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Abstract

We investigate the representation of the symmetric group Sn derived from lin-

earizing the action of Sn on the power set, P(Xn), of Xn := {1, . . . , n}, on the power

set of the power set, PP(Xn), of Xn, and, finally, on the set of all topologies on

Xn, Top(Xn). Moreover, we prove that the latter two cases give an algebra faithful

representation of the symmetric group Sn.

We decompose the representation of the symmetric group Sn on CY , into irre-

ducibles, for some particular invariant subsets, Y , of P(Xn) and PP(Xn), in the

case n = 2, 3, 4. In the general case, we show that for some typical invariant subsets,

Y ⊂ PP(Xn) the representation on CY is explicitly a tensor product of representa-

tions that already have an explicit decomposition into irreducibles.

We reduce the action of Sn on Top(Xn) to an action on the set of reflexive,

transitive relation on Xn. We use this presentation to find orbits, O ⊂ Top(Xn),

such that CO is an algebra faithful representations, and orbits that are in bijection

with orbits of the action of Sn on the set of Young tabloids.
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Chapter 1

Introduction and Overview

1.1 Introduction

In the representation theory of finite groups there are special groups that, beyond

some very general level of theory, have their own special representation theory. And

then there are collections of groups that it is natural to try to study together.1 For

example, an important part of the representation theory of the symmetric groups Sn

can be studied taking them together, with n as a variable. Eventually this unification

breaks down. But in principle one can still ask questions about constructions in

symmetric group representation theory that make sense for all n. Before setting out

the problems we consider here, let us start by giving some more standard examples.

Let G be a finite group and CG the corresponding complex group algebra. For

each x ∈ CG there is an orbit under the left action of CG on itself, denoted CGx. For

example putting x = eG :=
∑

g∈G g we have CGeG = CeG. In other words element

eG induces a 1-dimensional left ideal and hence left module. Of course every group

has a trivial representation, and this module CeG induces the trivial representation.

In general there is a 1-dimensional space of such elements for each 1-dimensional left

ideal. The number of such ideals depends on G but for example for the symmetric

group Sn there is exactly one more, corresponding to the alternating representation:

we write fn =
∑

g∈Sn sgn(g) g.

1A note on references: This introduction aims for a very basic exposition, so for the most part
hopefully references will not be needed until later. The first sentences are already an example of
this. Possible general references on the collection of finite groups themselves would include [Asc04,
CCea85], among very many others; but then informally (and loosely) the general representation
theory could simply be expected to follow the ‘pattern’ of families of the groups themselves.
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CHAPTER 1. INTRODUCTION AND OVERVIEW

Given two symmetric groups Sn and Sm we write Sn�Sm for the obvious Young

subgroup of Sn+m. Note that this induces an image of en := eSn in CSn+m. Let

us write en also for the image, when no ambiguity arises. This abuse of notation is

relatively safe in that enen = n!en in both CSn and CSn+m. We will call an element

x a pre-idempotent if xx = cxx for some non-zero cx ∈ C. (It follows that (1/cx)x

is idempotent.)

Given x ∈ CSn and y ∈ CSm we write x � y for the corresponding element in

CSn+m. This gives a safer notation en � 1 (or even en � 1m) for the image of en in

CSn+m. Similarly e2 � e2 ∈ CS4 and so on.

The � notation generalises in the obvious way: given a composition of n: n =

n1 + n2 + ... + nl we have a subgroup �li=1Sni of Sn. For example �li=1e2 is an

element of CS2l. We can ask questions like: can we give closed form expression for

the irreducible content of CS2l �li=1 e2 for all l together?

Notation aside: Above we expressed n as a composition. But it will be clear

that up to isomorphism the representation CSn �li=1 Sni does not depend on the

order of terms in the composition. Thus here compositions have representative

integer partitions — compositions of n such that n1 ≥ n2 ≥ ... ≥ nl. We will write

Λn for the set of integer partitions of n (thus Λ3 = {3, 2 + 1, 1 + 1 + 1} and so

on); and write Λ for the set of all integer partitions. Of course Λn indexes the cycle

structures of elements of Sn; and hence can also be used to index complex irreducible

representations (see later). We can note already that, denoting our partition of n

by λ, and setting eλ = �li=1eni , then CSneλ is sometimes called the Young module

Yλ. We have, for example, fl+1CSn �li=1 eni = 0 where n is at least l + 1, simply by

the pigeonhole principle and the identity f2e2 = 0. Similarly dim(fλ′CSneλ) = 1 —

the key fact for properties of Specht modules (see also later; here λ′ is transpose λ).

For example, let λ = (2, 1). Then we have

+

−

+

−

+

−

+

−

+

−

+

−

Figure 1.1: Spanning set in f(2,1)CS3e(2,1).
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CHAPTER 1. INTRODUCTION AND OVERVIEW

Note that the first two elements in Figure1.1 are zero and the final four elements

are nonzero dependent.

For another example of all-n Sn representation theory let us use the category

SET . Consider the set n := {1, 2, ..., n}. The morphism sets of form SET (n, n)

are monoids, and indeed Sn is exactly the group of bijections in SET (n, n). This

means in particular that for each m the set SET (n,m) is an Sn-set via the category

composition, and the space CSET (n,m) is a complex representation, for every n.

Observe for example that

f3CSET (n, 2) = 0 (1.1)

for all n ≥ 3. (A convenient way to represent elements f of SET (n,m) is by

f 7→ f(1)f(2)...f(n), i.e. as words of length n in m such as 11122, 12122 ∈ SET (5, 2)

— see e.g. [Gre80, §2.1]. If m = 2 then at least two of the first three ‘letters’

must be the same, and the f3 property follows.) We can deduce from this that the

irreducible decomposition of the representation CSET (n, 2) contains only irreducible

representations with integer-partition labels containing at most two components

(since these are the representations for which ρ(f3) = 0). Indeed fm+1CSET (n,m) =

0 for all n, leading to corresponding decomposition result for all n for every fixed m.

Recall that every function F : S → T defines an equivalence relation on set S by

s ∼F s′ if F (s) = F (s′). For T = m for some m, the ‘shape’ of such an equivalence

relation on finite set S is the composition of |S| giving the list of sizes of classes:

ni = |F−1(i)|. Let us write SET λ(S,m) for the subset of SET (S,m) of functions of

shape λ (define |λ| to be
∑

i λi, so |λ| = |S|). From our proof of (1.1) above we see

that these subsets are fixed under the Sn action in case S = n. Formally we have

SET (S,m) =
⊔
λ∈Nm0

SET λ(S,m) (1.2)

(with many of these subsets empty in general, unless |λ| = |S|). One can check

that CSET λ(n,m) ∼= CSneλ. Note that the irreducible content of the latter outer

product is accessible by relatively straightforward counting rules (entirely straight-

forward in case m = 2; see later).

Much less straightforward is to analyse a further iteration of the SET (−,m)

operation, say, SET (SET (n, 2), 2), as an Sn-set. This time the decomposition as in

(1.2) to SET λ(SET (n, 2), 2) has λ a composition of 2n into two parts. Hence it is

10



CHAPTER 1. INTRODUCTION AND OVERVIEW

given in effect by λ1 ∈ {0, 1, ..., 2n}. This λ1 organises the elements into groupings

according to Pascal’s triangle. Thus for example when n = 3 and λ1 = 2 there are

28 elements (the third entry in the 23 row of the triangle). Returning to our word-

representation we have SET (3, 2) = {111, 112, 121, 122, 211, 212, 221, 222}. Using

this order then for example 21212222 ∈ SET (2,6)(SET (3, 2), 2). The S3 action is via

the place-permutations on the labeling words 111,112, and so on. One sees almost

immediately that 21212222 generates a subset of order 6 with no fixed points, thus

a copy of the regular S3-set. More generally the Sn action preserves the shape of the

labelling words. And again each such shape µ, say, is determined by µ1 (for 112 we

have µ1 = 2 and so on). So for given λ1 we can index subsets by partitions µ lying

in {0, 1, ..., n}λ1 . (The subset of 6 above is part of the (2,1) subset, which altogether

has order 9. The (1,0), (2,0), (1,1), (2,2), (3,1) (3,2) subsets all have order 3 and

(3,0) has order 1, making 28.) But the general structure is quite rich, beyond such

low rank examples.

Now we turn to consider constructions of form P(X) where P is the power-set

function (compare for example with Manes [Man03, Ex.2.12]) and X is an Sn-set.

In fact consider the map Θ : P(X)→ SET (X, 2) given by Θ(a)(x) = 1 if x ∈ a and

= 2 otherwise. The map Θ̄ : SET (X, 2)→ P(X) given by x ∈ Θ̄(f) ⇐⇒ f(x) = 1

is inverse to Θ (see later), so they are isomorphisms. And so we can immediately

apply decomposition results for SET (n, 2) and CSET (n, 2) — such as those above

— to P(X) and CP(X) in case X = n (an Sn-set in the obvious way). What is

less clear is the decomposition of P(X) for more general Sn-sets. A very natural

case is to iterate the P function starting with X = n. This gives us a heirarchy

of representation theory questions: to determine the irreducible decomposition of

Pd(n) for all n for different values of d. Of particular interest is the case d = 2. One

of our original motivating questions (nominally unrelated to stability properties in

Sn representation theory) is to try to find models of low-dimensional topology (i.e.

Euclidean metric topology) in finite set topology. (A second motivating question on

the topology side was to answer, in greater generality, a for-all-n finite set topology

exam question from the Topology course [Mar21] — see later.) And of course the

set of topologies on X, denoted by Top(X), is contained in P2(X).

It is well known that a decomposition of a complex problem is breaking it down

into simple distinct parts. Each part can be represented as subsets of the original

problem to manage and better understand it. Therefore, this hierarchical partition

11



CHAPTER 1. INTRODUCTION AND OVERVIEW

help us to understand the original problem that we want to solve.

For example, in this work, we study P2(X) under the action of symmetric group,

first by breaking it down into closed subsets. Note that P(X) is a finite set of finite

sets. Thus, there is an integer partition that describes the list of cardinalities of

elements in an element of PP(X). We can decompose such a set of sets accord-

ing to fixing this integer partition. Let us write PλP(X) for the subset of P2(X)

with this integer partition λ (for example {{1}, {1, 2}} and {{2}, {1, 2}} belong in

P(2,1)P(X)). The symmetric group action respects this decomposition. (It is the

image under isomorphism Θ of the µ decomposition mentioned above.) So, after

understanding this decomposition, one possible next step is to see if the action de-

composes further. Alternatively, we can pass at this stage to a linear representation

from each component of the decomposition, and attempt to decompose linearly - for

each into irreducible representations.

1.2 Overview of results

Let n ∈ N and Xn = {1, . . . , n}, a set of cardinality n. Let P(Xn) be the power set

of Xn. The action of the symmetric group Sn on Xn, where f.x = f(x), gives an

action of Sn on P(X), where f I A = f [A], the image of A under f . This gives a

representation of Sn on CP(Xn), by linearising. In Section 3.2.2 we will show that

this is the same action as discussed in the Introduction.

As shown in the Introduction, if n ≥ 2, the representation of Sn on CP(Xn) does

not contain all irreducible representations of Sn, and hence the representation is not

algebra faithful. Furthermore, each irreducible representation of the decomposition

of CP(Xn) into irreducible arises from Young diagram of depth ≤ 2. In order to

prove this in a different way, we will consider the following partition of P(Xn),

P(Xn) =
n⊔
i=0

Pi(Xn).

where

Pi(Xn) := {A ⊆ Xn : |A| = i}.

Because each Pi(Xn) is invariant under the action of symmetric group Sn, then we

12



CHAPTER 1. INTRODUCTION AND OVERVIEW

have, as representations of Sn,

CP(Xn) ∼=
n⊕
i=0

CPi(Xn).

This will enable us to apply the results in [Jam06, Theorem 3.2.10], as we now

explain. Let i ∈ {0, 1, . . . , n}. Let Ω(n−i,i) be the set of young tabloids of shape

(n− i, i). Then

Pi(Xn) ∼= Ω(n−i,i)

as Sn-sets (See Proposition 3.2.13). A theorem in James [Jam06, Theorem 3.2.15]

then says that

CPi(Xn) ∼= S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) ⊕ · · · ⊕ S(n−i,i)

when i ≤ n− i.

A prime motivation for this thesis was to investigate the representation of Sn on

PP(Xn), the power set of the power set of Xn, and on the set Top(Xn) of topologies

on Xn. A main conclusion is that the representations are considerably richer.

Let us look at the action of Sn on CPP(Xn). A general result is that all ir-

reducible representation of Sn occur in CPP(Xn), and hence, we have that the

representation of Sn is algebra faithful. This is done in §4.4. In order to have finer

results, we consider the following partition of PP(Xn),

PP(Xn) =
2n⊔
i=0

PiP(Xn),

where all terms are invariant under the action of Sn. Furthermore, we can partition

each PiP(Xn) into the subsets, Pi,[a1,...,ai]P(Xn), where a1, . . . , ai ∈ {0, . . . , n} satisfy

a1 ≤ a2 ≤ · · · ≤ ai, as defined below

Pi,[a1,...,ai]P(Xn) ={A ⊆ P(Xn) : |A| = i; and, picking any order on the elements of A, so

A = {M1, . . . ,Mi}, then |M1| = af(1), . . . , |Mi| = af(i), for some

permutation f of {1, . . . , i}}.

13



CHAPTER 1. INTRODUCTION AND OVERVIEW

We then have, see Equation (4.4):

PiP(Xn) =
⊔

[a1,...,ai]∈{0,1,...,n}i
0≤a1≤a2≤···≤ai≤n

Pi,[a1,a2,...,ai]P(Xn)

Some of the terms in the partition may be empty sets, for instance, Pn,[n,n,...,n]P(Xn),

if n ≥ 2.

Some sample results that we have are written below, and can be found in Theorem

4.3.24 and Section 4.4 are:

1. Let 0 ≤ a1 < a2 < · · · < ai ≤ n, then we have:

CPi,[a1,...,ai]P(Xn)

∼= [

min(a1,n−a1)⊕
j1=0

S(n−j1,j1)]⊗ [

min(a2,n−a2)⊕
j2=0

S(n−j2,j2)]⊗ · · · ⊗ [

min(ai,n−ai)⊕
ji=0

S(n−ji,ji)]

2.

CPn+1,[0,1,...,n]P(Xn) ∼= CSn,

the regular representation of Sn, and so it is algebra faithful representation of

Sn.

Now, let Top(Xn) be the set of all topologies on Xn. We know that Top(Xn) ⊂
PP(Xn), and moreover Top(Xn) is invariant under the action of symmetric group Sn

(see §5.1). We also have that all irreducible representation of Sn occur in CTop(Xn)

( see §5.2), and as we will see in §5.4.5 in several different ways, and hence the

representation of Sn on CTop(Xn) is algebra faithful, (see §5.1.2).

We investigate the partition of Top(Xn) into orbits. Let Rel(Xn) be the set of

all relations in Xn that are reflexive and transitive. We recall [May03, Proposition

1.16.] that we have a bijection

Rel(Xn) ∼= Top(Xn),

which we prove in this thesis preserves the action of Sn; see Proposition 5.3.25. This

allows us to understand diagrammatically the action of Sn on the set of topologies

in Xn, and in which orbits the restriction of the action of Sn is free. For instance,
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the diagram

3
��

4
��

2

@@^^

YY

1

OO

GGWW

YY

is identified with the, reflexive and transititive relation, ≤, on X4, where 1 ≤ 1,

2 ≤ 2, 3 ≤ 3, 1 ≤ 2, 1 ≤ 3, 1 ≤ 4, 2 ≤ 3, 2 ≤ 4. We can see that the action of S4 on

OrbS4(≤) is not free, because: e.g let (34) ∈ S4. Then

(34) .

3
��

4
��

2

@@^^

YY

1 YY

OO

GGWW

YY

=

4
��

3
��

2 YY

@@^^

1 YY

OO

GGWW

=

3
��

4
��

2 YY

@@^^

1 YY

OO

GGWW

Whereas the action of S4 of the orbit of the relation ≤′, on X4, represented below:

≤′=

3
��

2

OO

��
4

^^

��

1

OO

YY

==

is free, and in particular C( OrbS4(≤′)) is algebra faithful.

Readers may have noticed some resemblance between these diagrams of relations

and Young tabloids. We investigate this relation further in §5.4.6. In particular we

prove that the set of Young tabloids can be embedded in the set of topologies in at

least two ways, using leveled topologies.

15



Chapter 2

Preliminaries

In this chapter, we recall some fundamental concepts and some theoretical basis

that be useful in our research.

2.1 A resumé of elementary linear algebra

Definition 2.1.1. Suppose X is a finite, non-empty set. Then the free C-vector

space over X, denoted C(X), has as underlying set the set of formal linear combi-

nations, of elements of X, so

C(X) :=

{∑
x∈X

λxx|λx ∈ C, for all x ∈ X

}

The addition of elements of C(X), and their multiplication by scalars in C, is defined

below:

1. (∑
x∈X

λxx

)
+

(∑
x∈X

αxx

)
:=
∑
x∈X

(λx + αx)x,

2.

α

(∑
x∈X

λxx

)
=
∑
x∈X

(αλx)x.

Clearly X is a basis of C(X). By abuse of language we identify x ∈ X with

16
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∑
y∈X δ(y, x) · x ∈ C(X), where

δ(y, x) =

1, y = x

0, y 6= x.

.

Definition 2.1.2. Let X and Y be finite sets. Given a map f : X → Y , the

linearisation of f is the unique linear map f# : C(X)→ C(Y ) such that x 7→ f(x),

on the basis X of C(X) and Y of C(Y ). So

f#

(∑
x∈X

λxx

)
=
∑
x∈X

λxf(x).

Definition 2.1.3. Suppose X is a finite, non-empty, set. Let f : X → X be a map.

Then the trace of a linear map f# : C(X)→ C(X) is defined by :

Tra(f#) = |{x ∈ X|f(x) = x}|.

Here, |S| denotes the cardinality of a finite set S.

2.2 A resumé of group representation theory

We first introduce the symmetric group. Then we show some general concepts about

the representation of group.

Definition 2.2.1. (see for example [Fra97, Definition 2.4] and [Sag13, Section 1.1].)

Let n be a positive integer and Xn := {1, . . . , n}. The symmetric group, Sn, consists

of the set of all bijective functions from Xn to itself, with group-law fg = f ◦ g.

Notation 2.2.2. (See for example[Jam06, pp.5].) The elements f of Sn is called a

permutation.

The order of the symmetric group is given by |Sn| = n!.

17
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We will frequently write an element of Sn as an array of two lines:

f =

 1 2 3 . . . n

f(1) f(2) f(3) . . . f(n)

 .

Let f ∈ Sn. Then the sign of f will be defined as :

sgn(f) =

+1 if f is even permutation

−1 if f is odd permutation.

Given a set X, we will also consider the group Sym(X), whose underlying set

is the set of all bijections f : X → X, and with group-law f · g = f ◦ g. Clearly

Sym(Xn) = Sn.

2.2.1 Generalities about group actions

Definition 2.2.3. (See for example [Fra97, Definition 3.17].) Let X be a set. Con-

sider (G, ·) a group, whose identity is denoted e. A (left) group action α of G on X

is a function,

α : G×X → X

(g, x) 7→ g · x.

that satisfies the following two axioms:

1. ∀g, h ∈ G andx ∈ X, then g · (h · x) = (gh) · x;

2. ∀x ∈ X, then e · x = x.

A set X is equipped with an action of G is said to be a G-set.

Lemma 2.2.4. Let X be a set. Consider Sym(X) is the symmetric group on X.

Then we have an action of Sym(X) on X given by the mapping

α : Sym(X)×X → X

(f, x) 7→ f · x

18
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where f · x := f(x).

Proof. We need to prove that α is a group action. This means we need to show the

two axioms in Definition 2.2.3.

1. Let f, g ∈ Sym(X) and y ∈ X. Then

g.(f.y) = g.(f(y))

= g(f(y))

= (g ◦ f)(y)

= (g ◦ f).(y).

So the axiom (1) holds;

2. Let id ∈ Sym(X) is the identity in Sym(X), y ∈ X. Then:

id.y = id(y)

= y.

So the axiom (2) holds.

Therefore, α is a group action.

Definition 2.2.5. [Lan12, pp 27.] Let G be a group. Let X and Y be G-sets. A G-

set map, also known as a morphism of G-sets, or as a map preserving the G-actions,

f : X → Y is a function X → Y such that

g.f(x) = f(g.x),

for all g ∈ G, x ∈ X.

Definition 2.2.6. Let G be a group. Let X and Y be G-sets. A G-set map

f : X → Y is said to be isomorphism if it is bijection such that

g.f(x) = f(g.x),

for all g ∈ G, x ∈ X.

19
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2.2.2 Generalities about group representations

Definition 2.2.7. (See for example [Lan12, Example in pp 8].) Let V is a finite

dimensional complex vector space. We let GL(V ) denote the group of all bijective

linear map T : V → V . The group-law is given by the usual composition: TT ′ =

T ◦ T ′.

Definition 2.2.8. (See for example [FH13, Definition 1.1], [CSST10] and [Ste12,

Definition3.1.1] .) Let G be a finite group. A linear representation of G is a pair

(V, ρ) of a finite -dimensional complex vector space V and a group homomorphism

ρ : G→ GL(V )

g 7→ ρ(g).

This means that:

ρ(g1g2) = ρ(g1)ρ(g2), for every g1, g2 ∈ G.

The dimension or degree of ρ is, by definition dimC(V ). If the representation ρ has

dimension 0, then ρ is called a zero representation.

Sometimes we call either V or ρ is a representation and we often write gv for

ρ(g)(v).

Example 2.2.9. If V is any vector space, we have a representation of G on V

where ρ(g) = idV , for all g ∈ G. If V = C, we call this representation the trivial

representation of G.

Example 2.2.10. Let X3 = {1, 2, 3}. The underlying set of the group S3 =

Sym(X3), as defined in (2.2.1), is

S3 = {id, (12), (23), (13), (132), (123)}

Let V = C3. We use the basis {e1, e2, e3} of C3. Any linear map T : C3 → C3

can be represented by 3 × 3 matrix. An example of a representation of S3 in V is
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given by the group homomorphism

ρ : S3 → GL(V )

σ → (rij)3×3,

where

rij =

1, if σ(j) = i

0, otherwise.

Explicitly

ρ(id) =


1 0 0

0 1 0

0 0 1

 , ρ((12)) =


0 1 0

1 0 0

0 0 1

 , ρ((23)) =


1 0 0

0 0 1

0 1 0

 ,

ρ((13)) =


0 0 1

0 1 0

1 0 0

 ρ((132)) =


0 0 1

1 0 0

0 1 0

 , ρ((123)) =


0 1 0

0 0 1

1 0 0

 .

Note: This representation is called the defining representation.

2.2.3 The linearisation of a group action

Definition 2.2.11. Suppose that G has a (left) group action on a finite set X,

denoted by:

G×X → X

(g, x) 7→ g · x.
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The linearised representation of G associated to G-set X, has underlying vector

space C(X), and

g ·
∑
x∈X

σxx =
∑
x∈X

σx(g · x),

for all g ∈ G and ∑
x∈X

σxx ∈ C(X).

Definition 2.2.12. (See for example [Ste12, Definition 4.1.1.].) Let (V, ρ) and

(W, ρ
′
) be two linear representation of a finite group G over C. A linear map f : V →

W is called a morphism or intertwiner (homomorphism) between two representation

of G if

fρ(g) = ρ
′
(g)f, for all g ∈ G.

Lemma 2.2.13. Let X and Y be sets and G has a (left) group action on X and Y .

Suppose f : X → Y is a map preserving action of G as defined in Definition 2.2.5,

I.e:

∀x ∈ X, g ∈ G , f(g · x) = g(f(x)).

There is an intertwiner

f# : C(X)→ C(Y )∑
x∈X

σx x 7→
∑
x∈X

σxf(x)

Definition 2.2.14. Let (V, ρ) and (W, ρ
′
) be two linear representation of a finite

group G over C. We say they are isomorphic representation if there is a linear

isomorphism φ : V → W such that

ρ
′
(g) = φ ◦ ρ(g) ◦ φ−1

for all g ∈ G.

2.2.4 Subrepresentations of representations

Definition 2.2.15. (See for example [Ste12, Definition 3.1.10].) Let ρ : G→ GL(V )

be a representation of a group G. A subspace W ≤ V is said to be G−invariant if
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one has ρ(g)(w) ∈ W , for all g ∈ G,w ∈ W .

Definition 2.2.16. (See for example [Ste12, page 16].) Let ρ : G → GL(V ) be a

representation of a group G and W ≤ V be G-invariant subspace. The representa-

tion

ρ|W : G→ GL(W )

g 7→ ρ(g)

is called the subrepresentation of ρ on W .

Definition 2.2.17. (See for example [Ste12] Definition 3.1.15.) A non-zero repre-

sentation ρ : G → GL(V ) of a group G is called irreducible or simple if the only

G−invariant subspaces of V are {0} and V .

Example 2.2.18. The trivial representation of a group G is irreducible, since it has

no proper non-zero subspace.

Definition 2.2.19. (See for example[Ste12, Definition 3.1.11, pp15.].) Let(V, ρ) and

(V
′
, ρ
′
) be two representations of a group G over a field C. The (external) direct

sum of these two representations is the representation (V ⊕V ′ , ρ⊕ ρ′), denoted by:

ρ⊕ ρ′ : G→ GL(V ⊕ V ′),

where

(ρ⊕ ρ′)(g)(v, v
′
) = (ρ(g)(v), ρ

′
(g)(v

′
)),

for each v ∈ V and v
′ ∈ V ′ .

Definition 2.2.20. (See for example [Ste12, Definition 3.1.21.] ) A representation

of a group G, ρ : G→ GL(V ), is called completely reducible or semisimple if it can

be written as the direct sum

V ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vn,

where Vi are G−invariant subspace and ρ|Vi is irreducible for all i = 1, . . . , n.

Proposition 2.2.21. (See for example [FH13, proposition 1.8.]) For any represen-
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tation V of a finite group G, there is a decomposition

V = a1V1 ⊕ a2V2 ⊕ · · · ⊕ akVk,

where the Vi are distinct irreducible representations. The decomposition of V into a

direct sum of the k factors is unique, as are the Vi that occur and their multiplicities

ai, where i ∈ {1, . . . , k}.

2.2.5 Characters of group representation

Definition 2.2.22. (See for example [FH13, Definition 2.1, pp 13.]) If (V, ρ) is a

linear representation of a group G, its character χV : G→ C is the complex-valued

function on the group defined by

χV (g) = Tra(ρ(g)),

the trace of ρ(g) : V → V , on V .

In particular, we have

χV (hgh−l) = χV (g),

so that χV is constant on the conjugacy classes of G, such a function is called a class

function. Note that χV (id) = dim(V ).

Example 2.2.23. Let X = {1, 2, 3} and suppose S3 is the symmetric group. Then

the character the defining representation of S3, shown in Example 2.2.10, denoted

by χd, is :

χd(id) = Tra
(


1 0 0

0 1 0

0 0 1


)

= 3,

χd(12) = Tra
(


0 1 0

1 0 0

0 0 1


)

= 1,
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χd(123) = Tra
(


0 1 0

0 0 1

1 0 0


)

= 0,

Proposition 2.2.24. (See for example [FH13, Proposition 2.1].) Let V be a repre-

sentation of G written as

V = V1 ⊕ · · · ⊕ Vk

where V1, . . . , Vk are irreducible representations. Then

χV = χV1 + · · ·+ χVk

where χV is the character of V and χVi is the character of Vi.

Definition 2.2.25. (See for example[FH13, pp. 14.] ) The character table of a

group G is a square matrix whose rows are labelled by the irreducible representations

of G, and columns by the conjugacy classes in G, where the entry in row and column

is the character of the representation ρ on the conjugacy class .

2.3 Algebra-faithful and group-faithful represen-

tations: generalities

Definition 2.3.1. (See for example [EH18, Section 1.1.2 ].) Let G be a finite group.

The group algebra CG is C-algebra whose underlying vector space is the free vector

space CG on the underlying set of G,

CG =

{∑
g∈G

αgg where ∀g ∈ G,αg ∈ C

}

Multiplication: let ∑
g∈G

αgg and
∑
h∈G

λhh

be two elements of CG. Then we have

(
∑
g∈G

αgg)(
∑
h∈G

λhh) =
∑
gh∈G

αgλh(gh)
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The next proposition shows that a representation of a group is essentially the

same as a representation of the corresponding group algebra.

Proposition 2.3.2. (See for example [EH18, Proposition 2.41.].) A representation

ρ : G→ GL(V ) of a group G on V , gives rise to an algebra representation ρ̂ : CG→
End(V ), the algebra of linear maps V → V , given by

∑
g∈G

αgg 7→
∑
g∈G

αgρ(g).

Definition 2.3.3. (See for example [Lan12, ChapterXVIII, §1].) Let ρ : G→ GL(V )

be a representation of a group G, in a vector space V . Then ρ is called a group-

faithful representation of G if ρ is injective, i.e.

g 6= h⇒ ρ(g) 6= ρ(h).

Example 2.3.4. Let S2 = {id, (12)} be the symmetric group of order 2. Suppose

that the representation of symmetric group S2 on R2 is given by the map

ρ : S2 × R2 → R2

where, for all (x, y) ∈ R2, we have

ρ(id)(x, y) = (x, y)

ρ((12))(x, y) = (y, x).

So, ρ(id) 6= ρ((12)). Thus, ρ is a group faithful.

Definition 2.3.5. A representation ρ : G → GL(V ) of a group G is called algebra

faithful if the algebra map ρ̂ : CG→ End(V ) is injective.

So ρ : G→ GL(V ) is algebra faithful if, and only if,

∑
g∈G

λgg 6=
∑
h∈G

λhh⇒ ρ̂
(∑
g∈G

λgg
)
6= ρ̂
(∑
h∈G

λhh
)
.

Lemma 2.3.6. If a representation ρ of a group G is algebra faithful then ρ is group

faithful.
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Proof. Let ρ : G → GL(V ) be a group representation. Suppose that ρ̂ : CG →
End(V ) is an algebra-faithful representation. This means ρ̂ is injective. We want to

prove ρ is injective. Let g 6= h, where g, h ∈ G. We know that if

∑
g∈G

λgg 6=
∑
h∈G

λhh,

then

ρ̂
(∑
g∈G

λgg
)
6= ρ̂
(∑
h∈G

λhh
)
.

If g 6= h, then g 6= h also as elements of CG. So, ρ̂(g) 6= ρ̂(h). Therefore, ρ(g) 6=
ρ(h).

Caveat: It may happen that a representation is group-faithful without it being

algebra faithful.

Example 2.3.7. Let S2 = {id, (12)} be the symmetric group of order 2. Suppose

that V = {(x, y) ∈ R2 : x + y = 0}. A representation of symmetric group S2 on V

is given by the map

ρ : S2 × V → V,

(g, v) 7→ g.v

where for all (x, y) ∈ V , we have

ρ(id)(x, y) = (x, y)

ρ((12))(x, y) = (y, x).

It is clear that ρ is group faithful. We now want to show that ρ is not algebra

faithful. Consider the algebra map

ρ̂ : CS2 → End(V )∑
g∈S2

αgg 7→
∑
g∈S2

αgρ(g).

Let id+ (12) ∈ CS2 and 0 ∈ CS2. We do this by nothing that:

id+ (12) 6= 0
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but

ρ̂
(
(id+ (12)

)
= ρ̂
(
0
)

Let us start for all (x, y) ∈ R2, we have

(id+ (12))(x, y) = id(x, y) + (12)(x, y)

= (x, y) + (y, x)

= (x+ y, y + x)

= (0, 0)

and

0.(x, y) = (0, 0).

Lemma 2.3.8. Let G be a group.

1. Suppose that V and W are isomorphic representations of G. If V is group

faithful (resp. algebra faithful), then W is group faithful (resp. algebra faith-

ful).

2. Suppose that W is a subrepresentation of V . If W is group faithful (resp.

algebra faithful), then V is group faithful (resp. algebra faithful).

Proof. 1. Let ρ : G → GL(V ) be a faithful group representation and ρ
′
: G →

GL(W ) be two group representations. Since V and W are isomorphic rep-

resentation of G, then there is an isomorphism map φ : V → W such that

ρ
′
(g) = φ ◦ ρ(g) ◦ φ−1.

We need to prove that ρ
′

is group faithful. This means we need to show that

for all g1, g2 ∈ G, if g1 6= g2, then ρ
′
(g1) 6= ρ

′
(g2). By assumptions that ρ is

faithful, then ρ(g1) 6= ρ(g2). This implies that φ ◦ ρ(g1) ◦φ−1 6= φ ◦ ρ(g2) ◦φ−1.

Hence, ρ
′
(g1) 6= ρ

′
(g2). Therefore, ρ

′
is faithful.

It is a similar with regarding to faithful algebra.

2. Let ρ|W : G→ GL(W ) be a subrepresentation of ρ : G→ GL(V ). This means

for g ∈ G,w ∈ W we have ρ|W (g)(w) = ρ(g)(w). Suppose that W is a group

faithful. We need to prove that V is also group faithful.
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Assume that g1 6= g2, where g1, g2 ∈ G. Since W is group faithful, then

ρ|W (g1) 6= ρ|W (g2). Hence, ρ(g1) 6= ρ(g2). Therefore, V is group faithful.

It is a similar with regarding to faithful algebra.

Now, consider the left action of G on itself, by left multiplication: g.x = gx. The

linearised representation of G associated to G-set G, has underlying vector space

C(G). Moreover:

g ·
∑
x∈G

σxx =
∑
x∈G

σx(g · x),

for all g ∈ G and
∑

x∈G σxx ∈ C(G). This gives exactly the regular representation

of G, below:

Definition 2.3.9. (See for example [S+16, Definition 4.4.1].) The left-regular rep-

resentation of G is defined as being the representation of G on CG, seen as a vector

space, obtained from the left-action of G on G by left multiplication.

Using another notation, the left-regular representation of G is the homomorphism

L : G→ GL(CG), where g 7→ Lg defined as

Lg
∑
h∈G

αhh =
∑
h∈G

αh(g.h),

for g, h ∈ G. Notice that on a basis element h ∈ G, we have Lgh = gh. Noting that

this representation has the well-known decomposition

D
dim(D1)
1 ⊕ · · · ⊕Ddim(Ds)

s

where {D1, . . . , Ds} is a complete set of pairwise non-isomorphic irreducible CG−modules.

Lemma 2.3.10. The left-regular representation of G is algebra faithful.

Proof. Let

L : G→ GL(CG)

be the left regular representation of the group G. We need to prove that L is algebra

faithful by showing that the algebra map L̂ : CG→ End(CG) is injective. In other
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words, we need to show that if

∑
g∈G

λgg 6=
∑
g∈G

µgg,

then

L̂
(∑
g∈G

λgg
)
6= L̂

(∑
g∈G

µgg
)
.

Now, suppose h ∈ G and ∑
g∈G

λgg 6=
∑
g∈G

µgg,

then we have

L̂
(∑
g∈G

λgg
)

(h) =
∑
g∈G

λg(gh)

and

L̂
(∑
g∈G

µgg
)

(h) =
∑
g∈G

µg(gh).

Take h = idG. Since ∑
g∈G

λgg 6=
∑
g∈G

µgg,

then this means there is at least one of elements of group g such that:

λg 6= µg.

Therefore,

L̂
(∑
g∈G

λgg
)
6= L̂

(∑
g∈G

µgg
)
.

2.4 A resumé of the representation theory of sym-

metric group Sn

Recall we considered the symmetric group and its actions in Definition 2.2.1 and

Lemma 2.2.4.

We introduce some the representation theory of symmetric group Sn concepts and
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some examples. In addition, we recall the construction of all isomorphism classes

of irreducible representation of the symmetric group Sn, which we realise as Specht

modules.

2.4.1 Young Diagrams and Young Tableaux

Definition 2.4.1. (See for example [Jam06, Definition 2.2 ] and [Ful97, pp.1].) A

partition of a positive integer n is given by an integer m ∈ {1, 2, . . . , n} and an

m-tuple of positive integers, (λ1, λ2, . . . , λm), such that:

λ1 > λ2 > · · · > λm,

and

λ1 + λ2 + · · ·+ λm = n.

We write λ ` n to denote that λ is a partition of n. The set of partitions of n is

denoted by Pn.

Example 2.4.2. The number 3 has three partitions, namely (3), (2, 1), (1, 1, 1).

Definition 2.4.3. (See for example[FH13, pp.45] and [Ste12, Definition 10.1.4].)

A Young diagram, D, is a finite collection of square boxes arranged in left-justified

rows, with the row sizes weakly decreasing. The Young diagram associated to the

partition λ = (λ1, λ2, . . . , λm) is the one that has m rows, and λi boxes on the ith

row, for i = 1, . . . ,m.

Example 2.4.4. The Young diagrams corresponding to the partitions of 3, namely

(3), (2, 1), (1, 1, 1), are:

(3)
(2, 1)

(1, 1, 1)

Definition 2.4.5. (See for example [FH13, pp.45] and [Jam06, Definiton 3.6].) A

Young tableau, t, is a Young diagram D, with n boxes, in which the n boxes have

been filled with the numbers 1, . . . , n, with each number used exactly once. We say

that the Young tableau t has the shape D. The set of Young tableax with shape D

is denoted by T (D).
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Example 2.4.6. These are all the tableaux corresponding to the partition (2, 1), of

n = 3:

1 2

3

1 3

2

2 3

1

2 1

3

3 1

2

3 2

1

Given a Young diagram D, with n boxes, clearly has n! Young tableaux with shape

D.

Definition 2.4.7. (See for example [Ful97, pp.2].) A standard Young tableau is a

Young tableaux whose entries are increasing across each row and each column.

Example 2.4.8. The only standard tableaux with shape the Young diagram given

by the partition (2, 1), of 3, are:

1 2

3
and

1 3

2

Definition 2.4.9. A canonical Young tableau is the standard Young tableau that

fills boxes of the given Young diagram with positive integers 1, 2, . . . , n in a lexico-

graphical ordered way.

E.g.

t =

1 2 3

4 5 6

7 8

9

2.4.2 An action of Sn on the set of Young tableaux

Lemma 2.4.10. (See for example [Jam06, pp.9] and [Ful97, pp. 83-84].) Let n be

a positive integer. Let D be a Young diagram with n boxes. Let T (D) be the set of

Young tableaux with shape D. We have an action, of Sn on T (D), denoted

Sn × T (D)→ T (D)

(f, t) 7→ f.t,

such that:

If f ∈ Sn and t ∈ T (D), then if a certain box of t is filled in by i then

the corresponding box of f.t is filled in by f(i).
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Example 2.4.11. Let id, (12), (123) ∈ S3 and

t =
1 3

2
.

Then the action of S3 on t is such that:

id.
1 3

2
=

1 3

2

(12).
1 3

2
=

2 3

1

(123).
1 3

2
=

2 1

3

Definition 2.4.12. (See for example [Sag13, Definition 2.1.2].) Let λ = (λ1, λ2, . . . , λm).

Then the corresponding Young subgroup of Sn is

Sλ = S{1,2,...,λ1} × S{λ1+1,λ1+2,...,λ1+λ2} × · · · × S{n−λm+1,n−λm+2,...,n}

These subgroups are named in honor of the Reverend Alfred Young who was among

the first to construct the irreducible representation of Sn[You28] and [You29].

Example 2.4.13.

S(3,2,2,1) = S{1,2,3} × S{4,5} × S{6,7} × S{8}
∼= S3 × S2 × S2 × S1.

We have that S(λ1,λ2,...λm) and Sλ1×Sλ2×· · ·×Sλm are isomorphic as groups [Sag13,

pp.54].

Definition 2.4.14. (See for example [Sag13, Definition 2.3.1].) Let λ ∈ Pn, and let

t be Young tableau of λ has rows R1, R2, . . . , Rl and columns C1, C2, . . . , Ck. The

row stabilizer of t is

Rt = SR1 × SR2 × · · · × SRl .
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The column stabilizer of t is

Ct = SC1 × SC2 × · · · × SCk .

Noting that Rt and Ct are subgroups of Sn. The labels in the ith row of t define a

subset Ri of {1, 2, 3, ..., n} and the labels in the ith column of t define a subset Ci of

{1, 2, 3, ..., n}.

Given a set X, non-empty, then a partition Q of X is a set of non-empty, pairwise

disjoint subsets of X, whose union is X. (This must not be confused with the notion

of a partition of an integer.)

Given a partition Q of X we put:

SQ = {f ∈ Sym(X) | ∀A ∈ Q, f(A) = A}.

So, we will use SQ instead of SR1 × SR2 × · · · × SRl and SC1 × SC2 × · · · × SCk as

shown in the example below 2.4.15.

Now, we will explain the condition for permutation σ ∈ Sn how to preserve every

row or column as follows:

The labels in the ith column of t define a subset Ci of {1, 2, 3, ..., n}. A permuta-

tion σ ∈ Sn belongs to Ct if, and only if:

σ(Ci) = Ci,

for each i ∈ {1, . . . ,m}. Similarly, for the row stabiliser.

Example 2.4.15. Let λ = (2, 1) and t =
1 2

3
. Then we have:

Rt = S({1,2}) × S({3}) ∼= S({1,2},{3})

= {id, (12)}
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and

Ct = S({1,3}) × S({2}) ∼= S({1,3},{2})

= {id, (13)}.

2.4.3 Young Tabloids and Specht module

Recall that the action of Sn on the set Xn = {1, 2, . . . , n}, where f.x = f(x). By

linearising, this gives the defining representation of Sn denoted by C(Xn). The latter

representation is not irreducible.

In this section, we will recall the construction of other representations of Sn,

which are irreducible. This is done by using certain equivalence classes of tableaux,

that are called tabloids.

Definition 2.4.16. (See for example [Sag13, Definition 2.1.4].) Two tableaux t1 and

t2 are row equivalent, t1 ∼ t2 , if corresponding rows of the two tableaux contain

the same elements.

Definition 2.4.17. (See for example [Jam06, Definition 3.9.].) A Young tabloid is

an equivalence class of Young tableaux under the row equivalent relation ∼.

We write [t], the equivalence class of t, as t without vertical lines between rows,

as shown in the example below.

Example 2.4.18. Consider λ = (2, 1) ∈ P3 and t as defined in Example 2.4.15

Then a Young tabloid will be

[t] =
1 2

3
=

{
1 2

3
,

2 1

3

}
Notation 2.4.19. Suppose λ ` n. We let

• Ωλ denote the set of λ− tabloids.

• Mλ denote the free vector space on Ωλ, so a basis of Mλ is the set of λ-tabloids.

Let n be a positive integer. Let λ ∈ Pn. For σ ∈ Sn and [t] ∈ Ωλ, there is the

action of Sn on [t] as putting :

σ.[t] := [σ.t]. (2.1)

The next lemma shows that this operation is well-defined, in other words it is inde-
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pendent of the chosen equivalence class representative.

Lemma 2.4.20. (See for example[Jam06, pp. 13.].) Let λ ∈ Pn, let t1 and t2 be

λ−tableaux, σ ∈ Sn. If [t1] = [t2] then [σ.t1] = [σ.t2].

As a consequence we have a representation of Sn on Mλ, see Definition 2.2.11.

[Jam06, p.p 13.]

Proposition 2.4.21. (See for example [Jam06] 4.2.) Suppose λ = (λ1, λ2, . . . , λm),

we have

dim
(
Mλ
)

=
n!

λ1!λ2! . . . λm!

Definition 2.4.22. (See for example [Jam06, Definition 4.3].) Let λ ∈ Pn, and let

t be a λ-tableau with column stabilizer Ct. Set

kt :=
∑
σ∈Ct

sgn(σ)σ ∈ C(Sn)

and define

et := kt.[t]

=
∑
σ∈Ct

sgn(σ)[σ.t] ∈Mλ.

So, et is called a λ−polytabloid. If t is a standard tableau, then et is called a

standard λ− polytabloid.

Example 2.4.23. Let λ = (2, 1) ` 3 and t as given in Example 2.4.15. Then the

column stabilizer will be Ct = {id, (13)} and λ−polytabloid will be

et =
1 2

3
−

3 2

1

Lemma 2.4.24. (See for example [Jam06, pp.14].) Let t be a λ-tableau and σ ∈ Sn
be a permutation. Then

σ.et = eσ.t.

Proof. It can be found in [Sag13, Lemma2.2.3, pp.61]
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Definition 2.4.25. (See for example [Jam06, Definition4.3] and [Sag13, Definition

2.3.4].) The Specht module Sλ for the partition λ is the submodule of Mλ spanned

by λ polytabloids, et, where t is λ-tableaux

Theorem 2.4.26. (See for example [FH13, Lemma 4.25] .)

1. Given λ ` n, Sλ is an irreducible representation of Sn,

2. If λ 6= λ′, then the irreducible representations Sλand Sλ
′

are not isomorphic.

3. Given any representation, irreducible, of Sn, there exists a unique λ such that

the irreducible representation is isomorphic to Specht module corresponding to

λ.

In particular, the Specht modules Sλ over C, are a complete list of irreducibl repre-

sentations of symmetric group Sn over C, up to isomorphism.

Lemma 2.4.27. (See for example [Jam06] Example 14.4) Let n,m be positive in-

tegers with n−m ≥ m and λ = (n−m,m). Then

dim S(n−m,m) =

(
n

m

)
−
(

n

m− 1

)

2.4.4 Young symmetrizers

In this subsection we follow for example[MG18]. Let n be a positive integer. Let us

recall λ = (λ1, . . . , λm) ∈ Pn, be a partition of n and D be the corresponding Young

diagram. let t be a tableau has the shape D. From Definition 2.4.14 we have two

subgroups of the symmetric group, the column and row stabilisers, Ct, and Rt.

Note that Ct and Rt depend not only on the diagram D, supporting t, but

explicitly in the labels in t. If t ∼ t′ then Ct = Ct′ , but we do not necessarily have

Rt = Rt′ .

Notation 2.4.28. Given a partition, we put Cλ := Ct and Rλ := Rt where t is the

canonical Young tableaux has the shape D, associated to λ.

Let λ be a partition of n. Now refer to [FH13, Eq (4.1) and (4.2) in pp 46], we

define two elements in the group algebra CSn corresponding to an arbitrary λ-Young

tableau t, namely:

At =
∑
g∈Rt

g ∈ CSn
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and

Bt =
∑
g∈Ct

sgn(g)g ∈ CSn.

Define the Young symmetriser, associated to t, as follows :

Nt = At.Bt ∈ CSn

Example 2.4.29. Let λ = (2, 1) and t =
1 2

3
. Consider Rt and Ct as defined in

Example 2.4.15. Then

At =
∑

g∈S{{1,2},{3}}

g ∈ CS3

and

Bt =
∑

h∈S{{1,3},{2}}

sgn(h)h ∈ CS3.

Now we have the Young symmetrizer as follows:

Nt = At . Bt ∈ CS3

=
∑

g∈S{{1,2},{3}}

g .
∑

h∈S{{1,3},{2}}

sgn(h)h

= (id+ (12))(id− (13))

= id+ (12)− (13)− (132).

Proposition 2.4.30. (See for example [FH13, Theorem 4.3] and [JK81, Theorem

3.1.10, Theorem 2.3.21].) Let t be a Young tableau, with support D, a Young diagram

corresponding to a partition (λ1, . . . , λm) of n, a positive integer.

Then, Nt is an preidempotent, more precisely:

N2
t = αtNt,

38



CHAPTER 2. PRELIMINARIES

where

αt =
n!

dim(Sλ)

We denoted Nt
αt

by Et that is idempotent associated to Young tableau t.

Proof. See e.g. [FH13, Theorem 4.3, on pp 46].

Let we have a representation of group algebra CG as defined in Proposition 2.3.2.

So we get the following theorem :

Theorem 2.4.31. (See for example[FH13, Theorem 4.3] and [JK81].) Let, λ be

partition of n and let t be a tableaux supported on λ. Let CSn be, as before the group

algebra, of Sn, and Nt ∈ CSn be Young symmetrizer.

1. The image of Nt, under left-multiplication by CSn, namely:

V t :=
{
mNt | m ∈ CSn

}
is an irreducible representation of Sn.

2. Moreover, V t is isomorphic to Sλ defined in 2.4.25

Proof. The first bit is in [FH13, Theorem 4.3]. The second bit follows by [JK81,

3.1.10 Theorem and 7.14 Lemma]

The previous theorem hence gives an alternative construction of the Specht mod-

ules.

Definition 2.4.32. Let Et and Et′ two idempotents associated to Young tableau t

and t
′

respectively. They are called orthogonal if their product is zero.

Definition 2.4.33. (See for example [Coh75] .) Let CG be semisimple. An idempo-

tent is a primitive if it cannot be written as a sum of nonzero orthogonal idempotents.

Theorem 2.4.34. (See for example [CR81, Proposition 9.14,(iii)].) If we have a

primitive idempotent E in a semisimple algebra, its image ρ(E) in one irreducible ρ

has trace one and the image is zero in all other irreducible.
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Theorem 2.4.35. Let n be a positive integer. Let λ ` n be a partition of n. Let

t be a canonical Young tableau, with support D, a Young diagram corresponding to

a partition λ. Let (V, ρ) be any finite dimensional representation of Sn. Then the

number of times that Sλ appears in the decomposition of V in irreducibles is the

trace of the map

L : V −→ V

v 7−→ Et.v,

where Et is defined in 2.4.30.

Proof. Let

V ∼=
⊕
µ`n

mµS
µ

be the decomposition of V into a direct sum of irreducible representation of Sn,

where Sµ is the irreducible representation corresponding partition µ as defined in

2.4.26 and mµ is a multiplicity of Sµ on V . We need to prove that the trace of L,

denoted by Tra(L), is equal mµ.

Since CSnEt.V is a left module of the group algebra CSn, then

CSnEt.V ∼=
⊕
µ

mµCSnEtSµ

is an isomorphism of modules and

Et.V ∼= Et
⊕
µ

mµS
µ

∼=
⊕
µ

mµEtS
µ

is an isomorphism of vector spaces. Since the trace of Et on Sµ from 2.4.34 is equal

1 if µ = λ and 0 otherwise (Et is primitive by the property of fλ′CSneλ noted in the
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Introduction — see e.g. [Mar08]),therefore,

Tra(L) =
∑
µ

δλ,µmµ

= mλ

2.4.5 Young’s Rule

Let λ be a partition of n, a positive integer.

Definition 2.4.36. ([Sag13], Definition 2.9.1) A generalized Young tableau of shape

λ, is an array t obtained by replacing the nodes of λ with positive integers, repetitions

allowed. The type or content of T is the composition µ = (µ1, µ2, . . . , µn), where µi

equals the number of i′s in t. Let

Tλµ = {t : t has shapeλ and contentµ}

For example

3 1 3

1 4

is an element of T(3,2)(2,0,2,1).

Definition 2.4.37. ([Sag13], Definition 9.2.5) A generalized tableau is semistandard

if its rows weakly increase and its columns strictly increase. We let T ∗λµ denote the

set of semistandard λ-tableaux of type µ.

For example,

1 1 4

2 4
∈ T(3,2)(2,1,0,2).

is semistandard, however

4 1 1

2 4
∈ T(3,2)(2,1,0,2).

is not semistandard.
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Definition 2.4.38. ( [Sag13], Definition 2.11.1) The Kostka numbers are

Kλµ = |T ∗λµ|.

Theorem 2.4.39. [Sag13, Theorem 2.11.5.]. (Young’s Rule )The multiplicity of

Sλ in Mµ is equal to the number of semistandard tableaux of shape λ and content

µ, i.e.,

Mµ ∼= ⊕λKλµSλ.

Example 2.4.40. ([Jam06, Example 14.2.] ) Let n = 7 and µ = (3, 2, 2) . Then

M (3,2,2) ∼= S(7) ⊕ 2S(6,1) ⊕ 3S(5,2) ⊕ 2S(4,3) ⊕ S(5,1,1) ⊕ 2S(4,2,1) ⊕ S(3,3,1) ⊕ S(3,2,2)

Example 2.4.41. Let n = 5 and µ = (2, 2, 1) . Then

M (2,2,1) ∼= S(5) ⊕ 2S(4,1) ⊕ S(3,2) ⊕ S(2,2,1)

Example 2.4.42. Let m ≥ 1 and µ = (m, 1). Then we have

M (m,1) ∼= S(m+1) ⊕ S(m,1)

Example 2.4.43. Let m ≥ n and µ = (m,n). Then we have

M (m,n) ∼= S(m+n) ⊕ S(m+n−1,1) ⊕ S(m+n−2,2) ⊕ · · · ⊕ S(m,n)

2.5 Warm up: the decomposition of the action of

Sn on C(Xn) with |Xn| = n into irreducibles

Let n ∈ N and Xn := {1, . . . , n}. As a preparation for similar calculations that

we will do later, let us use the result in Theorem 2.4.35 to prove the following well

known result.

Proposition 2.5.1. Let n be a positive integer and put Xn := {1, 2, . . . , n}. Let
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V = C(Xn), and consider the representation ρ of Sn on V derived from linearising

the action, as given in (2.2.4), of Sn on Xn, such that f.a = f(a), if f ∈ Sn and

a ∈ Xn.

Consider

(n) =
. . .

︸ ︷︷ ︸
n

The Specht module S(n) occurs exactly once in the decompositions of ρ into irre-

ducibles.

Note that S(n) is the 1-dimensional trivial module.

Proof. Let

t = 1 2 3 . . . n

be the canonical Young tableau, supported in the Young diagram given by the

partition (n) ` n.

Then:

Et =
dim(S(n))

n!

∑
g∈Rt

g
∑
h∈Ct

sgn(h)h

=
1

n!

∑
g∈Sn

g ∈ CSn.

Now we want to compute the trace of the linear map

L : V −→ V

v 7−→ Et.v

and prove it is equal 1.

We use the fact that if f, f ′ : V → V are linear maps, and a, a′ ∈ C then Tra(af+
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a′f ′) = aTra(f) + a′Tra(f ′). We have:

Tra(L) = Tra

(
ρ(Et)

)
= Tra

(
1

n!

∑
g∈Sn

ρ(g)

)
=

1

n!

∑
g∈Sn

Tra
(
ρ(g)

)
.

So we need now to compute the value of Tra
(
ρ(g)

)
. We do it as follows:

Given g ∈ Sn, then, by using proposition 2.1.3

Tra
(
ρ(g)

)
=|{x ∈ Xn|g.x = x}|

Thus we have the following:

Tra(L) =
1

n!

∑
g∈Sn

Tra
(
ρ(g)

)
=

1

n!

∑
g∈Sn

|{x ∈ Xn|g.x = x}|

= |Xn/Sn|,

by using Burnside’s Lemma (see for example [Ste12], Chapter7, Corollary 7,2,9).

So, Tra(L) is the number of orbits of the action Sn on Xn. The value of Xn/Sn

is equal to 1, because, given any x ∈ Xn:

OrbSn(x) = {f(x)|f ∈ Sn}

= Xn,

because given any x, y ∈ Xn, there exists a bijecton f : Xn → Xn such that f(x) =

y.

Notation 2.5.2. ι : Sn−1 → Sn is the inclusion homomorphism that means:

Let f ∈ Sn−1 so f : Xn−1 → Xn−1 is a bijection. Then ι(f) ∈ Sn is
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the bijection ι(f) : Xn → Xn, such that:

ι(f)(a) =

f(a), a ∈ Xn−1

a, a = n.

Proposition 2.5.3. Let n be a positive integer and Xn = {1, 2, . . . , n}. Let V =

C(Xn), and consider the representation ρ of Sn on V derived from the action of Sn

on Xn, such that f.a = f(a), if f ∈ Sn and a ∈ Xn.

Consider

(n− 1, n) =

. . .

︸ ︷︷ ︸
n−1

The Specht module S(n−1,1) occurs exactly once in the decompositions of ρ into irre-

ducibles.

In the following proof, we will denote each element of Xn as [a], where a ∈
{1, . . . , n}.

Proof. Let

t =
1 2 3 . . . n−1

n

be the canonical Young tableau, supported in the Young diagram given by the

partition (n− 1, 1) ` n. Then:

Et =
dim (S(n−1,1))

n!

∑
g∈Rt

g
∑
h∈Ct

sgn(h)h

=
n− 1

n!

∑
g∈Sn−1

ι(g).(id− (1n)), by Lemma 2.4.27,

where, ι(g) defined as in Notation 2.5.2.
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Now we want to compute the trace of linear map

L : V −→ V

v 7−→ Et .v,

and prove it is equal 1.

Let us chose the basis Xn of V . Let us determine the value of( ∑
g∈Sn−1

ι(g).(id− (1n) )

)
︸ ︷︷ ︸

K

.[a]

for a ∈ Xn. We consider several different cases.

• Suppose [a] ∈ {2, . . . , n− 1}, then K.[a] = 0, because

(
id− (1 n)

)
.[a] = id.[a]− (1n).[a]

= [a]− [a]

= 0.

• Suppose a = [1]. Then

(
id− (1 n)

)
.[1] = [1]− [n]

and

∑
g∈Sn−1

ι(g).([1]− [n]) =
∑

g∈Sn−1

ι(g).[1] −
∑

g∈Sn−1

ι(g).[n]

= A − B.

We compute each term separately, noting that we just need to find out the

coefficient of the basis element [1], for it is only contribution for Tra(L).

– The coefficient of [1] in A is the number of permutations in Sn−1 that fix

1. These are exactly (n− 2)! of them.

– Now, if g ∈ Sn−1, then ι(g).[n] 6= [1]. Thus, the coefficient of [1], in B, is

zero.
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• Suppose a = [n], then

(
id− (1 n)

)
. [n] = [n]− [1]

and

∑
g∈Sn−1

ι(g).([n]− [1]) =
∑

g∈Sn−1

ι(g).[n] −
∑

g∈Sn−1

ι(g).[1]

= A − B.

We compute each term separately, noting that we just need to find out the

coefficient of the basis element [n], for it is only contribution for Tra(L).

– If g ∈ Sn−1, then ι(g).[n] = [n]. So A = |Sn−1|.[n]. Thus the coefficient

of [n] is (n− 1)!.

– If g ∈ Sn−1, then ι(g).[1] 6= [n]. Thus, the coefficient of [n] is zero.

So we have the following table to show the contributions for the trace of L:

v ∈ Xn Coefficient of basis element [v] in

K.[v] ∈ C(Xn)

[a], a ∈ {2, . . . , n− 1} 0

[1] (n− 2)!

[n] (n− 1)!

Therefore, we have the following :
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Tra(L) =
n− 1

n!

(
(n− 2)! + (n− 1)!

)
=
n− 1

n!

(
(n− 2)!

(
1 + n− 1)

)
=
n− 1

n!

(
n(n− 2)!

)
=
n(n− 1)((n− 2)!

n!

=
n!

n!

= 1.

Proposition 2.5.4. (See for example [Jam06, Example5.1, pp.18].) Let n be a

positive integer and Xn = {1, 2, . . . , n}. Let V = C(Xn), and consider the represen-

tation ρ of Sn on V derived from the action of Sn on Xn, such that f.a = f(a), if

f ∈ Sn and a ∈ Xn. Then

V ∼= S(n) ⊕ S(n−1,1)

Proof. Since V is semisimple, then the decomposition of V into irreducible represen-

tation is unique form Proposition2.2.21. We know from Propositions 2.5.1 and 2.5.3

that both S(n) and S(n−1,1) appear exactly once in the decomposition into irreducible

representation. Therefore, there is no space for more irreducible representation to

appear. Let us now check the dimensions of them. So,

dim(V ) = n

and

dim
(
S(n) ⊕ S(n−1,n)

)
= dim

(
S(n)

)
+ dim

(
S(n−1,1)

)
=1 + n− 1

=n.

48



Chapter 3

Group G actions on power sets of

G-sets

3.1 Notation for subsets Pi(S) of power sets

Definition 3.1.1. Let S be a set. The power set, P(S), of S is the set of all subsets

of S, in other words

P(S) := {A : A ⊆ S}.

Remark 3.1.2. Let S be a finite set. The number of subsets of S is |P(S)| = 2|S|.

Example 3.1.3. Recall Xn = {1, 2, ..., n}. Then

P(X0) = {∅}

P(X1) = {∅, {1}}

P(X2) = {∅, {1}, {2}, {1, 2}}.

Notice the similarity of this sequence with Pascal’s triangle.

Notation 3.1.4. Let S be a finite set. Given a non-negative integer i, we will use

the following notation

Pi(S) := {A ⊆ S : |A| = i} ⊆ P(S).
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Observe that

P(S) =

|S|⊔
i=0

Pi(S). (3.1)

Where the notation,

X =

|X|⊔
i=1

Ai,

means that

X =

|X|⋃
i=1

Ai,

and that given i, j, with i 6= j, then Ai ∩ Aj = ∅.

Remark 3.1.5. The number of subsets of S with cardinality i is | Pi(S) |=
(|S|
i

)
Example 3.1.6. Let S = X2 = {1, 2}. Then we have

P0(X2) = {∅}

P1(X2) = {{1}, {2}}

P2(X2) = {{1, 2}}

Note that for any set S we have

P0(S) = {∅} (3.2)

So P0(S) is never empty. And for each set S there is another set whose elements are

the singleton sets each containing one element of S. This is P1(S). This is empty if

S is empty.

Let S be a set and let f : S → S be a function. For A ⊆ S we will use the

notation

f [A] = {f(a) : a ∈ A}. (3.3)
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3.2 Group actions on power sets of G-sets

Lemma 3.2.1. Let G be a group and S be a G-set, as defined in 2.2.3 above, with

action denoted:

α : G× S → S

(g, s) 7→ g.s

(I) We have an action of G on P(S), given by the mapping

I : G× P(S)→ P(S)

defined as:

If g ∈ G, then given A ⊆ S, then g I A = {g.a|a ∈ A}.

(II) For any g ∈ G, then |g I A| = |A|.

Proof. (I) We need to prove that I is a group action. So, we will show the two

axioms in Definition 2.2.3.

1. Let g, h ∈ G and A ⊆ S. Then

g I (h I A) = g I {h.a|a ∈ A}

= {g.(h.a) : a ∈ A}

= {(gh).a : a ∈ A}

= (gh) I A.

So the axiom (1) holds;

2. Let IdG is the identity in G, A ⊆ S. Then

IdG I A = {IdG.a|a ∈ A}

= {a : a ∈ A}

= A.

So the axiom (2) holds.
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Therefore, I is a group action.

(II) Given that we have an action, fixing g ∈ G, the map S → S sending s to g.s is

a bijection.

Example 3.2.2. Let Xn = {1, . . . , n}. We have an action of Sn on Xn, where

f.x = f(x). Applying the previous result this gives an action of Sn on P(Xn).

Explicitly:

I : Sn × P(Xn)→ P(Xn),

where if (f : Xn → Xn) ∈ Sn, then given A ⊆ Xn :

f I A = {f.a | a ∈ A}

= {f(a) | a ∈ A}

= f [A].

In the next lemma, we restrict the group action on P(S) and the group action

closes on Pi(S).

Lemma 3.2.3. Let G be a group and S be a G-set, as defined in 2.2.3 above, with

α : G× S → S

(g, s) 7→ g.s

Suppose Pi(S) is the set of subsets with cardinality i as defined in 3.1.4. We have

an action of G on Pi(S), given by the mapping

I : G× Pi(S)→ Pi(S)

defined as:

If g ∈ G, then given A ∈ Pi(S) : g I A = {g.a|a ∈ A}.

Proof. The result follows from Lemma 3.2.1(II).

In particular, we have an action of Sn on Pi(X) where f I A = f [A].
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3.2.1 Warm up: the decomposition of the action of Sn on

C(P0(Xn)) and C(P1(Xn)) into irreducibles

In this subsection, we let n ∈ N and Xn = {1, . . . , n}.

Lemma 3.2.4. Let i ∈ {0, . . . , n}. Consider the action I, of Sn on Pi(Xn) as

defined in 3.2.3. Let ρi be the linearised representation of Sn on CPi(Xn). Consider

(n) =
. . .

︸ ︷︷ ︸
n

The Specht module S(n) occurs exactly once in the decompositions of ρi into irre-

ducibles.

Proof. Let

t = 1 2 3 . . . n

be the canonical Young tableau, supported in the Young diagram given by the

partition (n) ` n. Then:

Et =
dimS(n)

n!

∑
g∈Rt

g
∑
h∈Ct

sgn(h)h

=
1

n!

∑
g∈Sn

g ∈ CSn.

Using again theorem, 2.4.35 we want to compute the trace of linear map

F : CPi(Xn) −→ CPi(Xn)

v 7−→ Et I v,

and prove it is equal to 1.

By using the fact that if f, f ′ : V → V are linear maps, and a, a′ ∈ C then
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Tra(af + a′f ′) = aTra(f) + a′Tra(f ′), we have

Tra(F ) = Tra
(
ρi(Et)

)
= Tra

(
1

n!

∑
g∈Sn

ρi(g)

)
=

1

n!

∑
g∈Sn

Tra
(
ρi(g)

)
.

We need now to compute the value of Tra
(
ρi(g)

)
. We do it as follows, using again

Proposition 2.1.3:

Given g ∈ Sn, then :

Tra
(
ρi(g)

)
=|{A ∈ Pi(Xn) | g I A = A}|

= | Pi(Xn)g|.

Here recall Pi(Xn)g is the set of the elements of Pi(Xn) that are fixed by g.

Thus we have the following :

Tra(F ) =
1

n!

∑
g∈Sn

Tra
(
ρi(g)

)
= |Pi(Xn)/Sn| by using Burnside’s Lemma.

So, Tra(F ) is the number of orbits of the action Sn on Pi(Xn). The value of

Pi(Xn) is therefore equal to 1, because, given any A ∈ Pi(Xn)

OrbSn(A) = {f I A|f ∈ Sn}

= Pi(Xn),

because any pair A,B ∈ Pi(Xn), there exists a bijecton f : Xn → Xn such that

f [A] = B.

Proposition 3.2.5. Let n ≥ 1. Suppose that

P0(Xn) = {A ⊆ Xn : |A| = 0}.

Let V = CP0(Xn), and consider the representation ρ of Sn on V derived from the
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action of Sn on P0(Xn), such that: f I A = f [A] as defined in lemma 3.2.3 , if

f ∈ Sn and A ∈ P0(Xn). Then:

V ∼= S(n).

Proposition 3.2.6. Consider the action I, of Sn on P1(Xn) as defined in 3.2.3.

Let ρ1 be the linearised representation of Sn on CP1(Xn). Consider

(n− 1, n) =

. . .

︸ ︷︷ ︸
n−1

The Specht module S(n−1,1) occurs exactly once in the decompositions of ρ1 into

irreducibles and n ≥ 2.

Proof. Let

t =
1 2 3 . . . n−1

n

be the canonical young tableau, supported in the Young diagram given by the par-

tition (n− 1, 1) ` n. Then:

Et =
dim (S(n−1,1))

n!

∑
g∈Rt

g
∑
h∈Ct

sgn(h)h

=
n− 1

n!

∑
g∈Sn−1

ι(g).(id− (1n)).

where, ι(g) defined as in Notation 2.5.2.

Now we want to compute the trace of linear map

L : CP1(Xn) −→ CP1(Xn)

v 7−→ Et .v,

and prove it is equal 1.
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Let us chose the basis P1(Xn) of CP1(Xn). Let us determine the value of( ∑
g∈Sn−1

ι(g).(id− (1n) )

)
︸ ︷︷ ︸

K

I v

for v ∈ P1(Xn). We consider several different cases.

• Suppose v = {a}, 1 < a < n, then K I v = 0, because

(
id− (1 n)

)
I v = id I {a} − (1n).{a}

= {a} − {a}

= 0.

• Suppose v = {1}. Then

(
id− (1 n)

)
I {1} = {1} − {n}

and

∑
g∈Sn−1

ι(g) I ({1} − {n}) =
∑

g∈Sn−1

ι(g) I {1} −
∑

g∈Sn−1

ι(g) I {n}

= A − B.

We compute each term separately, noting that we just need to find out the

coefficient of the basis element [1], for it is only contribution for Tra(L).

– The coefficient of {1} in A is the number of permutations in Sn−1 that

fix {1}. These are exactly (n− 2)! of them.

– Now, if g ∈ Sn−1, then ι(g) I {n} 6= {1}. Thus, the coefficient of {1}, in

B, is zero.

• Suppose v = {n}, then

(
id− (1 n)

)
I {n} = {n} − {1}

and
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∑
g∈Sn−1

ι(g) I ({n} − {1}) =
∑

g∈Sn−1

ι(g) I {n} −
∑

g∈Sn−1

ι(g) I {1}

= A − B.

We compute each term separately, noting that we just need to find out the

coefficient of the basis element {n}, for it is only contribution for Tra(L).

– If g ∈ Sn−1, then ι(g) I {n} = {n}. So, A = |Sn−1|.{n}. Thus the

coefficient of {n} is (n− 1)!.

– If g ∈ Sn−1, then ι(g) I {1} 6= {n}. Thus, the coefficient of {n} is zero.

Thus, we have the following table to show the contributions for the trace of L:

v ∈ P1(Xn) Coefficient of basis element v in

K I {v} ∈ CP1(Xn)

{a}, 1 < a < n 0

{1} (n− 2)!

{n} (n− 1)!

Therefore we have the following :

Tra(L) =
n− 1

n!

(
(n− 2)! + (n− 1)!

)
=
n− 1

n!

(
(n− 2)!

(
1 + n− 1)

)
=
n− 1

n!

(
n(n− 2)!

)
=
n(n− 1)((n− 2)!

n!

=
n!

n!

= 1.
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Proposition 3.2.7. The map

h : Xn → P1(Xn)

x 7→ {x}

is bijective and it preserves the action of symmetric group, Sn.

Proof. It is obvious that h is bijective. We need to show that if f ∈ Sn, we have

h(f.x) = f I h(x)

Let us start:

h(f.x) = h(f(x))

= {f(x)}.

Now,

f I (h(x)) = f I {x}

= {f.x : x ∈ {x}}

= {f(x)}

Therefore, h preserves the action of Sn.

Recall that f# is defined in Lemma 2.2.13

Proposition 3.2.8. The map

h# : C(Xn)→ CP1(Xn)

is an isomorphism of representations of Sn.

Proof. From Proposition 3.2.7, we have a bijective map preserves the action of Sn

from Xn to P1(Xn). It gives an isomorphic representation of Sn that means that

C(Xn) ∼= CP1(Xn).
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Proposition 3.2.9. Let n ≥ 2. Suppose that

P1(Xn) = {A ⊆ Xn : |A| = 1}.

Let V = CP1(Xn), and consider the representation ρ of Sn on V derived from the

action of Sn on P1(Xn), such that: f I A = f [A] as defined in lemma 3.2.3 , if

f ∈ Sn and A ∈ P1(Xn). Then:

V ∼= S(n) ⊕ S(n−1,1)

Proof. We note that C(Xn) is isomorphic representation of Sn to CP1(Xn) by Propo-

sition 3.2.8. Also, from proposition 2.5.4, we have C(Xn) ∼= S(n) ⊕ S(n−1,1). There-

fore,

CP1(Xn) ∼= S(n) ⊕ S(n−1,1)

We will use these type of techniques a lot in this thesis.

3.2.2 The decomposition of the action of Sn on CPi(Xn) into

irreducibles, where 0 ≤ i ≤ n.

In the previous subsection we gave elementary proofs of the decomposition of the

linearisation of the action of Sn in Pi(Xn) into irreducibles, for i = 0, 1. We now

deal with the general i case, by using a classical result appearing e.g. in [Jam06]

and [Wil14].

Let n ∈ N and Xn = {1, . . . , n}. Let i ∈ {0, . . . , n}, with i ≤ n/2.

Recall that Ω(n−i,i) from 2.4.19 is the set of young tabloid of shape (n− i, i). This

has an action of Sn defined in (2.1). We recall that M (n−i,i) is the free vector space

on Ω(n−i,i) so it has linearised representation of Sn as in 2.4.3.

Theorem 3.2.10. ( [Jam06, Example 17.17, pp 71 ].) Let i ∈ {0, . . . , n}, with

i ≤ n/2. The representation M (n−i,i) of Sn decomposes as below, into irreducibles:

M (n−i,i) ∼= S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) · · · ⊕ S(n−i,i).
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Note that the computation in this theorem follows the Young Rule in Theorem

2.4.39.

Recall that

Pi(Xn) = {A ⊆ Xn : |A| = i} ⊆ P(Xn).

We will now show the decomposition of the representation of the action of Sn on

CPi(Xn). Let us first to define two maps as follows:

Definition 3.2.11. Define the map

α : Pi(Xn)→ Ω(n−i,i)

such that given {x1, . . . , xi} ∈ Pi(Xn), then α({x1, . . . , xi}) is the unique Young

tabloid of shape (n− i, i) which contains x1, . . . , xi in the second row.

Definition 3.2.12. let Ω(n−i,i) be the set of Young tabloids of shape (n−i, i). Define

a map

γ : Ω(n−i,i) → Pi(Xn)

such that given [t] ∈ Ω(n−i,i), then γ([t]) is the subset of Xn of cardinality i whose

elements are the labels of the second row of [t].

Proposition 3.2.13. The maps

α : Pi(Xn)→ Ω(n−i,i)

and

γ : Ω(n−i,i) → Pi(Xn)

are mutually inverse to each other and preserving the action of Sn.

Proof. Firstly, we need to prove that γ : Ω(n−i,i) → Pi(Xn) which is defined in

3.2.12 is the inverse of the map α : Pi(Xn)→ Ω(n−i,i) that is defined in 3.2.11 and α

preserves the action of Sn.

1. We want to show that

α ◦ γ = IdΩ(n−i,i) .

Let [t] ∈ Ω(n−i,i) be an unique young tabloid of shape (n− i, i) which contains
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x1, . . . , xi in the second row.

We now need to show that α(γ([t])) = [t]. By definition 3.2.12 we have:

γ([t]) = {x1, x2 . . . , xi}.

Since γ([t]) = {x1, x2 . . . , xi} ∈ Pi(Xn), then from Definition 3.2.11 we have

α(γ([t])) = α({x1, x2 . . . , xi}) is the unique young tabloid of shape (n − i, i)
which contains x1, . . . , xi in the second row. Thus, α(γ([t])) = [t]. Therefore,

γ is the inverse of α.

2. We need to show that if f ∈ Sn and {x1, . . . , xi} ∈ Pi(Xn), then

α(f I {x1, . . . , xi}) = f.(α({x1, . . . , xi}). Let us start:

L.H.S = α(f I {x1, . . . , xi})

= α({f(x1), . . . , f(xi)})

This means α({f(x1), . . . , f(xi)}) is the unique young tabloid of shape (n−i, i)
which contains f(x1), . . . , f(xi) in the second row from definition 3.2.11.

R.H.S = f.(α({x1, . . . , xi}) , by definition 3.2.11 we have that α({x1, . . . , xi}) is

the unique young tabloid of shape (n−i, i) which contains x1, . . . , xi in the sec-

ond row. Then when we act f on young tabloid, we have that f.(α({x1, . . . , xi})
is the unique young tabloid of shape (n− i, i) which contains f(x1), . . . , f(xi)

in the second row. Therefore, α preserves the action of Sn.

Secondly, we need to prove that α : Pi(Xn)→ Ω(n−i,i) which is defined in Defi-

nition 3.2.11 is the inverse of the map γ : Ω(n−i,i) → Pi(Xn) that is defined in 3.2.12.

Also, we need to show that γ is preserving the action of Sn.

We will show that

γ ◦ α = IdPi(Xn).

Let A = {x1, . . . , xi} ∈ Pi(Xn). Then by definition 3.2.11 α(A) is the unique young

tabloid of shape (n − i, i) which contains x1, . . . , xi in the second row. Hence, by
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using definition 3.2.12

γ(α(A)) = {x1, . . . , xi}

= A.

Thus, α is the inverse of γ.

Recall that f# is defined in Lemma 2.2.13:

Proposition 3.2.14. The map

α# : CPi(Xn)→ CΩ(n−i,i)

is an isomorphism representation of Sn.

Proof. Since there is a bijection preserving the action of Sn by Proposition 3.2.13,

then we gives an isomorphism of representation of Sn that is

CPi(Xn) ∼= CΩ(n−i,i).

This means we have :

CPi(Xn) ∼= M (n−i,i).

Theorem 3.2.15. Let Xn = {1, 2, . . . , n} and i ∈ {0, 1, 2, ..., n}. Then when i ≤
n− i,

CPi(Xn) ∼= S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) · · · ⊕ S(n−i,i).

Proof. We know that CPi(Xn) ∼= CΩ(n−i,i) from the previous proposition 3.2.14 and

therefore from James’s Theorem 3.2.10 we get the required.

Recall that if f : X → X is a bijection, and A ⊂ X, then f(X \ A) = X \ f(A).

Proposition 3.2.16. Let n be non-negative integer. Let i ∈ {0, . . . , n}. Then the

bijection

Pi(Xn)
g−→ Pn−i(Xn),
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such that

A
g7−→ Â,

where Â = Xn \ A, preserves the action of Sn. So we have an isomorphism of

representations of Sn if i > n− i. I.e.

CPi(Xn) ∼= CPn−i(Xn).

Proof. It is clear that g is bijective. We first need to show that if f ∈ Sn, then we

have g(f I A) = f I g(A). Let us start

L.H.S = g(f I A)

= g(f [A])

= Xn \ f [A]

= f [Xn \ A]

= f [Â]

R.H.S = f I g(A)

= f I Â

= f [Â]

Hence, g is preserving the action of Sn and therefore it gives an isomorphism of

representation of Sn.

So we can apply the previous result, which gives.

Lemma 3.2.17. Let Xn = {1, 2, . . . , n} and i ∈ {0, 1, 2, ..., n}. Then when i > n−i,

CPi(Xn) ∼= S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) · · · ⊕ S(i,n−i).

Hence, combining with Theorem 3.2.15 we have:

Lemma 3.2.18. For all i ∈ {0, . . . , n}, we have:

CPi(Xn) ∼=
min(i,n−i)⊕

a=0

S(n−a,a).
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Corollary 3.2.18.1. The decomposition of the action of Sn on CPi(Xn) into irre-

ducibles has only tableaux with two rows. That is, the irreducibles are indexed by

Specht modules labelled by partitions with at most two rows.
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The irreducible content of the

representation of Sn on some

invariant subsets of PiP(Xn)

4.1 The action of G on P(P(S)), where S is a G-set

In this section , we describe some notations we will use them later.

4.1.1 Notation for subsets PiP(S) of PP(S)

Notation 4.1.1. For S a set, we use the notation PP(S) = P(P(S)) for the power

set of the power set of S. In other words,

PP(S) := {A : A ⊆ P(S)}.

Remark 4.1.2. The number of subsets of P(S) is |PP(S)| = 2(2|S|).

Example 4.1.3. Let X2 = {1, 2}. We know

P(X2) =
{
∅, {1}, {2}, {1, 2}

}
.
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Therefore,

PP(X2) =
{
∅,

{∅}, {{1}}, {{2}}, {{1, 2}},

{∅, {1}}, {∅, {2}}, {∅, {1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}},

{∅, {1}, {2}}, {∅, {1}, {1, 2}}, {∅, {2}, {1, 2}}, {{1}, {2}, {1, 2}},

{∅, {1}, {2}, {1, 2}}
}
.

Notation 4.1.4. Let S be a set. Let i be a non-negative integer. We let PiP(S)

be the set:

PiP(S) := {A ⊆ P(S) : |A| = i} ⊆ PP(S).

Observe that

PP(S) =
2|S|⊔
i=0

PiP(S). (4.1)

For example let X2 = {1, 2}. Then we have:

• P0P(X2) = {∅}.

• P1P(X2) = {{∅}, {{1}}, {{2}}, {{1, 2}}}.

• P2P(X2) = {{∅, {1}}, {∅, {2}}, {∅, {1, 2}}, {{1}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}}.

• P3P(X2) = {{∅, {1}, {2}}, {∅, {1}, {1, 2}}, {∅, {2}, {1, 2}}, {{1}, {2}, {1, 2}}}.

• P4P(X2) = {{∅, {1}, {2}, {1, 2}}}

Therefore, we have PP(X2) = P0P(X2) t P1P(X2) t P2P(X2) t P3P(X2) t
P4P(X2).

For {1, 2, 3} we have for example

P2P({1, 2, 3}) = {{∅, {1}}, {∅, {2}}, {∅, {3}}, {∅, {1, 2}}, {∅, {1, 3}}, {∅, {2, 3}}, {∅, {1, 2, 3}},

{{1}, {2}}, {{1}, {3}}, {{3}, {2}}, {{1}, {1, 2}}, {{2}, {1, 2}}, {{3}, {1, 2}},

{{1}, {1, 3}}, {{2}, {1, 3}}, {{3}, {1, 3}}, {{1}, {2, 3}}, {{2}, {2, 3}}, {{3}, {2, 3}}, ...,

{{1}, {1, 2, 3}}, ..., {{1, 2}, {1, 3}}, {{1, 2}, {2, 3}}, {{1, 3}, {2, 3}}, ...{{2, 3}, {1, 2, 3}}}.
(4.2)
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It will be clear from this example that these Sn-invariant subsets themselves have

invariant subsets. In §4.3 we determine these.

4.1.2 Notation for group actions on the power set of the

power sets of a G-set

Lemma 4.1.5. Let G be a group and S be a G-set, as defined in 2.2.3 above, denoted

α : G× S → S

(g, s) 7→ g.s

(I) We have an action of G on PP(S), given by the mapping

B : G× PP(S)→ PP(S)

defined as:

g B A = {g I a|a ∈ A}

where g ∈ G, {a : a ∈ A} := A ∈ PP(S) and where I is defined in 3.2.1.

(II) For any g ∈ Gand A ∈ PP(S), we have |g B A| = |A|.

Proof. (I) We need to prove that B is a group action. This means we need to show

the two axioms in Definition 2.2.3.

1. Let f, g ∈ G and A ∈ PP(S). Then

g B (f B A) = {g I (f I a) : a ∈ A})

= {(gf) I a : a ∈ A}, by Lemma 3.2.1

= (g ◦ f)B (A).

So the axiom (1) holds;
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2. Let I the identity of G,A ∈ PP(S). Then

I B A = {I I a : a ∈ A}

= {a : a ∈ A}, by Lemma 3.2.1

= A.

So the axiom (2) holds.

Therefore, B is a group action.

(II) Given that we have an action, fixing g ∈ G, the map S → S sending s to

g.s is a bijection.

Example 4.1.6. Let Xn = {1, 2, . . . , n}. We have an action of Sn on Xn, where

f.a = f(a) Applying the previous result this given an action of Sn on PP(Xn).

Explicitly :

B : Sn × PP(Xn)→ PP(Xn)

defined as

f B A = {f I a : a ∈ A} = {f [a] : a ∈ A},

where f : Xn → Xn ∈ Sn andA ∈ PP(Xn), noting A = {a : a ∈ A}.

Lemma 4.1.7. Let G be a group and S be a G-set, as defined in 2.2.3 above, with

α : G× S → S

(g, s) 7→ g.s

Suppose PiP(S) is the set of subsets of subsets with cardinality i as defined in 4.1.4.

We have an action of G on PiP(S), given by the mapping

B : G× PiP(S)→ PiP(S)
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defined as:

If g ∈ G, then given A ∈ PiP(S) : g B A = {g I a|a ∈ A}.

Proof. The result follows from Lemma 4.1.5 (II).

In particular, we have an action of Sn on PiP(X) where fBA = {f I a : a ∈ A}.

4.2 The decomposition of the representation of Sn

on CPiP(Xn) into irreducible for 2 ≤ n ≤ 4.

The tables 4.1, 4.2, and 4.3 , below, show the decomposition of the representation

of Sn on CPiP({1, 2, 3, ..., n}) into irreducible for 2 ≤ n ≤ 4. The full calculation

were done by using GAP, Python, and the character table for Specht module of Sn

(see[Gib21]) and the code can be found in the Appendix A.

The method that we used to decompose the representation of the ac-

tion of Sn on CPiP(Xn) into irreducible has many steps as follows:

1. Using GAP to calculate the points which are moved by a permutation in the

action of Sn on CPiP(Xn) that can be found in 2.4.3.

For example, Let n = 2 and i = 2. Then ,by using GAP, we have the number

of the points are moved by permutations id,(12) ∈ S2 in the action of S2 on

CP2P(X2) which are 0 and 4 respectively.

2. Calculating the number of fixed points by the following equation:(
2n

i

)
− the number of the points are moved that be calculated in Step 1.

For example, we need to calculate the number of fixed points by permutation

id and (12) in the action of S2 on CP2P(X2), so we have(
4

2

)
− 0 = 6

and (
4

2

)
− 4 = 2
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respectively.

3. Constructing the system of equations as a matrix where the rows correspond

to cycle types and the column correspond to irreducible characters for the

Specht module Sλ can be founded in [Gib21] and the last column will be the

number of fixed points that are calculated in Step 2.

For example, we use the character table of S2 and the number of fixed points

to construct the matrix where the rows correspond to cycle types ( the first

row correspond to id and the second row (12) ) and the column correspond to

irreducible characters for the Specht module Sλ (the first column correspond

to irreducible character for S(2), the second column correspond to irreducible

character for S(12)) and the last column will be the number of fixed points that

be got in step 2). The matrix is :

1 1
... 6

1 −1
... 2



4. Using proposition 2.2.24 and Python to solve this system that can be found

the code in A.2 and we get [
4 2

]
Therefore, the representation of the action of group S2 on CP2P(X2) has 4

copies of trivial representation S(2) and two copies of S(1,1). I.e.

CP2P(X2) ∼= 4S(2) ⊕ 2S(1,1)

We will see later how this can be obtained by using more general techniques in

the next sections.
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Table 4.1: The decomposition of the representation of S2 in CPiP(X2) into
irreducibles.

CPiP(X2) Specht Module Sλ

CP0P(X2) S(2)

CP1P(X2) 3S(2), S(1,1)

CP2P(X2) 4S(2), 2S(1,1)

CP3P(X2) 3S(2), S(1,1)

CP4P(X2) S(2)

Table 4.2: The decomposition of the representation of S3 in CPiP(X3) into
irreducibles.

CPiP(X3) Specht Module Sλ

CP0P(X3) S(3)

CP1P(X3) 4S(3), 2S(2,1)

CP2P(X3) 9S(3), 9S(2,1), S(1)3

CP3P(X3) 16S(3), 18S(2,1), 4S(1)3

CP4P(X3) 20S(3), 22S(2,1), 6S(1)3

CP5P(X3) 16S(3), 18S(2,1), 4S(1)3

CP6P(X3) 9S(3), 9S(2,1), S(1)3

CP7P(X3) 4S(3), 2S(2,1)

CP8P(X3) S(3)
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Table 4.3: The decomposition of the representation of S4 in CPiP(X4) into
irreducibles.

CPiP(X4) Specht Module Sλ

CP0P(X4) S(4)

CP1P(X4) 5S(4), 3S(3,1), S(2,2)

CP2P(X4) 17S(4), 21S(3,1), 11S(2,2), 6S(2,1,1)

CP3P(X4) 52S(4), 88S(3,1), 51S(2,2), 45S(2, 1, 1), 7S(1)4

CP4P(X4) 136S(4), 267S(3,1), 159S(2,2), 175S(2,1,1), 40S(1)4

CP5P(X4) 284S(4), 616S(3,1), 377S(2,2), 455S(2,1,1), 117S(1)4

CP6P(X4) 477S(4), 1105S(3,1), 689S(2,2), 868S(2,1,1), 234S(1)4

CP7P(X4) 655S(4), 1561S(3,1), 979S(2,2), 1264S(2,1,1), 352S(1)4

CP8P(X4) 730S(4), 1750S(3,1), 1098S(2,2), 1430S(2,1,1), 404S(1)4

CP9P(X4) 655S(4), 1561S(3,1), 979S(2,2), 1264S(2,1,1), 352S(1)4

CP10P(X4) 477S(4), 1105S(3,1), 689S(2,2), 868S(2,1,1), 234S(1)4

CP11P(X4) 284S(4), 616S(3,1), 377S(2,2), 455S(2,1,1), 117S(1)4

CP12P(X4) 136S(4), 267S(3,1), 159S(2,2), 175S(2,1,1), 40S(1)4

CP13P(X4) 52S(4), 88S(3,1), 51S(2,2), 45S(2, 1, 1), 7S(1)4

CP14P(X4) 17S(4), 21S(3,1), 11S(2,2), 6S(2,1,1)

CP15P(X4) 5S(4), 3S(3,1), S(2,2)

CP16P(X4) S(4)

We have seen from the previuos tables there is a duality as follows: Let i ∈
{0, 1, . . . , n}. Suppose that Xn = {1, . . . , n}. Then the bijection

PiP(Xn)
f−→ P2n−iP(Xn),

such that

M
f7−→ M̂,

where M̂ = P(Xn) \M preserves the action of Sn. So we have an isomorphism of

representations of Sn. I.e.

CPiP(Xn) ∼= CP2n−iP(Xn).
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4.3 Some subsets Pi,[a1,...,ai] P(Xn) of PiP(Xn)

Let us now prepare to explain the low-rank decomposition tables 4.1, 4.2, 4.3 using

explicit calculations; and to go to the general case. A crucial step is a decomposition

of PiP(Xn) into subsets closed under the action of Sn.

Recall that an integer partition is a multiset of natural numbers, usually written

in non-increasing order. Example (7, 3, 3). The set Λ′ of ‘special’ integer partitions

is two disjoint copies of the set Λ of integer partitions, with elements of the second

copy distinguished by ending in 0, thus (7, 3, 3, 0) and so on. That is, special integer

partitions are multisets of natural numbers allowing also 0, but the multiplicity of

0 is at most 1.

(4.3.1) The ‘shape’ of A ∈ PP(Xn) is the multiset of orders of its elements as sets,

denoted sh(A). Example sh({∅, {1}, {2}, {1, 2}}) = (2, 1, 1, 0). Observe that for

A ∈ PiP(Xn) then sh(A) is given by a sequence of length i (ending with at most

one 0).

Observe that a function f : S → T on a set S induces a partition of the set into

the inverse images of elements of the codomain T . Thus in particular PP(Xn) is

partitioned by sh : PP(Xn)→ Λ′; as is PiP(Xn) for each i. Let us write PλP(Xn)

for the λ ∈ Λ′ part of this partition. That is, we have

PP(Xn) =
⊔
λ∈Λ′

PλP(Xn) (4.3)

(Note that for fixed n most of these parts are empty, so the union is finite.)

Note from 3.2.1 that P(Xn) and hence PP(Xn) (and so on) inherit the property

of Sn-set from Xn. Note also from 3.2.1 that each PλP(Xn) is a sub Sn-set. Thus

(4.3) is an Sn-set decomposition of PP(Xn). Thus we would solve the problem of

determining the irreducible decomposition of PP(Xn) if we solve the corresponding

problem for each PλP(Xn).

Definition 4.3.2. Let n ∈ N and Xn = {1, . . . , n}. Given i ∈ {0, . . . , n}, and

a1, . . . , ai ∈ {0, . . . , n} such that a1 ≤ a2 ≤ · · · ≤ ai, define
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Pi,[a1,...,ai]P(Xn) ={A ⊆ P(Xn) : |A| = i; and, picking any order on the elements of A, so

A = {M1, . . . ,Mi}, then |M1| = af(1), . . . , |Mi| = af(i), for some

permutation f of {1, . . . , i}}.

We will usually write the subsets {M1, . . . ,Mi} of P(Xn), with cardinality i,

choosing an order so that |M1| ≤ |M2| ≤ · · · ≤ |Mi|, so usually f will not be needed.

For the case i = 0, we have:

P0,[−]P(Xn) = {∅}.

Here [−] is the empty sequence.

Example 4.3.3. Let X2 = {1, 2}, we have when i = 0, 1:

P0,[−]P(X2) = {∅},

P1,[0]P(X2) = {{∅}},

P1,[1]P(X2) =
{{
{1}
}
,
{
{2}
}}
.

P1,[2]P(X2) =
{{
{1, 2}

}}
.

Therefore, we can see that

P1P(X2) = P1,[0]P(X2) t P1,[1]P(X2) t P1,[2]P(X2).

Example 4.3.4. Let X2 = {1, 2}. For case i = 2, we have:

P2,[0,1]P(X2) = {{∅, {1}}, {∅, {2}}}.

P2,[0,2]P(X2) = {{∅, {1, 2}}}.

P2,[1,1]P(X2) = {{{1}, {2}}}.

P2,[1,2]P(X2) = {{{1}, {1, 2}}, {{2}, {1, 2}}}.

Therefore,

P2P(X2) = P2,[0,1]P(X2) t P2,[0,2]P(X2) t P2,[1,1]P(X2) t P2,[1,2]P(X2).
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Example 4.3.5. Let X2 = {1, 2} and i = 3, we get:

P3,[0,1,1]P(X2) = {{∅, {1}, {2}}}.

P3,[0,1,2]P(X2) = {{∅, {1}, {1, 2}}, {∅, {2}, {1, 2}}}.

P3,[1,1,2]P(X2) = {{{1}, {2}, {1, 2}}}.

Therefore,

P3P(X2) = P3,[0,1,1]P(X2) t P3,[0,1,2]P(X2) t P3,[1,1,2]P(X2).

Example 4.3.6. Let X2 = {1, 2}. Then we have:

P4,[0,1,1,2]P(X2) = {{∅, {1}, {2}, {1, 2}}}.

Therefore,

P4P(X2) = P4,[0,1,1,2]P(X2).

From all the above examples we also conclude that :

PP(X2) = P1P(X2) t P2P(X2) t P3P(X2) t P4P(X2).

Proposition 4.3.7. In general we have

PiP(Xn) =
⊔

[a1,...,ai]∈{0,1,...,n}i
0≤a1≤a2≤···≤ai≤n

Pi,[a1,a2,...,ai]P(Xn) (4.4)

Proof. The disjoint union is clear from above Equation (4.3). We stop at n for the

size of entries {0, 1, . . . , n}i because the subset of Xn has at most n elements.

Proposition 4.3.8. Pi,[a1,...,ai]P(Xn) is invariant under the action of Sn. I.e. If

f ∈ Sn, A ∈ Pi,[a1,...,ai]P(Xn), then f B A ∈ Pi,[a1,...,ai]P(Xn).

Proof. The result follows from Lemma 4.1.5(II).

Note that Pi,[a1,a2,...,ai]P(Xn) is the empty set if more the one of the ai is zero. Also,

similarly, if more than n of the ai is 1, then Pi,[a1,a2,...,ai]P(Xn) = ∅. More generally,
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in order that

Pi,[a1,a2,...,ai]P(Xn) 6= ∅,

then if k ∈ {0, . . . , n},

∣∣∣{{j ∈ {0, . . . , i}|aj = k
}∣∣∣ ≤ (n

k

)
.

4.3.1 The irreducible content of the action of Sn on CP1,[a1]P(Xn)

and on CP2,[a1,a2]P(Xn), when 2 ≤ n ≤ 5. (tables)

In this subsection, we will show the computation of the irreducible content of the

action of Sn on CP0,[−]P(Xn), on CP1,[a1]P(Xn) and on CP2,[a1,a2]P(Xn), when 2 ≤
n ≤ 5 in Tables 4.4, 4.5, 4.6 and 4.7. We use the same method which in Section 4.2.

Note that the decomposition of CP0,[−]P(Xn) is given by

CP0,[−]P(Xn) ∼= S(n),

for all n so we start with i = 1 in Table 4.4.

Table 4.4: The calculations of the irreducible content of the action of Sn on
CP1,[a1]P(Xn), when n = 2, 3, 4, 5.

CP1,[a1]P(X2) Specht Module Sλ

CP1,[0]P(X2) S(2)

CP1,[1]P(X2) S(2), S(12)

CP1,[2]P(X2) S(2)

CP1,[a1]P(X3) Specht Module Sλ

CP1,[0]P(X3) S(3)

CP1,[1]P(X3) S(3), S(2,1)

CP1,[2]P(X3) S(3), S(2,1)

CP1,[3]P(X3) S(3)
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CP1,[a1]P(X4) Specht Module Sλ

CP1,[0]P(X4) S(4)

CP1,[1]P(X4) S(4), S(3,1)

CP1,[2]P(X4) S(4), S(3,1), S(2,2)

CP1,[3]P(X4) S(4), S(3,1)

CP1,[4]P(X4) S(4)

CP1,[a1]P(X5) Specht Module Sλ

CP1,[0]P(X5) S(5)

CP1,[1]P(X5) S(5), S(4,1)

CP1,[2]P(X5) S(5), S(4,1), S(3,2)

CP1,[3]P(X5) S(5), S(4,1), S(3,2)

CP1,[4]P(X5) S(5), S(4,1)

CP1,[5]P(X5) S(5)

Table 4.5: The calculations of the irreducible content of the action of Sn on
P2,[1,a2]P(Xn), when n = 2, 3, 4, 5 and 1 < a2.

CP2,[1,a2]P(X2) Specht Module Sλ

CP2,[1,2]P(X2) S(2), S(1,1)

CP2,[1,a2]P(X3) Specht Module Sλ

CP2,[1,2]P(X3) 2S(3), 3S(2,1), S(13)

CP2,[1,3]P(X3) S(3), S(2,1)
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CP2,[1,a2]P(X4) Specht Module Sλ

CP2,[1,2]P(X4) 2S(4), 4S(3,1), 2S(2,2), 2S(2,12)

CP2,[1,3]P(X4) 2S(4), 3S(3,1), S(2,2), S(2,12)

CP2,[1,4]P(X4) S(4), S(3,1)

CP2,[1,a2]P(X5) Specht Module Sλ

CP2,[1,2]P(X5) 2S(5), 4S(4,1), 3S(3,2), 2S(3,12), S(22,1)

CP2,[1,3]P(X5) 2S(5), 4S(4,1), 3S(3,2), 2S(3,12), S(22,1)

CP2,[1,4]P(X5) 2S(5), 3S(4,1), S(3,2), S(3,12)

CP2,[1,5]P(X5) S(5), S(4,1)

CP2,[1,a2]P(X6) Specht Module Sλ

CP2,[1,2]P(X6) 2S(6), 4S(5,1), 3S(4,2), 2S(3,3), S(3,2,1), S(3,13)

CP2,[1,3]P(X6) 2S(6), 4S(5,1), 4S(4,2), 2S(3,3), 2S(3,2,1), 2S(3,13)

CP2,[1,4]P(X6) 2S(6), 4S(5,1), 3S(4,2), 2S(3,3), S(3,2,1), S(3,13)

CP2,[1,5]P(X6) 2S(6), 3S(5,1), S(4,2), S(3,3)

CP2,[1,6]P(X6) S(6), S(5,1)
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Table 4.6: The calculations of the irreducible content of the action of Sn on
P2,[2,a2]P(Xn), when n = 2, 3, 4, 5 and 2 < a2.

CP2,[2,a2]P(X3) Specht Module Sλ

CP2,[2,3]P(X3) S(3), S(2,1)

CP2,[2,a2]P(X4) Specht Module Sλ

CP2,[2,3]P(X4) 2S(4), 4S(3,1), 2S(2,2), S(2,12)

CP2,[2,4]P(X4) S(4), S(3,1), S(2,2)

CP2,[2,a2]P(X5) Specht Module Sλ

CP2,[2,3]P(X5) 3S(5), 6S(4,1), 6S(3,2), 4S(3,12), 3S(22,1), S(2,13)

CP2,[2,4]P(X5) 2S(5), 4S(4,1), 3S(3,2), 2S(3,12), S(22,1)

CP2,[2,5]P(X5) S(5), S(4,1), S(3,2)

Table 4.7: The calculations of the irreducible content of the action of Sn on
P2,[3,a2]P(Xn), when n = 2, 3, 4, 5 and 3 < a2.

CP2,[3,a2]P(X4) Specht Module Sλ

CP2,[3,4]P(X4) S(4), S(3,1)

CP2[3,a2]P(X5) Specht Module Sλ

CP2,[3,4]P(X5) 2S(5), 4S(4,1), 3S(3,2), 2S(3,12), S(22,1)

CP2,[3,5]P(X5) S(5), S(4,1), S(3,2)

CPP2,[4,a2](X5) Specht Module Sλ

CP2,[4,5]P(X5) S(5), S(4,1)

4.3.2 General computation of the decomposition of CP1,[a1]P(Xn)

into irreducibles.

In this subsection, we will see how the calculations in Table 4.4 can be explained in

theoretical manner.
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Let n be a positive integer, and a1 ∈ {0, . . . , n}. Recall that

P1,[a1]P(Xn) = {A ⊆ P(Xn) : |A| = 1, and A = {M}, with |M | = a1}.

Lemma 4.3.9. There is a bijective map

F
(n)
(a1) : P1,[a1]P(Xn)→ Pa1(Xn)

{M} 7→M,

preserving the action of Sn.

Proof. It is clear F
(n)
(a1) is bijective. We need to show F

(n)
(a1) preserves the action of Sn.

Let f ∈ Sn. Then

F
(n)
(a1)(f B {M}) = F

(n)
(a1){f IM}

= f IM

= f I F
(n)
(a1)({M}).

Recall that f# is defined in Lemma 2.2.13.

Lemma 4.3.10. The map

(F
(n)
(a1))

# : CP1,[a1]P(Xn)→ CPa1(Xn)

is an isomorphism of representations of Sn.

Proof. By lemma 4.3.9, there is a bijective map P1,[a1]P(Xn)→ Pa1(Xn) preserving

the action of Sn. Then, from lemma 2.2.13 we get :

CP1,[a1]P(Xn) ∼= CPa1(Xn)
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Lemma 4.3.11. Let n be a positive integer and a1 ∈ {0, . . . , n}. Then we have:

C(P1,[a1]P(Xn)) ∼=
min(a1,n−a1)⊕

j=0

S(n−j,j)

Proof. We have. CP1,[a1]P(Xn) ∼= CPa1(Xn) from Lemma 4.3.10. Applying Lemma

3.2.18, then we have

C(P1,[a1]P(Xn)) ∼=
min(a1,n−a1)⊕

j=0

S(n−j,j)

So, this lemma explained the calculation we have shown in the tables 4.4.

Lemma 4.3.12. Consider the action B, of Sn on P1P(Xn) as defined in Lemma

4.1.6. Then:

CP1P(Xn) ∼= CP(Xn).

Proof. Obviously, there is a bijective map

P1P(Xn)
F−→ P(Xn)

{M} 7→M.

Also, it is preserving the action of Sn because

F (f B {M}) = F ({f IM}

= f IM,

for all f ∈ Sn. Therefore, CP1P(Xn) is isomorphism to CP(Xn).

Corollary 4.3.12.1. Each irreducible component of the representation of Sn on

CP1P(Xn) is isomorphic to a Spech module indexed by a partition with at most two

rows.
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4.3.3 Towards the computation of the irreducible content

of CP2,[a1,a2]P(Xn), with 0 ≤ a1 < a2 ≤ n

In this subsection, we will see how the calculations in Tables 4.5, 4.6, 4.7 can be

explained in theoretical manner.

Proposition 4.3.13. Let V and W be representation of a group G over C. Then

V ⊗W is a representation of G by

g(v ⊗ w) = gv ⊗ gw.

Proof. We want to show that:

g(g′(v ⊗ w)) = (gg′)(v ⊗ w)

where g, g′ ∈ G. Let us start:

g(g′(v ⊗ w)) = g(g′v ⊗ g′w)

=
(
g(g′v)⊗ g(g′w)

)
=
(
(gg′)v ⊗ (gg′)w

)
since V and W are representation of G.

= (gg′)(v ⊗ w)

Lemma 4.3.14. Let a group G acts on a set X and acts on a set Y . Then we have

a ‘product’ action of G on X × Y as follows:

G× (X × Y )
α7−→ X × Y

(g, (x, y)) 7→ g.(x, y)

where

g.(x, y) = (g.x, g.y).

And then, as representation of G we have :

C(X × Y ) ∼= C(X)⊗ C(Y ).
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where ⊗ is defined in Proposition 4.3.13.

Proof. We need to prove that α is group action as follows:

1. Let g, h ∈ G and (x, y) ∈ X × Y . Then:

g.(h.(x, y)) = g.
(
(h.x, h.y)

)
=
(
g.(h.x), (g.(h.x)

)
=
(
(gh(x), gh(y)

)
= (gh)(x, y).

2. Let g ∈ G and idG is the identity. Then

idG.(x, y) =(idG.x, idG.y)

=(x, y).

The same idea allows us to make a representation of a group algebra from any

two representations.

Lemma 4.3.15. Let n be a positive integer. Let a1, a2 be integers with 0 ≤ a1 <

a2 ≤ n. Recall

P2,[a1,a2]P(Xn) = {A ⊆ P(Xn) | |A| = 2, and A = {M1,M2}, |M1| = a1 and |M2| = a2}.

There is a bijective map

F
(n)
(a1,a2) : P2,[a1,a2]P(Xn)→ Pa1(Xn)× Pa2(Xn)

{M1,M2} 7→ (M1,M2),

preserving the action of Sn (taking our action to the product action).

Proof. It is obvious that F
(n)
(a1,a2) is bijective. We need to show F

(n)
(a1,a2) preserves the
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action of Sn.

F
(n)
(a1,a2)(f B {M1,M2}) = F

(n)
(a1,a2)({f IM1, f IM2})

= (f IM1, f IM2)

= f I (M1,M2)

= f I F
(n)
(a1,a2)({M1,M2}).

Recall that f# is defined in Lemma 2.2.13:

Lemma 4.3.16. The map

(F
(n)
(a1,a2))

# : CP2,[a1,a2]P(Xn)→ C(Pa1(Xn)× Pa2(Xn))

is an isomorphism of representations of Sn.

Proof. Let the symmetric group Sn acts on Pa1(Xn) and on Pa2(Xn). Then from

Lemma 4.3.14 we have an action of Sn on Pa1(Xn)× Pa2(Xn) as:

g I (M1,M2) = (g IM1, g IM2).

where g ∈ Sn, M1 ∈ Pa1(Xn) and M2 ∈ Pa2(Xn).

Since there is a bijective map

F
(n)
(a1,a2) : P2,[a1,a2]P(Xn)→ Pa1(Xn)× Pa2(Xn)

{M1,M2} 7→ (M1,M2)

preserving the action of Sn from Lemma 4.3.15, then we obtain that

(F
(n)
(a1,a2))

# : CP2,[a1,a2]P(Xn)→ C(Pa1(Xn)× Pa2(Xn))

is an isomorphism of representations of Sn.

Theorem 4.3.17. Let n be a positive integer. Suppose 0 ≤ a1 < a2 ≤ n. Then we
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have:

C(P2,[a1,a2]P(Xn)) ∼= [

min(a1,n−a1,)⊕
j=0

S(n−j,j)]⊗ [

min(a2,n−a2)⊕
k=0

S(n−k,k)]

And so:

C(P2,[a1,a2]P(Xn)) ∼=
min(a1,n−a1)⊕

j=0

min(a2,n−a2)⊕
k=0

S(n−j,j) ⊗ S(n−k,k)

Proof. From Lemma 4.3.16, we have an isomorphism of representation

CP2,[a1,a2]P(Xn) ∼= C(Pa1(Xn)× Pa2(Xn))

Since the symmetric group Sn acts on Pa1(Xn) and on Pa2(Xn), then, from

Lemma 4.3.14, we have an action of Sn on Pa1(Xn)× Pa2(Xn) as:

g I (M1,M2) = (g IM1, g IM2),

where g ∈ Sn, M1 ∈ Pa1(Xn) and M2 ∈ Pa2(Xn). Then, as representation of Sn, we

have:

C(Pa1(Xn)× Pa2(Xn)) ∼= CPa1(Xn)⊗ CPa2(Xn).

Thus, we get the following:

CP2,[a1,a2]P(Xn) ∼= CPa1(Xn)⊗ CPa2(Xn)

Applying Lemma 3.2.18, we have

CP2,[a1,a2]P(Xn) ∼= [

min(a1,n−a1,)⊕
j=0

S(n−j,j)]⊗ [

min(a2,n−a2)⊕
k=0

S(n−k,k)].

The final identity follows from the fact that the tensor product is distributive with

respect to direct sums.

This theorem explained the calculation we have done in tables above in 4.5, 4.6

and 4.7.

The general problem of computing tensor products of irreducible representations
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has been studied by many authors, but it is hard. A considerable amount of research

has been done specifically on products of representations with two-row labels (as

above), and here things are a bit easier than the general case. See for example

[Ros00] and the references cited there. We will look at applying such methods in

future work (and also look at applying our construction to address this classical

problem). But for now, in this thesis, we restrict to considering some low-rank

examples, as follows.

In the following examples, we are using GAP to compute the tensor product of

specht modules of symmetric group and the code can be found in Appendix A.3.

Example 4.3.18. Let X2 = {1, 2} and S2 be the symmetric group. Then the

decomposition of the action of S2 on CP2,[a1,a2]P(X2) into irreducibles will be as

follows:

CP2,[1,2]P(X2) ∼= [

min(1,1)⊕
j=0

S(n−j,j)]⊗ [

min(2,0)⊕
k=0

S(n−k,k)]

∼= (S(2) ⊕ S(1,1))⊗ S(2)

∼= S(2) ⊕ S(1,1),

as expected since S(2) is the trivial (one dimensional) representation.

Example 4.3.19. Let X3 = {1, 2, 3} and S3 be the symmetric group. Then we have

the following decomposition of the action of S3 on CP2,[a1,a2]P(X3) into irreducible :

• When a1 = 1 and a2 = 2, we have:

CP2,[1,2]P(X3) ∼= [

min(1,2)⊕
j=0

S(n−j,j)]⊗ [

min(2,1)⊕
k=0

S(n−k,k)]

∼= (S(3) ⊕ S(2,1))⊗ (S(3) ⊕ S(2,1))

∼= (S(3) ⊗ S(3))⊕ (S(3) ⊗ S(2,1))⊕ (S(2,1) ⊗ S(3))⊕ (S(2,1) ⊗ S(2,1))

∼= S(3) ⊕ S(2,1) ⊕ S(2,1) ⊕ S(3) ⊕ S(2,1) ⊕ S(13)

∼= 2S(3) ⊕ 3S(2,1) ⊕ S(13).

Hence all irreducible representation of S3 occur in CP2,[1,2]P(X3), and hence

in CPP(X3).

• When a1 = 1 and a2 = 3, we have:
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CP2,[1,3]P(X3) ∼= [

min(1,2)⊕
j=0

S(n−j,j)]⊗ [

min(3,0)⊕
k=0

S(n−k,k)]

∼= (S(3) ⊕ S(2,1))⊗ S(3)

∼= (S(3) ⊗ S(3))⊕ (S(2,1) ⊗ S(3))

∼= S(3) ⊕ S(2,1).

as expected since S(3) is the trivial (one dimensional) representation.

• When a1 = 2 and a2 = 3, we have:

CP2,[2,3]P(X3) ∼= [

min(2,1)⊕
j=0

S(n−j,j)]⊗ [

min(3,0)⊕
k=0

S(n−k,k)]

∼= (S(3) ⊕ S(2,1))⊗ S(3)

∼= (S(3) ⊗ S(3))⊕ (S(3) ⊗ S(2,1))

∼= S(3) ⊕ S(2,1).

Example 4.3.20. Let X4 = {1, 2, 3, 4} and S4 is the symmetric group. We need to

calculate the irreducible of the action of S4 on CP2,[a1,a2]P(X4) as the flowing:

• When a1 = 1 and a2 = 2, we have:

CP2,[1,2]P(X4) ∼= [

min(1,3)⊕
j=0

S(n−j,j)]⊗ [

min(2,2)⊕
k=0

S(n−k,k)]

∼= (S(4) ⊕ S(3,1))⊗ (S(4) ⊕ S(3,1) ⊕ S(2,2))

∼= (S(4) ⊗ S(4))⊕ (S(4) ⊗ S(3,1))⊕ (S(4) ⊗ S(2,2))⊕ (S(3,1) ⊗ S(4))⊕

(S(3,1) ⊗ S(3,1))⊕ (S(3,1) ⊗ S(2,2))

∼= S(4) ⊕ S(3,1) ⊕ S(2,2) ⊕ S(3,1) ⊕ S(4) ⊕ S(3,1) ⊕ S(2,2) ⊕ S(3,1) ⊕ S(2,12)⊕

S(2,12)

∼= 2S(4) ⊕ 4S(3,1) ⊕ 2S(2,2) ⊕ S(2,12).

• When a1 = 1 and a2 = 3, we have:
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CP2,[1,3]P(X4) ∼= [

min(1,3)⊕
j=0

S(n−j,j)]⊗ [

min(3,1)⊕
k=0

S(n−k,k)]

∼= (S(4) ⊕ S(3,1))⊗ (S(4) ⊕ S(3,1))

∼= (S(4) ⊗ S(4))⊕ (S(4) ⊗ S(3,1))⊕ (S(3,1) ⊗ S(4))⊕ (S(3,1) ⊗ S(3,1))

∼= S(4) ⊕ S(3,1) ⊕ S(3,1) ⊕ S(4) ⊕ S(3,1) ⊕ S(2,2) ⊕ S(2,12)

∼= 2S(4) ⊕ 3S(3,1) ⊕ S(2,2) ⊕ S(2,12).

• When a1 = 1 and a2 = 4, we have:

CP2,[1,4]P(X4) ∼= [

min(1,3)⊕
j=0

S(n−j,j)]⊗ [

min(4,0)⊕
k=0

S(n−k,k)]

∼= (S(4) ⊕ S(3,1))⊗ S(4)

∼= (S(4) ⊗ S(4))⊕ (S(3,1) ⊗ S(4))

∼= S(4) ⊕ S(3,1).

• When a1 = 2 and a2 = 3, we have:

CP2,[2,3]P(X4) ∼= [

min(2,2)⊕
j=0

S(n−j,j)]⊗ [

min(3,1)⊕
k=0

S(n−k,k)]

∼= (S(4) ⊕ S(3,1) ⊕ S(2,2))⊗ (S(4) ⊕ S(3,1))

∼= (S(4) ⊗ S(4))⊕ (S(4) ⊗ S(3,1))⊕ (S(3,1) ⊗ S(4))⊕ (S(3,1) ⊗ S(3,1))⊕

(S(2,2) ⊗ S(4))⊕ (S(2,2) ⊗ S(3,1))

∼= S(4) ⊕ S(3,1) ⊕ S(3,1) ⊕ S(4) ⊕ S(3,1) ⊕ S(2,2) ⊕ S(2,12) ⊕ S(2,2) ⊕ S(3,1)⊕

S(2,12)

∼= 2S(4) ⊕ 4S(3,1) ⊕ 2S(2,2) ⊕ S(2,12).

• When a1 = 2 and a2 = 4, we have:

CP2,[2,4]P(X4) ∼= [

min(2,2)⊕
j=0

S(n−j,j)]⊗ [

min(4,0)⊕
k=0

S(n−k,k)]

∼= (S(4) ⊕ S(3,1) ⊕ S(2,2))⊗ S(4)

∼= (S(4) ⊗ S(4))⊕ (S(3,1) ⊗ S(4))⊕ (S(2,2) ⊗ S(4))

∼= S(4) ⊕ S(3,1) ⊕ S(2,2).
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• When a1 = 3 and a2 = 4, we have:

CP2,[3,4]P(X4) ∼= [

min(3,1)⊕
j=0

S(n−j,j)]⊗ [

min(4,0)⊕
k=0

S(n−k,k)]

∼= (S(4) ⊕ S(3,1))⊗ S(4)

∼= (S(4) ⊗ S(4))⊕ (S(3,1) ⊗ S(4))

∼= S(4) ⊕ S(3,1).

4.3.4 Towards the computation of the irreducible content

of CPi,[a1,a2,...,ai]P(Xn).

In this subsection, we show that the linearisation of the representation of Sn on

CPi,[a1,...,ai]P(Xn), when 0 ≤ a1 < a2 · · · < ai ≤ n reduces to a tensor product of

representations.

Lemma 4.3.21. Let n ∈ N and Xn = {1, . . . , n}. Let i ∈ {1, . . . , n} and 0 ≤ a1 ≤
a2 ≤ · · · ≤ ai ≤ n. We have a bijection

T : Pi,[a1,...,ai]P(Xn)→ Pi,[n−a1,...,n−ai]P(Xn)

{M1, . . . ,Mi} 7→ {Xn \M1, . . . , Xn \Mi}

preserving the action of Sn.

Proof. It is clear that T is bijective. Now, we need to show that T preserves the

action of Sn. For all f ∈ Sn, we get:

f B
(
T ({M1, . . . ,Mi})

)
= f B ({Xn \M1, . . . , Xn \Mi})

= {f [Xn \M1], . . . , f [Xn \Mi]}

= {Xn \ f [M1], . . . , Xn \ f [Mi]}

= T
(
{f [M1], . . . , f [Mi]}

)
= T

(
f B {M1, . . . ,Mi}

)
.

Where we used the fact that if f : X → Y is a bijective, and A ⊆ X, then f(X\A) =

Y \ f(A).

Proposition 4.3.22. Let i ∈ {1, . . . , n} and 0 ≤ a1 < a2 < · · · < ai ≤ n. There is

89



CHAPTER 4. THE REPRESENTATION OF SN ON PP(XN)

a bijective map

F
(n)
(a1,...,ai)

: Pi,[a1,...,ai]P(Xn)→ (Pa1(Xn)× · · · × Pai(Xn))

{M1,M2, . . . ,Mi} 7→ (M1,M2, . . . ,Mi),

preserving the action of Sn.

Proof. Clearly, F
(n)
(a1,...,ai)

is bijective. We need to show the action of Sn is preserved.

F
(n)
(a1,...,ai)

(f B ({M1,M2, . . . ,Mi})) = F
(n)
(a1....,ai)

({f IM1, f IM2, . . . , f IMi})

= (f IM1, f IM2, . . . , f IMi)

= f I (M1,M2, . . . ,Mi)

= f I F
(n)
(a1,...,ai)

({M1,M2, . . . ,Mi}).

Recall that f# is defined in Lemma 2.2.13:

Proposition 4.3.23. Let i ∈ {1, . . . , n} and 0 ≤ a1 < a2 < · · · < ai ≤ n. The map

(F
(n)
(a1,...,ai)

)# : CPi,[a1,...,ai]P(Xn)→ C(Pa1(Xn)× · · · × Pai(Xn))

is the isomorphic representation of Sn.

Proof. From the previous proposition 4.3.22, there is a bijective map preserving the

action of Sn from Pi,[a1,...,ai]P(Xn) to (Pa1(Xn)× · · · × Pai(Xn)). Therefore,

CPi,[a1,...,al]P(Xn) ∼= C(Pa1(Xn)× · · · × Pai(Xn)).

Theorem 4.3.24. Let n be a positive integer. Let i ∈ {1, . . . , n} and 0 ≤ a1 < a2 <

· · · < ai ≤ n. We have the following decomposition of the representation of Sn on

CPi,[a1,...,ai]P(Xn):

CPi,[a1,...,ai]P(Xn) ∼= [

min(a1,n−a1)⊕
j1=0

S(n−j1,j1)]⊗[

min(a2,n−a2)⊕
j2=0

S(n−j2,j2)]⊗· · ·⊗[

min(ai,n−ai)⊕
ji=0

S(n−ji,ji)]
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Proof. By Proposition 4.3.23, we have an isomorphism of representation of Sn

CPi,[a1,...,ai]P(Xn) ∼= C(Pa1(Xn)× · · · × Pai(Xn))

Let Sn acts on Pa1(Xn), Pa2(Xn), ..., Pai(Xn). Then by Lemma 4.3.14 we have

an action of Sn on Pa1(Xn)× Pa2(Xn) · · · × Pai(Xn) as:

g I (M1, . . . ,Mi) = (g IM1, g IM2, . . . , g IMi),

where g ∈ Sn, M1 ∈ Pa1(Xn), M2 ∈ Pa2(Xn) . . . and Mi ∈ Pai(Xn).

Then, as representation of Sn, we have:

C(Pa1(Xn)× C(Pa2(Xn)× · · · × Pai(Xn)) ∼= CPa1(Xn)⊗ C(Pa2(Xn)⊗ · · · ⊗ CPai(Xn).

Thus, we get the following:

CPi,[a1,a2,...,ai]P(Xn) ∼= CPa1(Xn)⊗ CPa2(Xn)⊗ . . .CPai(Xn)

Applying Lemma 3.2.18, we have:

CPi,[a1,...,ai]P(Xn) ∼= [

min(a1,n−a1)⊕
j1=0

S(n−j1,j1)]⊗ [

min(a2,n−a2)⊕
j2=0

S(n−j2,j2)]⊗ · · · ⊗ [

min(ai,n−ai)⊕
ji=0

S(n−ji,ji)]

In the next examples, we are using GAP to compute the tensor product of Specht

modules of symmetric group and the code can be found in Appendix A.3.

Example 4.3.25. Let X3 = {1, 2, 3} and S3 is the symmetric group. The decom-

position of the action of S3 on CP4,[0,1,2,3]P(X3) into irreducibles will be

CP4,[0,1,2,3]P(X3) ∼= [

min(0,3)⊕
j1=0

S(3−j1,j1)]⊗ [

min(1,2)⊕
j2=0

S(3−j2,j2)]⊗ [

min(2,1)⊕
j3=0

S(3−j3,j3)]⊗ [

min(3,0)⊕
j4=0

S(3−j4,j4)]

∼= S(3) ⊗
(
S(3) ⊕ S(2,1)

)
⊗
(
S(3) ⊕ S(2,1)

)
⊗ S(3).

∼= 2S(3) ⊕ 3S(2,1) ⊕ S(13)

Hence, all irreducible representation of S3 occur in CP3,[0,1,2,3]P(X4), and hence in

CPP(X3).
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Example 4.3.26. Let X4 = {1, 2, 3, 4} and S4 is the symmetric group. The decom-

position of the action of S4 on CP4,[0,2,3,4]P(X4) into irreducibles will be

CP4,[0,2,3,4]P(X4) ∼= [

min(0,4)⊕
j1=0

S(4−j1,j1)]⊗ [

min(2,2)⊕
j2=0

S(4−j2,j2)]⊗ [

min(3,1)⊕
j3=0

S(4−j3,j3)]⊗ [

min(4,0)⊕
j4=0

S(4−j4,j4)]

∼= S(4) ⊗
(
S(4) ⊕ S(3,1) ⊕ S(2,2)

)
⊗
(
S(4) ⊕ S(3,1)

)
⊗ S(4).

∼= S(4) ⊕ 2S(3,1) ⊕ S(2,2) ⊕ S(2,12)

Proposition 4.3.27. Let i ∈ {1, . . . , n} and 0 ≤ a1 < a2 < · · · < ai ≤ n. The

dimension of CPi,[a1,...,ai]P(Xn) is given by:

dimCPi,[a1,...,ai]P(Xn) :=

min(a1,n−a1)∑
j1=0

dimS(n−j1,j1) × · · · ×
min(ai,n−ai)∑

ji=0

dimS(n−ji,ji)

Example 4.3.28. Let X3 = {1, 2, 3}. Let i={0,1,2,3,4} and 0 < 1 < 2 < 3 < 4.

Then the dimension of CP4,[0,1,2,3]P(X3) is given by :

dimCP4,[0,1,2,3]P(X3) :=

min(0,3)∑
j1=0

dimS(3−j1,j1) ×
min(1,2)∑
j2=0

dimS(3−j2,j2)×

min(1,2)∑
j3=0

dimS(4−j3,j3) ×
min(0,3)∑
j4=0

dimS(4−j4,j4)

Therefore, by using Lemma 2.4.27 we get:

dimCP4,[0,1,2,3]P(X3) := dimS(3) × (dimS(3) + dimS(2,1))× (dimS(3) + dimS(2,1))× dimS(3)

= 9.

4.4 The representation of Sn on CPP(Xn) is alge-

bra faithful

Fix an integer n ≥ 2, and as usual set that Xn = {1, 2, . . . , n}, so

(Xn)n = Xn × · · · ×Xn︸ ︷︷ ︸
n times

.
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Let:

Xn := {(a1, a2, . . . , an) ∈ (Xn)n | ∀i, j : i 6= j =⇒ ai 6= aj} ⊆ X(n)
n .

Then Sn acts on Xn as follows:

f.(a1, a2, . . . , an) =
(
f(a1), f(a2), . . . f(an)

)
.

Below we let U(Sn) = {f : Xn → Xn | f is a bijection} be the underlying set of

the group Sn. So we have an action of Sn on U(Sn), defined by f.g = f ◦ g. The

left-regular representation of Sn is therefore obtained as CU(Sn) = CSn.

Lemma 4.4.1. We have a bijection g : Xn → U(Sn), preserving the action of Sn.

Proof. Define a map

g : Xn → U(Sn)

(a1, a2, . . . , an) 7→

 1 2 . . . n

a1 a2 . . . an

 .

Clearly, g is a bijection. And then, note that, given (a1, a2, . . . , an) ∈ Xn, and

f ∈ Sn, then:

f.
(
g(a1, a2, . . . , an)) = f.

( 1 2 . . . n

a1 a2 . . . an

)

=

 1 2 . . . n

f(a1) f(a2) . . . f(an)


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and

g
(
f.(a1, a2, . . . , an)

)
= g.

(
f(a1), f(a2), . . . f(an)

)
=

 1 2 . . . n

f(a1) f(a2) . . . f(an)



Proposition 4.4.2. We have that

CXn
∼= CU(Sn),

as representations of Sn.

Proof. Since there is a bijective map g : Xn → U(Sn) preserving the action of Sn

from above lemma 4.4.1, then

CXn
∼= CU(Sn),

as representations of Sn.

Proposition 4.4.3. CXn is algebra faithful representation.

Proof. Since CU(Sn) is the left regular representation, then from Lemma 2.3.10 we

have CU(Sn) is algebra faithful. By Proposition 4.4.2 we have that CU(Sn) and

CXn are isomorphic representation of Sn, then we use lemma 2.3.8 to get that CXn

is algebra faithful.

Lemma 4.4.4. We have an injective map, preserving the action of Sn, defined as:

F : Xn → PP(Xn)

(a1, . . . , an) 7→
{
∅, {a1}, {a1, a2}, {a1, a2, a3}, . . . , Xn

}
.

Moreover, F takes values in Pn+1,[0,1,2,...,n]P(Xn) ⊆ PP(Xn), which recall is invariant

under the action of Sn on PP(Xn).
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Proof. It is clear that F is an injective. We now need to show that it preservs the

action of Sn.

Let f ∈ Sn and (a1, a2, . . . , an) ∈ Xn. we need to show that

F(f.(a1, a2, . . . , an)) = f B F((a1, a2, . . . , an)).

Let us start as follows:

F
(
f.(a1, a2, . . . , an)

)
=F
(

(f(a1), f(a2), . . . f(an))
)

={∅, {f(a1)}, {f(a1), f(a2)}, . . . , {f(a1), f(a2), . . . , f(an)}}

and

f B F
(
(a1, a2, . . . , an)

)
=f B

{
∅, {a1}, {a1, a2}, . . . , {a1, a2 . . . , an}

}
=
{
f I ∅, f I {a1}, f I {a1, a2}, . . . , f I {a1, a2, . . . , an}

}
=
{
∅, {f(a1)}, {f(a1), f(a2)}, . . . , {f(a1), . . . , f(an)}

}
Therefore,

F(f.(a1, a2, . . . , an)) = f B F((a1, a2, . . . , an)).

Proposition 4.4.5. CXn is isomorphic to subrepresentation of CPP(Xn).

Proof. Consider the map

ϕ : Xn → F(Xn) ⊆ PP(Xn)

defined in Lemma 4.4.4. We already know that ϕ preserves the action of Sn.

Since F is injective, from previous lemma 4.4.4, then F(Xn) is a subrepresentation

of PP(Xn) and F(Xn) ∼= Xn. Hence, ϕ is bijective and CXn is isomorphic to

subrepresentation of CPP(Xn).

Corollary 4.4.5.1. Every irreducible representation is a subrepresentation of CPP(Xn).
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Theorem 4.4.6. Let Xn = {1, 2, . . . , n}. Then CPP(Xn) is algebra faithful repre-

sentation.

Proof. Since CXn is isomorphism to subrepresentation of CPP(Xn) from the pre-

vious Proposition 4.4.5 and it is algebra faithful from Proposition 4.4.3, then by

lemma 2.3.8 we have that CPP(Xn) is algebra faithful representation as well.
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Chapter 5

The action of Sn on the set of

topologies on Xn

Let X be a set. Noting that any topology on a set X is an element of PP(X), we

will study the induced action of Sym(X) on the set of topologies on X, which we

will prove is invariant under the action of Sym(X) on PP(X). Let us recall the

definition of topology as follows:

Definition 5.0.1. (See for example [Mun75, Section 12] .) Let X be a non-empty

set. A set τ of subsets of X is said to be a topology on X if:

1. X and the empty set ∅ belong to τ ;

2. The union of any (finite or infinite) collection of set in τ belongs to τ ;

3. The intersection of any two finite sets in τ belongs to τ .

The pair (X, τ) is called a topological space.

Example 5.0.2. (See for example [Mun75, Section 12, Example 2].) If X is non-

empty set, the set of all subsets of X is a topology on X; it is called the discrete

topology. The set consisting of X and ∅ only is also a topology on X; we call it the

indiscrete topology,
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5.1 Explanation of the action of Sym(X) on the set

of topologies on X

We have an action of Sn on PPXn in section 4.1. More generally, we have an action

of Sym(X) on PPX, for any set X, possibly infinite. So, in this section we prove

that this action is such that f B τ is a topology on X if f ∈ Sym(X) and τ is a

topology on X. We denote the set of all topologies on X by Top(X). Let us start

by recalling some elementary lemmas.

Lemma 5.1.1. Let X be a set. Consider f : X → X is injective and A,B ⊆ X,

then:

f(A ∩B) = f(A) ∩ f(B)

Lemma 5.1.2. Let X be a set. Consider f : X → X is a map and A,B ⊆ X, then:

f(A ∪B) = f(A) ∪ f(B)

Lemma 5.1.3. Let X be a set. Let f : X → X ∈ Sym(X) and M ∈ PP(X). Then:

f I
⋃
A∈M

A =
⋃

B∈fBM

B

and

f I
⋂
A∈M

A =
⋂

B∈fBM

B.

Proof. We need to show that

f I
⋃
A∈M

A =
⋃

B∈fBM

B.

Let us to prove that in two steps:

Step 1: We need to show that

f I
⋃
A∈M

A =
⋃
A∈M

(f I A)

Firstly, Suppose y ∈ f I
⋃
A∈M A. Then there exists an x ∈

⋃
A∈M A such that

f(x) = y. Since x ∈
⋃
A∈M A, then there exists B ∈ M such that x ∈ B. So,
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since y ∈ f I
⋃
A∈M A, then there exists B ∈ M and x ∈ B such that f(x) = y.

This means if x ∈
⋃
A∈M A, then there exists B ∈ M such that y ∈ f(B). Hence,

y ∈
⋃
A∈M f I A. Therefore,

f I
⋃
A∈M

A ⊆
⋃
A∈M

(f I A) (5.1)

Secondly, Suppose y ∈
⋃
A∈M(f I A). Then there exists B ∈M such that y ∈ f(B).

Since, B ⊆
⋃
A∈M A, then f(B) ⊆ f(

⋃
A∈M A). So, y ∈ f(

⋃
A∈M A). Hence,

y ∈ f I
⋃
A∈M A. Therefore,

⋃
A∈M

(f I A) ⊆ f I
⋃
A∈M

A (5.2)

So, from (1) and (2), we have:

f I
⋃
A∈M

A =
⋃
A∈M

(f I A) (∗)

Step 2 : We need to show that:

⋃
A∈M

(f I A) =
⋃

B∈fBM

B

Firstly, suppose y ∈
⋃
A∈M(f I A). Then there exists C ∈M such that y ∈ f I C.

Since f I C ∈ f BM , then y ∈
⋃
B∈fBM B. Therefore,

⋃
A∈M

(f I A) ⊆
⋃

B∈fBM

B (5.3)

Secondly, suppose

y ∈
⋃

B∈fBM

B.

Then there exists A ∈ M such that f I A ∈ f B M . So, y ∈ f I A. Hence,

y ∈
⋃
A∈M(f I A). Therefore,

⋃
B∈fBM

B ⊆
⋃
A∈M

(f I A) (5.4)
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So, from (3) , (4), we have:

⋃
A∈M

(f I A) =
⋃

B∈fBM

B (∗∗)

Therefore, from (∗) and (∗∗), we have :

f I
⋃
A∈M

A =
⋃

B∈fBM

B

Now, we want to prove that

f I
⋂
A∈M

A =
⋂

B∈fBM

B

Let us to prove that in two steps:

Step 1: We need to show that

f I
⋂
A∈M

A =
⋂
A∈M

(f I A)

Firstly, suppose y ∈ f I
⋂
A∈M A. There there exists an x ∈

⋂
A∈M A such that

f(x) = y. Since x ∈
⋂
A∈M A, then for each A ∈M we have x ∈ A.

So, given a y ∈ f I
⋂
A∈M A, there exists x such that x ∈ A for all A ∈ M and

also y = f(x). So y ∈ f(A), for all A ∈M . So y ∈
⋂
A∈M(f I A). Therefore,

f I
⋂
A∈M

A ⊆
⋂
A∈M

(f I A) (5.5)

Secondly, Suppose y ∈
⋂
A∈M(f I A). Then for each A ∈ M , we have y ∈ f(A).

Since A ∈ M , then thre exists am ∈ A such that f(am) = y. Since f is injective,

then the elements am are all the same,let us call a = am. Thus, a ∈
⋂
A∈M A. So,
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y ∈ f(
⋂
A∈M A). Hence, y ∈ f I

⋂
A∈M A. Therefore,

⋂
A∈M

(f I A) ⊆ f I
⋂
A∈M

A (5.6)

From (5) and (6), we have :

f I
⋂
A∈M

A =
⋂
A∈M

(f I A) (#)

Step 2 : We need to show that:

⋂
A∈M

(f I A) =
⋂

B∈f.M

B

Firstly, let y ∈
⋂
A∈M(f I A). Then for each C ∈ M we have y ∈ f I C. We want

to prove that if B ∈ f .M then y ∈ B. So let B ∈ f .M then there exists a A ∈M
such that B = f(A).

Since f I C ∈ f BM . Hence, y ∈
⋂
B∈fBM B. Therefore,

⋂
A∈M

(f I A) ⊆
⋂

B∈f.M

B (5.7)

Secondly, let

y ∈
⋂

B∈f.M

B.

Then for each A ∈ M such that f I A ∈ f B M . So, y ∈ f I A. Hence,

y ∈
⋂
A∈M(f I A). Therefore,

⋂
B∈f.M

B ⊆
⋂
A∈M

(f I A) (5.8)

From (7), (8) we have: ⋂
A∈M

(f I A) =
⋂

B∈f.M

B (# #)
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Therefore, from (#) and (##) we have:

f I
⋂
A∈M

A =
⋂

B∈f.M

B

Proposition 5.1.4. Let X be a set and recall that PPX is the power of the power

set of X. Then the set of all topologies on X, Top(X) ⊂ PPX, is closed under the

action . of Sym(X) on PPX.

Proof. Let X be a set and f : X → X ∈ Sym(X). Fix τ ∈ Top(X). Note that

f B τ = {f I d : d ∈ τ}.

Then we need to prove that f B τ ∈ Top(X).

Now, we need to show the three axioms in Definition 5.0.1.

1. We need to show that X ∈ f B τ, and∅ ∈ f B τ . By definition

f I X = f [X] = {f(x) : x ∈ X}.

Since f ∈ Sym(X), then f I X = X.

Now since X ∈ τ , then:

X ∈ {f I d : d ∈ τ}.

Hence, X ∈ f B τ .

Similarly, by definition

f I ∅ = f [∅] = ∅.

Since f ∈ Sym(X), then f I ∅ = ∅.

Now since ∅ ∈ τ , then:

∅ ∈ {f I d : d ∈ τ}.

Thus, ∅ ∈ f B τ .

2. We need to show closure under finite intersection. Let m,n ∈ f B τ . Then

there exist

A,B ∈ τ such that m = f [A] and n = f [B].
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So, we need to show that : m ∩ n ∈ f B τ . Now,

m ∩ n = f [A] ∩ f [B]

= f [A ∩B].

because f is injective.

Therefore,

m ∩ n ∈ f B τ.

3. We need to show closure of f . τ under arbitrary union. Consider M ⊆ f B τ

(M is a family of open sets). Then

M = {f I A : A ∈ N}, whereN ⊆ τ.

Now, we need to show that

⋃
m∈M

m ∈ f B τ

From Lemma 5.1.3, we have the following:

⋃
m∈M⊆fBτ

m = f I
⋃
A∈τ

A

So, Since A ∈ τ , then
⋃
A ∈ τ . Hence,

f I
⋃
A∈τ

A ∈ f B τ

Therefore, ⋃
m∈M⊆fBτ

m ∈ f B τ

So, Top(X) is closed under Sym(X) action.

Example 5.1.5. Let X = X2 = {1, 2}, so Sym(X) = S2 = {id, (12)}. Then

Top(X2) =
{
{X2,∅}, {X2,∅, {1}}, {X2,∅, {2}}, {X2,∅, {1}, {2}}

}
.
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The action of S2 on Top(X2) takes the form:

id B {X2,∅} = {X2,∅}

id B {X2,∅, {1}} = {X2,∅, {1}}

id B {X2,∅, {2}} = {X2,∅, {2}}

id B {X2,∅, {1}, {2}} = {X2,∅, {1}, {2}}

(12) B {X2,∅} = {X2,∅}

(12) B {X2,∅, {1}} = {X2,∅, {2}}

(12) B {X2,∅, {2}} = {X2,∅, {1}}

(12) B {X2,∅, {1}, {2}} = {X2,∅, {1}, {2}}

5.1.1 Some special subsets of Top(Xn)

Definition 5.1.6. Let n ∈ N and Xn = {1, . . . , n}. Given i ∈ {0, . . . , n}, and

0 ≤ a1 ≤ a2 ≤ · · · ≤ ai ≤ n, define :

P topi,[a1,...,ai]P(Xn) = Top(Xn) ∩ Pi,[a1,...,ai]P(Xn).

Observe that by applying the previous result 4.3.7:

Top(Xn) =
⊔

[a1,...,ai]∈{0,1,...,n}i
0≤a1≤a2≤···≤ai≤n

P topi,[a1,...,ai]P(Xn)

Lemma 5.1.7. Let n ∈ N and Xn = {1, . . . , n}. Given i ∈ {0, . . . , n}, and 0 ≤
a1 ≤ a2 ≤ · · · ≤ ai ≤ n. P topi,[a1,...,ai]P(Xn) is invariant under the action of Sn.

Proof. From Propositions 4.3.8 and 5.1.4, we note that both terms in the intersection

in Definition 5.1.6 are invariant under the action of Sn, so then P topi,[a1,...,ai]P(Xn) is

also invariant under the action of Sn.

In the following example, we took advantage of the list of finite topologies on this

wikipedia page [Wik24], see https://en.wikipedia.org/wiki/Finite_topological_

space.
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Example 5.1.8. Let X3 = {1, 2, 3} and Top(X3) be the set of all topologies on X3.

Then we have 29 topologies on X3 that naturally grouped together as follows:

• P top2,[0,3]P(X3) =
{
{∅, X3}}. This gives one topology.

• P top3,[0,1,3]P(X3) =
{
{∅, {a}, X3} | a ∈ {1, 2, 3}

}
. This gives three topologies.

• P top3,[0,2,3]P(X3) =
{
{∅, {a, b}, X3 | a 6= b and a, b ∈ {1, 2, 3}

}
. This gives three

topologies.

• P top4,[0,1,2,3]P(X3) =

{∅, {a}, {a, b}, X3}, {∅, {a}, {b, c}, X3}

∣∣∣∣∣∣∣∣
a 6= b, b 6= c, a 6= c,

a, b, c ∈ {1, 2, 3}

.

This gives nine topologies.

• P top5,[0,1,1,2,3]P(X3) =


{
∅, {a}, {b}, {a, b}, X3

}
∣∣∣∣∣∣∣∣∣∣∣∣

a 6= b, b 6= c, a 6= b

and

a, b, c ∈ {1, 2, 3}


.

This gives three topologies.

• P top5,[0,1,2,2,3]P(X3) =


{
∅, {a}, {a, b}, {a, c}, X3

}
∣∣∣∣∣∣∣∣∣∣∣∣

a 6= b, b 6= c, a 6= b

and

a, b, c ∈ {1, 2, 3}


.

This gives three topologies.

• P top6,[0,1,1,2,2,3]P(X3) =

{∅, {a}, {b}, {a, b}, {b, c}, X3}

∣∣∣∣∣∣∣∣
a 6= b, b 6= c, a 6= c

and a, b, c ∈ {1, 2, 3}.

.

This gives six topologies.

• P top8,[0,1,1,1,2,2,2,3]P(X3) = P(X3), this gives one topology.

Therefore, we the following partition of the set of all topologies in X3:

Top(X3) =P top2,[0,3]P(X3) t P top3,[0,1,3]P(X3) t P top3,[0,2,3]P(X3) t P top4,[0,1,2,3]P(X3)

t P top5,[0,1,1,2,3]P(X3) t P top5,[0,1,2,2,3]P(X3) t P top6,[0,1,1,2,2,3]P(X3) t P top8,[0,1,1,1,2,2,2,3]P(X3).
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We will late on show a finer partition of Top(X3).

5.1.2 The action of Sn on CTop(Xn) is algebra faithful.

In this section, we will let Xn = {1, . . . , n} and Top(Xn) ⊂ PP(Xn) be the set of all

topologies on X. Also, recall that the free vector space over the set of all topologies

on Xn is denoted by CTop(Xn). We will consider it with the representation of Sn

obtained by linearising the action on Top(Xn).

Proposition 5.1.9. Recall that from Section 4.4

Xn := {(a1, a2, . . . , an) ∈ (Xn)n | ∀i, j : i 6= j =⇒ ai 6= aj}.

Then CXn is isomorphic to a subrepresentation of CTop(Xn).

Proof. Recall the injective map

F : Xn → PP(Xn)

(a1, . . . , an) 7→
{
∅, {a1}, {a1, a2}, {a1, a2, a3}, . . . , Xn

}
that was defined as in Lemma 4.4.4. Then clearly F(Xn) ⊂ Top(Xn), which is invari-

ant under the action of Sn. This means given (a1, . . . , an) ∈ Xn, then F
(
(a1, . . . , an)

)
is actually a topology. Thus, CXn is isomorphic to subrepresentation of CTop(Xn).

Theorem 5.1.10. The action of Snon CTop(Xn) is algebra faithful.

Proof. By Proposition 4.4.3 and Proposition 5.1.9, we have that CXn is algebra

faithful representation that is isomorphic to subrepresentation of CTop(Xn). Then

from lemma 2.3.8 we obtain that CTop(Xn) is algebra faithful.

The proof of the theorem encodes a more general technique that we now explain.

Theorem 5.1.11. Suppose that Sn acts on Y , a set, so that:

• action is transitive, namely, we have only one orbit, equivalently ∀y ∈ Y :

OrbSn(y) = Y ;

• action is free, namely all stabiliser subgroups are trivial.
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Then:

1. Given any y ∈ Y we have a bijection,

Fy : Sn → Y

g 7→ g.y,

that preserves the action of Sn, where Sn acts on itself by left multiplication.

2. We have an isomorphism F#
y : CSn → CY . So CY is algebra faithful.

Proof. 1. • We need first to prove that Fy is a bijective as follows:

(a) Injective: Let Fy(g1) = Fy(g2). we need to show that g1 = g2. Since

Fy(g1) = Fy(g2), then g1.y = g2.y.

Since the action is free, then the only element that fixes y will be the

identity idG. This means g−1
1 g2 = idG and this implies g1 = g2.

(b) Surjective: We need to show for every z ∈ Y , there is g ∈ Sn such

that Fy(g) = z. Since the action is transitive, for any z ∈ Y , there

exists g ∈ Sn such that z = g.x = Fy(g).

• We need to show that f.(Fy(g)) = Fy(fg).

f.(Fy(g)) = f.(Fy(g))

= f.(g.y)

= (fg)(y)

= Fy(fg).

2. From part1, CSn ∼= CY , as representations of Sn. Since CSn is the regular

representation which is algebra faithful, then from Lemma 2.3.8, we have CY

is algebra faithful.
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Clearly

P topn+1,[0,1,...,n]P(Xn) =
{{
∅, {a1}, {a1, a2}, . . . , Xn

}
| i, j : ai 6= aj

}
= OrbSn(

{
∅, {a1}, {a1, a2}, . . . , Xn

}
)

(5.9)

The action of Sn on P topn+1,[0,1,...,n]P(Xn) is transitive and free because the only per-

mutation that fix any element A ∈ P topn+1,[0,1,...,n]P(Xn) is the identity permutation.

From previous Theorem 5.1.11, we have that CP topn+1,[0,1,...,n]P(Xn) is algebra faithful.

We observe that any time we find an orbit of the action of Sn on Top(Xn) that is

free then we found one more algebra faithful subrepresentation of Sn on CTop(Xn).

We will do this in subsection 5.4 by using the idea of passing to the action on the

set of relations.

5.2 The irreducible content of the action of Sn

on the free vector space over the set of all

topologies on Xn, when 2 ≤ n ≤ 4.

In this section, we calculate the irreducible content of the action of Sn on the free

vector space over the set of all topologies on Xn when 2 ≤ n ≤ 4 by using the same

method in Section 4.2. Recall the set of all topologies on Xn denoted by Top(Xn) and

by P topP(Xn). The latter notation is because as mentioned before any topology is

an element of the power set of power set of Xn, and moreover the action we consider

on Top(Xn) and by P topP(Xn) is the restriction of that action.

5.2.1 Computation the decomposition of the action of S2 on

CTop(X2)

Let X2 = {1, 2} and Top(X2) be the set of all topologies on X2 which is:

TopX2
=
{
{∅, {1, 2}}, {∅, {1}, {1, 2}}, {∅, {2}, {1, 2}}, {∅, {1}, {2}, {1, 2}}

}
.

Then we observe that

Top(X2) = P top2,[0,2]P(X2) t P top3,[0,1,2]P(X2) t P top4,[0,1,1,2]P(X2)
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Now, by using the same method in Section 4.2 ( using GAP and Python) to decom-

pose the action of symmetric group Sn on CP topi,[a1,...,ai]P(X2) into irreducible, where

0 ≤ a1 ≤ · · · ≤ ai ≤ 2 and 2 ≤ i ≤ 4, we have the following:

CP top2,[0,2]P(X2) ∼= S(2)

CP top3,[0,1,2]P(X2) ∼= S(2) ⊕ S(12)

CP top4,[0,1,1,2]P(X2) ∼= S(2)

Therefore, the irreducible content of the action of S2 on the free vector space over

CTop(X2) is

CTop(X2) ∼= 3S(2) ⊕ S(12).

5.2.2 Computation the decomposition of the action of S3 on

CTop(X3)

Let X3 = {1, 2, 3} and Top(X3) be the set of all topologies on X3 that has 29 distinct

topologies as be shown in Example 5.1.8.

We implement the same technique in Section 4.2 to decompose the action of

symmetric group S3 on CP topi,[a1,...,ai]P(X3) into irreducible, where 0 ≤ a1 ≤ · · · ≤
ai ≤ 3 and 2 ≤ i ≤ 8, so we get the following (using GAP and Python):

CP top2,[0,3]P(X3) ∼= S(3)

CP top3,[0,1,3]P(X3) ∼= S(3) ⊕ S(2,1)

CP top3,[0,2,3]P(X3) ∼= S(3) ⊕ S(2,1)

CP top4,[0,1,2,3]P(X3) ∼= 2S(3) ⊕ 3S(2,1) ⊕ S(13)

CP top5,[0,1,1,2,3]P(X3) ∼= S(3) ⊕ S(2,1)

CP top5,[0,1,2,2,3]P(X3) ∼= S(3) ⊕ S(2,1)

CP top6,[0,1,1,2,2,3]P(X3) ∼= S(3) ⊕ 2S(2,1) ⊕ S(13)

CP top8,[0,1,1,1,2,2,2,3]P(X3) ∼= S(3)

We notice that all irreducible representation of S3 occurs in CP top4,[0,1,2,3]P(X3) and

in CP top6,[0,1,1,2,2,3]P(X3) and hence in CTopX3
.

As a result, we have the irreducible content of the action of S3 on the free vector
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space over the set of all topologies on X3 as:

CTop(X3) ∼= 9S(3) ⊕ 9S(2,1) ⊕ 2S(13).

We shall see later on a more conceptual way to obtain this.

5.2.3 Computation the decomposition of the action of S4 on

CTop(X4)

In the following example, we took advantage of the list of finite topologies on this

wikipedia page [Wik24], see https://en.wikipedia.org/wiki/Finite_topological_

space.

Let X4 = {1, 2, 3, 4} and Top(X4) be the set of all topologies on X4. Then we

have 355 different topologies on X4 that are combined as follows:

Let a, b, c, d ∈ {1, 2, 3, 4}, where all the elements a, b, c, d are distinct. Then:

• P top2,[0,4]P(X4) = {∅, X4}, this gives one topology.

• P top3,[0,1,4]P(X4) =
{
{∅, {a}, X4}

}
. This gives four topologies.

• P top3,[0,2,4]P(X4) =
{
{∅, {a, b}, X4}

}
. This gives six topologies.

• P top3,[0,3,4]P(X4) =
{
{∅, {a, b, c}, X4}

}
. This gives four topologies.

• P top4,[0,1,2,4]P(X4) =
{
{∅, {a}, {a, b}, X4}

}
.This gives twelve topologies.

• P top4,[0,1,3,4]P(X4) =
{
{∅, {a}, {a, b, c}, X4}

}
. This gives twelve topologies.

• P top4,[0,2,2,4]P(X4) =
{
{∅, {a, b}, {c, d}, X4}

}
.This gives three topologies.

• P top4,[0,2,3,4]P(X4) =
{
{∅, {a, b}, {a, b, c}, X4}

}
. This gives twelve topologies.

• P top5,[0,1,1,2,4]P(X4) =
{
{∅, {a}, {b}, {a, b}X4}

}
. This gives six topologies.

• P top5,[0,2,3,3,4]P(X4) =
{
{∅, {a, b}, {a, b, c}, {a, b, d}, X4}

}
. This gives six topolo-

gies.
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•

P top5,[0,1,2,3,4]P(X4) =
{
{∅, {a}, {a, b}, {a, b, c}, X4}

}
∪
{
{∅, {a}, {a, b}, {a, c, d}, X4}

}
∪
{
{∅, {a}, {b, c}, {a, b, c}, X4}

}
.

This gives forty-eight topologies.

•

P top6,[0,1,1,2,3,4]P(X4) =
{
{∅, {a}, {b}, {a, b}, {a, b, d}, X4}

}
∪
{
{∅, {a}, {b}, {a, b}, {a, b, c}, X4

}
. ,

This gives twenty-four topologies.

•

P top6,[0,1,2,2,3,4]P(X4) =
{
{∅, {a}, {a, b}, {c, d}, {a, c, d}, X4}

}
∪
{
{∅, {a}, {a, b}, {a, c}, {a, b, c}, X4}

}
.

This gives twenty-four topologies.

•

P top6,[0,1,2,3,3,4]P(X4) =
{
{∅, {a}, {b, c}, {a, b, c}, {b, c, d}, X4}

}
∪
{
{∅, {a}, {a, b}, {a, b, c}, {a, b, d}, X4}

}

This gives twenty-four topologies.

• P top7,[0,1,1,2,2,3,4]P(X4) =
{
{∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, X4}

}
. This gives twenty-

four topologies.

• P top7,[0,1,2,2,3,3,4]P(X4) =
{
{∅, {a}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, X4}

}
. This gives

twenty-four topologies.

• P top7,[0,1,1,2,3,3,4]P(X4) =
{
{∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X4}

}
. This gives

six topologies.
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•

P top8,[0,1,1,2,2,3,3,4]P(X4) =
{
{∅, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, X4}

}
∪
{
{{∅, {a}, {c}, {a, c}, {b, d}, {a, b, d}{b, c, d}, X4}

}
∪
{
{∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, b, d}, X4}

}

This gives fifty-four topologies.

•

P top9,[0,1,1,2,2,2,3,3,4]P(X4) =
{
{∅, {a}, {b}, {a, b}, {a, d}, {b, c}, {a, b, c}, {a, b, d}, X4}

}
.

This gives twelve topologies.

•

P top9,[0,1,1,1,2,2,2,3,4]P(X4) =
{
{∅, {a}, {a, b}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, c, d}, {a, b, d}X4}

}
.

This gives four topologies.

•

P top9,[0,1,2,2,2,3,3,3,4]P(X4) =
{
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, X4}

}
This gives four topologies.

•

P top10,[0,1,1,2,2,2,3,3,3,4]P(X4) =
{
{∅, {a}, {b}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, X4}

}

this gives twelve topologies.

•

P top10,[0,1,1,1,2,2,2,3,3,4]P(X4) =
{
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d}, X4}

}
.
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This gives twelve topologies.

•

P top12,[0,1,1,1,2,2,2,2,3,3,3,4]P(X4) =
{
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, d}, {a, b, c}, {a, b, d},

{a, c, d}, X4}
}
.

This gives twelve topologies.

• P top16,[0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4]P(X4) = P(X4), this gives one topology.

Then we are observing that:

TopX4
=P top2,[0,4]P(X4) t P top3,[0,1,4]P(X4) t P top3,[0,2,4]P(X4) t P top3,[0,3,4]P(X4)

t P top4,[0,1,2,4]P(X4) t P top4,[0,1,3,4]P(X4) t P top4,[0,2,2,4]P(X4) t P top4,[0,2,3,4]P(X4)

t P top5,[0,1,1,2,4]P(X4) t P top5,[0,2,3,3,4]P(X4) t P top5,[0,1,2,3,4]P(X4)

t P top6,[0,1,1,2,3,4]P(X4) t P top6,[0,1,2,3,3,4]P(X4) t P top6,[0,1,2,2,3,4]P(X4)

t P top7,[0,1,1,2,2,3,4]P(X4) t P top7,[0,1,2,2,3,3,4]P(X4) t P top7,[0,1,1,2,3,3,4]P(X4)

t P top8,[0,1,1,2,2,3,3,4]P(X4)

t P top9,[0,1,1,2,2,2,3,3,4]P(X4) t P top9,[0,1,1,1,2,2,2,3,4]P(X4) t P top9,[0,1,2,2,2,3,3,3,4]P(X4)

t P top10,[0,1,1,2,2,2,3,3,3,4]P(X4) t P top10,[0,1,1,1,2,2,2,3,3,4]P(X4)

t P top12,[0,1,1,1,2,2,2,2,3,3,3,4]P(X4)

t P top16,[0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4]P(X4).

Now, we utilize the same method in Section 4.2 (using GAP and Python) to show

the irreducible content of the action of S4 on the free vector space over the set of all

topologies on X4 as follows:

CP top2,[0,4]P(X4) ∼= S(4)

CP top3,[0,1,4]P(X4) ∼= S(4) ⊕ S(3,1)

CP top3,[0,2,4]P(X4) ∼= S(4) ⊕ S(3,1) ⊕ S(2,2)

CP top3,[0,3,4]P(X4) ∼= S(4) ⊕ S(3,1)
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CP top4,[0,1,2,4]P(X4) ∼= S(4) ⊕ 2S(3,1) ⊕ S(2,2) ⊕ S(2,12)

CP top4,[0,1,3,4]P(X4) ∼= 2S(4) ⊕ 3S(3,1) ⊕ S(2,2) ⊕ S(2,12)

CP top4,[0,2,2,4]P(X4) ∼= S(4) ⊕ S(2,2)

CP top4,[0,2,3,4]P(X4) ∼= S(4) ⊕ 2S(3,1) ⊕ S(2,2) ⊕ S(2,12)

CP top5,[0,1,1,2,4]P(X4) ∼= S(4) ⊕ S(3,1) ⊕ S(2,2)

CP top5,[0,2,3,3,4]P(X4) ∼= S(4) ⊕ S(3,1) ⊕ S(2,2)

CP top5,[0,1,2,3,4]P(X4) ∼= 3S(4) ⊕ 7S(3,1) ⊕ 4S(2,2) ⊕ 5S(2,12) ⊕ S(14)

CP top6,[0,1,1,2,3,4]P(X4) ∼= 2S(4) ⊕ 4S(3,1) ⊕ 2S(2,2) ⊕ 2S(2,12)

CP top6,[0,1,2,2,3,4]P(X4) ∼= 2S(4) ⊕ 4S(3,1) ⊕ 2S(2,2) ⊕ 2S(2,12)

CP top6,[0,1,2,3,3,4]P(X4) ∼= 2S(4) ⊕ 4S(3,1) ⊕ 2S(2,2) ⊕ 2S(2,12)

CP top7,[0,1,1,2,2,3,4]P(X4) ∼= S(4) ⊕ 3S(3,1) ⊕ 2S(2,2) ⊕ 3S(2,12) ⊕ S(14)

CP top7,[0,1,2,2,3,3,4]P(X4) ∼= S(4) ⊕ 3S(3,1) ⊕ 2S(2,2) ⊕ 3S(2,12) ⊕ S(14)

CP top7,[0,1,1,2,3,3,4]P(X4) ∼= S(4) ⊕ S(3,1) ⊕ S(2,2)

CP top8,[0,1,1,2,2,3,3,4]P(X4) ∼= 3S(4) ⊕ 7S(3,1) ⊕ 5S(2,2) ⊕ 6S(2,12) ⊕ 2S(14)

CP top9,[0,1,1,2,2,2,3,3,4]P(X4) ∼= S(4) ⊕ 2S(3,1) ⊕ S(2,2) ⊕ S(2,12)

CP top9,[0,1,1,1,2,2,2,3,4]P(X4) ∼= S(4) ⊕ S(3,1)

CP top9,[0,1,2,2,2,3,3,3,4]P(X4) ∼= S(4) ⊕ S(3,1)

CP top10,[0,1,1,2,2,2,3,3,3,4]P(X4) ∼= S(4) ⊕ 2S(3,1) ⊕ S(2,2) ⊕ S(2,12)

CP top10,[0,1,1,1,2,2,2,3,3,4]P(X4) ∼= S(4) ⊕ 2S(3,1) ⊕ S(2,2) ⊕ S(2,12)

CP top12,[0,1,1,1,2,2,2,2,3,3,3,4]P(X4) ∼= S(4) ⊕ 2S(3,1) ⊕ S(2,2) ⊕ S(2,12)

CP top16,[0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4]P(X4) ∼= S(4)

Consequently, we have the decomposition of the action of symmetric group S4 on
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CTop(X4) into irreducible as:

CTop(X4) ∼= 33S(4) ⊕ 54S(3,1) ⊕ 32S(2,2) ⊕ 30S(2,12) ⊕ 6S(14).

5.3 Topologies on finite sets and reflexive and tran-

sitive relations

We start by recalling some well-known facts about bases of topological spaces.

5.3.1 Basis of topology

Definition 5.3.1. (See for example [Mun75, Section 13].) Let X be a set and

β ⊆ P(X). Then β is said to be a basis in X if the following holds:

1. for each x ∈ X, there is at least one B ∈ β containing x;

2. Let B1, B2 ∈ β. If x ∈ X belongs to the intersection of B1 and B2, then there

is a B3 ∈ β, containing x, such that B3 ⊂ B1 ∩B2.

To the elements of β we call basis elements.

Example 5.3.2. Let X be a set. The set {{x} : x ∈ X} is a basis in X.

Example 5.3.3. Let X be a set. The set β = {X} is a basis in X.

Example 5.3.4. If τ is a topology on a set X, then it is a basis in X.

Lemma 5.3.5. (See for example [Mun75, Section 13].) Let X be a set. Suppose

that β is a basis in X and P(X) is the power set of X. Then:

τβ := {A ∈ P(X) | ∀x ∈ A, ∃B ∈ β : x ∈ B ⊂ A}

is a topology on X.

Example 5.3.6. Let X = {1, 2, 3} and β = {{1}, {2}, {3}, {1, 2}} be a basis in X.

Then:

τβ = {∅, {1}, {1, 2}, {1, 3}, X}

The basis elements in β are always opens sets in τβ.
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The three different bases in the above examples generate the discrete topology,

indiscrete topology and the topology τ itself respectively.

Definition 5.3.7. [Mun75, Section 13]Let X be a set. Let β be a basis in X. To

τβ we call the topology generated by β. We may also say that β generates τ .

Lemma 5.3.8. (See for example [Mun75, Lemma 13.1].) Let X be a set and β is

a basis for a topology τ on X. Then τβ is the set of all subsets of X that can be

written as the union (arbitrary union) of elements of β.

Different bases in X may generate the same topology. In the case when X is

finite, however, there is a ‘canonical’ basis for any topology on X. We now follow

Mays’ note [May03]

Definition 5.3.9. (See for example [May03].) Let (X, τ) be a finite topological

space. For x ∈ X, consider U τ
x to be the intersection of the open sets that contain x.

(Note that this is a finite intersection since we are working with a finite topological

space, so U τ
x is open.) Also put:

Min(τ) := {U τ
x : x ∈ X}.

Lemma 5.3.10. (See for example [May03, Lemma 1.13].) Continuing the previous

definition, we have:

1. Min(τ) is a basis in X.

2. The topology generated by Min(τ) is τ , itself; so

τMin(τ) = τ.

Proof. 1. We need to prove that Min(τ) is a basis as follows:

(a) For all z ∈ X. It is clear from Definition 5.3.9 that picking U τ
z ∈ Min(τ),

then z ∈ U τ
z . Hence, there is U = U τ

z such that z ∈ U.

(b) Let U τ
z , V

τ
z ∈ Min(τ) and let z ∈ U τ

z ∩ V τ
z . Since U τ

z and V τ
z are open

sets containing z, then W τ
z ⊆ U τ

z ∩ V τ
z . Now note that z ∈ W τ

z and

W τ
z ∈ Min(τ).

2. We need to prove that τMin(τ) = τ as the following:
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(a) Firstly, we want to show if U ∈ τ , then U ∈ τMin(τ). We need to prove

given x ∈ U , there exists U τ
x ∈ Min(τ) such that x ∈ U τ

x ⊆ U.

Now, let x ∈ U . Then x ∈ U τ
x ⊆ U because U τ

x is the intersection of all

open set containing x and x ∈ U . Therefore, U ∈ τMin (τ).

(b) Secondly, we need to show if U is open in τMin(τ), then U is open in

τ . Let U ∈ τMin(τ). Then there exists an indexed family {U τ
xi
}i∈I with

U τ
xi
∈ Min(τ) and U =

⋃
i∈I U

τ
xi

which is open in τ since each U τ
xi

is open

in τ.

Notation 5.3.11. Let X be a set. We denoted the set of all bases in X by B(X).

Note B(X) ⊂ PP(X).

Lemma 5.3.12. The action of Sym(X) on PP(X) restricts to an action of Sym(X)

on B(X).

Proof. Suppose f ∈ Sym(X) and β ∈ B(X). Define

B : Sym(X)×B(X)→ B(X)

as:

f B β = {f I b : b ∈ β} = {f [b] : b ∈ β}.

We need to prove that if β ∈ B(X) and f ∈ Sym(X), then f B β ∈ B(X).

1. Firstly, we need to prove for all x ∈ X, there is B ∈ f B β such that x ∈ B.
Since β ∈ B(X), then there exists a B

′ ∈ β such that f−1(x) ∈ B′ . Thus, we

have x ∈ f [B
′
] with f [B

′
] ∈ f B β.

2. Given B1, B2 ∈ f B β, for all x ∈ B1 ∩ B2, we need to prove there exist

B3 ∈ f B β such that x ∈ B3 ⊆ B1 ∩B2.

Since x ∈ B1 ∩ B2 with B1 = f(B
′
1) and B2 = f(B

′
2), where B

′
1, B

′
2 ∈ β, then

f−1(x) ∈ B′1 ∩ B
′
2. So, there exists B

′
3 ∈ β such that f−1(x) ∈ B′3 ⊆ B

′
1 ∩ B

′
2.

Since, f is bijection, then x ∈ f [B
′
3] ⊆ f [B

′
1] ∩ f [B

′
2]. Therefore, there exist

f [B
′
3] ∈ f B β such that x ∈ f [B

′
3] ⊆ f [B

′
1] ∩ f [B

′
2].
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Lemma 5.3.13. Consider τβ is the topology generated by a basis β and f ∈ Sym(X).

Then we have:

f B τβ = τfBβ

Proof. 1. Firstly, we need to prove that if A ∈ f B τβ, then A ∈ τfBβ.

Let A ∈ f B τβ. Then for some B ∈ τβ, we can put: A = f B B. Since

B ∈ τβ, then from Lemma 5.3.8, we get B =
⋃
i∈I Bi, where Bi ∈ β. Thus,

A = f B (
⋃
i∈I Bi). Since f ∈ Sym(X), then

f B (
⋃
i∈I

Bi) =
⋃
i∈I

(f BBi).

Since Bi ∈ β, then f . Bi ∈ f . β. So, A =
⋃
i∈I(f B Bi) with f . Bi ∈ f . β.

Therefore, A ∈ τfBβ.

2. Now, we need to prove that if A ∈ τfBβ, then A ∈ f B τβ.

Let A ∈ τf.β. Then

A =
⋃
i∈I

(f B Ui),

where Ui ∈ β. So,

A = f . (
⋃
i∈I

Ui).

But ⋃
i∈I

(Ui) ∈ τβ.

Therefore, A ∈ f . τβ.

Lemma 5.3.14. Let (X, τ) be topological space. Let Min(τ) be defined as in Defi-

nition 5.3.9. Let f ∈ Sym(X). Then we have:

f BMin(τ) = Min(f B τ).
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Proof. By definition

Min(τ) ={U τ
x : x ∈ X}

=
{ ⋂
V ∈τ
x∈V

V : x ∈ X
}
.

Then:

f BMin(τ) = f B
{ ⋂
V ∈τ
x∈V

V : x ∈ X
}

=
{
f [
⋂
V ∈τ
x∈V

V ] : x ∈ X
}

=
{ ⋂
V ∈τ
x∈V

f [V ] : x ∈ X
}
, since f is bijective.

and

Min(f B τ) =
{ ⋂
U∈fBτ
y∈U

U : y ∈ X
}

=
{ ⋂

V ∈τ
y∈f [V ]

f [V ] : y ∈ X
}

=
{ ⋂
V ∈τ
x∈V

f [V ] : x ∈ X
}
, since f is bijective.

Therefore,

f BMin(τ) = Min(f B τ).

Lemma 5.3.15. Let X be a finite set. Let B(X) ⊆ PP(X) be the set of all bases

in X and Top(X) be the set of all topologies on X. Then there are:

1. A surjective map

L : B(X)� Top(X)

β 7→ τβ

that, moreover, preserves the action of Sym(X).
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2. An injective map

M : Top(X) ↪→ B(X)

τ 7→ Min(τ).

that, moreover, preserves the action of Sym(X).

Proof. 1. (a) We need to prove that L is surjective. so we need to show is that

if τ in TopX , there is a basis β such that τ = τβ. This clear from Lemma

5.3.10.

(b) We need to show that

f B L(β) = L(f B β)

Let us start

f B L(β) = f B τβ

= τfBβ from Lemma 5.3.13

= L(f B β)

2. (a) We need to prove that M is injective. We need to show that

τ 6= τ
′
=⇒M(τ) 6= M(τ

′
).

We show the proof by using contradiction. Suppose M(τ) = M(τ
′
). This

means Min(τ) = Min(τ
′
). However, we know if two topologies generated

by the same basis that means the two topologies are equal. Thus, τ = τ
′
.

This is contradiction with our assumption. Therefore, M(τ) 6= M(τ
′
).

3. We want to show that

f BM(τ) = M(f B τ).
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Let us proceed as follows:

f BM(τ) = f BMin(τ)

= Min(f B τ) from Lemma 5.3.14

= M(f B τ).

5.3.2 Finite topologies and relations

Recall that a relation (or binary relation) on a set X is a subset of X × X.

(See[Hal60].)

A binary relation ≤ on a set X is reflexive if each element of X relates to itself:

i.e. ∀x ∈ X : x ≤ x. Also, a relation ≤, is called a transitive if given x ≤ y and

y ≤ z, then x ≤ z. (See [Hal60].)

We now go back to the case when all sets are finite.

Lemma 5.3.16 ((See for example [May03, Lemma 1.13.].)). Let X be a finite set

with a reflexive and transitive relation ≤. The set of all sets of the form:

B≤x := {y : y ≤ x},

where x ∈ X, is a basis in X (in the sense of (5.3.1)), denoted, B≤.

Proof. We show B≤ is a basis as follows:

1. Let x ∈ X. Since ≤ is reflexive, then it is clear that

x ∈ B≤x = {y : y ≤ x} ∈ B≤

because x ≤ x. Therefore, the 1st condition of basis holds.

2. Let x1, x2 ∈ X. Let x ∈ B≤x1 ∩ B
≤
x2

we want to prove there exist x3 ∈ X such

that x ∈ B
x≤3
⊆ B≤x1 ∩B

≤
x2

. Define x3 = x. We already know that x ∈ B≤x .

Claim. B≤x ⊆ B≤x1 ∩B
≤
x2

.

Proof. We want to prove if z ∈ B≤x , then z ∈ B≤x1 and z ∈ B≤x2 . Let z ∈ B≤x .
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Then z ≤ x. Moreover, x ≤ x1 and x ≤ x2 because x ∈ B≤x1 and x ∈ B≤x2 . By

transitivity, we have z ≤ x1 and z ≤ x2. Therefore, z ∈ B≤x1 ∩ B
≤
x2
. So, this

proves the second condition of basis.

Definition 5.3.17. If X is a set and ≤ is a reflexive and transitive relation, in X,

we put

τ≤ := τB≤

Lemma 5.3.18. Let τ be a topology on X, finite. If x, y ∈ X then:

x ∈ U τ
y ⇐⇒ U τ

x ⊆ U τ
y .

Proof. We prove each implication separately.

⇐ Suppose U τ
x ⊆ U τ

y . We want to prove x ∈ U τ
y . Let x ∈ U τ

x . Hence, it is clear

x ∈ U τ
y .

⇒ Suppose x ∈ U τ
y , we want to prove that U τ

x ⊆ U τ
y . Since U τ

y is open and U τ
x is

the smallest open set containing x, then U τ
x ⊆ U τ

y .

Lemma 5.3.19. Let X be a finite set, with a topology τ . We have a reflexive

transitive relation, on X, where x ≤τ y, if, and only if, x ∈ U τ
y .

Proof. We need to prove that ≤τ is reflexive and transitive relation as follows:

• Reflexivity: It is clear that x ≤τ x, since x ∈ U τ
x .

• Transitivity: Let x ≤τ y and y ≤τ z. This means x ∈ U τ
y and y ∈ U τ

z . So,

x ∈ U τ
y ⊆ U τ

z . Therefore, x ≤τ y.

So, as in [May03, Proposition 1.16], we have a function

F : Top(X)→ Rel(X)

τ 7→ ≤τ .
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Also put:

F : Rel(X)→ Top(X)

≤ 7→ τ≤.

Our aim is to prove that they are mutually inverse, and that both preserve the

action of Sym(X).

Lemma 5.3.20. Let τ ∈ Top(X). Then, if y ∈ X, U τ
y = B≤τy

Proof.

z ∈ U τ
y ⇐⇒ z ≤τ y by Lemma 5.3.19

⇐⇒ z ∈ B≤τy = {m : m ≤τ y}.

Lemma 5.3.21. Let X be a finite set. Let ≤ be a reflexive and transitive relation

in X. Then

1. x ≤ y happens if, and only if, B≤x ⊆ B≤y ;

2. Given x ∈ X. B≤x = U
τ≤
x .

3. B≤ = Min(τ≤).

Proof. 1. We prove each implication separately.

⇐ Suppose B≤x ⊆ B≤y . We want to prove x ≤ y. Since x ∈ B≤x , then x ∈ B≤y .

Therefore, x ≤ y.

⇒ Suppose x ≤ y, we want to prove that B≤x ⊆ B≤y . Let z ∈ B≤x . Then

z ≤ x. Since, x ≤ y, then by transitivity z ≤ y. Thus, z ∈ B≤y .

2. Given x ∈ X.

• We want to prove that B≤x ⊆ U
τ≤
x . Since x ∈ U

τ≤
x and U

τ≤
x is open in

τ≤, there exists a basis element x ∈ B≤z ⊆ U
τ≤
x . So, x ≤ z. Hence, by

transitivity we have B≤x ⊆ B≤z . Therefore, B≤x ⊆ U
τ≤
x .

• We need to prove that U
τ≤
x ⊆ B≤x . We know x ∈ U τ≤

x . Since {B≤y : y ∈ X}
is a basis for τ≤, then B≤x is open in τ≤. We know U

τ≤
x is smallest open
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set in τ≤ containing x. Therefore, U
τ≤
x ⊆ B≤x .

3. It is clear that Min(τ≤) = B≤ from the previous statement (2).

Theorem 5.3.22 ([May03], Proposition 1.16). Let (X, τ) be a finite topological

space. Let Rel(X) be the set of transitive, reflexive relations on X and Top(X) is

the set of finite topologies spaces.

The functions

F : Top(X)→ Rel(X)

and

F : Rel(X)→ Top(X)

are mutually inverse to each other. I.e. F ◦ F = idRel(X) and F ◦ F = idTop(X) .

Proof. 1. We need to prove F ◦ F = idRel(X) .I.e. ≤=≤(τ≤).

x ≤τ≤ y ⇐⇒ x ∈ U τ≤
y by Lemma 5.3.19

⇐⇒ x ∈ B≤y by Lemma 5.3.21 part 2

⇐⇒ x ∈ {z : z ≤ y}

⇐⇒ x ≤ y

2. We need to prove F ◦ F = idTop(X). I.e. τ = τ(≤τ ). It is suffices to prove that

Min(τ) = Min(τ≤τ ).

So, it is suffices to show that

∀x ∈ X : U
τ≤τ
x = U τ

x
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Let us start as follows:

U
τ≤τ
x = B≤τx by Lemma 5.3.21 part 2

= U τ
x by Lemma 5.3.20.

We now discuss the action of Sym(X) on the set of transitive reflexive relations

on X.

Proposition 5.3.23. Let Rel(X) be the set of transitive, reflexive relations on X.

Let ≤∈ Rel(X). Then we have an action of Sym(X) on Rel(X), denoted by f . (≤),

defined as:

x f(≤) y ⇐⇒ f−1(x) ≤ f−1(y).

Proof. • Claim 1: f(≤) is reflexive.

Proof. It is clear.

• Claim 2: f(≤) is transitive.

Proof. Let x f(≤) y and y f(≤) z. Then

x f(≤) y and y f(≤) z ⇐⇒ f−1(x) ≤ f−1(y) and f−1(y) ≤ f−1(z)

⇐⇒ f−1(x) ≤ f−1(z)

⇐⇒ x f(≤) z.

• Claim 3 :

(fg)−1 . (≤) = f−1(g−1. ≤)

Proof.

L.H.S. = x (fg)(≤)y

= (f ◦ g)−1(x) ≤ (f ◦ g)−1(y)

= g−1 ◦ f−1(x) ≤ g−1 ◦ f−1(y)
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R.H.S. = x f(g(≤))y

= f−1(x) ≤ (g(≤))f−1(y)

= g−1(f−1(x)) ≤ g−1(f−1(y))

= g−1 ◦ f−1(x) ≤ g−1 ◦ f−1(y)

Therefore, L.H.S. =R.H.S.

Lemma 5.3.24. Let f ∈ Sym(X). Then

f(U τ
x ) = U

f(τ)
f(x) .

Proof.

f(U τ
x ) = f(

⋂
x∈A
A∈τ

A)

=
⋂

f(x)∈f(A)
f(A)∈f(τ)

f(A)

= U
f(τ)
f(x) .

Proposition 5.3.25. The bijections

F : Top(X)→ Rel(X)

and

F : Rel(X)→ Top(X)

preserve the action of symmetric group Sn.

Proof. ∀f ∈ Sn, τ ∈ Top(X). Then we need to prove that

F (f B τ) = f B F (τ).
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This means we need to show that

x ≤f(τ) y ⇐⇒ xf(≤τ )y.

Let us start

x ≤f(τ) y ⇐⇒ x ∈ U f(τ)
y by Lemma 5.3.19

⇐⇒ x ∈ f(U τ
x ) by Lemma 5.3.24

⇐⇒ xf(≤τ )y.

Theorem 5.3.26. Let X be a finite set. There is a bijection between the set of re-

flexive and transitive relations, ≤, on X and the set of all topologies in X. Moreover,

the bijection preserves the action of Sym(x).

The first statement is in [May03, Proposition 1.16].

Proof. The first statement from Theorem 5.3.22, and the second statement from

Proposition 5.3.25.

5.4 One more partition of set Top(Xn) via Rel(Xn)

We now go back to considering X = Xn, where n is a positive integer. So Sym(X) =

Sn.

Recall that there is a bijection Top(Xn) → Rel(Xn) preserving the action of Sn

from Theorem 5.3.26. Then the the Sn-sets Top(Xn) and Rel(Xn) are isomorphic .

Therefore, as representations of Sn, we have CRel(Xn) ∼= CTop(Xn).

Now, we have

Rel(Xn) =
⊔

O∈Rel(Xn)/Sn

O,

a partition of a set into orbits. So, as representation of Sn, we obtain

CRel(Xn) ∼=
⊕

O∈Rel(Xn)/Sn

CO.
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Also, we have

Top(Xn) =
⊔

[a1,...,ai]∈{0,1,...,n}i
0≤a1≤a2≤···≤ai≤n

P topi,[a1,...,ai]P(Xn)

where each P topi,[a1,...,ai]P(Xn) is invariant under the action of Sn. However they may

contain more than one orbit. So, the partition

Rel(Xn) =
⊔

O∈Rel(X)/Sn

O,

of Rel(Xn), is in theory finer that the partition of Top(Xn) is as below

Top(Xn) =
⊔

[a1,...,ai]
0≤a1≤a2≤···≤ai≤n

P topi,[a1,...,ai]P(Xn).

So we have

P topi,[a1,...,ai]P(Xn) ∼=
⊔

O∈Ptop
i,[a1,...,ai]

P(Xn)/Sn

O.

5.4.1 The full decomposition of Top(X3) into orbits

Now, we repeat the procedure that used in example 5.1.8, using this finer decompo-

sition of Top(X3).

1. We have:

P top4,[0,1,2,3]P(X3) ∼= OrbS3(≤) t OrbS3(≤′),

here we have two types of topologies, arising from two orbits of the action of

S3 on Top(X3). The relations ≤ and ≤′ are :

≤=

1·
��

~~   
2· YY // 3· YY

As the diagram indicates, this is the reflexive and transitive relation such that:

1 ≤ 1, 2 ≤ 2, 3 ≤ 3, 1 ≤ 2, 2 ≤ 3, 1 ≤ 3.

And
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≤′=
1·
��

2· YY // 3· YYcc

As shown in the diagram, this is the relation (reflexive and transitive) such

that: 1 ≤′ 1, 2 ≤′ 2, 3 ≤′ 3, 1 ≤′ 3, 2 ≤′ 3, 3 ≤′ 2.

Let us see why this is the case. Suppose we have a topology in P top4,[0,1,2,3]P(X3),

then

(a) we have one set of cardinality 1, say {a}, for some a ∈ {1, 2, 3}.

(b) We have one set with cardinality 2. There are two possible cases now, for

the set of cardinality two.

i. {a, b} and the topology will then have the form {∅, {a}, {a, b}, {a, b, c},
where a, b, c ∈ {1, 2, 3} are all different.

ii. {b, c} and the topology then has the form {∅, {a}, {b, c}, {a, b, c}},
again for different a, b, c ∈ {1, 2, 3}.

So, we have

P top4,[0,1,2,3]P(X3) = OrbS3

(
{∅, {1}, {1, 2}, {1, 2, 3}})tOrbS3(

{
∅, {1}, {2, 3}, {1, 2, 3}

})
,

Therefore, we have an isomorphism of S3-sets

P top4,[0,1,2,3]P(X3) ∼= OrbS3

 1·
��

~~   
2· YY // 3· YY



t OrbS3

 1·
��

2· YY // 3· YYcc



129



CHAPTER 5. THE ACTION OF SN ON THE SET OF TOPOLOGIES ON XN

So we can see that the partition of Top(Xn) using the orbits on relations is

finer in comparison with the one that merely use the number of subsets, and

their cardinalities.

From now on, we will keep on describing a transitive and reflexive

relation by a diagram. However we will omit the loops, even

though we will always be describing reflexive relations.

2. We have :

P top6,[0,1,1,2,2,3]P(X3) ∼= OrbS3(≤),

where

≤=

1·

  
2· 3·

As the diagram illustrates, this is the relation (reflexive and transitive ) such

that: 1 ≤ 1, 2 ≤ 2, 3 ≤ 3,1 ≤ 3.

Let us see why this is the case. Assume we have a topology in P top6,[0,1,1,2,2,3]P(X3),

then

(a) We have two singletons sets, let them be {a} and {b} with a 6= b, where

a, b ∈ {1, 2, 3}.

(b) We have two sets of cardinality 2 in the topology. One must be {a, b}
The other subset of cardinality 2 must be either {a, c} or {b, c}, where

a, b, c ∈ {1, 2, 3} are all different, because we have only 3 elements in X3.

So, the topology will have the form {∅, {a}, {b}, {a, b}, {b, c}, X3} and we get:

P top6,[0,1,1,2,2,3]P(X3) = OrbS3

(
{∅, {1}, {2}, {1, 2}, {2, 3}, X3}

)
Therefore, we have an isomorphism of S3-sets

P top6,[0,1,1,2,2,3]P(X3) ∼= OrbS3

 1·

2· // 3·

 .

Now, we complete showing the partition of Top(X3) in orbits of S3. So we

have the following:
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3. We have:

P top2,[0,3]P(X3) ∼= OrbS3(≤),

where the relation ≤ is as below:

1·

~~   
2·

..

// 3·

pp

cc

This relation gives the indiscrete topology and the action of S3 is the trivial

representation on this relation and on the topology.

4. We have:

P top3,[0,1,3]P(X3) ∼= OrbS3(≤),

where the relation ≤ is as below:

1.

~~   
2. // 3.cc

5. We have :

P top3,[0,2,3]P(X3) ∼= OrbS3(≤),

where the relation ≤ is as below:

1·

~~   
2·

..

// 3·

6. We have:

P top5,[0,1,1,2,3]P(X3) ∼= OrbS3(≤),

where the relation ≤ is as below:

1·

  
2· // 3·
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7. We have:

P top5,[0,1,2,2,3]P(X3) ∼= OrbS3(≤),

where the relation ≤ is as below:

1·

~~   
2· 3·

8. We have:

P top8,[0,1,1,1,2,2,2,3]P(X3) ∼= OrbS3(≤),

where the relation ≤ is as below:

1.

2. 3.

Here x ≤ y, if, and only if, x = y. This relation gives the discrete topology

and the action of S3 is the trivial representation on this relation and on the

topology.

We have found the number of relations in the table in [May, pp.10].

5.4.2 Summary: the full decomposition of Rel(X3) into S3-

orbits

In this subsection, we will use Theorem 5.1.11. Any time we have an orbit O of Sn

on Rel(Xn) that is free (i.e. all stabilisers are trivial) then CO is isomorphic to the

regular representation of Sn, and hence CO is in particular algebra faithful. The

formulation of the action of Sn on TopXn in terms of the action on Rel(Xn) makes it

quite transparent to identify when an orbit is free. We now illustrate this for n = 3.

Summarising the previous subsection §5.4.1, Rel(X3) is partitioned into the or-

bits of the relations below, and we have shown which of them are free, and their

cardinality:

1. ≤=

1·

~~   
2· // 3·

. Free orbit. |OrbS3(≤)| = 6.
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———————————————————————————————

2. ≤=

1·

  
2· 3·

. Free orbit. |OrbS3(≤)| = 6.

———————————————————————————————

3. ≤=

1·

2· 3·

. Non-free orbit. |OrbS3(≤)| = 1.

———————————————————————————————

4. ≤=

1·

2· // 3·cc

. Non-free orbit. |OrbS3(≤)| = 3.

———————————————————————————————

5. ≤=

1·

~~   
2·

..

// 3·

pp

cc

. Non-free orbit. |OrbS3(≤)| = 1.

———————————————————————————————

6. ≤=

1.

~~   
2. // 3.cc

. Non-free orbit. |OrbS3(≤)| = 3.

———————————————————————————————

7. ≤=

1·

~~   
2·

..

// 3·

.Non-free orbit. |OrbS3(≤)| = 3.

———————————————————————————————

8. ≤=

1·

  
2· // 3·

. Non-free orbit.|OrbS3(≤)| = 3.

———————————————————————————————

9. ≤=

1·

~~   
2· 3·

. Non-free orbit. |OrbS3(≤)| = 3.
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———————————————————————————————

5.4.3 The full decomposition of Top(X4) into orbits

In this subsection, we repeat the way that used in §5.2.3, using this finer decompo-

sition of Top(X4).

1. We have:

P top2,[0,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ is as below:

1.
%%&& %%

2.
&&

ff
%%

3.ee
&&

ff 4.ee ffee

As the diagram illustrates, this is the relation (reflexive and transitive ) such

that: 1 ≤ 1, 2 ≤ 2, 3 ≤ 3, 4 ≤ 4, 1 ≤ 2, 1 ≤ 3, 1 ≤ 4, 2 ≤ 3, 2 ≤ 4, 3 ≤ 4,

2 ≤ 1, 3 ≤ 1, 4 ≤ 1, 3 ≤ 2, 3 ≤ 4, 4 ≤ 2, 4 ≤ 3. This relation gives the

indiscrete topology and the action of S4 is the trivial representation on this

relation and on the topology.

2. We have:

P top3,[0,1,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ is as below:

≤=

1·

~~   ��
2· // &&

3·jj // 4·jjff

.

3. We have:

P top3,[0,2,4]P(X4) ∼= OrbS4(≤),
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where the relation ≤ is as below:

≤=

1·

~~   ��
2· //

22

883· // 4·jj

.

4. We have:

P top3,[0,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ is as below:

≤=

1·

~~   ��
2· //

22

883·jj

VV

// 4·

.

5. We have:

P top4,[0,1,2,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ is as below:

≤=

1·

~~   ��
2· 99// 3· // 4·ii

.

6. We have:

P top4,[0,1,3,4]P(X4) ∼= OrbS4(≤) t OrbS4(≤′),

where the relation ≤ is as below:

≤=

1·

~~   ��
2· // 883·gg // 4·

.
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and

≤′=
1·

2· // ((
3·gg // 4·ffff

.

7. We have:

P top4,[0,2,2,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ is as below:

≤=

1· // 2·ff

3· // 4·ff

.

8. We have:

P top4,[0,2,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ is as below:

≤=

1·

~~   ��
2· 88

22

// 3· // 4·

.

9. We have:

P top5,[0,1,1,2,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤=

1·

  ��
2· // 883· // 4·jj

.
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10. We have:

P top5,[0,2,3,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤=

1·

  ~~ ��
2·

22

// 883· 4·

.

11. We have:

P top5,[0,1,2,3,4]P(X4) = OrbS4(≤) t OrbS4)(≤′) t OrbS4)(≤′′).

Where

≤= 1·

~~   ��
2· // 883· // 4·

,

≤′= 1·

��
2· // &&

3· //
dd 4·

.

and

≤′′= 1·

~~   ��
2· // 3·__ 4·

,

12. We have:

P top6,[0,1,1,2,3,4]P(X4) ∼= OrbS4(≤) t OrbS4)(≤′),
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where the relation ≤ as below:

≤=

1·

  ��
2· // 883· // 4·

.

and

≤′=
1·

  ��
2· 3· // 4·ff

.

13. We have:

P top6,[0,1,2,2,3,4]P(X4) ∼= OrbS4(≤) t OrbS4(≤′),

where the relation ≤ as below:

≤=

1·

  ~~ ��
2· 883· // 4·

.

and

≤′=
1·

~~   ��
2· // 3·gg 4·

.

14. We have:

P top6,[0,1,2,3,3,4]P(X4) ∼= OrbS4(≤) t OrbS4(≤′),

where the relation ≤ as below:

≤=

1·

  ~~ ��
2· 88// 3· 4·

.
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and

≤′=
1·

~~ ��
2· 88

22

3· 4·

.

15. We have

P top7,[0,1,1,2,2,3,4]P(X4) ∼= Orb(≤).

where the relation ≤ as below:

≤= 1·

~~   

2·

~~
3· // 4·

16. we have

CP top7,[0,1,2,2,3,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤= 1·

~~   

// 2·

3· // 4·

17. We have

CP top7,[0,1,1,2,3,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤= 1·

  ��
2· // 883· 4·

18. We have:

P top8,[0,1,1,2,2,3,3,4]P(X4) = OrbS4(≤) t OrbS4(≤′) t OrbS4(≤′′).
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Where

≤= 1·

  ��
2· 883· 4·

≤′= 1·

  ��
2· 3· // 4

and

≤′′= 1·

2· 3· // 4·
||

.

19. We have:

CP top9,[0,1,1,2,2,2,3,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤= 1·

  
2· 883· 4·

20. We have:

CP top9,[0,1,1,1,2,2,2,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤= 1·

&&

2·

��

3·

xx
4·

21. We have:

CP top9,[0,1,2,2,2,3,3,3,4]P(X4) ∼= OrbS4(≤),
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where the relation ≤ as below:

≤= 1· //

&&��

2·

3· 4·

22. We have:

CP top10,[0,1,1,2,2,2,3,3,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤= 1· //

&&

4·

2· 3·

23. We have:

CP top10,[0,1,1,1,2,2,2,3,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤= 1·

2· 883· // 4·

24. We have:

CP top12,[0,1,1,1,2,2,2,2,3,3,3,4]P(X4) ∼= OrbS4(≤),

where the relation ≤ as below:

≤= 1·

2· 3· // 4·
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25. We have:

P top16,[0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4]P(X4) ∼= OrbSs(≤),

where the relation ≤ as below:

1. 2·

2. 3.

Here x ≤ y, if, and only if, x = y. This relation gives the discrete topology and the

action of S4 is the trivial representation on this relation and on the topology.

5.4.4 Summary: the full decomposition of Rel(X4) into S4-

orbits

In this subsection, we summarise the previous subsection §5.4.3. Set Rel(X4) is par-

titioned into the orbits of the relations below, and we should which orbits are free

(and hence give algebra faithful representations of Sn), and the cardinality of each

orbit.

1. ≤=

1·

~~   ��
2· // 883· // 4·

. Free orbit. |OrbS4(≤)| = 24.

———————————————————————————————

2. ≤=

1

�� ��

2

��
3 // 4

. Free orbit. |OrbS4(≤)| = 24.

———————————————————————————————

3. ≤=

1

�� ��

// 2

3 // 4

. Free orbit. |OrbS4(≤)| = 24.

———————————————————————————————
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4. ≤=

1·

  ��
2· 883· 4·

. Free orbit. |OrbS4(≤)| = 24.

———————————————————————————————

5. ≤=

1·

  ��
2· 3· // 4

. Free orbit. |OrbS4(≤)| = 24.

———————————————————————————————

So, all above relations have free orbit and therefore they give algebra faithful

representations, moreover isomorphic to CS4. Note that CS4
∼= S(4) ⊕ 3S(3,1) ⊕

2S(2,2) ⊕ 3S(2,12) ⊕ S(14).

———————————————————————————————

1. ≤= 1.
!!$$   

2.
$$

cc
!!

3.``
$$

cc 4.`` cc`` . Non free orbit. |OrbS4(≤)| = 1.

———————————————————————————————

2. ≤=

1·

~~   ��
2· // &&

3·jj // 4·jjff

. Non free orbit. |OrbS4(≤)| = 4 .

———————————————————————————————

3. ≤=

1·

~~   ��
2· //

22

883· // 4·jj

.Non free orbit. |OrbS4(≤)| = 6.

———————————————————————————————

4. ≤=

1·

~~   ��
2· //

22

883·jj

VV

// 4·

.Non free orbit. |OrbS4(≤)| = 4.

———————————————————————————————
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5. ≤=

1·

~~   ��
2· 88// 3· // 4·ff

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

6. ≤=

1·

~~   ��
2· // 883·gg // 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

7. ≤=

1·

2· // ((
3·gg // 4·ffff

.Non free orbit. |OrbS4(≤)| = 4.

———————————————————————————————

8. ≤=

1· // 2·ff

3· // 4·ff

. Non free orbit. |OrbS4(≤)| = 4.

———————————————————————————————

9. ≤=

1·

~~   ��
2·

22

// 443· // 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

10. ≤= 1·

~~   ��
2· // 3·gg 4·

.Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

11. ≤=

1·

  ��
2· // 883· // 4·jj

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

12. ≤=

1·

  ~~ ��
2·

22

// 883· 4·

. Non free orbit. |OrbS4(≤)| = 12
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———————————————————————————————

13. ≤= 1·

��
2· // &&

3· //
dd 4·

.Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

14. ≤=

1·

  ��
2· 3· // 4·ff

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

15. ≤=

1·

  ��
2· // 883· // 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

16. ≤=

1·

  ~~ ��
2· 883· // 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

17. ≤=

1·

  ��
2· // 3·gg 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

18. ≤=

1·

  ~~ ��
2· 88// 3· 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

19. ≤=

1·

~~ ��
2· 88

22

3· 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————
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20. ≤= 1·

�� ��
2· //

<<3· 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

21. ≤=

1·

2· 3· // 4·
||

. Non free orbit. |OrbS4(≤)| = 6.

———————————————————————————————

22. ≤=

1·

��
2· <<3· 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

23. ≤= 1·

""

2·

��

3·

||
4·

. Non free orbit. |OrbS4(≤)| = 4.

———————————————————————————————

24. ≤= 1·

""

//

��

2·

3· 4·

. Non free orbit. |OrbS4(≤)| = 4.

———————————————————————————————

25. ≤= 1· //

&&

4·

2· 3·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

26. ≤= 1·

2· <<3· // 4·

. Non free orbit. |OrbS4(≤)| = 12.

———————————————————————————————

27. ≤=

1·

2· 3· // 4·

. Non free orbit. |OrbS4(≤)| = 12.
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———————————————————————————————

28. ≤=

1. 2·

3. 4.

. Non free orbit. |OrbS4(≤)| = 1.

———————————————————————————————

5.4.5 Some free orbits for the general n case

Proposition 5.4.1. Let Xn = {1, 2, . . . , n}. Consider the reflexive and transitive

relation sketched below

≤= 1· // 2· // 3· // 4· // 5· . . . . . . n− 2· // n− 1· // n·

Here the remaining arrows are either loops on an object, or a composition of arrows,

in order to ensure transitivity. So, x, y ∈ {1, . . . , n}, x ≤ y has the usual meaning,

in Z. The action of Sn on OrbSn(≤) is free and therefore it gives an algebra faithful

representation of Sn.

Proof. Since

OrbSn(≤) = P topn+1,[0,1,2,...,n]P(Xn),

then from (5.9) we have COrbSn(≤) is algebra faithful representation of Sn. It can

also be seen, by inspection, that StabSn(≤) is trivial. So its orbit is free.

It is very easy to find more transitive and reflexive relations on Xn whose orbit

is free as follows:

Proposition 5.4.2. Let Xn = {1, 2, . . . , n}. Consider the reflexive and transitive

relation sketched below (in all cases, the remaining arrows are either loops on an

object, or a composition of arrows, in order to ensure transitivity):

• For n ≥ 4, we have

≤= 1· // 2· // 3· // 4· // 5· . . . . . . n− 3· // n− 2· // n− 1·

n·

OO

So, x, y ∈ {1, . . . , n − 1}, x ≤ y has the usual meaning, in Z. We also have
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n ≤ n− 1 and n ≤ n.

• For all n, we have

≤= 1· // 2· // 3· // 4· // 5· . . . . . . n− 2· // n− 1·

n·

So, x, y ∈ {1, . . . , n − 1}, x ≤ y has the usual meaning, in Z. We also have

n ≤ n.

• For n ≥ 4, we have

≤= 1· //

��

2· // 3· // 4· // 5· . . . . . . n− 2· // n− 1·

n·

So, x, y ∈ {1, . . . , n − 1}, x ≤ y has the usual meaning, in Z. We also have

1 ≤ n and n ≤ n.

• For n ≥ 6, we have

≤= 1· // 2· // 3· // 4· // 5· . . . // n− 2·

n·

OO

n− 1·

OO

So, x, y ∈ {1, . . . , n − 2}, x ≤ y has the usual meaning, in Z. we also have

n− 1 ≤ n and n ≤ n− 2.

The action of Sn on the the orbits OrbSn(≤) is free and therefore, linearising,

it gives an algebra faithful representation of Sn.

Proof. Since the action of Sn on OrbSn(≤) is transitive and free because we have

only one orbit and all stabilisers are trivial, then it is isomorphic representation to

CSn from Theorem 5.1.11. Hence, it is algebra faithful representation of Sn.

148



CHAPTER 5. THE ACTION OF SN ON THE SET OF TOPOLOGIES ON XN

5.4.6 Levelled topologies and Young tabloids

Definition 5.4.3. Let X be a non-empty set and let k ∈ N. A levelled and unrelated

reflexive transitive relation, with k levels, is one defined by:

1. Subsets A1, A2, . . . Ak of X, that are non-empty and pairwise disjoint, and such

that A1 ∪ · · · ∪ Ak = X

2. x ≤ y ⇔ (x = y) or (x ∈ Ai and y ∈ Aj, with i < j), where < is usual sign in

integer numbers.

We put≤=≤(k:A1,...,Ak). The shape of such a relation is the pair (k : |A1|, |A2|, . . . , |Ak|)

Note: If

≤(k:A1,...,Ak)=≤(k′:A′1,...,A
′
k′ )

then k = k′, and A1 = A′1, A2 = A′2, . . . , Ak = A′k.

Lemma 5.4.4. A relation defined as in Definition 5.4.3 indeed is a transitive and

reflexive relation.

Proof. We need to prove that a relation as in Definition 5.4.3 is indeed, reflexive

and transitive.

1. Reflexive: we want to show x ≤ x.

Since for any x ∈ X we have x = x, then by definition 5.4.3 we have clearly

that x ≤ x.

2. Transitive: we need to show that if x ≤ y and y ≤ z, then x ≤ z.

Suppose that x ≤ y and y ≤ z. Then by definition 5.4.3 we have the following:

(a) (x = y) or (x ∈ Ai and y ∈ Aj, with i < j)

(b) (y = z) or (y ∈ Aj and z ∈ Al, with j < l)

Now, we need to show that x ≤ z. This means we need to prove (x = z)

or (x ∈ Ai and z ∈ Al, with i < l). We have some cases to prove that

x ≤ z as follows:

Case 1: Suppose that x = y and y = z. Then we have x = z. Thus,

x ≤ z.
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Case 2: Suppose that x = y and y ∈ Aj and z ∈ Al, with j < l. Then

it is clear that x ∈ Aj. Therefore, we have x ≤ z.

Case 3: Suppose that y = z and x ∈ Ai and y ∈ Aj, with i < j. Then

it is clear that z ∈ Aj. Therefore, we have x ≤ z.

Case 4: Suppose that x ∈ Ai, y ∈ Aj and z ∈ Al, with i < j and j < l.

Since we have x ∈ Ai and z ∈ Al with i < j and j < l, then i < l from

transitive inequality (in Z). Therefore, x ≤ z.

Example 5.4.5. Let X = {1, 2, 3, 4}. Put k = 1 and A1 = {1, 2, 3, 4}. Then the

corresponding levelled and unrelated reflexive transitive relation will be the one, ≤,

defined by the diagram:

≤= 1•
��

2•
��

3•
��

4•
��

Therefore x ≤ y if, and only if x = y. Also, we notice that F (≤) = τ≤ is the discrete

topology on X4; see Section 5.3.2.

Example 5.4.6. Let X = {1, 2, 3, 4}. Put k = 2 and let A1 = {1, 2}, A2 = {3, 4}.
Then the corresponding levelled and unrelated reflexive transitive relation will be

defined by the diagram:

≤=

3• 4•

1•

OO
00

2•

nn
OO

Therefore, given any x ∈ A1 and y ∈ A2, x ≤ y. The topology, F (≤) has basis

{{1}, {2}, {1, 2, 3}, {1, 2, 4}} and explicitly

F (≤) = τ≤ = {∅, {1}, {2}, {1, 2}, {1, 2, 3}, {1, 2, 4}, X}.

Definition 5.4.7. Let X be a non-empty set and let k ∈ N. A levelled and fully

related reflexive transitive relation, with k levels, is one defined by:
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1. Subsets A1, . . . , Ak of X, that are pairwise disjoint and A1 ∪ · · · ∪ Ak = X.

2. x ≤ y ⇔ (there exists i ∈ {1, 2, . . . , k} such that x, y ∈ Ai) or (x ∈ Ai and

y ∈ Aj, with i < j), where < is usual sign in integer numbers.

Proof. We need to prove that a levelled and related reflexive and transitive relation

is, indeed, reflexive and transitive.

1. Reflexive: we want to show x ≤ x.

Since for any x ∈ X we have x ∈ Ai, then by definition 5.4.7 we have clearly

that x ≤ x.

2. Transitive: we need to show that if x ≤ y and y ≤ z, then x ≤ z.

Now, we need to show that x ≤ z. This means ( x, z ∈ Ai) or (x ∈ Ai and

z ∈ Al, with i < l.) We have some cases to prove that x ≤ z as follows:

Case 1: Suppose that x, y ∈ Ai and y, z ∈ Ai. Then we have x, z ∈ Ai. Thus,

x ≤ z.

Case 2: Suppose that x, y ∈ Ai and y ∈ Ai, z ∈ Al with i < l . Then we have

x ∈ Ai and z ∈ Al, with i < l. Therefore, we have x ≤ z.

Case 3: Suppose that x ∈ Ai, y ∈ Aj and z ∈ Al, with i < j and j < l. Then

we obtain that x ∈ Ai and z ∈ Al, with i < l. Thus, we have x ≤ z.

Example 5.4.8. Let X = {1, 2, 3, 4}. Put k = 1. Let A1 = {1, 2, 3, 4}. Then the

corresponding levelled and fully related reflexive transitive relation will be defined

by the diagram:

≤= 1•
&&'' %%

2•
''

gg
&&

3•ff
''

gg 4•ee ggff

Thus, given any x, y ∈ A1, x ≤ y. Also, we notice F (≤) = τ≤ is the indiscrete

topology on X4; see Section 5.3.2.
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Example 5.4.9. Let X = {1, 2, 3, 4}. Put k = 2. Let A1 = {1, 2}, A2 = {3, 4}.
Then the corresponding levelled and fully related reflexive transitive relation is de-

fined by the diagram:

≤= 3•
''
4•gg

1•

OO
00

// 2•

nn
OO

ww

Therefore:

1. Given any x, y ∈ A1, x ≤ y;

2. Given any x, y ∈ A2, x ≤ y;

3. Given any x ∈ A1 and y ∈ A2, x ≤ y.

The topology has basis {{1, 2}, {3, 4}} and expliclty

F (≤) = τ≤ = {∅, {1, 2}, {3, 4}, X}.

Example 5.4.10. Let X3 = {1, 2, 3} and k = 2 with A1 = {1}, A2 = {2, 3}. Then

we have the corresponding levelled and unrelated reflexive transitive relation, which

can be visualised by the diagram:

2• 3•

1•

==aa

Now, let f ∈ S3, then the action of S3 on ≤ is defined by diagram

f(2)• f(3)•

f(1)•

;;dd

We notice that the action S3 on a such a relation returns a relation with the same

shape.

Lemma 5.4.11. Consider Xn = {1, 2, . . . , n}, k ∈ N. Let A1, . . . , Ak be subsets of

Xn, that are non-empty and pairwise disjoint, and such that A1 ∪ · · · ∪ Ak = Xn.
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Then:

• If f ∈ Sn, then

f. ≤(k:A1,...,Ak)=≤(k:f(A1),...,f(Ak)) .

• The orbit of ≤(k:A1,...,Ak) consists of all relations with the same shape, (k :

|A1|, . . . , |Ak|) .

Proof. • 1. Since f : Xn → Xn is a bijection, then subsets f(A1), f(A2), . . . , f(AK)

of Xn, that are pairwise disjoint because from Lemma 5.1.1

f(A1) ∩ f(A2) ∩ · · · ∩ f(AK) = f(A1 ∩ A2 ∩ · · · ∩ Ak) = ∅

and we have by Lemma 5.1.2.

f(A1) ∪ f(A2) ∪ · · · ∪ f(Ak) = f(A1 ∪ A2 ∪ · · · ∪ Ak) = Xn

2. We need to show that

x f(≤(k:A1,...,Ak)) y ⇔ x ≤(k:f(A1),...,f(An)) y

Let us denote the relations f(≤(k:A1,...,Ak)) and ≤(k:f(A1),...,f(An)) as ≤, ≤′

respectively.

We prove each implication separately.

(a) ⇒ : Since

xf(≤)y ⇔ f−1(x) ≤ f−1(y), by proposition 5.3.23

⇔
(
f−1(x) = f−1(y)

)
or
(
f−1(x) ∈ Ai and f−1(y) ∈ Aj, i < j

)
Now, if we are applying f , then we have:

(x = y) or (x ∈ f(Ai) and y ∈ f(Aj), i < j)⇒ x ≤′ y.

(b) ⇐: Since from definition 5.4.3

x ≤′ y ⇔ (x = y) or (x ∈ f(Ai) and y ∈ f(Aj) with i < j)
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If x = y, then we get f−1(x) = f−1(y). Thus, f−1(x) ≤ f−1(y) and

hence x ≤ y.

If x ∈ f(Ai) and y ∈ f(Aj) with i < j, then there is x
′ ∈ Ai and

y
′ ∈ Aj such that f(x

′
) = x and f(y

′
) = y.

Now, apply f−1, we have: f−1(x) = x
′ ∈ Ai and f−1(y) = y

′ ∈ Aj
with i < j. Hence, f−1(x) ≤ f−1(y) and therefore we have x ≤ y.

• Let ≤(k :A1,A2,...,Ak ) be reflexive and transitive relations with shape

(k : |A1|, |A2|, . . . , |Ak|).

Then we have pairwise disjoint subsets A1, A2, . . . Ak of Xn such that A1 ∪
A2 ∪ · · · ∪ Ak = Xn.

Suppose≤′
(k′ :A

′
1,A
′
2,...,A

′
k
′ )

be another reflexive and transitive relations with shape

(k : |A1|, |A2|, . . . , |Ak|).

So in particular k = k′.

Then we have pairwise disjoint subsets A
′
1, A

′
2, . . . A

′

k′
of Xn such that

A
′

1 ∪ A
′

2 ∪ · · · ∪ A
′

k′
= Xn

and

|A1| = |A′1|, |A2| = |A′2|, . . . , |Ak| = |A′k′|.

Now, we need to show that the orbit of ≤(k:A1,...,Ak) contains this relation

≤′
(k′ :A

′
1,A
′
2,...,A

′
k
′ )
. Choose bijections:

g1 : A1 → A′1

g2 : A2 → A′2
...

gk : Ak → A′k′

154



CHAPTER 5. THE ACTION OF SN ON THE SET OF TOPOLOGIES ON XN

Define a map:

g : Xn → Xn,

where

g(x) =



g1(x), x ∈ A1

g2(x), x ∈ A2

...

gk(x), x ∈ Ak

Then, g is a bijection, and

x ≤(k:A1,...,Ak) y ⇔ g(x) ≤′
(k′ :A

′
1,A
′
2,...,A

′
k
′ )
g(y).

So, g . ≤(k:A1,...,Ak)=≤′(k′ :A′1,A′2,...,A′k′ )
.Hence≤′

(k′ :A
′
1,A
′
2,...,A

′
k
′ )

is in the orbit of≤(k:A1,...,Ak).

Proposition 5.4.12. Suppose that ≤(k:A1,A2,...,Ak) is a levelled and unrelated reflexive

transitive relation on Xn. Suppose (to simplify) that |A1| ≥ |A2| ≥ · · · ≥ |Ak|. Let

D be the corresponding young diagram of shape µ = (|A1|, |A2|, . . . , |Ak|). We have

a bijection preserving the action of Sn,

OrbSn(≤(k:A1,A2,...,Ak)) −→ { Young tabloids with shape D }

≤(k:B1,B2,...,Bk) 7−→

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . .

. . . . .

. . .

where the boxes in the first row have been filled with the elements of B1, the boxes

in the second row have been filled with the elements of B2, and so on.

Lemma 5.4.13. Suppose that ≤(k:A1,A2,...,Ak) is a levelled and unrelated reflexive

transitive relation on Xn. Let µ = (|A1|, |A2|, . . . , |Ak|) and Mµ be defined in 2.4.3.
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Then we have:

COrbSn(≤(k:A1,A2,...,Ak)) ∼= Mµ

as representation of Sn.

Proof. It is clear from proposition 5.4.12.

Example 5.4.14. Let X4 = {1, 2, 3, 4} and S4 the symmetric group. Suppose that

≤ as defined in Example 5.4.8. Then we have a bijection

OrbS4(≤(1:{1,2,3,4}))→ {Young tabloids with shape(4)},

where all sets have cardinality 1, which is given by:

1•
&&'' %%

2•
''

gg
&&

3•ff
''

gg 4•ee ggff ↔ 1 2 3 4

Thus, the decomposition of the action of S4 on OrbS4(≤) into irreducible is

M (4) ∼= S(4)

Example 5.4.15. Let X4 = {1, 2, 3, 4}. Suppose that ≤=≤(1:{1,2,3,4}) as defined in

Example 5.4.5. Then we have a bijective map

OrbS4(≤(1:1,2,3,4}))→ {Young tabloids with shape(4)}

is given by:

1•
��

2•
��

3•
��

4•
��
↔ 1 2 3 4

Then the decomposition of the action of S4 on OrbS4(≤) into irreducibles will be

M (4) ∼= S(4)

We notice that the previous examples have different topologies, while the action
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of Sn on both topologies is trivial.

Example 5.4.16. Let X8 = {1, 2, 3, 4, 5, 6, 7, 8} and k = 3 with A1 = {6, 7, 8}, A2 =

{3, 4, 5} and A3 = {1, 2}. The corresponding, levelled and unrelated, reflexive and

transitive relation is defined by diagram

≤(3:A1,A2,A3)=

•6 •7 •8

•3 •4 •5

•1 •2

Then we have a bijective map

OrbS8(≤(3:A1,A2,A3))↔ {Young tabloids of shape(3, 3, 2)}

given by:

•x6 •x7 •x8

•x3 •x4 •x5

•x1 •x2

↔
x6 x7 x8

x3 x4 x5

x1 x2

Therefore, we have the representation of the action of Sn as follows:

COrbSn(≤(3:A1,A2,A3)) ∼= M (3,3,2)

Then by using Young rules we have the decomposition of the action of S8 into
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irreducible :

M (3,3,2) ∼= S(8) ⊕ 2S(7,1) ⊕ 3S(6,2) ⊕ 2S(5,3) ⊕ S(4,3,3) ⊕ S(3,3,2)
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Appendix A

GAP4 and Python code

A.1 GAP Code (1)

In this section, we show GAP Code that we use to calculate how many points are

moved by a permutation in the action of Sn on PiP(xn), i ∈ {1, 2, . . . , n} , n=2,3,4:

gap> S : = [ 1 . . 2 ] ;

[ 1 , 2 ]

gap> T:=Combinations ( Combinations (S ) , 1 ) ; ;

gap> G:=SymmetricGroup ( 2 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

2

gap> T:=Combinations ( Combinations (S ) , 2 ) ; ;

gap> G:=SymmetricGroup ( 2 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;
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gap> NrMovedPoints (h ) ;

4

gap> T:=Combinations ( Combinations (S ) , 3 ) ; ;

gap> G:=SymmetricGroup ( 2 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

2

gap> T:=Combinations ( Combinations (S ) , 4 ) ; ;

gap> G:=SymmetricGroup ( 2 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

0

gap > S : = [ 1 . . 3 ] ;

[ 1 . . 3 ]

gap > T:=Combinations ( Combinations (S ) , 1 ) ; ;

gap > G:=SymmetricGroup ( 3 ) ; ;

gap > phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap > g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ{phi } ; ;

gap> NrMovedPoints (h ) ;

4

\ item gap >g : = ( 1 , 2 , 3 ) ; ;

( 1 , 2 , 3 )

gap> h:=$$gˆ{phi } ; ;
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gap> NrMovedPoints (h ) ;

6

gap> T:=Combinations ( Combinations (S ) , 2 ) ; ;

gap> G:=SymmetricGroup ( 3 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

20

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

27

gap> T:=Combinations ( Combinations (S ) , 3 ) ; ;

gap> G:=SymmetricGroup ( 3 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

44

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

54

gap> T:=Combinations ( Combinations (S ) , 4 ) ; ;

gap> G:=SymmetricGroup ( 3 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;
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<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

56

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

66

gap> T:=Combinations ( Combinations (S ) , 5 ) ; ;

gap> G:=SymmetricGroup ( 3 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

44

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

54

gap> T:=Combinations ( Combinations (S ) , 6 ) ; ;

gap> G:=SymmetricGroup ( 3 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

20
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gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

27

gap > T:=Combinations ( Combinations (S ) , 7 ) ; ;

gap > G:=SymmetricGroup ( 3 ) ; ;

gap > phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap > g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ{phi } ; ;

gap> NrMovedPoints (h ) ;

4

\ item gap >g : = ( 1 , 2 , 3 ) ; ;

( 1 , 2 , 3 )

gap> h:=gˆ{phi } ; ;

gap> NrMovedPoints (h ) ;

6

gap> S : = [ 1 . . 4 ] ;

[ 1 . . 4 ]

gap> T:=Combinations ( Combinations (S ) , 1 ) ; ;

gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

8

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;
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12

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

12

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

14

gap> T:=Combinations ( Combinations (S ) , 2 ) ; ;

gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

88

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

108

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

114

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;
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gap> NrMovedPoints (h ) ;

118

gap> S : = [ 1 . . 4 ] ;

[ 1 . . 4 ]

gap> T:=Combinations ( Combinations (S ) , 3 ) ; ;

gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

472

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

532

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

552

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

558

gap> T:=Combinations ( Combinations (S ) , 4 ) ; ;

gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )
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gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

1632

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

1768

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

1803

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

1816

gap> T:=Combinations ( Combinations (S ) , 5 ) ; ;

gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

4040

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

4284

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )
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gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

4344

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

4362

gap> T:=Combinations ( Combinations (S ) , 6 ) ; ;

gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

7528

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

7892

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

7986

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

8002

gap> T:=Combinations ( Combinations (S ) , 7 ) ; ;
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gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

10840

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

11300

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

11412

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

11434

gap> T:=Combinations ( Combinations (S ) , 8 ) ; ;

gap> G:=SymmetricGroup ( 4 ) ; ;

gap> phi :=ActionHomomorphism (G,T, OnSetsSets ) ;

<ac t i on homomorphism>

gap> g : = ( 1 , 2 ) ;

( 1 , 2 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

12224

gap> g : = ( 1 , 2 ) ( 3 , 4 ) ;

( 1 , 2 ) ( 3 , 4 )
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gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

12720

gap> g : = ( 1 , 2 , 3 ) ;

( 1 , 2 , 3 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

12834

gap> g : = ( 1 , 2 , 3 , 4 ) ;

( 1 , 2 , 3 , 4 )

gap> h:=gˆ phi ; ;

gap> NrMovedPoints (h ) ;

12864

A.2 Python Code

In this section, we show Python code that we use to solve some equations by using

the character table of specht module of Sn to find the multiplicity of irreducible

representation of action Sn on PiP(xn), i ∈ {1, 2, . . . , n}, 2 ≤ n ≤ 4. At n= 3, we

have :

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 2 , 1 ] ,

[ 1 , 0 , −1] ,

[ 1 , −1, 1 ]

] )

r e s = numpy . matrix ( [ [ 8 ] , [ 4 ] , [ 2 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 4 . ]
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[ 2 . ]

[ − 0 . ] ]

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 2 , 1 ] ,

[ 1 , 0 , −1] ,

[ 1 , −1, 1 ]

] )

r e s = numpy . matrix ( [ [ 2 8 ] , [ 8 ] , [ 1 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 9 . ]

[ 9 . ]

[ 1 . ] ]

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 2 , 1 ] ,

[ 1 , 0 , −1] ,

[ 1 , −1, 1 ]

] )

r e s = numpy . matrix ( [ [ 5 6 ] , [ 1 2 ] , [ 2 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 1 6 . ]

[ 1 8 . ]

[ 4 . ] ]

• import numpy
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import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 2 , 1 ] ,

[ 1 , 0 , −1] ,

[ 1 , −1, 1 ]

] )

r e s = numpy . matrix ( [ [ 7 0 ] , [ 1 4 ] , [ 4 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 2 0 . ]

[ 2 2 . ]

[ 6 . ] ]

At n=4, we have:

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )

r e s = numpy . matrix ( [ [ 1 6 ] , [ 8 ] , [ 4 ] , [ 4 ] , [ 2 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 5 . ]

[ 3 . ]

[ 1 . ]

[ −0 . ]

[ − 0 . ] ]
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• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )

r e s = numpy . matrix ( [ [ 1 2 0 ] , [ 3 2 ] , [ 1 2 ] , [ 6 ] , [ 2 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 1 7 . ]

[ 2 1 . ]

[ 1 1 . ]

[ 6 . ]

[ − 0 . ] ]

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )

r e s = numpy . matrix ( [ [ 1 8 2 0 ] , [ 1 8 8 ] , [ 5 2 ] , [ 1 7 ] , [ 4 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 5 2 . ]
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[ 8 8 . ]

[ 5 1 . ]

[ 4 5 . ]

[ 7 . ] ]

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )

r e s = numpy . matrix ( [ [ 1 8 2 0 ] , [ 1 8 8 ] , [ 5 2 ] , [ 1 7 ] , [ 4 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 1 3 6 . ]

[ 2 6 7 . ]

[ 1 5 9 . ]

[ 1 7 5 . ]

[ 4 0 . ] ]

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )
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r e s = numpy . matrix ( [ [ 4 3 6 8 ] , [ 3 2 8 ] , [ 8 4 ] , [ 2 4 ] , [ 6 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 2 8 4 . ]

[ 6 1 6 . ]

[ 3 7 7 . ]

[ 4 5 5 . ]

[ 1 1 7 . ] ]

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )

r e s = numpy . matrix ( [ [ 8 0 0 8 ] , [ 4 8 0 ] , [ 1 1 6 ] , [ 2 2 ] , [ 6 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )

r e s = numpy . matrix ( [ [ 1 1 4 4 0 ] , [ 6 0 0 ] , [ 1 4 0 ] , [ 2 8 ] , [ 6 ] ] )
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pr in t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 6 5 5 . ]

[ 1 5 6 1 . ]

[ 9 7 9 . ]

[ 1 2 6 4 . ]

[ 3 5 2 . ] ]

• import numpy

import s c ipy . l i n a l g

m = numpy . matrix ( [

[ 1 , 3 , 2 , 3 , 1 ] ,

[ 1 , 1 , 0 , −1, −1] ,

[ 1 , −1, 2 , −1, 1 ] ,

[ 1 , 0 , −1, 0 , 1 ] ,

[ 1 , −1, 0 , 1 , −1]

] )

r e s = numpy . matrix ( [ [ 1 2 8 7 0 ] , [ 6 4 6 ] , [ 1 5 0 ] , [ 3 6 ] , [ 6 ] ] )

p r i n t (numpy . l i n a l g . s o l v e (m, r e s ) )

[ [ 7 3 0 . ]

[ 1 7 5 0 . ]

[ 1 0 9 8 . ]

[ 1 4 3 0 . ]

[ 4 0 4 . ] ]

A.3 GAP Code(2)

In this section, we show the Gap code that we use to compute the tensor product

of specht modules of symmetric group

gap> c := CharacterTable (” symmetric ” , 3 ) ;

CharacterTable ( ”Sym(3)” )

gap> i r r := I r r ( c ) ;
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[ Character ( CharacterTable ( ”Sym(3)” ) , [ 1 , −1, 1 ] ) ,

Character ( CharacterTable ( ”Sym(3)” ) , [ 2 , 0 , −1 ] ) ,

Character ( CharacterTable ( ”Sym(3)” ) , [ 1 , 1 , 1 ] ) ]

gap> CharacterParameters ( c ) ;

[ [ 1 , [ 1 , 1 , 1 ] ] , [ 1 , [ 2 , 1 ] ] , [ 1 , [ 3 ] ] ]

gap> ten :=Tensored ( [ i r r [ 2 ] ] , [ i r r [ 2 ] ] ) [ 1 ] ;

Character ( CharacterTable ( ”Sym(3)” ) , [ 4 , 0 , 1 ] )

gap> SolutionMat ( i r r , ten ) ;

[ 1 , 1 , 1 ]

gap> c := CharacterTable (” symmetric ” , 4 ) ;

CharacterTable (”Sym(4)” )

gap> i r r := I r r ( c ) ;

[ Character ( CharacterTable ( ”Sym(4)” ) , [ 1 , −1, 1 , 1 , −1 ] ) ,

Character ( CharacterTable ( ”Sym(4)” ) , [ 3 , −1, −1, 0 , 1 ] ) ,

Character ( CharacterTable ( ”Sym(4)” ) , [ 2 , 0 , 2 , −1, 0 ] ) ,

Character ( CharacterTable ( ”Sym(4)” ) , [ 3 , 1 , −1, 0 , −1 ] ) ,

Character ( CharacterTable ( ”Sym(4)” ) , [ 1 , 1 , 1 , 1 , 1 ] ) ]

gap> CharacterParameters ( c ) ;

[ [ 1 , [ 1 , 1 , 1 , 1 ] ] , [ 1 , [ 2 , 1 , 1 ] ] , [ 1 , [ 2 , 2 ] ] , [ 1 , [ 3 , 1 ] ] ,

[ 1 , [ 4 ] ] ]

gap> ten :=Tensored ( [ i r r [ 4 ] ] , [ i r r [ 5 ] ] ) [ 1 ] ;

Character ( CharacterTable ( ”Sym(4)” ) , [ 3 , 1 , −1, 0 , −1 ] )

gap> SolutionMat ( i r r , ten ) ;

[ 0 , 0 , 0 , 1 , 0 ]

gap> ten :=Tensored ( [ i r r [ 3 ] ] , [ i r r [ 4 ] ] ) [ 1 ] ;

Character ( CharacterTable ( ”Sym(4)” ) , [ 6 , 0 , −2, 0 , 0 ] )

gap> SolutionMat ( i r r , ten ) ;

[ 0 , 1 , 0 , 1 , 0 ]

gap> ten :=Tensored ( [ i r r [ 4 ] ] , [ i r r [ 4 ] ] ) [ 1 ] ;

Character ( CharacterTable ( ”Sym(4)” ) , [ 9 , 1 , 1 , 0 , 1 ] )

gap> SolutionMat ( i r r , ten ) ;

[ 0 , 1 , 1 , 1 , 1 ]
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gap> c := CharacterTable (” symmetric ” , 6 ) ;

CharacterTable ( ”Sym(6)” )

gap> i r r := I r r ( c ) ;

[ Character ( CharacterTable ( ”Sym(6)” ) ,

[ 1 , −1, 1 , −1, 1 , −1, 1 , −1, 1 , 1 , −1 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 5 , −3, 1 , 1 , 2 , 0 , −1, −1, −1, 0 , 1 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 9 , −3, 1 , −3, 0 , 0 , 0 , 1 , 1 , −1, 0 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 5 , −1, 1 , 3 , −1, −1, 2 , 1 , −1, 0 , 0 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 10 , −2, −2, 2 , 1 , 1 , 1 , 0 , 0 , 0 , −1 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 16 , 0 , 0 , 0 , −2, 0 , −2, 0 , 0 , 1 , 0 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 5 , 1 , 1 , −3, −1, 1 , 2 , −1, −1, 0 , 0 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 10 , 2 , −2, −2, 1 , −1, 1 , 0 , 0 , 0 , 1 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 9 , 3 , 1 , 3 , 0 , 0 , 0 , −1, 1 , −1, 0 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 5 , 3 , 1 , −1, 2 , 0 , −1, 1 , −1, 0 , −1 ] ) ,

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ) ]

gap> CharacterParameters ( c ) ;

[ [ 1 , [ 1 , 1 , 1 , 1 , 1 , 1 ] ] , [ 1 , [ 2 , 1 , 1 , 1 , 1 ] ] ,

[ 1 , [ 2 , 2 , 1 , 1 ] ] , [ 1 , [ 2 , 2 , 2 ] ] ,

[ 1 , [ 3 , 1 , 1 , 1 ] ] , [ 1 , [ 3 , 2 , 1 ] ] , [ 1 , [ 3 , 3 ] ] ,

[ 1 , [ 4 , 1 , 1 ] ] , [ 1 , [ 4 , 2 ] ] , [ 1 , [ 5 , 1 ] ] ,

[ 1 , [ 6 ] ] ]

gap> ten :=Tensored ( [ i r r [ 1 1 ] ] , [ i r r [ 1 1 ] ] ) [ 1 ] ;

Character ( CharacterTable ( ”Sym(6)” ) ,
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[ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ] )

gap> SolutionMat ( i r r , ten ) ;

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ]

gap> ten :=Tensored ( [ i r r [ 1 0 ] ] , [ i r r [ 1 0 ] ] ) [ 1 ] ;

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 25 , 9 , 1 , 1 , 4 , 0 , 1 , 1 , 1 , 0 , 1 ] )

gap> SolutionMat ( i r r , ten ) ;

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ]

gap> ten :=Tensored ( [ i r r [ 9 ] ] , [ i r r [ 1 0 ] ] ) [ 1 ] ;

Character ( CharacterTable ( ”Sym(6)” ) ,

[ 45 , 9 , 1 , −3, 0 , 0 , 0 , −1, −1, 0 , 0 ] )

gap> SolutionMat ( i r r , ten ) ;

[ 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 0 ]
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