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Abstract

Future quantum devices are powerful devices that will generally generate, manip-
ulate, and store quantum information using qubits. A linear array of solid-state
types of qubits (known as spin chains) have been thoroughly investigated. It has
demonstrated its usefulness for short-range quantum communication and com-
putation, and entanglement generation. In this thesis, we design complex Spin
Network (SN) systems by coupling together spin chain systems using a novel uni-
tary transformation method. The richer topology involved in our SN systems gives
wider application than spin chains and enables the generation of various quantum
information processing without the need to re-engineer the SN parameters, such
as coupling interactions, for each unique task. We have used the SN for rout-
ing quantum information, generating various types of entangled states, and for
quantum sensing purposes. All these applications have been investigated against
different types of disorder and show very good robustness for practical levels of
disorder. Investigation of the scalability of the SN by increasing the number of
qubits or by increasing the number of spin chains that form the SN have also been
considered. As the SN description and approach are widely applicable to a range
of physical realisations, our work demonstrates the feasibility of realising these
quantum information systems as practical devices.
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Chapter 1

Introduction

Quantum mechanics is a theory that describes how the world works at the
microscopic level, and it has been shown to be very accurate in its predictions.
Understanding quantum mechanics has already changed our life in the sense that
almost all electronic technology we have contains a transistor, a semiconductor
device that relies on the concept of band structure of a material, which is a quan-
tum mechanical concept. However, the building blocks of our current technology
are nevertheless based on the laws of classical physics, because they manipulate
information according to classical Boolean logic.

The power of classical computers is limited to how large a computational task
is. As a case in point, the amount of information embodied in the spin degrees
of freedom of 20 electrons is given by 220 and this could be simulated using clas-
sical computers. But when it comes to simulating a real physical system, where
the number of particles could be on the order of 1020, the amount of informa-
tion that needs to be stored and processed outweighs the capabilities of ordinary
computers. Even with approximation methods (e.g., perturbation theory) or ad-
vanced hardware architectures, no classical computer has provided efficient and
accurate solutions for such problems. Therefore, it has become clear that simulat-
ing a real physical system requires a computer that is much more powerful than
ordinary/classical computers that are used in everyday life.

Feynman realised this difficulty and suggested a quantum simulation that can
be performed by a quantum computer (rather than classical computers) to over-
come certain classes of problems [3]. It has subsequently been shown that problems

“Curiosity - the rover and the concept - is what science is all about:
the quest to reveal the unknown.”

Ahmed Zewail
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that cannot be solved efficiently by classical computers can be solved by quantum
computers. For example, factoring large numbers can be solved by using the Shor
algorithm [4], which provides an exponential speedup over its classical counterpart.
Many other quantum algorithms have also been proposed for various problems [5].
However, building a quantum computer is not a simple task, and could even be
the hardest task scientists ever faced. Therefore, scientists have been studying
quantum systems, mostly of small system size due to the limitation of current
classical computers.

Advanced tools have been used to emulate quantum systems, such as exper-
iments with ultracold atoms [6] and photonic simulation [7]. A great amount of
effort has been made in exploring the quantum computing field to realise a quan-
tum computer. In fact, cutting-edge quantum technology devices with a number
of qubits ranging from 50 to 100 have already been built and have achieved quan-
tum supremacy, which means that they outperformed the most powerful classical
supercomputers for solving certain mathematical tasks [8, 9].

In addition to using quantum mechanics for quantum computing, it can also be
used for secure communication [10] and quantum communication [11]. Moreover,
quantum mechanics can be used to improve the accuracy of physical measurements,
and a new field is emerging from this known as quantum sensing [12].

These developments bring us to what is known as Quantum Information Pro-
cessing (QIP), which is concerned with transferring and manipulating quantum
information. Therefore, QIP can be used to contribute to all the applications
we have mentioned above: quantum communication, quantum computation, and
quantum sensing. In this thesis, we contribute to the field of QIP by proposing a
novel design for scalable and robust quantum spin networks and show how they
can be used for transferring and manipulating quantum information.

1.1 Quantum Information Processing

In this section we will introduce the basic ingredients and definitions of QIP;
qubits, quantum states, entanglement, measurement, decoherence, unitary oper-
ators, and quantum gates. Then, DiVincenzo requirements for quantum devices
will be discussed. Finally, a discussion of the physical implementations of QIP will
be presented.
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1.1.1 Basic definitions

Qubits

Classical computers and communications run on bits, where there are just two
possible outcomes; either 0 or 1 (i.e. mathematically: 1 is where a wire has a
current and 0 represents no current passing). The quantum analogy of classical
bits is that of quantum bits, which are also known as qubits. Although the bit
state can only be 0 or 1, the qubit state can be 0 and 1 simultaneously, which is
a fundamental feature of quantum mechanics and known as superposition. Fur-
thermore, each of the qubit states, 0 and 1, can be expressed in a two-dimensional

vector space as |0⟩ =

(
0

1

)
and |1⟩ =

(
1

0

)
, respectively. The notations |0⟩ and

|1⟩ are known as the computational basis states. Note that the definitions of the
basis |0⟩ and |1⟩, given here, are opposite to the definition most commonly (but
not exclusively) used in the quantum information literature.

There are various notations that can be used to denote the basis of a qubit,
such as |+⟩ and |−⟩ or |↓⟩ and |↑⟩ or sometimes letters. In this work, we will stick
to the notation basis |0⟩ and |1⟩. Therefore, a single qubit state can be expressed
as a linear combination of the basis states as

|ψ⟩ = α |0⟩+ β |1⟩ , (1.1)

where α and β are complex number coefficients, the probability of finding the
qubit in |0⟩ state or |1⟩ state is |α|2 and |β|2 respectively. Furthermore, any
qubit must satisfy the normalisation condition |α|2 + |β|2 = 1. The plus and
minus notations are usually used to denote a specific example of a single-qubit
superposition |±⟩ = 1√

2
(|0⟩ ± |1⟩).

Quantum states

The first postulate of quantum mechanics is that the state of a closed quantum
system can be represented as a complex state vector that belongs to a complex
Hilbert space [13]. The Hilbert space is spanned by a complete basis set, and
it contains all the possible configurations that the system can have. Take as an
example the single qubit state mentioned above, where the Hilbert space bases are
|0⟩ and |1⟩. These bases are said to be orthonormal (i.e., orthogonal to each other
and normalised).
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A system composed of two subsystems, |01⟩ and |12⟩, is described by taking
the tensor product of the two subsystems (i.e., |01⟩ ⊗ |12⟩). For convenience, this
is simplified as |01⟩. Therefore, the quantum state of a system composed of two
qubits, |ψ1⟩ = c1 |0⟩ + c2 |1⟩ with Hilbert space H1 and |ψ2⟩ = c3 |0⟩ + c4 |1⟩ with
Hilbert space H2 , can be represented as

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ = c1c3 |00⟩+ c1c4 |01⟩+ c2c3 |10⟩+ c2c4 |11⟩ . (1.2)

Generalising this for N qubits, we can write the product state of the system as
a tensor product of all the qubits |Ψ⟩ = |ψ1⟩⊗|ψ2⟩⊗ . . . |ψN⟩. This tensor product
results in 2N basis states |κi⟩, and therefore any quantum state of such system can
be represented as a linear combination of these basis states

|Ψ⟩ =
2N∑
i=1

ci |κi⟩ , (1.3)

with the normalisation condition
∑2N

i=1 |ci|2 = 1. The basis states |κi⟩ achieve
the orthonormality condition, as they are orthogonal ⟨κi|κj⟩ = 0 for i ̸= j and
normalised ⟨κi|κi⟩ = 1.

As will be discussed in the following, the vector representation of the quan-
tum state cannot describe any type of quantum state. An equivalent method for
representing a quantum state is the representation known as the density operator
(also called the density matrix). A general density matrix can include classical un-
certainty (lack of classical knowledge about the system) and quantum uncertainty
associated with superposition. Therefore, any quantum state can be described
using the density matrix ρ as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (1.4)

where pi represents the probability to find the system in the pure state |ψi⟩ and
all the probabilities sums up to unity,

∑
i pi = 1. The trace of the density matrix

is always equal to one, Tr(ρ) = 1. The density matrix applies to an ensemble of
quantum systems, or one system used many times with repeated preparation.

• Pure states
Pure states represent quantum states that are well known. For instance, if a
device is used to fire an electron and, each time the device fires an electron,
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we find that the spin of the electron is in a spin-up state, then the system
state is a pure state. Similarly, if the electron spin is found to be in the same
superposition state each time the device fires the electron, then the system
state is a pure state. This is also true with a system composed of many
particles; as long as the state of the system is always well known, then the
state is said to be in a pure state.

Pure states can be described using either the vector state representation |Ψ⟩
or the density matrix representation ρ. Since the pure state is well known,
its density matrix representation is given by ρ = |Ψ⟩ ⟨Ψ|. Furthermore, the
trace of the square density matrix of pure states is equal to one, Tr(ρ2) = 1.
As this thesis work is mainly focused on pure states, we will generally use
the vector state representation |Ψ⟩.

• Mixed states
While pure states can be described using the vector state representation |Ψ⟩
or the density matrix ρ, mixed states can only be described using the density
matrix ρ. A mixed state ensemble of quantum systems can be described as
a probabilistic sum over pure state |ψi⟩ projectors, each with probability pi,
so ρ =

∑
i pi |ψi⟩ ⟨ψi|. For example, if a spin-1

2
ensemble is prepared as 30%

“up” in z, 20% “down” in z, and 50% in the |+⟩ state, it is decomposed as

ρ = 0.3 |1⟩ ⟨1|+ 0.2 |0⟩ ⟨0|+ 0.5 |+⟩ ⟨+|

= 0.3 |1⟩ ⟨1|+ 0.2 |0⟩ ⟨0|+ 0.25 (|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|) .
(1.5)

Therefore, a z-basis measurement on the ensemble will reveal “up” with prob-
ability 0.55 and “down” with probability 0.45. As ρ can also be decomposed
as

ρ = 0.15 (|+⟩⟨+| − |+⟩⟨−| − |−⟩⟨+| + |−⟩⟨−|)

+ 0.1 (|+⟩⟨+| + |+⟩⟨−| + |−⟩⟨+| + |−⟩⟨−|)

+ 0.5 |+⟩⟨+| ,

(1.6)

a x-basis measurement on the ensemble would reveal “+” with probability
0.75 and “-” with probability 0.25.

Frequent measurements on a mixed state ensemble provide probabilistic out-
comes and such uncertainty does not only come from the quantum superpo-
sition uncertainty but also from classical uncertainty, as the state is a proba-
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bilistic ensemble of pure states. Quantifying the closeness between two mixed
states (known as fidelity measure) can be achieved using the Uhlmann–Jozsa
measure [14–16]. Furthermore, the trace of the squared density matrix of
mixed states is less than one, Tr(ρ2) < 1.

Entanglement

Entanglement is a fundamental feature of quantum mechanics and has counter-
intuitive behavior. It is when two quantum particles (each in a superposition) are
strongly correlated in a sense that observing the state of one particle instanta-
neously reveals the state of the other particle to that observer, even if they are
separated by millions of meters.

As we discussed above, a composed physical system is represented by taking a
tensor product between them – but this is only true if they are separable, meaning
that observing one particle does not affect the other particle. An example of a
separable state is a system of two photons given as |Ψ⟩ = 1√

2
(|HV ⟩ + |HH⟩),

where H and V denote the horizontal and vertical polarisations of the photon,
respectively. This state shows that the first photon is always horizontally polarised
and so the state of these two photons can be factorised as a product state between
the two photons as |Ψ⟩ = |H1⟩ ⊗ 1√

2
(|V2⟩ + |H2⟩). On the other hand, when the

state of the composed physical system is an entangled state, then it cannot be
represented as a product state of the components of the system.

• Examples:
Take, as an example, the case where two photons are entangled, which can
be represented as |Ψ⟩ = 1√

2
(|HV ⟩ + |V H⟩). This is clearly a unique state

and cannot be factorised such that each qubit is represented alone, which is
because it is an entangled state and not a separable state. The entanglement
can be generated experimentally using different protocols, such as coincident
detection of two fibre-based infrared photons [17], a spontaneous emission-
based protocol [18,19] or a parametric down-conversion in a non-linear crystal
[20].

The type of entangled state given as |Ψ⟩ = 1√
2
(|01⟩ + |10⟩ tells us that

whenever we observe one particle’s state to be in the |0⟩ state, we know that
the other particle’s state must be in the |1⟩ state and vice versa. However,
this is not the only way to represent the entanglement between two qubits.
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We show below all the cases that can represent the entanglement of two
qubits and these are known as Bell states:

|Ψ+⟩ = 1√
2
(|01⟩+ |10⟩)spaceee |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩)spaceee

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)spaceee |Φ−⟩ = 1√

2
(|00⟩ − |11⟩)spaceee

(1.7)

• Quantifying entanglement
To quantify whether a state is entangled or not, we can use the Entanglement
of Formation (EOF ) method [21]. EOF is a quantity that can measure the
degree of entanglement between any arbitrary pair of qubits, regardless of
whether they are in a pure or mixed state. A detailed discussion on this
method of quantifying the entanglement will be given in Chapter 2.

We note that when dealing with pure states, a simpler quantity known as
concurrence [21] can be used to quantify the degree of entanglement. The
concurrence formula for an arbitrary two qubits pure state |Ψ⟩ = c1 |00⟩ +
c2 |01⟩+ c3 |10⟩+ c4 |11⟩ is given by

C = 2|c1c4 − c2c3|, (1.8)

where the concurrence C ∈ {0, 1}, and when C = 1 the state is maximally
entangled.

We use the EOF to quantify the degree of entanglement between two qubits,
although the state of the overall system is a pure state. This is because
when the system is traced out to leave only the two sites in which we are
interested, the state of these remaining two sites could be a mixed state. In
the case of pure states, there is a relationship between the concurrence and
the EOF [21].

• EPR and Bell inequality

“I like to think the moon is there even if I am not looking at it.”

Albert Einstein

The fact that observing one particle state reveals the other particle state
instantaneously regardless of how far they are from each other contradicts
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the locality principle. Furthermore, the superposition nature of the entan-
glement suggests that, before performing the measurement, the two particles
are not in a definite state, which contradicts the principle of realism. This
casts doubt on the completeness of quantum mechanics as highlighted in
the famous Einstein–Podolsky–Rosen (EPR) paper [22]. In this paper, the
authors suggested that there may be hidden variables that contribute to the
measurement results and that we just do not have access to yet.

The EPR argument was then settled in 1964 when John S. Bell laid out
what is known as Bell’s inequality. Bell shows theoretically that common-
sense-based physical theory (i.e., locality and realism) cannot support the
predictions of quantum mechanics because the correlations between entan-
gled particles violate Bell’s inequality [23]. The first experimental result that
confirms that quantum mechanics violates Bell’s inequality was done in 1972
by John F Clauser and Stuart J Freedman [24]. A more advanced exper-
iment was performed by Alain Apsect in 1982 and confirmed the violation
of Bell’s inequality [25]. Furthermore, the loopholes [26] in Bell’s inequality
tests have been resolved [27,28]. The 2022 Nobel prize was awarded to John
Clauser, Alain Aspect and Anton Zeilinger for their pioneering work on Bell
inequality.

• Entanglement for quantum technology
In the field of quantum technology, quantum entanglement plays an impor-
tant role, and it will be an essential ingredient of any future quantum device.
This is because quantum entanglement can be used for various protocols in
QIP. For instance, in quantum secure communications tasks, entanglement
is a key element in Quantum Key Distribution (QKD) [10, 29–32]. Further-
more, entanglement can be used for teleportation protocols [33–37], which
is the process of transmitting a qubit state using a pre-shared maximally
entangled Bell state and a classical communication channel.

Measurement

Quantum measurement is one of the most fundamental challenges in quantum
information technology. In classical physics, measurement provides information
about what is being measured in the system, while in quantum physics, measure-
ment affects the observable being measured and results in a state that may not
be the actual state prior to measurement. This is because the actual state before
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measurement is not necessarily a definite state, as it could be a pure superposition
state, or a mixed state comprising a probabilistic distribution of pure states. But
as soon as the quantum state is measured, the initial state is projected into one of
the eigenstates of the observable that is being measured. The probability of mea-
suring an outcome k can be represented as P(k) = ⟨Ψ|M †

kMk |Ψ⟩, where Mk is the
measurement projection operator. The state of the system after this measurement
will be given by

|Ψ′⟩ = Mk |Ψ⟩√
⟨Ψ|M †

kMk |Ψ⟩
. (1.9)

For example, suppose that an electron is in a spin-up |1⟩ or spin-down |0⟩
state, along the z-axis and a measurement of the electron spin is performed along
the x-axis, then we will get one of the eigenstates |+⟩ or |−⟩ of the x-axis spin
observable (σx). Information about the spin of the electron along any other axis
will be indeterminate. The operators that represent the spin components along
the three Cartesian axes are known as Pauli operators and they are given by 2×2
matrices as

σx =

(
0 1

1 0

)
, spaceσy =

(
0 −i
i 0

)
, spaceσz =

(
1 0

0 −1

)
(1.10)

As we shall see in Chapter 2, the state of the system after measurement will
remain in the eigenstate of the observable being measured and no longer in a
superposition of all the eigenstates. This means that measuring the spin along
x-axis again will still give the same eigenstate, unless measurement on another
observable (e.g., along y or z-axis) is taken place, which will bring the system back
to its undetermined state with respect to its x-axis spin.

Decoherence

Coherence is a property in quantum mechanics where different amplitudes for the
components in a pure superposition state have well-defined relative phases, which
allows quantum phenomena, such as interference, to occur. Generally, quantum
systems suffer from the loss of coherence in the system; in a phenomenon known as
decoherence. This could be due to the system’s interaction with the environment.
An example of the effect of decoherence would be when a system of one qubit is
prepared in a pure state, and the environment interaction with the qubit makes
it partially entangled with the environment, which in turn results in the state of



10 CHAPTER 1. INTRODUCTION

the system alone being a mixed state. In this case, the evolution of a specific
quantum information task should be treated as an open evolution, and hence as
a non-unitary evolution of just the system, which is described using a master
equation for the density matrix evolution. Furthermore, preferred bases can arise
by environmental decoherence when the interaction of the environment and the
system effectively results in a measurement performed on a specific basis. Unless
other Hamiltonian terms continue to act, such an environment interaction alone
will evolve the system density matrix to being diagonal in this preferred basis..

The presence of decoherence in the system is not only attributed to the interac-
tion of the environment with the system, but could also be due to manufacturing
errors with stochastic nature in the system itself. Here, our investigations of deco-
herence focus on errors in the establishment of the time-independent Hamiltonian
(manufacturing defects). We note that other effects may lead to different forms of
decoherence, but our studies apply best to systems where manufacturing defects
dominate. Thus, assuming that the decoherence effect (interaction with environ-
ment) in our model is sufficiently weak over the relevant time scales of operation,
our investigation will focus on closed systems. In this case, the evolution of a
single realisation of a specific quantum information task is a unitary evolution
that is engineered to exhibit periodic behaviour, and which can be described us-
ing Schrodinger’s equation. However, the average over an ensemble of realisations
evolves as a mixed state, due to the averaging of different realisations which have
different periodicities, or amplitudes, or both. A detailed discussion on this will
be given in Section 2.3.

As will be seen in Section 1.1.2, one of the important requirements for a reliable
quantum device is that the time required for a quantum information task to be
carried out needs to be performed faster than the decoherence time of the relevant
system. Otherwise, the information of the quantum system will be lost due to
decoherence before a useful operation is performed. Therefore, in order to put our
results in a realistic context, we have tested our device performance against this
requirement, as given in Section 6.5.

Unitary operators

Quantum operations are generally reversible and the mathematical tool used to
represent an operator that is reversible is the unitary operator. Unlike a mea-
surement operator, the action of a unitary operator on a system state will give a
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different state, U |Ψ⟩ = |Ψ′⟩. The reversibility of this operation is achieved by ap-
plying U †. The unitary has the property UU † = U †U = I, where I is the identity
operator. As a result, the reversibility in quantum mechanics can be expressed by
unitary operators as

U †[U |Ψ⟩] = U †[|Ψ′⟩] = |Ψ⟩ . (1.11)

Closed quantum systems have a specific type of unitary known as a time evolution
operator. Reversibility in the time evolution operator can be simply seen when
the system in an initial state evolves to a certain state and allowed to evolve again
so that the system retains its initial state. A detailed discussion of that will be
given in Chapter 2.

Quantum gates

Classical computation requires circuits for a computation to be done. Circuits are
a sequence of gates, where the information is changed and manipulated (such as
magnifying or stopping current, etc.). Gates can be realised using components
such as transistors, diodes, and vacuum tubes. Logic gates implement a Boolean
function, or logical operation, performed on one or more inputs of binary, and
produce an output binary. In general, this is not reversible.

Similarly, quantum computation requires quantum circuits, where information
is manipulated through a sequence of quantum gates or through the natural time
evolution of the system, which can be thought of (abstractly) as a gate. Quantum
gates can be expressed as unitary matrices. Therefore, since the unitary operators
have inverse, all quantum gates are reversible. The action of a quantum gate
(unitary operator) on a particular quantum state produces a new quantum state,
Q |Ψ⟩ = |Ψ′⟩, where Q represents the quantum gate, |Ψ⟩ represents the quantum
state, and |Ψ′⟩ is the new quantum state resulting from the application of the
quantum gate.

For example, when the quantum NOT gate acts on a single qubit state |ψ⟩ =
α |0⟩ + β |1⟩, it will simply flip the state |0⟩ to |1⟩ and vice versa. Therefore, the
output state is a new quantum state |ψ′⟩ = α |1⟩ + β |0⟩. It is clear that the
NOT quantum gate acts linearly [13]. This NOT gate can be represented by a 2x2
unitary matrix, which happens to be the σx operator

X = σx =

(
0 1

1 0

)
(1.12)
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Another example of a single qubit gate is the Hadamard gate,

UH =
1√
2

(
1 1

1 −1

)
(1.13)

which transforms the state |0⟩ to superposition state |1⟩−|0⟩√
2

and the state |1⟩ to
superposition state |1⟩+|0⟩√

2
.

On the other hand, two-qubit or multiple-qubit gates are necessary for quan-
tum information processing [13]. A common example of a two-qubit gate is the
controlled NOT gate (or CNOT or CX). The CNOT gate has a controlled qubit
|C⟩ and a targeted qubit |T ⟩. For example, in this state |01⟩, the controlled qubit is
the first qubit |0⟩ and the target qubit is the second qubit |1⟩. When this gate acts
on a two-qubit state, it flips the target qubit if the control qubit is |1⟩, and it does
nothing if the control qubit is |0⟩. For instance, CX|00⟩ = |00⟩, CX|01⟩ = |01⟩,
CX|10⟩ = |11⟩, and CX|11⟩ = |10⟩. Therefore, a CNOT gate can be represented
as a 4x4 matrix.

CNOT =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 (1.14)

The CNOT gate can be used to produce a maximally entangled state (Bell state)
out of a product state. Consider, for example, the two-qubit state 1√

2
(|0⟩+ |1⟩)q1⊗

|1⟩q2, which can be written as 1√
2
(|01⟩+ |11⟩), applying the CNOT gate here will

produce the entangled state |Ψ+⟩ = 1√
2
(|01⟩ + |10⟩). The first implementation of

a CNOT quantum gate was performed using trapped ions [38].

If a set of gates can be used to perform any computation, then this set of gates
is said to be a universal set of gates. In classical computation, these sets of gates
are: AND, OR, NOT gates. In quantum computation, any arbitrary operation
can be performed using single-qubit gates and any two-qubit gate (e.g., CNOT)
that is capable of producing entanglement [13,39].

1.1.2 DiVincenzo requirements for quantum devices

A couple of decades ago, DiVincenzo established seven requirements that must
be satisfied to build a reliable quantum device [40]. The first five requirements
are necessary for quantum computation, and the remaining two are necessary for
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quantum communication or distributed quantum computing.

1. The physical system must be scalable and its qubits must be well characterised.

The qubit is the building block of quantum technology and so it is necessary
to be well defined. The problem is that when the number of qubits increases,
the system becomes more difficult to handle, as there are various parameters
that have to be controlled. The physical parameters include the interac-
tion between qubits, the coupling of state correlations, and the interaction
of qubits with external parameters that might be used to control or manip-
ulate the qubits. Therefore, well-characterised qubits mean that all these
parameters are well defined regardless of the number of qubits [40]. There
are different methods used to realise qubits and it will be demonstrated in
Section 1.1.3.

2. The system should have the ability to initialise the qubit state to a desirable
state.

This requirement is raised for two reasons. First, registers need to be ini-
tialised to a known state before the computation starts. Second, a contin-
uous supply of ground-state qubits (i.e. |0⟩) is needed for quantum error
correction. The process of initialisation can be performed by either natu-
rally cooling the system down to its ground state or by a measurement that
projects the system to a desired state. The latter may involve additional
operation, for example, if the measurement results in a state |1⟩, while the
initialisation requires a state |0⟩, then we apply a bit-flip operation on the
|1⟩ state to get the desired state. The important parameter here is the time
it takes for the initialisation process to complete, which should be less than
the decoherence time [40].

3. The relevant decoherence time needs to be longer than the gate operation
time.

Decoherence as defined in Section 1.1.1 is the loss of quantum coherence. It
is when, for example, a qubit state |ψ⟩ = α |0⟩ + β |1⟩ is transformed into a
mixture state as

ρ = |α|2 |0⟩ ⟨0|+ |β|2 |1⟩ ⟨1| . (1.15)

Decoherence times describe the dynamics of a quantum system in contact
with an external reservoir, or, in other words, being in contact with its
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environment. For a quantum computation, it is necessary that the relevant
decoherence time remains long enough so that the computation operation
takes place. The word "relevant" decoherence times indicates that there
are many decoherence times for a quantum particle. The relevant time is
determined by the choice of the basis states of the qubit |0⟩ and |1⟩. For
example, if these two states describe identical orbital states but different spin
states, then the spin coherence time is relevant, while the orbital coherence
is not [40]. Quantum error correction can correct for the decoherence of
computational qubits by using additional (ancilla) qubits to redundantly
encode the computational states into a greater number of qubits.

4. A universal set of quantum gates.

A set of quantum gates is called universal if any computation can be per-
formed using a sequence of that set of gates. A two-qubit gate, such as
a CNOT gate that is capable of generating entanglement, allows for any
multiple-qubit operation [41], (see Section 1.1.1 for a discussion on quan-
tum gates). However, random errors are likely to occur in the implemented
Hamiltonian and therefore quantum gates cannot be perfectly achieved [40].

5. The ability to measure a specific qubit.

As it is essential for quantum computation to acquire an initial state input
(as discussed in requirement 2), the output of a computation needs to be read
out as well. Therefore, measurement of a specific qubit is required to read
the computation result. An ideal measurement on a particular qubit state
should not change the states of the other qubits. Such an ideal measurement
is said to have 100% quantum efficiency. However, in real measurement, the
quantum efficiency is always less. However, such measurement efficiency can
be improved by averaging a large number of realisations (e.g. 1000) of the
same computation [40].

6. The ability to interconvert stationary qubits and flying qubits.

Quantum devices hardware will be made with solid state qubits (e.g., quan-
tum dots or trapped ions). Our spin network system that will be introduced
in Chapter 3 is a generic example of a network of solid-state qubits. These
are usually well suited for short-range quantum communication. However,
for long-range quantum communication, the state of such qubits must be
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encoded into flying qubits (photons). Photons are well suited for long-
range quantum communication, and therefore the quantum device needs
to have the ability to exchange information from solid-state qubits to pho-
tons [40]. This interface between light and matter has been achieved experi-
mentally [42–44]. It may also require frequency-conversion of the photons to
telecom wavelengths in order for these to be transmitted via optical fibres.

7. Faithful transmission of flying qubits between specific locations.

During transmission, the information encoded in the photonic states is sus-
ceptible to disorder. Therefore, there must be a way to ensure that the
information is preserved to enable a reliable quantum communication to be
performed. There are many protocols that can be used to meet these re-
quirements [45,46].

1.1.3 Quantum information processing platforms

There are various physical systems that can be used to achieve various QIP proto-
cols. Basically, any effective two-level system that can be isolated within a larger
system and follows the DiVincenzo criteria can be regarded as a qubit and in-
formation is encoded in the qubits. We will discuss a few examples below and a
detailed discussion will be given in Section 1.2.4.

An example of a two-level quantum system is a photon, where qubits in this
case can be encoded in the polarisation of photons, as discussed in Section 1.1.1.
Photons have been used to generate entangled states that are necessary for QIP
protocols, and such entangled states can be generated using the spontaneous
emission-based protocol [18,19] or coincident detection of two fibre-based infrared
photons [17] or parametric down conversion. Using photons as information carri-
ers plays a crucial role in long-range QIP [47, 48]. Photons are particularly well
suited for quantum communication protocols, such as fibre-based QKD [49–52] or
satellite-based QKD [32,53,54].

Other examples of two-level quantum systems are the solid-state-based or
matter-based systems, such as trapped ions [55–57], superconducting qubits [8,
58–60], quantum dots [61–63], and Rydberg atoms [64–66]. These systems com-
pared to photon-based systems are suitable for short-range QIP protocols or as
memories. This is because it may be possible to then avoid conversion to photons
and back [67–71]. A detailed discussion of solid-state-based and matter-based
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systems will be given in Section 1.2.4.

1.2 Spin Networks

Spin-1/2

It is the nature of quantum mechanics that subatomic particles exhibit strange
behaviours. For example, a strange effect has been illustrated in the Stern-Gerlach
experiment [72], which shows that when a beam is sent through an inhomogeneous
magnetic field, the beam splits into two as shown in Fig.1.1. This was known as an
intrinsic angular momentum (distinguishable from the orbital angular momentum),
which is now known as “spin”.

Figure 1.1: This figure demonstrates the apparatus used in Stern-Gerlach experiment
for a spin-12 particle, where |1⟩ denotes spin-up and |0⟩ denotes spin down.

The spin-1
2

particle can be described using the three 2×2 Pauli matrices (see
Section 1.1.1). These Pauli operators are especially useful mathematical tools for
working with two-level quantum systems. As the spin-1

2
particle is a two-level

quantum system (qubit), it can be utilised to be for use in QIP. The following
section will introduce the model that describes a system composed of many spin-1

2

particles coupled to each other that can be used for QIP.

1.2.1 Model

A one-dimensional array of spin-1
2

particles (or equivalent) coupled to each other
is known as a spin chain system or a linear Spin Network (SN) system. There are
different Hamiltonians that can be used to represent a spin chain system. A general
representation of the Hamiltonian of a spin chain system with nearest-neighbour
interactions and open boundary conditions is given by

H =
1

2

N−1∑
i=1

Ji,i+1[(1 + Ω)σx
i σ

x
i+1 + (1− Ω)σy

i σ
y
i+1 + Γσz

i σ
z
i+1] +

N∑
i=1

ϵiσ
z
i (1.16)
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This Hamiltonian is a general Heisenberg Hamiltonian [73]. The nearest-
neighbour coupling interactions Ji,i+1 and the on-site energies ϵi are homogeneous
if they are site-independent. The symmetry of the coupling interaction is specified
depending on the anisotropy parameters Ω and Γ. For instance, when Ω = 0 and
Γ = 1, we attain the original Heisenberg model, called the XXX model. Another
model known as the XXZ model is obtained when Ω = 0 and Γ ̸= 1. A special
case of this model is obtained when Ω = 0 and Γ = 0 and is called the XX model
(also known as the XY model). This is the model used in this thesis and will be
discussed in detail in Chapter 2. Finally, a model known as XYZ can be obtained
with Ω ̸= 0 and Γ ̸= {0, 1}, and another model known as the Ising model can be
obtained with Ω± 1 and Γ = 0. These models can be realised in different physical
systems when the parameters can be set as such in that system.

1.2.2 Spin networks for quantum communication

Quantum communication is the process of transferring quantum information, a
transfer that is based on the laws of quantum mechanics. It is a broad field ranging
from short-range communications (for example, communication between registers
inside a quantum processing or computing) to long-range communications (e.g.,
satellite-based communications [32, 53,54]).

In this thesis, we are concerned with the short-range quantum communication
that can be achieved using spin-1

2
based systems without conversion to photons and

back [67–71]. As discussed in Section 1.1.3, unlike photon-based systems that are
suitable for long-distance quantum communication, solid-state-based or matter-
based systems are well suited when it comes to short-range quantum communica-
tion performed, for example, inside a quantum computer. This is due to the fact
that the solid-state entities (spin-1

2
qubits) within a quantum device can interact,

for example, through Coulomb interaction, facilitating the transfer of quantum
information between qubits with minimal external control. This eliminates the
need to move the qubits or utilize a flying qubit to perform such a task, which
could involve interfacing between photons and stationary spins [11,73]. Moreover,
as will be seen in Section 1.2.4, solid-state-based or matter-based systems can be
implemented through different physical platforms.

The first study of quantum communication using linear SN systems was pro-
posed by Bose in 2003 [11,74]. This opened up a new research field that focuses on
using spin chains or SN systems to transfer quantum information. Bose considered
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a ferromagnetic Heisenberg chain where all sites have a spin-down |0⟩ state, and
where the couplings are homogeneous. The information transfer in this spin chain
is performed as follows: Alice (the sender) places an excitation (encoded as a spin-
up |1⟩) at one end of the spin chain, and Bob (the receiver) receives it at the other
end of the spin chain at a later time τ . The importance of the spin chain system
for Quantum State Transfer (QST) is that, unlike other quantum implementation
systems [75, 76], it does not require a switching on or off between qubits, which
may cause decoherence, in order for a transfer process to occur. When such an
operation is performed without the need to control the system (i.e., simply by in-
jecting excitation and waiting until it evolves to the desired location), we say that
it is achieved by the natural dynamics of the system. In addition to one-to-one
communication, spin chains can also be used for communication between multi-
ple users by connecting multiple users to the ends of the spin chain and with the
appropriate tuning of the Hamiltonian parameters [77].

Such systems form an example of non-linear SN systems that involves more
complex topologies (e.g., a two-dimensional SN). Non-linear SN systems have also
been used for QST [1, 60, 78–82]. The advantage of SN systems over spin chain
systems with respect to QST is that SN systems offer wider opportunities for
QST and may require local operations on part of the SN in order for QST to
occur. Moreover, as will be discussed in Chapter 3, the richer topology that SN
systems have gives them the potential for wider applications such as multipartite
entanglement generation and quantum sensing [1, 12, 83].

In order to quantify how well the QST operation is performed, the fidelity
measure is used (see Section 2.2.1 for a discussion of fidelity). The useful QST
requires fidelity above the threshold of 2

3
, which is the maximum value of classical

transmission of a quantum state for N ≤ 80 [73]. However, higher fidelities are
also desirable. In fact, QST with high fidelity has been achieved in spin chains
(and spin networks) through various methods. Examples include the application
of local magnetic fields near the sender and receiver qubits [84], or through local
operations on the receiving qubit [85], or by using adiabatic techniques [86]. These
methods enabled QST, and are scalable, with high fidelities but still not perfect
(fidelity < 1). When the fidelity of the QST is 1, then we say that the transfer
operation is perfect, a process known as Perfect State Transfer (PST).

It has been shown that PST can be achieved in spin chains with homogeneous
nearest-neighbour interactions, Ji,i+1 = 1, as long as the chain length is N ≤ 3
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[11, 87]. In order for the PST to be achieved independently of the chain length,
there are various strategies that can be used. Examples include pre-engineering
the nearest-neighbour interactions [87–89], using a specific encoding method such
as dual rail encoding [90,91] or wavepacket encoding [92,93]. A detailed discussion
of the PST protocols will be given in Chapter 2.

Various experimental realizations of high-fidelity QST and PST have been
achieved through various physical systems. High-fidelity QST has been enabled
through superconducting qubits by the application of an on-site potential as well
as modulation of couplings strength [94] or via a cavity bus [95]. High-fidelity
QST has also been realised in a system of electrons confined in Penning traps [96].
PST on the other hand has been achieved experimentally using a liquid nuclear
magnetic resonance system for an XY type spin chain of N = 3 [97]. More-
over, using superconducting qubits, PST has been achieved via a tunable coupling
technique [98] that relies on a parametric modulation of the qubits such that the
coupling strengths fulfill the symmetric ratio of the couplings [87–89] required for
PST.

1.2.3 Spin networks for entanglement generation

Quantum entanglement is necessary for various QIP protocols, as discussed in
Section 1.1.1. SN systems can be used to generate, manipulate, and transfer
different types of entangled states. Here, we will discuss generation of entangled
states in SN systems and recent advances in this field.

One way to generate a bipartite entangled state (i.e., two-qubit entanglement)
between the ends of a linear SN system is via the injection of a single-excitation
in the middle of the chain with some couplings being weakly coupled to the chain,
known as a dimerised chain [99,100]. Another way is to use a linear SN of Y shape
(i.e., one end of the chain has two outputs) which will results in entanglement
between these two outputs, when a single-excitation is evolved from the other end
of the chain [101]. In this Y-shaped SN, the generated entangled state can be frozen
by applying a phase flip (−1) to one of the entangled qubits, which will result in an
eigenstate, and such a frozen entangled state is a useful quantum resource [101]. In
a complex non-linear SN system, generation of a bipartite entanglement between
the ends of the SN can be achieved by injecting a single-excitation at the middle
of the SN or by injecting the excitation at one end of the SN with the application
of a local phase factor into another part of the SN [2].
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Transferring an entangled state is achieved through the natural dynamics of
linear SN systems. If, for example, a Bell state of the form |Ψ+⟩ = 1√

2
(|01⟩+ |10⟩

is generated on the first two qubits of the chain, then the evolution of the system
will transfer this entangled state so that it will be between the last two qubits of
the chain [11, 89]. This happens because the PST system is set up to give perfect
mirroring of any input state to the mirror image (about the chain centre).

Entanglement shared between multiple qubits (multipartite entanglement) can
also be achieved in SN systems. For example, the W-type entanglement (i.e.,
entanglement shared equally between N qubits) [102, 103] can be achieved in the
XY-type spin chain via the application of a transverse magnetic field [104] or
via the branching at one end of the chain [105]. It can also be generated in
complex SN systems by applying an appropriate phase factor as well as the natural
evolution of the dynamics [2]. Generation of another multipartite entanglement
such as GHZ entanglement, which is given by |GHZ⟩ = |00...0N ⟩+|11...1N ⟩√

N
, has also

been achieved in linear SN systems via Hamiltonian evolution as well as single-
qubit rotations [106]. Such entangled states are not only useful for investigation
of quantum non-locality [107] but also have wider applications in QIP, such as
superdense coding [108], quantum teleportation [109], and quantum secure direct
communication [110].

1.2.4 Physical implementation of spin networks

The SN systems we discuss here can be realised experimentally using various phys-
ical systems. Specifically, systems that are of spin-1

2
equivalent. Optical systems,

such as photons, are not considered here because they lack an important feature of
SN systems, which is direct and deterministic interaction between photons. There-
fore, it is not possible to prepare a chain of static photons, with static couplings
between them, to act as a spin chain. It is possible to envisage all-optical quantum
computing [111,112], but here the photon qubits move constantly through the com-
puter. Static solid-state-based or matter-based systems, on the other hand, can
be used to transfer information between qubits, as they can interact directly [73].
In the following, we discuss these two-level solid-state-based and matter-based
quantum systems that are capable of realising the XY model, which is the generic
system of study in this thesis.

As will be demonstrated in this thesis, the characteristic device operation time
will relate to the inverse of the coupling and it is clearly desirable for this to be
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significantly smaller than any coherence time. Note that the coherence time of a
single-qubit is usually longer than the coherence time of a two-qubit system, as in
the two-qubit case, interactions and additional sources of decoherence can arise,
which makes the coherence time shorter. Therefore, the coherence times we use in
the following hardware are the coherence times relevant to two-qubit operations.
This is important in order for the comparison of a two-qubit gate time against
the coherence time to be fair. A comparison table for implementations will be
presented in Section 6.5.

Quantum dots

Quantum dots are a two-level quantum state and can therefore be used to realise
a SN system [61]. The types of quantum dots are determined by encoded infor-
mation, such as exciton quantum dots [113] or electron quantum dots [61,88]. For
example, the exciton quantum dot encodes the state of the qubit in the presence or
absence of the exciton ground state as the logical |1⟩ or |0⟩, respectively [113,114].
When initialized to their ground state, the quantum dots remain in their ground
state as long as there is no external applied field, and can be excited with the
application of electromagnetic radiation. Quantum dots have already been used
for QIP protocols, such as QST and entanglement [88, 115]. Recent advances in
quantum dots allow for efficient control of many quantum dots and pave the way
for the scalability of quantum dots [63].

The Hamiltonian model given in Eq.(1.16) has two parameters: the nearest-
neighbour coupling interaction Ji,i+1 and the on-site energy ϵi. The physical nature
of these parameters in a quantum dot, where the qubits are excitons, will be of
dipole-dipole interaction for Ji,i+1, whereas ϵi will be the energy band gap between
the conduction and the valence bands of a quantum dot, which can be controlled
by an external field [113].

A typical characteristic value of the coupling interaction Ji,i+1 in silicon quan-
tum dots is Ji,i+1 ≈ 900 MHz [62] and the coherence time, Tc, for a two-qubit
operation is of the order of Tc = 8.3 µs [116]. Note that both references given here
use the same system (silicon quantum dots). A comprehensive discussion can be
found in [117].
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Trapped ions

Another two-level matter-based quantum system is trapped ions. Trapped ions are
charged particles or ionised atoms confined in a complex combination of electric
and magnetic fields. The qubit of a trapped ion is its two internal states; the
ground state |g⟩ = |0⟩ and the excited state |e⟩ = |1⟩ [38, 55, 118]. Initialisation
can be done by cooling the system down to its ground state using lasers. Individual
manipulation of a trapped ion can be achieved via the application of a laser on
the ion [38].

Trapped ions have many advantages, such as exceptionally long coherence
times, high-fidelity quantum gates, and straightforward state preparation/readout.
On the other hand, the main disadvantage of using trapped ions is scalability, as
the ability to increase the number of qubits remains a challenge [119]. However, a
recent study has paved the way for scalability by preparing bilayer crystal configu-
rations of well-defined layers that involve hundreds of ions using Penning traps [57].

In trapped ions, the coupling interaction parameter Ji,i+1 in the Hamiltonian
model given in Eq.(1.16) will be of Coulomb repulsion type, while the on-site
energy parameter ϵi will be the energy required to excite a trapped ion from the
ground state |g⟩ to the excited state |e⟩ [38].

A typical characteristic value of the coupling interaction Ji,i+1 in trapped
171YB+ ions is Ji,i+1 ≈ 0.6 kHz [120] with long coherence time of around Tc = 0.5

s [56]. For an in-depth review, see [117].

Superconducting qubits

Superconducting qubits are also a two-level solid-state quantum system that can
be used to realise SN systems. There are three types of superconducting qubits:
charge qubits, flux qubits, and phase qubits. In charge qubits, the two-level quan-
tum state can be represented as the presence or absence of a cooper pair on a super-
conducting island. Flux qubits states are the magnetic flux pointing up and down.
Phase qubit states are encoded in the conductance wavefunction as the change of
the phase amplitudes of the oscillation across a Josephson Junction [58,121].

Quantum technology based on superconducting qubits has gained interest in
recent years for it features. In fact, great progress in quantum technology (quantum
supremacy) has been made recently in superconducting loops [8]. Moreover, the
superconductors coherence and Josephson effect are used as a nonlinear resource for
making artificial atoms [122]. Experimental implementation of a two-dimensional
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spin network has been achieved in superconducting qubits [60].

In superconducting flux qubits, the coupling interaction parameter Ji,i+1, of
the Hamiltonian Eq.1.16, between two neighbouring qubits will be achieved by
modulating the frequency of a tunable coupler that is attached to both qubits.
The on-site energy ϵi can be manipulated by an external magnetic field [123].

A typical characteristic value of the exchange coupling Ji,i+1 in superconducting
qubits is Ji,i+1 ≈ 50 MHz [59]. The relaxation and dephasing times of such qubits
are T1 ≈ 50 − 85µs and T2 ≈ 10 − 50µs, respectively [59]. Therefore, we take
the shortest of these times as the coherence time, Tc = 10 µs. See [58, 117] for a
detailed discussion.

Rydberg atoms

A system of Rydberg atoms is also an interesting platform that can be used to
implement our SN experimentally. Such atoms are realised when outer electrons
of the atoms are in a highly excited state. The two-level qubit states in Rydberg
atom can be encoded in the ground state |g⟩ = |0⟩ and the excited state |e⟩ = |1⟩.
Laser can be used in Rydberg atoms to control the transition states or to initialise
atoms in a desired state. Such platform is promising in terms of scalability and is
feasible to realise in two or three dimensions [64,65,124–127].

The typical characteristic value of the coupling interaction Ji,i+1 between two
atoms, in the blockade regime, is given as Ji,i+1 ≈ 685 MHz [66] and the coherence
time is found to be Tc ≈ 1.3 µs [66].

NMR-based processors

Another interesting platform for realising SN systems is Nuclear Magnetic Reso-
nance (NMR) systems. The qubit states in NMR are the spin up |1⟩ and spin down
|0⟩ states of the nucleus of a molecule. Initialisation can be performed via optical
pumping or by polarisation of dynamic nuclear [128]. NMR processors can be of
the solid-state form or the liquid-state form. Implementation of liquid samples of
NMR allows the realisation of PST for a chain of N = 3 [97] and universal con-
trol on up to 12 spin qubits [129]. Solid-state NMR, on the other hand, provides
stronger couplings and therefore allows for faster gates [73].

In solid-state-based NMR processors, the Hamiltonian interaction parameter
Ji,i+1 will be dominated by a magnetic dipole-dipole interaction [130]. In liquid-
based NMR, the inhomogeneous chemical properties of the environment around
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each spin results in magnetically distinct spins in each molecule. The interaction
between these spins, Ji,i+1, is a weak interaction mediated by the molecular orbital
between nuclei that forms by the electrons [130].

1.3 Thesis outline

The present thesis contains 5 chapters in addition to the introduction chapter. We
start in Chapter 2 by introducing the Hamiltonian of our system and describing
various techniques, measurement tools, and perturbations used in this thesis. The
contribution in this thesis is shown in the following chapters. Chapter 3 will
introduce the design of our SN system and demonstrate the applications of the
SN by focusing on a specific structure of the SN (which we call two-chain spin
networks). Another structure of the SN with wider applications is proposed in
Chapter 4. Until now we would have only discussed the work considering the
single-excitation subspace. Therefore, Chapter 5 will discuss the usage of our SN
when considering higher excitations subspace. Finally, the conclusion of the thesis
is given in Chapter 6.



Chapter 2

Method

The research presented in this thesis is mainly based on computational methods,
and Python programming is used to investigate and produce all the results of this
thesis. To ensure the accuracy of our numerical methods and simulations, we have
reproduced some existing results found in the literature. Furthermore, analyti-
cal calculations were also used for simple systems to ensure that our numerical
simulations are correct.

This chapter presents the techniques and tools used to produce and analyse the
results. First, we start by introducing a linear spin network (SN) Hamiltonian.
From now on, we will use the wording “spin chain” systems to refer to “linear SN”
systems. We also introduce a non-linear SN Hamiltonian used to represent a 2D
SN system. Then, we discuss Schrödinger equations that govern the time evolution
of the dynamics of the system. We also demonstrate the encoding methods used as
well as the techniques used to set the initial conditions of the system. In addition,
we present the measurement tools used to assess how well a particular operation
has performed. Finally, we illustrate different types of disorder that might arise in
real-world practical systems.

2.1 Techniques

2.1.1 Hamiltonian

As discussed in the previous chapter (Section 1.2.1), there are various Hamiltonian
models that can be used to describe SN systems. However, we will focus on the
time-independent XY-Hamiltonian since there are different physical systems that
can be modelled using this Hamiltonian [96, 98]. Note that this model can be ob-
tained from the familiar Heisenberg model (e.g., describing coupled semiconductor
spin qubits [73,75]) by removing the coupling between the z spin components. The
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time-independent XY-Hamiltonian for a spin chain system is given by

HXY =
1

2

N−1∑
i,i+1

Ji,i+1(σ
x
i σ

x
i+1 + σy

i σ
y
i+1) +

N∑
i=1

ϵi
2
(σz

i ), (2.1)

where N is the total number of sites/spins and Ji,i+1 denotes the nearest-neighbour
coupling interaction between sites i and i + 1. The x, y, and z spin components
are represented using Pauli operators σx, σy, σz, respectively, that have already
been introduced in Section 1.2.

The second term in Eq. (2.1) represents the on-site energy (i.e., the energy cost
to excite site i from a spin down state |0⟩ to a spin up state |1⟩). For simplicity,
we set ϵi = 0 in the ideal case. However, when examining the impact of diagonal
disorder on the system, noise variation in ϵi must be taken into account.

The number of excitations N =
∑N

i=1
1
2
(σz

i+Ii), where I is the relevant identity,
is conserved. This is because the total z-component of the spin network commutes
with the Hamiltonian [N , HXY ] = 0. This holds for any values of the couplings
Ji,i+1 and the on-site energies ϵi. As a result, the different excitation-number
subspaces decouple, meaning that if you initialise the system in an N -excitation
subspace (N could be 1 or 2 or more) the system will evolve only in this N -
excitation subspace.

As will be clear in Chapter 3, we use the spin chain Hamiltonian Eq. (2.1) to
build systems of spin chains that are not coupled to each other, referred to as Un-
coupled Spin Chains (USC). An example of a two USC system is shown in Fig.3.3.
Once we prepare the USC, we couple them together via unitary transformation to
form a 2D SN system. The 2D SN system is then used to perform various quantum
information processing. The Hamiltonian HXY of a 2D SN can be represented by

HXY =
1

2

∑
i,j

Ji,j(σ
x
i σ

x
j + σy

i σ
y
j ) +

N∑
i=1

ϵi
2
(σz

i ). (2.2)

There are still N sites in the system. Ji,j represents the coupling interaction
between sites i and j, which are not necessarily nearest neighbour sites, and ϵi,
as defined above, is set to zero for simplicity unless we consider the effect of
diagonal disorder. Off-diagonal disorder (affecting Ji,j) is also considered (see
Section 2.3.2). Both diagonal and off-diagonal disorder preserves the number of
excitations, because HXY and N commute for any choice of couplings and on-
site energy values. Note that other types of disorder not considered here (e.g.,
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uncorrelated noise in the xx and yy couplings) can mix subspaces with different
N values; these are not considered in this thesis.

2.1.2 Time evolution

The Schrödinger equation is an essential tool in quantum mechanics and can
be used to calculate the evolution of a quantum state with time [131, 132]. A
time-dependent Schrödinger equation can be used to solve a quantum system for
which the Hamiltonian is either time-dependent or time-independent. The time-
dependent Schrödinger equation is given by

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ(t) |Ψ(t)⟩ . (2.3)

We are considering the time-independent Hamiltonian that describes a closed
quantum system which is assumed to not interact with its environment, and there-
fore its total energy is conserved. This is because, as discussed in Chapter 1, our
investigations of decoherence focus on errors in the physical implementation of the
time-independent Hamiltonian and therefore for each realisation of the system we
consider a closed dynamic. Thus, the Schrödinger equation can be reduced to its
time-independent form and it is given by

E |Ψ⟩ = Ĥ |Ψ⟩ . (2.4)

By diagonalising the observable Ĥ, a complete basis set known as eigenstates
|φj⟩ can be obtained and for each eigenstate there is a real eigenvalue λj associated
to it. Therefore, any state can be written as a linear combination of the eigenstates

|Ψ(t)⟩ =
∑
j

cj(t) |φj⟩ , (2.5)

where cj(t) = ⟨φj|Ψ(t)⟩.
By projecting the eigenstates |φj⟩ into the time-dependent Schrödinger equa-

tion Eq. (2.3) and with a simple re-arranging and integration, we can find an
expression for cj(t) given as cj(t) = cj(0)e

−iλjt/ℏ. Therefore, the state at any time,
expanded in terms of the eigenstates, is given by

|Ψ(t)⟩ =
∑
j

cj(0)e
−iλjt/ℏ |φj⟩ , (2.6)
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with cj(0) = ⟨φj|Ψ(0)⟩.
The state evolution can be written in another form. If we set the Hamiltonian

term, Ĥ(t), in Eq. (2.3) to be time-independent, Ĥ, and re-arrange and integrate
the equation, the state evolution can be given by

|Ψ(t)⟩ = e−iĤt/ℏ |Ψ(0)⟩ (2.7)

2.1.3 State encoding

The chosen basis for our system is the site basis |0i⟩ and |1i⟩. The |0i⟩ state
represents a spin down state at site i, while |1i⟩ state represents a spin up state
at site i. Each site of the SN system represents a qubit which can be in a spin up
state (|1⟩) or in a spin down state (|0⟩) or in a superposition of these two states
(α |0⟩ + β |1⟩). From now on, when we refer to a site that has an excitation, we
mean that its state is a spin up state |1⟩.

In order to study the dynamics of the system, we start by initialising the
system so that all sites have a spin down state. This is represented as |000 . . .⟩.
We note that there are other protocols that do not require state initialisation [133].
When the system is initialised to a known pure state where all sites have a spin
down state, we can then start injecting excitations and investigate the dynamics.
Note that the injection of excitations needs to be performed on a timescale that
is very fast compared to the natural dynamical timescale for the SN. Injecting a
single-excitation at a site can be represented as flipping the spin of the desired
site to be in a spin up state. For example, in a spin chain of size N = 3, when a
single-excitation is injected at site 1, the state of the system will be given by

|Ψ⟩ = |11⟩ ⊗ |02⟩ ⊗ |03⟩ , (2.8)

which can be written in a simplified version as |Ψ⟩ = |100⟩. Let’s define a no-
tation, |ri⟩, that represents a state where a single-excitation is injected at site i.
Therefore, using this notation for our example above, |100⟩ = |r1⟩ or generally
|00 . . . 1i00 . . .⟩ = |ri⟩. Similarly, if there are excitations at sites 1 and 3, then
we represent this as |Ψ⟩ = |r1,3⟩. If there are no excitation at any sites, then we
represent this as |Ψ⟩ = |r0⟩. Other types of injection include for example injecting
a superposition state (e.g., |+⟩ = 1√

2
(|0⟩+ |1⟩)) at site i. The state of the system in

this case is given by |Ψ⟩ = 1√
2
(|000 . . .⟩+ |001i00 . . .⟩). Using our notation above,

|Ψ⟩ = 1√
2
(|r0⟩+ |ri⟩).
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The site basis |ri⟩ of the SN systems forms a complete basis set for the single-
excitation subspace, and the dimension of the site basis depends on the choice of
the subspace with which we work. Particularly, when we restrict ourselves to the
single-excitation subspace, the vectors of site basis we need are only those which
involve a spin up state at a site and spin down states at the remaining sites. The
dimension of the site basis in the single-excitation subspace is equal to the number
of sites N . Taking as an example N = 3, the site bases in this case are |001⟩,
|010⟩, and |100⟩.

In the case where we are not restricted to a subspace (e.g., considering the full
Hilbert space of the system) the dimension of site basis grows as 2N and for our
example above, we would have 8 site bases given as |000⟩, |001⟩, |010⟩, |011⟩, |100⟩,
|101⟩, |110⟩, and |111⟩.

2.1.4 Building the Hamiltonian matrix

As we have seen above, the Hamiltonian operator consists of Pauli operators and
the action of Pauli operators (see Section 1.2) on a spin state is given by

σx |0⟩ = |1⟩ spaceee σy |0⟩ = −i |1⟩ spaceee σz |0⟩ = − |0⟩

σx |1⟩ = |0⟩ spaceee σy |1⟩ = i |0⟩ spaceee σz |1⟩ = |1⟩
(2.9)

Therefore, the action of the Hamiltonian operatorHXY on a vector, for example
|10⟩, is given by

HXY |10⟩ = J1,2
2

[σx
1σ

x
2 |10⟩+ σy

1σ
y
2 |10⟩]

=
J1,2
2

[|01⟩+ (−i)(i) |01⟩]

= J1,2 |01⟩ ,

(2.10)

and this shows that our Hamiltonian induces a hopping between nearest neigh-
bouring sites.

In order to build the Hamiltonian matrix, we need the site basis of our system,
which will be used to find the matrix elements. For a spin network system of size
N , there are 2N vectors in the site basis that can be used to find all the matrix
elements to construct the Hamiltonian matrix. But if we are restricted to a specific
subspace (e.g., single-excitation subspace) we can then just use the basis vectors of
that specific subspace to construct the matrix Hamiltonian (e.g., single-excitation
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site basis).
For example, for N = 3, taking matrix elements in the single-excitation site

basis, the Hamiltonian matrix is given by

HXY =


0 J 0

J 0 J

0 J 0

 , (2.11)

where HXY,ij is given by ⟨ri|HXY |rj⟩ and we assumed the coupling is constant
Ji,i+1 = J and ϵi = 0. This Hamiltonian matrix represents an XY-type spin chain
system.

Consider now a system that is constituted of two separate XY-type spin chains
(two USC system), each of 3-site. We have proposed a method that can be used
to form a complex 2D SN system out of the two USC system. Our method is
based on a unitary transformation of the Hamiltonian of the two USC system,
a transformation that conserves the eigenvalues but changes the eigenstates. A
detailed discussion about applying an appropriate unitary transformation to the
Hamiltonian of the two USC to form a new Hamiltonian that describes a 2D SN
will be presented in Chapter 3. Our unitary transformation method is also used to
construct a more complex 2D SN out of multiple USC as will be shown in Chapter
4. A general form of such a unitary transformation is proposed in Chapter 5. This
is useful when working with higher-excitation subspaces.

2.1.5 Perfect state transfer

As discussed in Chapter 1, achieving QST with high fidelity is desirable, but it is
even better to achieve Perfect State Transfer (PST). Therefore, it is vital that our
2D SN system exhibits PST for the excitation transfer in an error-free case. There
are various proposals that can be used in order for the state transfer to exhibit
PST. Details of these proposals will be discussed below.

An approach to enable PST uses a specific encoding method such as dual rail
encoding [90, 91] or wavepacket encoding [92, 93]. Another common approach to
achieve PST over arbitrarily long distances is based on pre-engineering of the cou-
pling parameters of the spin system. As mentioned in Chapter 1, the issue with
homogeneous coupling interactions (Ji,i+1 = 1) is that it does not allow PST to oc-
cur for chains of length N > 3 [11,74,87]. Therefore, various protocols that involve
engineering the spin-spin interactions have been proposed in order to overcome
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this issue. For example, a protocol relies on controlling each coupling parameter,
Ji,i+1, to achieve PST, [134–136]. Another protocol depends on controlling only
the boundary couplings, J1,2 and JN−1,N to achieve near-PST [137–140].

In this thesis, we use a special type of coupling engineering protocol that sets
the coupling parameters Ji,i+1 to be symmetric around the centre of the spin chain,
which has been shown to allow PST to occur for any chain length [87–89]. The
coupling interaction Ji,i+1 in this protocol is defined as

Ji,i+1 = J0
√
i(N − i). (2.12)

For any spin chain system, there is a maximum coupling, Jmax, which depends
on the physical realisation of the system [141]. This maximum coupling occurs
in the middle of the chain and increases with N . In order to address such a
practical constraint, we define dimensionless coupling units such that Jmax = 1

(unless otherwise stated) for any N . This enables systems of different sizes to be
compared, as the maximum coupling will always be the same, independent of N .
Thus, Jmax is our energy unit. Since the maximum coupling occurs in the middle
of the chain, J0 in Eq. (2.12) can be derived as following:

• For an even length spin chain, the maximum coupling occurs in the middle
of the chain, N

2
as shown in Fig.2.1b, which is substituted in Eq. (2.12) as

Jmax = J0

√
N
2
(N − N

2
) and therefore, J0 = 2Jmax/N .

• For an odd length spin chain, the maximum coupling occurs in the middle
of the chain, sharing two couplings between (N

2
− 1

2
) and (N

2
+ 1

2
) sites, and

(N
2
+ 1

2
) and (N

2
+ 3

2
) sites, as shown in Fig.2.1a.

Thus, Jmax = J0

√
(N
2
− 1

2
)
[
N − (N

2
− 1

2
)
]
and therefore, J0 = Jmax/

√
N2

4
− 1

4
.

The symmetric distribution of the coupling interactions Ji,i+1 are given as:
J1,2 = JN−1,N , J2,3 = JN−2,N−1, . . . ,Ji,i+1 = JN−i,N−i+1. This is illustrated in
Fig.2.1 for both even and odd chains.

Engineering the couplings parameter of each spin chain of the USC systems
will ensure that our 2D SN system that is built from these USC also exhibits PST,
as will be shown in Chapter 3.



32 CHAPTER 2. METHOD

Figure 2.1: Demonstration of the coupling being symmetric around the centre of the
chain, Eq. (2.12). Higher thickness means stronger coupling. a) represents odd chain
of N = 7 where the maximum coupling is two couplings in the middle of the chain. b)
represents even chain of N = 6 where the maximum coupling is in the middle of the
chain.

2.2 Measurement tools

When a quantum system undertakes a specific operation, such as QST or entan-
glement distribution, then there are different figures of merit that can be used to
assess or measure the performance of such an operation. Examples of measurement
tools will be discussed below.

2.2.1 Fidelity

Fidelity is a tool that measures how close a desirable state is to the state of the
system, and its value ranges from 0 to 1. If the fidelity F (t) = 1, this means that
there is a complete overlap between the desirable state and the state of the system
(i.e. the desirable state is the same as the state of the system up to a global phase).
However, if the fidelity F (t) = 0, the state of the system and the desirable state
are orthogonal to each other. The fidelity is significant in quantum communication
and quantum information as it measures the efficiency of transferring a quantum
state from one region of the SN to another chosen region. It is defined as

F (t) = | ⟨Ψdes| exp(−iHXY t) |Ψ(0)⟩ |2, (2.13)

where |Ψdes⟩ is the desirable state. We set the reduced plank constant ℏ = 1 from
now on.

Using this fidelity tool, we can check the efficiency of a quantum state to
be transferred from one end of SN (site1) to the other end (siteN) (e.g., from
an initial state |1000⟩ to a desirable state |0001⟩). The corresponding fidelity is
therefore F (t) = | ⟨0001| exp(iHXY t) |1000⟩ |2. PST is achieved when the fidelity is
1. However, when manufacturing errors are considered or any other environmental
noise is considered, PST will no longer be observed. In addition, the effect of the
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error depends on the type and scale of the error applied to the system.

As will be discussed in Chapter 3, in order to describe practical systems, errors
must be considered. Therefore, we use ensembles of systems described by Hamil-
tonians containing independent random errors. For such ensembles, the average
fidelity can be calculated as

F (t) = Tr(ρ(t) |Ψdes⟩ ⟨Ψdes|), (2.14)

where ρ(t) = 1
K

∑K
i=1 |Ψi(t)⟩ ⟨Ψi(t)| is the ensemble density matrix, K is the num-

ber of systems in the ensemble, and |Ψi(t)⟩ represents a pure state at a time t for
the i-th member of the ensemble, evolved with Hamiltonian HXY,i that contains
the i-th independent realisation of the noise/errors.

2.2.2 Entanglement of Formation (EOF)

Quantifying whether a state is entangled or not can be achieved using the Von
Neumann entropy. This is a mathematical tool that allows us to determine whether
a state ρ is pure or mixed, and it is given by

S(ρ) ≡ −tr(ρilogiρ). (2.15)

When S(ρ) = 0, the state is pure; otherwise it is a mixed state. Using this entropy,
one can determine whether subsystems q1 and q2 are entangled or not by tracing
out subsystem q1 from the density matrix (i.e., ρq2 = trq1ρ). If S(ρq2) ̸= 0 and the
combined state of q1 and q2 is pure, then there is entanglement [142].

When dealing with mixed states, using Von Neumann entropy for entangle-
ment measure might not be appropriate, as it mixes both quantum and classical
correlations [143]. Therefore, another suitable measure, known as the Entangle-
ment of Formation (EOF) can be used in this case. EOF provides the degree of
entanglement between a pair of qubits q1 and q2 regardless of whether they are in
a pure or mixed state. The EOF for the case of two qubits is defined as [21]

EOFq1,q2 = −x log2 x− (1− x) log2(1− x) (2.16)

where x = 1+
√
1−τ
2

, τ = [max(λ1 − λ2 − λ3 − λ4, 0)]
2, λi =

√
εi, and εi are the

eigenvalues of the matrix ρq1,q2ρq1,q2. Here ρq1,q2 is the reduced density matrix of
sites q1 and q2, and ρq1,q2 is the spin-flipped ρq1,q2, so ρq1,q2 = (σq1

y ⊗σq2
y )ρ∗q1,q2(σ

q1
y ⊗
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σq2
y ).

Note that fidelity (see Section 2.2.1) can also be used to quantify the entan-
glement between two qubits by measuring the closeness of the system state with a
desirable entangled state. However, it is advisable to avoid using the fidelity as a
figure of merit to quantify the degree of entanglement between two qubits. This is
because high fidelities do not always guarantee a high degree of entanglement [144].
However, fidelity is a useful additional check of the closeness of a desired entangled
state with the system state. In fact, being given knowledge of the EOF alone is
not useful in some protocols, such as teleportation [109], where it is necessary to
know the state of the system.

When we consider the practical situations where the system has random errors,
the average of many realizations of EOF is calculated as

EOF =
1

K

K∑
i=1

EOFi, (2.17)

where EOFi is calculated from the reduced density matrix of the two relevant sites
for a single randomly generated example of disorder. Since the error we consider
is random, the value of EOFi for each independent realisation of the Hamiltonian
can be different. Therefore, the average procedure we use (Eq. (2.17)) is important
as it gives the average performance of the system against such random errors.

2.3 Perturbations

Indeed, quantum systems are susceptible to errors, for example fabrication errors
or uncontrolled noise from the system itself [145]. Fabrication errors could be due
to the device not being engineered exactly as required, while uncontrolled noise
could be due to an unwanted magnetic field. In principle, both couplings and on-
site energies may be fixed as part of the manufacturing process of the qubits (e.g.
if these are quantum dots or devices of a specific size, placed a specific distance
from their neighbour). In other systems, both the couplings and on-site energies
may be tuneable with a local magnetic or electric field. Thus, both couplings or
on-site energies could be susceptible to either form of disorder – it depends on the
realisation.

This work considers the effect of static errors introduced in the fabrication of
the quantum devices, so the parameters in the actual system Hamiltonian (the
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on-site energies and the couplings) deviate from those specified in the ideal device
design, which are set to produce PST, or satisfy the chosen application.

In a current experimental setting, likely only one device at a time would be
considered (or even available), and this work reflects this experimental setting by
considering, for each device realisation, the closed evolution of the system subject
to a static Hamiltonian which deviates from the ideal one. This models the static
fabrication error set-up.

Further, to understand, on average, how damaging fabrication errors can be,
we consider a number of realisations, which we refer to as ’an ensemble of devices’.
The Hamiltonian of each realisation contains errors generated randomly according
to a set error distribution. Each member of the ensemble is evolved according
to its particular (closed) Hamiltonian evolution, so the averaged projector over
the ensemble will effectively evolve as a mixed state, due to the different (closed)
Hamiltonian evolution of each ensemble member. Therefore, modelling the en-
semble will demonstrate decay of quantities such as PST fidelity, or entanglement
between two chosen sites. In these instances, the ensemble modelling results pro-
vide a guide to and understanding of device performance, because if the modelled
ensemble results produce the desired application (such as PST) with high fidelity
at a given error rate, then the expectation is that – on average – an individual
device from that ensemble will operate with high fidelity. Note that even though
we consider a closed quantum system, the average procedure we employ leads to a
decay in time with the quantity of interest (e.g., fidelity), mimicking the behaviour
of an open quantum system (see Section 6.4 for a detailed discussion).

We also consider errors that are not due to fabrication errors, but arise in the
protocols used to perform a desired operation. These are the time delay errors or
phase angle errors. A detailed discussion on this is given below.

2.3.1 Diagonal disorder

Diagonal disorder is the error on the on-site energy and contributes to the diagonal
elements of the Hamiltonian matrix. In the ideal case, the on-site energies ϵi are set
to zero for simplicity. Now, we will consider noise variation on the on-site energy.
Therefore, the term ϵi given in Eq. 2.2 will now be given as ϵi = EdiJmax, where
E is the error strength given in units of Jmax, and di represents a random number
that depends on a particular distribution and is chosen independently for each site
i. The maximum coupling Jmax, as defined in Chapter 2, sets the perturbation
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units and is set equal to unity, Jmax = 1.

For the random number di, two physically reasonable distributions (Gaus-
sian and uniform distribution), each with zero mean value are considered. The
normalised uniform (or flat) distribution of random numbers is chosen to be
of unit weight within the window [-0.5 , 0.5]. For zero mean, the normalised
Gaussian distribution with a standard deviation of w takes the form f(d) =

1
w
√
2π

exp (−d2/2w2). As the standard deviation of our chosen flat distribution
is w = 1

2
√
3
, we use this value of w in the Gaussian distribution to model Gaussian

errors equivalent to the flat case. As will be seen, our disorder modelling is essen-
tially independent of the form of the random distribution used (flat or Gaussian),
until the regime of very large disorder is reached. For error regimes of interest for
useful devices, no dependence on the form of the error distribution used will be
significant.

2.3.2 Off-diagonal disorder

The disorder in the coupling interaction between nearby sites is known as off-
diagonal disorder (also called coupling disorder). As will be seen, our SN sys-
tems are more sensitive to off-diagonal disorder, than diagonal disorder. This
is attributed to the fact that the energy levels, under off-diagonal disorder, are
distributed on a larger energy scale when compared to the energy levels under
diagonal disorder. A detailed discussion of this will be given in Chapter 3.

The coupling disorder is represented by adding it to the off-diagonal elements
of the Hamiltonian matrix. Thus, the coupling interaction in Eq. (2.2), will now
be given by

Jperturbed
i,j = Ji,j + J

′

i,j , (2.18)

where J ′
i,j = Edi,jJmax. The symbols E and Jmax have the same definitions as

above. di,j is a random number that depends on a particular distribution and is
chosen independently for each coupling {i, j}.

Another way to represent the off-diagonal disorder is given in [146] as Jperturbed
i,j =

Ji,j(1 + ϵ). However, this expression means that the error is re-scaled for each in-
dividual coupling parameter. This may be true in systems where the error is a
fraction of the energy/coupling at that site, but we feel that it is a more widely
applicable approach to consider the error as a fraction of Jmax. Therefore, we will
adopt the expression given in Eq. (2.18).
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2.3.3 Time delays

Some of the quantum information processing protocols involve sudden application
of a phase or injection of an excitation at a specific time. The time delay error is
considered when such operations are not performed at exactly the right time.

One way of modelling time delay error is in protocols that involve the appli-
cation of a phase eiξ at a specific site at a specific time t = tp. The time tp is
the phase application time of the relevant chain of the SN. Thus, in a case where
the phase is not applied at tp, but at a slightly different time specified by a delay
strength D. The time delay on the application of the phase is given by

td,ξ = tp +Dtp, (2.19)

where D is the scale of the delay (−0.2 ≤ D ≤ 0.2). We set the range of the
timing error to have a maximum error of 0.2 because the timing error with larger
values of D results in the calculated quantity (fidelity or EOF) being very low.
Furthermore, any experimental realisation would be expected to have a timing
accuracy of D ≪ 1, or else use of the system for practical injection and extraction
of states to undergo PST would not be possible. Taking this into account, D = 0.2

is a suitable upper bound for timing error. tp is the phase application time of the
relevant chain of the SN. Note, our results are independent on whether the time
error is D > 0 (delayed operation) or D < 0 (earlier operation).

The second approach to modelling time delay errors is found in protocols where
we start with simultaneous injection of two states at two sites at t = 0. Specif-
ically, the protocol for the generation of a cluster state, as shown in Chapter 5,
requires injecting two plus states (a plus state is given by |+⟩ = 1√

2
(|0⟩ + |1⟩)),

simultaneously at two different sites at t = 0. In this case, we consider a scenario
in which the injection of the initial |+⟩ states is performed in an asynchronous way.
In other words, there is a time delay in the injection of one of the two |+⟩ states
such that they are not injected simultaneously. The time delay in the injection of
the |+⟩ state is represented as

td,|+⟩ = t0 +Dtp, (2.20)

where t0 = 0 is the |+⟩ states injection time, D and tp have the same definitions
as above.

Another possible error we consider is the measurement-time error. This is the
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case where the fidelity (or EOF) of a desired operation is measured at a different
time from the ideal measurement time. The scale of the error here is again the
parameter D with the same constraint (−0.2 ≤ D ≤ 0.2).

2.3.4 Phase disorder

Another possible error that can be considered is an error that is due to the applied
phase not being the exact required phase. For example, in a protocol that involves
application of a phase of eiξ, the error on the phase means that the angle of this
phase is now disordered

ξD = ei(ξ+Dξ) (2.21)

where D has the same constraint as above.



Chapter 3

Two-chain spin networks

Spin networks can be defined as systems made up of nodes and edges. The
physical representation of nodes are spins, where the edge between a pair of spins
represents the coupling interaction. There has been considerable advancement in
the field of quantum spin networks for QIP protocols [1,2,73,82]. Usually such SN
systems are known as graphs, a simple example of which is the linear graph (spin
chain) system.

Non-linear SN systems can be transformed into a spin chain system using par-
titioned graph theory [82, 147]. This is the process of simplifying the complexity
of a graph by reducing its dimensionality so that it becomes a simple linear SN
system (spin chain). On the other hand, the opposite operation, which expands a
spin chain system such that it involves more topology and becomes a non-linear
SN system, is also possible [1]. These methods of simplifying or expanding SN
systems can also be thought of as unitary transformations of the Hamiltonian of
such a system [82]. Under such a transformation, the overall spectrum of the
system (eigenvalues) do not change, while the eigenstates, on the other hand, do.

In this chapter, we propose a SN system designed via the transformation
of two USC - hence its name, two-chain SN - and show how it can be used
for various QIP protocols and investigate its robustness against different
types of disorder. We then demonstrate another structure of the SN sys-
tem designed via transformation of two USC, each of different length -
hence its name, SN of unequal chains - and show how to use this for var-
ious QIP protocols and investigate its robustness against various types of
disorder. Finally, we examine the scalability of such SN systems by de-
signing larger SN systems and show how they can be used for longer-range
QIP protocols, as well as investigate their robustness against disorder.

Part of the work in this chapter has been published in [1], and another
part of this chapter results has been published in [2].
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In this chapter, we propose a Hadamard-based transformation method that can
be used to form a complex SN system out of two uncoupled spin chain systems
(two USC). These two USC are coupled together via the Hadamard-based trans-
formation method, which results in a complex non-linear SN system. A detailed
discussion will be given below.

3.1 Spin chains and mirror symmetry

Before we introduce our SN system, let us first discuss the building blocks of the
SN, the spin chain system. Consider an XY-type spin chain of 3 sites as shown in
Fig.3.1. The nearest-neighbour coupling interactions are set to satisfy the formula
given in Eq. (2.12) which is required for PST. Note that since the number of sites
in this spin chain is three, the couplings are homogeneous, Ji,i+1 = J , but for a
longer spin chain, the couplings will not be uniform.

Figure 3.1: Diagram of a spin chain of 3 sites.

Let us assume that the spin chain is initialised so that all sites have spin down
state, |000⟩. This is an eigenstate of the Hamiltonian HXY of the system, and will
not evolve with time, and the system will just acquire a global phase evolution
(i.e., exp{−iHXY t} |000⟩ = eζ |000⟩ ).

If, in the error-free case, a single excitation is injected at the first site, |100⟩,
and the system is left to evolve, then at a time known as the mirroring time
tm, the excitation will be completely transferred to the other end of the chain,
|001⟩, demonstrating PST. The name mirroring time stems from the fact that the
excitation has evolved from the initial state, |100⟩, to its reflected state, |001⟩, and
is given as tm = π/(2J0). Further evolution of the system shows that the excitation
evolves back to its initial state, |100⟩, at 2tm, and therefore will continue to evolve
between the ends of the chain, as shown in Fig.3.2.
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Figure 3.2: Demonstration of the single-excitation evolution in the spin chain.

3.2 Design and realization of our spin network

We can be seen above, the spin chain system exhibits PST between the ends of
the chain. Let us call such a chain a PST chain. We are interested in building a
SN out of two USC, each of which is a PST chain. Therefore, the building blocks
of our SN are the two USC shown in Fig.3.3.

Figure 3.3: Two uncoupled trimers.

The Hamiltonian for these two USC, for the single-excitation site basis is given
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as

HXY =



0 J 0 0 0 0

J 0 J 0 0 0

0 J 0 0 0 0

0 0 0 0 J 0

0 0 0 J 0 J

0 0 0 0 J 0


(3.1)

The two USC shown in Fig.3.3 can be coupled together to form a non-linear
SN system. In order to do so, we propose a unitary transformation that can be
applied to the USC Hamiltonian, HXY , which results in a new Hamiltonian that
describes a non-linear SN. The unitary transformation is a Hadamard-like unitary
that superposes sites 3 and 4, and is given as

U =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1√
2

1√
2

0 0

0 0 1√
2

− 1√
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.2)

Here, U † = U .

A crucial point to make is that this unitary transformation is not implemented
as a physical operation on the physical realisation of the USC, but rather is merely
a mathematical tool used to design a non-linear SN out of the USC. Applying this
unitary on the USC Hamiltonian, HXY , will transform the Hamiltonian, resulting
in a new Hamiltonian that can be given as

HXY = UHXYU
† =



0 J 0 0 0 0

J 0 J√
2

J√
2

0 0

0 J√
2

0 0 J√
2

0

0 J√
2

0 0 − J√
2

0

0 0 J√
2

− J√
2

0 J

0 0 0 0 J 0


(3.3)

It is important to note that this new Hamiltonian HXY has the same eigenvalues
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Figure 3.4: Scheme of our two-chain SN, each of three sites. The dashed lines are the
new couplings that connect the two USC as a result of the unitary transformation of
the USC Hamiltonian. Note that on top of these two additional couplings, the energy
associated with some of the already existent couplings has changed1.

of the USC Hamiltonian, HXY , as the transformation does not change the overall
spectrum of the system. This ensures that the PST dynamics observed in the USC
system can also be observed in the non-linear SN system. The eigenstates, on
the other hand, change under the transformation, which is attributed to the new
topology the system acquires after the transformation. A diagram representing
this new Hamiltonian, HXY , is given in Fig.3.4. The dashed lines in the SN
in Fig.3.4 represent the new couplings that connect the two USC as a result of
transforming them. Furthermore, the transformation results in one of the couplings
being negative, the coupling between sites 4 and 5.

As shown in Fig.3.4, the Hadamard-like transformation of two USC superposes
two sites, each of which belongs to a chain. The first chain is the chain that
involves sites 1, 2, and 3. The second chain is the chain that involves sites 4, 5,
and 6, as per Fig.3.3. The transformation superposes sites 3 and 4, and so these
two sites are now coupled to both chains as a result of the transformation, as
shown in Fig.3.4. Since the SN is constructed from two USC, each of three sites,
let us name it: two 3-site-chain SN system.

The Hadamard-like unitary shown in Eq.(3.2) is not unique, as a rotation
between the two states would work equally (see appendix A for a detailed dis-
cussion). Using the rotation unitary instead of the Hadamard-like unitary gives
a slightly different transformed Hamiltonian HXY (with the negative coupling in
a different place). Alternatively, a slightly changed initial Hamiltonian HXY can
be transformed by the rotation matrix to give the same final HXY , Eq.3.3, as the
Hadamard-transformed example. We stress that the transformation of the USC

1Note that the numbering of the sites in the second chain of the SN is different to the one
shown in Figure 2 in [1].
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is a mathematical design step and that the SN shown in Fig.3.4 is the desired
structure that should be manufactured experimentally, in order to realise various
desirable QIP operations that will be discussed below.

3.2.1 Dynamic

Before discussing the use of this SN for QIP protocols, let us first investigate the
dynamics. In order to investigate the dynamics of our two 3-site-chain SN system,
we initialise the system such that all sites have a spin down state, |00 . . .⟩. We
then start by injecting a single-excitation at site 1 at t = 0

|Ψ(0)⟩ = |r1⟩ , (3.4)

where |r1⟩ = |100000⟩.
This excitation will then evolve through the system via the system’s natural

dynamics, and at the mirroring time, tm, the state will comprise a superposition
of the excitation being at sites 3 and 4

|Ψ(tm)⟩ = − 1√
2
(|r3⟩+ |r4⟩). (3.5)

The excitation will then evolve back to site 1 at 2tm, regaining its initial state,
|Ψ(2tm)⟩ = |Ψ(0)⟩. As long as the system is assumed to be perfect (the error-free
case), this evolutionary cycle will keep repeating itself. A demonstration of the
dynamics of the excitation evolution is illustrated in Fig.3.5. For simplicity, we
do not write the couplings parameters in the SN shown in Fig.3.5. Moreover, the
negative coupling between sites 4 and 5 is now denoted by a horizontal bar, and
the couplings that connect the two USC are denoted by the dashed lines. This
notation for couplings will be used throughout the thesis.

Note that since we injected the single-excitation at site 1, the excitation evolved
only through the first chain of the SN, specifically through sites 1, 2, 3, and 4. Of
course, site 4 belongs to the second chain of the SN, but it also shares a coupling
with the first chain. The reason the excitation did not evolve through sites 5 and
6 is because of the unitary construction of the SN that superposes only two sites
of the two USC, sites 3 and 4.

The above discussion is concerned solely with the single excitation being in-
jected at site 1. Similarly, if instead the single excitation is injected at site 6 at
t = 0, then the evolution of the excitation would end up in a superposed state
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(a) Excitation dynamics (b) Fidelity of each site

Figure 3.5: A demonstration of the dynamics of our SN. a) When a single-excitation is
injected at site 1 at t = 0, the excitation spreads as a superposition between sites 1, 2,
3, and 4 until time tm where it localises to being in a superposition state between sites
3 and 4. It then starts evolving backward toward site 1, and at 2tm it collapses to being
completely at site 1. The excitation will keep repeating this evolutionary cycle. b) The
fidelity of each site as a function of the rescaled time, t/tm.

between sites 3 and 4 at tm, but with a relative phase of -1

|Ψ(tm)⟩ = − 1√
2
(|r3⟩ − |r4⟩); (3.6)

it would then evolve back to site 6 at 2tm. The relative phase arises due to
the negative coupling between sites 4 and 5. Here, since we started with a single
excitation injected at site 6, the excitation will keep evolving in the second chain
of the SN (through sites 3, 4, 5, and 6).

The dynamics of our SN are engineered via the Hadamard-based unitary ap-
plied to the USC. Therefore, the dynamics of such SN systems depend on the
unitary construction used to form the SN. For example, engineering alternative
behaviours/state superpositions can be achieved using a different unitary, one that
is based on different gates.

3.3 Spin networks of equal chains

The SN discussed above is made up of two USC, each of three sites. In other words,
it is a SN of equal chains. We could, however, design a SN of unequal chains by



46 CHAPTER 3. TWO-CHAIN SPIN NETWORKS

coupling together two USC, each of a different number of sites. This will constitute
the discussion in Section 3.4; here, though, we will focus on the SN discussed above,
the two 3-site-chain SN Fig.3.4. As will be seen in the following, it can be used
for routing protocols, generating entanglement, and sensing an unknown phase
applied to a site. Furthermore, in order for our results to be realistic, we will
consider the effects of various types of disorder on the system.

3.3.1 Routing

Routing can be defined as the transfer of quantum information between distant
registers in a spin network, and is an important function in quantum technology.
Various methods have been proposed to achieve routing, such as by modulating
the on-site energies [148], or controlling the couplings with time-dependent tech-
niques [149,150]. Our scheme will instead keep the couplings and on-site energies
unchanged and will utilise the natural dynamics of the system with a minor control
on part of the SN, as will be discussed below.

Figure 3.6: Demonstration of the phase-based routing protocol that is achieved via the
application of a phase flip at site 4 at tm.

The goal of routing in our SN is to send a single excitation injected at site 1 all
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the way to the other end of the SN, at site 6 (PST from site 1 to site 6). However,
we have seen above that when the excitation is injected at site 1 at t = 0, it evolves
to a superposition state between sites 3 and 4 at tm, and evolves back to site 1 at
2tm. Therefore, we need to perform a sudden operation (on the timescale of the
dynamics) at tm, the time at which the excitation is in a superposed state between
sites 3 and 4, to force the excitation to continue evolving toward site 6. This can
be achieved via the application of phase flip, as described below.

Phase-based routing protocol

When a single excitation is injected at site 1 at t = 0 and evolved for a duration of
tm, it can be distributed as an equal superposition state between sites 3 and 4, as
shown in Eq.(3.5). In order to force the excitation to continue evolving forward,
a sudden application of a local phase flip of (eiπ = −1) needs to be applied at
either sites 3 or 4. This operation needs to be performed very rapidly, on the
timescale of the dynamics, and so can be viewed as sudden in the sense of the
sudden approximation in quantum mechanics. We choose to apply the phase flip
at site 4. Therefore, the state of the system at tm with the sudden phase flip
applied at site 4 is given by

|Ψ(tm)⟩π = − 1√
2
(|r3⟩+ eiπ |r4⟩). (3.7)

Experimentally, one can achieve such a local phase application using, for example,
a focused laser [126] or microwave pulses [151] applied at site 4. More discussion
on the experimental side of the phase application step will be given in Section 3.6.

We now allow the system to evolve, and at time 2tm the excitation will be
transferred completely to site 6

|Ψ(2tm)⟩ = |r6⟩ . (3.8)

Similarly, if we start by injecting a single-excitation state at site 6 at t = 0, we
can route it to site 1 following the same protocol.

The effect of applying the phase flip can be thought of as flipping the role of
constructive and destructive interference, such that the excitation evolves toward
site 6 instead of evolving back to site 1. The excitation will then continue to
evolve in the second chain of the SN, between the state Eq. (3.8) and the state
Eq. (3.7) unless another phase flip is applied at an odd mirroring time (i.e., 3tm,
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5tm, etc), which will force the excitation to evolve in the first chain of the SN.
The routing protocol in our SN is demonstrated in Fig.3.6. Note that routing any
superposition state of zero excitation and one excitation, |Ψ⟩ = α |0⟩+β |1⟩, works
in the same way as we can prepare site 1 in this random superposition and let it to
evolve to site 6. However, since we are restricting ourselves to the single-excitation
subspace, we only consider the evolution of the one excitation state.

An instructive way in which to see how the excitation evolves through the
system with time is to plot a colourmap for the fidelity of each site as a function
of time. The fidelity, as defined in Chapter 2, measures the closeness of an evolved
initial state with a desirable state at a time t. When calculating the fidelity, it
is important to take into account the fact that the evolved initial state changes
after time tm due to the application of the relative phase factor to the system.
Consequently, two fidelities need to be calculated, i.e., the fidelity before and after
the phase factor is applied to the system. Therefore, for our routing protocol above,
the case where a single excitation is injected at site 1 at t = 0 and a phase flip
eiπ is applied at site 4 at tm, the fidelity of a desirable state of a single excitation
being at site i (|Ψdes⟩ = |ri⟩ = |00 . . . 1i00 . . .⟩ can be calculated as follows

1. The fidelity for 0 ≤ t < tm is calculated as:
F (t) = | ⟨Ψdes| exp(−iHXY t) |Ψ(0)⟩ |2, with the initial state being |Ψ(0)⟩ =
|r1⟩.

2. The fidelity for t ≥ tm is calculated as:
F (t) = | ⟨Ψdes| exp(−iHXY t) |Ψ(tm)⟩π |2, with the new initial state being
|Ψ(tm)⟩π = − 1√

2
(|r3⟩+ eiπ |r4⟩).

A plot of the fidelity against each site as a function of time is shown in Fig.3.7.

Transformation-based routing protocol

The routing protocol discussed above involves a sudden application of a local
phase flip at site 4 at time tm. An equivalent mathematical representation of the
phase flip operation is a transformation of the Hamiltonian, a transformation that
is achieved via an identity-like matrix U with phase flip on one of the diagonal
elements, specifically ⟨r4| U |r4⟩ = eiπ. The unitary transformation is given by
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Figure 3.7: The fidelity of an excitation at each of the six sites as a function of the
rescaled time, t/tm. PST can be achieved from site 1 to site 6 when a phase flip is applied
at site 4 at tm.

U =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 eiπ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (3.9)

Therefore, when we start with a single-excitation at site 1 at t = 0 and let the
system evolve until time tm, where the state of the system is given as a superposed
state between sites 3 and 4 (Eq. (3.5)), the routing protocol can be achieved via
a sudden transformation of the Hamiltonian: UHXY U †. The excitation at 2tm

would then be transferred completely to site 6.
Although each routing protocol (phase-based and transformation-based) has its

own unique mathematical formulation, they are nevertheless physically equivalent.
Herein, whenever we discuss routing, we will use the phase-based protocol.

3.3.2 Bipartite entanglement generation

Generating quantum entanglement is necessary for various QIP, as previously dis-
cussed in Chapter 1. Here, we are interested in generating a bipartite maximally
entangled state between the ends of our SN system, between sites 1 and 6 in
Fig.3.4. Depending on the initial injected state, a specific protocol is implemented
to achieve perfect generation of a bipartite maximally entangled state.
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Phase-based bipartite entanglement protocol

When a single excitation is injected at site 1 at t = 0 and the system is evolved
for a period tm, the state will be in a superposition between sites 3 and 4, as
given in Eq. (3.5). Note that this is, in fact, a bipartite maximally entangled state
between sites 3 and 4 generated by natural evolution, and will evolve back to site 1
at 2tm if no operation is performed at tm. However, we are interested in generating
a bipartite maximally entangled state between the ends of the SN. Therefore, a
sudden application of a local phase factor to the system at time tm is needed to
force the excitation to evolve through both chains of the SN such that it ends up
in a superposition between the ends of the SN.

The phase factor needed in this instance is the phase eiπ/2. When a phase
factor of eiπ/2 is injected at site 4 at time tm and the system is evolved for another
duration tm then the state of the system at 2tm will be in a bipartite maximally
entangled state between sites 1 and 6, given as

|Ψ(2tm)⟩ =
1 + eiπ/2

2
|r1⟩+

1− eiπ/2

2
|r6⟩ . (3.10)

This phase-based protocol for generating the bipartite maximally entangled
state is illustrated in Fig.3.8.

Natural generation of bipartite entanglement protocol

Another approach to generate the bipartite maximally entangled state between the
ends of the SN can be achieved via a specific initial injection and utilisation of the
natural evolution [99]. Instead of initialising the system with a single excitation
at site 1, we can start the injection at the central vertex of the diamond, either at
site 3 or at site 4 in Fig.3.4.

If we start by injecting a single excitation at site 3 at t = 0 and evolve the
state of the system for a duration of tm, then the state of the system at tm will be
given as a bipartite maximally entangled state between sites 1 and 6

|Ψ(tm)⟩ = − 1√
2
(|r1⟩+ |r6⟩). (3.11)

This entanglement is generated by the natural evolution of the system as it
does not require an application of a phase in order to occur. It also allows for a
faster generation of the entangled state as it is generated at tm, as compared to
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Figure 3.8: Demonstration of the phase-based bipartite entanglement protocol achieved
by the application of a phase factor eiπ/2 at site 4 at tm.

the previous protocol where the entangled state is generated at 2tm. Moreover, as
will be seen in Section 3.3.4, the entangled state in this protocol is more robust to
disorder than the entangled state generated in the previous protocol.

The entangled state generated here is achieved with a single excitation injected
at site 3 at t = 0, but it can also be generated by injecting the single excitation at
site 4 instead. This can be achieved using the same steps: inject a single-excitation
at site 4 at t = 0 and evolve for a duration tm. The state at tm will therefore be
a bipartite maximally entangled state between sites 1 and 6, but with a relative
phase difference due to the negative coupling between sites 4 and 5

|Ψ(tm)⟩ = − 1√
2
(|r1⟩ − |r6⟩). (3.12)

3.3.3 Phase sensing

The field of quantum sensors is recognised to be one of the most important ar-
eas within the whole landscape of quantum technologies [12, 83, 152–157]. High-
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precision measurements and ultimate (Heisenberg-limited) sensitivity can be pur-
sued through quantum sensing protocols that use quantum resources. In such
applications, in some chosen interferometric system, a phase is imparted to the
relevant quantum resource (qubit) by the field or effect being sensed. Thus, mea-
suring this phase through interference allows for the sensing of the field or effect
that caused it.

In both the protocols discussed above (routing and phase-based bipartite en-
tanglement), a chosen phase factor is suddenly applied at site 4 at tm to perform
the desired operation. Here, we consider the case where the sudden phase factor
applied at site 4 at tm is unknown, eiθ, where θ is an unknown parameter. This
could be the case where the phase is applied to the system by an external field or
effect that we do not have access to. Retrieving this unknown phase enables us to
sense the field or effect that produced it. The task is then to retrieve this unknown
θ (modulo 2π). Investigation of the dynamics of the system with the application
of an unknown phase enables us to tailor a protocol that can be used to retrieve
the unknown angle, as will be described below.

When the system is first initialised with a single excitation injected at site 1
at t = 0 and then allowed to evolve for a duration of tm where a sudden unknown
phase is applied at site 4, the state of the system will be given by

|Ψ(tm)⟩θ = − 1√
2
(|r3⟩+ eiθ |r4⟩). (3.13)

The excitation at a later time (e.g., t = 2tm) will either evolve back to site
1 or to site 6 or to a superposition state between sites 1 and 6, depending on
the unknown phase eiθ. We have derived analytically the state at 2tm when an
arbitrary phase eiθ is applied at site 4 at tm (see appendix B), and which is given
by

|Ψ(2tm)⟩ =
1 + eiθ

2
|r1⟩+

1− eiθ

2
|r6⟩ . (3.14)

From a practical perspective, let us assume that the only information we have
about the unknown phase θ is the value of the measurement of the fidelity at 2tm,
in particular, the measured fidelity against either a desirable state of an excitation
being at site 1 (|Ψdes⟩ = |r1⟩) or against a desirable state of an excitation being
at site 6 (|Ψdes⟩ = |r6⟩), as the excitation at 2tm (Eq. (3.14)) cannot be found at
any other sites. We choose to measure the fidelity against |r1⟩. It turns out that
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the expression for the fidelity against |r1⟩ at 2tm can be written as

F1 = | ⟨r1|Ψ(2tm)⟩ |2 =
1

2
(1 + cos θ). (3.15)

Further details are given in appendix B. Note that there is no difference in whether
we study the case where the unknown phase is applied at site 3 or at site 4, except
that the evolved states will have different relative phases that still enable extraction
of the unknown applied phase..

Since we now have a formula for the fidelity measurement against |r1⟩ at 2tm

as a function of the unknown θ, we can simply retrieve the unknown angle as
θ = cos−1(2F1 − 1). It is crucial to note that this would enable us to obtain any
unknown angle in the range 0 to π. However, the range of the unknown angle
could be from 0 to 2π; therefore, another separate fidelity, written as a function
of sin θ, along with F1, is needed to be able to obtain any unknown angle in the
range 0 to 2π.

We can see from the above that the expression of the fidelity at 2tm can be
rewritten as a function of cos θ when an unknown phase θ is applied to site 4 at
tm. In order to have a separate fidelity written as a function of sin θ, an additional
known phase shift needs to be applied at site 4 at the same time as the unknown
phase, as described below.

We start with a single excitation injected at site 1 at t = 0 and let the system
evolve for a time tm, where a sudden unknown phase is applied to site 4 (as shown
in Eq. (3.13)). At this time, we intervene by applying a sudden phase shift of −π

2
,

also at site 4. Now, with sudden application of the unknown phase, θ, as well as
the known phase shift of −π

2
at site 4 at tm, the total sudden phase factor is given

as exp i(θ − π
2
). As a result, the expression for the fidelity against |r1⟩ at 2tm can

be written as
F2 =

1

2
(1 + cos (θ − π

2
)), (3.16)

and since cos(θ − π
2
) = sin(θ), then

F2 =
1

2
(1 + sin θ). (3.17)

The fidelity index here is labelled with a subscript ’2’ in order to distinguish
between two fidelities. F1 represents the measured fidelity against |r1⟩ at 2tm when
an unknown phase is applied to site 6 at tm, while F2 represents the measured
fidelity against |r1⟩ at 2tm when the additional phase shift of −π

2
is added to the
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unknown phase. The steps required to generate these two separate fidelities, F1

and F2, are shown in Fig.3.9a.

Figure 3.9: a) Demonstration of the two separate experiments used to obtain F1 (left)
and F2 (right). In both experiments we choose to measure the fidelity against |r1⟩. b)
Measurement of F1 (left) and F2 (right) for various unknown phases. The angles are
given in degrees.

Phase sensing protocol

Our sensing protocol was devised by investigating the behaviour of each fidelity,
F1 and F2, as a function of various unknown angles in the range 0 to 2π. This is
achieved by plotting the fidelities, F1 and F2, against various unknown angles, as
shown in Fig.3.9b, with angles given in degrees.

Observation of the fidelities F1 and F2 in Fig.3.9b reveals that whenever F2

is greater than 0.5, the unknown angles range from 0◦ to 180◦, and whenever F2

is less than 0.5, the unknown angles range from 180◦ to 360◦. This is what our
sensing protocol is based on. Therefore, if an unknown phase is applied at our SN
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(at site 4), we start by first preparing two measurements (F1 and F2), and then
use the following protocol to retrieve the unknown phase

• Use F1 to find θ1 such that θ1 = cos−1(2F1 − 1)

Then, use F2 to determine in which range the theta is:
if F2 ≥ 0.5, then 0 ≤ θ1 ≤ π

if F2 < 0.5, then π ≤ θ1 ≤ 2π

We note that by using this phase-sensing protocol, we can retrieve any unknown
phase accurately as we have not yet considered the presence of disorder in the
system. However, when we consider the presence of errors in the system, the
protocol needs to be adjusted slightly to account for their presence, but will still
give a very good estimation of the unknown angles, as will be seen in Section 3.3.4.

3.3.4 Effect of disorder

In order for our results to be realistic, we will now consider the presence of er-
rors in the system and assess how well the applications discussed above perform
under such errors. As discussed in Section 2.3, the considered errors are those
attributed to manufacturing defects in the SN, where certain parameters have
not been engineered as required. These are the on-site energies parameters and
coupling interactions parameters. The error in the on-site energies is known as
the diagonal error, as it is represented in the diagonal elements of HXY , whereas
the error in the coupling interactions is known as the off-diagonal error, as it is
represented in the off-diagonal elements of HXY .

Router robustness

The routing of quantum information discussed in Section 3.3.1 is the process of
sending a single excitation from site 1 to site 6. Furthermore, because of the
periodicity of the system and as long as there are no errors, the excitation is found
to be at site 6 at even mirroring times (i.e., 2tm, 4tm, 6tm, etc). As a result,
measuring the fidelity of the excitation at site 6 (fidelity against |r6⟩) at each even
tm will always yield unit fidelity. On the other hand, when the system is subject to
errors, then the measurement of this router fidelity would reveal that it is decaying
with time and with the strength of the error, E, as will be seen below.
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Investigating the effect of disorder on the routing protocol is achieved by first
applying the random diagonal or off-diagonal errors to the Hamiltonian HXY pa-
rameters (see Section 2.3 for a discussion of these errors). Once the Hamiltonian
contains errors, we perform the routing protocol and then calculate the fidelity
against |r6⟩ at different times 2tm, 4tm, and 6tm. Since the error is random, we
calculate F (t), which is the average of 1000 realisations of the fidelity, each gen-
erated with a random error (see Eq.(2.14)). Therefore, each point in Fig. 3.10 is
the average of 1000 realisations of the fidelity.

(a) Diagonal disorder (b) Off-diagonal disorder

(c) Both disorders

Figure 3.10: The robustness of the router fidelity when F (t) is measured at t = 2tm,
4tm, and 6tm against diagonal disorder (a), off-diagonal disorder (b), and both disorders
(c) with different error strengths, E, and for random Gaussian and flat distributions
(solid orange and dashed blue lines, respectively). The error bars denoting the standard
deviation of the mean wx, for each point, are also plotted, but are not visible on the plot
because they are smaller than the symbol size used for the data points.

It can be observed from Fig.3.10(a) that our routing protocol is very robust
against diagonal disorder, as its averaged fidelity remains above 99% at 2tm and
> 95% at a later time, 6tm, even with a relatively high error strength of E = 15%.
For a significant error strength of E = 25%, the router fidelity remains above
98%, 94%, and 88% at times 2tm, 4tm, and 6tm, respectively. On the other hand,
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the robustness of the router fidelity against off-diagonal disorder, Fig.3.10(b), and
with an error strength of E = 15%, is observed up to time 4tm, where the fidelity
is > 90%. However, as the error strength increases, E ≥ 20%, there is a clear
decay in the fidelity. Therefore, router fidelity is more sensitive to off-diagonal
error, particularly for a large error strength, E. The effect of including both types
of disorders, Fig.3.10(c), is slightly more damaging but not noticeably different
from the case of having only off-diagonal disorder, especially at 2tm. This can be
attributed to the fact that the error is dominated by off-diagonal disorder.

Furthermore, the standard deviation of the mean, for each point, has also
been calculated to assess the accuracy of our data. The formula representing the
standard deviation of the mean is given by

wx =

√
1

l−1

∑l
i=1(xi − x)2
√
l

, (3.18)

where l denotes the sample size that we choose to be l = 1000. The standard
deviation of the mean, wx, turns out to be very small and not visible on the plot,
as it is smaller than the symbol size used for the data points. Even with the worst-
case scenario (i.e., with both types of disorder and with E = 50%) the standard
deviation of the mean is still very small (≈ 0.008) and not visible on the plot.
The only exception, where the error bar is hardly discernible on the plot is in the
presence of diagonal disorder with E = 50% and at 6tm Fig.3.10(a). Observing
very small standard deviation of the mean emphasises the accuracy and robustness
of our results.

Note that the plot also shows that the random number distributions (Gaussian
and flat distributions) are essentially indistinguishable on the scale of the plots for
an error scale of up to E = 20%; however, for larger error strengths, the flat distri-
bution has slightly more impact on the fidelity than the Gaussian distribution. The
discrepancy between these distributions at large error scales may be conjectured
to be linked to the fact that the mean for both distributions is zero and therefore
that the numbers obtained from the Gaussian distribution are more likely to be
close to the mean than to the tails, which is because of the bell-shape the Gaussian
distribution has. On the other hand, the flat distribution is rectangular, so any
value in the specified range is equally likely to occur.

Once the error strength is E ≤ 10%, then the router fidelity against both types
of disorder, diagonal or off-diagonal, will be very robust. This is because in the
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instance of diagonal disorder, Fig.3.10a, the routing fidelity at three consecutive
times (2tm, 4tm, and 6tm) remains above 97%, whereas in the instance of both
types of disorder, Fig.3.10c, the routing fidelity at the same three consecutive times
remains above 90%. It is crucial to note that in real physical implementations the
error strengths are expected to be reasonable (i.e., much less than E = 10%).
Therefore, since our results for router robustness suggest that it is very robust
with E = 10%, we highlight the potential of our SN for short-distance routing
applications.

Bipartite entanglement robustness

Above, we generated a bipartite maximally entangled state between the ends of
the SN system (sites 1 and 6). We proposed two protocols that can be used to
generate such an entangled state, the phase-based protocol and the natural gen-
eration protocol. Here, we investigate the robustness of the phase-based bipartite
entanglement protocol against diagonal and off-diagonal disorder. We will then
investigate the robustness of the natural generation protocol of the bipartite en-
tanglement.

Investigating the robustness of the phase-based bipartite entanglement pro-
tocol is achieved by applying the error to the HXY parameters, performing the
entanglement protocol and calculating the degree of entanglement between sites
1 and 6 at the relevant time, using the Entanglement of Formation (EOF) tool.
The chosen times for the EOF calculations are 2tm, 4tm, and 6tm. These are the
times where the system state, for no error, is found to be in a bipartite maximally
entangled state. Since the error is random, we calculate the EOF , which is the
average of 1000 realisations of the EOF, each generated with a random error (see
Eq.(2.17)). Therefore, each point in Fig.3.11 is the average of 1000 realisations of
the EOF.

The bipartite entangled state is very robust against diagonal disorder, Fig.3.11(a),
as the EOF at 2tm remains above 99% up to a relatively large error strength of
E = 15%, and further remains above 95% up to a significant error strength of
E = 25%. Moreover, EOF , at later times up to 6tm and with an error strength of
E = 10%, is > 95%. On the other hand, the robustness to off-diagonal disorder,
Fig.3.11(b), is observed with an error strength of E ≤ 10%, where the EOF at
2tm and 4tm remains above 97% and 95%, respectively. In the presence of both
disorders and with E = 10%, the entanglement at 2tm and 4tm remains above 97%

and 92%, respectively. However, as the error strength increases to E ≥ 20%, and
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(a) Diagonal disorder (b) Off-diagonal disorder

(c) Both disorders

Figure 3.11: The robustness of the bipartite maximally entangled state when the EOF
is measured at t = 2tm, 4tm, and 6tm against diagonal disorder (a), off-diagonal disorder
(b), and both disorders (c) with different error strengths E, and for random Gaussian
and flat distributions (solid orange and dashed blue lines, respectively). This is for the
phase-based entanglement protocol. The error bars denoting the standard deviation of
the mean wx, for each point, are also plotted, but are not visible on the plot because
they are smaller than the symbol size used for the data points.

especially at later times (4tm and 6tm), EOF decays rapidly. Furthermore, the
standard deviation of the mean, for each point, are very small to the point that
they are not visible on the plot, as they are smaller than the symbol size. This
illustrates the robustness and precision of our results.

The behaviour of EOF with respect to the type of random number distribution
(Gaussian or flat) in the instance of diagonal disorder at 2tm is indistinguishable
on the scale of the plot. In the instance of off-diagonal disorder, the indistin-
guishability is observed at 2tm up to E = 40%. The effect of the random number
distributions become distinguishable at later times and particularly at high error
strengths E. Therefore, as long as the error strengths are in the regime of reason-
able error strengths (i.e., E ≤ 10%), the EOF behaviour does not depend on the
type of random error distribution used. The robustness of our bipartite entangle-
ment protocol for relatively large error strengths makes it a promising candidate
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to be used in real applications.

In the above, we investigated the robustness of the bipartite maximally entan-
gled state that is generated using the first entanglement protocol (the phase-based
protocol). On the other hand, the robustness of the bipartite maximally entangled
state, when generated using the second entanglement protocol (natural generation
protocol), is more robust than the robustness of the entanglement of the phase-
based protocol, particularly for E > 10%. This is illustrated in Fig.3.12.

Figure 3.12: Robustness of the bipartite maximally entangled state between site 1 and
site 6 for two different entanglement protocols in the presence of off-diagonal disorder.
Blue: for the natural generation protocol where the initial state is |Ψ(0)⟩ = |r3⟩, and
the EOF is measured at t = tm. Orange: for the phase-based protocol where the initial
state is |Ψ(0)⟩ = |r1⟩, and the EOF is measured at t = 2tm.

The reasons why the second entanglement protocol is more robust than the
first are attributed to the fact that the second entanglement protocol involves
fewer sites with respect to the state evolution and is collected at tm, whereas
the first entanglement protocol involves all sites and is collected at 2tm. This is
demonstrated in Fig.3.13 where the fidelity against each site as a function of time
is plotted in a colormap.
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Figure 3.13: Fidelity of each site as a function of the rescaled time, t/tm, in the second
entanglement protocol. It shows that the amplitude at site 4 is always zero.

Gaussian fitting function

More intuition about the system robustness against disorder can be obtained using
fitting functions. It also allows the prediction of future data points without the
need to redo the numerical calculation for each new parameter. By investigating
numerically different fitting functions, we find that the Gaussian fit best describes
our system robustness. The form of the Gaussian function is given by

f(x) = a exp

(
−(x − x)2

2w2

)
, (3.19)

where a represents the amplitude of the Gaussian function, x denotes the mean
of the Gaussian function, and w represents the standard deviation (width) of the
Gaussian distribution.

The fitting is done with both routing robustness and entanglement robustness,
as shown in Fig.3.14. These results suggest that the behaviour of our SN system
against disorder follows a Gaussian distribution. The function f(x) here is a func-
tion of the error strengths, f(E). The parameters for the Gaussian fit of routing
robustness, Fig.3.14(a), are a ≈ 1.001, x ≈ −0.01, and w ≈ 0.62. The parame-
ters for the Gaussian fit of entanglement robustness, Fig.3.14(b), are a ≈ 1.001,
x ≈ −0.01, and w ≈ 0.53.

Phase-sensing robustness

In practical implementations, the system will be susceptible to disorder and so
the phase sensing protocol discussed in Section 3.3.3 is unlikely to work very well.
This is because the fidelity, F1, is reduced in the presence of error and therefore the
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(a) Routing robustness (b) Entanglement robustness

Figure 3.14: a) The robustness of the routing protocol against both disorders when its
averaged fidelity is measured at 2tm (blue dots) with a Gaussian fit (red line) for various
error strengths E. b) The robustness of the entanglement protocol against both disorders
when its averaged EOF is measured at 2tm (blue dots) with a Gaussian fit (red line) for
various error strengths E.

retrieved angle will deviate considerably from the actual unknown angle. However,
the behaviour of the fidelities, F1 and F2, under the error inspired us to tailor a
suitable phase-sensing protocol that can retrieve the unknown angle in the presence
of disorder. The protocol uses both F1 and F2 and therefore the application of the
unknown phase must be repeatable. The diagonal disorder has only a very weak
effect on the fidelities and therefore we will consider the more damaging type of
error, off-diagonal disorder, in our sensing protocol.

Measurements of averaged fidelities, F1 and F2, in the presence of off-diagonal
disorder with error strengths of up to E = 30% are presented in Fig.3.15. The
distribution of the random error used here is Gaussian. From now on, we use the
Gaussian distribution for the random number error.
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Figure 3.15: Left: Averaged fidelity F1 in the presence of off-diagonal disorder for
different error strengths, E, and for various unknown phases. Right: Averaged fidelity
F2 in the presence of off-diagonal disorder for different error strengths, E, and for various
unknown phases. The orange line corresponds to the ideal case where there is no error.
The dots are the averaged fidelity of 1000 fidelity realisations for each unknown phase
with error scaled up to E = 30%. Angles are given in degrees.

It can be seen in Fig.3.15 that the fidelities that suffer more from the off-
diagonal error are those that are approaching unity. The reason for this is because
fidelity is bounded by 1, so the error on fidelity ≈ 1 can only reduce the fidelity,
and thus all errors can only act so as to reduce F away from the unique F = 1

state. Similarly, fidelities that are close to zero can only be increased by the error
because, additionally, the fidelity cannot be less than zero. This, however, is a very
small increase and is negligible on the scale of the plot. Small fidelities are clearly
not sensitive to the error compared to high fidelities as in the case of fidelities
that approach zero, and the error will not guarantee moving the state closer to
the desired state. This is because there are numerous different states that are
all orthogonal to the desired state and whose occupation probabilities may be
increased by the error. As a result, retrieving an unknown angle from a fidelity
that approaches unity will be subject to greater error and will deviate more from
its actual value. To overcome this issue, a flexible protocol based on the behaviour
of F1 and F2 in Fig.3.15 is proposed.

By observing how the averaged fidelities F1 and F2 in Fig.3.15 change with
respect to the unknown phases and the error strengths, E, an appropriate phase-
sensing protocol can be designed. The figure shows that for a given unknown
phase, when F1 suffers more from the error, F2 is less affected, and vice versa.
Thus, for our sensing protocol, both F1 and F2 are used in order to obtain two
angles, θ1 and θ2, respectively. This is then repeated over many realisations of the
system with random errors. The angle with the lower standard deviation is then
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chosen as the best estimate of the unknown angle, as described below.

For a given dataset {F1,F2} associated with an unknown phase, our sensing
protocol works as follows:

1. Use F1 to find θ1 such that θ1 = cos−1(2F1 − 1)

Then, use F2 to determine the range in which the θ1 lies:
if F2 ≥ 0.5, then 0 ≤ θ1 ≤ π

if F2 < 0.5, then π ≤ θ1 ≤ 2π

2. Use F2 to find θ2 such that θ2 = sin−1(2F2 − 1)

Then, use F1 to determine the range in which θ2 lies:
if F1 ≥ 0.5, then −π

2
≤ θ2 ≤ π

2

if F1 < 0.5, then π
2
≤ θ2 ≤ 3π

2

In step 2, we set the range of the angle to be from −π
2

to 3π
2

because with this
range the use of F1 to determine the range of the F2 angle will then allow us to
uniquely distinguish between just two continuous regions of θ2. This is crucial in
order for the angle averaging to work, as described below.

If we use the above protocol on a set of 1000 random realisations of data
{{F1, F2}1, {F1, F2}2, . . . , {F1, F2}1000}, for an unknown phase, we will then obtain
{{θ1, θ2}1, {θ1, θ2}2, . . . , {θ1, θ2}1000}. All the realisations of θ1 are averaged and all
the realisations of θ2 are averaged as well. It is important to note that when we
take the average of all θ2, for some unknown phases the averaged angle, θ2, could
be negative, which is due to the negative ranges employed in step 2 of the protocol.
Thus, in order to shift the negative averaged angle to be in the range 3π/2 to 2π,
we add 2π to the negative averaged angle. Each of the obtained averaged angles,
θ1 and θ2, corresponds to the angle of the unknown phase; however, one of these
values will show a greater deviation from the actual unknown angle due to the
larger error that perturbs fidelities approaching unity. To determine which of the
two, θ1 and θ2, is the closest value to the unknown angle, the standard deviations
of these angles are considered, where the angle with a lower standard deviation
corresponds to the unknown phase with a higher accuracy.

The robustness of our phase-sensing protocol to off-diagonal disorder and with
a relatively high error strength of E = 20% is demonstrated in Fig.3.16. It is clear
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Figure 3.16: The obtained angles vs the unknown angles, in degrees. This is in the
presence of off-diagonal disorder with a high error strength of E = 20% and with angles
being averaged over 1000 realisations. Inset: the standard deviation, σθ, of the mean
of the obtained angles. It is clear that the angle around 45◦ has the highest standard
deviation.

that the angles around 45◦ have higher standard deviations, which means that they
are more subject to the error. With reference to Fig.3.15, this is because both F1

and F2, for unknown angles around 45◦, lie between 0.5 and 1, and therefore suffer
more from the error. Even then, the standard deviation for angles around 45◦ is
still small, at around a fraction of one degree.

The performance of our SN in phase sensing, even in the presence of signifi-
cant errors , that is of the level of E = 20% of the characteristic energy of the
system (see Fig.3.16), makes it a very good potential device for high-precision
measurements of unknown phases, which is important for interferometry applica-
tions [156, 158], as one can use our device to measure and correct for unknown
phases. Furthermore, such precise measurements of unknown phases can be useful
in quantum information tasks that require phase factor applications [1,2,85,106],
in the sense that it can be integrated into schemes to ensure that the applied
phase is the desired one. It is important to note that a simpler version of our
sensor device, two 2-site-chain SN, can be used instead for the sensing task. The
advantage there would be that fewer qubits in total would be needed with respect
to our current device and therefore it would even be more robust to disorder.

Energy spectrum

We now wish to investigate the energy levels of our ideal 6-site SN system. We
therefore diagonalise the Hamiltonian HXY to gain the eigenvalues and plot them
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to see how they change when we introduce a diagonal or off-diagonal disorder. Our
ideal SN has three doubly degenerate energy levels, one of which is at zero energy.
This is shown in Fig.3.17 and Fig.3.18 for instances of off-diagonal and diagonal
disorder, respectively.

Figure 3.17: Energy spectrum of the 6-site SN. The blue horizontal lines indicate
the energy levels in the ideal case with no error. Each of these lines has a degeneracy
of two eigenvalues. On the right of the blue lines are 100,000 random realisations of
these degenerate energy levels in the presence of off-diagonal disorder and with an error
strength of E = 20%. The two degenerate eigenvalues are coloured orange and green,
respectively. The black lines are the average of each realisation. The probability density
distributions of each energy level realisation are plotted on the right.

.

.
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Figure 3.18: Energy spectrum of the 6-site SN. The blue horizontal lines indicate the
energy levels in the ideal case with no error. Each of these lines has a degeneracy of
two eigenvalues. On the right of the blue lines are 100,000 random realisations of these
degenerate energy levels in the presence of diagonal disorder and with an error strength
of E = 20%. The two degenerate eigenvalues are coloured orange and green, respectively.
The black lines are the average of each realisation. The probability density distributions
of each energy level realisation are plotted on the right.

In the ideal case where the system does not have disorder, the three doubly
degenerate energy levels are: −

√
2, 0,

√
2 (the blue horizontal lines in Fig.3.17).

These ± energy levels pairs, alongside the zero energy level, are observed because
our Hamiltonian HXY anticommutes with a unitary operator, D, that satisfies
D2 = I, as we will describe now. The unitary operator D that anticommutes with
our Hamiltonian ([D,HXY ]+ = DHXY +HXYD = 0) is given by

D =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


. (3.20)

Now, for an eigenstate |φ⟩ of the Hamiltonian HXY , the eigenvalue equation is
given by

HXY |φ⟩ = λ |φ⟩ . (3.21)
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Similarly, for an eigenstate D |φ⟩ of the transformed Hamiltonian DHXY , the eigen-
value equation is given by

DHXY |φ⟩ = λ(D |φ⟩). (3.22)

However, we can also write

HXY (D |φ⟩) = −λ(D |φ⟩), (3.23)

as DHXY = −HXYD. Therefore, we can either have |φ⟩ and D |φ⟩ as the eigen-
states of HXY with energies λ and −λ, respectively, or |φ⟩ being the eigenstate of
D with energy zero. This property of the energy spectrum is known as “pairing
theorem” [159–161].

Since the zero energy level is associated with an eigenstate of the operator
D, it does not move from zero even when we include off-diagonal disorder in the
Hamiltonian, as observed in Fig.3.17. In this case, the anticommutation with an
imperfect Hamiltonian (off-diagonal disorder) still holds. On the other hand, the
zero energy level is not protected against diagonal disorder as, in this case, the
Hamiltonian does not anticommute with the operator D (i.e., [D,HXY ]+ ̸= 0).
Furthermore, a symmetry of the energy levels with respect to the zero energy level
is observed in the presence of off-diagonal disorder, as per Fig.3.17, but is broken
in the presence of diagonal disorder, as per Fig.3.18. This is again because the
anticommutation condition is not satisfied in the instance of diagonal disorder.

Even though the off-diagonal disorder protects the symmetry of λ around zero
and protects the zero energy levels, the results discussed in the previous subsections
suggest that the system is more sensitive to off-diagonal disorder than diagonal.
This can be explained in terms of the energy scale. The probability density dis-
tribution, P (λ), for each ensemble of energy levels under disorder shows that the
non-zero energy levels are distributed on a wider energy scale in the presence of
off-diagonal disorder compared to the diagonal (see the P (λ) plots in Fig.3.17
and Fig.3.18), which explain the greater sensitivity of our system to off-diagonal
disorder.

Level spacing statistics

The behaviour of the energy levels under the error can also be investigated from
another prospective, using level spacing statistics. Level spacing statistics, P (s),
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are widely used to investigate classically chaotic quantum systems [162] and com-
plex many-body systems [163]. It is also used to characterise the fidelity behaviour
in the presence of error in spin chains [146]. The distribution P (s) gives the prob-
ability that the energy gap between two adjacent levels in the presence of error,
normalised to the actual spacing in the error-free case, belongs to a specified in-
terval, [s,s + ds]. For example, in the error-free case, the energy gap between
two adjacent levels for our 6-site SN is

√
2; in the presence of disorder, however,

this gap will be different. Therefore, for the P (s) statistics, the energy gap is
normalised by dividing it by

√
2, and so for a very small disorder the energy level

spacing statistics will form a narrow distribution around 1, as shown in Fig.3.19.

The energy level spacing statistics shown in Fig.3.19 illustrate that for large
error strengths of E > 10%, the P (s) gives a wider distribution in the presence of
off-diagonal disorder (Fig.3.19a) compared to diagonal disorder (Fig.3.19b). This
could also explain the sensitivity of our SN system to off-diagonal disorder, as the
P (s) show that the energy gaps are not disturbed by the diagonal disorder to the
same extent as by the off-diagonal disorder. We note that the discrete features
visible in these plots (as opposed to each being a smooth curve) are due to the
fact that the analysis is presented for a 6-site system in order to compare directly
with the previous example and discussion. Studies of systems with a much greater
number of sites can yield smoother distributions.

(a) Off-diagonal disorder (b) Diagonal disorder

Figure 3.19: Energy level spacing statistics of the 6-site SN with off-diagonal disorder
(a) and diagonal disorder (b) for different error strengths, E.
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3.4 Spin networks of unequal chains

The SN discussed above is designed by coupling together two PST chains, each
of three sites. Here, we investigate a SN designed by coupling together two PST
chains, but each of a different number of sites. This is a SN of two PST chains, A
and B, of NA = 3 sites and NB = 4 sites, respectively, as shown in Fig.3.20. Since
the mirroring time, tm, of a relevant chain of the SN is given as a function of the
length of that chain (see Section 3.1), the time evolution through the chain A is
different to that though the chain B. Therefore, we denote the mirroring time for
chain A and chain B as tm,A and tm,B, respectively.

Routing, bipartite entanglement, and phase sensing protocols can also be gen-
erated in this SN. We will discuss below the generation of two of these protocols
(routing and bipartite entanglement).

Figure 3.20: Scheme of the SN of unequal chains that is built by coupling together a
3-site PST chain with a 4-site PST chain.

.

3.4.1 Routing

Regardless of the size of the SN and, indeed, regardless of whether the SN is of equal
chains or unequal chains, the routing protocol can still be achieved. For instance,
in Fig.3.20, routing is achieved by starting with a single excitation injected at site
1 at t = 0, and a phase flip applied at site 4 at t = tm,A; then, after an evolution
period of t = tm,B, the excitation would be transferred completely to site 7

|Ψ(tm,A,B)⟩ = −i |r7⟩ , (3.24)

where tm,A,B = tm,A + tm,B is the total time for the excitation to evolve from site
1 to site 7.
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In the general case, for a longer two-chain SN of arbitrary length NA+NB = N ,
the routing protocol will still work in the same way and the routed state will be
given by

|Ψ(tm,A,B)⟩ = e−iγ(N) |rN⟩ , (3.25)

where the global phase factor is e−iγ(N) = (−i)N−2. This is consistent with previous
results for linear chains [89].

3.4.2 Bipartite entanglement generation

As the number of sites for each chain is different, NA ̸= NB, generating a bipartite
maximally entangled state between the ends of this SN is not straightforward. The
reason for this will be elaborated upon in the following discussion.

Let us apply the phase-based entanglement protocol here and see what happens.
We start with a single excitation injected at site 1 at t = 0 and we allow the system
to evolve for a duration of tm,A (the time the excitation needs to evolve to the
central vertex of the diamond, sites 3 and 4), at which point we intervene with a
sudden phase factor of eiπ/2 applied at site 4. The application of this phase (as
discussed in Section 3.3.2) will result in the excitation propagating through both
chains of the SN, which a given amplitude of the excitation evolving through chain
A and another evolving through chain B. Therefore, after applying the phase and
evolving the system for another period tm,A, the state of the system will be given
by

|Ψ(2tm,A)⟩ =
1 + eiπ/2

2
|r1⟩+ a(|r3⟩ − |r4⟩)

+ b |r5⟩+ c |r6⟩+ f |r7⟩
(3.26)

where numerically we obtain a ≈ −0.031+0.031i, b ≈ 0.15+0.15i, c ≈ 0.31−0.31i,
and f ≈ −0.36− 0.36i.

This shows that the amplitude of the excitation that was evolving through
chain A is now localised at site 1, whereas the amplitude of the excitation that
was evolving through chain B is now delocalised over its sites.

Let us now calculate the fidelity of the system against a desirable state of an
excitation being at site 1 (fidelity against |r1⟩), and the fidelity of the system
against a desirable state of an excitation being at site 7 (fidelity against |r7⟩).
Furthermore, in order to determine the degree of entanglement between sites 1
and 7, we calculate the EOF between sites 1 and 7 as a function of time. The
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results of these calculations are shown in Fig.3.21.

Figure 3.21: The fidelity of the system against site 1 (F vs. |r1⟩, blue) and against site
7 (F vs. |r7⟩, orange) and the EOF between them, green, as labelled in the figure.

The figure illustrates that, at 2tm,A, half of the excitation is localised at site
1, while the other half is in a superposition of states, as stated in Eq.(3.26).
Note that after a few oscillations, at t = 8tm,A, the excitation ends up in an
almost bipartite entangled state between sites 1 and 7 with an EOF approaching
1 Fig.3.21. Nevertheless, this is not a perfect generation of the entangled state, as
the time evolution for each chain is different. This can be resolved by utilising the
dependence of the mirroring time, tm, on the maximum coupling, Jmax, (see Section
2.1.5) and adjusting the Jmax of one of the SN chains, such that the mirroring times
of both chains are equal. The calculations of coupling adjustments presented below
are original work.

If we choose to adjust the maximum coupling of the shorter chain (Jmax,A of
chain A) then Jmax,A will be reduced, which in turn makes the time evolution of
chain A slower to match that of chain B (tm,A = tm,B). This modification of Jmax,A

is given by
Jmax,A =

πNA

4tm,B

, aaifaaNAaais even; (3.27)

Jmax,A =
π

√
N2

A−1

4

2tm,B

, aaifaaNAaais odd. (3.28)

This is done straightforwardly by equating both mirroring times tm,A = tm,B and
rearranging the equation to solve for Jmax,A.

If we instead choose to adjust the maximum coupling of the longer chain (Jmax,B
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of chain B) then Jmax,B will increase, which in turn makes the time evolution of
chain B faster to match that of chain A (tm,B = tm,A). This modification of Jmax,B

is given by
Jmax,B =

πNB

4tm,A

, aaifaaNBaais even; (3.29)

Jmax,B =
π

√
N2

B−1

4

2tm,A

, aaifaaNBaais odd. (3.30)

We note that either way (that is, adjusting the shorter or the longer chain)
will result in the time evolution of both chains being equal. However, since real
physical systems may have some form of constraint on the maximum coupling (see
Section 2.1.5), it may not be possible to further increase the coupling of the longer
chain (Jmax,B). This is because adjusting the maximum coupling of the longer
chain results in its couplings being strengthened to magnitudes that might not be
practical, specifically when NB ≫ NA, because of the experimental constraint on
the maximum coupling. Therefore, we choose to adjust the maximum coupling of
the shorter chain, Jmax,A.

Since we have now set the maximum coupling of chain A to be as a function
of tm,B, the mirroring time of chain A is equal to the mirroring time of chain B

(tm,A = tm,B). Therefore, perfect generation of the bipartite entangled state can be
achieved using either the phase-based protocol or the natural generation protocol.
Let us use the latter protocol, where we start with a single excitation at site 3 at
t = 0 and evolve the system for a duration of tm,A, which ends up in a bipartite
maximally entangled state between sites 1 and 7

|Ψ(tm,A)⟩ =
1√
2
(− |r1⟩+ i |r7⟩). (3.31)

For a SN of unequal chains of an arbitrary length, injecting a single excitation
at the top site of the central vertex of the SN diamond (e.g., site 3 in Fig.3.20) at
t = 0 will naturally generate a bipartite maximally entangled state between sites
1 and N at tm,A, given as

|Ψ(tm,A)⟩ =
1√
2
(e−iν(NA) |r1⟩+ e−iν(NB) |rN⟩) , (3.32)

where the phase factors e−iν(Nj) = (−i)Nj−1, j = A, B depend on the chain
lengths [89]. Note that if instead the single excitation is injected at the bottom
site of the central vertex of the SN diamond (e.g., site 4 in Fig.3.20), then the
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state given in Eq. (3.32) will have a relative phase of -1 at site |rN⟩, as one of
the couplings in the SN is negative (e.g., the coupling between sites 4 and 5 in
Fig.3.20).

3.4.3 Entanglement invariance under local rotations

Here, we discuss the scenario in our SN system where a relative phase change
on a qubit q1 has no effect on a qubit q2, the two of which are entangled. This
occurs if qubit q1 belongs to a subspace spanned by a certain set of eigenstates
of the Hamiltonian, whereas qubit q2 belongs to a subspace spanned by different
eigenstates. Therefore, the evolution of qubit q2 is independent of qubit q1, even
though they are entangled, as discussed below. Note that the discussion below
applies also to the SN of equal chains.

Consider the state at 2tm,A where half of the excitation is at site 1 while the
other half is shared between sites 3, 4, 5, 6, and 7, as given in Eq.(3.26). We know
from Fig.3.21 that there is an entanglement between sites 1 and 7 at this time.
There is also a lesser degree of entanglement between sites 1 and each of the sites
in Eq.(3.26).

If we now perform a local phase rotation by applying a phase of eiθ at site 1,
the state would be given by

|Ψ(2tm,A)⟩θ = eiθ
1 + eiπ/2

2
|r1⟩+ a(|r3⟩ − |r4⟩)

+ b |r5⟩+ c |r6⟩+ f |r7⟩ .
(3.33)

The evolution of this state is obtained by decomposing it into the eigenstates
(appendix C) of the Hamiltonian as

|Ψ(3tm,A)⟩θ = eiθC1e
−iλ1tm,A |φ1⟩

+ eiθC2e
−iλ2tm,A |φ2⟩+ eiθC3e

−iλ3tm,A |φ3⟩

+ C4e
−iλ4tm,A |φ4⟩+ C5e

−iλ5tm,A |φ5⟩

+ C6e
−iλ6tm,A |φ6⟩+ C7e

−iλ7tm,A |φ7⟩ ,

(3.34)

where |φj⟩ are the eigenstates, λj are the eigenvalues, and Cj = ⟨φj|Ψ(2tm,A)⟩θ
are complex numbers.

It is clear that the phase shift of eiθ applied at site 1 spans a certain set of
eigenstates (i.e., |φ1⟩, |φ2⟩, and |φ3⟩). Moreover, we note that these eigenstates
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all have zero at their elements 5, 6, and 7, which correspond to sites 5, 6, and 7
(see appendix C). Therefore, the effect of applying a phase shift at site 1 will not
be seen at sites 5, 6, and 7, even though they are entangled with site 1.

We can see from the above that the structure of the eigenstates determines
whether the application of a phase on the amplitude of a qubit will affect other
qubits or otherwise. This special eigenstate structure is due to the fact that the
unitary transformation of the uncoupled chains superposes only two sites (3 and
4 in our SN), and so the eigenstates of the first chain share one site with the
eigenstates of the second chain, and vice versa. This can be seen in the eigenstates
given in the appendix C, which are expressed in the site basis.

We conclude that the application of a local phase (i.e., rotation) on one qubit
does not change the degree of entanglement between this qubit and another qubit
that is entangled with it, but it does change the state (and thus there is a corre-
sponding fidelity change). This means that the fidelity of a desirable state given
as superposition between sites 1 and 7 will depend on the local phase rotation on
site 1, whereas the EOF between sites 1 and 7 does not depend on such a local
rotation. This is consistent with the results showing that the local phase rota-
tion in one entangled particle will not affect the degree of entanglement between
two entangled particles [13]. For instance, Bell states (given in Eq.(1.7)) can be
transformed into each other via local operations, but the degree of entanglement
does not change under such operations. In a practical situation, such as teleporta-
tion [37,164], where the receiver uses the fidelity to quantify the closeness between
the obtained state and the initial state, local phase rotations can be an issue. This
is because in this case, even though the degree of entanglement between the entan-
gled qubits is not altered by a local phase rotation, the probability of obtaining a
specific desired state (fidelity measurement) changes depending on the local phase
rotation. In such a case, if the local phase rotation is unknown, our sensor device
could be used to detect and correct the phase error.

3.4.4 Effect of disorder

Router robustness

The router protocol generated in the SN of unequal chains (as shown in Eq. (3.24))
will now be investigated in the presence of disorder to test its robustness. This
is achieved by calculating the F (t) for the desirable state, |r7⟩, at the first time
it forms, tm,A,B, in the presence of both diagonal and off-diagonal disorder, as
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shown in Fig.3.22. Its robustness against diagonal disorder shows that the fidelity
is > 99% for a high error strength of E = 15%, whereas in the presence of off-
diagonal disorder and with an error strength of E = 15%, the fidelity remains
> 96.5%. This shows that the SN remains highly robust to disorder, regardless of
whether it is constituted of equal or unequal chains.

Figure 3.22: The robustness of the router protocol (generated in Eq. (3.24)) is in-
vestigated by calculating F (t) vs. |r7⟩ at tm,A,B in the presence of diagonal (diag) and
off-diagonal disorder (off-diag) with different error strengths, E, ranging from 0 to 50%.
Each point has been averaged over 1000 realisations. The white line indicates the fidelity
90% threshold (±1% due to numerical discretisation).

Bipartite entanglement robustness

The bipartite maximally entangled state generated in Eq. (3.31) is now inves-
tigated with regard to disorder by calculating the EOF between sites 1 and 7
at tm,A. This is demonstrated in Fig.3.23. In the presence of diagonal disorder,
EOF > 99.8% with an error strength of E = 10% and EOF > 99% with a
significant error strength of E = 20%. In the case where the error is due to off-
diagonal disorder and with an error strength E = 10%, we get EOF > 98.5%, and
EOF > 96% with a significant error strength of E = 20%.
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Figure 3.23: The robustness of the bipartite maximally entangled state (generated in
Eq. (3.31)) is investigated by calculating the EOF at the first time it forms, tm,A, in
the presence of diagonal (diag) and off-diagonal disorder (off-diag) with different error
strengths, E, ranging from 0 to 50%. Each point has been averaged over 1000 realisations
. The white line has same meaning as in Fig. 3.22 but for the EOF .

.

3.5 Scalability and applications

The first of DiVincenzo’s requirements (see Section 1.1.2) for a reliable quantum
device is the ability of the system to be scalable. This means that the system
should have the ability to be scaled up by adding more qubits. We therefore
study the scalability by building a larger two-chain SN system and investigating
its ability to realise the desired phenomena that have been achieved in the small
two-chain SN above.

In order to scale the two-chain SN we couple two longer USC. This is achieved
using the same method discussed in Section 3.2, that is, by applying a Hadamard-
like unitary on the Hamiltonian of two large USC to build an arbitrarily large SN
system. An example of such a SN, as formed by coupling together two chains each
of length N/2, is shown in Fig.3.24.

This SN can then be used for quantum communication over a longer distance,
as opposed to the shorter distance protocols discussed above. It can also be used
for generating a longer-range entanglement than the short-range entanglement
discussed above. Moreover, the phase-sensing protocol discussed for the 6-site SN
above will now be investigated for a larger SN system.



78 CHAPTER 3. TWO-CHAIN SPIN NETWORKS

Figure 3.24: Diagram of a large two-chain SN system of size N (even).

3.5.1 Routing

The SN shown in Fig.3.24 of size N , where N is even, can be operated as a router
(PST from site 1 to site N) following the same method used for the smaller 6-site
SN discussed in Section 3.3.1. After initialising the system such that all sites have
a spin down state, we start by injecting a single excitation at site 1 at t = 0.
The system is then left to evolve for a duration tm, which is the time where the
excitation is found to be in the central vertices of the diamond (i.e., a superposed
state between sites N

2
and N

2
+ 1), given as

|Ψ(tm)⟩ =
e−iφ(N)

√
2

(|rN
2
⟩+ |rN

2
+1⟩). (3.35)

The global phase factor for this evolution period is given by e−iφ(N) = (−i)N
2
−1,

which is consistent with previous results for spin chains [78]. If we do nothing,
the state will then evolve back to site 1 at 2tm; instead, however, we intervene
by applying a phase flip at site N

2
+ 1 at tm that flips the role of constructive

and destructive interference, resulting in the excitation evolving towards site N .
Therefore, after application of the phase flip and a further evolution of tm, the
excitation will be transferred completely to site N at a time 2tm

|Ψ(2tm)⟩ = e−iγ(N) |rN⟩ , (3.36)

The routing protocol is described in Fig.3.25 and is confirmed by our numerical
simulations.
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Figure 3.25: The routing protocol is achieved by injecting a single excitation at site 1
at t = 0 and a phase flip at site N

2 + 1 at t = tm.

3.5.2 Bipartite entanglement generation

A bipartite maximally entangled state between the ends of the SN shown in
Fig.3.24 can be generated using either the phase-based entanglement protocol or
the natural generation entanglement protocol. We will show below that perfect
generation of a bipartite maximally entangled state between sites 1 and N can be
achieved in the same way as for the smaller SN discussed above.

Using the phase-based entanglement protocol, we start by initialising the sys-
tem with a single excitation injected at site 1 at t = 0 and evolving the system for
tm, where the state will be as given in Eq. (3.35). We now intervene by applying a
sudden phase factor of eiπ/2 at site N

2
+1 at tm. Then, after a further evolution of

tm, the state of the system will be given as a bipartite maximally entangled state
between sites 1 and N at 2tm

|Ψ(2tm)⟩ = e−iδ(N)(
1 + eiπ/2

2
|r1⟩+

1− eiπ/2

2
|rN⟩), (3.37)

with a global phase given by e−iδ(N) = (−1)
N
2
−1. This entanglement generation

protocol is shown in Fig.3.26.

Using the natural generation entanglement protocol, we start by injecting a
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Figure 3.26: The phase-based entanglement protocol used to generate a bipartite max-
imally entangled state between sites 1 and N at 2tm.

single excitation at site N
2

at t = 0

|Ψ(0)⟩ = |rN
2
⟩ . (3.38)

We then let the system to evolve for a duration tm which will result in a bipartite
maximally entangled state between sites 1 and N at tm, given by

|Ψ(tm)⟩ =
e−iφ(N)

√
2

(|r1⟩+ |rN⟩). (3.39)

As discussed in Section 2.2.2, knowing the entangled state and not just the infor-
mation about the extent to which the two qubits are entangled (EOF ) is important
for certain protocols, such as teleportation [109].

3.5.3 Phase sensing

We now wish to investigate the phase-sensing protocol when scalability is consid-
ered. As discussed in Section 3.3.3, the objective is to retrieve an unknown phase
of eiθ applied at a site N

2
+ 1 of the SN, Fig.3.24. Following the same protocol

discussed in Section 3.3.3, the unknown phase can be retrieved for any two-chain
SN of arbitrary size, N . However, the presence of error in the system requires the
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use of a more complex protocol that takes into account the presence of error, as
already discussed in Section 3.3.4 for the 6-site SN and as will be discussed below
for larger SN systems.

3.5.4 Effect of disorder

Router robustness

We now investigate the robustness of the routing protocol to disorder for various
SN sizes, N , with N being even. For each SN, we perform the routing protocol and
calculate the fidelity against site |rN⟩ at the first point in time that the routing
protocol forms, 2tm. This is performed 1000 times, and we then take the average
of these 1000 realisations of the fidelity, F (t).

(a) Diagonal disorder (b) Off-diagonal disorder

Figure 3.27: The robustness of the routing protocol when F (t) is measured at t = 2tm in
the presence of diagonal (a) and off-diagonal (b) disorder. This is performed for different
N values and for different error strengths, E. White lines have the same meaning as in
Fig. 3.22.

Interestingly, the routing protocol is very robust, even when scalability is con-
sidered. This is observed in Fig.3.27, where in the presence of diagonal disorder
the averaged fidelity, F (t), at 2tm remains greater than 98% up to N = 100 with
an error strength of E ≤ 5%. For a relatively high error strength of E = 10%,
F (t) > 97% up to N = 40 and F (t) > 92% up to N = 100. In the presence of the
more damaging type of disorder, off-diagonal disorder, and with an error strength
of E ≤ 10%, the F (t) > 90% up to N = 40 and F (t) > 75% up to N = 100.
Then, as E and N increase, the averaged fidelity F (t) decays. The robustness of
the routing protocol observed, even with large SN sizes, gives our SN the potential
to be used for quantum communications within the scale of a quantum processing
device.
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We now investigate the presence of different types of error that might occur
in the system. The routing protocol, as discussed in Section 3.3.1, requires the
application of a phase flip at a specific site at a given time. Two possible errors
that can be considered here are when the phase application time is not perfect
(i.e., the phase is not applied at the right time (see Eq.(2.19))) and when the angle
of the applied phase is not perfect (see Eq.(2.21)).

Investigation of the former shows that the routing is very sensitive to this
error, Fig.3.28a. This is because for a SN size of N = 10 with a timing error of
D = 10%, the fidelity is found to be ≈ 82%. High fidelities of F (t) > 98% are
observed with very small error scales: D = 3%, D = 2%, and D = 1% for N = 10,
N = 20, and N = 80, respectively, as per Fig.3.28a. We note that the robustness
is independent of whether the scale of the phase timing error is D > 0 (delayed
operation) or D < 0 (earlier operation).

On the other hand, the system is very robust to phase angle error, ξD (Fig.3.28b),
as the fidelity is observed to be > 97% for any SN size with a high error scale of
D = 10%. For a smaller error scale of D = 5%, the fidelity is found to be > 99%,
as per Fig.3.28b. Note that the routing robustness to phase error is independent
of N and rather is dependent only on the error scale, D, due to the PST nature
of our SN.

(a) td,ξ (b) ξD

Figure 3.28: The robustness of the routing protocol when F (t) is measured at t = 2tm
in the presence of an error in the phase application time, td,ξ (a), and an error in the
angle of the applied phase, ξD (b). This is performed for various N values and error
scales, D. The white line has the same meaning as in Fig. 3.22 but for the F (t).

The design of our SN allows the routing of quantum information (here, single
excitation) between distant qubits to be performed very well, even in the presence
of high strengths of disorder. More importantly, the SN can be scaled up by cou-
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pling together longer PST chains and still be used for routing. The robustness and
scalability of our SN system is of potential utility in future quantum technologies.
Specifically, our SN device could represent a promising candidate for future solid-
state-based or matter-based quantum processes (e.g., trapped ions) that rely on
the routing of quantum information between distant quantum resources.

Gaussian fitting function

We have seen in Section 3.3.4 that our SN system, when including diagonal and
off-diagonal disorder, follows a Gaussian distribution as a function of the error
strength E. We now investigate this in the case where the error is due to phase
timing error and due to phase angle error.

The results shown in Fig.3.29 are for the routing robustness of a 6-site SN
against phase timing error, Fig.3.29(a), and phase angle error, Fig.3.29(b). These
clearly indicate that our SN behaviour against such errors also follows a Gaussian
distribution, Eq.(3.19). The function f(x) here is a function of the error scale,
f(D). The parameters for the Gaussian fit with phase timing error, Fig.3.29(a),
are a ≈ 1, x ≈ 0.0013, and w ≈ 0.22. The parameters for the Gaussian fit with
phase angle error, Fig.3.29(b) are a ≈ 1, x ≈ 0.0015, and w ≈ 0.44.

(a) td,ξ (b) ξD

Figure 3.29: a) The robustness of the routing protocol against phase timing error when
its fidelity is measured at 2tm (blue dots) with a Gaussian fit (red line) for various error
strengths D. b) The robustness of the routing protocol against phase angle error when
its fidelity is measured at 2tm (blue dots) with a Gaussian fit (red line) for various error
strengths D.

Bipartite entanglement robustness

Similarly, we now investigate the robustness of the phase-based bipartite max-
imally entangled state between sites 1 and N for various sizes of SN. This is
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achieved by computing EOF between sites 1 and N at 2tm in the presence of both
types of disorder, as shown in Fig.3.30.

In the presence of diagonal disorder, the EOF remains above 96% up to N =

100 with an error strength of E = 5%, whereas it remains above 94% up to N = 50

with a larger error strength of E = 10%. On the other hand, the robustness of
the bipartite maximally entangled state to off-diagonal disorder shows that the
EOF

>∼ 92% up to N = 20 with E = 10%. For N = 100 and with smaller error
strength of E = 5%, we get EOF ≈ 89%. This decays as N and E increase.

(a) Diagonal disorder (b) Off-diagonal disorder

Figure 3.30: The EOF between sites 1 and N at t = 2tm for different sizes of SN in
the presence of diagonal (a) and off-diagonal (b) disorder with different error strengths,
E. The white lines have the same meaning as in Fig. 3.23.

We now investigate the effects of the presence of phase timing error and phase
angle error. In the presence of a phase application time error, Eq.(2.19), as per
Fig.3.31a, the entanglement is found to be EOF ≈ 84% for a relatively large
timing error of D = 10% and with N = 10. High entanglement of EOF > 98% is
observed for very small error scales: D = 3%, D = 2%, and D = 1% for N = 10,
N = 30, and N = 100, respectively. In the presence of a phase angle error, Eq.
(2.21), as per Fig.3.31b, the system is very robust, with the entanglement found
to be > 98% with a relatively large error scale of D = 10% and > 99.5% with
a smaller error of D = 5%. Since the error is on the phase angle the EOF will
always be the same, regardless of the SN size, N (see Fig.3.31b) as our SN achieve
PST in the ideal case for any size of SN.

The ability of our SN to generate a bipartite maximally entangled state that
is robust against disorder and with scalability (increasing N) makes it a potential
candidate for quantum technology, potentially in applications relating to quan-
tum networks where such an entangled state between the ends of the network is
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(a) td,ξ (b) ξD

Figure 3.31: The robustness of the bipartite entanglement protocol when EOF is
measured at t = 2tm in the presence of an error in the phase application time, td,ξ (a),
and an error in the angle of the applied phase ξD (b). This is performed for different
values of N and for different error scales, D. The white line has the same meaning as in
Fig. 3.23 but for the EOF .

required. This network of qubits should, of course, be a solid-state-type qubit.

Phase sensing robustness

In the presence of disorder, we use the phase sensing protocol proposed in Section
3.3.4 to investigate the robustness of sensing unknown phases in larger SN systems.
Robustness is investigated with regard to diagonal and off-diagonal disorder and
with large error strengths of E = 5% and E = 10%, and for different SN sizes.
A demonstration of the phase-sensing performance for a range of unknown angles
from 0◦ to 360◦ in the presence of disorder, and for two SN systems of N = 20 and
N = 50 is shown in Fig.3.32.

Interestingly, phase sensing is also robust against disorder in larger SN systems,
particularly against diagonal disorder. For example, the retrieved angles in the
presence of diagonal disorder remain very close to the angles obtained in the ideal
case where there is no error. In the presence of off-diagonal disorder and with an
error strength of E = 5%, as per Fig.3.32(a,c), most of the retrieved angles are
very close to their ideal case counterparts, with the exception of angles around
45◦, which show slight deviations from the ideal case, particularly for N = 50.
In the case where E = 10% and in the presence of off-diagonal disorder, the
retrieved angles slightly deviate from the actual unknown angles for N = 20, as
per Fig.3.32(b), and deviate more for N = 50, as per Fig.3.32(d). These results
can be understood by examining the standard deviation of the mean, σθ, which
illustrates that σθ fluctuates at a lower rate in the presence of diagonal disorder,
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Figure 3.32: The obtained angles vs. the unknown angles, in degrees, with an error
strength of E = 5% and SN of N = 20 (a), with an error strength of E = 10% and SN
of N = 20 (b), with an error strength of E = 5% and SN of N = 50 (c), and with an
error strength of E = 10% and SN of N = 50 (d). The results shown here are for: the
error-free case (black line), the diagonal disorder case (blue line), and the off-diagonal
disorder case (orange line). Inset: the mean standard deviation, σθ, of the retrieved
angles.

.

while fluctuating at a higher rate with off-diagonal disorder.

The very good performance observed for both types of disorder with E ≤ 5%

implies that our SN has the potential to be used as a phase sensor device, even
when the SN is scaled up to N = 50. For example, it can be used to obtain an
unknown phase that is applied from a black box or from an uncontrolled source,
so that the retrieved phase can be corrected. With respect to the effect of the
scalability of our SN (increasing N) and the effect of increasing the error strength,
E, it is clear that the latter has considerable impact on the system; a detailed
discussion of such will be given below.

Analysis of the effect of error and scalability on the system

As observed above, the performance of the QIP protocols degrades as the error
strength and system size (E and N , respectively) increase. This is because the SN
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system is designed to deliver these protocols by exploiting the quantum interference
amongst various amplitudes in the system, and therefore the presence of errors
disturbs the interference, which in turn affects the quality of the desired task. For
most protocols considered in this thesis, the value of the desired calculation (e.g.,
the fidelity) is at its maximum, in the error-free case. Consequently, small errors
in the system parameters will result in the performance metric being affected only
to second order, after the fidelity is expanded in a Taylor series with respect to the
time around its maximum. This indicates that the effect on system performance
when we scale the system by increasing the number of spins, N , while keeping the
average amount of error small, is less than when we keep N constant and increase
the average amount of error. Further increases in the error disturb the quantum
interference and coherence in the system, which are responsible for delivering the
desired operation. Ultimately, a significant amount of error can even lead to the
case where excitations do not move, a process known as localisation [141]. For large
N , the system becomes more susceptible to error, as the quantum interference that
delivers the desired process involves more amplitudes. This description of how the
performance of the protocols degrades with E and N applies to all the protocols
in this thesis.

3.6 Summary

In this chapter, we have proposed a SN of equal chain lengths designed by cou-
pling together two identical PST spin chains via a Hadamard-like unitary trans-
formation. Useful QIP protocols, such as routing quantum information, bipartite
entanglement generation, and quantum sensing have been realised in this SN. We
then studied another SN of unequal chain lengths that was constructed by cou-
pling together two PST spin chains, each of a different number of spins. Finally,
we have also considered the scalability of our two-chain SN system (i.e., build-
ing larger two-chain SN systems by coupling together two long PST chains) and
investigating its ability to generate the QIP protocols.

For the routing protocol, we showed that this can be achieved with a sudden
phase flip operation at a given site and at a specific time. The physical representa-
tion of the phase application step depends on the system, as it could be performed
by applying a focused laser (or magnetic field). In a system of superconducting
transmon qubits, for example, this can be achieved using microwave pulses [151].
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In Rydberg Cesium (Cs) atoms, on the other hand, the phase flip operation can
be performed by applying a 459 nm laser [126].

For bipartite entanglement, we proposed two methods: the phase-based pro-
tocol and the natural generation protocol. The latter is straightforward and does
not require intervention and is also more robust against disorder, so we suggest
that it is advisable to use it for the generation of the bipartite entangled state.
Both protocols (sudden phase, or natural evolution) result in a single excitation
being shared between two sites, a sharing that is analogous to a beam splitter
for a photon, which generates mode entanglement for a quantum optical system
containing just a single photon [165–168].

Some of the QIP protocols shown here require the application of a phase factor
at a specific site. However, when this is performed experimentally, neighbouring
sites may also be affected by the phase application. Fortunately, there are ad-
vanced optical addressing technologies that indicate that the effect of the phase
application on neighbouring sites can be significantly reduced [169,170]. These are
implemented on ions-based systems, making them potentially useful for phase ap-
plication protocols. High addressable single-site operations have also been demon-
strated in Rydberg atoms [126,171–173].

In any practical realisation of these QIP protocols, the presence of disorder is
inevitable, so we have therefore investigated the effects of disorder on them. The
types of disorder considered here are diagonal disorder (on-site energy disorder),
off-diagonal disorder (coupling disorder), phase timing error, and phase angle error.
The phase timing error turns out to be the most damaging type of disorder and
whose reduction should thus be the focus of experimentalists in physical systems.
The reason that the phase timing error is most damaging is because the phase
application step needs to be a sudden operation and an error on that should have
much impact on the desired state. For other types of disorder, our SN seems
highly robust, even when scalability is considered, for error strengths up to E =

10%; it should be noted that useful devices are expected to have error strengths
considerably lower than 10%. Moreover, the random errors generated from either
Gaussian or flat distributions give results which are basically indistinguishable on
the scale of the plot, when the performance metric (e.g., fidelity) is calculated
for the first time the desired state forms. Furthermore, system robustness against
phase angle error is independent of system size, N , as our SN is designed to deliver
PST for any N in the ideal case. Finally, further investigation of the SN robustness
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against these types of disorder shows that our SN behaviour follows a Gaussian
distribution as a function of error scale parameter.
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Chapter 4

Multi-chain spin networks

To this point, we have examined a two-chain SN. A more general method
of constructing the SN is by coupling together a large number of PST chains.
The concept of connecting together multiple systems is known as modularisation,
and has previously been used for modular entanglement [174] and high-fidelity
QST [175]. Let us now proceed to a discussion of a multi-chain SN designed via
unitary transformation of many USC.

Scaling the SN by connecting together multiple identical spin chains has an
advantage over an equivalent long spin chain for the following reasons. It could
be more accessible experimentally, depending on hardware, to prepare a system
where the energy difference between the largest and the smallest coupling is small,
and which is ultimately what multi-chain SN systems offer. This is because the
energy difference between the largest and the smallest coupling for a multi-chain
SN of size N is smaller than the energy difference for an equivalent long spin chain
of size N . Another advantage that a multi-chain SN offers, at least for certain
types of implementation, is that there are fewer different coupling values that
need to be experimentally engineered. Moreover, the richer topology involved in
such complex multi-chain SN systems allows us to generate multipartite maximally
entangled states, along with the QIP protocols discussed in the previous chapter.

In this chapter, we construct and investigate another SN structure, that
is, a SN system designed by coupling together multiple PST chains using
our Hadamard-like transformation. We show that scaling the SN by con-
necting together multiple chains has advantages over an equivalent long
spin chain. Moreover, we show that such complex structures of the SN al-
low the generation of different types of entangled states, together with the
QIP protocols discussed in the previous chapter. All these applications
are investigated against disorder.

Part of the work in this chapter has been published in [2]
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4.1 Three 3-site-chain SN

An example of a multi-chain SN is a SN designed by coupling together three PST
chains, each consisting of three sites. This SN is constructed by applying a unitary
transformation on the Hamiltonian of the three USC. The unitary used for this
transformation is again a Hadamard-like unitary transformation that superposes
two pairs of sites, specifically sites 3 and 4, and sites 6 and 7, which is given in the
single-excitation basis as

U =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0 0

0 0 1√
2

−1√
2

0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 0 1√
2

−1√
2

0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (4.1)

The application of the unitary transformation on the three-USC Hamiltonian
will therefore result in a Hamiltonian that represents the three 3-site-chain SN.
The diagram that represents this SN is shown in Fig.4.1. We will now discuss how
we can use this SN in various QIP applications.

Figure 4.1: Diagram of the three-chain SN where each chain consists of three sites. The
first chain (chain A) includes sites 1, 2, and 3. The second chain (chain B) includes sites
4, 5, and 6. The third chain (chain C) includes sites 7, 8, and 9.

.
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4.1.1 Routing

Routing a single excitation from one end of the SN to the other, as discussed in the
two-chain SN, only requires the application of a phase flip and natural evolution.
This protocol can be applied in the three-chain SN. We start by injecting a single
excitation at site 1 at t = 0 and evolve for a duration tm. At this time, a sudden
phase flip of eiπ = −1 is applied at site 4. The system is then left to evolve for
another evolution of tm, when another sudden phase flip is applied at site 7, at time
2tm. Then, with further evolution tm, the excitation will be transferred completely
to site 9 at 3tm. This is demonstrated in Fig.4.2.

Similarly, if we start by injecting a single-excitation state at site 9 at t = 0, we
can route to site 1 following the same protocol.

Figure 4.2: Demonstration of the routing protocol used to send a single-excitation from
site 1 to site 9.

.

4.1.2 Tripartite entanglement generation

The quantum entangled state that represents an equally shared entanglement be-
tween three qubits is generally called W-state entanglement [102,103]. Let us refer
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to this herein as Tripartite W-type State (TWS) entanglement to distinguish it
from the various other types of W-state entanglement that will be discussed later.

This type of entangled state has various applications in quantum non-locality
protocols [107], superdense coding [108], quantum teleportation protocols [109],
and quantum secure direct communication [110]. Such TWS entanglement can be
generated in our SN, as per Fig.4.1, as follows.

Starting with a single excitation injected at site 1 at t = 0 and evolving the
system for a duration tm, the excitation will be in a superposed state at sites 3
and 4. If a sudden phase of eiθ is now injected at site 4, and the system is evolved
for another duration tm, the system state at 2tm will be given by

|Ψ(2tm)⟩ =
1 + eiθ

2
|r1⟩+

1− eiθ

2
√
2

(|r6⟩+ |r7⟩). (4.2)

If the applied phase factor is eiϕ, where ϕ = arccos(−1/3), then the amplitudes
of sites 1, 6, and 7 would be equal, which means a TWS entanglement has been
formed between these sites.

Evolving the system further shows that the TWS entanglement will keep form-
ing at each even tm (i.e., 2tm, 4tm, 6tm, . . .), as shown in Fig.4.3. A demonstration
of the steps used to generate this entangled state is given in Fig.4.4.

The rich topology of the SN also allows us to generate the TWS entanglement
between different sites, specifically sites 3, 4, and 9. This can be achieved following
a protocol similar to that used above, in which we start by injecting a single
excitation at site 9 at t = 0 and a sudden phase factor of eiϕ at site 7 at tm.

Figure 4.3: Fidelity of the system against each site as a function of the rescaled time
t/tm.

.
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Figure 4.4: Demonstration of the TWS entanglement protocol. The phase applied at
site 4 is ϕ = cos−1(−1/3).

.

4.1.3 Multipartite entanglement generation

The quantum-entangled state that represents an equally shared entanglement be-
tween four or more qubits is called Multipartite W-type State (MWS) entangle-
ment [176]. Due to the topology involved in the three 3-site-chain SN, Fig.4.1,
generating an example of MWS entanglement is straightforward and does not re-
quire application of a phase factor, as discussed below.

We can see in the SN that site 5 is directly coupled to the central vertices of
the diamonds (i.e., sites 3, 4, 6, and 7). Therefore, a MWS entanglement can be
generated between these sites simply by injecting a single excitation at site 5 at
t = 0,

|Ψ(0)⟩ = |r5⟩ , (4.3)

and evolving the system for duration tm/2. The resultant state will be a MWS
entanglement, given as

|Ψ(tm/2)⟩ =
i

2
(− |r3⟩+ |r4⟩)−

i

2
(|r6⟩+ |r7⟩) . (4.4)

A demonstration of the steps used to generate the MWS entanglement is given
in Fig.4.5. Evolving the system for further duration tm/2 will return the excitation
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to site 5. Thus, the excitation keeps evolving between Eq. (4.3) and Eq. (4.4) due
to the periodicity of the system. The excitation evolution pattern can be changed
with the application of a phase factor and can result in a different entangled state,
as explained below.

Figure 4.5: A simple injection of a single excitation at site 5 at t = 0 results in a MWS
entanglement at tm/2.

.

4.1.4 Bipartite entanglement generation

When the state is given as a MWS entanglement, Eq. (4.4), we can intervene by
simultaneously applying two sudden phase flips at sites 4 and 7 at time tm/2. This
will flip the direction of the excitation evolution. Therefore, evolving the system
for another duration of tm/2 will result in a bipartite maximally entangled state
between sites 1 and 9 at time 3tm/2

|Ψ(3tm/2)⟩ =
i√
2
(|r1⟩+ |r9⟩) . (4.5)

The protocol used to generate the bipartite entanglement is shown in Fig.4.6.
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Figure 4.6: Bipartite entanglement is achieved by injecting a single excitation at site
5 at t = 0 and with sudden phase flips applied simultaneously at sites 4 and 7 at time
tm/2.

.

4.1.5 Effect of disorder

We will now consider the generation of the above protocols in the presence of
disorder. This is achieved by applying the disorder type, diagonal or off-diagonal
errors, to the Hamiltonian of the SN. We then perform the desired protocol for
several realisations and calculate its performance metric (e.g., fidelity) under error.
We also consider the errors that might arise in the protocols that are used to
generate the desired states, such as phase timing error and phase angle error.

Router robustness

The router protocol is highly robust against diagonal disorder, where Fig.4.7 shows
the averaged fidelity F (t) > 99.5% with an error strength of E = 10%, and F (t) >
98% with a significant error strength of E = 20%. A slightly lower robustness is
observed for off-diagonal disorder, where the F (t) > 98% with an error strength
of E = 10%, and F (t) > 93% with a significant error strength of E = 20%.
This suggests that routing in the multi-chain SN is highly robust to both types of
disorder and therefore has the potential for use in future technologies.
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Figure 4.7: The robustness of the router protocol is investigated by calculating F (t)
vs. |r9⟩ at time 3tm in the presence of diagonal disorder (diag) and off-diagonal disorder
(off-diag) with different error strengths, E, ranging from 0 to 50%. Each point has been
averaged over 1000 realisations. The white line has the same meaning as in Fig. 3.22.

.

Investigation of the effects of another type of disorder, phase timing error,
Eq.(2.19), shows that the system is very sensitive to this type of error, as per
Fig.4.8a, as the fidelity was found to be < 75% with a timing error of D = 10%. A
high fidelity of F (t) >= 95% can be observed even with a very small timing error
of D <= 3.8%. The effect of the phase angle error, Eq.(2.21), on the other hand,
as per Fig.4.8b, is much less damaging to the system, as the fidelity was found
to be > 95% for an error scale of D = 10%. For a smaller error of D = 5%, the
fidelity was observed to be ≈ 98.7%,.

(a) td,ξ (b) ξD

Figure 4.8: The robustness of the routing protocol when F (t) is measured at time 3tm
in the presence of an error on the phase application at time td,ξ (a) and an error of the
angle of the applied phase, ξD (b). This was performed for various error scales, D, with
a step size of 0.01.
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TWS entanglement robustness

The robustness of the TWS entanglement was investigated by calculating the fi-
delity of the system at time 2tm for a desirable state represented by a TWS en-
tanglement between sites 1, 6, and 7, as per Fig.4.9. In the presence of diagonal
disorder, the TWS entanglement is, in fact, very robust as F (t) > 99.6% with an
error strength of E = 10%, and F (t) > 98% with a relatively large error strength
of E = 20%. In the presence of a the more damaging type of disorder, that is,
off-diagonal disorder, TWS entanglement was still robust as F (t) > 98.5% with an
error strength of E = 10%. For a higher error strength of E = 20%, the fidelity
was observed to be F (t) > 95.5%, but which then decays rapidly as E increases.

Figure 4.9: The robustness of the TWS entanglement at time 2tm (the first time the
TWS is formed) against diagonal disorder (diag) and off-diagonal disorder (off-diag) with
various error strengths, E, ranging from 0 to 50%. Each point has been averaged over
1000 realisations. The white line has same meaning as in Fig. 3.22

..

The robustness of the TWS entanglement to phase timing error, Eq.(2.19),
as per Fig.4.10a, was found to be > 97.5% for a timing error of D = 5%, and
≈ 93.5% for a higher timing error of D = 10%. In the presence of phase angle
error, Eq.(2.21), as per Fig.4.10b, TWS entanglement was found to be > 99.7%

for a timing error of D = 5%, and > 99% for a higher timing error of D = 10%.

Bipartite entanglement robustness

The robustness of the bipartite maximally entangled state generated between
sites 1 and 9 was investigated by calculating the EOF between these sites, as
per Fig.4.11. Excellent robustness was observed to diagonal disorder, where the
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(a) td,ξ (b) ξD

Figure 4.10: The robustness of the TWS entanglement at time 2tm in the presence of
an error on the phase application time, td,ξ (a), and an error on the angle of the applied
phase, ξD (b). This was performed for different error scales, D, with a step size of 0.01.

EOF > 99.6% with an error strength of E = 10%, and the EOF ≈ 99% with sig-
nificant error strength of E = 20%. The robustness to off-diagonal disorder with
an error strength of E ≤ 10% is observed to have entanglement of EOF > 98.7%,
whereas for the higher error strength of E = 20% we get EOF ≈ 95%. The strong
robustness observed in the three 3-site-chain SN for generating various QIP pro-
tocols makes our SN a promising platform for future solid state-based quantum
devices.

Figure 4.11: The robustness of the bipartite maximally entangled state at 3tm/2 (the
first time it forms) against diagonal (diag) and off-diagonal disorder (off-diag) with var-
ious error strengths, E, ranging from 0 to 50%. Each point has been averaged over 1000
realisations. The white line has the same meaning as in Fig. 3.23

. .

The robustness of bipartite entanglement against phase timing error, Eq.(2.19),
as illustrated in Fig.4.12a, was found to be ≈ 98% for a timing error of D = 5%,
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and > 94% for a larger timing error of D = 10%. In the presence of a phase
angle error, Eq.(2.21), as seen in Fig.4.12b, the bipartite entanglement was found
to be > 99% for a timing error of D = 5%, and > 96% for a larger timing error of
D = 10%.

(a) td,ξ (b) ξD

Figure 4.12: The robustness of bipartite entanglement at time 3tm/2 in the presence of
an error in the phase application time, td,ξ (a), and an error in the angle of the applied
phase, ξD (b). This was performed for various error scales, D, with a step size of 0.01.

4.2 Three 4-site-chain SN

The multi-chain SN discussed above can be formed by coupling together three
chains, each of an odd number of sites (three sites). Let us now construct and
investigate another SN system where the number of sites in each chain is even.
Using the same unitary construction method discussed above, we couple three
USC, each of four sites. Let us label the three USC chains with letters: chain A

consists of sites 1, 2, 3, and 4; chain B consists of sites 5, 6, 7, and 8, and chain
C consists of sites 9, 10, 11, and 12. The Hadamard-like unitary used to connect
these chains superposes sites 4 and 5 as well as sites 8 and 9. The resultant SN is
the three 4-site-chain SN shown in Fig.4.13.

Operating this SN as a router can be achieved using the routing protocol dis-
cussed in Section 4.1.1. We start by injecting a single excitation at site 1 at t = 0

and applying the phase flip eiπ at site 5 at tm, and a further phase flip at site 9 at
2tm. The excitation will then be transferred completely to site 12 at 3tm. We can
also use this SN to realise various entangled state, as we describe below.
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Figure 4.13: Diagram of a three 4-site-chain SN.
.

4.2.1 Tripartite entanglement generation

TWS entanglement can also be generated in this SN by applying the protocol
shown in Fig.4.4. We start with a single excitation at site 1 at t = 0 and evolve
the system for a duration of tm. At this time, a sudden phase factor eiϕ is applied
at site 5 and the system is evolved for another duration of tm. The state of the
system at 2tm will thus be given by

|Ψ(2tm)⟩ = −1 + eiϕ

2
|r1⟩ −

1− eiϕ

2
√
2

(|r8⟩+ |r9⟩). (4.6)

This is an equal superposition between sites 1, 8, and 9, which represents a TWS
entanglement. Similarly, a TWS entanglement can also be generated between sites
4, 5, and 12 by injecting a single excitation at site 12 at t = 0 and a sudden phase
factor of eiϕ at site 9 at tm.

4.2.2 Multipartite entanglement generation

We have seen that generating an example of MWS entanglement in the three 3-
site-chain SN (Fig.4.1) can be achieved by a simple initial injection at a given
site (site 5 in Fig.4.1) that shares direct couplings with four sites. However, this
is not the case in the three 4-site-chain SN (Fig.4.13) as there is no site that is
coupled with four sites. As a result, we propose another protocol that can be used
to generate the MWS entanglement in the three 4-site-chain SN.

The MWS entanglement we seek to generate is an equally shared entanglement
between sites 4, 5, 8, and 9 in the SN shown in Fig.4.13. In order to do so, we
need to adjust the maximum coupling of chain B (Jmax,B) such that the excita-
tion evolution time through chain B is slower by half compared to the excitation
evolution time through chain A. This can be achieved by setting Jmax,B = 1/2.
As a result, the relation between the mirroring times of chains A and B is given
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by tm,B = 2tm,A. The reason for making tm,B slower by half, compared to tm,A or
tm,C , will be made clear below.

We now start with a single excitation injected at site 5 at t = 0

|Ψ(0)⟩ = |r5⟩ , (4.7)

and let the system to evolve. The excitation will evolve through chain A and chain
B. Over a period of 2tm,A, the excitation amplitude that evolves through A would
have evolved to site 1 and returned back to a superposed state between sites 4
and 5, whereas the other excitation amplitude that evolves through B would have
evolved to being in a superposed state between sites 8 and 9. This is because
of the fact that 2tm,A = tm,B. The resultant state at 2tm,A is therefore a MWS
entanglement between sites 4, 5, 8, and 9

|Ψ(2tm,A)⟩ = −1

2
(|r4⟩+ |r5⟩)−

i

2
(|r8⟩+ |r9⟩). (4.8)

Evolving the system for further duration of 2tm,A shows that the excitation
collapses to being entirely localised at site 4 at a time 4tm,A

|Ψ(4tm,A)⟩ = |r4⟩ . (4.9)

Note that the excitation does not return to its initial state (i.e., being localised
at site 5) at 4tm,A. The reason for this is attributed to the time difference of the
excitation amplitude evolution through chains A and B. This difference in the
evolution time through each chain leads to different phases, which in turn results
in destructive interference (see appendix D).

Evolving the system for a further duration 2tm,A, the state of the system at
6tm,A will be given as a MWS entanglement but with a relative phase difference
compared to the one given in Eq. (4.8)

|Ψ(6tm,A)⟩ = −1

2
(|r4⟩+ |r5⟩) +

i

2
(|r8⟩+ |r9⟩). (4.10)

Under a further evolution of 2tm,A, the excitation will finally evolve back to its
initial state, at a time 8tm,A

|Ψ(8tm,A)⟩ = |r5⟩ . (4.11)
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The detailed evolution of the dynamics of this excitation as a function of time
through the SN can be seen from a colourmap showing the fidelity of the system
against each site as a function of time; see Fig.4.14.

Figure 4.14: The fidelity of the system against each site vs. the rescaled time, t/tm,A,
shows that the MWS entanglement is periodic.

.

4.2.3 Bipartite entanglement generation

We now wish to generate a bipartite maximally entangled state between the ends
of the three 4-site-chain SN shown in Fig.4.13. With the maximum couplings for
all the chain being equal (i.e., Jmax,A = Jmax,B = Jmax,C), it is not possible to
achieve the bipartite maximally entangled state. Therefore, we need to first adjust
the maximum coupling of chain B to be Jmax,B = 1/2. As a result, the mirroring
times of each chain are given by tm,B = 2tm,A = 2tm,C .

Having established this, we now inject a single excitation at site 5 at t = 0 and
let the system evolve for a duration 2tm,A. The state will therefore be given in Eq.
(4.8). If a sudden phase flip is applied at site 9 and the system is evolved for a
time t = tm,A, a bipartite maximally entangled state will be formed between sites
1 and 12 at time 3tm,A

|Ψ(3tm,A)⟩ =
−1√
2
(i |r1⟩ − |r12⟩) . (4.12)

This illustrates how changing the Jmax of one of the chains of the SN allows
timing evolution to be appropriately controlled in order to deliver a desired oper-
ation.
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4.2.4 Effects of disorder

TWS entanglement robustness

The robustness of the TWS entanglement against diagonal and off-diagonal disor-
der is shown in Fig.4.15. A very strong robustness is observed in the presence of
diagonal disorder, where the average fidelity, F (t), at 2tm remains > 99.5%, and
> 98% with error strengths of E = 10% and E = 20%, respectively. In the pres-
ence of off-diagonal disorder and with an error strength of E ≤ 10%, the averaged
fidelity F (t) remains > 98%, while for a higher error strength of E = 20%, the
average fidelity remains > 92%, but which decays as E increases. Overall, strong
robustness of the TWS entanglement is observed as long as E ≤ 10%, giving our
SN the potential to be used for practical TWS entanglement generation.

Figure 4.15: The robustness of the TWS entanglement against diagonal (diag) and off-
diagonal disorder (off-diag) with various error strengths, E, ranging from 0 to 50%. Each
point has been averaged over 1000 realisations. The white line has the same meaning as
in Fig. 3.22.

The robustness of the TWS entanglement against phase timing error, Eq.(2.19),
as per Fig.4.16a, was found to be ≈ 97.5% for a timing error ofD = 5%, and > 90%

for a larger timing error of D = 10%. In the presence of phase angle error, Eq.
(2.21), as per Fig.4.16b, the TWS entanglement robustness was found to be very
strong, with F (t) > 99.75% for a timing error of D = 5%, and > 99% for a larger
timing error of D = 10%.

We now investigate the case where the error on the TWS entanglement is
attributed to the measurement-time error. This means that the TWS entanglement
is measured (calculated) at a different time, so instead of measuring the TWS at
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(a) td,ξ (b) ξD

Figure 4.16: The robustness of the TWS entanglement at time 2tm in the presence of
an error in the phase application time, td,ξ (a), and an error in the angle of the applied
phase, ξD (b). This is performed for different error scales, D, with a step size of 0.01.

2tm, it is now measured at 2tm + D2tm, where D, as defined in Section 2.3.3,
represents a dimensionless error scale (−0.2 ≤ D ≤ 0.2).

The robustness of the TWS entanglement against measurement-time error is
shown in Fig.4.17. Excellent robustness of> 97.5% is observed with a measurement-
time error of D = 5%, while for D = 10%, the robustness is observed to be
≈ 92.5%. This result shows that the effect of the measurement-time error is less
damaging compared to the effect of the phase timing error.

Figure 4.17: The robustness of TWS entanglement against measurement-time error.
This was performed for different error scales, D, with a step size of 0.01.

.

MWS entanglement robustness

The robustness of the MWS entanglement generated at time 2tm,A, as per Eq.(4.8),
against diagonal and off-diagonal disorder is shown in Fig.4.18. We note that the
MWS entanglement was also very robust, as the average fidelity F (t) against the



4.2. THREE 4-SITE-CHAIN SN 107

diagonal disorder and with E = 10% remained > 99.5%, whereas it remained
> 98% with a larger error strength of E = 20%. A reduced robustness was
observed against off-diagonal disorder where the average fidelity remained > 98.3%

and ≈ 94% with error strengths of E = 10% and E = 20%, respectively.

Figure 4.18: Robustness of MWS entanglement against diagonal (diag) and off-diagonal
disorder (off-diag) with various error strengths, E, ranging from 0 to 50%. Each point has
been averaged over 1000 realisations. The white line has same meaning as in Fig. 3.22.

.

The robustness of the MWS entanglement against measurement-time error is
shown in Fig.4.19. With a measurement-time error of D = 5%, the MWS entan-
glement is found to be ≈ 95%, whereas lower robustness of ≈ 82% is observed for
an error of D = 10%.

Figure 4.19: The robustness of MWS entanglement against measurement-time error.
This was performed for different error scales, D, with a step size of 0.01.

.
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Bipartite entanglement robustness

The robustness of the bipartite entanglement generated at time 3tm,A, Eq.(4.12),
against diagonal and off-diagonal disorder is shown in Fig.4.20. The bipartite
entanglement was very robust against diagonal disorder as EOF > 99% with an
error strength of E = 10% and EOF > 96% with a significant error strength of
E = 20%. A lower robustness was observed in the presence of off-diagonal disorder
as EOF > 95% with an error strength of E = 10% and EOF ≈ 82% with a larger
error strength of E = 20%.

Figure 4.20: The robustness of the bipartite maximally entangled state generated at
time 3tm,A against diagonal (diag) and off-diagonal disorder (off-diag) with various error
strengths, E, ranging from 0 to 50%. Each point has been averaged over 1000 realisations.
The white line has the same meaning as in Fig. 3.23.

The robustness of the bipartite entanglement against phase timing error, Eq.(2.19),
as per Fig.4.21a, was found to be > 93% for a timing error of D = 5%, and > 75%

for a larger timing error of D = 10%. In the presence of phase angle error, Eq.
(2.21), as per Fig.4.21b, the bipartite entanglement was found to be > 99.5% for
a timing error of D = 5%, and > 98% for a larger timing error of D = 10%.

The robustness of the bipartite entanglement against measurement-time error
is shown in Fig.4.22. With a measurement-time error of D = 5%, the bipartite
entanglement is found to be ≈ 97.5%, while for an error of D = 10%, the bipartite
entanglement is found to be ≈ 90%.
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(a) td,ξ (b) ξD

Figure 4.21: The robustness of the bipartite entanglement at time 3tm,A in the presence
of an error in the phase application time, td,ξ (a), and an error in the angle of the applied
phase, ξD (b). This is performed for different error scales, D, with a step size of 0.01.

Figure 4.22: The robustness of bipartite entanglement against measurement-time error.
This was performed for different error scales, D, with a step size of 0.01.

.

4.3 M 3-site-chain SN

Thus far, we have investigated the SN of three chains. Here, we demonstrate the
possibility of generalising the results to even more complex and larger SN systems.
Constructing such SN system is again achieved by coupling together M USC using
the Hadamard-like unitary transformation. An example of an M -chain SN, where
each chain constitutes three sites, is shown in Fig.4.23 for the case of M = 5.

Routing here (i.e., sending a single excitation from site 1 to site 15, or vice
versa) can be achieved using an extension of the router protocol discussed above.
If we start by injecting a single excitation at site 1 at t = 0, the excitation will
evolve to the central vertices of the first diamond (i.e., superposition between sites
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Figure 4.23: Diagram of a SN of five chains, each constituting three sites.
.

3 and 4) at time tm, then it will evolve back to site 1 at time 2tm. Therefore,
in order to route the excitation, we intervene at time tm (the time at which the
excitation is in a superposed state between sites 3 and 4) by injecting a sudden
phase flip at site 4, which forces the excitation to continue evolving forward. The
application of the phase must be repeated at different sites and at different times,
as it is required to route the excitation each time the excitation is located at the
central vertices of a diamond: at site 7 at time 2tm, at site 10 at time 3tm, and at
site 13 at time 4tm.

TWS entanglement can also be generated in this SN between sites 1, 6, and
7 following the protocol shown in Fig.4.4. This is achieved by starting with the
injection of a single excitation at site 1 at time t = 0 and a phase factor of eiϕ at
site 4 at time tm. Similarly, we can generate the TWS entanglement between sites
9, 10, and 15 by injecting a single excitation at site 15 at time t = 0 and a phase
factor of eiϕ at site 13 at time tm.

4.3.1 Multipartite entanglement generation

Generating a MWS entanglement in this SN is straightforward and can be achieved
between any four sites at the vertices of the diamonds. This is due to the rich topol-
ogy involved in the SN, as per Fig.4.23. We will now illustrate every achievable
MWS entanglement that can be generated here. These methods of generating
MWS entanglement are applicable to longer 3-site-chain SN systems in the same
way.

We start by injecting a single excitation at site 5 at time t = 0 and evolve the
system for a duration of tm/2, where a MWS entanglement will be formed between
sites 3, 4, 6, and 7, which is given by

|Ψ(tm/2)⟩ =
−i
2
(|r3⟩ − |r4⟩+ |r6⟩+ |r7⟩). (4.13)
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Similarly, if we start by injecting a single excitation at site 8 and evolve the
system for a duration of tm/2, a MWS entanglement will be formed between sites
6, 7, 9, and 10. a MWS entanglement between sites 9, 10, 12, and 13 can also
be generated by starting injecting a single excitation at site 11 at time t = 0 and
evolving for a duration tm/2. These are all the achievable MWS entanglements
that can be generated by injecting a single excitation at sites that are coupled
with four other sites. Note that because of the periodicity of our SN, any MWS
will evolve back to its initial state and keep oscillating back and forth.

In addition to generating MWS entanglement between close sites (e.g., sites 3,
4, 6, and 7), we can also generate MWS entanglement between distant sites. For
example, when a single excitation is injected at site 6 at time t = 0 and the system
is allowed to evolve for a duration tm then a MWS entanglement between sites 3,
4, 9, and 10 will be formed, which is given by

|Ψ(tm)⟩ =
−1

2
(|r3⟩ − |r4⟩+ |r9⟩+ |r10⟩). (4.14)

Note that we can instead inject the excitation at site 7 and still achieve the MWS
entanglement but with different phases for the MWS components. Similarly, MWS
entanglement between sites 6, 7, 12, and 13 can be generated by injecting a single
excitation at either site 9 or 10 at time t = 0 and evolving the system for a duration
tm.

4.3.2 Multipartite entanglement transfer

The complex structure of the SN allows us to generate and transfer a MWS en-
tanglement through the SN, forming a MWS entanglement between distant sites
(sites 3, 4, 12, and 13). This can be achieved by exploiting the application of a
phase flip, as described below.

We start by injecting a single excitation at site 8 at time t = 0 and evolve the
system for a duration tm/2. We then apply two simultaneous phase flips at sites
7 and 10 which, allowing for a further evolution of tm, will result in the MWS
entanglement between sites 3, 4, 12, and 13, given by

|Ψ(3tm/2)⟩ =
i

2
(|r3⟩ − |r4⟩+ |r12⟩+ |r13⟩). (4.15)

The steps used to generate this entangled state are illustrated in Fig.4.24. The
system will then keep evolving between MWS entanglement of sites 3, 4, 12, and
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13 and MWS entanglement of sites 6, 7, 9, and 10, as shown in the plot of the
fidelity of each site, Fig.4.25. A table summarising all the types of entanglement
generated in this SN is given in Fig.4.26.

Note that when the state of the system is as given at time 3tm/2 in Fig.4.24,
then an application of two simultaneous phase flips at sites 4 and 13 will result in
a bipartite maximally entangled state between sites 1 and 15 at time 2tm.

Figure 4.24: Demonstration of the steps used to generate the MWS entanglement
between further sites. Note that if, at time 3tm/2, two simultaneous phase flips are
applied at sites 4 and 13, then a bipartite maximally entangled state will be formed
between sites 1 and 15.

.

4.3.3 Effect of disorder

MWS entanglement robustness

We now investigate the performance with regard to generating and transferring
MWS entanglement in the presence of both types of disorder. This is achieved by
calculating the fidelity of the system at time 3tm/2 against a desirable state chosen
as a MWS entanglement between sites 3, 4, 12, and 13, as illustrated in Fig.4.27.

A very robust MWS entanglement is observed in the presence of diagonal dis-
order, with fidelity being > 99% for a high error strength of E <= 15%. For the



4.3. M 3-SITE-CHAIN SN 113

Figure 4.25: The fidelity of the system against the desirable states of an excitation
being at each site as a function of the rescaled time, t/tm. Due to the periodicity of the
SN, the state keeps evolving from a MWS entanglement (between sites 6, 7, 9, and 10)
to another MWS entanglement (between sites 3, 4, 12, and 13), and vice versa.

.

same error strength but in the presence of off-diagonal disorder, the fidelity remains
above 97.5%. We note that since in real experiments the error is expected to be
much less than 10%, and that we observed very good robustness up to E = 15%,
our SN thus represents a promising platform for MWS entanglement generation.

The robustness of the MWS entanglement against phase timing error, Eq.(2.19),
as per Fig.4.28a, was found to be ≈ 98.5% for a timing error ofD = 5%, and > 96%

for a larger timing error of D = 10%. In the presence of phase angle error, Eq.
(2.21), as per Fig.4.28b, the MWS entanglement was found to be > 99% for a
timing error of D = 5%, and > 97% for a larger timing error of D = 10%.
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Figure 4.26: Table demonstrating the steps used to generate various entangled states
in the five 3-site-chain SN.

.

Figure 4.27: The robustness of the MWS entanglement generated at time 3tm/2 against
diagonal (diag) and off-diagonal disorder (off-diag) with various error strengths, E, rang-
ing from 0 to 50%. Each point has been averaged over 1000 realisations. The white line
has the same meaning as in Fig. 3.22.

.
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(a) td,ξ (b) ξD

Figure 4.28: The robustness of the MWS entanglement at time 3tm/2 in the presence
of an error in the phase application time, td,ξ (a), and an error in the angle of the applied
phase, ξD (b). This is performed for different error scales, D, with a step size of 0.01.

4.4 M Nj-site-chain SN

We can see from the above that the SN system can be scaled up either by increasing
the number of sites, Nj, per chain while keeping the number of chains, M , fixed
(as shown in Section 3.5), or vice versa (as shown in Section 4.3). We wish now
to compare the robustness of the QIP protocol against disorder for both scaling
approaches.

We compare the robustness of the router protocol in the two-chain and four-
chain SN systems for two examples of N (i.e., N = 12, Fig.4.29(a,c), and N = 24,
Fig.4.29(b,d)). As can be seen from these figures below, both scaling approaches
(two-chain SN or four-chain SN) show very similar robustness against disorder up
to E = 10%. For larger error strengths, E > 10%, we can see that each approach
differs slightly. However, this only occurs for large error strengths, well above those
we would generally expect in useful and practical realisations.
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Figure 4.29: The robustness of the averaged router fidelity at time tm (F (t) vs. |rN ⟩)
in the two-chain and four-chain SN systems to diagonal disorder (a) and (b) and off-
diagonal disorder (c) and (d). This is for two examples of N ((a) and (c) for N = 12,
and (b) and (d) for N = 24).

.

4.5 Three unequal-chain SN

We have so far investigated multi-chain SN systems, where each chain has the same
number of sites. We will now investigate the case where the chains in a multi-chain
SN are of different lengths1. Specifically, we consider a SN designed by coupling
together three unequal PST chains, A, B, and C, where NA = 3, NB = 4, and
NC = 5. An illustration of such a SN is shown in Fig.4.30.

Figure 4.30: Diagram of a SN with three unequal chains.
.

As discussed in Section 3.4, since the chains of the SN are of different lengths,
1this additional result is not included in the second paper [2].
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the time evolution of the excitation through each chain is different. The mirroring
times for chains A, B, and C are tm,A = π

2J0,A
, tm,B = π

2J0,B
, and tm,C = π

2J0,C
,

respectively, where J0,j = f(Nj, Jmax,j), j = A,B,C (see Section 2.1.5).

4.5.1 Routing

Routing can be achieved in this SN by starting with a single excitation injected
at site 1 at time t = 0 and the application of a sudden phase flip, eiπ, at site 4 at
time tm,A; after a further evolution of duration tm,B, another phase flip is applied
at site 8. The state at tm,A,B,C will therefore be given by

|Ψ(tm,A,B,C)⟩ = −i |r12⟩ , (4.16)

where tm,A,B,C = tm,A + tm,B + tm,C (the time the excitation takes to evolve from
site 1 to site 12).

4.5.2 Tripartite entanglement generation

As can be seen above, any type of entangled state that we generate in our SN
systems is distributed between different sites that belong to different chains (e.g.,
TWS entanglement between sites 1, 7, and 8). However, since the chains of the
SN are different in length, an entangled state will not be distributed between the
desired sites at the same given time. This, however, can be resolved by exploiting
the adjustment of Jmax, as discussed in Section 3.4.2, which we describe below.

The method of adjusting Jmax is used to equate the mirroring times of the
chains that are different in length. We note that the excitation in the TWS entan-
glement protocol only evolves through two chains of the SN. This is also true with
the SN system shown here, Fig.4.30, so when we apply the TWS entanglement
protocol to generate TWS entanglement between sites 1, 7, and 8, the excitation
will only evolve through chains A and B. Therefore, we can only equate the mir-
roring times of the chains related to our TWS entanglement protocol (chains A
and B); this can be achieved by adjusting the maximum coupling of chain A to be

Jmax,A =
π

√
N2

A−1

4

2tm,B

, (4.17)

which results in both chains mirroring times being equal, (tm,A = tm,B).
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Now, since the mirroring times for each chain, A and B, are equal, we can
apply the TWS entanglement here as follows. We start with a single excitation at
site 1 at time t = 0 and evolve the system for a duration tm,A, and then apply a
sudden phase of eiϕ at site 4. After a further evolution of tm,A, the state can be
given as

|Ψ(2tm,A⟩ =
1 + eiϕ

2
|r1⟩ − i

1− eiϕ

2
√
2

(|r7⟩+ |r8⟩). (4.18)

If instead we want to generate TWS entanglement between sites 3, 4, and 12,
which in this case means that the excitation will only evolve through chains B and
C, we need to make the mirroring times of chains B and C to be equal, that is
tm,B = tm,C . This is achieved by adjusting the maximum coupling of chain B to
Jmax,B = πNB

4tm,C
(see Section 3.4.2). We then enact the TWS entanglement protocol

by injecting a single excitation at site 12 at time t = 0 and a phase factor of eiϕ

at site 8 at time tm,C .

4.5.3 Multipartite entanglement generation

Our MWS entanglement protocol (discussed in Section 4.2.2) can be used here to
distribute MWS entanglement between sites 3, 4, 7, and 8. The protocol requires
that the mirroring time of chain B is equal to twice the mirroring time of chain A
(tm,B = 2tm,A). We cannot satisfy this condition by simply setting Jmax,B = 1/2 as
the chain lengths are different, NA ̸= NB. Instead, we will first utilise the method
used in Section 3.4.2 to equate the mirroring times of chains A and B by setting
their maximum couplings, Jmax,A and Jmax,B, as a function of tm,C . Then, a further
adjustment to Jmax,B is performed by dividing it by half. These modifications of
Jmax,A and Jmax,B are given by

Jmax,A =
π

√
N2

A−1

4

2tm,C

, spaceJmax,B =
1

2

πNB

4tm,C

. (4.19)

The relationship between the chains’ mirroring times is now given by tm,A =
1
2
tm,B = tm,C . Since we have achieved tm,B = 2tm,A, we can apply the MWS

entanglement protocol as follows: we inject a single excitation at site 4 at time
t = 0 and allow the system to evolve for a duration 2tm,A. Over this period of
time, some of the excitation amplitudes would have evolved to site 1 and returned
back to being in a superposition between sites 3 and 4, while other excitation
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amplitudes will have evolved to being in a superposition between sites 7 and 8.
The resulting state at 2tm,A is a MWS entanglement between sites 3, 4, 7, and 8

|Ψ(2tm,A)⟩ =
1

2
(|r3⟩+ |r4⟩)−

i

2
(|r7⟩+ |r8⟩). (4.20)

4.5.4 Bipartite entanglement generation

We can also generate a bipartite maximally entangled state between sites 1 and
12 using the same adjustment method described above, Eq.(4.19). We start with
a single excitation injected at site 4 at time t = 0 and evolve the system for a
duration of 2tm,A, where the state will be given as a MWS entanglement as shown
in Eq.(4.20). At this time, a sudden phase flip of eiπ is injected at site 8 and
the system is allowed to evolve for a further duration tm,A, which will generate a
bipartite maximally entangled state between the ends of the SN, given as

|Ψ(3tm,A)⟩ =
−1√
2
(|r1⟩+ i |r12⟩). (4.21)

4.5.5 Effect of disorder

Routing robustness

The robustness of the router protocol generated in Eq.(4.16) was investigated by
calculating F (t) against a desirable state of a single excitation at site 12 at time
3tm,A,B,C (the first time the routing protocol is achieved). This is shown in Fig.4.31
for diagonal and off-diagonal disorder. The fidelity in the presence of diagonal
disorder with an error strength of E = 10% was > 99%, while for a significant
error strength of E = 20% the fidelity was > 97%. A reduced robustness was
observed in the presence of off-diagonal disorder where the fidelity remained above
97% for an error strength of E = 10%, and above 90% for a significant error
strength of E = 20%.
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Figure 4.31: The robustness of the router protocol when F (t) is calculated at time
3tm,A,B,C in the presence of diagonal (diag) and off-diagonal disorder (off-diag) with
different error strengths, E, ranging from 0 to 50%. Each point has been averaged over
1000 realisations. The white line has the same meaning as in Fig. 3.22.

The robustness of the routing against phase timing error, Eq.(2.19), as per
Fig.4.32a, was found to be ≈ 97.5% for a timing error of D = 5%, and > 92% for
a larger timing error of D = 10%. In the presence of phase angle error, Eq. (2.21),
as per Fig.4.32b, the routing fidelity was found to be ≈ 98% for a timing error of
D = 5%, and > 95% for a larger timing error of D = 10%.

(a) td,ξ (b) ξD

Figure 4.32: The robustness of the routing fidelity when F (t) is calculated at time
3tm,A,B,C in the presence of an error in the phase application time, td,ξ (a), and an error
in the angle of the applied phase, ξD (b). This is performed for different error scales, D,
with a step size of 0.01.

TWS entanglement robustness

The robustness of the TWS entanglement generated in Eq.(4.18) is very robust as
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shown in Fig.4.33. In the presence of diagonal disorder, the fidelity of the TWS
entanglement remained above 99.5% and 98% for error strengths of E = 10%

and E = 20%, respectively. In the presence of off-diagonal disorder with an error
strength of E = 10%, the fidelity remained above 98.6%. For significant error
strength of E = 20%, the fidelity was found to be ≈ 95%.

Figure 4.33: The robustness of the TWS entanglement against diagonal (diag) and off-
diagonal disorder (off-diag) with various error strengths, E, ranging from 0 to 50%. Each
point has been averaged over 1000 realisations. The white line has the same meaning as
in Fig. 3.22.

The robustness of the TWS entanglement to phase timing error, Eq.(2.19),
as per Fig.4.34a, was found to be ≈ 97.5% for a timing error of D = 5%, and
> 93% for a higher timing error of D = 10%. Excellent robustness is observed
in the presence of phase angle error, Eq. (2.21)), as per Fig.4.34b, the TWS
entanglement was found to be ≈ 99.75% for a timing error of D = 5%, and > 99%

for a higher timing error of D = 10%.

MWS entanglement robustness

The robustness of the MWS entanglement generated in Eq.(4.20) is shown in
Fig.4.35. In the presence of diagonal disorder, the fidelity of the MWS entan-
glement remained above 99.6% and 98.5% for error strengths of E = 10% and
E = 20%, respectively. In the presence of off-diagonal disorder with an error
strength of E = 10%, the fidelity remained above 99%. For the significant error
strength of E = 20%, the fidelity remained above 96%.
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(a) td,ξ (b) ξD

Figure 4.34: The robustness of the TWS entanglement in the presence of an error in
the phase application time, td,ξ (a), and an error in the angle of the applied phase, ξD
(b). This is performed for different error scales, D, with a step size of 0.01.

Figure 4.35: The robustness of the MWS entanglement generated at 2tm,A against di-
agonal (diag) and off-diagonal disorder (off-diag) with various error strengths, E, ranging
from 0 to 50%. Each point has been averaged over 1000 realisations. The white line has
the same meaning as in Fig. 3.22.

Bipartite entanglement robustness

The robustness of the bipartite maximally entangled state generated in Eq.(4.21)
is shown in Fig.4.36. The EOF in the presence of diagonal disorder and with an
error strength of E = 10% remained above 99%, and further remained above 97%

for a larger error strength of E = 20%. In the presence of off-diagonal disorder,
the EOF ≈ 97% for an error strength of E = 10%, whereas for a significant error
strength of E = 20%, it was found to be > 88%.

The robustness of the bipartite entanglement against phase timing error, Eq.(2.19),
as per Fig.4.37a, was found to be > 90% for a timing error of D = 5%,and > 70%



4.6. SUMMARY 123

Figure 4.36: The robustness of the bipartite maximally entangled state at time 3tm,A

against diagonal (diag) and off-diagonal disorder (off-diag) with various error strengths,
E, ranging from 0 to 50%. Each point has been averaged over 1000 realisations. The
white line has the same meaning as in Fig. 3.23.

for a higher timing error of D = 10%. In the presence of phase angle error, Eq.
(2.21), as per Fig.4.37b, the bipartite entanglement was found to be > 99.5% for
a timing error of D = 5%, and > 98% for a larger timing error of D = 10%.

(a) td,ξ (b) ξD

Figure 4.37: The robustness of the bipartite entanglement at time 3tm,A in the presence
of an error in the phase application time, td,ξ (a), and an error in the angle of the applied
phase, ξD (b). This was performed for different error scales, D, with a step size of 0.01.

4.6 Summary

In this chapter, we used the Hadamard unitary transformation to couple multiple
PST chains. The resultant multi-chain SN systems were then investigated with
regard to various QIP protocols. We have shown various multi-chain SN systems



124 CHAPTER 4. MULTI-CHAIN SPIN NETWORKS

starting from a three-chain SN up to an M -chain SN. In addition to operating
the system as a router or generating bipartite maximally entangled states, the
complex topology involved in the multi-chain SN system allows us to generate
different multipartite entangled states (e.g., TWS and MWS entanglement). We
have also proposed a method that can be used to generate and distribute a MWS
entanglement between distant qubits using a larger multi-chain SN system.

We have shown that routing is straightforward and can be generated for any of
these SN systems. With regard to bipartite and multipartite entangles states, we
have proposed protocols that can be used to generate such states. Depending on
the target state and the topology of the SN, these protocols may involve adjust-
ment of some of the chains’ Jmax in order to control the excitation evolution time
through them. For instance, in the three 4-site-chain SN, the protocol for MWS
entanglement requires the maximum coupling of the middle chain to be reduced
by half.

We have also constructed and investigated a SN of multiple unequal chains. As
the chains’ lengths in this SN are not equal, some of the QIP protocol requires there
to be an adjustment to some of the chains’ Jmax in order to equate the excitation
evolution time through them. This adjustment is required in order to generate the
bipartite and multipartite entangled states. On the other hand, routing can be
generated here without the need to equate the mirroring times of the SN chains.

All results have been investigated with regard to various types of disorder.
For all SN systems we studied, we have observed very good robustness in all QIP
protocols against diagonal and off-diagonal disorder. In general, strong robustness
(e.g., fidelity > 97%) was observed up to a typical error strength of E = 10% for
both types of disorder for SN systems of size N ≤ 15. Even with a significant error
strength of E = 20% and against the more damaging type of disorder (that is, off-
diagonal disorder), some protocols still show strong robustness. For example, in the
three 3-site-chain SN, the robustness of the TWS entanglement remains > 95%,
and in the three unequal-chain SN, the robustness of the MWS entanglement
remains > 96%. The phase timing error, on the other hand, seems to be more
damaging to the system than any of the other types of error we considered, which
suggests that it is the form of error that should generally be kept small in real-
world implementations of our SN systems. The results we obtain for the effect of
measurement-time error, on one example of our SN systems, are indication of the
error effect and show that it is not as damaging as the phase timing error. We
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have also shown that both approaches to scaling the SN (increasing the number
of chains whilst keeping the number of sites per chain fixed, or vice versa) show
similar robustness against disorder.

Multi-chain SN systems may be more experimentally friendly than spin chain
systems with respect to the difference between the largest and the smallest energy
couplings (Cmax and Cmin, respectively). This is because the difference between
Cmax and Cmin for a spin chain of size N is larger than the difference between
Cmax and Cmin in a multi-chain SN of an equivalent size N (see appendix E). This
difference between the largest and the smallest energy couplings is given by

Jdiff = |Cmax − Cmin| /Jmax. (4.22)

It is important to note the distinction between the largest coupling value, Cmax,
and the maximum constraint on the couplings, Jmax, which has been defined in
Section 2.1.5. Moreover, in a multi-chain SN system, there is a smaller number of
different coupling values that need to be experimentally engineered compared to
an equivalent long spin chain, which could be useful in certain types of implemen-
tation.

Finally, we wish to discuss the optimal number of chains/diamonds in an SN to
deliver desired tasks with the best robustness against fabrication errors and phase
timing errors, taking into account the difference between Cmax and Cmin, Eq.(4.22).
This is done by testing the routing fidelity for various SN systems (three-chain SN,
four-chain SN, and six-chain SN), each having N = 12 number of sites. Using a
figure of merit of the ratio between the Jdiff and the fidelity, we find that the
six-chain SN could be the optimal SN. On the other hand, trading off between
the fidelity and Jdiff may also depend on experimental limitations/preferences (see
appendix F) for more details.
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Chapter 5

Two-excitation consideration

Thus far, we have considered only the single-excitation subspace (e.g., |ri⟩) and
so we will now investigate the case where the system can have multiple excitations
(e.g., |ri,j⟩ = |001i00 . . . 1j00 . . .⟩). The time-independent Hamiltonian HXY given
in Eq.(2.1) can be written in ladder operators form as

HXY =
N−1∑
i=1

Ji,i+1(σ
+
i σ

−
i+1 + σ+

i+1σ
−
i ) +

N∑
i=1

ϵi
2
(σ+

i σ
−
i − σ−

i σ
+
i ), (5.1)

with σ± = σx±iσy

2
. Excitations at different sites are distinguished by the site

labelling, and therefore, exchanging two excitations, for i ̸= j, follows the rule of
commutation (i.e., [σ±

i , σ
±
j ]− = σ±

i σ
±
j − σ±

j σ
±
i = 0).

5.1 Construction of two-chain spin network

As we have seen in previous chapters, our two-chain SN systems are designed with
the application of a matrix-based unitary transformation on the Hamiltonian of
two USC. Such transformation couples sites not previously connected by super-
posing the definitions of the sites. This unitary transformation matrix is given

In this chapter we introduce an alternative method to construct our SN
system using an operator-based transformation instead of the matrix-
based transformation, which has been discussed in the previous chapters.
We show that this method is necessary when considering two- or higher-
excitation subspace. Working on higher-excitation subspaces allows us to
generate cluster state, which is a useful phenomena for quantum technol-
ogy. The effect of various types of disorder is considered to investigate
the robustness of the system in higher-excitation subspaces.

The work in this chapter is in preparation for publication.
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in the single-excitation basis, Eq.(3.2), and so it can only be used when we are
restricted to the single-excitation subspace. The state space dimension for an N -
excitation subspace grows as N !

N !(N−N )!
(with N and N being the number of sites

and excitation number, respectively). Consequently, the unitary transformation
must be extended to the cases of multiple excitations. However, a direct intu-
itive construction of the matrices becomes more difficult for multiple excitations.
Therefore, putting the unitary transformation into operator form means that it
can then be applied to any number of excitations (by taking matrix elements with
the appropriate basis). In this new approach, the two USC are coupled together
with a general unitary transformation.

Let us first define a set of operators [177] that will be used for our unitary
transformation:

• n↑ = σ+σ−

• n↓ = σ−σ+

• n↑ + n↓ = I

• Σ± = σ+
Nj
σ−
Nj+1 ± σ+

Nj+1σ
−
Nj

• P = n↑
Nj
n↓
Nj+1 + n↓

Nj
n↑
Nj+1,

where Nj and Nj + 1 denote the sites that we choose to superpose (e.g., in the
two 3-site-chain SN, Fig.3.4, Nj = 3 and Nj + 1 = 4). The unitary operator that
superposes two sites is of the form e±ϑΣ− , and ϑ here is a parameter in the unitary
transformation. This matrix exponential can be derived by expanding it in the
infinite series. We choose e−ϑΣ− to be our unitary, which can be expanded as

e−ϑΣ− =
∞∑
i=0

(−ϑΣ−)
i

i!
= 1− ϑΣ− +

(ϑΣ−)
2

2!
− (ϑΣ−)

3

3!
+

(ϑΣ−)
4

4!
− (ϑΣ−)

5

5!
+ . . . .

(5.2)
Note that we have not used the imaginary number i in the power of the exponent
as Σ− is anti-Hermitian and so no i is needed to make this unitary. Alternatively,
if instead we use Σ+, which is Hermitian, then i is required in the exponent.

With the fact that Σ2
− = −P and ±P (Σ−) = ±Σ− we can rewrite the equation

as
e−ϑΣ− = 1− ϑΣ− − (ϑ)2P

2!
+

(ϑ)3Σ−

3!
+

(ϑ)4P

4!
− (ϑ)5Σ−

5!
− . . . . (5.3)
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By arranging the cosine and sine terms, the matrix exponential can be expressed
as

e−ϑΣ− = 1− P + P cos(ϑ)− Σ− sin(ϑ), (5.4)

The Hamiltonian of two identical USC, each of Nj number of sites, is given by

HXY =

Nj−1∑
i=1

Ji,i+1(σ
+
i σ

−
i+1 + σ+

i+1σ
−
i )− J1,2(σ

+
Nj+1σ

−
Nj+2 + σ+

Nj+2σ
−
Nj+1)

+

Nj−1∑
i=2

Ji,i+1(σ
+
i+Nj

σ−
i+Nj+1 + σ+

i+Nj+1σ
−
i+Nj

).

(5.5)

As discussed in Section 3.2, since the unitary being used here is effectively of
rotation matrix form and we want to design the same SN that we designed using the
Hadamard-like unitary, we started here with a slightly changed initial Hamiltonian
HXY .

Let us now design a two 2-site-chain SN using the unitary operator shown in
Eq.(5.4). First we use Eq.(5.5) to write down the Hamiltonian of the two USC,
each of length Nj = 2, which is represented as

HXY = σ+
1 σ

−
2 + σ+

2 σ
−
1 − σ+

3 σ
−
4 − σ+

4 σ
−
3 . (5.6)

We can now apply the unitary operator Eq.(5.4) on this Hamiltonian to superpose
sites 2 and 3. This is done by HXY = (e−ϑΣ−)HXY (e

ϑΣ−). Through a rigorous
calculation (see appendix G), we obtain the Hamiltonian that represents the SN
system that is suitable for any excitation-subspace, which is given by

HXY = cos(ϑ)[σ+
1 σ

−
2 + σ+

2 σ
−
1 − σ+

3 σ
−
4 − σ+

4 σ
−
3 ]

+ sin(ϑ)[(σ+
1 σ

−
3 + σ+

3 σ
−
1 )(n

↓
2 − n↑

2) + (σ+
2 σ

−
4 + σ+

4 σ
−
2 )(n

↓
3 − n↑

3)].
(5.7)

The matrix of this SN for the two-excitation subspace can be obtained by
taking matrix elements in the two-excitation site basis (|r1,2⟩, |r1,3⟩, |r2,3⟩, |r1,4⟩,
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|r2,4⟩, |r3,4⟩) and is given by

HXY =



0 0 − sin(ϑ) sin(ϑ) 0 0

0 0 cos(ϑ) − cos(ϑ) 0 0

− sin(ϑ) cos(ϑ) 0 0 − cos(ϑ) − sin(ϑ)

sin(ϑ) − cos(ϑ) 0 0 cos(ϑ) sin(ϑ)

0 0 − cos(ϑ) cos(ϑ) 0 0

0 0 − sin(ϑ) sin(ϑ) 0 0.


(5.8)

As we discussed in Chapter 3, the unitary transformation preserves the energy
spectrum, as the eigenvalues are not changed under the transformation. This
should also be true here, as we are performing the same transformation (i.e., a
rotation that superposes two sites) but in a different approach. Indeed, by calcu-
lating the eigenvalues of the USC Hamiltonian (Eq.(5.6)) and the eigenvalues of
the SN Hamiltonian (Eq.(5.8)), for the two-excitation matrix basis, they turn out
to be the same.

Generalising the Hamiltonian to any two identical Nj-site-chain SN, with Nj

being the number of sites in each chain, Eq.(5.7) becomes

HXY =

Nj−2∑
i=1

Ji,i+1(σ
+
i σ

−
i+1 + σ+

i+1σ
−
i ) + JNj−1,Nj

(σ+
Nj−1σ

−
Nj

+ σ+
Nj
σ−
Nj−1) cos(ϑ)

+ JNj−1,Nj
(σ+

Nj−1σ
−
Nj+1 + σ+

Nj+1σ
−
Nj−1)(n

↓
Nj

− n↑
Nj
) sin(ϑ)

+ J1,2(σ
+
Nj
σ−
Nj+2 + σ+

Nj+2σ
−
Nj
)(n↓

Nj+1 − n↑
Nj+1) sin(ϑ)

− J1,2(σ
+
Nj+1σ

−
Nj+2 + σ+

Nj+2σ
−
Nj+1) cos(ϑ)

+

Nj−1∑
i=2

Ji,i+1(σ
+
i+Nj

σ−
i+Nj+1 + σ+

i+Nj+1σ
−
i+Nj

),

(5.9)

where sites Nj and Nj + 1 are the sites that we choose to superpose. In Eq.(5.9),
the first two terms represent the couplings of chain A of the SN, the second two
terms represent the additional couplings imposed by the transformation, and the
last two terms represent the couplings of chain B of the SN. It is clear that the
couplings that connect the two chains in the SN (i.e., the third and fourth terms)
will always be positive in the single-excitation subspace, which is consistent with
the findings presented in Chapter 3. In higher-excitation subspace, the sign of
these couplings can be negative if another excitation is at a nearby site.
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By setting ϑ = π
4

we can design the exact same SN that we designed Chapter .3
except that now it is not only restricted to a single-excitation subspace, as it can
be used for higher-excitation subspace. It still conserves the number of excitations
and so if we start by injecting two-excitations, the system will only evolve in this
excitation-subspace. Furthermore, the unitary here is also not unique as we can
use different rotation of the unitary and still get the same SN. However, as noted
in Section 3.2, one of the four diamond-shaped couplings will have a different sign
depending on the unitary used for the SN construction.

5.1.1 Dynamics of two 3-site-chain SN

We wish now to investigate the dynamics of our two 3-site-chain SN, shown in
Fig.3.4, in the two-excitation subspace. We start by initialising the system with
two excitations being injected at the ends of the SN

|Ψ(0)⟩ = |r1,6⟩ , (5.10)

where |r1,6⟩ = |100001⟩. As discussed in Chapter 3, the design of the SN allows
an excitation, injected at one end of the SN, to evolve only to the central vertices
of the diamond and back to its initial site. This is also true in the two excitation
subspace, as when we evolve the two excitations |r1,6⟩ for a duration of tm, they
will end up being localised in the central vertices of the diamond, given by

|Ψ(tm)⟩ = |r3,4⟩ , (5.11)

and evolves back to the initial state, Eq.(5.10). This is demonstrated in Fig.5.1
where the fidelity of each basis is plotted as a function of time.

5.1.2 Two-qubit cluster state

A cluster state is a maximally entangled state that is used particularly in the
measurement-based quantum computer (or one-way quantum computer) [178–
184]. This is a different approach to quantum computing, which is based on a se-
quence of measurements applied to a large initial entangled state (usually a cluster
state). It is equivalent to the gate approach, discussed in Chapter 1, but relies on
measurements to effect, or drive, the computation, whereas the gate model used
gates to derive the computation and only measurements at the end to extract the
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Figure 5.1: Dynamics of the SN system with the initial excitation being injected at
both ends of the SN.

results. Cluster entangled states differ from the W-type entangled states presented
in Chapter 4 in the sense that the entanglement does not easily get destroyed by
projective measurements as well as its usefulness in measurement-based quantum
computer.

The generation of cluster states in SN systems can be achieved via the injection
of the state |+⟩ = 1√

2
(|0⟩ + |1⟩) at the first and last spin of the system [185, 186].

Cluster-state generation is equivalent to a two-qubit entangling gate and together
with appropriate single-qubit gates (see Section 1.1.1), they form a universal set
of quantum gates [187]. We are interested in generating this in our non-linear two
3-site-chain SN (Fig.3.4 in Chapter 3).

If we start by injecting the plus state |+⟩ at both ends of the SN, for example
by applying a Hadamard gate to each of site 1 and site 6, the state of the system
will be given by

|Ψ(0)⟩ = |+⟩1 ⊗ |0⟩2 ⊗ |0⟩3 ⊗ |0⟩4 ⊗ |0⟩5 ⊗ |+⟩6

=
1

2
(|r0⟩+ |r6⟩+ |r1⟩+ |r1,6⟩).

(5.12)

The system now is in the zero- single- and two-excitation subspace. By letting
the system to evolve for a duration of tm, the resulting evolved state at tm will be
given by

|Ψ(tm)⟩ =
1

2
|r0⟩ −

1√
2
|r3⟩ −

1

2
|r3,4⟩ , (5.13)

We note that the single-excitation basis combined to be at site 3, which is because
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of the negative coupling between sites 4 and 5 that induces a destructive interfer-
ence at site 4. This and the following dynamics are obtained from our numerical
calculations. If we now evolve the system again for another duration of tm, the
system will regain its initial state, |Ψ(2tm)⟩ = |Ψ(0)⟩. This is in contrast to linear
SN systems, where the cluster state is generated simply by injecting |+⟩ states and
evolving the system. The reason for that is because our SN is designed such that
it does not allow the excitation to hop from one chain of the SN to another chain
of the SN, unless a phase factor is applied (see Section 3.2.1).

Therefore, in order to force the excitation to keep evolving, crossing each other
to end up forming a maximally entangled state between the first and the last spin
of the SN, a sudden phase flip eiπ needs to be applied at site 3 at tm where the
state of the system is given as shown in Eq.(5.13). This is done by applying the
phase flip at any basis that involves an excitation at site 3

|Ψ(tm)⟩π =
1

2
|r0⟩ − eiπ

1√
2
|r3⟩ − eiπ

1

2
|r3,4⟩ . (5.14)

By letting the system to evolve for another duration of tm, the state of the system
at 2tm will be given as

|Ψ(2tm)⟩ =
1

2
(|r0⟩ − |r6⟩ − |r1⟩ − |r1,6⟩). (5.15)

The overall phase factor for the single-excitation basis for any SN of two chains,
each of length Nj, is −1Nj , whereas the overall phase factor for the two-excitation
basis is always -1. EOF between sites 1 and 6 as a function of time, plotted in
Fig.5.2, shows that they are maximally entangled. We can express the operation
as an effective two-qubit gate G

G =


−1 0 0 0

0 0 −1Nj 0

0 −1Nj 0 0

0 0 0 1

 , (5.16)

using the basis {|1⟩1 |1⟩N , |1⟩1 |0⟩N , |0⟩1 |1⟩N , |0⟩1 |0⟩N}. Note that this maximally
entangled state occurs for any two Nj-site-chain SN.

The state given in Eq. (5.15) can be considered as a minimal two-qubit cluster
state, as it has the entanglement required for a cluster state and is generated in a
similar way to the generation of cluster states [183,186,188], which involves injec-
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tion of |+⟩ states. Note that the cluster state generation protocol in other systems
can involve the application of a controlled-Z gate between nearest-neighbouring
qubits, in addition to applying the |+⟩ states [183]. On the other hand, the pro-
tocol we used here, to generate the two-qubit cluster state, requires injection of
|+⟩ states, natural evolution of the system, and a local phase flip operation. This
could indicate that the natural dynamics of the system and the local phase flip
operation simulate the effect of a controlled-Z gate.

Therefore, by the injection of |+⟩ states at the ends of the SN, we obtain
this effective two-qubit entangling gate that has also been achieved in linear SN
systems [185,186,188]. The minimal cluster state generated here can be thought of
as a starting point or building block of more spatially extended two-qubit cluster
states, as one can increase the site number of the chains within the SN in order to
realise a two-qubit cluster state between qubits that are further apart (this will be
discussed in Section 5.2.1). Two-qubit cluster states can be used to implement a
one-way quantum computation by appropriately measuring one qubit in a specific
chosen basis, which results in a rotation of the second qubit [189]. However, it
is crucial to note that the two-qubit cluster states are not a universal resource
for one-way quantum computing, as it is a linear or minimal cluster state and is
locally equivalent to a maximally entangled Bell state [190]. There is potential for
building cluster states containing a larger number of qubits in our SN, for example,
following ideas from [186], which would be an interesting future work.

Figure 5.2: The EOF between sites 1 and 6 as a function of rescaled time t/tm.

Similarly, we can generate two-qubit entangling gate between sites 3 and 4 by
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starting injecting the |+⟩ states at sites 3 and 4

|Ψ(0)⟩ = 1

2
(|r0⟩+ |r4⟩+ |r3⟩+ |r3,4⟩), (5.17)

and evolving the system for tm where the state will be given by

|Ψ(tm)⟩ =
1

2
|r0⟩ −

1√
2
|r1⟩ −

1

2
|r1,6⟩ . (5.18)

With the application of a phase flip at site 1 at tm and evolving the system for a
duration of tm, a cluster state will be formed at 2tm, given as

|Ψ(2tm)⟩ =
1

2
(|r0⟩ − |r4⟩ − |r3⟩ − |r3,4⟩), (5.19)

which by investigating the phases of the elements of the basis for different SN size,
turns out to be generated by the same effective gate G.

5.1.3 Effect of disorder

We will now investigate the robustness of the two-qubit entangling gate between
sites 1 and 6 in the presence of various types of disorder. We will consider the
diagonal and off-diagonal disorder. Another type of disorder that will be considered
is the excitation-excitation interaction. In addition, timing error and phase error
will also be considered.

Diagonal and off-diagonal disorder

When we include the diagonal disorder in the SN, the cluster state robustness
remains EOF > 99.6% with error strength up to E = 10%, and EOF > 98.5%

with significant error strength of up to E = 20%. In the presence of off-diagonal
disorder and with error strengths of up to E = 10% and E = 20%, the cluster
state robustness remains EOF > 98.6% and EOF > 94%, respectively, Fig.5.3.

Excitation-excitation interactions

When the system has multiple excitations, a type of perturbation known as excitation-
excitation interaction can occur. This represents an unwanted interaction between
nearby excitations and an example of this is the exciton-exciton interaction in
quantum dots [191, 192]. Therefore, excitation-excitation interactions can be pre-
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Figure 5.3: The robustness of the EOF between sites 1 and 6 at t = 2tm in the presence
of diagonal and off-diagonal disorder with different error strength E. White lines have
same meaning as in Fig. 3.23.

sented as an additional term in the Hamiltonian

He =
N−1∑
i=1

EJ0[|1⟩ ⟨1|i ⊗ |1⟩ ⟨1|i+1]. (5.20)

The effect of excitation-excitation interaction on the cluster state is very week
even when the cluster state is calculated at the third time it forms, 6tm, as shown
in Fig.5.4. The cluster state first peak is around 99.9% and 99.6% for E = 10%

and E = 20%, respectively.

(a) E = 10% (b) E = 20%

Figure 5.4: The robustness of the cluster state in the presence of excitation-excitation
interaction of two different strengths. E = 10% (a) and E = 20% (b).
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Time delays

As we have seen above, the protocol of generating the entangled cluster state
involves application of a phase flip at a site at tm. We wish to consider now the
case where there is a delay in the phase application, a delay that is specified by the
strength D (see Eq.(2.19)). We have investigated this scenario and as shown in
Fig.5.5a it turns out that the robustness of the cluster state is very sensitive to the
phase time delay. For a small delay scale of D = 5%, the cluster state is observed
to have entanglement of EOF = 93% and decays fast as D increases. This could
be because of the fact that the protocol of generating the cluster state requires the
sudden application of the phase. Thus, an error on that phase application time will
have greater impact to the cluster state. Note that the robustness is independent
of whether the phase time error is D > 0 (delayed operation) or D < 0 (earlier
operation).

Another type of time delay error that we wish to investigate is the case where
the initial injected |+⟩ states at sites 1 and 6 are not performed in a synchronous
way (see Eq.(2.20)). This type of delay is not as damaging to the cluster state
as much as the damage caused by the above phase timing error. As shown in
Fig.5.5b, the cluster state remains very robust with EOF > 99% when the delay
strength is of D = 5% and EOF > 96% when D = 10%.

(a) td,ξ (b) td,|+⟩

Figure 5.5: The robustness of the EOF between sites 1 and 6 at t = 2tm against a time
delay on the phase application, td,ξ, (a) and against a time delay on the initial injected
|+⟩ states, td,|+⟩ (b). This is performed for different error scales, D, with a step size of
0.01.
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Phase disorder

We will now investigate the case where the error is due to a phase angle disorder
(see Eq. (2.21)). In this case, the phase factor eiπ required for our cluster state
generation is not accurate (i.e., ei(π+Dπ)). This has a very weak effect on the cluster
state robustness, as we can see in Fig.5.6 that the EOF > 98% with D = 10%.

Figure 5.6: The robustness of the EOF between sites 1 and 6 at t = 2tm. This is
performed for different error scales, D, with a step size of 0.01.

5.2 Construction of multi-chain spin network

Construction of multi-chain SN systems, as discussed in Chapter 4, is done by
applying a unitary transformation, that superposes M − 1 pair of sites, on the
Hamiltonian of the M USC. For example, for the case of M = 3 (three USC), the
unitary transformation is chosen such that it superposes two pair of sites in order
to form the three-chain SN.

Solving the transformation using the operator-based unitary can be a cum-
bersome task, but we can instead write the transformed Hamiltonian straightfor-
wardly given that we already know, from the two-chain SN Hamiltonian, Eq.(5.9),
where the negative couplings should be. Therefore, we can just expand Eq.(5.9)
by adding additional terms that correspond to the additional chains. A represen-
tation of the Hamiltonian of a three-chain SN, where each chain is of Nj number
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of sites, is given by

HXY =
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(5.21)

A layout of this Hamiltonian SN is shown in Fig.4.13. Note that this Hamiltonian
describes any three Nj-site-chain SN, for Nj > 2. A special case of Nj = 2 cannot
be described by this Hamiltonian. This is because this simplest example of three-
chain SN (three 2-site-chain SN) has additional coupling between distant sites
(sites 2 and 5), which is the result of superposing two nearby pair of sites (sites 2
and 3 as well as sites 4 and 5). This special example is not considered here as we
are interested in larger SN systems.

As discussed in Chapter 3, the figure of merit that can be used to check whether
our SN Hamiltonian is correct or not is the eigenvalues conservation. We therefore
used numerical methods to build the matrix of this three-chain SN Hamiltonian for
N size and compute its eigenvalues to see if they are the same as the eigenvalues
of the 3 USC of the same N size. This has been confirmed numerically.

5.2.1 Two-qubit cluster state

We wish to generate now the two-qubit entangling gate in the three 4-site-chain
SN (Fig.4.13). We start by injecting a plus state, |+⟩, at both ends of the SN, so
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our initial state is given by

|Ψ(0)⟩ = |+⟩1 ⊗ |0⟩2 ⊗ . . .⊗ |0⟩11 ⊗ |+⟩12

=
1

2
(|r0⟩+ |r1⟩+ |r12⟩+ |r1,12⟩).

(5.22)

Evolving this initial state for a duration of tm, the excitations will now be in a
superposition between sites 4, 5, 8, and 9 in the single-excitation subspace and the
two-excitations subspace, given by

|Ψ(tm)⟩ =
1

2
|r0⟩+

i

2
√
2
(|r4⟩+ |r5⟩+ |r8⟩− |r9⟩)+

1

4
(− |r4,8⟩+ |r4,9⟩− |r5,8⟩+ |r5,9⟩).

(5.23)

Application of a phase flip is required now in order to force the excitations
to keep evolving forward and crossing each other, which is a condition for the
entangling gate formation (see Section 5.1.2). The phase flip eiπ is applied at sites
5 and 9 as

|Ψ(tm)⟩π =
1

2
|r0⟩+

i

2
√
2
(|r4⟩+ eiπ |r5⟩+ |r8⟩ − eiπ |r9⟩)

+
1

4
(− |r4,8⟩+ eiπ |r4,9⟩ − eiπ |r5,8⟩+ eiπeiπ |r5,9⟩).

(5.24)

Now, we let the system to evolve for tm where the state of the system would be
given by

|Ψ(2tm)⟩ =
1

2
|r0⟩+

1

2
√
2
(− |r4⟩+|r5⟩−|r8⟩−|r9⟩)+

1

4
(− |r4,8⟩−|r4,9⟩+|r5,8⟩+|r5,9⟩).

(5.25)
With another application of phase flips at the same sites and another evolution of
tm, the two-qubit entangling gate will be formed between the sites 1 and 12, given
as

|Ψ(3tm)⟩ =
1

2
(|r0⟩ − i |r12⟩ − i |r1⟩+ |r1,12⟩). (5.26)

The state generated at 3tm is therefore a two-qubit entangling gate that effect
the following G gate

G =


−1Nj 0 0 0

0 0 iNj−1 0

0 iNj−1 0 0

0 0 0 1

 , (5.27)
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expressed using the two-qubit basis {|1⟩1 |1⟩N , |1⟩1 |0⟩N , |0⟩1 |1⟩N , |0⟩1 |0⟩N}. The
Nj is the length of a single chain in the three-chain SN, as we are assuming that
all the three chains are of equal lengths. The expressions of the global phases have
been obtained by investigating the two-qubit entangling gate for various N sizes.
The maximally entangled state occurs for any three Nj-site-chain SN, with Nj > 2.
This is because our Hamiltonian, Eq.(5.21), can not describe three 2-site-chain SN
(see Section 5.2).

5.2.2 Effect of disorder

We will now investigate the robustness of the two-qubit entangling gate between
sites 1 and 12 in the presence of diagonal and off-diagonal disorder, excitation-
excitation interaction, time delay errors, and phase error.

Diagonal and off-diagonal disorder

In the presence of diagonal disorder, the cluster state generated at 3tm gives
EOF ≈ 99% for error strength of E = 10% and EOF > 95% for significant
error strength of E = 20%. The robustness is reduced in the presence of off-
diagonal disorder, as the EOF = 96% and EOF = 85% for error strengths of
E = 10% and E = 20%, respectively, Fig.5.7.

Figure 5.7: The robustness of the EOF between sites 1 and 12 at t = 3tm in the
presence of diagonal and off-diagonal disorder with different error strength E. The white
line indicates the EOF 90% threshold (±2% due to numerical discretization).
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Excitation-excitation interactions

The robustness of the cluster state in the presence of excitation-excitation inter-
action, with large error strength of E = 20%, is found to be EOF = 99.7%. It is
clear from Fig.5.8 that the three-chain SN system is more robust against excitation-
excitation interaction when it is compared to the two-chain SN (see Section 5.1.3).
This is because the system configurations of the three-chain SN system involves
very few basis vectors that have two neighbouring excitations compared to the
total number of basis vectors in the system (i.e., there are only 13 basis vectors
of two nearby excitations out of 79 basis vectors that do not have two nearby
excitations). This suggest that as the SN size increases, the system will be even
more robust against excitation-excitation interaction, as the discrepancy between
the number of basis vectors that do not have two neighbouring excitations and
those having two neighbouring excitations will be larger, which in turn makes the
excitation-excitation interaction less effective. To put this in another perspective,
the two excitations spend very little time in adjacent network sites and the model
interaction is zero whenever they are further apart, which is mostly the case.

Another interesting thing we note from the figure is that the EOF does not
decay with time, which can be attributed to the fact that the excitation-excitation
error is fixed and the two plus states interacted only once, when they are exchanged
by the phase flip at tm (see Eq.(5.24)). Therefore, since there is no interaction
between the plus states and the error does not increase with time, the EOF keeps
forming at each odd tm (i.e., 3tm, 5tm, etc) with extremely close values, Fig.5.8.

Figure 5.8: The robustness of the cluster state in the presence of excitation-excitation
interaction with strength of E = 20%.
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Time delays

Let us now investigate the case where the error is due to a time delay in applying
the required phases, Eq.(2.19), for the cluster state protocol to work. The cluster
state generation protocol involves applying phase flips at sites 5 and 9 at two
different times, at tm and 2tm, respectively. Therefore, we will simulate the case
where the application of the phases are not performed exactly at the right time.

The robustness of the two-qubit cluster state is very sensitive to the time delay
in the phase application, as the entanglement is observed to have EOF ≈ 85% for
a small delay scale of D = 5% and EOF ≈ 51% for a larger delay of D = 10%,
Fig.5.9a.

We wish to investigate the case where the time error is in the initial injection
of the |+⟩ states, Eq. (2.20). This error does not have much effect on the cluster
state, as the entanglement is observed to have EOF > 98% for D = 5% and
EOF ≈ 95% for a larger delay of D = 10%, Fig.5.9b.

(a) td,ξ (b) td,|+⟩

Figure 5.9: The robustness of the EOF between sites 1 and 12 at t = 3tm against
a time delay on the phase application, td,ξ, (a) and against a time delay on the initial
injected |+⟩ states, td,|+⟩ (b). This is performed for different error scales, D, with a step
size of 0.01.

Phase disorder

We will now investigate the effect of the phase angle disorder (see Eq. (2.21)) and
in such a case, the phase flips eiπ required for our cluster state generation is not
accurate (i.e., ei(π+Dπ)). With an error strength of D = 5% the robustness of the
two-qubit cluster state is observed with entanglement of EOF > 97.5%, while for
a larger error of D = 10%, the EOF > 92.5%, Fig.5.10 .
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Figure 5.10: The robustness of the EOF between sites 1 and 12 at t = 3tm. This is
performed for different error scales, D, with a step size of 0.01.

5.3 Summary

In this chapter, we propose a different approach to design our SN system using a
general unitary transformation, as opposed to the matrix-based unitary transfor-
mation discussed in the previous chapters. This approach allows us to build a SN
that works for any-excitation subspace. We have then presented the generation of
two-qubit entangling gate with a protocol that uses |+⟩ states injection and phase
flips application, in which the system evolves in the zero- single- and two-excitation
subspace. Such a two-qubit entangling gate can be used in measurement-based
quantum computers [178–181,189].

Different types of disorder have been considered in order to investigate the
robustness of the two-qubit entangling gate: diagonal and off-diagonal disorder,
excitation-excitation interaction, time delay in the initial injected |+⟩ states, time
delay in the phase application time, and error in the applied phase angle. We note
that in both, time error and phase error, the robustness is independent of whether
D > 0 or D < 0. The results suggest that the excitation-excitation interaction
has a very weak effect on the system, and it becomes even weaker in larger SN
systems, as this effect only results when the two excitations are actual nearest
neighbours, which generally only occurs in a small fraction of the amplitudes that
comprise the total state. On the other hand, the most damaging type of error is
the time error in the phase application. The reason that the phase timing error has
a much impact on the system can be attributed to the fact that the desired state
that we need to achieve requires the sudden application of the phase and therefore
applying the phase even at a slightly different time will have a much impact on
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the amplitude of the desired state. Therefore, the error from the phase application
time is the one that the experimentalists should focus on reducing.
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Chapter 6

Conclusion

This thesis presents complex quantum spin networks that are designed by unitarily
transforming uncoupled spin chains and that have the potential to be used in
various QIP protocols with excellent robustness to errors. We used PST spin
chains, which have been proven to be useful for routing quantum information and
entanglement generation [11,74,82,88,99–101,185,193], as the basic building blocks
of our SN systems. We will summarise below the unitary construction method we
used to design our spin-chain-based SN systems, the applications of such systems in
quantum technology, their robustness to disorder and the scalability, the operation
times vs coherence times, the physical realisations and advantages of SN systems,
and will conclude with a number of suggestions for future work.

6.1 Unitary transformation method

In order to design a SN system by coupling together spin chain systems, one can
utilise the transformation method, which can be used to mathematically expand
(transform) an USC into a complex SN system. Such a transformation ensures
that the resultant SN system will have the same features (i.e., PST) as the origi-
nal system (spin chains). The unitary transformation we use is a Hadamard-like
unitary, which can be implemented with two different but otherwise equivalent
methods.

A simple method to design the SN system is to apply a matrix-based Hadamard-
like unitary to the Hamiltonian matrix of the USC systems. This unitary matrix
is given in the single-excitation basis and therefore is only used when we are re-
stricted to the single-excitation subspace. An equivalent method to design the
SN is to apply a general unitary transformation to the Hamiltonian of the USC
systems. This is useful when we are considering a multi-excitation subspace. Such
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unitary transformation is designed to couple a site from one chain to a site from
another chain. Additional transformations can be used to couple further chains to
the system.

The resultant SN system will haveM−1 diamond shapes of four couplings (for a
SN constructed from M chains), with one of these couplings having a negative sign
for each diamond which is induced by the transformation (see Fig.3.4 for example).
The important point here is that the transformation step is a mathematical step
that is used to ensure that the SN generated has the same features (i.e., PST)
that the original spin chains have. The Hadamard-like unitary we used is only
one specific example, but clearly there are many other unitaries to choose from.
We emphasise that the flexibility and power of the unitary design approach allows
us to choose a different unitary (i.e., rotation unitary) that results in a SN with
the negative coupling being between different sites than the one labeled in this
thesis (that results from the Hadamard unitary). Therefore, when realising this
SN experimentally, one can choose any of the four diamond-shaped couplings to
be negative. Note that in this case, i.e., choosing a different unitary to design
the SN, the desired states and global phases one can obtain for a specific quantum
information task will be different to those we obtained in the examples given in this
thesis. This is not a problem, but rather a crucial consideration when implementing
our SN systems. The final important point, designing a SN with a rotation matrix
type of approach, it is also possible to use an angle, ϑ, that is not π/4 which would
change the weights.

6.2 Applications of our SN systems

We have shown in this thesis that many possible quantum information tasks can
be achieved using our SN systems. These useful tasks are necessary for current
quantum technology (e.g., quantum sensing or fundamental quantum mechanics
investigations) and future quantum technology (e.g., quantum devices). For in-
stance, routing quantum information (here, single-excitation or a superposition
state of zero and one excitation) from one end of the SN system to the other end
can be used to connect quantum registers in a quantum device. Therefore, they are
suitable for short-range quantum communications. We have shown that routing
can be generated in any of our SN systems, as it only requires single-excitation
injection or preparation of the initial site state as a superposition of zero and one
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excitation, Hamiltonian evolution, and a phase flip operation.

Our SN can also be used in quantum sensing related to retrieving an unknown
phase applied at a qubit. This is, for example, useful in cases where a black box
in an experiment injects an unknown phase factor of eiθ at a qubit. Measuring
the fidelity of a site at a later time and using our phase-sensing protocol, we can
retrieve the unknown phase with very good accuracy, even with high fabrication
error in the SN.

Entanglement generation is another useful quantum information task that has
in fact been achieved in our SN systems. We have shown that various entangled
states can be achieved in multi-chain SN systems. If one needs a bipartite max-
imally entangled state, then the use of the two-chain SN system is sufficient to
achieve this. Generating a TWS or MWS entanglement, on the other hand, re-
quires a SN of at least three chains (two diamonds). This is because each diamond
can evolve an excitation through two paths, and therefore an excitation, in a SN
of two diamonds, can be distributed between three (TWS) or four (MWS) qubits,
depending on the injection protocol used (see Fig.4.4 and Fig.4.5, for examples).
A generalisation of how many chains would be needed for N -qubit W state (with
N > 4) could be made by investigating how such states can be generated, which
is an interesting future work. One can also use our SN system to generate the
MWS entanglement between distant qubits by first generating it between nearby
qubits and then moving the entanglement apart with the application of phase
flip and Hamiltonian evolution. Such entangled states can be useful for quantum
teleportation, quantum secure direct communication, superdense coding, and Bell
inequality tests for demonstrating quantum non locality [107–110]. We have also
demonstrated the generation of a two-qubit entangling gate in our SN systems via
injection of |+⟩ states at sites 1 and N .

6.3 Advantages of our SN systems

Our SN systems have an advantage over spin chain systems with respect to the
versatility of the SN, without the need to re-engineer its coupling parameters
for each quantum information task. This is because a possible downside of spin
chains is that while routing a single-excitation can be achieved with a specific
coupling arrangement (symmetrically distributed around the centre of the chain),
the same coupling arrangement does not allow entanglement generation using the
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single-excitation. This is because the couplings now need to be re-engineered
in another arrangement (e.g., using weak/strong couplings technique [99]). Our
SN, on the other hand, can generate the routing, entanglement, and many other
useful quantum information tasks without the need to re-engineer the coupling
parameters. The only cases where adjustment of the couplings is required in our
SN systems are where the chains of the SN are of different lengths. Therefore, in
a SN of equal chains, one can route a single-excitation and re-initialise the system
such that all sites have a spin down state, using the relevant initialisation technique
of the relevant physical system, then use another QIP protocol (e.g., generation
of bipartite or TWS entanglement) in the same SN system. The versatility of our
SN system in generating various QIP protocols in the same SN system could be an
experimentally-friendly feature and therefore might potentially be useful in future
QIP technologies that aim to provide various QIP in a single device.

Another advantage of our SN systems compared to an equivalent long spin
chain is that multi-chain SN could be more accessible experimentally, depending
on hardware. The reason for this is because the energy difference between the max-
imum coupling interaction and the minimum coupling interaction (Jdiff, Eq.(4.22))
is larger in a spin chain of size N compared to an equivalent long multi-chain SN of
size N . With larger spin chain and larger multi-chain SN, the Jdiff becomes much
larger in the spin chain compared to the SN (this is illustrated in the appendix E).

6.4 Disorder and scalability effects

We have investigated the effects of various types of disorder in the system. One
type of disorder is that arising due to an imperfect construction of the SN (coupling
errors or on-site energy errors). We acknowledge that there may be other forms of
error, specific to particular realisations of the SN systems, but we are considering
generic errors that could apply to a wide range of realisations. The effects of the
errors on the Hamiltonian (diagonal or off-diagonal disorder) turn out to be dis-
tinguishable, as diagonal disorder has only a weak effect compared to off-diagonal
disorder. We have shown that the high sensitivity of the system to off-diagonal
disorder can be attributed to the fact that the non-zero energies are distributed on
wider energy scale in the presence of off-diagonal disorder, compared to the case
of diagonal disorder. This suggests that experimentalists should focus on reducing
the off-diagonal disorder in the physical implementation of our SN systems.
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We note that our investigations of the effect of fabrication errors illustrate that
the averaged fidelity/EOF, of a desired task, decays over time. This, as we ex-
plained in Section 2.3, is due to the averaging procedure we employ. Nevertheless,
our model, through the averaging procedure we apply, can also be viewed as a
simplified example of an open system. This is because it mimics the expected
dynamic behavior of a single device interacting with an environment, exhibiting
decay of a desired operation due to decoherence and relaxation. As a result, one
could tune our disorder model in order to compare the typical decoherence and
relaxation times, of a specific physical system, with our error strength E.

Other forms of error include those arising in the protocols that one uses to
generate a specific quantum information task. For example, generation of the
routing protocol or an entangled state protocol requires application of a phase
factor at a specific site at a specific time. However, such an operation might not
be perfect in experiment as there might be a timing error in the phase application,
and/or an error in the angle of the phase, and/or measurement-time error. These
possibilities have been considered in our investigations, from which it turns out
that error in the phase application time is the most damaging type of error. This
is because the phase application step needs to be a sudden operation in order to
deliver the desired state, and so a timing error in the phase will have a considerable
impact on the desired state. Therefore, phase time error is another type of error
that one should keep as small as possible in physical realisations of our SN systems.
We also found that our SN behaviour against fabrication errors (diagonal and
off-diagonal errors) or protocols errors (timing and phase angle errors) follows a
Gaussian distribution as a function of error scale parameter.

In all the QIP protocols investigated in this thesis, the scalability (increasing
the SN size) seems to have a lower impact on the system performance compared
to the increase in the error strength. Furthermore, we have shown that scaling the
SN by connecting a larger number, M , of spin chains, while keeping the number
of sites, Nj, per chain fixed, shows similar robustness against disorder to the case
of scaling the SN by increasing Nj for the chain while keeping M fixed.

6.5 Decoherence vs Operation times

According to the DiVincenzo criteria (Section 1.1.2), it is necessary that the time
required to perform a quantum information processing protocol is significantly
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shorter than the decoherence time of the relevant system. We examine this crite-
rion in our system by investigating the operation time of the two-qubit entangling
gate (Eq. (5.26)) generated in the SN system (Fig.4.13) against the coherence time
for various physical systems.

The two-qubit entangling gate is generated at 3tm and this time is given as
3tm = 3π

2J0
, where J0 = 2Jmax

Nj
with Nj = 4, which is the number of sites in each

chain of the SN (see Section 2.1.5). Thus, 3tm = 3π
Jmax

. We now compare the
entangling gate time and coherence time for different physical systems. Using the
values of characteristic energy Jmax and coherence time Tc, given in Section 1.2.4
for various physical systems, we construct a table showing this comparison (see
Fig.6.1).

Figure 6.1: Comparison of the entangling gate time (3tm) against the coherence time
(Tc) for various physical systems.

Note that we have considered a relatively large SN system (see Fig.4.13) to
quantify the operation time of the two-qubit entangling gate against the coherence
time, from which we found that the entangling time remains much shorter than
the coherence time for all the physical systems considered here. Particularly, for
Silicon QDs and Rydberg atoms, the entangling time is found to be many orders
of magnitude shorter than the coherence time.

6.6 Physical realisations of our SN systems

The building blocks of our spin-chain-based SN systems, as the name suggests,
are systems of PST spin chains. A spin chain, as already introduced in Chapter
1, is a generic model that represents a chain of spin-1/2 like particles and can be
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realised in various physical systems. Examples include trapped ions, quantum dots,
superconducting qubits, Rydberg atoms, and NMR-based processors. A detailed
discussion on each platform is given in Section 1.2.4.

Realising our SN systems physically requires preparation of systems of spin
chains with additional couplings that connect these chains in order to form the
SN. The spin chains need to be connected in a way that form a diamond-like shape
of four couplings connecting the spin chain. The energy of these four couplings
needs to be rescaled by 1√

2
, with one of them being negative. This ensures that the

resultant SN system will be exactly identical to the one designed in this thesis, with
the condition that the negative coupling need to be at the bottom right coupling
of the diamond couplings. Building a SN with these conditions, one can use any
QIP protocol illustrated in this thesis.

Clearly, as discussed in the unitary section above, we could choose another uni-
tary transformation to place the negative coupling on any one of the four diamond-
shaped couplings, as the SN will still be capable of delivering useful quantum infor-
mation tasks. Therefore, experimentalists may choose the most suitable coupling
to be assigned as negative in their physical realisation of the SN, as long as it is
assigned to one of the four diamond-shaped couplings. Theory and modelling can
then determine the precise form of the entangled states generated, or the phase
injection required (and at which site) to perform the desired routing.

Realising Our SN systems experimentally can be done using various physical
systems, as discussed in Section 1.2.4. Particularly, systems that are experimen-
tally realised in a two-dimensional structure, which is important as our SN systems
has couplings prepared in a two-dimensional structure (the diamond-like shape).
Examples include qubits of Rydberg atoms, which have been experimentally re-
alised in a two-dimensional structure, and such platform can therefore be used to
realise our SN systems [64, 65, 124–127]. Superconducting transmon qubits have
also been used to experimentally implement a two-dimensional tight-binding lat-
tice [60], which resembles our Hamiltonian model and could be adapted to resemble
our SN topology. Trapped ions have also been used to experimentally realise a two-
dimensional SN system [194–196]. The reference [196] also shows that the sign of
the coupling interaction between two sites can be tuned to be negative using Ra-
man detunings. The four diamond-shaped couplings, one of which being negative,
have indeed been investigated in [80] and it has also been shown that such negative
coupling is realisable using Feshbach resonances in optical lattices [80, 197–199].
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6.7 Future work

With respect to the SN design, we have used a Hadamard-like unitary, but clearly
there are many unitaries to choose from. One can design and investigate a SN
built using a unitary that differs from our own by a rotation. Moreover, one can
choose a different angle for the unitary such that it will result in the SN being
biased, with respect to the excitation evolution, toward a specific direction. Note
that such a biased evolution can be achieved in our SN with the application of a
specific phase factor. However, instead, this can be achieved from the construction
step of the SN itself by using the appropriate unitary. Further investigation of
unitary construction would be to use various random unitaries and investigate
their resulted SN systems. Another interesting future work is to explore and
investigate how N -partite entanglement (with N > 4) can be achieved in our SN
systems.

Our investigation of disorder is general and can be applied to various physical
systems. However, each physical system has its own particular types of disor-
der. For example, the errors that might arise in quantum dots may be different
from those arising in superconducting qubits. Therefore, one can model a specific
realisation by further adapting our SN modelling to include a specific form of er-
ror. Investigation of the effect of imperfect addressing of phase factor applications
(i.e., when the applied phase at a site also affects neighbouring sites) is also an
interesting area for further research.

Finally, our investigation of the multiple-excitation subspace included investi-
gating a two-chain SN and a three-chain SN. A further step would be to investigate
cases where the chains of the SN are of different lengths or have a larger number of
excitations. Furthermore, more complicated topologies of connected chains could
represent another significant research direction.



Appendix A

Rotation unitary

We used a Hadamard-like unitary transformation to couple together USC systems.
However, this is not the only way to do it; instead, we can use a rotation matrix.
For example, to couple together two USC, each of 3-site, we can apply a rotation
matrix of the form

Uϑ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos(ϑ) − sin(ϑ) 0 0

0 0 sin(ϑ) cos(ϑ) 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(A.1)

Here, U †
ϑ ̸= Uϑ and with ϑ = π

4
.

When we use this to transform the USC Hamiltonian, we will still get a similar
SN system to that we designed before (Fig.3.4), but with a minus coupling being
between sites 3 and 5. Previously, where we used the Hadamard-like transforma-
tion, the negative coupling was between sites 4 and 5. With a different unitary
transformation, we can choose where the negative coupling in the SN can be. It
basically can be at any coupling in the SN diamond depending on the unitary ro-
tation. Therefore, experimentalists can choose which coupling of the SN diamond
is negative. Note that using a SN that has a negative coupling in a different place
than where we set the negative coupling in our SN (e.g., between sites 2 and 4)
will mean that the desired states and the global phases that one can obtain will be
different than what we obtained in the examples given in thesis. This should not
be an issue but rather an important point to take into account when physically
realising our SN system.
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Appendix B

Derivation of F1

B.1 Eigenvalues and Eigenvectors of the Hamilto-

nian

The eigenvalues and eigenvectors of the Hamiltonian HXY are given in table B.1.
They are expressed in the site basis as labelled in Fig.(3.4).



158 APPENDIX B. DERIVATION OF F1

Eigenvalues Eigenvectors
space space

λ1 = −
√
2J |φ1⟩ = 1

2
√
2



√
2

−2
1
1
0
0


space space

λ2 = −
√
2J |φ2⟩ = 1

2
√
2


0
0
−1
1
2

−
√
2


space space

λ3 =
√
2J |φ3⟩ = 1

2
√
2



√
2
2
1
1
0
0


space space

λ4 =
√
2J |φ4⟩ = 1

2
√
2


0
0
1
−1
2√
2


space space

λ5 = 0 |φ5⟩ = 1
2


−
√
2

0
1
1
0
0


space space

λ6 = 0 |φ6⟩ = 1
2


0
0
−1
1
0√
2


Table B.1: Eigenvalues (left) and eigenvectors (right) of the Hamiltonian HXY
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B.2 Analytical Calculation of Relevant System Evo-

lution and Related Fidelities

Our two 3-site-chain SN is first prepared such that all sites have spin down |00 . . .⟩.
Since the Hamiltonian of our system preserves the number of spin up (down), the
system will not evolve unless an excitation is injected to the system. Therefore,
when a single-excitation is injected at site 1 at t = 0

|Ψ(0)⟩ = |r1⟩ (B.1)

the system will start evolving within the single-excitation (single spin-up) sub-
space. We can find the system state at later time by decomposing the initial state
|Ψ(0)⟩ into the eigenvectors of the Hamiltonian (table B.1) using the following
decomposition equation

|Ψ(t)⟩ =
N∑
j=1

⟨φj|ψ1(0)⟩ e−iλjt |φj⟩ , (B.2)

where |φj⟩ are the eigenvectors, and λj are the eigenvalues. Therefore, the state
of the system at tm will be

|Ψ(tm)⟩ = − 1√
2
(|r3⟩+ |r4⟩). (B.3)

If now an unknown phase eiθ is instantaneously applied at site 4, the state of
the system becomes

|Ψ(tm)⟩θ = − 1√
2
(|r3⟩+ eiθ |r4⟩). (B.4)

By decomposing the state Eq. (B.4) into the eigenvectors of the Hamiltonian, using
Eq. (B.2), and then evolving the system for an additional time t = tm, the state
of the system at 2tm can be found to be

|Ψ(2tm)⟩ =
1 + eiθ

2
|r1⟩+

1− eiθ

2
|r6⟩ . (B.5)

Therefore, Eq. (B.5) determines the occupation of site 1 and site 6 depending on
the unknown phase θ.
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The fidelity against |r1⟩ at 2tm is then

| ⟨r1|Ψ(2tm)⟩ |2 = |1 + eiθ

2
⟨r1|r1⟩+

1− eiθ

2
⟨r1|r6⟩ |2

= |1 + eiθ

2
|2 = |ei

θ
2 (
e−i θ

2 + ei
θ
2

2
)|2

= cos2
θ

2
=

1 + cos(θ)

2

=
1

2
(1 + cos θ) = F1.

(B.6)

We now have the fidelity against |r1⟩ at 2tm as a function of θ which can be used in
our sensing protocol by measuring the fidelity against |r1⟩. However, if we choose
to measure the fidelity against |r6⟩ instead, then the sensing protocol will still
work with a slight modification as the fidelity against |r6⟩ differs from the fidelity
against |r1⟩, and can be calculated in a similar way.



Appendix C

Eigenvalues and Eigenstates of

the Hamiltonian of the SN

shown in Fig.(3.20)

The eigenvalues and Eigenstates of the Hamiltonian HXY are given in table C.1.
They are expressed in the site basis as labelled in Fig.(3.20).



162
APPENDIX C. EIGENVALUES AND EIGENSTATES OF THE

HAMILTONIAN OF THE SN SHOWN IN FIG.(??)

Eigenvalues Eigenstates

λ1 = −
√
2 |φ1⟩ =



1/2

−1/
√
2

1/2
√
2

1/2
√
2

0
0
0



λ2 = 0 |φ2⟩ =



−1/
√
2

0
1/2
1/2
0
0
0



λ3 =
√
2 |φ3⟩ =



1/2

1/
√
2

1/2
√
2

1/2
√
2

0
0
0



λ4 = 3
2 |φ4⟩ =



0
0

1/4

1/2
√
2√

3/2
√
2√

3/2
√
2

−1/4



λ5 = 1
2 |φ5⟩ =



0
0√
3/4

−
√
3/2

√
2

−1/2
√
2

1/2
√
2

−
√
3/4



λ6 = −1
2 |φ6⟩ =



0
0

−
√
3/4

−
√
3/2

√
2

1/2
√
2

1/2
√
2√

3/4



λ7 = 3
2 |φ7⟩ =



0
0

−1/4

1/2
√
2

−
√
3/2

√
2√

3/2
√
2

1/4


Table C.1: Eigenvalues (left) and Eigenstates (right) of the Hamiltonian HXY



Appendix D

Excitation amplitudes evolving

different phases

In the SN system shown in Fig.4.13, injecting a single-excitation at site 5 at t = 0

will result in the excitation being evolving through both chains of the SN. An exci-
tation amplitude evolves through the chain A of length NA and another amplitude
evolves through the chain B of length NB. The state at later time is determined
by the different phases that result from the excitation amplitudes evolving through
A and B, as we now describe.

Consider the excitation amplitude that evolves through A. This will evolve to
site 1 at tm,A with an overall phase factor of e−iα(NA) = (−i)NA−1 = i, as NA = 4.
Thus, the excitation amplitude at site 1 at tm,A will be given by

|site1(tm,A)⟩ =
i√
2
|r1⟩ . (D.1)

Then, this excitation amplitude evolves back from site 1 to being in a superposition
state between sites 4 and 5, acquiring another overall phase of i, so the amplitude
at 2tm,A will now be given with an overall phase of -1,

|site4,5(2tm,A)⟩ = −1

2
(|r4⟩+ |r5⟩). (D.2)

Evolving the system for another duration of 2tm,A, the amplitude at 4tm,A will be
given by

|site4,5(4tm,A)⟩ =
1

2
(|r4⟩+ |r5⟩). (D.3)

Consider now the other amplitude of the excitation, that evolves through chain
B, which by design has weaker couplings. This will therefore take twice the time
that the excitation amplitudes take to evolve through chain A, so tm,B = 2tm,A.
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DIFFERENT PHASES

The amplitude of the single excitation injected at site 5 that evolves through the
chain B ends up in a superposition state between sites 8 and 9 at tm,B, with an
overall phase factor of (−i)NB−1 = i, but in addition because the coupling between
sites 5 and 6 is negative, the overall phase is −i,

|site8,9(tm,B)⟩ = −i1
2
(|r8⟩+ |r9⟩). (D.4)

Following this, the excitation amplitude will evolve back to being in a superposition
state between sites 4 and 5 at 2tm,B, with another overall phase of i and a further
relative phase of −1 at site 5 because of the negative coupling between sites 5 and
6. Thus, the amplitude at 2tm,B will be given by

|site4,5(2tm,B)⟩ =
1

2
(|r4⟩ − |r5⟩). (D.5)

We have seen how the excitation amplitudes evolve through each chain. These
can be combined to give the state of the system at 2tm,B, which will simply be
the sum of equations Eq.(D.3) and Eq.(D.5), as 2tm,B = 4tm,A, so the state of the
system at 2tm,B is given as

|ψ(2tm,B⟩ =
1

2
(|r4⟩+ |r5⟩+ |r4⟩ − |r5⟩) = |r4⟩ . (D.6)

It is now clear that if there is no difference in the excitation time through each
chain (i.e., tm,A = tm,B), then the state of the system at 2tm,B will simply be the
sum of Eq.(D.2) and Eq.(D.5), as 2tm,B = 2tm,A, so the state would be given as

|ψ(2tm,B⟩ =
1

2
(− |r4⟩ − |r5⟩+ |r4⟩ − |r5⟩) = − |r5⟩ . (D.7)

We note that if we evolve for another 2tm,B, then both equations (Eq.(D.6) and
Eq.(D.7)) will evolve back to |r5⟩, demonstrating periodicity with period 4tm,B.



Appendix E

Difference between Cmax and

Cmin for multi-chain SN and

spin chain systems

We show the difference between Cmax and Cmin (Jdiff, Eq. (4.22)), for a spin chain
system and a multi-chain SN system, both of the same size N . This is done for
various N and various multi-chain SN systems (three-chain SN, four-chain SN,
five-chain SN, and six-chain SN). The plots demonstrate that Jdiff is larger in
spin chain systems and increases as the number of chains in the multi-chain SN
increases, Fig.E.1.
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MULTI-CHAIN SN AND SPIN CHAIN SYSTEMS

Figure E.1: The difference between the largest coupling Cmax and the smallest coupling
Cmin (Jdiff, Eq. (4.22)) for a spin chain of size N and a multi-chain SN of the same size
N . This is done for various N and for various multi-chain SN. a) three-chain SN, b)
four-chain SN, (c) five-chain SN, and (d) six-chain SN. Inset: the difference between the
values obtained from spin chains and the values obtained from multi-chain SN.



Appendix F

Optimal number of chains in

an SN

The plot shown in Fig.F.1 (blue line) illustrates that the effect of fabrication errors
(coupling and on-site energy errors), on the averaged routing fidelity, is similar
for all the different SN systems, which is in agreement with what has been shown
previously in Fig.4.29. On the other hand, the effect of phase timing errors becomes
more damaging to the fidelity as the SN contains more chains, Fig.F.1 (orange line).
This is expected, as a SN with more chains contains more diamonds, and so the
effect of the phase timing error (that occurs with each diamond) becomes more
dominant. The plot also shows that Jdiff (Eq.(4.22)) becomes smaller as the SN
contains more chains, Fig.F.1 (green line).

It can be observed from Fig.F.1 that there is a trade-off between the phase
timing error (which becomes more damaging with SN containing more chains) and
the value of Jdiff, Eq. (4.22), (which is better, at least for some implementations,
with SN containing more chains). The highest fidelity observed, in the presence
of phase timing errors, is ≈ 89% for the three-chain SN, from which the Jdiff is
observed to be ≈ 0.39. Smaller values of Jdiff can be observed for SN systems
containing more chains, but this comes at the cost of smaller fidelity. Therefore,
we can find the optimal SN by considering the figure of merit OptSN = Jdiff/F (t)

and determine its minimum. This is because for the perfect case, Jdiff = 0 and
F (t) = 1, the figure of merit OptSN = 0, while for the worst case, Jdiff = 1 and
F (t) = 0, the figure of merit OptSN = ∞. The averaged fidelity F (t) used in the
figure of merit is the orange dotted line shown in Fig.F.1(a). By analysing each SN
with the OptSN figure of merit we find that the six-chain SN might be the optimal
SN, as it has the lowest OptSN of ≈ 0.25.

From another perspective, choosing which SN is the optimal SN might depend
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Figure F.1: a) The averaged routing fidelity F (t), when it is measured at the first time
it forms, in the presence of fabrication errors (blue) and phase timing error (orange), with
error strength of 5%. The difference between the maximum and minimum couplings, Jdiff,
for each SN is also plotted (green). b) The figure of merit OptSN. The total number of
sites in each SN is N = 12.

on experimental preferences. For example, if in a practical situation, the value of
Jdiff is not an issue, meaning that the system can be built regardless of the value
of Jdiff, then one could use the three-chain SN, as it has the highest fidelity in the
presence of phase timing error, Fig.F.1 (orange line). On the other hand, if the
effect of the phase timing error is controlled and kept very small, then one may
use SN containing more chains (e.g., six-chain SN) because it has smaller Jdiff.
Therefore, with more details of the physical preferences, on whether Jdiff is not a
constraint (i.e., the system can be easily built even when Jdiff is large), or whether
the phase timing error can be kept small. One can choose the optimal SN by
trading off between the two.
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Derivation of Eq.(5.7)

Since we want to superpose sites 2 and 3, the operators that we need for the
unitary transformaction are Σ− = σ+

2 σ
−
3 − σ+

3 σ
−
2 and P = n↑

2n
↓
3 + n↓

2n
↑
3. Applying

the transformation unitary, Eq.(5.4), on the Hamiltonian of two USC, Eq.(5.6), as
(e−ϑΣ−)HXY (e

ϑΣ−) will give us the transformed Hamiltonian HXY that represents
the SN. We will now solve this transformation step by step.

First, we will solve HXY e
ϑΣ− . This is expanded as

HXY e
ϑΣ− = HXY −HXY P +HXY P cos(ϑ) +HXYΣ− sin(ϑ). (G.1)

The second term of Eq.(G.1) is expanded as

−HXY P = −σ+
1 σ

−
2 n

↑
2n

↓
3 − σ+

1 σ
−
2 n

↓
2n

↑
3 − σ+

2 σ
−
1 n

↑
2n

↓
3 − σ+

2 σ
−
1 n

↓
2n

↑
3

+ σ+
3 σ

−
4 n

↑
2n

↓
3 + σ+

3 σ
−
4 n

↓
2n

↑
3 + σ+

4 σ
−
3 n

↑
2n

↓
3 + σ+

4 σ
−
3 n

↓
2n

↑
3,

(G.2)

but since the operators at different sites commute and σ+
i n

↑
i = (σ+

i )
2σ−

i = 0 and
σ−
i n

↓
i = (σ−

i )
2σ+

i = 0, the 2nd, 3rd, 6th, and 7th terms vanish, so Eq.(G.2) is given
by

−HXY P = −σ+
1 σ

−
2 n

↑
2n

↓
3 − σ+

2 σ
−
1 n

↓
2n

↑
3 + σ+

3 σ
−
4 n

↑
2n

↓
3 + σ+

4 σ
−
3 n

↓
2n

↑
3. (G.3)

Similarly, the third term of Eq.(G.1) is expanded as

HXY P cos(ϑ) = cos(ϑ)
[
σ+
1 σ

−
2 n

↑
2n

↓
3 + σ+

2 σ
−
1 n

↓
2n

↑
3 − σ+

3 σ
−
4 n

↑
2n

↓
3 − σ+

4 σ
−
3 n

↓
2n

↑
3

]
.

(G.4)
With the fact that σ+

i σ
−
i = n↑

i and σ−
i σ

+
i = n↓

i , the last term of Eq.(G.1) is
expanded as

HXYΣ− sin(ϑ) = sin(ϑ)
[
σ+
1 σ

−
3 n

↓
2 − σ−

1 σ
+
3 n

↑
2 − σ−

4 σ
+
2 n

↑
3 + σ+

4 σ
−
2 n

↓
3

]
. (G.5)
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Therefore, Eq.(G.1) is written as

HXY e
ϑΣ− = σ+

1 σ
−
2 + σ+

2 σ
−
1 − σ+

3 σ
−
4 − σ+

4 σ
−
3

+
[
−σ+

1 σ
−
2 n

↑
2n

↓
3 − σ+

2 σ
−
1 n

↓
2n

↑
3 + σ+

3 σ
−
4 n

↑
2n

↓
3 + σ+

4 σ
−
3 n

↓
2n

↑
3

]
+ cos(ϑ)

[
σ+
1 σ

−
2 n

↑
2n

↓
3 + σ+

2 σ
−
1 n

↓
2n

↑
3 − σ+

3 σ
−
4 n

↑
2n

↓
3 − σ+

4 σ
−
3 n

↓
2n

↑
3

]
+ sin(ϑ)

[
σ+
1 σ

−
3 n

↓
2 − σ−

1 σ
+
3 n

↑
2 − σ−

4 σ
+
2 n

↑
3 + σ+

4 σ
−
2 n

↓
3

]
.

(G.6)

Now, we will calculate e−ϑΣ−
[
HXY e

ϑΣ−
]
, which is expanded as

e−ϑΣ−
[
HXY e

ϑΣ−
]
= HXY e

ϑΣ− − P
[
HXY e

ϑΣ−
]

+ P cos(ϑ)
[
HXY e

ϑΣ−
]
− Σ− sin(ϑ)

[
HXY e

ϑΣ−
]
.

(G.7)

The second term of Eq.(G.7) is expanded as

−P
[
HXY e

ϑΣ−
]
= −P

[
σ+
1 σ

−
2 + σ+

2 σ
−
1 − σ+

3 σ
−
4 − σ+

4 σ
−
3

]
− P

[
−σ+

1 σ
−
2 n

↑
2n

↓
3 − σ+

2 σ
−
1 n

↓
2n

↑
3 + σ+

3 σ
−
4 n

↑
2n

↓
3 + σ+

4 σ
−
3 n

↓
2n

↑
3

]
− P cos(ϑ)

[
σ+
1 σ

−
2 n

↑
2n

↓
3 + σ+

2 σ
−
1 n

↓
2n

↑
3 − σ+

3 σ
−
4 n

↑
2n

↓
3 − σ+

4 σ
−
3 n

↓
2n

↑
3

]
− P sin(ϑ)

[
σ+
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Since n↑
iσ

−
i = σ+

i (σ
−
i )

2 = 0 and n↓
iσ

+
i = σ−

i (σ
+
i )

2 = 0, only the first term of
Eq.(G.8) survive and the remaining terms vanish, so Eq.(G.8) is given by

−P
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and similarly the third term of Eq.(G.7) is now given by

P cos(ϑ)
[
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]
= cos(ϑ)
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+
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↑
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+
3 σ

−
4

]
.

(G.10)
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The last term of Eq.(G.7) is expanded as
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Here, all terms vanish except the first term, and so this equation is now given by
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Therefore, the transformed Hamiltonian is now given by
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Now, we can simplify the equation by summing together the similar terms. The
sum of the 2nd and 5th terms is given by

(−σ+
1 σ

−
2 − σ+

2 σ
−
1 + σ+

3 σ
−
4 + σ+

4 σ
−
3 )(n

↑
2n

↓
3 + n↓

2n
↑
3), (G.14)

which with the fact that n↑
2n

↓
3 + n↓

2n
↑
3 = I, becomes equal to −HXY , and when

summed with the 1st term, it gives 0, as the 1st term is equal to HXY .

Similarly, the sum of the two cosine terms (3rd and 6th terms) results in:
cos(ϑ)HXY . The sum of the sine terms (4th and last terms) is given by

sin(ϑ)
[
(σ+

1 σ
−
3 + σ+
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−
1 )(n

↓
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−
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3 − n↑

3)
]
, (G.15)
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and so the transformed Hamiltonian is now given by

HXY =e−ϑΣ−
[
HXY e
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]
=
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3)
]
.
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