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Abstract

There is a growing interest in monitoring the loads that engineering structures

withstand in order to better predict the fatigue damage accrual that has been

accumulated. This is done with two goals: improving the safety of structures and

enabling a greater useful life to be achieved. However, when structures operate in

harsh environments, such as aircraft or offshore wind turbines, maintaining sensing

networks for measuring stress and strain at crucial locations is difficult. As a result,

virtual loads monitoring, or inferential sensing, in which machine learning methods

are used to predict the stress at critical locations is becoming increasingly popular.

In the first part of this thesis, Gaussian process (GP) regression is used to develop

a probabilistic approach for fatigue. The choice of a GP for a virtual sensor is not

uncommon, however, developing a probabilistic view of fatigue by propagating the

model uncertainty throughout the fatigue assessment procedure is novel. By doing

this, a more robust assessment of the damage state of the structure is achieved.

Furthermore, a discussion is facilitated around the causes and consequences of

uncertainty in data-driven models with respect to fatigue assessment.

Treating fatigue analysis probabilistically is considered to be one way of reducing

the conservatism that is common as a result of many uncertainties in the assessment

procedure. In this work, it is the uncertainty from a loading perspective that is

considered, but this thesis will also discuss how this could fit in with other existing

probabilistic methods.

Following this, grey-box modelling - the introduction of our knowledge of physics into

data-driven models – is considered. This is a new area of research currently attracting

significant interest and different methods of inputting this physical knowledge into
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the model are presented. By considering different loading scenarios (both dynamic

and quasi-static), it is shown that domain-specific knowledge can both improve the

accuracy, and also reduce the uncertainty, of model predictions, with the impact on

probabilistic fatigue prediction being significant.
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Chapter 1

Introduction

1.1 The challenge: Using data to predict fatigue

damage

The use of data is revolutionising common practices across many industries. In

this thesis, we will be looking at how we can use data to predict fatigue damage in

engineering structures. Although it may seem contradictory, accurately predicting

fatigue damage can both increase structural safety and enable a greater lifespan to

be attained from the structure.

This work will also pose the question: how far can data take us in this challenge?

And how can we use our knowledge of the physics of the process within a data-driven

framework to improve this prediction?

1.2 Fatigue Failure

Fatigue is one of the most frequent causes of the failure of engineering structures

[1–3], common across all engineering sectors. It can cause the failure of structures at

stress levels that are far below their yield strengths and even small failures, such as

of a bolt in a machine, will often be caused by fatigue. The majority of the time,

this failure will not be of significant concern (we can replace the bolt) and, ideally,
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2 1.2 Fatigue Failure

redundant load paths can be designed into components to limit the consequences of

fatigue failure [4]. Unfortunately, this is frequently impractical owing to space or

weight restrictions. When this is the case and the potential cost of failure is large,

we naturally want to avoid fatigue accrual at all costs.

In the 19th century, August Wohler was the first person to carry out significant

research into the phenomenon of fatigue after realising that repeated applied stresses

can cause materials to fail at relatively low-stress levels [5]. Since then, the topic

has attracted a great deal of interest and substantial advancements have been made,

with some of the most notable contributions coming from Palmgren (1924), Miner

(1945, [6]), Paris (1961, [7] [8]), and Matshuisi & Endo (1968, [9]). Yet, despite

considerable resources being invested in the subject of fatigue, there continue to be

many engineering failures caused by fatigue.

This leads to an obvious question: When fatigue behaviour of most engineering

materials is well understood (at least in laboratory conditions) [2], why is fatigue

failure still prevalent? The most obvious answer to this is the fact that the failure can

occur significantly below yield stress. Typical engineering overload failure analysis

consists of predicting or measuring stress and comparing this to the ultimate tensile,

or yield, strengths of the material. Generally, this would be with a single applied

stress under consideration at any time. On the other hand, for a comprehensive

fatigue assessment to be carried out, we need to have data on the full load spectrum

that we think the structure is likely to see and information about stress at crucial

locations on a structure [10, 11].

1.2.1 How does fatigue failure occur, and can we avoid it?

Even if we do have accurate information on the load spectrum of the structure or

component, how easy is it to design against fatigue?

Fatigue cracks propagate from defects in materials that can exist on a microscopic

level (such as voids, grain boundaries) or at a macroscopic level (such as at notches,

scratches, surface roughness) [5, 12]. It is, therefore, very difficult to completely

design against fatigue failure as avoiding such microscopic defects from which cracks

form is not possible. Sometimes the improved fatigue resistance of materials under

compressive stresses is harnessed by using methods such as shot peening to induce
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compressive residual stresses at the material surface [13], where most cracks grow

from. Yet, even with such precautions, it is generally not possible to completely

avoid fatigue damage without over-designing components, adding significant bulk

and weight.

1.3 Assessing fatigue damage

There are three main types of fatigue damage assessment: stress-life (S-N), strain-

life(ϵ-N), and a linear elastic fracture mechanics (LEFM) approach [14, 15]. This

work will focus on stress-life fatigue analysis, suitable for problems where there may

be zero crack tolerance (such as aircraft landing gear that follows a safe-life design

practice [16]) or for structures where regular physical inspections may be difficult.

The strain-life method is suitable for low-cycle fatigue problems, in which larger

stresses are seen and plastic deformation occurs as a result. The LEFM approach is

used, when there are cracks known to be present in a structure, to assess the amount

of time for a crack to reach a critical size.

1.3.1 Stress-life fatigue

Material stress-life, or S-N, curves are the fundamental building block of the S-N

method. These are empirically found by testing the number of times a material

specimen can withstand an applied stress at a specific amplitude in laboratory tests.

These tests to develop S-N curves are performed at a constant repeated applied stress

amplitude with zero mean stress. In reality, this is rarely the case for the applied

loading on a structure. Instead, a cycle counting method is required, to convert a

stress response σ(t) into a set of stress ranges and corresponding mean values. The

most widely used approach for this is the Rainflow cycle count [9] which is typically

regarded as the most accurate [17, 18]. Figure 1.1 demonstrates how the Rainflow

count will convert a stress-time history (‘Load Reversals’) into a set of stress ranges,

mean values and number of cycles (‘Rainflow Matrix Histogram’).
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Figure 1.1: The rainflow cycle counting algorithm is used to take
a variable-amplitude stress response and convert into a set of stress
ranges/amplitudes and corresponding cycle mean values.

Using the obtained cycles and the material S-N curve (and a mean-stress correction),

the Palmgren-Miner rule can be used to obtain the fatigue damage accrued. The

Palmgren-Miner rule states that the total damage is the sum of the damage from

the individual stress cycles.

Generally, when discussing ‘damage’ in the context of S-N fatigue, we are not referring

necessarily to a detectable defect such as a crack or impact damage. Instead, we are

generally considering the proportion of the expected life of the component that has

been ‘used’. The S-N methodology, including mean-stress correction, is discussed in

more detail in Chapter 4, alongside some of its limitations. Suffice to say, it is the

S-N methodology that is the underlying fatigue methodology used throughout this

thesis.
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1.4 SHM: A brief overview

To be able to predict fatigue damage from data, we need to know the loads that

the structure is subjected to. To do this, technology developed from the field of

structural health monitoring is used. Structural health monitoring (SHM) began to

develop in the early 1980s, facilitated by reductions in the cost of computing power

and increased availability of sensing equipment. SHM can broadly be defined as the

implementation of an online damage detection strategy for engineering infrastructure

[19]. Prior to the development of SHM, Non-Destructive Testing (NDT) would

typically require local inspections to inspect structures for damage and often, a

requirement for a structure to be taken out of service to do so. Thus, the continuous

nature of SHM was the main driver of the development of the field, enabling the

monitoring of structures without disrupting their usage. The fundamental aims of

SHM are typically described by Rytter’s hierarchy for damage detection [20]:

� Detection: Identifying if a structure is damaged

� Localisation: Identifying the location of damage on a structure

� Assessment: Assessing the extent of damage

� Prediction: Assessing the remaining life of the component

The popularity of SHM has developed alongside the widespread use of data across

all engineering (and many non-engineering) disciplines, however, it is important to

note that the collection of data does not, in itself, constitute SHM [21]. It is only by

extracting useful features and information about the condition of the structure that

we are performing actually SHM.

Despite the potential benefits, SHM as a domain has remained largely a research

topic, struggling to break through into widespread industrial use. Two domains in

which SHM has broken through into more common usage is within rotorcraft and

rotating machinery (for the latter, the practice is generally referred to as condition

monitoring). For the former, the constraints inherent to their operation provide a

‘stable vibration from which changes in measured parameters can be attributed to

component deterioration’ [22]. In the case of the latter, the high rate of tool wear

and controlled manufacturing environments make a cost-benefit analysis easier to

carry out, in addition to the fact that there are no immediate significant costs (in

terms of safety or economic terms) in the event of failure of the component.
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1.4.1 Loads Monitoring

Much of SHM research focusses on the initial points of Rytter’s hierarchy, with only

a small subset focussing on prognosis. One of the largest unknowns in terms of

prognosis is knowing what loads a structure has undergone in its lifetime and current

operation. The first step, therefore, for researchers interested in fatigue damage

prognosis is one of loads monitoring or prediction. Ideally, this knowledge would come

from permanently installed strain gauges distributed across the structure. However,

there are often limits to such monitoring campaigns. Firstly, it is unlikely that

strain can be measured in all areas of interest for practical reasons (geometry, cable

requirements, data storage). Alternatively, budgetary constraints may mean that

sensing equipment is not able to be installed at the commissioning stage. High-value

structures, such as offshore wind turbines or oil platforms, frequently operate in

harsh environments making maintaining such sensor networks particularly difficult.

For example, aircraft are subjected to a wide spectrum of loads, operating in harsh

environments [23] with phenomena such as high-velocity debris that can severely

impact the integrity of components [24]. In the event of damage, sensors are often

difficult or infeasible to replace. The result of this is that there is generally a

knowledge gap of the real loads a structure has seen in service, which is of crucial

importance when trying to extend the life of these structures. To overcome this, an

assumed load spectrum will typically be used for predicting fatigue loads. However,

one of the main motivations for this work is that these assumed loading spectra

will frequently differ differ from the actual loads seen by the structure in operation

[25, 26]. For example, the in-service life of wind turbines can frequently be increased

between 25% and 50% of the structures original design life [27], indicating that the

loading spectrum originally used was overly conservative.

As a result of this lack of knowledge, there is a growing area of interest within the

SHM community in building models to predict stress and strain values at different

locations on a structure using permanently installed sensors in accessible but remote

locations. This is sometimes known as virtual loads monitoring where one attempts

to use measurements such as acceleration (with more robust sensors available) to

build regression models for predicting loads at critical locations. Sometimes it is

possible to gain loading information from sensors that are installed for purposes

other than measuring structural response, such as wind speed measurements [28, 29].
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1.5 Machine learning for SHM

The key technology for the the data-driven regression models that are used for virtual

loads monitoring, and many other tasks in SHM, is machine learning (ML). The use

of machine learning has been key in the development of the field of SHM. There are

two main categories of problems that ML is used to solve in SHM:

� Classification is the process of identifying and grouping data into different

categories. For example, the most fundamental task of SHM is deciding if a

structure is damaged based on the data that you receive from sensors. This is

a classification problem.

� Regression is the process of identifying the relationship between variables. For

example, if we know that the strain values at two locations on a structure are

correlated, we can use regression to find the correlation. Ideally, we would

also have information about how strong the correlation is via a probabilistic

prediction.

The other major distinction to be made is the difference between supervised and

unsupervised learning. In supervised learning, we provide the model with the

information that we are hoping to predict. Conversely, in unsupervised learning, we

are allowing the model to find interesting patterns in the data without providing

labels a priori.

In many ways, structural health monitoring provides an ideal example of useful

applications of machine learning in the real world. Increasing computational power

and advances in sensing technology means that there is now an abundance of data

available from measurement campaigns on structures and with SHM, the potential

benefits in terms of safety, economics, and sustainability are significant. However, the

widespread adoption of machine learning within engineering is not without challenges.

One of the main challenges to the widespread use of ML ‘in-the-field’ is scepticism

about ‘new’ technology to replace established methods. It is the authors’ view that

we can minimise this scepticism by focusing on the use of ML to supplement existing

practices, rather than to replace them.

For example, we will see in some of this work that an ML-based approach can be used

to gather information about a structure that could not have easily been achieved
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with a physics-based modelling approach. It has been stated that machine learning

theory offers a framework for steps 1-3 in Rytter’s hierarchy, but necessarily not step

4 [30]. In this work, we will be focussing exclusively on the use of machine learning

for Step 4: making predictions about the remaining usable life of the structure.

1.6 A probabilistic approach

This thesis will develop technology for using a probabilistic framework for the fatigue

prediction problem. The motivation for this comes from both a machine learning

and fatigue damage perspective.

1.6.1 A machine learning perspective

An engineering structure will withstand a wide range of loading phenomena over its

lifetime, displaying ‘long-tail’ characteristics where a number of loading scenarios

are common (e.g. take-off or landing of aircraft in benign conditions) but also with

many possible phenomena with a low occurrence rate (e.g. performing a complex

flight manoeuvre while withstanding wind gusts from the aircraft’s port-side).

From a data-driven perspective, this makes it very difficult for a model to have

‘seen’ all of the possible loading situations in its training phase. This is partly a

computational problem: training such a model would require very large amounts of

training data and for complex structures this quickly becomes difficult to include

all loading situations when training a model. However, there are also practical

limitations to this problem: Throughout the structure’s operational life, numerous

phenomena might only happen a small number of times. As a result, obtaining

real-world training data for these phenomena is also often difficult or impossible,

especially in the case where monitoring is only possible for a fixed time.

The result of this is that a model will often be required to predict situations that it

has not ‘seen’ in its training phase. Many of these will be similar to training scenarios

and a reasonable prediction can be made, nonetheless. However, sometimes this will

not be the case and, in such situations, it is desirable to know that the model is not

confident in its prediction. For this reason, the authors advocate embracing methods

that are able to assess confidence, i.e. those that are probabilistic.



1.6 A probabilistic approach 9

The methods which are the focus of this thesis allow one to, in some way, account for

epistemic uncertainties (such as those discussed above) and also aleatoric uncertainties

arising from e.g. measurement noise (discussed further in Chapter 5).

1.6.2 A fatigue perspective: Uncertainties in the S-N ap-

proach

Machine learning and monitoring data aside, it is widely accepted that there are

many sources of uncertainty in the S-N fatigue framework [16, 31, 32]. The most

extensive overview of these uncertainties that the author has seen can be found in

Hoole [33].

These include:

S-N Curves commonly shown and used are developed by averaging the results

from many tests using a line of best fit. In reality, a large amount of scatter

is present [34] in the number of cycles to failure because of inhomogeneities

within materials. This scatter has led to the development of probabilistic S-N

(P-S-N) curves [35]. Such curves give access to a confidence level of the material

failing at a given stress range. The choice of ‘which’ S-N curve to use would

typically depend on the use of safety factors elsewhere in the process, but may

also depend on the availability of data from manufacturers, etc.

Load estimates: As discussed above, a lack of data [36], difficulty in maintaining

sensors, complex loading, and modelling error can all contribute to uncertainty

in the loads that the structure has ‘seen’.

Uncertainties in the Miner/Palmgren rule also result in uncertainty in the

resulting fatigue assessment. For example, it is known that the same load

spectrum with stress cycles applied in different loading patterns will cause

differing damage [37]. Furthermore, stress cycles below the endurance limit are

not considered to cause fatigue damage, however, it has been shown that stress

cycles below this value can still cause failure in structures [38].

Design uncertainties related to geometry and design of the component impact

the fatigue life of a component but are difficult to predict. For example, welded

joints present particular difficulty to predict due to the inhomogeneity of parent
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and filler materials in addition to the not insignificant impact of the rapid

heating and cooling nearby material [39].

The Rainflow cycle count is considered the most accurate cycle counting method

[17, 18], but is known to be unreliable if the stress response under consideration

is not sufficiently long [40].

Many of these sources of uncertainty have been acknowledged for a long time, yet,

in the absence of a superior model (it can be noted that many ‘correction’ models

of the Miner rule have been proposed over the years [41, 42]), the impact of this

uncertainty is a reliance on large safety factors [16, 31].

Structures are, as a result, typically over-designed at the start of their design life

and retired with a large remaining useful life. In recent years, there has been a trend

towards treating fatigue assessment as a probabilistic problem to reduce the reliance

on safety factors [16, 43–45]1. It is useful to remember that safety factors are not only

applied to design against fatigue failure but indeed across the entirety of structural

design and analysis. Attempts within the fatigue community to reduce safety factors

are not, therefore, attempts to reduce all forms of over-design (which would be

impossible to achieve safely), but to simply reduce the wasted life of structures.

Treating fatigue as a probabilistic approach is not novel. Indeed, research has

been carried out for decades and as early as 1971, there was an American Society

for Testing and Materials (ASTM) symposium dedicated to the topic [47]. Early

approaches to the problem included the development of probabilistic S-N (P-S-N)

curves (mentioned above) to overcome the variability in the number of cycles to

failure in laboratory tests. The problem of excessive safety factors was recognised as

early as this symposium, with probabilistic safety factors being one of the approaches

suggested [48].

Most researchers only attempt to account for one of the sources of uncertainty

discussed above. Indeed, this thesis will focus solely on capturing the uncertainty

from unknown loads in operation. It is however important to understand how

generally these sources of uncertainty can and are treated in the whole. The most

common method of doing so, for any kind of failure is the stress-strength interference

method, also known as the load-capacity interference method. This method separates

1A safety factor can be defined as the ratio between a measure of the maximal load not leading
to failure and a corresponding measure of the applied load [46]
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Figure 1.2: Stress-strength interference method: The overlap of the
probability density functions represents a possibility of failure

the uncertainty into two distributions: that of the the the assumed loading that the

structure has seen (the ‘stress’ distribution) and that of the ability of the material to

withstand that level of loading (the ‘strength’ distribution). This is the simplest and

most commonly applied way of assessing the probability of failure and is suitable for

a wide range of situations [49].

The graphical representation shown in Figure 1.2 is common and demonstrates that

there is a risk of failure if the probability density functions (PDF) of the two random

variables overlap. The use of a safety factor effectively moves apart the two PDFs.

Naturally, this approach can also be applied to any form of failure criterion (i.e. is

not limited to fatigue analysis) and thus can fit in as part of a wider strategy more

easily.

The most common method of developing a probabilistic distribution for the ‘stress’

component of the problem is to propagate the sources of uncertainty through a

physics-based model. Typically, this is achieved using Monte Carlo Sampling (MCS)

methods. Naturally, to do this we need to have a statistical understanding of

the sources of uncertainty. Significant work has been conducted on developing

these distributions [50]. Running physics-based models for complex structures is a

computationally demanding task (assuming it is feasible for the problem at hand). As
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Figure 1.3: Treating fatigue as a probabilistic problem means that we
would have a distribution of damage for a given point in time, rather
than a single, deterministic, prediction

a result, there has been considerable effort to make this task more efficient, either by

using data-driven surrogate models or by using more efficient sampling methods, such

as Importance Sampling, to make the choice of model evaluations to be performed

more selectively. These will be discussed in more detail in the next chapter.

The ‘stress’ distribution can be developed by combining the uncertainties related

to the fatigue resistance of the component and material itself as well as inherent

uncertainties in the S-N framework (such as those related to the Miner rule and

Rainflow counting, etc.).

There is an (understandable) reluctance to treating failure as something that could

happen as an engineer. Naturally, maintaining human safety is of paramount

importance in this challenge and there is an aversion to ‘accept’ uncertainty in

any sector of engineering where there is any threat to life. Yet, in some scenarios

(principally, when the potential cost-of-failure is economic and not life-threatening),

there is a pathway toward a risk-based cost-benefit analysis being used. For example,

a recent NASA report states that ‘[estimating likelihoods of failure is essential to

make] credible reliability and risk assessments’ [51].
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While intuitively simple, it is useful to ask: what is risk in this context? According

to Hughes et. al [52], it is the combination of the cost/utility of a given consequence

and the likelihood of that consequence occurring. This ‘consequence’ can take many

forms and not all should be considered equal.

1.7 The challenges of adopting a probabilistic ap-

proach

There are many challenges to adopting such a probabilistic approach. On a prag-

matic level, one of the main challenges lies in the availability of data for assigning

distributions for probabilistic parameters in fatigue [50]. One of the challenges of

adopting machine learning for engineering applications is the paradigm shift required

to understand and interpret results: by using a model probabilistically, this change

in mentality is only increased. It is for this reason that a not insignificant amount of

this work will be dedicated to understanding the uncertainty of models. Furthermore,

in later chapters, interpretability is (on top of improved results) a motivation for

introducing physics into models.

There is also a reluctance to the use of data-driven modelling since many engineers

are not trained to a high level in statistics or, often, the programming and linear

algebra that are required for the implementation and interpretation of machine

learning models. This thesis will attempt to break down some of these concepts

accordingly and will discuss the challenge of interpreting the results of models.

Widespread adoption of probabilistic approaches within fatigue will, indeed, require

a paradigm shift in many areas of engineering. While this is an uninviting prospect

to many, it is important to remember that ‘All models are wrong, but some are

useful’. The author believes, however, that it is better to have an understanding of

how wrong the model is, rather than over-design until ‘certainty’ is achieved 2.

If one considers measured data as a gold standard for understanding a process, it is

useful to remember that even this is simply a set of observations (which are biased)

of a process. In the opinion of the author, having tools to access this uncertainty is

2it is important to highlight, once again, that this does not mean that human-safety is negotiable.
Instead, it is a recognition that in a safety-factor driven, deterministic mindset, the failure of
structures does still occur
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desirable. Reluctance to embrace risk/probabilistic thinking is not insurmountable.

It can be noted that even two of the most conservative engineering domains, the

Aerospace and Nuclear sectors, have adopted forms of probabilistic risk assessment

strategies [53–55]

While the extensive installation of sensing equipment is facilitating SHM, the sheer

amount of data of a system does indeed represent one of the challenges. Even

a rudimentary system may potentially have thousands of sensors installed, which

results in huge quantities of data, even at relatively low sampling rates. This is

especially true for the prediction of fatigue, for which it is necessary to collect data

at particularly high sampling rates [56].

1.8 Contribution of this work

In this work, a novel probabilistic approach is presented for predicting the fatigue

accumulation of structures. Firstly, by fully utilising the probabilistic nature of

data-driven models (in this case, Gaussian process regression) for strain and stress

prediction, a probabilistic view of fatigue damage is achieved. By embracing uncer-

tainty in the modelling approach, it is the authors opinion that there is a pathway

to both increase structural safety and also enable a greater lifespan to be attained

from the structure. Throughout this thesis, the focus shall mainly be on aerospace

applications. However, the methodology can straightforwardly be applied to other

domains such as offshore, rotating machinery, and many other civil and mechanical

applications. This is the first work to quantify the uncertainty on data-driven load

prediction models and propagate through the fatigue assessment. In doing so, a

discussion around how one can interpret the uncertainty of models is facilitated.

Using this framework, we will discuss how fundamental physical knowledge can be

integrated into models. This is some of the first work that considers how physical

knowledge can be used in a machine learning environment to predict fatigue damage.

In this work, this is achieved by inserting knowledge of the dynamics of the problem

into the structure of the model. In doing so, a clear improvement in the predictive

capability is achieved, both from the perspective of strain prediction modelling and

also probabilistic damage prediction. By utilising the novel probabilistic methodology

discussed above, the effectiveness of the physics-informed machine learning modelling
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approach is demonstrated, as is the value of the uncertainty propagation framework.

Furthermore, by integrating physical knowledge in the structure of the model, physical

meaning can be developed while working within a data-driven framework. This

work will also discuss how this physical meaning can enable a greater trust in model

prediction.

While the focus of this work is fatigue analysis, it can also be considered as a form

of extended case study to demonstrate the advantages of uncertainty propagation

for engineering applications. Furthermore, it can be considered a results-driven case

study for the potential of integrating physics into data-driven models, focussing

on the impact of model performance on structural damage, rather than overall

performance as quantified by a generic error metric.





Chapter 2

In service prediction of fatigue
damage accumulation: current

approaches

In this chapter, an overview of the background theory and literature relevant to this

thesis is presented. The overall themes that will be covered can be seen in Figure

2.1 on the following page. The focus here shall be on the in-service prediction of

fatigue accrual and the strengths and weaknesses of physics-based and data-driven

approaches to the problem. Clearly this is a large topic and, as a result, there are

many areas of research that are outwith the scope of this work: Many of these are

complimentary to this work, particularly the work focussing on probabilistic fatigue

due to uncertainties in materials or, more generally, due to problems within the S-N

process itself. The scope of the literature that will, or won’t, be included in this

review is shown in Figure 2.1.

17



18

W
it

h
in

 s
c
o

p
e
 o

f 
li
te

ra
tu

re
 r

e
v
ie

w

D
e
s
ig

n
A

s
s

u
m

e
d

 l
o

a
d

s
 

+
 D

e
s

ir
e

d
 s

e
rv

ic
e

 

li
fe

 

→
 C

o
m

p
li

a
n

t 
d

e
s
ig

n

P
e
ri

o
d

ic
 

a
s
s
e
s
s
m

e
n

t
C

o
n

fi
rm

 t
h

a
t 

d
a

m
a

g
e

 i
s

 i
n

li
n

e
 

w
it

h
 e

x
p

e
c

te
d

H
o

w
 a

re
 t

h
e
 s

tr
u

c
tu

ra
l 

lo
a
d

s
 b

e
in

g
 p

re
d

ic
te

d
?

W
h

it
e
 b

o
x
 

m
o

d
e
ls

S
u

rr
o

g
a
te

 

m
o

d
e
ll
in

g

P
h

y
s
ic

s
-

in
fo

rm
e
d

 

M
L

B
la

c
k
-b

o
x
 

m
o

d
e
ls

F
in

it
e

 e
le

m
e

n
t,

 

v
o

lu
m

e
 m

o
d

e
ls

M
e

ta
-m

o
d

e
ls

K
e
rn

e
l 

d
e

s
ig

n
, 

P
IN

N
s

, 
…

D
e
te

rm
in

is
ti

c
 

tr
e

a
tm

e
n

t 
o

f 

lo
a
d

s

U
n

c
e
rt

a
in

ty
 

in
 l
o

a
d

s

N
N

s
, 

G
P

s
, 

… P
ro

b
a

b
il

is
ti

c
 

F
a
ti

g
u

e
 

A
s
s
e
s
s
m

e
n

t

M
a
te

ri
a
l 

u
n

c
e
rt

a
in

ti
e
s
:

•
P

ro
b

a
b

il
is

ti
c

 S
-N

 

c
u

rv
e
s

•
P

ro
b

a
b

il
is

ti
c

 s
a

fe
ty

 

fa
c

to
rs

S
-N

 

u
n

c
e
rt

a
in

ti
e
s

•
R

a
in

fl
o

w
 c

o
u

n
t

•
M

in
e

r 
R

u
le

O
u

ts
id

e
 s

c
o

p
e
 

W
h

a
t 

is
 t

h
e
 g

o
a
l 
o

f 
th

e
 f

a
ti

g
u

e
 a

s
s
e
s
s
m

e
n

t?

D
e
te

rm
in

is
ti

c
 

R
U

L
 p

re
d

ic
ti

o
n

 

+
 s

a
fe

ty
 f

a
c

to
rs

W
h

ic
h

 

u
n

c
e
rt

a
in

ti
e
s
 

a
re

 w
e
 

c
o

n
s
id

e
ri

n
g

?

H
o

w
 d

o
 w

e
 u

s
e
 t

h
e
s
e
 f

o
r 

fa
ti

g
u

e
 a

s
s
e
s
s
m

e
n

t?

A
p

p
ro

a
c

h
 p

ro
p

o
s

e
d

 i
n

 t
h

is
 t

h
e

s
is

“
C

la
s

s
ic

a
l”

 a
p

p
ro

a
c

h
In

-s
e
rv

ic
e
 

p
re

d
ic

ti
o

n
E

x
te

n
d

 t
h

e
 l
if

e
 o

f 
h

ig
h

-

v
a

lu
e

 s
tr

u
c

tu
re

s
 a

n
d

 

in
v

e
s

ti
g

a
te

 r
e

a
s
o

n
 f

o
r 

fa
il

u
re

T
h

e
s

e
 f

a
c

to
rs

 c
o

u
ld

 a
ll

 

c
o

n
tr

ib
u

te
 t

o
 a

 

p
ro

b
a
b

il
is

ti
c
 f

a
ti

g
u

e
 

a
s

s
e

s
s

m
e

n
t.

 H
o

w
e

v
e
r,

 i
n

 

th
is

 w
o

rk
 w

e
 s

h
a

ll
 o

n
ly

 b
e

 

c
o

n
s

id
e

ri
n

g
 u

n
c

e
rt

a
in

ty
 i
n

 

th
e

 l
o

a
d

in
g

 o
f 

th
e

 

s
tr

u
c

tu
re

 

F
ig
u
re

2
.1
:
A
n
ov
er
v
ie
w

o
f
th
e
sc
o
p
e
o
f
th
is

li
te
ra
tu
re

re
v
ie
w
.
In

th
is

w
o
rk
,
th
e
fo
cu

s
is

o
n
in
-s
er
v
ic
e
p
re
d
ic
ti
o
n
o
f

d
a
m
a
g
e
u
si
n
g
th
e
sa
fe
-l
if
e
fa
ti
g
u
e
m
et
h
o
d
o
lo
g
y.

A
cl
a
ss
ic
a
l
a
p
p
ro
a
ch

to
th
is

m
ay

b
e
to

u
se

p
h
y
si
cs
-b
a
se
d
m
o
d
el
li
n
g

to
p
re
d
ic
t
th
e
lo
a
d
s
a
n
d
o
ft
en

,
u
ti
li
se

a
d
et
er
m
in
is
ti
c
p
re
d
ic
ti
o
n
w
it
h
la
rg
e
sa
fe
ty

fa
ct
o
rs
.
In

th
is

w
o
rk
,
th
e
fo
cu

s
is

o
n

d
at
a-
d
ri
ve
n
m
o
d
el
li
n
g
of

st
ru
ct
u
ra
l
lo
ad

s
in

th
e
ti
m
e
d
om

ai
n
an

d
u
ti
li
si
n
g
a
p
ro
b
ab

il
is
ti
c
fr
am

ew
or
k
fo
r
sa
fe
-l
if
e
fa
ti
gu

e.



2.1 Motivation: In-service fatigue damage prediction for safe-life applications 19

2.1 Motivation: In-service fatigue damage predic-

tion for safe-life applications

There are (broadly) three major reasons to be interested in fatigue analysis. Firstly,

at the design stage, one would have an assumed load spectrum and perform fatigue

analysis to ensure that the component is capable of withstand this loading. Later,

during the operational life of the structure, one may look to perform inspections in

order to ensure that the component is not experiencing more fatigue damage than

expected. When the component has a crack tolerance, this may involve performing a

crack-propagation assessment in order to ensure that it does not reach a critical size

during it’s service life and performing repair to assist with this.

In the third case, we have in-service prediction in the case where one cannot perform

inspection or the avoidance of cracks is of paramount importance. There are two

main reasons that this may be the case; firstly, the component may be located on

a structure which cannot be taken out of service due to practical reasons (much of

the field of SHM is concerned with mitigating this); Secondly, if the component is

designed within the safe-life fatigue methodology, there should be no cracks present

in the structure to detect (of course, this is not to say that performing periodic

inspections, or SHM, on safe-life components is not recommended or worthwhile).

What is the motivation for predicting fatigue damage in this case? Firstly, human

safety is of prime importance: in-service fatigue prediction in this case may be

one final safety check. However, another motivation is economic: the potential

to extend the lifetime of high-value structures. Structures such as wind turbines

frequently only have a design life of around 20 years, but are frequently determined

to have the potential to operate beyond this (often, between 25% and 50% [27, 57] of

additional life can be achieved). Another motivation may be the detection of cracks,

or even failure, in similar structures in a population: In this case, evidently either

the structural model, or the load spectrum used at the design stage, is inaccurate.

One factor that makes fatigue particularly difficult to model is the fact that the

magnitude of error can propagate: a 10% error in loading estimate can result in

fatigue damage error of 100% or more [58].
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2.2 How to predict structural loads

Figure 2.2: The methods of predicting loads considered in this literature
review

2.2.1 Physics based modelling, a deterministic view

This raises the question: how do we predict these structural loads. We will first look

at the literature from the right hand side in Figure 2.2, i.e. physics-based models

becoming enhanced by the use of data. Physics-based modelling methods, such

as finite element analysis (FEA), are the most widely used method for estimating

structural loads [59, 60] and there are many examples of FEA being used for fatigue

assessment in the literature [61, 62]. However, these are generally intended for use

at the design stage, rather than to utilise monitoring data to predict in-service loads.

Typically, an FE-based modelling approach for predicting fatigue would consist of

evaluating the model across loads defined by loading spectrum assumed at the design

stage. However, one reason we may wish to perform in-service loads prediction arises

from the (not uncommon) situation scenario in which the loading spectrum assumed

at the design stage is not representative of the loads the structure sees in service [63].

Sometimes, in-service monitoring data is available to refine this loading spectrum.

One example of this could be using weigh-in-motion data to update the load spectrum

for conducting fatigue assessment on road bridges [64, 65]. However, this (traffic

loading on a bridge) is a case which lends itself to easy refinement of the loading

spectrum by using low fidelity data sources such as camera feeds or weight sensors.

Naturally, achieving this refined loading spectrum for more complex structures, or

under more complex loading, would be more challenging.

Predicting the fatigue accumulation on wind turbines is an example of a more
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complex environment this has been achieved with some success. Numerous papers

have described how data can be used to update the loading spectrum and subsequently

achieve greater accuracy of results while using a ‘white-box’ modelling approach.

The Damage Equivalent Load (DEL) concept simplifies a variable amplitude loading

history into a single equivalent (from a damage-perspective) load, avoiding the

requirement to predict the full strain-time history, and is frequently used in this

literature. Using this method, statistics on loading conditions that the structure is

subjected to, such as mean wind speed, are used to update the loading spectrum

of the structure. For example, Ziegler et al. [28] use this data in combination with

aero-hydro-elastic simulations to update finite element models for extrapolation

of fatigue damage prediction to locations across a monopole wind turbine where

measured data is not available. Naturally, the predictive nature of this data is

limited due to the use of statistics that are only available in 10-minute intervals.

Even relatively major changes in either the operation of the turbine or the loading

conditions may not be captured .

By refining the spectrum of loads a structure is subjected to, this goes some-way

towards solving one of the major challenges with all modelling methods. Another

challenge with an FEA approach, naturally, is related to the accuracy of the model

itself, for which it may be difficult to validate across the loading spectrum. One

way in which data can be used to assist in this process is via updated finite element

modelling [66–68] in which model parameters are adapted to match the response

seen in measured data. By doing this, a greater trust in the accuracy of the model

can also be attained.

Perhaps the greatest criticism of the FE method for the purpose of fatigue analysis

is that it requires solving of a very large number of simultaneous equations [69]

and, therefore, has a very large computational cost of running model evaluations.

While structural overload analysis may have a limited number of evaluations for

different failure modes, fatigue analysis requires stress prediction over a wide loading

spectrum that the structure is expected to see. Chapters 6 onwards in this thesis are

investigating problems with dynamic loading, for which the computational cost of

time-domain FE modelling is especially demanding [70].

As a result of the high computational cost of evaluating physics-based models,

various methods have been developed to optimise the model evaluations needed

using data-driven methods. Methods such as Importance Sampling [71] and Latin
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Hypercube sampling [72] are used. While this does go some way towards reducing the

computational demands of an FE approach, it comes at the cost of some accuracy.

2.3 Surrogate Modelling

The computational cost of performing repeated model evaluations using physics-

based models was discussed above. As a result, various methods of selecting the

model evaluations that can most effectively reduce this computational expense have

been proposed. However, even for these efficient methods (such as Latin Hypercube

Sampling or Importance Sampling), the computational expense of this approach

can be large, especially for fatigue assessment which requires the evaluation of long

time-series of data.

There is, therefore, an incentive to use surrogate modelling. Also known as meta-

modelling, this is the use of a machine learning model to represent a computationally

expensive model (typically, this is referring to a FE model, but this could apply to

any expensive function or model). Using a data-driven learner, such as Gaussian

processes [73, 74], to act as a ‘surrogate’ to the computationally expensive model

can significantly reduce its computational cost.

From another perspective, further motivation for using a surrogate modelling ap-

proach comes from the potential to collect data for a machine learning model that

would otherwise be difficult to obtain. While obtaining operational test data at the

extreme ends of the loading spectrum for a pure data-driven modelling approach is

challenging, this is not a problem with a surrogate model approach, as data should be

readily available across the domain of loading scenarios (obviously, this requires an

assumed loading spectrum that is representative of the actual loading on the structure,

something that is not always the case, and rarely is in complex environments). While

this does represent a major opportunity of surrogate modelling, there is an associated

downside: As with all modelling methods, as complexity increases, our uncertainty in

the results of the model also grows. One of the advantages of a surrogate modelling

approach is that the ‘long-tail’ events, i.e. those that are unlikely to happen more

than a few times over the structures lifetime, can be modelled and training data can

be provided for the machine learning model (by contrast, this is very difficult in the

purely-data-driven approaches presented next). However, the flip-side of this is that
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the likelihood of having validated data in this region is also unlikely. Another of

the downsides of surrogate modelling it that of stacking uncertainty: the addition of

uncertainty using the data-driven learner as well as that of the physical model. This

is true of all surrogate modelling but, especially problematic in this region, when

uncertainty of the original model is also of question. Furthermore, it is in these

extreme regions that nonlinear behaviours are most likely to be exhibited, which

may not be captured by a black-box model (naturally, depending on the training

data and sparsity of training points).

Compared to a purely-data-driven approach, surrogate modelling also presents the

opportunity to acquire data in physical locations that would otherwise be difficult.

For example, the presence of stress concentrations are important for fatigue design.

Such points are very difficult to model using a data-driven learning (or extrapolation

to such places would result in the uncertainty stacking that we’ve discussed above).

However, by using a surrogate modelling approach, a data-driven solution could

still be possible. For example [75] presents a Kriging-based surrogate model for

S-N fatigue on the welds of a railway bogie beam including . A purely-data-driven

approach would be impractical here as acquiring the stress profile in such detail for

training the model would not be possible.

Again, the use of efficient computational methods could be combined with surrogate

modelling to further reduce computational time. Successful examples in the literature

include that of Echard et al. [76], who use a Kriging surrogate model combined with

Importance Sampling to assess failure reliability probabilistically. In [77], Teixeira et

al. focus on the design of experiments, reducing the number of calls that are required

to be made to the physics-based model with a Kriging surrogate again being used.

However, in the authors opinion, this has the potential to further exaggerate the

uncertainty stacking phenomena discussed above.

In general, surrogate modelling is a practical approach to utilising data-driven meth-

ods to model structural loads and fatigue that is appropriate in many environments.

Generally, the author would argue, this is most the case when the input loads are

well known and the potential loading spectrum is relatively narrow. Using surrog-

ate modelling has the potential to significantly improve computational times of a

physics-based approach and, as a result, will appear attractive in many situations

and industries that are otherwise reluctant to embrace a data-driven modelling

approach. However, many of the other downsides of finite element modelling are still
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present. In particular, in the authors opinion, it is the lack of validation that is most

important here. Again, for good results, a good knowledge of the input loads into

the structure should be known, which is one of the fundamental challenges of finite

element modelling. Furthermore, the impact of adding uncertainty of the data-driven

model to the uncertainty of the physics-based model should be considered.

2.4 Data-driven methods

We will now begin to consider the problem from the data-driven perspective, starting

with a black-box modelling approach and subsequently considering how physics can

be incorporated into such models (with a focus on Gaussian process regression, as

this is the modelling selection made throughout this work).

There is a rapidly growing literature of examples of data-driven approaches being used

for loads prediction. For example, artificial neural networks [78–81], Kalman filters

[82, 83] and Gaussian process regression [84–86] have all been used for this purpose.

Generally, fatigue is mentioned as a motivation for performing loads prediction, but

these citations often do not continue the loads prediction through to the fatigue

assessment. Those that do, generally limit this to a deterministic view, without any

consideration of model uncertainty.

As with the physics-based approaches described above, the topic of fatigue in wind

turbines is, again, a frequent topic of study, lending itself to a data-driven framework

as well. Again, these generally utilise the damage equivalent load (DEL) concept.

For example, Ziegler et al. [87] present a k-nearest neighbour approach for predicting

the DEL on wind turbines as an alternative to the finite-element method proposed

by the same author in [28] (cited above). In this case, greater accuracy is achieved

with the data-driven approach than was achieved with the physics-based approach.

Avendano-Valencia et al. [88] also use the DEL approach, using GP regression to

provide an estimate of the fatigue accumulation on a turbine (discussed more in the

probabilistic section below). The results of these approaches show the potential for

predicting fatigue using a data-driven approach, but share the same fundamental

downside described above for the DEL approach: by using mean statistics over a

specified time interval and not predicting the full stress-time history, even relatively

major changes in either the operation of the turbine or the loading conditions may
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not be captured .

The aerospace sector has seen interest in loads and fatigue prediction from a data-

driven approach. For example, the fatigue accumulation of landing gear is of interest

[33]. One example of Gaussian process regression being used for virtual loads

monitoring can be found in [89], where the loads on the landing gear of an aircraft

are predicted with a good level of accuracy. In [90], Cross uses a Multilayer perceptron

(MLP) for predicting the loads on the same landing gear data. However, in both cases,

these stop short of using this for fatigue prediction. In Chapters 4 and 5, a study will

be performed into the fatigue accumulation on a Tucano military aircraft. The same

data has been used previously for studies using an artificial neural network (ANN)

based parametric fatigue monitoring system [80, 81], and in Ref. [86], the loads on

the aircraft wing are predicted and fatigue analysis is carried out using the predicted

strain values. In both cases, strain is the target of the model and subsequent fatigue

assessment is carried out. While a good level of accuracy is generally achieved in

these citations, no thorough consideration is given to the uncertainty of the model

(although in [81], an element of aleatoric uncertainty is included by indicating the

difference in fatigue prediction that would arise from an error simulated on the strain

gauges of 5%).

Another area in which there has been interest in data-driven fatigue damage prediction

is within the health and usage monitoring systems (HUMS) within the rotorcraft

domain. There are numerous ML-based approaches to loads monitoring and fatigue

analysis: In Ref. [91], the mechanical loads of a helicopter are predicted using an

MLP, although the results are not propagated through the fatigue assessment. In

Ref. [92], an extreme learning machine (a subclass of feed-forward NN) is used for

load prediction and the results are fed through the S-N fatigue analysis procedure to

predict damage accumulation.

There are, therefore, many citations demonstrating the ability to predict structural

loads using a data-driven approach. However, generally these are limited to this and

do not consider the consequence of the prediction from a damage perspective. In

the coming chapters, it will be demonstrated that prediction accuracy at crucial

points in the time-history are more important from a fatigue damage perspective

than the overall prediction quality (as quantified using a metric such as normalised

mean squared error). Those approaches that do indeed conduct a fatigue assessment

generally limit this to a deterministic approach, without giving any consideration
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to the uncertainty of the model. Again, this is something that is challenged in the

coming chapters.

2.5 Grey-box modelling

In a machine learning model, we generally have a known input and visible output,

but don’t often know how we got from one to another. This lack of knowledge about

the mechanics of the model has resulted in machine learning models commonly being

referred to as black-box models. A physics based model, by contrast, is grounded

in rules of physics and often considered to have a more interpretable output as a

result. In contrast to black-box models, such models are commonly referred to as

white-box models. The concept of physics-informed machine learning was briefly

introduced in the previous chapter and is often otherwise referred to as grey-box or

hyrid modelling, sitting somewhere between the two and blending the use of data

and physical knowledge in a model. As alluded to in the introduction, there can

be various motivations for this modelling choice: achieving computational efficiency

while improving accuracy, improving the interpret-ability of data-driven models [93]

or improving trust in a data-driven model. As this is a new and emerging field, there

is not a great deal of literature related to grey-box modelling for fatigue analysis, so

this section will aim to provide a more general introduction into the field. A more

thorough introduction to grey-box modelling for SHM applications can be found in

Ref. [94]. Note, that while not discussed further here, a surrogate model trained

using a physics-based model could be considered a form of grey-box model.

Perhaps the easiest, most common and intuitive way of inputting knowledge of physics

into a machine learning model is via semi-physical modelling or input augmentation.

This involves manipulating inputs prior to their use in a model to indicate physical

processes [80, 86, 95]. This methodology is used in Chapters 4 and 5 to manipulate

inputs to be representative of the forces acting on an aircraft. An example of this is

squaring the measured airspeed of an aircraft before using it as an input to the model

[80, 81] (in the case of these citations, a neural network is the type of model used) to

give an indication of dynamic pressure acting on the aircraft. Similarly, In Ref. [95],

Azzam develops a mathematical network for fatigue monitoring of helicopters, in

which physics-inspired merging functions are used as the first layer of the network.
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An alternative way of integrating physics into models is via residual modelling in

which ML methods such as Gaussian process regression [96, 97] are used to predict

the discrepancy between a physics-based or empirical prediction and the measured

data. The potential benefit of this is demonstrated in [96] where a relatively simple

empirical physically-representative model (Morrison’s equation) is used as a mean

function within a GP regression model for predicting wave height on an offshore

structure. Although not performed in [96], the wave height naturally has a direct

effect on fatigue loading [98]. By accurately predicting the wave height and forces,

the loading spectrum used in any of the above modelling methods could be refined

(and of particular use for physics-based modelling).

Neural networks are among the most commonly used forms of machine learner and,

unsurprisingly, one of the most frequently used forms of grey-box model is Physics

informed Neural Networks (PINNs) [99]. If the differential equations that govern

a problem are known, this knowledge can be included as an extra term in the loss

function that we use to train the data-driven model. While there aren’t examples of

PINNs used for loads monitoring and S-N fatigue in the literature, there are examples

of their use for for LEFM fatigue assessment of additively manufactured alloys [100],

developing new S-N models for notched metallic components [101], corrosion fatigue

[102, 103] and developing physically consistent probabilistic S-N curves [104]).

The last form of grey-box model that will be considered here are kernel based methods.

Gaussian process (GP) regression is the machine learning method used throughout

this work, and much of the flexibility of a GP arises from the fact that we can choose

an appropriate covariance function for the model, specifying the functional form

that the model posterior will take. While typically, data-driven models will use an

‘ready made’ kernel, it is also possible to design kernels to suit our needs. A basic

form of this is the periodic kernel: as periodic responses are known to exist in many

areas, such as robotics [105], this fact can be harnessed to improve the response

prediction significantly [105]. In [106], this principle is used to develop a kernel

for single-degree-of-freedom (SDOF) oscillating systems under zero-mean Gaussian

white noise forcing. This method is applied to the problem of fatigue assessment in

the later chapters of this work.
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2.6 Probabilistic Damage Modelling

In the first chapter, it was acknowledged that there are uncertainties in the safe-

life fatigue methodology related (but not limited) to S-N curves, load estimates,

uncertainties in the Palmgren-Miner rule, design uncertainties and the rainflow cycle

count. Naturally, with such a large number of uncertainties widely acknowledged,

there has been a relatively large amount of literature looking into these, starting as

early as the 1970’s [47]. However, the only one of these that this work is concerned

with is the uncertainties within the loads prediction, with the other sources of

uncertainty out of the scope of this work.

While in the data-driven loads monitoring section above, many examples are presen-

ted demonstrating the capability of data-driven methods to predict structural loads,

generally these stop at this point: despite fatigue being frequently cited as a motiv-

ation for virtual sensing, the fatigue assessment is generally not performed using

the predicted loads. For those that do, this is generally treated in a deterministic

manner and little consideration is given to how the strain prediction impacts the

fatigue assessment.

However, probabilistic methods are becoming increasingly popular. Gaussian process

regression is one of the most popular ML methods for virtual sensing problems, in

part, due to its inherently probabilistic nature and subsequent capacity to indicate

uncertainty. Naturally, either a data-driven or physics-based modelling approach can

lend itself to a probabilistic methodology. However, the typical steps for achieving in

a physics-based context would be [107]:

1. Building a model for the structure that you want to model. Most commonly,

this is a finite element model.

2. Generating random variables for the inputs to this model. This could be the

input forces into the model, or varying modelling parameters.

3. Evaluating the model many times.

4. Statistically analysing the results, using the random inputs generated in step

two.

5. Performing model convergence studies.
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Earlier, the large computational cost of evaluating many physical models was dis-

cussed. This is especially true when extending such a physics-based approach to

a probabilistic framework, as many more evaluations have to be performed for

developing Monte Carlo simulation (or a similar approach).

There have, indeed, been numerous data-driven methods that allow for a probabilistic

fatigue assessment. For example, the approach by Avendano-Valencia et al. [88],

mentioned above, predicts damage equivalent loads using Gaussian process regression.

By predicting a damage equivalent load, the need for taking a probabilistic view

of the full strain-time history, as is done in this work, is avoided. The method

proposed by Echard et al. [76], who use a Kriging surrogate model combined with

Importance Sampling to assess failure reliability also used the probabilistic nature

of Kriging models. Using the LEFM methodology, Nie et al. [108] utilise an ANN

with Monte Carlo simulation to establish the fatigue reliability of steel bridges. Such

approaches can fit into probabilistic risk-based decision frameworks for structural

health monitoring [52], which can be used to make risk-informed decisions for safety-

critical components. By adopting a probabilistic approach to fatigue, one has the

potential to better control the risk level and plan maintenance more effectively

[33, 44].

2.7 Summary

In this chapter, the scope of this work was defined while reviewing the existing

approaches to the problem. The focus of this work is on data-driven virtual sensing,

and in particular, propagating the uncertainty of the prediction through the fatigue

assessment. While there is extensive literature on predicting fatigue, most notably

using finite element analysis, the propagation of uncertainty using such a method is

computationally costly. By adopting a data-driven approach, the computational cost

of adopting a probabilistic methodology is significantly reduced. Furthermore, much

of this work focusses on predicting damage in environments where understanding the

spectrum of loads the structure is subjected to is difficult, a situation which again

lends itself to a data-driven methodology. A brief introduction to grey-box modelling

was also covered, which is the focus of the later chapters of this work. In the next

chapter, more details will be given of the methodology developed in this work, and

the datasets used for demonstration.





Chapter 3

An introduction to Gaussian
process regression and the data

used in this work

Throughout this work, Gaussian process regression is employed to predict stress and

strain on structures before propagation through to the fatigue assessment. In this

chapter, an overview of the requisite theory will be presented. Following this, the two

datasets that will be used in this thesis to demonstrate the proposed methodology

will be introduced.

3.1 Gaussian process regression

Gaussian process regression is a powerful machine learning technique, popular within

the structural health monitoring field [109–111]. A frequent description of a GP

is a distribution over functions, without a defined functional form, but rather a

distribution over functions that are coherent with the data that the process is

conditioned by.

A Gaussian process model is specified by the choice of a mean and a covariance

function, k(x,x′), where x and x′ are distinct inputs to the GP. Generally, a zero mean

prior is assumed (although if we have prior knowledge of our process, incorporating

this into the mean function is a relatively easy method of importing this knowledge

into the model). The squared exponential is the most commonly used covariance

31
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functions [112]:

k(x,x′) = σ2
f exp

(
− 1

2ℓ2
||x− x′||2

)
(3.1)

The choice of covariance function results in a number of free-parameters. These

parameters are referred to as hyperparameters. For the squared-exponential kernel

used here, these are σ2
f and ℓ, the signal variance and lengthscale hyperparameters,

respectively. It is these hyperparameter values that are adjusted during the model

optimisation stage in order for the model target to fit the input data it sees (the role

each hyperparemeter plays in the model is demonstrated shortly).

Using equation (3.1), we can build a matrix relating the similarity of the data points

under consideration. This is called a covariance matrix K(·, ·). Predictions can now

can be specified as a function of K(X,X), the covariance matrix of the training

input values, K(X∗, X), the covariance matrix of the test (prediction) and training

input values, K(X∗, X∗), the covariance matrix of the test input values, and y, the

observed training output/target values.

During the training stage, the hyperparameters in equation (3.1) (or other covariance

function of choice) are optimised with respect to a chosen metric. In this work, this

is achieved by minimising the negative log marginal likelihood:

log p (y|X) = −1

2
y⊤ (

K + σ2
nI
)−1

y − 1

2
log

∣∣K + σ2
nI
∣∣− n

2
log 2π (3.2)

where I is the identity matrix and n is the number of training points used. The noise

hyperparameter σ2
n represents the variance of noise ϵ. This noise hyperparameter

is required as real world situations are unlikely to follow a function y = f(x), but

rather a noisy representation of this y = f(x) + ϵ. Throughout this work, a particle

swarm algorithm is used to search for optimal hyperparameters. After optimising

the hyperparameters, the GP posterior mean, E [f∗], and covariance, V [f∗], functions

can now be defined by equations (3.3) and (3.4), respectively [112]:

E [f∗] = K(X∗, X)[K(X,X) + σ2
nI]

−1y (3.3)
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Figure 3.1: (a) 3σ confidence intervals of (generic) Gaussian posterior
(b) functions drawn from the posterior distribution

V [f∗] = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗) (3.4)

3.1.1 Sampling from the GP

A feature of GP regression is that the distribution of any finite number of points

in the output space are jointly Gaussian. This results in an infinite number of

functions that can fit, or be drawn from, the posterior distribution. Figure 3.1(a)

illustrates an arbitrary GP posterior distribution that has been conditioned on a

single data point at x = 0, while Figure 3.1(b) shows a series of functions that this

non-parametric model can fit, which are generally referred to as ‘draws’ from the

posterior distribution. Each function fits to the training/conditioning point: away

from the training data the behaviour of the functions are characterised by the prior

covariance function.

From a fatigue damage perspective, where one will typically be predicting strain

before using this prediction in fatigue assessment, these draws are typically not utilised

by the work in the literature (including in the references discussed in the previous

chapter). In this work, samples are taken from the posterior strain distribution

of the GP model propagated through the fatigue assessment. The novel concept

(starting in Chapter 5) of this work arises from the notion that there is no specific

f(x) that characterises the data, but infinite f(xi) instead. By calling upon a large
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number of these functions, a probabilistic prediction for fatigue can be built from

the GP posterior distribution. Specifically, by generating a large number of draws

from the posterior and using the stress-life fatigue methodology to assess damage, we

will be able to generate a distribution for damage accumulation given a GP strain

prediction.

Samples/draws are generated from the posterior by calculating ([112]):

fsample = E [f∗] + Lu (3.5)

where E [f∗] is the the GP mean prediction calculated using equation (3.3), u follows

an independent Gaussian distribution, u ∼ N (0, I). L is the lower triangular matrix

of the Cholesky decomposition of the posterior covariance, such that V [f∗] = LLT ,

where V [f∗] is the posterior covariance, equation (3.4). This process is used to

generate the draws in Figure 3.1.

It should be noted that this process is not equivalent to generating samples by

adding the mean prediction, E [f∗], to Gaussian noise scaled over the magnitude of

the confidence interval. Such an approach would have sampled values independent

from each other and would result in effectively generating small fatigue cycles within

the confidence interval, as shown in Figure 3.2.

Figure 3.2: Sample taken from GP posterior compared to an independ-
ently sampled noise process
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The role of kernels

The ability to choose a covariance function, or kernel, is fundamental to the flexibility

of Gaussian process regression over a range of scenarios. It is the selection of the

kernel, along with the optimisation of its hyperparameters, that determines the ability

of the model to fit the process under consideration. In Figure 3.3, we can see three GP

posteriors conditioned on the same training data using ‘off-the-shelf’ kernel functions:

The squared-exponential, or radial basis function, kernel is the most commonly used

despite being known to often over-smooth through the data. The Matern kernel

is often used when the data is less smooth, with hyperparameters impacting the

roughness of the prediction (is is said that the Matérn class of covariance functions

often relects real processes better than the SE [113]). The Cosine kernel is an example

of domain-specific knowledge being input into the model at the kernel selection stage:

this could be used for modelling a process if the data is known to follow a sinusoidal

pattern, but with unknown amplitude or frequency.

Figure 3.3: The covariance function (and its optimised hyperparameters)
define the functional form of the GP posterior. The squared exponential
kernel is the most commonly used, but there are a wide range of kernels
that can be selected based on prior knowledge of the data. Furthermore,
kernels can be combined to provide further flexibility [114]

In combination with the choice of kernel, it is the model hyperparameters that

determine the form that the model posterior takes. In Figure 3.4 three GP posteriors

can be seen that are conditioned on the same training data, but with varying

hyperparameters to demonstrate their respective roles. The signal hyperparameter,

σf , reflects the strength of the correlation between data points. The lengthscale,

l, impacts how rapidly data points become uncorrelated from each other and, as a

result, how rapidly the model can respond, with a shorter lengthscale having shorter

fluctuations in prediction. The noise hyperparameter σn is a parameter of the GP
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model, rather than the covariance function, but this specificies the variance of the

data being modelled. In practice, an increase in noise hyperparameter results in a

larger posterior variance, even close to the training data.

Figure 3.4: The posterior of 3 GPs, each using a squared-exponential
covariance function with varying hyperparameters {σf , l, σn}. (a)
{1.4, 0.3.0.01} (b) {3, 1.1.0.1} (c) {0.9, 1.1.0.9}

Kernels can also be combined through any linear operator, most commonly addition or

multiplication. Figures 3.5a to 3.5d, demonstrate the effect of adding and multiplying

covariance functions. Adding kernels together averages their respective impact on

the combined covariance. Meanwhile, multiplying kernels exaggerates the impact of

both kernels having a high or low value, resulting in steeper gradients between them

.
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(a) SE Kernel (b) Matern Kernel

(c) Kernels in addition (a + b) (d) Kernels in multiplication

(a x b)

Figure 3.5: A demonstration of addition and multiplication of kernels. In
(a) and (b), a squared exponential and Matérn kernel, respectively, are
trained on the same datasets. In (c), we can see a visual representation
of kernels (a) and (b) used in addition, where the effect of averaging their
respective values occurs. In (d), we can see kernels (a) and (b) used in
multiplication, where the impact of high or low values in each kernel is
exaggerated, with steep gradients seen between regions.
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3.2 Data

For demonstrating the proposed methodology, two datasets will be used in this work.

Firstly, data from a Tucano military aircraft; Secondly, data acquired on a model

aircraft in the Laboratory for Validation and Verification in Sheffield. Here, the two

datasets will be introduced and the data used for demonstrating some of the GP

theory introduced above.

3.2.1 Tucano

Data are available, with the thanks of Steve Reed at the Defence Science and

Technology Laboratory (DSTL), from a monitoring campaign on a Tucano short

aircraft. The monitoring campaign included 101 flights from 2 separate aircraft, with

84 of these being from Aircraft A (and 17 from Aircraft B).

Figure 3.6: [115] A monitoring campaign was undertaken on a Tucano
aircraft. This data will form the focus of Chapters 4 and 5.

The data will be briefly detailed here, with available data channels and sampling

rates available etc. Much of this information is based on Reed [116], where a much

more thorough description of the data is available.

3.2.2 Available channels

Table 3.1 provides a selected overview of the Tucano data with a description of the

available measurements and their respective units and sample rates. Figure 3.7 shows
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the correlations between five of the inputs presented in Table 3.1.

Clearly, there are strong correlations between the four of the five inputs (the accel-

eration measurements across the aircraft and the strain on the wing). By contrast,

the strain on the tailplane is not correlated well with any of the inputs. This is not

surprising as the other data channels are taken from relatively similar locations on

the aircraft. The strong correlations between acceleration and strain are a result of

the largely static behaviour in the data. Some hysteresis, where the response of the

structure is not only a function of its current state but also its past states, can be

seen due to the less prominent dynamic behaviour which makes this correlation less

strong. For the initial investigations using this data, in chapters 4 and 5, the data is

downsampled to 16 Hz and the focus will be on the static component of the data (this

is described further in the following chapter). In Chapter 7, the dynamic component

of the stress response of the Tucano data will be interrogated more thoroughly.

Conducting this data visualisation step is crucial before constructing a model, as

it enables the user to select appropriate inputs, where univariate relationships

exist. Including additional inputs that are not appropriate can significantly decrease

performance, as further discussed in the uncertainty section below. In the era of

‘big-data’ solutions, this is important to highlight: the inclusion of data ‘just because

you have it’ is not only not useful, but can be harmful to results (in a supervised

learning environment).
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No. Channel Units Sampling Frequency

1 Fuel kg 16 Hz
2 Airspeed kts 16 Hz
3 Altitude ft 16 Hz
4 Normal acceleration at c.o.g g 32 Hz
5 Normal acceleration at tail g 16 Hz
6 Normal acceleration at p.s. wing µϵ 16 Hz
7 Strain: inner-wing bending (p.s.) µϵ 128 Hz
8 Strain: mid-wing bending (p.s.) µϵ 16 Hz
9 Strain: outer-wing bending (p.s.) µϵ 16 Hz
10 Strain: inner-wing bending (s.b.) µϵ 128 Hz
11 Strain: tailplane root bending (p.s) µϵ 128 Hz
12 Strain: tailplane root bending (s.b.) µϵ 128 Hz
13 Strain: fin root bending (s.b.) µϵ 256 Hz
14 Strain: main gear - vertical (p.s) µϵ 128 Hz
15 Strain: main gear - drag direction (p.s) µϵ 64 Hz
16 Strain: main gear - side direction (p.s) µϵ 128 Hz
17 Lateral acceleration at c.o.g. g 16 Hz
18 Rudder position deg 16 Hz
19 Elevator position deg 16 Hz
20 Aileron position deg 16 Hz
21 Weight-on-wheels 1/0 16 Hz
22 Flap position deg 16 Hz
23 Airbrake position 1/0 16 Hz

Table 3.1: Available data channels for Tucano dataset. (s.b.: star-board,
p.s.: port-side, c.o.g.: centre-of-gravity
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Figure 3.7: Correlation plots for some of the variables shown in Table 3.1

3.3 GARTEUR aircraft

Figure 3.8: The GARTEUR SM-AG19 benchmark in the Laboratory for
Validation and Verification, Sheffield
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The second dataset used within this work is that of the GARTEUR SM-AG19 aircraft.

The SM-AG19 aircraft was originally developed by the Structures and Materials

Action Group of The Group for Aeronautical Research and Technology in Europe

(GARTEUR) [117–119]. The structure was designed as a benchmark study for modal

analysis, with testing performed in laboratories across Europe .

The SM-AG19 was replicated and testing carried out at The Laboratory for Validation

and Verification (LVV) in Sheffield. The dimensions of the structure and information

of the location of all the accelerometers can be found in [120]. Minor adjustments

were made to the original structure: the ‘winglets’ were removed to encourage more

bending strain and lower the torsional component. Tests were performed at a range

of temperatures in the laboratory environmental chamber and thus, the original

elastomer bungees from the original test were replaced with steel springs that enable

a faster response to the temperature conditions. The accelerometers from the original

experiment were maintained in their original positions (with the exception of those

on the removed winglets). Strain gauges were installed across the starboard wing,

providing high-fidelity strain information across wing. The position of the installed

strain gauges can be seen in Figure 3.9.

Figure 3.9: Positions of strain gauges on the port-side wing of the
GARTEUR aircraft.
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(a) (b)

Figure 3.10: Posterior GP for acceleration at the aircraft (a) tailplane
(b) port-side wing. We can see that the stronger correlation shown in
the correlation plots corresponds to a smaller posterior variance.

3.4 GP regression demonstration with Tucano

data

The Tucano data will now be used to demonstrate the functioning of a GP regression

model on a smaller dataset before using throughout the work. In Figure 3.7, we can

see that the acceleration at the aircraft centre-of-gravity (first column/row) correlates

well with the acceleration at the tail (second column/row) and slightly less well with

the acceleration on the wing (central colum / row).

Two models are set up, with the acceleration at the center-of-gravity used as the

input in both cases and the tail and wing accelerations used as the respective model

targets. The data is downsampled to 16 Hz and the same training and testing data

indices used for the two models. The posterior distributions for the two models can

be seen in Figure 3.10. The stronger correlation, and reduced variance, shown in

Figure 3.7 translates into a smaller posterior variance and improved model confidence.

One thing that can be seen in Figures 3.10(a) and (b) is that the training points lie

within the posterior confidence intervals, but the variance of the testing data is not

accurately captured.
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It is difficult to visualise why this is the case by looking at the data in the time

domain. However, we can alternatively view the posterior distribution in the input-

space, as shown in Figure 3.11. By doing this, it is easier to see that the posterior

covariance in (a) is coherent with the training data, despite much of the testing

data not fitting the distribution selected. Conversely, the wider variance of training

data in (b) results in a larger noise variance in the model, and thus, a much greater

number of the testing points are captured.

This can lead us to another conclusion: more data will not necessarily make a model

more confident. While increasing data should (if well chosen) reduce the distance

between the training and testing data, the increasing data can also provide the model

with more information about the true variance of the model. The two models here

have the same number of data points, but despite the lower variance of the data for

model (a), the GP posterior is overconfident as a result the training data used. Note

that the models presented here are for demonstration of the theory and introduction

to the data. In both cases, the number of training points is limited and only one

input is used to the model. It is unsurprising that the model does not perform

perfectly in either case.

(a) (b)

Figure 3.11: The posterior distribution of the acceleration predictions
shown in Figure 3.10 in the input-space, rather than time series prediction.
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3.5 Understanding confidence in GPR models

Whilst exploiting the probabilistic nature of the GP model, or any probabilistic model,

is advocated, care must be taken in how uncertainty assessments are interpreted.

What actually is the uncertainty representative of? The uncertainty in the GP

prediction in this case is based on a measure of the distance between input training

and testing points. When using a typical, data-driven, kernel such as the squared

exponential (Equation 3.1), we can see that when the testing data is not close to

the training data, the subtractive term in Equation 3.4 tends towards zero, thereby

maximising the variance. In this case, the variance depends only on K(X∗, X∗) as

x and x′ are equal and therefore the posterior variance is dictated by the signal

variance σf . The inputs to the GP and choice of covariance function are specified by

the user.

In Figure 3.12, a squared exponential kernel is used to demonstrate how its hyper-

parameters, lengthscale and signal variance, determine the rate at which the posterior

covariance (and thus, uncertainty) grows with increasing distance between testing

and training points.
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Figure 3.12: Posterior variance with SE kernel with distance from training
points

So long as the strain prediction quality is acceptable, the selection of the covariance

function should not be of large consequence in a purely data-driven model. However,

care must be taken in selection of the model inputs. For example, if an irrelevant

input were included which exhibited different behaviour between training and testing
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sets, this would increase the uncertainty on the fatigue damage assessment in an

unrepresentative manner. As with all data-driven methods, prediction quality and

reliability of the confidence bounds will decrease in extrapolation. If the relationships

between inputs and targets change outside of the training dataset, the inference here

will not necesarily be valid.

3.5.1 Input augmentation

One of the aims in this work is to demonstrate the impact of the utilisation of physics

in machine learning methods. Input augmentation or semi-physical modelling is often

one of the most simple ways of achieving this. Rather than a modelling choice, this

is something that generally happens at the data processing state and involves the

manipulation of model inputs in advance of use within a data-driven model to reflect

the known physics. For example, drag forces are proportional to velocity squared,

so making this adjustment to the indicated airspeed to the input prior to use can

better reflect the loads on a structure (see chapters 4 and 5). A demonstration of

the impact of input augmentation is presented at the start of the following chapter.



Chapter 4

Tucano aircraft case study: a
preliminary study

In this chapter, the Tucano dataset will be used to demonstrate the performance of

GP regression for predicting fatigue damage. This will be limited to a deterministic

study, without propagating the model uncertainty, novel to this work, which will be

the focus of the next chapter. The concept of semi-physical modelling will be used to

demonstrate that we can improve our model prediction by effectively pre-processing

data.

4.1 Fatigue analysis

In Chapter 1, an overview of the main concepts of S-N fatigue was presented. Here,

the particular process followed in this work will be described further, before using

the S-N framework for predicting damage accumulation on the Tucano aircraft.

The S-N curve is the foundation upon which the stress-life methodology is built.

Constant-amplitude cyclic stresses are applied in laboratory conditions to test how

many cycles a specimen can withstand before failing at a given stress level. The

result is a relationship between stress range and the number of cycles to failure that

is generally linear on a log-log scale: the most common analytical expression for the

S-N relation is the Basquin model [121]:

47
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σa = aNm
f (4.1)

where σa is the stress amplitude, a is a numerical constant, Nf is the number of

cycles to failure at stress σa and m is the exponent which gives the slope of the

relationship (which is linear on a log-log curve).
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Figure 4.1: The S-N curve describes the number of cycles to failure that
a material can withstand at a given stress range.

For a component in operation, prior to using the S-N curve to predict fatigue damage,

a cycle counting method has to be used to convert a stress response into a set of

fully-reversed stress ranges. The most commonly used is the Rainflow count, as is

used in this work, following the ASTM 1049 standard [122].

A cycle counting method should also provide the mean stress for each cycle in

addition to the stress amplitudes within the response. This also has an impact on its

subsequent damage: a tensile mean stress will result in a faster failure and vice versa

for compressive mean stresses [123]. As S-N curves are generally developed under

zero-mean applied stresses [124], a correction has to be applied for stress ranges

with a non-zero mean stress. Methods such as the Goodman [125] correction can,

thus, be used to compensate for the altered damage from the non-zero mean (other

examples are the Gerber [126] or Soderberg [127] methods). This can be done on a

cycle-by-cycle basis following the cycle count.

Having calculated a mean-adjusted cycle range, the damage from each cycle can be

calculated using the S-N curve. Palmgren-Miner rule is simply that the total damage

from the complete stress response is the sum of the damage caused by each cycle [6]:
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D =
∑ ni

Ni

(4.2)

where ni and Ni are the number of cycles in the stress response at a given stress

range (taken from the rainflow cycle count) and the number of cycles to failure

the material is capable of withstanding at that stress level, respectively. D is the

summation of damage from each of the individual stress cycles identified within the

stress response, with the material expected to fail when D = 1.

For the work in this chapter and Chapter 5, fatigue analysis is performed using

the S-N curve described by Reed [80] for an L-65 aluminium alloy, including the

Goodman mean stress correction [128]:

N =

[
Aσ∞ (σu − σm)

σa (σu − σmi)− σ∞ (σu − σm)

]
(4.3)

where N is the number of cycles to failure at a given stress amplitude, σu is the

ultimate tensile strength of the material, σm and σmi are the cycle mean stress and

S-N curve mean stress, respectively. The numerical constant A can be found in [128].

4.2 Model inputs and targets

In this and the following chapter, the strain on the port-side wing shall be used as the

target of the model. The wing is selected as the target as this is the most important

aircraft component from a fatigue perspective owing to its requirement to provide the

aircraft lift and support fuel loads while remaining light [116]. Strain measurements

are available at three points across the wing, but the inner strain measurement is

chosen as the target throughout the work as it experiences the greatest stress and

thus, fatigue damage accumulation.

Candidate inputs to the GP model are acceleration measurements in combination

with some standard in-service measurements. The acceleration measurements used

are located on the port-side wing and at the aircraft centre of gravity (channels 4

and 6 in Table 3.1). The standard aircraft measurements used are airspeed, and

altitude. Note that no strain measurements from other locations on the aircraft are
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used as model inputs. The motivation for this is that accelerometers are much more

robust than strain gauges, which would be difficult to maintain beyond an initial

fixed-duration study.

The work in the following two chapters will be focussing on the 84 flights available

from Aircraft A. Many of the inputs shown in Table 3.1 are only available at 16 Hz,

while the strain data is available at 128 Hz. Therefore, in this and the following

chapter, the complete dataset is downsampled to 16 Hz before use. As this does

result in some loss of dynamic strain behaviour for some of the flights, the analysis

shall initially only be assessing the quasi-static behaviour shown at this downsampled

frequency. Later on, in Chapter 7, the Tucano data will be used again to demonstrate

interpolative performance with a physics-informed ML approach.

At this downsampled rate, each of the flights has between 20,000 and 90,000 data

points. The GP posterior sampling operation requires a matrix inversion of complexity

O (n3) and therefore, for computational reasons, the study here is limited to 10,000

data points from each flight for demonstration. The most damaging 10,000 data

points in each flight are selected (based on fatigue analysis performed on the measured

data before prediction) to ensure that non-negligible damage accumulation occurs in

the time history under consideration.

4.2.1 Input Augmentation

The concept of input augmentation, or semi-physical modelling, was introduced in

the previous chapter. Following, [81], such adjustments were made to some of the

inputs before use within the model. To briefly assess the potential impact that this

input augmentation step has, in Figure 4.2, two GP posteriors are shown. The model

is simple, with only two inputs used (airspeed and normal acceleration at the aircraft

c.o.g.). The target of the model in both cases is the strain on the aircraft wing. In

(a), an SE kernel is used with no special treatment of the input data (except for

standardising before use in the model). In (b), the same inputs and training indices

are used with an SE kernel, however, before use in the model, the airspeed is squared

to indicate the dynamic pressure, and the acceleration measurements were multiplied

to indicate the forces acting on the aircraft. This latter step is performed, following

[81]. However, in reality, the input data is standardised prior to its use in the GPR

model throughout this work and thus, this step could be omitted. This is not the
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case when squaring the airspeed, as the significance of this is maintained after the

data is standardised.

(a) (b)

Figure 4.2: (a) Strain prediction model using inputs of normal accelera-
tion at the plane centre-of-gravity and indicated airspeed (MSE = 41.0).
(b) The same inputs as in (a) but with the inputs manipulated to give
an indication of physical processes acting on the aircraft (MSE = 13.4).

While one can see that the strain prediction is still not perfect in (b) (note that

the model is still only using two inputs), we can see a significant improvement in

prediction. This is quantified by a reduction in the model NMSE (see Equation 4.4)

from 41.0 to 13.4. Importantly, the underlying nature of the strain is captured much

more accurately: the fluctuations in strain are captured, albeit with errors in their

amplitudes. By contrast, in (a), the GP posterior is smoothing through many of the

turning points. Again, while again not perfect, we can see that the model confidence

is more representative in model (b), especially around the strain minima, around

data point 700. Further information about possible domain-specific knowledge for

the Tucano data can be found in [81].
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4.3 GP Model

The model was trained using 2000 data points, randomly selected from five training

flights, and then tested on all 84 flights from Aircraft A (including the five training

flights).

Normalised mean square error (NMSE), defined by equation (4.4), is frequently used

as a metric for assessing the prediction accuracy of regression models:

NMSE =
100

nσ2
y

∑
(yp − yi)

2 (4.4)

where yp and yi are the values of the prediction and the measured data at data point

i, σy is the standard deviation of the measured values and n is the number of data

points.

Figure 4.3: Histogram of NMSE values for the 84 flights

The strain prediction shows a very good level of accuracy across the majority of

flights, with 82 of the 84 flights having an NMSE value less than 15.7% with most of

of these being below 5%. The range of errors is displayed in a histogram shown in

Figure 4.3. There are two flights with NMSE values greater than this (31.1% and

46.9%). The worst of these (Flight 12) can be seen in Figure 4.4 below.

Here, we can see that the prediction is generally good over the 10000 data points, but

there is a region in which the prediction struggles between 3000 and 5000 data points.

This results in the poor NMSE seen in Figure 4.3. Furthermore, these two flights
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(a) (b)

Figure 4.4: (a) Strain prediction model for the worst performing flight
in terms of NMSE (flight 12). (b) An enhanced view of (a). We can see
that between data points 3000 and 5000, the prediction is poor, resulting
in the high NMSE.

(Flight 12 and Flight 23, which also had a large NMSE of 31%) showed relatively

low stress amplitudes which are difficult to capture due to their benign nature and

this amplifies the modelling error. The low damage accumulated in these flights are

highlighted in the following fatigue assessment.

By contrast, a typical example of a good flight is seen in Figure 4.5. The majority

of flights have NMSE values less than 4%, so an example from within this range is

selected. Flight 73 has an NMSE of 3.4%: Only 1000 (of 10000) data points are

shown in Figure 4.5, but this is representative of the full flight, with the posterior

mean matching the measured data closely and remaining within the confidence

intervals throughout the prediction.
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Figure 4.5: Strain prediction model for a typical flight (Flight 73). The
majority of flights have an NMSE value of less than 4%. In this case, the
NMSE is 3.4%.

For each prediction, the GP posterior mean is now used for predicting fatigue damage

using the S-N approach and compared to the damage from the measured strain data,

which serves as a benchmark. The result of this can be seen in Figure 4.6. For the

majority of flights, a good level of accuracy is achieved, with a close correlation

between predicted and measured damage. The flights discussed through this, and

the following chapter are indicated.
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Figure 4.6: Prediction of fatigue damage for the 84 flights using the GP
posterior mean

We will look briefly at two further flights, identified as flights 77 and 8 in Figure 4.6.

First, we will look at Flight 8, for which the GP posterior is shown in Figure 4.7.

From both the model posterior and the fatigue damage prediction, we can see that

this is an example of a good prediction from the test set of flights. The posterior

mean prediction follows the measured damage very closely, verified by a low NMSE

value of 0.9%. We can see from Figure 4.6 that the error of the GP mean at predicting

fatigue damage compared to the measured data is very low, underestimating the

measured damage by only 1.8%.
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Figure 4.7: GP Posterior for Flight 8: we can see that the GP mean
predicts the measured data very closely.

By contrast, Flight 77 is the worst performing flight of the 84 in terms of fatigue

damage prediction (Figure 4.6), underestimating the measured damage state by

36.2%, and is the clear outlier of the test set. While this flight is the worst for fatigue

damage prediction, it is worth noting that the NMSE is only 9.8%, which can be

considered relatively low. Clearly, small errors in strain prediction can have a much

larger impact on damage prediction. We see that NMSE is not necessarily a good

indicator of whether a model will be able to predict fatigue damage accrual well

(despite having the worse performance in terms of fatigue damage prediction, the

NMSE of Flight 77 is not the worst of the test set). Generally, it is the accuracy of

at the local maxima and minima of the largest stress cycles that is most important

here, which is not reflected in an error metric which looks at the average error across

the stress response.

The GP posterior for Flight 77 is shown in Figure 4.8. Comparing the data to Flight

8 (Figure 4.7), we can see that this flight has many repeated stress cycles of similar

magnitude, whereas Flight 8 has a smaller number of large stress cycles with many

smaller cycles.
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Figure 4.8: Flight 77: GP posterior, data points 1000-6000

As it is difficult to see the data clearly, two sections of the same prediction are

presented again in Figures 4.9 (a) and (b) below. While the prediction is generally

good (hence, a NMSE value of less than 10%), the GP mean does underestimate

the measured value at numerous points over the stress time-history. Even in the

small number of test points shown here, this occurs numerous times. As this is

one of the more damaging examples of the 84 flight test set, this prediction error

propagates into an large under-estimation in the damage arising from the flight.

Compared to Flight 12 (Figure 4.4), which had a much larger error in terms of stress

prediction, the stress magnitudes at which the errors are occurring here are larger,

thus propagating to a greater error in the fatigue prediction.

4.3.1 Discussion and conclusions

This chapter has demonstrated the potential of fatigue prediction using a data-

driven framework on the Tucano dataset. This is achieved by performing strain

prediction on the most damaging sections of all 84 flights available (from a fatigue

perspective) and propagating the mean prediction through the fatigue assessment.

This is then compared to the results from the measured data and opens an avenue for

better understanding model performance given the ultimate use case. As one of the
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(a) (b)

Figure 4.9: Two regions of Flight 77, each showing only 250 data points
(of 10,000)

central themes of this work is the utilisation of physics-informed machine learning

methods, the benefits of performing input augmentation prior to use in the model

was demonstrated. The ability to predict stress time-histories is demonstrated, with

98% of the 84 flights in the test set having an NMSE of less than 16% (Figure 4.3).

By propagating the strain prediction through the fatigue assessment, the subsequent

fatigue damage prediction was shown to be good, with, generally, an acceptable level

of error being achieved in the prediction.

One of the advantages of the Gaussian process regression is its probabilistic nature and

the provision of a full predictive distribution rather than single point estimate. The

remainder of this thesis seeks to utilise the full predictive distribution to both provide

a distribution of potential fatigue damage accumulation for use in a probabilistic

risk assessment, for example, and to improve the robustness of any such prediction.

While the fatigue damage for the majority of flights was able to be predicted with

good accuracy, there was one outlier to this trend. For Flight 77, the reason for the

poor performance was evident from the strain-time prediction, with the GP posterior

mean underestimating the measured value at numerous points in the prediction. Yet,

it could be seen that at most of these points, the error was captured within the

confidence bounds of the prediction. The hypothesis to be examined in the next

chapter is that robustness here will be improved through consideration of the entire
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predictive distribution rather than just the mean.

In the next chapter, the uncertainty of the prediction will be propagated through the

fatigue assessment. In doing so, one can query if it is possible to mitigate the errors

in strain prediction if the posterior variance is sufficiently accurate. Furthermore,

even for the flights which are predicted with a very high degree of accuracy, it is

proposed that propagating the model error will give a better true reflection of the

model: if one has two predictions that are identical from the perspective of the GP

mean, but one is much more confident about this prediction, it is argued that this

should be reflected in the final damage prediction.

This discussion is especially relevant for fatigue assessment. While a static overload

assessment could potentially utilise the probabilistic nature of the prediction by

simply checking if a given threshold is surpassed at any single point in time, fatigue

assessment requires the time history known for a period of time to be able to identify

the stress cycles.

This discussion would become increasingly pertinent as the aircraft is in service for

longer, as the likelihood of the plane seeing manoeuvres that were not captured

by the training data increases (as does the likelihood of seeing increasingly rare

environmental conditions e.g. extreme wind gusts or extreme temperatures). Again,

while the deterministic results presented in this chapter demonstrated good ability

to predict the strain and subsequent damage seen in the test set of 84 flights, by

remaining within a deterministic framework, there would be no inherent avenue for

assessing the impact of these new conditions.





Chapter 5

Tucano aircraft case study:
developing a probabilistic

perspective

In this chapter, using the same case study from the previous chapter, the process

will be adapted to allow for a probabilistic treatment of the problem by propagating

the model uncertainty through the fatigue assessment. In doing so, a distribution

of predicted damage, rather than a deterministic assessment, will be acquired. In

the previous chapter, it could be seen that even flights with relatively low error

on the strain prediction, could result in significant error in the subsequent fatigue

assessment: by propagating the model uncertainty, it is hoped that in such cases,

a better reflection of the true damage is available. The goal of doing this is to

develop a more robust prediction and better interpretation of the model probabilistic

prediction.

An overview of the process proposed in this chapter, and how it differs to the

deterministic approach taken in the previous chapter is presented in Figure 5.1.

5.1 Propagating model uncertainty

First, a brief overview of the sampling theory, that was discussed in more detail in

Chapter 3, will be covered. The GP posterior mean, E [f∗], and covariance, V [f∗],

were defined as follows [112]:

61
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Figure 5.1: A probabilistic perspective on using GP regression for fatigue
assessment

E [f∗] = K(X∗, X)[K(X,X) + σ2
nI]

−1y (5.1)

V [f∗] = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗) (5.2)

It is the diagonal values of the posterior covariance matrix that provides the user

with the confidence intervals seen throughout this work. However, one can utilise
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the full posterior covariance matrix, V [f∗], by computing:

fsample = E [f∗] + Lu (5.3)

where u follows an independent Gaussian distribution, u ∼ N (0, I) and L is the

lower triangular matrix of the Cholesky decomposition of the posterior covariance

(again, see Chapter 3 for further detail). For Flight 12, identified in the previous

chapter (Figure 4.4), this is demonstrated in Figure 5.5 for data points 5800-5900.

Figure 5.2: Flight 12, identified in the previous chapter, now also with
samples drawn from the model posterior.

Now, using the same model as in the previous chapter (including the optimised

hyperparameter values), the model uncertainty propagated through the S-N fatigue

assessment for all 84 flights. For each flight prediction, 10000 draws are taken from

the GP posterior and fed through the fatigue assessment to create a distribution of

predicted fatigue damage accrual for each flight. A flowchart, adapted from Figure

5.1, specific to this model is shown in Figure 5.3.

In doing this, the uncertainty of the model can be understood. There are two types

of uncertainty; aleatoric and epistemic. The former is related to the uncertainty of

the result, which in this case could be considered to be the error of the strain gauges

that are used to train the model. This type of uncertainty is considered in [81], where

an error of ±5% on the strain gauges is simulated and a subsequent upper and lower

limit on the measured fatigue damage is shown. Epistemic uncertainty is related
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Training the model: 5/84 flights are
used to train the GP model. 2000 data
points are selected randomly across

these 5 flights

Model hyper-parameters are
optimised for maximum likelihood

(Equation 2)

For each flight, samples of possible
strain-time histories are drawn from

these distributions

Strain-time histories are converted
into stress-time histories

Rainflow cycle counting is used to
obtain the stress ranges from each

sample

Fatigue damage is calculated using
Miner's Rule with stress cycles

identified in Rainflow cycle count
and S-N curve (Equation 8)

Goodman mean stress correction
applied within S-N curve

Input selection: appropriate inputs to
the models are selected. Some inputs

are combined to reflect known
physical insight (input augmentation)

Target selection: Strain at the inner
port-side wing selected as model

target

Prediction: For all 84 flights,
predictive posterior distributions ..
are acquired  for strain on the inner

port-side wing

Figure 5.3: Flowchart of proposed methodology

to the uncertainty of the model and is often the result of the availability of data.

While epistemic uncertainty can be reduced with the use of increasing data, this is

not always possible within a data-driven approach: Firstly, the quantity of data is

not always the limit to having representative training data, but the availability of

training data that is representative of the testing conditions. Secondly, there are
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considerable computational demands that need to be considered. This work is looking

at uncertainty of both types: the noise hyperparameter represents the uncertainty

in the data, while the magnitude of the posterior variance is also a function of the

distance between the training data (model inputs) and test data, see equation (3.4).

As per the flowchart, the other parameters in the process are kept the same. The

hyperparameters attained during the model optimisation for the previous chapter are

kept throughout the results shown in this chapter. The same S-N curve (Equation

4.3 is used throughout the Tucano work.

5.2 Results

As per the previous chapter, inner strain measurement is chosen as the target

throughout the work as it experiences the greatest stress and thus, fatigue damage

accumulation. The model is maintained as per the last chapter, including the

optimised hyperparameters. However, as indicated in 5.3, 10,000 samples are now

drawn from the posterior distribution.

After following the methodology set out in Figure 5.3, one now has a distribution of

predicted damage for the inner wing for each flight, as opposed to a deterministic

value as predicted in the previous chapter. The predicted fatigue accumulation

distributions for all 84 flights are visualised in Figure 5.4. Each vertical contour

shown represents the damage distribution for a single flight and the solid line marks

where the predicted damage is equal to the damage accrual from the measured

strain data, as per the previous chapter. The last chapter demonstrated that flights

with relatively low error on the strain prediction could still result in error in terms

of fatigue damage prediction. The first result that can be noted here is that, for

each flight, the predicted damage distributions encompass the measured damage,

immediately indicating an increased robustness of the method. Circular markers

are added to show the fatigue damage prediction when the GP mean is propagated

through the fatigue assessment, as per the previous chapter.
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Figure 5.4: Fatigue damage distributions from the GP posterior mean,
individual posterior samples and the measured data for all 84 flights.
The flights studied in further detail (flights 8, 66 and 77) are indicated.

Looking more closely at the results now, the overall trend shown is that the most likely

value from the sampled damages is more conservative than the mean GP prediction:

an expected result of sampling from the GP and the subsequent additional damage

caused by larger cycles, discussed more below. Each of the contours shown in Figure

5.4 may also be viewed as a histogram. Figure 5.5 shows this for Flight 8, first shown

in the previous chapter. In Figure 5.4, one can see that the peak of the damage

distribution (i.e. the mode average) of the sampled damages is consistently more

conservative than the propagated GP mean prediction across the range of flights.

For Flight 8, whose histogram is shown in Figure 5.5, the mean and median of the

sampled damages are also shown. For this flight, each of these are more conservative

than the measured damage, in part due to the damage prediction being so accurate

for this flight using the GP posterior mean.
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Figure 5.5: Histogram of damages for Flight 8.

From Figure 5.4, we can also see a general increase in the variance of the damage

distribution with an increase in flight damage. Again, the non-linear relationship

between stress range and cycle damage is partly a cause of this. However, there is a

further variable that impacts this: the stress cycle mean value.

As discussed in the previous chapter, we know that the cycle mean stress can also

have an impact on its subsequent damage: a tensile mean stress will result in a faster

failure and vice versa for compressive mean stresses [123]. As S-N curves are generally

developed under zero-mean applied stresses [124], a correction has to be applied

for stress ranges with a non-zero mean stress. Methods such as the Goodman [125]

correction can, thus, be used to compensate for the altered damage from the non-zero

mean. For the fatigue assessment on the Tucano aircraft, the fatigue assessment

is performed using the S-N curve specified by 4.3, which has a mean stress term

included. To demonstrate the potential for mean stresses to significantly impact

damage, Figure 5.6 shows how the variance of damage grows with that of cycle

amplitude and mean. The blue line shows the relationship between cycle range and

subsequent damage. The uncertainty associated with cycle amplitude is shown in

purple (here the cycle range is sampled from a Gaussian distribution with a standard
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deviation equal to 2% of the stress amplitude). The effect of having uncertainty on

the mean stress of ±100 MPa is shown in pink, where one can see further growth in

damage variance. Sampling from the posterior distribution can lead to large changes

in the mean stress of the largest (and most damaging) cycles. The impact that this

can have over thousands of stress cycles is large and difficult to fully understand or

predict due to the ‘black-box’ nature of the rainflow cycle counting process.

Table 5.1: Comparison of the largest stress cycles for 2 of the samples
drawn from Flight 8

Reference Stress Range Mean Stress Damage

[MPa] [MPa]

A 389.3 -87.6 1.350e-04

B 389.6 -117.0 1.120e-04

In Table 5.1, we can see the details of the largest stress cycles of two draws from

Flight 1 posterior. Despite the stress ranges for the two cycles being almost equal,

we can see that cycle B is around 19% more damaging than cycle A as a result of the

difference in mean stress. When a large amount of the damage for each flight arises

from a small number of large stress cycles (see: Figures 5.8 and 5.10(b)), the impact

of mean stress effect of the damage on the sampled flight could be significant.
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Figure 5.6: Impact of cycle mean stress and uncertainty of stress cycle
range on damage

5.2.1 Flight 66

Flight 66 is the most damaging of the 84 flights shown in Figure 5.4. The posterior

distribution for this flight can be seen in Figure 5.7, where one can see that the

prediction is good across the flight, both in the regions of the local maxima and also

the more benign period towards the end of the flight data. We can see that there is

a small mean offset when comparing the mean prediction to the measured data, but

for the majority of the flight, the measured value is captured within the confidence

bounds of the prediction and the important characteristics of the stress response

are captured by the prediction. The prediction NMSE value is only 0.9% and the

fatigue damage prediction for the GP mean is also very accurate, with an error of less

than 0.5%. The distribution of damage demonstrated by the contours in Figure 5.4

shows that, despite this good accuracy (for both strain prediction and using the GP

posterior mean to predict the fatigue damage accumulation), the variance of sampled

damage can still become large. The result of this is that the most damaging sample

is 1.4 times more damaging than the measured data, despite the high accuracy of

the prediction. The sampled mean fatigue damage is also more conservative than
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the GP mean and measured predictions, although, this is only true by 6%.

Figure 5.7: Posterior GP stress prediction for Flight 66

The load spectra (stress ranges versus cycle counts) from the measured strain and

the most and least damaging samples drawn from the GP are shown in Figure 5.8.

The plot also shows the progression of damage across the stress distribution for the

measured data and one can see that the majority of damage is caused by a relatively

small number of high stress cycles.
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Figure 5.8: Load spectrum for Flight 66

5.2.2 Flight 77

As discussed in the previous chapter, Flight 77 has the largest error of the 84 test

flights in terms of fatigue damage prediction accuracy, with the GP mean prediction

underestimating the measured damage by 36.2 %. While one could see from Figures

4.8 and 4.9 (reproduced below in Figure 5.9) that the measured data was within

the confidence intervals for the majority of the stress-time history, by only using

the GP posterior mean, this could not be beneficial. Clearly, by sampling from the

posterior distribution, we can attain a better reflection of the true damage state,

which is within the subsequent damage distribution (albeit at a low probability). If

one was to consider the mean of the sampled damages rather than the GP posterior

mean prediction, this would reduce the error from 36.2% from the GP mean to 30%.
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(a) (b)

Figure 5.9: Two regions of Flight 77, each showing only 250 data points
(of 10,000)

While sampling does indeed give more information about the damage state for Flight

77, the extent to which the underlying phenomena are captured by the samples

drawn from the posterior is not always exemplary. For example, in Figure 5.10(a),

we can see the same section of data shown Figure 5.9(b). One can see that the

fluctuation around data point 5300 is still missed by the samples and GP mean alike.

Similarly, in Figure 5.10(b), showing the load spectrum for Flight 77, one can see

that the largest stress cycles in the measured data are underestimated by both the

most and least damaging samples drawn from the model posterior. Instead, the

additional damage that the most damaging cycle is capturing (compared to the GP

mean) comes from an increase in medium-sized stress cycles.
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Figure 5.10: (a) Some samples from the posterior of Flight 77: we can
see that some detail is still missed by the samples, and (b) The load
spectrum for flight 77

5.3 The relationship between stress cycle range

and fatigue damage

The results above demonstrate some variation in the damage distribution across the

range of flights. If the prediction is accurate, it would be expected for the damage

from the GP mean prediction and the measured damage be similar, which is generally

seen in the results. As a trend, it could be seen that the most probable damage level

of the samples (i.e. where the normalised probability equals 1 in Figure 5.4 and

the peak of the histogram in Figure 5.5) is greater than the damage from the GP

mean prediction and the measured damage. Furthermore, a common theme of the

damage distributions shown in Figure 5.4 is that there are long tail characteristics

demonstrated, with the most damaging sample being further from the most likely

value, than the least likely value.

To investigate the cause of this, a small investigation into the causes of shifts in the

damage distribution is performed below. In S-N fatigue, we know that the relationship

between stress cycle range and number of cycles to failure is observed to be linear,

but non-linear before log-scales are applied on the x and y axes. Accordingly, we

would also expect a non-linear relationship between an increase in range of a given
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stress cycle (stress range, σR) and the subsequent damage from that stress cycle, as

is shown in Figure 5.12.
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Figure 5.11: The relationship between stress cycle range and damage is
nonlinear. Here, we can see that an increase of 20 MPa in stress range is
significantly more damaging that an equivalent decrease

To investigate the impact of this in a sampled approach, a stress response is simulated

of the form:

Y = Acos(ωt) +Bsin(ωt) (5.4)

where A and B are independent and identically distributed (i.i.d) Gaussian random

variables. This is equivalent to

Y = Dcos(ωt− ϕ) (5.5)

where D =
√
A2 +B2 and ϕ ∼ U (−π, π). In this case, D is known to follow a

Rayleigh distribution with probability density function:

y =
x

b2
exp

[
−x2

2b2

]
(5.6)

For the simulated data, A and B are selected as i.i.d. Gaussian random variables

with mean equal to zero and a variance of 252 (A = B ∼ N(µ = 0, σ2 = 252)).

100,000 samples are drawn, providing the distribution of D shown in Figure 5.12.
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Figure 5.12: Rayleigh distribution of stress amplitudes D (Equation
5.5) for sampling investigation. 100,000 samples are drawn from the
distribution

Indeed, this distribution follows a Rayleigh distribution (Equation 5.6) with b = 25.

The samples taken from this distribution are now propagated through the fatigue

assessment.

In the studies on the Tucano aircraft above, the fatigue assessment is performed with

the S-N curve described in Equation 4.3. For this study, however, fatigue analysis is

performed using two S-N curves: firstly a typical (log-linear) S-N curve with S1000,

the stress that would cause the component to fail after 1000 stress cycles equal to 250

MPa and equivalent value for 1× 108 cycles set at 0.1 MPa. Note that, to simplify

the analysis by removing an additional variable, there is no endurance limit. The

second S-N curve is one in which the relationship between an increase (or decrease)

in stress range is linear with the subsequent damage caused by that stress cycle. i.e.

the S-D (where D = damage = 1/N) relationship is linear.

The two S-N, or S-D, curves can be seen below (Figure 5.13). The mean of D, the

distribution of stress amplitudes, is 31 MPa, so the new linear S-N curve is scaled so

that the damage caused by a stress cycle at 31 MPa is equal to the damage from the

regular S-N curve.
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Figure 5.13: The two damage curves used for the study. Note that the
axes on the S-N curve are logarithmic, while the axes on the S-D curve
are linear.

For each sample drawn from D, fatigue assessment is performed using each of the

S-N curves. So that the distributions can be compared easily, the resulting damage

distributions are scaled so that the mean damage is equal to 1. The two damage

distributions can be seen below.



5.3 The relationship between stress cycle range and fatigue damage 77

Figure 5.14: Damage distributions from each of the damage curves. The
Rayleigh distribution of D is plotted above for comparison. The damages
are scaled so that the mean value of distribution, D, is equal to unity.

Clearly, the impact of the non-linear damage curve is significant. The results for the

linear damage curve on the right display a damage distribution very close to that of

the Rayleigh distributed D. The mean and median values of the damage distribution

match (almost precisely) the damage arising from the median and mean values of

samples drawn from D.

For the log-linear case, however, it is immediately notable that the most damaging

samples are significantly greater than the mean (6.5 times greater, in contrast to 3.8

times greater for the linear damage study). Clearly, while the distribution remains

very similar between the samples (D) and their damage for the linear case, this is not

the case for the non-linear study. We can see, however, that the mean and median

of the damages do agree again closely with the damage arising from the mean and

median of distribution, D. Clearly, then, while the log-linear nature of S-N curves

does effect the damage distribution, it is not the sole cause of the shifts seen in the

Tucano test flights, where the mean of the damage samples was frequently larger

than the GP mean. It does however, appear to be part of the reason for the long-tail

phenomena shown in the Tucano damage distributions.
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5.3.1 Effect of mean stress

In the discussion of the Tucano results above, the effect of the mean of a given stress

cycle on damage was shown in Figure 5.6, demonstrating that the uncertainty from

the mean stress of a given cycle can easily surpass that due to uncertainty in the

stress range. To further investigate the effect this has on the damage distribution,

the same stress response is simulated, offset by mean, c:

Y = Acos(ωt) +Bsin(ωt) + c (5.7)

Using the same log-linear S-N curve as above and applying the Goodman mean stress

correction

σa,corrected =
σa

1− ( σm

σUTS
)

(5.8)

where σUTS and σm are material ultimate tensile strength (UTS) and cycle mean

stress, respectively. The UTS is estimated as 1.1× S1000 (defined above). By varying

the mean stress, c, between -50 MPa (compressive) and +50 MPa (tensile), we can

test to see the effect that mean stress has on the damage distribution (rather than

its effect on a single stress cycle, as was shown in Figure 5.6). The results are shown

in Figure 5.15, where it can be seen that the mean stress does also clearly have a

large impact on the damage distribution. While the median and mean values of the

damage distribution shift across the three cases (not shown, for clarity), it is also

clear that the most probable damage remains close to constant, peaking around the

damage level of 1× 10−3 in each case.
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Figure 5.15: Impact of mean stress c on the damage distribution. Tensile
mean stresses are known to result in faster failure, and this is born out
in the damage distribution, where it can be seen that there are more
damaging samples visible in the tensile mean stress histogram. However,
the peaks of the three histograms are centred around a similar damage
level.

While this study has demonstrated that the non-linear nature of the S-N relationship

can (a) significantly impact the damage distribution compared to the distribution

stress ranges and (b) further exaggerate the impact of non-zero mean stresses, it

does not fully explain the changes in distributions that have been visible throughout

this chapter. For example, in Figure 5.5, the GP mean and measured damage agree

closely, but the peak of the histogram is more damaging than this value, while

throughout this study, it has been consistently less damaging.

5.3.2 Effect of model hyperparameters and distance from

training data

The final variables that will be investigated here are those of the model hyperparamet-

ers (and, more specifically, the lengthscale) and also the distance between training and

testing points. Again, a sinusoidal stress response again is simulated: Y = 100sin(ωt)
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(this is equivalent to the stress response sampled from previously (Equation 5.5),

with D a constant equal to 100 MPa, rather than a Rayleigh-distributed random

variable). 10 fully-reversed stress cycles are again present in the signal. Again, the

log-linear S-N curve shown in Figure 5.13 is used for the fatigue assessment here.

Using the log-linear S-N curve used above, two situations are tested: In the first,

the sensitivity of the damage distribution to lengthscale is investigated. In the

second, the effect of varying the training interval is tested. For the first case, a

GPR model is trained on every 15 points in the stress response. Three lengthscales

are tested, with the signal and noise hyperparameter kept constant. The results

are presented in Figure 5.16 below, with lengthscales, from left to right ([σf , ℓ, σn]):

[1,0.5,0.1],[1,1,0.1], [1,2,0.1]. Clearly, as the model lengthscale decreases, there is

a greater fluctuations in the posterior samples (note: the GP mean also has more

fluctuations in the shorter lengthscale case, but to a significantly lesser extent than

the samples drawn from the posterior). The impact on the damage distribution is

severe: For the short lengthscale scenario, despite a reasonable GP mean prediction

(owing to a simple case study), even the least damaging samples are more damaging

than the simulated data. As the lengthscale increases, we see a dramatic shift of the

damage distribution to the left (i.e. closer to the GP mean and measured damages).

In this case, as the data is narrowband, the increasingly long lengthscale brings the

samples closer to the simulated response. However, as will be shown in the coming

chapters, if the stress is wideband, this effect will result in a severe underestimation

of the true damage level.
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Figure 5.16: Impact of hyperparameter on lengthscale. From left to right,
the hyperparameters are [σf , ℓ, σn]:[1,0.5,0.1],[1,1,0.1], [1,2,0.1]

A similar trend is visible in the study on training interval, the results for which are

shown in Figure 5.17. This time, the hyperparameters are kept constant (and the

same as the short lengthscale example above, Figure 5.16). In this case, we can see

that varying the training interval has a similar effect that adjusting the lengthscale

had in the previous case. Both the sampled damages and the mean prediction are

reasonable for the highest sampling rate (with training indices every 5 data points),

but as the training points become increasingly distant, this provides the opportunity

for increasing fluctuations in the prediction. Again, this effect applies to the GP

posterior mean, but to a lesser extent than the posterior samples drawn. In both

cases (varying the hyperparameters, or varying training distance) the results here

highlight the importance of having training data that is representative of the test

cases.
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Figure 5.17: Impact of training interval on samples drawn from posterior.
In this case, the model hyperparameters are kept constant across the
three models ([σf = 1, ℓ = 0.5, σn = 0.1]). Instead, the training interval
of the GP is varied, with sampling points every 5 (left hand image), 10
(middle) and 15 (right) points used.

5.4 Discussion

The proposed methodology provides a probabilistic prediction of strain and fatigue

accrual at unmeasured locations on a structure under an unknown loading. Having

shown in the previous chapter the ability to predict strain using GP regression across

the range of flights, it has been demonstrated that, by propagating uncertainty in

the model, errors (when the model is reasonably well-performing) can be mitigated.

The resulting distributions of fatigue can shed light on the range of potential damage

accrued, with the measured damage state captured within the distribution across all

of the flights. One natural question is, therefore, how to actually use the resulting

distribution. Ultimately, a structure’s usage will dictate this, and a risk-based

maintenance and inspection strategy can be formed accordingly [52]. The original

design methodology of the structure, i.e. Safe-Life or Fail-Safe, will influence this,

alongside other factors including the level of uncertainty of the prediction.

The central argument of this chapter is that predicting fatigue accumulation indirectly

using GP regression as a virtual strain sensor should be considered as a distribution
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rather than a deterministic value. By using only the posterior mean to predict fatigue

damage, one of the benefits of using GP regression - its inherent probabilistic nature

- is lost. Indeed, it could be argued that a single, deterministic, value for fatigue

damage is not truly representative of the posterior distribution of the model. We can

see from Figures 5.4(a) and 5.4(b) that the probability of detection of the measured

damage state for some flights is low. The results from flight 77 (Figure 5.9) provide

an excellent example of the usefulness of the approach taken here.

While the applied usage of the damage distribution would depend on the individual

structure and the potential cost of failure, if one was employing a deterministic strain

prediction for this particular flight (Flight 77), or if one were simply relying on the

GP mean, the predicted fatigue would be very misleading. The predicted fatigue

distribution from the uncertainty propagation approach, however, incorporates the

true damage accumulated (albeit at a low probability). Any following risk assessment

employing the distribution would be much more robust to the error in the (mean)

prediction of the strain. Regardless of modelling choices, kernel selection, and

hyperparameter optimisation, in a data-driven environment, accurately predicting

the damage using the mean prediction would be unlikely for all scenarios. Therefore,

utilising the proposed methodology of sampling to develop damage distributions

provides a more robust framework that can be utilised differently based on the nature

of the structure.

One can extract key features of interest from the predicted fatigue distributions.

For example, the method provides a principled means of extracting the least and

most damaging strain time histories possible for a given flight that may be used to

inform an (e.g. interval-based) risk assessment. An alternative means of predicting

e.g. the most damaging strain-time history possible for a given flight could be to

sample a function that passes through the maxima/minima of the posterior GP mean

plus/minus the confidence interval. An example of such a function ±2σ is shown

in Figure 5.18. Such a naive approach neglects the joint Gaussian assumption the

model is based on and produces a fatigue prediction that is a 350% over-prediction

of the measured value.
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Figure 5.18: Naively sampling from the confidence intervals at local
maxima and minima,

Whilst the author advocates for exploiting the probabilistic nature of the GP model,

or any probabilistic model, care must be taken in how uncertainty assessments are

interpreted. The uncertainty in the GP prediction is based on a measure of the

distance between input training and testing points. The inputs to the GP are specified

by the user and the distance measure is dictated by the covariance function. This

means that the predictive distributions of fatigue shown here are dependent on the

selection of both of these things. So long as the strain prediction quality is acceptable,

the selection of the covariance function should not be of large consequence.

However, care must be taken in the selection of the model inputs. For example, if an

irrelevant input were included that exhibited different behaviour between training

and testing sets, this would increase the uncertainty of the fatigue damage assessment

in an unrepresentative manner. Here, the use of Automatic Relevance Determination

(ARD) covariance function [129] is advocated, with a separate lengthscale for each

input to mitigate the effect of a potentially misspecified input variable. Finally, it

is important to note that, as with all data-driven methods, prediction quality and

reliability of the confidence bounds will decrease in extrapolation. If the relationships

between inputs and targets change outside of the training data set, the inference

here will not be valid. The importance of a representative training set cannot

be understated. Clearly, this is particularly important when there is a significant

dynamic component to the stress response. The sampling frequency of the input

data (and the training target data) must be sufficiently high to be able to accurately

capture the stress signal, otherwise the shifts in the damage distributions, seen here,

will be likely. Similarly, the use of a sufficiently high sample rate will make the
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adoption of an appropriate lengthscale more likely. This will be covered in more

detail in the following chapter.

5.5 Conclusions

In this chapter, uncertainty in the strain prediction model using the Tucano dataset

is quantified through the Gaussian Process framework and propagated through

to the final fatigue assessment. While other studies have considered probabilistic

data-driven models for fatigue, this is generally limited to the DEL approach (which

simplifies the stress-time history into a single repeated load). This is the first work to

consider the uncertainty of the full stress-time history and propagate the uncertainty

of the prediction throughout the fatigue assessment. By propagating the uncertainty

of the model prediction, we can achieve an improved reliance upon the predicted

damage and a better understanding of the full model prediction.

By doing this, it can be seen the distribution is not always normally distributed and

centred around the mean prediction. By investigating what causes the distribution

to shift away from the posterior mean prediction, it is shown that the the damage

distribution is significantly impacted by the non-linear nature of the relationship

between stress and damage (i.e. the non-linearity of S-N curves) and also, the

representativeness of the training data to the test data.

The focus of the following chapters will be on how model accuracy can be improved

for both strain prediction and probabilistic fatigue damage prediction by integrating

knowledge of physics into the Gaussian process model. Motivated by the fact that

dynamic behaviour can have significant contribution to fatigue accumulation, a

covariance function derived from a single-degree-of-freedom oscillator will be used

for strain prediction. Again, the impact of propagating model uncertainty will be

investigated.





Chapter 6

Introducing Physics

In the previous chapters, the use of a data-driven model for predicting strain

on a Tucano aircraft wing was demonstrated. Under quasi-static loading, the

model performed well. At the available sampling rate, however, predicting the

strain behaviour could not be achieved satisfactorily. In terms of assessing the

fatigue damage accrued during these flights, developing a probabilistic prediction by

propagating the uncertainty of the model was able to mitigate the model prediction

error to a degree: across the range of flights, the measured damage was captured by

the resulting damage distribution.

In this chapter, we will focus on the problem of predicting dynamic behaviour.

Specifically, this will look at the challenge of upsampling time-series data to accurately

predict fatigue damage accumulation. The motivation for this comes from the high

sampling rates generally considered necessary for predicting fatigue damage. In [130],

it was found that for an offshore wind turbine, an effective sampling rate of 10 times

the last significant frequency was required for predicting fatigue damage accurately.

In Chapters 4 and 5, it was the high-frequency data that was particularly difficult to

capture. In [95], a ‘mathematical network’ (see Chapter 2 for more information) is

used for predicting the fatigue damage accumulation on a helicopter: despite good

results across the majority of data available, accurate fatigue damage prediction

could not be achieved during turbulent behaviour due to insufficient sample rates

of the training data for vibration-induced fatigue. In this chapter, we will tackle

this problem by using a covariance function derived from an single-degree-of-freedom

(SDOF) equation of motion under zero mean white noise loading, described further

87
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in the next section.

6.1 Kernel design

As discussed previously, the flexibility of a GP arises from the fact that we can

choose an appropriate covariance function for the model, specifying the functional

form that the model posterior will take. Figure 6.1 (first presented in Chapter 3),

shows some draws from common kernels.

Figure 6.1: The covariance function (and its optimised hyperparameters)
define the functional form of the GP posterior. The squared exponential
kernel is the most commonly used, but there are a wide range of kernels
that can be selected based on prior knowledge of the data. Furthermore,
kernels can be combined to provide further flexibility [114]

While typically, data-driven models will use an ‘off the shelf’ kernel, we can also

design kernels to suit our needs. It is possible to embed our physical knowledge of a

system into the kernel itself, the periodic kernel is an example of this: as periodic

responses are known to exist in many areas, such as robotics [105], this fact can

be harnessed to improve the response prediction significantly [105]. The reader is

referred to [114] for a review of kernel basics and common forms.

Following [106], this principle is used to develop a kernel for single-degree-of-freedom

(SDOF) oscillating systems under zero-mean Gaussian white noise forcing. Here, we

will utilise the fact that we can calculate the autocovariance of a process as:

k(t1, t2) = E [(y(t1))− µ(t1)) (y(t2))− µ(t2))] (6.1)



6.1 Kernel design 89

where y(t1, t2) and µ(t1, t2) are realisations of the process and its mean at two arbitrary

time points, respectively. The autocovariance is equivalent to the autocorrelation

when the process has a zero mean.

For an externally forced, linear single-degree-of-freedom, dynamic process (F (t))

with mass (m), stiffness (k) and damping (c):

mÿ(t) + cẏ(t) + ky(t) = F (t) (6.2)

By calculating the convolution of the excitation and the impulse response function

(h(t)), we can predict the response of the system:

Y (t) =

∫ ∞

−∞
F (t− r)h(r) (6.3)

By assuming external forcing as stochastic, assumed as Gaussian white noise, we

can calculate the autocovariance of the process to be:

ϕY (t) =
σ2

4m2ζω3
n

e−ζωn|τ |
(
cos (ωdτ) +

ζωn

ωd

sin (ωd |τ |)
)

(6.4)

The full derivation of the kernel (Equation 6.4) can be found in [106] and the reader

is also referred to [131] and [132] for further information. The use of the SDOF

covariance function here is a novel way of bringing standard engineering practices to

the typically data-driven machine learning environment. While the hyperparameters

of data-driven kernels are values that can be optimised to achieve the best fit of the

data, the hyperparameters for this physically-derived covariance function are the

actual physical parameters of the system: mass (m), damping ratio (ζ), natural and

damped frequencies (ωn and ωd, respectively). τ is the difference in time in seconds

between the two points of interest. The magnitude is scaled by an amplitude term

which is a function of the variance of the forcing input as well as these physical

parameters of the system.
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6.1.1 Interpretation of Model Variance

Interpreting the confidence intervals from physics derived kernels

As the damage distributions presented throughout this work are developed by

propagating the model posterior variance, it is worth considering how the choice of

kernel affects this. In Chapter 3, it was shown that for a typical, data-driven kernel

(an SE in this case, Figure 3.12), the model hyperparameters will determine the rate

at which the GP posterior tends towards its maximum variance, which is dictated

by the signal variance.

Figure 6.2(a) shows an equivalent plot for the SDOF kernel where we can see that

the variance does not simply grow to its maximum with increasing distance from the

training location but fluctuates as a result of the oscillatory terms in the covariance

function. Figure 6.2(b) shows an example posterior mean and confidence using this

kernel conditioned on a single point at x = 0.1. While we will typically use the term

confidence intervals for this 3σ posterior limit, it is now useful to remind ourselves

that the physical representation of this is related to the family of functions that fit

the data that we have conditioned our model by. In the case of the SDOF kernel,

there is now a physical interpretation to these intervals, they now represent the

actual variance of the process under a Gaussian random load.
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Figure 6.2: (a) GP posterior variance with distance from training point
with SDOF covariance function and (b): Resulting confidence intervals.

Thus, now when samples are drawn from the posterior confidence using the SDOF

covariance function, they will maintain this physical significance.

6.2 Simulated case study

The output of the simulation is displacement, used as a proxy for strain in this

chapter. Thus, the simulated displacement data is multiplied by a scalar, such that

the maximum stress range in the simulated data is 150 MPa.

A histogram of the resulting stress ranges can be seen in Figure 6.3. Three models

are set up for comparison (6A-6C, described below), with this simulated stress-time

history used as the target in each case.
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Figure 6.3: Stress ranges of the simulated data set. We can see that the
majority of stress ranges are below the endurance limit of the S-N curve

6.2.1 S-N Curve

After using a bespoke S-N curve suitable for the Tucano data, the work in this chapter

(and the following) utilises a generic S-N curve, with a slope, m, equal to 5 and an

endurance limit of 79 MPa, Figure 6.4. The number of cycles in the simulation data

above the endurance limit can be seen in Figure 6.3.

Figure 6.4: S-N curve used for chapters 6 and 7.

6.2.2 GP inputs and targets

Three models are compared for this case study, described in Table 6.1. For the SDOF

kernel, time is used as an input (s) (Equation 6.4). Two black-box models will be
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compared, one using acceleration as an input to the GP (as this is a typical input,

in practice in a virtual sensing environment) and one using time (to be directly

comparable to the SDOF case).

Model Description Inputs

6A SE (black-box) kernel acceleration

6B SE (black-box) kernel time (s) (ms−2)

6C SDOF kernel time (s)

Table 6.1: Three models for simulated case study

The natural frequency of the system is 45 Hz, making the Nyquist frequency [133]

(the minimum sampling frequency at which reconstruction of a signal is possible,

equal to two times the frequency of the signal), 90 Hz, while the data is generated at

1024 Hz. For the initial study, the training inputs to the GP will be provided at 128

Hz, i.e. 1 in 8 data points, sampled evenly across the data.

6.2.3 Model assessment

In the previous sections, NMSE has been used to assess the model performance

(Equation 4.4). Clearly, this only assesses the performance of the GP mean prediction,

while this work shall be continuing to use the full posterior prediction for the fatigue

assessment. Furthermore, it was clear that the NMSE did not correlate well to

accurate fatigue damage prediction, even from a deterministic perspective. As a

result, in this chapter, a second metric of mean standardised log loss (MSLL) shall

also be used to assess the model. Rather than simply using the posterior mean, this

assesses the predictive distribution:

MSLL =
1

n∗

∑ 1

2
log(2πσ2

∗) +
(y∗ − ȳ)2

2σ2
∗

(6.5)

where σ∗ is the posterior variance. Lower values here indicate a better predictive

distribution, with a reasonable prediction achieved with an MSLL of approximately

zero. Increasingly negative values indicate an increasingly good prediction [112].
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6.2.4 Black-box model

First, we will look at model (6A), using acceleration as the model input. In Figure

6.5, we can see that there is a reasonable correlation between the input and target

data (the Pearson correlation coefficient for the two variables is 0.81), albeit with a

reasonably large variance in the data.

Figure 6.5: Acceleration vs strain for the simulated data

The GP posterior can be seen in Figures 6.6 (a) and (b). The NMSE and MSLL for

this prediction are 30% and 25.2, respectively, indicating that the prediction is not

accurate. This can be confirmed visually from the GP posterior shown in Figures

6.6 (a) and (b). Despite the good correlation between the input and the target

data, it is clear that the GP is overfitting compared to the test data. Furthermore,

the posterior shows excessive confidence in this wrong prediction (evidently, in a

probabilistic context this is the worst eventuality).
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Figure 6.6: (a) GP Posterior for black-box model using acceleration as
an input. (b) Enhanced view of (a).

The resulting damage distribution for Model 6A can be seen in Figure 6.7 (a).

Unsurprisingly, given the poor prediction shown in Figure 6.6, the fatigue damage

prediction is poor. We can see that both the GP mean and the median and mean of

the posterior sampled damage all underestimate the true damage state. Sampling

from the posterior helps here, as the actual damage state is captured within the

damage distribution. However, the variance of the sampled damages is very large.

In this case, this is useful, as the large damage variance is indeed representative of

the fact that the model is not able to predict the stress response accurately.
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Figure 6.7: Damage distributions for the three models: (a) Black-box
model - Acceleration input (b) Black-box model - Time input (c) Grey-
box model using SDOF kernel

6.2.5 Black-box - Time input

In model (6B), we are using an SE kernel with time used as the model input: this

is directly comparable to the grey-box model (the same training indices are used

throughout the three models).
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Figure 6.8: (a) GP Posterior for the black-box model using time as an
input (b) Enhanced view of (a)
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Clearly (Figure 6.8), we can see that the prediction is significantly improved compared

to Model (6A). The mean prediction follows the test data and the underlying

phenomena is captured well at this (relatively high) sampling rate. The MSE and

MSLL are 1.7% and -2.11, respectively, reflecting this improvement compared to

Model (6A). The improvement in prediction is reflected in the damage distribution

which is shown in Figure 6.7(b) where there is a significant reduction in damage

variance, with both the GP mean and the samples median agreeing with the ‘true’

damage value much more closely. The posterior mean still underestimates the true

damage by 12.1%, however, this is reduced from 32.1% for Model (6A).

6.2.6 Grey-box - SDOF kernel

In Model (6C), the SDOF kernel is used as the GP covariance function. As per

Model (6B), time is used as the model input with the training indices the same

as in the prior models. As it is reasonable to assume that the physical properties

of a system can be estimated to a reasonable level, the search parameters of the

(physically representative) hyperparameters are limited to ± 20% of the simulation

values. The resulting GP posterior is shown in Figures 6.9(a) and (b).
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Figure 6.9: GP posterior distributions using the SDOF kernel on the
simulated data set.
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Here, we can again see a very large improvement compared to Model 6A and a

significant improvement on Model 6B: the NMSE is reduced to 0.4% and the MSLL

is -3.1, confirming this improvement in prediction. Away from the training data,

we can see an improved model confidence (which is reflected by the reduced MSLL

metric). While the results in terms of MSLL and MSE show an improvement with the

black-box models, the largest improvement is shown in the damage distribution shown

in Figure 6.7(c). As per the first two models, the posterior mean underestimates the

actual damage state (in Figure 6.9(b), we can see that some smaller stress cycles

are indeed missed by the posterior mean). However, the magnitude of the error is

significantly reduced in Model 6C, underestimating the true damage by 6.6% (while

the equivalent values for Models 6A and 6B are 32.1% and 12.1%, respectively).

The median of the GP samples for this model predicts the true damage state

accurately as a result of the draws from the posterior taking the form of the physical

process, as discussed earlier. Crucially, the variance of the damage distribution is

significantly reduced with the most damaging sample only being 10% greater than

the least damaging sample, while in Model B, this value was 43%. The overall

improvement in performance when using the SDOF kernel is significant.

6.2.7 Reducing sample rate

The results above demonstrate the performance of the three models at an effective

sample rate of 128 Hz (while the Nyquist rate is 90 Hz). While the results of the

SDOF kernel have already shown an impressive capability to upsample the data to

a sufficient sample rate to predict fatigue damage (while the sample rate used for

the above study is above the Nyquist rate, it is still significantly below the required

sample rates cited in the above studies), we will now test the performance at even

lower sample rates. Each of the models is tested with sample rates between 1/16

and 1/6 data points (representing an effective sampling rate of 64 Hz and 171 Hz,

respectively). Figures 6.10(a) and (b) show the impact that sample rate has on the

MSE and MSLL values for the three models. As per the fatigue damage distributions,

the grey-box model clearly outperforms the black-box models when the sample rate

is reduced, with MSE values of 10% or below across the range of sample rates tested,

except for an outlier just below the Nyquist frequency.

The corresponding Fatigue prediction is shown in Figures 6.11a - 7.15b which show
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Figure 6.10: Progression of Mean Square Error (MSE) and Mean Stand-
ardised Log Loss (MSLL) with sample rate.

the damage progression for each of the models across the sample rates. The range of

damages arising from the samples is also indicated here. At 128 Hz, the performance

of the SDOF kernel was a significant improvement on the black-box models and

when reducing the sample rate, the impact of the physics-informed kernel becomes

increasingly significant. The performance of the acceleration-input black-box model

(Model 6A, Figure 6.11a) is steady over the range of sample rates, however, even at

128 Hz, this model was not able to predict the strain accurately and the subsequent

damage prediction was also unacceptable. The grey-box, prediction, on the other

hand, performs well across the range of sampling frequencies from a fatigue damage

perspective. The utility of developing a probabilistic prediction of damage is already

evident from Figure 6.7(c), where we saw the median sample of the distribution

matching the measured damage more accurately than the posterior mean. This is

reinforced by the results shown in Figure 6.11c, where the samples drawn from the

posterior indeed provide a better understanding of the damage state across the range

of sampling rates.

The most notable decrease in performance, from both a MSE and damage perspective,

is when using the black-box Model 6B at lower sampling rates. While at 128 Hz, the

sample rate was sufficient for the model to be able to reconstitute the signal of this

(relatively simple) case study, this is not true as you tend towards, and below, the

Nyquist frequency. As the sample rate drops, not only does the GP mean struggle

and the model confidence decrease, but we can also see that there ceases to be a

utility of the damage distribution, with the measured damage no longer captured by
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(a) Black-box (b) Black-box time

(c) SDOF Kernel

Figure 6.11: Impact of reducing the sampling rate on Fatigue damage
prediction distributions - it can be seen that just below the Nyquist rate,
the SDOF kernel struggles. Elsewhere, a clear improvement can be seen
using the physics inspired kernel.

the distribution. The posterior prediction for Model 6B is shown in Figure 6.12: the

NMSE at this sample rate is 120%, the worst of all of the models.

The reason for this improved prediction can be seen in Figure 6.13, we can see the

grey-box (Model 6C) posterior prediction at the lowest sampling rate of 64 Hz: even

at this low sampling rate, the model is following the functional form of the oscillator,

albeit without accurately predicting the amplitude of the stress oscillations (and

having a low confidence to reflect this).
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Figure 6.12: Black-box model (time input) with sampling rate of 64 Hz.

Figure 6.13: SDOF model with sampling rate of 1/16 data points, well
below the Nyquist rate of 1/12 points. Despite the low sample rate,
the model still follows the functional form of an SDOF oscillator and
therefore, a reasonable prediction is achieved.

While the time-input black-box model (Model 6B) performed satisfactorily at 128

Hz, reducing the sampling rate evidently has a large impact on the ability of the

model for damage prediction. As per the grey-box model, the MSLL value is below

zero across the range of sample rates, however, the posterior prediction, shown in

Figure 6.12, shows that the prediction is, as one would expect, smoothing through
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the data rather than following the oscillations of the simulated data. It can be

noted that despite the poor prediction, the MSLL values for this model indicate a

good prediction as the true value is captured within the confidence intervals of the

posterior. This comes at a cost of the variance growing very severely away from the

training points. As this results in samples drawn from the posterior having much

larger amplitudes than the simulated data, the result of this is a very conservative

damage prediction, with the most damaging samples from this model being over 10

times greater than the true value at 64 Hz. Conversely, for the grey-box model, the

most damaging sample at the same sample rate (64 Hz) is 1.4 times the measured

value.

6.3 GARTEUR aircraft case study

The performance of the SDOF kernel is now also tested using measured data from

laboratory testing on the Garteur aircraft. The data is introduced in Chapter 3

following [119, 120, 134]. For the testing conducted at the Laboratory for Verification

and Validation in Sheffield, in addition to the accelerometers are installed across the

aircraft, as per the benchmark study, 15 strain gauges are also installed across the

starboard wing. The structure is excited using Gaussian white noise between 4 and

80 Hz using a shaker installed at the port-side wing tip.

As per the Tucano work in the previous chapters, the target of the GP will be the

strain at the root of the wing, where the stress is greatest, and, again, two black-box

models will be used in comparison to the grey-box model. Again, black-box models

a using squared-exponential kernel (with inputs time and acceleration, respectively)

are compared to the SDOF kernel. As the benchmark structure was not originally

intended to accrue fatigue, the stresses present are not sufficiently large for a typical

S-N curve. Therefore, the data is scaled by a factor of 20 to make the data usable for

fatigue damage prediction using the same S-N curve used for the simulation above.

The total length of the test data is over 2×106 data points. In order to draw samples

from the GP, inverting the full posterior covariance matrix is required and, therefore,

the number of data points that we will assess is limited to 4 × 104 in this work

(indicated in Figure 6.14). Figure 6.14 also shows a region used for estimating the

natural frequencies present in the data (indicated ‘Parameter estimation’ in Figure
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6.14, this is separate from the testing region). Again, for the grey-box models, the

search limits for optimisation of the kernel during training are set at ±20% of the

values identified.
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Figure 6.14: Measured strain data for the GARTEUR aircraft under
Gaussian white noise forcing. The region of data used for testing and
separate section of data used for estimating the natural frequencies of
the system are indicated.

6.3.1 Data Processing and model inputs

The data is collected at 2048 Hz. A low-pass filter with a cutoff frequency of 256Hz

is used to remove measurement noise in the data. The data is then downsampled to

1024Hz to enable a greater length of data to be assessed while maintaining a sample

rate more than 10 times the last significant mode.

From the section of data used estimation of the natural frequencies, we can see

that there are natural frequencies in the structure around 6Hz, 16Hz, 35Hz, 49Hz,

and 64Hz. As discussed in Chapter 3, kernels can be combined to provide further

flexibility and for the grey-box model, five SDOF kernels are used in a sum, with

hyperparameter search limits set at ±20% of the natural frequencies identified. The

effective sampling rate provided to train the models is 128 Hz, 1/16 data points,

which is approximately the Nyquist frequency for the last major natural frequency.
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Figure 6.15: A lowpass filter is used to filter high frequency measurement
noise with a cutoff frequency of 256Hz. The data is then downsampled
from 2048 Hz to 1024 Hz to enable a greater time period of the stress
response to be predicted.

The same sampling points are used across the range of models.

Model Description Inputs
6D SE (black-box) kernel acceleration (ms−2)
6E SE (black-box) kernel time (s)
6F SDOF kernel time (s)

Table 6.2: The three models assessed are the same as the simulated case
study

6.3.2 Results

Model MSE MSLL
Fatigue Damage

GP Mean
(% Accuracy)

Fatigue Damage
Samps Median
(% Accuracy)

6D 57.1 49 -82 -82
6E 3.4 -1.6 -48 -44
6F 0.6 -2.7 -11 -8

Table 6.3: Overview of the results of the three models
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6.3.3 Black-box models

The black-box models are again using a squared-exponential kernel. Model 6D, using

acceleration as the model input is presented first. The first 3000 data points of

the posterior prediction can be seen in Figure 6.16(a), with some samples shown in

Figure 6.16.
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Figure 6.16: GP posterior prediction using squared-exponential kernel
with acceleration as a model input: (a) First 3000 data points (b) An
enhanced view of (a) with samples shown

Clearly, the model is overfitting with high-frequency fluctuations in the prediction

which are not present in the measured data. Furthermore, the strain prediction is

underestimating the peaks of the measured data. The MSE and MSLL values are

both reflective of the fact that neither the GP mean, nor the posterior confidence,

are reflective of the test data. By comparing the power spectral density (PSD) of the

input and target data (Figure 6.17(a)), we can see that while the first two modes

match, there is more behaviour around the 35 Hz and 45 Hz peaks in the acceleration

data, in addition to a less severe drop-off in the power content above 64Hz. Figure

6.17(b), showing the frequency content of the GP posterior compared to the target

data, shows that this undesirable high-frequency content is also present in the GP

prediction. Furthermore, we can see that there is a lot less drop-off between the

natural frequencies of the model compared to the measured data.
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Figure 6.17: (a) Frequency content of the target (strain) data in com-
parison to the input (acceleration) data. (b) Frequency content of the
posterior predictions compared to the target data.

In addition to this undesirable high-frequency content, we can see that the confidence

intervals of the model are not of any real utility, with the measured data lying outside

of these bounds (as is, at some points, the training data). In Figure 6.18, showing

an input-space representation of the model, we can see that, despite a large noise

hyperparameter being adopted to capture the weak correlation of the training data,

the posterior variance is still not able to capture the test data variance.
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Figure 6.18: Input-space view of the acceleration-input black-box model
(limited to first 1000 data points)

Unsurprisingly, the prediction of the fatigue damage accrued is poor (Figure 6.23a).

From a GP mean perspective, the measured damage is underestimated by 82%,

and sampling from the posterior does not significantly improve this (for the most

damaging sample, this is reduced to 24%, but this sample is an outlier and the
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majority of samples underestimate the measured damage by over 50%). The median

of the sampled damages matches the prediction of the GP mean. Furthermore, the

uncertainty of the model does not compensate effectively for this poor prediction.

While there is a clear, albeit weak, correlation shown in Figure 6.18, it would

arguably be more useful for the GP to revert to a zero-mean posterior to highlight

the uncertainty of the model.

For the black-box model using time as an input (Model 6E), we can see a slight

improvement in the model: the adopted model variance can capture the training

points within the posterior confidence intervals (Figure 6.19). However, this comes

at the cost of effectively being able to predict the higher frequency content in the

model. This is visible in Figure 6.19(b), in which we can see that both the mean

and the individual samples are smoothing through the dynamic turning points of

the stress response. Figure 6.20 confirms this, where we can see that the spectral

content for both the samples and GP mean drops off rapidly after the second natural

frequency at 15 Hz.
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Figure 6.19: GP posterior prediction using squared-exponential kernel
with time as a model input: (a) First 3000 data points (b) An enhanced
view of (a) with samples shown

The result of this is a model that is performing better in terms of MSLL and MSE,

but a fatigue damage prediction that is not significantly improved compared to

Model 6D (the results for the three models are summarised in Table 6.3). The

fatigue damage prediction from the GP mean and sampled median damages are
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both improved compared to the acceleration-input model, yet they are both still

significantly underestimating the measured damage state. Furthermore, the variance

of the damage distribution does not satisfactorily grow to indicate the uncertainty of

the model.
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Figure 6.20: Frequency content for the black-box GP using time as an
input to the model in which the first two natural frequencies are captured.
However, oversmoothing through the data means that the higher modes
are not captured.

6.3.4 Grey-box model

The results of the simulated case study demonstrated the performance of the SDOF

kernel for a single natural frequency, while the data here displays five natural

frequencies over the 4-80Hz excitation range. For this, we can demonstrate the

ability to use multiple single-degree-of-freedom kernels in addition to modelling such

multiple-degree-of-freedom (MDOF) problems.

Visually, from the posterior distribution shown in Figure 6.21, we can see that the

prediction is significantly improved compared to the black-box models for both the

GP mean and the posterior samples. This is confirmed in the prediction PSD (Figure

6.22) in which we can see that the 5 modes are captured well by both the mean

prediction and the samples, although we can see that there is more spectral content in

the samples around the third mode at 35Hz. The MSE and MSLL for this prediction

are 0.6% and -2.7, respectively. The improvement is reflected in the fatigue damage

prediction: while both the GP mean and samples median both still underestimate

the damage from the test data, the extent of this error is significantly reduced to

12% and 8%, respectively. The damage distribution still under-predicts the measured
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Figure 6.21: GP posterior prediction using SDOF kernel: (a) First 3000
data points (b) An enhanced view of (a) with samples shown

damage, with only the most damaging samples correctly predicting the measured

damage state. However, the damage distribution is still significantly more accurate

than the black-box models.
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Figure 6.22: PSD for the test data, GP posterior mean and a random
sample taken from the posterior. We can see that the model captures
the spectral content for the test data well.
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(b) Black-box: Time input
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(c) Grey-box: SDOF Kernel

Figure 6.23: Predictions of fatigue damage for the Garteur aircraft.



6.4 Conclusions 111

6.4 Conclusions

In this chapter, the concept of introducing knowledge of the physics of the process

through the GP covariance function was introduced. Motivated by the fact that

dynamic behaviour can have significant contribution to fatigue accumulation, a

covariance function derived from a single-degree-of-freedom oscillator is used to

predict the loads on a simulated case study. First, using a simulated case study, it

was shown that using the SDOF covariance function, fatigue damage is able to be

reconstituted to a good accuracy at sample rates significantly below those generally

considered minimum. Using a black-box model, it was also possible to predict

fatigue to a reasonable accuracy at sample rates above the Nyquist frequency of the

simulation. Following this, a study was performed using the same simulation to test

performance of the models at lower sampling rates. Here, the performance of the

grey-box model outperformed the black-box models by a significant amount. While

the black-box models became rapidly unuseable for damage prediction, the grey-box

model was able to provide a reasonable prediction, even at the lowest sample rate

tested.

Following this, the GARTEUR dataset is used to demonstrate the performance

on a measured dataset. As there were multiple modes present in the data, it was

demonstrated that, by using multiple kernels in addition, multi-modal data could

also be captured. As per the simulated dataset, the grey-box approach outperformed

the black-box models, both with respect to strain prediction and fatigue damage

prediction. Power spectral density plots were used to demonstrate that the frequency

content of the measured data was able to be captured, both by the posterior mean

and the samples, using the grey-box model.

The field of physics-informed machine learning is a rapidly emerging and developing

subject of research. While not the first work to utilise physics-informed approaches

for fatigue [100, 101], it is the first to consider the problem of loads monitoring for

S-N fatigue and, furthermore, the first to do this using a kernel-design approach.

By utilising the probabilistic methodology developed in the previous chapter, this

has further demonstrated both the utility of the probabilistic framework and also

highlighted the improvement that can be attained using the physics-informed machine

learning approach proposed here. In this chapter, this is limited to purely dynamic

loading. As it is the superposition of both quasi-static and dynamic loads that is
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often of importance, such problems will be investigated in the next chapter. The same

physics-derived covariance function will be used in combination with data-driven

methods, to assess the predictive ability for such problems.



Chapter 7

Using physics in more
complicated cases: Combined

loading

In the previous chapter, the use of the SDOF kernel had a clear, positive impact on

the ability to predict fatigue damage under zero-mean white noise loading. However,

it is often the superposition of multiple phenomena that we wish to predict. An

example of this would be the superposition of quasi-static and dynamic loading on a

wing due to turbulence while undergoing an aircraft manoeuvre. This is of particular

interest here, as these phenomena in combination can have a large impact on fatigue

damage due to the increase in severity of the maximum and minimum loads of a

stress response [5]. In this chapter, the performance of the SDOF covariance function

used in combination with a data-driven kernel to account for a quasi-static unknown

load is demonstrated. As per the last chapter, this will be compared to a purely

data-driven approach. Furthermore, the impact of using a mean function will be

investigated: as discussed in Chapter 3, this is a relatively easy way of imparting

knowledge of a process into a Gaussian process regression model. In this case, this is

used to demonstrate an alternative option for capturing the quasi-static behaviour,

if one is able to characterise such knowledge easily. Adopting such an approach

will have a knock-on effect on the damage distribution, as using a deterministic

mean function in this way would remove this load prediction from the probabilistic

framework.

113
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7.1 Combining Covariance Functions

For the MDOF problem in the previous chapter, a combination of SDOF kernels is

used to model the strain history reliably. For this problem of combined loading, it is

again difficult for a single kernel to perform adequately, especially if the phenomena

are dissimilar in terms of the frequency content or causal factors. In such situations

it is possible to use a combination of different kernels. Where a practitioner has some

partial knowledge of the process of interest, this can then be incorporated into one of

the kernels, while allowing the other kernel(s) to predict the unknown behaviour(s).

As discussed in Chapter 3, covariance functions can be combined through any

linear operator, though most commonly, through multiplication or addition. In this

work, the physical and data-driven kernels will be combined in addition: Figure

7.1 visualises this addition operation for a toy function using the SDOF and an SE

kernel.
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Figure 7.1: (a): Posterior mean and confidence using SDOF kernel, (b):
Posterior mean and confidence using SE kernel and (c): Posterior mean
and confidence using combined kernels.
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7.2 Simulated case study

As per the previous chapter, to assess the performance of the grey-box approach, a

simulated case study shall initially be used. The same linear oscillator is simulated

as in the previous chapter (Equation 6.2). However, in this case, rather than using a

Gaussian white noise function to force the oscillator, the simulated system is forced

using the combination of a Gaussian random load (the dynamic component of forcing)

and a sinusoidal load (the static component of the load, with a frequency of 6.8 Hz,

significantly below the natural frequency of the system of 45 Hz).

Mass
m

Natural
Freq.: ωn

Damping
Ratio: ζ

Static Force
Freq.: fstatic

Sampling
Freq.: fs

1 Kg 45.1 Hz 0.0301 6.8 Hz 1024 Hz

Table 7.1: Parameters of the simulated system

The forcing signal can be seen in Figure 7.2(a) and the resulting displacement can

be seen in Figure 7.2(b).
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Figure 7.2: (a) Quasi-static, dynamic and combined forcing signals. The
combined forcing is used as the input to the simulation (b) Simulated
displacement data (first 1000 data points of 10000)

7.2.1 GP inputs and targets

For the black box models, force (N) is used as the input to the model while the

SDOF kernel again uses time as a model input (Equation 6.4). Beyond using the
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kernels in addition, in this chapter, we will also demonstrate how a mean function

can be used, derived from the linear relationship seen in the data, to incorporate

more intuitive knowledge of physics into the problem. As per Chapter 6, the output

of the simulation is displacement, which is taken as a proxy for stress, as per [135].

This is scaled such that the maximum stress range is 600 MPa and then this is used

as the target of the GP. Fatigue assessment for this chapter utilises the same S-N

curve introduced in the last chapter, Figure 6.4.

The Nyquist frequency of the dynamic system is 90 Hz, while the data is generated

at 1024 Hz. Initially, the training inputs to the GP will be provided at 171 Hz, i.e. 1

in 6 data points, sampled evenly across the data.

Model Description Inputs
7A SE (black-box) kernel Static input force (N)
7B SE (black-box) kernel Filtered Force (N)
7C SDOF kernel time (s)
7D SDOF + SE kernel time (s) + Static force (N)
7E SDOF kernel (+ linear mean function = f(F )) time (s)

Table 7.2: Three models for simulated case study

7.2.2 Black box model

Static forcing input

We will first look at a black-box model using only the static component of the forcing

signal as an input to the model, Model 7A. As the forcing is static, one would

realistically only expect this to be capable of predicting the static behaviour of the

data. Indeed, this prediction is borne out in the GP posterior, Figure 7.3. The

trend of the static behaviour is captured by the model, but the smaller, dynamic,

fluctuations in stress are not predicted by either the GP posteior mean or the samples

drawn from the posterior (some samples from the posterior are shown, in which we

can see that the large model variance adopted does not result in the samples being

more representative of the data, simply providing uncertainty on the amplitude of

the quasi-static stress). Even though the prediction (the GP mean and its samples)

are over-smoothing through the data, the model error in terms of NMSE is low at

1.1%.
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Figure 7.3: GP posterior for the black box model (static forcing input)

Unsurprisingly, Figure 7.4 shows the result of this is a poor prediction of fatigue

damage. The more conservative samples from the damage distribution do indeed

capture the true value yet the posterior mean underestimates the true damage state

by 56%. However, we can see that the median sample damage is also underestimating

the accrued fatigue damage by a similar amount. Furthermore, the variance of the

sampled damages is also large, with a large range of possible values for damage (the

most damaging sample is almost 12 times more damaging than the least damaging).

The MSLL, assessing the predictive distribution, is -2.1 - owing to the fact that the

simulation data is captured within the confidence intervals of the model. As attested

by the fatigue damage distribution, the fact that this distribution is capturing the

measured data is not of high significance if the trend of the underlying physical

process is not captured.

Figure 7.4: Damage distribution for the black box model (static-forcing
input)
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Combined forcing input

For Model 7B, the full forcing data is now used as the input to the model, itself a

combination of static and dynamic forcing. However, as the dynamic forcing has

spectral content significantly above the frequency of the natural frequency of the

system, a low-pass filter with a cut-off frequency of 50 Hz is used. The original and

filtered data can be seen in Figure 7.5
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Figure 7.5: A lowpass filter is used to remove spectral content from the
forcing signal before use as an input into the model.

From Figure 7.6, a slight improvement in the model performance can be seen

compared to model 7A, with less over-smoothing of the data when compared to

using the static-only forcing. However, the model is still clearly not capturing the

underlying physical process. The MSE and MSLL for this prediction are 1.15% and

-2.15, respectively, again indicating a good result. However, there is very little change

reflected in the damage distribution shown in Figure 7.6(b), where a similar damage

variance and mean prediction error can be seen as seen in the static-only forcing

model. The GP mean still underestimates the damage state by 64%. The true

damage state is captured by the damage distribution again, but the variance is such

that the most damaging sample is 11 times the damage of the least damaging cycle

(meanwhile, the least damaging sample is almost 8 times less than the damage of the

test data). The level to which the results shown here underestimate the damage of

the simulated data is severe, but, in general, the results are coherent with the study

into expected distributions shown in Chapter 5.
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(a) (b)

Figure 7.6: Black-box GP with filtered combined forcing input (a) GP
posterior (b) Damage distribution.

7.2.3 Grey box - SDOF kernel used in isolation

The SDOF kernel is now used as the covariance function for the GP (Model 7C). As

discussed, time is now used as the input for this kernel, with the training indices the

same as those used for the black-box model. For the same reasons as in the previous

chapter, the search parameters of the (physical) hyperparameters are limited to ±
20% of the actual values. The resulting GP posterior is shown in Figure 7.7(a).

(a) SDOF Kernel (7C) (b) SDOF + SE Kernel (7D)

Figure 7.7: GP posterior distributions using the SDOF kernel on the
simulated dataset.
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As was the case in the last chapter, we can see a large improvement compared to the

black-box models with the grey-box approach. The NMSE for this prediction is 0.1%

and the MSLL is -3.6, but most importantly, the GP is capturing the underlying

phenomena very accurately: the dynamic behaviour of the stress response is captured

here in addition to the static behaviour.

The GP posterior mean can predict the sampled damages very accurately, with an

error of only 0.5% compared to the test data. We can see that the measured damage

is in the less damaging end of the damage spectrum. The variance of the damage

from the samples is significantly reduced: while for both black box models, the most

damaging sample was over ten times the damage of the least damaging, this multiple

is reduced to only 1.65 for the grey-box prediction.

We can see a clear conservative shift in the damage distribution compared to the GP

posterior mean prediction: this was discussed in the previous chapters but can be

illustrated further in Figure 7.8, where an enhanced view of the posterior is shown for

the following case study (model 7D, however, the same conclusions apply for Model

7C). In the study into the causes of shifts in the damage distribution carried out in

Chapter 5, it could be seen that higher frequency content (or a shorter lengthscale)

caused a damaging shift in the distribution. Although the prediction is accurate here,

uncertainty on the amplitude of the dynamic behaviour is causing this damaging

shift. Here, the effective sampling rate is around two times the Nyquist frequency

(171 Hz vs 91 Hz): as the effective sampling rate increases, the conservative shift of

this should reduce, as was found for the case study in Chapter 5. While the sampled

damages here are indeed overly conservative, the improvement in comparison to the

black-box models is significant. In the concluding chapter of this thesis, ways of

mitigating this shall be considered.
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Figure 7.8: Enhanced view of combined SE + SDOF kernel (see Figure
7.7(b). It can be seen that each of the samples shown exceed the
simulation data at one point of the local maxima. Over the full prediction,
this means that many of the larger stress cycles will increase as a result
of the sampling process. The same phenomena can be seen in the SDOF
only model

(a) SDOF Kernel (7C) (b) SDOF + SE Kernel (7D)

Figure 7.9: Damage distributions using the SDOF kernel on the simulated
dataset. While the distribution in both cases is conservative (see earlier
discussion), the accuracy of mean of the sampled damages and variance
is much improved for both cases compared to the black-box models
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7.2.4 Combination of kernels: SDOF + SE

In the black-box models above, the SE kernel was capable of predicting the static

component of the data accurately. While attempting to predict the combined loading

was not successful, we can use the knowledge that the model is capable of predicting

the static loading by using a black-box kernel in combination with the SDOF. The

static forcing signal is used for this.

The optimised GP posterior can be seen in Figure 7.7(b). The MSLL for the prediction

is -4.8, indicating a small improvement over the already very well-performing example

of the SDOF kernel above (the MSE is similar, and low enough in both cases to have

little significance).

The contribution of each kernel can be calculated according to [114]:

f1(x
∗)|f1(x), f2(x) ∼ N (µ∗

1 +K∗
1(K1 +K2)

−1 [f1(x) + f2(x))− µ1µ2] ,

K∗∗
1 −K∗T

1 (K1 +K2)
−1K∗

1)
(7.1)

By computing the contributions of each kernel to the GP (shown in Figure 7.10), we

can see that the Kernel is performing exactly as one would hope: the SE kernel is

predicting the static component (with a significantly improved level of confidence

compared to this kernel used alone, see Figure 7.3) and the SDOF kernel is predicting

the dynamic component. The subsequent prediction is not significantly changed

compared to the SDOF kernel used in isolation and, indeed, the damage distribution

shown in Figure 7.9(b) shows a slightly less accurate predictive distribution of the

damage state than the SDOF kernel used alone. However, here the SDOF kernel

is not needing to guide the mean of the posterior prediction (which it is capable

of doing by nature of having target data within the test region). Future work will

look to extrapolate prediction to locations on a structure where measured data is

not available, thus increasing the importance of being able to use separate kernels to

complement each other.

As per the SDOF kernel used alone, we can see that, despite the high accuracy of the

model, the fatigue damage prediction overestimates the damage of the test data. The

reasons for this are the same as described above for the SDOF-only case, visualised
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Figure 7.10: The contributions of the individual kernels to the result

in Figure 7.8.

7.2.5 Use of a mean function

Lastly, we will consider the use of a mean function (Model 7E) as an alternative, or

additional, way of including our knowledge of the physics of the problem into the

model. As we have a known force and can calculate the stress as σ = F
A
, even if we

do not have much knowledge of the geometry of the structure (as may often be the

case for virtual load sensing problems) we can estimate the static component of the

data as:

σstatic = cFstatic (7.2)

where c is a constant that can be derived using linear regression, using the training

data available. After estimating the static forcing using this, we are left with a

residual, shown in Figure 7.11, that resembles the dynamic component of the data.

If used in isolation, the mean function would underestimate the fatigue damage of

the data by 37%. However, by training a GP to predict the residual, we can attempt

to reduce this or gain an understanding of the magnitude of the error.
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Figure 7.11: Residual of error using linear mean function. Despite the
mean function being empirically estimated, the remaining data to be
predicted resembles the dynamic component of the data

The SDOF kernel is used to model this residual with the same hyper-parameter

search limits used as above. The GP posterior can be seen in Figure 7.12 where

we can see that, while some fluctuations are not captured by the mean prediction,

dynamic behaviour is overall predicted very well. The NMSE and MSLL values for

this residual prediction are 0.4% and -3.2, respectively.

To predict the full stress response, we can add this to the GP posterior: the combined

prediction can be seen in Figure 7.13(a). The stress prediction matches the data

very closely and we can see from the damage distribution in Figure 7.13(b) that the

fatigue damage distribution matches the true value closely. It can also be noted here

that the damage distribution has a smaller variance in this case: the most damaging

sample is less than 2% greater than the least damaging sample. This arises from the

fact that the mean function does not have an uncertainty to propagate (compared

to using a black-box GP to predict the static component of the data). Naturally,

this could be a good, or bad, thing depending on how much certainty we have about

the static behaviour. A similar effect could be achieved by severely limiting the

noise hyperparameter for the black-box GP and restricting the potential posterior

covariance as a result. A major advantage of this approach, compared to using a

combination of kernels, is that the draws from the confidence intervals maintain their

physical significance (as it is only the SDOF covariance that is being inverted, while

this is not the case when using a combination of kernels, see equation 3.4).

For comparison, the performance of an SE kernel for predicting this residual can be

seen in Figure 7.14. It can be seen that the GP is not able to capture the underlying
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Figure 7.12: GP posterior: SDOF covariance function used to predict
the residual shown in Figure 7.11 The combined mean function + GP
prediction can be seen in Figure 7.13(a). A black-box prediction can be
seen in Appendix Figure 7.14
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Figure 7.13: Posterior and damage distributions using SDOF kernel
with linear mean function. A significant improvement can be seen here,
especially in the damage distribution
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nature of the data. Instead, a large posterior variance is adopted to account for

the fluctuations in the data. The GP mean shows some fluctuation, but is close to

zero mean and not representative of the dynamic process as per the SDOF model.

Drawing samples (not shown) from the distribution is not of help here, as they simply

take the form of a static offset of the GP posterior mean.

Figure 7.14: Prediction of the residual shown in Figure 7.11 using black-
box SE kernel

7.2.6 Reducing sampling rate

As in the previous chapter, we will now test the performance of each approach under

lower sampling rates. The effective sampling rate for the above studies was 171 Hz.

For this study, sample rates between 51 and 171 Hz shall be used. Figures 7.15a -

7.15d show the damage progression for each of the models.

Figure (a) shows the prediction for the black-box model (with combined (filtered)

forcing input, Model 7B). Unsurprisingly (as the prediction quality at the highest

sampling rate was not good), the prediction is poor across the range of sample rates.

It can be noted that the prediction does not get significantly worse with reducing

sample rates, and instead, is relatively steady in terms of the GP mean prediction and

the sampled mean prediction. In fact, we can note that, by reducing the sample rate,

the model variance has increased such that the model confidence is encapsulating

the actual damage state at the lower sampling rates (the slight variance increase

here arises from the distance between training and testing point increasing).

In models 7C and 7D, the damage distribution was conservative at the original

sampling rate of 171 Hz. We can see that this remains true as the sample rate
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(a) Black-box (b) SDOF Kernel

(c) SDOF + SE Kernel (d) SDOF Kernel + Mean
Function

Figure 7.15: Impact of reducing the sampling rate on Fatigue damage
prediction distributions - it can be seen that just below the Nyquist rate,
the SDOF kernel struggles. Elsewhere, a clear improvement can be seen
using the physics inspired kernel.

decreases. While for Model 7D, which utilised the data-driven kernel in combination

with the SDOF, the damage prediction does not get significantly worse (with the

exception the sampling frequency just below the Nyquist rate), as was the case with

the SDOF kernel for dynamic problems in the previous chapter. By contrast, in

Model 7C, the performance significantly decreases from both a fatigue and stress

prediction perspective. This is visible in Figure 7.16, which shows the posterior

prediction for this case. While clearly the training data is sufficient to estimate the

static behaviour, the optimisation is attempting to fit a posterior that is coherent with

the search limits that were provided of ωn±20% As a result, the model is not able to

estimate the amplitude of this dynamic process, resulting in severe overestimation of
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the model damage and poor MSE and MSLL values.
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Figure 7.16: SDOF model with sampling rate of 1/16 data points, well
below the Nyquist rate of 1/12 points. While clearly the sufficient training
data is available to estimate the static behaviour, the optimisation is
attempting to fit a posterior that is coherent with the search limits that
were provided of ωn±20% As a result, the model is not able to estimate
the amplitude of this dynamic process, resulting in severe overestimation
of the model damage and poor MSE and MSLL values

The excellent performance of the SDOF kernel in combination with the mean function

across sample rates is notable. Given the performance of the SDOF kernel under

varying sample rates in the previous chapter, this could be somewhat expected given

that the residual prediction indeed resembles the dynamic component of the stress

very closely. However, in comparison to the results of the other models here, the

performance is excellent across the range of sample rates. Again, this is only possible

in this case (to be used as a point of discussion), as estimating an appropriate mean

function is trivial.

Figure 7.17 shows the impact that sample rate has on the MSE and MSLL values.

From both this figure and the damage distributions, it can be noted that while

the SDOF kernel performed well at the original sampling rate, its performance is

the worst at lower sampling rates, both for fatigue prediction and also in terms of

NMSE/MSLL. Again, this is explained by the prediction shown in Figure 7.16 (and

the text in the associated caption).

Again, the performance of the SDOF kernel is worst at a sampling rate just below the
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Figure 7.17: Progression of Mean Square Error (MSE) and Mean Stand-
ardised Log Logg (MSLL) with sample rate. The values for the SDOF
Kernel + Mean Function (Model 7E) refer only to the residual prediction,
amplifying the error.

Nyquist frequency, as per the previous chapter. While this is still the case, the impact

of this is significantly reduced when the mean function is used in combination with

the SDOF kernel. As the residual model can achieve the same degree of accuracy,

regardless of sampling rate, we see much less variation in the performance of the

model with varying sample rates. It can be argued, then, that it could be beneficial

to use a mean function for such problems when a given component of the data can be

estimated with accuracy, thereby removing this known entity from the probabilistic

framework and allowing the GP to focus on the prediction of the more complex

phenomena, to be discussed further in the conclusions.

7.3 Case study using Tucano dataset

We will now use the Tucano data to further demonstrate the performance of the

SDOF kernel for combined loading problems when used in combination with a

data-driven kernel. As per Table 3.1, strain data on the wings is available at 128

Hz for this data, but the majority of the data is only available at 16 Hz. The work

in Chapters 4 and 5 of this thesis focussed on predicting the quasi-static behaviour

of the data. While the discrepancy between sampling rates was acknowledged, the

high-frequency component of the strain-time history was not considered. For the

majority of flights, this is acceptable, however, some flights show additional dynamic
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behaviour at around 11 Hz and 33 Hz. This higher frequency behaviour is the subject

of this case study.
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Figure 7.18: Tucano data under consideration for case study

Rather than predicting the full range of complete flights, for this study, only a

4000 data point section of Flight 4 shall be assessed. The strain-time history under

consideration can be seen in Figure 7.18 where we can intuit that the data is mostly

static, with some dynamic behaviour between 875 and 885 seconds. The PSD for

the 4000 data points can be seen in Figure 7.19.

7.3.1 Model Inputs

Following the results of the previous section, two models shall be compared for

prediction (summarised in Table 7.3): firstly, a black box model using acceleration

at the aircraft center-of-gravity. This data is only available at 32 Hz and therefore

has to be upsampled to 128 Hz for the test case: this is achieved using spline fitting.

Note that this is not using the full range of inputs used in Chapters 4 and 5.

The second model will use the SDOF kernel in addition with an SE kernel. A mean

function approach is not considered for this data as a linear fit cannot satisfactorily

estimate the static component of the data with the acceleration data used. The
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Figure 7.19: Power spectral density plot for the 4000 data points from
the Tucano dataset used for this case study. While in Chapters 4 and 5,
the data was downsampled to 16 Hz, in this chapter, the focus shall be
on predicting the higher frequency component of the data.

inputs used in this case are time for the SDOF kernel and the same acceleration

measurement as above (with upsampling) for the SDOF kernel. The same training

indices are used for the two models.

Model Description Inputs
7F SE (black-box) kernel Acceleration (g), upsampled
7G SDOF + SE Kernels Acceleration (g), time (s)

Table 7.3: Two models under comparison for the Tucano dynamic pre-
diction

7.3.2 SE Model

The GP posterior for the black box model (7F) can be seen in Figure 7.20. As

expected (following the results of chapters 4 and 5), the static prediction is reasonable,

with some errors around the dynamic section of the data (note that the black-box

model is not using the full range of inputs used for the work in Chapters 4 and

5). The NMSE of the prediction is only 0.2% and the MSLL is -1.7, indicating a
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Figure 7.20: Black box strain prediction for Tucano dataset. The pre-
diction is reasonable, however, is not able to predict the high-frequency
behaviour around 870-885 seconds.

good prediction. Clearly, however, the posterior is smoothing through the dynamic

behavior. The result of this on estimated fatigue damage accumulation (fatigue

assessment is performed with the same S-N curve used for the Tucano work in

chapters 4 and 5) can be seen in Figure 7.21: even for this short section of data,

the impact of error prediction is severe. As per the simulated case study, we can

see that only the most conservative samples are indicative of the actual measured

damage, with the sampled mean and posterior mean both underestimating the

measured damage by 19.9% and 19.7%, respectively. Again, the variance of the data

distribution is very large, with the most damaging cycles being 72% more damaging

than the least damaging sample. Overall, despite a reasonable strain prediction, the

fatigue damage prediction exaggerates the model error and uncertainty. Again, the

distribution shown in Figure 7.21 agrees with the study carried out in Chapter 5: by

underestimating the high frequency component of the data, even with good strain

prediction (in terms of NMSE and MSLL), there is a non-conservative shift in the

damage distribution.
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Figure 7.21: Damage distribution from Tucano case study using SE
kernel

7.3.3 SE and SDOF in addition

Following this, the SDOF kernel is used in combination with an SE kernel (model

7G). Again, the search limits for the hyperparameters are limited to ±20% of the

prior estimated values (estimated by plotting the PSD of an alternative flight to the

one under consideration).

Figure 7.22: Using SDOF + SE Kernels in combination for the Tucano
dataset.

The posterior can be seen in Figure 7.22. We can see that the prediction performs

much better than the black box model. The model NMSE and MSLL are 0.1% and
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-4.7, respectively.

Figure 7.23: Damage distribution from Tucano case study using SE +
SDOF Kernels in Combination

Again, we can plot the contribution of the individual kernels, shown in Figure 7.24.

Again, the model is (approximately) behaving as one would hope: The SE kernel

is performing the prediction of the static component of the behaviour, as we know

it is capable of performing from the black box study (Model 7F, above). We can

see that the SDOF kernel is compensating slightly for the poor performance of the

SE kernel. For example, around data point 3000, we can see that the SE model is

overestimating the strain value slightly, and the SDOF kernel is correspondingly

correcting for this. More attention would have to be paid in such areas for future

work when extrapolating to unknown locations on a structure. Overall, however, the

combined strain prediction is very good.

This follows through to the damage prediction, shown in Figure 7.23, where we can

see a significant improvement in model confidence. While the GP mean and many of

the samples are underestimating the measured damage state, the prediction is much

closer to the true value. It can be noted that we are not seeing the conservative shift

shown in the case study: as only one SDOF kernel is used to capture the dynamic

behaviour around 11 Hz, there is some additional high-frequency content that is not

captured. Again referring to the discussion in Chapter 5, it is hypothesised that

while the 11 Hz component of the data is most important (from a strain prediction

and fatigue damage perspective), this higher frequency content is the cause of the

additional damage in the measured data compared to majority of samples. However,

the overall fatigue prediction is good: the damage variance is low, and the most
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damaging sample is only 10% greater than the least damaging sample, representing

a significant improvement on the damage variance seen in the original Tucano case

study, chapters 4 and 5.

Figure 7.24: Kernel contributions for the SDOF (top) and SE (bottom)
kernels.

7.4 Discussion and Conclusions

Having introduced a novel way of integrating physics into data-driven models for

strain-prediction in the previous chapter, this chapter demonstrates this for increas-

ingly complicated loading cases. This is the first work to demonstrate the flexibility

that can be achieved using the single-degree-of-freedom kernel in combination with

data-driven kernels to predict combined loading scenarios and, furthermore, utilise

this approach for damage assessment.

The results shown here show very promising progress in the practical applications

of GP regression for fatigue damage prediction. The earlier chapters showed that

propagating model uncertainty is a crucial step in enabling a greater level of trust

to be attained in data-driven models, but by incorporating our physical knowledge

into the work, some of the major problems demonstrated in earlier chapters have
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been mitigated. In particular, the large variance of damage distributions has been

mitigated. In the previous chapter, this was shown for dynamically forced problems.

In this chapter, it has been shown that, by combining data-driven and the physics-

derived kernel, we can extend this to problems of combined loading. Using this

methodology, we see a greater capture of the nature of the underlying phenomena

both in terms of the posterior mean and also the samples drawn from the posterior

covariance.

Again, the black-box models have shown that ‘good’ results in terms of NMSE

and MSLL do not result in reliable fatigue assessment, even when propagating the

uncertainty of the model. Instead, here, the main benefit to arise from this was

drawing attention to the uncertainty in the model via the large damage distribution

variance. Again, it is highlighted that propagating the uncertainty of the model is

not a ‘silver bullet’ for a poor model to capture the damage state somewhere within

the predictive distribution.

The introduction of physical knowledge demonstrated clear improvements. The

SDOF kernel when used in isolation demonstrates sufficient flexibility to model the

combined loading at the original sampling rate. However, as the sampling rate is

reduced, the kernel is not able to accurately predict the amplitude of the dynamic

behaviour. A combination of kernels can provide a better physical representation

also, with each kernel aiming to model defined phenomena. Furthermore, future work

which will aim to extrapolate strain prediction to locations on a structure where

measured data is not available will benefit from the use of (an) additional kernel(s).

The use of a mean function for the simulated data improved the results further. For

this data, calculating such a mean function is trivial, and thus, such an approach can

be easily achieved. However, it is recognised that this is not always the case, as per

the Tucano case study. While the authors advocate for a probabilistic approach, this

case highlights the importance of limiting this to elements of the data that cannot

be estimated easily. By removing the component of the data that could be estimated

trivially from the probabilistic framework, the variance of the damage distribution

could be reduced significantly. In this specific case, this has the additional benefit of

maintaining the physical interpretation of the SDOF covariance function, while this

is not true of using the kernel in combination with another.

Throughout this work, and highlighted again during the simulated case study, it could

be seen that the NMSE and MSLL are not good predictors of damage prediction
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accuracy. In the case of NMSE, this is to be somewhat expected, as the metric is

simply an assessment of the mean prediction compared to the target data. The MSLL,

however, is an assessment of the predictive distribution. While the physics-inspired

models that performed better at fatigue damage prediction were also improvements

in terms of MSLL, the scores attained by the black-box models (at higher sample

rates) also indicated a ‘good’ prediction according to this metric. As discussed,

capturing the measured data within the confidence intervals is not sufficient: the

underlying phenomena must be captured to perform well as a predictor of fatigue

damage accumulation.

These findings from the simulated case study were confirmed by the Tucano case

study. The use of the kernel here achieves the dual goals of improving accuracy and

reducing the variance of the damage distribution. Again, it is shown that NMSE

and MSLL do not give a good predictor of damage prediction.

While the SDOF kernel performs very well in the work presented here, it is limited

by the requirement to have measured data at the training locations, i.e. the model

is performing very well in interpolation but cannot, in its current form, be used in

extrapolation. In certain situations, and the Tucano case study here is an example of

predictive ability previously unavailable, this is not an inherently limiting factor as

it has enabled a level of insight not otherwise attainable. However, this requirement

will frequently limit the usability of the kernel.





Chapter 8

Conclusions

There is a significant body of literature regarding the fatigue failure of structures,

yet fatigue remains the most common cause of the failure of structures. In this work,

the following questions were posed:

� How can we use a data-driven framework to predict the fatigue of structures?

� Can using a probabilistic framework help build trust in models when working

within a data-driven framework

� Can we use knowledge of physics within such a framework to inform our

prognosis?

In this work, a novel probabilistic approach is presented for tackling these questions.

Firstly, by fully utilising the probabilistic nature of the Gaussian process regression

strain prediction model, a probabilistic view of fatigue damage is achieved. By

embracing uncertainty in the modelling approach, it is the authors opinion that there

is a pathway to both increase structural safety and also enable a greater lifespan

to be attained from the structure. The new probabilistic approach has indeed

shown increased robustness to errors in model prediction. People have now starting

considering how one can improve data-driven models by inserting physics into their

structure. This is some of the first work that considers how physical knowledge can be

used in a machine learning environment to predict fatigue damage. This is achieved

by inserting knowledge of the dynamics of the problem. Using same probabilistic

framework described above, a clear improvement in the predictive capability is visible,

139
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both from the perspective of strain prediction models and also probabilistic damage

prediction. Equally important is the fact that the strain prediction model now has

physical meaning, and a greater level of trust can be achieved as a result.

In chapters 1 and 2, the overall problem was discussed and scope of this work defined.

The fact that the use of data is becoming increasingly common across the engineering

industry was discussed, and applications across the structural health monitoring field

were presented. In Chapter 2, the scope of this work was defined while reviewing

the relevant literature, highlighting that the focus of this work is on the data-driven

prediction of structural loads. This work develops a probabilistic methodology for

propagating uncertainty of such predictions. It was highlighted that the focus of the

probabilistic framework was here, and not on the other sources of uncertainty within

the S-N methodology.

In Chapter 3, a on overview of the theory of Gaussian process regression was presented.

Following this, the two datasets that are used throughout this work were presented:

The first is the Tucano dataset, in which a military aircraft was instrumented with

strain gauges and additional accelerometers for a monitoring period. The second is

the GARTEUR dataset, a model aircraft structure reproduced based on previous

benchmark projects. For this work in this thesis, one of the wings was instrumented

with strain gauges in order to predict fatigue accumulation on the structure. Having

introduced the data and methodology, a small case study is used to demonstrate the

theory and data further using the Tucano dataset. As one of the focuses of this work

is to utilise the probabilistic nature of the model, part of the focus of this case study

is on interpretation of confidence intervals using a data-driven kernel.

In Chapter 4, the Tucano dataset is used to demonstrate the capability of a data-

driven methodology for predicting fatigue damage, while remaining within a de-

terministic framework. The benefits of input-augmentation was demonstrated by

demonstrating the impact of simple adjustments to input data on Tucano data. This

was shown to be beneficial even when only using two inputs to the model. Following

this, the fleet of 84 aircraft is studied. The potential for using data-driven modelling

is demonstrated but the associated risks also highlighted. By using a deterministic

prediction, the damage level is predicted for the majority of flights, but in some cases

is predicted incorrectly. It is demonstrated here, for the first time in this work, that

there is not necessarily a linear relationship between error metrics used for strain (or

stress) prediction models, such as normalised mean square error, and the accuracy of
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a subsequent S-N fatigue damage prediction.

In Chapter 5, the same Tucano case study was used to demonstrate that by propagat-

ing the uncertainty of the model, we can develop a better understanding of the

full model prediction. By understanding the uncertainty of the model, the new

probabilistic approach has showed increased robustness to errors in model prediction.

In doing so, it is the authors opinion that there is a pathway to both increase

structural safety and also enable a greater lifespan to be attained from the structure.

However, due to the black box nature of the S-N process (and in particular, the

rainflow cycle count), the relationship between probabilistic strain prediction model

and the resulting damage distribution is not clear. Thus, a controlled case study is

set up, where it could be seen that the damage distribution is significantly impacted

by the non-linear nature of the relationship between stress and damage (i.e. the

non-linearity of S-N curves) and also, the representativeness of the training data

to the test data. In particular, the negative effect of employing an overly short

lengthscale or excess distance between training and test data is demonstrated. This

is the first work to consider the uncertainty of the full stress-time history and the

impact of this on fatigue damage prediction.

In chapter 4 and 5, some physical knowledge was introduced into models via input

augmentation. However, in Chapter 6, the focus is on the increased use of physical

knowledge in the model with respect to fatigue assessment. Motivated by the fact

that dynamic behaviour can have significant contribution to fatigue accumulation,

a covariance function derived from a single-degree-of-freedom oscillator is used to

predict the loads on a simulated case study. The GARTEUR dataset is then used

to demonstrate the strain prediction performance on a physical structure, with

model uncertainty propagated through the fatigue assessment as per the previous

chapters. By using a physics-informed covariance function, the draws from the

posterior distribution now had a physical interpretation. For both studies (simulated

and the GARTEUR aircraft), the performance of the model with respect to fatigue

damage prediction is significantly improved. This is true both when using the model

posterior mean and also, the samples drawn from the posterior distribution. However,

this was shown to be especially true when reducing the sample rates, where the

physics-informed model was able to maintain good predictive capabilities at sample

rates below the Nyquist frequency.

In Chapter 7, the same physics-derived covariance function was used in combination
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with a data-driven kernel to demonstrate its performance for combined static and

dynamic loading. A simulated case study was again used which demonstrated a

significant performance improvement compared to a purely-data-driven approach

and, again, this was especially true as the sample rate is reduced. Using the same

simulated case study, the potential of using a mean function was also presented. In

this case, as the static of component of the data could be easily estimated with good

accuracy, the benefit of removing this component of the data from the probabilistic

framework was discussed. Following this, the Tucano dataset was used, this time

to predict strain at the full sample rate available of 128 Hz. By using the single-

degree-of-freedom covariance function in combination with a data-driven (in this

case, a squared exponential) kernel, it was possible to capture high frequency strain

measurements with a high-degree of accuracy. The resulting fatigue prediction

showed a significant increase in accuracy.

8.1 A practical view: limitations and future work

The methodology proposed in this thesis has enabled an insight to be gained on the

fatigue damage state of structures which may otherwise be difficult. In chapters 4

and 5, looking at the Tucano aircraft, utilising other methods such as finite element

modelling would have been very difficult, as understanding the forces acting on the

aircraft would have been challenging (in addition to the large computational expense

that would have been required for analysing time-series data for all 84 test flights).

By introducing physics into the modelling approach, significant improvement has

been achieved in Chapters 6 and 7. This is true both from a strain prediction, and

fatigue damage, perspective. In this work, accurate fatigue damage prediction has

been achieved at sample rates significantly below sample rates typically considered

the minimum required for effective fatigue damage prediction, while maintaining

good levels of accuracy. Even at sample rates below the Nyquist frequency, fatigue

damage prediction has remained acceptable in many cases. Furthermore, in doing

so, this work has provided a valuable real-world example of the potential benefits of

physics-informed machine learning.

While GP regression has been the form of data-driven model used throughout this

work, it is the author’s opinion that many of the findings and the methods can be used
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for other methods of data-driven learning. Naturally, the specific methodology for

e.g. drawing samples from strain distributions would change, but the work contained

in this thesis has demonstrated the value of propagating time-series prediction

uncertainty.

Before the practical implementation of such a methodology, however, a more compre-

hensive evaluation of how to use such probabilistic predictions will be required. For

example, it is worth considering how one could use the damage distributions attained

to justify further modelling in certain cases: one way of achieving this is could be

to set a threshold of damage variance that, when passed, justifies a more detailed

study into the given flight. The results of the Tucano dataset were achieved with

only one training set of 2000 data points from across the training flights. Yet, the

study in Chapter 5 into the cause of shifts in the damage distribution highlighted the

importance of having representative training data. So, if a hypothetical threshold of

damage variance were to be exceeded, there could be avenue to ‘cherry pick’ training

data that is more representative of that flight.

One downside of the method developed in this thesis is that, to fully utilise this

probabilistic form, drawing samples from the GP posterior is computationally ex-

pensive. The cost sampling from the Gaussian process posterior is O(n3), where n is

the number of testing points. It is for this region that the number of testing points

was limited for both the Tucano and GARTEUR datasets. In recent years, research

has been conducted to develop more efficient ways of sampling from the posterior.

Future work shall include testing methods, such as that developed by Wilson et al.

[136] to see if any accuracy is lost in the damage prediction by utilising such efficient

sampling techniques.

Another criticism of the method in its current form is that the work in Chapters

6 and 7, thus far, is limited to interpolation in time for prediction. While the

performance for acquiring useful damage prediction from (relatively) low frequency

data was very good, this limits its usefulness. Future work will, therefore, look to

extend this to extrapolation in both the spatial and temporal domains. This would

enable use as a virtual sensor, as per chapters 4 and 5, and improve the usability

of the approach significantly. Furthermore, while the work in Chapters 6 and 7 did

lead to increasingly complex systems being predicted, this could be extended further.

The single-degree-of-freedom covariance function treats the system deterministically

with stochastic forcing. Extending this to higher degrees of freedom with non-linear
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material behaviours would require treating the system stochastically.

Normalised mean square error and mean square log-loss are used throughout this

work as a mean for assessing the model error. Yet throughout, we have seen that

they are not particularly successful at predicting the fatigue damage accumulation of

the structure (or, equally, the underlying process that the structure is withstanding).

Thus, another area that warrants further research is the development of cost functions

and error metrics to better optimise, and assess, models. By developing cost functions

and error metrics that prioritise predictive capability with respect to fatigue damage,

it is proposed that this could lead to improved damage prediction and thus, better

real-world applicability. Similarly, by utilising methods that optimise the strain

prediction models based on posterior samples, as opposed to the prediction mean

or predictive distribution, it is proposed that the shifts often seen in the damage

distribution throughout this work could be mitigated.

Lastly, it was discussed in the introduction that probabilistic methods are seen as

an important tool in reducing the remaining useful life at the point of retirement of

structures. In this work, the probabilistic framework considered only uncertainty

from the load prediction, while acknowledging that there are many other sources of

uncertainty in stress-life fatigue. A natural item of future work will be to integrate

the methodology developed in this work with other probabilistic methodologies. This

will be a crucial step in working towards the goal stated in the first page of this

thesis: to simultaneously increase structural safety and enable a greater lifespan to

be attained from structures.
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