature. It is therefore important to use a method that will
account for these characteristics in building the prediction model.

Table 5.1 shows the measurement uncertainties of the measurement equipment used in
building the prediction model, which are the same as the equipment used in the analysis
done in Chapter 4.

Table 5. 1: Sensor’s measurement uncertainty

S/N Sensor Instrument Condition Measured Measurement
Uncertainty
1 RS-88662 IR Air and Rail Temperature +3.50C at -500C -
Thermometer 200C

*1.5°C at 200C -

260°C
2 RS-88662 IR Relative Humidity +1%
Thermometer
3 Eddy current thickness Layer thickness +(2um+3%)
gauge

The sensors used in training the prediction model had a measurement uncertainty of
+3.50C for the temperature range between -500C - 209C which is not a large variation. The
results generated by the model will be impacted negatively by a sensor having higher
uncertainty.

5.2 METHODOLOGY

5.2.1 GAUSSIAN PROCESS MODEL

In order to establish a relationship between non-linearly related parameters such as
friction, relative humidity and temperature with non-mathematical parameters in this
case images, an appropriate statistical model has to be chosen. The relation of a set of
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independent parameters to one or several dependent variables is done by a statistical
model. For any statistical model the complexity of the model and dimensionality of the
input space need to be balanced by the amount of data available for training [72]. More
complex models, or models of high dimensional data require more training data. The
most appropriate type of model will depend on the complexity of the relations present,
how much data is available and what other information is required with the prediction.

The Gaussian regression model is the most appropriate for the prediction operation
because of its flexibility in representing a large variety of models having non-
mathematical functions, large amount of data and random variables.

:
Given a finite set of input of x = [x(l), s x(")] with corresponding function represented
by a group of random variables y = [y(l), ...,y(”)]T ; the Gaussian function can be used to

define the jointly distributed random variables (y) as:$(y|x) ~ exp (— %yT Z‘ly) (5.1)

Having a matrix X presented by C the covariance function, where ‘cov’ stands for the
covariance operator [73]:

Tpq = COV (y(p)’y(q)) = C(x(p),x(q)) (5.2)

This concept s further explained in the work done by Brahim-Belhouari and Bermak [73].
The Gaussian process model framework used in this work is a pre-existing module on
Scikit learn which is a python package.

For image processing tasks, the size of the input is extremely large, for example, a one
mega-pixel image with three colour channels requires a vector with three million
elements to uniquely represent an input. In addition, the relations between individual
pixel values and dependent variables of interest are often extremely complex, meaning
that models need to be flexible, with many trainable parameters, to achieve good
accuracy.

For these tasks Convoluted Neural Networks (CNN) are typically used, these leverage the
structure of image data by filtering the input image, first producing maps of primitive
features such as edges, then progressively higher order features such as simple shapes or
objects. The result of this filtering is then fed into a further “fully connected' network
which is used to classify the input image. The network is trained by automatically
adjusting the filter values and the weights in the fully connected network based on their
derivative of the error, which can be found using the chain rule of calculus [74].

As the number of parameters in the filter kernels is high and many are needed to
represent complex shapes, this process requires an enormous amount of data to avoid
spurious correlations. This data requirement is a direct result of the high input
dimensionality and the complexity of model, not a specific feature of neural networks.
The resulting model consists of two distinct parts: a filtering network which takes an
input image and produces “ratings” for each of a set of high-level features and a fully
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connected network which links these features to image classes or other variables of
interest. The model used is attached in Appendix B-1.

5.2.2 IMAGE PROCESSING

As stated in the chapter four, forward facing and railhead images were collected from a
GoPro camera. The images collected have numerous features which may contain some
noise, image processing was required to reduce the image features to only reflect relevant
features for the friction prediction. The image processing techniques used for the
forward-facing images varied from that of the railhead images due to the amount of data
available.

FORWARD FACING IMAGES PROCESSING

The forward-facing images being processed are the ones collected from the field work
described in chapter 4. The images were complex, containing many different objects and
situations. As such traditional image processing would be impossible, while manual
labelling would be too time consuming to scale to a full network system. Neural networks
offer an attractive solution, but the small number of images makes directly training a
network impossible. Instead, these images were augmented with a large set (~20,000) of
visually similar forward-facing images scraped from various UK sources on the internet.
The images used were open source, therefore there is no ethical violation or copyright
infringement, in addition these set of forward-facing images were not included in the final
package produced in this research. The resulting set provides a representative sample of
images from UK networks and can be used to train a dimensionality reduction model
which retains relevant distinguishing information from the images, while discarding
information common to all images.

An example image from the augmented set is shown in Figure 5.1. Many parts of these
images are common for every image, these areas are removed by cropping the image into
two sub-images as shown. The sub images were then resized to the correct input size for
a pre-trained CNN.

Original image

Sub-images
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Figure 5. 1: An example forward facing image showing the sub images extracted for further
analysis

These sub-images are passed through a CNN that has previously been trained on a large,
labelled data set. In this study MobileNet V2 (which is a readily available open-source
CNN) was used as it is suitable for high-speed use on low-cost devices. This network
reduces the dimensionality of the data from millions of brightness values to a 2048
element feature vector. The feature vector consists of features which have been trained
to be useful for common image classification tasks. These are high level features, many of
which relate to familiar concepts (e.g. a human face).

Within this vector many features are irrelevant for our task or strongly correlated to each
other. To further reduce the dimensionality, a Principal Components Analysis (PCA) was
carried out on the feature vectors. The PCA simplifies the large data set into smaller set
whilst preserving important patterns and trends. This finds orthogonal, linear
combinations of parameters which contain the most variation for the data presented [75].
Examples from the extremes of the first three principal components are shown in Figure
5.2. The values for the first 600 principal components were retained, these contained
90% of the total variation in the image data. These components are high level, abstract
representations of the data and are unlikely to be summarised well by a description.
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Figure 5. 2: Images from the extremes of the first three principal components for the data
set. Each pair of rows represents a principal component

With this lower dimensionality and a large number of images an unsupervised
classification tool can be used. This splits the data into groups which are similar to each
other. There are many methods of completing this task, here we have used a self-
organising map (a type of neural network). The results of this classification are shown in
Figure 5.3.
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Figure 5. 3: Examples of the different groups of images found by the unsupervised learning
technique. Columns are separate groups: grassland, trees, rural, urban

The result of this process is a pair of coordinates, which place a railhead image on the
map. The groups presented in this map have been made from a representative sample of
forward-facing images. The codes used are attached in Appendix B-2.

RAILHEAD IMAGES PROCESSING

Similarly, to the forward-facing images railhead images were collected along with
associated environmental and friction data as described in Chapter 4. Unlike the forward-
facing images there is no large source of representative railhead images. In addition, pre-
trained networks are typically trained on images which are very different from the
railhead images and are unlikely to be useful. However, the dimensionality of the images
must still be reduced before the images can be used (See Figure 5.4). To achieve this,
features were extracted from the images using traditional image processing techniques.
The traditional image processing techniques and tool kit used included an Edge detector
for identifying the boundaries of the railhead in the image, Numpy for indexing
operations to modify the pixel values of the image, SciKit-image that works alongside
Numpy which was used for feature extractions and Pandas for reading the image file,
directories from .csv [76].
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Figure 5. 4: Railhead Image before (left) and after (right) dimensionality reduction

Before feature extraction, the images were normalised and the rail was located in the
image, the rail was then cropped out for further processing. The features were chosen as
features likely to be correlated with the friction present. These were: the number of black
pixels in the image, the number of orange pixels in the image, the average colour of the
railhead and the sum of the first derivatives in the along-rail and across-rail directions.
The first derivatives are higher when many strong edges are present, such as when the
rail is rough. These features could then be used directly in the prediction tool. The codes
used are attached in Appendix B-3.

5.2.3 PREDICTION TOOL BUILD WITH GP MODEL

The forward-facing image map positions, railhead image features and sensor
measurements from data collected between August 2019 to February 2020 were
combined in a model to predict the railhead friction. A Gaussian process regression model
was selected as it is flexible enough to accurately capture the relations which are likely to
be present, and data efficient enough to be fitted well using a data set of this size. In
addition, these models also provide an estimate of the error of the prediction given [77].
The predictor model code is attached in Appendix B-4. This mitigates the risk of incorrect
estimation/prediction in new scenarios. Before fitting, all data have been linearly scaled
to a unit scale, meaning that the highest value is scaled to 1 and the lowest value is scaled
to 0.

The Gaussian process is defined by a kernel function. This encodes the joint variability of
the model’s parameters. This can be used to set prior information about how the data
relate to each other, how much noise is present in the data and any underlying structure.
The model consists of a summation of a constant kernel, a white noise kernel and a non-
linear kernel. Multiple non-linear kernels were fitted and the one producing the highest
marginal likelihood (rational quadratic) was chosen. The constant kernel is set to 0.5
while the further hyper-parameters of the model are set by optimisation during the fitting
process. The optimisation aimed to achieve the maximum log marginal likelihood for the
data given the model and a Gaussian error function.
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5.3 RESULTS FROM TRAINING AND FIRST STEP VALIDATION THE FRICTION

PREDICTION MODEL

The first version of the prediction tool using the data from the Heritage railways (2019)
discussed in Chapter 4 got the fit shown in Figure 5.5. The overall log likelihood of the
model is 176.5 and the R? value for the model, with this data is 0.97. In order to validate
the system, data were left out of the fitting process and the prediction of the naive model
compared to the actual value at the left-out points. The first step in the validation process
was to leave a single point of data out at a time. The prediction of the naive model at the
left-out point can both be compared to the true value at that point as shown in Figure
5.6A and the prediction of the full model as shown on in Figure 5.6B.
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Figure 5. 5: Model predictions compared to the actual value at each point, points are
coloured by their leverage. Data on both axes are normalised to a 0-1 scale

These results show naive models are still able to explain 96% of the variation in the data
(coefficient of determination = 0.96). Additionally, the average change in prediction
between the full model and the naive models is only 3% of the measurement range. This
shows that, in general, the model is not over-fitted to the data, and that trends fitted by
the model are likely to be real.

This process was extended to leaving groups of twelve points out. The models fitted
leaving groups of twelve points out are compared to the true value at the left-out points
in Figure 5.7A, this plot is for one set of groups which include the whole data set. These
values are again compared to the result from the full model in Figure 5.7B. This process
has been repeated for all possible groups of twelve points.
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Figure 5. 6: Results of the leave one out validation (A) and a comparison of the full model to
the naive model for each point (B), with a histogram of the change between the naive and

full models. Data on both axes are normalised to a 0-1 scale
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Figure 5. 7: Results of the leave groups out validation for one set of groups (A) and a
comparison of the full model to naive models for each group (B). Data on both axes are
normalised to a 0-1 scale

As seen in Figures 5.6 and 5.7 for the leave one out validation, the mean change in
prediction between the full model and the naive models was only 3% of the measurement
range. The mean coefficient of determination for the left-out points was 0.96.

While it is clear from Figure 5.6 and Figure 5.7A that several points are over leveraged,

and not predicted well when left out, the majority of the points are not. In collecting these
data, we have aimed to collect from locations and in conditions likely to cause low
adhesion, as such much of the data are from low adhesion conditions and are well
predicted when left out of the fitting process.
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5.4 PREDICTION MODEL VALIDATION AND RETRAINING PROCESS

5.4.1 FIRST VALIDATION

Given the predictions and first step validation from the model was done by inputting data
it had been previously trained on, it was important to test its accuracy on a new set of
data to see what type of prediction it will give.

Hence, a second validation was carried out. This was simply done by running images of
already measured railhead friction through the tool and comparing the predicted friction
to the measured friction for the corresponding image.

Data collected from Wirksworth and Idridgehay on the Ecclesbourne Valley Railways
(one of the Heritage Railways) between November to December 2020 described in
chapter 4 was used because the tool had not been trained on those data set.

The images and corresponding environmental data were run through the model, and it
gave the predictions in terms of the Pendulum Test Value (PTV) shown in Figure 5.8. The
plot was created using the established friction measurements that was taken in the field
against the predicted friction to give a simple visual representation of the deviations in
predicted data.
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Figure 5. 8: 1st Prediction results using Nov-Dec 2020 data with linear points representing
the measured friction on the image to the right

From the first view of the plot in Figure 5.8 it was seen that the model was under
predicting the friction values for the Nov - Dec 2020 data set. The railhead images were
referred back to understand what could have caused the underprediction, it was then
noticed that the railhead conditions captured during the latter field visit were not
representative of what that the prediction tool had been trained on based on the former
field visit between Aug 2019 - Feb 2020. This may have been as result of the lack of train
operation over the railhead during the latter data collection, creating a different railhead
condition.
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Asides for the railhead condition factor, the poor repeatability of results from the
pendulum test rig, may have given wide variations in the measured data and making it
harder to get a precise friction prediction.

Another contributing factor could have been the lack of robust data for the training of the
model, which is evident in absence of certain types of railhead conditions data. To solve
this problem, the NN tool has to be continuously trained to adapt to the various types
railhead conditions..

5.4.2 FIRST RETRAINING AND REVALIDATION THE FRICTION PREDICTION MODEL
The first attempt of the model validation showed that was under predicting the friction
due to the absence of similar data sample in data bank used to train. In order to improve
the robustness of the tool, additional images and corresponding data will be used to
retrain the model. In this case, the additional data will be that of Nov - Dec 2020 since it
was confirm that it represented different railhead states in comparison to the original
images the model was trained on.

The following steps were taken to retrain the model:

1. The original .csv data sheet used to train the model was updated to include the
new dataset.

2. The image file names were included in the data sheet with their file directory, so
the program can locate them for the feature extraction process. The image format
is preferably “.jpg”.

3. The IMAGEFEATURES.ipnyb files (see Appendix B-5) was located in the prediction
model folder.

4. The image file directory in the python script was confirmed to ensure it matches
the csv file, a name and location for the extracted csv file was assigned for it to be
stored. IMAGEFEATURES.ipnyb was run to extract the image features, see Figure
5.9.

date time air_temp humidity dew_point rh_temp layer_thick friction is_raining mean_brightness black orange edge_v edge_h color

0 43691 05 15.0 835 131 16.2 40 3075 True 170.346052 0.0 0002096 0011879 0.0144 0061112

Figure 5. 9: An example of a row in the csv file containing the extracted image features.

5. The image features properties were stored in a new csv file as assigned by the
user. The csv file was then imported to the Gpfitting MO.ipynb (regression model
for the prediction, see Appendix B-6) which were the retraining takes place.

6. The GPfitting MO with updated Image analysis file was run, this generated an
updated .pKl file. That is the model has been retrained.
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7. The pkl file generated will be updated in the “predictor” folder, which generates
the prediction.
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Figure 5. 10: Retrained regression model plot (left) original regression model plot (right)

The regression model fitting obtained after the retraining and before the retraining is
shown in Figure 5.10. The plot is presented in form of a normalized data on a scale of 0-
1. When the original model with an overall log-likelihood of 176.5 was compared to the
retrained model with an overall log-likelihood of 257.46 it shows an improved fit for
model. And from visual inspection of the plot an increase in the data cluster around the
linear line representing more data with accurate prediction.

The retrained model can now be employed to re-predict the friction for the same Nov -
Dec 2020 data set. The re-validation will show the effects of retraining the prediction
model as well as the importance of having robust bank for the model.
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Figure 5. 11: Prediction results using Nov-Dec 2020 from the retrained model data with
linear points representing the measured friction on the image to the right

From Figure 5.11 the data correlates better with the linear line compared to the original
prediction in Figure 5.8. There are some noticeable outliers on the plot which can traced
backed to the original data sheet which was a result of anomalies in the pendulum
tribometer measurements. With continuous training of the model the predictions will
keep nearing a perfectly linear result, albeit may never be R2 = 1 or in fact close to 1 due
to nature of model requiring a very large data set to function effectively and the poor
repeatability of the pendulum tribometer result.

5.4.3 SECOND RETRAINING OF THE FRICTION PREDICTION MODEL WITH LEAF LAYER
DATA FROM SALISBURY

It is important to include a variety of data for training of the prediction tool especially
from in-field situation, to increase the robustness of the tool. The images (see Figure 5.12)
collected at the scene of the collision showed heavily contaminated railhead with leaves
and debris. Which was later determined to have caused low adhesion which caused a two
passenger train collision [71].
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Figure 5. 12: Sample of railhead contamination recorded at the Salisbury 2021 incident

Including such images/data in the data bank of the friction prediction model like this is
of extreme importance in the implementation of the friction prediction tool as it can help
to prevent such accidents.

Friction measurements were also collected at the site alongside the images and
environmental data as stated in section 4.5; therefore, it was possible to retrain it with
this key data. The same steps highlighted in previous section were followed and a new
pkl file was generated.

The 2nd retrained data had an overall log-likelihood of 298.69, giving an improved fit for
the dataset.
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Figure 5. 13: Second retrained regression model with the leaf layers image from Salisbury

The plot shown in Figure 5.13 has a denser concentration of data point around the linear
line showing the retrained prediction precision is increasing. Hence, the model should be
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able to recognise leaf layer images and make a prediction, although the prediction may
not be very accurate as the model needs to be trained on a larger set of leaf layer images
to improve the confidence in the model for that type of data.

5.5 CONCLUSIONS

The Prediction model tool is fully capable of been trained to give accurate friction.

The prediction model has to be retrained as many times as possible to hold a
sufficient variation of railhead conditions data to increase the confidence in its
prediction and robustness of the tool’s use.

The retraining process is a continuous one and it is very dependent on the access
to rail tracks to ensure different railhead conditions and friction data are collected
to increase the model’s data bank.

The Pendulum tribometer is not the ideal friction measurement tool due to its
poor repeatability noticed during the validation.

Model itself is doing what it is supposed to do shown in the increase of the log
likelihood through the retraining process increasing the model’s fit for the data.
Further testing should be done to determine how flexible it is to changes in the
image format, basically an Image sensitivity test.

In summary the more the training with a wide variety of data the better the
reliability of the prediction output.
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CHAPTER SIX
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6. MODEL SENSITIVITY ANALYSIS

6.1 INTRODUCTION
The aim of model sensitivity analysis was to test the ability of the friction prediction
model to process images under different conditions. The conditions being tested were:

e Railhead distance (from the camera)
¢ Railhead image orientation (vertically or horizontally placed)

e Lighting

5 2

15
]I LY
|

Figure 6. 1: Original Image formats used in training the prediction tool

The model was trained using a set-type of images (as described in section 5.2.2.2), as
shown by the examples in Figure 6.1, which were taken in very controlled conditions to
ensure consistency of orientation and distance from the camera to the railhead and the
resolution was good as the images have been taken statically. As the step is made to take
images on the move from a train where some of these factors may change, it is important
to know what effect changing them has on the friction predictions if any.

6.2 METHODOLOGY

Tests were undertaken on seven separate days in laboratory conditions. The railhead
used for the tests, shown in Figure 6.2, was shiny in appearance and had been previously
used for tests on the Full Scale Linear-Tribometer hence the striations (wear scar) visible
in the image.

Figure 6. 2: Selected Rail section used for the sensitivity tests
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The tests involved capturing input information for the friction prediction tool such as the
railhead images with relative humidity, railhead and air temperatures under the stated
conditions and recording corresponding friction measurements using the pendulum
tribometer. The images and sensor data were processed by the model to give friction
predictions. The resulting friction predictions were compared to the friction values
recorded from the pendulum tribometer (converted using the BRR trib. train conversion
factor [34]) to determine the correlation.

Alongside this, different railhead conditions were simulated in the laboratory to
determine if the prediction tool has been trained to recognise images depicting such
conditions. These conditions included either a combination of or simply:

e dryrailhead,
e clean (shiny) railhead,
e wetrailhead (achieved by spraying water on the railhead with a spray bottle),

e reduced wetness on railhead (achieved by lightly wiping the wet railhead with a
piece of blue roll),

e oxidisation/rust (achieved by leaving the sprayed water over a period on the
railhead).

It should be noted that as the tool may not have been trained for the specific rail
conditions used in these laboratory tests, the tool predictions were not necessarily
expected to match the measured values. The critical aspect though was how the
predictions changed as lighting, railhead distance and image orientation changed.

Table 6.1 contains details of all the sensitivity tests carried out with corresponding
images shown in Figures 6.5 - 6.27.

6.2.1 RAILHEAD DISTANCE

The railhead distance (distance between railhead and camera) was varied to determine
if the prediction tool can accurately identify the railhead portion in an image from
surrounding “clutter”, see Figure 6.3. It will also aid in identifying the errors that may be
encountered because of camera positioning on the train. This was done simply by moving
the camera closer or further away from the railhead and capturing the images. The
friction was recorded using the pendulum after the images were taken, for the railhead
state, and then compared to the friction predictions from the variations of images
captured.
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Figure 6. 3: Railhead image taken at a height of 1450mm (L), and the distance used for the
prediction tool training (between 400mm-500mm from the railhead position) (R)

Images captured in a horizontal orientation with approximately 400mm distance to the
railhead were expected to give accurate results provided they were similar to previously
trained data.

Each image captured has a pixel count of 5184 by 3888, the predictor tool scales the
image down to 250 by 1250 to create the focus on the railhead for further processing.
With the predictor tool being trained using images at approximately 450mm away from
the railhead, the image scaling focused on a “rectangle” cropped out of the centre of the
image which is where the railhead should be. So, in the case of Figure 6.3 (L) about 40%
of the railhead portion of the image will be present in the reduced scale image and 60%
will be noise from surrounding features (this increase for vertical oriented images),
which can either be the floor or the pendulum tribometer and its platform, while Figure
6.3 (R) will have at least 90% of the railhead in the scaled down image window.

Varying these distances will show if the image scaling factor is applicable for the different
image formats.

6.2.2 RAILHEAD IMAGE ORIENTATION

As stated in the introduction the prediction tool was trained using set parameters such
as the horizontal orientation in the railhead images. Images were taken in the vertical
orientation to see if that will affect the prediction given (see Figure 6.4 for examples of
the railhead image orientation). These images were taken along with the railhead
distance images under the same railhead conditions (see Section 6.2.1).
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Figure 6. 4: Vertical railhead image orientation (L) Horizontal railhead image orientation

(R)

The term ‘non-traditional’ railhead images will be used to refer to any railhead image
format that differs from the original format used to train the prediction tool as shown in
Figure 6.1.

Note that all ‘non-traditional’ horizontal and vertical orientations images included below
have been cropped to fit into the pages. Hence the distance of the railhead cannot be
judged using the images below, but the prediction tool has been fed with the raw
(uncropped) images (refer to Figure 6.3 for clearer view of the distances).

6.2.3 VIDEO CAPTURE/ FREEZE FRAME IMAGES

Later in the testing, video capturing of the railhead was included in the tests, with the aim
of examining if/how well the prediction tool would process the freeze frame images from
video capture resolutions. These images were not taken at high speed. They were in fact
captured in a slow pan over the railhead using the GoPro camera while handheld.
Therefore, this test will not account for variations experienced on a train in motion at
either slow or high speed. The videos were taken in a horizontal and vertical orientation.
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Table 6. 1: Full list of prediction tool sensitivity tests

Test Railhead i Relative Railhead Average Image orientation
No. state/Preparation Humidity, Image measured pu capture
% (from 8
repeats)
13-04- [l Unclean railhead, 22.1 46.1 9.7 25.5 Figure 0.209 Horizontal
Y dry (that is the 6.5
ioi Vertical
original state of
the railhead)
Cleaned with 23.7 41.5 9.7 25.7 Figure 0.254 Horizontal
alcohol wipes. 6.6
Vertical
Cleaned with a 239 41.4 9.9 25.7 Figure 0.283 Horizontal
wire brush. 6.7
Vertical
Sprayed with 24.1 40.2 9.7 24.9 Figure 0.084 Horizontal
water to simulate 6.8
. Vertical
moisture
presence and
start the process
of rusting.
14-04- W4 Results from 21.3 41.9 7.7 24.7 Figure 0.314 Horizontal
Y previous (day1l) 6.9
Vertical
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wetting (dry
state)

First spray of

water

Second spray of
water

Rust dayl (1st
appearance of
oxidisation)

Rust dayl and
water

Rust day?2

Rust day2 and
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reduced water
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Figure 6. 5: Example of railhead images for
uncleaned state. Horizontal with camera-
railhead distance = 450mm distance (L) and
vertical with camera-railhead distance
~1450mm (R) (13-04-22)

Figure 6. 6: Example of railhead images for
cleaned with alcohol wipe. Horizontal with
500mm (L)
and vertical with camera-railhead distance
~ 900mm (R) (13-04-22)

camera-railhead distance =~

Figure 6. 8: Example of railhead images for
water spray. Horizontal with camera-

Figure 6. 7: Example of railhead images
for cleaned with wire brush. Horizontal
with camera-railhead distance =
1450mm (L) and vertical with camera-
railhead distance =~ 1450mm (R) (13-
04-22)

Figure 6. 9: Example of railhead images for
previous day wet. Horizontal with camera-

Figure 6. 10: Example of railhead
images for 1st water spray. Horizontal
with camera-railhead distance =
1450mm distance (L) and vertical with
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railhead distance = 900mm (L) and vertical
with camera-railhead distance ~ 450mm (R)
(13-04-22)

railhead distance =~ 1450mm distance (L)
and vertical with camera-railhead distance
~ 1000mm (R) (14-04-22)

camera-railhead distance =~ 1200mm

(R) (14-04-22)

Figure 6. 11: Example of railhead images for
2nd water spray. Horizontal with camera-
railhead distance =~ 1450mm distance (L)
and vertical with camera-railhead distance
~600mm (R) (14-04-22)

Figure 6. 12: Example of railhead images for
1st appearance of rust. Horizontal with
camera-railhead distance =~ 1450mm
distance (L) and vertical with camera-
railhead distance = 900mm (R) (20-04-22)

Figure 6. 13: Example of railhead
images for rustl + water. Horizontal
with camera-railhead distance =
1000mm distance (L) and vertical with
camera-railhead distance =~1000mm
(R) (20-04-22)
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Figure 6. 14: Example of railhead images for
rust dayZ2. Horizontal with camera-railhead
distance =~ 300mm distance (L) and vertical
with camera-railhead distance ~ 700mm (R)
(21-04-22)

Figure 6. 15: Example of railhead images for
rust day2 + water. Horizontal with camera-
railhead distance =~ 450mm distance (L)
and vertical with camera-railhead distance
~ 700mm (R) (21-04-22)

Figure 6. 16: Example of railhead
images for rust day2 +2nd water spray.
Horizontal  with  camera-railhead
distance = 450mm distance (L) and
vertical with camera-railhead distance
~1000mm (R) (21-04-22)
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Figure 6. 19: Example of railhead
images for rust day3 +reduced water
spray. Horizontal with camera-railhead
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Figure 6. 17: Example of railhead images for
rust day3. Horizontal with camera-railhead
distance =~ 450mm distance (L) and vertical
with camera-railhead distance =~ 900mm
(R) (26-04-22)

Figure 6. 18: Example of railhead images for
rust day3 + water spray. Horizontal with
camera-railhead distance = 450mm
distance (L) and vertical with camera-
railhead distance =~450mm (R) (26-04-22)

distance = 400mm distance (L) and
vertical with camera-railhead distance
~ 500mm (R) (26-04-22)

Figure 6. 20: Example of railhead images for
rust day4. Horizontal with camera-railhead
distance = 1450mm distance (L) and vertical
with camera-railhead distance ~450mm (R)
format (04-05-22)

Figure 6. 21: Freeze frame images captures
from railhead videos for rust day4 (04-05-
22)

Figure 6. 22: Example of railhead
images for rust day5. Horizontal with
camera-railhead distance ~ 450mm
distance (L) and vertical with camera-
railhead distance =~1000mm (R) (10-
05-22)
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Figure 6. 23: Example of railhead images for
rust day5 + water spray. Horizontal with
1450mm
distance (L) and vertical with camera-
railhead distance =~1000mm (R) (10-05-22)

camera-railhead distance =

Figure 6. 25: Freeze frame images captures
from railhead videos for rust day5 (10-05-
22)

Figure 6. 24: Example of railhead images for
rustday5 + reduced water spray. Horizontal
with camera-railhead distance =~ 450mm
distance (L) and vertical with camera-
railhead distance ~1000mm (R) (10-05-22)

Figure 6. 26: Freeze frame images captures
from railhead videos for rust day5 + water
spray (10-05-22)

Figure 6. 27: Freeze frame images
captures from railhead videos for rust
day5 + water spray (10-05-22)
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6.3 RESULTS

The data collected from the tests for all image formats used, for each railhead condition
was processed using to the Al tool to make a friction prediction and then compared to the
measured friction. Each railhead condition captured had images taken in the horizontal
and vertical orientation with camera-railhead distance varied for both orientations.

The results were then classified into similar railhead conditions in order to easily identify
what type of conditions the prediction has been trained on and which type has to be
considered for future training.

For the purpose of the results graphs in this section and following discussion, the camera-
railhead distances have been summarised as:

e Very close < 350mm

e C(lose 351mm - 650mm

e Midway 651mm - 1000mm
e Far>1000mm

The distance and orientation of the data points have been highlighted on the graphs using
the following keys:

Distance [ yery close Close Midway Far
Orientation

Horizontal L] L] O
Vertical O O O

The ideal form of image used in the prediction tool is the horizontal-close image (|:| ).

Figure 6.28 shows the predicted versus measured friction for all the tests carried out. It
clearly shows the areas where the prediction tool values are accurately clustered around
the line indicating actual = predicted, whereas the points farther away from the linear
line indicated inaccurate predictions. The railhead conditions with insufficient training
will be narrowed down in the results subsections.
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Railhead condition: All
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Figure 6. 28: All sensitivity tests results
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Figure 6. 29: Difference in Ideal image and mean non-ideal image predicted frictions

In order to quantify the spread between data collected for the same conditions, the
prediction from the ideal form of railhead image marked as [Ihas been compared to the
mean value of the other variations of railhead image capture. This summary of this
analysis is shown in Figure 6.29. The difference shows if most of the non-ideal image
predicted data is under predicting (positive) or over predicting (negative) when
compared to the ideal image, therefore giving a statistical insight into the variations.
Generally, the closer the variation is to 0, the lower the spread in the data.
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6.3.1 DRY RAILHEAD CONDITIONS
Four dry railhead states were tested on day 1 and 2 (see Table 6.1) and images were taken
in the formats stated in the methodology.

The plot in Figure 6.30 shows the comparison of the predicted railhead friction to the
measured friction, with an actual = predicted line to judge the accuracy of the tool.

The results recorded from the day 1 cleaned (with alcohol wipes) railhead had near
accurate predictions while the other 3 conditions were not very accurate.

Railhead condition: Dry Dayl&2
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Figure 6. 30: Sensitivity test results for Dry Railhead Day 1 & 2

In general, the horizontal-close image yielded results closer to the measured friction
which is as expected with exception of day 1 wire brushed condition where the prediction
of the vertical-far image of 0.271 was closer to the measured friction of 0.283 while the
horizontal-close images had predictions closer to 0.26. As stated earlier the prediction
tool has not been trained on these data sets, but the tool analyses the railhead by
categorising the colours. So, in a situation of farther camera-railhead distances, the
model’s reduced scale image may include the rail foot and/or surrounding sections such
as a floor in the case here. The floor in the image is brown (see Figure 6.4 for reference)
and the tool will process it as a state such as oxidisation. This is expected to be a recurring
factor where predictions look more accurate for images taken at a further distance from
the railhead.

6.3.2 WET RAILHEAD CONDITIONS
Three different wet railhead conditions were tested on day 1 and 2 shown in Table 6.1.

The plot in Figure 6.31 shows the comparison of the predicted railhead friction to the
measured friction, with an actual = predicted line to judge the accuracy of the tool. From
first glance all the results for this railhead condition were over predicted by the tool. This
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can partly be attributed to the presentation of moisture on the railhead as not being
representative of what appears in the field captured images where generally the rail was
very wet.

Railhead condition: Wet Day1&2
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Figure 6. 31: Sensitivity test results for Wet Railhead Day 1 & 2

Looking at Figure 6.31, images taken with same orientation and a close camera-railhead
distance (that is green squares or ovals), but with repeats have yielded similar
predictions. Whereas the inclusion of varied images has significantly increased the
differences from the mean value in comparison to that of the dry railhead conditions, they
have image differences in ranging from 0.0105 to 0.0129.

This once again is a common characteristic, more noticeable variations in the predicted
friction are noticed when the distance or orientation is changed due to the alteration
occurring in the reduced scale image position.

6.3.3 OXIDISED RAILHEAD CONDITIONS

The last spray of water on the railhead done on days 1 and 2 were left on to encourage
occurrence of oxidisation to vary the railhead conditions. The first appearance of
oxidisation was recorded on the third day of testing seen in Figure 6.12.

Following the appearance of the first sign of oxidisation, the process of leaving water on
the railhead was continued to produce more rust as shown in Table 6.1 and in Figures
6.14, 6.17, 6.20 & 6.22. The results showing the comparison of the predicted railhead
friction to the measured friction from the 5 oxidisation states recorded over five test day
is shown in Figure 6.32.

The results on Figure 6.32 (a) and (b) show the prediction tool under predicted the
friction for all 5 railhead conditions. The reasons may also be attributed to the
presentation of oxidisation on the railhead being different to how it actually appeared in
the field where the original measurements were carried out.
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The images taken in similar orientations and distances once again produced very similar
results for these tests. The highest range recorded on rust day3 for horizontal-close
images was 0.005, with an image difference mean value for the test day at -0.00676.
Showing an over prediction in the mean variation compared to the ideal image. Although
it has lower spread in comparison to the wet results, the different image orientations
have played a significant role in the variation noticed.
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Figure 6. 32: (a) Sensitivity test results for different levels of railhead oxidation (b)Increased
scale plot for better visualisation of data point

The same is true for all dry oxidised test, with “rust day5” having a near zero variation at
6.7 X 1075,

6.3.4 OXIDISED + WET RAILHEAD CONDITIONS
After recording the data set for the oxidised conditions, water was sprayed on the
railhead to simulate moisture on the railhead (as stated in Table 6.1).
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The images collected from this railhead condition are shown in Figures 6.13, 6.15, 6.18 &
6.23 were plot shown in Figure 6.33. This was done to show the comparison of the
predicted railhead friction to the measured friction with an actual = predicted line to help
judge the accuracy.
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Figure 6. 33: Sensitivity test results for different levels of railhead oxidation+ water

The results shown in Figure 6.33 have a mix of under prediction and more of over
prediction for the different test days. At the same time the tool made 3 accurate
predictions as seen for Rust+water “day2”, “day3” and “day5”, although with differences
to mean non-ideal image prediction of -0.00635, -0.00496 and -0.0094 respectively. The
variation noticed in the prediction on those days were because of the non-traditional
images and once again the misrepresentation of those conditions recreated in the
laboratory. The results once again showed a majority of horizontal-close image gave
predictions closer to the measured friction whereas the prediction for “rust+water day1”
had a similar scenario as that of dry railhead conditions for the same reasons explained
for those tests.

6.3.5 OXIDISED + REDUCED WET RAILHEAD CONDITIONS

This dataset was collected on the same test days as section 6.3.4 except Rust day1. The
difference is that the water spray on the railhead was lightly wiped off to try to simulate
a more realistic wet-rail appearance as seen in Figures 6.16, 6.19 & 6.24.

Figure 6.34 shows the comparison of the predicted railhead friction to the measured
friction with an actual = predicted line from the 3 oxidised+reduced wet railhead states
recorded over 3 test days.
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Railhead condition: Oxidisation + reduced Water
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Figure 6. 34: Sensitivity test results for different levels of railhead oxidation+ reduced water

The results are similar to that of the “oxidised+wet railhead” condition and the variation
can be accounted for by similar reasons.

6.3.6 Freeze Frame images.

The freeze frame images captured from videos taken on the last 2 days of testing, showed
that taking such images from videos is viable, but only at handheld speed. The video was
slow enough to allow paused clips in the video to show undistorted images with good
enough resolution for the to the tool to process.

The images extracted from each video were more than the still images captured which it
makes tricky to present in graphical form. The results have been presentin a tabular form
with the prediction from still images and video freeze frame images in separate column.

The difference in the freeze frame prediction and the image prediction was captured in
the third column of table 6.2 by subtracting the video freeze frame prediction from the
average of the image prediction in the second the column for each condition, showing
how the prediction of the freeze frame images varied to that of the already used still
image capture.

Table 6. 2: Comparison of prediction results from still images and freeze frame images.

Railhead Video Freeze Frame Images Friction Difference (Image-
Condition Image Predictions Predictions Freeze frame)
Predictions

U SIEVZE 0.290

0.294

0.295 0.277 -0.011
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Rust Day5

Rust Day5
+ water

0.302

0.297

0.295

0.294

0.296

0.296

0.297

0.295

0.293

0.294

0.286

0.286

0.258

0.256

0.283

0.286

0.290

0.295

0.295

0.298

0.297

0.297

0.297

0.244

0.240

0.229

0.293

0.301

0.298

0.300

0.294

0.297

0.201

0.229

0.198
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-0.018

-0.013

-0.011

-0.010

-0.012

-0.012

-0.013

-0.011

-0.009

-0.010

0.012

0.012

0.040

0.042

0.015

0.012

0.008

0.003

0.003

0.001

0.001

0.001

-0.036

-0.032

-0.021



0.225 0.183 -0.017

0.226 0.231 -0.018
0.229 -0.021
0.229 -0.021
0.241 -0.033
0.240 -0.032
0.243 -0.035
0.243 -0.035
0.242 -0.034
0.238 -0.030
0.239 -0.031
0.236 -0.028
6.4 DISCUSSION

Generally, looking at the tool’s sensitivity to changes in the image formats, it can be seen
for each set of predictions for different railhead state there is a change to the values
predicted for the railhead orientation, distance, and image quality this is more noticeable
in Figures 6.30, 6.31, 6.33 and 6.34. The variation noticed in the results grows wider when
camera distance to the railhead is taken further away, the data points usually farthest
from the actual = predicted line on the point often falls in the “red zone” category which
signifies the farthest camera-railhead distance. This is because the amount of noise in the
image increases hence making it difficult for the tool to correctly identify the railhead
section in the image. Although, as explained in the results section, the noise may also
provide false predictions that may look accurate depending on the colours in the railhead
surrounding.

Therefore, the prediction tool can process data from ‘non-traditional’ image formats from
a close distance to the railhead with some variation to the original horizontal format but
may not be accurate depending on the circumstance.

The predictions for wet rail scenarios had a wider data spread when analysed on the
image difference chart in Figure 6.29, with Rust day2 + reduced water having the highest
difference at 0.0231 in image variation with under predictions compared to the ideal
image prediction. This is mainly due to bad correlation of the laboratory environment to
the field environment used to train the prediction as well as the unrealistic appearance
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of moisture on the railhead. This created several uncertainties around the predictions for
wet railheads.

6.4.1 DRY RAILHEAD CONDITIONS

The results (Figure 6.30) from the dry railhead states show accurate prediction for
railhead samples cleaned with alcohol wipes (Figure 6.6) with some under prediction
variation noted for the non-traditional image formats. The uncleaned original railhead as
seen in Figure 6.5 produced over predicted friction while the railhead cleaned with wire
brush and the day2 railhead state from dayl wetting were showing under predicted
friction from the tool.

Referring back to images in Figures 6.5-6.7 & 6.9 and the images used to train and retrain
the prediction tool (see Figure 6.35 for example), the images in Figure 6 are not similar
to any of the training images, hence the prediction tool cannot accurately identify and
give a friction value for these set of railhead states. Also, railheads in service usually do
not appear this shiny with wear scars and the tool has been trained on field/in-service
railhead images to give an accurate prediction for real-time train activity. The spread
shown in each set of prediction (see Figure 6.29) also confirms the tool’s sensitivity to
image formats used for prediction. The differences found in ideal - mean non-ideal image
prediction were found to be closer to 0 at -0.00204, -0.00105 & -0.00571 for “cleaned
with alcohol wipes”, “cleaned with wire brush” and “results from day1 wetting” railhead
conditions respectively. This implies the tool has good repeatability for this type of
railhead conditions disregarding the accuracy levels.

Figure 6. 35: Example of railhead image capture in-field

6.4.2 WET RAILHEAD CONDITIONS

The wet condition without oxidisation yielded some interesting result, due to high over
prediction of the tool as seen in Figure 6.31. The measure friction ranged between from
0.08 to 0.104 while the predicted friction ranged from 0.19 to 0.27. Merely looking at the
wet rail images simulated in the laboratory, they do not depict a realistic wet rail image
seen in the field. It is fairly difficult to create the appearance of dew, light or heavy rainfall
by spraying water (uniform-like moisture distribution as seen in Figure 6.36) on the
railhead surface in the laboratory, so a difference in predicted friction was expected, but
not to this extent.

120



Figure 6. 36: Image of wet railhead captured in field

In addition to the difference in wet rail image presentation, the relative humidity for
simulated moisture on the railhead measured in-lab did not depict the real values
measured in the field. From field data obtained earlier in this work, relative humidity for
moisture on the railhead is usually greater than 70%, but the relative humidity measured
in-lab is a function of the laboratory environment as opposed to the railhead state being
simulated. The highest relative humidity recorded in the laboratory throughout the
testing period, as seen in Table 6.1, was 57.4% and 65.9% in a wet and dry instance
respectively. This shows that the prediction is sensitive to changes in environmental
conditions and depends on accurate environmental information. These factors also
contribute largely to the wide variation in the wet railhead data collected, where the ideal
- mean non-ideal image 0f 0.0129, 0.0105 & 0.0123 for “water spray day1”, “water spray1
day2 and “water spray2 day2” railhead condition respectively were noted for the
predictions. There was an under prediction in the data set compared to the ideal image

prediction.

Figure 6.37 shows comparison of results for the images processed for wet railhead
conditions, but with relative humidity expected for infield scenarios. The image on the
left shows lower predicted frictions with the increase in relative humidity representing
in field environment, although not “spot-on” accurate, but closer to the measured versus
measured line. Whereas the relative humidity recorded in the laboratory (shown on the
right) has its prediction further away from the measured versus measured line.
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Figure 6. 37: Prediction for wet railhead condition using in field RH (L) and prediction for
laboratory RH (R)

This furthermore emphasises the prediction tool’s sensitivity to changes in
environmental factors in the prediction of friction. The relative humidity difference will
be a factor in the other wet railhead conditions considered in this sensitivity test.

6.4.3 OXIDISED RAILHEAD CONDITIONS

Looking at Figure 6.33 for the results of all the scenarios of rust appearance on the
railhead, measured friction values were high on the pendulum tribometer (from 0.33 to
0.46) and the model under predicted friction values of 0.20 to 0.28.

The predictions for the traditional images (datapoints |:|) were closer to the actual =
predicted line than the non-traditional image. Although all the results where under
predictions with a good variance, showing the predictions from the model were close to
mean predictions (see Figure 6.29)

Figure 6. 38: Example of oxidised railhead image captured infield

These results once again highlight missing railhead conditions used to the train the
prediction tool. Looking at the oxidised railhead image from the field measurement in
Figure 4.12 (also see Figure 6.38) compared to the laboratory simulated oxidised state in
Figure 6.12, 6.14, 6.17, 6.20 & 6.22 one can argue that the appearance of the oxidisation
is not uniform, unlike what an actual oxidised field railhead looks like. Most importantly
the colours are more concentrated and sharper than an in-field oxidised railhead.
Therefore, the under-prediction experienced in the oxidised railhead condition is as
result of the images being alien to the prediction tool.

The environmental conditions recorded in the laboratory were also higher on average to
what was recorded while collecting data to train the prediction tool. This highlights the
importance of the continuous training of the prediction tool to include a robust dataset,
covering a vast range of railhead condition and environmental conditions.

The variations noticed here are not widespread (see Figure 6.29), this indicates good
repeatability of the prediction tool because for each railhead condition only 1 image was
categorised as “Far” with exception of “Rust day3” having 2 images. In addition, the far
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images may have produced false predictions because of the noise around the railhead
section. But generally, images with similar orientation and distances produce very similar
predictions especially noticed on horizontal-close images (which were taken multiple
times), re-indicating the tool’s good repeatability for each image format.

6.4.4 OXIDISED + WET RAILHEAD CONDITIONS

The prediction tool mostly over predicted the friction for the oxidised+wet railhead
condition as seen Figure 6.33. When water was introduced to the later oxidised railhead
(i.e., day2, 3 & 5), the vibrant orange colour became deeper and looked more like a
realistically presented oxidised wet railhead, therefore producing accurate predictions
for these scenarios. While day1l which was just splotch of oxidisation on the railhead
which still look unreal, was over-predicted.

For each day of results, a wide spread of data with image differences 0.00499, -0.00635,
-0.00496 & -0.00939 (as shown in Figure 6.29) in the predicted results can be noticed.
The difference noted for day1 showed and under prediction when compared to the ideal
image while the rest of the days showed over predictions with the negative differences.
This shows the effects of the non-traditional images especially varied distances as stated
earlier as seen the plot. The increased noise and unfamiliar railhead conditions increases
the variables in getting an inaccurate prediction.

Figure 6.33 rust + water day1 results (shown in blue) appears to be contrary to the
expectation. In this case, the horizontal (far) images were giving closer predictions to the
measured friction. What has happened here is due to farther distance of the camera to
the railhead, the railhead image quality is reduced and also not positioned in the centre
hence the scaled images have included parts of the brown flooring which have has been
processed and given a prediction.

6.4.5 OXIDISED + REDUCED WET RAILHEAD CONDITIONS

This railhead state had 1 prediction in each test day in close accuracy range, although the
other result varied widely mostly across the over predicted zone and 1 under prediction
each for day 3 & 5. The variation in the results is due to the same reasons as the
oxidised+wet states.

6.4.6 FREEZE FRAME IMAGES

There are variations in each of the freeze frame images which simply because the sections
of the railhead been analyse is changing with each image as well as the orientation. These
are one of the reasons it is difficult make a comparison to still image results for the same
railhead. The predictions from the freeze frame images were subtracted from the mean
predictions of the still images (seen on table 6.3) to show how far off or close they were
to the original prediction. The calculated difference showed the dynamic nature of the
freeze frame images compared to the still images as the difference values varied along
the images.
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Using video capture with a Go Pro Hero camera at train running will not be viable for
image capture as the images will be too blurry and of low resolution, so the tool will not
be able to process them. This method is only useful when the videos are captured at slow
walking pace as this the only time the images extracted will be viable for predictions.

6.5 CONCLUSIONS

Laboratory tests were useful in testing the sensitivity of the prediction tool,
showing the variations for different predictions under different railhead
condition. The tests helped to highlight uncertainty that results from the noise in
images.

These tests have helped to highlight the type of railhead states missing from the
trained dataset such as shiny railhead. Therefore, indicating what type of new
data, the prediction tools need to be trained on.

The tests have shown that the prediction tool has good repeatability for multiple
images taken in similar orientation and distance regardless of the correlation to
the measured friction.

The prediction tool gave incorrect predictions for some of the railhead conditions
that were simulated in the laboratory because they were not representation of the
field data it had been trained on. It also confirmed that the tool correctly takes the
environmental conditions into account when making predictions.

Further in-field training is required to increase the robustness of the prediction
tool. As it has been established that the environmental conditions in the laboratory
to imitate or correctly depict that of the field.
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CHAPTER SEVEN
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7. ON-TRAIN DATA CAPTURE SENSOR DESIGN

7.1 INTRODUCTION
After establishing the sensitivity of the prediction tool to camera-railhead distance and
railhead orientation, as detailed in Chapter 6, a system had to be put in place to capture
images alongside environmental data from a moving train to trial dynamic data capture
to feed into the model.

The proposed system was required to capture railhead images at a very close distance
between 350-400mm as well as forward facing images, it needed to have sensors for
measurement of relative humidity, railhead and air temperature integrated into it. It also
needed to record all the data on the same interface.

A design specification was developed for the data capture system which is shown in Table
7.1. These characteristics were selected based on the preferred functionality for the
proposed data capture system. Features like operational and recorded temperature
ranges were estimated based on UK historical weather data [78] and data recorded
manually that was analysed in Chapter 4. The materials used for manufacture had to be
up to the British Standards, for example BS 4929 & BS 4320 (for Steel), BS EN 755-2:2016
& BS 485-2:2016 (for Aluminium) and BS 857 (for laminated glass).

Table 7. 1: Design specification for on-train data capture system

Category Features

Functionality Capture forward facing and railhead images

House and protect sensor from external and environmental
factor

Easily attachable to and removable from the train

Located outside on the train

Capture relative humidity railhead and air temperature
Record location of data capture

Portable

Should be able to last 12 hours on DC supply

Performance Forward camera: High definition (HD)

Railhead camera: minimum 2MP and lens focal length
50mm

Temperature ranges recorded -10°C to 45°C

Operating temperature ranges -10°C to 50°C

DC power supply of 17 000 to 20 000 mAh

Net weight: < 7kg

GPS sensitivity: minimum -90dBm

Material Widely available material like Steel and/or Aluminium
requirement Robust material to prevent damage to internal components
in case of fall

Laminated toughened glass for window openings

Legal Approved by network rail to be attached on a train body
Must fit necessary British Standards (will not be approved
by Network Rail if it does not)
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7.2 DESIGN PROCESS

Three methods for the data capture design were considered for this work while two of
them were finally explored. The following methods were considered for the on-board
train data capture:

e camera mounted somewhere on the front of the train,
e adapt an existing design/system used to capture images or videos. Typically, an
enclosure that can hold sensors for additional data collection.
¢ and design a brand-new system.
Figure 7.1 shows a summary of the methods considered.

On-board Train
Image/data

capture

Camera Adapt an
mounted in ‘p,
existing

design

front of

Design is Includes data
approved by ) \ . collection
NR, hence / \ N sensors (raspi &
saving time / h : Arduino)
Provides some
flexibility in
customizing

Implement rail
Manual collection | Camera distance and forward-

| . ol
of environmental to railhead too facing image data collection
data | far capture system
|

No protective
housing for camera
and may not be
approved to go on
live passenger train

Figure 7. 1: Chart showing the processes considered for the On-board train data capture

The first two methods were trialled (the second was selected) while the third method was
not explored because of numerous constraints, some highlighted in Figure 7.1. Designing
a brand-new system is time consuming as it would have been required to undergo
structural testing (after the lengthy prototype design process) to make sure it was safe
and strong enough to be mounted/placed on an in-service train. It would also have had to
be approved by Network Rail after establishing it was safe to be used by the designer. The
time needed for this was not available for this project, nor was there budget available.

The details of the trials carried out are shown in the following sub-sections.

7.2.1 CAMERA MOUNTED IN FRONT OF TRAIN

A rudimentary design was created for a front of train mountable system to go on a
Northern Trains Class 153. The design simply contained a GoPro Hero 8, a suction mount,
an extension arm and a flexible light weight steel wire with lock clutches (for
security/safety purposes). The aim of this design was to capture the railhead images only
(as a start) with the environmental data collected manually.
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Two points on the front of the train were considered for the mounting of any type of data

capture system. These two points were the lamp bracket holder and handlebar, both
circled in red in Figure 7.2.

Lamp
bracket

Handlebar

Figure 7. 2: Front of Class 153 train highlighting the possibly mounting positions

The first opportunity to collect data arose on the Monk Bretton freight branch line route
on 2 April 2022 through a Northern Trains driver training session. I was allowed to
mount the camera system on the front of a Class 153 train.

Figure 7. 3: Google earth image of the track used in Monk Bretton [79] (L) Section of track
with encroaching vegetation (R)
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Figure 7.3 (left) shows the track route used in Monk Bretton highlighted in red where
some sections of the rail track had dense vegetation coverage over it, as shown in the
image on the right.

A GoPro supplied suction cup was used to mount an extended arm holding the camera
pointing downwards towards the railhead, in an attempt to capture images from a moving
train. The full set-up was secured to the handlebar using a light-weight steel wire to keep
it attached to the body of the train in the event of the suction cup failing and the camera
set-up falling off. This would help prevent damage to the set-up and potential incidents
caused by debris on the track. The full set-up is shown in Figure 7.4.

The trial process involved using the GoPro camera to record videos over the length of the
journey and then manually capture freeze frame images from the videos. An example of
freeze frame images extracted from the video captured at Monk Bretton is seen in Figure
7.11 (L).

Go Pro camera

Go Pro suction cup

Extended arm mount

Steel wire

Figure 7. 4: Camera set-up mounted on the class 153 train

7.2.2 ADAPT AN EXISTING DESIGN (AIVR CAMERA BOX)

In the search for a working alternative to the first design, [ was put in contact with the
software company “One Big Circle” who had been working on different data collection
projects from trains. The company had created a ‘camera box’ (see Figure 7.5)
collaboratively with Network Rail that held their data collection instruments. The design
had been approved by Network Rail for use on-board a wide range of trains in the UK for
data collection and satisfied relevant British Standards. The camera box body was made
of aluminium with joints and flanges made from steel.

This camera box offered a great starting point for my design. My design was not intended
as a competitor product to the existing camera box utilised by One Big Circle. The camera
box is simply a vessel to be used with different components for different purposes.
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Figure 7. 5: AIVR Camera box (Source onebigcircle.com)

This camera box was ideal to hold the equipment needed for data capture to feed the
prediction tool with on-board train railhead data. The main components required were:

A forward-facing camera: A webcam was used to capture the forward-facing
images because it has a USB connection which needs no further modification to
work with the microcontroller and it can capture high-definition images
(1920x1080 pixels)

Railhead camera: A Raspberry Pi camera module and lens was used. Once again
for ease of connectivity and to zoom in close to the railhead from the lamp bracket
position.

GPS sensors: The GPS sensor used to record the location of each data capture
pointwas the E-1612-UB module. It is low power, high performance and ultra-high
sensitivity at -160 dBm. It consumes a maximum 40mA with a maximum power
supply voltage of 3.6V and can operate in temperature range -40°C to 85°C. This
was ideal for the expected temperature ranges (-10°C to 50°C) and power source
of the camera box.

Relative humidity and Air temperature sensor: An HTM2500LF Temperature
and Relative Humidity Module was used based on it being non-contact and rugged.
It had a low power consumption with a maximum of 1.2mA, operates on a
maximum supply voltage (peak) of 12V, temperature of -45°C to 85°C and relative
humidity of 0% to 100%. It can record relative humidities from 1% to 99% with
an accuracy of #3% and a temperature measuring range of -45°C to 85°C. This
sensor was an analogue sensor meaning it can only be operated with a
microcontroller that can process analogue inputs such as an Arduino uno.
Railhead temperature sensor: An Infrared (IR) thermometer was selected to
measure and record the railhead temperature. The IR thermometer was pointed
atthe railhead in order to capture its temperature. An Optris CS LT IR thermometer
was used because it has a 15:1 optical resolution (up to 800mm range) measuring
from -40°C to 1030°C with an accuracy of #1.5°C. This thermometer can be applied
either as a digital or analog input. It was used as an analog input in this set-up in
order to link it with the air temperature sensor.
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e Power bank: Power source choice for the camera box was a battery pack (power
bank) because it is portable, rechargeable and does not need to be continuously
connected to an AC source. The power bank used here is V75 USB battery pack
with two 5V/2A (3A max) USB output slots. [t has a capacity of 19 200mAh, 71 Wh
and output operating temperature ranges from -15°C to 65°C. The power bank will
power the camera box’s component for at least 24 hours on a single charge which
sufficient for the purpose of this project.

e Single board computer (SBC): A Raspberry Pi 4 (Raspi) model B was used to
collate the data from each source: (UART: GPS, USB: Web cam and environmental
sensors, MIPI CSI: rail head camera). This data was saved as a csv file on the
computer’s SD card. The computer had an operating voltage of 5V allowing it to be
powered directly by the power bank, its operating temperature range is 0°C to
40°C.

e Microcontroller: An Arduino Uno Rev 3 SMD was used to interface with the

analog environmental sensors as the SBC did not have an onboard analog to digital

converter. This was connected to and powered by the raspberry pi by a USB port,
using the Arduino’s onboard UART to USB chip. It had an operating temperature
range of -40°C to 85°C.

Germanium glass insert —,
h‘ﬁf_ e 1¢ for IR thermometer e ok SN
= Camera box V2 with railhead
camera ad IR thermometer
bottom window

Original camera box

Redesigned camera box
with bottom window for

SR G e railhead image capture

with bigger window Camera box V2 trial on class

142 train in Wensleydale

Camera box V2 trial on class
158 train in Edinburgh

Camera box V1 with Camera box mounted on a class 1
cameras and sensors train in Monk Bretton

Figure 7. 6: Process diagram for the camera box development
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A. CAMERA BOX COMPONENTS FOR VERSION 1 (V1) DESIGN.
The original designs available from Network Rail had a small window of 65 x 50 mm
which was determined to be too small to face/angle a camera from inside the box towards
the railhead. The window size was increased to 151 x 100mm, giving more area for the
camera to be tilted and capture the railhead. This is shown on the process chart in Figure
7.6, process 1 to 2.

The redesigned camera box (Figure 7.7) received was fitted with multiple components to
achieve uniform data collection from the train. These components and their functions are
listed below:

1. 1Railhead Camera: 12MP Raspi HQ camera module coupled (with adjustable back

focus range of 12.5-22.4mm) with a C-Mount 50mm Focal Length lens.

1 Forward facing camera.

2 Tripods to support and adjust both cameras.

1 GPS module.

1 Temperature and relative humidity analog sensor: for air temperature and

relative humidity of the environment

1 Infrared thermometer: to record the railhead temperature.

2 Microcontrollers: Raspberry Pi model 4B and Arduino Uno

8. 3D printed parts for attachment to inner brackets and also for support (see
Appendix C-1 for images)

v W

N o

Microcontroller:

Raspi. Railhead camera.
Air RH
irand 3D printed
Thermometer. .
trinood mount.

Power bank in 3D

printed case. Forward-facing

camera.

Microcontroller:

Arduino Uno. \

GPS Module and IR
thermometer: out of

Camera Tripod.

sight.

Figure 7. 7: Labelled components image of camera box V1

The modified camera box and the fitted instrumentation was taken out to Monk Bretton
for testing (see Figure 7.8). However, some problems were found with the design, hence
no results were recorded. The problems with the design were:

e Railhead camera: It was difficult to focus the lens (basically the image was out of
focus and too zoomed in and the camera was also not pointing at the railhead the
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way it was intended) so the railhead camera needed replacing with one with a
lower focal length and it needed to be repositioned in the camera box.

e [Rthermometer: This did not work because it was not in the range of the railhead.
The IR thermometer was positioned behind the camera box window which was
out of the 800mm range, and it was not pointing at the railhead.

e Microcontroller: An error was made in the data save thread and as a result the data
did not save and as a result there were empty result folders. This was rectified in
V2.

Figure 7. 8: Camera box V1 mounted on a class 150 train in Monk Bretton

B. CAMERA BOX COMPONENTS FOR VERSION 2 (V2) DESIGN.
The camera box was redesigned again to accommodate a downward facing (railhead)
camera and IR thermometer, as shown in Figure 7.9. This was simply done by cutting a
145x97mm rectangular hole at the bottom of the camera box and replacing it with a
175x125mm transparent Perspex window so the camera could capture the railhead. A
38mm diameter hole was also cut into the Perspex window to allow a Germanium
window to be placed there, allowing the infrared to pass through and measure the

railhead temperature. The engineering drawing for the V2 design can be seen in Appendix
C-1.

A 3D printed side panel was created with a slot to accommodate the air and RH

thermometer whilst exposing outside to record accurate temperatures (see Appendix C-
1)

The railhead camera and lens were also changed. The camera was replaced with an
Arducam pivariety colour global shutter camera module with 2MP with 2.8 focal length
and the lens was replaced with a narrow angle S-mount 12MP lens with a focal length of
50mm.

The standard operating procedure for camera box V2 has been outlined in Appendix C-3.
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Figure 7. 9: Labelled components image of camera box V2

The Raspberry Pi runs software written in Python. During normal use the Python
software opens separate processes for each of the sensor channels. These processes
are coordinated by a separate control process. At the start of a data collection cycle
the control process signals to each of the other processes to collect data and waits for
the responses. Each process then collects data and responds to the control thread, the
data is captured every 2 seconds. The responses are then concatenated into a single
line of the output csv file (sample shown in Appendix C-2) and confirmation written
to the terminal. This structure allows the control process to dynamically monitor the
other processes and attempt to restart them if errors are encountered, due to, for
example, electromagnetic interference.

Before normal operation can begin the railhead camera and rail head temperature
sensor must be aligned to the rail, the camera must also be focused on the correct
distance. The Raspi automatically connects to a mobile phone though the phone’s Wi-
Fi hotspot. This connection is used with the rasp controller app to view the camera
outputs allowing the camera to be aligned and focused. The app also allows execution
of SSH commands which can be used to run the Python software. The software initially
provides a text interface to allow the user to view the output of any sensor process.
This interface can be used to align the rail head temperature sensor, by placing a hot
object (for example, a cup of tea) on the rail. Prior to this both temperature sensors
and relative humidity readings had been compared to an IR thermometer to confirm
the accuracy of the sensor’s measurements.
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7.3 METHODS FOR CAMERA BOX DATA COLLECTION TESTS

7.3.1 WENSLEYDALE HERIATGE RAILWAY (WHR) SHORT RUN TESTS 14-03 AND 13-07
WHR is a heritage railway, as the name implies, which is located in North Yorkshire. The
main location for the short run tests was the Leeming Bar station, which is used sparingly,
mostly during the holidays and also acts as a depot for trains. Figure 7.10 shows an
overhead view of Leeming bar station and indicates the approximate length of track used
for the short run test, marked in red.

S J 2 - .
¢ E g e aehiliher oy
| N each Jherapy
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Measure distance
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‘

> Total distance: 255.57 m (838.48 ft)

Figure 7. 10: Google earth image showing the arial view of WHR (Leeming Bar station) [80]

These were tests carried out in the depot over a short distance and at low speed. The
details of the tests are given below:

e Train used: Class 142

e Train Speed: max 10 mph.

e Number of runs: 10.

e Length of track used: approximately 260m.

e Data collection rate: 1 per 2 seconds.
7.3.2 SCOTRAIL LONG RUN TESTS 30-05
This test was carried out from Edinburgh Haymarket depot, through Edinburgh Waverley
and ended at Perth Station. The test details are given below:

e Train used: Class 158
e Train Speed: max 75mph
e Length of data collection: 5 hour 10 minutes
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e Data collection rate: 1 per 2 seconds.
7.3.3 WENSLEYDALE HERIATGE RAILWAY (WHR) LONG RUN TESTS 14-07 AND 28-11
These were tests that included train journeys from one station to another. Two long run
tests were done on separate occasions, the first one from Leeming Bar station, through
Bedale to Leyburn station (return journey) and Leeming Bar to Bedale station (return
journey on cryogenic cleaning train) on 14-07-23 and 28-11-23 respectively. The specifics
of the tests were as follows:

e Train used: Class 142.

e Train Speed: max 30 mph.

e Number of runs: 2 (return journey).

e Distance covered: Approximately 1.6 miles and 11.5 miles for Leeming Bar to
Bedale and Leeming Bar to Leyburn respectively.

e Data collection rate: 1 per 2 seconds.

7.3.4 WENSLEYDALE HERIATGE RAILWAY (WHR) (SHORT RUNS) WITH LEAF LAYER
AND CRYOGENIC CLEANING APPLICATION 28-11

A cryogenic cleaning of railhead test was taking place in WHR, where railhead
contaminants are blasted clean by dry ice [81]. Black leaf layers (dried Sycamore) were
created for application on the railhead (see description below) Two camera boxes were
used on a modified Class 142 train in an attempt to capture the before and after cleaning
effects. The modified Class 142 train (which was still a passenger train) was equipped
with a cryogenic cleaning system on board. The first camera box was attached to the front
end over the right railhead while second camera box was attached to the rear end over
the left railhead. Figure 7.11 shows a summary of the tests conducted.

Atliea Train pass Train pass Train pass Cryoggnlc
layer cleaning

1 2 3

application EE

Cryoggmc T s Second Cryoggmc Cryoggmc
Cleaning 1 Leaf layer cleaning cleaning
pass 1 application pass 3 pass 2

Figure 7. 11: Schematics for WHR 28-11-23 short run test, where each pass is a to and fro
journey

Leaf layer application: The railhead was scraped with a sanding star attached to a drill
to remove oxides from the surface. The Class 142 then had one pass over the track section
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to condition it before application of the leaf layer. Leaf paste created using the method
stated in [82]. was applied on 2m sections of the rail parallel to each other (Figure 7.12)
and left to settle on the railhead for 10 minutes to promote bonding between the leaf
material and rail.

Figure 7. 12: Leaf paste circled in red, laid on the railhead section

Black leaf layer creation: The Class 142 train passed over the leaf paste twice
(equivalent to 8 axle passes) at 10 mph to create a black leaf layer. The train was at a
constant speed, so minimal slip was applied to the layers. The cryogenic cleaning took
place after the black leaf layer was created. In addition, railhead friction was measured
using a Rivelin Rail tribometer [83] to create a benchmark for comparison to the
prediction tool’s results.

7.4 RESULTS

The friction predictions are initially presented in terms of the Pendulum Test Values
(PTV) and are later converted into the CoF/u using the BRR conversion factor discussed
in previous Chapters 4, and 6. The true measured temperatures and relative humidity
values and predicted PTV were plotted on the y-axis against the data points on the x-axis.
While on a different graph the predicted CoF (converted PTV) was plotted on its own on
the y-axis (to show appropriate scale) against the data points on the x-axis.

7.4.1 MONK BRETTON TEST: CAMERA MOUNTED IN FRONT OF TRAIN (26-11-21)

The first major problem noticed during image capture with the GoPro system was the
resolution of the railhead in the image. The railhead was located too far away from the
camera, and as such it only covered approximately 10% of the image (see Figure 7.13 (L)).
The image was cropped and zoomed in to try to focus on the railhead (Figure 7.13 (R),
but the image resolution was also too low at 306x496 for the prediction tool to process.
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Figure 7. 13: Image capture from the GoPro camera set-up (L); Cropped and zoomed in
image extracted (R)

Another problem highlighted in this design was that the exact environmental data of the
rail section was unavailable as the exact frame of the video did not have corresponding
data. The camera set-up is also affected by the vibrations from the train movement, the
extension arm used to support the camera is flexible and moved out of position with
prolonged exposure to the vibrations. Therefore, with all these problems highlighted this
method was deemed unsuitable for data collection.

7.4.2 CAMERA BOX V2: FIRST TEST AT WENSLEYDALE HERITAGE RAILWAY (WHR) (14-
03-23)

A total of 141 data points were collected on the first successful trial of camera box V2 at
the WHR. The camera box was placed on a Class 142 train (see Figure 7.14), and it was
driven over a short stretch (=260m) of track.

The image on the right in Figure 7.14 shows a white mug holding hot water, this was used
to adjust the IR thermometer’s ‘field of vision’ The hot water was higher temperature
compared to the surroundings. It was placed on the railhead and the thermometer was
adjusted until it started to read the warmer temperature from the hot water thus reading
the temperature of the railhead region.

Table 7.2 shows an example data set extracted from the trial including the images and
friction predictions for the points shown. Figure 7.15a and b show plots of all data
collected and the friction predictions.
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Figure 7. 14: Camera mounted on a class 142 train at WHR (14-03-23)
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Camera Box Data (WHR 14-03-23)
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Figure 7. 15: (a) Plot of all environmental data and the PTV against all data points for WHR
14-03-23; (b) COF against all data points for WHR 14-03-23

One of the very noticeable things in result plotted in Figure 7.15 (a) are peaks in the
railhead temperature resulting from sections of railhead being exposed to the sun
(discussed further in section 7.5.1). Figure 7.15 (b) shows the friction predicted from the
prediction model, the friction also has similar peaks to that of the railhead temperature.
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Table 7. 2: Table of data from WHR 14-03-23

S/N | Forward facing Image
1 — L LY

2

3

4

Railhead Image

Air Rh Temp/°C | Rh/% | Predicted | Predicted

Temp /°C Friction | Friction
(PTV) ()

7.2 9.3 49.0 |471 0.242

7.7 6.1 50.0 |46.3 0.238

7.6 7.7 484 | 46.8 0.241

7.3 10.5 49.4 | 47.7 0.245
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7.4.3 SECOND TEST AT SCOTRAIL (30-05-23)
An opportunity arose to trial the camera box V2 on a Class 158 Scotrail train with the aim
of testing the feasibility of using the system on a passenger train in service.

The trial started at Edinburgh Haymarket depot, where the camera box was placed on a
lamp bracket at the front of a Class 158 (see Figure 7.16) at around 05:20. During the
installation it was noticed the railhead facing camera was partially capturing the railhead,
due to the lamp bracket being positioned slightly off-set from the railhead.

S

Figure 7. 16: Camera box on a class 158 train at Edinburgh Waverley station

The railhead images were still collected, with some of them capturing just the rail
side/ballast while the rest captured a portion of the railhead. Some of the images
containing portions of the railhead (selected from different locations) was then further
processed and used to make friction predictions. The data collection was stopped at 10:30
in Perth station. After 5 hours 10 minutes of operation and 6860 data collected the SD
card was full. Although over 6000 images were collected, only 14 were processed and
plotted (see Figure 7.17 (a) and (b)) due to most of the images being unsuitable for
predictions.
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Camera Box Data (ScotRail 30-05-23)
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Figure 7. 17: (a) Plot of all environmental data and the PTV against selected data points for
ScotRail on 30-05-23; (b) COF against selected data points for ScotRail on 30-05-23

Table 7.3 shows examples of the railhead images captured and used to create the
predictions.

The friction predictions for the usable data collated from different locations ranged
between 0.254 to 0.291 for relatively warmer air temperatures recorded of 14°C to 17°C.

7.4.4 THIRD TEST AT WENSLEYDALE HERITAGE RAILWAYS (WHR) (13&14-07-23)

The ScotRail trial exposed one of the shortcomings of using the camera box, which was
the position of the lamp bracket is a limitation for using it on most train types like the
Class 170. A train like the Class 170 or 198 have their lamp bracket positioned closer to
the centre of the train which offsets the camera box’s railhead camera from the railhead
location. The camera box is well positioned on the Class 142 used at the WHR and also
some Class 15Xs.

Given this information, more tests were carried out at WHR during the summer of 2023.
The trial carried out on 13-07-23 was in the Leeming Bar depot using about a 260m
length of rail to collect data. Whereas on 14-07-23 a full journey on a passenger carrying
Class 142 train (see Figure 7.18) travelling from Leeming Bar station to Leyburn station
and back to Leeming Bar station.

A total of 357 data points were collected on 13-07-23 and 2677 data points were collected
14-07-23.
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Figure 7. 18: Camera box on class 142 train in WHR on 14-07-23
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Table 7. 3: Table of data from ScotRail 30-05-23

S/N

Forward facing Image

Railhead Image

| —
~ =

Air Rh Rh/% | Predicted | Predicted

Temp /°C Temp/°C Friction | Friction
(PTV) (1)

17.0 11.8 494 | 54.0 0.278

14.8 12.5 59.5 |56.5 0.291

16.8 12.8 48.5 | 534 0.274

20.4 15.0 51.0 |49.5 0.255
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Table 7. 4: Table of data from WHR 13-07-23

S/N

Forward facing Image

Railhead Image

Air Rh Rh/% | Predicted | Predicted

Temp/°C Temp/°C Friction | Friction
(PTV) (1)

28.6 22.0 23.1 | 447 0.230

28.4 31.4 23.1 432 0.222

27.7 20.5 22.8 [43.0 0.221

25.1 32.5 299 |43.7 0.225




Table 7. 5: Table of data from WHR 14-07-23

S/N

Forward facing Image

Railhead Image

Air Rh Rh/% | Predicted | Predicted

Temp/°C Temp/°C Friction | Friction
(PTV) (1)

21.6 20.7 468 |51.2 0.263

18.1 21.8 61.1 |53.0 0.272

18.8 239 59.7 | 53.4 0.274

19.2 22.8 59.4 |53.6 0.276
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Figures 7.19 & 7.20 (a) and (b) show the plots of all the environmental data collected and

friction predictions while Tables 7.4 and 7.5 show examples of the camera box output
with railhead images and corresponding forward-facing images for 13-07-23 and 14-07-

23 respectively.
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Figure 7. 19: (a) Plot of all environmental data and the PTV against all data points for WHR

13-07-23; (b) COF against all data points for WHR 13-07-23
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The results plotted in Figure 7.19 (a) and (b) show a combination of stationary and
moving data points. The plot has been sectioned into static and dynamic showing the
repetitive runs done, using ‘S’ for Static and ‘D’ for Dynamic.

Tests carried out between the first sections were done on the first half of the track
(labelled 1 in Figure 7.10) which can be seen in Figure 7.19 (b) with similarities in the
static and dynamic friction predicted while testing done from sections 6 to 13 were on the
second half of the short-run track (labelled 2 in Figure 7.10) showing slightly higher
friction. Regardless of the section of the tracks, friction values predicted were in a
reasonable range for a dry railhead [24] at 0.214 and 0.236 which is also similar to data
collected in previous testing. The temperatures recorded here were warmer than what
was recorded during past testing at the same location, with railhead temperature
between 20.29C - 40.39C and air temperatures ranging from 259C to 28.79C, typical of
summer temperatures.

Results recorded from the long run from Leeming Bar to Leyburn and return (shown in
Figure 7.20 (a) and (b), show the data recorded over the return trip. The results were
sectioned into 4 parts namely:

Forwards trip from Leeming Bar to Leyburn.

Sub section showing 5 minutes stop at Bedale station.

Return trip from Leyburn to Leeming Bar.

Sub section showing 2 minutes stop at Bedale station.

The data from the GPS module was used in determining the location of the stops seen in
the plot. This gave location output in form of degrees and minutes, given as:

BN

e Latitude 54 degrees 17.3339 minutes

e Longitude 001 degrees 35.2286 minutes
A GPS conversion website [84] was used to convert the location, which yielded
54.2890100°, -001.5875400° and with a simple Google Maps search of the GPS points
showed the location as Bedale station (54°17'20.4"N 1°35'15.1"W). The friction recorded
at the stations where the train was at a stop was as expected with a very short range
between 0.283 to 0.287.
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Camera Box data (WHR 14-07-23)
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Figure 7. 20: (a) Plot of all environmental data and the PTV against all data points; (b) COF against all data points
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7.4.5 FOURTH TEST AT WENSLEYDALE HERITAGE RAILWAYS (WHR) (28-11-23)

For the fourth and final test in this project, two camera boxes were deployed on the
University of Sheffield cryogenic cleaning train [81]. The first box (camera box 1) was
placed at the front end of the Class 142 and the second box (camera box 2) was placed at
the rear end of the train as shown in Figure 7.21 (a) to (c). This was done to capture the
before and after images and friction predictions of the railhead used for testing in WHR.

Camera box 1 collected a total of 1228 data points with 991 of them being good for
processing while camera box 2 had a total of 971 of which all were usable. Figures 7.22 &
7.23 (a) to (d) show the plot of (camera box 1), (camera box 2) environmental data
collected and friction predictions for camera box 1 and box 2 respectively. Both of the
datasets were broken into a short run which involved the cryogenic cleaning described in
Section 7.3 and a long run return journey from Leeming Bar to Bedale.

(c)

Figure 7. 21: (a) Author installing camera box 1 on the class 142 train; (b) Camera box 2
captured in use; (c) Camera box 1 captured in use.

Tables 7.6 and 7.7 show 4 samples each of data collected from camera boxes 1 and 2
respectively.
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Table 7. 6: Table of data from WHR (camera box1) 28-11-23

S/N

Forward facing Image

Railhead Image

Air Rh Rh/% | Predicted | Predicted

Temp/°C Temp/°C Friction | Friction
(PTV) (1)

9.3 4.1 50.6 |33.6 0.172

7.6 2.8 59.7 | 37.0 0.189

7.1 3.1 60.4 | 373 0.191

9.1 0.8 549 |51.1 0.261




Table 7. 7: Table of data from WHR (camera box2) 28-11-23

S/N

Forward facing Image

Railhead Image

Air Rh Rh/% | Predicted | Predicted

Temp/°C Temp/°C Friction | Friction
(PTV) (1)

8.0 2.9 573 |31.1 0.159

7.9 2.5 54.7 | 34.7 0.178

8.3 3.4 533 |33.7 0.173

7.3 3.6 52.6 |47.4 0.241
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Figure 7. 22: (a) Plot of environmental data and the PTV against data points for camera box 1 short run; (b) Plot of environmental data and
the PTV against data points for camera box 1 long run; (c) COF against data points camera box 1 short run; (d) COF against data points
camera box 1 long run
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Camera Box 2 Long Run Data (28-11-23)
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Figure 7. 23: (a) Plot of environmental data and the PTV against data points for camera box 2 short run; (b) Plot of environmental data and
the PTV against data points for camera box 2 long run; (c) COF against data points camera box 2 short run; (d) COF against data points
camera box 2 long run
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Generally, both camera boxes were not expected to predict the exact same friction values
in comparison to themselves, as they were capturing railhead images from 2 different rail
tracks. Camera box 1 predicted a maximum CoF of 0.282 and minimum CoF of 0.166 while
camera box 2 predicted a maximum CoF of 0.272 and minimum CoF of 0.174. Figure 22
and 23 (c) shows the effects of the black leaf layers created marked with the red dotted
line on the railhead. The leaf layer was created on two separate occasions which has been
sectioned into two on the plot using the black dotted line. Camera box 2 captured the full
testing period shown in Figure 23 (c) (which also matches the leaf layer sections laid out
in the schematics in Figure 7.11) while there was some operational cut out on camera box
1 which reduced the data collected. Friction coefficients of between 0.166 and 0.197 were
predicted for leaf layer section recorded on camera box 1 while value between 0.174 and
0.193 was predicted for camera box 2. The friction predicted was seen to reduce at the
leaf layer developed on the railhead.

7.5 DISCUSSIONS

7.5.1 WHR 14-03-23

This was the first successful test carried out on a moving train, although it was a brief test
in the WHR depot on a Class 142 train. The images (3 &4) in Table 7.2 look blurry as they
were captured while the train was moving. The faster the train moved blurrier the images
get, the maximum speed on this test was about 10mph. That level of blurriness does not
affect the prediction tool’s ability to process the images and make predictions, because it
can still identify the colours on the image. Obviously, this will be become a problem when
the camera box is deployed on a high-speed train, where the images will be captured at a
faster speed.

Predictions for static and dynamic railhead images from a separate test on the same
railway track with similar conditions, were isolated and compared to confirm if there
were major differences in the results and it was found (as seen in Figure 7.24) that the
blurriness truly does not greatly impact the value of prediction given. As shown in Figure
7.24, images 1 and 2 are static images with friction coefficients of 0.217 while image 3
which was captured while moving and image 4 captured during the transition period of
moving to coming to a halt both had friction coefficients of 0.220 and 0.215 respectively.

The forward-facing images come out fine as the vegetation and surrounding
characteristics can be recognised by human eyes regardless of the train speed.

163



Figure 7. 24: Static vs dynamic friction prediction

Figure 7.15 (a) & (b) showed the environmental data obtained from the camera box and
predicted friction from processing the data and images. The friction predicted ranged
from 0.231 - 0.255 which is a normal range for the railhead conditions present in WHR.
It was also noted that the air temperature recorded had a +0.3°C variation for the test
duration while the railhead temperature sensor recorded temperatures ranging from
4.80C - 12.49C. This shows the railhead temperature sensor captures the real variations
occurring on the railhead as the train moves. Some parts of the railhead are shaded by
surrounding trains while other parts are exposed to sunshine, the parts exposed to
sunlight accounted for the peaks noticed on the railhead temperature plot in Figure 7.15a.

W\

Figure 7. 25: Forward facing images of track sections exposed to sun (L) and a shaded
sections towards the platform (R)

Figure 7.25 (L) shows the section of the track that exhibited one of the peak railhead
temperatures of 11.1°C. There is no shade there. The image on the right had a railhead
temperature of 6.39C and, as can be seen from the image on the right, the track was shaded
from the sun by both the platform edge and the vehicles in the siding.

Research carried out in previous work [70, 85] has also shown that shade covering the
railhead (either by clouds or anything blocking the sun) brings about a decrease in
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railhead temperature and the exposure to the sun would increase the railhead
temperature, as seen here.

7.5.2 ScotRail 30-05-23

This trial was attempted twice, with the first attempt drawing awareness to the fact that
all trains do not have their lamp bracket holders positioned in the same place. The Class
142 and 153 used earlier had lamp brackets positioned on the right side of the train and
the camera box was configured to that position. A trial was attempted on a Class 170
shown in Figure 7.26, as seen in the image, the holder was positioned towards the centre
of the train, therefore the railhead was not in the railhead camera’s range.

Figure 7. 26: Class 170 Scotrail train showing camera box position over the railhead

A second trial was done at a different time on a Class 158 train shown in Figure 7.16 where
the lamp bracket holder was placed on the left side of the train, since the camera box
components were fitted in symmetrical way the 3D printed parts were mirrored and
reprinted. The parts were flipped to the opposite sides, and it was close enough to the
railhead. For most of the journey from Edinburgh Haymarket to Perth, the camera
captured half of the railhead and ballast stones as the lamp bracket holder was about
15cm off the railhead. The forward-facing camera was tilted down (as seen in Table 7.3)
in attempt to capture the railhead and analysis the railhead conditions.

Figure 7.17 (a) and (b) show results gathered on a warmer day compared to the previous
test carried out at WHR in March. The railhead and air temperatures recorded was
between 11.80C - 20.49C and 149C - 179C respectively, with relative humidities
representative of dry environmental conditions of 47.8% to 63.7%. Given these
conditions, the friction recorded is expected to be in the intermediate range and that is
what the prediction model confirmed predicting frictions between 0.254 to 0.291.

In addition, the results from this trial showed that the camera box is really only useful as
a temporary solution for data capture and in the longer term a more permanent, an
integrated solution needs to be developed.

7.5.3 WHR 13-07 & 14-07 2023
After lessons learnt during the Scotrail trials, a third trial was conducted at WHR on a
Class 142 train over 2 days. The first day involved repeated short runs of approximately
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260m over the track in the depot. So, repeat results were achieved and it was also a great
chance to see once again how the prediction tool reacted to slight changes in temperature
as the railhead and air got warmer. The sectioned results on Figure 7.19 (a) and (b)
showed similar friction ranges predicted over the same section of track for dynamic tests.
An example can be seen in section 6 and 8 which had an average predicted friction of
0.229 and 0.227 respectively.

Air temperatures recorded were 19+30C, showing the sensor was sensitive enough to
record the increase/decrease due to environmental factors such as shading, cloud
coverage among others, the same can be said for the sensitivity railhead sensors. Figure
7.28 shows evidence of both sensors recording high air temperature 28.79C due to heat
while the railhead sensors recorded lower temperatures of 21.1°C (as seen in Figure 29,
sections 1 & 5) due to shading effects over that section of the track.

Figure 7. 27: Forward facing image of a hot spot recorded with air temperature 28.7°C with
a shaded railhead section recording 21.1°C on the railhead IR sensor

The railhead temperatures recorded ranged from 20.2°C - 40.3°C, the temperature
increased and decreased with exposure to sun or shade as seen in Figure 7.27. This
phenomenon is very noticeable where the train is stationary at a spot with exposure to
the sun for example in Section 3 and 7 on Figure 7.29 which are located on the same spot.
Figure 7.28 shows the stationary position at section 3 recording between 30.1°C - 34.20C
and the right at Section 7 recording between 31.19C - 32.6°C.

Figure 7. 28: Spots of high railhead temperature with sun exposure for section 3 (L) and
section 7 (R)
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Railhead and Air Temperature Comparison (WHR 13-07-23)
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Figure 7. 29: Railhead-air temperature comparison for 13-07-23 tests in WHR

The 40.3°C railhead temperature was recorded on one occasion (the spike can be notice
on Figure 7.19 (a)) with most temperatures ranging from 20.29C - 34.20C. The friction
predicted on this test day ranged from 0.214 - 0.236 and steady friction predictions (with
+0.001 variations) were recorded over the same section of railhead, that is, where the
train was stationary, marked as ‘S’ in Figure 7.19 (b). Railhead temperatures recorded at
stationary spots had +0.29C variations whilst the relative humidity had variations of
+0.2%. This furthermore shows the prediction tool takes into account changes in the
environmental conditions when making predictions, as it was found in Chapter 4 that
these factors play a key role in understanding the wheel-rail adhesion. The step change
noticed at the transition from section 5 to 6 was because the camera box was turned off
at the end of section 5’s run and then restarted at the beginning of section 6.

The trial on the second day used another Class 142 train which was travelling from
Leeming Bar to Leyburn, through Bedale and Finghall Lane as a return journey. The one-
way journey was an approximately 12 miles and took 42 minutes shown in Section 1 in
Figure 7.20 (a) and (b) with 5-minute stop and a 2-minute stop on the return journey at
Bedale station, shown in section 2 and 4 and a brief stop in Finghall lane which was not
significant enough to be noted on the plot. Section 2 and 4 at Bedale station as determined
with the GPS data, showed a uniform friction of 0.285+0.002 for Section 2 and
0.276+0.006 for Section 4. The data captured here was at over 20mph. This did not change
the quality of the forward facing or railhead images captured.

Air temperature recorded was 20+3°C which was similar to the previous tests and the
railhead temperatures ranged from 16.99C - 29.5°C with the majority of them being
between 17°C - 24°C.

The friction predicted with all the images ranged between 0.223 - 0.292. Sections 1 and
3 of the plot presented in Figure 7.20 (b) showed a mirroring trough in the predicted
friction at 0.223 and 0228 respectively. Upon further investigation it was noticed this was
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recorded under a bridge just outside Leeming Bar station, as shown in Figures 7.30 (a),
(b), (c) and (d). The decrease in the predicted friction can be accounted by the drop in
temperatures experienced under bridge from 21.19C to 17.19C and 21.19C to 17.39C in
Sections 1 and 3 respectively. Work done testing friction levels using the British Rail
Research Tribometer train through Saxelby and Asfordby tunnels [86] showed friction
levels decreased at the entrance into the tunnels as seen in Figure 7.31. It showed the
effects tunnels have on the moisture level, shading and temperature of the railhead.

(b) 10) (d)

Figure 7. 30: (a) Forward facing image in the tunnel exiting Leeming Bar; (b) Forward
facing image in the tunnel approaching Leeming Bar; (c) Corresponding railhead image for
‘a’; (d) Corresponding railhead image for 'b’

Trib train; Effects of tunnels

Coefficient of Adhesion

1070&l 1075 1080 1085 10%\1506.5 110.0
Asfordby Tunnel Tack position (Mile post) Sanelby Turinel

Figure 7. 31: Effects of tunnels on railhead friction measured on a Tribometer train (adapted
from [86] by author)
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All the images collected at WHR at this point had been under dry railhead conditions and
the predictions showed consistency from the first trial to these ones, as the railhead state
has not changed. This shows the predictions are not random, but a function of the railhead
state and environmental data.

7.5.4 WHR 28-11-23

For the final camera box trial in this work, 2 camera boxes were used. Both camera boxes
recorded similar air temperatures in the range of 8+2°C, which shows the temperature
sensors have a good tolerance and measure similar data at the same location. The railhead
temperatures on the other hand had a temperature range from -1.69C to 6.2°C for camera
box 1 with -1.6 recorded on one instance and majority of low temperature was from 0.8°C.
While railhead temperature recorded on camera box 2 ranged from -5.19C to 15°C with
both -5.1 and 15 occurring on one occasion (commonly when the command thread was
restarted) and majority of the temperature measured was between 1.99C - 7.99C. Camera
box 1 measured colder temperatures than box 2 because it was installed at the front of
the train which is the leading part, therefore the railhead has cooler temperatures
because it has not been run over by the train wheels. While box 2 sensor measured slightly
higher temperature as it was on the back of the train which was the trailing side, which
had railhead that was already passed over by the wheel.

CoF

020 m——

Ll8q

0Ll6 ]

" Dry (Predicted) Dry (R} Leaf layer (Predicted) Leaf layer (RR)
Railhead Conditions

Figure 7. 32: Comparison of Prediction tool and Rivelin Rail (RR) Tribometer Friction for
WHR 28-11-23

These tests offered an avenue to compare the friction predictions to friction measured by
a tribometer, which in the case was the Rivelin Rail tribometer, as shown in Figure 7.32.
The data presented in Figures 7.22 and 7.23 (a) & (c) were recorded during the short runs
and during the leaf layer creation. The leaf layer was created on a small section of the
railhead as shown in Figure 7.12 and it was represented on the plots with the red dotted
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lines. Camera box 1 captures the leaf layer before the trailing camera box 2 which why it
has a shorter lead shown on the plot. The predicted friction is seen to reduce at the
sections where the leaf layer was being created, emphasised with the red lines. The
predicted friction gets progressively lower as the train continues to pass over the leaf
layer creating the black layer. The leaf layer was run over six times (3 return movements)
represented by the first 6 troughs in Figure 7.23 (c). The final friction predicted of the
black leaf layer section was 0.187 for box 1 and 0.182 for box 2 compared to the measured
friction of 0.152 on the left side corresponding to the camera box 2 position. Although the
prediction tool has not received extensive black leaf layer data training, this result shows
that with more data it will accurately prediction friction comparable to a friction
measurement device. Cryogenic cleaning was applied to the black layer created after sixth
run and the friction predicted at that section significantly increased to around 0.25 on the
left track and 0.26 on the right track.

The leaf layer was reapplied a second time on a different section of the track (seen on the
second side of the black line labelled 2) and a similar trend was noticed. The model
predicted a friction of 0.174 and 0.176 (return) for the leaf layer created after 2 passes
while the measured friction was 0.187 on the left track. The right side of the track had a
predicted friction of 0.184 compared to 0.183 measured by the tribometer.

The predictions obtained from the long run test from Leeming Bar to Bedale shown in
Figure 22 and 23 (b) & (d) have a similar trend to Sections 1 and 3 of the data collected
between Leeming Bar, Bedale and return seen in Figure 7.20 (b). The deep trough in the
predicted friction was also noticed here at the same location of the under bridge giving a
prediction of 0.210 and 0.211 from camera box 1 exiting and entering Leeming Bar
respectively. On the hand Camera Box 2 encountered a software error which restarted the
thread when exiting Leeming Bar while under the bridge of interest but captured it on the
return journey showing the trough in Figure 7.23 (d) predicting 0.201. A second trough
which predicted a friction of 0.209 was noticed where a sudden drop in railhead
temperature from 3.99C to -5.19C where the friction reduces from 0.244 to 0.209. The
drop in the temperature definitely caused by an error either from vibrations causing the
IR sensor to briefly shift hence a random reading or sensor restarting. The railhead
temperature returned to 4°C after the one -5.19C reading which in turn returned the
predicted friction to 0.244.
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Figure 7. 33: Comparison of data collected from the camera in the summer 14-07-23 to
winter 28-11-23

The predicted friction for the long run ranged between 0.227 to 0.282 and 0.227 to 0.270
with exclusion of the tunnel effects and railhead temperature anomaly for camera box 1
and 2 respectively. These predictions are slightly lower than the predictions made by
model during the summer period on the same route. Figure 7.33 shows data extracted
from the same route which was Leeming Bar to Bedale for 14t July where the railhead
temperature was warmer than 28t November 2023. The predicted friction during the
summer period was higher by an average of 0.016 than the predicted friction during
winter. This correlates with findings made in Chapter 4 that railhead temperature does
affect the friction levels, it may not be a big difference, but it does make a difference.

7.6 CONCLUSIONS

e The final set-up using the camera box showed that the concept of an on-train data
collection and friction prediction system is feasible.

e The camera box predictions showed consistency over the same area of data
collection furthermore proving the output of the prediction tool is not random.
The prediction tool is also very sensitive to the railhead state such as wet and dry
as it is expected to be. Predicting lower friction with the appearance of moisture
on the railhead with lower prediction expected if the relative humidity matches.

e From Figure 7.32, it shows the friction prediction model has compared well
against the Rivelin Rail tribometer measurements.

e The camera box setup done cannot be a permanent solution as the lamp bracket
holder is not fitted on all rolling stock with some having them located in different
positions.
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[t was proven that the camera works but an integrated data capture system on the
train either close to or the wheel boogie will be beneficial for collecting clearer
railhead images.

The camera box designed for this work can be used by the railway industry for
other purposes other friction prediction. It can be used for accurate railhead and
air temperature with relative humidity which will inform train drivers of the
driving conditions. The forward-facing images can be used for monitoring the
track surrounding and vegetation management. The GPS data can also aid in
narrowing down locations of events recorded.

172



CHAPTER EIGHT
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8. DISCUSSION

8.1 INTRODUCTION

The main aim of this research was to enhance the understanding of wheel/rail low
adhesion and subsequently improve adhesion forecasting and validation approaches. In
pursuit of this aim, a multifaceted approach was adopted, encompassing a thorough
literature review, real-world railhead condition analysis, and the development of the
predictive friction model along with hardware for capturing data from the railhead on
train.

8.2 OBJECTIVE 1: LITERATURE REVIEW

The initial objective aimed to establish a comprehensive understanding of low adhesion
through an exhaustive review of academic literature and operational insights from
industry reports, such as those produced by British Rail Research. Key areas of focus
encompassed the characteristics of wheel/rail interface, the role played by leaf layers and
the wet-rail phenomenon on wheel/rail adhesion. Concurrently, the investigation
explored existing approaches for low adhesion measurements and forecasting.

The in-depth literature review laid the foundation for the project, providing crucial
insights into the existing knowledge landscape of low adhesion. Unveiling the significance
of leaf layers and the wet-rail phenomenon contributed to a significant understanding of
the complexities involved. The measurement techniques explored showed the most
suitable method for railhead friction data collected, a pivotal aspect for accurate adhesion
forecasting.

Gaps were also identified that new technology was needed to fill in terms on adhesion
forecasting.

8.3 OBJECTIVE 2: RAILHEAD DATA ANALYSIS

The second objective sought to analyse rail head conditions across various locations and
timeframes, offering an ample understanding of how temperatures and relative humidity
vary over said time frames and their corresponding impact on railhead friction. Real-
world data collection emerged as a critical aspect in achieving a complete understanding
of low adhesion. This was also necessary for building a new prediction tool.

The work done in understanding the effects of temperature and relative humidity on the
railhead friction showed the importance of the environmental properties in relation to
railhead friction. Relative humidity is an important factor in understanding low adhesion
on the railhead as seen from the data presented in Chapter 4. The variation in the relative
humidity and temperature data makes the results unique, which is usually not considered
in in-laboratory or controlled environment testing. A similar study done by Ishida [87]
on different rail tracks In Japan, opined that relative humidity had a closer relationship
to CoF than rail temperature. That is, high relative humidity brought about a decrease in
CoF. Whereas this work has identified the joint effects of rail temperatures and relative
humidity changes on railhead CoF, which were discussed in chapter 4.
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Further work should be considered for including variations of RH levels for in-laboratory
friction tests. A variation of the RH was achieved for in-laboratory data collected in
Chapter 6 where the sensitivity of the friction prediction model was discussed, see Figure
6.37. Although this was done for only the wet railhead condition, this variation showed
that model reacted to changes in environmental factors, RH in this case.

Air temperature was recorded during the field visits, but was not included in the analysis
done, as no independent trend was identified. This was partly because an increase or
decrease in the air temperature brought the same effects on the railhead temperature,
therefore producing similar trends [85]. On the other hand, where some part of the rail
was shaded from the sun the railhead recorded a lower temperature compared to
sections exposed to the sun, as seen in Figure 4.11a, 4.13a, 7.26, 7.28 & 7.29. Further into
this work in Chapter 7, where air temperature and railhead temperature were recorded
using the camera box sensors, the sun exposure effect was noticed more where the
railhead temperatures registered higher than air temperature for the area because the
railhead exposed absorbed heat rays from the sun. While shading effects were noted
where there was a drop in the railhead temperature with the air temperature being
stable, Figure 7.30 being a good example.

In addition, the Pendulum tribometer used to measure the railhead friction the model was
trained on found it hard to maintain the original moisture or contaminants levels present
on the railhead. Due to the sweeping motion of the pendulum arm wiping off the moisture
or contamination on the first measurement, thereby altering the subsequent friction
levels measured for repeat readings. It will be beneficial to retrain the prediction model
using a tribometer with better repeatability like the Rivelin Rail tribometer, which has
only recently been developed.

8.4 OBJECTIVE 3: PREDICTION MODEL DEVELOPMENT

The third objective aimed at creating and enhancing a model for friction prediction, using
Artificial Intelligence. This involved the incorporation of railhead images and
environmental parameters using the Gaussian Process discussed in Chapter 5 to expand
of the datasets used within the model. This was needed to cover more railhead conditions
and in particular those leading to low adhesion, for example leaf layers. Leaf layer data is
very hard to come by as clearly infrastructure owners do not want leaf layers to form and
will plan mitigation to avoid this.

The integration of advanced technologies, exemplified by Artificial Intelligence,
showcased this research’s commitment to leveraging cutting-edge methodologies for
improved predictions. The incorporation of visual data, such as railhead images was
pivotal in elevating the model's accuracy and reliability. The iterative process of building
up datasets within the model underscored the dynamic and evolving nature of the
research, ensuring a robust foundation for future predictions.
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8.4.1 PREDICTION MODEL LIMITATIONS

While the development of a Neural Network (NN) model for friction prediction is a
promising endeavour, it is important to acknowledge potential limitations that may
impact its effectiveness. Below are summaries of some considerations:

e Data Limitations: The NN model's performance heavily relies on the quality and
quantity of available data. Insufficient or biased datasets may hinder its ability to
generalize well to diverse rail conditions (this is explained further in the next
paragraph).

e Dynamic Environmental Factors: Rail environments are subject to dynamic
changes in weather, temperature, and other external conditions. The NN model
may struggle to adapt to unforeseen variations that are not adequately
represented in the training data.

e Complexity of Rail Systems: Railway systems are inherently complex with
various interconnected components. The prediction model may oversimplify
certain aspects, potentially neglecting obscure interactions that contribute to low
adhesion conditions.

e Transferability to Other Rail Networks: Conditions and characteristics of rail
networks can differ significantly. The model's effectiveness is contingent on the
similarity of conditions between the training dataset and the target rail network,
limiting its transferability. Therefore, retraining must be done for applications on
different rail networks outside of the Scope of this research, that is UK.

e Ethical and Regulatory Considerations: The use of Al models in safety-critical
applications such as in the Rail industry raises ethical and regulatory concerns.
Ensuring compliance with standards and addressing potential biases is crucial to
maintain public trust and safety.

As stated previously in Chapters 5 and 6, the prediction model can only forecast
information it is familiar with (that is, previously trained data). Currently the prediction
model is limited to information obtained from the Heritage rail tracks and the leaf layer
data from the Salisbury incident. This is insufficient data for the model to predict friction
accurately on all railhead conditions across the UK. In order to increase the robustness of
the prediction tool, it needs to be trained o data collected from as many rail track locations
as possible and during operational times and seasons. This is to aid the prediction model’s
ability to identify and forecast a wide range of railhead conditions that system may
encounter on the field. All these being said, access to these rail tracks remain the greatest
obstacle in training data collection encountered during this project.

In addition to this, the Salisbury data collected in Chapter 4 showed that pendulum
tribometer is not suitable for railhead contamination friction measurement, when the BS
7976-2:2002+A1:2013 [63] measurement repeatability standard (8 repeat
measurements) is being followed. Ideally, for contaminated railhead measurements using
the pendulum, only 2 readings will be appropriate to capture the friction values before
the railhead condition becomes altered by the swiping motion of the rubber pad.
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Unfortunately, this variation in measurement method (2 measurements for contaminated
railhead conditions) was not included in the model training as it is important to have a
consistent form of data collection for the prediction model in order not to introduce bias
into the model.

A very recent alternative to the pendulum tribometer is the Rivelin Rail tribometer used
in comparing the camera box predictions (Chapter 7). The Rivelin Rail tribometer collects
an estimated 300 data points per reading (which is averaged in the final/displayed
friction measured) over a wheel running band length of 300mm, showing good
repeatability. The Rivelin Rail tribometer employs a free rotating steel wheel, which can
produce a similar contact stress experience in the wheel/rail contact. Therefore, there
will not be an issue with the contamination or moisture being swept off the railhead. The
box plot in Figure 7.32 shows the extent of measurement spread recorded by the Rivelin
Rail tribometer (for example leaf layer friction ranged between 0.15 to 0.18) which is low
compared to that seen in the Salisbury data time series plot shown on Figure 4.15 (a-c)
(for example a measured friction ranging from 0.02-0.14 on Figure 4.15b).

8.5 OBJECTIVE 4: DATA CAPTURE TOOL DEVELOPMENT AND TESTING

The final objective encompassed the development of a simple tool for capturing railhead
images, forward facing images and environmental data on a railway vehicle. Tests were
conducted on a train in conjunction with the friction prediction tool to validate the output.

The successful development of the Camera box (which was the data capture tool
designed) and its integration with the friction prediction model marks a pivotal
milestone. Testing the camera box on rolling stock not only validates its feasibility, but
also ensures the reliability of the overall prediction model in real-world, dynamic
scenarios. The camera box sensors also present a unique insight into the local
environmental data around the rail tracks, improving the industry's knowledge on the
environment related trends and how it affects the track system. The collective
achievement of these objectives has significantly advanced the understanding of low
adhesion in the wheel/rail interface low adhesion. The friction prediction model, coupled
with real-world data and data capture capabilities, positions this research to make
substantial contributions to the improvement of adhesion forecasting in the railway
industry.

8.5.1 CAMERA BOX LIMITATIONS

Although the camera box has numerous benefits and has shown great potential for
enabling data collection from onboard rolling stock, it has some shortcomings which are
listed below.

¢ Unsuitable Lamb Bracket Position on Some Trains: The Camera box has been
found to be unsuitable for some types of rolling stock, as discussed in Chapter 7.
The lamp bracket holder position (which holds the camera box on the train) of
different trains is not same which means the railhead camera will not be facing
over the railhead sometimes and therefore it will not capture railhead images. In
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fact, some trains do not have provision for a lamp bracket holder which implies
that the Camera box cannot be the final design for railhead image capture.
Railhead Image Quality: The railhead images captured from the Camera box as
seen in Tables 7.2 through 7.7 emerge looking blurry due to motion of the train.
Although, from comparison done in Figure 7.23 it was established that that level
of blurriness does not negatively affect the friction prediction, as the model can
still identify the colours in the image. The extent of blurriness required to produce
inaccurate predictions is currently unknown, but it is safe to assume that as long
as the colours are visible in the image, the prediction tool will be able to process
the image. An alternative location and means of railhead image capture needs to
be created, especially when the prediction model is employed on a train that goes
on higher speed than 30mph done in WHR.

Remote Control of the Camera Box: Control of the Camera box is yet to be done
remotely. That is, data download is done manually by taking off the Camera box
from the train and moving the data from the micro controllers to a flash drive/USB
stick. An ideal system where the Camera box data can be uploaded remotely onto
a cloud storage, which can then be downloaded for processing by the prediction.
This will help automate and speed up the process.

8.6 HOW DOES THE VALIDATED FRICTION PREDICTION MODEL COMPARE TO
EXISTING ADHESION FORCAST METHODS?

The developed prediction model holds significant potential to outperform or work
alongside existing adhesion forecasting methods in the UK due to several key
advancements introduced through this research project. It also has higher confidence

when compared to the other methods as it uses real-time data, and the confidence will
keep improving as the model training increases (see Table 8.1 for summarised

comparison updated from Table 2.4). Listed below are some key characteristics
considered when compared.

Incorporation of Railhead Images: Unlike traditional methods that heavily rely
on weather and/or train performance data, the prediction tool developed in this
project incorporates visual and sensor data. These data set provides a holistic and
real-world representation of the rail conditions, allowing for a more accurate
assessment of low adhesion scenarios.

Comprehensive Data Sets: The prediction model's development involved the
enhancement of traditional programming technique by incorporating more
diverse data sets. This includes information gathered through the literature
reviewed in this work, railhead data analysis, and the integration of parameters
beyond those traditionally considered. The comprehensive data sets contribute to
a more robust and adaptable prediction model.

Dynamic Friction Understanding: The focus on understanding adhesion
mechanism in the wheel/rail interface makes this model unique. By analysing
railhead conditions dynamically and considering the impact of contaminants such

178



as leaf layers, the tool is better equipped to predict changes in friction levels,
adapting to real-time variations and ensuring more accurate forecasting.
Validation through Image Sensitivity Tests: The incorporation of a simple
imaging tool and its validation through the sensitivity tests adds an extra layer of
reliability to the prediction tool. This validation ensures that the tool's output is
not only theoretically sound, but also practical and applicable in the dynamic
environments typical of railway operations.

Potential for Industry Impact: The overarching aim of positively impacting the
railway industry is at the core of this research. The tool's potential to improve
adhesion forecasting and validation approaches aligns with the industry's need for
enhanced safety, operational efficiency, and cost-effectiveness.
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Table 8. 1: Updated adhesion “forecasting” matrix

Metres

Stations

Routes

Real time

Hours

Days

Rail/lineside
information
based

Weather
forecast + train

performance
based

UoS Railhead
Friction Prediction
Tool (Camera Box)

UoS Railhead
Friction Prediction
Tool (Manual data
collection)

Rail eye Sensor

Met Office
Adhesion Index

Swedish Tool

Operational data
based forecast tool
by University of
Huddersfield and
Met Office

X

X

X

X

180

Medium-High

Low-Medium

Low-Medium

High - used over
many years,
verification
process in place
Low

In process

Validated on

WHR and
ScotRail routes.
Validation
continues  with
further training
Validation in
process

Only used at test
phase (not on a
real train)
Widespread use
in UK

Still
phase

Validated on the
Birmingham
cross city line

in design
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Table 8.1 summarises the capabilities of the friction prediction model both for use in the
camera box and with manual data capture (that is with a mobile phone, IR sensors or
weather station data). The camera box set-up yields very good results with validation and
higher confidence when further trained with relevant datasets for train routes. It has
spatial resolution in metres, stations, and routes because of the GPS module whereas the
manual data capture is based on the user’s location and there is a limit to the amount of
data a user can collect manually. In addition, the camera box set-up has in-built
temperature sensors which collect environmental data at the same time as the images are
taken. This increases the reliability and sensitivity of the data set when compared to
manual data collection where the user may not have correct tools for environmental data
collection.

The advancements made in this project suggest that it has the potential to offer a more
sophisticated, accurate, and practical solution for adhesion forecasting in the UK's railway
industry. The integration of novel technologies and a focus on real-world conditions
positions this tool as a valuable asset in addressing the challenges associated with low
adhesion.
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CHAPTER NINE
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9. CONCLUSIONS AND RECOMMENDATIONS

9.1 CONCLUSIONS

This research has improved the understanding of low adhesion mechanisms in the
wheel/rail interface using data collected in the field and proven that Artificial Intelligence
can be used by the railway industry to predict railhead friction. The Camera box set-up
resulting from this work will play a key role in the future of low adhesion mitigation and
also in recording environmental data that could be useful for other issues such as track
buckling due to high temperatures. The Camera box temperature sensor will work
independently without railhead image capture, if necessary to obtain environmental data
and in conjunction with the GPS module, the location of the data collection can be
obtained. The set-up has turned out to be a versatile tool, which with proper usage and/or
training will increase the usefulness.

The important conclusions that can be drawn from this thesis that is novel are:

e The real-world environmental data (relative humidity, temperature) was
important in understanding low adhesion mechanisms and should be considered
in friction prediction models as used here. High relative humidity (>75%) with
moisture is very likely to propagate low friction levels on the railhead. In addition,
this work confirmed that railhead temperature is not fully dependent on air
temperature. The railhead temperature is usually independent of the air
temperature when external factors are in play such as shading from trees,
buildings among others; cloud coverage on a warm day; a section of the railhead
is in the direct line of sun exposure in a cold day.

e The Gaussian model is ideal for the type of data determined to key in
understanding and predicting railhead friction (which are numerical and non-
numerical data). The development and enhancement of this Neural Network
model represent a leap forward in railhead friction prediction capabilities. The
incorporation of visual and environmental data has refined the model's accuracy
and adaptability, making it a powerful tool for friction prediction. The current
model presents good precision for the data it has been trained, evident in the
increase in log-likelihood when retrained. The model robustness increases with
continuous training on diverse and good quality set of data, hence improving the
precision for wider area of application.

e The prediction model used in this research currently conforms to real-world data,
especially in terms of environmental information as drawn from the in-lab
sensitivity tests. This shows the tool fully takes into account the temperatures and
relative humidity when making the predictions, therefore the friction prediction
is informed and not random.

e The successful integration of the prediction model and versatile data collection
system created in this research, namely the camera box showed these results from
this work can be employed by the Rail industry. The tool's validation (using the
Rivelin Rail tribometer and Met Office data) not only assures its theoretical and
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experimental reliability, but also positions it as a viable solution for railhead
friction prediction in the near future and lineside environmental data collection.

In conclusion, this research represents a significant step in the right direction in
addressing the challenges associated with low adhesion in the Rail industry. The
achievements and contributions made during this study set the stage for industry
advancements and ongoing research endeavours. The impact of this work is expected
to positively impact the railway industry, contributing to a safer, more efficient, and
cost-effective rail operations.

9.2 RECOMMENDATIONS FOR FUTURE WORK
As the work concludes, below are some avenues for future exploration split into general
and industry recommendations:

GENERAL RECOMMENDATIONS

The prediction model should be retrained with friction measurements from a
tribometer other than the Pendulum tribometer due to its poor repeatability on
contaminated railheads. The Rivelin Rail tribometer will be a good alternative as
it has better repeatability and shares the portable characteristics of the Pendulum.
Ongoing refinement of the prediction model should be pursued. This includes
incorporating feedback from real-world applications to enhance accuracy and
adaptability. Continuous training of the model is also required, especially with
regularly used routes with help the predictions conform with these routes.

The design of the prediction model does not consider any wheel characteristics
such as the roughness or contamination presence on the wheel. In situations
where a clean wheel with rough, returned surface runs on a contaminated rail, it
has the ability cut through contamination on the railhead. Whereas low adhesion
may occur in the contact of a clean railhead and contaminated wheel.
Development of a new measurement technique looking at the wheel/rail contact
in different surface conditions is required. This may be done using the linear full-
scale-wheel-on-rail-rig or HAROLD, to build up new friction relationships for
training a future prediction model.

Further testing should be carried out to consider the usage of alternative or
additional railhead cameras that can capture some railhead properties better than
a regular camera. An example of such is an Ultra-Violet or an Infra-Red camera,
which have shown to aid identification of railhead contamination [56].

INDUSTRY RECOMMENDATIONS

The next step involves integrating the developed tools and approaches with
existing industry practices. This includes creating a specialised data collection
(eliminating sensor noise and blurry images) and integrating with a rolling stock,
it will also push for automation of the data processing. Collaboration with rail
operators and relevant stakeholders will be crucial for seamless adoption.
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¢ Inline with integrating the tool with industry existing practices, One Big Circle has
a railhead camera set-up attached to the cowcatcher/rail guard of some rolling
stock. The images captured are in black and white format in addition they are high
resolution. They have stated friction levels can be estimated by inspecting at these
railhead images, although this method has not been validated yet. It is suggested
that further work can be done in capturing, analysis and classifying black and
white railhead images under as many conditions as possible. This will inform us of
the feasibility of this method in identifying the railhead state and determine if this
can be translated to a similar prediction model as that of this research. If this yields
a positive outcome, the new prediction model can be integrated into the existing
railhead image capture system.

e The success of this research in the UK suggests the potential for adaptation to
other railway networks globally. Assessment of applicability in different
environments and climates could further extend the impact of these findings.

9.3 PUBLICATIONS ARISING FROM THIS WORK

JOURNAL PUBLICATIONS

M. O. Folorunso, R. Lewis, and J. L. Lanigan, "Effects of temperature and humidity on
railhead friction levels,” Proceedings of the Institution of Mechanical Engineers, Part F:
Journal of Rail and Rapid Transit, vol. 237, no. 8, pp. 1009-1024, 2023.

M. O. Folorunso, M. Watson, A. Martin, J. W. Whittle, G. Sutherland, and R. Lewis, "A
Machine Learning Approach for Real-Time Wheel-Rail Interface Friction Estimation,"
Journal of Tribology, vol. 145, no. 9, p. 091102, 2023.

CONFERENCES AND SEMINAR PRESENTATIONS

Michael Watson, Morinoye Folorunso, Alan Martin, Jacob Whittle, Graham Sutherland,
Roger Lewis. "A Machine Learning Approach for Real Time Wheel/Rail Interface Friction
Estimation,” Presented at the 13th World Congress for Railway Research, held in
Birmingham, UK on 9 June 2022.

Morinoye Folorunso, “Predicting Railhead Friction Levels Using Artificial Intelligence
(AI)” Presented at the knowledge exchange seminar between UNAL Medellin Colombia
and The University of Sheffield, held in Medellin, Colombia on 1 November 2022.

Morinoye Folorunso, Roger Lewis, Joseph Liam Lanigan, “The Effects of Relative Humidity
and Temperature on Railhead Friction” Presented at the 9t International Tribology
Conference, held in Fukuoka, Japan on 30 September 2023.

Roger Lewis & Morinoye Folorunso. “A Machine Learning Tool for On-Train Adhesion
Estimation” Presented at the IMechE Tribo-sensing and Condition Monitoring - The
Journey to Net Zero, held in London, UK on 25 October 2023.
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11. APPENDICES

APPENDIX A:

A-1 SAMPLE DATA SHEET AND SPREAD SHEET USED IN COLLATING FIELD DATA
T'TLE: NN Based Regression for LA Estimation QRIGIN UoS
Autumn data collection dates available ISSUE 4.3DATE 03/12/2019

Track Measurement Record Sheet

Date of measurements Person taking Measurements Sheet
no.

Site Site

Mileage Mileage

Time, hh:mm Time, hh:mm

RH photo file names

RH photo file names

Air temperature, *C

Air temperature, *C

Relative humidity, %

Relative humidity, %

Dew point, *C

Dew point, *C

RH temperature, *C

RH temperature, *C

Eddy current probe, pm

Eddy current probe, pm

5-10 Pendulum values

5-10 Pendulum values

Swab IO

Swab ID

Weather (wind, clouds,
sun, raint ete.)

Weather (wind, clouds,
sun, raint etc.)

Spray mark location

Spray mark location

Figure 1: Data collection sheet
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A B C D E F G H J K L M N (0] P Q
Weather
(wind,
clouds,
sun,
Date of Person taking Sheet dew_poi rain? is_rainin

1 measurements measurements no site mileage time end time photo air_temp  humidity nt rh_temp  layer_thick friction SwabID etc) g
Wirksworth

2 01/12/2020 JW, MOF, T8 103 Station 11:42:00 GOPR3064.JPG 14 48.3 366 0.6 3.4 65 Sun False
Wirksworth

3 01/12/2020 JW, MOF, T8 103 South Station 11:50:00 GOPR3065.JPG 12.8 50.4 2.88 -3.1 18 63.25 Sun False
Wirksworth

4 01/12/2020 JW, MOF, TB 103 South Bridge 11:54:00 GOPR3066.JPG 12 52 24 -1 0 64.375 Sun False
Wirksworth
Qut building

5 01/12/2020 JW, MOF, TB 103 pole 11:57:00 GOPR3067_JPG 12.4 54.4 328 24 0 4575 Sun False
Wirksworth 10

6 01/12/2020 JW, MOF, TB 104 MPH sign 12:00:00 GOPR3068.JPG 12.1 51.7 2.44 13 3.6 7175 Sun False
Wirksworth

T 01/12/2020 JW, MOF, TB 104 Points 12:05:00 GOPR3069.JPG 12.5 55.2 3.54 24 4.6 70.125 Sun False
Wirksworth
Miniature

8 01/12/2020 JW, MOF, TB 104 Railway Gate 12:09:00 GOPR3070.JPG 125 53.5 32 24 12.6  63.625 Sun False
Wirksworth
1/a Mile

9 01/12/2020 JW, MOF, T8 104 Marker 12:12:00 GOPR30T1.JPG 11.5 58.9 3.28 1.6 8 35.75 Sun False
Wirksworth

10 01/12/2020 JW, MOF, TB 105 Crossing Sign 12:17:00 GOPR3072 JPG 11.3 55.8 246 3.5 8.4 58.25 Sun False
Wirksworth

11 01/12/2020 JW, MOF, TB 105 Clearing 12:20:00 GOPR3073.JPG 10.8 56.7 214 0.3 7.4 56.375 Sun False
Wirksworth 15

12 01/12/2020 JW, MOF, TB 105 MPH sign 12:24:00 GOPR3074.JPG 10.4 60.2 2.44 0 9.2 5275 Sun False
Wirksworth
Ground

13 01/12/2020 JW, MOF, TB 105 channel 12:29:00 GOPR3075.JPG 10.2 6L.7 2.54 -0.6 7 55.75 Sun False
Wirksworth

14 01/12/2020 JW, MOF, TB 106 Stop sign 12:34:00 GOPR3076.JPG 10.3 62.2 2.74 0.6 10 59 Sun False
Idridgehay

15 01/12/2020 MOF, TB 106 North Platform 13:05:00 GOPR3077.JPG 12 52.7 2.54 4.2 2.6 56.625 Sun False

Figure 2: Data spreadsheet sample.

A-2 ADDITIONAL RESULTS FROM ENVIRONMENTAL EFFECTS ANALYSIS IN CHAPTER 4.

MU against Relative Humidity & rh_temp (Butterley, 05/09/19})
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APPENDIX B: PREDICTION MODEL CODES

B-1 GAUSSIAN PROCESS
import pickle as pkl

import pathlib
import pandas as pd

_this_path = pathlib.Path(__file_).parent.absolute()

_all__=['GPModel]

class GPModel:
def _init__(self):
models_path = pathlib.PurePath(_this_path, 'gp_models.pkl’)
models = pklload(open(models_path, 'rb"))
self.x_scaler = models['x_scaler']
self.f_scaler = models['f_scaler']
self.x_col = models['x_col']

self.gp_model = models|['fitted_process']

def __call__(self, x):
data = pd.DataFrame(x)
for coll, col2 in zip(data.columns, self.x_col):
assert coll == col2
data_norm = pd.DataFrame(self.x_scaler.transform(data), columns=data.columns)
prediction_norm, std = self.gp_model.predict(data_norm, return_std=True)
cov = std/prediction_norm
prediction = self.f_scaler.inverse_transform(prediction_norm)

return prediction, cov
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B-2 FORWARD FACING IMAGES
import cv2 # opencv image library

import pandas as pd # data manipulation library

import numpy as np # numeric python library

import minisom # self organising maps library

import tensorflow_hub as hub # database of pretrained models
from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

import pickle as pkl

import pathlib

_this_path = pathlib.Path(__file_).parent.absolute()

_all_ =['ImageMapper’]

class ImageMapper:

def _init__(self):
models_path = pathlib.PurePath(_this_path, 'ffi.pkl")
models = pklload(open(models_path, 'rb'))
# do all checks here
self.scaler = models|'scaler’]
assert isinstance(self.scaler, StandardScaler)
self.pc_analyser = models['pca']
assert isinstance(self.pc_analyser, PCA)

self.som = models['som']
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assert isinstance(self.som, minisom.MiniSom)

extractor_path = pathlib.PurePath(_this_path,
preview_mobilenet_v2_feature_vector_2")

self.extractor = hub.KerasLayer(str(extractor_path), input_shape=(224, 224, 3))

def get_map_point(self, paths_to_ff_image: str) -> dict:
x=]
y=Il
for path in paths_to_ff_image:
if path is None:
x.append(None)
y.append(None)
continue
images = _read_trim_resize_image(path)
features = self.extractor(images)
data = pd.DataFrame(features)
data_norm = pd.DataFrame(self.scaler.transform(data))
pc = pd.DataFrame(self.pc_analyser.transform(data_norm))
this_x, this_y = self.som.winner(pc[0])
x.append(this_x)
rtn_dict = {'ffi_x": x, 'ffi_y": y}

return rtn_dict

def _read_trim_resize_image(file_name: str):

Reads trims and resizes the front facing rail view images

Parameters
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file name: str

The full path of the image file including the extension

Returns

im_1, im_2: np.arrays

image_size = (224, 224, 3)

image = cv2.imread(file_name)

if image.shape != (343, 609, 3):
original_shape = (343, 609)
times_too_big =[i / o for i, o in zip(image.shape, original_shape)]
cropped_shape = [int(o * np.min(times_too_big)) for o in original_shape]
starts = [(i- ¢) // 2 for i, c in zip(image.shape, cropped_shape)]
cropped = image|starts[0]:starts[0] + cropped_shape[0],

starts[1]:starts[1] + cropped_shape[1]]

resized = cv2.resize(cropped, (original_shape[1], original_shape[0]))

image = resized

im_1 = image[10:10 + image_size[0], 50:(image_size[1] + 50)]
im_2 =image[10:10 + image_size[0], -1 * (image_size[1] + 50):-50]
return np.array([im_1, im_2], dtype=np.float32) / 255

def _extract_features(images):

extractor_path = pathlib.PurePath(_this_path, "tf2-
preview_mobilenet_v2_feature_vector_2")
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extractor = hub.KerasLayer(str(extractor_path), input_shape=(224, 224, 3))

return extractor(images)

B-2 RAILHEAD IMAGES
import datetime

import pandas as pd

import numpy as np

import os

import skimage.io as io
import skimage.filters as filt

import skimage.color as color

_all__=['get_features']

def get_features(rail_head_file_names: str):
black =]
orange =[]
edge_v =[]
colors =[]

mean_brightness =[]

for file_name in rail_head_file_names:
print (file_name)
sub_im = _read_and_localise(file_name)
black.append(find_black(sub_im))
orange.append(find_orange(sub_im))

edge_v.append(sobel_v(sub_im))
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colors.append(mean_color(sub_im))

mean_brightness.append(mean_bright(sub_im))

rtn_dict = {'mean_brightness': mean_brightness,
'black’: black,
'orange’: orange,
'edge_v': edge_v,
‘color': colors}

return rtn_dict

def mean_bright(image):

return np.mean(image.flatten())

def sobel_h(image):
gray = color.rgh2gray(image)

return np.mean(np.abs(filt.sobel_h(gray)))

def sobel_v(image):

gray = color.rgh2gray(image)

return np.mean(np.abs(filt.sobel_v(gray)))
def mean_color(image):

hsv = color.rgbZhsv(image)

return np.mean(hsv([;, :, 0] * hsv[;, :, 1])
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def find_orange(image):
hsv = color.rgb2hsv(image[200:600, :, :])
orange = np.clip(np.abs(hsv[;,:,0]-1/12),0,1/12)*-12+1
o_adjust = orange * hsv[:, :, 1] * hsv[;, :, 2]

return np.mean(o_adjust)

def find_black(image):
hsv = color.rgb2hsv(image[200:600, :, :])
thresh = 0.3
black = np.clip(thresh - hsv[;, ;, 2], 0, thresh) / thresh
black_sat = np.clip(thresh - hsv[;, :, 1], 0, thresh) / thresh

return np.mean(black_sat * black)

def _read_and_localise(file_name):
if not os.path.exists(file_name):
raise ValueError("Rail head image not found")
im = io.imread(file_name)
#resolution of image aka image size
#sub_im =im[500:2500, 1500:2500, 2]
sub_im =im[250:1200, 250:1250, 2]
filt_im = filt.gaussian(sub_im, sigma=10)
sobel_im = filt.sobel_v(filt_im)
rail = np.std(filt_im, 1) / np.mean(filt_im, 1) ** 3 * np.mean(np.abs(sobel_im), 1)
window_size = 500

202



rail_starts = [sum(rail[i:i + window_size]) for i in range(len(sobel_im) - window_size)]
start = np.argmin(rail_starts)

#final_sub_im =im[500 + start:500 + start + window_size, 1500:2000, :]
#(windowsize height:width)

final_sub_im =im[250 + start:250 + start + window_size, 750:1000, :]

return final_sub_im

B-3 PREDICTOR PROCESS
from .forward_facing _images import ImageMapper

from .rail_head_images import get_features
from .gausian_process import GPModel

import numpy as np

_all__=['Predictor’]

class Predictor:
def _init__(self):
self.mapper = ImageMapper()

self.gp_model = GPModel()

def predict(self, air_temp, humidity, rail_temp, layer_thickness,
is_raining, rail_head_file_name, forward_facing_file_name=None):
n = (np.log(humidity/100)+(17.27*air_temp)/(273.3+air_temp))/17.27
dew_point = 237.3*n/(1-n)
x = {'air_temp': air_temp, '"humidity': humidity,

'dew_point': dew_point, 'rth_temp': rail_temp,
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'layer_thick': layer_thickness,
'is_raining': is_raining}
x.update(get_features(rail_head_file_name))
if forward_facing_file_name is not None:
x.update(self.mapper.get_map_point(forward_facing_file_name))

return self.gp_model(x)

__init__process

from .forward_facing_images import ImageMapper
from .rail_head_images import get_features

from .gausian_process import GPModel

from .predictor import Predictor

_all__ =['Predictor’, 'GPModel', 'get_features', 'ImageMapper’]

B-4 PREDICTION MODEL INTERFACE

Prediction tool input lines
for Images and CSV file

T (containing sensor data and
image file directory)

§i13

Predicted friction for the
images Wensleydale images,

~converted using BRR trib
conversion

Predicted Pendulum test
" Value for the conversion
above
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In [1]: dimport rail_ai
import pandas as pd
import pathlib
import numpy as np

In [2]: predictor = rail ai.Predictor()

In [3]: #insert csv Llocation

base_path = pathlib.PurePath(r"C:\Users\mep28mof\Desktop'WHR_NOV")

#insert image Location

base_path_image = pathlib.PurePath(r"C:\Users\mep2@mof\Desktop\WHR_NOV\Railhead_images_ 28 _11")

data = pd.read_csv(base_path.joinpath( whr_novl.csv'))

data.head()

data[ "photo'] = data[ 'photo'].astype(str)

data[ ' full_file name']

data = data.head(991)
#data. head()
#data [:,400:1000]

data.columns

data[ 'photo'].apply(lambda x: str(base_path_image.joinpath(x)))

pred, std = predictor.predict(air_temp = data[ air_temp'],
humidity=data['humidity'],
rail_temp=data['rh_temp'],
layer_thickness=data[ 'layer_ thick'],
is_raining=data['is_raining'],
rail_head_file_name=data[ 'full_file name'])

pred_mu= pred/195.45

B-5 IMAGE FEATURES
import rail_ai

import os

import numpy as np
import pathlib
import pandas as pd

data =
doc\data_update.csv")

pd.read_csv(r"C:\Users\mep20mof\Documents\Mep20mof

base_path = pathlib.PurePath(r"G:\My Drive\Al project-Roger Lewis\WP0O DO Data

collection")

photo_path = data['photo'].apply(lambda x: str(base_path.joinpath(x)))

features = rail_ai.get_features(photo_path)

data['mean_brightness'] = pd.DataFrame(features['mean_brightness'])
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data['black'] = pd.DataFrame(features|'black’])
data['orange'] = pd.DataFrame(features|'orange'])
data['edge_v'] = pd.DataFrame(features|'edge_v'])
data['color'] = pd.DataFrame(features['color'])

data.to_csv(r"C:\Users\mep20mof\Documents\Mep20mof
doc\data_update_withImganalysis_March22.csv")

B-6 GP FITTING_MO
import sklearn.gaussian_process as gp

from sklearn.preprocessing import MinMaxScaler

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from scipy.optimize import minimize_scalar

from scipy import stats

import statsmodels.formula.api as smf

from sklearn.model_selection import KFold as KF, RepeatedKFold as RKF

from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic,
ConstantKernel as C, WhiteKernel as WK

data = pd.read_csv(r'C:\Users\mep20mof\Documents\Mep20mof
doc\data_update_withImganalysis_March22.csv")

data_small = data.drop(columns = ['people’, 'location’, 'photo’,'Unnamed: 0', 'Unnamed:
0.1', 'weather’, 'site'])

models = {}

X = data_small.drop(columns = ['date’,'time’, 'friction’, 'edge_h'])
y = data['friction’]

x_scaler = MinMaxScaler()

X_scaled = pd.DataFrame(x_scaler.fit_transform(X), columns = X.columns)
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models['x_scaler'] = x_scaler

friction_scaler = MinMaxScaler()

y_scaled = friction_scaler.fit_transform(np.array(y).reshape(-1, 1))
models|['f_scaler'] = friction_scaler

kernel = 0.5 + C(1.0) * RBF(1)+ WK(0.1)

process = gp.GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)
fitted = process.fit(X_scaled, y_scaled)

preds_gp, sigma = fitted.predict(X_scaled, return_std=True)
X_scaled.columns

models|'fitted_process']=fitted

models['x_col'] = X.columns

import pickle as pkl

pkl.dump(models, open('gp_models.pkl’,'wb'))
preds_gp.shape

plt.figure(figsize= (5,5))

plt.scatter(preds_gp, y_scaled)

ax = plt.gca()

plt.grid(True)

plt.ylabel("Actual Friction")

plt.xlabel("Predicted Friction")

plt.plot([0,1],[0,1], 'r:")

ax.set_xlim(0,1)

ax.set_ylim(0,1)

plt.savefig("GP fitting.png", dpi=500)
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APPENDIX C: CAMERA BOX
C-1: CAMERA BOX PART DESIGNS

Figure 6: 3-D design of railhead camera and IR Thermometer sensor mount

Figure 7: 3-D design of front facing camera mount

Figure 8: 3-D design of battery case bottom (L) with microcontroller mount on the cover (R)
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Figure 9: 3-D design for side panels for camera box with air temperature and humidity
thermometer slot on the right

Figure 10: 3-D design for germanium window holder
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Figure 11: 3-D design for IR thermometer holder
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Figure 12: Engineering drawing for Perspex glass insert with Germanium window
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Figure 13: Engineering drawing of the modified camera box body with 3-D isometric view
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C-2: CAMERA BOX DATA SAMPLE

A B C D E F G H |

1 |forward filename | rail_filename rh_temp air_temp humidity gps_lat gps_lon speed heading

2 forward_filename frail_images/1701183379.7: 41 97 452 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
3 |.fforward_images/17011¢ ./rail_images/1701183379.7 43 98 446 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
4 . fforward_images/17011¢ ./rail_images/1701183379.7: 44 98 458 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
5 |.fforward_images/17011¢ ./rail_images/1701183379.7 43 98 452 54 deg 18,1892 min 001 deg 33.9124 min 0 217.18
6 |.fforward_images/17011¢ ./rail_images/1701183379.7: 44 98 450 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
7 |.fforward_images/17011¢ ./rail_images/1701183379.7 46 98 456 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
8 |./forward_images/17011¢ ./rail_images/1701183379.7: 42 98 454 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
9 |./forward_images/17011¢ ./rail_images/1701183379.7: 43 98 462 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
10 .fforward_images/17011¢ ./rail_images/1701183379.7: 41 98 454 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
11 .fforward_images/17011f ./rail_images/1701183379.7; 42 98 454 54 deg18.1892 min 001 deg 33.9124 min 0 21718
12 |./forward_images/17011¢ ./rail_images/1701183379.7 44 98 452 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
13 |./forward_images/17011¢ ./rail_images/1701183379.7: 42 98 452 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
14 |.fforward_images/17011¢ ./rail_images/1701183379.7: 46 98 452 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
15 .fforward_images/17011f ./rail_images/1701183379.7; 48 98 460 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
16 ./forward_images/17011¢ ./rail_images/1701183379.7: a9 99 458 54 deg18.1892min 001 deg 33.9124 min 0 21718
17 ./forward_images/17011¢ ./rail_images/1701183379.7: 79 98 466 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
18 .fforward_images/17011¢ ./rail_images/1701183379.7: 49 98 458 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
19 .fforward_images/17011f ./rail_images/1701183379.7; 44 99 464 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
20 |./forward_images/17011¢ ./rail_images/1701183379.7: a3 98 466 54 deg18.1892 min 001 deg 33.9124 min 0 21718
21 | fforward_images/17011¢ ./rail_images/1701183379.7 46 98 464 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
22 |.fforward_images/17011¢ ./rail_images/1701183379.7 44 97 462 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
23 |.fforward_images/17011¢ ./rail_images/1701183379.7 46 98 468 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
24 |.[forward_images/17011¢ ./rail_images/1701183379.7: 44 98 466 54 deg18.1892min 001 deg 33.9124 min 0 21718
25 . fforward_images/17011¢ ./rail_images/1701183379.7: 44 98 470 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
26 |.fforward_images/17011¢ ./rail_images/1701183379.7 43 98 466 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
27 |.fforward_images/17011¢ ./rail_images/1701183379.7; 43 98 466 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
28 |.fforward_images/17011¢ ./rail_images/1701183379.7 45 98 472 54 deg 18,1892 min 001 deg 33.9124 min 0 217.18
29 . fforward_images/17011¢ ./rail_images/1701183379.7: 42 98 464 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
30 |.fforward_images/17011¢ ./rail_images/1701183379.7 57 97 468 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
31 ./forward_images/17011¢ ./rail_images/1701183379.7: 45 98 470 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
32 |.fforward_images/17011¢ ./rail_images/1701183379.7 39 98 481 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
33 .fforward_images/17011¢ ./rail_images/1701183379.7: 39 97 484 54 deg 18.1892 min 001 deg 33.9124 min 0 217.18
34 |.fforward_images/17011¢ ./rail_images/1701183379.7 53 97 472 54 deg 18.1892 min 001 deg 33.9124 min 0 21718
35 ./forward_images/17011¢ ./rail_images/1701183379.7: 51 97 472 54 deg 18.1840 min 001 deg 33.9110 min 1.35 234.8
36 |./forward_images/17011¢ ./rail_images/1701183379.7 53 97 476 54 deg 18.1836 min 001 deg 33.9122 min 1.81 238.61
37 |.fforward_images/17011¢ ./rail_images/1701183379.7: 57 97 468 54 deg 18.1830 min 001 deg 33.9133 min 218  237.36

Figure 14:CSV output from camera box process thread.

C-3: STANDARD OPERATING PROCEDURE FOR THE CAMERA BOX
Pre-Mounting/Test Steps:

1. Open either the side panel (preferably the blank one) or front panel of the camera
box (using appropriate Allen keys) to access the components.

2. Check if battery pack is charged up if not, charge it up before use. The battery case
cover can be opened up to view the battery level when it is switched on.

3. Turn on the battery pack with USB button switch, concurrently turning on the
microcontrollers.

4. Check to see the GPS module light is on (lime green light under the Arduino Uno)
and the IR thermometer light is on (lime green light on the sensor). If the lights
are not on, check that their sensor connectors are firmly plugged into the
microcontroller.

5. Connect the linked microcontrollers to a monitor to get familiar with the data
folders located on the desktop (‘rail_images’ for railhead, ‘forward_images’ for
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8.
9.

forward facing images and ‘CSV’). This can be done using a HDMI dongle connected
to the Raspi. If prompted for username and password, use mep20mof for both.
Check Raspi memory before commencing any operation. If full, confirm current
data has been backed up before deleting them, if not back them up on a USB stick
and upload onto Google drive. Proceed to permanently delete backed up images
from the Raspi.

To control the camera box remotely after mounting it on the train, install
“RaspController” app on a mobile device. Register the Raspi’s IP address on the
app and install the following commands:

a. To run the camera box within WiFi range install, “sudo
python3/home/mep20mof/Desktop/camera_box/main.py”

b. To run the camera box with the user away from the system for a specified
length of time (although the mobile phone has to be in close proximity to
start the process), install, “sudo
python3/home/mep20mof/Desktop/camera_box/main.py x”. Where ‘X’ is
the time in seconds.

This directory can be saved on the app and used continuously.
The camera box can now be switched off, with the panels screwed back in position
for transportation.

Mounting/Test Steps

1.

The camera box should be mounted on the train’s lamp bracket using the black
slot located at the back of the box.

Ensure the camera box is sitting fully on the lamp bracket. It may need an extra
push to slide it down fully.

Open the front panel of the camera box. Ensure all the components are securely
mounted in the box and proceed to switch the microcontrollers on.

Access the camera and sensor feeds either through the monitor or the mobile app.
Using the camera feed (USB) to view the output, adjust the forward-facing camera
by moving the tripod mount to the desired position. Switch the camera feed to the
railhead camera (Libcamera) to view the output, adjust the camera position and
lens distance until the railhead width can be viewed with good resolution (this is
all determined by the user).

Using the method described in section 7.2.2B position the IR thermometer to read
the railhead temperature. The temperature feed can be accessed on the monitor
or the SSH Shell command saved earlier. This should be viewed to make sure all
sensors are working and record correct data. The GPS module take about 5-10
minutes to pin the first location so it will not record data while setting up, if the
process takes less than 10minutes generally.

When these processes are completed, the monitor should be disconnected (if
used) while the mobile can remain connected. Camera box front panel should be
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securely screwed back in place while the system is left on (because the user would
not have access to the camera box while in use).

The camera box is ready for use. The camera box can either be operated remotely
by the user, where the run command is set to capture data for the time
corresponding to the train journey. Or the user can sit close to the train cab and
control the data capture, this is very useful for repeat tests.

Post-Tests Step

1.

After data capture completion, the microcontrollers can be shut down using the
mobile app.

Unmount the camera box and turn off the system before transportation to save
battery energy.

Data transfer can happen before or after transporting the camera box from the
testing site. Follow the same process of connecting the microcontroller to the
monitor; the images and CSV can be accessed using the folders stated in “Pre-Test
Step” no. 5.

The images and CSV should be copied/moved to USB stick, saving them in separate
folders.

The users can now access the data at their convenience and process it.

To carry out friction predictions, the data should be compiled into a similar
spreadsheet shown in Figure 2 Appendix A-2 and save as a CSV file. Then follow
the steps laid out in Appendix B-4 for the “ipynb’ file as written by user (should be
similar to image in B-4). Basically, the codes displayed in B-4 can be re-used,
although the base path, image base path and csv file have to be updated.
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