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ABSTRACT 
This research endeavoured to advance the understanding of wheel/rail interface 

adhesion and subsequently improve adhesion estimation and validation approaches in 

railway operations. The study comprises of an extensive literature review that 

established research gaps in wheel/rail adhesion studies, real-world railhead data 

analysis, and the development of a Neural Network model integrated with a data 

capturing tool. The literature review established the current understanding of low 

adhesion, incorporating background studies on wheel/rail interface, low adhesion 

mechanisms, and techniques for friction measurement and forecast. This aided the 

selection of appropriate methodology employed in this research. The use of real-world 

forward-facing images, railhead images, railhead friction and environmental data 

obtained from Heritage Railway locations in the UK gave this research a unique view into 

wheel/rail low adhesion mechanisms in the field. The Neural Network model was refined 

to include these field data, enhancing its accuracy and adaptability. The integration of the 

camera box (data capture tool designed), validated through testing done on rolling stock 

at different locations, added practicality to the research. The outcome of this research 

confirmed the feasibility and versatility of the friction estimation model combined with 

the camera box for use in the rail industry. It is poised to enhance safety, operational 

efficiency, and cost-effectiveness in the industry.  
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1. INTRODUCTION 
According to Department of Transport [1], rail travel is arguably one of the safest forms 

of public transportation (excluding suicide related fatalities), having recorded 40 non-

suicide related fatalities in 2018/19 (which included 25 members of the public who could 

have been level crossing users or trespassers) compared to the 1784 fatalities recorded 

for road usage. Travelling by rail is also considered to be a greener mode of 

transportation as it provides an electricity powered alternative. Figure 1.1 shows the 

comparison of carbon footprint generated by different modes of transportation, with rail 

travel accounting for the lowest carbon footprints. 

 

Figure 1. 1: Carbon footprints of different modes of transportation in the UK, 2022 [2] 

Low adhesion in the wheel/rail interface has been recognised as one of the major causes 

of delay in the railway industry. These delays may be caused by braking problems 

resulting in signals passed at danger (SPADs) or station overruns which are also 

significant safety concerns, or delays can result from poor traction. The effect of low 

adhesion is said to cost an estimated £355m annually during autumn where roughly £290 

million is the performance impact cost, £0.5 million is safety impact cost and £64 million 

is spent on cleaning, management and prevention cost [3]. Low adhesion events cause 

safety concerns and high-cost implication for the railway industry, which is why this 

research is being done. 
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The railway industry currently has limited methods of adhesion forecasting with the 

main validated method being the Met Office Adhesion index. The adhesion index uses a 

bank of weather data readily available to the met office to predict wind speeds, possible 

leaf falls and moisture/ice presence from weather forecast. This provides information 

only related to weather and not the railhead state. It does not give real-time information 

of railhead conditions which in reality holds more information for adhesion levels, 

meaning the adhesion index does not have a high temporal resolution. 

In order to effectively mitigate low adhesion, there is a need for a more accurate method 

of adhesion forecasting. Therefore, a method that can estimate railhead adhesion levels 

in real-time and give the exact location of the probable low adhesion section is required.  

This adhesion estimation method will help to cut the costs of low adhesion mitigation and 

delay related costs whilst improving the safety and confidence of the rail industry. If 

implemented properly, it will ultimately make the rail system run more safely and 

efficiently. 

1.1 AIMS AND OBJECTIVES 
The main aim of the project was to improve the understanding of wheel/rail interface 

low adhesion mechanisms and to use it to improve adhesion forecasting by employing a 

novel neural network model. This model was then implemented along sides a data 

capture system designed specifically for on-train use.  

The following objectives were set to aid the completion of the aim stated above: 

• Reviewing academic literature and operational information from industry reports 

to establish the current level of understanding of low adhesion; the role of leaf 

layers and wet-rail phenomenon in this including techniques for measuring the 

level of these contaminants on the rail head. Approaches for low adhesion 

forecasting/prediction will also be investigated. 

• Analysis of the rail head conditions in a variety of locations at different times to 

assess levels of contamination and friction levels and gather data for the model.  

• Development of the existing Neural Network model for friction prediction in such 

a way that it incorporates rail head images and enhance it to include other 

parameters and build-up the data sets used within the model. 

• Development of a simple tool for imaging the rail head and track surroundings and 

for gathering environmental conditions on a railway vehicle. 

• Carry out high speed test on the tool in conjunction with the friction prediction 

tool to validate the output. 
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1.2 NOVEL ASPECTS AND POTENTIAL IMPACT 

A significant aspect of the research involved analysing rail head conditions in various 

locations at different times to assess relationship between environmental factors and 

friction variations. This real-world data collection provided valuable insights into the 

dynamic nature of low adhesion and laid foundation for the development of a neural 

network for friction prediction. This involved incorporating rail head images, 

environmental parameters (relative humidity, air, and rail temperature), and additional 

parameters to improve the model's accuracy and adaptability.  

A one-of-a-kind data capture system was developed which is not only useful for this 

research but can potentially be used by rail industry to capture railhead temperature 

with exact location output.  

In summary, the research contributes unique insights into the understanding of adhesion 

at the wheel/rail interface using real-world data and provides practical solutions for 

improving adhesion forecasting in the rail industry. Its impact extends to enhancing 

railway safety, efficiency, and reliability. 

1.3 THESIS LAYOUT 

Chapter 2 reviews of past work done on railhead friction which include wheel/rail 

characteristics, low adhesion in the wheel/rail interface (causes, mechanism, layer 

creations and measurement techniques), methods of low adhesion forecasting and an 

introduction to the new friction prediction tool. 

Chapter 3 summarises the approach used for each step taken in this research. 

Chapter 4 analyses railhead temperature, humidity and friction data obtained from the 

field visits. This included the methodology used in gathering the data, results obtained 

from the data, discussion surrounding the implication of the results and trends noticed 

and a conclusion. 

Chapter 5 is outlining the process of the friction prediction tool development, and it 

justifies the use of the Gaussian process. Validation and retraining of the prediction tool 

were also discussed in this chapter. 

Chapter 6 looks at the robustness of the prediction tool in terms of the types of image 

formats it can process. Several images captured in-lab were fed into the prediction tool 

were varied looking at the following parameters: image orientation; static/dynamic 

image capture; image distance. The predictions resulting from the varied images were 

analysed and discussed to show how flexible the prediction tool’s image processing is. 

Chapter 7 details the steps and processes taken in designing the on-train data capture 

system. It details the methodology used in testing the various designs development and 

shows the resulting final design with reason. The final design was tested on 4 different 

occasions, the results are a discussed in this chapter. 
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Chapter 8 discusses the results and implications of the work done from preceding 

chapters. 

Chapter 9 concludes the thesis with recommendations for future works and publications 

arising from this research. 
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2. LITERATURE REVIEW  

2.1 INTRODUCTION 
The aim of the literature review was in the first part to give an overview of wheel/rail 

tribology including the complex contact mechanics and fundamental friction and damage 

mechanisms. The second part focuses on the problem of low adhesion in the wheel/rail 

interface, typically seen in Autumn. Causes and mechanisms are outlined as well as ways 

of predicting the interface conditions. Research gaps are detailed which support the 

stated aims of the work in the introduction. 

A paper grading technique was adapted from [4], it was used to rank the materials used 

in the literature review based on the relevance to the sections of the literature review 

they were used as well as in highlighting where gaps exist. 

2.2 WHEEL/RAIL INTERFACE CHARACTERISTICS 
The contact between the rail and wheels of a train is considered extremely 

serious/important in terms of the safety and effective operation of the railway network. 

The contact is expected to carry the weight of the train and transmit the braking and 

traction forces [5]. The management of the contact mechanics of the wheel/rail interface 

contributes to keeping operating costs down meaning the contact stresses low for wear 

reduction and managing friction levels. 

The wheel/rail contact is a more complex system when compared to other engineering 

contact mechanisms. The complexity is mostly caused by the open nature of the system 

and the dynamic nature of the external (environmental) conditions surrounding the 

operations. 

The contact characteristics such as the position, size and force vary along a distance of a 

line for each wheel due to the different profiles on each caused by differences in rate of 

wear on each wheel of the railway vehicle [6]. 

2.2.1 CONTACT MECHANICS 

2.2.1.1 CONTACT LOCATION AND STRESS 

The relative position of the contact between the wheel and the rail, which is 

approximately equal to 1cm2 in area, moves continuously as the train moves along a 

section of the track. The wheel and rail profile play a key role in determining the exact 

location of the contact. The location of the contact is also dependent on the degree of 

curvature of the track as well as the wheel bogie design or position in the train, for 

example if the wheel on the bogie is the leading or trailing one. On a straight track the 

wheel tread remains in almost continuous contact with the rail head. The wheel flange 

will intermittently make contact with the rail gauge as the wheelsets “hunt” or the train 

enters a curve. Figure 2.1 shows the lead wheelset of the front bogie of the train turning 

on a right-hand curve and the corresponding contact stress.  
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Figure 2. 1: Contact stress on the left and right wheel/rail contact [6] 

Figure 2.1 shows the section of the right and left train wheel in contact with the rail gauge. 

This diagram shows the stress concentrated on the inside (flange) of the rail wheel which 

carries the major load at the cornering of the train.  

The contact stress is responsible for critical issues in the rail operation such as wear and 

rolling contact fatigue (RCF). RCF crack growth and shakedown limit (which is the load 

limit below which the material retains its elasticity in a steady state [7]) are determined 

by contact pressure and friction in the contact. Although, the friction can be controlled 

with the use of friction modifiers. 

The contact stresses experienced by the wheel and rail are dependent on the position of 

the contact, as seen in Figure2.2, which gives a more detailed look into the cross-section 

of the wheel and rail with the three probable regions of contact. 

 

 

Figure 2. 2: Contact regions on the wheel/rail interface [6] 



9 
 

a) Region A This region represents the contact location between the wheel tread 

and rail head. This most common location of contact as it usually occurs when 

the train is moving on a length of straight track or curves with a very big radius. 

This region is known to have the lowest contact stresses as it maintains the highest 

possible area of contact as seen in Figure 2.3. 

 

Figure 2. 3: Contact between the wheel tread and railhead 

b) Region B: This region represents the contact location between the wheel flange 

and the rail gauge corner. The contact stresses are usually much higher than that 

of region I because the contact area in the region is much smaller (as seen below 

in Figure 2.4) than region I’s area of contact. This region produces a higher rate of 

wear. 

 

Figure 2. 4: Contact between wheel flange and rail gauge corner 

c) Region C: This region represents the contact location between the field side of 

wheel and the rail. The contact location is the least probable to occur of the three 

regions discussed. In the unlikely case of its occurrence, it will yield high contact 
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stresses. The high stresses will cause unwanted wear which can result in wrong 

wheelset steering[6]. 

The wheel or rail profile shape changes because the contact location is uneven over the 

profiles of the wheel and rail which is caused by material flow and wear. 

2.2.1.2 Contact pressure Solution/Mathematical model for Non-Conforming Elastic Bodies 

Non-Conforming Elastic Bodies (Circular Contact area) 

Hertz [8] analysis is the easiest means of defining the wheel/rail contact geometry and 

resulting stress. In the Hertz analysis for “solids of revolution”, the train wheel and rail 

can be taken as two perpendicularly positioned cylinders in contact with each other 

therefore assuming a circular contact to simplify the case. P0 (maximum contact pressure) 

is given by Equation 2.1 below: 

𝑃0 = ∛
3𝐹𝐸2

2𝜋3𝑅2(1−𝑣2)2 (2.1) 

where it is assumed that the material for the rail and wheel are the same; F is the normal 

load, E is the Young’s modulus and 𝑣 is the Poisson ratio. 

R is the effective radius given as: 

1

𝑅
=

1

𝑅1
+

1

𝑅2
 (2.2) 

Such that; R1 and R2 are the wheel and rail contact radii [9]. 

Non-conforming Elastic Bodies (Elliptical Contact area) 

Srivastava et al. [10] and Zong [11] stated that a contact area takes on an elliptical shape 

when two elastic non-conforming bodies are held down against each other. For the 

elliptical area having a semi major axis ‘a’ on the x-axis and minor axis ‘b’ on the y-axis, as 

seen in Figure 2.5, the contact pressure distribution, P can be given as: 

𝑃 = 𝑃0√(1 −
𝑥2

𝑎2 −
𝑦2

𝑏2) (2.3) 

 

Figure 2. 5: Pressure distribution across elliptical contact area [10] 

where ‘a’, ‘b’ and ‘P0’ are given as: 
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𝑎 = 𝑚 [
3𝜋

4

𝑃(𝐾1+𝐾2)

(𝐴+𝐵)
]

1

3
 (2.4) 

𝑏 = 𝑛 [
3𝜋

4

𝑃(𝐾1+𝐾2)

(𝐴+𝐵)
]

1

3
 (2.5) 

𝑃0 =
3𝐹

2𝜋𝑎𝑏
 (2.6) 

where ‘A’ and ‘B’ are positive geometric constants used whilst considering the wheel/rail 

configuration. ‘m’ and ‘n’ are tabular functions given by [12] and ‘K1’ and ‘K2’ are constants 

defined by Equations 2.7 and 2.8: 

𝐾1 =  
1−𝑣𝑤

2

𝜋𝐸𝑤
 (2.7) 

𝐾2 =  
1−𝑣𝑅

2

𝜋𝐸𝑤
 (2.8) 

‘vw’ and ‘vR’ are Poisson’s ratio for the wheel and rail respectively and ‘Ew’ and ‘ER’ are the 

Young’s modulus of elasticity of the wheel and rail materials respectively. 

The Hertzian approach Involves the following assumptions: 

●  The surfaces are non-conforming and continuous (Contact area much lesser that 

radii of body). 

●  Effects of strain is negligible due to much smaller contact area than radii of body. 

●  The surfaces in consideration are frictionless. 

●  Individual solids can be considered as an elastic half-space. 

2.2.1.3 OTHER METHODS OF DETERMINING THE WHEEL/RAIL CONTACT CONDITIONS 

Other approaches built on the Hertz theory have been considered by different 

researchers to analyse the wheel/rail conditions. Below are two other methods used: 

FINITE ELEMENT METHOD (ANSYS) 

FEM based simulations are tools that have been used to determine the distribution of 

contact pressure, contact zones, and contact stresses which can be done based on 

different wheel profiles and configurations of the wheel. 
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Figure 2. 6: Wheel/rail assembly geometric model in ANSYS [10] 

In work by Srivastava et al, the FEM (Ansys) mesh density, with a mesh element size of 

1mm, was used around the contact region and has been discovered to have a direct 

impact on the simulation solution accuracy [10]. A comparison was done using results 

obtained from the Hertz contact theory method and the Ansys simulation done with a 

geometrical model seen in Figure 2.6. Similar wheel/rail mechanical properties and 

contact geometries, such as radius of curvature used in the theoretical method, were used 

in designing the Ansys model.  

The results from the Hertz analytical method showed that there was a decrease in stress 

as the wheel profile radii increased, its increase consequently increased the ellipse 

contact area width while the length is decreased. On the other hand, there was a 

periodical fluctuation between a decrease and increase in the stress results obtained from 

the FEM simulation. This trend was opined by [10] to be as a result of the near realistic 

nature of the simulations, where the materials do not have linear limits nor have a half 

space assumption. The Hertz contact model is based on both assumptions stated above. 

Therefore, the FEM simulation is a more appropriate method of studying or analysing the 

wheel/rail contact parameters when available. 

NUMERICAL METHODS USING MATLAB 

Huang et al. [13] used a simplified schematic diagram of the wheel/rail contact on a 

straight stretch of track as seen in Figure 2.7, having ‘d’ as the distance between the centre 

lines of the parallel running rail cross-sections, W is the axle load and T is the length of 

the distance between both of the back wheel flanges. 
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Figure 2. 7: Schematics of the wheel/rail contact [13] 

Due to the complexity of finding the centre as a result of the varying relative position of 

wheel and rail, a method was established by Huang et al. to determine the centre position 

of the contact points in several contact situations. Using the x-y plane coordinate system 

for the wheel tread section of the “China’s National Standard for Passenger Train Wheels 

and Rails” a wheel/rail cross-section was drawn as seen in Figure 2.8. 

 

Figure 2. 8: Coordinate systems used for the section [13] 

Points A through to K in Figure 2.8 are the partitioning points on the wheel surface profile, 

with C being the vertex of the wheel flange. While points A1 through to F1 are the 

partitioning points on the rail surface profile and the vertex of the rail profile is G. 

It was stated the contact points of any two surfaces could be derived by solving the 

equations of both profiles simultaneously and if a solution is non-existent, then the 

surfaces are not in contact, as seen in Figure 2.9. In a case where the equation gives one 

solution it means there is only one contact point, which is the desired solution but when 

two or more solutions are produced then the surfaces have become immersed in each 

other implying there are two or more contact points seen in Figure 2.9. This may be the 

case when the wheel travels on curved tracks although this two-contact point scenario 

happens rarely. The equation of profiles 1 and 2 can be given as 𝑦1 = 𝑓1(𝑥) and 𝑦2 = 𝑓2(𝑥) 

respectively. 
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Figure 2. 9: The relative position of the wheel and rail profiles [13] 

The complex nature of the wheel/rail contact which consists of arcs and straight lines as 

seen in Figure 2.8 makes it difficult to find the solutions using analytical methods, hence 

MATLAB was used to create a numerical method [13].  

The wheel profile mathematical equation 𝑦1 = 𝑓1(𝑥) was given as Equation 2.9: 

                         (2.9) 

The rail profile’s cross-section equation 𝑦2 = 𝑓2(𝑥) was given as Equation 2.10: 

     (2.10) 
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SUMMARY 

Both FEM and numerical method of wheel/rail contact analysis discussed here have their 

strengths and weaknesses. One of the key notable points is that neither approach 

discussed here take into account the contact surface roughness as they both based off the 

Hertzian contact model with the assumption that contacting surfaces are perfectly 

smooth. However, in reality, most surfaces are not perfectly smooth; they have 

irregularities and roughness on various scales. Ignoring surface roughness in the Hertz 

contact model can lead to several consequences, such as contact area size 

underestimation and incorrect prediction of stress distribution [9]. 

The FEM analysis offers a 3-dimensional view of the wheel/rail contact, thereby showing 

the von Mises stress distribution for the contact in 3 planes. This helps to locate the 

initiation point for fatigue crack. With FEM stresses can be obtained at every point of the 

contact, which makes it easier to highlight points of high stress visually. Given these 

advantages, FEM has shown a trend of inconsistencies in analysis of complex shapes as 

that presented in the wheel/rail contact, especially in the generation of meshes for such 

shapes. This method shows promise as with advancement FE packages, complex shapes 

can be refined better for analysis. 

On the other hand, the numerical method covers a simplified analysis of the 

wheel/contact using mathematical model on MATLAB and does not require 3-

dimensional model of the contact to be drawn out. This method considers varying contact 

profile geometry just like the FEM. This method involves a lot of equation derivations and 

calculations to obtain contact point coordinates and it is a lengthy process, meaning more 

errors will be involved. This method also provides a contact stress distribution as in the 

FEM but does not include a von Mises stress distribution. Due to it been a mathematical 

model, an error correction factor can be included to improve the accuracy. 

2.2.2 CREEP FORCE 

As stated earlier the performance of the train is affected greatly by the wheel/rail 

interactive (friction) forces, hence the performance is also determined by creepage which 

is influenced by wheel and rail profile. Eadie et al. [14] also opined that parameters such 

as wheel and rail roughness, Hertzian contact pressure and third body (interfacial layer) 

shear strength amongst other factors impact the friction force. 

Creep takes place when two rigid bodies are under axial compressive loads and can roll 

over one another [15]. It must be noted that when influenced by gravity, usually referred 

to as gravity railway (movement of carriages down a slope applying only force of gravity) 

the wheel/rail components in contact produce elastic deformation, while the contact area 

grows into an “elliptical contact spot”, hence proving the Hertz theory valid [15, 16], 

consisting of adhesion and creep zones, as seen in Figure 2.10 below. 
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Figure 2. 10: Depiction of the contact between the rail and train wheel with the 

characteristics given as; v – velocity of the train body, ω - angular velocity of the train wheel, 

P - vertical forces acting on the train wheel, PI – vertical force acting on the rail and r – 

radius of the rolling wheel 

The wheel/rail contact has a combination rolling and siding contact as there is usually no 

pure rolling.  The angular velocity and linear velocity are not equal in a combine rolling 

and sliding contact which brings about creep in the contact. Creep is also referred to as 

slip. 

When a driving torque of magnitude M is applied to the train wheel, a tangential force FT 

acting on the wheel contact surface is produced and an opposing tangential force FIT 

acting on the rail contact surface, hence producing a forward motion of the wheel. 

 

Figure 2. 11: Relationship between creepage and creep force [15] 

Monk-Steel et al. [17] define creepage as the “relative velocity divided by the rolling 

velocity”. Bhardawaj et al. [15] define longitudinal creepage as the “ratio of the 
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wheel/rail relative speeds and the rolling velocities” while lateral creepage is the 

“change in lateral velocity per wheel forward velocity”. Spin creepage is also said to be 

the ratio of the in wheel/rail rotational speed perpendicular to the contact with wheel 

forward velocity. An increase in the three respective creepage brings about an increase 

in shear stresses, if the shear stresses are greater than the creep force (normal force × 

coefficient of friction), wheel slip will occur. Full slip occurs in the contact past the 

saturation point shown in Figure 2.11 where the limiting friction force (traction force) is 

reached and remains constant, regardless of slip.  

The dependency of wheel/rail friction force on creepage as seen on the creep curve in 

Figure 2.11 was discussed in [14] . Friction in the wheel/rail interface can be influenced 

by several factors such as third body (Interfacial layer) shear strength, Hertzian contact 

pressure and wheel and rail surface roughness among others. The creep curve shows that 

the creep force which is a function of the friction coefficient μ, increases as the creepage 

(slip) increases moving from a pure rolling zone to a combination of rolling and sliding 

until the creep force converges at complete slip (pure sliding), where the friction 

coefficient becomes dominant. 

Adhesion as a function of creep or simply the creep curve varies when there are third 

body materials in the contact, in terms of the curve shape, initial slope and the adhesion 

levels [18], which is shown in Figure 2.12. 

 

Figure 2. 12: Creep curves for different test conditions [19] 

Gallardo-Hernandez & Lewis [19] carried out tests on different rail contamination 

conditions to assess the adhesion/traction coefficient and slip relationships, as seen in 

Figure 2.12. As can be seen, contaminants such as water and dry leaves and oil were seen 

to significantly reduce the adhesion coefficient to below 0.1 with increasing slip when 

compared to that of the dry railhead surface. The wet surface test also showed a decrease 

in adhesion coefficient, and it was seen to have a significant drop when compared to the 

dry surface result. 
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2.2.3 METHODS OF FRICTION CONTROL 

Understanding the adhesion or the friction between the wheel and rail is of utmost 

importance in understanding many aspects of wheel/rail performance. Wear, 

corrugation and rolling contact fatigue are some of the damages caused by high traction 

between the rail and wheel. On the other hand, low friction or adhesion can potentially 

cause safety issues when there is lowered traction making braking less effective and it 

may also cause wheel slip conditions which will affect the operation of the train [14]. 

Therefore, controlling the levels of friction on the wheel/rail interface is of utmost 

importance in order to maintain safety. This can be done to either reduce friction 

(adhesion) or increase friction (adhesion). 

There are 3 major categories of friction management products: 

• Top of rail friction modifiers (ToR-FM). 

• Traction enhancers 

• Flange lubricants. 

 

Figure 2. 13: Effects of friction modifiers on CoF [20] 

Friction Modifiers 

Generally, when discussing methods for friction reduction to reduce damage of energy 

consumption, controlled lubrication is usually a common thought as a solution. However, 

lubricants would negatively affect the braking and traction operations of the train and 

cause damage to the wheel/rail interface. Friction modifier here refers to TOR-FM and 

Traction enhancers. A friction modifier on the other hand is expected to provide the 

appropriate intermediate friction coefficient of between 0.3 to 0.4 as seen in Figure 2.13 

without the negative effects of a lubricant. Friction modifiers are additives that increases 

or decreases the frictional properties of a lubricant. These include traction enhancers 

which increase friction and specially formulated ‘TOR’ products to be deployed at low 

adhesion hotspots. 
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Therefore, Top of Rail Friction Modifiers (TOR-FM) are substances that can only reduce 

high levels of friction under dry conditions (0.5-0.8) to a moderate level of friction (0.3-

0.4). However, a traction enhancer can increase low levels of friction [20]. 

Generally, friction modifiers are applied to the top of the rail using either a track side, 

vehicle/train mounted or mobile systems applicator. There are different types of TOR-

FM, which are water based-solid suspension and just solid modifiers. Existing products 

that use water based-solid suspension friction modifiers such as ‘KELTRACK’ to deliver 

the desired level of friction between 0.3 - 0.35 [21]. The water in the mixture evaporates, 

leaving behind the solid particles which combine with the third body layers on the 

railhead creating a surface with the required friction level.  

The KELTRACK TOR-FM has been found by Network Rail to reduce vibration and noise, 

aid in the control of train on the rail track curvature and reduction of lateral loads [21].  

A common form of traction enhancer is sand which is usually applied on the railhead from 

train mounted applicators and may cause wear due to its abrasiveness, which is why it is 

only applied when/if wheel slip is detected. It may also interfere with track signal 

processing by isolating the track circuit. There are new types of traction enhancers in 

form of sand gels and viscous water-based gels (usually applied using a track side 

applicator) which reduced the effects of abrasive wear when applied on the railhead and 

it do not interfere with track signals [5].  

Top of Rail Lubricants (ToRL) 

Lubricants such as greases are able to decrease the friction level in the wheel/rail contact. 

They are mainly used to reduce the effect of wear between rail gauge face and the wheel 

flanges and reduce noise caused by high friction. They can also be used on the top of the 

rail, and if applied in the right amounts can give intermediate friction. There is a higher 

risk with these though that they are over-applied which could result in low friction 

causing braking/traction problems. Unlike friction modifiers, their carry-down distance 

is shorter than 1600 m. This is because the grease is easily used up along the tracks 

reducing the length of effectiveness. 

ToRL can be classified into 3 categories: 

• TOR Oil (oil-based TOR material) 

• TOR Grease 

• TOR Hybrid (oil and water-based material) 

Using grease for top-of-rail friction control in lengths of track with a high rail curvature 

has benefits of curve noise reduction; force reduction, meaning less RCF and gauge corner 

cracking; rail and wheel wear reduction [22]. 
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2.3 LOW ADHESION IN THE WHEEL/RAIL INTERFACE 

According to the Adhesion Working Group (AWG) [23], adhesion on the railway is simply 

a measure of slipperiness or grip between the wheel and rail. This is defined by AWG as: 

“The measure of adhesion values is approximately equal to the maximum possible rate of 

deceleration of a given train, when expressed as the percentage of deceleration due to 

gravity”. It is measured as the coefficient of friction and is usually represented by “μ”. 

Low adhesion is defined by the “Adhesion Working Group” as a μ value lower than 0.09 

[24]. Table 2.1 and Figure 2.14 shows the categories of adhesion levels with the 

corresponding friction levels that define them. 

 

Figure 2. 14: CoF ranges (adapted from [20] by [25]) 

Table 2. 1: Definition of adhesion levels 

Adhesion level Coefficient of Friction level 
Good Greater than 0.15 
Medium Between 0.1 to 0.15 
Poor Between 0.05 to 0.09 
Ultra-low Less than 0.05 

 

The adhesion levels defined traditionally vary according to the weather conditions, such 

as having μ between 0.2 to 0.4 under ideal conditions of dry weather and clean 

uncontaminated railhead. Whereas, in wet weather, a μ value between 0.1 to 0.2 (even 

with no railhead contaminant present) would be in line with expectations. According to 

Table 2.1 under both conditions there should not be complications with braking, but poor 

adhesion levels during full-service braking may occur occasionally. Specifically, during 

the autumn when fallen leaves blown on the tracks are crushed and mixed with moisture 

to form a thin film, Teflon like in nature, reducing the adhesion to levels as low as 0.01.   

2.3.1 CAUSES OF LOW ADHESION 

The main causes of low adhesion stated in the report presented by the RSSB, TUoS and 

the Met Office [26]were determined as; 
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● leaf contamination of the rail head during autumn and  

● a mixture of low levels of moisture on the railhead, iron oxide and/or wear debris 

which is referred to as “Wet Rail Syndrome”. These characteristics are 

considered as naturally occurring third body layers which also exist in dry 

conditions. Low adhesion can also be experienced in dry conditions, where a thin 

film of rust (usually a mixture of sub-micron Iron oxide and hydrated Iron oxide 

particles). This thin film produced can cause low adhesion as it may carry some 

amount of moisture and contaminant [27, 28]. 

Some other causes for low adhesion were determined but stated to be less common in 

occurrence, such as 

• improper flange lubrication.  

• oil leakage from transitory diesel trains.  

• presence of dust, commonly coal dust. 

• leakage of hydraulic fluid from track machines. 

• settling of contaminant on the track commonly from airborne aviation fuel close 

to airports and chemical waste close to industrial estates. 

With all the possible causes of low adhesion mentioned above, the largest and out of 

human control cause has been recognised as the leaf contamination especially leaves that 

are not easily broken down or decomposed. These leaves are usually drawn onto the 

tracks by trains passing, the leaves settle on the track and are thereafter crushed by the 

wheels of other passing trains onto the railhead. A hard layer of coating is formed on the 

railhead with a Teflon texture when the compressed crushed leaves are mixed with 

moisture commonly dew on the railhead. When dry, this coating can act as an electrical 

insulator which leads to problems with the operation of track circuits used for train 

detection for signalling purposes and when wet can act as a lubricant hence causing 

problems with braking. It must be noted that under heavy water conditions, the crushed 

leaf layer is softened and broken down by the effect of passing trains and finally washed 

off then tracks by rain as simulated during the WILAC project [29]. 

2.3.2 LOW ADHESION MECHANISM 

It is common knowledge that lubricants such as grease, fuel and oil reduce the adhesion 

levels, but moisture, which would not be regarded as a lubricator, is also one of the causes 

of low adhesion. This occurs when the moisture reduces the shear strength of the third 

body such as oxides which the creates a slippery layer between the wheel and rail. The 

implication of this is that dry rusty rail track and dry leaves on the railhead will not cause 

low adhesion, but once a small amount of moisture is present on the surface, it becomes 

an active site for low adhesion. The presence of ice is also known to lead to low adhesion, 

this does not happen because of the slippery nature of ice, but as a result of the melting 
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process which produces water on the rail head. Fulford [21] made mention that an 

increased amount of humidity of the surrounding air affects the level adhesion by a small 

amount, but the major changes are caused by water residue on the rail surface. 

The Adhesion Working Group (AWG) carried out an extensive literature research to 

create a knowledge map of low adhesion and an analysis was done on performance data 

from a variety of sources [23]. The research done by the group involved a critical 

assessment on the following factors, highlighted in the T1042 RSSB [24] report that are 

believed to aid the understanding of underlying causes of low adhesion. The credibility 

and quality of data was verified whilst inputting in the report.  

These performance data were grouped into four areas which were then broken down 

further into individual parameters as seen in Table 2.2 [24]. 

Table 2. 2: Performance data classification 

S/N Operational Data Parameters 
1 Regional Environmental Parameters Regional Air temperature 

Regional Humidity 
Regional Precipitation 
Regional Leaf fall index 

2 Local Environmental Parameters Local Air temperature 
Local Humidity 
Local Precipitation 
Railhead leaf contamination 
Railhead moisture 
Railhead temperature 

3 Track Related Parameters Track gradient 
Rail type 
Track topography 

4 Rolling Stock Related Parameters Brake characteristics 
Drivers report 
Traction characteristics 
Traction or braking demands 
Driving policy 

 

The parameters above play an important role in understanding the mechanisms of low 

adhesion, as it gives an insight into the conditions surrounding the train and track when 

low adhesion is experienced. 

The two major causes for low adhesion proposed in the report are as follows (albeit other 

factors may also play a role): 

●  Leaf layer formed on the railhead, sometimes combined with little moisture. They 

create a reduced shear strength layer on the railhead. The conclusion was made 

that this event occurs all through the day as the effects of this leaf fall and 

precipitation can be experienced all day.  
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●  The interaction between morning dew and contaminants for example iron oxides, 

this forms a solid lubricant/low adhesion paste on the railhead and is referred to 

as “Wet-rail” phenomenon. They are known to be the cause of high incident rate 

during morning peaks. White et al. [30] support this from data gathered from 

reports of station overruns showing that this occurrence is on the rise in the early 

hours of the morning and in the night, between the hours of 06:00 - 09:00 and 

between 20:00 - 22:00 respectively as a result of dew present on the railhead. In 

research carried out by [29], where water at different levels was added to a full-

scale tram test rig to understand how low levels of moisture contributed to the 

adhesion levels, it was confirmed that the presence of wear debris and iron oxide 

contributed to lowering of adhesion to “ultra-low” levels in the presence of low 

moisture. It was stated that this combination formed a third body layer that was 

visible on inspection. This experiment supports the theory that a combination of 

low moisture and oxides cause low adhesion.  

The summary of the important information that was derived from the research done on 

the T1042 report as presented by the AWG is as listed below[23, 24]: 

●  the most effective low adhesion mitigation technique is the use of a “properly 

functioning on-board sander” and the application of a water jetting on the track 

for treatment. 

●  the performance data analysed proposes that an average colder temperature 

might have a significant effect on the adhesion performance, which may be as 

result of an increase in leaf fall during autumn. 

●  railhead contamination becomes a dominant wheel/rail adhesion characteristic, 

when it is visibly present on the railhead. 

●  in cases of low moisture level on the railhead, the adhesion level can be notably 

improved by application of only water. 

2.3.3 LAYER CREATION 

Leaves, small amount of moisture and oxide layer have been recognised as one of the 

major causes of low adhesion events in the railway industry: 

Leaves + low moisture 

Autumn has been recognised as the season where severe low adhesion events have been 

recorded due to increased number of leaf fall to the surrounding railheads which usually 

accumulates to the side of the track as well. The accumulated leaves in the track 

surrounding are swept to the bottom of passing trains by the wind created by the motion 

of said passing trains. These leaves are then crushed by the wheels of the trains, leaving 

behind a thin leaf layer on the rail head. The continuous crushing of the leaves by different 

trains in transit creates a hard, Teflon-like, black leaf film which is capable of completely 

covering the running length of the railhead. The leaves undergo a chemical reaction with 
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the rust formed on the railhead which are a form of iron oxides to form the black layer 

[19, 21, 31].  

This black film formed has a somewhat low shear strength which can reduce adhesion by 

fully obstructing the contact between metals such as the contact between the wheel and 

rail; it also forms an electrical insulation barrier.  

Researchers made note of a thick hard layer of mulched leaves formed on the disc 

surfaces used in assessing wheel/rail adhesion [19]. It was found that immediately after 

the test for the wet leaves, the top layer was soft and dark. This layer was easy to remove, 

leaving behind a harder compacted layer which proved extremely difficult to remove.  

In other work it was stated that the mixture of the crushed leaf layer and low moisture 

(which could be either dew, snow shower or light rain) posed a higher risk in terms of 

the adhesion levels, as the black layer reduces the adhesion coefficient to about 0.1 while 

the mixture reduces the adhesion coefficient to less than or equal to 0.05 [21]. These 

levels of adhesion are much lower than the required operating values for braking and 

traction which are as high as 0.09 and 0.2 respectively. This shows the significant effect 

moisture has on the leaf layer in lowering the adhesion. 

The composition of this leaf layer was analysed and found to contain basic elements of 

the leaf just without the water, the basic elements contain a highly polymerised fatty acid 

that is known to be an effective lubricant. Visible leaf pieces were seen on the black layer 

found on the railhead which also consisted of a large amount of iron and iron oxides and 

some water (which have been classified as the non-organic part of the layer leaving the 

only organic matter as the dead leaf after investigation under an optical microscope). 

Hence the components of the black layer can be said to be Iron, Iron oxide, Carbon (from 

the leaf), Hydrogen and Oxygen.  

Many other mixtures of material may be responsible for low adhesion on the railhead 

other than leaves mixtures. 

Wet-rail phenomenon 

White et al. [30], made note that a number of proposed low adhesion events were omitted 

from the Network Rail incident data, possibly because there was no visible contamination 

on the railhead (in this case "contamination" means leaf material) This shows that there 

are more plausible causes of low adhesion such as wet-rail phenomenon.  

White & Lewis [32] stated that the analysis of the slippery black film layer usually present 

after moist leaves have been crushed on the railhead was found to contain approximately 

56% iron oxide. This information implies that wet-rail phenomenon can play a role in the 

occurrence of low adhesion events if the iron oxides present in both the black film layer 

and railhead contaminant has an effect on the adhesion levels. Although, it is only 

considered as wet-rail phenomenon in the absence of leaf contamination, but this shows 

the contribution oxides have to the railhead adhesion. It has also been noted that the 
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occurrence of low adhesion outside of the autumn season may be attributed to wet-rail 

phenomenon, meaning the wet-rail phenomenon can act all year round. The formation of 

iron oxide on the railhead can be attributed to either contact oxidation caused by high 

temperature and high forces experienced in the wheel/rail contact or the oxidation from 

environmental conditions such as high humidity, precipitation among others. 

Unlike the black layer caused by the mixture of moisture and leaves, wet-rail 

phenomenon is difficult to analyse or determine as it is hard to identify. 

2.3.4 MEASUREMENT TECHNIQUES FOR LOW ADHESION (FRICTION) 

The adhesion levels between the rail track and wheel is almost impossible to measure 

directly, but the friction coefficient is easily measured from the rail surface [33]. 

Low adhesion measurements are considered important because it contributes to the safe 

operation of the railway as well as improved performance. The RSSB [34] catalogue has 

highlighted some of the reasons as given below:  

●  Improvement of equipment and procedures used to mitigate the effect of low 

adhesion which can be brought about by post incident analysis done to determine 

the causes of previous issues. 

●  In order to safely operate trains in low adhesion conditions, the industry is 

required to carry out risk assessments and have mitigation measures in place. 

Reliable measurement techniques are required to facilitate the successful 

development of a mitigation technique. 

●  Existing measurement techniques give the opportunity to simulate low adhesion 

conditions, which help in giving the train driver the experience needed to 

successfully handle real life low adhesion conditions if/when the driver 

encounters such. 

●  The simulation of low adhesion conditions also helps to test effects of new 

equipment on safety and performance. 

There are several industry recognised methods of measuring friction on the rail head. The 

major means of carrying out these measurements are with field data or lab tests. 

The measurement techniques for low adhesion have been grouped into 3 parts (as seen 

in Table 2.3), namely: 

● Direct measures of low adhesion 

● Indirect measures of low adhesion events 

● Measures of weather and environmental parameters. 

(Information used in this section is obtained from [34], except when stated otherwise.)  



26 
 

Table 2. 3: Adhesion measurement techniques 

Groups of 
Measurement 
Technique  

Type of 
Measurement 
Technique  

Description Advantages Disadvantages Sample Data 

 
Direct 
measures of low 
adhesion 

On-Track Techniques; Vehicle attached 

Vehicle-Bourne 
Tribometer 

The tribometer works on the 
principle of a brake wheel 
tribometer where the adhesion 
levels are determined by 
applying brakes to the wheel on 
the tribometer until the wheel 
starts to slip. It measures the 
running surface and gauge 
surface traction with the 
measuring wheels, which sense 
the normal force and braking 
torque exerted [27].  
The device provides four 
measurements which are taken 
simultaneously; these are the 
friction on both rails, gauge face 
and the railhead. 
(see Figure 2.15)  

The vehicle borne 
tribometer has better 
accuracy when 
compared to a portable 
tribometer. 
They can be used for 
simultaneous 
measurement of both 
rails and adjustment of 
its wheel position is 
possible. 
A notable length of 
track can be measured; 
hence it is a fast method 
of measurement. 
The measurement 
method of using a 
braked wheel gives the 
peak adhesion.  

The vehicle borne tribometer 
uses small scale wheels, hence it 
suffers some scaling effects [27, 
34] 
In order to take measurements, 
track possession is required, 
which may cause disruption to 
scheduled train services. 
It is currently unusable on third 
and fourth rail electrified lines 
This method cost more than 
using a portable tribometer 
Transportation to problem site 
is slow [26]  

 
[34] 

Tribometer 
Train 

The Tribometer train can 
measure the longitudinal and 
vertical forces with normal 
operation of its suspension. The 
vertical wheel/rail forces can 
be included in the low adhesion 
levels calculation with; the use 
of a static wheel load and if the 
static wheel loads cannot be 
estimated the vertical 
wheel/rail forces should be 
determined from the test 
arrangement. If the speed of 
measurement is less than 48 
km/h (30 mile/h) the use of 
static load will be enough, this 
common occurrence in most 
applications. 
(see Figure 2.16) 

Measurement derived 
can be built into the 
railhead treatment 
train. 
It is not subject to 
scaling effect, since it 
provides a full-scale 
adhesion. measurement 
for the wheel/rail 
interface. 
The peak adhesion level 
is obtained as well as 
the adhesion profile.  

It requires a train path. 
It is expensive [26]. 
The train used for case study on 
the RSSB manual as at the time 
of publishing was stated to be 
obsolete, therefore it is not 
readily available for use. 
Results are affected by the 
flange contact. 
Transportation to a site is slow 
due to its size. 
The wheel/rail forces require 
serious analysis and data 
processing.  

 

Load 
Measuring 
Wheel 

This equipment serves as an 
attachment to either service 
vehicle or a specially built 
tribometer. The wheels 
measure the magnitude of the 
lateral, vertical and 
longitudinal force of wheel/rail 
using a built-in strain gauge. 
(see Figure 2.17) 

A train measuring 
system can provide the 
adhesion profiles. 
This method is not 
subject to scaling 
effects, as it is a full-
scale method of 
measuring the 
wheel/rail adhesion 
levels. 
It is practical in use for 
test purposes, because 
it can be mounted on a 
railhead treatment 
train or fitted on a 
service vehicle. 
The peak adhesion level 
can be obtained from 
the measurement of a 
full braking and/or 
traction curve. 

This method requires a train 
path because of the scale. 
The determination of the 
wheel/rail forces require a 
considerable amount of analysis 
and data processing. 
It is an expensive method which 
is not readily available and 
complicated to build. 
The results from this method are 
affected by flange contact. 
The braking stage of the wheel 
produces heat which must be 
considered when using the 
strain gauges. 

 
[34] 

Strain Gauged 
Axle 

This measurement is relatively 
recent work and is still being 
investigated by the RSSB.  

It is not subjected to 
scaling effects because 
it records force for full 
scale wheel/rail 
conditions. 
Incorporation into a 
railhead treatment 
train is possible and it 
may be suitably fitted 
onto service trains. 
Adhesion profile can be 
obtained. 

When using a non-service train, 
a train path will be required. It is 
still under development; hence 
it is not readily available. 
The wheel/rail forces require 
serious analysis and data 
processing, especially in terms 
of separating forces acting on 
the rotating assembly. 
Results are affected by the 
flange contact. 

 

On-Track Techniques; Manually Handled 

OnTrak HO 
Tribometer 

The OnTrak tribometer is 
designed to set an angle of 
attack between its measuring 
wheel and the railhead with a 
range of 1-150 mrad to induce 
lateral creepage with a 
corresponding range of 0.1% to 
15%. 
The OnTrak’s measuring wheel 
travels a distance of 300mm 
along the length of the railhead 
(back and forth). The friction 
coefficient reading is derived 
from an average of the result in 

It is portable and can be 
easily transported to a 
test site, it doubles as an 
on-track and in-lab 
measuring method. 
The tool provides 
friction measurement 
for the top, middle and 
bottom of the gauge 
corner. 
 
A creep curve can be 
plotted using the result 
for the tool, as the creep 

It is a new tool which means the 
errors produced while using it 
are not fully understood. 
The measurement process can 
be time consuming depending 
on the amount repeats required 
and the number of positions 
measured on the railhead. 
The repeatability and precision 
of the tool have not been tested. 

 
[14] 
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the 97th percentile in both 
directions[14, 35].  
(see Figure 2.18) 

levels of the tool can be 
changed. This makes it 
easier to understand 
the state of the railhead 

Skid Resistance 
Slider 
Tribometer 

The Pendulum tribometer is a 
solid example of a skid 
resistance slider tribometer. 
This tribometer is best suited 
for laboratory use as it was 
designed for use on the road, 
therefore requiring a flat 
surface for operation. The 
pendulum tribometer can be 
modified or a platform can be 
fitted over that rail track to 
carry out measurements on the 
field [26] 
The Pendulum tribometer 
which has a rubber contact pad 
functions on the energy loss 
and swinging arm principle. It 
has an entirely different 
contact geometry with the 
contact being in full slip when 
compared to other tribometers. 
Albeit, it has few similarities to 
other portable tribometers, its 
measurement has been proven 
to be in agreement with other 
portable tribometers from 
comparative tests done [26, 36, 
37]. 
(See Figure 2.19) 

It is a portable device, 
relatively easy to 
operate and is readily 
available. 
it doubles as an on-
track and in-lab 
measuring method. 
For a range of 
contaminants, it 
provides a notable 
resolution between the 
values for skid 
resistance.  

It is not suitable for use in the 
field, requiring modification for 
such applications. 
It is not as easy to use compared 
to other portable tribometers 
due to its complex setup. 
The skid resistance is measured 
by the pendulum instead of the 
rolling/sliding peak of adhesion 
levels. Although a correlation 
has been confirmed from the 
comparison.  

 
[34] 

Braked Wheel 
Tribometer  

The friction level on the rail is 
determined using a small, 
braked wheel. It works on the 
same principles of most 
tribometers where a given 
vertical force (F) is applied on 
the rail from the wheel and the 
applied and resulting/reactive 
force (R) are measured. The 
coefficient of friction is then 
given as the ratio of the vertical 
force and the reaction force i.e., 
F/R. 
With the Braked wheel 
tribometer, an increasing brake 
torque is applied on the rail 
surface to produce the required 
slip [38, 39]. 
(see Figure 2.20) 

It is easy to use, 
portable and is readily 
available. 
The result derived is the 
peak adhesion level and 
is subject to scaling 
effects. 
It can measure different 
positions across the 
railhead, since it can be 
adjusted and is 
portable. 
The measurement 
process per spot is fast, 
because it takes 
approximately 15 to 25 
seconds to record one 
adhesion level 
measurement. 

It is operated at a low speed, 
which is at walking pace. 
The application of simple scaling 
factors cannot be made on the 
results. 
Due to the influence of rail 
contamination, the values of 
adhesion are high. 
Electric traction can cause a cut 
in power in the overhead line 
during operation.  

[34] 

Static Breakout 
Friction 
Tribometer 

This technique applies a 
handheld tribometer which 
provides a coefficient of friction 
measurement at any angle. The 
RSSB advises that this method 
be used only for very coarse 
assessment of friction 
conditions. 
(see Figure 2.21) 

It has a short measuring 
time of 5 seconds. 
It can be applied on 
very short rail 
segments. 
It is easy to use and 
accessible.  

The results and scaling effects 
are affected by the lubrication 
and surface roughness of the 
slider. 
It gives a very coarse evaluation 
of the sliding friction alone. 
The type of slider used plays an 
important role in the resolution 
of results on different types of 
contaminants. A rubber slider 
may provide an improved 
resolution compared to a 
chromium slider. 
It is difficult to maintain a steady 
state because the slider will not 
be in full contact with the rail at 
a curve. 

 
[34] 

In-Lab Techniques 

Pin-On-Disc  This is a method mainly used 
for research related to friction 
and wear, since it is designed in 
a way it outputs the friction 
between a rotating disc with a 
loaded pin rotating against it. 
The material used for the disc is 
expected to have identical 
properties with the track which 
therefore the use of Rail steel. 
The same principle applies to 
the pin material (which is 
Wheel steel) it has to be 
identical with the properties of 
the wheel. 
(see Figure 2.22) 

The introduction of 
contaminants is easy. 
It is relatively easy to 
use with an abundance 
of tribological contacts 
[40].  
Measurements can be 
repeated quickly. 
Test conditions such as 
the load and 
environment can be 
controlled.  

The sliding speed is low. The 
equipment has a maximum 
sliding speed of 4m/s (9 
mile/h). 
Friction can only be recorded 
under sliding conditions, 
restricting the scope of 
measurement. 
The rig basically represents the 
high slip phenomenon observed 
in very tight curves. This is 
because the rig mimics the slide 
component of a partial sliding 
wheel/rail contact which makes 
it experience full sliding [41] 
This method is preferable in the 
testing of fluid type friction 
modifiers or solutions for weed 
killer. Scaling effects are present 
since the contact area is 8 times 
less than that of the actual 
wheel/rail contact. 
The maximum pressure in a 
wheel/rail is 10 times larger 
than the maximum contact 
pressure of the machine. 
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Twin Disc Test 
Rig 

This method uses two discs, 
where the top disc has a given 
diameter and the bottom disc is 
selected based on the creep 
percentage required to be 
generated. A load is applied to 
the discs till the peak contact 
pressure is identical to the 
contact pressure for a 
wheel/rail contact. 
(see Figure 2.23) 

The introduction of 
contaminants is easy. 
Test conditions such as 
the load and 
environment can be 
controlled. 
Statistical variation of 
the adhesion can be 
determined by 
conducting numerous 
tests. 
It is a widely used and 
available machine for 
research and 
laboratory 
consultancies. 

The percentage creep levels can 
easily be affected by the high 
rate of wear of the disc. 
With usage of a crowned disc, 
the contact pressure can be 
affected as the disc wears down. 
Scaling effects are present here 
as the actual wheel/rail contact 
is larger than the contact 
present between the discs. 
The testing of each percentage 
creep level requires the usage of 
a new disc or machined (re-
turned) disc. 

 
[34] 

Linear Full-
Scale-Wheel-
On-Rail-Rig 

This is a real size depiction of 
the train wheel on a test rig. It 
is designed in a way that an 
angle of attack is produced 
relative to the wheel when the 
wheel is rotated during traction 
and braking. 
(see Figure 2.24) 

Introduction of 
contaminants to the is 
easy because of the full-
scale nature. 
Test conditions such as 
the load and 
environment can be 
controlled. 
Measurement can be 
repeated in a short time 
period. 
It is not affected by 
scaling effects as the 
wheel/rail contact is 
full scale. 

The measurement process can 
be slow as they operate at a low 
speed of less than 5 mph.  

 

Full-scale rig 
with rail loop 

The HAROLD rig was designed 
by researchers from UoS and 
UoH. It consists of a Y25 freight 
bogie with front wheelset 
positioned on a rolling rail of 
diameter 2m. Tread brakes are 
used on the bogie. The braking 
side is jacked up while the 
other side is used for the 
application of contaminants. To 
test for friction, the brake force 
is increased gradually till a limit 
is attained or when the WSP 
activation vents the pneumatic 
actuators [42]. 
(see Figure 2.25) 

Introduction of 
contaminants to the is 
easy because of the full-
scale nature. 
It has a maximum speed 
of 200km/h. 
It is not affected by 
scaling effects as the 
wheel/rail contact is 
full scale. 
There is precise control 
over the wheel-rail 
creep. 
It has good 
repeatability for 
measurements. 
Test conditions such as 
the load and 
environment can be 
controlled. 

Not all the data produced using 
the rig has been validated. 
It cannot be used for low 
adhesion investigations on site 
because of its size. 

 
[42] 

Indirect 
measures of low 
adhesion events  

On-Train 
monitoring 
Recorder 
(OTMR) 

Data from the OTMR is usually 
used to investigate accidents. 
Braking rates distances and 
time can be determined from 
the analysis of the speed-time 
output derived from the OTMR 
data. The brakes rate can also 
serve as indicator of the 
adhesion levels over a stopping 
distance. 

There are no scaling 
effects, since the data is 
from an actual train. All 
trains are required to 
have OTMR on-board, 
therefore it is readily 
available. 

Manual download of data. 
Expertise in data analysis is 
required. It is a time-consuming 
process. Data can only be 
obtained for train acceleration 
and braking process. 

 
[34] 

Train 
Management 
System (TMS) 

The Bombardier MitracTM is an 
example of a TMS. The system 
can transmit real time data 
from a train (such as the speed 
profile and slip and slide event) 
to a central location. This tool 
provides similar data to the 
OTMR but also functions as a 
diagnostic tool. 

Provides 
locations/mapping of 
slide and slip events. 
Provides real time data. 
There are no scaling 
effects, and it is readily 
available. 

Data can only be obtained for 
train acceleration and braking 
process. 
It is a time-consuming process 
and experience is required in the 
associated software. 

 
[34] 

Wheel Slip 
Protect (WSP) 

Used on service vehicles, it 
reports the occurrence and 
location of wheel slide/spin 
events possibly caused by low 
adhesion to a central database. 
The map on the left column is 
an example of the WSP data 
display in a control room; the 
colour coded arrows on the 
map represent the adhesion 
conditions at that area. Green 
represents good levels, yellow 
and orange represent 
intermediate levels and Red 
represents low levels of 
adhesion.  

This system provides 
real time data. 
The system has no 
scaling effects, since its 
data is obtained from an 
actual train. 
The LAWSTM is readily 
available 
Mapping and statistics 
data can be obtained 
from the system. 

Data can only be obtained for 
train acceleration and braking 
process. 
It is a time-consuming process 
and experience is required in the 
associated software. 
An indirect assessment of the 
adhesion is obtained from the 
LAWSTM via the 
acceleration/deceleration data, 
which means further analysis of 
the data will be required. 

 
[34] 

Measures of 
weather and 
environmental 
parameters.  

Internet of 
Things; 
Moisture 
Sensor 

These sensors are planted on 
the railhead to observe the rail 
state using electrical 
conductivity readings. 

   

Internet of 
Things; Leaf fall 

Static sensors are used to 
monitor the amount of leaf fall 
at a specific area 

It can be adapted for on-
board train monitoring 

It is only currently used for 
research purposes 
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Radar It uses scientific algorithms to 
calculate high spatial and 
temporal measure of rainfall 

The sensors provide a 
precise measure of rail 
fall, therefore making 
the data reliable 

It is not easily accessible unless 
a licence is issued 

 

Satellite 
Observations 

Images gotten from satellites 
viewing tree canopies from 
space. It can detect the colour 
changes in the canopies which 
may signify when leaves have 
fallen 

Observations are 
automatic over require 
locations 

Continuous cloud cover may 
obstruct observation especially 
during autumn. 
It does not provide a direct 
measure of leaf fall 

 

Leaf Observer 
Network 

This system holds a record of 
leaf fall from different tree 
species over a period of two 
decades in Great Britain. It aids 
the analysis of amount of tree 
canopy remaining during 
autumn and tree species 
identification 

High resolution direct 
measurement of leaf fall 

Measurement of leaf fall is 
influenced by observer bias. 

 

Great Rain 
gauge network 

It is a location specific tool that 
measures the amount of 
moisture present. It is capable 
of measuring 0.2mm of rainfall 
or more  

Provides direct 
measurements of 
location specific 
precipitation states. 

Observation is not necessarily 
around the rail network. 
 
It does not directly measure the 
amount of rainfall on the 
railhead 

 

 

 

 

Figure 2. 15: Vehicle-bourne tribometer [34]  

    

 

 

 

Figure 2. 16: Tribometer train [43] 

 

 

Figure 2. 17: Loading measuring wheel [34]  

 

Figure 2. 18: OnTrak hand operated Tribometer [14] 

 

 

Figure 2. 19: Skid resistance slider tribometer [34]  

 

 

 

Figure 2. 20: Braked wheel handheld tribometer [34] 

 

 

 

 

Figure 2. 21: Static Breakout Friction Tribometer [34] 

 

 

Figure 2. 22: Pin-on-Disc [40] 

 

 

 

Figure 2. 23: Twin disc test rig [34] 
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Figure 2. 24: Linear Full-Scale-Wheel-On-Rail-Rig [34] 

 

Figure 2. 25: HAROLD Rig [42] 
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2.4 METHODS OF LOW ADHESION FORECASTING 

2.4.1 MODELLING METHODS FOR LOW ADHESION 

Low adhesion modelling creates a link between the wheel/rail contact states and the 

train operational parameters in a mathematical model form [16]. These models generally 

look at the creep force relationships under varying conditions, such as wet and dry. A 

number of these low adhesion modelling methods are discussed below: 

2.4.1.1 WATER-INDUCED LOW ADHESION CREEP FORCE (WILAC) 

It has been established from various studies that water or moisture contributes to the 

occurrence of low adhesion between the wheel/rail contact. This prompted the research 

carried out by [18] which carried out tests using a full-scale tram wheel test rig to develop 

a model for the creep force which has the capability of predicting the adhesion as a 

function of the dryness or wetness of the railhead. The full-scale approach was used in 

the approach because it is easier to introduce contaminants into the system (in this case 

water). 

Adhesion in rolling contact is controlled by two mechanisms in the existence of interfacial 

fluids which are hydrodynamic lubrication and boundary lubrication. Mixed lubrication 

is referred to as the area where the adhesion is controlled by the mechanism (transition 

region). The dominance of the regions is dependent on the fluid viscosity, normal force, 

contact patch size, the relative velocity between the surfaces and the surface roughness. 

Trummer et al. [18] noted that from the maximum adhesion value in dry conditions at 

low speed was found to be 0.35 and between 0.5 and 0.6 when measured with 

locomotives with an axle load of 220kN and test rig experiment with axle loads of 44kN 

and 67kN respectively. When an amount of water was applied to the tests with the other 

conditions remaining the same the locomotive measured a maximum adhesion of 0.25 

and the test rig's result showed a maximum adhesion level in the scale of 0.10 to 0.16 at 

a speed of 100km/h. The difference noticed in the maximum adhesion value of the dry 

and wet conditions proves that the presence of low moisture does lower the adhesion 

level and poses a risk in the safe train operation. 

The WILAC model puts more focus on the Wet-rail syndrome which is a mixture of low 

moisture and iron oxides formed on the railhead, this is done in the absence of oil or 

grease.  

The test carried out by both researchers made use of a test rig as seen in Figure 2.26 

which contained a full-scale tram wheel mounted by a swing arm and a roller onto a fixed 

frame at the University of Pardubice.  
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Figure 2. 26: Schematic of the tram wheel test rig [29] 

The WILAC model  is constructed around the Polach model which was built on theory of 

boundary lubrication [18]. 

Trummer et al. [18] approached the test with four conditions in terms of wetness levels 

of the surface which were: 

●  Dry with no water added, 

●  Damp2 at a water flow rate of 25 μl/s, 

●  Damp1 at a water flow rate of 35 μl/s and, 

●  Wet at a water flow rate of 350 μl/s. 

These conditions simulated were to represent the various levels of moisture caused by 

rainfall or a light drizzle as well as a typical dry day. 

Results showed that under dry conditions the maximum adhesion level was at 0.4 which 

is as expected for that condition but under wet conditions with a water flow rate of 35 

μl/s the adhesion levels reduced to approximately 0.15 as seen in Figure 2.27 which is 

categorised as low adhesion.  

With a further reduction in the flow rate to 25 μl/s, as seen in Figure 2.27, the adhesion 

levels dropped to 0.06 proving that adhesion reduces significantly under the influence of 

low moisture and wear debris.  
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Figure 2. 27: Graphical representation of results from WILAC model[18] 

2.4.1.2 LEAF-INDUCED LOW ADHESION MECHANISMS 

The Huddersfield Adhesion and Rolling Contact Laboratory Dynamics (HAROLD) rig data 

was used in this model to simulate the effects of the mixture of leaves and moisture on 

the railhead. A Polach creep model was used in conjunction with the HAROLD rig to 

achieve the output. Figure (28) shows the detailed process used to create the LILAC 

model. 

 

Figure 2. 28: LILAC system process [42] 

The creation of the leaf layer is done by firstly wetting the leaf layers followed by slowly 

rotating the rig as leaves are fed into the designed wheel/rail contact, which is 

represented by rail loops and a bogie front wheelset. A normal load is applied to press 

the leaves into the rail surfaces as the roller is rotated. It was noted that the black film 

layer occurred only after sliding took place. 

Results showed that an adhesion level as low as 0.01 was achieved in different braking 

scenarios for wheel loads reaching 100kN. The results were found to be lower than those 

obtained from the WILAC model and a control wet one as seen in Figure 2.29. It also 

showed that the adhesion levels decreased slightly with an increase in the rolling speed, 

as seen in Figure 2.30. 
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Figure 2. 29: WILAC results compared other railhead conditions. 

 

 

Figure 2. 30: LILAC results under 60kN load with different rolling speed 

The LILAC model has the capacity to study the behaviour of trains while in leaf layer 

related adhesion events if multi-body dynamics models are implemented into it [42]. 

2.4.1.3 CONTACT MODEL USING MEASURED 3D SURFACES 

This model is an improvement on a previous model by Zhu et al. [44] called CONTACT, it 

involved using measured 3D wheel/rail surfaces to develop a numerical model which 

could investigate the effect of water or oil contamination on wheel/rail adhesion when in 

contact with various surface roughness. The CONTACT model only considered the 

following:  

●  Normally loaded contact model 

●  Interfacial fluid model 

●  Rolling/sliding contact model 

Zhu & Olofsson [45] developed the new model which consisted of the above three and 

additional flash temperature model and local friction coefficient model. The new model 
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can predict the local contact pressure, global adhesion coefficient, local tangential stress, 

local flash temperature, local coefficient of friction and plasticity. 

It was opined that most contact models done previously had been done based on the 

assumption that the contact surfaces are perfectly smooth making it easier for the 

implementation of Hertz theory which is suitable for vehicle dynamic simulation. In order 

to vary the surface roughness broadly during numerical analysis, a statistical model was 

employed giving a realistic depiction of the surface topography. The surface topography 

differs due to wear which is dependent on the wheel/rail contact conditions and the 

initial surface finishing. 

The work done  considered the real measured 3D surface samples sectioned out of actual 

rail and wheel pieces under dry conditions [45]. Their model assumed stationary contact 

with no spin and a unidirectional creep in the longitudinal direction. 

 

Figure 2. 31: Graphs comparing adhesion coefficient trends for present and previous 

CONTACT model [45] 

The results obtained from the model were firstly compared to that of the previous 

CONTACT model done by [44] and from the adhesion curves computed seen in Figure 

2.31, the previous model had a higher adhesion coefficient than that of the one is discuss, 

though the difference was little.  

The results from the model showed that a surface with high roughness has a lower 

adhesion coefficient than of low roughness and a smooth surface, although the difference 

may not be significant as seen in Figure 2.31. 

It was noted that an increase in speed reduced the adhesion coefficient as the surface 

roughness increased. 

2.4.1.4 MULTI-LAYER MODEL  

This model was proposed by Olofsson [31], it takes into account the effects of crushed 

leaves on the railhead. It was stated that leaves crushed by passing trains form a slippery 

(Teflon-like) coating on the railhead which is an “easily sheared” surface layer when it 

has undergone chemical reaction. This layer is usually visible to the naked human eye as 

it is black in colour, and they are very difficult to remove. 
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In the testing used to develop the model carried out by Olofsson, Glow Discharge Optical 

Emission Spectrometry (GDOES) was used to profile the elemental depth of the surface 

layers which was employed in analysing the “presumed chemically reacted surface layer” 

and proving if it does actually exist. A controlled pin-on-disc was used to recreate the 

wheel/rail contact for the experiment. This experiment was based in Stockholm, Sweden. 

The test specimens were obtained from rail sections and wheel rolling stock that had 

been used in local traffic. 

The tests were carried out using a maximum contact pressure of 800 MPa and a sliding 

velocity of 0.1m/s. The tests were run under different conditions for the rail surface, 

which were: 

●  clean rail surface tested at 95% relative humidity. 

●  clean rail surface tested at 40% relative humidity. 

●  rail surface lubricated with elm leaves. 

After the tests were carried out, a pin-on-disc machine was used to measure the frictions 

on rail surface samples. 

 

Figure 2. 32: GDOES results for elm leaves under high humidity [31] 

The results from this experiment (Figure 2.32) showed that the crushed elm leaves on 

clean steel and low humidity had formed a chemically reacted layer that contained 

Phosphorus and Calcium which is in agreement with the initial proposed theory that a 

chemically reacted layer which acts as an easily sheared surface layer is present. This 

model was also able to prove that the presence of high humidity on a clean rail surface 

reduces the adhesion levels, which explains why reports of low adhesion incidences exist 

without the visible hard black layer on the railhead. This has been explained by Olofsson 

as the presence of an oxygen layer thick enough to act as an easily sheared surface layer. 
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2.4.1.5 KERNEL EXTREME LEARNING MACHINE (KELM) & PARTICLE SWARM 

OPTIMISATION (PSO) - PSO-KELM  

This model was developed by [16] proposing a combination of the PSO and KELM used 

in analysing the traction performance of heavy haul locomotives aiming at analysing 

adhesion states with real-time operational data. This involves using adjustable creep 

velocity done by varying output torque of a traction motor, showing the performance of 

the wheel/rail adhesion force. It was stated that the major challenge of modelling low 

adhesion is the ability to recreate the actual condition in which the train operates, hence 

the identification of the model’s precision is affected by uncategorised noises, uncertain 

nonlinear parameters among other factors. The method proposed by Liu et al. [16] is a 

combination of a network-based method KELM which combines extreme learning 

machine functions with kernel functions and a swarm intelligence algorithm PSO, this is 

expected to be adaptable to the changing nature of the environment conditions in terms 

of the research, improving the identification performance. Although the model 

parameters need to be adjusted manually for the different operating 

environments/conditions.  

 

Figure 2. 33: Wheel/rail adhesion coefficient-creepcurve [16] 

A new KELM-based wheel /rail adhesion identification model has been designed using 

PSO to optimise the model parameters [16]. The creep velocity and wheel/rail adhesion 

coefficients were designated as the inputs for the identification model. The model 

processes an output of the following wheel/rail adhesion states (as seen in Figure 2.33): 

●  minor fault 

●  serious fault 

●  fault indication  

●  normal adhesion 

The data used for the model was extracted from a RT-LAB Test stand which comprises of 

a heavy-haul locomotive traction transmission sub-model designed using MATLAB-

Simulink and Mechanical sub-model designed using ADAMS-Rail. 3000 data types for 
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different wheel/rail adhesion states were obtained from the wheelset of a single motor 

drive by adjusting the torque output of the motor. It was concluded that the proposed 

KELM-PSO model was able to attain an identification accuracy of 92.60% which is 

significantly higher than existing methods of using only KELM (87%) or PSO-SVM 

(85.11%). Therefore, the model was able to effectively identify the wheel/rail adhesion 

states using optimised real-time data whilst improving the environmental flexibility. 

 

2.4.2 EXISTING METHODS OF FORECASTING LOW ADHESION 

Existing Adhesion forecast tools are founded on the principles of scientifically confirmed 

causes of low adhesion such as moisture on the rail head and leaf contamination on the 

railhead. These forecasts are usually communicated through a colour coded risk index, 

alerting operators of the chances of low adhesion events. There are several potential 

methods of forecasting low adhesion which will also be discussed in this section. 

2.4.2.1 LOW ADHESION RISK FORECAST/ ADHESION INDEX (MET OFFICE TOOL) 

This is a forecasting technique delivered by the Met Office [46] and is widely used across 

the rail industry. Extensive weather and climate data are used to “accurately predict low 

adhesion, leaf-fall and wind throw at high spatial and temporal resolutions for a certain 

band of lead times. The predictions from the tool are used to prepare mitigation 

strategies, reducing SPADS, station overrun among others. 

The adhesion index approach takes into account the amount of leaf fall, tree density, 

topography in conjunction with the weather elements such as; temperature, type of rain 

and humidity levels of a specific area. The leaf fall is processed to a higher resolution to 

give the different species of trees at the given area or station. It has been shown from the 

work carried out by several researchers and then compiled by [4] that different species 

of leaves have different effects on the adhesion level. The knowledge of the precise tree 

species and the expected time of the leaves shedding around the specific station 

contributes to the reliability of the adhesion index [47]. 

The result of data input in the adhesion index system is a colour coded prediction output 

which is rated from good adhesion levels (that is low risk) to bad adhesion levels 

(extremely high risk). The colour code assignment is as follows: 

●  Green (0-2) Low risk, that is good adhesion level. 

●  Yellow (3-5) Medium risk, that is moderate adhesion level. 

●  Red (6-8) High risk, that is poor adhesion level. 

●  Black (9-10) Very high risk, that is extremely poor adhesion level. 
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Figure 2. 34: Sample of adhesion risk index [47] 

Figure 2.34 shows an example of the Met office’s adhesion index prediction using just the 

colour codes. 

Generally, the model can predict low moisture levels and leaf-fall on the railway network. 

These predictions can be done 10 days in advance. It is capable of giving an hourly report 

of the following parameter: 

●  Low adhesion risk 

●  Leaf fall risk 

●  Traffic volume 

●  Wind-throw risk [48] 

Advantages 

●  The tool combines both spatial and temporal resolution in its prediction. 

●  The tool is customised for specific routes; therefore, it will have good precision. 

●  It implements data on location and time of leaf fall, moisture levels with the 

weather forecast to give a good quality forecast.  

Limitations 

●  It is not a real time tool but a prediction of events that may take place which will 

be subject to change.  

●  Weather forecasts are not 100% accurate meaning the predictions may vary to 

actual events. 
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2.4.2.2 OPERATIONAL DATA BASED FORECAST 

This method is based on work done by researchers [49] from the University of 

Huddersfield and the Met Office. The case study of this research was the Birmingham 

Cross City Line (BCCL). The project was aimed at using operational data to improve the 

current adhesion forecast method.   

The method developed is a combination of weather forecast data and On-Train Data 

Recorder (OTDR). A motivation for this project is the plan for Automatic Train Operation 

in the future, which will require ability to plan for and mitigate against low adhesion. The 

OTDR data was employed to provide better understanding of the where and when the 

wheel slip protection was activated during traction and various brake steps. The severity 

of the recorded slip was also recorded. Line side moisture sensors were used to give a 

high resolution of the observation network showing when the railhead was most likely 

going to have some moisture at a site situated in close vicinity to a live operational 

railway. 

Weather observation data from the UK Met office was used to compensate for the data 

(such as frost, dew, rainfall as soon on) that the isolated sensors did not provide.  

The dates which had previously recorded the highest WSP activity were selected as the 

case study days, since it had given a range of when to expect slip to occur. This led to 

selection of the 13th, 15th, 29th of November and 8th December. 

The team used weather data, leaf fall rate and WSP activity in comparison to the predicted 

adhesion risk forecast. The work done here (see summary in Figure 2.35) validated that 

the WSP activity is captured well by the adhesion forecasts, but some discrepancies 

occurred in the timing of occurrence predicted. Meaning there was a mismatch in the 

forecast and actual occurrence of wheel slip. It was also stated that the train drivers are 

aware of the forecast and would have been driving carefully, therefore reducing the 

likelihood of wheel slip occurring. 

 

Figure 2. 35: Example of adhesion index data from the Met Office: 
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Green indicates a region of low adhesion index (High adhesion level). 

Yellow indicates a region of moderate adhesion index (Medium adhesion level). 

Red indicates a region of high adhesion index (Low adhesion level). 

Black indicates a region of very high adhesion index (Exceptionally Low) [50] [49]. 

Advantages 

●  The use of line side moisture sensors overcomes some of the limitations related to 

capturing the spatial variation in the application of standard weather observation 

sites. 

●  It included the use of vegetation data along the train route, although it was 

outdated. 

●  The research confirms the influence of moisture and leaf containment on the 

adhesion of the rail and wheel, contributing to WSP activities. 

Limitations 

●  Unavailability of geolocation, although Train Describer and Train Running Under 

System TOPS (TRUST) data were used to determine the location of each train and 

the service it operated under. 

●  Limitation of OTDR data as it was only extracted from a limited number of trains 

and a short span of days. This means that some wheel slip protection activity may 

be missed during the study. 

●  Quality issues with OTDR data such as: a) varying speed calibrations between the 

train cabs b) unrealistic records c) varying clock times between train cabs. 

●  The use of OTDR in live operational system is challenging due to the analysis being 

very resource intensive. 

●  Outdated vegetation data, this was the network rail vegetation data survey from 

2009 to 2011. 

●  Low adhesion events recorded were reduced because of prior mitigation 

implemented to the rail head. 

2.4.2.3 ADHESION CONTROLLERS CONDITION ASSESSMENT TOOL (ACCAT) 

This is a tool utilised by London Underground for the prediction of low adhesion on the 

railhead for the central and metropolitan lines. The ACCAT tool implements the function 

of Internet of Things (IOT). 

This tool uses railhead moisture sensors which detect electrical resistance as a result of 

water droplets that get on conductors planted on an insulating circuit board. This device 
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is incorporated into the ACCAT, essentially the sensors report data on the level of 

humidity on the railhead to the ACCAT. The tool also has the ability to consider the source 

of fallen leaves and amount of rainfall as it is implemented into a weather station [51-53]. 

This tool was specifically designed for use on Automated Train Operation (ATO) and 

provides a prediction of 3 to 6 hours prior to the incident occurrence. 

Advantages 

●  IOT components for moisture measurements are cheap. 

●  If properly implemented, it will deliver precise information. 

Limitations 

●  Although individual components are cheap, it is expensive to implement due to 

the cost data logging equipment, number of sensors needed to achieve desired 

result and GSM communication. 

●  It is not widely used despite its availability. 

●  It is not a real-time source of information; hence it is difficult to implement into 

decision making. 

●  Requires internet connection, therefore may not be applicable in remote areas. 

2.4.2.4 RAIL SMART ADHESION DIGITAL SOLUTION (ADS) 

This tool was developed  in collaboration with the Met Office and the RSSB [54]. The 

digital tool functions by collecting route and railhead conditions information from the 

train drivers using the ADS app. This information input on the app is made visible for 

other train drivers following the selected route as an initial input and will give “near-live 

time” information of the adhesion conditions on the track. The data viewed on the app 

also aids the train drivers in regulating the trains to best suit the conditions reported. The 

information is also shared with the rail industry and may be used to plan mitigation 

against delays and wheel flat causing events (low adhesion). 

Advantages 

●  It is easy to use for both drivers and industry stakeholders. 

●  It provides a near-real time report. 

●  It gives access to time series information on adhesion for research and analysis. 

Limitations 

●  It relies on driver information which may be inaccurate. 

●  The information is not real time, therefore there may be discrepancies. 
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2.4.2.5 SWEDISH TOOL 

Within this tool designed by the weather trends in relation to the adhesion levels history 

on the Stockholm underground rail system were used to predict adhesion [55]. It was 

noted that the portion of the underground rail that was exposed to the effect of the 

environmental condition (that is the portion of the track that is run in open air) 

experienced more wheel flats, which could be said was caused by low adhesion in the 

wheel/rail contact [30]. 

The method used here involved regular friction measurement taken from the “open-air” 

site and measurements from cut out rail pieces to check the influence of leaves on the 

track.  

These measurements were focused on the months of June, September, October, 

November (2008) and March (2009). 

In the month of October, the leaf layers and black layer were clearly visible as seen in 

Figure 2.36: 

 

Figure 2. 36: Figure showing October layers on Stockholm rail [55] 

 

Figure 2. 37: Plot showing the relationship between oxide layer thickness and friction levels 

per month [55] 
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An analysis on the thickness of the oxide layer also showed that a thicker layer of oxides 

brings about a reduced level of friction as this was also found to be more prominent in 

October as seen in Figure 2.37. This implied that an accurate prediction of the oxide layer 

thickness can also mean predicting the friction level. 

The plot in Figure 2.37 also showed that weather with above average rain and mist, 

strong winds, frost/ice and decreasing temperatures influence the friction levels. 

Advantages 

●  Provides a good history bank for previous low adhesion events. 

●  Thickness of oxide layers’ prediction can potentially be used to predict adhesion. 

Limitations 

●  There is low accuracy due to persistent climate changes. 

●  It is not real time. 

●  It can only be used in region with similar weather conditions/patterns. 

2.4.2.6 RAIL EYE SENSOR (OPTICAL SENSOR)  

The tool design was based on the need to detect the contaminants such as leaves, 

moisture and oil on the railhead. This design is intended to be a low friction prediction 

tool for track sections, it considers factors such as weather, wheel/rail contact conditions 

and biological pollution which are of benefit to railway operators [55]. 

 

Figure 2. 38: Rail eye sensor [56] 

The optical sensor uses infrared spectroscopy to identify low friction conditions on a 

track. The optical sensor used in Olofsson et al. [56] is called a "Rail eye" sensor and was 

constructed by Sten Löfving optical sensors in Sweden. 

Figure 2.38 shows the sensor design, it has two laser diodes of wavelength 1450nm and 

1566nm. The laser diodes provide illumination on surfaces at their stated wavelength, 

the light reflected off the surfaces is measured by the photodiodes at a sample rate of 
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15Hz for a vehicle running at 15 ms-1 (the frequency can be adjusted to suit the running 

speed of the train). The specific type of contamination on the railhead can be classified 

from the illumination of the rail surface with different wavelengths of light and the 

recording of the amount of light reflected. 

A pendulum test rig was used alongside the rail eye sensor to link the contamination 

classification derived from the sensors to the friction value. The conclusion of the tests 

carried by Olofsson et al. [56] was that the rail eye sensor successfully identified different 

rail surface conditions including a blackish layer, wet rail, blackish + ice layer and dry rail 

among others tested. The tests were performed whilst manually moving the sensor over 

the railhead to capture data. 

Advantages 

● It is capable of providing real-time estimation of adhesion level if successfully 

implemented, that is when used in conjunction with the friction measurements 

database, temperature and relative humidity information. 

● It can give precise information on the type of contamination present on the 

railhead, hence making mitigation easier and possibly cost effective. 

Limitations  

● Certain logistics such as the measuring frequency for a non-uniformly spread layer 

of leaf contamination are unknown. 

● The prototype has not been tested on an actual train; therefore, the viability of the 

tool has not been confirmed. 

● Detection points of the railhead surface can be lost due to the lateral dynamic force 

which cause the wheel to move laterally on the rail. 

● Numerous sensors may be required on the train which increases the amount of 

data to be processed and consequently making it a lengthy process. The 

development of a robust processor was suggested by Olofsson et al. [56] for quick 

processing of signals received from the diodes. 

2.4.2.7 PORTERBROOK TARGETED ADHESION MANAGEMENT USING ON-TRAIN DATA 

The tool developed here by Porterbrook uses OTDR data and GPS from their train fleets 

to determine location + causes of lost time and aid adhesion management. The adhesion 

forecasting tool is still in the rollout stage with no current update. The Porterbrook 

system can track the position and speed of the trains on their fleet via the use of passenger 

Wi-Fi available on the trains. This system assists in pin-pointing Lost Time hotspots 

which can be as a result of low adhesion on the tracks. The Lost Time hotspots data also 

has the potential for analysing the sub-threshold delay and correlating track works data, 

adhesion data, earthworks data among other forms of data to narrow down the exact 

cause of the Lost Time [57]. 
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Advantages 

● It has the potential to output real-time data. 

● Provides other types of information that maybe useful for rail track management. 

Limitations 

● It currently can only be used to track data from Porterbrook train on the Sussex 

route specifically. 

● The viability of the system has not been established. 

● WSP data is restricted to trains with remote OTDR, and it does not have 

information related to traction loss events. 

2.4.2.8 INTRODUCTION TO THE PREDICTION MODEL. 

A friction estimation/prediction tool has been designed in this work based on a 

regression model, a neural network based and traditional image processing programme, 

with the aim of estimating the value of friction on the rail tracks in real-time on board a 

train. This tool will provide better accuracy than existing forecast tools, as it is a real-time 

data which will be beneficial for the driver (with the tool on board) and successive 

drivers. 

Research reviewed in this literature review revealed that environmental factors such as 

temperature and relative humidity are important elements in understanding low 

adhesion mechanisms. Hence, these environmental characteristics need to be included in 

the prediction model to fully capture their effects on adhesion. It is also important to 

capture and analyse the railhead state as noted in the Rail Eye Sensor discussed in section 

2.4.2.6. 

A neural network-based regression model was previously created by a colleague at the 

University of Sheffield for RSSB funded project CF-UOS-02. The model uses machine 

learning (a regression model) to determine the relationship between the track 

surrounding characteristics and the railhead data. Machine learning was chosen as it can 

recognise patterns which would normally be difficult to recognise by conventional means 

such as simple statistical models. These patterns can be seen in the relationship between 

the mathematical data of temperature to non-mathematical data of the railhead images. 

This work will look at training and optimising the prediction model and implementing 

the model into an on-train data capture system..   

The prediction model will require an input of the railhead images and/or forwardt facing 

images and sensor data which include relative humidity, rail temperature, air 

temperature, layer thickness, dew point and surroundings data. The railhead images will 

be processed using traditional image processing techniques, infrared spectroscopy 

(optical sensor) will not be utilised in this work but rather regular coloured images to 
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make it easier for the prediction model classify and identify railhead states using the 

colours seen on the railhead images. The forward facing images will be processed using 

a pretrained  convolutional neural network (CNN), which can then identify and classify 

the amount of tree cover, type of terrain and colour of railhead layer. A regression model 

(Gaussian) is used to analyse the collated sensor data and the processed images to predict 

the probable level of adhesion on the rail track. 

An input of numerous data collected over a specified period of time during autumn will 

be used to develop the tool. 

2.4.3 ADHESION FORECASTING COMPARISON MATRIX 

Table 4 shows a matrix drawn to provide a visual representation of the key 

characteristics of the existing methods of adhesion forecasting. It aids in understanding 

the features lacking and features that work well in existing tools. 

Table 2. 4: Adhesion “forecasting” matrix 

 

2.5 PAPER GRADING TECHNIQUE 

The paper grading method adapted from Ishizaka et al. [4] was used in this work. This 

literature review has been written using information from several sources which include 

and not limited to published journals, papers, technical reports, chapters in textbook and 

conference proceedings. These materials/references were graded in order to show their 

relevance to this research and also show possible knowledge gaps and areas for 

improvement in this research. They were graded using Boolean values of Yes/No, where 

yes is 1 point and No is 0 Point. The scoring system is not a grade of the quality of the 

materials/references. 
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A paper grading map (see Figure 2.39) was created to give/aid the visual understanding 

of the relevance of these materials to sections in this review. The review was split into 

four primary sections for the purpose of the grading; these sections are: 

●  Wheel/rail low adhesion 

●  Railhead measurement 

●  Low Adhesion forecasting techniques 

●  Wheel/Rail Interface friction modelling. 

These primary sections have been split further into secondary sections as seen on the 

map to give a more precise look at the relevancy. 

The following criteria below were used to evaluate the materials: 

●  Is it a peer reviewed publication? 

●  Actualisation of theory (full/scale testing) 

●  Weight of conclusions (are the conclusions sound?) 

●  Data backed theory (are the theories supported by data?) 

●  Full scale test backed theory. 

●  Small scale test backed theory. 

●  Field validation (has the method or data been validated in the field?) 

Each source assessed is represented by their numbers in the list of references. The 

highest possible scores for a material using the above criteria and the Boolean points are 

7. The scores have been grouped into a category of three; 0-2 (C), 3-4 (B), 5-7 (A).  
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Figure 2. 39: Paper grading map 
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2.6 SUMMARY 

Several causes of low adhesion in the railway industry have been recognised such as the 

wet-rail phenomenon and leaves on the rail. Although this has been recognised as part of 

the culprit of low adhesion events, the exact details of how it occurs is still very much 

under study. There are not many literatures available for adhesion mechanisms as it is a 

topic that is still under study. It is expected that the measurements taken during the rail 

track site visit will give an additional perspective into what conditions are needed for low 

adhesion to occur. 

Work has shown that different types of contaminants have varying effects on the 

adhesion level [19]. This is really important in understanding low adhesion mechanism 

and will play a role in identifying railhead states for friction prediction.  

In this study, numerous friction measure methods were assessed and discussed. A 

common issue that was identified was the size and/or precision of the equipment, it was 

found that most of them with good precision (that is near real-life conditions) were big 

in size. Hence, such methods are not easily mobile and would be difficult to transport 

them to an active site for investigation. While the smaller (portable) tools commonly had 

scaling problems which negatively affected the precision and accuracy of the readings. 

Some other methods involved indirect measurement but involved extra skills to read the 

data such as analytical skills and time consuming. A new tool called the On-trak Hand 

Operated (HO) Tribometer, which was recently acquired by the university which has the 

potential to combine the precision and accuracy of full-scale measurements rig, the 

portability of the smaller tool and the robustness of some of the indirect methods. The 

precision and accuracy of this tool has not been validated yet as it is a very new tool, and 

it is intended to validate it through the course of this research. This is also an aspect of 

work lacking records shown in the paper grading in Figure 2.39. 

A considerable amount of work has been done by other researchers to create 

mathematical models for different possible scenarios of low adhesion events to help 

understand the conditions in which low adhesion occurs. Some of these models such as 

the WILAC showed that there is a relationship between the presence of high humidity on 

the railhead and low temperature in creating a suitable condition for the occurrence of 

low adhesion. These models have given an understanding from field and laboratory tests 

as to how low adhesion takes place and it will aid in the forecasting of low adhesion.  

The forecasting tools identified in this review either do not have the ability to do real-

time or do not provide accurate information or do not take into consideration the 

performance of the train or use streamlined information, as it is also seen to be lacking 

on the paper grading analysis. None of them employ the use of machine learning process 

which have the capability to revolutionise the process of predicting friction on the 

wheel/rail interface. These factors affect the reliability of the tools and means there is a 

gap that needs to be filled as all the tools discussed do not derive their information from 

on-board a train with weather information. The Neural network tool which uses machine 
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learning can potentially do both meaning it can bridge the gap between accuracy of 

forecast and availability of on-board real time data with an inclusion of analysing the 

trackside vegetation to possibly forecast leaves fall just like the Met Office tool does.   
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CHAPTER THREE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



53 
 

3. RESEARCH APPROACH 
From the literature review carried out, it was established that there is a major gap that 

needs to be researched further in the railhead friction prediction aspect of the rail 

industry. In this work, different properties of the railhead will be considered to aid the 

understanding of low adhesion occurrence and how it can best be predicted. 

Previous work done by researchers in this field have shown that ultra-low friction is 

mainly brought about by leaf layers which present a reduced shear strength layer and the 

“wet-rail” phenomenon, which occurs when small amounts of moisture and oxides mix to 

form a solid lubricant/low adhesion paste on the railhead. Although these have been 

established as causes of low adhesion, the conditions in which they occur has not been 

fully understood yet. Therefore, further work needs to be carried out to understand the 

mechanism of low adhesion. 

The approaches used in this work were: 

1. Friction and Environmental data collection:  

The work described here was done to further understand railhead adhesion (friction) 

mechanism and ultimately use the information to predict railhead friction. In order to get 

an understanding of actual in-service railhead friction variation, fiction values had to be 

collected from the field.  

Based on the literature reviewed on railhead friction measurement methods, the 

pendulum tribometer was selected for use in this work because of its portability and ease 

of transportation. Its measurements have been calibrated against the BR research trib. 

train, hence giving a conversion factor with some confidence. Environmental data that 

have been established in the literature review to be linked to the occurrence of low 

adhesion was collected alongside the friction measurements.  

Environmental data collected included: 

• Air and railhead temperature, 

• Relative humidity, 

• Dew point and 

• Contaminant layer thickness. 

Relationships between the friction and environmental data (temperatures and relative 

humidity) were analysed on graphical plot to show and aid the understanding of the 

effects they have on the railhead friction. It also showed if they were significant variables 

in the prediction of railhead friction.  

Railhead and forward-facing images were captured from a handheld camera to record 

the railhead state (such as leaf layer presence or moisture presence among other 

possibilities), at the time of measurements. 
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The friction, images and environmental data were used collectively in understanding low 

adhesion mechanisms and looking at the viability of such data for friction prediction. 

2. Prediction tool model: 

After establishing the dependence of railhead friction on the railhead temperature, air 

temperature and relative humidity, it was important to link the images showing the 

railhead state to the other variables. The leading causes of low adhesion on the railhead 

which were identified in section 2.2.1 as the presence leaf layers and wet-rail 

phenomenon can be recognised from the railhead images, hence the importance. 

The relationships shown between the railhead friction and environmental data were 

expected to be non-linear due to nature of variations/unpredictability faced in a non-

control environment in field. Also, the images are a non-mathematical variable that 

cannot be integrated into a simple statistical model.  

Given the complexity of the types of variables being worked with, a Gaussian Regression 

Model (GP Model) was deemed to be best suited in modelling the railhead friction 

prediction tool. The other models considered were linear models and a supervised neural 

network (SNN) model. The linear models were not considered, as the relationship 

between the data being analysed in this work is not linear. A GP model was selected over 

the SNN model because these are more established in processing smaller data sets, as 

were available for this work, whereas the SNNs are known to encounter problems while 

processing small data but does well with large datasets [58].  

The GP model was the best fit for creating the prediction tool, as it can flexibly 

accommodate large variables having non-mathematical functions, large amount of data 

and random variables. Figure 3.1 shows the summary of the variable inputs for the model, 

the data processes and the expected output from the model, basically how the proposed 

railhead prediction tool will work.     
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Figure 3. 1: Schematics for methodology 

3. Model Sensitivity Analysis: 

Sensitivity tests were carried in a laboratory for the prediction tool to show its limitations 

and capacity. Here orientation and distances of camera to railhead were varied to show 

how predictions reacts to changes in the image characteristics. It also informed the most 

suitable way to capture the railhead images for the on-train design. 

4. On-Train Data Capture: 

The final step was to tie all the information garnered from the previous approaches and 

create an innovative system capable of capturing the data stated as important in 

understanding and forecasting railhead friction in approaches 1 and 2. While applying 

the most appropriate railhead image capture format established from approach 3. These 

all aided the creation of data capture system used on-board selected rolling stocks, 

predicting railhead friction from a dynamic open-system. 
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CHAPTER FOUR 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



57 
 

4. RAILHEAD DATA GATHERING AND ANALYSIS 

4.1 INTRODUCTION  
The aim of this section was to study/analyse the railhead condition in various locations 

at different given times and days, assessing the levels of friction and contamination on 

railhead.  

This determined the parameters that influences the friction mechanism, therefore 

providing information on the form of data required to predict friction in the friction 

prediction model. 

The data collected was also to be used to validate the friction prediction model proposed 

in this work. 

The environmental conditions, as suggested by the RSSB GM/GN2642 manual [34], were 

recorded to analyse their influence on the adhesion levels. The environmental conditions 

recorded were: 

• Weather elements such as relative humidity, air temperature, rainfall level and 

sunny, dry, mist or fog 

• Railhead contamination thickness and 

• Contaminant properties (Swabs or LIBS) 

Other information that was recorded and/or considered in accordance with the RSSB 

manual [34] was: 

• Track information. 

• Moisture level of the track. 

• Site features, such as vegetation around track, proximity to factories, local lakes, 

roads or airport. 

• Railhead and forward-facing images. 

The locations selected for the first set of track measurement were on the Ecclesbourne 

Valley Rail (EVR), Midlands Railway and Peak Rail network. The locations used to obtain 

data are outlined in Section 4.2. 
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4.2 MEASUREMENT LOCATIONS  

The train stations in the UK listed below were the locations of the measurements: 

• Butterley, Derbyshire (Midland Railway) 

• Wirksworth and Idridgehay, Derbyshire (EVR) 

• Darley Dale, Derbyshire (Peak Rail) 

They were selected because they were accessible, and they are less busy rail tracks 

improving the safety factor of working line side and on track. 

4.2.1 BUTTERLEY, Derbyshire (Midland Railway), UK: 

Data was collected from this site on 4 different dates: 05-09-2019; 01-10-2019; 22-01-

2019; 14-11-2019.  

The track side and path of measurements depicted by the red line (seen in Figure 4.1a) 

had a sparse tree coverage at the time of the visits. The trees were at about a 7m distance 

from both sides of the track and the only effect they had on some of the track sections was 

shading caused by the overhead angle of the sun. 

At the time of the visits there was no visible sign of the leaves near the track. A section of 

the track is located across a very low traffic road which minimises the effects of 

contaminants on the railhead. 

4.2.2 WIRKSWORTH & IDRIDGEHAY, Derbyshire, (Ecclesbourne Valley Railway EVR), 

UK: 

Data was collected from these sites on the following dates: 14-08-2019; 28-08-2019; 16-

10-2019; 13-11-2020; 20-11-2020; 25-11-2020; 01-12-2020; 08-12-2020.  

The track side has a dense tree coverage in the summertime and early autumn, the trees 

lost most of their leaves by the end of November, hence a sparse tree coverage into the 

winter (as shown in Figures 4.1b and 4.1c). The path of measurements is depicted by the 

red line. 
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(a) 

       (b) 
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(c) 

(d) 

Figure 4. 1: (a) Aerial view of Track at Butterley, “red line” showing measurement path 

[59];,(b) Aerial view of track at Wirksworth, “red line” showing measurement path [60]; (c) 

Aerial view of track at Idridgehay, “red line” showing measurement path and (d) Aerial view 

of track at Darley Dale, “red line” showing measurement path [61] 

The track sections that were measured were not located near the road (seen in Figure 

4.1b). The rail tracks were still in use in 2019 (date of track visit), which meant the 

railhead was relatively clean with little oxidation. However, visits in 2020 (during the 

COVID-19 pandemic) meant the track was less used than normal and had a visible layer 

of oxides on the railhead. The EVR lines were not operational during the lockdown, they 

only had a few operational trains in a 9-month period, used to ‘warm up’ the trains and 

for routine maintenance checks. 
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4.2.3 DARLEY DALE, Derbyshire (Peak Rail), UK: 

Data was collected from this site on the following dates: 02-10-2019 and 08-11-2019. 

The track side had sparse tree coverage at the time of the visits, the trees hung over very 

little of the track. There was tree shadow being cast over a section of tracks resulting in 

protection from the sun, and likely less heat exposure during the day. The path of 

measurements on the track (depicted by the red line) is located alongside a low traffic 

road, seen in Figure 4.1d.  

4.3 METHODOLOGY  

The approach used for the field work has been categorised into: 

• Equipment used for measurements, 

• Measurement plans and 

• Measurement procedures. 

4.3.1 EQUIPMENT USED FOR MEASUREMENTS 

PENDULUM TRIBOMETER 

The pendulum tribometer (see Figure 4.2b) is a portable friction measurement tool and 

is classified as a skid resistance slider tribometer. This pendulum tribometer was 

originally created as a “Slip resistance meter/Pendulum tribometer” which functioned as 

a measurement tool for slip resistance levels on different type of floors/pedestrian 

surfaces and was used in slip incidents report [37, 62]. Lewis et al. successfully modified 

a pendulum tribometer to a tool for measuring railhead friction as the tool functions on a 

similar principle on which the Charpy impact test functions, which is an energy loss 

principle [37]. The friction reading is taken when the rubber pad (d) on the 

swing/pendulum arm head strikes the test material in the case the railhead, the contact 

produces friction consequently producing an energy loss (Pendulum test value) which is 

measured on the scale (a), as seen in Figure 4.2a. 

(a) 
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(b) 

(c) 

Figure 4. 2: (a) Pendulum tribometer schematics diagram, where a is the measurement 

scale; b is the pendulum arm pivot (with adjustable height); c is the pendulum arm; d is the 

rubber pad; e is carriage handle; f is the levelling screw; g is the Pendulum arm head [62]; 

(b) Fully labelled diagram of the pendulum tribometer and (c) Conversion of Skid resistance 

to CoF measured by the Tribometer Train [34] 

 

The choice of rubber slider used on the pendulum tribometer was the 96-rubber slider 

(Four-s rubber). It was selected because of its hardness, which produced friction levels 

similar to other existing test methods. The length of contact between the rubber pad and 

the test surface (railhead) , which is 127mm, was used to derive a formula used to convert 

the Pendulum test value (PTV) to the friction coefficient, µ [37]. The equation given as; 

y=195.45x 

R2= 0.9313 
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(
110

𝑃𝑇𝑉
−

1

3
)

−1

 (4.1) 

Equation 4.1 was not used for conversion as the pendulum tribometer does not give an 

accurate representation of the wheel/rail interface contact pressure as it uses a rubber 

pad to strike a section of the railhead, as discussed in the literature review. However, 

RSSB guidance on low adhesion friction measurements [34] reports work comparing the 

friction values obtained from a pendulum tribometer and the British Railway Research 

(BRR) Trib. Train at the same point on track at different conditions. The comparison 

graph shows a linear trend line fit (see Figure 4.2c), and this showed a 93% confidence 

level from the R^2value. This can be used to convert between pendulum measurements 

and wheel/rail contact friction. 

Hence, 𝑥 =
𝑦

195.45
  was used for the conversion of PTV to CoF 

where: x is the CoF, and y is the PTV. 

Giving the final equation in this form: 

𝜇 =
𝑃𝑇𝑉

195.45
 (4.2) 

The pendulum tribometer is used alongside a platform, that is a wooden rail mount 

pictured in Figure 4.4, which was designed to attach the pendulum tribometer to the rail 

and to keep it in a stable position while carrying out the tests. The platform is a three-

point structure as seen in Figure 4.4, two of the points or slots in the case are placed on 

the track while the third point which is at the rear rests on the sleeper or ground. The 

third point can be adjusted with a screw to match the height of the rail [62]. 

THICKNESS GAUGE 

Eddy current thickness gauge- A FN-Evo Paint gauge (see Figure 4.3a) was used to 

measure the thickness of contaminant layer on the railhead, as the name implies. The tool 

uses a ferromagnetic probe to measure contaminants or coatings found at the top of a 

steel/ferrous base material. The calibration of the tool is done by checking the zero 

reading on the manufacturer supplied ferromagnetic base plate. According to the RSSB 

[34] in the presence of a black film (leaf layer) on the measuring surface, an average 

reading of 42-44 µm is expected. Measurements were taken 5 times on different spots in 

very close proximity to each other on each measurement points on the track to account 

for thickness variation and to ensure repeatability of the measurement. 
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(a) 

(b) 

(c) 

Figure 4. 3: (a) Thickness gauge; (b) Infrared thermometer; (c) Go Pro camera 

 

INFRA-RED THERMOMETER 

A RS-8662 dual laser thermometer (see Figure 4.3b) was used to take the railhead 

temperature, air temperature, dewpoint and relative humidity level. 
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CAMERA 

A Go-Pro Hero4 and Go-Pro Hero8 (see Figure 4.3c) was used to take railhead and 

forward-facing images. 

4.3.2 MEASUREMENT PLANS 

The same measurement plans were used at each location because similar sets of data 

were collected with the same equipment. 

At each location a target minimum of 8 data points was set for the visit, in order to give 

broad picture of the railhead condition along the track. 

The following precautionary measures were taken at all locations before and while using 

the pendulum tribometer [34, 63] 

1. All necessary Personal Protective Equipment were worn while working with on 

the rail track. 

2. Social distancing between colleagues was observed on the track side to prevent 

spread of COVID-19. 

3. Commonly touched on the equipment was cleaned regularly to also help prevent 

the spread of COVID-19  

4. The manual for the Stanley Morgan Pendulum tribometer was consulted for 

proper set up and use of the equipment. 

5. It was ensured the pendulum counter was set to zero before every measurement 

was taken. 

6. Whilst using the pendulum tribometer to take friction readings, all forms of 

interference with the swing/pendulum arm and the balance of the stand was 

avoided. 

7. The rubber slider was cleaned before the start of measurement to prevent 

contamination. 

8. The peak displacement value was monitored on the return swing to ensure the 

value was not altered.  

9. It was ensured that the swing/pendulum arm head mechanism was firmly 

clamped after lowering or raising it, to keep it in a safe position. 

4.3.3 MEASUREMENT PROCEDURES 

The following procedures below were followed when using the pendulum tribometer to 

take friction readings according to the RSSB (2008) [34] and BS 7976-2:2002+A1:2013 

[63] guidelines. 
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PRE-FRICTION MEASUREMENT STEP 

1. The Pendulum tribometer was visually inspected for damages or abnormalities 

before assembling it in accordance with the user manual. 

2. The Infrared thermometer was used to measure and record the relative humidity, 

railhead and air temperature. This step was done before carrying out any test on 

the railhead, because the presence of foreign objects (tribometer and mount) on 

the rail surface would alter the original railhead temperature. 

3. The thickness gauge was used to measure the thickness of contaminants, if there 

was any present. 

4. The track information was recorded and adapted front facing images were taken. 

5. The wooden mount was placed on the rail, using the three points and it was 

secured with a rear screw to the sleepers. 

6. The pendulum tribometer was set on the wooden mount, over the railhead.  

7. The swing/pendulum arm head was clamped securely in the spring-loaded 

release mechanism. 

8. The Go Pro camera was clamped on the pendulum frame to take the railhead 

image. After the image was taken, the GoPro was detached as it will be an 

obstruction for the swing/pendulum arm movement. 

9. With the release mechanism engaged by the swing/pendulum arm, the base of the 

pendulum tribometer was set to level using the three levelling screws and the 

spirit level found on the base frame. 

10. The fittings of each part of the pendulum tribometer were checked by swinging 

the pendulum arm for any loose fits or potential damages. 

11. The rubber slider was checked for wear and damages. 

12. The zero setting was checked and adjusted if needed. 

13. The contact length between the rubber pad and the railhead was set to 

approximately 127mm [36, 37] 

FRICTION MEASUREMENT STEP 

1. It is expected that a reference measurement should be made on an emery paper 

to check the calibration of the tool (the slider rubber pad specifically). This was 

not implemented in the track testing because the emery paper was unavailable 

during testing time. 

2. The swing/pendulum arm was placed in the release mechanism and the pointer 

was brought to its starting position see Figure 4.4 
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Figure 4. 4: Pendulum set in the start position for friction measurement 

3. The swing/pendulum arm was released striking over the railhead position of 

interest, and it was caught on return before the slider struck the railhead, see 

Figure 4.5. 

 

Figure 4. 5: Pendulum arm head striking the railhead (left) and pendulum arm caught 

before return (right) 

4. The swing/pendulum arm handle was lifted to ensure the slider pad would not 

touch the railhead when returning to its release position, hence not altering the 

reading taken previously. 

5. The reading was recorded on data sheet designed specifically for these data 

collection (data sheet shown in appendix A-1). 
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6. Steps 3-5 were repeated 7 more times on the same position on the railhead to 

ensure repeatability of the readings. (BS 7976-2:2002+A1:2013 recommended 

recording the friction measurements 8 times per points [63]) 

7. The whole process of the pre-friction measurement and friction measurement 

steps was repeated for each selected point on the track. 

4.4 RESULTS & DISCUSSION  

The railhead temperature (oC), Relative Humidity (%), and railhead friction (µ/mu) 

recorded from each site were collated for each measurement point (per day) to help 

understand their relationships. The µ data was plotted on the y-axis as the dependent 

variable while the RH was plotted on the x-axis and railhead temperature was 

represented on a colour map as independent variables, enabling visualization of effects 

of RH and railhead temperature on µ. 

Not all the data plots from Butterley, Wirksworth and Idridgehay have not been included 

individually, to avoid repetition. The omitted graphs have been included in Appendix A-

2. 

4.4.1 WIRKSWORTH AND IDRIDGEHAY 

RESULTS 

Figures 4.6a through to 4.6j are plots of the resulting measurements and railhead images 

taken at Wirksworth and Idridgehay. These figures generally show the effects of high 

relative humidity in conjunction with railhead temperature on the railhead µ. The 

independent effect the relative humidity can have on the railhead µ can also be seen. 

Figure 4.6a shows a temperature range between 15.6°C – 16.9°C and a RH ranging 

between 88.5% - 97% with µ ranging between 0.09 – 0.16 for Wirksworth. Data on the 

same date from Idridgehay shown in Figure 4.6b, shows a slightly higher temperature 

range of 17.25°C – 19.0°C and RH of 97% - 100% with µ ranging between 0.08-0.17 for a 

wet day. 

 

Figure 4. 6: (a) µ against relative humidity with a colour map representing railhead 

temperature for Wirksworth on 14-08-2019 and (b) µ against relative humidity with a 

colour map representing railhead temperature for Idridgehay on 14-08-2019 
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Figure 4.7a is a plot of the data from Idridgehay of artificially wetted railhead and the 

natural railhead state, while Figure 4.7b shows railhead image samples of both railhead 

conditions. The µ ranged from 0.11 – 0.33 with railhead temperatures of 4.2oC – 5.0oC and 

RH ranges of 71% - 79%.  

(a) 

(b) 

Figure 4. 7: (a) Plot of µ against relative humidity with a colour map representing railhead 

temperature for Idridgehay on 21-11-2019 and (b) Shaded dry railhead (left) and 

artificially wetted railhead (right) at Idridgehay 21-11-2019 

Wirksworth data collected on the same day is shown in Figure 4.8a with railhead 

temperatures ranging from 1.7oC to 4.0oC and Influence of RH between 53.5% to 71% 

resulting in a µ of 0.12 – 0.33. Figure 4.8b shows image samples of the railhead state: 

under dry conditions (left) and in a damp condition (right) highlighted in the plot shown 

in Figure 4.8a. 
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(a) 

(b) 

Figure 4. 8: (a) µ against relative humidity with a colour map representing railhead 

temperature for Wirksworth on 21-11-2019 and (b) Dry railhead (left) and damp railhead 

(right) from Wirksworth on 21-11-2019 

Figure 4.9a presents data collected on the same day from both sites with an upward 

progression of environmental conditions with RH ranging from 60% to 78% and 69% to 

80% with railhead temperatures of 3.6oC – 9.4oC and 7.8oC – 10.9oC for Wirksworth and 

Idridgehay respectively. The state of the railhead showing visible oxidation present at the 

time of data collection can be seen in Figure 4.9b. 

(a) 
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(b) 

Figure 4. 9: (a) µ against relative humidity with a colour map representing railhead 

temperature for Wirksworth (left) and Idridgehay (right) on 13-11-2020 and (b) Railhead 

image with visible oxidisation with µ of 0.33 from Wirksworth on 13-11-2020 

Table 4.1 summarises the data obtained from both locations on 20-11-20 and 08-12-20 

represented on Figures 4.10a and 4.10b. It shows the minimum and maximum values for 

µ, RH and railhead temperature for each site. 

(a) 

(b) 

Figure 4. 10: (a) µ against relative humidity with a colour map representing railhead 

temperature for Wirksworth (left) and Idridgehay (right) on 20-11-2020 and (b) µ against 

relative humidity with a colour map representing railhead temperature for Wirksworth 

(left) and Idridgehay (right) on 08-12-2020 
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Table 4. 1: Data from Wirksworth and Idridgehay on 20-11-20 and 08-12-20 

Date Location  µ (Min-Max) RH/% (Min-

Max) 

Railhead 

temp/C (Min-

Max) 

20/11/2020 Wirksworth 0.197 64.5 3.0 

  0.259 87.5 5.8 

20/11/2020 Idridgehay 0.199 88.4 6.3 

  0.259 93.7 7.8 

08/12/2020 Wirksworth 0.180 59.7 -0.9 

  0.232 93.6 2.4 

08/12/2020 Idridgehay 0.178 93.0 3.8 

  0.215 94.6 3.7 

 

DISCUSSION 

On 14-08-19 in Wirksworth, there was a small temperature range on the high side 

between 15.6°C – 16.9°C and a high RH ranging between 88.5% - 97% with weather 

conditions of heavy rainfall and wind, shown in Figure 4.6a. At this temperature the µ 

values recorded were lower than expected and this was due to the high RH levels caused 

by the rainfall and the moisture deposited on the railhead. The lowest µ of 0.097 was 

recorded at the highest temperature and highest RH, 16.9°C and 97% respectively.  

The µ trend at Idridgehay on 14-08-19, seen in Figure 4.6b, was like that of Wirksworth 

as they are located 3.7 miles apart with similar weather conditions. The lowest µ recorded 

was 0.081 under light rainfall with 100% RH and railhead temperature of 18.2oC. This µ 

value is very close to the ultra-low friction region. In-lab tests carried out in [64] on a ball-

on-disc apparatus supported that a low amount of moisture (such as light rainfall) 

brought about a significant drop in µ, while flooding conditions did not cause any 

noticeable drop in the µ values. 

Data presented in Figure 4.7a where two sections of the railhead were artificially wetted 

at Idridgehay on 21-11-2019 resulting in a lower µ of approximately 0.11 and 0.15 

compared to the recorded range of 0.30 - 0.33 on the dry railhead in overcast conditions, 

shown in Figure 4.7b. 

While at Wirksworth on the same day a µ of range 0.29 - 0.33 was recorded (shown in 

Figure 4.8a) because the railhead was dry with overcast conditions, but a section of the 

rail which was damp had a µ of approximately 0.12, shown on Figure 4.8b. The cause of 
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dampness at that point may be as result of its closeness to a field (vegetation) where 

condensate from the plants may been dispersed by wind. In locomotive tests conducted 

at the Vuz Velim test track which had a section alongside a farmland, a drop in traction 

force was noted on that section citing moisture or visible leaf fall as the cause [65]. Both 

the wet phenomenon (referring to when there is visible moisture on the railhead) and 

damp phenomenon (referring to when there a moderate moisture coverage on the 

railhead which may be visible or felt by touch) show the effect moisture presence on the 

railhead has on lowering the µ.  

The unused rail tracks caused by the Covid-19 lockdown, resulted in some parts of the 

railhead having slight oxidation which will have influenced the PTV readings and the µ 

values. 

On 13-11-20 in Wirksworth (Figure 4.9a), it was sunny and dry, hence the µ values 

recorded were in the intermediate range of µ between 0.258 - 0.327. A lower µ of 0.183 

was recorded on the same day, although not ultra-low but it was significantly lower than 

the range recorded for the weather conditions. This can be attributed to some visible 

oxidisation of the railhead at that point of measurement as seen in Figure 4.9b. Similar 

results were recorded in Idridgehay, shown on the right-hand of Figure 4.9a, without the 

oxidised railhead µ data noted at Wirksworth. 

From Table 4.1, on 20-11-20, the lowest µ ranges were recorded at a combination of low 

temperatures between 3°C - 3.9°C and RH of 78.5% - 80.6% at Wirksworth. The µ levels 

recorded were in the intermediate range corresponding with expected wet conditions.  

At Idridgehay a higher RH of 93.7% was recorded with a corresponding µ of 

approximately 0.24 within the intermediate µ range likely due to the temperature of 7.3°C 

not being low enough.  

Data collected on 08-12-20 showed µ values ranging between 0.180 - 0.219 and 0.178 - 

0.214 for Wirksworth and Idridgehay respectively. The µ values are similar to the 

expected values for wet railhead between the low and intermediate range for µ with high 

RH levels reaching 94.6% at Idridgehay and 93.6% at Wirksworth.  

The temperatures recorded at Wirksworth ranged between -0.9°C to 2.4°C with the 

lowest µ of 0.18 occurring at a temperature 0.10C and a RH of 67.3% under raining 

conditions. Similar trends were noted as Idridgehay as the temperature reduced, and the 

RH increase the µ decreased as seen in the plot in Figure 4.10b right-hand side. This 

suggests that lower temperatures also contribute to the occurrence of low adhesion. 

These results were recorded without physical contamination meaning the presence of 

contaminants will further increase the risk of low adhesion occurring. Research done on 

simulating ice formation on a railhead using a pin-on-disc tribometer showed that in the 

absence of ice/snow on the disc surface with a temperature range of temperature of 3°C 

to -15°C, had low temperature embrittlement acting which was the main cause of wear 

and increased friction. When an ice layer formed with the further temperature reduction 
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to - 25°C, the ice layer condensed forming a layer of moisture on the surface which caused 

the friction to drop, hence reducing wear [66]. The researchers also stated that with the 

addition of snow crystals to the pin-on-disc test with an increasing temperature from -

25°C to 3°C, the wear and friction levels reduced as the snow melted creating a lubricating 

layer of water. This again proves the importance of high humidity and the presence of 

moisture on the railhead in the creation of low adhesion in agreement with lab tests 

carried out by [64, 67], while the effect of snow/ice becomes dominant when it melts 

which can occur in reality by heat produced between the wheel/rail interface. 

4.4.2 BUTTERLEY 

RESULTS 

Figures 4.11a through to 4.11c show the resulting measurement plots and railhead 

images from Butterley and the independent effects of high humidity on the railhead 

friction are highlighted. 

(a) 

(b) 
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(c) 

Figure 4. 11: (a) µ against relative humidity with a colour map representing railhead 

temperature for Butterley on 22-10-2019; (b) Dry railhead under shade (left) and damp 

railhead under shade (right) at Butterley on 22-10-2019 and (c) µ against relative humidity 

with a colour map representing railhead temperature for Butterley on 01-10-2019 

Figure 4.11a shows that a noticeable cluster of lower µ values between 0.12-0.15 were 

seen on 22-10-2019, around the region of high RH 72% -7 6% and lower temperatures 

for late October 5°C-10°C compared to µ of 0.30-0.32 recorded in the region of higher 

temperature 10°C-16°C and lower RH 54%-62% where the railhead was visibly, dry 

shown in Figure 4.10b. 

Figure 4.11c shows data collected 01-10-19, temperatures were in the range of 13.5°C – 

15°C combined with high RH of 70% - 90% due to drizzle at the time the measurements 

were taken. 

DISCUSSION 

Work done by researchers on a Mini-traction machine showed that there was a 

considerable decrease noticed in the µ to between 0.1 – 0.15 with the rough specimen 

used when submerged in water of 5oC compared the a µ of approximately 0.20 for water 

at 20oC [68]. Although this experiment does not give a representation of the field 

conditions, it supports the occurrence of lower µ under reduced temperature. Lower µ 

was recorded in a shaded and damp section of the track. It was noticed that there was a 

temperature drop in the region (comprised of four data points circled in black) of the 

lowest µ which is the right conditions for dew formation where warmer temperatures 

allow for moisture to be held in the air and a drop in the temperature (as seen on the 

graph in Figure 4.11a) releases the moisture as dew [69]. This accounts for the higher RH 

reading in that region. While the higher µ values were recorded on a dry section of the 

track.  

A µ of 0.16 on the plot was recorded at a medium RH of 62.2% and lower temperature of 

2°C, has shown that even at low temperatures the RH must be high before any significant 

drop in the µ value is recorded. At this point the moisture content on the railhead had 

reduced supported by the RH value recorded. 
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Although the temperatures recorded (13.5°C – 15°C) with high RH (70% - 90%) on 01-

10-19 (seen in Figure 4.11c) are not classified as low, the data from the plot shows that if 

the temperature were to have dropped further (on some points of the track) the friction 

would potentially have reduced. The data shows the µ reducing as the railhead 

temperature reduces with the high RH in the presence of moisture.  

The second lowest temperature recorded on the same date was 13.6°C with a RH of 

74.5% which accounted for the lowest µ of 0.125 recorded. This shows that low adhesion 

can occur in warmer temperatures and with different railhead contaminants under the 

right conditions, especially high RH on the railhead. 

4.4.3 DARLEY DALE 

RESULTS 

Figure 4.12a shows µ readings measuring within a temperature range of 9°C - 16°C with 

low RH. A standout µ of 0.13 compared to range 0.22 – 0.38 was recorded, shown circled 

on the image, the railhead image for the standout reading can be seen in Figure 4.12b 

showing significant rust contamination. 

(a) 

(b) 

Figure 4. 12: (a) µ against relative humidity with a colour map representing railhead 

temperature for Darley Dale on 02-10-2019; (b) Corresponding railhead image for the 

Darley Dale 𝜇 of 0.13 
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Measurements taken under shaded and sunny conditions were recorded in Figure 4.13a 

at a temperature range of 7.5°C – 18.5°C and RH range of 50%-68%. Dry railhead 

conditions yielded a µ of 0.28 – 0.35, a sample of the dry sunny railhead can be seen in 

the right-hand image of Figure 4.13b. A low µ of 0.13 was recorded under shaded 

conditions with dew present as seen in Figure 4.13b (left). 

(a) 

(b) 

Figure 4. 13: (a) µ against relative humidity with a colour map representing railhead 

temperature for Darley Dale on 08-10-2019 and (b) Railhead with dew present (left) and 

railhead with exposure to the sun (right) at Darley Dale on 08-10-2019 

DISCUSSION 

The highest RH recorded on 02-10-2019 at Darley Dale of 64.5% with a temperature of 

11.7°C produced the lowest µ of approximately 0.13, shown in Figure 4.12a. Ideally, it is 

expected that the µ values should all be in the intermediate region as the railhead 

conditions were dry with a combination of sunny and shade effects, but the lower µ 

reading stood out which was possibly caused by contamination of the railhead at that 

point, which is very likely as a patch of grease was noticed on the railhead shown in Figure 

4.12b. The temperature variation was caused by the transition to shady environment 

from sunny environment. Shade and track orientation causes a drop in railhead 

temperature [70]. 

On 08-10-2019, similar trends were noted as on the previous visit with similar weather 

conditions. Although a lower µ of 0.13 was recorded within the medium RH range of 59.7 
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and railhead temperature of 8.7°C (see Figure 4.13a). The presence of dew due to the 

drop in the temperature (this can promote the “wet-rail” phenomenon) on the rail section 

explains the drop in µ as the presence of moisture contributes to the reduced friction 

value on the railhead if mixed with oxides, which were clearly present here shown in 

Figure 4.13b [30]. 

4.5 SALISBURY DATA COLLECTION 

Following the train crash in Salisbury Tunnel Junction, UK on 31 October 2021 when a 

South Western passenger train travelling from London Waterloo to Honiton crashed into 

another passenger train operated by Great Western travelling from Portsmouth Harbour 

to Bristol Temple Meads, an opportunity arose to test/measure the railhead at the site of 

the collision for low adhesion [71]. 

(a) 

(b) 
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(c) 

Figure 4. 14: (a) Ariel image of the crash site at Salisbury Tunnel [71]; (b) Examples of black 

leaf layer present on the railhead; (c) ) µ against relative humidity with a colour map 

representing railhead temperature for Salisbury Tunnel Junction 03-11-21 

The site of the collision (see Figure 4.14a) appears to have a dense leaf coverage over the 

rail tracks and leaf contamination/low adhesion becomes a suspect for the derailment 

and crash. A colleague at the university named Tom Butcher went down to the crash site 

on 3-11-21 to collect friction measurement using the Pendulum tribometer, 

environmental data and railhead images. The images collected (see Figure 4.14b for 

example) clearly showed that railhead was contaminated with black leaf layer and this 

was confirmed to cause of the crash by the Rail Accident Investigation Branch (RAIB) 

[71]. 

The data collected was analysed and plot as seen in Figure 4.14c to understand how and 

why the low adhesion occurred. Given the fact that the information data collected 

happened 3 days after the incident, the environment was not the same as the actual day 

and the railhead condition may have also changed over that period. 

The pendulum measurements were taken across 2 railhead conditions (natural state and 

artificially wet). All the µ measured for the artificially wet section was significantly lower 

at 0.12 - 0.34 than the natural state at 0.23 – 0.72 which appeared to be dry. Before the 

averages of the pendulum reading were calculated, the lowest µ recorded on the wetted 

rail section was 0.037 which falls in the category of ultra-low friction. This gives an 

indication of the possible µ that was experienced on the day of the incident. 

The Salisbury data set highlighted the occasional poor repeatability experienced in using 

the pendulum tribometer to measure contaminated railhead friction (see figures 4.15 (a-

c)). 
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(a)  (b) 

 (c) 

Figure 4. 15: Salisbury contaminated railhead time series plots showing the 8 individual 
Pendulum tests recorded before the standardised average was calculated. (a) Friction 
measurements for a dry contaminated railhead. (b) Friction measurements for an 
artificially wetted contaminated railhead. (c) Friction measurements for an artificially 
wetted contaminated railhead. 

Before the averages of the 8 pendulum friction readings were calculated, the individual 

frictions measured at the beginning is seen to convey the lowest and possibly the actual 

friction values of the rail head, especially for the wet railhead conditions shown in 

Figures 4.15 (b) and (c). The subsequent friction measurements are seen to increase 

because the pendulum tribometer’s rubber pad wipes off the contaminants and/or 

moisture on the railhead, hence altering the railhead conditions and consequently the 

friction value. 

4.6 GENERAL DISCUSSION 

These results have shown that relative humidity is an important factor in understanding 

low adhesion on the railhead as seen from the data presented in this work. The variation 

in the RH data makes the results unique, which is usually not considered in in-lab or 

controlled environment testing. Further work should be considered for including 

variations of RH levels for in-lab friction tests. 

The RH and temperature were effectively taking at every point of friction measurement 

because the pendulum tribometer is portable and can be moved easily from point to 

point. Compared to in-lab test methods, where the railhead temperature is independent 

of real weather elements. On the contrary, for on-field measurement techniques where 

the railhead conditions are dependent on the weather element, but the exact 

measurements of weather elements for a corresponding friction reading cannot be 
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determined because the exact point of measurements on the railhead is not easy to 

determine. 

From the analysis done we can infer that the railhead friction is dependent on the relative 

humidity, air and railhead temperature. Therefore, this informs that those 3 parameters 

are key variables that should be considered in the prediction of railhead friction. 

4.7 CONCLUSIONS 

• These data sets have successfully linked on-field weather elements to friction data, 

with the use of the British railway research train conversion factor. This shows 

that a friction predication tool can be design using the variables presented.   

• This data provides a better understanding of the variations that occur in the 

railhead friction because of the open system nature of the wheel/rail interface 

showing the unpredictable changes in environmental conditions.  

• At 75% RH and above low adhesion will be highly likely especially with the 

presence of moisture on the railhead, even with warmer temperatures. 

• A significant drop in the railhead temperature leading to a rise in RH is seen to be 

accompanied by a decrease in the adhesion level. This can be attributed to the 

formation of dew (light moisture) on the railhead.  

• Data collected from the Salisbury tunnel incident was very important in 

understanding the effects of the black leaf layers in combination with 

environmental effects. This will be very useful in creating a robust friction 

prediction tool. 
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CHAPTER FIVE  



83 
 

5. DEVELOPMENT OF FRICTION PREDICTION TOOL 

5.1 INTRODUCTION  
From Chapter 4, it was established that railhead friction is dependent on the railhead 

temperature, air temperature and relative humidity. In order, to design a railhead friction 

prediction software these variables are key to understanding adhesion and building an 

accurate model. From the resulting plots in section 3.4, it is obvious that the relationship 

between the variables is non-linear. Alongside these variables, railhead images will be 

included for contaminant identification and possible differentiation between wet-rail 

phenomenon at different temperature. It is therefore important to use a method that will 

account for these characteristics in building the prediction model. 

Table 5.1 shows the measurement uncertainties of the measurement equipment used in 

building the prediction model, which are the same as the equipment used in the analysis 

done in Chapter 4. 

Table 5. 1: Sensor’s measurement uncertainty 

S/N Sensor Instrument Condition Measured Measurement 

Uncertainty 

1 RS-88662 IR 

Thermometer 

Air and Rail Temperature ±3.50C at -500C - 

200C 

±1.50C at 200C – 

2600C 

2 RS-88662 IR 

Thermometer 

Relative Humidity ±1% 

3 Eddy current thickness 

gauge 

Layer thickness ±(2µm+3%) 

 

The sensors used in training the prediction model had a measurement uncertainty of 

±3.50C for the temperature range between -500C - 200C which is not a large variation. The 

results generated by the model will be impacted negatively by a sensor having higher 

uncertainty. 

 

5.2 METHODOLOGY 

5.2.1 GAUSSIAN PROCESS MODEL 

In order to establish a relationship between non-linearly related parameters such as 

friction, relative humidity and temperature with non-mathematical parameters in this 

case images, an appropriate statistical model has to be chosen. The relation of a set of 



84 
 

independent parameters to one or several dependent variables is done by a statistical 

model. For any statistical model the complexity of the model and dimensionality of the 

input space need to be balanced by the amount of data available for training [72]. More 

complex models, or models of high dimensional data require more training data. The 

most appropriate type of model will depend on the complexity of the relations present, 

how much data is available and what other information is required with the prediction. 

The Gaussian regression model is the most appropriate for the prediction operation 

because of its flexibility in representing a large variety of models having non-

mathematical functions, large amount of data and random variables.  

Given a finite set of input of 𝑥 = [𝑥(1), … , 𝑥(𝑛)]
⊺
 with corresponding function represented 

by a group of random variables 𝑦 = [𝑦(1), … , 𝑦(𝑛)]
⊺
 ; the Gaussian function can be used to 

define the jointly distributed random variables (y) as:℘(𝑦|𝑥) ~ exp (−
1

2
𝑦⊺ 𝛴−1𝑦) (5.1) 

Having a matrix 𝛴 presented by C the covariance function, where ‘cov’ stands for the 

covariance operator [73]: 

Σ𝑝𝑞 = 𝑐𝑜𝑣 (𝑦(𝑝), 𝑦(𝑞)) = 𝐶(𝑥(𝑝), 𝑥(𝑞)) (5.2) 

This concept is further explained in the work done by Brahim-Belhouari and Bermak [73]. 

The Gaussian process model framework used in this work is a pre-existing module on 

Scikit learn which is a python package. 

For image processing tasks, the size of the input is extremely large, for example, a one 

mega-pixel image with three colour channels requires a vector with three million 

elements to uniquely represent an input. In addition, the relations between individual 

pixel values and dependent variables of interest are often extremely complex, meaning 

that models need to be flexible, with many trainable parameters, to achieve good 

accuracy. 

For these tasks Convoluted Neural Networks (CNN) are typically used, these leverage the 

structure of image data by filtering the input image, first producing maps of primitive 

features such as edges, then progressively higher order features such as simple shapes or 

objects. The result of this filtering is then fed into a further `fully connected' network 

which is used to classify the input image. The network is trained by automatically 

adjusting the filter values and the weights in the fully connected network based on their 

derivative of the error, which can be found using the chain rule of calculus [74]. 

As the number of parameters in the filter kernels is high and many are needed to 

represent complex shapes, this process requires an enormous amount of data to avoid 

spurious correlations. This data requirement is a direct result of the high input 

dimensionality and the complexity of model, not a specific feature of neural networks. 

The resulting model consists of two distinct parts: a filtering network which takes an 

input image and produces “ratings” for each of a set of high-level features and a fully 
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connected network which links these features to image classes or other variables of 

interest. The model used is attached in Appendix B-1. 

5.2.2 IMAGE PROCESSING 

As stated in the chapter four, forward facing and railhead images were collected from a 

GoPro camera. The images collected have numerous features which may contain some 

noise, image processing was required to reduce the image features to only reflect relevant 

features for the friction prediction. The image processing techniques used for the 

forward-facing images varied from that of the railhead images due to the amount of data 

available. 

FORWARD FACING IMAGES PROCESSING 

The forward-facing images being processed are the ones collected from the field work 

described in chapter 4. The images were complex, containing many different objects and 

situations. As such traditional image processing would be impossible, while manual 

labelling would be too time consuming to scale to a full network system. Neural networks 

offer an attractive solution, but the small number of images makes directly training a 

network impossible. Instead, these images were augmented with a large set (~20,000) of 

visually similar forward-facing images scraped from various UK sources on the internet. 

The images used were open source, therefore there is no ethical violation or copyright 

infringement, in addition these set of forward-facing images were not included in the final 

package produced in this research. The resulting set provides a representative sample of 

images from UK networks and can be used to train a dimensionality reduction model 

which retains relevant distinguishing information from the images, while discarding 

information common to all images. 

An example image from the augmented set is shown in Figure 5.1. Many parts of these 

images are common for every image, these areas are removed by cropping the image into 

two sub-images as shown. The sub images were then resized to the correct input size for 

a pre-trained CNN.  
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Figure 5. 1: An example forward facing image showing the sub images extracted for further 

analysis 

These sub-images are passed through a CNN that has previously been trained on a large, 

labelled data set. In this study MobileNet V2 (which is a readily available open-source 

CNN) was used as it is suitable for high-speed use on low-cost devices. This network 

reduces the dimensionality of the data from millions of brightness values to a 2048 

element feature vector. The feature vector consists of features which have been trained 

to be useful for common image classification tasks. These are high level features, many of 

which relate to familiar concepts (e.g. a human face). 

Within this vector many features are irrelevant for our task or strongly correlated to each 

other. To further reduce the dimensionality, a Principal Components Analysis (PCA) was 

carried out on the feature vectors. The PCA simplifies the large data set into smaller set 

whilst preserving important patterns and trends. This finds orthogonal, linear 

combinations of parameters which contain the most variation for the data presented [75]. 

Examples from the extremes of the first three principal components are shown in Figure 

5.2. The values for the first 600 principal components were retained, these contained 

90% of the total variation in the image data. These components are high level, abstract 

representations of the data and are unlikely to be summarised well by a description. 
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Figure 5. 2: Images from the extremes of the first three principal components for the data 

set. Each pair of rows represents a principal component 

With this lower dimensionality and a large number of images an unsupervised 

classification tool can be used. This splits the data into groups which are similar to each 

other. There are many methods of completing this task, here we have used a self-

organising map (a type of neural network). The results of this classification are shown in 

Figure 5.3. 
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Figure 5. 3: Examples of the different groups of images found by the unsupervised learning 

technique. Columns are separate groups: grassland, trees, rural, urban 

The result of this process is a pair of coordinates, which place a railhead image on the 

map. The groups presented in this map have been made from a representative sample of 

forward-facing images. The codes used are attached in Appendix B-2. 

RAILHEAD IMAGES PROCESSING 

Similarly, to the forward-facing images railhead images were collected along with 

associated environmental and friction data as described in Chapter 4. Unlike the forward-

facing images there is no large source of representative railhead images. In addition, pre-

trained networks are typically trained on images which are very different from the 

railhead images and are unlikely to be useful. However, the dimensionality of the images 

must still be reduced before the images can be used (See Figure 5.4). To achieve this, 

features were extracted from the images using traditional image processing techniques. 

The traditional image processing techniques and tool kit used included an Edge detector 

for identifying the boundaries of the railhead in the image, Numpy for indexing 

operations to modify the pixel values of the image, SciKit-image that works alongside 

Numpy which was used for feature extractions and Pandas for reading the image file, 

directories from .csv [76]. 
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Figure 5. 4: Railhead Image before (left) and after (right) dimensionality reduction 

Before feature extraction, the images were normalised and the rail was located in the 

image, the rail was then cropped out for further processing. The features were chosen as 

features likely to be correlated with the friction present. These were: the number of black 

pixels in the image, the number of orange pixels in the image, the average colour of the 

railhead and the sum of the first derivatives in the along-rail and across-rail directions. 

The first derivatives are higher when many strong edges are present, such as when the 

rail is rough. These features could then be used directly in the prediction tool. The codes 

used are attached in Appendix B-3. 

5.2.3 PREDICTION TOOL BUILD WITH GP MODEL 

The forward-facing image map positions, railhead image features and sensor 

measurements from data collected between August 2019 to February 2020 were 

combined in a model to predict the railhead friction. A Gaussian process regression model 

was selected as it is flexible enough to accurately capture the relations which are likely to 

be present, and data efficient enough to be fitted well using a data set of this size. In 

addition, these models also provide an estimate of the error of the prediction given [77]. 

The predictor model code is attached in Appendix B-4. This mitigates the risk of incorrect 

estimation/prediction in new scenarios. Before fitting, all data have been linearly scaled 

to a unit scale, meaning that the highest value is scaled to 1 and the lowest value is scaled 

to 0. 

The Gaussian process is defined by a kernel function. This encodes the joint variability of 

the model’s parameters. This can be used to set prior information about how the data 

relate to each other, how much noise is present in the data and any underlying structure. 

The model consists of a summation of a constant kernel, a white noise kernel and a non-

linear kernel. Multiple non-linear kernels were fitted and the one producing the highest 

marginal likelihood (rational quadratic) was chosen. The constant kernel is set to 0.5 

while the further hyper-parameters of the model are set by optimisation during the fitting 

process. The optimisation aimed to achieve the maximum log marginal likelihood for the 

data given the model and a Gaussian error function. 
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5.3 RESULTS FROM TRAINING AND FIRST STEP VALIDATION THE FRICTION 

PREDICTION MODEL 
The first version of the prediction tool using the data from the Heritage railways (2019) 

discussed in Chapter 4 got the fit shown in Figure 5.5. The overall log likelihood of the 

model is 176.5 and the R2 value for the model, with this data is 0.97. In order to validate 

the system, data were left out of the fitting process and the prediction of the naïve model 

compared to the actual value at the left-out points. The first step in the validation process 

was to leave a single point of data out at a time. The prediction of the naïve model at the 

left-out point can both be compared to the true value at that point as shown in Figure 

5.6A and the prediction of the full model as shown on in Figure 5.6B. 

 

 

Figure 5. 5: Model predictions compared to the actual value at each point, points are 

coloured by their leverage. Data on both axes are normalised to a 0-1 scale 

These results show naïve models are still able to explain 96% of the variation in the data 

(coefficient of determination = 0.96). Additionally, the average change in prediction 

between the full model and the naïve models is only 3% of the measurement range. This 

shows that, in general, the model is not over-fitted to the data, and that trends fitted by 

the model are likely to be real. 

This process was extended to leaving groups of twelve points out. The models fitted 

leaving groups of twelve points out are compared to the true value at the left-out points 

in Figure 5.7A, this plot is for one set of groups which include the whole data set. These 

values are again compared to the result from the full model in Figure 5.7B. This process 

has been repeated for all possible groups of twelve points. 
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Figure 5. 6: Results of the leave one out validation (A) and a comparison of the full model to 

the naïve model for each point (B), with a histogram of the change between the naïve and 

full models. Data on both axes are normalised to a 0-1 scale 

 

 

Figure 5. 7: Results of the leave groups out validation for one set of groups (A) and a 

comparison of the full model to naïve models for each group (B). Data on both axes are 

normalised to a 0-1 scale 

As seen in Figures 5.6 and 5.7 for the leave one out validation, the mean change in 

prediction between the full model and the naive models was only 3% of the measurement 

range. The mean coefficient of determination for the left-out points was 0.96. 

While it is clear from Figure 5.6 and Figure 5.7A that several points are over leveraged, 

and not predicted well when left out, the majority of the points are not. In collecting these 

data, we have aimed to collect from locations and in conditions likely to cause low 

adhesion, as such much of the data are from low adhesion conditions and are well 

predicted when left out of the fitting process. 
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5.4 PREDICTION MODEL VALIDATION AND RETRAINING PROCESS  

5.4.1 FIRST VALIDATION 

Given the predictions and first step validation from the model was done by inputting data 

it had been previously trained on, it was important to test its accuracy on a new set of 

data to see what type of prediction it will give.  

Hence, a second validation was carried out. This was simply done by running images of 

already measured railhead friction through the tool and comparing the predicted friction 

to the measured friction for the corresponding image.  

Data collected from Wirksworth and Idridgehay on the Ecclesbourne Valley Railways 

(one of the Heritage Railways) between November to December 2020 described in 

chapter 4 was used because the tool had not been trained on those data set. 

The images and corresponding environmental data were run through the model, and it 

gave the predictions in terms of the Pendulum Test Value (PTV) shown in Figure 5.8. The 

plot was created using the established friction measurements that was taken in the field 

against the predicted friction to give a simple visual representation of the deviations in 

predicted data. 

 

Figure 5. 8: 1st Prediction results using Nov-Dec 2020 data with linear points representing 

the measured friction on the image to the right 

From the first view of the plot in Figure 5.8 it was seen that the model was under 

predicting the friction values for the Nov - Dec 2020 data set. The railhead images were 

referred back to understand what could have caused the underprediction, it was then 

noticed that the railhead conditions captured during the latter field visit were not 

representative of what that the prediction tool had been trained on based on the former 

field visit between Aug 2019 - Feb 2020. This may have been as result of the lack of train 

operation over the railhead during the latter data collection, creating a different railhead 

condition. 
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Asides for the railhead condition factor, the poor repeatability of results from the 

pendulum test rig, may have given wide variations in the measured data and making it 

harder to get a precise friction prediction. 

Another contributing factor could have been the lack of robust data for the training of the 

model, which is evident in absence of certain types of railhead conditions data. To solve 

this problem, the NN tool has to be continuously trained to adapt to the various types 

railhead conditions.. 

5.4.2 FIRST RETRAINING AND REVALIDATION THE FRICTION PREDICTION MODEL  

The first attempt of the model validation showed that was under predicting the friction 

due to the absence of similar data sample in data bank used to train. In order to improve 

the robustness of the tool, additional images and corresponding data will be used to 

retrain the model. In this case, the additional data will be that of Nov - Dec 2020 since it 

was confirm that it represented different railhead states in comparison to the original 

images the model was trained on. 

The following steps were taken to retrain the model: 

1. The original .csv data sheet used to train the model was updated to include the 

new dataset. 

2. The image file names were included in the data sheet with their file directory, so 

the program can locate them for the feature extraction process. The image format 

is preferably “.jpg”. 

3. The IMAGEFEATURES.ipnyb files (see Appendix B-5) was located in the prediction 

model folder.  

4. The image file directory in the python script was confirmed to ensure it matches 

the csv file, a name and location for the extracted csv file was assigned for it to be 

stored. IMAGEFEATURES.ipnyb was run to extract the image features, see Figure 

5.9. 

 

Figure 5. 9: An example of a row in the csv file containing the extracted image features. 

5. The image features properties were stored in a new csv file as assigned by the 

user. The csv file was then imported to the Gpfitting_MO.ipynb (regression model 

for the prediction, see Appendix B-6) which were the retraining takes place. 

6. The GPfitting_MO with updated Image analysis file was run, this generated an 

updated .pkl file. That is the model has been retrained.  
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7. The pkl file generated will be updated in the “predictor” folder, which generates 

the prediction. 

 

Figure 5. 10: Retrained regression model plot (left) original regression model plot (right) 

The regression model fitting obtained after the retraining and before the retraining is 

shown in Figure 5.10. The plot is presented in form of a normalized data on a scale of 0-

1. When the original model with an overall log-likelihood of 176.5 was compared to the 

retrained model with an overall log-likelihood of 257.46 it shows an improved fit for 

model. And from visual inspection of the plot an increase in the data cluster around the 

linear line representing more data with accurate prediction. 

The retrained model can now be employed to re-predict the friction for the same Nov – 

Dec 2020 data set. The re-validation will show the effects of retraining the prediction 

model as well as the importance of having robust bank for the model. 
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Figure 5. 11: Prediction results using Nov-Dec 2020 from the retrained model data with 

linear points representing the measured friction on the image to the right 

From Figure 5.11 the data correlates better with the linear line compared to the original 

prediction in Figure 5.8. There are some noticeable outliers on the plot which can traced 

backed to the original data sheet which was a result of anomalies in the pendulum 

tribometer measurements. With continuous training of the model the predictions will 

keep nearing a perfectly linear result, albeit may never be R2 = 1 or in fact close to 1 due 

to nature of model requiring a very large data set to function effectively and the poor 

repeatability of the pendulum tribometer result. 

 

5.4.3 SECOND RETRAINING OF THE FRICTION PREDICTION MODEL WITH LEAF LAYER 

DATA FROM SALISBURY 

It is important to include a variety of data for training of the prediction tool especially 

from in-field situation, to increase the robustness of the tool. The images (see Figure 5.12) 

collected at the scene of the collision showed heavily contaminated railhead with leaves 

and debris. Which was later determined to have caused low adhesion which caused a two 

passenger train collision [71]. 
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Figure 5. 12: Sample of railhead contamination recorded at the Salisbury 2021 incident 

Including such images/data in the data bank of the friction prediction model like this is 

of extreme importance in the implementation of the friction prediction tool as it can help 

to prevent such accidents.  

Friction measurements were also collected at the site alongside the images and 

environmental data as stated in section 4.5; therefore, it was possible to retrain it with 

this key data.  The same steps highlighted in previous section were followed and a new 

pkl file was generated. 

The 2nd retrained data had an overall log-likelihood of 298.69, giving an improved fit for 

the dataset.  

 

Figure 5. 13: Second retrained regression model with the leaf layers image from Salisbury 

The plot shown in Figure 5.13 has a denser concentration of data point around the linear 

line showing the retrained prediction precision is increasing. Hence, the model should be 
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able to recognise leaf layer images and make a prediction, although the prediction may 

not be very accurate as the model needs to be trained on a larger set of leaf layer images 

to improve the confidence in the model for that type of data. 

5.5 CONCLUSIONS 

• The Prediction model tool is fully capable of been trained to give accurate friction.   

• The prediction model has to be retrained as many times as possible to hold a 

sufficient variation of railhead conditions data to increase the confidence in its 

prediction and robustness of the tool’s use. 

• The retraining process is a continuous one and it is very dependent on the access 

to rail tracks to ensure different railhead conditions and friction data are collected 

to increase the model’s data bank. 

• The Pendulum tribometer is not the ideal friction measurement tool due to its 

poor repeatability noticed during the validation. 

• Model itself is doing what it is supposed to do shown in the increase of the log 

likelihood through the retraining process increasing the model’s fit for the data.  

Further testing should be done to determine how flexible it is to changes in the 

image format, basically an Image sensitivity test. 

• In summary the more the training with a wide variety of data the better the 

reliability of the prediction output. 
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CHAPTER SIX  
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6.  MODEL SENSITIVITY ANALYSIS 

6.1 INTRODUCTION  
The aim of model sensitivity analysis was to test the ability of the friction prediction 

model to process images under different conditions. The conditions being tested were: 

• Railhead distance (from the camera) 

• Railhead image orientation (vertically or horizontally placed) 

• Lighting 

 

Figure 6. 1: Original Image formats used in training the prediction tool  

The model was trained using a set-type of images (as described in section 5.2.2.2), as 

shown by the examples in Figure 6.1, which were taken in very controlled conditions to 

ensure consistency of orientation and distance from the camera to the railhead and the 

resolution was good as the images have been taken statically. As the step is made to take 

images on the move from a train where some of these factors may change, it is important 

to know what effect changing them has on the friction predictions if any. 

6.2 METHODOLOGY 

Tests were undertaken on seven separate days in laboratory conditions. The railhead 

used for the tests, shown in Figure 6.2, was shiny in appearance and had been previously 

used for tests on the Full Scale Linear-Tribometer hence the striations (wear scar) visible 

in the image. 

 

Figure 6. 2: Selected Rail section used for the sensitivity tests 
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The tests involved capturing input information for the friction prediction tool such as the 

railhead images with relative humidity, railhead and air temperatures under the stated 

conditions and recording corresponding friction measurements using the pendulum 

tribometer. The images and sensor data were processed by the model to give friction 

predictions. The resulting friction predictions were compared to the friction values 

recorded from the pendulum tribometer (converted using the BRR trib. train conversion 

factor [34]) to determine the correlation. 

Alongside this, different railhead conditions were simulated in the laboratory to 

determine if the prediction tool has been trained to recognise images depicting such 

conditions. These conditions included either a combination of or simply:  

• dry railhead,  

• clean (shiny) railhead, 

• wet railhead (achieved by spraying water on the railhead with a spray bottle), 

• reduced wetness on railhead (achieved by lightly wiping the wet railhead with a 

piece of blue roll), 

• oxidisation/rust (achieved by leaving the sprayed water over a period on the 

railhead). 

It should be noted that as the tool may not have been trained for the specific rail 

conditions used in these laboratory tests, the tool predictions were not necessarily 

expected to match the measured values. The critical aspect though was how the 

predictions changed as lighting, railhead distance and image orientation changed. 

Table 6.1 contains details of all the sensitivity tests carried out with corresponding 

images shown in Figures 6.5 – 6.27. 

6.2.1 RAILHEAD DISTANCE 

The railhead distance (distance between railhead and camera) was varied to determine 

if the prediction tool can accurately identify the railhead portion in an image from 

surrounding “clutter”, see Figure 6.3. It will also aid in identifying the errors that may be 

encountered because of camera positioning on the train. This was done simply by moving 

the camera closer or further away from the railhead and capturing the images. The 

friction was recorded using the pendulum after the images were taken, for the railhead 

state, and then compared to the friction predictions from the variations of images 

captured. 
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Figure 6. 3: Railhead image taken at a height of 1450mm (L), and the distance used for the 

prediction tool training (between 400mm-500mm from the railhead position) (R) 

Images captured in a horizontal orientation with approximately 400mm distance to the 

railhead were expected to give accurate results provided they were similar to previously 

trained data.  

Each image captured has a pixel count of 5184 by 3888, the predictor tool scales the 

image down to 250 by 1250 to create the focus on the railhead for further processing. 

With the predictor tool being trained using images at approximately 450mm away from 

the railhead, the image scaling focused on a “rectangle” cropped out of the centre of the 

image which is where the railhead should be. So, in the case of Figure 6.3 (L) about 40% 

of the railhead portion of the image will be present in the reduced scale image and 60% 

will be noise from surrounding features (this increase for vertical oriented images), 

which can either be the floor or the pendulum tribometer and its platform, while Figure 

6.3 (R) will have at least 90% of the railhead in the scaled down image window. 

Varying these distances will show if the image scaling factor is applicable for the different 

image formats. 

6.2.2 RAILHEAD IMAGE ORIENTATION 

As stated in the introduction the prediction tool was trained using set parameters such 

as the horizontal orientation in the railhead images. Images were taken in the vertical 

orientation to see if that will affect the prediction given (see Figure 6.4 for examples of 

the railhead image orientation). These images were taken along with the railhead 

distance images under the same railhead conditions (see Section 6.2.1). 
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Figure 6. 4: Vertical railhead image orientation (L) Horizontal railhead image orientation 

(R) 

The term ‘non-traditional’ railhead images will be used to refer to any railhead image 

format that differs from the original format used to train the prediction tool as shown in 

Figure 6.1. 

Note that all ‘non-traditional’ horizontal and vertical orientations images included below 

have been cropped to fit into the pages. Hence the distance of the railhead cannot be 

judged using the images below, but the prediction tool has been fed with the raw 

(uncropped) images (refer to Figure 6.3 for clearer view of the distances). 

6.2.3 VIDEO CAPTURE/ FREEZE FRAME IMAGES 

Later in the testing, video capturing of the railhead was included in the tests, with the aim 

of examining if/how well the prediction tool would process the freeze frame images from 

video capture resolutions. These images were not taken at high speed. They were in fact 

captured in a slow pan over the railhead using the GoPro camera while handheld. 

Therefore, this test will not account for variations experienced on a train in motion at 

either slow or high speed. The videos were taken in a horizontal and vertical orientation.  
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Table 6. 1: Full list of prediction tool sensitivity tests 

Test 

Date 

Test 

No. 

Railhead 

state/Preparation 

Air 

Temp, 

°C  

Relative 

Humidity, 

% 

Dew 

point, 

°C 

Rail 

Temp, 

°C 

Railhead 

Image 

Average 

measured µ 

(from 8 

repeats) 

Image orientation 

capture 

13-04-

22 

1 Unclean railhead, 

dry (that is the 

original state of 

the railhead)  

22.1 46.1 9.7 25.5 Figure 

6.5 

0.209 Horizontal 

Vertical 

 Cleaned with 

alcohol wipes. 

23.7 41.5 9.7 25.7 Figure 

6.6 

0.254 Horizontal 

Vertical  

 Cleaned with a 

wire brush. 

23.9 41.4 9.9 25.7 Figure 

6.7 

0.283 

 

Horizontal 

Vertical 

 Sprayed with 

water to simulate 

moisture 

presence and 

start the process 

of rusting. 

24.1 40.2 

  

9.7 24.9 Figure 

6.8 

0.084 

 

Horizontal 

Vertical 

14-04-

22 

2 Results from 

previous (day1) 

21.3 41.9 7.7 24.7 Figure 

6.9 

0.314 

 

Horizontal 

Vertical 
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wetting (dry 

state) 

 First spray of 

water 

21.8 40.2 7.7 25.2 Figure 

6.10 

0.098 

 

Horizontal 

Vertical 

 Second spray of 

water 

22.3 39 7.5 25.3 Figure 

6.11 

0.104 

 

Horizontal 

Vertical 

20-04-

22 

3 Rust day1 (1st 

appearance of 

oxidisation) 

22 58.2 13.2 25.7 Figure 

6.12 

0.338 Horizontal 

Vertical 

 Rust day1 and 

water 

23.1 57.4 14 26.1 Figure 

6.13 

0.170 Horizontal 

Vertical 

21-04-

22 

4 Rust day2 21.8 53.6 12.1 26.2 Figure 

6.14 

0.365 Horizontal 

Vertical 

 Rust day2 and 

water 

23.1 52.7 12.7 26.1 Figure 

6.15 

0.235 Horizontal 

Vertical 

 Rust day2 and 

reduced water 

23.5 50.4 12.5 26.7 Figure 

6.16 

0.221 Horizontal 

Vertical 
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26-04-

22 

5 Rust day3 20.4 42.9 7.3 23.8 Figure 

6.17 

0.340 Horizontal 

Vertical 

 Rust day3 and 

water 

21 42.6 7.9 23 Figure 

6.18 

0.217 Horizontal 

Vertical 

 Rust day3 and 

reduced water 

21.3 42.1 7.6 22.8 Figure 

6.19 

0.208 Horizontal 

Vertical 

04-05-

22 

6 Rust day4 21.9 65.9 15.1 25.5 Figure 

6.20 

0.459 Horizontal 

Vertical 

10-05-

22 

7 Rust day5 23.7 58.2 14.9 26.7 Figure 

6.22 

0.423 Horizontal 

Vertical 

 Rust day5 and 

water 

24.5 56.5 15.2 26.4 Figure 

6.23 

0.236 Horizontal 

Vertical 

 Rust day5 and 

reduced water 

25.1 56.5 15.9 27.4 Figure 

6.24 

0.222 Horizontal 

Vertical 

6&7 Freeze frame 

images 

    Figure 

6.21 & 

25-27 
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Figure 6. 5: Example of railhead images for 

uncleaned state. Horizontal with camera-

railhead distance ≈ 450mm distance (L) and 

vertical with camera-railhead distance 

≈1450mm (R) (13-04-22) 

 

Figure 6. 6: Example of railhead images for 

cleaned with alcohol wipe. Horizontal with 

camera-railhead distance ≈ 500mm (L) 

and vertical with camera-railhead distance 

≈ 900mm (R) (13-04-22) 

 

Figure 6. 7: Example of railhead images 

for cleaned with wire brush. Horizontal 

with camera-railhead distance ≈ 

1450mm (L) and vertical with camera-

railhead distance ≈ 1450mm (R) (13-

04-22) 

 

 

Figure 6. 8: Example of railhead images for 

water spray. Horizontal with camera-

 

Figure 6. 9: Example of railhead images for 

previous day wet. Horizontal with camera-

 

Figure 6. 10: Example of railhead 

images for 1st water spray. Horizontal 

with camera-railhead distance ≈ 

1450mm distance (L) and vertical with 
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railhead distance ≈ 900mm (L) and vertical 

with camera-railhead distance ≈ 450mm (R) 

(13-04-22) 

railhead distance ≈ 1450mm distance (L) 

and vertical with camera-railhead distance 

≈ 1000mm (R) (14-04-22) 

 

camera-railhead distance ≈ 1200mm 

(R) (14-04-22) 

 

  

Figure 6. 11: Example of railhead images for 

2nd water spray. Horizontal with camera-

railhead distance ≈ 1450mm distance (L) 

and vertical with camera-railhead distance 

≈600mm (R) (14-04-22) 

 

 

Figure 6. 12: Example of railhead images for 

1st appearance of rust. Horizontal with 

camera-railhead distance ≈ 1450mm 

distance (L) and vertical with camera-

railhead distance ≈ 900mm (R) (20-04-22) 

 

 

Figure 6. 13: Example of railhead 

images for rust1 + water. Horizontal 

with camera-railhead distance ≈ 

1000mm distance (L) and vertical with 

camera-railhead distance ≈1000mm 

(R) (20-04-22) 
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Figure 6. 14: Example of railhead images for 

rust day2. Horizontal with camera-railhead 

distance ≈ 300mm distance (L) and vertical 

with camera-railhead distance ≈ 700mm (R) 

(21-04-22) 

 

 

Figure 6. 15: Example of railhead images for 

rust day2 + water. Horizontal with camera-

railhead distance ≈ 450mm distance (L) 

and vertical with camera-railhead distance 

≈ 700mm (R) (21-04-22) 

 

 

Figure 6. 16: Example of railhead 

images for rust day2 +2nd water spray. 

Horizontal with camera-railhead 

distance ≈ 450mm distance (L) and 

vertical with camera-railhead distance 

≈1000mm (R) (21-04-22) 

 

 
 

 

Figure 6. 19: Example of railhead 

images for rust day3 +reduced water 

spray. Horizontal with camera-railhead 
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Figure 6. 17: Example of railhead images for 

rust day3. Horizontal with camera-railhead 

distance ≈ 450mm distance (L) and vertical 

with camera-railhead distance ≈ 900mm 

(R) (26-04-22) 

 

Figure 6. 18: Example of railhead images for 

rust day3 + water spray. Horizontal with 

camera-railhead distance ≈ 450mm 

distance (L) and vertical with camera-

railhead distance ≈450mm (R) (26-04-22) 

 

distance ≈ 400mm distance (L) and 

vertical with camera-railhead distance 

≈ 500mm (R) (26-04-22) 

 

 

Figure 6. 20: Example of railhead images for 

rust day4. Horizontal with camera-railhead 

distance ≈ 1450mm distance (L) and vertical 

with camera-railhead distance ≈450mm (R) 

format (04-05-22) 

 

 

Figure 6. 21: Freeze frame images captures 

from railhead videos for rust day4 (04-05-

22) 

 

 

Figure 6. 22: Example of railhead 

images for rust day5. Horizontal with 

camera-railhead distance ≈ 450mm 

distance (L) and vertical with camera-

railhead distance ≈1000mm (R) (10-

05-22) 

 



110 
 

 

Figure 6. 23: Example of railhead images for 

rust day5 + water spray. Horizontal with 

camera-railhead distance ≈ 1450mm 

distance (L) and vertical with camera-

railhead distance ≈1000mm (R) (10-05-22) 

 

 

Figure 6. 24: Example of railhead images for 

rust day5 + reduced water spray. Horizontal 

with camera-railhead distance ≈ 450mm 

distance (L) and vertical with camera-

railhead distance ≈1000mm (R) (10-05-22) 

 

 

 

Figure 6. 25: Freeze frame images captures 

from railhead videos for rust day5 (10-05-

22) 

 

 

Figure 6. 26: Freeze frame images captures 

from railhead videos for rust day5 + water 

spray (10-05-22) 

 

Figure 6. 27: Freeze frame images 

captures from railhead videos for rust 

day5 + water spray (10-05-22) 
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6.3 RESULTS 

The data collected from the tests for all image formats used, for each railhead condition 

was processed using to the AI tool to make a friction prediction and then compared to the 

measured friction. Each railhead condition captured had images taken in the horizontal 

and vertical orientation with camera-railhead distance varied for both orientations. 

The results were then classified into similar railhead conditions in order to easily identify 

what type of conditions the prediction has been trained on and which type has to be 

considered for future training. 

For the purpose of the results graphs in this section and following discussion, the camera-

railhead distances have been summarised as:  

• Very close ≤ 350mm 

• Close 351mm - 650mm 

• Midway 651mm - 1000mm 

• Far > 1000mm 

The distance and orientation of the data points have been highlighted on the graphs using 

the following keys: 

 Very close Close Midway Far 

Horizontal     

Vertical     

The ideal form of image used in the prediction tool is the horizontal-close image (  ). 

Figure 6.28 shows the predicted versus measured friction for all the tests carried out. It 

clearly shows the areas where the prediction tool values are accurately clustered around 

the line indicating actual = predicted, whereas the points farther away from the linear 

line indicated inaccurate predictions. The railhead conditions with insufficient training 

will be narrowed down in the results subsections. 

Orientation 

Distance 
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Figure 6. 28: All sensitivity tests results 

 

Figure 6. 29: Difference in Ideal image and mean non-ideal image predicted frictions 

In order to quantify the spread between data collected for the same conditions, the 

prediction from the ideal form of railhead image marked as  has been compared to the 

mean value of the other variations of railhead image capture. This summary of this 

analysis is shown in Figure 6.29. The difference shows if most of the non-ideal image 

predicted data is under predicting (positive) or over predicting (negative) when 

compared to the ideal image, therefore giving a statistical insight into the variations. 

Generally, the closer the variation is to 0, the lower the spread in the data. 
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6.3.1 DRY RAILHEAD CONDITIONS 

Four dry railhead states were tested on day 1 and 2 (see Table 6.1) and images were taken 

in the formats stated in the methodology.  

The plot in Figure 6.30 shows the comparison of the predicted railhead friction to the 

measured friction, with an actual = predicted line to judge the accuracy of the tool. 

The results recorded from the day 1 cleaned (with alcohol wipes) railhead had near 

accurate predictions while the other 3 conditions were not very accurate.  

 

Figure 6. 30: Sensitivity test results for Dry Railhead Day 1 & 2 

In general, the horizontal-close image yielded results closer to the measured friction 

which is as expected with exception of day 1 wire brushed condition where the prediction 

of the vertical-far image of 0.271 was closer to the measured friction of 0.283 while the 

horizontal-close images had predictions closer to 0.26. As stated earlier the prediction 

tool has not been trained on these data sets, but the tool analyses the railhead by 

categorising the colours. So, in a situation of farther camera-railhead distances, the 

model’s reduced scale image may include the rail foot and/or surrounding sections such 

as a floor in the case here. The floor in the image is brown (see Figure 6.4 for reference) 

and the tool will process it as a state such as oxidisation. This is expected to be a recurring 

factor where predictions look more accurate for images taken at a further distance from 

the railhead. 

6.3.2 WET RAILHEAD CONDITIONS 

Three different wet railhead conditions were tested on day 1 and 2 shown in Table 6.1. 

The plot in Figure 6.31 shows the comparison of the predicted railhead friction to the 

measured friction, with an actual = predicted line to judge the accuracy of the tool. From 

first glance all the results for this railhead condition were over predicted by the tool. This 
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can partly be attributed to the presentation of moisture on the railhead as not being 

representative of what appears in the field captured images where generally the rail was 

very wet. 

 

Figure 6. 31: Sensitivity test results for Wet Railhead Day 1 & 2 

Looking at Figure 6.31, images taken with same orientation and a close camera-railhead 

distance (that is green squares or ovals), but with repeats have yielded similar 

predictions. Whereas the inclusion of varied images has significantly increased the 

differences from the mean value in comparison to that of the dry railhead conditions, they 

have image differences in ranging from 0.0105 to 0.0129.  

This once again is a common characteristic, more noticeable variations in the predicted 

friction are noticed when the distance or orientation is changed due to the alteration 

occurring in the reduced scale image position.  

6.3.3 OXIDISED RAILHEAD CONDITIONS 

The last spray of water on the railhead done on days 1 and 2 were left on to encourage 

occurrence of oxidisation to vary the railhead conditions. The first appearance of 

oxidisation was recorded on the third day of testing seen in Figure 6.12.  

Following the appearance of the first sign of oxidisation, the process of leaving water on 

the railhead was continued to produce more rust as shown in Table 6.1 and in Figures 

6.14, 6.17, 6.20 & 6.22. The results showing the comparison of the predicted railhead 

friction to the measured friction from the 5 oxidisation states recorded over five test day 

is shown in Figure 6.32. 

The results on Figure 6.32 (a) and (b) show the prediction tool under predicted the 

friction for all 5 railhead conditions. The reasons may also be attributed to the 

presentation of oxidisation on the railhead being different to how it actually appeared in 

the field where the original measurements were carried out. 
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The images taken in similar orientations and distances once again produced very similar 

results for these tests. The highest range recorded on rust day3 for horizontal-close 

images was 0.005, with an image difference mean value for the test day at -0.00676. 

Showing an over prediction in the mean variation compared to the ideal image. Although 

it has lower spread in comparison to the wet results, the different image orientations 

have played a significant role in the variation noticed.  

 

 Figure 6. 32: (a) Sensitivity test results for different levels of railhead oxidation (b)Increased 

scale plot for better visualisation of data point 

The same is true for all dry oxidised test, with “rust day5” having a near zero variation at 

6.7 × 10−5. 

6.3.4 OXIDISED + WET RAILHEAD CONDITIONS 

After recording the data set for the oxidised conditions, water was sprayed on the 

railhead to simulate moisture on the railhead (as stated in Table 6.1).  
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The images collected from this railhead condition are shown in Figures 6.13, 6.15, 6.18 & 

6.23 were plot shown in Figure 6.33. This was done to show the comparison of the 

predicted railhead friction to the measured friction with an actual = predicted line to help 

judge the accuracy.  

 

Figure 6. 33: Sensitivity test results for different levels of railhead oxidation+ water 

The results shown in Figure 6.33 have a mix of under prediction and more of over 

prediction for the different test days. At the same time the tool made 3 accurate 

predictions as seen for Rust+water “day2”, “day3” and “day5”, although with differences 

to mean non-ideal image prediction of -0.00635, -0.00496 and -0.0094 respectively. The 

variation noticed in the prediction on those days were because of the non-traditional 

images and once again the misrepresentation of those conditions recreated in the 

laboratory. The results once again showed a majority of horizontal-close image gave 

predictions closer to the measured friction whereas the prediction for “rust+water day1” 

had a similar scenario as that of dry railhead conditions for the same reasons explained 

for those tests. 

6.3.5 OXIDISED + REDUCED WET RAILHEAD CONDITIONS 

This dataset was collected on the same test days as section 6.3.4 except Rust day1. The 

difference is that the water spray on the railhead was lightly wiped off to try to simulate 

a more realistic wet-rail appearance as seen in Figures 6.16, 6.19 & 6.24. 

Figure 6.34 shows the comparison of the predicted railhead friction to the measured 

friction with an actual = predicted line from the 3 oxidised+reduced wet railhead states 

recorded over 3 test days.  
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Figure 6. 34: Sensitivity test results for different levels of railhead oxidation+ reduced water 

The results are similar to that of the “oxidised+wet railhead” condition and the variation 

can be accounted for by similar reasons. 

6.3.6 Freeze Frame images. 

The freeze frame images captured from videos taken on the last 2 days of testing, showed 

that taking such images from videos is viable, but only at handheld speed. The video was 

slow enough to allow paused clips in the video to show undistorted images with good 

enough resolution for the to the tool to process. 

The images extracted from each video were more than the still images captured which it 

makes tricky to present in graphical form. The results have been present in a tabular form 

with the prediction from still images and video freeze frame images in separate column. 

The difference in the freeze frame prediction and the image prediction was captured in 

the third column of table 6.2 by subtracting the video freeze frame prediction from the 

average of the image prediction in the second the column for each condition, showing 

how the prediction of the  freeze frame images varied to that of the already used still 

image capture. 

Table 6. 2: Comparison of prediction results from still images and freeze frame images. 

Railhead 

Condition 

Video Freeze Frame 

Image Predictions 

Images Friction 

Predictions 

Difference (Image-

Freeze frame) 

Predictions 

Rust Day4 

 

0.290 0.284 -0.006 

0.294 0.282 -0.010 

0.295 0.277 -0.011 
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0.302 0.293 -0.018 

0.297  -0.013 

0.295  -0.011 

0.294  -0.010 

0.296  -0.012 

0.296  -0.012 

0.297 
 

-0.013 

0.295 
 

-0.011 

0.293 
 

-0.009 

0.294 
 

-0.010 

Rust Day5 0.286 0.301 0.012 

0.286 0.298 0.012 

0.258 0.300 0.040 

0.256 0.294 0.042 

0.283 0.297 0.015 

0.286 
 

0.012 

0.290 
 

0.008 

0.295 
 

0.003 

0.295 
 

0.003 

0.298 
 

0 

0.297 
 

0.001 

0.297 
 

0.001 

0.297 
 

0.001 

Rust Day5 

+ water 

0.244 0.201 -0.036 

0.240 0.229 -0.032 

0.229 0.198 -0.021 
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0.225 0.183 -0.017 

0.226 0.231 -0.018 

0.229  -0.021 

0.229  -0.021 

0.241  -0.033 

0.240  -0.032 

0.243  -0.035 

0.243 
 

-0.035 

0.242 
 

-0.034 

0.238 
 

-0.030 

0.239 
 

-0.031 

0.236  -0.028 

 

6.4 DISCUSSION 

Generally, looking at the tool’s sensitivity to changes in the image formats, it can be seen 

for each set of predictions for different railhead state there is a change to the values 

predicted for the railhead orientation, distance, and image quality this is more noticeable 

in Figures 6.30, 6.31, 6.33 and 6.34. The variation noticed in the results grows wider when 

camera distance to the railhead is taken further away, the data points usually farthest 

from the actual = predicted line on the point often falls in the “red zone” category which 

signifies the farthest camera-railhead distance. This is because the amount of noise in the 

image increases hence making it difficult for the tool to correctly identify the railhead 

section in the image. Although, as explained in the results section, the noise may also 

provide false predictions that may look accurate depending on the colours in the railhead 

surrounding. 

Therefore, the prediction tool can process data from ‘non-traditional’ image formats from 

a close distance to the railhead with some variation to the original horizontal format but 

may not be accurate depending on the circumstance. 

The predictions for wet rail scenarios had a wider data spread when analysed on the 

image difference chart in Figure 6.29, with Rust day2 + reduced water having the highest 

difference at 0.0231 in image variation with under predictions compared to the ideal 

image prediction. This is mainly due to bad correlation of the laboratory environment to 

the field environment used to train the prediction as well as the unrealistic appearance 
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of moisture on the railhead. This created several uncertainties around the predictions for 

wet railheads. 

6.4.1 DRY RAILHEAD CONDITIONS 

The results (Figure 6.30) from the dry railhead states show accurate prediction for 

railhead samples cleaned with alcohol wipes (Figure 6.6) with some under prediction 

variation noted for the non-traditional image formats. The uncleaned original railhead as 

seen in Figure 6.5 produced over predicted friction while the railhead cleaned with wire 

brush and the day2 railhead state from day1 wetting were showing under predicted 

friction from the tool.  

Referring back to images in Figures 6.5-6.7 & 6.9 and the images used to train and retrain 

the prediction tool (see Figure 6.35 for example), the images in Figure 6 are not similar 

to any of the training images, hence the prediction tool cannot accurately identify and 

give a friction value for these set of railhead states. Also, railheads in service usually do 

not appear this shiny with wear scars and the tool has been trained on field/in-service 

railhead images to give an accurate prediction for real-time train activity. The spread 

shown in each set of prediction (see Figure 6.29) also confirms the tool’s sensitivity to 

image formats used for prediction. The differences found in ideal – mean non-ideal image 

prediction were found to be closer to 0 at -0.00204, -0.00105 & -0.00571 for “cleaned 

with alcohol wipes”, “cleaned with wire brush” and “results from day1 wetting” railhead 

conditions respectively. This implies the tool has good repeatability for this type of 

railhead conditions disregarding the accuracy levels. 

 

Figure 6. 35: Example of railhead image capture in-field 

6.4.2 WET RAILHEAD CONDITIONS 

The wet condition without oxidisation yielded some interesting result, due to high over 

prediction of the tool as seen in Figure 6.31. The measure friction ranged between from 

0.08 to 0.104 while the predicted friction ranged from 0.19 to 0.27. Merely looking at the 

wet rail images simulated in the laboratory, they do not depict a realistic wet rail image 

seen in the field. It is fairly difficult to create the appearance of dew, light or heavy rainfall 

by spraying water (uniform-like moisture distribution as seen in Figure 6.36) on the 

railhead surface in the laboratory, so a difference in predicted friction was expected, but 

not to this extent. 
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Figure 6. 36: Image of wet railhead captured in field 

In addition to the difference in wet rail image presentation, the relative humidity for 

simulated moisture on the railhead measured in-lab did not depict the real values 

measured in the field. From field data obtained earlier in this work, relative humidity for 

moisture on the railhead is usually greater than 70%, but the relative humidity measured 

in-lab is a function of the laboratory environment as opposed to the railhead state being 

simulated. The highest relative humidity recorded in the laboratory throughout the 

testing period, as seen in Table 6.1, was 57.4% and 65.9% in a wet and dry instance 

respectively. This shows that the prediction is sensitive to changes in environmental 

conditions and depends on accurate environmental information. These factors also 

contribute largely to the wide variation in the wet railhead data collected, where the ideal 

– mean non-ideal image of 0.0129, 0.0105 & 0.0123 for “water spray day1”, “water spray1 

day2 and “water spray2 day2” railhead condition respectively were noted for the 

predictions. There was an under prediction in the data set compared to the ideal image 

prediction. 

Figure 6.37 shows comparison of results for the images processed for wet railhead 

conditions, but with relative humidity expected for infield scenarios. The image on the 

left shows lower predicted frictions with the increase in relative humidity representing 

in field environment, although not “spot-on” accurate, but closer to the measured versus 

measured line. Whereas the relative humidity recorded in the laboratory (shown on the 

right) has its prediction further away from the measured versus measured line. 
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Figure 6. 37: Prediction for wet railhead condition using in field RH (L) and prediction for 

laboratory RH (R) 

This furthermore emphasises the prediction tool’s sensitivity to changes in 

environmental factors in the prediction of friction. The relative humidity difference will 

be a factor in the other wet railhead conditions considered in this sensitivity test. 

6.4.3 OXIDISED RAILHEAD CONDITIONS 

Looking at Figure 6.33 for the results of all the scenarios of rust appearance on the 

railhead, measured friction values were high on the pendulum tribometer (from 0.33 to 

0.46) and the model under predicted friction values of 0.20 to 0.28. 

The predictions for the traditional images (datapoints ) were closer to the actual = 

predicted line than the non-traditional image. Although all the results where under 

predictions with a good variance, showing the predictions from the model were close to 

mean predictions (see Figure 6.29) 

 

 

Figure 6. 38: Example of oxidised railhead image captured infield 

These results once again highlight missing railhead conditions used to the train the 

prediction tool. Looking at the oxidised railhead image from the field measurement in 

Figure 4.12 (also see Figure 6.38) compared to the laboratory simulated oxidised state in 

Figure 6.12, 6.14, 6.17, 6.20 & 6.22 one can argue that the appearance of the oxidisation 

is not uniform, unlike what an actual oxidised field railhead looks like. Most importantly 

the colours are more concentrated and sharper than an in-field oxidised railhead. 

Therefore, the under-prediction experienced in the oxidised railhead condition is as 

result of the images being alien to the prediction tool. 

The environmental conditions recorded in the laboratory were also higher on average to 

what was recorded while collecting data to train the prediction tool. This highlights the 

importance of the continuous training of the prediction tool to include a robust dataset, 

covering a vast range of railhead condition and environmental conditions. 

The variations noticed here are not widespread (see Figure 6.29), this indicates good 

repeatability of the prediction tool because for each railhead condition only 1 image was 

categorised as “Far” with exception of “Rust day3” having 2 images. In addition, the far 
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images may have produced false predictions because of the noise around the railhead 

section. But generally, images with similar orientation and distances produce very similar 

predictions especially noticed on horizontal-close images (which were taken multiple 

times), re-indicating the tool’s good repeatability for each image format. 

6.4.4 OXIDISED + WET RAILHEAD CONDITIONS 

The prediction tool mostly over predicted the friction for the oxidised+wet railhead 

condition as seen Figure 6.33. When water was introduced to the later oxidised railhead 

(i.e., day2, 3 & 5), the vibrant orange colour became deeper and looked more like a 

realistically presented oxidised wet railhead, therefore producing accurate predictions 

for these scenarios. While day1 which was just splotch of oxidisation on the railhead 

which still look unreal, was over-predicted.  

For each day of results, a wide spread of data with image differences 0.00499, -0.00635, 

-0.00496 & -0.00939 (as shown in Figure 6.29) in the predicted results can be noticed. 

The difference noted for day1 showed and under prediction when compared to the ideal 

image while the rest of the days showed over predictions with the negative differences. 

This shows the effects of the non-traditional images especially varied distances as stated 

earlier as seen the plot. The increased noise and unfamiliar railhead conditions increases 

the variables in getting an inaccurate prediction. 

Figure 6.33 rust + water day1 results (shown in blue) appears to be contrary to the 

expectation. In this case, the horizontal (far) images were giving closer predictions to the 

measured friction. What has happened here is due to farther distance of the camera to 

the railhead, the railhead image quality is reduced and also not positioned in the centre 

hence the scaled images have included parts of the brown flooring which have has been 

processed and given a prediction.   

6.4.5 OXIDISED + REDUCED WET RAILHEAD CONDITIONS 

This railhead state had 1 prediction in each test day in close accuracy range, although the 

other result varied widely mostly across the over predicted zone and 1 under prediction 

each for day 3 & 5. The variation in the results is due to the same reasons as the 

oxidised+wet states. 

6.4.6 FREEZE FRAME IMAGES 

There are variations in each of the freeze frame images which simply because the sections 

of the railhead been analyse is changing with each image as well as the orientation. These 

are one of the reasons it is difficult make a comparison to still image results for the same 

railhead. The predictions from the freeze frame images were subtracted from the mean 

predictions of the still images (seen on table 6.3) to show how far off or close they were 

to the original prediction. The calculated difference showed the dynamic nature of the 

freeze frame images compared to the still images as the difference values varied along 

the images.  
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Using video capture with a Go Pro Hero camera at train running will not be viable for 

image capture as the images will be too blurry and of low resolution, so the tool will not 

be able to process them. This method is only useful when the videos are captured at slow 

walking pace as this the only time the images extracted will be viable for predictions. 

 

6.5 CONCLUSIONS 

• Laboratory tests were useful in testing the sensitivity of the prediction tool, 

showing the variations for different predictions under different railhead 

condition. The tests helped to highlight uncertainty that results from the noise in 

images. 

• These tests have helped to highlight the type of railhead states missing from the 

trained dataset such as shiny railhead. Therefore, indicating what type of new 

data, the prediction tools need to be trained on. 

• The tests have shown that the prediction tool has good repeatability for multiple 

images taken in similar orientation and distance regardless of the correlation to 

the measured friction. 

• The prediction tool gave incorrect predictions for some of the railhead conditions 

that were simulated in the laboratory because they were not representation of the 

field data it had been trained on. It also confirmed that the tool correctly takes the 

environmental conditions into account when making predictions. 

• Further in-field training is required to increase the robustness of the prediction 

tool. As it has been established that the environmental conditions in the laboratory 

to imitate or correctly depict that of the field. 
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CHAPTER SEVEN  
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7. ON-TRAIN DATA CAPTURE SENSOR DESIGN 

7.1 INTRODUCTION  
After establishing the sensitivity of the prediction tool to camera-railhead distance and 

railhead orientation, as detailed in Chapter 6, a system had to be put in place to capture 

images alongside environmental data from a moving train to trial dynamic data capture 

to feed into the model.  

The proposed system was required to capture railhead images at a very close distance 

between 350-400mm as well as forward facing images, it needed to have sensors for 

measurement of relative humidity, railhead and air temperature integrated into it. It also 
needed to record all the data on the same interface. 

A design specification was developed for the data capture system which is shown in Table 

7.1. These characteristics were selected based on the preferred functionality for the 

proposed data capture system. Features like operational and recorded temperature 

ranges were estimated based on UK historical weather data [78] and data recorded 

manually that was analysed in Chapter 4. The materials used for manufacture had to be 

up to the British Standards, for example BS 4929 & BS 4320 (for Steel), BS EN 755-2:2016 

& BS 485-2:2016 (for Aluminium) and BS 857 (for laminated glass). 

Table 7. 1: Design specification for on-train data capture system 

Category Features 
Functionality  Capture forward facing and railhead images 

House and protect sensor from external and environmental 
factor 
Easily attachable to and removable from the train 
Located outside on the train  
Capture relative humidity railhead and air temperature 
Record location of data capture 
Portable  
Should be able to last 12 hours on DC supply 

Performance Forward camera: High definition (HD) 
Railhead camera: minimum 2MP and lens focal length 
50mm 
Temperature ranges recorded -10oC to 45oC 
Operating temperature ranges -10oC to 50oC 
DC power supply of 17 000 to 20 000 mAh 
Net weight: ≤ 7kg 
GPS sensitivity: minimum -90dBm 

Material 
requirement 

Widely available material like Steel and/or Aluminium 
Robust material to prevent damage to internal components 
in case of fall 
Laminated toughened glass for window openings 

Legal Approved by network rail to be attached on a train body 
Must fit necessary British Standards (will not be approved 
by Network Rail if it does not) 
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7.2 DESIGN PROCESS 
Three methods for the data capture design were considered for this work while two of 

them were finally explored. The following methods were considered for the on-board 

train data capture: 

• camera mounted somewhere on the front of the train, 

• adapt an existing design/system used to capture images or videos. Typically, an 

enclosure that can hold sensors for additional data collection. 

• and design a brand-new system. 

Figure 7.1 shows a summary of the methods considered. 

 

Figure 7. 1: Chart showing the processes considered for the On-board train data capture 

The first two methods were trialled (the second was selected) while the third method was 

not explored because of numerous constraints, some highlighted in Figure 7.1. Designing 

a brand-new system is time consuming as it would have been required to undergo 

structural testing (after the lengthy prototype design process) to make sure it was safe 

and strong enough to be mounted/placed on an in-service train. It would also have had to 

be approved by Network Rail after establishing it was safe to be used by the designer. The 

time needed for this was not available for this project, nor was there budget available. 

The details of the trials carried out are shown in the following sub-sections. 

7.2.1 CAMERA MOUNTED IN FRONT OF TRAIN 

A rudimentary design was created for a front of train mountable system to go on a 
Northern Trains Class 153. The design simply contained a GoPro Hero 8, a suction mount, 

an extension arm and a flexible light weight steel wire with lock clutches (for 

security/safety purposes). The aim of this design was to capture the railhead images only 

(as a start) with the environmental data collected manually. 
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Two points on the front of the train were considered for the mounting of any type of data 

capture system. These two points were the lamp bracket holder and handlebar, both 

circled in red in Figure 7.2. 

 

Figure 7. 2: Front of Class 153 train highlighting the possibly mounting positions 

The first opportunity to collect data arose on the Monk Bretton freight branch line route 

on 2nd April 2022 through a Northern Trains driver training session. I was allowed to 
mount the camera system on the front of a Class 153 train.  

 

Figure 7. 3: Google earth image of the track used in Monk Bretton [79] (L) Section of track 
with encroaching vegetation (R) 

Lamp 

bracket 

holder 

Handlebar 
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Figure 7.3 (left) shows the track route used in Monk Bretton highlighted in red where 

some sections of the rail track had dense vegetation coverage over it, as shown in the 

image on the right. 

A GoPro supplied suction cup was used to mount an extended arm holding the camera 

pointing downwards towards the railhead, in an attempt to capture images from a moving 

train. The full set-up was secured to the handlebar using a light-weight steel wire to keep 
it attached to the body of the train in the event of the suction cup failing and the camera 

set-up falling off. This would help prevent damage to the set-up and potential incidents 

caused by debris on the track. The full set-up is shown in Figure 7.4. 

The trial process involved using the GoPro camera to record videos over the length of the 

journey and then manually capture freeze frame images from the videos. An example of 

freeze frame images extracted from the video captured at Monk Bretton is seen in Figure 

7.11 (L). 

 

Figure 7. 4: Camera set-up mounted on the class 153 train 

7.2.2 ADAPT AN EXISTING DESIGN (AIVR CAMERA BOX) 

In the search for a working alternative to the first design, I was put in contact with the 

software company “One Big Circle” who had been working on different data collection 

projects from trains. The company had created a ‘camera box’ (see Figure 7.5) 

collaboratively with Network Rail that held their data collection instruments. The design 

had been approved by Network Rail for use on-board a wide range of trains in the UK for 

data collection and satisfied relevant British Standards. The camera box body was made 

of aluminium with joints and flanges made from steel. 

This camera box offered a great starting point for my design. My design was not intended 

as a competitor product to the existing camera box utilised by One Big Circle. The camera 

box is simply a vessel to be used with different components for different purposes. 

Go Pro camera 

Go Pro suction cup 

Extended arm mount 

Steel wire 
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Figure 7. 5: AIVR Camera box (Source onebigcircle.com) 

This camera box was ideal to hold the equipment needed for data capture to feed the 

prediction tool with on-board train railhead data. The main components required were: 

• A forward-facing camera: A webcam was used to capture the forward-facing 

images because it has a USB connection which needs no further modification to 

work with the microcontroller and it can capture high-definition images 

(1920x1080 pixels) 

• Railhead camera: A Raspberry Pi camera module and lens was used. Once again 

for ease of connectivity and to zoom in close to the railhead from the lamp bracket 

position. 

• GPS sensors: The GPS sensor used to record the location of each data capture 

point was the E-1612-UB module. It is low power, high performance and ultra-high 

sensitivity at -160 dBm. It consumes a maximum 40mA with a maximum power 

supply voltage of 3.6V and can operate in temperature range -40°C to 85°C. This 

was ideal for the expected temperature ranges (-10°C to 50°C) and power source 

of the camera box. 

• Relative humidity and Air temperature sensor: An HTM2500LF Temperature 

and Relative Humidity Module was used based on it being non-contact and rugged. 

It had a low power consumption with a maximum of 1.2mA, operates on a 

maximum supply voltage (peak) of 12V, temperature of -45°C to 85°C and relative 

humidity of 0% to 100%. It can record relative humidities from 1% to 99% with 

an accuracy of ±3% and a temperature measuring range of -45°C to 85°C. This 

sensor was an analogue sensor meaning it can only be operated with a 

microcontroller that can process analogue inputs such as an Arduino uno. 

• Railhead temperature sensor: An Infrared (IR) thermometer was selected to 

measure and record the railhead temperature. The IR thermometer was pointed 

at the railhead in order to capture its temperature. An Optris CS LT IR thermometer 

was used because it has a 15:1 optical resolution (up to 800mm range) measuring 

from -40°C to 1030°C with an accuracy of ±1.5°C. This thermometer can be applied 

either as a digital or analog input. It was used as an analog input in this set-up in 

order to link it with the air temperature sensor. 
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• Power bank: Power source choice for the camera box was a battery pack (power 

bank) because it is portable, rechargeable and does not need to be continuously 

connected to an AC source. The power bank used here is V75 USB battery pack 

with two 5V/2A (3A max) USB output slots. It has a capacity of 19 200mAh, 71 Wh 

and output operating temperature ranges from -15°C to 65°C. The power bank will 

power the camera box’s component for at least 24 hours on a single charge which 

sufficient for the purpose of this project. 

• Single board computer (SBC): A Raspberry Pi 4 (Raspi) model B was used to 

collate the data from each source: (UART: GPS, USB: Web cam and environmental 

sensors, MIPI CSI: rail head camera). This data was saved as a csv file on the 

computer’s SD card. The computer had an operating voltage of 5V allowing it to be 

powered directly by the power bank, its operating temperature range is 0°C to 

40°C. 

• Microcontroller: An Arduino Uno Rev 3 SMD was used to interface with the 

analog environmental sensors as the SBC did not have an onboard analog to digital 

converter. This was connected to and powered by the raspberry pi by a USB port, 

using the Arduino’s onboard UART to USB chip. It had an operating temperature 
range of -40°C to 85°C. 

 

Figure 7. 6: Process diagram for the camera box development 
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A. CAMERA BOX COMPONENTS FOR VERSION 1 (V1) DESIGN. 

The original designs available from Network Rail had a small window of 65 x 50 mm 

which was determined to be too small to face/angle a camera from inside the box towards 

the railhead. The window size was increased to 151 x 100mm, giving more area for the 

camera to be tilted and capture the railhead. This is shown on the process chart in Figure 

7.6, process 1 to 2. 

The redesigned camera box (Figure 7.7) received was fitted with multiple components to 

achieve uniform data collection from the train. These components and their functions are 

listed below: 

1. 1 Railhead Camera: 12MP Raspi HQ camera module coupled (with adjustable back 

focus range of 12.5-22.4mm) with a C-Mount 50mm Focal Length lens. 

2. 1 Forward facing camera. 

3. 2 Tripods to support and adjust both cameras. 

4. 1 GPS module. 

5. 1 Temperature and relative humidity analog sensor: for air temperature and 

relative humidity of the environment 

6. 1 Infrared thermometer: to record the railhead temperature. 

7. 2 Microcontrollers: Raspberry Pi model 4B and Arduino Uno 

8. 3D printed parts for attachment to inner brackets and also for support (see 

Appendix C-1 for images) 

 

 

Figure 7. 7: Labelled components image of camera box V1 

The modified camera box and the fitted instrumentation was taken out to Monk Bretton 
for testing (see Figure 7.8). However, some problems were found with the design, hence 

no results were recorded. The problems with the design were: 

• Railhead camera: It was difficult to focus the lens (basically the image was out of 

focus and too zoomed in and the camera was also not pointing at the railhead the 

Microcontroller: 

Arduino Uno. 

GPS Module and IR 

thermometer: out of 

sight. 

Railhead camera. 

Power bank in 3D 

printed case. 

3D printed 

tripod mount. 

Forward-facing 

camera. 

Camera Tripod. 

Air and RH 

Thermometer. 

Microcontroller: 

Raspi. 
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way it was intended) so the railhead camera needed replacing with one with a 

lower focal length and it needed to be repositioned in the camera box. 

• IR thermometer: This did not work because it was not in the range of the railhead. 

The IR thermometer was positioned behind the camera box window which was 

out of the 800mm range, and it was not pointing at the railhead.  

• Microcontroller: An error was made in the data save thread and as a result the data 

did not save and as a result there were empty result folders. This was rectified in 

V2. 

 
Figure 7. 8: Camera box V1 mounted on a class 150 train in Monk Bretton 

B. CAMERA BOX COMPONENTS FOR VERSION 2 (V2) DESIGN. 

The camera box was redesigned again to accommodate a downward facing (railhead) 

camera and IR thermometer, as shown in Figure 7.9. This was simply done by cutting a 

145x97mm rectangular hole at the bottom of the camera box and replacing it with a 

175x125mm transparent Perspex window so the camera could capture the railhead. A 

38mm diameter hole was also cut into the Perspex window to allow a Germanium 

window to be placed there, allowing the infrared to pass through and measure the 

railhead temperature. The engineering drawing for the V2 design can be seen in Appendix 

C-1. 

A 3D printed side panel was created with a slot to accommodate the air and RH 
thermometer whilst exposing outside to record accurate temperatures (see Appendix C-

1) 

The railhead camera and lens were also changed. The camera was replaced with an 

Arducam pivariety colour global shutter camera module with 2MP with 2.8 focal length 

and the lens was replaced with a narrow angle S-mount 12MP lens with a focal length of 

50mm. 

The standard operating procedure for camera box V2 has been outlined in Appendix C-3. 
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Figure 7. 9: Labelled components image of camera box V2 

The Raspberry Pi runs software written in Python. During normal use the Python 

software opens separate processes for each of the sensor channels. These processes 

are coordinated by a separate control process. At the start of a data collection cycle 

the control process signals to each of the other processes to collect data and waits for 

the responses. Each process then collects data and responds to the control thread, the 

data is captured every 2 seconds. The responses are then concatenated into a single 

line of the output csv file (sample shown in Appendix C-2) and confirmation written 

to the terminal. This structure allows the control process to dynamically monitor the 

other processes and attempt to restart them if errors are encountered, due to, for 
example, electromagnetic interference.  

Before normal operation can begin the railhead camera and rail head temperature 

sensor must be aligned to the rail, the camera must also be focused on the correct 

distance. The Raspi automatically connects to a mobile phone though the phone’s Wi-

Fi hotspot. This connection is used with the rasp controller app to view the camera 

outputs allowing the camera to be aligned and focused. The app also allows execution 

of SSH commands which can be used to run the Python software. The software initially 

provides a text interface to allow the user to view the output of any sensor process. 

This interface can be used to align the rail head temperature sensor, by placing a hot 

object (for example, a cup of tea) on the rail. Prior to this both temperature sensors 

and relative humidity readings had been compared to an IR thermometer to confirm 
the accuracy of the sensor’s measurements. 
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7.3 METHODS FOR CAMERA BOX DATA COLLECTION TESTS 

7.3.1 WENSLEYDALE HERIATGE RAILWAY (WHR) SHORT RUN TESTS 14-03 AND 13-07 

WHR is a heritage railway, as the name implies, which is located in North Yorkshire. The 

main location for the short run tests was the Leeming Bar station, which is used sparingly, 

mostly during the holidays and also acts as a depot for trains. Figure 7.10 shows an 

overhead view of Leeming bar station and indicates the approximate length of track used 

for the short run test, marked in red.  

 

Figure 7. 10: Google earth image showing the arial view of WHR (Leeming Bar station) [80] 

These were tests carried out in the depot over a short distance and at low speed. The 

details of the tests are given below: 

• Train used: Class 142 

• Train Speed: max 10 mph. 

• Number of runs: 10. 

• Length of track used: approximately 260m. 

• Data collection rate: 1 per 2 seconds. 

7.3.2 SCOTRAIL LONG RUN TESTS 30-05 
This test was carried out from Edinburgh Haymarket depot, through Edinburgh Waverley 

and ended at Perth Station. The test details are given below: 

• Train used: Class 158 

• Train Speed: max 75mph 

• Length of data collection: 5 hour 10 minutes 

1 

2 

255.57m 



136 
 

• Data collection rate: 1 per 2 seconds. 

7.3.3 WENSLEYDALE HERIATGE RAILWAY (WHR) LONG RUN TESTS 14-07 AND 28-11 

These were tests that included train journeys from one station to another. Two long run 

tests were done on separate occasions, the first one from Leeming Bar station, through 

Bedale to Leyburn station (return journey) and Leeming Bar to Bedale station (return 

journey on cryogenic cleaning train) on 14-07-23 and 28-11-23 respectively. The specifics 

of the tests were as follows: 

•  Train used: Class 142. 

• Train Speed: max 30 mph. 

• Number of runs: 2 (return journey). 

• Distance covered: Approximately 1.6 miles and 11.5 miles for Leeming Bar to 

Bedale and Leeming Bar to Leyburn respectively. 

• Data collection rate: 1 per 2 seconds. 

 

7.3.4 WENSLEYDALE HERIATGE RAILWAY (WHR) (SHORT RUNS) WITH LEAF LAYER 

AND CRYOGENIC CLEANING APPLICATION 28-11 

A cryogenic cleaning of railhead test was taking place in WHR, where railhead 

contaminants are blasted clean by dry ice [81]. Black leaf layers (dried Sycamore) were 

created for application on the railhead (see description below) Two camera boxes were 

used on a modified Class 142 train in an attempt to capture the before and after cleaning 

effects. The modified Class 142 train (which was still a passenger train) was equipped 

with a cryogenic cleaning system on board. The first camera box was attached to the front 

end over the right railhead while second camera box was attached to the rear end over 

the left railhead. Figure 7.11 shows a summary of the tests conducted. 

 

Figure 7. 11: Schematics for WHR 28-11-23 short run test, where each pass is a to and fro 
journey 

Leaf layer application: The railhead was scraped with a sanding star attached to a drill 

to remove oxides from the surface. The Class 142 then had one pass over the track section 
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to condition it before application of the leaf layer. Leaf paste created using the method 

stated in [82]. was applied on 2m sections of the rail parallel to each other (Figure 7.12) 

and left to settle on the railhead for 10 minutes to promote bonding between the leaf 

material and rail.  

 

Figure 7. 12: Leaf paste circled in red, laid on the railhead section 

Black leaf layer creation: The Class 142 train passed over the leaf paste twice 

(equivalent to 8 axle passes) at 10 mph to create a black leaf layer. The train was at a 

constant speed, so minimal slip was applied to the layers. The cryogenic cleaning took 

place after the black leaf layer was created. In addition, railhead friction was measured 
using a Rivelin Rail tribometer [83] to create a benchmark for comparison to the 

prediction tool’s results.  

 

7.4 RESULTS 
The friction predictions are initially presented in terms of the Pendulum Test Values 

(PTV) and are later converted into the CoF/µ using the BRR conversion factor discussed 

in previous Chapters 4, and 6. The true measured temperatures and relative humidity 

values and predicted PTV were plotted on the y-axis against the data points on the x-axis. 

While on a different graph the predicted CoF (converted PTV) was plotted on its own on 

the y-axis (to show appropriate scale) against the data points on the x-axis. 

7.4.1 MONK BRETTON TEST: CAMERA MOUNTED IN FRONT OF TRAIN (26-11-21) 

The first major problem noticed during image capture with the GoPro system was the 

resolution of the railhead in the image. The railhead was located too far away from the 

camera, and as such it only covered approximately 10% of the image (see Figure 7.13 (L)). 

The image was cropped and zoomed in to try to focus on the railhead (Figure 7.13 (R), 
but the image resolution was also too low at 306x496 for the prediction tool to process. 
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Figure 7. 13: Image capture from the GoPro camera set-up (L); Cropped and zoomed in 
image extracted (R) 

Another problem highlighted in this design was that the exact environmental data of the 

rail section was unavailable as the exact frame of the video did not have corresponding 

data. The camera set-up is also affected by the vibrations from the train movement, the 
extension arm used to support the camera is flexible and moved out of position with 

prolonged exposure to the vibrations. Therefore, with all these problems highlighted this 

method was deemed unsuitable for data collection. 

7.4.2 CAMERA BOX V2: FIRST TEST AT WENSLEYDALE HERITAGE RAILWAY (WHR) (14-

03-23) 

A total of 141 data points were collected on the first successful trial of camera box V2 at 

the WHR. The camera box was placed on a Class 142 train (see Figure 7.14), and it was 

driven over a short stretch (≈260m) of track. 

The image on the right in Figure 7.14 shows a white mug holding hot water, this was used 

to adjust the IR thermometer’s ‘field of vision’. The hot water was higher temperature 

compared to the surroundings. It was placed on the railhead and the thermometer was 

adjusted until it started to read the warmer temperature from the hot water thus reading 

the temperature of the railhead region. 

Table 7.2 shows an example data set extracted from the trial including the images and 

friction predictions for the points shown. Figure 7.15a and b show plots of all data 

collected and the friction predictions. 
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Figure 7. 14: Camera mounted on a class 142 train at WHR (14-03-23) 

 

(a) 
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(b) 

Figure 7. 15: (a) Plot of all environmental data and the PTV against all data points for WHR 
14-03-23; (b) COF against all data points for WHR 14-03-23 

 

One of the very noticeable things in result plotted in Figure 7.15 (a) are peaks in the 

railhead temperature resulting from sections of railhead being exposed to the sun 

(discussed further in section 7.5.1). Figure 7.15 (b) shows the friction predicted from the 
prediction model, the friction also has similar peaks to that of the railhead temperature.
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Table 7. 2: Table of data from WHR 14-03-23 

S/N Forward facing Image Railhead Image Air 
Temp/oC 

Rh Temp/oC Rh/% Predicted 
Friction 
(PTV) 

Predicted 
Friction 
(µ) 

1 

 
 

7.2 9.3 49.0 47.1 0.242 

2 

  

7.7 6.1 50.0 46.3 0.238 

3 

  

7.6 7.7 48.4 46.8 0.241 

4 

  

7.3 10.5 49.4 47.7 0.245 
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7.4.3 SECOND TEST AT SCOTRAIL (30-05-23) 

An opportunity arose to trial the camera box V2 on a Class 158 Scotrail train with the aim 

of testing the feasibility of using the system on a passenger train in service. 

The trial started at Edinburgh Haymarket depot, where the camera box was placed on a 

lamp bracket at the front of a Class 158 (see Figure 7.16) at around 05:20. During the 

installation it was noticed the railhead facing camera was partially capturing the railhead, 
due to the lamp bracket being positioned slightly off-set from the railhead. 

 

Figure 7. 16: Camera box on a class 158 train at Edinburgh Waverley station 

The railhead images were still collected, with some of them capturing just the rail 

side/ballast while the rest captured a portion of the railhead. Some of the images 

containing portions of the railhead (selected from different locations) was then further 

processed and used to make friction predictions. The data collection was stopped at 10:30 
in Perth station. After 5 hours 10 minutes of operation and 6860 data collected the SD 

card was full. Although over 6000 images were collected, only 14 were processed and 

plotted (see Figure 7.17 (a) and (b)) due to most of the images being unsuitable for 

predictions.   

(a) 



143 
 

(b) 

Figure 7. 17: (a) Plot of all environmental data and the PTV against selected data points for 
ScotRail on 30-05-23; (b) COF against selected data points for ScotRail on 30-05-23 

Table 7.3 shows examples of the railhead images captured and used to create the 

predictions. 

The friction predictions for the usable data collated from different locations ranged 

between 0.254 to 0.291 for relatively warmer air temperatures recorded of 140C to 170C. 

7.4.4 THIRD TEST AT WENSLEYDALE HERITAGE RAILWAYS (WHR) (13&14-07-23) 

The ScotRail trial exposed one of the shortcomings of using the camera box, which was 

the position of the lamp bracket is a limitation for using it on most train types like the 
Class 170. A train like the Class 170 or 198 have their lamp bracket positioned closer to 

the centre of the train which offsets the camera box’s railhead camera from the railhead 

location. The camera box is well positioned on the Class 142 used at the WHR and also 

some Class 15Xs. 

Given this information, more tests were carried out at WHR during the summer of 2023. 

The trial carried out on 13-07-23 was in the Leeming Bar depot using about a 260m 

length of rail to collect data. Whereas on 14-07-23 a full journey on a passenger carrying 

Class 142 train (see Figure 7.18) travelling from Leeming Bar station to Leyburn station 

and back to Leeming Bar station. 

A total of 357 data points were collected on 13-07-23 and 2677 data points were collected 

14-07-23.  
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Figure 7. 18: Camera box on class 142 train in WHR on 14-07-23 
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Table 7. 3: Table of data from ScotRail 30-05-23 

S/N Forward facing Image Railhead Image Air 
Temp/oC 

Rh 
Temp/oC 

Rh/% Predicted 
Friction 
(PTV) 

Predicted 
Friction 
(µ) 

1 

  

17.0 11.8 49.4 54.0 0.278 

2 

 
 

14.8 12.5  59.5 56.5 0.291 

3 

  

16.8 12.8 48.5 53.4 0.274 

4 

  

20.4 15.0 51.0 49.5 0.255 
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Table 7. 4: Table of data from WHR 13-07-23 

S/N Forward facing Image Railhead Image Air 
Temp/oC 

Rh 
Temp/oC 

Rh/% Predicted 
Friction 
(PTV) 

Predicted 
Friction 
(µ) 

1 

 
 

28.6 22.0 23.1 44.7 0.230 

2 

  

28.4 31.4 23.1 43.2 0.222 

3 

  

27.7 20.5 22.8 43.0 0.221 

4 

  

25.1 32.5 29.9 43.7 0.225 
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Table 7. 5: Table of data from WHR 14-07-23 

S/N Forward facing Image Railhead Image Air 
Temp/oC 

Rh 
Temp/oC 

Rh/% Predicted 
Friction 
(PTV) 

Predicted 
Friction 
(µ) 

1 

  

21.6 20.7 46.8 51.2 0.263 

2 

  

18.1 21.8 61.1 53.0 0.272 

3 

  

18.8 23.9 59.7 53.4 0.274 

4 

  

19.2 22.8 59.4 53.6 0.276 
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Figures 7.19 & 7.20 (a) and (b) show the plots of all the environmental data collected and 

friction predictions while Tables 7.4 and 7.5 show examples of the camera box output 

with railhead images and corresponding forward-facing images for 13-07-23 and 14-07-

23 respectively. 

 

 

(a)

 

(b) 

Figure 7. 19: (a) Plot of all environmental data and the PTV against all data points for WHR 
13-07-23; (b) COF against all data points for WHR 13-07-23 
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The results plotted in Figure 7.19 (a) and (b) show a combination of stationary and 

moving data points. The plot has been sectioned into static and dynamic showing the 

repetitive runs done, using ‘S’ for Static and ‘D’ for Dynamic. 

Tests carried out between the first sections were done on the first half of the track 

(labelled 1 in Figure 7.10) which can be seen in Figure 7.19 (b) with similarities in the 

static and dynamic friction predicted while testing done from sections 6 to 13 were on the 
second half of the short-run track (labelled 2 in Figure 7.10) showing slightly higher 

friction. Regardless of the section of the tracks, friction values predicted were in a 

reasonable range for a dry railhead [24] at 0.214 and 0.236 which is also similar to data 

collected in previous testing. The temperatures recorded here were warmer than what 

was recorded during past testing at the same location, with railhead temperature 

between 20.20C – 40.30C and air temperatures ranging from 250C to 28.70C, typical of 

summer temperatures. 

Results recorded from the long run from Leeming Bar to Leyburn and return (shown in 

Figure 7.20 (a) and (b), show the data recorded over the return trip. The results were 

sectioned into 4 parts namely: 

1. Forwards trip from Leeming Bar to Leyburn. 

2. Sub section showing 5 minutes stop at Bedale station. 

3. Return trip from Leyburn to Leeming Bar. 

4. Sub section showing 2 minutes stop at Bedale station. 

The data from the GPS module was used in determining the location of the stops seen in 

the plot. This gave location output in form of degrees and minutes, given as: 

• Latitude 54 degrees 17.3339 minutes  

• Longitude 001 degrees 35.2286 minutes   

A GPS conversion website [84] was used to convert the location, which yielded 

54.2890100°, -001.5875400° and with a simple Google Maps search of the GPS points 

showed the location as Bedale station (54°17'20.4"N 1°35'15.1"W). The friction recorded 

at the stations where the train was at a stop was as expected with a very short range 

between 0.283 to 0.287. 
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(b) 

Figure 7. 20: (a) Plot of all environmental data and the PTV against all data points; (b) COF against all data points 
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7.4.5 FOURTH TEST AT WENSLEYDALE HERITAGE RAILWAYS (WHR) (28-11-23) 

For the fourth and final test in this project, two camera boxes were deployed on the 

University of Sheffield cryogenic cleaning train [81]. The first box (camera box 1) was 

placed at the front end of the Class 142 and the second box (camera box 2) was placed at 

the rear end of the train as shown in Figure 7.21 (a) to (c). This was done to capture the 

before and after images and friction predictions of the railhead used for testing in WHR. 

Camera box 1 collected a total of 1228 data points with 991 of them being good for 

processing while camera box 2 had a total of 971 of which all were usable. Figures 7.22 & 

7.23 (a) to (d) show the plot of (camera box 1), (camera box 2) environmental data 

collected and friction predictions for camera box 1 and box 2 respectively. Both of the 

datasets were broken into a short run which involved the cryogenic cleaning described in 

Section 7.3 and a long run return journey from Leeming Bar to Bedale. 

(a) (b) 

(c) 

Figure 7. 21: (a) Author installing camera box 1 on the class 142 train; (b) Camera box 2 
captured in use; (c) Camera box 1 captured in use. 

Tables 7.6 and 7.7 show 4 samples each of data collected from camera boxes 1 and 2 

respectively.
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Table 7. 6: Table of data from WHR (camera box1) 28-11-23 

S/N Forward facing Image Railhead Image Air 
Temp/oC 

Rh 
Temp/oC 

Rh/% Predicted 
Friction 
(PTV) 

Predicted 
Friction 
(µ) 

1 

  

9.3 4.1 50.6 33.6 0.172 

2 

  

7.6 2.8 59.7 37.0 0.189 

3 

  

7.1 3.1 60.4 37.3 0.191 

4 

  

9.1 0.8 54.9 51.1 0.261 
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Table 7. 7: Table of data from WHR (camera box2) 28-11-23 

S/N Forward facing Image Railhead Image Air 
Temp/oC 

Rh 
Temp/oC 

Rh/% Predicted 
Friction 
(PTV) 

Predicted 
Friction 
(µ) 

1 

  

8.0 2.9 57.3 31.1 0.159 

2 

  

7.9 2.5 54.7 34.7 0.178 

3 

  

8.3 3.4 53.3 33.7 0.173 

4 

  

7.3 3.6 52.6 47.4 0.241 
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(b)
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(d) 

Figure 7. 22: (a) Plot of environmental data and the PTV against data points for camera box 1 short run; (b) Plot of environmental data and 
the PTV against data points for camera box 1 long run; (c) COF against data points camera box 1 short run; (d) COF against data points 
camera box 1 long run 
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(b) 
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(c) 
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(d) 

Figure 7. 23: (a) Plot of environmental data and the PTV against data points for camera box 2 short run; (b) Plot of environmental data and 
the PTV against data points for camera box 2 long run; (c) COF against data points camera box 2 short run; (d) COF against data points 
camera box 2 long run  
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Generally, both camera boxes were not expected to predict the exact same friction values 

in comparison to themselves, as they were capturing railhead images from 2 different rail 

tracks. Camera box 1 predicted a maximum CoF of 0.282 and minimum CoF of 0.166 while 

camera box 2 predicted a maximum CoF of 0.272 and minimum CoF of 0.174. Figure 22 

and 23 (c) shows the effects of the black leaf layers created marked with the red dotted 

line on the railhead. The leaf layer was created on two separate occasions which has been 

sectioned into two on the plot using the black dotted line. Camera box 2 captured the full 

testing period shown in Figure 23 (c) (which also matches the leaf layer sections laid out 

in the schematics in Figure 7.11) while there was some operational cut out on camera box 

1 which reduced the data collected. Friction coefficients of between 0.166 and 0.197 were 

predicted for leaf layer section recorded on camera box 1 while value between 0.174 and 

0.193 was predicted for camera box 2. The friction predicted was seen to reduce at the 

leaf layer developed on the railhead. 

 

7.5 DISCUSSIONS  

7.5.1 WHR 14-03-23 

This was the first successful test carried out on a moving train, although it was a brief test 

in the WHR depot on a Class 142 train. The images (3 &4) in Table 7.2 look blurry as they 

were captured while the train was moving. The faster the train moved blurrier the images 

get, the maximum speed on this test was about 10mph. That level of blurriness does not 

affect the prediction tool’s ability to process the images and make predictions, because it 
can still identify the colours on the image. Obviously, this will be become a problem when 

the camera box is deployed on a high-speed train, where the images will be captured at a 

faster speed.  

Predictions for static and dynamic railhead images from a separate test on the same 

railway track with similar conditions, were isolated and compared to confirm if there 

were major differences in the results and it was found (as seen in Figure 7.24) that the 

blurriness truly does not greatly impact the value of prediction given. As shown in Figure 

7.24, images 1 and 2 are static images with friction coefficients of 0.217 while image 3 

which was captured while moving and image 4 captured during the transition period of 

moving to coming to a halt both had friction coefficients of 0.220 and 0.215 respectively.  

The forward-facing images come out fine as the vegetation and surrounding 
characteristics can be recognised by human eyes regardless of the train speed. 
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Figure 7. 24: Static vs dynamic friction prediction 

Figure 7.15 (a) & (b) showed the environmental data obtained from the camera box and 

predicted friction from processing the data and images. The friction predicted ranged 

from 0.231 – 0.255 which is a normal range for the railhead conditions present in WHR. 

It was also noted that the air temperature recorded had a ±0.30C variation for the test 

duration while the railhead temperature sensor recorded temperatures ranging from 
4.80C – 12.40C. This shows the railhead temperature sensor captures the real variations 

occurring on the railhead as the train moves. Some parts of the railhead are shaded by 

surrounding trains while other parts are exposed to sunshine, the parts exposed to 

sunlight accounted for the peaks noticed on the railhead temperature plot in Figure 7.15a. 

 

Figure 7. 25: Forward facing images of track sections exposed to sun (L) and a shaded 
sections towards the platform (R) 

Figure 7.25 (L) shows the section of the track that exhibited one of the peak railhead 

temperatures of 11.10C. There is no shade there. The image on the right had a railhead 

temperature of 6.30C and, as can be seen from the image on the right, the track was shaded 

from the sun by both the platform edge and the vehicles in the siding. 

Research carried out in previous work [70, 85] has also shown that shade covering the 

railhead (either by clouds or anything blocking the sun) brings about a decrease in 
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railhead temperature and the exposure to the sun would increase the railhead 

temperature, as seen here.  

7.5.2 ScotRail 30-05-23 

This trial was attempted twice, with the first attempt drawing awareness to the fact that 

all trains do not have their lamp bracket holders positioned in the same place. The Class 

142 and 153 used earlier had lamp brackets positioned on the right side of the train and 
the camera box was configured to that position. A trial was attempted on a Class 170 

shown in Figure 7.26, as seen in the image, the holder was positioned towards the centre 

of the train, therefore the railhead was not in the railhead camera’s range. 

 

Figure 7. 26: Class 170 Scotrail train showing camera box position over the railhead 

A second trial was done at a different time on a Class 158 train shown in Figure 7.16 where 

the lamp bracket holder was placed on the left side of the train, since the camera box 
components were fitted in symmetrical way the 3D printed parts were mirrored and 

reprinted. The parts were flipped to the opposite sides, and it was close enough to the 

railhead. For most of the journey from Edinburgh Haymarket to Perth, the camera 

captured half of the railhead and ballast stones as the lamp bracket holder was about 

15cm off the railhead. The forward-facing camera was tilted down (as seen in Table 7.3) 

in attempt to capture the railhead and analysis the railhead conditions.   

Figure 7.17 (a) and (b) show results gathered on a warmer day compared to the previous 

test carried out at WHR in March. The railhead and air temperatures recorded was 

between 11.80C – 20.40C and 140C – 170C respectively, with relative humidities 

representative of dry environmental conditions of 47.8% to 63.7%. Given these 

conditions, the friction recorded is expected to be in the intermediate range and that is 
what the prediction model confirmed predicting frictions between 0.254 to 0.291. 

In addition, the results from this trial showed that the camera box is really only useful as 

a temporary solution for data capture and in the longer term a more permanent, an 

integrated solution needs to be developed. 

7.5.3 WHR 13-07 & 14-07 2023 

After lessons learnt during the Scotrail trials, a third trial was conducted at WHR on a 

Class 142 train over 2 days. The first day involved repeated short runs of approximately 
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260m over the track in the depot. So, repeat results were achieved and it was also a great 

chance to see once again how the prediction tool reacted to slight changes in temperature 

as the railhead and air got warmer. The sectioned results on Figure 7.19 (a) and (b) 

showed similar friction ranges predicted over the same section of track for dynamic tests. 

An example can be seen in section 6 and 8 which had an average predicted friction of 

0.229 and 0.227 respectively. 

Air temperatures recorded were 19±30C, showing the sensor was sensitive enough to 

record the increase/decrease due to environmental factors such as shading, cloud 

coverage among others, the same can be said for the sensitivity railhead sensors. Figure 

7.28 shows evidence of both sensors recording high air temperature 28.70C due to heat 

while the railhead sensors recorded lower temperatures of 21.10C (as seen in Figure 29, 

sections 1 & 5) due to shading effects over that section of the track. 

 

Figure 7. 27: Forward facing image of a hot spot recorded with air temperature 28.70C with 
a shaded railhead section recording 21.10C on the railhead IR sensor 

 

The railhead temperatures recorded ranged from 20.20C – 40.30C, the temperature 

increased and decreased with exposure to sun or shade as seen in Figure 7.27. This 

phenomenon is very noticeable where the train is stationary at a spot with exposure to 

the sun for example in Section 3 and 7 on Figure 7.29 which are located on the same spot. 

Figure 7.28 shows the stationary position at section 3 recording between 30.10C – 34.20C 

and the right at Section 7 recording between 31.10C – 32.60C. 

 

Figure 7. 28: Spots of high railhead temperature with sun exposure for section 3 (L) and 
section 7 (R) 
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Figure 7. 29: Railhead-air temperature comparison for 13-07-23 tests in WHR 

The 40.30C railhead temperature was recorded on one occasion (the spike can be notice 

on Figure 7.19 (a)) with most temperatures ranging from 20.20C – 34.20C. The friction 

predicted on this test day ranged from 0.214 – 0.236 and steady friction predictions (with 

±0.001 variations) were recorded over the same section of railhead, that is, where the 

train was stationary, marked as ‘S’ in Figure 7.19 (b). Railhead temperatures recorded at 

stationary spots had ±0.20C variations whilst the relative humidity had variations of 

±0.2%. This furthermore shows the prediction tool takes into account changes in the 

environmental conditions when making predictions, as it was found in Chapter 4 that 

these factors play a key role in understanding the wheel-rail adhesion. The step change 

noticed at the transition from section 5 to 6 was because the camera box was turned off 

at the end of section 5’s run and then restarted at the beginning of section 6. 

The trial on the second day used another Class 142 train which was travelling from 

Leeming Bar to Leyburn, through Bedale and Finghall Lane as a return journey. The one-

way journey was an approximately 12 miles and took 42 minutes shown in Section 1 in 

Figure 7.20 (a) and (b) with 5-minute stop and a 2-minute stop on the return journey at 

Bedale station, shown in section 2 and 4 and a brief stop in Finghall lane which was not 

significant enough to be noted on the plot. Section 2 and 4 at Bedale station as determined 

with the GPS data, showed a uniform friction of 0.285±0.002 for Section 2 and 

0.276±0.006 for Section 4. The data captured here was at over 20mph. This did not change 

the quality of the forward facing or railhead images captured.  

Air temperature recorded was 20±30C which was similar to the previous tests and the 

railhead temperatures ranged from 16.90C – 29.50C with the majority of them being 
between 170C - 240C.  

The friction predicted with all the images ranged between 0.223 – 0.292. Sections 1 and 

3 of the plot presented in Figure 7.20 (b) showed a mirroring trough in the predicted 

friction at 0.223 and 0228 respectively. Upon further investigation it was noticed this was 
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recorded under a bridge just outside Leeming Bar station, as shown in Figures 7.30 (a), 

(b), (c) and (d). The decrease in the predicted friction can be accounted by the drop in 

temperatures experienced under bridge from 21.10C to 17.10C and 21.10C to 17.30C in 

Sections 1 and 3 respectively. Work done  testing friction levels using the British Rail 

Research Tribometer train through Saxelby and Asfordby tunnels [86] showed friction 

levels decreased at the entrance into the tunnels as seen in Figure 7.31. It showed the 

effects tunnels have on the moisture level, shading and temperature of the railhead. 

(a)

(b) (c)    (d) 

Figure 7. 30: (a) Forward facing image in the tunnel exiting Leeming Bar; (b) Forward 
facing image in the tunnel approaching Leeming Bar; (c) Corresponding railhead image for 
‘a’; (d) Corresponding railhead image for 'b’ 

 

Figure 7. 31: Effects of tunnels on railhead friction measured on a Tribometer train (adapted 
from [86] by author) 
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All the images collected at WHR at this point had been under dry railhead conditions and 

the predictions showed consistency from the first trial to these ones, as the railhead state 

has not changed. This shows the predictions are not random, but a function of the railhead 

state and environmental data. 

7.5.4 WHR 28-11-23 

For the final camera box trial in this work, 2 camera boxes were used. Both camera boxes 
recorded similar air temperatures in the range of 8±20C, which shows the temperature 

sensors have a good tolerance and measure similar data at the same location. The railhead 

temperatures on the other hand had a temperature range from -1.60C to 6.20C for camera 

box 1 with -1.6 recorded on one instance and majority of low temperature was from 0.80C. 

While railhead temperature recorded on camera box 2 ranged from -5.10C to 150C with 

both -5.1 and 15 occurring on one occasion (commonly when the command thread was 

restarted) and majority of the temperature measured was between 1.90C – 7.90C. Camera 

box 1 measured colder temperatures than box 2 because it was installed at the front of 

the train which is the leading part, therefore the railhead has cooler temperatures 

because it has not been run over by the train wheels. While box 2 sensor measured slightly 

higher temperature as it was on the back of the train which was the trailing side, which 

had railhead that was already passed over by the wheel.  

 

Figure 7. 32: Comparison of Prediction tool and Rivelin Rail (RR) Tribometer Friction for 
WHR 28-11-23 

These tests offered an avenue to compare the friction predictions to friction measured by 

a tribometer, which in the case was the Rivelin Rail tribometer, as shown in Figure 7.32. 
The data presented in Figures 7.22 and 7.23 (a) & (c) were recorded during the short runs 

and during the leaf layer creation. The leaf layer was created on a small section of the 

railhead as shown in Figure 7.12 and it was represented on the plots with the red dotted 
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lines. Camera box 1 captures the leaf layer before the trailing camera box 2 which why it 

has a shorter lead shown on the plot. The predicted friction is seen to reduce at the 

sections where the leaf layer was being created, emphasised with the red lines. The 

predicted friction gets progressively lower as the train continues to pass over the leaf 

layer creating the black layer. The leaf layer was run over six times (3 return movements) 

represented by the first 6 troughs in Figure 7.23 (c). The final friction predicted of the 

black leaf layer section was 0.187 for box 1 and 0.182 for box 2 compared to the measured 

friction of 0.152 on the left side corresponding to the camera box 2 position. Although the 

prediction tool has not received extensive black leaf layer data training, this result shows 

that with more data it will accurately prediction friction comparable to a friction 

measurement device. Cryogenic cleaning was applied to the black layer created after sixth 

run and the friction predicted at that section significantly increased to around 0.25 on the 

left track and 0.26 on the right track. 

The leaf layer was reapplied a second time on a different section of the track (seen on the 

second side of the black line labelled 2) and a similar trend was noticed. The model 

predicted a friction of 0.174 and 0.176 (return) for the leaf layer created after 2 passes 

while the measured friction was 0.187 on the left track. The right side of the track had a 

predicted friction of 0.184 compared to 0.183 measured by the tribometer. 

The predictions obtained from the long run test from Leeming Bar to Bedale shown in 

Figure 22 and 23 (b) & (d) have a similar trend to Sections 1 and 3 of the data collected 

between Leeming Bar, Bedale and return seen in Figure 7.20 (b). The deep trough in the 

predicted friction was also noticed here at the same location of the under bridge giving a 

prediction of 0.210 and 0.211 from camera box 1 exiting and entering Leeming Bar 

respectively. On the hand Camera Box 2 encountered a software error which restarted the 

thread when exiting Leeming Bar while under the bridge of interest but captured it on the 

return journey showing the trough in Figure 7.23 (d) predicting 0.201. A second trough 

which predicted a friction of 0.209 was noticed where a sudden drop in railhead 

temperature from 3.90C to -5.10C where the friction reduces from 0.244 to 0.209. The 

drop in the temperature definitely caused by an error either from vibrations causing the 

IR sensor to briefly shift hence a random reading or sensor restarting. The railhead 

temperature returned to 40C after the one -5.10C reading which in turn returned the 

predicted friction to 0.244. 
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Figure 7. 33: Comparison of data collected from the camera in the summer 14-07-23 to 
winter 28-11-23 

The predicted friction for the long run ranged between 0.227 to 0.282 and 0.227 to 0.270 

with exclusion of the tunnel effects and railhead temperature anomaly for camera box 1 

and 2 respectively. These predictions are slightly lower than the predictions made by 
model during the summer period on the same route. Figure 7.33 shows data extracted 

from the same route which was Leeming Bar to Bedale for 14th July where the railhead 

temperature was warmer than 28th November 2023. The predicted friction during the 

summer period was higher by an average of 0.016 than the predicted friction during 

winter. This correlates with findings made in Chapter 4 that railhead temperature does 

affect the friction levels, it may not be a big difference, but it does make a difference. 

7.6 CONCLUSIONS 
• The final set-up using the camera box showed that the concept of an on-train data 

collection and friction prediction system is feasible. 

• The camera box predictions showed consistency over the same area of data 

collection furthermore proving the output of the prediction tool is not random. 

The prediction tool is also very sensitive to the railhead state such as wet and dry 

as it is expected to be. Predicting lower friction with the appearance of moisture 

on the railhead with lower prediction expected if the relative humidity matches. 

• From Figure 7.32, it shows the friction prediction model has compared well 

against the Rivelin Rail tribometer measurements. 

• The camera box setup done cannot be a permanent solution as the lamp bracket 

holder is not fitted on all rolling stock with some having them located in different 

positions. 

0.200

0.210

0.220

0.230

0.240

0.250

0.260

0.270

0.280

0.290

0

5

10

15

20

25

30
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

Pr
ed

ic
te

d 
Fr

ic
tio

n 
(µ

)

Ra
ilh

ea
d 

Te
m

pe
ra

tu
re

 (C
) 

Data points

July/November Camera Box Data Comparison

Railhead Temp 28-11/C Railhead Temp 14_07/C Friction 28-11 Friction 14_07



172 
 

• It was proven that the camera works but an integrated data capture system on the 

train either close to or the wheel boogie will be beneficial for collecting clearer 

railhead images.  

• The camera box designed for this work can be used by the railway industry for 

other purposes other friction prediction. It can be used for accurate railhead and 

air temperature with relative humidity which will inform train drivers of the 

driving conditions. The forward-facing images can be used for monitoring the 

track surrounding and vegetation management. The GPS data can also aid in 

narrowing down locations of events recorded. 
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CHAPTER EIGHT  
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8. DISCUSSION 

8.1 INTRODUCTION 
The main aim of this research was to enhance the understanding of wheel/rail low 

adhesion and subsequently improve adhesion forecasting and validation approaches. In 

pursuit of this aim, a multifaceted approach was adopted, encompassing a thorough 

literature review, real-world railhead condition analysis, and the development of the 

predictive friction model along with hardware for capturing data from the railhead on 

train. 

8.2 OBJECTIVE 1: LITERATURE REVIEW 

The initial objective aimed to establish a comprehensive understanding of low adhesion 

through an exhaustive review of academic literature and operational insights from 

industry reports, such as those produced by British Rail Research. Key areas of focus 

encompassed the characteristics of wheel/rail interface, the role played by leaf layers and 

the wet-rail phenomenon on wheel/rail adhesion. Concurrently, the investigation 

explored existing approaches for low adhesion measurements and forecasting. 

The in-depth literature review laid the foundation for the project, providing crucial 

insights into the existing knowledge landscape of low adhesion. Unveiling the significance 

of leaf layers and the wet-rail phenomenon contributed to a significant understanding of 

the complexities involved. The measurement techniques explored showed the most 

suitable method for railhead friction data collected, a pivotal aspect for accurate adhesion 

forecasting. 

Gaps were also identified that new technology was needed to fill in terms on adhesion 

forecasting. 

8.3 OBJECTIVE 2: RAILHEAD DATA ANALYSIS 
The second objective sought to analyse rail head conditions across various locations and 

timeframes, offering an ample understanding of how temperatures and relative humidity 

vary over said time frames and their corresponding impact on railhead friction. Real-

world data collection emerged as a critical aspect in achieving a complete understanding 

of low adhesion. This was also necessary for building a new prediction tool. 

The work done in understanding the effects of temperature and relative humidity on the 

railhead friction showed the importance of the environmental properties in relation to 

railhead friction. Relative humidity is an important factor in understanding low adhesion 

on the railhead as seen from the data presented in Chapter 4. The variation in the relative 

humidity and temperature data makes the results unique, which is usually not considered 

in in-laboratory or controlled environment testing. A similar study done by Ishida [87] 

on different rail tracks In Japan, opined that relative humidity had a closer relationship 

to CoF than rail temperature. That is, high relative humidity brought about a decrease in 

CoF. Whereas this work has identified the joint effects of rail temperatures and relative 

humidity changes on railhead CoF, which were discussed in chapter 4. 
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Further work should be considered for including variations of RH levels for in-laboratory 

friction tests. A variation of the RH was achieved for in-laboratory data collected in 

Chapter 6 where the sensitivity of the friction prediction model was discussed, see Figure 

6.37. Although this was done for only the wet railhead condition, this variation showed 

that model reacted to changes in environmental factors, RH in this case.  

Air temperature was recorded during the field visits, but was not included in the analysis 

done, as no independent trend was identified. This was partly because an increase or 

decrease in the air temperature brought the same effects on the railhead temperature, 

therefore producing similar trends [85]. On the other hand, where some part of the rail 

was shaded from the sun the railhead recorded a lower temperature compared to 

sections exposed to the sun, as seen in Figure 4.11a, 4.13a, 7.26, 7.28 & 7.29. Further into 

this work in Chapter 7, where air temperature and railhead temperature were recorded 

using the camera box sensors, the sun exposure effect was noticed more where the 

railhead temperatures registered higher than air temperature for the area because the 

railhead exposed absorbed heat rays from the sun. While shading effects were noted 

where there was a drop in the railhead temperature with the air temperature being 

stable, Figure 7.30 being a good example. 

In addition, the Pendulum tribometer used to measure the railhead friction the model was 

trained on found it hard to maintain the original moisture or contaminants levels present 

on the railhead. Due to the sweeping motion of the pendulum arm wiping off the moisture 

or contamination on the first measurement, thereby altering the subsequent friction 

levels measured for repeat readings.  It will be beneficial to retrain the prediction model 

using a tribometer with better repeatability like the Rivelin Rail tribometer, which has 

only recently been developed. 

 

8.4 OBJECTIVE 3: PREDICTION MODEL DEVELOPMENT 

The third objective aimed at creating and enhancing a model for friction prediction, using 

Artificial Intelligence. This involved the incorporation of railhead images and 

environmental parameters using the Gaussian Process discussed in Chapter 5 to expand 

of the datasets used within the model. This was needed to cover more railhead conditions 

and in particular those leading to low adhesion, for example leaf layers. Leaf layer data is 

very hard to come by as clearly infrastructure owners do not want leaf layers to form and 

will plan mitigation to avoid this. 

The integration of advanced technologies, exemplified by Artificial Intelligence, 

showcased this research’s commitment to leveraging cutting-edge methodologies for 

improved predictions. The incorporation of visual data, such as railhead images was 

pivotal in elevating the model's accuracy and reliability. The iterative process of building 

up datasets within the model underscored the dynamic and evolving nature of the 

research, ensuring a robust foundation for future predictions. 
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8.4.1 PREDICTION MODEL LIMITATIONS 

While the development of a Neural Network (NN) model for friction prediction is a 

promising endeavour, it is important to acknowledge potential limitations that may 

impact its effectiveness. Below are summaries of some considerations: 

• Data Limitations: The NN model's performance heavily relies on the quality and 

quantity of available data. Insufficient or biased datasets may hinder its ability to 

generalize well to diverse rail conditions (this is explained further in the next 

paragraph). 

• Dynamic Environmental Factors: Rail environments are subject to dynamic 

changes in weather, temperature, and other external conditions. The NN model 

may struggle to adapt to unforeseen variations that are not adequately 

represented in the training data. 

• Complexity of Rail Systems: Railway systems are inherently complex with 

various interconnected components. The prediction model may oversimplify 

certain aspects, potentially neglecting obscure interactions that contribute to low 

adhesion conditions. 

• Transferability to Other Rail Networks: Conditions and characteristics of rail 

networks can differ significantly. The model's effectiveness is contingent on the 

similarity of conditions between the training dataset and the target rail network, 

limiting its transferability. Therefore, retraining must be done for applications on 

different rail networks outside of the Scope of this research, that is UK. 

• Ethical and Regulatory Considerations: The use of AI models in safety-critical 

applications such as in the Rail industry raises ethical and regulatory concerns. 

Ensuring compliance with standards and addressing potential biases is crucial to 

maintain public trust and safety. 

As stated previously in Chapters 5 and 6, the prediction model can only forecast 

information it is familiar with (that is, previously trained data). Currently the prediction 

model is limited to information obtained from the Heritage rail tracks and the leaf layer 

data from the Salisbury incident. This is insufficient data for the model to predict friction 

accurately on all railhead conditions across the UK. In order to increase the robustness of 

the prediction tool, it needs to be trained o data collected from as many rail track locations 

as possible and during operational times and seasons. This is to aid the prediction model’s 

ability to identify and forecast a wide range of railhead conditions that system may 

encounter on the field. All these being said, access to these rail tracks remain the greatest 

obstacle in training data collection encountered during this project.  

In addition to this, the Salisbury data collected in Chapter 4 showed that pendulum 

tribometer is not suitable for railhead contamination friction measurement, when the BS 

7976-2:2002+A1:2013 [63] measurement repeatability standard (8 repeat 

measurements) is being followed. Ideally, for contaminated railhead measurements using 

the pendulum, only 2 readings will be appropriate to capture the friction values before 

the railhead condition becomes altered by the swiping motion of the rubber pad. 
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Unfortunately, this variation in measurement method (2 measurements for contaminated 

railhead conditions) was not included in the model training as it is important to have a 

consistent form of data collection for the prediction model in order not to introduce bias 

into the model. 

A very recent alternative to the pendulum tribometer is the Rivelin Rail tribometer used 

in comparing the camera box predictions (Chapter 7). The Rivelin Rail tribometer collects 

an estimated 300 data points per reading (which is averaged in the final/displayed 

friction measured) over a wheel running band length of 300mm, showing good 

repeatability. The Rivelin Rail tribometer employs a free rotating steel wheel, which can 

produce a similar contact stress experience in the wheel/rail contact. Therefore, there 

will not be an issue with the contamination or moisture being swept off the railhead. The 

box plot in Figure 7.32 shows the extent of measurement spread recorded by the Rivelin 

Rail tribometer (for example leaf layer friction ranged between 0.15 to 0.18) which is low 

compared to that seen in the Salisbury data time series plot shown on Figure 4.15 (a-c) 

(for example a measured friction ranging from 0.02-0.14 on Figure 4.15b). 

8.5 OBJECTIVE 4: DATA CAPTURE TOOL DEVELOPMENT AND TESTING 

The final objective encompassed the development of a simple tool for capturing railhead 

images, forward facing images and environmental data on a railway vehicle. Tests were 

conducted on a train in conjunction with the friction prediction tool to validate the output.  

The successful development of the Camera box (which was the data capture tool 

designed) and its integration with the friction prediction model marks a pivotal 

milestone. Testing the camera box on rolling stock not only validates its feasibility, but 

also ensures the reliability of the overall prediction model in real-world, dynamic 

scenarios. The camera box sensors also present a unique insight into the local 

environmental data around the rail tracks, improving the industry's knowledge on the 

environment related trends and how it affects the track system. The collective 

achievement of these objectives has significantly advanced the understanding of low 

adhesion in the wheel/rail interface low adhesion. The friction prediction model, coupled 

with real-world data and data capture capabilities, positions this research to make 

substantial contributions to the improvement of adhesion forecasting in the railway 

industry. 

8.5.1 CAMERA BOX LIMITATIONS 

Although the camera box has numerous benefits and has shown great potential for 

enabling data collection from onboard rolling stock, it has some shortcomings which are 

listed below. 

• Unsuitable Lamb Bracket Position on Some Trains: The Camera box has been 

found to be unsuitable for some types of rolling stock, as discussed in Chapter 7. 

The lamp bracket holder position (which holds the camera box on the train) of 

different trains is not same which means the railhead camera will not be facing 

over the railhead sometimes and therefore it will not capture railhead images. In 
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fact, some trains do not have provision for a lamp bracket holder which implies 

that the Camera box cannot be the final design for railhead image capture. 

• Railhead Image Quality: The railhead images captured from the Camera box as 

seen in Tables 7.2 through 7.7 emerge looking blurry due to motion of the train. 

Although, from comparison done in Figure 7.23 it was established that that level 

of blurriness does not negatively affect the friction prediction, as the model can 

still identify the colours in the image. The extent of blurriness required to produce 

inaccurate predictions is currently unknown, but it is safe to assume that as long 

as the colours are visible in the image, the prediction tool will be able to process 

the image. An alternative location and means of railhead image capture needs to 

be created, especially when the prediction model is employed on a train that goes 

on higher speed than 30mph done in WHR. 

• Remote Control of the Camera Box: Control of the Camera box is yet to be done 

remotely. That is, data download is done manually by taking off the Camera box 

from the train and moving the data from the micro controllers to a flash drive/USB 

stick. An ideal system where the Camera box data can be uploaded remotely onto 

a cloud storage, which can then be downloaded for processing by the prediction. 

This will help automate and speed up the process. 

8.6 HOW DOES THE VALIDATED FRICTION PREDICTION MODEL COMPARE TO 

EXISTING ADHESION FORCAST METHODS? 

The developed prediction model holds significant potential to outperform or work 

alongside existing adhesion forecasting methods in the UK due to several key 

advancements introduced through this research project. It also has higher confidence 

when compared to the other methods as it uses real-time data, and the confidence will 

keep improving as the model training increases (see Table 8.1 for summarised 

comparison updated from Table 2.4). Listed below are some key characteristics 

considered when compared. 

• Incorporation of Railhead Images: Unlike traditional methods that heavily rely 

on weather and/or train performance data, the prediction tool developed in this 

project incorporates visual and sensor data. These data set provides a holistic and 

real-world representation of the rail conditions, allowing for a more accurate 

assessment of low adhesion scenarios. 

• Comprehensive Data Sets: The prediction model's development involved the 

enhancement of traditional programming technique by incorporating more 

diverse data sets. This includes information gathered through the literature 

reviewed in this work, railhead data analysis, and the integration of parameters 

beyond those traditionally considered. The comprehensive data sets contribute to 

a more robust and adaptable prediction model. 

• Dynamic Friction Understanding: The focus on understanding adhesion 

mechanism in the wheel/rail interface makes this model unique. By analysing 

railhead conditions dynamically and considering the impact of contaminants such 
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as leaf layers, the tool is better equipped to predict changes in friction levels, 

adapting to real-time variations and ensuring more accurate forecasting. 

• Validation through Image Sensitivity Tests: The incorporation of a simple 

imaging tool and its validation through the sensitivity tests adds an extra layer of 

reliability to the prediction tool. This validation ensures that the tool's output is 

not only theoretically sound, but also practical and applicable in the dynamic 

environments typical of railway operations. 

• Potential for Industry Impact: The overarching aim of positively impacting the 

railway industry is at the core of this research. The tool's potential to improve 

adhesion forecasting and validation approaches aligns with the industry's need for 

enhanced safety, operational efficiency, and cost-effectiveness. 
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Table 8. 1: Updated adhesion “forecasting” matrix 

Type 
  

Tool Spatial Resolution Temporal Resolution Confidence Use 

  Metres Stations Routes Real time Hours Days     
Rail/lineside 
information 
based 
  

UoS Railhead 
Friction Prediction 
Tool (Camera Box) 

X  X  X X     Medium-High Validated on 
WHR and 
ScotRail routes. 
Validation 
continues with 
further training 

UoS Railhead 
Friction Prediction 
Tool (Manual data 
collection) 

X X 
 

X 
  

Low-Medium Validation in 
process 

Rail eye Sensor X     X     Low-Medium Only used at test 
phase (not on a 
real train) 

Weather 
forecast + train 
performance 
based 
  
  

Met Office 
Adhesion Index 

X X X   X X High – used over 
many years, 
verification 
process in place 

Widespread use 
in UK 

Swedish Tool   X       X Low Still in design 
phase 

Operational data 
based forecast tool 
by University of 
Huddersfield and 
Met Office 

    X     X In process Validated on the 
Birmingham 
cross city line 
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Train 
performance 
based 
  

ADS App by 
(3Squared) 

    X   X   Information 
unavailable 

Information 
unavailable 

Porterbrook     X     X TBC Validation in 
process 

Rail/lineside 
information 
based + weather 
based 

ACCAT X   X   X   Medium-High Used by London 
Underground on 
the central line 
and metropolitan 
line  
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Table 8.1 summarises the capabilities of the friction prediction model both for use in the 

camera box and with manual data capture (that is with a mobile phone, IR sensors or 

weather station data). The camera box set-up yields very good results with validation and 

higher confidence when further trained with relevant datasets for train routes. It has 

spatial resolution in metres, stations, and routes because of the GPS module whereas the 

manual data capture is based on the user’s location and there is a limit to the amount of 

data a user can collect manually. In addition, the camera box set-up has in-built 

temperature sensors which collect environmental data at the same time as the images are 

taken. This increases the reliability and sensitivity of the data set when compared to 

manual data collection where the user may not have correct tools for environmental data 

collection. 

The advancements made in this project suggest that it has the potential to offer a more 

sophisticated, accurate, and practical solution for adhesion forecasting in the UK's railway 

industry. The integration of novel technologies and a focus on real-world conditions 

positions this tool as a valuable asset in addressing the challenges associated with low 

adhesion. 
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CHAPTER NINE  
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9. CONCLUSIONS AND RECOMMENDATIONS 

9.1 CONCLUSIONS 
This research has improved the understanding of low adhesion mechanisms in the 

wheel/rail interface using data collected in the field and proven that Artificial Intelligence 

can be used by the railway industry to predict railhead friction. The Camera box set-up 

resulting from this work will play a key role in the future of low adhesion mitigation and 

also in recording environmental data that could be useful for other issues such as track 

buckling due to high temperatures. The Camera box temperature sensor will work 

independently without railhead image capture, if necessary to obtain environmental data 

and in conjunction with the GPS module, the location of the data collection can be 

obtained. The set-up has turned out to be a versatile tool, which with proper usage and/or 

training will increase the usefulness. 

The important conclusions that can be drawn from this thesis that is novel are: 

• The real-world environmental data (relative humidity, temperature) was 

important in understanding low adhesion mechanisms and should be considered 

in friction prediction models as used here. High relative humidity (>75%) with 

moisture is very likely to propagate low friction levels on the railhead. In addition, 

this work confirmed that railhead temperature is not fully dependent on air 

temperature. The railhead temperature is usually independent of the air 

temperature when external factors are in play such as shading from trees, 

buildings among others; cloud coverage on a warm day; a section of the railhead 

is in the direct line of sun exposure in a cold day. 

• The Gaussian model is ideal for the type of data determined to key in 

understanding and predicting railhead friction (which are numerical and non-

numerical data). The development and enhancement of this Neural Network 

model represent a leap forward in railhead friction prediction capabilities. The 

incorporation of visual and environmental data has refined the model's accuracy 

and adaptability, making it a powerful tool for friction prediction. The current 

model presents good precision for the data it has been trained, evident in the 

increase in log-likelihood when retrained. The model robustness increases with 

continuous training on diverse and good quality set of data, hence improving the 

precision for wider area of application.  

• The prediction model used in this research currently conforms to real-world data, 

especially in terms of environmental information as drawn from the in-lab 

sensitivity tests. This shows the tool fully takes into account the temperatures and 

relative humidity when making the predictions, therefore the friction prediction 

is informed and not random.  

• The successful integration of the prediction model and versatile data collection 

system created in this research, namely the camera box showed these results from 

this work can be employed by the Rail industry. The tool's validation (using the 

Rivelin Rail tribometer and Met Office data) not only assures its theoretical and 
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experimental reliability, but also positions it as a viable solution for railhead 

friction prediction in the near future and lineside environmental data collection.  

In conclusion, this research represents a significant step in the right direction in 

addressing the challenges associated with low adhesion in the Rail industry. The 

achievements and contributions made during this study set the stage for industry 

advancements and ongoing research endeavours. The impact of this work is expected 

to positively impact the railway industry, contributing to a safer, more efficient, and 

cost-effective rail operations. 

 

9.2 RECOMMENDATIONS FOR FUTURE WORK 

As the work concludes, below are some avenues for future exploration split into general 

and industry recommendations: 

GENERAL RECOMMENDATIONS 

• The prediction model should be retrained with friction measurements from a 

tribometer other than the Pendulum tribometer due to its poor repeatability on 

contaminated railheads. The Rivelin Rail tribometer will be a good alternative as 

it has better repeatability and shares the portable characteristics of the Pendulum. 

• Ongoing refinement of the prediction model should be pursued. This includes 

incorporating feedback from real-world applications to enhance accuracy and 

adaptability. Continuous training of the model is also required, especially with 

regularly used routes with help the predictions conform with these routes. 

• The design of the prediction model does not consider any wheel characteristics 

such as the roughness or contamination presence on the wheel. In situations 

where a clean wheel with rough, returned surface runs on a contaminated rail, it 

has the ability cut through contamination on the railhead. Whereas low adhesion 

may occur in the contact of a clean railhead and contaminated wheel.  

Development of a new measurement technique looking at the wheel/rail contact 

in different surface conditions is required. This may be done using the linear full-

scale-wheel-on-rail-rig or HAROLD, to build up new friction relationships for 

training a future prediction model.  

• Further testing should be carried out to consider the usage of alternative or 

additional railhead cameras that can capture some railhead properties better than 

a regular camera. An example of such is an Ultra-Violet or an Infra-Red camera, 

which have shown to aid identification of railhead contamination [56]. 

INDUSTRY RECOMMENDATIONS 

• The next step involves integrating the developed tools and approaches with 

existing industry practices. This includes creating a specialised data collection 

(eliminating sensor noise and blurry images) and integrating with a rolling stock, 

it will also push for automation of the data processing. Collaboration with rail 

operators and relevant stakeholders will be crucial for seamless adoption.  
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• In line with integrating the tool with industry existing practices, One Big Circle has 

a railhead camera set-up attached to the cowcatcher/rail guard of some rolling 

stock. The images captured are in black and white format in addition they are high 

resolution. They have stated friction levels can be estimated by inspecting at these 

railhead images, although this method has not been validated yet. It is suggested 

that further work can be done in capturing, analysis and classifying black and 

white railhead images under as many conditions as possible. This will inform us of 

the feasibility of this method in identifying the railhead state and determine if this 

can be translated to a similar prediction model as that of this research. If this yields 

a positive outcome, the new prediction model can be integrated into the existing 

railhead image capture system. 

• The success of this research in the UK suggests the potential for adaptation to 

other railway networks globally. Assessment of applicability in different 

environments and climates could further extend the impact of these findings. 

9.3 PUBLICATIONS ARISING FROM THIS WORK 

JOURNAL PUBLICATIONS 

M. O. Folorunso, R. Lewis, and J. L. Lanigan, "Effects of temperature and humidity on 

railhead friction levels," Proceedings of the Institution of Mechanical Engineers, Part F: 

Journal of Rail and Rapid Transit, vol. 237, no. 8, pp. 1009-1024, 2023. 

M. O. Folorunso, M. Watson, A. Martin, J. W. Whittle, G. Sutherland, and R. Lewis, "A 

Machine Learning Approach for Real-Time Wheel-Rail Interface Friction Estimation," 

Journal of Tribology, vol. 145, no. 9, p. 091102, 2023. 

CONFERENCES AND SEMINAR PRESENTATIONS 

Michael Watson, Morinoye Folorunso, Alan Martin, Jacob Whittle, Graham Sutherland, 

Roger Lewis. "A Machine Learning Approach for Real Time Wheel/Rail Interface Friction 

Estimation," Presented at the 13th World Congress for Railway Research, held in 

Birmingham, UK on 9 June 2022. 

Morinoye Folorunso, “Predicting Railhead Friction Levels Using Artificial Intelligence 

(AI)” Presented at the knowledge exchange seminar between UNAL Medellin Colombia 

and The University of Sheffield, held in Medellin, Colombia on 1 November 2022. 

Morinoye Folorunso, Roger Lewis, Joseph Liam Lanigan, “The Effects of Relative Humidity 

and Temperature on Railhead Friction” Presented at the 9th International Tribology 

Conference, held in Fukuoka, Japan on 30 September 2023. 

Roger Lewis & Morinoye Folorunso. “A Machine Learning Tool for On-Train Adhesion 

Estimation” Presented at the IMechE Tribo-sensing and Condition Monitoring – The 

Journey to Net Zero, held in London, UK on 25 October 2023. 
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11. APPENDICES 

APPENDIX A:  

A-1 SAMPLE DATA SHEET AND SPREAD SHEET USED IN COLLATING FIELD DATA 

 

Figure 1: Data collection sheet 
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Figure 2: Data spreadsheet sample. 

 

A-2 ADDITIONAL RESULTS FROM ENVIRONMENTAL EFFECTS ANALYSIS IN CHAPTER 4. 

  

Figure 3: µ against relative humidity with a colour map representing railhead temperature 
for Butterley 
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Figure 4: µ against relative humidity with a colour map representing railhead temperature 
for Idridgehay 
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Figure 5: µ against relative humidity with a colour map representing railhead temperature 
for Wirksworth 
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APPENDIX B: PREDICTION MODEL CODES 

B-1 GAUSSIAN PROCESS 

import pickle as pkl 

import pathlib 

import pandas as pd 

_this_path = pathlib.Path(__file__).parent.absolute() 

 

__all__ = ['GPModel'] 

 

class GPModel: 

    def __init__(self): 

        models_path = pathlib.PurePath(_this_path, 'gp_models.pkl') 

        models = pkl.load(open(models_path, 'rb')) 

        self.x_scaler = models['x_scaler'] 

        self.f_scaler = models['f_scaler'] 

        self.x_col = models['x_col'] 

        self.gp_model = models['fitted_process'] 

 

    def __call__(self, x): 

        data = pd.DataFrame(x) 

        for col1, col2 in zip(data.columns, self.x_col): 

            assert col1 == col2 

        data_norm = pd.DataFrame(self.x_scaler.transform(data), columns=data.columns) 

        prediction_norm, std = self.gp_model.predict(data_norm, return_std=True) 

        cov = std/prediction_norm 

        prediction = self.f_scaler.inverse_transform(prediction_norm) 

        return prediction, cov 
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B-2 FORWARD FACING IMAGES 

import cv2  # opencv image library 

import pandas as pd  # data manipulation library 

import numpy as np  # numeric python library 

import minisom  # self organising maps library 

import tensorflow_hub as hub  # database of pretrained models 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

import pickle as pkl 

 

import pathlib 

 

_this_path = pathlib.Path(__file__).parent.absolute() 

 

__all__ = ['ImageMapper'] 

 

class ImageMapper: 

 

    def __init__(self): 

        models_path = pathlib.PurePath(_this_path, 'ffi.pkl') 

        models = pkl.load(open(models_path, 'rb')) 

        # do all checks here 

        self.scaler = models['scaler'] 

        assert isinstance(self.scaler, StandardScaler) 

        self.pc_analyser = models['pca'] 

        assert isinstance(self.pc_analyser, PCA) 

        self.som = models['som'] 
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        assert isinstance(self.som, minisom.MiniSom) 

        extractor_path = pathlib.PurePath(_this_path, 'tf2-

preview_mobilenet_v2_feature_vector_2') 

        self.extractor = hub.KerasLayer(str(extractor_path), input_shape=(224, 224, 3)) 

 

    def get_map_point(self, paths_to_ff_image: str) -> dict: 

        x = [] 

        y = [] 

        for path in paths_to_ff_image: 

            if path is None: 

                x.append(None) 

                y.append(None) 

                continue 

            images = _read_trim_resize_image(path) 

            features = self.extractor(images) 

            data = pd.DataFrame(features) 

            data_norm = pd.DataFrame(self.scaler.transform(data)) 

            pc = pd.DataFrame(self.pc_analyser.transform(data_norm)) 

            this_x, this_y = self.som.winner(pc[0]) 

            x.append(this_x) 

        rtn_dict = {'ffi_x': x, 'ffi_y': y} 

        return rtn_dict 

 

def _read_trim_resize_image(file_name: str): 

    """Reads trims and resizes the front facing rail view images 

    Parameters 

    ---------- 
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    file_name: str 

        The full path of the image file including the extension 

 

    Returns 

    ------- 

    im_1, im_2: np.arrays 

 

    """ 

    image_size = (224, 224, 3) 

 

    image = cv2.imread(file_name) 

    if image.shape != (343, 609, 3): 

        original_shape = (343, 609) 

        times_too_big = [i / o for i, o in zip(image.shape, original_shape)] 

        cropped_shape = [int(o * np.min(times_too_big)) for o in original_shape] 

        starts = [(i - c) // 2 for i, c in zip(image.shape, cropped_shape)] 

        cropped = image[starts[0]:starts[0] + cropped_shape[0], 

                        starts[1]:starts[1] + cropped_shape[1]] 

        resized = cv2.resize(cropped, (original_shape[1], original_shape[0])) 

        image = resized 

 

    im_1 = image[10:10 + image_size[0], 50:(image_size[1] + 50)] 

    im_2 = image[10:10 + image_size[0], -1 * (image_size[1] + 50):-50] 

    return np.array([im_1, im_2], dtype=np.float32) / 255 

def _extract_features(images): 

    extractor_path = pathlib.PurePath(_this_path, 'tf2-

preview_mobilenet_v2_feature_vector_2') 
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    extractor = hub.KerasLayer(str(extractor_path), input_shape=(224, 224, 3)) 

    return extractor(images) 

 

B-2 RAILHEAD IMAGES 

import datetime 

import pandas as pd 

import numpy as np 

import os 

import skimage.io as io 

import skimage.filters as filt 

import skimage.color as color 

 

__all__ = ['get_features'] 

 

def get_features(rail_head_file_names: str): 

    black = [] 

    orange = [] 

    edge_v = [] 

    colors = [] 

    mean_brightness = [] 

 

    for file_name in rail_head_file_names: 

        print (file_name) 

        sub_im = _read_and_localise(file_name) 

        black.append(find_black(sub_im)) 

        orange.append(find_orange(sub_im)) 

        edge_v.append(sobel_v(sub_im)) 
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        colors.append(mean_color(sub_im)) 

        mean_brightness.append(mean_bright(sub_im)) 

 

    rtn_dict = {'mean_brightness': mean_brightness, 

                'black': black, 

                'orange': orange, 

                'edge_v': edge_v, 

                'color': colors} 

    return rtn_dict 

 

 

def mean_bright(image): 

    return np.mean(image.flatten()) 

 

 

def sobel_h(image): 

    gray = color.rgb2gray(image) 

    return np.mean(np.abs(filt.sobel_h(gray))) 

 

 

def sobel_v(image): 

    gray = color.rgb2gray(image) 

    return np.mean(np.abs(filt.sobel_v(gray))) 

def mean_color(image): 

    hsv = color.rgb2hsv(image) 

    return np.mean(hsv[:, :, 0] * hsv[:, :, 1]) 
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def find_orange(image): 

    hsv = color.rgb2hsv(image[200:600, :, :]) 

    orange = np.clip(np.abs(hsv[:, :, 0] - 1 / 12), 0, 1 / 12) * -12 + 1 

    o_adjust = orange * hsv[:, :, 1] * hsv[:, :, 2] 

    return np.mean(o_adjust) 

 

 

def find_black(image): 

    hsv = color.rgb2hsv(image[200:600, :, :]) 

    thresh = 0.3 

    black = np.clip(thresh - hsv[:, :, 2], 0, thresh) / thresh 

    black_sat = np.clip(thresh - hsv[:, :, 1], 0, thresh) / thresh 

    return np.mean(black_sat * black) 

 

 

def _read_and_localise(file_name): 

    if not os.path.exists(file_name): 

        raise ValueError("Rail head image not found") 

    im = io.imread(file_name) 

    #resolution of image aka image size 

    #sub_im = im[500:2500, 1500:2500, 2] 

    sub_im = im[250:1200, 250:1250, 2] 

    filt_im = filt.gaussian(sub_im, sigma=10) 

    sobel_im = filt.sobel_v(filt_im) 

    rail = np.std(filt_im, 1) / np.mean(filt_im, 1) ** 3 * np.mean(np.abs(sobel_im), 1) 

    window_size = 500 
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    rail_starts = [sum(rail[i:i + window_size]) for i in range(len(sobel_im) - window_size)] 

    start = np.argmin(rail_starts) 

    #final_sub_im = im[500 + start:500 + start + window_size, 1500:2000, :] 

    #(windowsize height:width) 

    final_sub_im = im[250 + start:250 + start + window_size, 750:1000, :] 

    return final_sub_im 

 

B-3 PREDICTOR PROCESS 

from .forward_facing_images import ImageMapper 

from .rail_head_images import get_features 

from .gausian_process import GPModel 

import numpy as np 

 

__all__ = ['Predictor'] 

 

 

class Predictor: 

    def __init__(self): 

        self.mapper = ImageMapper() 

        self.gp_model = GPModel() 

 

    def predict(self, air_temp, humidity, rail_temp, layer_thickness, 

                is_raining, rail_head_file_name, forward_facing_file_name=None): 

        n = (np.log(humidity/100)+(17.27*air_temp)/(273.3+air_temp))/17.27 

        dew_point = 237.3*n/(1-n) 

        x = {'air_temp': air_temp, 'humidity': humidity, 

             'dew_point': dew_point, 'rh_temp': rail_temp, 
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             'layer_thick': layer_thickness, 

             'is_raining': is_raining} 

        x.update(get_features(rail_head_file_name)) 

        if forward_facing_file_name is not None: 

            x.update(self.mapper.get_map_point(forward_facing_file_name)) 

        return self.gp_model(x) 

 

__init__ process 

from .forward_facing_images import ImageMapper 

from .rail_head_images import get_features 

from .gausian_process import GPModel 

from .predictor import Predictor 

 

__all__ = ['Predictor', 'GPModel', 'get_features', 'ImageMapper'] 

B-4 PREDICTION MODEL INTERFACE 
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B-5 IMAGE FEATURES 

import rail_ai 

import os 

import numpy as np 

import pathlib 

import pandas as pd 

data = pd.read_csv(r"C:\Users\mep20mof\Documents\Mep20mof 

doc\data_update.csv") 

base_path = pathlib.PurePath(r"G:\My Drive\AI project-Roger Lewis\WP0 D0 Data 

collection") 

photo_path = data['photo'].apply(lambda x: str(base_path.joinpath(x))) 

features = rail_ai.get_features(photo_path) 

data['mean_brightness'] = pd.DataFrame(features['mean_brightness']) 
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data['black'] = pd.DataFrame(features['black']) 

data['orange'] = pd.DataFrame(features['orange']) 

data['edge_v'] = pd.DataFrame(features['edge_v']) 

data['color'] = pd.DataFrame(features['color']) 

data.to_csv(r"C:\Users\mep20mof\Documents\Mep20mof 

doc\data_update_withImganalysis_March22.csv") 

 

B-6 GP FITTING_MO 

import sklearn.gaussian_process as gp 

from sklearn.preprocessing import MinMaxScaler 

import seaborn as sns 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from scipy.optimize import minimize_scalar 

from scipy import stats 

import statsmodels.formula.api as smf 

from sklearn.model_selection import KFold as KF, RepeatedKFold as RKF 

from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, 

ConstantKernel as C, WhiteKernel as WK 

data = pd.read_csv(r'C:\Users\mep20mof\Documents\Mep20mof 

doc\data_update_withImganalysis_March22.csv') 

data_small = data.drop(columns = ['people', 'location', 'photo','Unnamed: 0', 'Unnamed: 

0.1', 'weather', 'site']) 

models = {} 

X = data_small.drop(columns = ['date','time', 'friction', 'edge_h']) 

y = data['friction'] 

x_scaler = MinMaxScaler() 

X_scaled = pd.DataFrame(x_scaler.fit_transform(X), columns = X.columns) 
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models['x_scaler'] = x_scaler 

friction_scaler = MinMaxScaler() 

y_scaled = friction_scaler.fit_transform(np.array(y).reshape(-1, 1)) 

models['f_scaler'] = friction_scaler 

kernel = 0.5 + C(1.0) * RBF(1)+ WK(0.1) 

process = gp.GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) 

fitted = process.fit(X_scaled, y_scaled) 

preds_gp, sigma = fitted.predict(X_scaled, return_std=True) 

X_scaled.columns 

models['fitted_process']=fitted 

models['x_col'] = X.columns 

import pickle as pkl 

pkl.dump(models, open('gp_models.pkl','wb')) 

preds_gp.shape 

plt.figure(figsize= (5,5)) 

plt.scatter(preds_gp, y_scaled) 

ax = plt.gca() 

plt.grid(True) 

plt.ylabel("Actual Friction") 

plt.xlabel("Predicted Friction") 

plt.plot([0,1],[0,1], 'r:') 

ax.set_xlim(0,1) 

ax.set_ylim(0,1) 

plt.savefig("GP fitting.png", dpi=500) 
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APPENDIX C: CAMERA BOX 

C-1: CAMERA BOX PART DESIGNS 

 

Figure 6: 3-D design of railhead camera and IR Thermometer sensor mount 

 

Figure 7: 3-D design of front facing camera mount 

 

Figure 8: 3-D design of battery case bottom (L) with microcontroller mount on the cover (R) 
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Figure 9: 3-D design for side panels for camera box with air temperature and humidity 
thermometer slot on the right 

  

Figure 10: 3-D design for germanium window holder 
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Figure 11: 3-D design for IR thermometer holder 

 

Figure 12: Engineering drawing for Perspex glass insert with Germanium window 
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Figure 13: Engineering drawing of the modified camera box body with 3-D isometric view 
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C-2: CAMERA BOX DATA SAMPLE 

 

Figure 14:CSV output from camera box process thread. 

 

C-3: STANDARD OPERATING PROCEDURE FOR THE CAMERA BOX 

Pre-Mounting/Test Steps: 

1. Open either the side panel (preferably the blank one) or front panel of the camera 

box (using appropriate Allen keys) to access the components. 

2. Check if battery pack is charged up if not, charge it up before use. The battery case 

cover can be opened up to view the battery level when it is switched on. 

3. Turn on the battery pack with USB button switch, concurrently turning on the 

microcontrollers. 

4. Check to see the GPS module light is on (lime green light under the Arduino Uno) 

and the IR thermometer light is on (lime green light on the sensor). If the lights 

are not on, check that their sensor connectors are firmly plugged into the 

microcontroller. 

5. Connect the linked microcontrollers to a monitor to get familiar with the data 

folders located on the desktop (‘rail_images’ for railhead, ‘forward_images’ for 
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forward facing images and ‘CSV’). This can be done using a HDMI dongle connected 

to the Raspi. If prompted for username and password, use mep20mof for both. 

6. Check Raspi memory before commencing any operation. If full, confirm current 

data has been backed up before deleting them, if not back them up on a USB stick 

and upload onto Google drive. Proceed to permanently delete backed up images 

from the Raspi. 

7. To control the camera box remotely after mounting it on the train, install 

“RaspController” app on a mobile device. Register the Raspi’s IP address on the 

app and install the following commands: 

a. To run the camera box within WiFi range install, “sudo 

python3/home/mep20mof/Desktop/camera_box/main.py” 

b. To run the camera box with the user away from the system for a specified 

length of time (although the mobile phone has to be in close proximity to 

start the process), install, “sudo 

python3/home/mep20mof/Desktop/camera_box/main.py x”. Where ‘x’ is 

the time in seconds. 

8. This directory can be saved on the app and used continuously. 

9. The camera box can now be switched off, with the panels screwed back in position 

for transportation. 

 

Mounting/Test Steps 

1. The camera box should be mounted on the train’s lamp bracket using the black 

slot located at the back of the box. 

2. Ensure the camera box is sitting fully on the lamp bracket. It may need an extra 

push to slide it down fully. 

3. Open the front panel of the camera box. Ensure all the components are securely 

mounted in the box and proceed to switch the microcontrollers on. 

4. Access the camera and sensor feeds either through the monitor or the mobile app. 

Using the camera feed (USB) to view the output, adjust the forward-facing camera 

by moving the tripod mount to the desired position. Switch the camera feed to the 

railhead camera (Libcamera) to view the output, adjust the camera position and 

lens distance until the railhead width can be viewed with good resolution (this is 

all determined by the user). 

5. Using the method described in section 7.2.2B position the IR thermometer to read 

the railhead temperature. The temperature feed can be accessed on the monitor 

or the SSH Shell command saved earlier. This should be viewed to make sure all 

sensors are working and record correct data. The GPS module take about 5-10 

minutes to pin the first location so it will not record data while setting up, if the 

process takes less than 10minutes generally. 

6. When these processes are completed, the monitor should be disconnected (if 

used) while the mobile can remain connected. Camera box front panel should be 
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securely screwed back in place while the system is left on (because the user would 

not have access to the camera box while in use). 

7. The camera box is ready for use. The camera box can either be operated remotely 

by the user, where the run command is set to capture data for the time 

corresponding to the train journey. Or the user can sit close to the train cab and 

control the data capture, this is very useful for repeat tests. 

Post-Tests Step 

1. After data capture completion, the microcontrollers can be shut down using the 

mobile app. 

2. Unmount the camera box and turn off the system before transportation to save 

battery energy. 

3. Data transfer can happen before or after transporting the camera box from the 

testing site. Follow the same process of connecting the microcontroller to the 

monitor; the images and CSV can be accessed using the folders stated in “Pre-Test 

Step” no. 5. 

4. The images and CSV should be copied/moved to USB stick, saving them in separate 

folders. 

5. The users can now access the data at their convenience and process it. 

6. To carry out friction predictions, the data should be compiled into a similar 

spreadsheet shown in Figure 2 Appendix A-2 and save as a CSV file. Then follow 

the steps laid out in Appendix B-4 for the ‘.ipynb’ file as written by user (should be 

similar to image in B-4). Basically, the codes displayed in B-4 can be re-used, 

although the base path, image base path and csv file have to be updated. 

 


