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Abstract

Photolysis schemes are an integral part of chemical transport models. However, they are com-

putationally intensive. The chemical transport model GEOS-Chem uses the photolysis scheme

Fast-JX, which takes a significant amount of time to run. Through the developments of ma-

chine learning, parameterised approaches for physical processes have become a common way

of speeding up calculations. This study looks to develop a proof-of-concept approach for a

machine learning-based parameterisation of the Fast-JX photolysis calculations using a collec-

tion of XGBoost models. The machine learning models were integrated into the GEOS-Chem

Fortran code base and were quantitatively evaluated against the standard Fast-JX scheme. This

work additionally determines the wider impact the photolysis predictions had on the GEOS-

Chem simulation in regards to the calculated concentration of key components such as O3 and

NO2.

Results show high accuracy for most species, with 103 out of 105 unique photolysis rates

maintaining an R2 greater than 0.95 throughout a six month simulation period. While the current

implementation is minimally optimised, and hence computationally slower than Fast-JX, it suc-

cessfully demonstrates that a machine learning parameterisation of photolysis rates is feasible

in Fortran based chemical transport models and provides a foundation for future optimisations.
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1 Introduction

1.1 Atmospheric Chemistry, Environmental Problems, and Chemical Trans-

port Models

In the atmosphere, there are numerous complex interactions and processes, many of which

are chemical. The study of these chemical processes is considered atmospheric chemistry and

through understanding this field, we can address many environmental problems.

One important problem that can addressed through the understanding of atmospheric chem-

istry is the depletion of stratospheric ozone. This is when chlorofluorocarbons (CFCs) and other

ozone-depleting substances break down in the stratosphere, most often caused by ultraviolet

(UV) radiation emitted from the sun, to generate halo-atomic radicals, in a process called pho-

todissociation. The generated radicals (Cl for example) react with ozone, which forms more

radicals (ClO ) that can react with other atmospheric species to regenerate radicals (Cl ) but

without releasing ozone, creating a cycle whose net result is the destruction of ozone molecules.

This cycle has, over time, weakened the stratospheric ozone layer (Molina and Rowland, 1974).

This stratospheric ozone depletion allows increased UV radiation to reach the surface of Earth,

and in turn increases skin cancer incidence rates (Slaper et al., 1996).

Climate change and air pollution are two other issues that affect everyday life which can

be understood through atmospheric chemistry. An understanding of the mechanisms behind

climate change can be developed through studying the distribution and lifetimes of various

greenhouse gases (like CO2, CH4, N2O, and water vapour) and aerosols (like black carbon,

mineral dust, and sulfate aerosols), as well as their reaction pathways, often producing sec-

ondary affects. By researching this, the various warming and cooling effects can be investi-

gated. Similarly, air pollution can be investigated by examining the chemical reactions and

photodissociations of primary pollutants (emitted directly from a source into the atmosphere)

to form secondary pollutants, including tropospheric ozone. This ground-level ozone can in-

duce respiratory inflammation at ambient levels, especially for younger people (Monks et al.,

2015). Having an empirical understanding of these atmospheric processes has helped scien-

tists to inform and guide policy makers to reduce the negative impact of these issues (IPCC

et al., 2021; WHO, 2021). For example, the introduction of the Montreal Protocol in 1987 laid

out guidelines for phasing out different substances, like CFCs, to reduce the rate of loss of the

stratospheric ozone layer (UNEP, 1987).
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One of the main tools scientists rely on to understand these atmospheric processes are Chem-

ical Transport Models (CTMs). These are powerful computational tools that involve complex

chemistry and other meteorological aspects, allowing for the simulation of the movement and

distribution of chemical species both globally and locally. CTMs also allow a modular approach

to development, through the collaboration of scientists of different specialities, to work on in-

dividual processes contributing to the overall model. This increases accuracy, efficiency, and

credibility of the numerical modelling, giving it practical applications for example investigating

the health impacts of both stratospheric ozone depletion (Eastham et al., 2018) and air pollution

(Zhang et al., 2021; Vohra et al., 2021) on mortality.

Some prominent CTMs include WRF-Chem, short for Weather Research and Forecasting

with Chemistry (Grell et al., 2005); MOZART-4, short for Model for OZone and Related Chem-

ical Tracers (Emmons et al., 2010); CAMx, standing for Comprehensive Air Quality Model

with Extensions (ENVIRON, 2008); and GEOS-Chem (Bey et al., 2001), which is the focus

of this study. These CTMs can be used differently and have more favourability depending on

the use case but they all serve as a useful tool for researchers to both analyse and understand

atmospheric phenomena.

1.2 Photolysis

The photodissociation of molecules (photolysis) is a fundamental process in atmospheric chem-

istry. Photolysis occurs when a molecule absorbs a quantum of electromagnetic radiation, with

energy E = hν , where h is Planck’s constant (6.626×10−34 J s) and ν is the frequency of ra-

diation (Hz or s−1). If the energy absorbed is sufficient to overcome the bond energy, chemical

bonds can break, resulting in the formation of two or more products. CTMs rely on precise

photolysis schemes to calculate the rates of these atmospheric processes; however, there is a

computational burden with solving the high-dimensional problems they present. Most photoly-

sis schemes solve a modified version of the 1-D plane-parallel radiative transfer equation (RTE)

to obtain solar fluxes, using approximations for the scattering and absorbance by clouds and

aerosols (Wild et al., 2000; Logan et al., 1981; Williams et al., 2006). Upon solving the RTE

and obtaining actinic fluxes (F, the number of photons in a spectral range over all directions),

the photolysis rate equation (Eq. (1)) is solved. Here, the absorption cross-section (σ ) and

quantum yield (φ ) are functions of wavelength, temperature, and pressure. The cross-section

defines the probability of the photons being absorbed by the molecules at each wavelength and

2



the quantum yield is the ratio of the number of molecules that undergo photodissociation after

absorbing a photon, to the total absorbance, which can vary as a function of wavelength.

J(λ ) =
∫

λmax

λmin

σ(λ ,T,P)Φ(λ ,T,P)F(λ )dλ (1)

The computational inefficiencies caused by the high-dimensionality of the schemes leads

to bottlenecks and a longer runtime within CTMs. For example, in GEOS-Chem, photolysis

currently takes just under 50% of the time it takes to perform all of the transport of chemical

species (GEOS-Chem, 2024). The path propagated by the beams of photons in the photolysis

schemes is depicted in Figure 1. The photons are scattered, absorbed, and/or reflected in the

atmosphere by (i) clouds, (ii) the surface (quantified by surface albedo), (iii) aerosols, and (iv)

the ozone column. For photolysis calculations, this 3-D representation of the atmosphere is

discretised into horizontal layers over grid boxes at different vertical levels, and a mix of clouds

and aerosols are used. The wavelengths are also discretised into different bins (Figure 1, panel

(b)).

Figure 1: Schematic representation of the path of light solved by photolysis schemes through the RTEs in

a 3-D representation with some common scattering, absorption and reflection pathways, panel (a). Where

(i) is clouds, (ii) is the surface albedo, (iii) are aerosols and (iv) is the ozone column. Additionally, (v)

is the solar zenith angle (SZA), a measure strongly dependent on the solar flux. Panel (b) denotes the

vertical representation split into different wavelength bins, using the same meteorological data.

1.3 Different Photolysis Mechanisms

The photolysis scheme used in GEOS-Chem version 14.2.2 is Fast-JX v7.0 (which is discussed

in technical detail later in Section 2.5), implemented by Prather (2012) and Eastham et al.

3



(2014), and is based on the original code for the Fast-J algorithm (Wild et al., 2000). Fast-J

included seven wavelength bins in the 291 to 850 nm range, and was later extended to include

an additional 11 bins covering 177 to 291 nm to improve resolution and accuracy (Bian and

Prather, 2002). There are other commonly used photolysis schemes such as the Tropospheric

Ultraviolet extended photolysis calculator (TUV-x) (Madronich and Flocke, 1999), or the faster

version with a reduced quantity of bins (FTUV) (Tie et al., 2003). These TUV versions calculate

spectral irradiance, actinic flux and photolysis rates, with 156 spectral bins for TUV-x and 17 for

FTUV. Some photolysis schemes have larger resolutions for more complexity, such as the UCI

Reference Model, which uses 4500 bins (Bian and Prather, 2002). The choice of photolysis

scheme largely depends on the context of which it is used: considering the resolution, the

computational resources available, as well as the use case.

1.4 Research Aims

In the atmospheric sciences, a host of different machine learning-based methodologies have

found common use for both speeding up and parameterising processes. This study aims to

leverage these advancements, with the objective being to develop a fully functional machine

learning-based photolysis rate prediction system integrated into GEOS-Chem, an alternative to

the existing Fast-JX scheme. More specifically, this study aims to investigate how accurately

machine learning models can predict photolysis rates (for a wide range of species), how well

these machine learning models can be implemented within the Fortran code of GEOS-Chem,

and the overall impact the machine learning approach has on GEOS-Chem simulations. It

should be noted, this project aims at first developing a proof-of-concept with minimal optimisa-

tions in regards to reducing the computational overhead, with potential optimisations discussed

in Section 6.1. In this study, the machine learning alternative to Fast-JX is developed using the

popular Extreme Gradient Boosting (XGBoost) software (Chen and Guestrin, 2016). This was

used to train the collection of models, whose photolysis rates were stored and then fed through

to the chemical integrator steps within GEOS-Chem.

The remainder of this thesis is structured as follows: Section 2 provides the theoretical

background on machine learning and the photolysis applicable to this study; Section 3 describes

the data used for training, as well as the model development methodology; Section 4 presents

the results of the performance on the validation data; whilst Section 5 shows the performance of

the predictors integrated into GEOS-Chem. Finally, Section 6 discusses possible optimisations,
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the limitations to the method, and potential use cases. By addressing each mentioned point,

this research aims to contribute to the ongoing effort of model development and improving the

efficiencies and capabilities of both chemical transport models and atmospheric modelling as a

whole.

2 Theoretical Background

This section provides context and a theoretical backdrop to the machine learning approaches

used in this study. We first start with the machine learning fundamentals by briefly describing

the history and evolution of machine learning as well as some key concepts (Section 2.1). Some

of the key algorithms found within machine learning are discussed (Section 2.2), including:

linear/multiple regression, decision trees, ensemble methods, and neural networks. For the

parameterisation task itself, two methods are considered in detail and the rationale of why one

is picked over the other is discussed (Section 2.3). To provide an insight into the machine

learning commonly used in atmospheric sciences and why this project is important, an overview

is provided in Section 2.4. The original photolysis scheme used in GEOS-Chem (Fast-JX) is

described in more detail as well as a description of the actual GEOS-Chem CTM used in this

project (Sections 2.5 and 2.6 respectively).

2.1 Machine Learning Foundations

Machine learning, a term first coined in the 1950s by IBM researcher Arthur Samuel (1959), is

a subset within the field of artificial intelligence (AI). The formal establishment of AI as a field

occurred during a conference known as the Dartmouth Summer Research Project on Artificial

Intelligence in 1956 (McCarthy et al., 2006), where the concept of AI was discussed in terms

of creating systems capable of ‘intelligent behaviour’. Machine learning, more specifically, is

referred to as the study and development of algorithms that enable computers to learn from data

patterns and make decisions based on the patterns, rather than being explicitly pre-programmed.

Machine learning tasks can be divided into two main categories: regression or classification.

Regression is based on numerical predictions of continuous values such as photolysis rates,

bond lengths, and energies. Classification, on the other hand, is used to classify predictions

into discrete values, such as binary outcomes (true or false), to recognise handwritten digits, or

to categorise images into pre-defined groups. Both of these tasks are powerful when correctly
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used.

Machine learning for a problem generally follows this pathway: deciding an algorithm ap-

propriate to the task, splitting a dataset into training and validation sections, training the model,

and evaluating the performance of the models. A model is trained by learning the relation-

ship between the input and output data, from the training data. The model iteratively improves

by minimising the difference between the real and predicted values, achieved by changing the

parameters of the chosen algorithm.

Machine learning algorithms generally fall into three main categories: supervised, unsu-

pervised, and reinforcement learning. Supervised learning models rely on being trained on a

dataset where a set of input variables, also know as features, (x1,x2, . . . ,xn) can be mapped to

one or more output variables (y1,y2, . . . ,yn). This learned relationship is then used to predict

outputs for new, unseen inputs. Both regression and classification problems tend to fall in this

category. Unsupervised learning is used when there are no labelled target variables and instead

the model tries to identifying groupings and relationships within the data. This is commonly

used in clustering or dimensionality reduction tasks. Reinforcement learning is commonly used

when a model makes decisions and is either rewarded or penalised depending on that decision,

creating a feedback loop. In this study, we consider only supervised learning methods and

algorithms as the task (parameterising photolysis rates) is a regression problem.

2.2 Key Machine Learning Algorithms

Predating the actual conception of machine learning and AI, the mathematics forming the foun-

dations of the field is considered to be dated well before the 20th century. The concept of

regression was first introduced by Galton (1886), focusing on the phenomenon of observations

regressing to the mean. This phenomenon describes how extreme measurements in a dataset

tend to be closer to the mean in the following, subsequent observations. This work built on the

crucial component of the method of least squares, an optimisation technique to find the best-

fitting curve/line, first independently developed at the start of the 19th century by both Legendre

and Gauss, as per Stigler (1981). These developments laid the groundwork for modern regres-

sion analysis which, while not originally a learning algorithm, can derive conclusions from

data and lead to predictions, making it a fundamental concept in the modern machine learning

landscape. Equation (2) is the basic multiple linear regression model where ŷ is the predicted

dependent variable, β0 is the intercept, β are the coefficients/weights, and x are the independent
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variables. The coefficients (β ) are typically estimated through the method of the least squares

(Nievergelt, 1994).

ŷi = β0 +β1x1,i +β2x2,i + · · ·+βnxn,i (2)

Following these early developments, several key algorithms have emerged that shape the

field of machine learning. We now discuss the chronological progression of some of the most

important ones. One significant advancement was the concept of decision trees. Whilst initially

introduced by Morgan and Sonquist in 1963, decision trees emerged as a powerful machine

learning algorithm in 1986 with the development of the ID3 algorithm by Quinlan (1986), which

could construct trees iteratively. Decision trees work for both regression and classification tasks

by making a series of decisions based on the input data. The tree structure consists of what are

called nodes: internal nodes are where decisions are made based on the feature values from the

input data, and leaf nodes can be seen as the end of the branch and is where the final prediction is

made. An example decision tree can be found in Figure 2, used to classify a given atmospheric

condition into four different classes of photolytic intensity. The same structure could be used

for regression tasks, by training it to predict numerical values instead of classes.

COD > 0.3?
Samples: 300

AOD > 0.15?
Samples: 100

Yes

Solar Zenith Angle > 60°
Samples: 200

No

Reduced Photolysis (Class 1)
Samples: 75

Yes

Moderate Photolysis A (Class 2a)
Samples: 25

No

Moderate Photolysis B (Class 2b)
Samples: 100

No

Intense Photolysis (Class 3)
Samples: 100

Yes

Figure 2: An example decision tree generated in Python for the classification of atmospheric conditions

into three different photolysis categories: reduced, moderate, and intense photolysis. The tree is based

on key factors: cloud optical depth (COD), aerosol optical depth (AOD), and SZA.

It is rare for a single decision tree to be used in modern problems. They are considered

weak predictors and instead a collection of them are used, whose outputs are aggregated to

form a final prediction. This approach is known as an ensemble method. The general form

of the ensemble method is expressed in Eq. (3), where: ŷi is the predicted output for the i-th

instance, fk(xi) is the prediction of the k-th model for the i-th instance, wk is the weighting of

the respective k-th model towards the overall prediction, and M is the total number of models
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in the ensemble.

ŷi =
M

∑
k=1

wk fk(xi) (3)

Both Random Forests (RF) and Gradient Boosting (GB) are examples of this ensemble

method, but are used in different ways. These processes are the most relevant to this project and

are discussed in more detail in the next section.

A different approach, neural networks (NNs) were first conceptualised by McCulloch and

Pitts (1943), stating that the biological neural networks found in living organisms could be

replicated through computation. Their conceptual neuron calculated a weighted sum between

the input and a fixed weight, similar notation to that in Eq. (3). If that weighted sum exceeded

a threshold value (often denoted θ ) then the neuron would output 1, and ‘fire’ like a biological

neuron. Otherwise it would return 0. This allowed for the simulation of binary operations just

like logic gates. The problem with this concept was that the weights were fixed and had no

way to improve, or ‘learn’. Building on this original model, the perceptron was introduced by

Rosenblatt (1958). This was essentially the same structure as the neuron but with the ability to

learn by changing the weights instead of using fixed weights. This was based on the difference

(residual) between the output (ŷ) and the true value (y) as well as the learning rate (denoted η).

The learning rate is essentially how much the model weights are adjusted in response to the

residual. The learning rule for updating a weight from its often less accurate state (wi,old) to a

new state (wi,new), in relation to the respective input feature (xi) is shown in Eq. (4).

wi,new = wi,old +η · (y− ŷ) · xi (4)

Whilst perceptrons were good for classification and linear problems, they had a limitation

in capturing complex, non-linear relationships in data. This led researchers to develop a system

with multiple layers of perceptrons. These systems had ‘hidden’ layers of perceptrons, these

layers were considered hidden when they were sandwiched between input and output percep-

trons, and created what is called the multi-layer perceptron (MLP). However, the earlier MLPs

faced the issue of inefficient training and a lack of proper methodology to update the weights in

the layers, particularly the hidden layers whose outputs were unknown. This severely limited

the application of MLPs and in turn slowed the progress of this field for a few years.

Neural networks really took off in the 1980s following the popularisation of the backprop-
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agation algorithm (Rumelhart et al., 1986), which allowed for the effective training of these

complex MLPs by efficiently computing gradients to adjust the internal weights of the percep-

trons. This formed the foundations for the neural networks that are widely used today, with

the ability to learn complex, non-linear relationships in data. The technicalities of NNs are not

discussed further but a more in-depth understanding of their workings can be found in the initial

paper on neurons, perceptrons, and backpropagation included in the Bibliography (McCulloch

and Pitts, 1943; Rosenblatt, 1958; Rumelhart et al., 1986). Work on NNs has led to the creation

of the "deep learning" field, used to study and compute complex interactions and patterns, from

natural language processing (NLP) for text analysis (Collobert et al., 2011), to geospatial data

predictions (Reichstein et al., 2019), and to computer vision (Krizhevsky et al., 2012), which

enables machines to interpret and make decisions based on visual data.

2.3 XGBoost Algorithm over Random Forest Regression

This project considered two main algorithms: Random Forests (RF) and Gradient Boosting

(GB) methods. This section discusses the differences between these two approaches.

The RF method was properly introduced by Breiman (2001). It built on the initial ran-

dom decision forests algorithm, used for classification (Ho, 1995), with a whole host of novel

features to construct a ‘forest’ of decision trees to perform both classification and regression

analysis. It used the concept of bagging (also developed by Breiman (1996)) which allowed

each different tree to be trained on a random, different subset of the total data. Another impor-

tant feature introduced was random feature selection. This novel concept involves considering a

random subset of features (from: x1,x2, . . . ,xn) at each decision point in the tree. This approach

further reduces correlation between each tree, allowing a more representative, fair prediction.

An equation for RF regression (RFR) can be found in Eq. (5).

ŷi =
1
T

T

∑
k=1

fk(xi) (5)

This is a variation of the ensemble model equation, in Eq. (3), where the final prediction

(ŷi) is the average of the predictions ( fk(xi)) from each of the T trees. Where the weight here is

1/T for all k trees and hence all trees contribute equally. A schematic of this can be found in

the bottom half of Figure 3.
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Figure 3: Comparative overview between XGBoost sequential boosting prediction method (top) and

the random forest prediction method (bottom). Included are visual representations of the XGBoost and

random forest final prediction equations, Eq. (6) and Eq. (5) respectively.

Alternatively, we now consider the gradient boosting methodology, proposed by Friedman

(2001). Here, an ensemble of models (usually decision trees) is created by building a predictor

after another predictor and so on, in a sequential fashion. The theoretical foundations for GB led

to the creation of the popular XGBoost software that is used in this study (Chen and Guestrin,

2016). XGBoost builds predictors sequentially (one after another): the initial prediction is

often just the average of all the target values in the dataset, the subsequent models are trained to

predict the residual from the previous models predictions. By iteratively summing these model

outputs, the overall prediction improves. This is repeated until a stopping criterion is met, for

example a maximum number of iterations is reached or there is minimal improvement in the

error. The XGBoost methodology is displayed in the top section of Figure 3, where the output

of each tree is a function ( fk(xi)) of the ith instance. The sum of the initial prediction (y(0)i )

and the first output ( f1(xi)) results in the first prediction (y(1)i ), this prediction is then summed

with the next models output ( f2(xi)) to get the next prediction (y(2)i ). This process is iteratively

repeated, with each model’s output added to the cumulative prediction, as described in Eq. (6).

10



ŷ(t)i =
t

∑
k=1

fk(xi) = y(t−1)
i + ft(xi) (6)

Both of these algorithms are relatively quick due to their effective use of parallelism, al-

beit through different approaches. RFR can build each tree in parallel, as they are independent

of each other. This allows for the simple distribution of the training process on multiple cores.

The approach XGBoost takes is slightly more nuanced due to the sequential nature of the model

building. The parallelism occurs within the construction of each individual tree: parallel pro-

cessing of the features, finding points to split features within tree nodes in parallel, and then

parallel construction of each node within the tree. This allows for XGBoost to maintain the

benefits of the sequential gradient boosting methodology whilst having the speed of parallelism.

The incremental improvement of XGBoost’s predictions is appealing because it adaptively

refines and reduces the error, making it suitable for dealing with the large variability often found

within photolysis rates and hence is the main factor as to why this algorithm was chosen. Addi-

tionally, XGBoost incorporates regularisation techniques (described later in Section 3.4); these

help to prevent overfitting. Overfitting occurs when the models learn the patterns of the training

data too precisely and cannot generalise well out of that context. Another significant reason

why XGBoost was used was the C++ backbone, leading to the ease of implementation within

the Fortran source code of GEOS-Chem. This implementation is discussed later in Section 3.5.

2.4 Machine Learning in Atmospheric Chemistry

Given the evolution of these machine learning algorithms, there has been a surge in applied

use across all sciences and in other fields. More specifically in atmospheric studies, a review

found a 500% increase in the use of machine learning techniques (Zheng et al., 2021). Machine

learning has been used for a range of applications in atmospheric sciences, particularly in at-

mospheric models, for example large-scale technology companies like Microsoft, Google, and

NVIDIA have created global deep learning models with the intent of providing rapid and accu-

rate forecasting (Bodnar et al., 2024; Lam et al., 2023; Pathak et al., 2022). While these serve

the intended purpose of speedy predictions, they often lack interpretability, potentially obscur-

ing the underlying scientific processes. Instead, alternative methods focus on parameterising

various processes ranging from convection to discovering equations for cloud cover, maintain-

ing a connection to the scientific fundamentals (Brenowitz et al., 2020; Grundner et al., 2024).
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This is the approach this project takes.

Machine learning has also been used directly in conjunction with GEOS-Chem and we now

consider some of these projects, starting with one that used Random Forest Regression (RFR)

to simulate gas-phase chemistry (Keller and Evans, 2019). This was one of the first projects

involving machine learning in GEOS-Chem and was a direct inspiration for this project. Keller

and Evans (2019) successfully created 51 separate random forest predictors for each chemical

species that underwent transport in GEOS-Chem. Whilst their implementation was slower than

the default, non-machine learning parameterised gas-phase chemistry, due to being minimally

optimised, it was accurate for key species and provided a proof-of-concept for future develop-

ments. A second study used unsupervised clustering algorithms to reduce computational over-

head of the integration of kinetics (Shen et al., 2022). Another study, instead of revolving around

an integration into GEOS-Chem, used the outputs in conjunction with an ensemble of predic-

tion methods for air quality forecasting (Fang et al., 2023). Further machine learning projects

involving GEOS-Chem can be found in the GEOS-Chem Documentation (2023). While these

studies demonstrate the potential and wide applicability of machine learning, certain areas re-

main unexplored. For example there remains a lack of machine learning-based parameterisation

for photolysis calculations. Existing methods mimic the outputs of photo-chemical processes

in the form of concentrations (Xing et al., 2022), or directly predict photolysis rates for a small

selection of species (without implementation in a CTM) (Pan et al., 2025), yet none act as a suit-

able replacement to a photolysis scheme like Fast-JX. This is what makes this project important,

as it provides the foundations for a machine learning parameterised approach with photolysis

rate calculations, which can be a direct replacement for those schemes within Fortran based

CTMs.

2.5 Original Photolysis Scheme in GEOS-Chem

The photolysis scheme parameterised here through machine learning is Fast-JX (Section 1.3).

Fast-JX accounts for the atmospheric radiative processes by incorporating absorption and scat-

tering from gases, aerosols, and clouds, including both Rayleigh and Mie scattering. It does

this by using a multi-stream radiative transfer solver, with eight streams. Each stream repre-

sents a ‘direction’ of radiation, where the simplest would be a two-stream approximation with

two directions: up and down. The eight streams used in Fast-JX account for different angular

directions that light travels with respect to the vertical, this allows for the multiple scattering/ab-
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sorption scenarios. To accurately account for the vertical aspect of the photolysis calculations,

Fast-JX takes the 3-D nature of the atmosphere and transforms it into a discretised collection

of horizontal planes. This is called the plane-parallel approximation and makes the calculations

tractable. The RTEs are solved using the plane-parallel representation of the atmosphere to

quantify actinic flux (F), the flux of photons, at each level in a particular wavelength range. In

general, photolysis schemes approach Eq. (1) and discretise it over (k) specific wavelength bins

to simplify the calculation, resulting in Eq. (7).

J(s−1) =
k

∑
i=1

F(λi)σ(λi,T,P)φ(λi,T,P) (7)

The terms in Eq. (7) are the same as those in the continuous equation (Eq. (1)). In the

specific case of Fast-JX, it specifically calculates the wavelength bin-resolved fluxes (those seen

in Eq. (7)) and multiplies them by the effective cross-section for each bin. For simplicity, the

cross-sections used in Fast-JX have the quantum yields incorporated (as a product of the two).

Additionally, the temperature and pressure dependence seen in Eq. (7) is accounted for through

interpolation of the cross-sections. The wavelength range covered by Fast-JX in GEOS-Chem

is 177-850 nm, through 18 wavelength bins. This fewer number of bins, compared to the UCI

Reference Model (Bian and Prather, 2002), leads to faster computation, hence the ‘fast’ in Fast-

JX. The photolysis rates calculated by Fast-J are stated to have worst-case errors of no more

than 10% under various atmospheric conditions (Wild et al., 2000).

2.6 Model Description (GEOS-Chem)

The CTM used in this project is GEOS-Chem Classic version 14.2.2 (GEOS-Chem Community,

2023, https://doi.org/10.5281/zenodo.10034814). It is an open source project

to facilitate research into atmospheric phenomena and chemistry. GEOS-Chem Classic was

configured with a spatial resolution of 4°×5° and a vertical hybrid-sigma pressure coordinate

system using 72 vertical levels. The internal time steps were 40 minutes and 20 minutes for

the chemical and transport time steps, respectively. The Modern-Era Retrospective analysis for

Research and Applications, Version 2 (MERRA 2) met field was used. MERRA2 is a NASA

atmospheric reanalysis tool to provide high resolution meteorological data (Gelaro et al., 2017).

The model chemistry was initially described by Bey et al. (2001) with various additions

since. It includes tropospheric chemistry of ozone, NOx, hydrocarbons, with various updates
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to halogen chemistry (Parrella et al., 2012; Bates et al., 2021; Eastham et al., 2014). The pho-

tochemistry uses a customised version of the Fast-JX code based on Fast-J (Wild et al., 2000),

as detailed in the previous section. This scheme calculates photolysis rates for 161 different

species, including a mixture of inorganic, nitrogenous, and organic compounds. The primary

aim of this study was to emulate and replace the calculation of these photolysis rates, allowing

for a seamless transfer of predicted rates to the chemical kinetics calculation, described and

solved by the Kinetic PreProcessor (KPP) Rosenbrock solver (Lin et al., 2023).

3 Data and Methodology

3.1 Training and Evaluation Data

This work was performed using the Viking 2 high-performance computing (HPC) cluster, which

provided high quantities of memory, CPU, and GPU power. Additionally, the scripts used

to prepare the datasets, train the models, including each model instance can be found in the

referenced Zenodo repository: (Brady, 2024, https://doi.org/10.5281/zenodo.

12705193)

For this project, a dataset was produced from the outputs of the GEOS-Chem model, with

data ranging from the start of July 2019 to the end of June 2020. The data was collected for

every grid box (a spatial setup of 72×46×72) and was sampled every five hours. The choice of

sampling every five hours was made to manage memory use efficiently. It also allowed for the

data sample to span all possible hours in a day throughout the month, given 24 hours divided

by 5 hours does not give an integer. Despite all data collection and training taking place on the

Viking 2 HPC, with large amounts of memory available, using data sampled from every one,

two, or four hours drastically increased the time the workflow would take, making it inefficient

for model development. This was at the cost of the potential complex interactions missed by

reducing the frequency of sampling to every five hours. The primary aim of the dataset was to

contain enough atmospheric context to allow the machine learning models to effectively predict

in any given scenario. The ‘StateMet’ (meteorological quantities), ‘JValues’ (photolysis rates),

and ‘Aerosols’ (aerosol quantities) were the diagnostics enabled for collection in GEOS-Chem

for this run. The data was formatted in the Network Common Data Form version 4 (NetCDF4,

‘.nc4’) file format, a common file format in atmospheric sciences for large, multidimensional

datasets.
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In the training dataset, the collection of variables was designed to match the input data

used in the Fast-JX Fortran subroutines, as these were all known to have a clear impact on

photolysis rates. Through iterations of model development, features to keep or remove were

identified. Physical variables such as temperature, UV surface albedo, overhead ozone column,

solar zenith angle (SZA), and the cosine of the SZA were some of the key variables. These

variables would directly affect the photolysis rates in different ways. Temperature influences

the distribution of energy in molecules and, indirectly, the distribution of aerosols/gases through

atmospheric circulation, caused by changes in temperature. Surface albedo indicates how much

solar radiation is reflected, whilst the overhead ozone column causes scattering/absorption of

photons. The inclusion of SZA allowed for both positional and temporal encoding, as its values

are largely dependent on both the seasonality and location. The cosine of the SZA, which is

directly related to the SZA, is also a measure of solar flux, as the atmospheric path photons

travel is equal to the atmospheric height divided by the cosine of the SZA. SZA also allowed a

practical optimisation. When a grid box fulfilled the condition of a SZA greater than 98°, there

would be minimal photolytic activity due to an absence of solar flux. The training dataset was

filtered with this condition. This was done to remove excess zero values from influencing the

training process. An additional two out of seven possible dust aerosol optical depth bins (bins 1

and 7) were used in the input vector. It was important to have aerosol representation due to the

scattering and absorption they cause (Liao et al., 1999).

In the final iteration, there were 19 total variables that made up the input vector for the ma-

chine learning models: 13 directly from the CTM output data and six calculated from that data

(see Table 1 for the collection of variables). The input variables were classified into either 2-D

or 3-D variables. Variables were considered 2-D if they had one value for the entire vertical col-

umn and were 2-D functions of longitude and latitude, for example surface albedo. 5 of the 19

variables were considered 2-D. These values were broadcasted over the vertical column so the

lowest and highest vertical level would have the same value. The remaining 14 variables were

classified as 3-D variables, where each grid box had a different value for each level, longitude,

and latitude combination.

For some of the 3-D type variables, a mechanism was implemented to provide the machine

learning models with vertical context surrounding each instantaneous point. This was done by

calculating the cumulative summations above and below the points in the vertical column to

get two new variables for each original variable. Three specific 3-D variables underwent this
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calculation: the water cloud optical depth, ice cloud optical depth, and the 3-D cloud fraction.

The six calculated variables seen in the lower part of Table 1. These variables emulated some

level of awareness similar to that of what the beam of photons would encounter in terms of

cloud behaviour in photolysis schemes. For example, doing this for the water cloud optical

depth would represent the amount of water cloud optical depth above or below each point.

While this mechanism was beneficial, it was not applied to all 3-D variables.

The aerosol optical depth bins were considered, but this would have led to an additional

four variables, hence slowing down the predicting time without substantive increase in the per-

formance. When deciding which variables to keep, it was assumed the impact of clouds would

be more significant than aerosols (Lefer et al., 2003), potentially at the cost of a reduction in

performance over more aerosol polluted areas like China and North Africa (Li et al., 2022). It

must be acknowledged that the exclusion of these aerosols, as well as other aerosol variables

such as PM2.5 concentrations, could hinder the performance of some of the machine learning

models dictated by aerosol scatterings.

16



Table 1: Overview of variables that made up the input vector for the machine learning model. The variable symbol, name and unit are included alongside

whether they are a 2-D or 3-D quantity. Variable type is included, where collected means a variable from GEOS-Chem output and calculated is using collected

data undergoing feature engineering.

Type Variable Symbol Variable Name 2-D/3-D Variables Unit

Collected CLDF 3-D Cloud Fraction 3-D -
SZA Solar Zenith Angle 2-D Degree (°)
SUNCOS Cosine of SZA 2-D -
UVALBEDO UV Surface Albedo 2-D -
lev Hybrid Level 2-D level
TO3 Overhead Ozone Column 2-D Dobsons (DU)
T Temperature 3-D Kelvin (K)
PMID Pressure 3-D Hectopascal (hPa)
AIRDEN Air Density 3-D kg m-3

TAUCLI Ice Cloud Optical Depth 3-D -
TAUCLW Water Cloud Optical Depth 3-D -
AODDust1000nm_bin1 Aerosol Optical Depth Bin 1 3-D -
AODDust1000nm_bin7 Aerosol Optical Depth Bin 7 3-D -

Calculated TAUCLW_above Water Cloud Optical Depth Above 3-D -
TAUCLW_below Water Cloud Optical Depth Below 3-D -
TAUCLI_above Ice Cloud Optical Depth Above 3-D -
TAUCLI_below Iced Cloud Optical Depth Below 3-D -
CLDF_above 3-D Cloud Fraction Above 3-D -
CLDF_below 3-D Cloud Fraction Below 3-D -
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3.2 Different Photolysis Rate Machine Learning Models

A model could be made for each photolysis rate in the model. However this would be ineffi-

cient. In GEOS-Chem some species had more than one photodissociation pathway, known as

channels. This was either implemented through a branching ratio or through the use of different

wavelength dependent cross-sections. For the latter, each separate channel was treated as an

individual target variable, temporarily added to the ‘JValues’ diagnostics as its own rate, so a

machine learning model could be trained on it. For instance, GEOS-Chem uses two channels

for the photolysis of formaldehyde: one producing hydrogen (H) and formyl (CHO) radicals

(reaction R1). The other produces carbon monoxide (CO) and diatomic hydrogen (H2) (reac-

tion R2). This approach allows for the conservation of the complex photochemistry resulting

from the separate channels, an important aspect of a photolysis scheme. The total photolysis

rate for a species is the sum of the rates of the individual channels, resulting in the quantities

found in the GEOS-Chem outputs. This was done for five separate species: formaldehyde (2

channels/models), chlorine nitrate (2 channels/models), acetaldehyde (2 channels/models), gly-

oxal (3 channels/models), and acetone (2 channels/models). In total these five species account

for 11 distinct channels, and hence an additional 11 models.

CH2O+hν → H+HCO (R1)

CH2O+hν → H2 +CO (R2)

When the channels were accounted for by a branching ratio, one model was used for the

species and the output was simply multiplied by the different multipliers. This resulted in

separate photolysis rates from one machine learning model. For example NO3 was split via two

channels using a ratio of 0.886 to 0.114 (as described in Fast-JX).

When a cross-section was the same for different species, it meant the species were similar

enough to have the same values for the photolysis rates calculated by Fast-JX in GEOS-Chem.

For the species this was applicable to, a single model could be reused. Table 2 contains the

models used more than once. For example in GEOS-Chem, for organic peroxides, the methyl-

hydroperoxide (MP) cross-section is re-used thus there is no need to generate machine learning

models for each species as the same one can be reused. Similarly, monoterpene-derived nitrates

(MONITS) and hydroperoxethanal (HPETHNL) were used for different biogenically-derived
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species. When factoring in the re-usability of models and ones needed for separate channels,

the 161 photolysis rates used 111 different machine learning models to account for 105 unique

photolysis rates. This includes the five species (formaldehyde, chlorine nitrate, acetaldehyde,

glyoxal, and acetone) whose photolysis rates are each determined by multiple channels, requir-

ing a total of 11 separate machine learning models to account for all the individual channels.

Table 2: Summary of machine learning models used more than once.

Model Name Species Description Frequency of Models

MP Methylhydroperoxide 22

MONITS Monoterpene-Derived Nitrates 9

HPETHNL Hydroperoxyethanal 7

RCHO > C2 Aldehydes 4

MVK Methyl Vinyl Ketone 3

NO3 Nitrate Radical 2

HNO4 Pernitric Acid 2

BrNO3 Bromine Nitrate 2

H1211 Halon 1211 2

R4N2 > C3 Alkylnitrates 2

MACR Methacrolein 2

MPN Methyl Peroxy Nitrate 2

MCRHNB A Hydroxynitrate from MACR 2

NITs Sea-salt Particulate Nitrate 2

NIT Nitrate 2

3.3 Model Training and Parameters

The machine learning models were trained in Python using XGBoost (Section 2.3), (Chen and

Guestrin, 2016). The data was split into training and validation datasets from the start of July

2020 to the end of June 2021. The first 75% of data (from the start of July 2020 to the end of

March 2021) was allocated for the training, with the remaining 25% (from the start of April

2021 onwards) saved for validation (the results for which can be found later in Section 4).

This split ensured the models could learn from a substantial quantity of data whilst also fairly

evaluating the ability to generalise. To optimise the speed of the training process, the machine
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learning models were trained on NVIDIA H100 GPUs, on Viking 2. Hyperparameters that

defined the models were optimised largely through trial and error. The primary focus was on

the learning rate and maximum depth, as their interactions most often increase the performance

in gradient boosting models (Zuo et al., 2019). Other hyperparameters were tuned, but with

minimal sensitivity to the reduction in error. All hyperparameters are shown in Table 3.

An analysis or optimisation of the hyperparameters, through common hyperparameter opti-

misation techniques like Optuna or Bayesian Optimisation (Akiba et al., 2019; Wu et al., 2019),

would undoubtedly increase performance. However, performing this for each species was con-

sidered too time consuming for this initial study.

Table 3: Tabulated description of the hyperparameters used for all XGBoost photolysis predictors.

Hyperparameter Value Hyperparameter Info.

eta (η) 0.005 Learning rate

max_depth 12 Maximum depth of a tree

colsample_bytree 0.8 Ratio of training data

alpha (α) 1 L1 regularization term

gamma (γ) 1 Minimum loss reduction for partition

lambda (λ ) 1 L2 regularization term

num_rounds 2000 Number of training rounds

3.4 Objective Function and Regularisation

In XGBoost, the model is minimised through the objective function. This is the sum of the loss

function and the regularisation terms. Equation (8) shows this operation, where ‘Obj’ is the

objective function, L(θ) is the training loss function, and Ω(θ) is the regularisation term. The

regularisation term controls the model complexity to prevent overfitting.

Obj = L(θ)+Ω(θ) (8)

Ω(θ) = γT +
1
2

λ

T

∑
j=1

(w j)
2 +α

T

∑
j=1

|w j| (9)

The regularisation terms in XGBoost can be seen in Eq. (9). This equation represents

the summation of three components: the tree complexity (γT ), the L2 regularisation term
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(1
2λ ∑

T
j=1(w j)

2), and the L1 regularisation term (α ∑
T
j=1 |w j|). Here T is the number of leaves

in the tree, w j are the leaf weights, and α , λ , and γ are the regularisation parameters seen in

Table 3. In the context of XGBoost, the weights (w j) are the contribution to the final prediction

from each sequentially constructed tree in the ensemble. For example, if an input sample tra-

verses the tree and ends up in a leaf with a weight w j = 0.5, then that tree contributes 0.5 to the

final prediction. This is represented as fk(xi), in relation to Eq. (6), where k is the index of the

particular tree for the xi input sample and, as described in Section 2.3, the final prediction is the

sum of the output from all trees. The regularisation terms penalise larger leaf weights (through

L1 and L2) and complex tree structures (through γT ).

There are a number of different loss functions that can be used for the training. Each one is

dependent on the nature of the data and task at hand (Naser and Alavi, 2021), with some of these

native to the XGBoost API. Due to the task simply being regression, with a large dataset for

training, the XGBoost models minimised the Mean Squared Error (MSE), shown in Eq. (10).

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2. (10)

The MSE computes the average of the squared differences between the actual (yi) and the

predicted (ŷi) values for n samples. To avoid issues with the logarithmic spread of photolysis

rate (spanning multiple orders of magnitudes), the data was log transformed. The addition of

the smallest non-zero constant (denoted δ ), for each different photolysis rate from a sample of

the data. This was to prevent issues with the log transformation of zero values. The constant

was usually a magnitude smaller than 10−10 s−1, depending on the species and was saved for

each photolysis rate for later use, transforming the runtime predictions in GEOS-Chem back to

a normal scale. The general forward log transformation for the true values from the linear to log

domain, for the i-th instance and the j-th species, using the respective constant (δ j) is shown in

Eq. (11).

ylog,i, j = ln(ylinear,i, j +δ j) (11)

3.5 Implementation

One of the largest challenges of this parameterisation was the need to integrate the machine

learning models back into GEOS-Chem once trained. Most tasks in this domain are commonly
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used in the context of Python or C, with much support and documentation. GEOS-Chem how-

ever is built in Fortran. Luckily, more people are finding a need to have machine learning sup-

port in Fortran and there are numerous libraries now supported. They generally use pre-existing

libraries and define a C wrapper. Some examples include FTorch (ICCS Contributors, 2024), a

Fortran library to enable the use of PyTorch models, and Fortran-Keras Bridge which is similar

to FTorch but for the Keras models (Ott et al., 2020). Both of these enable popular deep learning

libraries to be used within Fortran. In this study, since XGBoost was used, its C++ backbone

could be manipulated to interact with Fortran through an XGBoost Fortran API, developed by

Keller and Manyin (2022). This used a Fortran module called ‘Iso C Binding’, making the XG-

Boost functions in C callable in GEOS-Chem’s Fortran code. To enable XGBoost to work with

the API, XGBoost (version 1.6.0) was pointed to within a Conda environment when compiling

GEOS-Chem. The simple version of the code used to implement the prediction process within

GEOS-Chem is included in Appendix 8.1.

The data necessary for the input vector was calculated, collected and then passed through

to the native data structure of XGBoost (a DMatrix) for all grid boxes. Any grid boxes that

were considered dark (with a SZA greater than 98°) were skipped. On the first GEOS-Chem

time step, the machine learning models were loaded and initialised. A simple implementation

of OpenMP, Open Multi-Processing (Dagum and Menon, 1998), was used to parallelise the

predicting process on the CPUs; it enabled different photolysis models to work on different

threads of the CPUs.
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Data Processing

> Filter data by SZA (SZA < 98)

> Calculate variables necessary 
to capture dimensionality

> Get constants for 
transformations and store for 
later use

Implementation

> Compile XGBoost and 
functionality in GEOS-Chem

> Load and initialise all 
models

> Collect data needed for all 
grid boxes

> Predict during runtime

> Retransform logged 
predictions with constants

(exp(yi ) - 𝛿)

> Pass predicted photolysis 
rates to other subroutines

Model Development

> Log transform rates with 
stored constants  (log(yi + 𝛿))

> Split data for training and 
validation

> Train on Viking 2 and save 
models 

Constants Models

Figure 4: Schematic representation of the model development process from the data processing through

to implementation. The constants derived from the data processing step and the models trained from the

model development step, were both stored and used within the implementation in GEOS-Chem.

As part of the training process, the photolysis rates were log transformed. Outputs from the

machine learning models during runtime needed to be transformed back into linear space by

applying the exponential function, and the respective constant (δ j) subtracted (Eq. (12)). This

was done during runtime and the linear photolysis rates were stored in an array containing all

photolysis rates for all longitude, latitude, and level combinations and was passed to the KPP

module. This was repeated each time step. A schematic showing both the model development

and predicting is shown in Figure 4.

ŷlinear,i, j = exp(ŷlog,i, j)−δ j (12)

When ran, the machine learning models would occasionally predict negative photolysis

rates. This happened when the transformed prediction was smaller than the constant used dur-

ing transformation (from log space to linear space). In this case, it was assumed the model was

attempting to predict zero, and hence a condition was added to set negative photolysis rates

to zero. This prevented defiance of conservation laws and hence irrational behaviour within

GEOS-Chem, such as an increase of mass in the system.
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4 Model Performance on Validation Data

4.1 Evaluation Metrics

The following results are an assessment of the performance on the machine learning models

compared to the validation data, calculated by Fast-JX (with the partition described in Section

3.3). To evaluate the performance of the models, three different metrics were used, each giving

a different insight into a model’s accuracy and reliability. One of the metrics is an adaptation

of the loss function (the MSE in Eq. (10)) in the form of the normalised root mean squared

error (NRMSE) (Eq. (13)). This metric is sensitive to large errors and in turn outliers (Chai and

Draxler, 2014). Additionally, the normalised mean absolute error, NMAE, and the coefficient of

determination, R2, are used (Equations (14) and (15)). The NMAE is simply interpretable as the

average error magnitude and is less sensitive to outliers compared to NRMSE, making it a more

natural measure of error (Willmott and Matsuura, 2005). The R2 metric, provides insight into

the proportion of variance explained by the model, a powerful metric in measuring predictive

power (Alexander et al., 2015). This can however be misleadingly high for poor models if the

data has high variability, hence in conjunction with the NRMSE it forms a powerful analysis.

The NRMSE and NMAE are normalised with the mean of the true values from Fast-JX (ȳ)

to account for the variation between the photolysis rates of different species. This allows for

direct comparison between the different machine learning models and their varying orders of

magnitudes. The formulas for the evaluation metrics are as follows:

NRMSE(y, ŷ) =
1
ȳ

√
1
n

n

∑
i=1

(yi − ŷi)2 (13)

NMAE(y, ŷ) =
1
ȳ

1
n

n

∑
i=1

|yi − ŷi| (14)

R2(y, ŷ) = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 (15)

Here, yi is the true photolysis rate calculated from Fast-JX, ŷi is the predicted photolysis rate

from the machine learning, and ȳ = 1
n ∑

n
i=1 yi is the mean of the true values out of n data points.
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4.2 The Model Statistics for Validation data

To assess how well the models performed on the validation data, the predicted ozone to O(1D)

and NO2 photolysis rates (shown in Reactions R3 and R4 and denoted J(O1D) and J(NO2),

respectively), were plotted against the true values calculated by Fast-JX for the whole of the

validation data (Figure 5).

O3 +hν → O2 +O(1D) (R3)

NO2 +hν → NO+O (R4)

The J(O1D) and J(NO2) rates are considered here as key rates as they represent different

partitions of the wavelength spectrum: J(O1D) rates are determined by short wavelength (largely

UV spectrum) conditions where ozone absorption and Rayleigh scattering dictate the amount

of photons available. In contrast, NO2 photolysis is influenced more by the properties of clouds

and controls the middle of the wavelength spectrum.

The main density of points in Figure 5 is near, or on, the true-predicted (dashed black) line

for both species for the linearly scaled plots, panels (a) and (c). This indicates a generally good

performance, especially at the higher magnitudes. The machine learning models are worse at

the lower magnitudes shown in the log space (panels (b) and (d)), especially for J(NO2). In the

log space, the J(O1D) rates appear to have a better performance compared to the J(NO2) rates,

which have a higher NRMSE and NMAE and a lower R2 value. The linear scale results present

a more mixed picture. This range in performance can be explained by the nature of the different

distributions of the data. The J(O1D) rate predictions are generally accurate (high R2) but have

larger relative errors at more extreme, high values, affecting the NRMSE. The J(NO2) rates,

on the other hand, show a more consistent performance across the range of photolysis rates,

resulting in the lower NMAE and NRMSE, despite a lower overall correlation.
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Figure 5: Predicted against true photolysis rates for J(O1D), panels (a) and (b), and J(NO2), panels

(c) and (d). The hex-bin plots show the density of points that fall under each value in each hexagon

where yellow represents roughly 107 points and dark purple is 1 to 10 points. Panels (a) and (c) are

the normal scale photolysis rates and panels (b) and (d) are photolysis rates in the logarithmic space

following predictions. The dashed black line represents when the calculated values are equal to the

predicted values and hence indicate minimal error.

Table 4 presents the evaluation metrics for the species found in Figure 5, as well as ad-

ditional key species: the photodissociation of ozone to atomic oxygen, hydrogen peroxide,

nitrogen compounds, organic compounds, and two halogen species. Since the predictions were

transformed into the logarithmic space during training, the metrics calculated for the log trans-

formed data, as well as those calculated post-transformation into linear space are shown. The

compression of the photolysis rates into logarithmic space allowed the machine learning models

to train accurately and reduce the impact of the range of the data. Naturally this reduction in

variability makes the metrics show a relatively high degree of accuracy, where all 111 machine

learning models had an NRMSE below 0.2 and an NMAE below 0.1, as well as 109 models
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with an R2 > 0.98. Additionally 94 machine learning models had an R2 > 0.995 in logarith-

mic space. Despite this reassuring performance, it is the linear photolysis rates that are used

within the GEOS-Chem CTM, and hence this becomes the more important space. In the linear

photolysis rates, outliers are more heavily penalised in the metric calculations (particularly the

NRMSE). For the validation data in the linear space, the machine learning models maintained a

strong predicting performance, as 109 out of 111 models had an R2 > 0.98, which indicate little

deviation from predicted and real photolysis rates. Although, it should be noted only 48 models

had an R2 greater than 0.995. The NRMSE was below 0.2 for 96 models and 109 models had

an NMAE below 0.1. A table containing all 111 machine learning statistics can be found in

Appendix 8.2, Table 7. Interestingly, in Table 7 the photolysis predictors with the species IDs

‘NIT’ and ‘NITs’ have poor performance in the linear space, but satisfactory performance in

the log space. This is most likely due to small errors in the log space translating into errors of

several orders of magnitude when transformed into the linear space. The performance of these

photolysis rates when incorporated back into the GEOS-Chem model is discussed later.
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Table 4: Performance metrics of the R2, NRMSE, and NMAE for key species calculated from the whole of the validation data. The metrics shown are both in

linear and logarithmic space.

Linear Space Log Space

Species ID Species Info R2 NRMSE NMAE R2 NRMSE NMAE

O3O1D O3 → O1D 0.995 0.245 0.063 0.996 0.032 0.013

RCHO >C2 Aldehydes 0.993 0.090 0.057 0.996 0.031 0.010

HNO3 Nitric Acid 0.996 0.171 0.054 0.997 0.024 0.009

BrO Bromine Monoxide 0.990 0.082 0.057 0.996 0.060 0.019

NO2 Nitrogen Dioxide 0.989 0.082 0.057 0.995 0.051 0.015

NO3 Nitrate Radical 0.984 0.093 0.064 0.995 0.095 0.028

Cl2 Diatomic Chlorine 0.990 0.082 0.057 0.995 0.044 0.013

HPETHNL Hydroperoxyethanal 0.994 0.089 0.056 0.996 0.031 0.010

MP Methylhydroperoxide 0.995 0.096 0.054 0.996 0.027 0.009

MVK Methyl Vinyl Ketone 0.993 0.086 0.054 0.996 0.027 0.009
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4.3 Feature Importance

To provide an understanding of how the XGBoost models were influenced by the input vari-

ables, the SHapley Additive exPlanations (SHAP) values were used. SHAP values, founded in

game theory, provide a consistent method to interpret model predictions and provide an insight

into the importance of the different input variables, in this study the ‘TreeExplainer’ function-

ality in the SHAP Python package was used (Lundberg et al., 2020). Figure 6 shows the feature

importance calculated from a sample of the validation data (n=500,000 points), for the pho-

tolysis rates J(O1D) and J(NO2) (panels (a) and (b) respectively). These SHAP plots, known

as beeswarm plots, highlight the most impactful variables, with the top nine features shown

individually and the remaining features’ summed importance as the tenth category.

Figure 6: Feature importance plot in the form of a SHAP summary showing the top nine features and

the cumulative impact of the remaining 10 features. This is for the species J(O1D) in panel (a) and for

J(NO2) in panel (b).

Model level, air density, and pressure were important variables for predicting photolysis

rates. This is unsurprising as photolysis rates decrease from the edge of space to the surface,

due to scattering and absorbance in the atmosphere. This means there is a direct correlation

between photolysis rates and height. The SZA and the cosine of the SZA were expected to

be highly important variables for predicting photolysis rates due to their direct relation to solar

flux and were found to be important for all species. Other significant contributors included

the aerosol optical depth bins and the surface albedo, these variables were frequently ranked

in the top 10 of feature importance. The aerosol optical depths affect the scattering absorption

by various aerosols (Figure 1, part (iii)), and the surface albedo determines the reflectivity of
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Earth’s surface (Figure 1, part (ii)), influencing the amount of light available for photolysis.

From the variables calculated and not directly collected from GEOS-Chem used in the input

vector, the cloud fraction above was often the most impactful. The remaining variables were

combined together into a single importance category due to their small individual impact. Given

the satisfactory performance of the predictors on the validation data and that the rationale behind

the predictions are inline with the science that governs photolysis, the implementation of the

machine learning models within GEOS-Chem was investigated.

5 Model performance when integrated into GEOS-Chem

The following Section presents the results from the machine learning predictors after imple-

mentation in GEOS-Chem. The model is run from the start of July 2020 to the end of June

2021. The initial six months (July to December 2020) served as the spin-up period and the

subsequent six months (January to June 2021) were used for analysis and evaluation. Here we

analyse the performance of the same two photolysis rate predictors analysed in Section 4: the

photolysis of ozone to atomic oxygen (O(1D)) and the photolysis of nitrogen dioxide (NO2),

as well as the performance of other key photolysis rates (Section 5.1). Next, the performance

of the photolysis rates at different altitudes in the CTM is evaluated (Section 5.2). Attention

is then turned to calculated concentrations, comparing the default GEOS-Chem concentrations

calculated using both the Fast-JX (denoted FJX, for brevity, in these results and most of the

discussion) and machine learning (denoted ML, for brevity, in these results and the discussion)

photolysis rates in Section 5.3.

5.1 Prediction of Photolysis Rates

Figure 7 shows the J(O1D) surface photolysis rates calculated by GEOS-Chem from Fast-JX

(top row), the ML model (middle row), and the relative difference between the two (bottom row)

at 00:00 UTC on the first day of the first, third, and sixth month post spin-up. This provides

context as to where most error arises. Errors were consistently large around the terminator (the

point at which day becomes night and night becomes day), where the SZA is around 90°, and

there is much less photolytic activity. This is consistent with Figure 5 for the validation data,

where there was more error at lower photolysis rates. The terminator is a source of complexity

studied in CTMs due to the steep gradients of chemical concentrations resulting from rapid
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changes in sunlight available for photolysis (Lauritzen et al., 2015). The ML models largely

over-predicted (in excess of 200%) at the terminator and generally under-predicted everywhere

else. We learn that the third month is not unique, but instead shows that the error around the

terminator steepens. This is consistent with the increase in the gradient of the SZA and light as

the simulation approaches the equinox (March). This behaviour is consistent for other species.

Figure 7: Photolysis rate maps of surface J(O1D) rates following the sixth month spin-up on the first

day of the first month (01 January 2021, column 1), the third month (01 March 2021, column 2), and the

sixth month (01 June 2021, column 3) calculated by the Fast-JX photolysis scheme (FJX, row 1), and

the machine learning approach (ML, row 2). The percentage relative difference between row 1 and row

2 is shown are shown in row 3.

Figure 8 shows the time evolution of the R2 metric between the FJX and ML rates for

J(O1D), J(NO2), and J(NO3); these were calculated for both the troposphere (panel (a)) and

the whole vertical column (panel (b)) for the post spin-up integration period. From other ML

parameterisations in CTMs, it is found that the error can accumulate through each internal time

step and so propagate within the transport model (Keller and Evans, 2019). There are some

cases where the error grows so large that predictions become unusable (Kelp et al., 2018). The

stability of the photolysis predictors can be analysed by their respective R2 values over time.

The tropospheric photolysis rates, panel (a), are mostly stable and generally high (consistently

greater than 0.97), this accuracy was consistent for the predictors over the entire vertical column,

Figure 8b.
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Figure 8: Error propagation and evolution of the R2 metric between Fast-JX and machine learning pho-

tolysis rates: J(O1D) (red), J(NO2) (blue), J(NO3) (purple). Panel (a) is the metrics for the troposphere

and panel (b) is the metrics calculated for the entire vertical column. The time period is from the start of

January 2021 to the end of June 2021 (post the 6 months spin up).

In the troposphere in January 2021, after six months spin-up, 68 out of the 105 ML predicted

photolysis rates maintain an R2 larger than 0.98, with an additional 81 ML rates consistently

having an R2 greater than 0.95. By June 2021 (six months into the analysis period), the amount

of ML predicted rates with an R2 greater than 0.98 slightly reduces down to 67, but 81 maintain

an R2 greater than 0.95. Table 5 summarises these findings for key species, and is a tabulation

of Figure 8. It is noted that for some species, the performance is better in the first month,

compared to the sixth, and other species show opposite behaviour. Combining the tabulated

data and the plotted metrics, we conclude that the species appear to be equilibrated and in a

steady state of prediction. The performance metrics for all 105 tropospheric photolysis rates can

be found in Appendix 8.3, Table 8. When the entire vertical column is considered, including the

stratosphere, the metrics are similar to the troposphere. From the 105 ML predicted photolysis

rates, 73 and 97 maintained an R2 over 0.98 in the first and sixth months respectively, post spin-

up, and 103 ML rates in both these months had an R2 over 0.95. Most stratospheric and hence

full vertical photolysis rates show satisfactory accuracy. A table containing all 105 metrics for

the full vertical column photolysis rates calculated between the ML and FJX rates can be found

in Appendix 8.3, Table 9.

It should be noted for the tables in the appendix containing both tropospheric and full verti-

cal column metrics, all R2 are generally good except for the photolysis rate with the species ID

‘SO4’. This discrepancy occurs because this photodissociation is considered a special reaction

and is later adjusted by a different module to the photolysis rate calculations (Prather, 2012).
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Therefore the poor performance between the predicted and FJX photolysis rates is not of con-

cern. Additionally, in the validation data there was concern for the photolysis rates with species

IDs ‘NIT’ and ‘NITs’. These have satisfactory performance in both Table 8 and Table 9.
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Table 5: Performance metrics of the R2, NRMSE, and NMAE for key species photolysis rates within the troposphere from the first day of the first month (01

January 2021) and comparatively the first day of the sixth month (01 June 2021) post the six month spin-up. Calculated between predicted rates and Fast-JX rates

01 January 2021 01 June 2021

Species ID Species Info R2 NRMSE NMAE R2 NRMSE NMAE

O3O1D O3 → O1D 0.971 0.315 0.155 0.975 0.303 0.149

RCHO >C2 Aldehydes 0.985 0.173 0.095 0.878 0.689 0.371

HNO3 Nitric Acid 0.981 0.211 0.111 0.983 0.203 0.110

BrO Bromine Monoxide 0.986 0.154 0.085 0.985 0.161 0.088

NO2 Nitrogen Dioxide 0.985 0.155 0.086 0.974 0.193 0.108

NO3 Nitrate Radical 0.978 0.182 0.099 0.983 0.164 0.092

Cl2 Diatomic Chlorine 0.986 0.152 0.084 0.985 0.160 0.088

HPETHNL Hydroperoxyethanal 0.986 0.171 0.094 0.986 0.171 0.092

MP Methylhydroperoxide 0.986 0.159 0.088 0.986 0.162 0.088

MVK Methyl Vinyl Ketone 0.987 0.178 0.088 0.987 0.181 0.086
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5.2 Predictive Ability in the Vertical Columns

Figure 9 shows the relative difference (%) between the Fast-JX and ML rates for O(1D) (top

row), NO2 (middle row), and NO3 (bottom row) at the surface (0 km elevation), the 35th (16

km elevation), and the 55th (42 km elevation) vertical level for the columns from left to right for

00:00 UTC on 01 January 2021 (the first time step post spin-up). We find that the error around

the terminator, in Figure 7, is not limited to just the surface level, nor to the photolysis of ozone.

This is present at all levels and for many species, just at varying intensities. For the photolysis

rates shown in Figure 9, the number of over-predicted values around the terminator decreases

with higher vertical levels in GEOS-Chem; these are instead replaced by a higher incidence

of under-predicted values, albeit at a lower magnitude of error. The reduction in error around

the terminator, as the vertical level increases, can most likely be attributed to the differences

in tropospheric and stratospheric dynamics and properties. Sources of scattering, like clouds

and aerosols, are reduced in the stratosphere and hence contribute to more straight-forward

predictions. This behaviour largely accounts for the higher quantity of ML models performance

in the entire vertical column, than in just the troposphere.

Figure 9: Percentage relative difference map for the photolysis rates: J(O1D) (row 1), J(NO2) (row 2),

and J(NO3) (row 3) for 01 January 2021 00:00 UTC at 3 different atmospheric vertical levels. Column 1

is surface level (0 km elevation, 1000 hPa), column 2 is level 35 (16 km elevation, 100 hPa), and column

3 is level 55 (42 km elevation, 2.3 hPa).
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Figure 10: Vertical profile for the photolysis rates for J(O1D), J(NO2), and J(NO3) comparing the Fast-

JX rates (solid line) and the machine learning rates (dashed line) at 3 different solar zenith angles:

25°(red), 45°(blue), and 85°(black). This is averaged over all longitudes, latitudes, and times for the

respect SZA and level.

Figure 10 shows the vertical profile for three photolysis rates (on a log scale) at three dif-

ferent solar zenith angles (25°, 45°, and 85°) averaged over longitude, latitude, and time, from

the start of January to the end of June 2021, comparing the Fast-JX rates (solid line) and ML

rates (dashed line). The SZAs used increase with the photolytic intensity, hence it is expected

the photolysis rates for lower SZA (25°and 45°) to be higher than a larger, and darker, SZA

(at 85°). We find that the vertical levels at which over-predictions and under-predictions at

85° happen, are similar for the J(NO2) and J(NO3) rates, but different for J(O1D) rates. Over-

predictions occur below 110 hPa (around 15 km elevation) and 130 hPa (around 14.5 km el-

evation) for J(NO2) and J(NO3) respectively. The J(O1D) rates are constantly over-predicted

at 85°, but become closer to the true rates higher in the atmosphere. Specifically for the ni-

trogen compounds, when the over-predictions change direction in under-predictions at 85°, is

roughly the change between the troposphere to the stratosphere. This mirrors the decrease in

over-predictions by level around the terminator in Figure 9. Both of the nitrogen compounds’

photolysis rates in Figure 10 show little deviation when the SZA is 25°and 45°, except for the

slight over-predictions for the J(NO3) rates above 110 hPa (for a SZA of 25°). In contrast, the

J(O1D) rates are minimally under-predicted for these SZAs.
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Although this analysis does not cover every ML model, it highlights that key photolysis

rates, in general, are accurately predicted over a variety of altitudes. There are points where

the ML models are less accurate (such as around the terminator), but the overall magnitude

of error remains small and within acceptable limits, as indicated by the 103 out of 105 ML

models with an R2 above 0.95 in the entire vertical column (in Table 9 in the Appendix). Now

that the photolysis rates predicted by the ML models implemented in GEOS-Chem has been

evaluated, the difference between the concentrations of species calculated using the ML and

FJX photolysis rates can be analysed.

5.3 Concentration Calculations using the Predicted Rates

Within GEOS-Chem, the predicted photolysis rates are stored within an array that is later used

within the Kinetics PreProcessor (KPP) to calculate concentrations. The concentration of ozone

is a key concentration in transport models due to its radiative properties influencing temperature

distribution and climate patterns, as well as its chemical interactions with other species (Monks

et al., 2015). In this parameterisation it requires a low margin of error, especially considering

the total overhead ozone column is a quantity used in the photolysis ML input vector. Here,

the effect photolysis rate predictions have on the ozone column, the nitrogen dioxide and ozone

surface concentrations are investigated, as well as the potential for error propagation. Figures

11 and 12 illustrate the total ozone column and the total tropospheric column, respectively.

These figures compare the concentrations calculated using the FJX rates (top row), the ML

rates (middle row), and the relative difference between the two (bottom row) at 00:00 UTC on

the first day of the first, third and sixth months after spin-up. In January, the divide between over

and under calculations in the total overhead column (Figure 11) is split equatorially, with an over

estimate in the Northern Hemisphere and under estimate in the South. By the sixth month, the

error in the total overhead ozone grows from ±2% to +5% and the excess ozone concentration

moves southwards to the equator. This likely reflects difference in the ozone chemistry between

the North and South Hemispheres. The tropospheric column remains largely under-calculated

when using the ML rates compared to the FJX rates, growing from -2% generalised globally

to -10% localised to the Southern Hemisphere by the sixth month (post spin-up). Since the

Southern Hemisphere is entering winter in June, it could be the case of over-predicting ozone

photolysis rates due to the equivalent of the ML models predicting as if there is too much solar

flux. This reduces the amount of ozone concentration in comparison to what is calculated with
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the FJX rates. This, in turn, creates a significant hemispheric contrast. Ultimately, these relative

differences are small considering the time it took for this error to build up (6 months, following

a 6 month spin-up).

Figure 11: Total overhead ozone column maps (DU) for all vertical levels averaged over the first day of

the first month (01 January 2021, column 1), the third month (01 March 2021, column 2), and the sixth

month (01 June 2021, column 3) as calculated using the Fast-JX rates (FJX, row 1), and the machine

learning rates (ML, row 2). The percentage relative difference between row 1 and row 2 is shown in row

3.
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Figure 12: The same as Figure 11 but showing the total tropospheric ozone column (DU), calculated up

to the tropopause, instead of total ozone column.

Figure 13 and Figure 14 show time series plots for surface concentrations for O3 and NO2 at

four different locations, three polluted (London, Shanghai, and New York City) and one clean

(Tahiti, French Polynesia) using the default GEOS-Chem (denoted GC as the red line), one

using the ML photolysis rates (blue), and one without photolysis enabled at all (black). The

ML concentrations closely follow the GC concentrations, demonstrating the reliability of the

integration over this period. The fluctuations in O3 surface concentration in the clean location

are closely matched but are slightly under-calculated, particularly in June and July. In con-

trast, the more polluted locations show the opposite. The minima and maxima are modelled

accurately by the ML rates, suggesting the ML models are appropriately calculating photolysis

rates. For comparison, the lack of photolysis leads to concentrations that rapidly diverge from

the base model into a highly different state. The similarities between the GC and ML NO2 sur-

face concentrations, combined with the model failure of the concentrations without photolysis

rate calculations in Figure 14 further highlights the success of the implementation of the pre-

dictors into GEOS-Chem. The concentrations, for both O3 and NO2, specifically in Shanghai,

panel (b), further support that minimal aerosol representation in the ML models does not cause

significantly faulty predictions, even when propagating through to the concentrations. Shanghai

provides a good reference point due to its historically polluted conditions in terms of aerosols

(Shen et al., 2020).
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Figure 13: Time series plot showing the comparison of O3 surface concentrations using the de-

fault GEOS-Chem concentration (red), using the machine learning rates (blue), and without photoly-

sis rate calculations (black) at four locations: London (51.5074◦ N, 0.1278◦ W), Shanghai (31.2304◦

N, 121.4737◦ E), New York City (40.7128◦ N, 74.0060◦ W), and French Polynesia, specifically Tahiti

(17.6797◦ S, 149.4068◦ W).
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Figure 14: The same as Figure 13 but with NO2 surface concentration instead of for ozone.

The error propagation (R2) in terms of the concentrations, is shown in Figure 15. In both

panels, the O3 and NO2 concentrations appear stable, although the ozone accuracy has a slight

deterioration from May onwards in panel (a) and April in panel (b). NO3 concentrations on

the other hand shows more intense fluctuations, and a downwards trend. In Figure 15a, the

accuracy for the different species is related to the lifetime, O3 is the longest lived and most

accurate, whilst NO3 is the shortest and least accurate. The changes in error, and overall re-

duction in accuracy can largely be attributed to the accumulation of errors from the photolysis

rate predictions contributing to the error of the concentrations. These exist longer than the

instantaneous quantity of the photolysis rates, that do not rely on the previous time steps val-

ues. Whilst many photodissociations contribute to these concentrations, these patterns generally

match those found in Figure 8, with NO2 being the best performing in both.
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Figure 15: Error propagation and evolution of the R2 between GEOS-Chem concentrations using Fast-

JX rates and predicted rates in both the troposphere (a) and in the full vertical column (b), for O3 conc.

(red), NO2 conc. (blue), and NO3 conc. (purple).

Table 6 is a tabulated view of the metrics shown in Figure 15 panel (b), including additional

key species. The performance of the concentrations for all species, whether organic, inorganic

bromine or nitrogenous compounds, is robust and reassuring when using the predicted photoly-

sis rates. It can be noted species that do not rely on photolysis rates remain unaffected by errors

in the ML models, such as N2.
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Table 6: Same as Table 5 but for key concentrations over all vertical levels.

01 January 2021 01 June 2021

Species ID Species Info R2 NRMSE NMAE R2 NRMSE NMAE

O3 Ozone 0.970 0.241 0.105 0.961 0.275 0.122

OH Hydroxyl Radical 0.974 0.677 0.141 0.966 0.793 0.154

ROH >C2 Alcohols 0.993 0.936 0.080 0.990 1.843 0.128

RCHO >C2 Aldehydes 0.995 0.336 0.073 0.992 0.818 0.096

NO3 Nitrate Radical 0.946 1.347 0.185 0.909 1.124 0.217

NO2 Nitrogen Dioxide 0.986 0.246 0.071 0.987 0.239 0.074

N2 Nitrogen 1.000 0.000 0.000 1.000 0.000 0.000

BrO Bromine Monoxide 0.984 0.196 0.067 0.985 0.195 0.067

CH2O Formaldehyde 0.996 0.114 0.048 0.996 0.123 0.045

ACET Acetone 0.990 0.165 0.077 0.984 0.199 0.120
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6 Discussion

6.1 Hardware and Software Optimisations

The predicting time for the photolysis ML models (161 models, including the reused ones) is

significantly longer than the current optimised FJX calculations. The ML models implemented

in GEOS-Chem (the 161 ML models) take over 8500 seconds for 135072 grid boxes (on average

over 6 time steps), but only 3.4 seconds with FJX (with the same compute resource for the

similar time steps). 2 ML models predicting in the same environment took around 35 seconds

on average, 4 predictors took around 77 seconds and 8 took 137 seconds. The prediction time

scales non linearly in length with the number of predictors, more than doubling in time when

doubling the amount of predictors. Table 10 in Appendix 8.3 shows the timings, as well as the

individual times for the 6 time steps for the 6 different amounts of predictors and the FJX times.

Additionally, for each ML model, the time to predict was determined by how many grid boxes

were undergoing prediction and not considered dark. There are a few reasons that this could be

significantly slow, and one of the ways the bottlenecks could be found an optimised is through

a profiler. Simply put, the profiler would measure the execution of a code, finding particular

parts that are inefficient and slow. Profilers are available in many languages and relevant to this

project there are some available for Fortran (Shende and Malony, 2006).

The performance issues may occur due to factors involving both the implementation and

execution environment. The collection of predictors were stored on personal scratch storage on

the Viking 2 HPC, instead of the optimised flash storage. This storage is not optimised for use

in bigger projects, potentially affecting the model loading and execution speeds. Additionally

the exact memory usage by the models is uncertain and could cause a large overhead. The

prediction process itself could be a source of the slow prediction time, potentially showing the

machine learning approach is over-complicated compared to the Fast-JX calculations. This is

likely not the case, but the source of increased computation time is hard to determine without

profiling the specific issues.

Despite the prediction time being more computationally intensive and substantially longer

than the Fast-JX calculation, this project was purely a proof-of-concept with three main ob-

jectives, previously mentioned: firstly, to evaluate how well machine learning models could

predict a broad range of photolysis rates; secondly, to assess the feasibility and effectiveness of

implementing these ML models in GEOS-Chem; and thirdly, to analyse the impact of these im-
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plemented photolysis rate on the entire GEOS-Chem simulation. Given this has been achieved

and the initial hurdles of implementing it in Fortran to the high degree of accuracy has been

shown, the optimisations can be of focus. Other aspects of GEOS-Chem, including Fast-JX, are

highly optimised and the potential optimisations for the ML approach are now discussed.

The hardware optimisations includes the use of OpenMP to parallelise predictions, with

CPUs. However, in machine learning tasks GPU hardware is commonly used due to its inher-

ently high levels of parallelism for the linear algebra operations. The same hardware could be

used for predicting in this project. XGBoost has an implementation of CUDA (Compute Uni-

fied Device Architecture), a parallel computing platform developed by NVIDIA for computing

on GPUs (Mitchell and Frank, 2017). CUDA allows for high-performance computing by lever-

aging the massive parallelism of GPUs, similar to how OpenMP allows parallel processing on

CPUs. For the training process, H100 GPUs drastically reduced the training time, taking just

over 28 hours of compute time for the training of all 111 ML models. The difficulty arises when

trying to enable the CUDA platform on Fortran, which was beyond the scope for this project.

The H100 GPU, used for the training and potentially available for the predicting, is state of

the art and fast (Choquette, 2023), and hence would possibly reduce the time for the photol-

ysis predictions. Without benchmarks it is hard to determine the reduction in time precisely

but hence provides a direction for future work and, if true, would make the comparison in time

taken between FJX and this parameterisation task more competitive.

Whilst the hardware optimisations offer the most significant speed ups to the existing work-

flow, some software and algorithmic optimisations could provide alternate paths of achieving

the same goal. Firstly, XGBoost was tuned for accuracy. This yielded a complex and deep

model with a maximum depth of 12 (seen in Table 3). This complexity increases the predicting

time. In a similar fashion, the quantity of input variables contributes to a longer predicting time:

a higher quantity of variables means more data has to traverse the depth of the XGBoost models;

more data is loaded into the memory for prediction as well. Performing a more thorough vari-

able importance analysis to reduce the quantity of variables would cut prediction time, as well as

most likely increasing the accuracy of the predictions by removing highly correlated variables.

For example, in the feature importance plots (Figure 6) the level, air density, and pressure were

all found to be highly important but all correlated with height. This could perhaps be reduced

to just one variable.

It was previously mentioned that the time for the predicting process within GEOS-Chem
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is largely scaled by the number of ML models with a significant number of machine learning

models are reused. The most common being organic peroxides (22 times). An obvious solution

would be to predict once and share the photolysis rates post prediction, reducing the amount of

predictors from 161 to the amount of unique predictors (111).

An alternative to changing the algorithm and instead keeping a similar structure to the cur-

rent work flow would be to consider a linear combination of photolysis models. Given a small

set of photolysis machine learning models, their outputs could be used in a multiple linear re-

gression to get every other photolysis rate. Storing the combination of coefficients for the other

photolysis rates and simply referencing them in the linear combination would inherently be

faster than predicting for all 161 species with XGBoost and faster than the numerical solver

for FJX. This would not only work with XGBoost models but theoretically with any machine

learning approach given a good enough predicting accuracy. Additionally, the Fast-JX code

approach could be mimicked more closely instead of predicting each photolysis rate, the 18

different respective solar fluxes would be predicted. This would be similar to the process in

Fast-JX, where the predicted solar fluxes are then used with the respective cross-sections to cal-

culate the photolysis rates. This would reduce the number of predictions down from 161 to 18,

whilst maintaining the scientific integrity behind the predictions.

On the deep learning front, neural networks (NNs) are increasingly popular due to their

adaptability and capture complex interactions. One possible future approach is to use a physics-

informed neural network (PINN) (Raissi et al., 2019). PINNs are a type of neural network that

incorporate physical laws into their architecture, allowing them to learn the underlying physics

of a system. In this case, PINNs could be used to predict the photolytic intensity or radiation,

since they are heavily defined by physical laws. The predicted photolytic intensity would then

be used in conjunction with the quantum yield and absorption cross-section to calculate pho-

tolysis rates. This would reduce the amount of predictions to just one, that of the photolytic

intensity, and would be the same for all species. This could be achieved by taking advantage

of the inherently high dimensional 3-D convolutional layers, found in many imaging problems,

for the spatial data in the CTM and combining it with long short-term memory (LSTM) layers,

which are optimal for temporal data and forecasting due to their ‘memory’. There are many

caveats to this approach including that the inherent black box nature of NNs makes it harder

to interpret feature importance (Castelvecchi, 2016), something that should always be consid-

ered when handling machine learning inside a scientific domain. Arguably a bigger challenge
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for this approach would be the integration within GEOS-Chem, as deep learning libraries have

varying levels of Fortran integration and complexity.

6.2 Limitations

Whilst the data used to train the model is collected from a year long GEOS-Chem run, the

training-validation split is done temporally. The first 9 months were for training and he sub-

sequent 3 months were reserved for validation. This approach, although common in machine

learning, leaves the model with no training data from April to the start of July (the 25% valida-

tion period). While this could theoretically make it harder for the machine learning models to

generalise predictions for this period, this study found no evidence of this limitation. There was

no diminishing predictive ability, even in model statistics for June 2021 (the last month of the

validation period). Despite these encouraging results, this may not be the case for future runs

and different simulations. An alternative approach to address this issue would be to simply split

the data randomly, ensuring the models train on data points from all over the year. In hindsight,

this would have been the most sensible approach during model development.

The effects of changing the model spatial and temporal resolution and internal time step is

unexplored but their effects would likely impact the accuracy of the photolysis rates. Some of

the variables used like the SZA, the temperature, the level, and surface albedo would largely

not differ between the resolutions and time steps and, according to the feature importance, are

some of the most important variables. This could mean there is potential versatility between

different time steps and resolutions. However, other variables, like cloud cover and dust, are

likely to vary strongly.

There are two main issues regarding accuracy of predictors. First, the negative photolysis

rates found in the model development, where predictions were smaller than the constant used

for log transformation. Reducing the size of the constant to be even smaller during training

would most likely fix this issue, this could be done by increasing the sample size from which

the constant was selected. As this issue was small and relatively limited, it did not significantly

impact the overall performance. Another notable issue arising from the implementation of the

photolysis predictors in GEOS-Chem, from Section 5, was the large error around the terminator.

This happened when the machine learning models over-predicted the very small values that were

calculated by Fast-JX under lower light conditions. This was an edge-case where the models

fall short. A potential solution would be to train a separate model (or collection of models) for
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the specific solar zenith angle ranges where these issues occur. While there are performance

issues arising from the terminator, it reflects a common challenge in atmospheric modeling and

addressing this can be overlooked at the moment due to satisfactory overall performance.

7 Conclusions

This project’s primary objective was to develop a machine learning-based parameterisation of

the Fast-JX photolysis scheme used in GEOS-Chem, and that was successfully achieved. Most

photolysis rates (103 out of 105) maintained an R2 greater than 0.95 for the duration of the

GEOS-Chem simulation. Additionally, the effect of the predictors has a minimal effect on other

aspects of the GEOS-Chem simulation, with a high accuracy when using the predicted photol-

ysis rates for concentration calculations. This proof-of-concept study is significant as it opens

avenues for parameterising more complex processes in CTMs and, more significantly, it is the

first machine learning-based parameterisation of photolysis rates for CTMs. Whilst this process

shows promise, it is currently limited by the prediction speed, and future work should focus

on addressing this. The use of GPUs as a hardware alternative to the current CPUs should be

the main focus in accelerating the prediction process. Additionally, whilst the machine learn-

ing models show strong performance across a broad range of conditions, there are areas for

improvement, such as around the terminator. The terminator, as described in Section 5.1, is a

known challenge when modelling photolysis rates, and in atmospheric models more generally,

due to the rapid changes in light. Further work in regards to accuracy improvement could ex-

plore specialised models/approaches for these edge-cases. Despite this challenge, which affects

a relatively small proportion of the global predictions, the machine learning models demonstrate

a generally robust performance across the majority of atmospheric conditions.

More broadly, this work contributes to the growing field of machine learning applied in

the context of atmospheric sciences. By demonstrating the feasibility of a purely machine

learning-based photolysis prediction system to potentially replace photolysis schemes like Fast-

JX, it paves the way for potentially more efficient, flexible, and eventually cheaper atmospheric

modelling. This could result in more detailed, higher resolution or longer-term simulations

due to the additional computational resources available. The success of this machine learning

approach in parameterising the complex physical process of photodissociation could inspire

similar efforts in other areas involving physical processes. With additional compute, the fast
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development of algorithms, and more attention, machine learning has the chance to greatly

improve scientific computing as a whole.

49



8 Appendix

8.1 FORTRAN code for predicting in GEOS-Chem

Listing 1: XGBoost Prediction Subroutine

1 SUBROUTINE xgb_pred_J(State_Chm, State_Grid, State_Met)

2

3 USE State_Chm_Mod, ONLY : ChmState

4 USE State_Met_Mod, ONLY : MetState

5 USE State_Grid_Mod, ONLY : GrdState

6 USE CMN_FJX_Mod, ONLY : NRATJ, L_

7 USE TIME_MOD, ONLY : GET_MONTH, GET_DAY, GET_DAY_OF_YEAR

8 USE TIME_MOD, ONLY : GET_TAU, GET_YEAR

9 USE TOMS_MOD, ONLY : GET_OVERHEAD_O3

10 USE CMN_SIZE_MOD, ONLY : NDUST

11 USE Grid_Registry_Mod

12 USE Pressure_Mod

13 USE xgb_fortran_api

14 USE iso_c_binding

15 IMPLICIT NONE

16

17 TYPE(ChmState), INTENT(IN) :: State_Chm

18 TYPE(GrdState), INTENT(IN) :: State_Grid

19 TYPE(MetState), INTENT(IN) :: State_Met

20

21

22 ! FOR INIT

23 LOGICAL, SAVE :: first_time = .TRUE.

24 REAL(c_float), ALLOCATABLE :: xx_carr_small(:,:)

25 INTEGER(c_int64_t) :: xx_dmtrx_len, nrow_dummy

26 CHARACTER(LEN=255) :: xx_fname

27

28 ! LOCAL VARS

29 INTEGER(c_int64_t) :: xx_param_count

30 INTEGER(c_int) :: xx_option_mask, xx_ntree_limit,

xx_training

31 INTEGER(c_int) :: xx_rc

32 REAL(c_float), parameter :: missing_value = -999.0

33 TYPE(c_ptr) :: xx_dmtrx
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34 TYPE(c_ptr), SAVE :: xx_booster

35 INTEGER(c_int64_t) :: xx_prediction_count, xx_count ! How

many grid boxes: NZ * NX * NY

36 REAL(c_float), ALLOCATABLE :: xx_carr(:,:)

37 REAL(fp) :: xx_u0, xx_sza, xx_solf

38 INTEGER :: xx_prediction_index, DAY_OF_YR

39 REAL(fp), POINTER :: ODMDUST (:,:,:,:,:)

40

41 ! FOR PREDICTION

42

43 INTEGER(c_int64_t) :: xx_pred_len

44 TYPE(c_ptr) :: xx_cpred

45

46 REAL(c_float), POINTER :: xx_pred(:)

47

48 ! TEMPORARY LOCAL VARS

49 INTEGER :: xx_lon, xx_lat, xx_lev, i, J,

xx_index, i_sum, largest_lon, largest_lat, largest_lev

50 INTEGER :: xx_n

51 REAL, ALLOCATABLE :: J_ML(:,:,:,:)

52 REAL :: P0, HyAm, HyBm, Lev, XMID, YMID,

POS_ENC, start, finish, largest_value

53 REAL :: TAUCLW_sum_above, TAUCLW_sum_below,

TAUCLI_sum_above, TAUCLI_sum_below, CLDF_sum_above, CLDF_sum_below

54

55 REAL(fp), POINTER :: ZPJ (:,:,:,:)

56

57

58 integer(c_int64_t) :: xx_params, xx_total_preds, xx_nrows, xx_ncols

59

60 ! FOR FIRST TIME INIT

61 TYPE(c_ptr), DIMENSION(166), SAVE :: xx_boosters

62

63 TYPE ModelInfo

64 INTEGER :: modelID

65 CHARACTER(LEN=255) :: filePath

66 REAL(c_float) :: constant

67 CHARACTER(LEN=255) :: species

68 CHARACTER(LEN=255) :: predictor
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69 REAL(c_float) :: factor

70 END TYPE ModelInfo

71 TYPE(ModelInfo), DIMENSION(166) :: models

72 ZPJ => State_Chm%Phot%ZPJ

73 ODMDUST => State_Chm%Phot%ODMDUST

74 xx_param_count = 19

75

76 IF (ALLOCATED (J_ML)) DEALLOCATE(J_ML)

77 IF (ALLOCATED (xx_carr)) DEALLOCATE(xx_carr)

78

79 xx_count = 0

80 DO xx_lon = 1, State_Grid%NX

81 DO xx_lat = 1, State_Grid%NY

82 DO xx_lev = 1, State_Grid%NZ

83 DAY_OF_YR = GET_DAY_OF_YEAR()

84 xx_u0 = State_Met%SUNCOSmid(xx_lon, xx_lat)

85 CALL SOLAR_JX(DAY_OF_YR, xx_u0, xx_sza, xx_solf)

86

87 IF (xx_sza < 98) THEN

88 xx_count = xx_count + 1

89 END IF

90 END DO

91 END DO

92 END DO

93

94 WRITE(6,*)’xx_count: ’,xx_count

95 ALLOCATE(xx_carr(xx_param_count, xx_count))

96 xx_index = 1

97 DO xx_lon = 1, State_Grid%NX

98 DO xx_lat = 1, State_Grid%NY

99 DO xx_lev = 1, State_Grid%NZ

100 P0 = 1000.0_f8

101 HyAm = ( Get_Ap( xx_lev ) + Get_Ap( xx_lev+1 ) ) * 0.5_f8

102 HyBm = ( Get_Bp( xx_lev ) + Get_Bp(xx_lev+1 ) ) * 0.5_f8

103 Lev = (HyAm/P0) +HyBm

104 !WRITE(6,*)’TEST LEV ’,Lev

105 DAY_OF_YR = GET_DAY_OF_YEAR()

106 xx_u0 = State_Met%SUNCOSmid(xx_lon, xx_lat)

107 CALL SOLAR_JX(DAY_OF_YR, xx_u0, xx_sza, xx_solf)
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108

109 TAUCLI_sum_above = 0.0

110 TAUCLI_sum_below = 0.0

111 TAUCLW_sum_above = 0.0

112 TAUCLW_sum_below = 0.0

113 CLDF_sum_above = 0.0

114 CLDF_sum_below = 0.0

115

116 DO i_sum = 1, xx_lev - 1

117 TAUCLI_sum_below = TAUCLI_sum_below + State_Met%TAUCLI(

xx_lon, xx_lat, i_sum)

118 TAUCLW_sum_below = TAUCLW_sum_below + State_Met%TAUCLW(

xx_lon, xx_lat, i_sum)

119 CLDF_sum_below = CLDF_sum_below + State_Met%CLDF(xx_lon

, xx_lat, i_sum)

120 END DO

121

122 DO i_sum = xx_lev + 1, State_Grid%NZ

123 TAUCLI_sum_above = TAUCLI_sum_above + State_Met%TAUCLI(

xx_lon, xx_lat, i_sum)

124 TAUCLW_sum_above = TAUCLW_sum_above + State_Met%TAUCLW(

xx_lon, xx_lat, i_sum)

125 CLDF_sum_above = CLDF_sum_above + State_Met%CLDF(xx_lon

, xx_lat, i_sum)

126 END DO

127 IF (xx_sza < 98) THEN

128 xx_carr(1, xx_index) = Lev

129 xx_carr(2, xx_index) = State_Met%SUNCOSmid(xx_lon,

xx_lat)

130 xx_carr(3, xx_index) = State_Met%UVALBEDO(xx_lon,

xx_lat)

131 xx_carr(4, xx_index) = GET_OVERHEAD_O3(State_Chm,

xx_lon, xx_lat)

132 xx_carr(5, xx_index) = xx_sza

133 xx_carr(6, xx_index) = State_Met%PMid(xx_lon, xx_lat,

xx_lev)

134 xx_carr(7, xx_index) = State_Met%T(xx_lon, xx_lat,

xx_lev)

135 xx_carr(8, xx_index) = TAUCLW_sum_above
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136 xx_carr(9, xx_index) = TAUCLW_sum_below

137 xx_carr(10, xx_index) = TAUCLI_sum_above

138 xx_carr(11, xx_index) = TAUCLI_sum_below

139 xx_carr(12, xx_index) = CLDF_sum_above

140 xx_carr(13, xx_index) = CLDF_sum_below

141 xx_carr(14, xx_index) = State_Met%AIRDEN(xx_lon, xx_lat

, xx_lev)

142 xx_carr(15, xx_index) = State_Met%CLDF(xx_lon, xx_lat,

xx_lev)

143 xx_carr(16, xx_index) = State_Met%TAUCLI(xx_lon, xx_lat

, xx_lev)

144 xx_carr(17, xx_index) = State_Met%TAUCLW(xx_lon, xx_lat

, xx_lev)

145 xx_carr(18, xx_index) = ODMDUST(xx_lon, xx_lat, xx_lev

, State_Chm%Phot%IWV1000, 1)

146 xx_carr(19, xx_index) = ODMDUST(xx_lon, xx_lat, xx_lev

, State_Chm%Phot%IWV1000, 7)

147 xx_index = xx_index + 1

148 END IF

149 END DO

150 END DO

151 END DO

152

153 ALLOCATE(J_ML(State_Grid%NX, State_Grid%NY, State_Grid%NZ, 166))

154 J_ML = 0.0

155

156 xx_rc = XGDMatrixCreateFromMat_f(xx_carr, xx_count, xx_param_count,

missing_value, xx_dmtrx)

157 IF (xx_rc/= 0) THEN

158 WRITE(6,*) ’Error in creating DMatrix in Run’, xx_rc

159 END IF

160

161 IF (ALLOCATED (xx_carr)) DEALLOCATE(xx_carr)

162

163

164

165 IF (first_time) THEN

166 first_time = .FALSE.

167 DO J = 1, 166

54



168 xx_fname = TRIM(models(J)%filePath)

169

170 xx_rc = XGBoosterCreate_f(c_null_ptr, xx_dmtrx_len, xx_boosters

(J))

171 IF (xx_rc/= 0) THEN

172 WRITE(6,*) ’Error in Creating Booster in Initialising’,

xx_rc

173 END IF

174 !WRITE(6,*) ’Reading File for XGBoost: ’, xx_fname

175 xx_rc = XGBoosterLoadModel_f(xx_boosters(J), xx_fname)

176 WRITE(6,*) ’Initialised Model: ’, models(J)%species

177

178 IF (xx_rc/= 0) THEN

179 WRITE(6,*) ’Error in Loading Model in Initialising’,

xx_rc

180 WRITE(6,*) ’Error at: ’, xx_fname

181 WRITE(6,*) ’Error for species: ’, models(J)%species

182 END IF

183 END DO

184 END IF

185

186

187 CALL cpu_time(start)

188 !$OMP PARALLEL DO SHARED(J_ML, xx_dmtrx, models, State_Grid, State_Met,

ZPJ, xx_boosters) &

189 !$OMP PRIVATE(J, xx_lon, xx_lat, xx_lev, xx_index, DAY_OF_YR, xx_u0,

xx_sza, xx_solf) &

190 !$OMP PRIVATE(xx_fname, xx_param_count, xx_option_mask, xx_ntree_limit,

xx_training) &

191 !$OMP PRIVATE(xx_dmtrx_len, xx_pred, xx_cpred, xx_booster, xx_rc) &

192 !$OMP SCHEDULE(DYNAMIC)

193

194 DO J = 1, 166

195

196 xx_option_mask = 0

197 xx_ntree_limit = 0

198 xx_training = 0

199 xx_dmtrx_len = 0

200
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201 xx_rc = XGBoosterPredict_f(xx_boosters(J), xx_dmtrx, xx_option_mask

, xx_ntree_limit, xx_training, xx_pred_len, xx_cpred)

202 IF (xx_rc/= 0) THEN

203 WRITE(6,*) ’Error in XGBooster Predicting in Run’, xx_rc

204 END IF

205

206 IF (ASSOCIATED(xx_pred)) NULLIFY(xx_pred)

207

208 !write(6,*) ’PREDICTION LENGHT: ’, xx_pred_len

209 call c_f_pointer(xx_cpred, xx_pred, [xx_pred_len])

210

211 IF (.NOT. ASSOCIATED(xx_pred)) THEN

212 WRITE(6,*) ’Error: xx_pred is not associated.’

213 END IF

214

215 xx_index = 1

216 DO xx_lon = 1, State_Grid%NX

217 DO xx_lat = 1, State_Grid%NY

218 DO xx_lev = 1, State_Grid%NZ

219 DAY_OF_YR = GET_DAY_OF_YEAR()

220 xx_u0 = State_Met%SUNCOSmid(xx_lon, xx_lat)

221 CALL SOLAR_JX(DAY_OF_YR, xx_u0, xx_sza, xx_solf)

222

223 IF (xx_sza < 98) THEN

224

225 J_ML(xx_lon, xx_lat, xx_lev, J) = (EXP(xx_pred(xx_index)) -

models(J)%constant) * models(J)%factor

226

227 xx_index=xx_index+1

228

229 END IF

230 END DO

231 END DO

232 END DO

233

234 IF (ASSOCIATED(xx_pred)) NULLIFY(xx_pred)

235 !IF (ASSOCIATED(xx_cpred)) NULLIFY(xx_cpred)

236 xx_cpred = c_null_ptr

237
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238 !xx_rc = XGBoosterFree_f(xx_booster)

239

240

241

242 DO xx_lon = 1, State_Grid%NX

243 DO xx_lat = 1, State_Grid%NY

244 DO xx_lev = 1, State_Grid%NZ

245 ZPJ(xx_lev, J, xx_lon, xx_lat) = J_ML(xx_lon, xx_lat,

xx_lev, J)

246 END DO

247 END DO

248 END DO

249

250 END DO

251

252 !$OMP END PARALLEL DO

253 DO xx_lon = 1, State_Grid%NX

254 DO xx_lat = 1, State_Grid%NY

255 DO xx_lev = 1, State_Grid%NZ

256 DO J = 1, 166

257 IF (ZPJ(xx_lev, J, xx_lon, xx_lat) < 0.0) THEN

258 ZPJ(xx_lev, J, xx_lon, xx_lat) = 0.0

259 END IF

260 END DO

261 END DO

262 END DO

263 END DO

264

265

266 CALL cpu_time(finish)

267 WRITE(6,*)’Time to Predict: ’,finish-start

268 xx_rc = XGDMatrixFree_f(xx_dmtrx)

269 IF (ALLOCATED (J_ML)) DEALLOCATE(J_ML)

270

271 ODMDUST => NULL()

272 ZPJ => NULL()

273

274 END SUBROUTINE xgb_pred_J
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8.2 Tables Containing Model Statistics

Table 7: The same as Table 4 but for all 111 photolysis rate models including the separate channel

machine learning models, where the metrics are calculated between Fast-JX and predicted rates for the

validation data. In descending order for the R2 in the linear space.

Linear Space Log Space

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

NO 0.997 0.217 0.056 1.000 0.013 0.007

HCFC142b 0.996 0.188 0.055 0.999 0.013 0.007

CFC12 0.996 0.187 0.055 0.999 0.014 0.007

CFC114 0.996 0.186 0.055 0.999 0.014 0.007

HNO3 0.996 0.171 0.054 0.997 0.024 0.009

CH3Cl 0.996 0.185 0.055 0.999 0.014 0.007

HCFC22 0.996 0.186 0.055 0.999 0.011 0.006

R4N2 0.996 0.178 0.055 0.997 0.026 0.010

CH2Cl2 0.996 0.185 0.055 0.999 0.015 0.008

HCFC123 0.996 0.187 0.055 0.999 0.015 0.008

ETNO3 0.996 0.176 0.055 0.997 0.025 0.010

NPRNO3 0.996 0.173 0.055 0.997 0.026 0.009

MENO3 0.996 0.177 0.055 0.997 0.025 0.010

IPRNO3 0.996 0.175 0.055 0.997 0.026 0.010

PAN 0.996 0.189 0.056 0.997 0.024 0.009

HCFC141b 0.996 0.185 0.056 0.999 0.015 0.008

CFC113 0.996 0.184 0.056 0.999 0.015 0.008

CFC115 0.996 0.185 0.056 0.999 0.013 0.007

O2 0.996 0.207 0.057 0.999 0.014 0.008

N2O5 0.996 0.121 0.054 0.996 0.030 0.010

N2O 0.996 0.187 0.056 0.999 0.014 0.007

HNO4 0.996 0.128 0.054 0.995 0.031 0.009

CFC11 0.996 0.187 0.057 0.999 0.016 0.008

Continued on next page
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Table 7 – validation continued from previous page

Linear Space Log Space

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

Acet-b 0.996 0.196 0.065 0.997 0.020 0.008

H2402 0.996 0.206 0.058 0.997 0.021 0.009

ClO 0.996 0.149 0.059 0.997 0.036 0.014

H1211 0.996 0.207 0.058 0.997 0.021 0.009

HAC 0.996 0.128 0.056 0.996 0.025 0.009

CH3CCl3 0.996 0.188 0.057 0.999 0.016 0.008

H1301 0.996 0.203 0.058 0.999 0.017 0.009

CH3Br 0.996 0.204 0.058 0.999 0.017 0.010

CHBr3 0.996 0.231 0.059 0.997 0.025 0.010

CCl4 0.996 0.199 0.058 0.999 0.017 0.009

H2O2 0.996 0.110 0.054 0.996 0.027 0.009

PIP 0.996 0.110 0.054 0.996 0.027 0.009

CH2Br2 0.996 0.223 0.059 0.999 0.021 0.011

CH2ICl 0.996 0.109 0.055 0.996 0.033 0.011

OCS 0.996 0.237 0.061 0.999 0.017 0.009

GLYC 0.995 0.113 0.058 0.996 0.029 0.010

MEK 0.995 0.112 0.057 0.996 0.028 0.010

O3O1D 0.995 0.245 0.063 0.996 0.032 0.013

O3 0.995 0.245 0.063 0.996 0.032 0.013

IDHDP 0.995 0.096 0.054 0.996 0.028 0.009

HMHP 0.995 0.096 0.054 0.959 0.026 0.008

MP 0.995 0.096 0.054 0.996 0.027 0.009

ClNO3a 0.995 0.106 0.056 0.996 0.029 0.009

INPB 0.995 0.095 0.054 0.996 0.027 0.009

ClNO3b 0.995 0.162 0.064 0.996 0.027 0.009

CF3I 0.995 0.152 0.066 0.997 0.029 0.010

CH2IBr 0.995 0.093 0.055 0.996 0.037 0.012

Continued on next page
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Table 7 – validation continued from previous page

Linear Space Log Space

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

CH3I 0.995 0.250 0.063 0.996 0.028 0.010

MPN 0.994 0.111 0.060 0.996 0.027 0.009

ActAld 0.994 0.122 0.063 0.997 0.028 0.010

IDN 0.994 0.098 0.057 0.996 0.027 0.009

MONITS 0.994 0.098 0.057 0.996 0.026 0.008

HPETHNL 0.994 0.089 0.056 0.996 0.031 0.010

Acet-a 0.994 0.191 0.076 0.996 0.026 0.011

MVK 0.993 0.086 0.054 0.996 0.027 0.009

ClNO2 0.993 0.084 0.055 0.996 0.036 0.011

RCHO 0.993 0.090 0.057 0.996 0.031 0.010

MVKN 0.993 0.093 0.058 0.996 0.031 0.010

PROPNN 0.993 0.091 0.058 0.996 0.031 0.010

NPHEN 0.993 0.091 0.058 0.996 0.031 0.010

Glyxlb 0.993 0.083 0.054 0.996 0.028 0.009

Glyxlc 0.993 0.079 0.053 0.996 0.029 0.009

H2COa 0.992 0.084 0.055 0.996 0.030 0.010

Cl2O2 0.992 0.081 0.054 0.996 0.043 0.013

CH2I2 0.992 0.083 0.056 0.996 0.049 0.016

ETHLN 0.992 0.085 0.057 0.996 0.033 0.011

MCRHNB 0.991 0.084 0.057 0.996 0.032 0.010

H2COb 0.991 0.079 0.054 0.996 0.030 0.009

MCRHN 0.991 0.084 0.057 0.996 0.036 0.011

BALD 0.991 0.083 0.057 0.996 0.029 0.009

HOCl 0.991 0.081 0.056 0.996 0.035 0.011

MGLY 0.991 0.086 0.056 0.996 0.036 0.011

PYAC 0.991 0.086 0.056 0.996 0.036 0.011

MVKHC 0.991 0.086 0.056 0.996 0.036 0.011
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Table 7 – validation continued from previous page

Linear Space Log Space

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

IONO 0.991 0.081 0.056 0.996 0.044 0.014

Glyxla 0.991 0.081 0.055 0.996 0.031 0.010

BrO 0.990 0.082 0.057 0.996 0.060 0.019

SO4 0.990 0.312 0.078 0.989 0.023 0.003

ICN 0.990 0.082 0.057 0.996 0.036 0.011

BrNO3 0.990 0.081 0.056 0.995 0.042 0.012

HPALD1 0.990 0.082 0.057 0.996 0.036 0.011

HPALD2 0.990 0.082 0.057 0.996 0.035 0.011

IONO2 0.990 0.081 0.056 0.996 0.051 0.016

MACR 0.990 0.082 0.057 0.996 0.024 0.008

MCRENOL 0.990 0.082 0.057 0.996 0.035 0.011

Cl2 0.990 0.082 0.057 0.995 0.044 0.013

I2O2 0.990 0.082 0.057 0.995 0.065 0.019

I2O4 0.990 0.082 0.057 0.995 0.065 0.019

HNO2 0.989 0.082 0.057 0.995 0.042 0.013

I2O3 0.989 0.082 0.057 0.995 0.065 0.019

NO2 0.989 0.082 0.057 0.995 0.051 0.015

OClO 0.989 0.082 0.057 0.995 0.071 0.021

HOBr 0.989 0.082 0.057 0.995 0.045 0.013

O3O3P 0.988 0.087 0.060 0.994 0.041 0.012

BrNO2 0.988 0.084 0.058 0.995 0.052 0.015

HOI 0.988 0.084 0.059 0.995 0.054 0.016

INO 0.987 0.085 0.059 0.995 0.066 0.019

BrCl 0.987 0.086 0.060 0.995 0.055 0.016

IO 0.986 0.087 0.060 0.995 0.090 0.026

Br2 0.985 0.090 0.062 0.994 0.067 0.019

ClOO 0.984 0.091 0.063 0.994 0.114 0.033
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Table 7 – validation continued from previous page

Linear Space Log Space

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

ICl 0.984 0.091 0.063 0.994 0.065 0.019

IBr 0.984 0.092 0.064 0.994 0.078 0.023

NO3 0.984 0.093 0.064 0.995 0.095 0.028

I2 0.984 0.092 0.064 0.994 0.092 0.027

OIO 0.983 0.092 0.064 0.994 0.095 0.028

NIT -2.678 4.292 0.333 0.979 0.063 0.018

NITs -4.104 4.188 0.127 0.981 0.061 0.013

Table 8: The same as Table 5 but for all 105 photolysis rates representing all 161 photolysed species,

where the metrics are calculated between Fast-JX and predicted rates from implementation in GEOS-

Chem. In descending order for the R2 for the January, where species marked with a star (*) are combined

from separate channels

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

CH2O* 0.988 0.149 0.078 0.981 0.188 0.110

GLYX* 0.988 0.146 0.075 0.984 0.171 0.095

ClNO3* 0.988 0.144 0.076 0.982 0.174 0.101

MVK 0.987 0.178 0.088 0.987 0.181 0.086

Cl2O2 0.987 0.151 0.084 0.986 0.156 0.086

HOCl 0.987 0.153 0.085 0.985 0.160 0.087

BrO 0.986 0.154 0.085 0.985 0.161 0.088

CH2I2 0.986 0.159 0.088 0.986 0.163 0.088

BALD 0.986 0.158 0.087 0.985 0.165 0.090

MCRHN 0.986 0.160 0.088 0.986 0.166 0.090

I2O2 0.986 0.150 0.084 0.985 0.155 0.085

I2O4 0.986 0.150 0.084 0.985 0.155 0.085
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Table 8 – tropospheric metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

MCRHNB 0.986 0.160 0.088 0.986 0.166 0.090

ICN 0.986 0.153 0.084 0.985 0.161 0.088

ClNO2 0.986 0.156 0.086 0.985 0.160 0.088

HPALD1 0.986 0.153 0.084 0.985 0.161 0.088

MACR 0.986 0.153 0.084 0.985 0.161 0.088

HPALD2 0.986 0.153 0.084 0.985 0.161 0.088

HMHP 0.986 0.159 0.088 0.986 0.162 0.088

MP 0.986 0.159 0.088 0.986 0.162 0.088

IDHDP 0.986 0.159 0.088 0.986 0.162 0.088

MCRENOL 0.986 0.153 0.084 0.985 0.161 0.088

IONO 0.986 0.153 0.084 0.985 0.161 0.089

ETHLN 0.986 0.163 0.090 0.986 0.167 0.090

INPB 0.986 0.163 0.089 0.986 0.164 0.089

Cl2 0.986 0.152 0.084 0.985 0.160 0.088

IONO2 0.986 0.153 0.085 0.984 0.161 0.089

H2O2 0.986 0.164 0.089 0.986 0.166 0.091

PIP 0.986 0.164 0.089 0.986 0.166 0.091

CH2IBr 0.986 0.166 0.091 0.986 0.167 0.091

HPETHNL 0.986 0.171 0.094 0.986 0.171 0.092

BrNO3 0.986 0.152 0.083 0.984 0.158 0.088

RCHO 0.985 0.173 0.095 0.986 0.172 0.093

HNO2 0.985 0.155 0.085 0.983 0.164 0.091

I2O3 0.985 0.153 0.085 0.984 0.159 0.089

OClO 0.985 0.154 0.085 0.983 0.162 0.091

PROPNN 0.985 0.175 0.096 0.986 0.174 0.094

NPHEN 0.985 0.175 0.096 0.986 0.174 0.094

MONITS 0.985 0.176 0.095 0.986 0.173 0.094
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Table 8 – tropospheric metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

IDN 0.985 0.176 0.095 0.986 0.173 0.094

CH2ICl 0.985 0.172 0.093 0.985 0.171 0.094

NO2 0.985 0.155 0.086 0.983 0.164 0.092

HOBr 0.985 0.154 0.086 0.983 0.161 0.090

MVKN 0.985 0.180 0.098 0.986 0.177 0.096

N2O5 0.985 0.172 0.093 0.985 0.169 0.092

HNO4 0.985 0.155 0.087 0.984 0.158 0.088

HAC 0.985 0.180 0.098 0.986 0.176 0.096

HOI 0.984 0.157 0.087 0.982 0.165 0.092

MEK 0.984 0.209 0.107 0.986 0.203 0.101

NPRNO3 0.984 0.187 0.101 0.985 0.182 0.099

PAN 0.984 0.184 0.099 0.984 0.181 0.098

MGLY 0.984 0.175 0.086 0.983 0.179 0.090

PYAC 0.984 0.175 0.086 0.983 0.179 0.090

MVKHC 0.984 0.175 0.086 0.983 0.179 0.090

CH3I 0.983 0.191 0.102 0.984 0.186 0.102

BrNO2 0.983 0.161 0.089 0.981 0.168 0.095

BrCl 0.983 0.161 0.090 0.981 0.169 0.095

IPRNO3 0.982 0.200 0.106 0.984 0.195 0.105

INO 0.982 0.164 0.091 0.980 0.172 0.097

GLYC 0.982 0.206 0.111 0.984 0.197 0.106

MPN 0.982 0.208 0.112 0.984 0.199 0.107

ETNO3 0.982 0.207 0.109 0.983 0.201 0.108

IO 0.982 0.166 0.092 0.979 0.174 0.098

MENO3 0.981 0.211 0.111 0.983 0.205 0.111

NITs 0.981 0.215 0.112 0.983 0.207 0.111

HNO3 0.981 0.211 0.111 0.983 0.203 0.110
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Table 8 – tropospheric metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

R4N2 0.981 0.214 0.113 0.982 0.206 0.112

NIT 0.981 0.228 0.112 0.977 0.308 0.131

CHBr3 0.980 0.225 0.118 0.982 0.220 0.117

Br2 0.979 0.174 0.096 0.977 0.183 0.103

ClOO 0.978 0.178 0.098 0.975 0.187 0.105

ClO 0.978 0.245 0.129 0.982 0.231 0.121

ICl 0.978 0.179 0.099 0.975 0.188 0.105

NO3 0.978 0.182 0.099 0.974 0.193 0.108

IBr 0.977 0.181 0.100 0.974 0.190 0.107

I2 0.977 0.182 0.100 0.974 0.191 0.108

OIO 0.977 0.183 0.100 0.974 0.192 0.108

ALD2* 0.973 0.298 0.168 0.959 0.391 0.221

O3O1D 0.971 0.315 0.155 0.975 0.303 0.149

O3 0.971 0.315 0.155 0.975 0.303 0.149

O3O3P 0.970 0.211 0.129 0.975 0.189 0.111

H1211 0.917 0.727 0.173 0.929 0.724 0.171

H2402 0.905 0.912 0.178 0.920 0.902 0.177

CFC12 0.899 4.745 0.393 0.916 4.698 0.397

ACET* 0.899 0.604 0.336 0.878 0.689 0.371

CFC114 0.898 4.765 0.394 0.915 4.710 0.397

CH3Cl 0.898 4.764 0.394 0.916 4.697 0.397

HCFC22 0.898 4.764 0.394 0.916 4.695 0.369

HCFC142b 0.898 4.768 0.394 0.915 4.725 0.399

CH2Cl2 0.898 4.768 0.937 0.915 4.703 0.398

CFC113 0.897 4.785 0.394 0.915 4.715 0.397

HCFC141b 0.897 4.773 0.394 0.915 4.691 0.398

N2O 0.897 4.755 0.394 0.916 4.663 0.397
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Table 8 – tropospheric metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

HCFC123 0.896 4.794 0.395 0.914 4.722 0.398

CFC115 0.896 4.798 0.395 0.914 4.731 0.399

CFC11 0.896 4.797 0.395 0.914 4.722 0.398

CH3CCl3 0.894 4.827 0.396 0.913 4.746 0.399

CCl4 0.887 5.007 0.407 0.908 4.883 0.406

O2 0.883 5.119 0.410 0.905 4.982 0.408

H1301 0.880 4.981 0.404 0.902 4.895 0.407

CH3Br 0.880 5.156 0.412 0.903 5.008 0.411

CH2Br2 0.876 2.137 0.294 0.901 2.216 0.296

OCS 0.854 5.415 0.423 0.884 5.230 0.421

NO 0.761 7.845 0.514 0.811 7.513 0.502

SO4 -0.697 1.560 1.000 -0.711 1.551 1.000

Table 9: The same as Table 8 but for the full vertical column.

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

NO 0.992 0.442 0.095 0.993 0.414 0.076

HCFC142b 0.988 0.440 0.116 0.993 0.356 0.079

CFC12 0.988 0.441 0.117 0.992 0.355 0.079

CH2O* 0.988 0.161 0.074 0.986 0.171 0.087

HCFC22 0.987 0.449 0.120 0.992 0.361 0.082

GLYX* 0.987 0.160 0.074 0.988 0.160 0.080

CFC114 0.987 0.452 0.121 0.992 0.359 0.081

CH3Cl 0.987 0.450 0.121 0.992 0.359 0.081

ClNO3* 0.987 0.280 0.087 0.992 0.224 0.079

ALD2* 0.986 0.273 0.101 0.989 0.256 0.103
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Table 9 – full column metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

CH2Cl2 0.986 0.464 0.125 0.992 0.366 0.084

HCFC123 0.986 0.468 0.126 0.992 0.369 0.085

HCFC141b 0.986 0.468 0.127 0.991 0.368 0.085

CFC113 0.985 0.469 0.127 0.991 0.369 0.086

IONO 0.985 0.168 0.087 0.988 0.153 0.075

HOCl 0.985 0.170 0.088 0.988 0.153 0.074

BrO 0.985 0.168 0.085 0.987 0.158 0.077

MACR 0.985 0.167 0.084 0.987 0.158 0.078

ICN 0.985 0.167 0.085 0.987 0.158 0.078

HPALD2 0.985 0.167 0.085 0.987 0.158 0.078

HPALD1 0.985 0.167 0.085 0.987 0.158 0.078

MCRENOL 0.985 0.167 0.085 0.987 0.158 0.078

IONO2 0.985 0.167 0.085 0.987 0.156 0.077

BrNO3 0.985 0.167 0.087 0.988 0.151 0.075

Cl2O2 0.985 0.181 0.092 0.991 0.146 0.070

CFC115 0.985 0.476 0.129 0.991 0.373 0.088

Cl2 0.985 0.167 0.084 0.987 0.158 0.079

I2O2 0.985 0.167 0.085 0.987 0.155 0.076

I2O4 0.985 0.167 0.085 0.987 0.155 0.076

ClNO2 0.985 0.196 0.097 0.991 0.153 0.071

ACET* 0.985 0.419 0.121 0.989 0.370 0.108

BALD 0.985 0.177 0.090 0.988 0.160 0.076

NITs 0.985 0.322 0.112 0.986 0.311 0.111

HNO2 0.985 0.167 0.084 0.986 0.161 0.081

MVK 0.985 0.200 0.094 0.990 0.167 0.071

CH2I2 0.985 0.182 0.093 0.989 0.157 0.073

MCRHNB 0.984 0.181 0.092 0.988 0.161 0.075
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Table 9 – full column metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

NO2 0.984 0.168 0.085 0.985 0.163 0.082

OClO 0.984 0.168 0.085 0.985 0.162 0.082

I2O3 0.984 0.168 0.085 0.986 0.158 0.080

MCRHN 0.984 0.181 0.092 0.988 0.162 0.076

N2O 0.984 0.485 0.132 0.990 0.382 0.089

HOBr 0.984 0.168 0.086 0.986 0.159 0.080

NIT 0.984 0.340 0.112 0.980 0.462 0.131

ETHLN 0.984 0.187 0.094 0.988 0.164 0.077

MGLY 0.984 0.184 0.087 0.987 0.169 0.079

PYAC 0.984 0.184 0.087 0.987 0.169 0.079

MVKHC 0.984 0.184 0.087 0.987 0.169 0.079

HOI 0.983 0.171 0.086 0.984 0.165 0.084

BrNO2 0.983 0.173 0.088 0.985 0.162 0.082

CFC11 0.983 0.503 0.138 0.990 0.390 0.093

HNO3 0.983 0.485 0.137 0.990 0.377 0.094

BrCl 0.982 0.175 0.088 0.983 0.169 0.087

HPETHNL 0.982 0.223 0.106 0.990 0.175 0.078

INO 0.982 0.176 0.090 0.984 0.166 0.084

RCHO 0.982 0.220 0.106 0.989 0.177 0.079

CH2IBr 0.982 0.255 0.113 0.991 0.186 0.080

N2O5 0.982 0.360 0.125 0.990 0.264 0.088

R4N2 0.981 0.515 0.142 0.989 0.403 0.099

IO 0.981 0.179 0.090 0.982 0.173 0.089

INPB 0.981 0.264 0.113 0.991 0.193 0.079

HMHP 0.981 0.272 0.113 0.991 0.195 0.079

IDHDP 0.981 0.272 0.113 0.991 0.195 0.080

MP 0.981 0.272 0.113 0.991 0.195 0.079

Continued on next page

68



Table 9 – full column metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

CH3CCl3 0.981 0.522 0.144 0.989 0.402 0.097

PROPNN 0.981 0.225 0.106 0.988 0.187 0.082

NPHEN 0.981 0.225 0.106 0.988 0.187 0.082

MENO3 0.981 0.519 0.144 0.989 0.405 0.101

H2O2 0.981 0.323 0.121 0.991 0.231 0.085

PIP 0.981 0.323 0.121 0.991 0.231 0.085

CH2ICl 0.980 0.319 0.124 0.990 0.229 0.088

ETNO3 0.980 0.524 0.146 0.988 0.409 0.103

MVKN 0.980 0.238 0.109 0.987 0.197 0.085

O2 0.980 0.598 0.159 0.989 0.448 0.108

IPRNO3 0.980 0.524 0.146 0.988 0.407 0.103

NPRNO3 0.980 0.518 0.146 0.988 0.402 0.102

Br2 0.980 0.185 0.093 0.981 0.180 0.092

HNO4 0.979 0.395 0.129 0.990 0.284 0.090

MEK 0.979 0.326 0.129 0.989 0.243 0.092

ClOO 0.979 0.188 0.094 0.980 0.182 0.094

ICl 0.979 0.189 0.095 0.980 0.183 0.094

GLYC 0.979 0.333 0.133 0.989 0.250 0.096

IBr 0.978 0.191 0.096 0.979 0.186 0.095

NO3 0.978 0.192 0.095 0.979 0.188 0.096

CCl4 0.978 0.581 0.158 0.988 0.439 0.107

IDN 0.978 0.273 0.115 0.987 0.219 0.088

I2 0.978 0.191 0.096 0.979 0.186 0.096

MONITS 0.978 0.274 0.115 0.987 0.219 0.088

PAN 0.978 0.586 0.159 0.988 0.444 0.112

OIO 0.978 0.192 0.096 0.979 0.187 0.096

HAC 0.978 0.396 0.138 0.989 0.287 0.098

Continued on next page
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Table 9 – full column metrics continued from previous page

01 January 2021 01 June 2021

Species ID R2 NRMSE NMAE R2 NRMSE NMAE

ClO 0.977 0.462 0.155 0.988 0.341 0.113

H2402 0.976 0.636 0.168 0.987 0.486 0.118

CH3Br 0.976 0.627 0.167 0.987 0.474 0.116

MPN 0.976 0.319 0.129 0.985 0.258 0.099

H1301 0.975 0.633 0.169 0.986 0.480 0.118

H1211 0.975 0.654 0.173 0.986 0.496 0.122

CHBr3 0.974 0.721 0.181 0.985 0.555 0.132

O3O1D 0.973 0.736 0.184 0.984 0.582 0.140

O3 0.973 0.736 0.184 0.984 0.582 0.140

CH2Br2 0.973 0.713 0.182 0.985 0.541 0.129

OCS 0.972 0.743 0.185 0.984 0.573 0.134

CH3I 0.972 0.738 0.175 0.982 0.599 0.137

O3O3P 0.341 1.930 0.464 0.365 1.921 0.441

SO4 -0.305 1.478 0.845 -0.342 1.492 0.864

8.3 Timings Predictions

Table 10: Time taken (in seconds) for each time step with varying numbers of ML models from 01-06-

2021. These were computed on Viking 2 using 430 GB memory and 86 CPUs.

Time Step FJX 2 Models 4 Models 8 Models 16 Models 32 Models 161 Models

1 3.38 32.14 78.84 156.61 374.28 941.69 8718.19

2 3.42 34.60 73.15 133.59 316.80 929.27 8860.46

3 3.43 41.04 79.58 119.65 356.33 1034.57 8452.78

4 3.39 40.07 87.91 125.19 325.08 941.12 8335.84

5 3.40 35.12 76.87 151.99 311.40 968.34 8470.33

6 3.41 29.80 65.05 137.58 385.16 940.74 8403.83

Avg. 3.41 35.46 76.90 137.44 344.84 959.29 8540.24
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