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Abstract 

Background 

In radiotherapy, deep learning autosegmentation (DL-AS) and automation of 

quality assurance (QA) have the potential to efficiently standardize and enhance 

the quality of contours. 

 

Aim 

To assess the performance of DL-AS in delineating organs-at-risk (OARs) in brain 

RT using the RayStation Treatment Planning System. Secondly, to build and test 

a novel artificial intelligence QA model called AutoConfidence (ACo). 

 

Methods 

Retrospective MRI and CT cases were randomly selected for training and testing. 

DL-AS models were evaluated from geometric and dosimetric perspectives, 

focusing on the impact of pre-training editing. 

  

The ACo model was evaluated using two sources of autosegmentation: internal 

autosegmentations (IAS) produced from the ACo generator and two external DL-

AS with different qualities (high and low quality) produced from RayStation 

models.  

 

Results 

The edited DL-AS models generated more segmentations than the unedited 

models. Editing pituitary, orbits, optic nerves, lenses, and optic chiasm on MRI 

before training significantly improved at least one geometry metric.  

MRI-based DL-AS performed worse than CT-based in delineating the lacrimal 

gland, whereas the CT-based performed worse in delineating the optic chiasm.  

Except for the right orbit, when delineated using MRI models, the dosimetric 

statistical analysis revealed no superior model in terms of the dosimetric accuracy 

between the MR and CT DL-AS models. The number of patients where the 

clinical significance threshold was exceeded was higher for the optic chiasm D1% 

than for other OARs, for all models.  

 



vi 
 

ACo had excellent performance on both internal and external segmentations 

across all OARs (except lenses). Mathews Correlation Coefficient was higher on 

IAS and low-quality external segmentations than high-quality ones. 

 

Conclusion 

MRI DL-AS in RT may improve consistency, quality, and efficiency but requires 

careful editing of training contours. ACo was a reliable predictor of uncertainty 

and errors on DL-AS, demonstrating its potential as an independent, reference-

free QA tool. 
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Chapter 1 Introduction 

1.1 Overall Introduction 

This PhD thesis focuses on approaches to developing robust automation in 

radiotherapy (RT) treatment planning, through deep learning autosegmentation 

(DL-AS). Specifically, the focus is on brain organ at risk (OAR) segmentation, 

using magnetic resonance (MR) imaging. Through robust validation and 

commissioning (Chapter 2 and 3), alongside advanced quality assurance (QA) 

methods (Chapter 4), a complete approach (Chapter 5) to efficient and safe use 

of DL-AS tools in clinical practice is laid out. 

1.1.1 Brain cancer statistics 

Over 90% of central nervous system (CNS) cancer occurs in the brain; it ranks 

among one of the most lethal forms of cancer (Miller et al., 2021, Uwishema et 

al., 2023, Aldape et al., 2019, Raghavapudi et al., 2021). It significantly impacts 

overall morbidity and mortality rates, affecting individuals of various ages, 

genders, and ethnicities (Lu et al., 2020, Miller et al., 2021). Annually, over 5000 

people die from all types of brain cancer, and currently, at least 102,000 adults 

and children in the UK are expected to be living with brain cancer (Brunese et 

al., 2020). Moreover, the number of new cases continues to rise, with more than 

11,000 reported annually and an estimated rise in incidence of 16% over the past 

decades (Lu et al., 2020). Different subtypes of brain cancer have very different 

prognosis. 

1.1.2 Glioblastoma 

Glioblastoma is the most common malignant primary brain tumour in adult 

according to the Central Brain Tumour Registry of the United States (CBTRUS), 

Centres for Disease Control (CDC), and the National Cancer Institute (NCI) 

(Ostrom et al., 2020). It tends to occur more frequently in males than females, 

and its incidence increases with age (Ostrom et al., 2020, Miller et al., 2021).  It 

is a very aggressive tumour with an extremely poor prognosis, with a median 

overall survival rate from the diagnosis of between 12 and 16 months for those 

who receive treatment (Angom et al., 2023, Lu et al., 2020). Currently, the gold 

standard treatment for patients with glioblastoma is debulking surgery, then 

radiotherapy (RT) in combination with chemotherapy and then followed by 6 
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months of adjuvant chemotherapy (Lu et al., 2020, Angom et al., 2023, Ainslie et 

al., 2024).  

1.1.3 Brain radiotherapy and side effects 

RT for glioblastoma delivers ionizing radiation to try to destroy cancer cells. 

Different radiotherapy-delivery techniques can be used such as three-

dimensional conformal RT (3D CRT), intensity modulated RT (IMRT), volumetric-

modulated arc therapy (VMAT), and proton therapy (Angom et al., 2023).  

While radiotherapy aims to destroy cancer cells, may also cause damage to the 

normal healthy tissues located near the tumour, called organs at risk (OARs). 

Damaging normal tissues in the brain can lead to several significant side effects 

during or after the treatment. Side effects are categorized as acute, or late effects. 

Acute symptoms may include headache, tiredness, hair loss and nausea 

(Raghavapudi et al., 2021). Late symptoms may appear after 3 months to years 

after the treatment such as impairments in neurocognition and radiation necrosis 

(Angom et al., 2023, Raghavapudi et al., 2021). Depending on severity, they can 

be life threatening, or may contribute to a reduction in the patient's quality of life. 

However, they can be minimized through the careful design of the dose 

distribution during the radiotherapy treatment planning process. More conformal 

radiotherapy techniques, such as IMRT or VMAT can help reduce the 

radiotherapy doses delivered to the normal brain (Raghavapudi et al., 2021). This 

may translate into reduced acute and late side effects.  

1.1.4 Radiotherapy image segmentation 

Radiotherapy is planned to meet the clinical goals by directing the radiation dose 

to the tumour, while minimizing the radiation dose to the nearby OARs to keep 

the toxicity levels low and acceptable (Hansen et al., 2022). Contouring, or image 

segmentation, is one of the most important steps of treatment planning to enable 

the calculation of dose delivered to the OARs and achieve this goal (Liesbeth et 

al., 2020). Image segmentation refers to the process where a radiation oncologist 

and/or technical staff use the RT simulation scan(s) to contour the target volume 

of the tumour and surrounding OARs such as the brainstem, optic nerves, optic 

chiasm, orbits, lenses, cochlea, and lacrimal glands. Depending on the target or 

OAR in question, image segmentation can be performed based on computed 

tomography (CT), magnetic resonance imaging (MRI), or CT co-registered with 
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the MRI simulation scans to improve the segmentation accuracy (Hansen et al., 

2022).  

 

Regarding MRI image segmentation, T1-weighted (T1-w) and T2-weighted (T2-

w) are two common imaging sequences essential for segmentation (Soomro et 

al., 2023). Each provides crucial information about brain anatomy and pathology, 

which is essential for accurate radiotherapy treatment planning.  

 

T1-weighted image demonstrates the differences in tissues' longitudinal 

relaxation time, referring to the time it takes for the tissues to return to their 

equilibrium state after being perturbed by the external radiofrequency pulse 

(Westbrook, Roth and Talbot, 2011). The contrast in the T1-w MRI image is 

influenced by the differences in T1 values, as each tissue has a unique recovery 

rate. The contrast of the T1-w image can be adjusted using the repetition time 

(TR) and echo time (TE). A short TR (300-700 ms) and TE (10-30 ms) are 

typically used for T1-w image (Westbrook, Roth and Talbot, 2011). Using these 

settings results in fat appearing bright (hyperintense), while fluids appear dark 

(hypointense) (Soomro et al., 2023). Tissues with a higher fat content have a 

shorter T1 value, which results in great magnetisation and thus appears brighter, 

while tissues filled with fluid appear dark.  

T1-w pre-and post-contrast imaging is the recommended protocol for brain 

tumour (Kamepalli et al., 2023). T1-w MRI image is particularly useful for showing 

brain anatomy, which will aid the staff to delineate the OARs. Using the contrast 

media in a T1-w MRI image will demonstrate where the blood-brain barrier is 

compromised (Kamepalli et al., 2023). In the case of brain tumour such as 

gliomas, the blood brain barrier is disrupted, allowing the contrast media to leak 

into brain tissue, producing high signals that highlight the tumour’s growth area. 

This aids in accurate treatment planning and tumour delineation. 

 

On the other hand, T2-weighted image demonstrates the differences in tissues' 

transverse relaxation time, which reflect the decrease of transverse 

magnetisation after the radiofrequency pulse (Westbrook, Roth and Talbot, 

2011). The contrast of T2-w image can also be adjusted using TR and TE. A long 

TR (2000 ms) and TE (70 ms) are typically used to acquire T2-w image 

(Westbrook, Roth and Talbot, 2011). These settings result in fluid appearing 
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bright (hyperintense) while fat appearing dark (Soomro et al., 2023). This makes 

T2-w imaging valuable to delineate tumour as it will highlight tumour infiltration 

and edema. Moreover, the T2-w images are useful to precisely delineate OARs 

that filled with water. Since fluid appears bright, pathology is more easily 

detected.   

 

Both T1-w and T2-w imaging can be used for delineating brain tumour and OARs. 

Clinicians select the appropriate imaging sequence based on local treatment 

protocols and individual clinical situations.  

1.1.4.1 Manual contouring challenges 

Contouring is typically done manually by the clinician or technical staff drawing 

around the OARs on each slice of a CT and/or MRI image set. However, it is 

associated with several challenges. First, it is a time-consuming task; prior 

studies have revealed that each patient may require a clinician to spend several 

hours to contour all targets and OARs (Cardenas et al., 2019, Wang et al., 

2019b). Moreover, in brain RT, planning MR images are combined or co-

registered with CT making more load for operators, as they need more time to 

refine the registration, and perform delineation based on information from 

different modalities (Rong et al., 2023). 

Secondly, despite the availability of consensus contouring guidelines, manual 

contouring remains a subjective task. An oncologist or a member of technical staff 

performs the delineation of OARs based on their previous experience, skill, and 

anatomical knowledge (Rong et al., 2023, Gibbons et al., 2023). Many teams now 

hold regular multi-disciplinary contouring meetings but it remains a source of error 

and uncertainty that may not be recognised during review and plan assessment 

(Gibbons et al., 2023, Rong et al., 2023, Cardenas et al., 2019), leading to 

inconsistent treatment between patients and potentially suboptimal care. This can 

occur either by missing areas of pathological tissue that should have been treated 

or treating areas of OARs that are, in fact, normal (Rong et al., 2023, Liesbeth et 

al., 2020, van Dijk et al., 2020).  

1.1.4.2 Autosegmentation  

Over recent years, advances in RT computing have enabled automated 

approaches to image segmentation, potentially addressing the challenges of 
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manual contouring by introducing autosegmentation using autosegmentation 

algorithms. These algorithms use some form of prior knowledge to estimate the 

location of OARs on the CT or MRI simulation scans and then contour them 

automatically (Gibbons et al., 2023). Several approaches of autosegmentation 

have become commercially available and clinically implemented (Cardenas et al., 

2019, Harrison et al., 2022). Until recently, uptake has been limited but, more 

recently, deep-learning approaches have become more popular. These 

technologies could potentially make a notable improvement in RT practice by 

improving contour quality, consistency, and workflow efficiency (Cardenas et al., 

2019, Gibbons et al., 2023), but only with robust and consistent approaches to 

their evaluation and implementation. Here, I review some of the predominant 

approaches to autosegmentation. 

1.1.4.2.1 Atlas-based segmentation 

The most common autosegmentation approach prior to the last 5 years was atlas-

based segmentation (Brouwer et al., 2020a). It uses deformable registration to 

transfer reference contours from (one or more) atlas patients to the target image 

set (Rong et al., 2023, Gibbons et al., 2023). However, the performance of the 

method depends on the quality of the atlas(es), in addition to the accuracy of the 

registration algorithms (Gibbons et al., 2023, Rong et al., 2023). Thus, single or 

multi-atlas-based  segmentation approaches often don’t meet the quality 

threshold of clinical acceptability without extensive manual editing on the 

generated segmentation, which still needs to be performed by the radiation 

oncologist or technical staff (Gibbons et al., 2023). Hence, it has proven 

challenging to achieve efficiency or consistency benefits compared to manual 

contouring with this technology. Further details about this approach can be found 

in sections 1.2.1.1 and 1.2.1.2. 

1.1.4.2.2 Deep learning-based segmentation 

In the last decade, there has been a transition in the research domain from atlas-

based segmentation to deep learning-based segmentation approaches (Harrison 

et al., 2022). Deep learning-based autosegmentation (DL-AS) has emerged in 

radiotherapy as a promising solution, addressing many of the limitations related 

to atlas-based segmentation (Gibbons et al., 2023). DL-AS is trained on many 

more patient cases than it is practical to use in an atlas-based approach and is 
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able to synthesise information from all of them, rather than having to select one 

or a few cases for image registration. 

DL-AS typically uses convolutional neural networks (CNN) to identify and 

recognize complex features of medical images and the relationships between 

these features and the pre-drawn contours (labels) provided with the images 

(Gibbons et al., 2023, Cardenas et al., 2019, Brouwer et al., 2020a). Training the 

network to extract these features and relationships, such that it can reproduce 

the human delineated structures in the training dataset enables the DL-AS model 

to predict the location of the OARs and contour them on a new image based, on 

the previous information analysed in the training phase (Gibbons et al., 2023, 

Rong et al., 2023).  

Several researchers have compared the performance of the DL-AS model and 

the atlas-based segmentation model in the delineation of OARs in various 

treatment sites (Gibbons et al., 2023, Cardenas et al., 2019, Liesbeth et al., 2020, 

van Dijk et al., 2020, van der Heyden et al., 2019). These studies have shown 

that DL-AS generally outperforms atlas-based segmentation methods.(Gibbons 

et al., 2023, Liesbeth et al., 2020, Cardenas et al., 2019, van Dijk et al., 2020). 

DL-AS models, which are trained on data prepared from consensus data from a 

group of human experts, have also been shown to be comparable to or 

outperform an individual human expert (Rong et al., 2023, Tang et al., 2019). 

These studies highlight the power of using DL-AS to improve segmentation 

quality, minimize interobserver variability, and significantly reduce the time and 

effort required by operators to segment OARs. However, it is consistently noted 

that some structures may still require editing and all structures require clinician 

review before use for treatment planning (Rong et al., 2023, Tang et al., 2019). 

Further details about this approach can be found in section 1.2.1.3. 

1.1.4.2.2.1 Brain OARs CT DL-AS 

In comparison to other treatment sites, there are few commercial DL-AS models 

available to delineate brain OARs. Only two studies exist that investigate the 

performance of commercial DL-AS for brain OARs segmentation based on CT 

scans (Heilemann et al., 2023, Wong et al., 2020).  

The first study investigated the performance of the Limbus Contour commercial 

model for the brain , head and neck, and prostate in comparison to manual 

reference contours from multiple radiation oncologists to find out if the accuracy 
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of the DL-AS model is comparable to radiation oncologist interobserver variability 

(Wong et al., 2020). For the brain, autosegmentation of the brainstem, optic 

chiasm, optic nerve, and globes was evaluated using Dice similarity coefficient 

(DSC) and 95% Hausdorff distance (HD) (Wong et al., 2020). The researchers 

found that contouring time was reduced compared to the manual contour. 

Moreover, the output of DL-AS was comparable to radiation oncologists (RO) 

contour (Wong et al., 2020).  

The second study compared the performance of three different commercial 

software solutions; Annotate, Limbus Contour, and RayStation to choose one of 

them for clinical implementation (Heilemann et al., 2023). Segmentation of the 

following treatments sites was investigated: abdomen, pelvis, thorax, head and 

neck and brain. For brain radiotherapy, these structures were evaluated: brain, 

brainstem, eyes, lens, optic nerve, optic chiasm, and cochlea (Heilemann et al., 

2023). The DSC, HD distance, a dose/volume assessment, and a blind rating by 

physicians were used for evaluation. The researchers found that all three DL-AS 

tools performed generally well compared to the manual reference contour for eye, 

lens, optic nerve, and optic chiasm with some variation in performance was noted. 

Accordingly, the researchers found that the decision to deploy the DL-AS tool is 

not direct and dependents on the focus of treatment sites that will be 

autosegmented.  

1.1.4.2.2.2 Brain OARs MRI DL-AS  

Regarding MRI based DL-AS, only one study exists that investigates the 

performance of a commercial DL-AS software (MVision) to segment the following 

brain OARs: brain, amygdala L and R, brainstem, cerebellum, corpus callosum, 

lacrimal gland, hippocampus, medulla oblongata, midbrain, optic chiasm, optic 

nerve, optic tract, pituitary, pons and thalamus using T1-weighted (w)MRI scans 

(Turcas et al., 2023). There are, however, other studies that investigate non-

commercial models to segment brain OARs using MRI (Mlynarski et al., 2020, 

Wiesinger et al., 2021, Chen et al., 2019, Mekki et al., 2024). The overall findings 

from these previous studies are that DL-AS performance is a promising tool, 

despite variation in the selection of evaluated brain OARs and evaluation 

methods. These tools can aid operators in their clinical workflow and reduce 

interobserver variability. 
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The delineation of brain OARs for RT treatment planning currently relies on 

images acquired from both CT and MRI scans. However, in recent years, MRI-

only radiotherapy planning has been the subject of extensive research, where the 

workflow depends on using MRI scans alone (Lerner et al., 2021, Ranta et al., 

2023). This requires the generation of a synthetic CT (sCT) from the MRI data, 

which is outside the scope of this thesis, but has been an active and successful 

research programme in its own right (Lerner et al., 2021). MRI-only radiotherapy 

planning offers several advantages. First, it increases the treatment accuracy by 

minimizing the uncertainties that arise from co-registering CT and MRI scans 

acquired from different patient positions during the scans (An et al., 2022, Ranta 

et al., 2023, Lerner et al., 2021, Kazemifar et al., 2019). Moreover, utilizing MRI 

only enhances the precision of treatment planning, as images from MRI are 

known to have high soft tissue contrast compared to CT, especially in brain 

tissues. This enables accurate delineation of the brain tumour and OARs (Liu et 

al., 2019). This is an important feature as the accuracy in delineation will likely 

improve treatment outcomes, by reducing uncertainty and allowing more precise 

RT planning. Compared to the current practice of using both modalities, MRI-only 

radiotherapy will potentially reduce error, improve workflow, and be more 

convenient for patients and department. 

 

Despite the potential advantages of using MRI in brain OAR autosegmentation, 

challenges persist (Soomro et al., 2023). MRI is not a well-defined imaging 

modality, with a plethora of contrasts, sequences, and parameters available and 

little consensus on the precise definition of a given scan type (e.g. T1w or T2w).  

The variability in imaging contrast is exacerbated by variations between 

manufacturers, models, and even individual scanners.  The performance of DL-

AS is improved when trained using a large consistent dataset, but given the 

inconsistency of data from different sources, this can be very challenging to 

achieve with MRI. Effectively utilizing multi-centre MRI data is challenging, as it 

needs techniques to address the diversity of the MRI scanner acquisition and 

resulting image contrast from different sources (Fatania et al., 2022). Overcoming 

this challenge is an active area of research, and the absence of a simple solution 

currently limits the development of large, high-quality MRI based DL-AS models. 

If centre specific DL-AS models are to be used, a large dataset needs significant 

effort and time from operators to label and contour OARs, which is another reason 
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for limited availability of MRI training datasets. To overcome these limitations and 

build an effective and transferable MRI DL-AS model, collaboration is needed 

between clinical and computer scientists, which needs time and scientific efforts 

to meet the practical needs of the clinical setting.  

 

Meanwhile, centres interesting in DL-AS in the MRI only setting are limited to 

relatively small training datasets. Accordingly, this PhD thesis aims to address 

the challenges related to MRI DL-AS for OARs with limited data. 

1.1.5 Gaps in knowledge and aims 

The main aim of this project is to train and evaluate the performance of an MRI 

DL-AS model using a limited training dataset, focusing on the impact of pre-

training editing of clinical segmentations on model quality. This investigation 

addresses two challenges identified above: the transferability of a reliable MRI 

DL-AS model between centres, and the difficulty of obtaining large single centre 

labelled datasets for training DL-AS models. This evaluation focused on the 

delineation of 13 clinically important brain OARs: orbits (right and left), lenses 

(right and left), optic nerves (right and left), optic chiasm, lacrimal glands (right 

and left), pituitary, brainstem, and cochlea (right and left). 

 

The second aim of this work was to establish the utility of various forms of 

evaluation metric for the task of clinical commissioning of an MRI DL-AS model. 

Most of the previous literature has investigated the performance of MRI DL-AS 

based on geometric accuracy alone. However, based on the published 

recommendations (Liesbeth et al., 2020) on how to effectively assess the clinical 

applicability of DL-AS tools, a dosimetric assessment is also needed, to 

determine the clinical suitability of a DL-AS model for radiation treatment planning 

and delivery. Applying both types of evaluation will enable an investigation of the 

correlation between geometric and dosimetric performance and will indicate 

whether both evaluations are necessary or if geometric evaluation alone is 

sufficient. These comprehensive evaluations align with the published guidelines 

on how to effectively evaluate the performance of the DL-AS models and robustly 

evaluate MRI DL-AS for radiotherapy treatment planning in the brain.  
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Using DL-AS models clinically remains challenging, due to the uncertainty 

associated with predictions on unseen data, which are exacerbated in this case 

by the limited MRI data available for training and evaluating models. As previously 

mentioned, DL-AS models could produce errors when applied to a new dataset 

that is different from the training data (Claessens et al., 2022). Also, human 

interaction with the generated contour can be a cause for concern, due to human 

biases and subjectivity. Some operators may perform extensive editing on 

clinically acceptable generated contours, which is time-consuming, while others 

may not do enough editing, leaving clinically unacceptable errors in 

segmentations.  The variability of human editing will also reintroduce 

interobserver variability, which DL-AS promised to eliminate.  

 

Crucially, the errors produced from DL-AS models are different from those arising 

from manual contouring, potentially leading to mistakes during segmentation 

review.  This tendency results from human biases as to the expected distribution 

of errors, which is based on clinical experience of other human derived contours 

or atlas-based AS.  For example, a typical human segmentation failure mode is 

’missing slices’ in the middle of an OAR, which DL-AS will typically not do. 

Conversely, an experienced human operator is unlikely to include an 

anatomically incorrect structure, if it is superficially similar to the correct one, 

whereas DL-AS may well do so.  

 

DL-AS models do not usually provide enough information about their uncertainty 

for each new case, and even if they do, this can often be poorly calibrated (i.e. 

high confidence is reported even for incorrect regions of OARs).  

Consequently, this project also aims to build a novel artificial intelligence QA (AI-

QA) model called AutoConfidence (ACo) to independently assess the 

segmentation uncertainty without ground-truth on a per-patient basis. Having a 

QA tool will improve clinical confidence in DL-AS, enhance the confidence and 

trust of the clinician to use the DL-AS tool, and aid users in deciding which area 

of the segmentation needs human review for potential editing.  In turn this should 

reduce human editing variability and enhance efficiency savings, whilst 

simultaneously reducing the risk of clinically significant segmentation errors being 

missed in review. 
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1.1.6 Clinical implications 

The outcomes of these investigations will have significant clinical implications. A 

robust DL-AS tool will potentially streamline the clinical workflow, reducing 

segmentation time and improving segmentation quality. By integrating an 

independent AI-QA tool (ACo) with DL-AS, clinicians can have more confidence 

in using the DL-AS tool, reduce review time for the generated segmentation, and 

avoid missing errors during the review process. Ultimately, having both DL-AS 

and ACo tools working together will enhance the safety, efficiency, and efficacy 

of the treatment planning process in the clinical setting, helping to realise the 

long-held promise of AI in RT. 

1.2 Literature Review 

1.2.1 Automatic segmentation  

1.2.1.1 Single atlas-based autosegmentation  

Single atlas-based segmentation is defined as using an expert segmented 

reference image, referred to as an atlas, to perform a new segmentation task 

through image registration (Schipaanboord et al., 2019) . To map the atlas 

contour to the input image, both the reference image and input image should be 

aligned to the same coordinate space, and deformations between the image sets 

computed. Then, the label information from the atlas image can be transferred to 

the input image (Schipaanboord et al., 2019).  

The performance of single atlas-based segmentation is determined by the quality 

of deformable registration, which is affected by the differences in patient anatomy 

between the reference image and the new input image. As a result, single atlas-

based models aren’t very accurate for most patients, becoming worse as the 

patient anatomy and positioning diverges from the atlas reference. It is worth 

noting that tumours and surgery can significantly change patient anatomy, 

making a single-atlas approach essentially unusable in oncology. However, 

segmentation accuracy may be improved somewhat by using a reference image 

that represents average patient anatomy (Harrison et al., 2022, Cardenas et al., 

2019).  
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1.2.1.2 Multi-atlas-based autosegmentation  

In response to the challenge of the single atlas-based segmentation approach, 

multi-atlas-based Autosegmentation was introduced, which uses several 

reference images to improve segmentation accuracy. Often, a similarity metric 

will be used to determine the ‘most similar’ patients in the multi-patient atlases, 

which can then be selected for registration to the current case. 

The same process as the single atlas-based autosegmentation is applied 

(Schipaanboord et al., 2019). However, a further step, known as contour fusion, 

combines segmentations from several reference images to generate a 

segmentation that represents the best estimate of accurate contouring (Cardenas 

et al., 2019, Schipaanboord et al., 2019). The multi-atlas-based 

Autosegmentation approach is commercially available as a clinical tool 

(Cardenas et al., 2019, Brouwer et al., 2020a), and it has been validated in 

different clinical sites (Cardenas et al., 2019).  

Despite the clinical success of multi-atlas-based autosegmentation, the main 

weakness is the limited ability to generalize to all patients. Patient variability can 

result from natural morphological differences, pathological reasons such as 

previous surgery, or healthy organs may be deformed because of growing 

tumours. These variations may not be represented in atlases, so generated 

contours may be inaccurate (Harrison et al., 2022, Mlynarski et al., 2020). Several 

studies show that multi-atlas-based autosegmentation has failed to meet the 

threshold of clinical acceptability, as radiation oncologists or technical staff must 

still perform extensive manual editing (Gibbons et al., 2023, Wang et al., 2019b), 

reducing the potential benefit and introducing the risk of incorrect OAR 

segmentations being used in RT planning. 

1.2.1.3 Deep learning-based autosegmentation  

Artificial intelligence (AI) is now extensively utilized in many fields, including 

medicine. It is defined as a computer system's ability to perform tasks that 

typically need human thinking using collections of complex computing and 

statistical algorithms (Liesbeth et al., 2020, Oh et al., 2019). AI research and 

applications have grown rapidly, especially in RT, aiming to improve treatment 

quality and save time. AI applications in RT include contouring, treatment 

planning, synthetic CT generation, and machine quality assurance (QA).  
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In 2020, a survey was conducted by (Brouwer et al., 2020b) among medical 

physicists in RT about the current clinical use of machine learning in the RT 

department. This revealed that 37% predominantly used AI for contouring 

(Brouwer et al., 2020b). This survey showed that most respondents (>90%) 

expected to introduce machine learning-based contouring and planning into their 

clinic over the next five years. Accordingly, further research is needed before 

clinically implementing DL-AS to establish the benefits and accuracy of 

autocontouring, address the challenges in implementation, and determine how to 

independently assess contour accuracy.  

Deep learning is a subtype of machine learning technology, that employs deep 

networks of layers of ‘artificial neurons’,  to efficiently process large amounts of 

data and extract the most important features to perform specific tasks (Du et al., 

2020).  

Modern deep learning methods entered common use in the 2010s when 

hardware improved, particularly following the use of graphical processing units 

(GPUs) for massive parallelisation of linear algebra (which is the core 

mathematical task for deep learning). The development of efficient gradient 

computation methods, especially ‘backpropagation’, enabled use of complex and 

deep architectures comprising many millions of parameters. These deep neural-

networks began to demonstrate significant abilities in image processing tasks, 

especially for medical image classification and segmentation (Hesamian et al., 

2019). The architecture of the deep neural network may change based on its 

purpose (Bibault and Giraud, 2024), with fully connected networks being common 

for structured (non-imaging) data problems and convolutional neural networks for 

imaging tasks. 

1.2.1.3.1 Fully Connected networks  

The simplest architecture for a neural network is that of fully connected (FC) 

layers (Bishop, 1995). In this architecture, the input to the layer is represented as 

a tensor of numerical values. Each of these is ‘connected’ to a value in an output 

tensor (which can have any shape and size) by an ‘artificial neuron’ (AN) (Bishop, 

1995). These ANs consist of a linear function of the form:  

y = wx + b 
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Where y is the output value, x is the input, w is the ‘weight’ and b is the ‘bias’. 

The output value y is then put through a second function, known as an ‘activation 

function’. This is a non-linear function that allows the network to learn non-linear 

relationships between input and output variables (Bishop, 1995). It is typically a 

simple form such as a sigmoid or tanh function with no parameters (figure 1.1). 

The network learns by optimising the weights and biases to produce the desired 

output from each input in the training dataset.  

 

 

Figure 1.1:Artificial neuron with activation function. The input tensor of 
numerical values (X1-Xn) and their corresponding weights (W1-Wn) are 
summed, and a bias (b) is added. Then, the activation function f is applied 
to the outputs. 
 

In an FC network, every input value is connected by an AN to every output value 

(figure 1.2). The weight and biases are adjusted iteratively, as the model is trained 

against the known ‘ground truth’ predictions, or labels (Bishop, 1995). In order to 

do this, a loss-function is used to compute the difference between the expected 

and actual prediction for each example in the training dataset. By differentiating 

this ‘loss’ with respect to the weights and biases, using an algorithm called back-

projection, the gradient, or sensitivity of each parameter can be computed 
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(Bishop, 1995).  This allows an optimiser to adjust the parameters in such a way 

as to minimise the loss and improve the network predictions. 

The limitation of FC networks is one of scaling. For an input image of size 256*256 

pixels (values) and an output size of 128*128 pixels, a single FC layer would 

correspond to approximately 1x109 parameters, which is clearly prohibitive. 

 

Figure 1.2: Architecture of fully connected (FC) layers. Each value in the 
input tensor of numerical values is ‘connected’ to a value in the output 
tensor by an artificial neuron 

 

1.2.1.3.2 Convolutional neural networks  

Due to the constraints of FC layers, convolutional layers were developed. Here, 

each output value is connected, with a small array (kernel) of ANs, to the input 

layer. This kernel is typically a square array of 3*3 or 4*4 ANs, resulting in 18 or 

32 parameters. The kernel is moved over the input array in 2D, but the 

parameters remain the same, massively reducing the amount of computation 

needed to optimise their values, and making image based deep-learning feasible 

(figure 1.3). 

The Convolutional neural network (CNN) algorithm is the most common deep 

learning algorithm for imaging tasks that has abilities to perform imaging tasks, 

such as image recognition, classification, segmentation and synthesis (Bibault 

and Giraud, 2024, Yang and Yu, 2021).  
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Each layer takes the output of the last layer as its input (Hesamian et al., 2019). 

The input for the first layer of the CNN is the (normalised) pixel values of a medical 

image.  

By stacking many convolutional layers, each with an internal set of kernels (also 

known as filters), producing a multi-channel output, deep-CNNs can encode 

features of images at many scales (resolutions). As well as convolving the kernel 

across the image, and applying a non-linear activation function, each layer also 

down-samples the image size, typically by a factor of 2, using a pooling layer. 

(Hesamian et al., 2019). The dimension of the activation map is typically reduced 

by a pooling layer.  

The output for each convolutional layer will create an activation map, or encoded 

representation of the image information. The first layers encode local features, 

such as edges and shapes, whereas the deeper layers are able to synthesis 

these simple features into more complex and contextual information. Based on 

each pixel or voxel value, and the surrounding voxels, the CNN can be trained to 

predict some information about the image. This may be a simple binary 

classification (e.g. contains tumour vs. does not contain tumour) or a complex set 

of information. 

For image classification, the final layer is an FC layer, which extracts high-level 

abstractions as it has full connections to every activation unit in the previous 

layers (Hesamian et al., 2019). 

By taking the output of the deepest layer of the CNN and using it as the input to 

an ‘inverted CNN’ it is possible to generate information in the form of a new image, 

predicted on the basis of the input image. This architecture is known as an 

‘encoder-decoder’ and is the core of most modern approaches to image based 

deep-learning. The output of the encoder is known as the ‘latent space’ and is 

the input to the decoder. 
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Figure 1.3: Illustration of the Convolutional Neural Network (CNN). The input image 
is processed by different layers of CNN using filters of artificial neuron to detect image 
features. This is followed by pooling layers to reduce the dimension of feature map 
and activation function to learn complex pattern in the image. 
 

An encoder-decoder CNN, trained for image segmentation, can classify each 

voxel as belonging to either an OARs, a target, or the background, leading to a 

mask of the segmentation for each region of interest (ROI), at the input resolution 

of the images (Liesbeth et al., 2020).  

Fully-convolutional encoder-decoder CNNs (Long et al., 2015) have two paths, 

firstly the encoding path, which is as the same as regular CNNs, and secondly, 

the decoding path, which removes the last fully connected layer to perform a 

learned upsampling via transposed convolutions to generate accurate 

segmentations (Cardenas et al., 2019). There has been a growing use of 

Encoder-decoder CNNs in radiotherapy since 2017 (Bibault and Giraud, 2024). 

1.2.1.3.2.1 U-Net 

There are different types of CNN architecture, and U-net is the most widely used 

CNN architecture for medical image delineation (Cardenas et al., 2019). The U-

net architecture was developed in 2015 (figure 1.4) (Ronneberger et al., 2015). It 

consists of two paths: the encoding path (the same as the structure of CNN) and 

the decoding path, which is called the expansion path, involving an up-sampling  
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and  deconvolution layers (Hesamian et al., 2019). One key limitation of CNNs 

for image segmentation is the fact that the latent representation is compressed - 

it contains less information than the original image. This means that reconstructed 

images and segmentations from the decoder are typically quite blurry, or 

uncertain at the edges of the masks, in the case of segmentation. 

The most powerful and innovative feature of the U-net approach is using skip-

connections, which combine features from the encoding contraction path directly 

to the decoding expansion path, bypassing the latent space. This approach helps 

to improve localization, sharpness and accuracy, when learning representations 

from input images (Cardenas et al., 2019).The U-net paper also demonstrated 

that with fewer labelled training data, which is a common situation in medical 

imaging, the networks may still be trained to generate acceptable segmentations.  

 

Figure 1.4: A modified diagram for the U-net architecture from figure 1 
(Ronneberger et al., 2015). It consists of the encoding path, the decoding 
path and skip-connections.  
 

In 2016, there was an update to the original 2D U-net method to use 3D images 

to train the network (Çiçek et al., 2016). The impact of using the 2D U-net 

architecture to segment 3D medical images, was that images slices were 

processed individually, losing information stored in the stack direction.  This could 

lead to data from the original 3D medical image not being used in the 

segmentations, leading to slice-to-slice variation in the predicted ROIs. The 3D 

U-net allowed for direct analysis of the 3D images (Du et al., 2020), using 3D 

Encoding 
Path 

Decoding 
Path Skip Connections 
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convolutional kernels (e.g. 3*3*3).  However, computational limitations on 

handling full 3D datasets in memory have limited the depth of 3D CNNs, leading 

to a performance trade-off. Other researchers have created modifications of the 

U-net structures. They developed a three-dimensional version of the U-net, called 

the V-net (Milletari et al., 2016).  The resulting segmentation of this approach was 

fast and accurate (Milletari et al., 2016). 

To summarize, autosegmentation based on deep learning (DL-AS) has been 

successfully applied in the medical research field using different strategies in 

which a neural network can automatically learn features from the medical image, 

which predict the segmentation. The U-net network has demonstrated 

outstanding performance across many different segmentation tasks for medical 

images (Bibault and Giraud, 2024, Cardenas et al., 2019, Hesamian et al., 2019). 

DL-AS demonstrated much improved performance compared to the atlas-based 

segmentation methods (Cardenas et al., 2019, Liesbeth et al., 2020, van Dijk et 

al., 2020, Gibbons et al., 2023).  

1.2.1.3.3 Deep learning-based autosegmentation challenges 

Despite the potential of deep learning automatic segmentation, it has some 

limitations. Deep learning autosegmentation typically generates accurate 

segmentations for large structures, but accuracy for small structures is typically 

sacrificed (Wang et al., 2019b). This can be due to the loss function, which is 

scaled by the number of voxels in the structure. However, some techniques can 

improve the accuracy of the generated contour for small structures by separating 

segmentation between the small and large structures using a two-stage 

framework to localize and segment OARs (Wang et al., 2019b). Alternatively, 

more heavily weighting the importance of the small structures can help with this 

problem. 

Deep learning in general has low interpretability. There are problems 

understanding how image features such as image intensity or anatomical 

structures can affect the trained network during the process of segmentation 

prediction. This makes it difficult to understand and determine the source of 

incorrect segmentations (Cardenas et al., 2019).  

Differences in patient anatomy or positioning between training and clinical cases 

can affect the model output, as can using different immobilization devices 

(Claessens et al., 2022, Brouwer et al., 2020a). Using various image acquisition 
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protocols can also negatively affect the performance of a deep learning 

autosegmentation (Claessens et al., 2022). These differences between the 

individual patient and training cases could cause geometric segmentation errors 

varying from minor issues, such as misplaced boundaries, to significant issues 

such as missing segmenting of the entire slice or structure (Claessens et al., 

2022). 

Moreover, there are different challenges during the training of the DL-AS model. 

First, the consistency and accuracy of the manual segmentations used to train 

the model significantly affect the model output (Cardenas et al., 2019). However, 

standardizing manual contouring through the implementation of international 

consensus guidelines can overcome this limitation to some extent (Cardenas et 

al., 2019). Training deep learning models needs large datasets to expose the 

model to sufficient different examples, which increases the accuracy and 

reliability of the model (Thwaites et al., 2021). This is still challenging for many 

reasons, such as a shortage of high-quality labelled data, and privacy concerns 

from sharing data among different institutions.  

Having limited graphics processing unit (GPU) memory can be an obstacle to 

using 3D deep neural networks, as training the network needs intensive 

computational resources (Bibault and Giraud, 2024).  

Lastly, clinicians and technical staff find it hard to have appropriate confidence in 

using deep learning tools such as autosegmentation clinically (Harrison et al., 

2022). There is a risk of both under- and over-confidence, which can vary from 

patient to patient.  This risks both allowing errors to go undetected, and editing 

contours unnecessarily, which its time consuming and can re-introduce operator 

inconsistency. Accordingly, independent AI-QA tools are needed to detect 

uncertainty in the segmentations. This would support clinicians in gaining 

confidence to use DL-AS tools and accelerate their review process of the 

generated segmentations. 

1.2.2 Commissioning, clinical implementation, and quality assurance  

Any new medical software or device intended for use in RT clinical practice 

should be quality assured with an initial commissioning phase followed by clinical 

implementation and ongoing routine QA. It is a critical QA task to verify the 

performance of the deep learning autosegmentation techniques that will be 

clinically used in the RT department. Any inaccuracy could lead to incidents 
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where unintended radiation dose is delivered to healthy tissues or inadequate 

target volume coverage occurs. Previous studies developed general 

recommendations on commissioning, clinical implementation, and quality 

assurance of DL-AS models (Liesbeth et al., 2020, Claessens et al., 2022, Bibault 

and Giraud, 2024). They recommend good practices at the development, 

implementation, and clinical use stages. These recommendations should be 

followed to ensure the model's output and predictions are and remain accurate. 

1.2.2.1 The development phase 

The commissioning phase includes the training phase followed by the testing 

phase (Bibault and Giraud, 2024, Liesbeth et al., 2020). 

1.2.2.1.1 Training phase  

During the training phase, the neural network learns to perform an accurate 

segmentation by finding the correlation between the image features and the 

relevant segmentation labels. The loss function will calculate the differences 

between the generated and gold standard segmentation (Bibault and Giraud, 

2024). Then, the networks weights will be adjusted during the training based on 

the outputs of the loss function to reduce the discrepancy between the generated 

and gold standard segmentation (Bibault and Giraud, 2024). 

Model training can start in different ways, such as initializing all weights to zero 

or using pre-trained weights from a previous training episode. When all weights 

are initialized to zero, the training of neural networks begins from scratch. 

Conversely, using pre-trained weights from previous models may help the model 

to work faster.   

1.2.2.1.1.1.1 Training data criteria 

A considerable amount of high-quality, labelled data needs to be used to train 

DL-AS models (El Naqa et al., 2018). The quality of the data includes the quality 

of the medical images themselves (resolution, noise level, artefact) and manual 

segmentations, which are key factors that can affect the model’s output. Thus, all 

the clinical data should be reviewed before being used for training (Cardenas et 

al., 2019). Moreover, it is preferable to use locally clinical acquired data to follow 

the imaging methods, equipment and clinical guidelines of the department 

(Liesbeth et al., 2020). This is particularly important for MRI, which is much less 

standardised than CT. Using clinical data from other institutions with different 
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imaging or contouring guidelines could significantly affect the model output when 

tested on a different dataset (Cardenas et al., 2019). The training data should 

also include many variations in patient anatomy to reflect the population variability 

of the clinical data (Liesbeth et al., 2020, Thwaites et al., 2021).  

Based on previous studies, the number of scans required to train the model still 

has to be determined (Cardenas et al., 2019), and likely is dependent on the 

clinical site and amount of anatomical variation present. Currently, state-of-the-

art CNN-based segmentation models typically have over 100 patients (van Dijk 

et al., 2020). On the other hand, models of 50–100 patients have been proven to 

segment OARs with sufficient precision (Van der Veen et al., 2019) in some 

cases. A survey was done among medical physicists in radiotherapy to 

investigate the current utilization and requirements to support deep learning 

implementation (Brouwer et al., 2020b). 114 of 147 participants responded to 

questions about the training and preparing data to use AI tools (Brouwer et al., 

2020b). Most of them noted that they use their own data instead of vendor data 

with a sample size of < 100 patients. Except for 10% of cases, where they used 

> 200 cases. Most of the participants stated that they reviewed the training cases 

before training the model. Some respondents mentioned that they excluded 

unusual patients or setup positions from the training data. So, most physicists 

and centres have their own training data practices.  

1.2.2.1.2 Validation phase  

Validation aims to develop an independent assessment of the model's final 

performance and determine which types of patients the model may be used for 

(Liesbeth et al., 2020, Thwaites et al., 2021). An independent dataset is needed 

to assess the model quantitatively and qualitatively (Liesbeth et al., 2020).This 

dataset should reflect the variation of the clinical data that the model will be used 

for (Liesbeth et al., 2020). The average number of patients in a test phase is 

about 20 patients (Willems et al., 2018), or 20% of the training dataset size 

(Joseph, 2022) . A minimum of ten cases is recommended. However, this number 

should be increased if the results are highly variable (Cardenas et al., 2019). The 

autosegmentation for the test cases should be compared with the reference 

contours (gold standard contour) (Harrison et al., 2022), to ensure clinically 

acceptable performance. 
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Various metrics are used to evaluate the reproducibility and accuracy of the 

output of the model compared to the gold standard contours (Harrison et al., 

2022). 

1.2.2.1.2.1 Evaluation metrics  

Quantitative geometric agreement between generated segmentation and the 

reference contour (Vaassen et al., 2020, Liesbeth et al., 2020, Harrison et al., 

2022) can be measured using volume-, surface-, and moment-based metrics.  

Volume-based metrics includes Dice Similarity Coefficient (DSC) and sensitivity. 

DSC measures the overlap volume between the generated and gold standard 

contour.  

DSC (A, B) = 2(A∩B)/(A+B), 

where ∩ is the area of overlap between two contours. A is the generated 

segmentation, and B is the gold standard segmentation (Sherer et al., 2021). The 

range of DSC is from 0 to 1. Zero denotes no overlap between the two contours, 

while 1 denotes complete overlap (Bibault and Giraud, 2024). Sensitivity 

measures the ability of the autosegmentation model to correctly predict the pixels 

located within the OAR gold standard contour (van Rooij et al., 2019).  

Sensitivity = TP / (TP + FN) 

where TP is the true positive (presenting pixels in both gold standard contour and 

autosegmentation) and FN is the false negative (presenting pixels inside the gold 

standard contour but outside the autosegmentation). If the sensitivity is near 1, 

this indicates the model correctly predicted most of the pixels within the OAR gold 

standard contour, while a result near 0 indicates the model is missing most of the 

pixels within the OAR gold standard contour. 

Surface-based metrics include the median, 95% and maximal Hausdorff 

Distances (HD) between surfaces, and mean distance to agreement (MDA) 

(Vaassen et al., 2020, Liesbeth et al., 2020, Harrison et al., 2022). HD is based 

on the histogram of distance differences between two contour surfaces (Mackay 

et al., 2023). Mean distance to agreement is the mean distance required to make 

the outline points of the automatic segmentation and outline points of the gold 

standard contour match perfectly. Small values of HD and MDA indicate both 

contours are close to each other, while greater values indicate dissimilarity 

between the two contours (Mackay et al., 2023).  
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Moment-based metrics compare the centre of the generated contour to the centre 

of the gold standard contour of a specific structure in x, y, and z dimensions 

(Mackay et al., 2023).  

However, these methods (volume-, surface- and moment-based metrics) do not 

necessarily correlate with clinical (dosimetric) applicability or the time needed to 

edit DL-AS contours to an acceptable standard. 

Thus, there are other clinically significant metrics to consider, such as the time 

required for editing (Liesbeth et al., 2020, Vaassen et al., 2020, Harrison et al., 

2022, Sherer et al., 2021) and dose variation between the generated and gold 

standard contours of the OAR (van Rooij et al., 2019, van Dijk et al., 2020, 

Harrison et al., 2022). However, dosimetric analysis can be extremely 

challenging, as it depends on both the underlying geometric contour error and 

the position of that error relative to the high dose gradients of the patient plan. 

Hence, dosimetric results can be very individual and hard to generalise to future 

cases. 

Furthermore, there are qualitative analysis methods using subjective judgment 

(qualitative scoring systems) to assess the quality of the generated segmentation 

in each patient, compared to the gold standard contour by one or more radiation 

oncologists (RO) (Sherer et al., 2021, Liesbeth et al., 2020). In cases of 

inaccurate segmentation, specific limitations should be identified and 

documented. These can then be used to generate restrictions or advice for the 

use of DL-AS in the clinic. 

Once all the generated segmentations are evaluated, and any error recognised 

and documented, the commissioning phase is completed. The autosegmentation 

model can be then used in routine clinical practice if the evaluation scores 

confirmed its applicability for clinical use (Cardenas et al., 2019). If not, the 

commissioning phase should be repeated until the performance of the model 

improved by providing clinically acceptable segmentation. 

1.2.2.2 DL-AS Implementation phase 

Even following validation of the DL-AS model, which is a critical step of the 

commissioning and implementation process, it is still unclear how to most 

efficiently implement AI-based technology into clinical practice (Brouwer et al., 

2020b, Rong et al., 2023). However, recent recommendations exist for using AI 

technology in the clinical setting. First, it is highly recommended to create a multi-
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disciplinary team (MDT) of the clinicians, medical physicists, RTT, and 

information technology professionals (IT) involved in the clinical implementation 

(Liesbeth et al., 2020). This MDT should meet regularly to assess the strengths 

and limitations of the models, the way in which they will be integrated into the 

workflows, the responsibilities of each user group, how to educate users model 

usage, and how to check and edit the output. Meeting regularly is key to detecting 

any potential problems at an early stage. Moreover, it is recommended to conduct 

a feedback system for maintaining clinical practice quality and safety over time.  

If any changes are made to models, either to address issues uncovered or as 

part of an external provider’s update programme, the validation phase of the 

commissioning process should be repeated. Retraining the model with a new 

training dataset may be required in cases of a change in the clinical workflow or 

a systematic drop in model performance (Kalet et al., 2020). In these cases, the 

model must be recommissioned with a new test dataset, which matches the new 

clinical scenario (Liesbeth et al., 2020).  

The current UK Medical Device Regulations (MDR) emphasise the importance of 

assessing and control risks, and if followed appropriately, should ensure the 

safety of using the model in clinical practice (Brouwer et al., 2020b, Thwaites et 

al., 2021). Importantly, it is the entire system which should be risk assessed, 

including workflow, checking processes and human-system integrated 

performance. It is insufficient to depend solely on technical model performance 

assessment. 

Accordingly, conducting a prospective risk analysis assessment is essential to 

find and assess factors that may affect the model output, such as using failure 

mode and effects analysis (FMEA), the most commonly employed risk 

assessment for machine learning applications (Brouwer et al., 2020b).  

1.2.2.2.1 DL-AS implementation challenges 

Integrating the DL-AS into clinical practice is still challenging, as highlighted by 

previous literature and surveys addressing the barriers of using these tools in 

radiotherapy.  

1.2.2.2.1.1 A lack of information and resources 

The first challenge is related to a lack of information and resources on how best 

to deploy DL-AS tools into clinical practice (Mackay et al., 2023). Clear guidelines 
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should be developed in collaboration with vendors, healthcare institutions, and 

researchers to support the effective integration of DL-AS into clinical practice and 

ongoing quality assurance. There are ongoing projects to deliver these guidelines 

through the Royal College of Radiologists (RCR) and other professional bodies. 

1.2.2.2.1.2 A need for training and education 

There is a need for training and educating the operator to know the purpose of 

implementing this tool, how to use it, the clinically relevant outcomes generated 

by the model, possible limitations, and proper documentation practice (Brouwer 

et al., 2020b, Thwaites et al., 2021). This training is crucial to ensure the 

operators are competent to use these tools and to increase their acceptance and 

confidence to use them (Karalis, 2024). Misunderstanding how to use this tool 

and what is expected could lead to clinically significant errors or misalignment 

with the clinical or efficiency saving goals and workflow (Karalis, 2024).  

1.2.2.2.1.3 Ethical and legal considerations 

An additional challenge is related to ethical and legal considerations (McCague 

et al., 2023, Karalis, 2024). The implementation and use of this tool should follow 

the regulations such as the Food and Drug Administration (FDA) approval 

process or MDR (McCague et al., 2023). Also, it’s essential to determine who is 

responsible in the event of errors caused by using DL-AS tool and what the 

consequences are from ethical and legal aspects. Accordingly, the integration of 

the DL-AS tool in clinical practice is not straightforward and required ethical, legal, 

technical, and educational considerations that necessary to be addressed to 

ensure safe use of such tool, especially with the expectation to use this tool more 

within the following year (Hindocha et al., 2023). In current practice, DL-AS is 

exclusively used within a human-in-the-loop workflow, where human operators 

check edit and verify all DL-AS outputs, mitigating these legal challenges and 

risks. To move beyond that to fully automated operation will be extremely 

challenging from a liability perspective. 

1.2.2.3 Clinical use phase – quality assurance 

Currently there is no clear consensus on the required quality assurance schedule 

for DL-AS tools. However, based on the previous literature’s recommendation 

were established for developing two forms of QA: routine and case-specific QA 

(Liesbeth et al., 2020). Routine QA is performing general regular tests to ensure 
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this model is still working properly (Liesbeth et al., 2020), and has not been 

affected by external changes to data or workflows. Case-specific QA focuses on 

the performance of the model in each case (Liesbeth et al., 2020).  

1.2.2.3.1 Routine QA 

It is essential to have a quality management program to regularly check the 

performance of the model after any update in the software or any changes in the 

clinical workflow (Claessens et al., 2022, Liesbeth et al., 2020). Changes include 

imaging protocol, demographics, patient setup, and immobilization devices. 

When the output of the routine QA does not meet the expected performance, 

recommissioning the model may be required (Liesbeth et al., 2020, Claessens et 

al., 2022). 

1.2.2.3.2 Manual verification and monitoring human interaction 

The generated segmentation in each case should be reviewed, edited if required, 

and approved by clinical staff (Liesbeth et al., 2020, Cardenas et al., 2019). It is 

recommended to document any corrections to keep track of the cases where the 

autosegmentation model is underperforming and monitor how the user interacts 

with the model (Liesbeth et al., 2020). Several studies prove that supervision of 

the output is one of the most valuable tool to track the quality of the model 

(Liesbeth et al., 2020, Brouwer et al., 2020b). Moreover, a survey of medical 

physicists from 202 RT centres about their developed methods of QA for deep 

learning applications during clinical use reported that monitoring the performed 

manual interactions/edits is the most commonly used method (Brouwer et al., 

2020b). However, some respondents stated there is no regular QA of their AI 

applications. This could be due to the lack of information about how to conduct 

the QA for the AI application in the clinical workflow (Brouwer et al., 2020b).  

To our knowledge, only two studies evaluated how users interacted with a 

commercial deep learning autosegmentation CT model in delineating OARs after 

a year of routine clinical use (Brouwer et al., 2020a, Wong et al., 2021). The first 

study aimed to assess the performance of the deep learning autosegmentation 

model in the clinical workflow based on user experience and objective 

comparison metrics (Wong et al., 2021).  A subjective assessment was through 

a survey conducted among dosimetrists, RTTs and radiation oncologists after 

they completed reviewing and editing of each generated segmentation (Wong et 
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al., 2021). The objective assessment metrics compare the generated 

segmentation without editing and after editing the automatic segmentation using 

95% HD, and DSC (Wong et al., 2021). Using a survey to report users' experience 

and comparing unedited with edited autosegmentations will help highlight 

scenarios where the model is underperforming and address the issue with further 

training (Wong et al., 2021). These methods could be used to give feedback 

about the impact of the autosegmentation model on the clinical workflow and 

identify how it can be improved.  

Moreover, another previous study conducted after a year of routine clinical use 

aimed to identify what manual adjustments were made during the review of the 

clinical cases of the autosegmentation to identify what modifications could be 

applied to improve the model output (Brouwer et al., 2020a).  The findings 

showed that evaluating the manual adjustments of the autosegmentation in a 

typical clinical setting was a valuable tool to improve the quality of practice in 

autosegmentation by identifying which technical improvements are needed and 

highlighting the necessity for continued training of RTTs, as there was variation 

in their understanding of the guidelines (Brouwer et al., 2020a).  

1.2.2.3.3 Statistical QA models and an independent AI-QA model 

The concerns about routine manual checking and editing are that it depends on 

the individual user, which could introduce bias and could reduce the benefit of 

segmentation automation by spending time reviewing and editing the cases. Also, 

it is prone to missing clinically significant errors and failing to edit incorrect 

segmentation.  

Accordingly, it is recommended to use data-driven QA methods to assist the 

users in making decisions regarding the accuracy of the generated segmentation 

and what modifications are needed. However, this is made very challenging by 

the absence of ground truth (manual gold standard) contours for routine clinical 

cases. There are potential solutions to this problem. For instance, a statistical 

model could be implemented to highlight outliers through the evaluation of the 

OARs characteristics (e.g. shape, volume, and centroid) to check if there is any 

significant deviation from expectation in the segmented volume (Claessens et al., 

2022, Liesbeth et al., 2020, Cardenas et al., 2019). However, these methods can 

be insensitive and do not account well for unusual patient anatomy. 
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Moreover, another suggested method is using a secondary independent DL-AS 

algorithm as a verification method depending on AI. This is still emerging 

technology (Claessens et al., 2022). The aim is to detect the uncertainty in the 

segmentation, as disagreement between algorithms and identify in which areas 

the performance of the segmentation algorithm is suboptimal (Claessens et al., 

2022). This will increase users’ confidence and trust in the use of the DL-AS tool. 

Moreover, it can potentially expedite the verification process and increase safety. 

However, all these approaches support, but cannot replace the necessity for 

carefully reviewing the generated segmentation by the clinical team (Liesbeth et 

al., 2020, Cardenas et al., 2019).  

Undoubtedly, patient specific QA for DL-AS is challenging, specifically in 

instances where the interpretability of the model is lacking such as trying to 

identify the reasons of certain segmentation prediction.  

Three previous studies investigated different QA approaches to assess the 

quality of autosegmentation in RT. Spatial probability maps (SPMs) based on 

Monte-Carlo Dropout (MCD) were investigated on the salivary glands as a 

paradigm (van Rooij et al., 2021). The second study explored using a secondary 

neural network (NN) to predict Dice similarity Coefficient from breast CT-AS pairs, 

through internal class probability as an input to the QA network (Chen et al., 

2020).  The third study investigated the QA of DL-AS on head and neck CT using 

radiomics features located near contour boundaries to predict DSC scores (Luan 

et al., 2023).  

However, these methods depend on the prediction-generating model and the 

distribution of training data to generate uncertainty estimates, and hence fail the 

test of independence.  Moreover, they are also susceptible to internal probability 

calibration issues as well as creating practical challenges for use with existing or 

commercial AS models, which may not provide probabilistic predictions. 

Moreover, predicting DSC is not particularly valuable as it will not provide 

information about the location of the error, and it depends on the structure size 

and shape. Accordingly, it is important to develop an independent QA approach 

that can assess the quality of the segmentation without relying on DSC prediction 

or internal AS model probability. 
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1.3 Study Overview 

1.3.1 Identifying research problems 

Based on the previous literature regarding the performance of the DL-AS model 

on OARs and general recommendations for model training and validation, three 

gaps in knowledge need to be addressed. 

First, the main issue with the performance of the DL-AS model is not related to 

the optimal model architecture, which has now been well established for some 

time, but it is more related to the quality and availability of training examples. It is 

well known that training the DL-AS model on a large dataset will tend to perform 

better on unseen data. However, it is challenging to acquire a large training 

dataset for MRI based DL-AS. This challenge is related to the difficulty in using 

MRI data from different institutions due to variations in the MRI scanner 

acquisition process. Moreover, obtaining large, high-quality annotated data for 

training is challenging as it needs significant effort and time to consistently 

contour and label all the structures and review them. We will investigate the use 

of small datasets, and the importance of the way editing is done on the gold 

standard label contours, by examining the effect of editing on the RayStation 

model performance. 

The second area is related to DL-AS evaluation methods. Most researchers use 

geometric metrics alone to evaluate the model. However, based on 

recommendations on how to effectively assess the clinical applicability of DL-AS 

model, dosimetric evaluation is also needed. There is no agreed method for 

identifying the acceptable clinical threshold for dosimetric variation between the 

gold standard and autosegmentation. Moreover, the correlation between the 

geometric and dosimetric outputs needs to be investigated to determine if 

geometric evaluation alone is enough.  

The third gap in the knowledge is related to the QA of generated segmentations 

in routine clinical settings. It is widely understood that regardless of the pre-

clinical evaluation, the DL-AS model could generate incorrect segmentations for 

several reasons, such as the individual patient position, anatomy or disease 

pathology being different from the training data. Thus, currently, the generated 

segmentation should always be reviewed and edited if needed by the clinician. 

To avoid reducing the benefit of segmentation automation, an independent AI-
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QA tool needs to be developed to aid the operators during the review process 

and enhance the safety and confidence of using the DL-AS tool clinically.  

This PhD thesis aims to address these knowledge gaps related to training data 

for MRI DL-AS for OARs, necessity of geometric and dosimetric evaluations and 

enhancing the confidence and trust of using DL-AS tools clinically.  

1.3.2 Aims 

• To assess the accuracy and practicality of utilizing MRI DL-AS models for 

brain OARs, when trained using limited training dataset, focusing on the 

impact of pre-training editing on model quality from geometric and 

dosimetric perspectives.  

• To build and test a novel AI-QA model called AutoConfidence (ACo) to 

assess the autosegmentation uncertainty without ground-truth or gold 

standard labels, on a per-patient basis. 

1.3.3 Overall hypothesis and study focus 

• We will test the hypothesis that there is no geometric difference between 

the DL-AS model trained with edited clinical contour versus the DL-AS 

model trained without editing of clinical contours. 

• We will test the hypothesis that there is no dosimetric difference in OAR 

doses between the DL-AS model trained with edited clinical contour 

versus the DL-AS model trained without editing of clinical contours. 

• We will test the hypothesis that it is possible to build the AutoConfidence 

QA model to detect segmentation uncertainty without ground-truth label 

data in routine clinical use. 

1.3.4 Chapter overview 

• Chapter 1: Overall introduction  

• Chapter 2: Geometric Evaluations of CT and MRI based Deep Learning 

Segmentation for Brain OARs in Radiotherapy   

• Chapter 3: Dosimetric Impact of Contour Editing on CT and MRI Deep 

Learning Autosegmentation for Brain OARs  

• Chapter 4: Automated Confidence Estimation in MRI Deep Learning 

Segmentation (MRI DL-AS) for Brain OARs in Radiotherapy 

• Chapter 5: Discussion, future work, and conclusions 
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Chapter 2 Geometric Evaluations of CT and MRI based Deep 

Learning Segmentation for Brain OARs in Radiotherapy 

 
 
Abstract 
 
Objective: 

Deep-learning auto-contouring (DL-AC) promises standardisation of organ-at-

risk (OAR) contouring, enhancing quality and improving efficiency in 

radiotherapy. No commercial models exist for OAR contouring based on brain 

MRI. We trained and evaluated CT and MRI OAR autosegmentation models in 

RayStation. To ascertain clinical usability, we investigated the geometric impact 

of contour editing before training on model quality. 

Approach: 

Retrospective glioma cases were randomly selected for training (n=32,47) and 

validation (n=9,10) for MRI and CT, respectively. Clinical contours were edited 

using international consensus (gold standard) based on MRI and CT. MRI models 

were trained i) using the original clinical contours based on planning CT and 

rigidly registered T1-weighted gadolinium-enhanced MRI (MRIu), ii) as i), further 

edited based on CT anatomy, to meet international consensus guidelines 

(MRIeCT), and iii) as i), further edited based on MRI anatomy (MRIeMRI). CT 

models were trained using: iv) original clinical contours (CTu) and v) clinical 

contours edited based on CT anatomy (CTeCT).  Auto-contours were 

geometrically compared to gold standard validation contours (CTeCT or 

MRIeMRI) using DSC, sensitivity, and MDA. Models’ performances were 

compared using paired Student’s t-testing. 

Main results:  

The edited autosegmentation models successfully generated more 

segmentations than the unedited models. Paired t-testing showed editing 

pituitary, orbits, optic nerves, lenses, and optic chiasm on MRI before training 

significantly improved at least one geometry metric. MRI-based DL-AC performed 

worse than CT-based in delineating the lacrimal gland, whereas the CT-based 
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performed worse in delineating the optic chiasm. No significant differences were 

found between the CTeCT and CTu except for optic chiasm. 

Significance: 

T1w-MRI DL-AC could segment all brain OARs except the lacrimal glands, which 

cannot be easily visualized on T1w-MRI. Editing contours on MRI before model 

training improved geometric performance. MRI DL-AC in RT may improve 

consistency, quality and efficiency but requires careful editing of training 

contours. 

 

Keywords: Brain, Organs at risk, Autosegmentation, 3D U-net, Deep learning, 

MRI scans, CT scans. 
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2.1 Introduction 

The worldwide incidence of brain tumours is growing (Soomro et al., 2023). In 

young adults, brain cancer is the third most common cause of death (Brunese et 

al., 2020). Every year, over 5000 people die from brain cancer, and currently, in 

the UK, it is anticipated that 102,000 adults and children will have brain cancer 

(Brunese et al., 2020). 

Radiation therapy (RT) is commonly used to treat brain cancer, using ionizing 

radiation to destroy cancer cells. However, RT may cause damage to normal 

healthy tissues, called organs at risk (OARs). Damaging OARs in the brain can 

lead to hearing and visual deficits and neurocognitive alteration (Scoccianti et al., 

2015). The side effects of treatment are minimized through the radiotherapy 

treatment planning process by targeting the dose to the tumour while reducing 

the dose to OARs. A radiation oncologist manually delineates the target volume 

of the tumour and surrounding OARs using Computed Tomography (CT) and/or 

Magnetic Resonance Imaging (MRI) simulation scans. However, manual 

contouring is associated with several challenges. Firstly, contouring is time-

consuming; previous studies have reported that each patient may take several 

hours of clinician’s time to delineate all OARs (Cardenas et al., 2019, Wang et 

al., 2019b). This could affect the treatment outcomes due to the delay in the start 

of the treatment. Secondly, manual contouring is subjective, as a radiation 

oncologist or dosimetrist performs the delineation of OARs based on their 

previous experience and knowledge, which is a source of inconsistency 

(Cardenas et al., 2019). Several studies have shown high inter-operator 

variability in contouring, which may lead to inappropriately treating normal areas 

(Scoccianti et al., 2015, van Dijk et al., 2020). Accordingly, there is great demand 

in the field of RT for autosegmentation to standardize and enhance the quality of 

contours and make the process more efficient by streamlining the clinical 

workflow and reducing staff workload. 

In the last decade, computing in RT has helped address manual contouring 

challenges through the development of autosegmentation algorithms. Deep 

learning based autosegmentation entered the field of RT after it was 

demonstrated that the convolutional neural networks (CNNs) could considerably 

improve image classification and recognition task predictions (Cardenas et al., 

2019, Brouwer et al., 2020a). Since then, there have been a considerable number 
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of studies published on the performance of deep-learning autosegmentation for 

delineation of OARs, which demonstrate that it is outperforming traditional 

autosegmentation methods (Scoccianti et al., 2015, Cardenas et al., 2019, van 

Dijk et al., 2020). The most popular method for medical images delineation is the 

U-net architecture, which was established by Ronneberger et al. (Cardenas et 

al., 2019). Typically, delineation of brain OARs is performed using a combination 

of CT and MRI images. CT is currently standard for treatment planning dose 

calculations, which are based on electron density. MRI is usually co-registered to 

CT and provides complimentary information for contouring, particularly for OARs 

that are very difficult to visualise on CT, such as the optic chiasm. Since CT is, 

however, used for dose calculations, some, more mobile, OARs may be 

contoured based on this, for example lenses and extra-cranial portions of the 

optic nerves. Recently, several efforts have been made to establish MRI-only 

treatment planning (Edmund and Nyholm, 2017). Compared to CT, MRI offers 

better contrast for the soft tissue, consequently, it is a superior imaging modality 

for accurately detecting and localizing both the target volume and OARs (Schmidt 

and Payne, 2015, Liu et al., 2019). Additionally, MRI does not use ionizing 

radiation, which will reduce total radiation exposure to the patient. For MR-only 

RT treatment planning, instead of traditional CT, the needed electron density 

information is obtained through a synthetic-CT (sCT) produced from the MRI scan 

(Wiesinger et al., 2018). 

Compared to other treatment sites, few deep learning autosegmentation models 

currently identify brain OARs using MRI or CT scans. As far as we are aware, 

only one study has investigated commercial deep-learning autosegmentation 

software that uses a U-Net CNN to segment OARs in the brain using CT scans 

(Wong et al., 2020). Three earlier research studies used 2D and 3D U-net with 

various modifications to develop MRI-based deep learning methods to delineate 

brain OARs (Mlynarski et al., 2020, Wiesinger et al., 2021, Chen et al., 

2019).   Chen et al. (2019) autosegmented six brain OARs (the orbits, optical 

nerves, brainstem, and chiasm) using T1-weighted MRI. Mlynarski et al. (2020) 

used T1-weighted MRI to autosegment eleven OARs, including the orbits, 

brainstem, lenses, optic nerves, pituitary gland, optic chiasm, hippocampus, and 

brain. Wiesinger et al. (2021) used T2-weighted MRI to autosegment fifteen 

OARs (the orbits, lenses, optical nerves, lacrimal glands, pituitary gland, chiasm, 

brainstem, brain, cochleas, and patient body contour). All these prior studies used 
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deep learning to segment brain OARs on CT or MRI scans and produced 

acceptable segmentations, suitable for RT planning (Mlynarski et al., 2020, 

Wiesinger et al., 2021, Chen et al., 2019). However, none of the proposed MRI 

deep-learning segmentation techniques are commercially available. Also, the 

previous studies focused on using only one imaging modality, CT or MRI. 

Clinically OARs must exist on the CT for RT planning, despite many being 

predominantly contoured on MRI by clinicians. The main objective of this study is 

to train and evaluate separate CT and MRI OAR deep learning segmentation 

models in RayStation (RaySearch AB, Stockholm) for brain radiotherapy, to 

ascertain clinical usability. Also, we aim to establish which modalities are required 

for the various OARs and whether standardising training data by editing clinical 

contours (on CT or MR) prior to training is beneficial (if the model's output 

improves the segmentation's quality) or necessary (if the model's output reduces 

the number of failed segmentations) for model performance.  

2.2 Materials and Methods  

2.2.1 Dataset and clinical protocol 

Sixty previously treated glioma cases with both CT and MRI available were 

randomly selected from a retrospective clinical cohort from the past 5 years using 

a computer generated simple-random list and used to build autosegmentation 

models for each modality. The cohort contains both biopsy and resection. The 

total of 60 was chosen to enable careful quality assurance of the contours 

considering staff and time availability. The data was divided into 80% for training 

(n=48) and 20% for testing (n=12), which is the most popular and advised split 

ratio (Joseph, 2022). 

Brain CT scans was acquired using the following acquisition parameters: 

kilovoltage peak (kVp): 120, Field of view (FOV): 500mm, 1mm*1mm in-plane 

resolution, slice thickness: 2mm, and scan type: helical scan on a Siemens 

Sensation. Moreover, the following acquisition parameters were used to acquire 

brain MRI scans: MRI sequence: T1w spin echo sequence, imaging plane: 

transverse, slice thickness: 2mm, scanner: Siemens Magnetom Sola with 1mm 

in-plane resolution and Gd contrast. 
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2.2.2  Brain OARs and gold standard atlas 

The OAR selection was based on the four central nervous system (CNS) clinical 

protocols at our institution: Meningioma, Pituitary, Glioma (Radical)-and Glioma 

(Palliative). Thirteen OARs were selected for autosegmentation: brainstem, 

cochlea (left and right), orbits (left and right), lenses (left and right), optic chiasm, 

optic nerves (left and right), lacrimal glands (left and right), and pituitary gland.  

 

A brain OAR atlas was developed as a gold standard example of contours with 

anatomical descriptions and contouring guidance, in line with international 

consensus guidelines (Eekers et al., 2018, Chen et al., 2019, Scoccianti et al., 

2015, Mir et al., 2020, Ho et al., 2018). All OARs were manually delineated using 

CT and MRI scans in combination, as per usual clinical practice. The atlas was 

reviewed and approved by the treating radiation neuro-oncology team. 

 

Note: the delineation of OARs was done by an expert radiation oncologist. The 

anatomical descriptions and contouring guidance in the atlas were written by me 

after reviewing several international consensus guidelines (Eekers et al., 2018, 

Chen et al., 2019, Scoccianti et al., 2015, Mir et al., 2020, Ho et al., 2018). Then, 

the atlas was reviewed and approved by the treating radiation neuro-oncology 

team. 

2.2.3 Clinical contours and quality assurance (QA) 

All image sets and original clinical contours, which were manually delineated by 

the clinician for radiotherapy treatment planning, were reviewed for image quality, 

contour accuracy and OAR labelling. The OAR labelling was edited to be 

consistent with AAPM TG-263 guidelines (Mayo et al., 2018). The clinical 

contours were reviewed and edited where necessary to ensure alignment with 

the brain OAR atlas. The process was as follows: the original clinical contours 

(unedited contours- CT and MRI-based) were copied and then edited based on 

CT anatomy alone to create CT-edited contours. These were then copied onto 

the rigidly registered T1-weighted gadolinium-enhanced MRI and then reviewed 

and edited as necessary based on the MRI anatomy, again to align to clinical 

guidelines (MRI-edited contours).  
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Note: The entire process of review and editing was done by me after being trained 

by an expert radiation oncologist and was then reviewed and approved by an 

expert radiation oncologist. 

2.2.4 Deep learning autosegmentation training 

A commercially available 3D U-net (Çiçek et al., 2016) was used to train all the 

autosegmentation models (RayStation 11A, RaySearch Laboratories AB, 

Stockholm, Sweden).  

Two CT autosegmentation models were trained using 47 cases (one case was 

excluded due to missing data). The first CT-based autosegmentation model was 

trained using the original clinical contours without editing, termed the CT unedited 

autosegmentation model (CTu). The second CT-based autosegmentation model 

was trained on the same dataset using the cases with CT-edited clinical contour 

termed the CT-edited autosegmentation model (CTeCT).  

 

Three MRI autosegmentation models were trained on the same dataset using 32 

cases (16 cases were excluded due to inconsistent MRI slice thickness). The first 

MRI-based model was trained using the original clinical contours copied from the 

CT scan without editing, termed the MRI unedited autosegmentation model 

(MRIu). The second MRI-based model was trained on the same dataset using 

the edited clinical contour (CTeCT), copied from the CT scan, termed the CT 

edited MRI autosegmentation model (MRIeCT). The third model was trained on 

the same dataset, using the CT-edited clinical contour, further edited based on 

the MRI scan, termed the MRI edited MRI autosegmentation model (MRIeMRI). 

After training, all the models were used to generate automatic contours on the 

validation cohort.  

2.2.5 Deep learning autosegmentation validation 

 
The performance of the models was geometrically evaluated on an independent 

dataset of 12 cases. Two cases were excluded from the CT validation cohort as 

no MRI scans were associated with them (n=10 cases). Also, one MRI test case 

was excluded due to using different MRI sequences (n=9 cases). The evaluation 

was done by comparing the generated contour to the gold standard contours in 
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each modality, where clinical contours were edited based on each modality's 

anatomy in this validation cohort (i.e., CTeCT and MRIeMRI).  

The gold standard contour represents the most accurate and widely accepted 

delineation, aligned with international consensus guidelines, and serves as the 

reference for comparisons. This contour was drawn by the same PhD student, 

following guidance from the brain OARs atlas, and was then reviewed and 

approved by an expert radiation oncologist 

 

2.2.5.1 Geometric Evaluation 

The following test metrics were used for the geometric evaluation: the Dice 

Similarity Coefficient (DSC)(Wong et al., 2020), sensitivity (van Rooij et al., 2019) 

and mean distance to agreement (MDA) (Jena et al., 2010).  Higher DSC and 

sensitivity scores indicate better agreement between the gold standard contour 

and autosegmentation, however lower MDA scores indicate that small distance 

errors exist between autosegmentation and gold standard contours.  

To evaluate the statistical significance of these metrics and determine the impact 

of editing before training the model, each geometry test metric pair of the edited 

and unedited models was compared in each modality using the paired two-tailed 

Student’s t-test.  For the same patient, if the autosegmentation model failed to 

segment any OARs, and the comparable model was able to segment the missing 

OAR, this OAR was excluded from the pairwise comparison.  

 
A Bonferroni correction was applied to factor in a multiple-comparison correction 

used when several dependent or independent statistical tests are being 

performed simultaneously. (3 metrics and 3 segmentation pairs for MRI, 3 metrics 

and one segmentation pair for CT). Bonferroni-corrected p-value thresholds for 

statistical significance were ≤ 0.005 (0.05/9) for MRI geometric evaluations, and 

≤ 0.016 (0.05/3) for CT geometric evaluation. 

 

2.3 Results 

2.3.1 Comparison of CT vs MRI deep learning contours 

CT- and MRI- based deep-learning autocontouring (DL-AC) demonstrated 

excellent delineation quality for large structures such as brainstem, right and left 
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orbits, with the exception of the CTu model which had poorer performance: 

Average DSC and sensitivity scores ranged from 0.85 to 0.91 and from 0.85 to 

0.94, respectively, across all three MRI-based models for these large structures 

(suppl. Info. Table S1 and S2) (figure 2.1 and 2.2). The CTeCT model average 

DSC and sensitivity scores ranged from 0.87 to 0.90 and 0.88 to 0.93, 

respectively across these OARs, while the CTu model average DSC and 

sensitivity scores ranged from 0.62 to 0.64 and from 0.62 to 0.63, respectively for 

the same set of structures (suppl. Info. Table S4 and S5) (figure 2.3). 

The geometric assessments indicated that CT-based DL-AC performed worst in 

the delineation of the optic chiasm. The lowest DSC and sensitivity average 

scores were for the optic chiasm for both CT-based models. The average scores 

for DSC were 0.18 and 0.29, and the sensitivity was 0.15 and 0.28, for CTeCT 

and CTu, respectively (suppl. Info. Table S4 and S5). MDA evaluations showed 

that the CTeCT model had the highest average MDA score for the Optic chiasm 

(0.40 cm), whereas the CTu models had the highest score for the right lacrimal 

gland (0.43 cm) (suppl. Info. Table S6). 

 

In contrast, geometric evaluations showed that MRI-based DL-AC performed 

worst for delineation of the lacrimal gland: the lowest DSC and sensitivity average 

scores were obtained for the left and right lacrimal glands delineated by all MRI-

based DL-AC models. For MRI-based DL-AC models, the average lacrimal gland 

DSC scores ranged from 0.02 to 0.15, and the sensitivity ranged from 0.02 to 

0.10. Furthermore, the highest average MDA score for the MRIeMRI and MRIu 

models was that for the left lacrimal gland (0.23 cm and 0.42 cm, respectively), 

while for the MRIeCT model, the highest average MDA score was for the optic 

chiasm (0.33 cm) (suppl. Info. Table S1, S2 and S3). 
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Figure 2.1: The distribution of the a) DSC, b) sensitivity, and c) MDA (for 

MRI-based deep learning segmentations from three different MRI models): 

the MRIu segmentation (blue), the MRIeMRI segmentation (red), and the 

MRIeCT segmentation (green). The green square bracket denotes the 

statistically significant difference(paired T-test)  between MRIeMRI and 

MRIeCT, the blue square bracket denotes the statistically significant 

difference between MRIeMRI and MRIu. Structures not segmented on one 

of the compared models were excluded from this analysis.The black 

chevron indicates that the statistical analysis was not performed in cases 

where less than 6 structures were segmented for any OAR or similar 

(outliers not shown for clarity). 
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Figure 2.2: T1-weighted gadolinium-enhanced MRI showing examples of 

the predicted MRI deep learning segmentations compared to the gold 

standard segmentation of the orbits (a, b), lenses (a), optic nerves (a), 

brainstem (a, b), optic chiasm (b), cochlea (c), and pituitary(a). Red 

represents the gold standard segmentation. MRIeMRI is depicted in yellow, 

MRIeCT in green, and MRIu in blue. Lens L, cochlea L and R failed to be 

segmented by the MRIeCT model, while optic chiasm, pituitary, and cochlea 

L failed to be segmented by the MRIu model. 
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Figure 2.3: CT axial scans showing examples of the predicted CT deep 

learning segmentations compared to the gold standard segmentation of the 

orbits (a,b), lenses (a), optic nerves (a), brainstem(a,b,c), optic chiasm (b), 

cochlea (c), lacrimal glands (a,b), and pituitary (a). Red represents the gold 

standard segmentation. CTeCT is shown in yellow, while CTu in blue. 

 

2.3.2 The value of editing contours before training 

The necessity of editing contours so that they align with an agreed atlas was 

established based on segmentation failure numbers, where the model failed to 

produce the segmentation. Edited autosegmentation models generated more 

successful segmentations on OARs than unedited models in both modalities. The 

CTeCT model reduced the number of failed OAR segmentations compared to the 

CTu model (4 cf. 36) while the MRIeCT model resulted in a similar total number 

of failures compared to MRIu (21 cf. 22).  MRIeMRI, however, reduced the 

number of failures to 13 and reduced failures to near zero for all organs except 

for the lacrimal glands, where more failures occurred with the edited MRI-based 
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model (MRIeMRI) (10 of 13 failures were for the lacrimal glands).  The MRIu 

model exhibited a high number of failures for the cochlea, which was almost 

entirely resolved when using the MRIeMRI model (suppl. Info. Table S7). 

A statistically significant quality difference between the CTeCT and CTu 

autosegmentation models was found only for the optic chiasm for all the geometry 

metrics (p= 0.009, 0.008, and 0.001 and effect size= 0.260, 0.160, and 0.150 cm 

for DSC, sensitivity, and the MDA, respectively (suppl. Info. Table S8). 

 

Regarding the MRI autosegmentation models, there was no statistically 

significant difference between the MRIeCT and MRIu models for any geometric 

comparison, except for the right orbit as assessed by the sensitivity metric, where 

the effect size was small (p=0.001, effect size= 0.080) (Table 2.1). 

A statistically significant difference was found between MRIeMRI vs both the 

MRIeCT and MRIu models in the delineation of the structures shown in fig 1. With 

the exception of the orbits, statistically significant differences (observed for 

lenses, optic nerves, pituitary, and optic chiasm) were associated with moderate 

to large effect sizes from 0.160 to 0.360 for DSC and from 0.230 to 0.540 for 

sensitivity and from 0.070 to 0.130 cm for MDA. The effect size for the orbits 

ranged from 0.010 to 0.240 in DSC and from 0.020 to 0.040 cm in MDA (Table 

2.1). 
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Brainstem Cochlea 

L 

Cochlea 

R 

Lacrimal 

L 

Lacrimal 

R 

Lens 

L 

Lens 

R 

Optic 

Chiasm 

Optic 

Nrv L 

Optic 

Nrv R 

Orbit 

L 

Orbit 

R 

Pituitary 

          DSC         

MRIeMRI vs MRIeCT (- means MRIeMRI performed better) 

p (Threshold: ≤ 0.005) 0.074 ** ** $$ $$ ** 0.000 0.003 0.000 0.000 0.000 0.000 0.001 

Effect size: Δ median -0.010      -0.325 -0.200 -0.160 -0.240 -0.040 -0.060 -0.360 

N* 9 5 4 4 2 2 8 8 9 9 9 9 7 

MRIeMRI vs MRIu (- means MRIeMRI performed better) 

p (Threshold: ≤ 0.005) 0.397 ** ** ## ## 0.001 ** 0.068 0.001 0.002 0.000 0.000 0.009 

Effect size: Δ median 0.010  
 

  -0.260 
 

-0.185 -0.190 -0.260 -0.010 -0.050 -0.335 

N* 9 1 5 5 2 9 5 6 9 9 9 9 6 

MRIeCT vs MRIu (- means MRIeCT performed better) 

p (Threshold: ≤ 0.005) 0.430 $$ ## 0.179 0.234 ## 0.008 $$ 0.321 0.638 0.035 0.622 $$ 

Effect size: Δ median 0.020   0.000 0.000  -0.115  -0.030 -0.020 0.030 0.010  

N* 9 1 2 7 8 2 6 5 9 9 9 9 4 

MDA 

MRIeMRI vs MRIeCT (+means MRIeMRI performed better)         

p (Threshold: ≤ 0.005) 0.042 ** ** $$ $$ ** 0.173 0.031 0.001 0.006 0.000 0.000 0.004 

Effect size: Δ median 0.020      0.080 0.100 0.080 0.080 0.040 0.040 0.130 

N* 9 5 4 4 2 2 8 8 9 9 9 9 7 

MRIeMRI vs MRIu (+means MRIeMRI performed better) 

p (Threshold: ≤ 0.005) 0.179 ** ** ## ## 0.006 ** 0.074 0.002 0.017 0.000 0.000 0.011 

Effect size: Δ median 0.010  
 

  0.080 
 

0.080 0.070 0.150 0.020 0.040 0.100 

N* 9 1 5 5 2 9 5 6 9 9 9 9 6 

MRIeCT vs MRIu (+means MRIeCT performed better) 

p (Threshold: ≤ 0.005) 0.325 $$ ## # 0.205 ## 0.006 $$ 0.222 0.686 0.086 0.282 $$ 

Effect size: Δ median -0.010   0.140 0.060  0.055  -0.010 0.070 -0.020 0.000  

N* 9 1 2 7 8 2 6 5 9 9 9 9 4 

Sensitivity  

MRIeMRI vs MRIeCT (- means MRIeMRI performed better) 

p (Threshold: ≤ 0.005) 0.096 ** ** $$ $$ ** 0.001 0.010 0.000 0.000 0.272 0.007 0.001 
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Table 2.1: Paired Student’s t-test results comparing changes in DSC, MDA and sensitivity for all three pairs of MRI models. Bold 

values indicate statistically significant differences (p ≤ 0.005). Insufficient successful segmentations were achieved by one of the 

models, this is noted ($$, **, or ##), indicating the superior model.

Effect size: Δ median -0.010      -0.295 -0.145 -0.230 -0.320 -0.020 -0.060 -0.540 

N* 9 5 4 4 2 2 8 8 9 9 9 9 7 

MRIeMRI vs MRIu (- means MRIeMRI performed better) 

p (Threshold: ≤ 0.005) 0.133 ** ** ## ## 0.001 ** 0.005 0.000 0.000 0.040 0.011 0.007 

Effect size: Δ median -0.020     -0.270  -0.340 -0.240 -0.350 0.000 0.020 -0.545 

N* 9 1 5 5 2 9 5 6 9 9 9 9 6 

MRIeCT vs MRIu (- means MRIeCT performed better) 

p (Threshold: ≤ 0.005) 0.609 $$ ## 0.190 0.288 ## 0.006 $$ 0.462 0.520 0.010 0.001 $$ 

Effect size: Δ median -0.010   0.000 0.000  -0.115  -0.010 -0.030 0.020 0.080  

N* 9 1 2 7 8 2 6 5 9 9 9 9 4 

* Number of compared segmentations (successfully segmented by both models considered) 

** MRIeMRI is better based on producing the segmentation for more cases. 

$$ MRIeCT is better based on producing the segmentation for more cases. 

## MRI Unedited is better based on producing the segmentation for more cases. 

# MDA unreliable due to insufficient overlap of OARs. 
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2.4 Discussion 

This study examined the impact of editing clinical contours before training deep-

learning autosegmentation models for brain OARs based on CT and MRI 

anatomy. Editing is a time-consuming process and should only be performed 

when there is evidence it will improve the model’s performance. 

The current study found that except for the lacrimal glands, MRI-based DL-AC is 

preferable for all brain OARs, particularly for delineating optic chiasm, which is 

known to be challenging for humans to delineate on CT due to lack of soft tissue 

contrast. CT based DL-AC was able to delineate optic chiasm (albeit with limited 

quality) given MRI derived clinical training contours.  Conversely, lacrimal glands 

cannot be easily visualised on MRI without fat-saturation (Simon et al., 1988), 

and even with CT derived clinical training contours, the performance of the MRI-

based models for this OAR was not clinically acceptable. Accordingly, both 

modalities are needed for complete contouring of brain OARs, with lacrimal 

glands either segmented manually on CT or, potentially, via a separate CT-based 

DL-AC model. Alternately, a dual-modality autosegmentation model may 

overcome this issue, but may introduce inter-modality image registration issues 

(Mlynarski et al., 2020). As there is a motivation to use MR-only RT for the brain, 

to allow improved target definition  (Lerner et al., 2021, Kazemifar et al., 2019, 

Ranta et al., 2023), the T1-w MRI based DL-AC model would be sufficient to 

produce the segmentation , except for  the lacrimal glands which would require 

manual contouring.  

It has been recently demonstrated that T2-w MRI has the potential for direct DL-

AC of lacrimal glands (Wiesinger et al., 2021), creating the possibility for a multi-

modality MRI model. However, since T1-w and T2-w images are acquired 

separately, there is a potential for patient movement and misregistration of the 

sequences, which complicates the use of the multi-modality MRI model. 

 

The limitation of the current T1-w MRI model for lacrimal gland segmentation 

could also be related to training data quality. Lacrimal glands are typically 

segmented only on 2-3 slices, reducing the number of positive examples 

available to the model, exacerbating the lack of contrast available in non-fat 
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saturated T1w imaging. The relatively small volume of the structures is also a 

factor, as it was previously reported that multi-organ DL-AC models can ignore 

small structures (Wang et al., 2019b), due to unbalanced losses. In our model, 

loss balancing across OARs was performed to minimise this effect. Loss 

balancing was achieved using a weighting factor proportional to the inverse of the 

volume of each OAR.  

 

Regarding other OARs, editing of clinical contours on MRI (MRIeMRI) reduced 

the number of failed segmentations to near zero for cochleae, lenses, optic 

chiasm, and pituitary and is therefore considered necessary (suppl. Info. Table 

S7). The RayStation implementation of DL-AC uses an 'initialisation U-net' to find 

bounding boxes for each ROI and a set of 'refinement U-nets' to segment each 

ROI.  If the initialisation network is unable to locate an organ; it will not be 

segmented at all. Hence, performance improvements in this network will affect 

the number of ROIs segmented, rather than the final segmentation quality. The 

number of ROIs that were segmented did increase after these structures were 

edited on MRI, suggesting that editing is crucial for the success of the initialization 

model.  

 

Furthermore, significant differences (p<0.005 after Bonferroni correction) 

between models were observed for at least one geometric measure for the 

following structures: optic nerves, orbits, lenses, optic chiasm, and pituitary 

(Table 2.1). This indicates that editing these structures on MRI enhanced 

segmentation quality, even where the MRIu model successfully segmented the 

structure. For all structures showing statistically significant model-to-model 

performance variation, excluding orbits, effect sizes for DSC, sensitivity and MDA 

were often potentially clinically significant (Δ DSC > 0.2, Δ MDA> 0.1 cm and Δ 

sensitivity> 0.3). However, even though there was a significant difference 

between MRIeMRI vs MRIeCT and MRIu models in the delineation of orbits 

(p<0.001), the effect size was generally small (Table 2.1). This was because the 

distribution of the DSC scores and the MDA for the orbits was narrow, due to their 

regular shape, so even a small effect was highly significant. The average DSC of 

the orbits was 0.91(SD= 0.02) in the MRIeMRI, 0.86 (SD= 0.02) for MRIeCT and 

0.87 (SD=0.02) for MRIu model (suppl. Info. Table S1 and S3). These results 

imply that editing on MRI is beneficial for the above structures due to improved 
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soft tissue contrast. The lack of soft tissue contrast and potential registration 

errors make editing on CT an inferior approach, where MR data are available. 

 

For cochlea, insufficient cases were delineated by the MRIeCT and MRIu models 

to compare their performance with MRIeMRI. However, MRIeMRI was able to 

generate cochlea segmentations with high quality, average MDA=0.84 mm (SD 

=0.4 mm) (suppl. Info. Table S3). 

 

We have demonstrated a DL-AC model using a CE marked algorithm approved 

for clinical use, based on routine clinical T1-w MR imaging, for all clinically 

relevant brain OARs for RT. We demonstrated clinically acceptable geometric 

performance, following MRI based editing of training contours, comparable to 

previously published non-clinical algorithms for orbits brainstem and lenses, 

paving the way to the routine use of MR based DL-AC in brain RT(Mlynarski et 

al., 2020, Wiesinger et al., 2021, Chen et al., 2019). Our model performed slightly 

worse for optic nerves and chiasm than the state-of-the-art non-clinical model 

(Wiesinger et al., 2021) [DSC=0.61 vs. 0.66], but still achieved clinically useable 

performance despite a limited dataset.  This is an important conclusion, given the 

need to train institution specific MRI-based models on small datasets due to 

sequence and scanner variability. 

 

This work has important implications for developing a robust MRI 

autosegmentation model for brain OARs, by identifying how the training data 

should be defined and edited to enable segmentation for all brain OARs with 

acceptable quality, despite the lack of visibility of certain organs on specific image 

modalities. We found that editing directly on the T1w-MRI is necessary or 

beneficial in all cases, except lacrimal glands, which would require delineation on 

CT or the use of fat-saturated or T2-w MRI.   

 

This study has certain limitations. The number of training cases was low due to 

the limited amount of available MRI data. However, editing the clinical contours 

before training the model enabled the DL-AC model to attain acceptable 

performance even with a small cohort. This model was also trained and tested 

using a single sequence, T1-w spin echo (SE) with gadolinium, as used locally. 

Thus, this model may not work well with similar data from other institutions, due 



58 
 

to lack of harmonisation between scanners. This study, on the other hand, is 

focussed on assessing the impact of standardising the clinical contours before 

training the model on its performance rather than in developing a general DL-AC 

model that can work with data from different institutions. We have shown the 

feasibility of training and using a CE-marked MR-based model clinically, with the 

limitations of deep-learning architecture and training dataset this implies.  

Further research is needed to identify the impact of training data editing on 

radiotherapy dosimetry. The correlation between the geometric and dosimetric 

evaluation of contour quality is known to be complex and we intend to investigate 

this in future, to establish which geometric and dosimetric tests are necessary to 

determine the clinical usability of DL-AC models in brain OAR contouring.  

2.5 Conclusion 

The clinical delineation of brain OARs is typically performed manually and 

requires both CT and MRI scans. However, manual delineation is time-

consuming and variable between operators. Developing a robust deep learning-

based segmentation model is therefore essential. In this work, separate deep 

learning-based segmentation models for CT and MRI were developed and 

assessed. The T1-weighted gadolinium-enhanced MRI deep learning 

segmentation model was able to segment all brain OARs except for the lacrimal 

glands, which are difficult to see on T1w-MRI. CT scans are needed for the 

complete contouring of brain OARs if it is necessary to delineate lacrimal glands. 

These could be manually segmented on the CT scan or via a separate CT-based 

DL-AC model. A dual-modality autosegmentation model could also be developed 

to solve this problem. Editing MRI contours to be consistent with gold standard, 

before training models enhanced the geometric performance and reduced the 

number of failed segmentations, except for lacrimal glands. MRI-based deep-

learning autosegmentation in RT may improve consistency, quality, and 

efficiency but requires careful editing of training contours on MRI. 
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2.7 Supplementary Material 
 

Brainstem Cochlea 
L 

Cochlea 
R 

Lacrimal 
L 

Lacrimal 
R 

Lens 
L 

Lens 
R 

Optic 
Chiasm 

Optic 
Nrv L 

Optic 
Nrv R 

Orbit 
L 

Orbit 
R 

Pituitary 

DSC scores for the MRIeCT 

Average  0.89 0.51 0.55 0.01 0.04 0.51 0.44 0.31 0.45 0.40 0.86 0.85 0.32 

SD  0.02 0.29 0.30 0.03 0.09 0.23 0.16 0.21 0.11 0.13 0.01 0.02 0.21 

DSC score for the MRIeMRI  

Average  0.90 0.57 0.49 0.10 0.15 0.68 0.67 0.51 0.65 0.68 0.90 0.91 0.67 

SD  0.02 0.15 0.25 0.12 0.10 0.10 0.26 0.22 0.09 0.08 0.02 0.02 0.12 

DSC score for the MRIu 

Average  0.89 0.73 0.52 0.04 0.02 0.41 0.28 0.44 0.41 0.43 0.88 0.86 0.35 

SD  0.02 0.24 0.29 0.06 0.04 0.17 0.20 0.25 0.10 0.16 0.02 0.02 0.21 

                       Table S1: Average and SD of the DSC scores for the MRI deep learning-based segmentation models  
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Table S3: Average and SD of the MDA scores for the MRI deep learning-based segmentation models 

 
Brainstem Cochlea 

L 
Cochlea 

R 
Lacrimal 

L 
Lacrimal 

R 
Lens 

L 
Lens 

R 
Optic 

Chiasm 
Optic 
Nrv L 

Optic 
Nrv R 

Orbit 
L 

Orbit 
R 

Pituitary 

The sensitivity score of the MRIeCT  

Average  0.86 0.37 0.45 0.02 0.05 0.35 0.34 0.31 0.31 0.28 0.92 0.85 0.26 

SD 0.041 0.223 0.247 0.037 0.128 0.159 0.150 0.206 0.108 0.104 0.050 0.021 0.208 

The sensitivity score of the MRIeMRI  

Average  0.88 0.50 0.42 0.06 0.10 0.55 0.55 0.49 0.59 0.63 0.93 0.90 0.70 

SD 0.024 0.173 0.234 0.077 0.063 0.129 0.240 0.244 0.139 0.108 0.042 0.030 0.177 

The sensitivity score of the MRI unedited  

Average  0.85 0.62 0.44 0.05 0.02 0.29 0.18 0.32 0.29 0.31 0.94 0.93 0.27 

SD 0.037 0.207 0.271 0.067 0.033 0.151 0.139 0.202 0.086 0.148 0.043 0.032 0.187 

Table S2: Average and SD of the sensitivity scores for the MRI deep learning-based segmentation models 

 
Brainstem Cochlea 

L 
Cochlea 

R 
Lacrimal 

L 
Lacrimal 

R 
Lens 

L 
Lens 

R 
Optic 

Chiasm 
Optic 
Nrv L 

Optic 
Nrv R 

Orbit 
L 

Orbit 
R 

Pituitary 

The MDA scores of the MRIeCT 

Average  0.10 0.10 0.06 0.32 0.29 0.12 0.13 0.33 0.18 0.20 0.10 0.11 0.22 

SD 0.1 0.07 0.06 0.32 0.27 0.12 0.12 0.19 0.18 0.16 0.1 0.11 0.21 

The MDA scores of the MRIeMRI 

Average  0.08 0.07 0.10 0.23 0.18 0.07 0.09 0.10 0.09 0.09 0.06 0.06 0.09 

SD 0.02 0.03 0.05 0.12 0.06 0.04 0.11 0.05 0.03 0.03 0.01 0.01 0.04 

The MDA scores of the MRIu 

Average  0.09 0.08 0.08 0.42 0.31 0.15 0.19 0.19 0.20 0.22 0.09 0.11 0.20 

SD 0.02 0.03 0.05 0.23 0.14 0.06 0.11 0.13 0.08 0.13 0.01 0.01 0.11 
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Brainstem Cochlea 

L 
Cochlea 

R 
Lacrimal 

L 
Lacrimal 

R 
Lens 

L 
Lens 

R 
Optic 

Chiasm 
Optic 
Nrv L 

Optic 
Nrv R 

Orbit 
L 

Orbit 
R 

Pituitary 

DSC scores for the CTeCT 

Average  0.87 0.51 0.63 0.40 0.44 0.71 0.72 0.18 0.50 0.49 0.90 0.90 0.44 

SD 0.04 0.21 0.22 0.15 0.16 0.24 0.31 0.14 0.12 0.16 0.02 0.02 0.31 

DSC scores for the CTu 

Average  0.62 0.58 0.48 0.30 0.36 0.72 0.67 0.29 0.47 0.57 0.64 0.64 0.47 

SD 0.43 0.29 0.29 0.14 0.22 0.35 0.37 0.16 0.24 0.29 0.44 0.44 0.29 

                                 Table S4: Average and SD of the DSC scores for the CT deep learning-based segmentation models  

 

 
Brainstem Cochlea 

L 
Cochlea 

R 
Lacrimal 

L 
Lacrimal 

R 
Lens 

L 
Lens 

R 
Optic 

Chiasm 
Optic 
Nrv L 

Optic 
Nrv R 

Orbit 
L 

Orbit 
R 

Pituitary 

The sensitivity score of the CTeCT 

Average  0.86 0.41 0.62 0.38 0.40 0.66 0.69 0.15 0.39 0.39 0.88 0.93 0.35 

SD 0.065 0.241 0.261 0.185 0.202 0.238 0.310 0.130 0.110 0.147 0.064 0.052 0.277 

The sensitivity score of the CTu 

Average  0.62 0.57 0.48 0.41 0.35 0.70 0.67 0.28 0.33 0.48 0.63 0.62 0.36 

SD 0.432 0.307 0.298 0.217 0.216 0.360 0.386 0.181 0.169 0.258 0.440 0.431 0.236 

Table S5: Average and SD of the sensitivity scores for the CT deep learning-based segmentation models  

 

 
Brainstem Cochlea 

L 
Cochlea 

R 
Lacrimal 

L 
Lacrimal 

R 
Lens 

L 
Lens 

R 
Optic 

Chiasm 
Optic 
Nrv L 

Optic 
Nrv R 

Orbit 
L 

Orbit 
R 

Pituitary 

The MDA scores of the CTeCT (cm) 

Average  0.11 0.08 0.06 0.18 0.29 0.05 0.05 0.40 0.15 0.15 0.07 0.08 0.17 

SD 0.04 0.05 0.03 0.10 0.41 0.02 0.03 0.38 0.05 0.08 0.02 0.01 0.14 

The MDA scores of the CTu (cm) 

Average  0.10 0.07 0.11 0.28 0.43 0.05 0.04 0.36 0.16 0.12 0.06 0.06 0.15 

SD 0.05 0.04 0.09 0.12 0.40 0.03 0.02 0.38 0.09 0.09 0.03 0.03 0.09 

Table S6: Average and SD of the MDA scores for the CT deep learning-based segmentation models 
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 Deep Learning Segmentation Models 

OARs CTeCT CTu  MRIeCT MRIeMRI MRIu 

Optic Nerve L  3    

Optic Nerve R  3    

Cochlea L  3 4  8 

Cochlea R 1 3 5 2 3 

Lacrimal Gland L  8 2 3 1 

Lacrimal Gland R  5  7 1 

Lens L 1 3 7   

Lens R 2 2  1 3 

Optic Chiasm  3 1  3 

Pituitary  3 2  3 

TOTAL 4 36 21 13 22 

Table S7: the number of failed segmentations based on each deep learning model. 
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Table S8: Paired T-test results comparing changes in DSC, MDA and sensitivity for both pairs of CT models (CTeCT and CTu). Bold values indicate 

statistically significant differences (p ≤ 0.016). Insufficient successful segmentations were achieved by one of the models, this is noted (**), indicating 

the superior model.

 Brainstem Cochlea 
L 

Cochlea 
R 

Lacrimal 
L 

Lacrimal 
R 

Lens 
L 

Lens 
R 

Optic 
Chiasm 

Optic 
Nrv L 

Optic 
Nrv R 

Orbit 
L 

Orbit 
R 

Pituitary 

DSC 

P (Threshold: ≤ 0.016) 0.083 0.176 0.205 ** ** 0.644 0.574 0.009 0.407 0.047 0.093 0.102 0.213 

Effect size: Δ median -0.015 0.020 -0.060     -0.020 0.050 0.260 -0.070 0.050 -0.005 -0.005 0.180 

N* 10 7 7 2 5 6 8 7 7 7 10 10 7 

Sensitivity 

P (Threshold: ≤ 0.016) 0.088 0.105 0.392 ** ** 0.354 0.796 0.008 0.231 0.065 0.109 0.048 0.317 

Effect size: Δ median 0.025 0.220 -0.020 
  

0.020 0.050 0.160 -0.100 0.080 -0.035 -0.100 0.150 

N* 10 7 7 2 5 6 8 7 7 7 10 10 7 

MDA (cm) 

P (Threshold: ≤ 0.016) 0.466 0.321 0.222 ** ** 0.456 0.084 0.001 0.796 0.084 0.084 0.135 0.213 

Effect size: Δ median 0.000 0.000 0.000     0.000 0.000 0.150 0.000 -0.010 0.000 0.020 0.030 

N* 10 7 7 2 5 6 8 7 7 7 10 10 7 

* Number of compared segmentations (successfully segmented by both models considered) 

** CT edited segmented more cases         
(-) means CTeCT is better) 
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Chapter 3 Dosimetric Impact of Contour Editing on CT and 

MRI Deep-Learning Autosegmentation for Brain OARs 

 

Abstract 

Purpose 

To establish the clinical applicability of deep-learning organ-at-risk 

autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of 

contour editing, prior to model training, on performance was evaluated for both 

CT and MRI-based models. The correlation between geometric and dosimetric 

measures was also investigated to establish whether dosimetric assessment is 

required for clinical validation. 

 

Method 

CT and MRI-based deep learning autosegmentation models were trained using 

edited and unedited clinical contours. Autosegmentations were dosimetrically 

compared to gold standard contours for a test cohort.  D1%, D5%, D50%, and 

maximum dose were used as clinically relevant dosimetric measures. The 

statistical significance of dosimetric differences between the gold standard and 

autocontours was established using paired Student’s t-tests. Clinically significant 

cases were identified via dosimetric headroom to the OAR tolerance. Pearson’s 

Correlations were used to investigate the relationship between geometric 

measures and absolute percentage dose changes for each autosegmentation 

model. 

 

Results  

Except for the right orbit, when delineated using MRI models, the dosimetric 

statistical analysis revealed no superior model in terms of the dosimetric accuracy 

between the CT DL-AC models or between the MRI DL-AC for any investigated 

brain OARs. The number of patients where the clinical significance threshold was 

exceeded was higher for the optic chiasm D1% than other OARs, for all 

autosegmentation models.  

A weak correlation was consistently observed between the outcomes of 

dosimetric and geometric evaluations.  
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Conclusions 

Editing contours before training the DL-AC model had no significant impact on 

dosimetry. The geometric test metrics were inadequate to estimate the impact of 

contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to 

evaluate the clinical applicability of DL-AC models in the brain.  

 

 

Keywords: Brain cancer, Organs at risk, Autosegmentation, Deep learning, MRI 

scans, CT scans, dosimetric evaluation 
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3.1 Introduction 

With the advancement of technology and the increasing number of brain cancer 

patients(Soomro et al., 2023), clinical use of brain OARs deep learning 

autocontouring (DL-AC) models in the radiotherapy department has become 

attractive. It promises to improve the standardization and efficiency of organ-at-

risk (OAR) contouring (Sherer et al., 2021). However, appropriate evaluation of 

contour quality and clinical acceptability is a challenge. Whilst geometric 

evaluation is straightforward, generalisable, and quantitative, its connection to 

clinical impact is difficult to establish (Baroudi et al., 2023, Harrison et al., 2022). 

The most popular methods for evaluating autosegmentation geometric quality are 

the Dice similarity coefficient (DSC) and distance-to-agreement metrics (DTA) 

(Baroudi et al., 2023). Overlap metrics can be sensitive to structure size and are 

frequently poor predictors of impact on clinically relevant dosimetric parameters 

(Harrison et al., 2022, Baroudi et al., 2023). Conversely, dosimetric analysis 

depends on local treatment protocols and clinical criteria, as well as individual 

patient anatomy and dose distributions, making it harder to draw general 

conclusions about model performance. 

Researchers have reported that the optimal evaluation method depends on the 

aim of autosegmentation (Sherer et al., 2021). Where autocontours will be 

checked and edited by human operators, geometric or editing-time based 

analysis may be sufficient, although dosimetric analysis can inform operators 

about the clinical significance of editing and hence maximise time savings (Sherer 

et al., 2021). If contours will be used directly, e.g., in online adaptive therapy, with 

minimal or zero human intervention, a higher bar of both geometric and 

dosimetric testing is needed to ensure patient safety. 

Therefore, to determine the clinical feasibility of autosegmentation for radiation 

treatment planning and delivery, several evaluation strategies, including 

geometric, dosimetric, and physician assessment, are ideally required (Sherer et 

al., 2021). 

Dosimetric evaluation is most directly linked to clinical relevance (Harrison et al., 

2022). However, this analysis requires treatment planning data (Harrison et al., 

2022). Also, there is no standard method or agreed threshold of acceptability for 

dosimetric variation (Vinod et al., 2016). Accordingly, there is little research on 
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the dosimetric effects of contour variations between manual and 

autosegmentation, and even less on the dosimetric consequences of editing 

contours either before model training (as here) or post autosegmentation 

(Johnston et al., 2022). 

Recent research (Sherer et al., 2021, Baroudi et al., 2023) raises questions about 

the correlation between common geometric measures, dose planning statistics, 

and clinical acceptability of OAR contours. Hence, it is difficult to establish 

whether a segmentation model is clinically usable in a specific clinical scenario, 

sufficiently limiting the risk of overexposing normal tissue and allowing the precise 

delivery of RT dose to targets.   

This study investigates the dosimetric impact of autocontouring OARs in the 

brain, in the context of RT for common brain cancers. This work is built upon a 

geometric evaluation which was previously published and hence focusses on the 

clinically relevant dosimetric aspects (Alzahrani et al., 2023). The correlation of 

dosimetry with the geometric accuracy of MRI and CT-based DL-AC models, 

established previously (Johnston et al., 2022, van Rooij et al., 2019, Zhu et al., 

2020), is also addressed. Further, we determine the dosimetric impact of editing 

clinical contours to gold standard quality before training CT and MRI DL-AC 

models. Previous geometric analysis showed that DL-AC models trained with 

edited clinical contours successfully generated more segmentations than the 

models trained with unedited clinical contours. Also, editing contours on MRI 

before model training improved the geometric performance (Alzahrani et al., 

2023).  However, generating gold standard contours is a time-consuming process 

that may require several clinicians, it severely limits the amount of high-quality 

labelled data available for model training. Also, there are no specific guidelines 

on the level of editing required, and the trade-off between training data quantity 

and quality. Whilst DL-AC delineations are usually checked or edited before use, 

poorer quality results from model involving limited unedited data may cause loss 

of efficiency and increase risk. However, if found editing contours to be 

unnecessary before training the DL-AC model, larger amounts of un-curated data 

could be a more efficient route to high-quality autosegmentation models for OARs 

in RT, particularly for MRI models, where limited data with equivalent sequences 

is available. 
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Understanding the impact of autosegmentation on RT dosimetry could also improve 

guidance for the critical assessment and editing of autocontours in clinical practice, 

maximising time-efficiency gains whilst avoiding an increased risk of toxicity from 

overexposing OARs.  

Overdosing brain OARs can lead to, for example, visual and hearing deficits, making 

understanding of OAR segmentation accuracy a critical requirement in delivering high-

quality RT (Scoccianti et al., 2015). 

Previous studies of autocontouring for brain OARs using deep learning relied only on 

geometric assessment (Mlynarski et al., 2020, Wiesinger et al., 2021, Chen et al., 2019, 

Alzahrani et al., 2023). By evaluating the correlation between geometric and dosimetric 

measures, we aim to establish whether geometric assessment alone is sufficient to 

evaluate brain OAR autosegmentation tools or whether an additional dosimetric 

evaluation is also needed.  

Regarding other treatment sites (thoracic, oesophageal, and head and neck), several 

studies have assessed the dosimetric impact of deep learning segmentation (Johnston 

et al., 2022, Zhu et al., 2020, van Rooij et al., 2019). Correlations between the geometric 

and dosimetric measures in thoracic and head and neck OARs have not been identified 

(Johnston et al., 2022, van Rooij et al., 2019). In contrast, a study investigating 

oesophageal OARs revealed that DSC and OAR dose had a statistically significant 

overall correlation, although this correlation was not always present at the level of 

individual patients or OARs (Zhu et al., 2020). 

Finally, it is essential to consider the clinical significance of a dosimetric error.  Whilst for 

a given test case, it is possible to say whether the dosimetric change caused a dose 

constraint to be exceeded, this is highly dependent on the details of the individual dose 

distribution and may not generalise to other cases. Here, we detail a pragmatic approach 

for determining the likely clinical significance of dose differences across a patient cohort, 

with a view to prospective clinical use of the model. 

3.2 Materials and Methods  

3.2.1 Dataset and clinical protocol 

As this study was built based on previously published geometry study, you can 

find a summary of essential details information such as data preparation, OAR 

selection, gold standard contours, and image acquisitions in that earlier 

publication (Alzahrani et al., 2023). 
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A computer-generated simple-random list was used to select randomly 60 Brain 

cases from a retrospective clinical cohort treated in our institution over the past 

five years. Ethical approval for retrospective use of de-identified patient data was 

given by Leeds East REC, reference: 19/ YH/0300, IRAS project ID: 255 585. 

This UK ethics committee approval indicates that our study is conformant with the 

Declaration of Helsinki, the UK Policy Framework for Health and Social Care 

Research and the EMA guidelines on Good Clinical Practice.  The data for 

training and testing was randomly chosen: 80% for training (n=48) and 20% for 

testing (n=12), which is the most popular split ratio (80/20) (Alzahrani et al., 2023). 

As the model used was a commercially approved model, on which we did not 

perform hyperparameter tuning, there was no need for in-training validation.  

More information about the available training parameter can be found in the 

supplementary information. 

 

Using the same dataset, two CT autosegmentation models were trained with a 

total of 47/48 cases (one case was excluded due to missing data), and three MRI 

autosegmentation models were trained using 32 cases (16/48 cases were 

excluded due to inconsistent MRI slice thickness) (Alzahrani et al., 2023). For 

testing, three test cases were excluded. Two CT test cases were excluded 

because no MRI images were associated with them (n=10 cases) and one 

additional MRI test case was excluded (n=9 cases) due to the use of different 

MRI sequence (Alzahrani et al., 2023). In addition, All test cases were treated for 

either high-grade or low-grade glioma using volumetric modulated arc therapy 

(VMAT). Total RT dose was 60 Gy in 30 fractions, for glioblastoma multiforme 

(GBM) and grade III glioma (protocol A), or total RT dose was 54 Gy in 30 

fractions for low-grade glioma (protocol B). The clinical OAR dose constraints are 

shown in Table 3.1. D1, 5, 50% denotes a minimum dose to the most exposed 1, 

5, or 50% of the OAR volume, respectively.  
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Table 3.1: Dose constraints for Glioma Radical-Primary VMAT (60 Gy in 30# and 54 Gy in 

30#) 

 

3.2.2 Deep learning autosegmentation training 

The OAR contours used for clinical treatment were based on a combination of 

the anatomy as seen on co-registered MRI (specifically brainstem, optic chiasm, 

and intra-cranial component of the optic nerves) and radiotherapy planning CT 

(specifically extra-cranial portions of the optic nerves, lenses, globes, cochlea, 

and lacrimal glands). From these, the contours used in this project were derived: 

• Unedited clinical contours as above (used for both CT and MRI -based 

autosegmentation models, termed the CT unedited and MRI unedited 

models, CTu and MRIu, respectively- please see next paragraph) 

• Clinical contours edited to correspond with a departmental contouring 

guide (the ‘gold standard’) and edited to be entirely based on CT anatomy 

(used for CT and MRI -based autosegmentation models, termed the edited 

models CTeCT and MRIeCT- please see next paragraph) 

• Clinical contours edited to correspond with a departmental contouring 

guide and edited to be entirely based on MRI anatomy alone (used for the 

MRI-based autosegmentation model termed the MRI edited model, 

MRIeMRI- please see next paragraph) 

The same MRI and CT DL-AC models that were built for geometric evaluation 

were used for dosimetric evaluation as follows:(Alzahrani et al., 2023) 

OARs Dose constrains Dosimetric metrics 

Brainstem 54 Gy D5%  

Lenses 6 Gy D1% 

Optic Chiasm 54 Gy D1% 

Optic Nerves 54 Gy D1% 

Orbit 45 Gy D1% 

Lacrimal Glands 30 Gy D1% 

Pituitary  45 Gy Max Dose 

Cochlea 45 Gy D50% 
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DL-AC models were trained using a 3D U-net (Çiçek et al., 2016) architecture 

(RayStation 11A, RaySearch Laboratories AB, Stockholm, Sweden). Five 

separate autosegmentation models (two CT- and three MRI-based) were trained: 

i) CT-based, using the unedited clinical contours (CTu), and ii) CT-based using 

contours edited to gold standard based on CT anatomy (CTeCT). Both contour 

sets were rigidly registered to T1-weighted gadolinium-enhanced MRI (T1w-Gd 

MRI) to train the iii) MRI-based model using the unedited clinical contours (MRIu), 

and the iv) MRI-based model using the CT edited contours (MRIeCT). Finally, an 

MRI-based model that used these contours edited based on MRI anatomy 

(MRIeMRI). After training, all the autosegmentation models were used to 

generate automatic contours on the test cohort.  

3.2.3 Dosimetric Evaluation 

Dose statistics were computed (Raystation 11A) to compare the CT and MRI 

autosegmentation models with gold standard contours in each modality, where 

clinical contours were edited based on each modality’s anatomy in this test cohort 

(i.e., CTeCT and MRIeMRI). Dose evaluation for MRI autosegmentation was 

performed by copying the CT dose distribution to T1w-Gd MRI via rigid image 

registration. 

The statistical significance of differences in dose metrics due to 

autosegmentation models was evaluated using a paired two-tailed Student’s t-

test. The three MRI-based models were compared statistically, as were the two 

CT-based models. The Bonferroni corrected statistical significance threshold was 

p ≤ 0.01 (0.05/3) and ≤ 0.05 for the MRI and CT dosimetric evaluations, 

respectively. More information is available in the supplementary materials about 

dosimetric evaluation and statistical analysis. 

3.2.4 Clinical evaluation 

The question of ‘what is a clinically significant dose difference?’ is challenging. If 

an OAR dose is close to or at tolerance, any change could be significant, but we 

would normally accept a 2-3% tolerance due to other uncertainties in dose 

calculation and setup (for example).  However, that arbitrary 2-3% tolerance 

would be overly restrictive if the OAR dose were said 30% below tolerance. Thus, 

the clinical significance of dosimetric differences for each OAR was determined 
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using a pragmatic approach I developed under the guidance of an experienced 

radiation oncologist.  

 

For first-order OARs (where the dosimetric tolerance is a hard limit for RT dose 

planning) with near maximal dose statistics (e.g., D1% or D5%), the average 

dosimetric headroom between the gold standard contour dose and the tolerance 

dose in Table 3.1 was computed.  

50% of the average dosimetric headroom was used as the clinical significance 

threshold for these first-order OARs: brainstem, orbits, optic chiasm, and optic 

nerves. A case was considered clinically significant if the dose changes between 

the gold standard contour and autosegmentation was more than half the average 

dose headroom in either direction (Figure 3.1a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Clinical dose evaluation: a) the average metric approach which 

relates to the average dose change, b) the worst-case scenario approach. 
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For second-order OARs (where dose tolerances are optimal, rather than 

mandatory) where the dosimetric statistics are mean-dose-like (e.g., cochlea 

D50%), the approach was based on the worst-case scenario in the test cohort. 

The worst-case scenario was defined as the case with the least headroom to the 

tolerance dose, using the gold standard OAR contours. 50% of the worst-case 

scenario headroom was used as the clinical significance threshold. A case was 

considered clinically significant if the dose changes between gold standard 

contours and autosegmentation was more than half of this threshold in either 

direction (Figure 3.1b).  

 

For other second-order OARs, the clinical significance of the dosimetric change 

was more challenging to define.  The evaluation was therefore based on a 

comparison of relative model dosimetric performance as above, rather than any 

clinical significance threshold. This approach was applied for lenses, lacrimal 

glands, and pituitary gland as they were treated in some cases to more than the 

optimal tolerance dose, which would result in a negative clinical significance 

threshold by the methods described above. 

All cases identified as having clinically significant dosimetric changes were 

visually reviewed in the treatment planning system with an experienced clinical 

oncologist to identify the cause (e.g., proximity of an OAR to a dose gradient). 

By aligning our approach with the perception of an experienced radiation 

oncologist, we enhanced the reliability of this clinically significant metric in 

identifying the potential clinically significant cases. As we mentioned in the 

introduction, there is no standard method or agreed threshold of acceptability for 

dosimetric variation. 

3.2.5 Correlation between the geometric and dosimetric output: 

Pearson’s Correlation Coefficient (r) (Mukaka, 2012) was applied to measure 

correlations between geometric test metrics (the Dice Similarity Coefficient (DSC) 

(Wong et al., 2020) , sensitivity (van Rooij et al., 2019) and mean distance to 

agreement (MDA) (Jena et al., 2010) and absolute percentage dose change for 

each autosegmentation model.  
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3.3 Results 

3.3.1 Overall effect of using autosegmentation vs. gold standard 

human contouring on dosimetry 

Figures 3.2, 3.3, and 3.4 represent the overall patterns of dosimetric change for 

CT and MRI DL-AC models relative to the gold standard contours. The lacrimal 

glands are presented separately due to the relatively larger dose changes. The 

dosimetric change for the MRI autosegmentations vs. gold standard contour was 

greatest in the lacrimal glands D1%, followed by the optic nerves D1% (Table 

3.2) (Figures 3.2 and 3.4). The average absolute dosimetric change for the 

lacrimal glands D1% and optic nerves D1% varied from 25% (MRIeMRI) to 143% 

(MRIeCT) and 9% (MRIeMRI) to 20% (MRIu and MRIeCT), respectively (Table 

3.2). The remaining OARs had less dosimetric change relative to the gold 

standard contour, ranging from 1% to 12%. (Table 3.2) 

 

Figure 3.2: Distribution of the dosimetric change of all OARs delineated by MRI 

DL-AC models (excluding lacrimal glands). The number of failed segmentations is 

when autosegmentation model failed to produce structures. In some cases, the 
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small dosimetric change is affected by the number of failed cases such as cochlea, 

pituitary, and lens L. MRIu is shown in blue, MRIeCT in red, and MRIeMRI in green. 

 

The greatest dosimetric change for the CT DL-AC vs. gold standard contour was 

observed for the right lens D1% and optic chiasm D1% for the CTu and CTeCT 

models, respectively (Table 3.3 and Figure 3.3). The average absolute dosimetric 

change was 57% (CTu) for the right lens D1% and 18% (CTeCT) for the optic 

chiasm D1%. The marked dosimetric change was also reported for L and R orbits 

D1% delineated by the CTu model (21%, 25%) and L and R optic nerves D1% 

delineated by the CTeCT model (14%, 15%) (Table 3.3). The remaining OARs 

had less dosimetric change relative to the gold standard contour, ranging from 

1% to 17% (Table 3.3).  

 

Figure 3.3: Distribution of the dosimetric changes of all OARs delineated by the 

CT DL-AC relative to the gold standard contour. The number of failed 
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segmentations is when autosegmentation model failed to produce structures. In 

some cases, the small dosimetric change is affected by the number of failed cases. 

CTu is shown in turquoise, while CTeCT is in orange. (*) indicates that outliers 

have been removed from the plot for clarity. 

 

 

Figure 3.4: Distribution of the dosimetric change of the lacrimal glands segmented 

by a) MRI DL-AC models and b) CT DL-AC models relative to the gold standard 

contour. MRIu is shown in blue, MRIeCT in red, while MRIeMRI in green, CTu is 

shown in turquoise, while CTeCT in orange.  

3.3.2 Impact of editing 

For orbits, optic nerves, and optic chiasm, the MRIeMRI model showed less 

average dosimetric changes than other MRI models (Table 3.2 and Figure 3.2). 

However, differences between MRI DL-AC model dosimetry were not statistically 

significant, except in the right orbit, where a statistically significant effect was 

found comparing the MRIu and MRIeMRI models (P= 0.012, effect size (Δ 

median dosimetric change) = 7%). However, it was clinically insignificant (See 

Supp.info Table S1). 

The CTeCT model demonstrated smaller average dosimetric changes, relative to 

the gold standard, than the CTu model for the following structures: orbits, lenses, 

and brainstem (Table 3.3 and Figure 3.3). Again, however, dosimetric differences 
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between the CT DL-AC models were not statistically significant (See Supp.info 

Table S2).  In 3 cases, the CTu model generated incorrectly located 

segmentations (DSC = 0) for several of these OARs. These cases were visually 

qualitatively assessed in the treatment planning system.
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Table3.2: The absolute average dosimetric change between the MRI autosegmentations and gold standard contour. 
 

 

 

 

 

 

 

 

 Brainstem 
 

D5% 

Orbit 

L 
D1% 

Orbit 

R 
D1% 

Optic 

Nrv 

 L 

D1% 

Optic 

Nrv 

R 
D1% 

Optic 

Chiasm 
D1% 

 Cochlea 

L 
D50% 

Cochlea 

R 
D50% 

Pituitary 
Max 
dose 

 Lacrimal 

L 
D1% 

Lacrimal 

R 
D1% 

Lens 

L 
D1% 

Lens 

R 
D1% 

MRIu   

Δ absolute 

Average 

dosimetric change 

3% 9% 10% 20% 20% 12% 
 

1% 3% 3% 
 

113% 29% 4% 7% 

N* 9 9 9 9 9 6  1 6 6  8 8 9 6 

MRIeCT   

Δ absolute 

Average 

dosimetric change 

7% 10% 11% 15% 20% 9% 
 

6% 1% 4% 
 

143% 33% 3% 4% 

N* 9 9 9 9 9 8  5 4 7  7 9 2 9 

MRIeMRI   

Δ absolute 

Average 

dosimetric change 

3% 6% 1% 9% 18% 4% 
 

3% 10% 3% 
 

36% 25% 3% 7% 

N* 9 9 9 9 9 9  9 7 9  6 2 9 8 

N* represents the number of the successful segmentation by each model.   
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Table 3.3: The absolute average dosimetric change between the CT autosegmentations and gold standard contour. 

 

 
 
 
 
 
 
 
 
 
 

 Brainstem 
 

D5% 

Orbit 

L 
D1% 

Orbit 

R 
D1% 

Optic Nrv 

 L 

D1% 

Optic Nrv 

R 
D1% 

Optic 

Chiasm 
D1% 

Cochlea 

L 
D50% 

Cochlea 

R 
D50% 

Pituitary 
Max dose 

Lacrimal 

L 
D1% 

Lacrimal 

R 
D1% 

Lens 

L 
D1% 

Lens 

R 
D1% 

CTu 

Δ absolute Average 

dosimetric change 

9% 21% 25% 17% 10% 6% 2% 4% 6% 2% 8% 2% 57% 

N* 10 9 10 7 7 7 7 7 7 8 5 7 8 

CTeCT 

Δ absolute Average 

dosimetric change 

2% 5% 4% 14% 15% 18% 5% 4% 8% 6% 3% 1% 2% 

N* 10 10 10 10 10 10 10 9 10 10 10 9 8 

N* represents the number of the successful segmentation by each model. 
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3.3.3 MRI vs CT DL-AC - effect on dosimetry 

Differences in dosimetric changes relative to the gold standard contour between 

the CT and MRI DL-AC models, were most noticeable in the lacrimal glands D1% 

(Figure 3.4). The dosimetric change for lacrimal glands D1% delineated by the 

CT DL-AC models vs gold standard contour was considerably smaller than that 

of the MRI DL-AC models. Additionally, the MRIeMRI model failed to segment 

the lacrimal glands in 9 cases. 

3.3.4 Correlation between the geometric and dosimetric evaluations 

All models showed a weak correlation between absolute dosimetric change and 

geometric evaluation metrics. Negative correlations were observed between DSC 

and absolute dosimetric change and between sensitivity and absolute dosimetric 

change (r ≤ - 0.40 and r ≤ - 0.38, respectively). A positive correlation was 

observed between mean DTA and absolute dosimetric change (r ≤ 0.54) (Table 

3.4). None of the observed correlations reached statistical significance at p=0.05. 

All results related to the geometric output used for this evaluation can be found 

in the previous published work.(Alzahrani et al., 2023) 

 

Table 3.4: Correlation between geometric and dosimetric outputs. 

 

 

 

 

 

 

 

Autosegmentation Models 

Absolute 

dosimetric 

change and DSC  

Absolute dosimetric 

change and 

sensitivity  

Absolute dosimetric 

change and mean 

DTA  

MRIeCT r = -0.299 r = -0.256 r = 0.262 

MRIeMRI r = -0.402 r = -0.381 r = 0.328 

MRIu r = -0.304 r = -0.255 r = 0.543 

CTeCT r = -0.343 r = -0.378 r = 0.288 

CTu r = -0.386 r = -0.359 r = 0.106 
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3.3.5 Clinical significance of autosegmentation models on dosimetry  

3.3.5.1 First-order OARs 

Tables 3.5 and 3.6 demonstrate the number of clinically significant cases 

according to the definitions outlined above, and the average dosimetric change 

relative to the gold standard contour. In both CT DL-AC and MRI DL-AC, the 

number of cases that exceeded the clinical significance threshold for optic chiasm 

D1% was higher than for other first-order OARs (n≥ 4 cases). In both modalities, 

models trained with edited contours based on CT scans (MRIeCT and CTeCT) 

demonstrated the largest frequency of clinically significant errors (n=7 with Δ 

average dose= 590.0 and 1376.1 cGy, respectively) (Table 3.6). 

Only one clinically significant case was observed for the brainstem D5% in each 

MRI DL-AC model (n= 3 cases, Δ average dose= 203.5 cGy) (Table 3.5). 

However, the MRIeCT exhibited greater dosimetric change relative to the gold 

standard contour than the MRIeMRI and MRIu models (Table 3.5). 

Training the CT DL-AC model with edited contours, on the other hand, reduced 

the frequency of clinically significant dosimetric errors for the brainstem D5% and 

demonstrated smaller dosimetric changes relative to the gold standard contour 

compared to the CTu model (n= 3 cases, Δ average= 246.6 cGy) (Table 3.6). 

3.3.5.2 Second-order OARs 

 Amongst the second-order OARs (waterfall plots - supplementary information 

Figures S1-S2), the lacrimal glands demonstrated the largest dosimetric change 

in the MRI DL-AC models. In the worst case, the dose was changed in the left 

lacrimal gland by 505% for the MRIeCT model (Figure1S:C), relative to the gold 

standard. On the other hand, the right lens had the largest dosimetric change in 

the CT DL-AC (446% worst-case for the CTu model). (Figure 2S: b). Otherwise, 

the dosimetric changes associated with DL-AC compared to gold standard were 

generally lower for second-order OARs. For CT DL-AC, these ranged from 0% to 

40%, whereas they ranged from 0% to 22% for the MRI DL-AC (Figure 1S (a-e) 

and 2S(a-e)). 
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Table 3.5: Significant clinical cases and their average of the dosimetric change compared 

to gold standard. 

 
 

Table 3.6: Significant clinical cases and their average of the dosimetric change 

compared to the gold standard. 

 
 

 

 

  

Threshold (cGy) 

 

 

MRIeCT  

 

 

MRIeMRI  

 

 

MRIu 

 

OARs protocol 

A  

protocol 

B  

A  

(n=5 cases) 

B  

(n=4 cases) 

A  

(n=5 cases) 

B  

(n=4cases) 

A 

 (n=5 cases) 

 B 

 (n=4 cases) 

Brainstem 

D5% 

54.222 660.410 (n=1) 

411.3 cGy 

(n=0) 

- 

(n=1) 

58.9 cGy 

(n=0) 

- 

(n=1) 

140.3cGy 

(n=0) 

- 
       

  

Optic Nrv L 

D1% 

521.292 1031.981 (n=1) 
869.8 cGy 

(n=0) 
- 

(n=2) 
611.3 cGy 

(n=0) 
- 

(n=2) 
1269.393 

cGy 

(n=1) 
1192 cGy 

OpticNrv R 

D1%  

1194.213 1063.127 (n=0) 

- 

(n=1) 

1313.7 cGy 

(n=0) 

- 

(n=1) 

1123.8 cGy 

(n=0) 

- 

(n=1) 

1073.1 cGy 
Optic Chiasm 

D1% 

50.231 286.879 (n=5) 

164.8 cGy 

(n=2) 

1015.2 cGy 

(n=3) 

298.1 cGy 

(n=1) 

722.0 cGy 

(n=3) 

160 cGy 

(n=1) 

1745.9 cGy 

Cochlea L 

D50% 

548.633 1001.294 (n=1) 

636.4 cGy 

(n=0) 

- 

(n=0) 

- 

(n=0) 

- 

(n=0) 

- 

(n=0) 

- 

Total clinically significant cases 11 9 10 

 

 

Threshold (cGy) 

 

 

CTu 

 

 

CTeCT 

 

OARs 

protocol  

A  

protocol 

B 

A  

(n=7 cases) 

B  

(n=3 cases) 

A 

 (n=7 cases) 

B 

 (n=3 cases) 

Brainstem D5% 171.161 43.310 
(n=3) 

447.9 cGy 
(n=2) 

279.4 cGy 
(n=2) 

395.8 cGy 
(n=1) 

97.3 cGy 

Orbit L D1% 1806.533 2038.483 
(n=1) 

2572.2 cGy 
(n=0) 

- 
(n=0) 

- 
(n=0) 

- 

Optic Nrv L D1% 769.175 821.592 

(n=1) 

768 cGy 

(n=1) 

1605.9 cGy 

(n=2) 

996.2 cGy 

(n=1) 

1025.7cGy 

Optic Nrv R D1% 1092.199 561.628 

(n=1) 

1226.1 cGy 

(n=0) 

- 

(n=1) 

1173.0 cGy 

(n=0) 

- 

Optic Chiasm D1% 186.969 161.208 
(n=3) 

402.527 cGy 
(n=1) 

503.8 cGy 
(n=4) 

825.6 cGy 
(n=3) 

1926.5cGy 

       

Cochlea L D50% 287.110 79.972 

(n=0) 

- 

(n=0) 

- 

(n=1) 

747.9 cGy 

(n=0) 

- 

Total clinically significant cases 13 16 



87 
 

3.4 Discussion 

This study investigated the dosimetric impact of clinical contour editing before 

training MRI and CT DL-AC models for brain OARs to establish clinical 

applicability. This study also examined the correlation between geometric and 

dosimetric outcomes, in order to guide centres as to whether the geometric 

assessment alone is sufficient to evaluate and commission DL-AC models in 

radiotherapy or whether a dosimetric evaluation is also necessary. 

Except for the right orbit, when delineated by the MRI models, the dosimetric 

statistical analysis revealed no superior model between the CT DL-AC models or 

between the MRI DL-AC in terms of the dosimetric accuracy for any investigated 

brain OARs (Table S1 and S2). The significant finding for the right orbit likely 

results from a slight registration inaccuracy in mapping CT-derived evaluation 

contours to MRI, rather than any feature of the DL-AC model.  As a result, editing 

contours for brain OAR structures on the CT or MRI scans before training the 

model had no significant effect on OAR dosimetry. The lack of superiority 

indicates that both models perform well dosimetrically.  This occurs for two main 

reasons. Firstly, doses in brain RT for GBM are relatively homogeneous, meaning 

that most differences between these complex OAR contours lie in either uniformly 

high or low dose regions. Only occasionally will a contouring difference occur on 

a high dose gradient, leading to a significant dosimetric impact.  Secondly, the 

metrics used clinically tend to be of the ‘near-maximal dose’ type, which are 

insensitive to contouring changes which occur in regions of lower dose.  This is 

in contrast to metrics such as mean doses or V20 Gy, which might be used in the 

thorax for example. 

Clinical dosimetric evaluation was performed as a secondary assessment of 

potential clinical impact, using the average metric approach and the worst-case 

scenario approach.  

The number of patients that exceeded the derived clinical significance threshold 

for optic chiasm D1% was higher compared to other OARs (brainstem D5%, 

orbits D1%, optic nerves D1%, and cochlea D50%) in both modalities.  

The absolute dosimetric changes of the optic chiasm D1% relative to the gold 

standard of the clinically significant cases were ≤ 67% and ≤ 59% across all the 

CT and MRI models, respectively. The DSC, sensitivity and mean DTA scores 

were ≤ 0.37, 0.54, 1.44 cm and ≤ 0.74, 0.83, 0.77 cm for the CT and MRI models, 
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respectively (Alzahrani et al., 2023). In comparison with the CTeCT model, the 

CTu model shows a smaller number of significant cases with more acceptable 

percentage change, which is surprising at first sight since the edited contours 

should be more closely correlated with the underlying CT anatomy. However, as 

the optic chiasm is very poorly visualised on CT, the segmentation model relies 

not on the correlation with imaging features, but more on the consistency of the 

shape and location of the optic chiasm, to predict its segmentation. In the 

unedited data (used for the CTu model), this consistency is high, due to the 

original clinical contours being based on MRI rather than CT anatomy (see 

section 2.2), enabling the model to learn. By editing the optic chiasm on CT 

anatomy alone (used for the CTeCT model), this consistency is degraded, and 

the correlation with image features is not improved, as there are none present on 

CT. Hence, CTeCT performs worse, as it struggled to learn a consistent shape 

and location for the optic chiasm and hence produced a high dosimetric change 

with more significant cases compared to CTu.  

On the other hand, MRIeMRI showed a more acceptable dosimetric change than 

other MRI models, showing the benefits of editing optic chiasm on MRI prior to 

model training. Based on visual inspection of the optic chiasm in the treatment 

planning system, the level of dose discrepancy was independent of dose gradient 

location and appeared well correlated to the geometric error. This is expected 

because optic chiasm is a small structure and has a complicated shape. The 

model failed to delineate all the optic chiasm on each slice accurately. This 

indicates that post-segmentation editing may be required for optic chiasm. 

Regarding the Brainstem D5%, in a comparison with the CTu model, the CTeCT 

model demonstrated a lower number of significant changes for brainstem D5% 

(3 significant cases) (Table 3.6) with less dosimetric change relative to the gold 

standard (≤ 11% in either direction). Notably, the CTu model segmented several 

OARs in completely the wrong location, leading to the significant increase in 

mean dosimetric errors for the brainstem (and orbits).  Editing prior to model 

training resolved these failures. 

On the other hand, the number of clinically significant cases for the brainstem 

D5% for the MRI was just one for each model (Table 3.5). The dosimetric 

differences compared to the gold standard contour were ≤ 19 % in either 

direction, but the geometric error was low (DSC and sensitivity scores ≥ 0.89 and 

0.85, while mean DTA score ≤ 0.10 cm) (Alzahrani et al., 2023). This dosimetric 
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error appears clinically significant because in most clinical cases, D5% Brainstem 

is at or near to the PTV, so even a slight difference is significant. 

It was noticeable that the geometric error of the clinically significant cases for 

D5% brainstem in both modalities was generally low (DSC score ≥ 0.8) (Alzahrani 

et al., 2023), except for CTu failure cases mentioned above. On visual 

assessment, the superior part of the brainstem was found to overlap PTV or at a 

distance, resulting in significant dose gradients (Figure 3.5: a). These results 

show that clinical dosimetric evaluation is essential in some cases, and the 

geometric evaluation alone is insufficient to demonstrate the clinical utility of 

autosegmentation, due to the extreme inhomogeneity of dose distributions. 

Geometric errors only translate to dosimetric errors where they overlap steep 

dose gradients. Similarly, a recent study evaluating the dose for the thoracic 

OARs delineated by CNN-based autosegmentation found that significant dose-

volume variations were more strongly correlated with areas of high-dose gradient 

than geometric segmentation errors (Johnston et al., 2022). Moreover, previous 

studies have identified significant dosimetric differences between test and 

standard segmentation observed for OARs with high-dose gradients, even when 

geometric measures show good overlap (Harrison et al., 2022). On the other 

hand, OARs within homogeneous dose regions may reveal poor volumetric 

agreement but minimal dosimetric differences (Harrison et al., 2022). 

Accordingly, the superior part of the brainstem autosegmentation must be 

corrected when needed due to the poor performance of the contouring models in 

this portion and due to its proximity to PTV in many of the GBM cases (Figure 

3.5: a).  For modern, highly conformal arc therapies, the PTV is often a good 

surrogate for the location of high-dose gradients, but care should be taken with 

fixed beam angle treatments, where steep gradients may exist far from the PTV. 

It was noted that clinically significant dosimetric changes for optic nerves were 

mostly reductions in dose relative to the gold standard for two main reasons. First, 

after reviewing the treatment planning system, the CT models were found to have 

failed to correctly identify all the boundaries on each slice, while the MRI models 

failed to identify the posterior limit of the optic nerves (Figure 3.5: b). In either 

case, the segmentation was incomplete, resulting in reduced dose statistics. 

Second, a considerable reduction in dose was noticed in some other cases, even 

though there was relatively good visual agreement between the generated 
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contours and the gold standard.  In these cases, part of the gold standard contour 

was near PTV, whereas the DL-AC contour was not.  

 

 

Figure 3.5: a) axial and b) sagittal T1w-Gd MRI with overlying dose distribution, 

showing examples of different geometrical changes of predicted MRI 

autosegmentations compared to the gold standard. Red outline represents the 

gold standard contour. The MRIeMRI contours are depicted as yellow outlines, the 

CTeMRI contours as green outlines, and MRIu contours as blue outlines. The 

colourwash represents the percentage dose distribution, relative the prescription 

dose, according to the inset colorbar.   The dosimetric impact for a given 

geometric error is large only in high-dose gradients (e.g., as seen on sagittal 

image, the dosimetric impact of the yellow contour, relative to the gold standard 

(red) is 7% (411 cGy), as there is a steep dose gradient, whereas the dosimetric 

difference of the green contour  relative to  gold standard (red) is only 1% (38 cGy), 

as it lies in a more homogenous region of dose.) Overall, this dependence on dose 

gradient   leads to the observed weak overall correlation of dosimetric impact and 

geometric error. 

 

Regarding the small structures (lenses, lacrimal glands, and pituitary), lacrimal 

glands delineated by MRI models demonstrated a remarkably high dosimetric 

change relative to the gold standard. This correlated with geometric inaccuracy 

due to the difficulty visualising this organ using T1-w MRI scans (Alzahrani et al., 

2023). Uniquely, on CT, these glands are more visible than on MRI. However, 

CTu model showed that the right lens had the largest dosimetric change (446% 

worst-case). This was a failed segmentation, which falsely identified a region of 
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the brain far from the right lens, instead of simply producing no contour. The dose 

in that region was approximately 4.5x higher than in the lens, as it was by chance 

on the PTV boundary, leading to this extreme result. 

This study found a weak correlation between the geometric and dosimetric 

outcomes in both modalities. The correlation direction of the geometric and 

dosimetric results followed our expectations. The absolute percentage dose 

difference was negatively correlated with the sensitivity and DSC scores, and 

positively correlated with the mean DTA. Higher DSC and sensitivity scores 

indicate improved geometric performance, whereas higher mean DTA scores 

indicate larger geometric (and hence dosimetric) errors. 

This suggests geometric test metrics were insufficient to predict the effect of 

contour inaccuracies on dose, due primarily to variability in the location of dose 

gradients. Also, geometry test metrics such as DSC can be impacted by the 

structure size and are often a poor indicator of clinically significant dosimetric 

impact (Baroudi et al., 2023, Harrison et al., 2022). 

A recent study examined the correlation between geometrical measures and 

dose-volume variations for thoracic OARs (Johnston et al., 2022). Researchers 

found no significant correlation between them (Johnston et al., 2022). The weak 

correlation identified in this current work may indicate that dose distributions 

exhibit more variance in the thorax than the brain; hence, geometric performance 

was found to be an insufficient metric for clinical utility. Consequently, it is crucial 

also to perform dosimetric tests to demonstrate the clinical applicability and 

accuracy of autosegmentation models. 

The fact that specific organs are prone to exhibiting large geometric errors, and 

the likelihood that these are in high-dose gradient regions, potentially allows 

human operators to prioritise their contour editing to the critical organs that are 

likely to be in the vicinity of high-dose gradients, further improving efficiency in 

checking contours, and avoiding spending time editing geometric errors which 

will not translate to dosimetric errors. 

This study has certain limitations. The relatively small number of cases analysed 

makes it possible that outlier cases have not been captured (e.g., where a small 

OAR lies very close to a high-dose gradient). Additionally, the clinician's time 

editing contours needs to be investigated to measure efficiency savings from DL-

AC. 
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3.5 Conclusion 

As technology advances and the number of brain cancer patients increases, 

clinical use of brain OARs DL-AC models in the radiotherapy department 

becomes attractive. However, adequate assessment of contour accuracy and 

clinical applicability are essential. In this study, the dosimetric impact of 

autocontouring OARs in the brain was investigated. Specifically, the dosimetric 

impact of editing clinical contours to gold standard quality before training CT and 

MRI DL-AC models was assessed. Moreover, the correlation of dosimetry with 

geometric accuracy of MRI and CT-based DL-AC models was determined. 

Generally, we found that editing the clinical contour before training the model had 

no statistically significant impact on the dosimetry, despite clear geometric 

effects. However, by assessing the clinical significance of dosimetric changes as 

a secondary assessment of potential clinical impact, some geometric errors 

resulted in clinically significant dosimetry changes, despite the small underlying 

geometrical errors.  

Our results suggest that an MRIeMRI model could be used clinically for treatment 

planning despite some structures requiring manual contour editing. This is due to 

its generated segmentation generally showing less dosimetric change relative to 

the gold standard contours for most of the OARs. It also produced the fewest 

clinically significant dosimetric errors, indicating that the improvements in 

geometric performance can lead to dosimetric improvements in specific cases. 

Generally, a weak, and statistically insignificant correlation between the 

geometric and dosimetric outcomes for brain OARs in both modalities was found. 

Accordingly, geometric test metrics are insufficient to establish the impact of 

autocontouring inaccuracies on RT dose, mainly due to the variability in the 

location of dose gradients relative to OARs and geometric errors. For robust 

evaluation and commissioning of autocontouring, both geometric and dosimetric 

evaluation is recommended. 
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3.7 Supplementary Information 

• Training parameter information: 

The network consisted of a two-stage 3D-U-net design, where the first 

(localisation network) was used to extract smaller regions of the 3D image 

data for the second level models to refine the per-OAR segmentation.  The 

initial network used 4 max pooling convolutional layers, with reLU activation, 

a 3*3 convolutional kernel and 24 filters at the initial layer. Dropout (p=0.5) 

and instance normalisation was applied to each layer.  Transposed 

convolution was used for up sampling. 

Optimisation was performed using the Adam optimiser with learning rate 1*10-

4 and a batch size of 1. Losses were computed using categorical cross 

entropy with Softmax activation.  Losses in the localisation model were 

weighted by inverse average OAR volume, to encourage localisation of small 

OARs. Data augmentation including translation, rotation and elastic 

deformation was applied during training. 

 

•  Dosimetric Evaluation: Statistical analysis: 
 
To evaluate the statistical significance of these metrics and determine the 

impact of editing before training the model, each test metric pair of the edited 

and unedited models was compared in each modality using the paired two-

tailed Student’s t-test.  

For the same patient, if the autosegmentation model failed to segment any 

OARs, and the comparable model was able to segment the missing OAR, this 

OAR was excluded from the pairwise comparison. A Bonferroni correction 

was applied to factor in a multiple-comparison correction used when several 

dependent or independent statistical tests are being performed 

simultaneously. (1 metric and 3 segmentation pairs for MRI, 1 metrics and 

one segmentation pair for CT). The Bonferroni corrected statistical 

significance threshold was p ≤ 0.01 (0.05/3) and ≤ 0.05 for the MRI and CT 

dosimetric evaluations, respectively. 
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Table S1: Paired T-test results comparing dosimetric difference between the MRI models. Bold values indicate statistically significant differences (p ≤ 0.016). 

Insufficient successful segmentations were achieved by one of the models, this is noted ($$, **, or ##), indicating the superior model. A positive effect size indicates 

the tested model (***) was closer to the gold standard than the comparison model. 
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Table S2: Paired T-test results comparing dosimetric difference between the CT models. Insufficient successful segmentations were achieved by one of the models, 

this is noted ($$, **, or ##), indicating the superior model. A positive effect size indicates the tested model (***) was closer to the gold standard than the comparison 

model. 
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Chapter 4 Automated Confidence Estimation in Deep 

Learning Auto-Segmentation for Brain Organs at Risk on MRI 

for Radiotherapy 

 

Abstract: 

Purpose:   

We have built a novel AI-driven QA method called AutoConfidence (ACo), to 

estimate segmentation confidence on a per-voxel basis without gold standard 

segmentations, enabling robust, efficient review of automated segmentation 

(AS). We have demonstrated this method in brain OAR AS on MRI, using internal 

and external (third-party) AS models.  

 

Methods:   

 32 retrospectives, MRI planned, glioma cases were randomly selected from a 

local clinical cohort for ACo training. A generator was trained adversarialy to 

produce internal autosegmentations (IAS) with a discriminator to estimate voxel-

wise IAS uncertainty, given the input MRI. Confidence maps for each proposed 

segmentation were produced for operator use in AS editing and were compared 

with 'difference to gold-standard' error maps.  Nine cases were used for testing 

ACo performance on IAS and validation with two external deep-learning 

segmentation model predictions (external model with low quality AS (EM-LQ) and 

external model with high quality AS (EM-HQ)).  Matthew's correlation coefficient 

(MCC), False Positive Rate (FPR), False Negative Rate (FNR), and visual 

assessment were used for evaluation. Edge removal and geometric distance 

corrections were applied to achieve more useful and clinically relevant confidence 

maps and performance metrics.   

 

Results:    

ACo showed generally excellent performance on both internal and external 

segmentations, across all OARs (except lenses). MCC was higher on IAS and 

low-quality external segmentations (EM-LQ) than high-quality ones (EM-HQ).  On 

IAS and EM-LQ, average MCC (excluding lenses) varied from 0.6 to 0.9, while 

average FPR and FNR were ≤0.13 and ≤0.21, respectively. For EM-HQ, average 
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MCC varied from 0.4 to 0.8, while average FPR and FNR were ≤0.37 and ≤0.22, 

respectively.      

 

Conclusion:    

ACo was a reliable predictor of uncertainty and errors on AS generated both 

internally and externally, demonstrating its potential as an independent, 

reference-free QA tool which could help operators deliver robust, efficient 

autosegmentation in the radiotherapy clinic. 

 

Key words: Deep-learning, AI, Confidence, Autosegmentation, uncertainty, MRI 

scans, Brain, organs at risk, Radiotherapy 
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4.1 Introduction 

Deep-learning (DL) promises efficiency and quality improvements for 

radiotherapy (RT) (van den Berg and Meliado, 2022) but also raises concerns 

around potential adverse safety consequences (van den Berg and Meliado, 2022, 

Faghani et al., 2023). The most developed and commonly deployed DL 

application in radiotherapy is autosegmentation (AS) (Cardenas et al., 2019, van 

Dijk et al., 2020). Despite efficiency gains, errors and uncertainty resulting from 

data and model limitations necessitate time-consuming human review and 

editing, which can reduce or eliminate efficiency gains (Claessens et al., 2022). 

Editing is also prone to inter-operator variability and bias, reintroducing 

inconsistencies, and potential segmentation errors (Claessens et al., 2022, 

Apolle et al., 2019). Uncertainty quantification is vital to allow operators to 

evaluate appropriate localised confidence in AS (Faghani et al., 2023, Abdar et 

al., 2021). It has been attempted previously, using internal probability estimates 

from the segmentation model itself (Claessens et al., 2022). 

However, research into uncertainty estimation for AS remains nascent (van den 

Berg and Meliado, 2022).  Without any ground-truth, predicting and evaluating 

uncertainty remains challenging (Abdar et al., 2021). 

Clinical quality assurance (QA) for AS is still developing, and remains a manual 

process in general; however, recommendations have been made that any QA 

tool should be independent of the underlying AS model, rather than relying solely 

on internal model probabilities (Claessens et al., 2022, Liesbeth et al., 2020). 

Whilst most DL models can provide internal probabilities alongside class 

predictions, these are typically poorly calibrated (Asgharnezhad et al., 2022, 

Yeung et al., 2023), with high-probability predictions for most voxels, except those 

with predictions extremely close to decision boundaries. This behaviour raises 

the spectre of ‘confident-but-wrong’ predictions, which are a major concern in 

safety critical applications like RT.  

A more useful concept than probability is uncertainty.  Uncertainty can be broken 

down into epistemic (driven by model limitations) and aleatoric (driven by data 

variability) uncertainty(van den Berg and Meliado, 2022, Wang et al., 2019a, 

Abdar et al., 2021). Several approaches to estimating these uncertainties have 

been developed, including Monte-Carlo Dropout (MCD), ensemble-model (EM) 

and Spectral-normalized Neural Gaussian Process (SNGP) (Abdar et al., 2021, 
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Liu et al., 2020).  MCD and EM predict a distribution of possible results, while 

SNGP integrates variance into a classifier to estimate prediction uncertainty, 

based on distance-awareness (Abdar et al., 2021, Liu et al., 2020).  

Spatial probability maps based on MCD have been previously explored as a QA 

method for AS in RT, albeit with limited correlation between predicted uncertainty 

and observed error (van Rooij et al., 2021). Similarly, a secondary neural network 

(NN) was used to predict Dice similarity Coefficient from CT-AS pairs (Chen et 

al., 2020), with internal class probability as an input to the QA network.  However, 

these techniques all rely on the prediction-generating model and training data 

distribution to produce uncertainty estimates, and hence fail the test of 

independence.  They are also susceptible to internal probability calibration issues 

as well as creating practical challenges for use with existing AS models, which 

may not provide probabilistic predictions.  

Herein, we propose a model-agnostic, independent uncertainty estimator, based 

on correlation of features in the underlying image and proposed segmentation, 

rather than internal AS model probability.  In principle, a secondary neural 

network (NN) can estimate errors in AS predictions, if these errors are known, 

relative to data labels.  However, clinical confidence depends on identifying both 

detectable errors, and regions of high uncertainty, even if the predicted AS is 

‘correct’. We aim to combine these objectives, producing a ‘confidence map’ that 

highlights both i) regions of likely error and ii) regions of low confidence due to 

either aleatoric uncertainty (e.g., low image contrast, and dissimilar image 

acquisition) or epistemic uncertainty whether they correlate with actual errors to 

labels or not. To achieve the latter, we require a distribution of AS predictions on 

each image, to train a secondary confidence model.  

By leveraging adversarial learning, in which one NN learns to critique the 

predictions of another, we can address both objectives in a unified framework.  

Our discriminative network is trained to estimate the voxel-wise probability that a 

test segmentation is derived from the gold standard population.  This probability 

is consistently low if the AS network prediction is consistently incorrect, and highly 

variable if the AS network predictions varies.  The network therefore learns not 

only to predict where discrepancies with gold standard labels occur at the sample 

level but also regions of uncertainty in which such discrepancies are more likely 

at the population level. 
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We present AutoConfidence (ACo), a novel AI-driven QA method to estimate 

autosegmentation confidence on a per-patient basis, without a gold standard 

reference. We demonstrate it for AS of brain OARs on MRI, against internal 

segmentations from the generator network (IAS) and external (third party) AS 

models of varying quality. ACo produces a voxel-wise confidence map enabling 

efficient and robust manual verification and editing. ACo was designed to focus 

users’ attention on regions of low confidence which require attention to avoid 

significant segmentation errors, potentially improving safety, confidence, and 

efficiency in clinical practice.  

4.2 Materials and Methods: 

4.2.1 Network concept and architecture 

ACo is an adversarial architecture based on the concept of a segmentation 

generator (G) discriminator (D) pair, working against each other to produce 

convincing segmentations and estimating the probability (pGS) that the prediction 

is from the distribution of correct segmentations, from which the (noisy) gold 

standard examples are drawn.  D therefore estimates the probability that a 

segmentation is ‘plausible’ for a given image. (Figure 4.1) 

In contrast to conditional Generative Adversarial Networks (cGAN) (Isola et al., 

2017), where D exists only to train G, here G exists solely to provide a training 

example distribution for D, which is used independently at imputation to provide 

confidence estimates on segmentations from any source. 

G is a typical 2D-U-net segmentation network with 8 convolutional layers, 

featuring batch norm (BN), dropout and ‘relu’ activation.  G takes 2D MRI slices 

as input and predicts segmentations per voxel, with Softmax activation at the final 

layer.  Focal log loss (g = 2) against gold standard segmentation labels is used 

as the non-adversarial loss. 

In further contrast to cGANs, D followed a U-RESnet architecture, extending the 

concept of a patch-wise discriminator to a shallow encoder-decoder, providing 

voxel-wise discrimination, with residual blocks to improve performance in the 

shallow architecture.  D takes image-segmentation pairs as input and learns to 

predict voxel-wise difference to gold-standard (d2GS) as a surrogate for pGS. 

D discriminates predicted segmentations from gold standard segmentations 

(GS), on a per-voxel basis, with focal log loss against ‘difference-to-gold-



108 
 

standard’ (d2GS), which is provided as a binary voxel-wise label. D was trained 

alternately with gold standard contours and AS predictions, for each input image. 

G and D were updated sequentially for each batch during training.   

 

The output of D therefore represented a confidence map, across the 

segmentation, which was used as an adversarial loss to augment training of G.  

This adversarial loss encouraged G to produce different AS predictions where D 

predicted low confidence. Hence, errors were reduced, making the task more 

difficult and consequently improving the performance of D on hard examples. 

Detailed model architecture and hyperparameters are provided in supplementary 

information (research method). 

 

 

Figure 4.1: Model architecture overview for ACo, showing the segmentation 

generator and confidence estimator (discriminator). Segmentation 

difference to gold standard (d2GS) is used as a loss to the generator and a 

reference for the discriminator. Confidence prediction (pGS) is compared 

to d2GS, resulting in ACo error, which is used as a loss to the discriminator. 
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4.2.2 Data and training 

ACo models were trained using 32 retrospective, clinical glioma cases, each 

containing ~100 clinical T1-weighted gadolinium-enhanced MRI (T1w-Gd MRI) 

slices, with gold-standard contours, manually quality assured by editing clinical 

contours. Ethical approval for retrospective use of de-identified patient data was 

given by Leeds East REC, reference: 19/ YH/0300, IRAS project ID: 255 585. 

Thirteen commonly delineated brain OARs, which were previously included in AS 

models developed in-house, were selected.  Details concerning image 

acquisition, OARs selection and gold standard contour delineation are found in 

our previous published work (Alzahrani et al., 2023). 

ACo was initially trained as described above.  A second, otherwise identical, 

model was trained by adding synthetic errors to the IAS produced by G, before D 

estimated pGS. These included random geometric deformations, random OAR 

class perturbations, and random removal of an entire OAR, constrained to remain 

within plausible physiological limits. These synthetic errors were intended to 

mimic potential real-world errors from AS algorithms. 

4.2.3 Evaluation of AutoConfidence performance 

Nine independent glioma test cases were used to evaluate the performance of 

both models on the IAS. The following metrics were used to compare the outputs 

of the ACo map that was produced by each model relative to the d2GS: using: 

True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 

(FN), Matthew’s correlation coefficient (MCC), False Positive Rate (FPR), False 

Negative Rate (FNR), FP/FN ratio. 

Two corrections (Intelligent Edge removal and Geometric Distance Correction) 

were applied to the model output, and their impact was assessed using the same 

methodology.  The corrections were justified, applied, and optimised as follows: 

1) Intelligent Edge removal (IER) 

IER was applied to remove ‘thin’ (clinically insignificant) error regions around 

OAR borders, which resulted from partial volume effects at the edges of binary 

segmentation masks. Sobel edges of the segmentation were computed and 

dilated to a width of n voxels. This edge mask was applied to the confidence map 

and d2GS map, removing errors close to OARs boundaries. Errors remaining 

after this process were regrown by k+2 voxels back into this region, to avoid 
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deleting significant errors adjacent to OAR boundaries (Figure 4.2). Visual 

assessment was used to determine the optimal mask width as k=3, as the 

minimum value which resulted in removal of thin error predictions along all OAR 

boundaries. 

 

 

Figure 4.2: IER algorithm. Sobel edges (b) were generated from predicted 

segmentations (a) and dilated (c) with a kernel size of 3 voxels.  d2GS (d) 

was masked with the dilated edges (e) to remove errors at the OAR 

boundaries. Finally, remaining errors were regrown into the boundary 

region (f). 

 

2) Geometric Distance Correction (GDC) 

As ACo was designed to detect both errors to gold standard and regions of 

correct prediction but low confidence, there was a difference in the clinical 

significance of both FP and FN prediction errors, which depends on their 

proximity to TP predictions. FP voxels may be valid depending on their location. 

Low confidence regions (e.g., where image contrast is low) are typically 

geometrically close to actual error regions but extend beyond them. 
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Hence, when a FP voxel was ‘close’ to a sufficiently large true positive region, it 

was considered clinically useful as an indicator of potential error (i.e., low 

confidence), and counted as TP for Aco performance evaluation. Equally, if a FN 

voxel was close to a large TP region, it could be disregarded clinically as the TP 

region would draw operator attention.   

Our definition of ‘closeness’ depended on the size of the true positive region 

within a local image patch, which should be larger than the distance to it from the 

voxel in question.  

To make quantitative performance analysis more clinically relevant, prediction 

classes were updated as follows:  Within a local patch of the image, the maximum 

dimension of the TP region [D(tp)_max] was computed via Euclidean Distance 

Transform (EDT). Secondly, the minimum distance to the TP region from the 

central voxel [D(x_tp)] was computed, also via EDT. If D(x_tp) < D(tp_max) and 

the central voxel was either FP or FN, it was reclassified as TP or TN respectively 

(see supp info Figure S1). 

4.2.4  Validation with external autosegmentation 

The same nine test cases were used to evaluate the performance of ACo model 

on external MRI AS that generated using custom models based on a commercial 

3D medical image segmentation U-net (RayStation 11A, RaySearch AB). Two 

external models were used; external model - low quality (EM-LQ) and external 

model - high quality (EM-HQ), which were previously trained, using clinical and 

gold standard contours respectively, allowing evaluation of AutoConfidence in 

both scenarios. (More information about the difference between these models 

can be found in our previous work)(Alzahrani et al., 2023). 

Evaluation was done pre- and post-application of IER and GDC, as described 

above.  

‘Four-colour maps‘ were produced for visualisation of FP, FP, FN regions and the 

regions modified by GDC.  Visual assessment was performed by 3 expert 

observers, to evaluate the clinical utility of the ACo model predictions, based on 

the location, type and appropriateness of regions highlighted as low confidence, 

especially where no explicit errors existed in the d2GS reference.   
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4.3 Results 

4.3.1 Internal Autosegmentation Quality 

Relative to gold standard, G produced acceptable IAS, with average test DSC 

from 0.47 to 0.85 for all structures except lacrimal glands (DSC ≤ 0.30), (Table 

1S). 

4.3.1.1 Internal versus External Autosegmentation Quality  

Excluding lacrimal glands, IAS performance (DSC 0.47 to 0.85) was comparable 

to EM-HQ (DSC 0.49 to 0.91) (Table 1S). IAS outperformed EM-LQ (DSC 0.28 

to 0.89). All models performed equally poorly for lacrimal glands (DSC ≤ 0.26) 

4.3.2 AutoConfidence results 

4.3.2.1 AutoConfidence outputs on the internal AS: 

ACo trained with synthetic errors was superior to ACo without synthetic errors. 

FNR, using d2GS as a reference, showed a mean reduction of 7% across 11/13 

OARs (Table 2S and 3S), using synthetic errors.  FPR was not strongly affected 

(mean ΔFPR = 0.4%).  Mean MCC improved by 0.075. All subsequent ACo 

results were obtained with synthetic errors during model training. 

MCC on IAS, following application of IER and GDC, was > 0.69 (Figure 4.3a) for 

all OARs except lenses (MCC ≤ 0.40).   FPR and FNR on IAS were ≤ 0.13 and ≤ 

0.17, respectively (≤0.53 and ≤0.16 for lenses, resulting in a high FP/FN ratio of 

9.0 (Table 4S). 

ACo performance was shown to rely on both MRI and AS inputs via ablation 

testing. Removing either images or segmentations during training and testing 

severely affected confidence estimation (mean MCC 0.05 and 0.08 respectively). 

Furthermore, training IAS generator and ACo networks sequentially, as opposed 

to adversarially, severely impacted ACo test performance (mean MCC < 0.23).  
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Figure 4.3: Mean MCC for AutoConfidence per OAR and per segmentation 

model. Performance is shown on IAS (blue), MRIu (orange) and MRIeMRI 

(yellow) segmentations.  a) MCC of ACo with IER and GDC combined, b) 

IER only c) GDC only, and d) baseline ACo output without corrections. 

  

4.3.2.2 AutoConfidence outputs on the external AS 

An example of the ACo output confidence map and a colour-coded comparison 

to d2GS is shown in figure 4.4. Following IER and GDC, and excluding lenses, 

mean MCC for ACo on EM-LQ autosegmentations ranged from 0.62 to 0.89, with 

left orbit, right orbit and brainstem having the lowest scores (0.62, 0.68, and 0.63, 

respectively), and a high error ratio (FP/FN ≥2.13). (Figure 4.3a, table 5S). Mean 
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MCC for ACo on the EM-HQ autosegmentations ranged from 0.44 to 0.83, with 

left orbit, left cochlea, and left optic nerve having the lowest scores (0.44, 0.47, 

and 0.47, respectively), and FP/FN ≥ 2.67 (Figure 4.3a, table 6S). 

The lowest mean MCC scores for ACo across all the Raystation MRI AS 

models were for lenses (average MCC ≤ 0.34) (Figure 4.3a).  FP/FN for lenses 

on EM-LQ was ≤ 0.67, but for EM-HQ was 3.0 (Tables 5S and 6S). 

 

 

Figure 4.4: Axial T1w-Gd MRI with dark-blue contours representing gold 

standard and light blue representing EM-LQ autosegmentation. a) example 

showing a high uncertainty level for missing pituitary segmentation and 

errors in optic nerves. b) demonstrating high uncertainty for missing optic 

chiasm and apparent false-negative predictions for optic-nerves, which are 

in fact due to non-anatomical GS contours (see main text). FP in the region 

near lacrimal glands is typical of ACo on MRI, where lacrimal glands are 

very hard to visualise and therefore highly uncertain in location.  c and d) 

four-colour-map showing regions of TP (green), FP (pink) and GDC 

modified FP (yellow) relative to the differences-to-gold-standard, for the 

ACo prediction. 
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4.3.3 Impact of postprocessing on ACo 

4.3.3.1 Intelligent Edge removal (IER) 

IER alone had limited impact on quantitative ACo performance. Mean MCC, 

improved by 0.03 and 0.01 compared to baseline for IAS and EM-LQ 

autosegmentations respectively, and reduced by 0.04 for EM-HQ 

autosegmentations (Figure 4.3b). 

Mean FPR showed a reduction of 0.09, 0.08, and 0.11 relative to baseline, on 

IAS, EM-LQ, and EM-HQ autosegmentations, respectively. Absolute FP count 

was also reduced for all OARs, driving the change in FPR. 

 

Mean FNR increased by 0.06, 0.06 and 0.14 on IAS, EM-LQ and EM-HQ 

autosegmentations, respectively (Tables 7S- 9S).  Absolute FN count did not 

increase significantly for any OARs.  TP count decreased significantly for Orbits 

and Brainstem on internal and EM-LQ autosegmentations. For EM-HQ, all OARs 

exhibited significant decreases in TP count.  These changes in TP count drove 

the observed changes in FNR (Table 9S). 

Mean FPR, FNR, and MCC for the ACo outputs using the IER can be found in 

Supplementary Tables 7S-8S. 

4.3.3.2 Geometric Distance Correction (GDC) 

GDC improved mean MCC across all OARs by 0.50, 0.63 and 0.62 for IAS, EM-

LQ and EM-HQ AS respectively, relative to the baseline (Figure 4.3c).  

GDC reduced both FPR and FNR relative to baseline across all OARs and AS 

models.  Performance on IAS, EM-LQ, and EM-HQ showed reductions of 0.35, 

0.38 and 0.32 respectively.  This change in FPR was directly driven by 

corresponding changes in FP count (see supp info Tables 10S-12S). 

 

Mean FNR showed a reduction with GDC of 0.19, 0.22, and 0.24 on the IAS, EM-

LQ, and EM-HQ AS respectively. These changes were driven in part by small 

reductions in FN count but were predominantly a result of increased TP count. 

Mean FPR, FNR and MCC for ACo using GDC can be found in Supplementary 

Tables 10S-12S. 
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4.3.3.3 Combined Corrections (IER and GDC) 

 

Combining the two postprocessing corrections improved mean MCC across all 

OARs by 0.43, 0.49, and 0.33 relative to baseline for IAS, EM-LQ and EM-HQ 

AS, respectively (Figure 4.3a).  

IER and GDC combined decreased mean FPR relative to baseline for all OARs 

by 0.27, 0.33,0.23 for IAS, EM-LQ, and EM-HQ AS, respectively. Mean FNR on 

IAS, EM-LQ and EM-HQ AS was reduced by 0.15, 0.14, and 0.11, respectively.  

The mean FPR and FNR for baseline and for combined corrections can be found 

in Supplementary Tables 4S-6S.  
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4.4 Discussion 

There is strong demand in radiotherapy for deep-learning OAR and target 

autosegmentation to improve efficiency. However, efficiency gains can be eroded 

by the need for time-consuming manual checking and editing. Robust automation 

is desirable but challenging due to lack of automated segmentation QA tools. Our 

novel AI-driven QA tool (AutoConfidence) can estimate segmentation confidence 

from the underlying image and proposed segmentation, on a localised, 

independent, per-patient basis, without gold standard reference segmentation. 

Our approach is based on adversarial generative learning, utilising the errors and 

variability of an internal segmentation neural network to train an independent 

discriminative network to predict a map of segmentation confidence, which is then 

used to optimise the segmentation model and adversarially train both models. 

ACo can estimate confidence for segmentations from any source (including 

manual contours).  ACo highlights regions of likely error and low confidence, 

which may help focus users’ attention on regions for review, enabling safe, 

robust, and efficient implementation of autosegmentation in the clinic. 

Importantly, ACo was designed to highlight regions of low confidence (high 

uncertainty) to the user.  These may correspond to delineation errors, relative to 

gold standard or represent regions of correct segmentation relative to gold 

standard, but low confidence due to low contrast, high variability in gold standard 

contouring or imaging artefact. In either situation, ACo will attract operator 

attention to QA the contour in the suspect region.  

Due to lack of ground-truth for segmentation confidence as defined above, 

quantitative analysis of ACo performance was challenging. As a surrogate, we 

used ‘difference-to-gold-standard’ (d2GS), the difference between 

autosegmented contours and gold standard human contours. However, this 

surrogate is imperfect for two reasons. Firstly, gold-standard contours can be 

erroneous, such that apparent false-negative or false-positive regions can derive 

from label inaccuracy rather than prediction error.  Secondly, d2GS only accounts 

for regions of actual difference between prediction and gold standard, whereas 

ACo also identifies low-confidence regions, even when the prediction and gold 

standard align perfectly.  
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For these reasons, the quantitative analysis against d2GS presented here 

represents a conservative, partial surrogate for clinical utility and safety of ACo. 

Nevertheless, ACo showed generally excellent performance on both internal and 

external segmentations, across all OARs except lenses (Figure 4.3) (Table 4S, 

5S, and 6S), once IER and GDC were applied.   

IER and GDC were necessary to address two issues with the raw ACo 

predictions.  There are separate rationales for these corrections, which therefore 

have been designed with different objectives.  IER removed thin regions of low-

confidence predictions within 2 pixels of an OAR boundary, improving visual 

perception and enabling the operator to focus on more significant low-confidence 

regions. GDC did not affect the predicted confidence maps, but rather aimed to 

modify the statistical performance metrics on the surrogate labels of d2GS, to 

better correlate with clinical significance when validating ACo. 

IER (w=3) reduced average FPR by ~0.1 across all MRI AS models and OARs 

(Tables 7S-9S), making the ACo map more useful and clinically relevant, as 

positives very near OAR boundaries, resulting mainly from partial volume effects 

are not clinically relevant to RT planning.  The IER algorithm ‘re-grows’ larger 

low-confidence signals into this boundary region, ensuring clinically significant 

predictions are not affected.  

The observed increase in FNR, of between 0.06 and 0.11, appeared superficially 

concerning, as it implied an increased propensity to miss genuine segmentation 

errors relative to gold standard (increased FN count).  If a predicted uncertainty 

region was fully eroded by edge-removal, but the d2GS map was not, re-growing 

of eroded d2GS into the boundary region could lead to new FN voxels near the 

boundary.  However, this was found to occur rarely, as evidenced by the very 

limited increase of FN count with IER (Tables 7S-9S).  Furthermore, these 

artefacts were clinically unimportant, as they were very close to the OAR 

boundary.  

Rather, the observed increase in FNR with IER was primarily driven by removal 

of TP voxels near the OAR boundaries.  This effect was especially pronounced 

for orbits and brainstem, which were generally well segmented, leaving the 

majority of residual error voxels at OAR boundaries.  Hence, removal of predicted 

uncertainties along OAR boundaries via IER was safe and should aid visual 

interpretation of ACo maps. 
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GDC accounted for the fact that not all incorrectly predicted (FP and FN) voxels 

were equally important.  Statistical performance measures derived from the naive 

confusion matrix did not account for these effects and hence gave an overly 

conservative assessment of clinically relevant performance (Figure 4.3d).  As 

ACo was designed to highlight low confidence (potential error) regions to human 

operators for review, it was considered acceptable or even desirable to predict 

larger regions of uncertainty than d2GS, provided they were in appropriate 

locations and not grossly oversized. Likewise, it was acceptable to have small 

regions of FN, if they were proximal to larger TP regions, as the human operator’s 

attention would be drawn to this area anyway.   

GDC strongly reduced FPR and FNR across all OARs and segmentation models. 

The reduction in FPR showed that most FP voxels were near significant TP 

regions. The FNR reduction was partly due to GDC acting on FN directly, but 

mainly due to increased TP, driven by the reclassification of geometrically close 

FP voxels.  

Combining GDC with IER reduced the effect, relative to GDC alone (Table 4S-

6S and 10S-12S). This was due to GDC acting on overprediction of errors in the 

clinically unimportant OAR boundary regions, which were removed by IER before 

the GDC algorithm was applied. 

The model performance and the need for IER and GDC may be altered by a 3D 

model because the current ACo model is running in 2D, potentially leading to 

over- or under-prediction of errors at superior and inferior OAR limits.   A 3D 

version of ACo will potentially resolve these issues and improve the model 

performance. 

During the training of ACo, synthetic errors were applied. Without this, the model 

trained only on good segmentations and became insensitive to errors which it 

had not seen later in training.  Synthetic errors reduced mean FPR and FNR and 

improved mean MCC across all OARs and test segmentations. 

For the optimised ACo model (with IER, GDC and synthetic training errors), MCC 

was higher on low-quality external segmentations (EM-LQ), vs. high quality ones 

(EM-HQ) (Figure 4.3a).  This was partially due to the dependence of MCC on 

class-imbalance (fewer errors to detect) and also due to the higher quality model 

making more subtle errors, which were harder to identify.  Furthermore, imperfect 

labels at the voxel level represent a theoretical limit to apparent ACo 

performance, which will be approached at segmentation quality improves.  The 
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low mean FPR, FNR and a high FP/FN ratio on EM-HQ AS, indicated the method 

was safe, as it tended to be over-cautious (FP/FN > 1), and could be used 

clinically (except for lenses) (Tables 6S). ACo performed slightly better on 

internally generated test segmentations, as the errors present were generated by 

the model used during adversarial ACo discriminator training.   

Visual assessment by expert oncologists indicated ACo was able to successfully 

identify inaccurate segmentations and missing structures that generally 

correlated well with errors to gold standard, as well as regions of low confidence 

associated with poor image contrast or artefact, highlighting them for clinical 

review.  Figure 4.4a-c show examples of successful error detection in the optic 

nerves and the missing pituitary gland. The ACo confidence map (Figure 4.4a) 

shows regions of low confidence, while figure 4.4c shows the graphical confusion 

matric map, highlighting TP, FP, and FN voxels relative to gold standard. 

Where ACo predictions did not correlate with d2GS, visual inspection often 

revealed a systematic difference due to gold standard contouring definitions. For 

example, local protocol for manual optic nerve segmentation indicates that 

nerves should be continuous on each slice, which does not necessarily align with 

anatomical reality.  Hence, the gold standard was not a good comparator in these 

regions, leading to apparent underperformance of ACo, which appropriately 

identified errors based on the 3D anatomical image features (Figure 4.4b-d). 

Additionally, low-contrast regions (e.g., boundary of brainstem - figure 4.5) or 

image artefacts often led to low-confidence predictions by ACo, in the absence 

of error to gold-standard.  This low confidence was deemed clinically appropriate, 

as there was genuine uncertainty in such regions.  
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Figure 4.5: Axial T1w-Gd MRI illustrating a) a low contrast in the brainstem 

region b) ACo prediction (heat map), EM-HQ segmentation (light-blue) and 

gold standard (dark-blue), showing uncertainty due to the low contrast 

region around brainstem. c) Four-colour-map showing regions of TP 

(green), FP (pink) and GDC modified FP (yellow) relative to the differences 

to gold-standard, for the ACo prediction. 

 

Visual inspection also confirmed that IER made the final confidence maps more 

useful by removing unimportant but visually distracting low confidence predictions 

around OAR boundaries. Whilst partial volume effects in the axial plane were 

removed via IER, both the ACo model itself and the IER algorithm operated in 

2D.  Hence, the superior and inferior limit of orbits and the cranio-caudal extent 

of the optic nerves exhibited some residual errors from these partial volume 

effects, which were not removed by IER, leading to under- or over-prediction of 
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error in these regions.  This could in principle be addressed by a 3D ACo and IER 

algorithm. 

Interestingly, ACo detected uncertainty in erroneous regions of the external 

segmentation, even though it was not exposed to such errors during training.  The 

generator did not predict external segmentations, and gold standard ones were 

used as input to the ACo discriminator. Nevertheless, ACo learned how external 

contours should look relative to images, based on many gold standard external 

segmentations/image pairs. Any test external-segmentation region which 

departed from this expectation was labelled as uncertain. Thus, in the unseen 

error scenario, ACo operated as a ‘zero-shot outlier detector’, flagging previously 

unseen error types based on dissimilarity to the gold-standard distribution (low 

pGS), potentially improving robustness in clinical use.  

Despite generally excellent performance of ACo, there were limitations. ACo 

used a 2D recurrent-Unet, due to GPU memory constraints, whilst segmentations 

are inherently 3D, leading to over- or under-prediction of errors at superior and 

inferior OAR limits.  Furthermore, as IER was also a 2D algorithm, these issues 

were not mitigated by post-processing. Lastly, the ACo model trained with only 

32 cases (~4500 slices), due to limited data availability for brain MRI. Relatively 

consistent cranial anatomy made this acceptable, but for a clinical site with 

greater anatomical variation, more data would be required.  This effect was 

demonstrated by the poor performance of both IAS and ACo for lenses (Figure 

4.6) which exhibited greater motion artefact and variability than any other OAR in 

the brain. 
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Figure 4.6: Axial T1w-Gd MRI showing the failure of AutoConfidence 

prediction to detect the missing autosegmentation for the left lens, 

resulting in false-negative. Blue represents the gold standard, while light 

blue represents EM-HQ autosegmentation. b) four-colour-map showing 

regions of TP (green), FP (pink) and GDC modified FP (yellow) relative to 

the differences-to-gold-standard, for the ACo prediction. 

 

Also, ACo struggled to determine the inferior limit of brainstem (see supp info 

Figure S2). This limit was landmark driven, defined by the tip of the dens of C2, 

which was not directly adjacent to brainstem, making it difficult to learn from 2D 

image data alone. The performance of ACo could potentially be improved in this 

regard by segmenting the dens, or by a 3D ACo method.  A 3D version of ACo is 

being investigated and will potentially resolve many of these limitations. 

ACo is a model-agnostic, fully independent estimator of potential errors and 

combined (aleatoric and epistemic) uncertainty for medical image segmentation, 

at a per-voxel, per-prediction level. This approach is different to previously 

published DL autosegmentation QA methods based on internal DL-model 

probability, or Monte Carlo dropout (Claessens et al., 2022).  The advantage of 

our approach, which does not require any additional information from, or access 

to, the segmentation model, is both its generalisability (deep-learning, atlas-

based, or even manual contours can be assessed by ACo) and its independence.  

Furthermore, internal probability estimates from deep-learning classifiers are 

notoriously poorly calibrated, typically resulting in high confidence predictions for 

all voxels, except very near decision boundaries, leading to the model being 

‘confident but wrong’, a scenario one would like to avoid in safety critical medical 

applications.   
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4.5 Conclusion 

ACo was able to successfully predict regions of low confidence, including errors 

to gold standard, in both internal and external autosegmentations, from a 

commercially available segmentation algorithm, without reference to the gold-

standard segmentations themselves. These confidence estimates did not depend 

on the internal confidence of the segmentation model. Indeed, they require only 

the proposed segmentation and underlying image, making them fully 

independent and applicable to segmentations from any source, including manual 

delineations.  ACo confidence maps could serve as a per-patient, reference-free 

segmentation QA tool, increasing clinical confidence in autosegmentation and 

potentially reducing editing time, whist improving patient safety. The additional 

ability to detect error types of unseen during training (zero-shot detection) 

enhances the robustness of ACo for clinical use. 
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4.7 Supplementary information 

• Research method: 

The generator is a U-net neural network that contains downsampling and 

upsampling paths and a Skip connection. The downsampling path includes 8 

layers each has 2D Convolution layers with a rectified linear unit (ReLU) 

activation and batch normalization (batch norm). The upsampling path includes 

8 layers, which 7 of have transposed 2D convolutional layer, drop out layer, and 

batch norm. The final layer contains transposed 2D convolution. Skip connection 

enhances the output of the downsampling to upsampling layers. 

 

The discriminator is a shallow U-net neural network that contains downsampling, 

upsampling paths and a series of residual blocks skip connection. The 

downsampling path includes five layers with each having 2D Convolution layer 

with ReLU activation and batch norm. The upsampling path includes 4 layers with 

each having transposed 2D convolution with ReLU activation, drop-out layer, and 

batch norm. 

Five blocks residual skip connection in each layer with block contains two 2D 

convolutional neural layers, ReLU activation, drop out layer, and batch norm. The 

output of the residual blocks it’s the output of its convolutional neural layers and 

the output from downsampling. 

The combination of residual network architecture with U-net architecture in the 

discriminator is to have the ability to classify in a high voxel resolution.  
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Tables: 

 

 
  

Brainstem 

Cochlea Cochlea Lacrimal Lacrimal Lens Lens Optic 
Chiasm 

Optic Optic Orbit Orbit 

Pituitary L R L R L R Nrv L Nrv R L R 

IAS  
Average  0.85 0.52 0.47 0.07 0.26 0.77 0.51 0.60 0.68 0.63 0.81 0.78 0.73 

EM-HQ   
Average  0.9 0.57 0.49 0.1 0.15 0.68 0.67 0.51 0.65 0.68 0.9 0.91 0.67 

EM-LQ  
Average  0.89 0.73 0.52 0.04 0.02 0.41 0.28 0.44 0.41 0.43 0.88 0.86 0.35 

Table S1: Average DSC across OARs and segmentations. 

 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 4.30 4.28 10.34 10.19 55.83 63.24 14.21 15.79 9.21 4.94 1.57 1.63 110.22 

FP 7.92 8.59 6.38 5.64 51.56 48.98 12.54 11.40 10.87 6.79 1.29 1.47 194.75 

TN 3.59 3.03 11.54 8.25 140.71 140.91 24.37 23.18 14.80 11.66 3.24 3.25 504.71 

FN 2.77 2.20 4.84 3.36 17.84 12.05 10.14 8.79 6.44 1.69 0.53 0.52 45.54 

MCC -0.08 -0.08 0.32 0.35 0.45 0.53 0.24 0.31 0.16 0.33 0.43 0.42 0.35 

FPR 0.69 0.74 0.36 0.41 0.27 0.26 0.34 0.33 0.42 0.37 0.28 0.31 0.28 

FNR 0.39 0.34 0.32 0.25 0.24 0.16 0.42 0.36 0.41 0.25 0.25 0.24 0.29 

 (FP/FN) - 7.21 2.86 3.90 1.32 1.68 2.89 4.06 1.24 1.30 1.69 4.02 2.43 

Table S2: AutoConfidence outputs for the IAS trained without synthetic errors relative to the gold standard (baseline). 
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Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 3.75 4.02 3.39 3.18 46.98 53.72 20.28 19.64 13.27 7.24 2.82 2.66 152.65 

FP 10.21 9.16 2.8 1.79 49.13 41.95 9.7 12.37 12.58 5.4 1.3 1.48 98.66 

TN 3.36 3.15 3.46 4.34 156.13 157.01 23.86 21.76 12.4 11.21 1.9 2.32 568.03 

FN 1.27 1.77 1.5 1.96 13.7 12.5 7.42 5.4 3.07 1.22 0.62 0.41 35.89 

MCC -0.01 -0.05 0.25 0.33 0.47 0.54 0.44 0.42 0.31 0.5 0.43 0.48 0.6 

FPR 0.75 0.74 0.45 0.29 0.24 0.21 0.29 0.36 0.50 0.33 0.41 0.39 0.15 

FNR 0.25 0.31 0.31 0.38 0.23 0.19 0.27 0.22 0.19 0.14 0.18 0.13 0.19 

 (FP/FN) 8.04 5.18 1.87 0.91 3.59 3.36 1.31 2.29 4.10 4.43 2.10 3.61 2.75 

Table S3: AutoConfidence outputs for the IAS trained with synthetic errors relative to the gold standard (baseline). 

 

 Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic  
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 4.2 5.77 4.4 3.98 50.68 62.96 26.62 26.93 23.15 9.94 3.73 3.49 201.97 

FP 7.23 5.69 0.76 0.08 18 10.21 1.16 1.34 0.5 0.89 0.03 0.1 22.19 

TN 6.32 6.01 5.04 6.45 191.13 188.49 30.24 28.52 16.92 14.07 2.83 3.23 619.51 

FN 0.83 0.64 0.95 0.75 6.13 3.52 3.24 2.37 0.75 0.18 0.06 0.05 11.57 

MCC 0.28 0.41 0.69 0.85 0.75 0.87 0.86 0.88 0.94 0.91 0.97 0.96 0.9 

FPR 0.53 0.49 0.13 0.01 0.09 0.05 0.04 0.04 0.03 0.06 0.01 0.03 0.03 

FNR 0.17 0.10 0.18 0.16 0.11 0.05 0.11 0.08 0.03 0.02 0.02 0.01 0.05 

 (FP/FN) 8.71 8.89 0.80                   N/A         N/A           N/A               N/A               N/A                 N/A             N/A           N/A          N/A           N/A 

Table S4: AutoConfidence outputs for the IAS relative to the gold standard utilizing the IER and GDC. 
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Table S5: AutoConfidence outputs for the EM-LQ AS relative to the gold standard utilizing the IER and GDC. 

 

 
  

Table S6: AutoConfidence outputs for the EM-HQ AS relative to the gold standard utilizing the IER and GDC. 

 
 
 

 Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 3.38 3.63 5.81 4.06 34.88 40.39 23.93 25.53 22.36 14.38 3.95 1.82 95.45 

FP 2.65 1.33 0.1 0.04 23.16 18.89 2.93 2.62 1.64 0.41 0.15 0.55 73.38 

TN 8.59 8.52 4.48 6.35 198.59 197.06 30.24 26.42 14.66 9.36 2.36 4.33 668.32 

FN 3.95 4.62 0.76 0.82 9.31 8.85 4.16 4.59 2.67 0.93 0.18 0.16 18.08 

MCC 0.24 0.34 0.85 0.85 0.62 0.68 0.77 0.76 0.79 0.89 0.89 0.77 0.63 

FPR 0.24 0.14 0.02 0.01 0.10 0.09 0.09 0.09 0.10 0.04 0.06 0.11 0.10 

FNR 0.54 0.56 0.12 0.17 0.21 0.18 0.15 0.15 0.11 0.06 0.04 0.08 0.16 

 (FP/FN) 0.67 0.29                    N/A                      N/A          2.49 2.13                N/A               N/A          N/A            N/A           N/A          N/A 4.06 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 1.33 2.73 5.3 3.6 19.6 27.34 10.18 10.53 13.06 5.07 1.46 1.32 65.54 

FP 5.49 4.67 0.03 0.23 37.22 34.95 9.78 7.72 5.53 3.09 1.86 0.69 83.43 

TN 9.91 9.1 4.83 6.15 203.32 199.17 37.64 37.7 20.63 16.29 3.19 4.63 686.77 

FN 1.85 1.6 0.98 1.28 5.8 3.72 3.65 3.21 2.1 0.63 0.12 0.22 19.5 

MCC 0.05 0.25 0.83 0.73 0.44 0.55 0.47 0.55 0.63 0.65 0.47 0.67 0.52 

FPR 
0.36 0.34 0.01 0.04 0.15 0.15 0.21 0.17 0.21 0.16 0.37 0.13 0.11 

FNR 
0.58 0.37 0.16 0.26 0.23 0.12 0.26 0.23 0.14 0.11 0.08 0.14 0.23 

 (FP/FN) 
2.97 2.92                    N/A                     N/A 6.42 9.40 2.68 2.40 2.63 4.90 15.50 3.14 4.28 
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Table S7: AutoConfidence outputs for the IAS relative to the gold standard utilizing the IER alone. 

 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 1.6 2.56 3.05 2.26 19.45 25.02 11.2 12.11 8.93 7.13 0.97 0.51 45.44 

FP 4.44 2.4 2.85 1.84 38.59 34.25 15.66 16.04 15.07 7.66 3.13 1.85 123.39 

TN 7.21 5.47 3.76 5 192.27 185.76 29.14 24.86 13.75 8.96 2.31 4.24 660.84 

FN 5.34 7.67 1.49 2.16 15.63 20.15 5.25 6.15 3.58 1.33 0.23 0.25 25.57 

MCC -0.16 -0.06 0.24 0.25 0.32 0.36 0.3 0.25 0.18 0.37 0.18 0.24 0.33 

FPR 
 

0.38 
 

0.30 
 

0.43 
 

0.27 
 

0.17 
 

0.16 
 

0.35 
 

0.39 
 

0.52 
 

0.46 
 

0.58 
 

0.30 
 

0.16 

FNR 
 

0.77 
 

0.75 
 

0.33 
 

0.49 
 

0.45 
 

0.45 
 

0.32 
 

0.34 
 

0.29 
 

0.16 
 

0.19 
 

0.33 
 

0.36 

 (FP/FN) 
 

0.83 
 

0.31 
 

1.91 
 

0.85 
 

2.47 
 

1.70 
 

2.98 
 

2.61 
 

4.21 
 

5.76 
 

13.61 
 

7.40 
 

4.83 

Table S8: AutoConfidence outputs for the EM-LQ AS relative to the gold standard utilizing the IER alone. 

 
 
 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 1.51 2.57 2.69 2.66 32.05 42.8 20.16 18.06 13.02 6.73 2.96 2.67 146.27 

FP 9.92 8.89 2.46 1.39 36.62 30.38 7.62 10.21 10.63 4.1 0.8 0.91 77.89 

TN 5.87 4.98 4.08 4.83 178.34 176.13 25.84 25.4 14.51 12.98 2.23 2.87 593.82 

FN 1.28 1.66 1.92 2.38 18.92 15.88 7.64 5.48 3.16 1.27 0.66 0.41 37.26 

MCC -0.06 -0.03 0.2 0.32 0.41 0.54 0.5 0.47 0.38 0.57 0.56 0.62 0.64 

FPR 
0.63 0.64 0.38 0.22 0.17 0.15 0.23 0.29 0.42 0.24 0.26 0.24 0.12 

FNR 
0.46 0.39 0.42 0.47 0.37 0.27 0.27 0.23 0.20 0.16 0.18 0.13 0.20 

(FP/FN) 7.75 5.36 1.28 0.58 1.94 1.91 1.00 1.86 3.36 3.23 1.21 2.22 2.09 
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Table S9: AutoConfidence outputs for the EM-HQ AS relative to the gold standard utilizing the IER alone. 
 

 
Table S10: AutoConfidence outputs for the IAS relative to the gold standard utilizing the GDC alone. 
  

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 0.62 1.4 2.64 1.77 9.53 12.34 4.34 4.41 5.49 2.12 0.34 0.4 37.23 

FP 6.2 6.01 2.69 2.06 47.29 49.96 15.62 13.84 13.09 6.03 2.99 1.61 111.74 

TN 9.37 7.79 4.22 5.13 199.15 195.45 36.66 37.17 19.7 15.99 3.17 4.55 677.48 

FN 2.39 2.91 1.59 2.3 9.97 7.44 4.63 3.74 3.03 0.94 0.15 0.3 28.78 

MCC -0.15 -0.1 0.23 0.15 0.19 0.26 0.14 0.2 0.2 0.29 0.11 0.21 0.3 

FPR 
 

0.40 
 

0.44 
 

0.39 
 

0.29 
 

0.19 
 

0.20 
 

0.30 
 

0.27 
 

0.40 
 

0.27 
 

0.49 
 

0.26 
 

0.14 

FNR 
 

0.79 
 

0.68 
 

0.38 
 

0.57 
 

0.51 
 

0.38 
 

0.52 
 

0.46 
 

0.36 
 

0.31 
 

0.31 
 

0.43 
 

0.44 

(FP/FN) 
 

2.59 
 

2.07 
 

1.69 
 

0.90 
 

4.74 
 

6.72 
 

3.37 
 

3.70 
 

4.32 
 

6.41 
 

19.93 
 

5.37 
 

3.88 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 12.52 11.81 6.14 4.95 93.22 95 29.95 31.88 25.84 12.54 4.12 4.13 249 

FP 1.44 1.37 0.05 0.01 2.89 0.67 0.03 0.13 0.02 0.11 0 0 2.32 

TN 4.08 4.26 4.66 5.86 168.07 168.22 28.49 25.01 14.79 12.3 2.47 2.68 593.24 

FN 0.54 0.66 0.3 0.44 1.75 1.29 2.79 2.15 0.67 0.14 0.06 0.05 10.69 

MCC 0.74 0.73 0.94 0.92 0.96 0.98 0.91 0.92 0.96 0.98 0.98 0.98 0.96 

FPR 
 

0.26 
 

0.24 
 

0.01 
 

0.00 
 

0.02 
 

0.00 
 

0.00 
 

0.01 
 

0.00 
 

0.01 
 

0.00 
 

0.00 
 

0.00 

FNR 
 

0.04 
 

0.05 
 

0.05 
 

0.08 
 

0.02 
 

0.01 
 

0.09 
 

0.06 
 

0.03 
 

0.01 
 

0.01 
 

0.01 
 
0.04 

(FP/FN)          N/A         N/A                    N/A                    N/A          N/A            N/A                N/A                  N/A 
          
N/A           N/A            N/A               N/A     N/A 
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Table S11: AutoConfidence outputs for the EM-LQ AS relative to the gold standard utilizing the GDC alone. 
 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 8.55 8.55 6.08 4.62 76.45 79.14 27.32 25.64 21.91 10.37 3.16 2.81 196.69 

FP 2.1 1.86 0.04 0.01 12.93 13.02 2.67 2.15 0.72 1.01 0.87 0.11 32.65 

TN 6.78 6.7 4.33 5.84 172.2 170.11 27.43 27.98 16.75 13.21 2.46 3.71 609.03 

FN 1.16 1 0.7 0.79 4.35 2.91 3.84 3.39 1.94 0.48 0.15 0.23 16.87 

MCC 0.65 0.68 0.87 0.87 0.85 0.87 0.79 0.81 0.87 0.88 0.71 0.9 0.85 

FPR 0.24 0.22 0.01 0.00 0.07 0.07 0.09 0.07 0.04 0.07 0.26 0.03 0.05 

FNR 0.12 0.10 0.10 0.15 0.05 0.04 0.12 0.12 0.08 0.04 0.05 0.08 0.08 

 (FP/FN) 1.81 1.86                   N/A                      N/A           N/A         N/A             N/A               N/A            N/A           N/A          N/A          N/A            N/A 

Table S12: AutoConfidence outputs for the EM-HQ AS relative to the gold standard utilizing the GDC alone. 

 
 
 
 
 
 
 
 
 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 6.56 6.29 6.26 4.64 78.97 78.87 32.56 32.95 26.21 15.83 4.16 2.92 222.11 

FP 1.4 0.74 0.03 0.01 8.06 5.29 0.24 0.48 0.23 0.15 0.06 0.15 25.33 

TN 7.81 8.32 4.25 5.93 172.83 176.22 24.07 21.08 12.32 8.3 2.23 3.6 593.16 

FN 2.82 2.74 0.61 0.68 6.08 4.8 4.4 4.65 2.56 0.81 0.18 0.19 14.64 

MCC 0.55 0.63 0.89 0.88 0.88 0.91 0.85 0.83 0.86 0.92 0.92 0.9 0.89 

FPR 0.15 0.08 0.01 0.00 0.04 0.03 0.01 0.02 0.02 0.02 0.03 0.04 0.04 

FNR 0.30 0.30 0.09 0.13 0.07 0.06 0.12 0.12 0.09 0.05 0.04 0.06 0.06 

 (FP/FN) 0.50 0.27                   N/A                    N/A            N/A        N/A              N/A                N/A          N/A           N/A           N/A          N/A           N/A 
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Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 2.41 3.65 3.21 2.58 33.08 38.27 13.96 14.71 10.21 7.59 1.02 0.83 82.76 

FP 5.55 3.39 3.08 2.08 53.94 45.89 18.84 18.72 16.23 8.39 3.21 2.24 164.67 

TN 5.23 4.23 3.53 4.62 162.99 163.06 22.76 19.54 11.28 7.88 2.18 3.49 580.44 

FN 5.39 6.83 1.33 1.99 15.92 17.96 5.70 6.19 3.60 1.23 0.23 0.30 27.36 

MCC -0.21 -0.10 0.24 0.25 0.35 0.40 0.24 0.21 0.15 0.34 0.18 0.26 0.39 

FPR 0.51 0.44 0.47 0.31 0.25 0.22 0.45 0.49 0.59 0.52 0.60 0.39 0.22 

FNR 0.69 0.65 0.29 0.44 0.32 0.32 0.29 0.30 0.26 0.14 0.18 0.27 0.25 

 (FP/FN) 1.03 0.50 2.32 1.05 3.39 2.56 3.31 3.02 4.51 6.82 13.96 7.47 6.02 

Table S13: AutoConfidence outputs for the EM-LQ AS relative to the gold standard (baseline). 
 

 

Lens 
L 

Lens 
R 

Lacrimal Gland 
L 

Lacrimal Gland 
R 

Orbit 
L 

Orbit 
R 

Optic Nerve 
L 

Optic Nerve 
R 

Optic 
Chiasm 

Pituitary 
Gland 

Cochlea 
L 

Cochlea 
R Brainstem 

TP 2.88 3.15 3.04 2.32 26.18 27.69 8.94 8.68 7.76 3.77 0.71 0.84 74.00 

FP 7.76 7.26 3.08 2.32 63.21 64.46 21.05 19.12 14.87 7.62 3.32 2.08 155.35 

TN 5.13 4.74 3.66 4.58 165.33 164.47 26.14 26.83 15.61 12.71 2.42 3.60 594.24 

FN 2.80 2.96 1.37 2.05 11.22 8.56 5.12 4.54 3.08 0.98 0.19 0.34 31.65 

MCC -0.09 -0.09 0.23 0.19 0.31 0.35 0.16 0.20 0.20 0.33 0.15 0.26 0.37 

FPR 0.60 0.61 0.46 0.34 0.28 0.28 0.45 0.42 0.49 0.37 0.58 0.37 0.21 

FNR 0.49 0.48 0.31 0.47 0.30 0.24 0.36 0.34 0.28 0.21 0.21 0.29 0.30 

 (FP/FN) 2.77 2.45 2.25 1.13 5.63 7.53 4.11 4.21 4.83 7.78 17.47 6.12 4.91 

Table S14: AutoConfidence outputs for the EM-HQ AS relative to the gold standard (baseline).
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Figure S1: a and b) Illustration of GDC in different scenarios. The voxel under consideration is 

the central blue voxel. FP voxels are represented in pink, TP voxels in green.  A) Example 

conversion of a FP voxel to TP. Blue arrow (D(fp_tp)) is shorter than the black arrow 

(D(tp)_max). B)  A voxel which does not quality for conversion, as it lies too far from the TP 

region (blue arrow longer than black arrow). C) The final classification, showing converted 

voxels in yellow.   

 

 
 

Figure S2:  a) Sagittal (dotted line represents axial slice), and c) axial T1w-Gd MRI showing ACo 

overprediction of uncertainty beyond the inferior limit of brainstem, resulting in false-positives. 

Blue represents the gold standard contours; light blue represents EM-HQ AS. The white arrows 

show the tip of the dens of C2, the anatomical definition of the inferior limit of brainstem.  b) 

Sagittal and d) axial four-colour-map showing regions of TP (green), FP (pink) and GDC modified 

FP (yellow) relative to the differences to gold-standard, for the ACo prediction. 
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Chapter 5  Discussion, future works, and conclusion 

5.1 Summary of research aim and studies 

AI research and applications have grown rapidly in radiation therapy, aiming 

either to improve treatment quality or save time, or both. The foremost example 

of this technology is auto-segmentation for treatment planning. This PhD thesis 

focuses on the practical use of auto-segmentation technology in brain 

radiotherapy. It explores the performance of deep learning auto-segmentation 

(DL-AS) models for delineating OARs in brain radiotherapy, using the deep-

learning framework within the RayStation Treatment Planning System. Also, it 

investigates auto-contouring accuracy on a per-patient basis using a novel AI-

driven QA method called AutoConfidence (ACo).  

Three studies were designed and performed, to achieve a comprehensive 

evaluation of accuracy and usability of DL-AS models in delineating brain OARs. 

Several models were investigated, comprising CT and MRI based models, with 

varying degrees of pre-training editing of the labelled data. The objective of this 

was to determine the optimal balance of model performance against (costly) 

editing of training data. 

The first study concerned geometric evaluation of DL-AS for brain OARs in 

radiotherapy (Chapter 2). The second study explored the dosimetric impact of 

contour editing on CT and MRI Deep-Learning autosegmentation for Brain OARs 

(Chapter 3). The third study concerned confidence estimation in MRI deep 

learning segmentation (MRI DL-AS) for Brain OARs in Radiotherapy (Chapter 4) 

5.2 Objectives 

5.2.1 Investigating the impact of editing the clinical contours before 

training DL-AS models on geometric and dosimetric accuracy 

Accurate OAR delineation is an essential step for effective treatment planning, 

as every following step of treatment planning and delivery depends on the quality 

of the delineation. Typically, the delineation of brain OARs in treatment planning 

requires the use of both CT and MR imaging together.  

Recently, the clinical workflow for many sites, especially the brain, is moving 

towards MRI only radiotherapy planning (Edmund and Nyholm, 2017). MRI 

images have greater soft tissue contrast than CT, making it more effective in 
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delineating exact boundaries for both target and OARs to reduce geometric 

uncertainty and limit the dose to critical structures (Liu et al., 2019). MRI only 

planning may also reduce the uncertainty produced in the final dose plan, which 

derives from inaccuracy in registration between CT and MRI (Lerner et al., 2021). 

Hence, I was motivated to investigate how to utilize a commercial MRI DL-AS 

model efficiently, effectively, and safely for brain OARs delineations.  

Due to scanner-dependent intensity and contrast, where scanner contrast can be 

affected by variations in the scan parameters such as Repetition Time (TR), Time 

to Echo (TE), and differences in the  manufacturing of the scanners, the 

transferability and generalizability of MRI DL-AS between centres can be 

severely limited (Fatania et al., 2022). As a result, centre or scanner specific 

models may be required, severely limiting the available data for training and 

validation. Hence, the trade-off between training data volume and accuracy may 

be different for MRI DL-AS as compared to CT, due to the limited dataset setting. 

Feature normalisation is a standard approach in Radiomic analysis (Demircioglu, 

2024) but as DL-AS works directly on images, not radiomic features, image 

normalisation is required. Hence, methods such as z-score or white-stripe 

normalisation may improve the generalisability of DL-AS models for MRI between 

centres. 

Accordingly, in this work, the impact of editing clinical contours to be consistent 

prior to training the DL-AS model was investigated due to the limited availability 

of MRI data for training in addition to limited transferability of MRI DL-AS models 

to other centres. The focus of this part of the thesis is MRI DL-AS models, while 

investigations of the impact of editing on CT DL-AS model performance was used 

as a reference for comparison with the MRI model results.  

Chapters 2 and 3 of this thesis involve a comprehensive evaluation of the 

geometric and dosimetric impact of CT and MRI-based DL-AS for brain OARs. 

The primary goal was to establish their clinical safety and utility, with a further 

focus on investigating the impact of editing the clinical contours before model 

training to be consistent with contouring guidelines. Models based on edited and 

unedited clinical contours were compared to investigate the impact of editing on 

CT and MRI segmentation accuracy. Thirdly, I investigated the correlation 

between geometric and dosimetric measures, to determine if the geometric 

evaluation is sufficient to establish segmentation safety and utility in clinical use.  
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5.2.2 Utilising AutoConfidence as a method to estimate DL-AS 

autosegmentation uncertainty. 

Despite careful contour editing, training and pre-clinical validation, DL-AS models 

often produce errors in the clinical setting. These errors may be systematic 

(epistemic – deriving from limitations of the model), or random (aleatoric – 

deriving from variability in the input data) (van den Berg and Meliado, 2022, Abdar 

et al., 2021, Wang et al., 2019a). 

Factors such as individual patient anatomical variations, low image quality, and 

artifacts can produce these errors (Claessens et al., 2022, Mackay et al., 

2023).Such data issues can occur during training or in clinical use. Whilst careful 

data selection, pre-processing and editing can mitigate some errors at a model 

level, variability of new data in clinical use is harder to deal with. 

Accordingly, the output of DL-AS should always be reviewed, edited, and 

approved by the clinician or dosimetrist before treatment planning. This review 

and editing process is time-consuming and may introduce interobserver 

variability as it is user-dependent, and it may reduce the productivity benefits of 

segmentation automation (Claessens et al., 2022, Mackay et al., 2023).  

To address this issue, an AI QA method, called AutoConfidence (ACo) was built 

for DL-AS, aiming to estimate segmentation confidence on a per-patient basis, 

without a gold standard, enabling robust, efficient review of MRI DL-AS brain 

OARs. This ACo model is described and evaluated in Chapter 4. 

ACo performance was evaluated on estimation of uncertainty for two different 

contouring sources. It was tested on segmentations from its own internal U-net, 

against which it was adversarialy trained, and separately validated on the 

segmentations generated from the independent (external to ACo) MRI DL-AS 

models described in Chapters 2 and 3 (MRIu and MRIeMRI). They have different 

qualities (external model with low-quality AS (EM-LQ, MRIu) and external model 

with high-quality AS (EM-HQ, MRIeMRI)). 

The objective of this study was to determine the potential utility of ACo in 

identifying DL-AS contouring errors, and regions of low confidence, such that 

human operators’ attention could be focussed on likely problematic regions of the 

segmentation. The intention is that this could make review of DL-AS both more 

efficient and more robust to inter-observer variability. 
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5.3 Summary of main findings 

5.3.1 Geometric assessments (Chapter 2) 

5.3.1.1 CT MRI DL-AS and MR DL-AS overall segmentation quality 

MRI and CT DL-AS models provided excellent contouring quality for larger 

structures such as orbits and brainstem, apart from the unedited CT model which 

performed poorly on these structures. Average DSC and sensitivity scores 

ranged from 0.85 to 0.90 and from 0.85 to 0.99, respectively, across all three MRI 

DL-AS models and CTeCT model for these large structures (Alzahrani et al., 

2023). The CTu DL-AS model average DSC and sensitivity scores ranged from 

0.62 to 0.64 and from 0.62 to 0.63, respectively for the same set of structures 

(tables S4-S5) (Alzahrani et al., 2023). This is expected from the DL-AS model 

as it is known to perform well with large structures. However, the CTu model 

performed poorly in delineating the orbits, which is related to the quality of the 

training data. For orbits, some operators precisely contouring the exact shape of 

the orbits on the CT scan, while others simplified this step by using a standard 

spherical shape in the treatment planning system. This variability could explain 

the inferior performance of CTu DL-AS in the delineation of the orbits. Regarding 

the brainstem, there is variability between the operator in the superior and inferior 

limits in addition to difficulty in visualising the exact boundaries of the brainstem 

on all the CT slices. This is not the case with other models (CTeCT, MRIeCT and 

MRIeMRI), as the clinical contour was edited based on guidelines from the atlas 

by one person. Moreover, it was reviewed by one experienced neuro-radiation 

oncologist. Notably, the CTu model produced incorrectly located segmentations 

in 3 cases, (DSC = 0). Editing clinical contour prior training the model helped to 

resolve these failures (result section 3.3.2, Chapter 3). 

The same issues did not occur in the case of the MRIu model due to the high soft 

tissue contrast of the images used in the training, which helped the model to 

perform better to find exact boundaries and location of the structure. 

Regarding small structures, accuracy of the MRI and CT DL-AS model 

delineation is more challenging compared to the larger structures (tables S1, S2, 

S3, S4, S5, and S6) (Alzahrani et al., 2023). The geometric assessment indicated 

that MRI DL-AS models performed worse than CT for contouring the lacrimal 

gland (Chapter 2, tables S1-S2), which is unsurprising given the difficulty of 
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visualising this structure on MRI. In contrast, the geometric assessment indicated 

that CT DL-AS performed particularly poorly in the segmentation of the optic 

chiasm, (tables S4 and S5)(Alzahrani et al., 2023), which is known to be 

essentially invisible on CT imaging. 

5.3.1.2 Impact of editing 

Our investigation showed the value of editing clinical contours before training the 

DL-AS models. I found that depending on the model and structure, editing to gold 

standard is either essential or beneficial. I determined that editing is essential 

based on the segmentation failure numbers, while assessment of benefit was 

based on the statistical significance of comparisons between geometry test 

metrics for paired edited and unedited models in each modality.  

5.3.1.2.1 Pre-training editing of clinical contours is necessary for successful 

segmentation 

Editing was found to be necessary for both CT and MRI, as the models trained 

with edited clinical contours produced a greater number of successful 

segmentations on OARs than unedited segmentation (Alzahrani et al., 2023). 

From the supplementary information: Chapter 2, table S7, it can be seen the 

number of failed segmentations reduced when using MRIeMRI DL-AS model, 

compared to MRIeCT and MRIu for the following structures; cochlea, lenses, 

optic chiasm and pituitary (Alzahrani et al., 2023).  

For CT DL-AS, the number of failed segmentations reduced when using CTeCT 

DL-AS model, compared to CTu DL-AS model for the following structures; optic 

nerves, lacrimal glands, cochlea, lenses, optic chiasm and pituitary (Alzahrani et 

al., 2023). 

5.3.1.2.2 Pre-training editing of clinical contours is beneficial for segmentation 

quality 

Except for the lacrimal glands, table 2.1 in Chapter 2 revealed that editing the 

clinical contours on MRI before training the model is desirable.  For orbits, lenses, 

optic nerves, pituitary, and optic chiasm, autosegmentation geometric 

performance improved on at least one metric (Alzahrani et al., 2023).  

Regarding CT DL-AS model, no geometric improvement was observed from pre-

training editing of clinical contours (Chapter 2, tables S8). Interestingly, optic 

chiasm delineated by the DL-AS model without editing (CTu) showed better 
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geometric performance than the edited version CTeCT DL-AS model (tables S8) 

(Alzahrani et al., 2023).  This is likely due to the fact that the original optic chiasms 

were segmented clinically on MRI, and subsequent editing on CT in fact degraded 

the quality, due to the extremely poor CT contrast for this organ. 

5.3.2 Dosimetric assessments (Chapter 3) 

5.3.2.1 CT DL-AS and MR DL-AS 

For MRI DL-AS models, the greatest dosimetric change between the DL-AS and 

gold standard contours was found for the lacrimal glands D1% (Δ absolute 

Average dosimetric change ≤ 143% across all MRI models) (Chapter 3, table 3.2, 

figures 3.4a), which also showed the worst performance on geometric analysis. 

For CT DL-AS models, the greatest dosimetric change between the DL-AS and 

gold standard contour was revealed for the right lens D1% (Δ absolute Average 

dosimetric change =57%) and optic chiasm D1% (Δ absolute Average dosimetric 

change =18%) delineated by the CTu and CTeCT models, respectively (Chapter 

3, table 3.3 and figure 3.3). The optic chiasm was worst performing geometrically 

as discussed. The Δ absolute average dosimetric change of the right lens was 

affected by one outlier (446% worst-case for the CTu model) (result section 3.5.2, 

Chapter 3) (Chapter 3, figure 2S: b). The failure of this case was discussed in the 

discussion section, Chapter 3). However, the dosimetric change relative to the 

gold standard in the remaining cases ranged from 0% to 5% in either direction, 

and two cases were not segmented by the model. 

The remaining OARs showed less dosimetric change relative to the gold standard 

on MRI and CT (Δ absolute Average dosimetric change ≤ 20% and ≤ 25% across 

all MRI DL-AS and CT DL-AS models respectively) (Chapter 3, tables 3.2 and 3.3 

and figures 3.2 and 3.3) 

The largest differences in dosimetric change were found between the MRI and 

CT DL-AS models in the lacrimal glands D1%. The CT DL-AS models showed 

less dosimetric change vs gold standard contour compared to the MRI DL-AS 

models. (Chapter 3, figure 3.4a and b). 

5.3.2.2 Impact of editing 

Except for the right orbit, all the dosimetric assessments were not statistically 

significant between the CT DL-AS models or the MRI DL-AS models, for any 

investigated brain OARs. A statistically significant effect (P= 0.012, effect size (Δ 
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median dosimetric change) = 7%) was found between the MRIeMRI DL-AS and 

MRIu DL-AS models in the delineation of right orbit, although this was considered 

clinically insignificant, and likely resulted from slight misalignment of clinical gold 

standard unedited contours with the MRI images, resulting from imperfect rigid 

registration (result section 3.3.2, discussion, Chapter 3). 

However, editing the clinical contours before training reduced the dosimetric 

differences between doses computed for contours from the DL-AS models and 

gold standard contours. This was consistently observed in both modalities for 

certain structures, even though it was not statistically significant.  

Compared to MRIeCT and MRIu DL-AS models, the MRIeMRI DL-AS model 

demonstrated less average dosimetric change, relative to the gold standard 

contour for the following structures: optic nerves, orbits, and optic chiasm 

(Chapter 3, table 3.2 and figure 3.2). 

Similarly, compared to the CTu DL-AS model, the CTeCT model demonstrated 

smaller average dosimetric changes for the following structures: lenses, orbits, 

and brainstem (Chapter 3, table 3.3 and figure 3.3). Notably, the CTu model 

produced incorrectly located contouring in 3 cases (DSC = 0) for several of these 

OARs, leading to gross changes in dose.  

5.3.2.3 Clinical significance of dosimetric evaluation 

The analysis showed that the number of cases exceeding the derived clinical 

significance threshold for optic chiasm (D1%) was higher compared to other 

OARs (brainstem D5%, orbits D1%, optic nerves D1%, and cochlea D50%) in 

both modalities (Chapter 3, tables 3.5 and 3.6). The number of cases that showed 

clinically significant error was greater in the models that were based on clinical 

contours edited on CT ( 7 cases for both MRIeCT and CTeCT DL-AS models) 

(Chapter 3, tables 3.5 and 3.6). The inferior performance resulting from editing 

the clinical contour of optic chiasm on CT was previously discussed as being due 

to the extremely poor CT contrast for the optic chiasm, leading to worse 

dosimetric performance and clinically significant dosimetric changes (Discussion 

section, Chapter3).  
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5.3.2.4 Correlation between the dosimetric and different geometric outputs 

A weak, correlation was demonstrated between the dosimetric and geometric 

outputs for all OARs. This correlation indicates that whilst the dosimetry is 

dependent on the contouring accuracy, it is also strongly dependent on other 

factors, such as the location of high dose gradients, which is patient specific. 

(Chapter 3, table 3.4).  

5.3.3  Automated Confidence estimation (Chapter 4) 

This section describes the results of the AutoConfidence (ACo) model trained to 

independently assess confidence in autosegmentations generated with 

independent deep-learning models. 

5.3.3.1 General performance of the ACo model trained with synthetic 

errors on internal and external sources of autosegmentation 

The ACo model showed generally excellent performance on the internal 

autosegmentations produced from the generator (IAS) (Chapter 4, figure 4.3a, 

table S4) and external DL-AS from RayStation (MRIeMRI and MRIu) (Chapter 4, 

figure 4.3a, tables S5-S6) for all brain OARs except lenses. Lenses showed more 

motion artefacts and variability compared to other OARs in the brain.  

5.3.3.2 Importance of synthetic errors and post-processing 

The ACo model trained with several synthetic errors outperformed the ACo model 

trained without synthetic errors (Chapter 4, table 2S-3S), indicating the 

importance of including such errors during training. These errors allowed the ACo 

network to maintain its ability to detect significant errors even as the quality of 

generated segmentations improved during adversarial training. 

Intelligent edge removal (IER) was required to achieve good clinical utility (by 

removing small, distracting errors along boundaries). Geometric distance 

correction (GDC) was also required to account for regions of uncertainty 

overprediction, relative to ground-truth error. AutoConfidence was designed to 

detect uncertainty, as well as error, but was validated against error, as ground 

truth for ‘uncertainty’ does not exist. Hence, overprediction was common but 

clinically acceptable (even desirable). 
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5.3.3.3 Visual assessment of the confidence map 

The visual assessment of the resulting confidence maps demonstrated that ACo 

could highlight inaccurate or missing segmentations and define areas of low 

confidence related to poor image contrast or artifact (except for lenses, as 

discussed above). 

5.3.4 Summary of implications of results 

The findings presented in chapters 2 and 3 provide valuable insights into the 

requirements for developing a robust MRI autosegmentation model for brain 

OARs. The importance of defining and editing the training data to achieve 

clinically acceptable segmentation quality for all brain OARs was demonstrated, 

enabling acceptable performance even when using a limited dataset. Moreover, 

the value of the comprehensive assessment of geometry and dosimetry 

measures to determine the clinical usability of DL-AS models for radiotherapy 

planning and delivery was clearly highlighted.  

The findings reported in Chapter 4 provide vital insights into the need for, and an 

approach to, developing an independent quality assurance (QA) tool.  This tool 

can be used clinically to improve the efficiency, confidence, and safety of DL-AS 

in the clinic. 

5.4 Overall discussion 

The subsequent discussion considers the importance of integrating several 

geometric and dosimetric evaluation methods with the newly developed ACo AI-

QA tool to assess contour accuracy and clinical utility in practice.  

5.4.1 Geometric evaluation  

5.4.1.1 Geometric evaluation alone 

5.4.1.1.1 Assessment of contour accuracy using different metrics 

Geometric evaluation is the most common method to assess DL-AS quality 

relative to the gold standard contours (Baroudi et al., 2023, Mackay et al., 2023). 

Based on the latest review study published in 2023 on the metrics applied to 

evaluate autocontouring tools in Radiotherapy, it was found that (115/117) 98.3% 

of studies used geometric evaluation to evaluate contouring accuracy (Mackay et 

al., 2023). Geometry is easy to calculate and generalise (Baroudi et al., 2023, 
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Harrison et al., 2022), but may be of limited clinical relevance in many cases. The 

evaluation is accomplished by assessing how well the DL-AS model outlines 

OARs on the medical image relative to the gold standard.  

In this project, three different metrics were used to evaluate the geometric 

accuracy, as described in the method section of Chapter 2 (Alzahrani et al., 

2023): the Dice Similarity Coefficient, mean distance to agreement, and 

sensitivity. The dice similarity coefficient (DSC) was used to evaluate the 

similarity between the gold standard contours and the automatic contours from 

each model by calculating the overlap volume between them (Wong et al., 2020). 

The sensitivity was used to evaluate the ability of the autosegmentation model to 

correctly predict the pixels located within the OAR gold standard contour (van 

Rooij et al., 2019). The mean distance to agreement (MDA) is the mean of the 

pointwise distance required to make the outline points of the automatic 

segmentation and outline points of the gold standard contour match perfectly. All 

three methods were used, to overcome the limitations inherent in each metric, 

ensuring they complement each other effectively to be able to assess the 

contouring accuracy robustly.  

5.4.1.1.2 Importance of geometric metric results 

The outputs of geometric metrics highlighted the number of failed segmentations 

for each model (table S7) (Alzahrani et al., 2023). It showed that editing clinical 

contours prior to training the model reduced the number of failed segmentations 

compared to the unedited models in both modalities (CT and MRI).  

This result emphasizes the value of editing the clinical structures before model 

training, to ensure accuracy and standardisation. Moreover, the outputs of 

geometric assessment provided a comprehensive overview of the accuracy of 

each autosegmented structure, across different models and modalities. This 

highlighted the strengths and limitations of each model. For example, the 

geometric assessment results revealed that the MRI DL-AS models have a 

limitation in delineating the lacrimal glands, while the CT DL-AS models have a 

limitation in delineating the optic chiasm (table S1-6, Chapter 2).  

Also, the results suggested structures that benefited from pre-training editing of 

the clinical contours on MRI. Editing on MRI of pituitary, orbits, optic nerves, 

lenses, and optic chiasm was key to improving the geometric performance (table 
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2.1) (Alzahrani et al., 2023). However, there was no apparent benefit in accuracy 

from editing the clinical contours prior to training CT models to improve their 

geometric outputs, beyond the increased number of successful segmentations 

(table S7-8) (Alzahrani et al., 2023).  

Accordingly, the geometric results made it easier to determine which structures 

needed to be edited pre-training to build a robust DL-AS model. 

5.4.1.2 Integration of geometric output with the visual inspection 

Performing visual assessment combined with the geometric output guided us in 

identifying where the geometric discrepancies between the gold standard contour 

and generated segmentation most frequently occurred. This assessment also 

enables editing guidance for clinicians working with contours from these models 

to be produced during clinical commissioning. 

Regarding MRI DL-AS models, in the case of the brainstem, it was necessary to 

check the superior part of the generated contours, which were often inconsistent 

and deviated from contouring guidelines. In some cases, the model may produce 

incomplete segmentation of some slices, such as in the optic chiasm and 

pituitary. The geometric differences for the optic nerves mainly concerned their 

posterior limit, while for cochlea and orbits, these were mostly occurred at the 

superior and inferior limits.  

This information will guide staff to know where and what they are specifically 

required to verify or edit, on autogenerated contours, alongside their overall 

assessment. Notably, the frequency of these errors from the highest quality 

(MRIeMRI) model was less than other MRI DL-AS models based on both the 

geometric assessment and visual inspection, except for the lacrimal glands. 

5.4.1.3 Limitations of geometric evaluation 

Even though several geometry metrics with different perspectives (volumetric and 

distance metrics) were used, outputs did not fully demonstrate the clinical 

acceptability of autosegmentations. Geometric evaluations did not consider the 

proximity of the structure to the target volume (dose gradient) or the structure size 

(Sherer et al., 2021). Moreover, there is no standard cut-off value for geometric 

metrics that is associated with clinical acceptability as it would vary based on the 

structure size and treatment site (Sherer et al., 2021).  
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These limitations imply that, even with the high geometric similarity between the 

gold standard contour and autosegmentation, the clinical applicability is not 

guaranteed. Therefore, this study was not limited to the geometric assessment. 

The dosimetric evaluation was also needed to investigate the clinical suitability of 

the autosegmentation model.  

5.4.2 Dosimetric evaluation  

5.4.2.1 Dosimetric evaluation alone 

5.4.2.1.1 Assessment of clinical relevance using different approaches 

Dosimetric evaluation was performed by using the previous, clinically delivered, 

treatment plan to determine the impact of a geometric discrepancy between the 

gold standard contour and autosegmentation on dose (as described in Chapter 

3, method section 3.2.3). Ideally, dosimetric discrepancy would have been 

evaluated using dose reoptimized using the autosegmented OARs, but the RT 

plan data was unavailable. 

 

Dosimetric analysis is less popular than geometric assessment, based on a 

recent review article about metrics for the assessment of autocontouring 

accuracy. Dosimetric analysis was used only in 23.1% (27/117) of previous 

studies (Mackay et al., 2023). It is challenging for many reasons: There is no 

agreed threshold for clinical acceptance; a treatment plan is required, and results 

are affected by the beam arrangement, proximity of OARs to the high dose 

region, and dose constraints. All these factors, therefore, could impact the overall 

assessment (Sherer et al., 2021).  

In our work, I investigated the impact on dosimetry of editing the clinical contours 

to meet a gold standard definitions pre-training. I did this by comparing the edited 

and unedited models. I also assessed the clinical importance of the dosimetric 

errors for brain OARs in each DL-AS model, using a pragmatic approach as 

described in the method section 3.2.4 of Chapter 3.  

The outputs of dosimetric evaluations directly showed the impact of contour 

accuracy on the treatment plan. Furthermore, the clinical importance method for 

assessing dosimetric variation examined alignment with the clinical dosimetric 

constraints and thus potential organ toxicity. This method guided us in detecting 
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the dosimetric variations of greatest clinical significance (result section 3.3.5, 

Chapter 3), even when the geometric performance was good. 

5.4.2.2 Integration of dosimetric, geometric outputs and visual inspection 

In the analysis reported in results section 3.3.4, table 3.4, Chapter 3, the Pearson 

correlation coefficient was used to find the correlation between the geometric and 

dosimetric results. The results illustrated a weak correlation between the 

geometric error and absolute dosimetric change. In general, this was related to 

the several factors affecting dosimetric results that do not affect geometric 

analysis, such as the location of the high dose region and high dose gradients.  

This location is patient specific and not correlated with the regions prone to 

geometric errors.  Herein, we examined some of the possible scenarios and how 

they affect the geometric to dosimetric result correlation. 

 

Combining the dosimetric, geometric outputs, and visual inspection helps to 

investigate the reasons for the weak correlations between them, and the 

situations in which one may be more clinically useful than the other. One can 

consider this analysis as an analogue of the well-known ‘confusion matrix’ of 

statistical testing.  Instead of true positive, false positive, true negative, and false 

negative, the four categories are based on agreement (or otherwise) of the 

geometric and dosimetric tests, as shown in figure 5.1.  

Each of these categories was examined as a scenario, using typical and 

illustrative examples of each situation found via visual assessment during 

geometric analysis. 

 

Scenario 1 

LARGE Geometric error 

 

LARGE Dosimetric error 

Scenario 2 

LARGE Geometric error 

 

SMALL Dosimetric error 

Scenario 3 

SMALL Geometric error 

 

LARGE Dosimetric error 

Scenario 4 

SMALL Geometric error 

 

SMALL Dosimetric error 

Figure 5.1: The four scenarios described in this chapter, based on the 

relative magnitude of geometric and dosimetric errors. 
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5.4.2.2.1 Scenario 1: Large geometric error with large dosimetric impact 

There were two ways in which large geometric errors were found to be correlated 

with large dosimetric errors. In some cases, poor geometric agreement which led 

to significant changes in dose (figure 5.2: a and b) occurred at steep dose 

gradient regions. For example, the error in delineation of the optic nerve shown 

in figure 5.2 crossed the dose gradient of the patient plan, and hence correlated 

with high dosimetric error, and with the predicted geometric error from 

AutoConfidence. 

In other cases, the large relative change in dosimetric statistics was due to the 

complete or partial failure to segment an organ which did not lie close to a high 

dose gradient region on the gold standard segmentation. This was mainly 

observed for some structures delineated by the CTu DL-AS model. The geometric 

overlap between the gold standard and autosegmentation was low or zero due to 

missing autosegmentation on some or all slices.  

If the segmentation had completely failed, this would be associated with a 

significant relative change in dose, even though the structure was far from the 

planning target volume (PTV) (e.g., lens). In this scenario, the relative change in 

dose was associated strongly with the geometric error, although the clincial 

significance would be low, due to the low absolute dose.   

However, the CTu model occasionally produced a segmentation in a completely 

inappropriate location (figure 5.3: a-c). Here, the incorrect segmentation for the 

right lens was in a ventricle, and close to the PTV boundary, even though the 

physical lens (and gold-standard segmentation) was not. As the incorrect 

segmentation was near a high dose gradient, this led to a large absolute dose 

change. In general, this would not be the case, for a simple missing OAR, but this 

extreme example demonstrates how dosimetric results can be misleading without 

geometric context. 
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Figure 5.2: a, b, and c axial T1w-Gd MRI, showing examples of scenario 1 

for left optic nerve. a) axial scans representing the performance of the MRI 

DL-AS model in the delineation of the left optic nerve (yellow) relative to the 

gold standard contours (red). The geometric evaluation showed the 

geometric difference between the MRI autosegmentations (yellow) and the 

gold standard (red) for the left optic nerve is high (DSC=0.21, MDA = 0.38 

cm, sensitivity= 0.12).  b) axial T1w-Gd MRI showing the segmentations with 

overlying dose distribution. The colourwash represents the percentage 

dose distribution relative to the prescription dose, according to the inset 

colorbar. The relative dosimetric impact for this particular geometric error 

is high-36% (Δ dose= -1820.88 cGy), as a result of the incomplete 

segmentation. c)  Uncertainty prediction of the ACo model.  The ACo map 

successfully indicates high uncertainty for the incorrect segmentation 

region, indicating that this area needs attention from the user. 
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Figure 5.3: Example of complete segmentation failure for the right lens. a) 

axial CT slice showing the incorrect segmentation by the CTu DL-AS model 

of part of the ventricle as right lens (pink). b) axial CT slice showing the 

incorrect autosegmentation of the right lens (pink) with overlying dose 

distribution. c) axial CT slice showing the gold standard contour of the right 

lens (red) with overlying dose distribution, demonstrating that the right lens 

is outside the high dose region. The colourwash represents the percentage 

dose distribution relative to the prescription dose, according to the inset 

colorbar. The CTu DL-AS had no geometric overlap with the gold standard 

contour for the right lens (DSC= 0, sensitivity= 0), resulting in a 446% 

change in dose (Δ dose= 2536.60 cGy). This significant change in dose was 

caused by the dose in the brain being approximately 4.5 times greater 

(given its proximity to the PTV boundary) than in the right lens delineated 

as the gold standard. 

 

This scenario of a large geometric error being associated with large dosimetric 

consequences is the most obvious one, which careful commissioning and QA of 

DL-AS would be expected to identify. However, it is important to note that there 

are two ways in which this can happen. One involves clinically significant errors 

occurring on steep dose gradients, and the other involves gross geometric errors 

occurring in relatively low gradient dose regions. This highlights the importance 

of understanding whether the dosimetric tests are relative or absolute, and of 

considering whether the dosimetric changes are likely to be clinically significant 

(e.g. using the pragmatic approach described in the method section 3.2.4 of 

Chapter 3).  ACo shows its value by highlighting the geometric errors localised 
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onto the organ (figure 5.2c), which allows easy visual assessment of their likely 

dosimetric and clinical consequence. This is particularly useful once the PTV 

delineation is available, giving an indication of the likely location of dose 

gradients, and enabling a human operator to make good decisions about the 

need for OAR contour editing, prior to dose planning. 

5.4.2.2.2 Scenario 2: Large geometric error with small dosimetric impact 

In some cases, even if the autosegmentation of the structure was poor 

geometrically, it had little effect on the dosimetry. In other words, the dosimetric 

statistics for the manual and automatic contours were similar, regardless of 

geometric discrepancies. This was observed when autosegmentation delineated 

structures were situated in low dose regions with shallow gradients (far from the 

PTV), or when the (second order) OAR was within the homogeneous high dose 

region, again with shallow gradients (figure 5.4). Also, this result may be related 

to the known limitations of geometry metrics for small and complex boundaried 

structures (e.g. optic chiasm). This can lead to apparently large geometric errors, 

which do not result in significant dosimetric impact (figure 5.4).  

 

In these scenarios, both geometric and dosimetric evaluations are again 

necessary to evaluate the clinical applicability of the DL-AS model. The 

dosimetric evaluation alone may fail to identify the underlying geometric error, 

which may recur and cause clinically significant errors for another patient with a 

different dose distribution, leading to a suboptimal treatment plan and potentially 

affecting patient outcomes. Integrating both evaluations improves overall 

evaluation of autosegmentation accuracy, ensuring both geometric accuracy and 

clinical relevance for optimal treatment planning and delivery.  

Of course, in clinical use, gold standard contours are not available, and geometric 

error metrics cannot be computed. However, ACo provides a critical mechanism 

for predicting such geometric errors and highlighting them to clinicians. In this 

case, ACo is likely to have prompted editing of the pituitary (figure 5.4). In 

addition, in this case, the combination of a near-maximal dose statistic and the 

location of the pituitary within the high dose region prevented the severe 

geometric error having a large dosimetric impact.  

Whilst this editing would not have significantly affected the reported dose statistic, 

it would have provided an accurate and robust dosimetric assessment for 
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treatment planning, rather than one based on a fortunate and fragile set of 

coincidences. 

 

 

Figure 5.4: Axial T1w-Gd MRI images, providing an example of scenario 2. 

a) slice showing MRI DL-AS delineation of pituitary (yellow) relative to the 

gold standard (red). The geometric evaluation showed the geometric 

difference between the MRI autosegmentations, and the gold standard is 

high (DSC= 0.72 MDA= 0.08 cm Sensitivity= 0.77). b) as a) with overlying 

dose distribution. The colourwash represents the percentage dose 

distribution relative to the prescription dose, according to the inset 

colorbar. The dosimetric impact for this geometric error was very low 

relative to the gold standard, which is 0% (Δ max dose = -14.63 cGy); the 

very low change in dose mainly resulted from incorrect segmentation 

within the homogeneous high dose region, with shallow gradients.  c) the 

uncertainty estimates of the ACo model. The ACo map successfully 

indicates incorrect segmentation in red, as high uncertainty, requiring 

attention from the user. 

 

5.4.2.2.3 Scenario 3: Small geometric error with large dosimetric impact 

Some structures, such as the superior part of the brainstem, posterior limit of 

optic nerves, and superior and inferior limit of cochleae, occasionally exhibited 

high or acceptable geometrical agreement between the gold standard contour 

and autosegmentation, but there was significant change in OAR dose. Based on 

visual inspection, this scenario typically occurred on a steep dose gradient (near 

the PTV boundary) and led to a substantial dosimetric change for relatively little 

geometric error on a large organ (figure 5.5 a and b). Geometric analysis with 
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DSC and MDA is known to be insensitive for small errors on large organs. Using 

the brainstem as an example, AutoConfidence identified a small region of 

geometric uncertainty at the superior limit of the organ, close to the high dose 

gradient, which resulted in a large dosimetric impact. This is probably the most 

concerning scenario, from a clinical perspective and it is encouraging to see the 

ability of ACo to identify this critical region of DL-AS error. 

 

 

Figure 5.5: a) axial and b) sagittal T1w-Gd MRI with overlying dose 

distribution, showing examples of scenario 3. The colourwash represents 

the percentage dose distribution relative to the prescription dose, 

according to the inset colour bar. The low geometric discrepancy was 

found between the MRI autosegmentations (yellow) and the gold standard 

(red) (DSC= 0.89 MDA= 0.14 cm, sensitivity= 0.85), while the dosimetric 

impact for this geometric error was high relative to the gold standard, which 

is -19% (ΔD5% dose= -755.61 cGy). c) axial and d) sagittal T1w-Gd MRI with 

ACo uncertainty map (red = high uncertainty), showing the successful 

performance from ACo in detecting segmentation error as high uncertainty 

requiring attention from the user. 

 

This scenario highlights the major reasons for inconsistency between geometric 

and dosimetric analysis, which is the location of the high dose region and steep 

dose gradients. Due to the nature of RT dose distributions, the dosimetric impact 
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of contouring errors is critically dependent on their location relative to dose 

gradients. This is the primary reason that geometric analysis alone is insufficient 

for DL-AS.  Small geometric errors can be highly significant, but only if they occur 

on a steep dose gradient. As these gradients are highly patient specific, a very 

large cohort would be required in order to find cases in which they align with 

geometric contouring errors. Even if such a cohort were analysed, it would 

indicate that in the majority of cases small geometric errors were unimportant 

clinically. However, in RT we are interested in the outlier cases, in which a patient 

may suffer toxicity and undesirable side effects. Hence it is important to take a 

conservative approach.   

Geometric analysis can be insensitive to this type of error (small region of error 

on a large organ) as DSC is a volumetric measure and the change in overlap 

volume would be minimal. Also, MDA, as a mean measure of disagreement is 

also insensitive to small regions of error which may be dosimetrically and clinically 

crucial.  Whilst max or near-max distance metrics can be sensitive to such errors 

they are typically very susceptible to noise and hence are rather non-specific, 

limiting their utility in DL-AS assessment. 

ACo can be of vital assistance here, by highlighting the regions of potential 

geometric error to the operator. The operator can then apply their own judgement 

as to whether the uncertain region is likely to be near to a steep dose gradient as 

in the example of the superior aspect of brainstem shown in figure 5.5 c-d. 

5.4.2.2.4 Scenario 4: Small geometric error with small dosimetric impact 

Many ROIs showed high geometric agreement (low error) accompanied by 

minimal changes in dosimetric statistics. This was by far the most common 

scenario, as would be expected for high quality segmentation models. For 

example, figure 5.6 shows a high agreement geometrically between the gold 

standard contour and autosegmentation for the left and right orbits with minimal 

dosimetric impact. AutoConfidence demonstrated a high level of confidence in 

the autosegmentation with only small regions of uncertainty close to the 

boundaries.  The user could either edit these minor errors if they considered them 

important, or more likely choose to leave them as they were produced, due to the 

distance from the high-dose region. 
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Figure 5.6: a, b, and c axial T1w-Gd MRI, showing examples of scenario 4 

for the left and right orbits. a) axial scans representing the performance of 

the MRI DL-AS model in the delineation of the left and right orbits (yellow) 

relative to the gold standard contours (red). The geometric evaluation 

showed the geometric difference between the MRI autosegmentations 

(yellow) and the gold standard (red) is low (DSC= 0.92,0.91, MDA= 0.05, 0.07 

cm, sensitivity= 0.91, 0.85 for the left and right orbits, respectively). b) axial 

T1w-Gd MRI showing the segmentations with overlying dose distribution. 

The colourwash represents the percentage dose distribution relative to the 

prescription dose, according to the inset colorbar. The dosimetric impact 

for this geometric error is low relative to the gold standard, which is -1% 

(ΔD1% dose= -16.52 cGy, -19.76 cGy for the left and right orbits, 

respectively).c) The ACo map showed minimal regions of low confidence, 

very close to the segmentation boundary, indicating a high quality 

autosegmentation. 

 

In summary, I demonstrate the complex relationship between geometric and 

dosimetric impact of autosegmentation errors and highlights the reasons for the 

weak correlation between the geometric and dosimetric outputs. Through four 

different scenarios, we discuss the possible outcomes, from large geometric 

errors with significant dosimetric impact to small geometric change with minimal 

dosimetric influence. Each scenario showed the importance of combining 

geometric and dosimetric evaluations to assess the clinical applicability of 

autosegmentation. Depending only on either metric alone was not sufficient to 

capture the full picture of autosegmentation reliability.  
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Furthermore, these scenarios illustrate the importance of the ACo. The ACo 

uncertainty maps identify the geometric errors, even in the absence of ground 

truth segmentations, and potential dosimetric and hence clinical implications. 

Accordingly, ACo is able to significantly add value, for two reasons. First, it can 

be used in clinical practice for real patients where gold standard contours are not 

available. Second, it can provide localised estimates of geometric error, which 

traditional organ-wise geometric analyses cannot do. These geometric 

uncertainty predictions need to be interpreted in the light of potential dosimetric 

consequences. In practice this could be done by a human operator with 

knowledge of the PTV location, as a surrogate for the high dose region. 

Overall, these results highlight the importance of a comprehensive analysis to 

evaluate autosegmentation accuracy, ensuring the safe utilization of this tool in a 

clinical setting.   

 

5.4.2.3 Comparison to literature 

5.4.2.3.1 Comparison to Turcas et.al 2023 

Our conclusions align with the latest published work assessing the performance 

of a commercial MRI DL-AS on brain OARs from both geometry and dosimetry 

perspectives, using T1-w with gadolinium MRI scan (Turcas et al., 2023). 

Their assessment was based on comparing the generated contour to the 

reference gold standard contour. Our reference gold standard contour was based 

only on MRI scan (Alzahrani et al., 2023), while their reference gold standard 

contour was based on the planning CT scan that was rigidly registered with the 

MRI scan (Turcas et al., 2023). Regarding training and evaluation of the model, 

our MRI DL-AS model was trained in-house using 32 glioma cases based on the 

edited and unedited clinical contour as described in the method section 2.2.4 

(Alzahrani et al., 2023). In contrast, in the published work, the researchers did 

not train the model, while they used the MVision GBS™ MRI DL-AS model 

(Turcas et al., 2023).  

Geometric metrics such as DSC and MDA for examination of the accuracy of 

generated segmentations relative to the reference contours were used by Turcas 

et al and ourselves. Similarly, dose volume histogram (DVH) comparisons were 

used to assess the impact of geometric differences on the treatment plan. 
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Statistical analyses metrics and correlation were applied to identify the 

significance of findings. However, there are some differences in the evaluation 

methods based on the particular focus of the investigation. First is the number of 

test cases. I tested the model from the geometry and dosimetry perspectives on 

9 test cases with more emphasis on the impact of pre-training editing of the 

clinical contour on the quality of the model using different modalities (Alzahrani 

et al., 2023). Conversely, Turcas et al tested their model on 30 cases for 

geometric evaluation, while 15 of them were also used for dosimetric evaluation, 

and here dose plans were reoptimized before assessment (Turcas et al., 2023). 

The focus of Turcas et al was on comparing the reference contours with DL_AS-

generated contours and then with manual editing of DL-AS contours by two 

radiation oncologists, to assess the impact of different delineation methods (i.e. 

AI-generated contours and post-editing AI-generated contours) on treatment 

planning (Turcas et al., 2023). Therefore, their study assessed the performance 

of an AI-human combined system, rather than the model itself. 

Secondly, there were differences in the selection of evaluation metrics. In our 

work, DSC, sensitivity, and MDA (cm) were used for geometric assessment, and 

the DVH comparisons for dosimetric evaluation (Alzahrani et al., 2023). In the 

work by Turcas et al, DSC, median distance (mm), and maximum Hausdorff 

Distance (mm) were used, along with DVH comparisons and gamma analysis 

with reoptimization of the plan (Turcas et al., 2023).  

Moreover, regarding dosimetric assessment, our study used a novel approach 

for clinical evaluation based on the average metric threshold and worst-case 

scenario threshold to identify clinically significant cases (described in Chapter 3, 

method section 3.2.4). In contrast, Turcas et al used a gamma analysis approach 

with a pass rate of 3%/3mm and a 10% dose voxel failure cut-off (Turcas et al., 

2023). 

Regardless of the differences, the findings of Turcas et al broadly align with our 

findings. Both investigations proved the superior performance of the MRI deep 

learning models in delineating large structures, such as the brainstem, while both 

studies confirmed that the MRI DL-AS models perform less well in delineating 

small structures, such as the lacrimal gland (Turcas et al., 2023, Alzahrani et al., 

2023). Both works confirmed that a CT scan was needed for better visualization 

of the lacrimal glands (Turcas et al., 2023, Alzahrani et al., 2023). Table 5.1 
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illustrates the median DSC and MDA for the investigated structures in both 

studies (Turcas et al., 2023, Alzahrani et al., 2023).  

Table 5.1: Comparison of the Median DSC and MDA for selected brain 
OARs investigated by Turcas et al and the current study using MRI DL-AS 
models. Bold values highlight superior geometric performance in the 
study comparisons. 

 

Regarding the visual assessment, both works illustrate that the MRI DL-AS model 

has frequent geometric discrepancies in the superior borders of the brainstem 

(Chapter 3, discussion section). However, in their work, Turcas et al found 

geometric discrepancies in the inferior border of the brainstem as well, while I did 

not experience that as when the model was trained, the inferior border was 

always at the level of C2 (Alzahrani et al., 2023).  

Regarding dosimetric evaluation, both studies show that dosimetry metrics 

outputs are strongly impacted by tumour location in relation to OARs, and that 

variations in dose between autosegmentation and gold standard contours do not 

exactly reflect discrepancies in geometry (Turcas et al., 2023) (Chapter 3, 

discussion section). Both studies show a negative correlation between the DSC 

and dosimetry outputs (Turcas et al., 2023) (Chapter 3, discussion section). 

Moreover, both studies confirm that the correlation is not strong and indicate that 

both geometric and dosimetric analyses are needed. Both studies confirmed that 

using the commercial MRI DL-AS tool to delineate brain OARs is a promising tool 

Median DSC 

OARs 

Distance to agreement (cm) 

(Alzahrani et al., 
2023) 

(Turcas et al., 
2023) 

(Alzahrani et al., 
2023) 

(Turcas et al., 
2023) 

0.89 0.89 Brainstem 0.08 0.09 

0.69 0.55 Optic Chiasm 0.09 0.06 

0.04 0.45 
Lacrimal 
Gland L 

0.18 0.14 

0.15 0.55 
Lacrimal 
Gland R 

0.25 0.13 

0.62 0.49 Optic Nerve L 0.18 0.15 

0.67 0.56 Optic Nerve R 0.10 0.09 

0.72 0.61 Pituitary 0.08 0.09 
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to improve clinical workflow, quality, and consistency, but some editing for small 

structures is still required (Turcas et al., 2023, Alzahrani et al., 2023). 

 

5.4.2.3.1.1 OARs that clinicians tend to delineate them on CT 

Based on the international consensus guidelines, clinical oncologists indicated 

that they tend to contour the following structures based on CT imaging: orbits, 

lenses, lacrimal glands, cochlea, and optic nerve until the bony optic canal  

(Eekers et al., 2018). For orbits, lenses, cochleae and the extra-cranial portions 

of the optics nerves, this is largely because, at present, treatments are planned 

based on CT, and so the position of these organs on CT is considered most 

meaningful from a planning perspective. For lacrimal glands, this partly relates to 

ease of identifying these structures on CT compared to MRI. It is, however, 

essential to investigate the performance of these structure using the MRI DL-AS 

model to ensure the model can produce acceptable segmentation without a CT 

scan, especially in the era of the MRI-only pathway.  

Orbits, cochlea, and lenses were not investigated in the published work of Turcas 

et al., 2023. The authors stated that they did not include them as manual 

contouring is needed based on the CT scan (Turcas et al., 2023).  

Moreover, the authors also suggested that delineating the lacrimal glands and 

optic nerves using CT scans was preferable, based on comparison of their results 

(based on MRI DL-AS) with previous literature investigating CT-based 

segmentation (Turcas et al., 2023).  

However, in our work, I investigated both modalities on the delineation of these 

structures to identify if the MRI DL-AS model alone is enough to delineate these 

structures or if a CT scan is needed  (Alzahrani et al., 2023) . More information 

can be found in the following section. 

5.4.2.3.1.1.1 Comparing CT DL-AS to MRI DL-AS  

Based on our findings, except for the lacrimal glands and optic nerves, the 

general performance of the CTeCT DL-AS model vs MRIeMRI DL-AS model on 

the delineation of these structures was similar (table 5.2) (Alzahrani et al., 2023). 

It is important to note that the performance of the CTu model trained with the 

original contours was lower than that of the CTeCT and MRIeMRI DL-AS models 

and produced more failed segmentations (Table S1-S7) (Alzahrani et al., 2023). 
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This suggests that similar performance could result from consistent clinical 

contours, which the CTeCT and MRIeMRI models were trained with. 

However, the lacrimal gland is better visualized on CT vs T1w-Gd MRI scan (table 

6.2) (Alzahrani et al., 2023). Fat saturation is needed to visualize the lacrimal 

gland on an MRI scan based on the international consensus guidelines 

(Scoccianti et al., 2015). 

Regarding the delineation of the optic nerve, based on our findings, the MRIeMRI 

model performed better than the CTeCT model (table 5.2) (Alzahrani et al., 2023). 

This could relate to the fact that MRI is essential for contouring the intra-cranial 

portions of the optic nerves, and these cannot be seen clearly based on CT. The 

extra-cranial portion of the optic nerves can be well visualised on both CT and 

MRI and the clinician tendency to use CT is based on the fact that CT is routinely 

used for planning, and not increased ease of identification of the structure on CT.  

Accordingly, the MRIeMRI DL-AS is sufficient to produce segmentations for the 

structures stated in Table 5.2, with the exception of the lacrimal gland, and so 

could be used in an MRI-only pathway for brain OARs.  

Table 5.2: Comparison of CTeCT and MRIeMRI DL-AS models for 
structures that clinicians tend to contour using CT. 

 
 

 

 

 

 

OARs 

CTeCT (n= 10 cases) MRIeMRI (n= 9 test cases) 

 

Average 
DSC 

 

 

Average 
MDA 
(cm) 

 

 

Missing 
segmentation 

 

Average 
DSC 

 

 

Average 
MDA (cm) 

 

 

Missing 
segmentation 

Lacrimal Gland L 0.40 0.18 0 0.10 0.23 7 

Lacrimal Gland R 0.44 0.29 0 0.15 0.18 3 

Cochlea L 0.51 0.08 0 0.57 0.07 0 

Cochlea R 0.63 0.06 1 0.49 0.10 2 

Lens L 0.71 0.05 2 0.68 0.07 0 

Lens R 0.72 0.05 1 0.67 0.09 1 

Optic Nerve L 0.50 0.15 0 0.65 0.09 0 

Optic Nerve R 0.49 0.15 0 0.68 0.09 0 

Orbit L 0.90 0.07 0 0.90 0.06 0 

Orbit R 0.90 0.08 0 0.91 0.06 0 
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5.4.2.3.2 Comparison to Wong et.al 2020  

Here I compare the results of our own MRI DL-AS work with that of Wong et 

al.,2020 to further evaluate the performance of our commercial MRI DL-AS 

compared to a commercial CT DL-AS for orbits and optic nerves. 

Wong et al., 2020 investigated the performance of a commercial CT DL-AS model 

(Limbus AI, version 1.0.22) based on U-net architecture and assessed model 

delineation on orbits, and optic nerves (Wong et al., 2020). Twenty test cases 

were used to compare the autosegmentation with manual reference contours, 

using DSC and 95% Hausdorff distance (HD) (Wong et al., 2020).  

For the optic nerve, the output of our MRIeMRI model (table 6.2, average DSC 

=0.65, 0.68 for optic nerve L and R, respectively) was similar to their finding of 

the CT DL-AS model average DSC=0.6 (Wong et al., 2020). However, this result 

was based on one side of the optic nerve. As they stated in their research method, 

the bilateral structures were delineated only on one side (Wong et al., 2020). 

However, they reported variability in the optic nerve junction with optic chiasm, 

which will impact individual contouring assessments (Wong et al., 2020). 

However, based on our brain OARs atlas, which is based on international 

consensus guidelines, MRI is recommended for the delineation of the optic nerve 

after passing beyond the bony optic canal, and the delineation of the optic chiasm 

should be contiguous with the optic nerve, using MRI scan to reduce variability.  

Lastly, our DSC for orbits is improved compared to that of Wong et al (Average 

DSC=0.91 vs Average DSC=0.85) (Wong et al., 2020, Alzahrani et al., 2023).  

In summary, except for the lacrimal glands, the MRI DL-AS can produce 

acceptable contouring for all brain OARs, including for the structures for which 

the clinician tends to use the CT scan for delineation. However, the MRI model 

needs to be trained with consistent contouring (Alzahrani et al., 2023) or with a 

large number of cases. 

There is limited literature on MRI brain OARs DL-AS delineation to compare our 

work with, and of the literature that does exist, this mainly concerns the use of 

non-clinical algorithms and relies only on geometric assessment (Chen et al., 

2019, Mlynarski et al., 2020, Wiesinger et al., 2021). Comparisons with this 

literature can be found in Chapter 2 (Alzahrani et al., 2023).  
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5.4.2.4 Factors affecting the quality of DL-AS models, measured by 

geometric and dosimetric tests 

The output of both assessments could be affected by several factors. First is the 

quality of the DL-AS model. The MRIeMRI DL-AS model was our preferred 

model. This model was trained with high-quality labelled data as all the clinical 

contours were edited to be consistent based on specific guidelines in the 

institution brain OAR atlas (Chapter 2, method section 2.2.2). Moreover, this 

model was trained using MRI scans, which have better contrast for the soft tissue 

delineation than CT scan. Using MRI scans helped the model to learn the location 

and features of the structure as it was easy to detect the boundaries of the 

structures except for the lacrimal glands (reasons for failing to delineate the 

lacrimal glands were highlighted in the discussion section, Chapter 2). Therefore, 

generally, less clinically significant cases, less dosimetric change, low failed 

segmentations, and more geometry agreement were achieved with the MRIeMRI 

DL-AS model compared to other models (result section 2.3.2, table 2.1, Chapter 

2, and result section 3.3.2, table 3.5 and 3.6, Chapter 3). 

Other factors that could affect the evaluations are the images’ quality, tumour 

location and its deformation for the structures and the gold standard contour 

delineation (Claessens et al., 2022). In our work, I did not exclude any cases 

based on any of these factors, in order to reflect the real-world clinical setting and 

so the model can be used in high- or low-quality image and regardless of tumour 

location and deformation. 

The gold standard contour used in our evaluation was consistent as it was done 

by a single person after being trained by an expert radiation oncologist who then 

reviewed the delineations. Manual editing was based on the guidance contained 

in the institution brain OARs atlas (More information can be found in Chapter 2, 

method section 2.2.2. 

It is also essential to consider potential confounding factors, such as the image 

quality of testing data, tumour location and gold standard contour quality since 

these factors will also impact the outputs of the evaluations. Importantly, to track 

the performance of the models in the clinical setting for such cases, an 

independent QA model is needed to improve the safety of using 

autosegmentation tools.  
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5.4.3 QA-AI model (ACo) 

5.4.3.1 Importance of the ACo model: standardized and expediate the 

process of autosegmentation verification 

Despite all the efforts to evaluate DL-AS models in the pre-clinical implementation 

setting, it is still challenging to use these models clinically (Mackay et al., 2023, 

Claessens et al., 2022), due to the possibility of errors occurring which are 

unexpected. Several groups have developed successful autosegmentations 

models, but they are not usually used clinically, as the performance can be 

variable with individual patients (Mackay et al., 2023). Moreover, inadequate 

guidance is available on how to edit DL-AS contours and be more confident in 

their clinical use (Mackay et al., 2023).  

Concerns have been raised regarding how staff will deal with autosegmentation 

outputs (Claessens et al., 2022). It is expected that some clinicians will rely on 

them and perform insufficient editing (suffering automation bias), while others 

might do too much editing of clinically unimportant regions of the segmentation. 

In either case, this will introduce variability and inconsistency in the segmentation 

and diminish the benefits of automation.  

Quality assurance (QA) for DL-AS is still developing (Claessens et al., 2022); 

however, recommendations have been made to use an independent QA tool to 

estimate uncertainty and/or potentially incorrect segmentations. The idea is not 

to directly improve contours, but rather to indicate to the operator that a specific 

contour needs review and possible adjustment.  

Thus, in this project, an independent QA-AI model was developed to detect 

uncertainty in the segmentation and serve as an assistance tool to highlight areas 

to operators that need potential editing to increase the safety of using the DL-AS 

tool. ACo was based on adversarial learning of a discriminator, trained alongside 

an internal segmentation model. Importantly, following training, it requires only 

the scan and proposed segmentation to provide a localised map of uncertainty, 

on a patient specific, reference free basis. 

Using this approach should also help to reduce bias from the operator while 

performing their manual verification. Moreover, it will potentially speed up the 

segmentation evaluation, which is needed with the increase of cancer patients to 

avoid any delay in treatment (Soomro et al., 2023). It should also increase 

confidence in utilizing the autosegmentation DL-AS model.  
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The ACo model generated a ‘confidence map’ with a range of colours from red 

(to highlight low confidence in the segmentation) to green (to highlight moderate 

confidence in the segmentation), with high confidence regions transparent, 

allowing overlay on the segmentation itself. It is possible to assess any 

segmentation (e.g., manual, or autosegmentation) given the underlying scan.  

5.4.3.2 Comparison to previous literature 

Two previous studies were conducted investigating deep learning methods to 

evaluate autosegmentation quality on breast and salivary glands using CT scans 

(van Rooij et al., 2021, Chen et al., 2020). More information about both studies 

can be found in the discussion section of Chapter 4. The recent study 

investigating the QA of DL-AS was conducted on head and neck CT (Luan et al., 

2023). The researchers predicted DSC scores based on radiomics features near 

contour boundaries. However, predicting DSC is not particularly valuable as it will 

not provide information about the location of the error in contour boundaries, and 

DSC also depends on the structure size. Also, setting a threshold for clinical 

suitability is very difficult based on the DSC value alone. Based on our finding in 

Chapter 3 (table 3.4), a weak correlation was found between the DSC and 

dosimetry outputs. So, DSC alone is not a useful metric, even if the DSC score 

is perfect. This is because the DSC score did not give information about the 

clinical perspective. 

5.4.3.3 Integration of the QA-AI model (Confidence estimation) with 

geometric and dosimetric evaluations 

Based on the evaluation of the performance of the ACo model previously 

mentioned in Chapter 4, figure 4.3a, the ACo model was able to detect 

uncertainty in areas with geometric discrepancies between the gold standard 

contour and autosegmentation for all brain OARs except lenses.  

This finding was based on model performance on different sources of 

autosegmentation (as described in the method section 4.2.3 and 4.2.4, Chapter 

4). One was the internal segmentations generated from the ACo generator. The 

second was the external segmentations generated from our previously developed 

and tested MRI DL-AS models. Different segmentation qualities were used to 

establish that the ACo model could highlight the uncertainty in high or low-quality 

autosegmentations.  
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ACo performance on MRI DL-AS models was examined in all the scenarios 

previously described in Chapter 5. The confidence maps successfully identified 

segmentation errors and missing structures, which generally correlated well with 

errors when comping ACo output to the gold standard, highlighting these 

appropriately for clinical operator review.  

However, the ACo model was not trained with the PTV or dose information, so 

the model highlighted errors only based on the geometric accuracy of the 

segmentation, regardless of the dosimetry or location of the PTV. In general, this 

behaviour is desirable, as it provides an unbiased assessment of the 

autosegmentation quality. However, for clinical use, it may be helpful to overlay 

the PTV, once it has been defined, to estimate the dosimetric and clinical 

importance of highlighted geometric uncertainty and errors. 

Regardless of the location of the PTV, the investigated ACo model was shown to 

be safe and can be used in the clinical setting to estimate the accuracy of 

segmentation for brain OARs other than lenses. It is then the responsibility of the 

human operator to consider the likelihood of a geometric error correlating with a 

dosimetric error, based on their knowledge of the target location. This is not 

particularly challenging for a human operator but could be investigated for 

automation in future. However, this would likely require prediction of dose 

distributions, which is a separate challenge. 

ACo has the potential to enable clinics to finally realise the promised benefits of 

autosegmentation technologies, saving clinician time and improving consistency 

and quality of treatment for patients. 
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5.5 Limitations 

5.5.1 Geometry and dosimetry assessment (Chapter 2 and 3) 

5.5.1.1 Limited number of training and test cases 

The investigation of the accuracy of DL-AS was trained and tested on a limited 

number of cases for two reasons: the clinician time involved in generating gold 

standard contours and the limited availability of MRI and paired CT scans. 

However, even with a small cohort, pre-training curation of the clinical contours 

helped to produce acceptable segmentation from MRI DL-AS, demonstrating this 

is highly desirable (Alzahrani et al., 2023). 

5.5.1.2 One commercial DL-AS model (RayStation) and a single MRI 

sequence (T1-w spin echo (SE) with gadolinium) 

The investigated models were based on only one commercial algorithm, for one 

tumour site.  Whilst the findings that editing, and a combination of geometric and 

dosimetric analyses are required are likely generalisable, the numerical results 

and clinical utility of the specific model are not.  This implies that a similar analysis 

should be performed for any model prior to clinical implementation. Our work 

therefore forms a basis for clinical commissioning design. 

Moreover, our investigation depends on using one MR sequence, which is T1-w 

spin echo (SE) with gadolinium, as used locally in routine care. It is worth 

replicating this investigation with other sequences as some structures, such as 

the lacrimal glands, can be better visualized using T2-w MRI or fat-saturated 

imaging. This finding will help build a multi-modality MRI model to delineate all 

brain OARs using one model (Alzahrani et al., 2023). However, it was challenging 

in this study to use both T1-w and T2-w MRI, as several cases had T1-w scans 

only. Even when both modalities were available, the lack of inherent registration 

between T1-w and T2-w images made it difficult to use both data types in a single 

model due to potential misregistration. 

5.5.1.3 Generalisability across centres 

Our preferred MRI DL-AS model, which was trained using data from several 

scanners with matched protocols, may operate poorly with similar data from other 

institutions due to the scanner harmonization issues. However, in this project, the 

main aim is to evaluate the accuracy of the MRI DL-AS model instead of building 
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a model that can operate with any data from other organizations (Alzahrani et al., 

2023).  Future technological developments, including harmonisation of MR 

images (Fatania et al., 2022), may enable multi-scanner models to be built with 

sufficient performance, but until that is achieved, clinical implementation of MRI 

based DL-AS may be limited to centres which can train and validate their own 

models. 

5.5.1.4 Time-saving evaluation and clinician feedback  

The clinician's time editing contours and their feedback on the performance of 

autosegmentation were beyond the scope of this thesis and will be investigated 

in future work. Of particular interest is the potential benefit of incorporating 

uncertainty estimates into the clinical pathway, and the impact on consistency 

and efficiency this may yield. However, it is essential to note that the atlas created 

for curating the data before training was based on international consensus 

guidelines and was reviewed and approved by the CNS oncology team. 

5.5.1.5 Using the original dose plan for DL-AS dosimetric evaluation 

For dosimetric assessment, the original dose plan was used to compare the 

dosimetric changes between the gold standard contour and the DL-AS. I did not 

intend to re-optimise plans based on DL-AS segmentations and then assess 

dosimetry, as our main interest was to explore the changes in OAR geometry and 

dose.  

Re-optimisation of plans will provide different results and may be of interest for 

future work.  If the DL-AS contours were to be used clinically, the plans would be 

optimised based on these, potentially leading to different dose distributions. An 

‘inverse’ analysis of the DL-AS optimised plan, based on the gold standard 

contours could give an indication of how the DL-AS contours would affect OAR 

doses in clinical practice. The effects should be similar to the forward analysis 

performed herein but could be a valuable extension of this work. However, 

significant resource would be required for re-planning. 

5.5.2 The ACo model assessment (Chapter4) 

5.5.2.1 Using a 2D recurrent U-net architecture 

A 2D recurrent U-net architecture was used for the ACo model instead of a 3D 

model to address the limitation of available GPU memory. As a result, over- 



169 
 

and/or under-prediction of errors at superior and inferior limits of OARs were 

produced from using a 2D approach to 3D contouring. Moreover, this issue could 

not be resolved even when using IER for the post processing, as IER also 

employed a 2D algorithm. Using a 3D architecture has the potential to enhance 

the performance of the ACo model, particularly for defining the superior and 

inferior limits of the structures, although significant compromises on resolution 

would be required to make this practical when using current hardware. 

5.5.2.2 Limited number of cases 

The ACo model was trained and tested on limited data again due to the limited 

availability of MR imaging. However, the consistent anatomy of brain OARs 

supported the output of the ACo model, even with the small dataset. More data 

may improve performance for the more mobile structures, such as lenses, and 

for other body sites, where more anatomical variation and motion are expected. 

5.5.2.3 Time-saving and ACo clinical utility evaluation  

The human interaction with the outputs of the ACo model was unable to be 

investigated in this project due to time constraints. However, there is an ongoing 

project built on this work, investigating different ways to present the outputs of 

the ACo to the clinician. More information about future work can be found in the 

next section. 

All these limitations provide interesting opportunities to extend the scope of the 

evaluation of DL-AS and optimization of the performance of the ACo model.  

Stating these limitations could motivate other researchers to address these 

constraints to enhance the robustness and reliability of the created models. 

However, the output of this project is a significant contribution in the field and can 

be further optimized in the future. 

5.6 Clinical implementation for MRI DL-AS brain OARs and ACo 

model and future work 

The work involved in this thesis extends beyond research; it is part of service 

development and the clinical implementation programme within the radiotherapy 

department at Leeds Cancer Centre. The department aims to utilize an MRI 

simulator for brain MRI-only radiotherapy. Accordingly, there is an intention to 

implement MRI DL-AS for brain OARs and AutoConfidence models clinically.  
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5.6.1 Pre-clinical implementation assessment – ongoing work 

Some future work needs to be considered to determine the potential of 

implementing the MRI DL-AS model and ACo model within the department. This 

work is currently ongoing, based on the finding of this thesis. 

5.6.1.1 Human interactions with the outputs of DL-AS model 

Studies are necessary to determine how the clinician will interact with the output 

generated by both models. Moreover, clinician editing time for DL-AS model 

outputs should be considered.  

Several neuro-oncology clinicians with different levels of expertise in the 

department will review and edit the generated contours. Geometric and 

dosimetric evaluations based on post-editing of DL-AS contours is required, 

including in comparison to both gold standard contours and the unedited contours 

generated from autosegmentation models. 

The findings will enhance understanding of the practical process and potential 

benefits of utilizing these models in the context of clinical workflow. Moreover, our 

findings will help the department to provide the clinicians with essential guidance 

on how to deal with generated segmentations to reach optimal segmentation 

efficiently. 

5.6.1.2 Human interactions with the outputs of ACo model 

The department is conducting a parallel study based on this work. It aims to 

investigate how the ACo output should be presented to the clinician. This study 

will involve four clinicians inspecting and editing the 9 test cases with and without 

the benefit of ACo confidence map data, to establish the most efficient and robust 

clinical implementation approach. ACo data will be presented in several different 

ways, to establish the optimal method. The impact of ACo on editing quality will 

be assessed using a combination of geometric and dosimetric test as above. The 

efficiency of editing will also be investigated to determine the impact of ACo on 

time-saving. 

The output of this study will provide us with a better understanding of which 

method is ideal for clinicians in terms of editing accuracy, speed, clinician 

perception, and confidence. 

In summary, the use of DL-AS models in the radiotherapy department needs to 

be comprehensively examined. Whilst clinical safety is relatively easy to 
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determine and ensure, given good training and robust processes, benefit is 

harder to quantify, particularly where humans and algorithms interact. The human 

operator is required to deal with the DL-AS and ACo outputs appropriately. If this 

process is performed well and efficiently, contour consistency and productivity in 

the department could be significantly improved. Moreover, consistent contouring 

will aid future research if correlations between dose received, and side effects 

are to be investigated.  
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5.7 Conclusions 

Patient safety in radiotherapy is a priority, and requires effective treatment 

planning based on accurate contouring, to concentrate the dose on the tumour 

while reducing radiation exposure to OARs. This is essential to minimize 

treatment-related toxicity and try to maintain patient quality of life, whilst 

maximising clinical benefit. 

Traditionally, delineation of the brain OARs in radiotherapy is a manual and time-

consuming process and exhibits high variability between operators. Accordingly, 

the goal of this thesis was to take advantage of the recent technology of deep 

learning autosegmentation tools for brain OARs, to alleviate these challenges. I 

aimed to assess the performance of three deep learning models (CT DL-AS, MRI 

DL-AS models, and AutoConfidence QA-AI model). 

From quantitative and qualitive assessments, it can be concluded that more than 

one evaluation method is necessary to verify the clinical usability of the DL-AS 

models. Based on the weak correlations observed between the geometry and 

dosimetry outputs, it can be stated that geometric assessment alone is insufficient 

to fully capture the limitations and strengths of the model from different 

perspectives, including the accuracy of the segmentation and relevance to clinical 

goals. Thus, dosimetric evaluation is also needed to assess model performance, 

which is mainly due to the variable location of dose gradients relative to OARs on a per-

patient basis. 

Moreover, editing to improve the consistency of the clinical contours in the 

training data has a positive impact on the performance of the model. Except for 

lacrimal gland in MRI, editing the clinical contours pre-training aids the 

performance of the model, producing more successful segmentations, and less 

geometric and dosimetric error in relation to the gold standard contour.  

I conclude that of all the investigated DL-AS models, the MRIeMRI DL-AS model 

could best be used clinically for treatment planning. The model could segment all 

brain OARs, despite some structures requiring manual contour editing, producing 

the fewest clinically significant dosimetric errors and high geometric agreement 

relative to the gold standard (except for the lacrimal glands). A CT scan is 

currently still needed for the lacrimal gland (or potentially a different MRI 

sequence). MRI DL-AS in radiotherapy for brain OARs can potentially improve 

efficiency, productivity, and quality for radiotherapy planning and delivery. 



173 
 

However, a comprehensive pre-clinical implementation evaluation is needed to 

investigate its clinical applicability, and it needs to be integrated with a QA-AI tool, 

for in use routine monitoring and QA. 

The outputs of the ACo model demonstrated that ACo was able to successfully 

predict regions of low confidence, including errors relative to the gold standard or 

missing segmentations, without relying on the gold standard segmentations as a 

reference. ACo confidence maps can be used as a per-patient, reference-free 

segmentation QA tool, aiding human operators in editing and validating 

autosegmentations. 

Integrating an independent QA model with DL-AS tools will help to improve its 

safety, reliability, accuracy, and clinical usefulness, as the performance of the DL-

AS model can change with the individual patients, especially if they are 

significantly different from training data. The ACo model has the potential to make 

the manual verification process for autosegmentation more robust, without 

significantly reducing the efficiency benefits.  

Future studies are needed to investigate human interactions with the outputs of 

MRI DL-AS and ACo models to estimate the value of utilizing the MRI DL-AS 

models and ACo model in routine clinical practice.  

In summary, I have determined that DL-AS segmentation of OARs in the brain 

can be validated using a combination of geometric evaluation, dosimetric 

evaluation, clinical significance analysis and visual assessment. In our 

experience, MRI models particularly benefit from editing of contours prior to 

model training, due to the limited data available and high detail within the images.  

The question of human interaction with automated models is a challenging one. 

However, use of novel tools like AutoConfidence can improve efficiency, 

accuracy, and confidence, enabling robust human-in-the-loop use of AI in 

healthcare. 

With these foundations in place, the routine clinical use of DL-AS in radiotherapy 

is now possible, potentially yielding significant benefits for hospitals and patients 

at a critical time for healthcare. 
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Appendix: Conferences participation 

 

This is the list of conferences in which I have taken part:  

Oral presentation 

• A mini-oral presentation at the European Society for Radiotherapy and 

Oncology (ESTRO),3-7 May 2024,Glasgow. 

• 'Artificial Intelligence' session at BIR Annual Radiotherapy and Oncology, 

29 February–1 March 2024, London. 

• Leeds Institute of Medical Research PGR Symposium, 16 March 2023, 

Leeds - prize awarded.  

Poster presentation 

• AI Congress 2024/augmentation and automation, 21-22 March 2024, 

London. Shortlisted abstract award. 

• AI congress 2023/AI in action, 23-24 March 2023, London. 

• The European Society for Radiotherapy and Oncology (ESTRO), 12-

16 May 2023, Vienna.  

• Research and Innovation annual conference, 24 May 2023, Leeds. 

• CRUK RadNet PhD & Post Doc Symposium, 19 June 2023, London. 

 

 
 


