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Abstract 

On main roads, such as motorways and dual carriageways, road lighting is designed to meet the needs 

of drivers. Well-designed road lighting is intended to support visual performance and visual comfort 

after dark, and therefore this has been the dominant concentration of previous research. Less attention 

has been paid to the extent to which lighting can support driver attentiveness, a critical factor for driving 

since failure to give sufficient attention is a causal factor in many road traffic collisions. Therefore, this 

thesis reports further investigation of the extent to which light can be used to mitigate drivers’ 

inattention. Two laboratory experiments were conducted to investigate how light can be utilized to 

counter driver inattention due to sleepiness or distraction. 

Experiment 1 investigated the effect of lighting on sleepiness mitigation conducted after dark and three 

hours before habitual bedtime to simulate driving in the evening. This experiment assessed sleepiness 

under four lighting conditions with melanopic EDIs ranging from less than half lux to 10 lx. The results 

did not suggest a significant effect of lighting on sleepiness as measured by salivatory melatonin level, 

audio reaction time, skin temperature and self-reported sleepiness. 

Experiment 2 investigated the visual and non-visual benefits of light in mitigating drivers’ distraction 

using a scale model of a road scene containing three potential hazards: a road surface obstacle, vehicle 

lane change and a pedestrian. Participants' reaction time to and probability of detection were 

investigated in the presence of visual or acoustic distraction. The assumption in this experiment was 

that distraction negatively affects hazard detection, which can be mitigated by higher road surface 

luminance, in-vehicle short-wavelength blue light, and pedestrian-worn “aids to vision”. The results 

indicate visual distraction impairs hazard detection while acoustic distraction does not. An increment 

in road surface luminance improved hazard detection but was not enough to overcome the negative 

impact of visual distraction. In-vehicle short-wavelength blue light improved cognitive performance of 

distraction tasks but did not transfer into hazard detection. Finally, a flashing LED light has been found 

to be superior to road lighting in mitigating visual distraction for pedestrian detection. 

The findings from these experiments do not suggest that road lighting can be used to effectively mitigate 

driver sleepiness after dark. While concerns persist about the potential negative effects of road lighting 

on sleep health, the experimental result of this work did not find melatonin suppression even under the 

highest light level of current road lighting standards, suggesting no impact on drivers’ sleep health. 

Furthermore, the results did not suggest that in-vehicle short-wavelength blue light mitigates the 

negative impact of distraction but may also exacerbate visual performance and hazard detection 

challenges. Future research should investigate potential ocular alterations and pupillary changes which 

might be induced by the installation of an in-vehicle light system.
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Chapter 1. Introduction: Lighting for Drivers 

1.1. Introduction 

The focus of this thesis is lighting for driving. Driving typically involves sitting in the offside front seat 

of a motorized vehicle and utilizing a steering wheel and foot controls to operate the vehicle safely. It 

is a complex skill that requires hand and foot coordination to adapt speed and position in response to 

changes in the road (geometry, lane control, avoiding hazards on the road surface) and to deal with 

other road users (other motorized vehicles, cyclists, and pedestrians who may be on the carriageway or 

the pavement but are likely to enter the carriageway). It further requires giving attention to road signs 

and other relevant sources of information [Land, 2006]. 

In 2018, there were 1.35 million road traffic deaths globally [World Health Organization, 2018]. In 

Great Britain, in 2022, there were 153,158 road traffic collisions (RTC) casualties of all severities, 

including 25,945 severe injuries and 1,752 reported deaths (Table 1.1). The total value of prevention of 

these collisions is estimated over £43 billion [Department for Transport, 2024].  

 

Table 1.1. Numbers of casualties by type and severity for road traffic crashes in Great Britain in 2022 [Department 

for Transport, 2023].  

Road user Level of injury Number 

All 

Killed 1,752 

Seriously injured 25,945 

Slightly injured 125,461 

Car Occupants Killed 781 

Pedestrians Killed 376 

 

Successfully driving a vehicle in traffic demands driver attention and allocation of significant cognitive 

resources [Hills, 1980]. However, inattentive drivers are frequently observed engaging in activities such 

as conversing with another passenger or using mobile phones. Inattention appears to be an inseparable 

part of everyday driving. Concerns arise from converging evidence linking inattention with impaired 

driving performance, which contradicts the UK Department for Transport's future aspirations for safer 

people, vehicles, and roads [Department for Transport, 2019]. While drivers are often blamed for 

inattention, the human ability to process information is limited, and some sources of inattention are 

inherent to driving itself, such as checking road signs and navigating routes.  
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Two primary light sources can help drivers' vision after dark, enabling them to see surrounding objects: 

I. Vehicle headlights:  

“A large, powerful light at the front of a vehicle, usually one of two” [Cambridge Dictionary, 

2023], is used to illuminate the road in front of the vehicle, enabling hazard detection and early 

reactions. 

II. Road lighting: 

“A light in or at the side of a road or public area that is usually supported on a tall post” 

[Cambridge Dictionary, 2023], used primarily to improve safety by increasing the visibility of 

hazards and by reducing the effects of glare from other light sources (e.g., vehicle headlamps) 

in the visual environment [Bullough, 2016]. 

 

1.2. Road lighting in major roads 

Road lighting is installed to offset impairments to vision after dark. Road lighting typically comprises 

a light source located a few metres above the ground surface at intervals of around 30 m. The light 

sources are located along the sides of the road or above the centre, either atop a lamp post or suspended 

by a cable. Figure 1.1 shows an example of road lighting. 

 

  

Figure 1.1. Example of road lighting on a main route (left after dark and right daytime), Sheffield, UK. 
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The three primary purposes of road lighting, as described by the International Commission on 

Illumination (CIE) [CIE 115-2010], are: 

• “To allow all road users, including operators of motor vehicles, motorcycles, pedal cycles, and 

animal-drawn vehicles to proceed safely”. 

• “To allow pedestrians to see hazards, orientate themselves, recognize other pedestrians, and 

give them a sense of security”. 

• “To improve the daytime and night-time appearance of the environment”. 

Road lighting must be carefully designed because inadequate lighting is as adequate as or even worse 

than no lighting at all [Bullough et al., 2009; Van Bommel and Tekelenburg, 1986]. Poor lighting may 

cause overconfidence, increased speed and reduced concentration [Assum et al., 1999]. Well-designed 

road lighting should ensure visual performance and comfort while maintaining driver attentiveness [van 

Bommel, 2014]. Designers follow rules based on road lighting standards to ensure the lighting system 

is safe, effective, and aesthetically pleasing. These standards guide all aspects of road lighting design, 

including the type of luminaires, the mounting height and spacing, the illumination level required and 

other spectral power distribution (SPD) characteristics. The following section discusses the current road 

lighting standards. 

 

1.3. Current road lighting standards 

On main roads, such as motorways and dual carriageways, road lighting is designed to meet the needs 

of drivers [CIE 115:2010; BS5489-1, 2020]. For main roads, the recommended criteria for road lighting 

are known as the M-class [CIE 115:2010]. These define light quantity using luminance, with average 

luminance ranging from 0.3 to 2.0 cd/m2 (Table 1.2). 

Light levels vary across the lit surface due to the luminaire's optical properties and the lamp posts' height 

and spacing. The light level is determined for each node in an array across the lit surface, with the 

average being the mean average of these nodes. In the M class, this is controlled by setting minimum 

values of luminance uniformity throughout the installation's life, which depends on luminaire 

distribution, luminous flux, the installation's geometry, and the road surface's reflection properties 

[BS5489-1, 2020]. 
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Table 1.2. Average light levels recommended for M-class [CIE 115:2010, BS EN 13201-2:2015]. 

Light class Average luminance (cd/m2) 

M1 2.0 

M2 1.5 

M3 1.0 

M4 0.75 

M5 0.50 

M6 0.30 

 

British standard [BS5489-1, 2020] uses the following criteria to select between the lighting classes of 

Table 1.2: 

I. Traffic speed, density, and composition (e.g., increased in luminance with higher traffic speed) 

II. Task complexity  

III. Ambient illuminance 

IV. Risk assessment (local specific conditions, local custom and practice, and topography) 

While there is evidence that increases in traffic speed and volume are associated with an increase in 

RTCs, the extent to which different conditions of road lighting offset such risks is not known: in other 

words, the class-selection factors are not well substantiated and do not appear to be founded in robust 

empirical evidence [Fotios and Gibbons, 2018, Fotios, 2020]. Moreover, the need to review standards 

is critical because of ongoing developments in road lighting technology and developments in the 

understanding of vision and unwanted side effects of road lighting [Fotios and Gibbons, 2018]. 

 

1.4. Aim of this thesis  

Historically, research into the human-light interaction has focused primarily on the image-forming 

visual system, investigating the mechanisms underlying light perception and image formation. A recent 

paradigm shift in research occurred following the discovery of non-visual photoreceptors. These 

findings laid the groundwork for exploring the broader influence of light on human psychophysiology 

beyond visual perception – the non-image-forming (NIF) response. Light can modulate various 

physiological processes, including circadian rhythms, sleep, attention, fatigue, body temperature, 

neuroendocrine function, and mood. In recent years, there has been a growing interest in understanding 

methods utilizing light to counter sleepiness and cognitive impairment. For example, a meta-analysis 

by Figueiro et al. [Figueiro et al., 2017] underscored light's potential to induce a rapid acute attentional 

response, similar to caffeine consumption (for a comprehensive overview of visual and non-visual light 

impacts, refer to Chapter 2. Literature Review). These light-modulated responses to human performance 
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offer the potential to develop research in traffic collision prevention and mitigation by targeting the 

mechanisms through which light influences driver attention. 

In line with the United Nations resolution [United Nations General Assembly, 2021] to improve global 

road safety and reduce road traffic casualties by at least 50% by 2030, this thesis explored the potential 

of light to support drivers’ attention, specifically addressing impairments caused by sleepiness and 

distraction. 

 

1.5. Structure of the thesis 

Chapter 2 presents a literature review, defining vision, the challenges of driving after dark, and the 

potential of light to overcome these challenges. It provides an overview of the visual and non-visual 

systems, exploring the challenges of nighttime driving, including the impact of driver sleepiness, 

distraction, and cognitive impairment on road safety. Chapter 2 concludes by examining the potential 

of road lighting as a countermeasure to address these issues and outlines the subsequent research 

hypotheses. Two experiments were conducted to investigate the potential of light to mitigate inattention 

induced by sleepiness and distraction.  

Experiment 1 was conducted to investigate light as a mitigation to sleepiness: Chapter 3 describes the 

Experiment 1 method which assessed light as a mitigation to sleepiness. This chapter covers the 

development of independent variables (lighting condition, and posture), dependent variables (melatonin 

level, audio reaction time, self-reported sleepiness, and skin temperature), apparatus and laboratory 

setup, step-by-step experimental protocol, and sample demographics. Chapter 4 presents the results of 

Experiment 1 including data preparation (error cleaning and identifying representative values), 

distribution testing, statistical analysis and significant testing. Chapter 5 describes synthesis, evaluating 

the findings of Experiment 1 on the merit of supporting the proposed hypotheses, and questions the 

validity of the findings by comparing them with previous research. This chapter also discusses the 

limitations of Experiment 1 and makes suggestions for future research.  

Experiment 2 was conducted to investigate light as a mitigation to distraction: Chapter 6 describes the 

Experiment 2 method which assessed light as a mitigation to distraction. This chapter covers the 

development of independent variables (lighting condition, distraction tasks and pedestrian model 

versions), dependent variables (hazard detection tasks, and distraction tasks performance), apparatus 

and laboratory setup, step-by-step experimental protocol, and sample demographics. Chapter 7 presents 

the results of Experiment 2 including data preparation (error cleaning, dealing with missing data, and 

identifying representative values), distribution testing, statistical analysis and significant testing. 
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Chapter 8 provides synthesis, evaluating the findings of Experiment 2 respectively on the merit of 

supporting the proposed hypotheses, and questions the validity of the findings by comparing them with 

previous research. This chapter also discusses the limitations of each experiment and makes suggestions 

for future research. Finally, the findings of this study and potential recommendations for lighting 

practice and application are concluded in Chapter 9.



 

 

Chapter 2. Literature Review 
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Chapter 2. Literature Review 

2.1. Introduction 

Chapter 1 introduces the aim of this study, which is safe driving after dark, as well as current road 

lighting standards and their limitations. Chapter 2 extends this by defining and reviewing the visual and 

non-visual systems, challenges of driving after dark, human cognitive performance, and its impairment 

due to sleepiness and distraction, which can lead to RTCs. This chapter then discusses road lighting in 

previous research and the potential of lighting as a countermeasure to inattention. The chapter concludes 

with the research hypotheses. 

 

2.2. Visual and non-visual systems 

This section describes the fundamentals of human vision. It discusses how light affects our perception 

and understanding of the environment through the visual system and how it could affect our daily life 

and activities beyond vision through non-visual systems. 

 

2.2.1. Human vision 

Vision is the ability to see [Cambridge Dictionary, 2023]. It is a complex process that involves the eyes, 

the optic nerve, and the brain. The eyes are spherical organs in the face used for seeing, with a diameter 

of about 2.5 cm [Tovée, 1996]. They collect light from the environment and convert it into electrical 

signals. The optic nerves are a group of nerve fibres (structures like threads) that pass signals from the 

retina at the back of each eye to the brain and serve as a bridge between the eyes and the brain 

[Willoughby et al., 2010]. Finally, the visual cortex, the primary cortical region of the brain, receives, 

integrates, and processes visual information relayed from the retinas and perceives the electrical signals 

collected from the environment [Huff et al., 2018]. As visual information travels through the brain, it 

becomes more processed and specialized, forming images. It is theorized that there are specialized cells 

or groups of cells that learn to respond to specific features of objects, allowing us to immediately 

recognize things we have seen before [Fournier et al., 2018]. 
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Light is the brightness that comes from the sun, fire, etc., and from electrical devices that allow things 

to be seen [Cambridge Dictionary, 2023]. CIE defines light as radiation that is considered from the point 

of view of its ability to excite the visual system [CIE S 017:2020]. The captured light from the 

environment is focused onto the retina, a membrane situated inside the back of the eye that is sensitive 

to light stimuli [CIE S 017:2020], and the lens. When an image is focused on the retina, the light pattern 

must be converted into a neural signal that accurately represents that image. This transformation is 

carried out by the light-sensitive receptors in the retina, called photoreceptors [Tovée, 1996]. 

Photoreceptors absorb light and release electrical signals. There are three types of photoreceptors: rods, 

cones, and intrinsically photosensitive retinal ganglion cells (ipRGC). These photoreceptors each have 

different photopigments and shape the two main visual and non-visual systems. The visual system is 

responsible for visual responses to light (also known as image-forming responses). At the same time, 

the non-visual system is accountable for non-visual responses to light (also known as non-image-

forming responses (NIF)) (Figure 2.1). 

 

 

Figure 2.1. Visual and non-visual systems. The “?*” indicates a still-to-be-defined interrelation between image 

and non-image-forming systems, which requires further research. 

 

2.2.2. Image-forming responses 

There are three states of vision (photopic, mesopic, and scotopic), characterised by the dominant 

photoreceptor or the adaptation luminance (Table 2.1).  

 

Table 2.1. Definitions of photopic, mesopic, and scotopic vision according to adaptation luminance and 

photoreceptor activity [CIE 191:2010]. 

State of vision Photopic Mesopic Scotopic 

Adaptation luminance (L) > 5 cd/m2 0.005 < L <5 cd/m2 < 0.005 cd/m2 

Dominant photoreceptors Cones Cones and rods Rods 

 

Rods

Cones

Photoreceptors:

Image-forming

?*

ipRGC

Visual system

e.g., hazard detection

Non-image-forming

Light

Non-visual system

e.g., neurocognitive responses
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Image-forming photoreceptors are the rods and the cones. All rods have the same photopigment 

(rhodopsin). Rods are dominant and responsible for vision under low lighting conditions, known as 

scotopic (< 0.005 cd/m2). Cones, which include three types (short, medium, and long wavelength), each 

with different photopigments, are responsible for colour vision and vision under higher light levels of 

daylight (> 5 cd/m2). Under mesopic vision (0.005 < L < 5 cd/m2), both rods and cones are active, with 

each relative contribution depending on adaptation level and light source spectrum. As the light level 

reduces from the upper to lower boundaries of the mesopic range, the cone contribution decreases, and 

the rod contribution increases [CIE 191:2010]. 

The cone photoreceptors are primarily positioned in and around an area of the retina called “fovea”, a 

pit of approximately 2° diameter that contains only cones but no rods. When we deliberately fixate on 

an object, that object is projected onto the fovea, where the high density of cones permits high-resolution 

vision. With increasing distance from the fovea, the number of cone photoreceptors decreases sharply, 

and the number of rod photoreceptors increases with a maximum concentration of around 15° from the 

fixation point direction. This results in rods being the dominant receptor of peripheral vision. Humans 

use peripheral vision to scan the visual field to identify potential targets of interest. Then, if necessary, 

head and eyes will be moved toward the hazard so that the fovea (central vision) can be directed to that 

hazard for further inspection [Boyce, 2014]. 

Central vision in humans, empowered by cone photoreceptors, provides a colourful and sharp image 

due to the characteristics of cone photoreceptors and their individual nerve connection into 

magnocellular and parvocellular pathways, which in turn feed into the brain. On the other hand, most 

rods are interconnected, which means the signal sent into the brain toward rods loses some information 

and makes peripheral vision blurry rather than sharp [Tovée, 1996]. 

The visual system's capabilities, like other physiological systems, are limited. The extent to which the 

visual system can perform is defined as visual performance. Visual performance, the ability to see and 

process visual information, is a complex process that involves many different parts of the eye and brain. 

Visual performance while performing a task depends on [Boyce, 2014]: 

I. Visual size 

II. Luminance contrast,  

III. Colour difference 

IV. Retinal image quality 

V. Retinal illuminance.  
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Visual size in degrees, which is the size of an object as it appears to the eye, is determined by the 

physical size of the object (actual size in the real world) relative to the distance of the object (how far 

is the object) from the observer [Konkle and Oliva, 2011]. Figure 2.2 shows an observer's eye looking 

at an object with a height of h. Visual angle (θ) is created by drawing rays from each side of the object 

into the nodal point (n). The continuation of these lines represents the image formed on the retina at the 

back of the eye. The nodal distance of the eye (d´) is constant (≈17 mm) [Katz and Kruger 2013]. 

Therefore, when an object is closer to the observer, it appears larger than when it is farther away, as the 

image created on the retina by closer objects takes up more space on the retina. Visual size is essential 

for our understanding of the world around us. It helps us judge the distance of objects and avoid 

obstacles. The larger the visual size of an object, the easier it is to see the details of that stimulus. 

 

 

 Figure 2.2. Visual size in degrees of an observed object according to height and distance. 

 

CIE defines luminance contrast (C) as “quantity relating to the difference in luminance between two 

surfaces” [CIE S 017:2020]. In other words, it is the object's luminance relative to its immediate 

background. Luminance contrast is measured using Equation 2.1. The higher the luminance contrast of 

an object, the easier it is to be detected [Boyce, 2014]. 

 

𝐶 =  
𝐿1 − 𝐿2

𝐿1
 

Equation 2.1. Luminance contrast calculated from L1 (object luminance) and L2 (background luminance) [CIE S 

017:2020]. 

 

An object's colour difference and appearance are related to the wavelength emitted by a specific light 

rather than its luminance. We can detect an object with zero luminance contrast as far as its colour 

differs from its background [Boyce, 2014].  

 

Observer eye
Object

θ

d

d´

h
n
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Retinal image quality, the relative sharpness of a stimulus, can be measured by its spatial frequency 

distribution. High spatial frequencies signify a highly detailed, sharp image, while low frequencies 

characterize a blurry one. Both the characteristics of the object itself and the limitations of the visual 

system influence perceived sharpness. Light plays a slight effect on the sharpness of a stimulus. 

However, under the same luminance, short wavelength light, by producing smaller pupil sizes, could 

result in a better-quality retinal image as it provides a greater depth of field [Boyce, 2014].  

Finally, retinal illuminance, which determines the state of eye adaptation, affects the visual system's 

performance by affecting the dominant photoreceptors and image processing. The visual system can 

process images under a wide range of luminance, from very dark (0.0001 cd/m2) to very bright (20,000 

cd/m2). However, it cannot process information across this range all at once. The visual system 

constantly fine-tunes its sensitivity and accuracy to the amount of light available, becoming less 

sensitive and more discerning when there is plenty of light and more sensitive and less discerning when 

light is scarce [Boyce, 2014]. This process is known as “Adaptation”. The CIE defines it as: “process 

by which the state of the visual system is modified by previous and present exposure to stimuli that can 

have various luminance values, spectral distributions and angular subtense” [CIE S 017:2020].  

Adaptation contains three mechanisms: change in pupil size, neural adaptation, and photochemical 

adaptation. The first two stages are fast and can be completed in less than a second. These mechanisms 

benefit more minor changes in retinal illumination (2 to 3 log units). However, more significant changes 

in retinal illumination would require the photochemical adaptation of cones and rods.  

Cone photoreceptors are faster in adaptation than rods. It takes 10 to 12 minutes for cones to reach 

maximum sensitivity. Conversely, Rods may require 60 minutes or longer to achieve this [Boyce, 2014]. 

Therefore, in higher lighting conditions (photopic), the human eye adapts much faster than in lower 

lighting conditions (Scotopic). 

As discussed, adaptation is not an immediate process. Therefore, a sudden change in luminance or 

contrast in luminance could cause glare. Glare is unpleasantly bright or strong light that usually occurs 

under a light source much brighter than its surroundings (e.g., oncoming vehicle headlights after dark). 

Glare can impair vision by reducing the ability to see details or objects. Until the visual system reaches 

complete adaptation, its capabilities are limited, and visual performance deteriorates [Boynton and 

Miller, 1963].  
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2.2.3. Non-image-forming responses 

In addition to supporting image-forming responses, light exposure contributes to NIF responses [CIE S 

026/E:2018]. NIF responses are mainly driven by ipRGCs' photoreceptors, with their photopigment 

known as melanopsin [Kumbalasiri and Provencio, 2005]. Melanopsin is highly sensitive to short-

wavelength light [Berson, 2007], which is characterised by Melanopic Equivalent Daylight Illuminance 

(EDI), the circadian metric adopted by the CIE [CIE S 026/E:2018]. These photoreceptors feed signals 

directly to suprachiasmatic nuclei (SCN) in the brain, which serves as the central pacemaker, 

coordinating the timing of numerous physiological processes, ranging from cell division and hormone 

production to basic physiology and changes in behaviour [Boyce, 2014]. For example, light modulates 

circadian rhythm, sleep, attention, fatigue, body temperature, neuroendocrine function, neurocognitive 

responses, and mood [Vetter et al., 2021].  

The circadian system and its rhythm are biological cycles associated with physical, mental, and 

behavioural changes throughout a day (24-hour) [Vitaterna et al., 2001]. The circadian system, which 

plays a crucial role in sleep regulation (circles of wakefulness and sleepiness), is essential for the body’s 

systems to function properly. Insufficient or disrupted sleep significantly impairs vital daily functions 

such as memory consolidation and the assimilation of complex motor systems and affects the ability to 

perform everyday tasks properly and accurately [Reddy et al., 2018]. 

The circadian system is synchronized by the master clock, located in the SCN [Moore, 1997] and 

entrained to the 24-hour light-dark cycle via light exposure [Prayag et al., 2019].  

The NIF responses to light are influenced by various factors, including intensity, duration, timing, 

temporal pattern, spatial distribution, light wavelengths, and prior light exposure history [Prayag et al., 

2019]. Determining the exact impact of each factor is challenging due to the interrelatedness of these 

factors. For example, it has been shown that NIF responses can be obtained from lower levels of short-

wavelength light compared to other tested wavelengths, and prior light history has been shown to affect 

these responses by decreasing or increasing photic sensitivity of neurons in the SCN [Vetter et al., 2021]. 

Regarding intensity, “density of photon flux with respect to solid angle in a specified direction” [CIE 

S 017:2020], there are two crucial dose-response boundaries: ‘threshold’ and ‘maximum response’. The 

‘threshold’ represents the intensity at which a noticeable change in NIF responses is induced. The 

‘maximum response’ is the intensity of light at which saturation is achieved [Vetter et al., 2021].  
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Previous work has demonstrated a non-linear relationship between intensity and NIF responses, with a 

steep increase in these responses as intensity increases until reaching a saturation point where further 

increases in light intensity do not further increase NIF responses [Vetter et al., 2021]. Half saturation 

(ED50) has been shown to be obtained from the range 3.47×1013 to 1.0×1014 (photons cm-2s-1), depending 

on the level of pupil dilation [Vetter et al., 2021]. 

Photic exposure duration was shown to have a non-linear relationship with intensity, where shorter 

durations of exposure were found to be more effective in inducing NIF responses per minute of exposure 

than longer durations [Vetter et al., 2021].  

The timing of photic administration, in other words, when the lighting exposure occurs throughout the 

day, is of importance. More significant effects on NIF responses were noticed during the biological 

night. However, further studies must be conducted to investigate these effects during daylight [Vetter 

et al., 2021]. 

Regarding wavelength, both short and long wavelengths have been shown to induce NIF responses 

[Phipps-Nelson et al., 2009]. These responses were found to be positively correlated with melatonin 

suppression when exposed to short-wavelength blue light (peak sensitivity at around 460 nm) [Cajochen 

et al., 2000]. However, melatonin suppression is not the only mechanism underlying light-induced NIF 

responses. Daytime exposure to light (melatonin levels are undetectable) has also been found to be 

effective [Rahman et al., 2014], and exposure to red light (630 nm), with no impact on melatonin levels, 

has also been shown to induce NIF responses as identified by self-reports and changes in EEG spectrum 

[Plitnick et al., 2010; Papamichael et al., 2012].  

To summarize, NIF responses induced by light are embodied in complex physical, physiological, and 

psychological routes [Lin et al., 2020], and the exact pathways by which light influences these responses 

are not yet thoroughly known [Boyce, 2014]. Further research is needed to determine the optimal NIF 

responses and to explore the exact underlying mechanisms. 

The following section explores the importance of vision for drivers after dark. It discusses the 

challenges that may arise due to limitations of human vision while driving in low-light conditions after 

dark.   
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2.3. Driving after dark 

Vision plays a key role for drivers. Among the traditional five primary human senses (vision, hearing, 

smell, taste, and tactile kinaesthetic (touch, movement, and doing)), vehicles are designed to filter out 

these primary human senses. The vehicle cabin (e.g., steel, glass, etc.) blocks out most odours and tastes 

(filter of smell and taste senses), the suspension system absorbs bumps and vibrations (reduces tactile 

and kinaesthetic sensation), and hearing sense is attenuated by noise barriers. However, light for vision 

is only slightly limited by passing through the windshield.  

A reliable claim, supported by evidence, would emphasize the critical importance of visual information 

and give some importance to kinesthetic and auditory sensory input for driving [Sivak, 1996]. Whatever 

the exact figure is, undoubtedly, vision plays a key role for drivers.  

The key visual tasks for drivers include scanning and monitoring the road ahead for potential hazards, 

identifying and recognizing motions and objects on and aside the road, lane control, reading traffic signs, 

and estimating distance and speed. In summary, a driver's task is to extract information from the 

environment, make decisions, and take action [Boyce, 2014]. 

While driving, visual stimulus changes rapidly and unexpectedly, making it crucial for drivers to 

recognize and anticipate potential hazards quickly [Durso et al., 2007]. These hazards must first be 

detected by peripheral vision (visual field that extends beyond the central four to five degree of gaze 

[Larson and Loschky, 2009]), which then redirects central vision toward that hazard, enabling the 

capture and processing of detailed information necessary for appropriate reactions [Crundall et al., 

1999]. As a result, drivers relied on their peripheral vision as an initial source of information, 

highlighting the reliance of drivers’ visual performance on rod photoreceptors. Moreover, drivers’ 

reliance on rod photoreceptors for visual responses increases further in the hours of darkness with 

reduced surrounding luminance. 

The mentioned reliance of drivers’ visual system on rod photoreceptors after dark could affect the key 

visual tasks of drivers due to the limitation on rod photoreceptors’ capabilities discussed in section 2.2, 

including lower resolution and no colour discrimination. Poor performance on these key visual tasks 

after dark might increase the risk of being involved in an RTC. This could be the result of decreased 

visibility, difficulty with colour and contrast in poor light (affecting drivers’ ability to perform critical 

reactions to detect hazards while driving), poor detectability of vulnerable road users, especially in dark 

clothing, and difficulty with speed and distance judgment [Royal Society for the Prevention of 

Accidents, 2017]. Table 2.2 summarises visual challenges after dark with the decrement of luminance 

from photopic toward mesopic and scotopic ranges according to previous studies. 
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These challenges tend to get worse with ageing because of normal changes in the structure of visual 

system including deteriorating visual acuity, contrast sensitivity, colour discrimination, visual field size, 

etc. [Boyce, 2014]. As a result, ageing could lead to reduced driving performance and safety, 

particularly when performing manoeuvres in which visibility is restricted, such as detecting and 

avoiding low-contrast road hazards after dark [Boyce, 2014]. 

Surprisingly, it is not uncommon for drivers to misjudge these visual challenges after dark and fail to 

compensate for these limitations [Owens et al., 2007]. For instance, reducing driving speed after dark 

could decrease the likelihood and severity of an RTC caused by poor visibility [Leibowitz et al., 1998].  

Nevertheless, previous studies have demonstrated that drivers do not typically reduce their speed after 

dark [e.g., Jägerbrand and Sjöbergh, 2016]. Even when they do so, the reduction is often insufficient to 

offset the impaired visual performance in low-lighting conditions [Owens et al., 2007]. In other words, 

drivers generally do not tend to notice the gradual decline in their vision while driving.  

 

Table 2.2. Visual challenges after dark from photopic luminance to mesopic and scotopic luminance. 

Visual challenge Reference 

Increased reaction time Walkey et al., 2006; He et al., 1997 

Increased search time Walkey et al., 2006 

Decreased visual acuity of central vision Sturr et al., 1990 

Decreased visual acuity of peripheral vision Bedell, 1987 

Decreased contrast sensitivity Wood and Alfred, 2005 

Impaired motion perception Gegenfurtner et al., 1999, Yoshimoto et al., 2016 

Impaired motion direction judgment Takeuchi et al., 2001 

Decreased velocity perception Gegenfurtner et al., 2000 

Errors in distance and depth estimation  Bourdy et al., 1991 

Reduced colour vision and hue perception Zele and Cao, 2015; Pokorny et al., 2006 

 

Considering the limitations of vision after dark and the reasons they might impair driving performance, 

the following section (section 2.4) discusses the other main factor that impairs driving performance: 

Inattention. The section argues the fundamentals of driver attention and the factors affecting this. 
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2.4. Inattention 

Attention is the state of watching, listening to, or thinking about something carefully or with interest 

[Cambridge Dictionary, 2023]. Attention refers to the operation of selection mechanisms in the brain 

and how those are involved in processes of decision-making and consciousness [Chun et al., 2011]. 

Studies on attention, commonly consider four dimensions based on two factors for attention [Nideffer, 

1976]:  

I. Width, which concerns how wide (awareness) or narrow (focus) the attention is. 

II. Direction, which concerns whether the attention is sourced externally (environmental) or 

internally (thoughts and feelings). 

Accordingly, proper task performance depends on using the attentional processing of the most important 

cues, which can differ greatly depending on the task nature itself. For instance, planning and analysis 

might benefit from a broad-internal attentional mode, allowing the consideration of various possibilities. 

In contrast, efficiently scanning your surroundings requires a broad-external attentional mode.  

Alternatively, specific tasks might demand a narrow and intense focus on certain stimuli, leaving 

everything else temporarily out of your awareness [Nideffer, 2021]. 

Driving a vehicle is a complex task that requires drivers' attention, specifically visual attention. Visual 

information plays a crucial role in driver decision-making [Sivak, 1996]. This is further supported by 

research showing that road traffic crashes (RTCs) can often occur when drivers fail to attend to critical 

visual cues at the appropriate time [Victor et al., 2015]. Drivers constantly scan the environment, taking 

in information from various points: the road ahead for potential hazards, the sides for pedestrians and 

cyclists, and lane markings to keep the vehicle within a lane and safe distance of the vehicles ahead.  

On top of this, they need to maintain control of the vehicle, adhere to traffic regulations, and interpret 

signs and signals. Navigation adds another layer, requiring occasional glances at guiding signs or in-

vehicle displays.  Furthermore, manoeuvrers like lane changes, turns, and avoiding obstacles all 

necessitate shifting our gaze to different areas around the visual field [Kotseruba and Tsotsos, 2021]. In 

addition to the demands of the driving task and occurrence of unexpected events in the road environment, 

a driver's visual attention is also influenced by their physical and emotional state, which can impact 

their overall driving skills and susceptibility to distractions [Kotseruba and Tsotsos, 2021]. 

Drivers’ visual attention can be categorized into overt, covert and divided attention. Overt attention 

refers to movement of the eye to bring new targets into the central visual field. Covert attention enables 

planning future eye movement and refers to changing the focus of attention without explicit gaze change. 

Finally, divided attention argues the theory that while attentional resources are limited, drivers are often 
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required to divide their attention between several tasks (e.g., steering, adjusting gear, reading road signs, 

etc.) and performance can be worsened when these tasks compete for the same resources [Recarte et al., 

2000]. Dividing and diverting attention may result in a phenomenon known as inattention blindness and 

result in failure to notice an event or object. For example, previous research suggests that divided or 

diverted attention while driving, especially on familiar roads, leads to drivers missing crucial visual 

cues like road signs [Charlton and Starkey, 2013], and failing to see hazards because of conversing with 

a passenger [White and Caird, 2010]. 

Visual attention and changes in gaze location are controlled by attentional control mechanisms which 

are divided into the bottom-up and top-down [Yantis, 2016]. Bottom-up is a process that is guided 

primarily by the properties of the scene and depends on the saliency of objects which attract gaze, unlike 

featureless areas [Treisman and Gelade, 1980; Itti et al., 1998]. On the other hand, top-down attention 

is driven by the demands of the task at hand [Yarbus and Yarbus, 1967]. In other words, even salient 

stimuli may fail to attract attention if they are irrelevant to the task. 

Inattention, failure to give attention [Cambridge Dictionary, 2023], while driving is defined as 

“insufficient or no attention to activities critical for safe driving” [Regan et al., 2011] (e.g., mobile 

phone conversation). Regan et al., 2011 classified different mechanisms that could cause driver 

inattention into five main categories: 

I. Driver Restricted Attention (DRA):  

Biological factors (e.g., saccades, sleepiness, microsleeps, and blinks) that physically prevent 

drivers from attending to activities critical for safe driving (e.g., closing the eye while sneezing 

and microsleeps while driving). 

II. Driver Misprioritised Attention (DMPA): 

Mis/prioritizing between activities that are equally (or almost equally) critical for safe driving 

(e.g., a driver is trying to avoid a pedestrian and fails to see a merging car). 

III. Driver Neglected Attention (DNA): 

Faulty expectations of a driving scene (e.g., approaching a signalized intersection with the right 

of way and ignoring to check for conflicting redlight runner vehicles). 

IV. Driver Cursory attention (DCA): 

Careless and rushed attention (e.g., taking over without checking the rear-view or wing mirror). 

V. Driver Diverted Attention (DDA): 

Equivalent to “distraction”, defined as “diversion of attention away from activities critical for 

safe driving toward a competing activity” [Regan et al., 2008].  
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The current thesis focuses on utilizing light-based responses (visual and non-visual) to mitigate 

sleepiness, a type of driver restricted attention, and distraction (driver diverted attention). Both factors 

lead to increased cognitive workload and impaired driver cognitive performance, consequently reducing 

the likelihood of safe driving. A conceptual framework illustrating how light-based responses (visual 

and non-visual) can influence driving performance is summarized in Figure 2.3.  

 

 

Figure 2.3. Conceptual framework of how responses to light (visual and non-visual) can be measured. The “?*” 

indicates a still-to-be-defined interrelation between image and non-image-forming systems, which requires further 

research. 

 

The subsequent sections argue cognitive workload, exploring its relationship to restricted and diverted 

attention. The methodologies employed to measure cognitive workload are detailed, followed by their 

critical role in ensuring road safety. 
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2.5. Cognitive workload  

Cognitive workload is the dynamic interplay between resources required to perform a task and an 

operator's ability to supply those resources [Young et al., 2015]. In other words, it is the physiological 

response to the interplay between cognitive capacity and task complexity [Oviatt et al., 2018]. Within 

this context, workload is the amount of information processing resources employed per unit of time for 

task execution [Wickens et al., 2021].  

The concept of cognitive workload is something that people can relate to; however, it is not clear if all 

people have the same exact meaning for it. As a concept, it is fairly understood, but it is not always 

clear if everybody has the same exact meaning in mind. Frequently, task difficulty is equated with 

mental workload, which serves as a reasonable representation given the inherent subjectivity of 

difficulty.  Infect, like physical workload, cognitive workload depends on both the task and the 

individual. In other words, mental workload can vary significantly between people and even for the 

same person at different times [de Waard and Van Nes, 2021]. 

The concept of quantifying cognitive workload likely stems from its analogy to physical workload. In 

a physical task, workload is readily defined by the force required to move an object. However, defining 

cognitive workload is not quite the same. While information processing demands (e.g., number of 

calculations needed to solve a mathematical problem) offer a starting point for quantification, individual 

capacity for such operations remains crucial. This applies to physical workload as well; a 60kg weight 

is easier to be lifted by a physically fit person than a small child. Nevertheless, physical workload tends 

to focus on task demands, while cognitive workload acknowledges the interaction between task 

demands and individual capacity (mental resources). Mental resources, further linked to operator state 

(background state of an individual), are subject to both inter- and intra-individual variability. A novice 

may find a task demanding significant resources, while an experienced person finds it effortless. 

Similarly, a bad night's sleep can elevate the perceived difficulty of a routine task. This highlights 

another key concept: effort. Effort, a voluntary process akin to exerting extra mental force, can maintain 

performance despite increased internal costs (energy expenditure). Two types of effort exist: 

computational (task-related) effort to address heightened task demands; and compensatory (state-related) 

effort to offset a deteriorated state [de Waard and Van Nes, 2021]. 

Successful task performance necessitates cognitive control, which enables an individual to focus on the 

current task while suppressing irrelevant stimuli [Miller and Cohen, 2001]. Cognitive control is a brain 

function primarily subserved by the prefrontal cortex [Miller and Cohen, 2001], which comprises three 

core components [Miyake et al., 2000]: 
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I. Inhibition: 

Crucial function in preventing interference with ongoing tasks by employing cognitive 

inhibition (limiting thoughts), selective attention (focusing on relevant features by suppressing 

irrelevant ones), and response inhibition (inhibiting unwanted actions). 

II. Working memory: 

The simultaneous cognitive processes of information retention and manipulation create a 

dynamic framework for effectively integrating new data while maintaining goal-directed focus. 

III. Cognitive flexibility: 

Ability to shift from one mental set to another. 

These components are linked together. For example, inhibitory control removes irrelevant thoughts and 

frees up the mental workspace for working memory operation [Diamond, 2013].  

Previous research has demonstrated that mental activities share the same resources [Ryu and Myung, 

2005]. Moreover, individual working memory has a limited capacity [Wickens, 1987], restricting the 

ability to process all information simultaneously. 

Cognitive control is mediated by task demands, external support, and experience [Karwowski, 2006]. 

Suboptimal cognitive control can stem from cognitive overload or underload, which can lead to slow 

and impaired performance [McKendrick et al., 2019]. Cognitive overload, or task saturation, is 

associated with a decline in overall performance, particularly for tasks that share cognitive resources 

[Young et al., 2015]. Conversely, cognitive underload, an elusive yet detrimental state, adversely affects 

performance to an extent comparable to cognitive overload. This state often goes unnoticed, rendering 

it even more insidious than cognitive overload [Hancock et al., 1995]. 

The following section delves into the fundamental relationship between cognitive workload and driving, 

exploring the potential impact of driving complexity, sleepiness, and distraction on cognitive 

performance impairment. 

 

2.6. Cognitive workload and driving 

Driving is a cognitively demanding task that imposes a significant cognitive workload. Drivers must 

continuously monitor the road environment, make split-second decisions about speed and direction, and 

maintain precise control over the vehicle. Additionally, drivers must remain attentive and prepared to 

respond to unexpected events, such as sudden manoeuvres by other drivers or pedestrians crossing the 

road. 
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2.6.1. Fundamentals 

Driving, the human-machine system environment [Paxion et al., 2014], contains a hierarchy of tasks on 

three levels [Michon, 1985]: 

I. Strategic and constitutes the decision-making (e.g., choosing to follow a route) 

II. Tactical which includes reaction or manoeuvres faced to the situation (e.g., response to other 

driver manoeuvres to follow the road) 

III. Operational which concerns vehicle control (e.g., managing the trajectory) 

Drivers process the mentioned information and respond accordingly, either automatically or through a 

more controlled mechanism. Controlled processing demands greater cognitive resources than automatic 

processing. Automatic responses, developed through repeated exposure to consistent stimulus-response 

mapping, are generally effortless and unconscious. Controlled processing is necessary for handling 

novel, non-routine, or inherently challenging tasks that require attentional effort, drawing upon 

executive cognitive functions such as working memory [Schneider and Shiffrin, 1977]. Driver 

information processing depends on the task complexity and the driver's experience. For instance, 

decision-making typically involves a high level of controlled processing, while maintaining the vehicle 

on a specific path is primarily an automatic task [Paxion et al., 2014].  

Obtaining most of the information crucial for safe driving necessitates engagement with the immediate 

physical environment. Therefore, successfully driving a vehicle in traffic demands a significant 

allocation of driver attention and cognitive resources [Hills, 1980]. Within a naturalistic driving setting, 

attention selection stems from a dynamic interplay between four overarching modes of attention [Trick 

and Enns, 2009]: 

I. Reflex (automatic) 

II. Habit (automatic) 

III. Exploration (controlled) 

IV. Deliberation (controlled) 

Reflexes generally involve less complex automatic responses, such as visual orienting towards the 

sudden appearance of a braking lead vehicle. In contrast, habit encompasses more intricate goal-directed 

behaviours that become effortless and unconscious through practice (e.g., vehicle lateral and 

longitudinal control). Exploration refers to the actively controlled investigation of surrounding events 

without a specific goal, such as scanning for potentially interesting roadside objects. Finally, 

deliberation occurs in challenging or novel conditions that demand momentary planning and flexible 

adaptation of different strategies (e.g., negotiating a complex intersection) [Trick and Enns, 2009]. 
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Attention, a crucial factor for determining driving safety [Patten et al., 2004], is directly linked to the 

varying levels of driver cognitive workload [Wickens et al., 2021]. For instance, allocating attention to 

a task that demands high perceptual processing can significantly reduce the ability to detect peripheral 

stimuli [Lavie, 2005; Lavie and Fockert, 2006]. This impairment in peripheral detection could lead to 

the failure to detect salient stimuli appearing right before the driver's eyes [Simons and Chabris, 1999], 

a phenomenon known as “looked but failed to see”, where victims claimed to have looked in the 

direction of the colliding object, but without consciously perceiving it [Brown, 2005]. 

Cognitive workload while driving can be affected by: 

I. Driving complexity 

II. Sleepiness (The circadian rhythm and sleep homeostasis) 

III. Distraction (e.g., talking on the phone) 

 

2.6.2. Driving complexity 

Driving complexity is defined by the characteristics of the traffic situations and the demands they place 

on driver’s information processing and vehicle handling capabilities [Patten et al., 2004]. Consequently, 

it is influenced by both driver’s experience and situational complexity. The cognitive control hypothesis 

suggests that the impact of cognitive workload on driving will vary greatly between drivers. This is 

because individual driving history shapes a driver's "automatic toolbox" of responses to common 

situations.  In general, novice drivers will likely struggle more with driving complexity under a high 

workload compared to experienced drivers. However, experience is not just about the amount of time 

spent driving. The type of experience matters too. Factors like typical road layouts and cultural norms 

influence the kinds of automatic behaviours a driver develops.  Interestingly, even experiences outside 

of driving might play a role.  For example, basic steering skills learned from walking, cycling, or toy 

cars could influence how someone later acquires automatic driving skills [Engström et al., 2017]. 

Theoretical models in human behaviour argue that training and practice result in a transition from 

knowledge or rule-based levels toward the skill-based level [Rasmussen, 1987]. These models suggest 

that how quickly drivers learn automatic skills depends on two things: how often they encounter a task, 

and how predictable the task is.  Simple tasks done often, like staying in your lane, become automatic 

faster.  Trickier tasks done less often, like scanning intersections, take much longer to learn. This means 

the effect of cognitive workload on driving will depend heavily on the specific task.  For instance, 

keeping in your lane might be automatic even for new drivers, while scanning intersections might not 

be [Engström et al., 2017].   
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Experience level could modulate the mode of information processing (controlled vs. automatic) where 

novice drivers have a low level of task automation [Patten et al., 2006]. Novice drivers would experience 

higher levels of cognitive workload when operating machine systems [Wickens et al., 2021], especially 

under demanding situations and in terms of visual search patterns [Chapman et al., 2002]. 

Novice drivers frequently make incorrect assessments and tend to implement compensatory strategies 

(e.g., reduction of speed, taking a break) when it is too late [De Craen et al., 2008]. This group tends to 

overestimate their ability and underestimate the risk they are taking [McKenna, 1993].  

On the other hand, experienced drivers demonstrate superior scene memory recall compared to novice 

drivers, due to the expansion of information sampling scope within the immediate traffic environment, 

encompassing a wider range of spatial locations [Underwood et al., 2003]. Moreover, experience helps 

drivers to adapt their strategy appropriately by increasing their horizontal search [Patten et al., 2006]. 

Experience allows drivers to process more information and consequently maintain a reasonable level of 

performance even under conditions of high cognitive workload [Paxion et al., 2014]. However, the 

exact relationship between cognitive workload, experience, and task difficulty has not been fully 

explored yet, and that is a great area for future research [Engström et al., 2017]. 

To sum up, increased driving experience reduces the cognitive workload associated with driving tasks, 

allowing drivers to allocate more attentional resources to other tasks or operations under complex 

situations [Patten et al., 2006].  

Complexity while driving is influenced by several factors, including road design, layout, and traffic 

flow. Additionally, hazardous events, such as unexpected pedestrians crossing the road directly in front 

of the car, can introduce high temporal pressure for reaction, further increasing the complexity of 

driving situations and decision-making [Paxion et al., 2014]. Consequently, situation complexity can 

be categorized into four main types [Patten et al., 2004]: 

I. High demand for both information processing and vehicle handling (e.g., driving in a crowded 

city centre) 

II. High demand for information processing and low demand for vehicle handling (e.g., 

intersections regulated by road signs when the driver has the right of way) 

III. Low demands on information processing and high demand on vehicle handling (e.g., driving 

on curvy rural roads) 

IV. Low demand for information processing and low demand for vehicle handling (e.g., driving in 

a motorway) 
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Low-complexity (e.g., highways) and high-complexity situations (e.g., urban areas) can induce poor 

cognitive control, leading to increased cognitive workload and impaired driver performance. The extent 

of this cognitive impairment is nuanced by driving experience. Therefore, the same driving situations 

can elicit lower or higher mental workloads depending on the driver’s experience level [Paxion et al., 

2014]. 

Under low-demanding situations (monotonous environments), the driving task primarily focuses on 

trajectory maintenance, with information processing occurring automatically. Low-demanding 

situations can lead to a decrease in alertness and situational awareness. As a result, maintaining attention 

while driving under such conditions requires greater effort [Paxion et al., 2014]. Prolonged driving in 

monotonous environments causes a steady decline in vigilance. Drivers often fail to recognize this 

decline in their attention [Schmidt et al., 2009].  

Driving in monotonous situations can have a more pronounced impact on experienced drivers as the 

skills acquired through practice reduce their mental workload [Patten et al., 2006]. Consequently, under 

monotonous conditions, the cognitive workload of experienced drivers can drop significantly 

[Schneider and Shiffrin, 1977], and therefore, automatic processing induced by the driving task should 

be more observed for experienced drivers than for novice ones [Paxion et al., 2014]. 

On the other hand, high-complexity situations, such as manoeuvring at a crowded intersection after 

dark, require specific strategies and manoeuvres [Michon, 1985], necessitating more controlled 

information processing. These situations pose a greater challenge for novice drivers as experienced 

drivers can leverage their experience to anticipate and plan accordingly, a crucial ability for efficient 

decision-making, especially under complex situations. This ability is called cognitive readiness 

[Cegarra and van Wezel, 2012]. 

 

2.6.3. Sleepiness 

Sleepiness is tiredness and wanting to sleep [Cambridge Dictionary, 2023]. It can result from various 

factors, including sleep disorders [Ellen et al., 2006], behavioural issues such as sleep deprivation 

[Carter et al., 2003], and engagement in shift work [Drake et al, 2004]. Sleepiness is derived from 

circadian rhythm and sleep homeostasis.  

Circadian rhythm, influenced by the light-dark cycle, is a 24-hour biological clock that regulates various 

physiological processes, including sleep-wake cycles, body temperature fluctuations, and cognitive 

functions [Rogers et al., 2003]. On the other hand, sleep homeostasis is a regulatory mechanism 
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corresponding to sleep pressure and periods of wakefulness. As sleep homeostasis increases, 

attentiveness declines and sleepiness levels rise [Maire et al., 2013].  

The ability to maintain optimal attention and vigilance fluctuates throughout the day. It typically 

diminishes during prolonged driving at non-optimal times [Rodríguez-Morilla et al., 2017], with the 

most significant impairment observed after midnight (2 am), in the early morning (6 am), and early 

afternoon (2 pm) [Lenné et al., 1997].  

Working memory, a crucial component of cognitive control, is significantly impaired by sleepiness 

[Chengyang et al., 2017]. The cumulative effects of sleep deprivation can severely disrupt cognitive 

functions and impair behaviour [Jarraya et al., 2013]. Furthermore, sleepiness can potentially diminish 

an individual's visual processing ability [Chee, 2015]. Sleepiness at the wheel, characterized by the 

inability to maintain attention, can significantly interfere with driving skills and has been linked to an 

increased risk of RTCs [Bioulac et al., 2017]. Additionally, sleepiness can impair neurobehavioral 

performance [Roehrs et al., 2003], which ultimately reduces the driver's ability to operate a motor 

vehicle safely [Powel et al., 2001; Lee et al., 2016]. 

 

2.6.4. Distraction 

Driving is a complex and demanding task requiring visual and cognitive attention. The lack of drivers' 

focused attention on the primary task (driving) puts them at risk of slow and less appropriate responses 

to road changes that demand full attention [Anttila and Luoma, 2005].  

Driver distraction, engagement in activities not critical for safe driving, is a form of driver inattention 

[Engström et al., 2013]. Drivers tend to participate in tasks that are not primarily relevant to the driving 

task, which results in a diversion of attention that would otherwise be needed for driving safely [Patten 

et al., 2006].  

Two prominent theoretical frameworks within cognitive psychology argue around driver distraction:  

resource-based models and dynamic attention models. The former perspective posits that attention is a 

limited pool of cognitive resources that can be depleted by competing demands.  Distraction, in this 

view, arises from a situation where the combined demands of the driving task and the distracting activity 

exceed the driver's available resources, leading to performance decrements. While resource-based 

models have provided a valuable foundation for understanding distraction, they may not fully capture 

the complex dynamics of attention allocation in real-world driving scenarios. On the other hand, 

dynamic attention models, define distraction within a framework which breakdowns in interruption 
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management and makes it a critical contributor to driver distraction. This framework reconceptualizes 

distraction as a consequence of failures in three core executive functions: task timing, task switching, 

and task prioritization.  These failures disrupt the efficient allocation of attentional resources between 

the driving task and secondary tasks.  Furthermore, distraction dynamics acknowledges disengagement 

from driving, such as mind wandering, as a substantial challenge.  Distractive tasks can either 

exacerbate or potentially mitigate this disengagement, depending on the specific demands of both the 

driving task and the distraction task [Lee, 2014]. 

Distractive activities while driving could be related to something (a task, object, or person) both inside 

and outside the vehicle, including texting, eating, and drinking, looking at billboards, conversing on the 

mobile phone or with passenger, and interacting with the onboard system (e.g., navigation devices) 

[Engström et al., 2017]. However, checking your mirrors before passing or scanning an intersection is 

still important for safe driving and may not be considered a distraction.  

There are three main types of distractions drivers can face: 

I. Visual: These distractions take your eyes off the road, like looking at a phone or a billboard. 

II. Manual: These distractions take your hands off the wheel, like eating or adjusting the radio. 

III. Cognitive: These distractions take your mind off driving entirely, like having a deep 

conversation on a hands-free phone ("mind off road"). 

Majority of activities while driving involve a mix of these. The first two types refer to modality-specific 

interference in the perceptual and motor processes. In contrast, cognitive distraction encompasses a 

broader phenomenon of attentional disengagement from the driving task [Victor, 2005] and diversion 

of attention toward a competing activity [Regan et al., 2013], which can result in decrement in mental 

concentration [Anderson & Crawford, 1980]. Cognitive distraction refers to anything that pulls your 

attention away from driving, like a phone call or even daydreaming (mind wandering) [Lee et al., 2009; 

Martens & Brouwer, 2013].  

Driver distraction poses a significant challenge due to the limitation of human attentional resources and 

the brain’s tendency to prioritize specific tasks over others [Patten et al., 2006]. Notably, driver reaction 

time does not immediately return to the baseline levels after engaging in a secondary (distractive) task 

[Winzer et al., 2017]. Reestablishing driver focus can take up to 27 and 15 seconds for high and 

moderate distractions, respectively [Strayer et al., 2015, 2017]. Furthermore, while engaged in a 

secondary task, drivers often struggle to accurately assess their driving performance [Horrey et al., 

2008], leading to underestimating the risks associated with their actions. Regardless of these challenges, 

drivers engage in distractive activities due to motivations for distraction.  
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A process-based approach to driver distraction necessitates examining the factors that motivate and 

influence engagement in distractive tasks, alongside the factors that lead to disengagement from the 

primary driving task.  In this context, Fuller's [Fuller, 1991] concept of "safety traps" provides a valuable 

framework for understanding the dynamics of driver distraction and the self-regulation process [Lee, 

2014].  

The concept of safety traps describes three distinct scenarios that can lead drivers to disengage from the 

primary driving task and engage in distractive tasks [Lee, 2014]: 

I. Contingency Traps: These traps arise when drivers fail to adequately monitor the driving 

environment due to poorly perceived hazards or low roadway demands. Novice drivers are 

particularly susceptible to contingency traps due to their limited experience in identifying 

potential threats [Fisher et al., 2006]. This is particularly relevant for novice drivers who may 

underestimate the risks associated with distraction.  Previous work reported that a significantly 

higher proportion of (approximately 32%) young adult drivers (18-24 years old) compared to 

older adults (>25 years old) overestimated their ability to safely divert visual attention away 

from the roadway for extended durations (3-10 seconds) [Tison et al., 2011].  

II. Consequence Traps: These traps occur when drivers are aware of driving demands but choose 

to prioritize secondary tasks. This prioritization can be driven by the perceived rewards 

associated with the secondary task (e.g., gratification from using infotainment) outweighing the 

anticipated consequences of neglecting the road. Seo & Torabi [Seo & Torabi, 2004] surveyed 

1,291 college students and found that among those who drove and owned mobile phones (87%), 

a high number (86%) admitted to using their phones at least occasionally while driving. 

Worryingly, the study linked mobile phone use to potentially unsafe driving behaviours. 

Participants reported over 750 crashes or near-crashes, with 21% attributed to mobile phone 

use.  These findings align with those of Pöysti et al. [Pöysti et al, 2005] who identified a link 

between younger driver age and increased mobile phone use behind the wheel. Their study also 

suggested a connection between phone use and experiencing dangerous situations on the road 

for younger drivers compared to more experienced ones. Finally, Olsen et al. [Olsen et al., 2005] 

investigated motivations for driver distraction with in-vehicle infotainment systems. Their 

findings showed drivers prioritized entertainment over safety considerations when interacting 

with these systems. Interestingly, participants reported similar willingness to engage in 

distracting tasks regardless of road type (highways, arterials, two-lane roads). The study also 

found a significant age effect, with younger drivers exhibiting a greater tendency to use 

technology while driving compared to older age groups.  
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III. Conditioning Traps: These traps emerge from a history of encountering similar situations 

without negative consequences.  Experienced drivers are more likely to fall into conditioning 

traps as they may develop a sense of complacency based on past experiences. This can lead to 

disengagement from driving despite the potential risks. Bayer and Campbell [Bayer and 

Campbell, 2012] highlight the concerning role of habit in texting while driving.  Their study 

suggests that texting can become automatic, occurring unconsciously and without deliberate 

intention.  This automaticity may be a stronger explanation for the prevalence of texting while 

driving compared to factors like social norms or attitudes towards the danger.   

There is a crucial need for accurate evaluation and measurement of cognitive workload to address the 

challenges posed by cognitive load while driving. A diverse range of objective and subjective measures 

can be employed to assess cognitive load. The following section discusses these measurement 

techniques and identifies the most practical approaches within the field of driving research.  

 

2.7. Cognitive workload measurement techniques 

Measuring cognitive workload enables maximizing safety, efficiency, performance, and well-being by 

allowing to accurately monitor and support one’s cognitive performance [McKendrick et al., 2019]. 

Cognitive workload can be measured directly by assessing changes in cognitive performance or 

assessing factors impairing cognitive performance, such as sleepiness. 

Cognitive workload can be measured either directly or by measuring factors that indirectly could impair 

cognitive workload such as sleepiness. The following sections will delve into these methods in detail, 

exploring their strengths, limitations, and applications within the context of driving performance. 

 

2.7.1. Direct measure of cognitive workload 

Direct measures are divided into: 

I. Self-assessment or subjective rating scales 

II. Performance measures (containing subdivisions of primary and secondary tasks) 

III. Psychophysiological measures 
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2.7.1.1. Self-assessment or subjective rating scales 

Rating scales represent subjective self-reports. The National Aeronautics and Space Association Task 

Load Index (NASA TLX) is the most widely used subjective measure of cognitive workload and has 

become synonymous with the concept [de Winter, 2014]. Subjective methods are more commonly 

employed than other methods due to their ease of administration and lower costs [McKendrick et al., 

2019]. However, operators can be unreliable and invalid measuring instruments [Gopher and Donchin, 

1986]. Therefore, self-reports are often combined with performance or psychophysiological measures 

[McKendrick et al., 2019].  

 

2.7.1.2. Performance measures 

Performance measures indicate cognitive workload directly (primary task measure) or indirectly 

(secondary task measures). 

Primary task measures are valuable tools with good generalization, as they directly assess operator 

performance on the task of interest. This measure is beneficial when a task is already quite demanding, 

and performance deteriorates from baseline or ideal levels, as evidenced by changes in speed, accuracy, 

reaction or response time, and error rates during task execution. In the field of driving research, the 

following parameters have been used as primary measures of cognitive performance [Engström et al., 

2017]: 

I. Object/event detection response 

II. Lateral control performance 

III. Longitudinal control performance  

IV. Decision-making  

Secondary task measures assess performance on tasks that may not be directly relevant to the primary 

tasks and serve only to impose or gauge cognitive load on the operator [Cain, 2007]. These measures 

evaluate reaction time (RT), time estimation variance, accuracy and response time, signal detection 

rates, performance level, the number of concurrent tasks handled within a specific interval, and the 

percentage of time occupied by the secondary task. To ensure minimal interference with the primary 

task, secondary tasks should be quickly learned and self-paced (easily interrupted or delayed). There 

are several reasons why cognitive measurement tasks used in the context of driver distraction research 

might benefit from being self-paced: 
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I. Ecological Validity:  Self-paced tasks better mimic real-world driving situations. Drivers 

encounter information and make decisions at their own pace while navigating traffic. A forced-

pace task would not accurately reflect this variability in processing speed and information 

intake. 

II. Reduced Stress and Anxiety:  Timed tasks can create unnecessary stress and anxiety in 

participants, potentially impacting their cognitive performance.  Self-paced tasks allow 

participants to complete the task at a comfortable pace, reducing the influence of these factors 

on the results. 

III. Individual Differences in Processing Speed:  People naturally have different processing speeds.  

Self-paced tasks allow participants to allocate time-based on their individual needs for 

understanding and responding to the task demands.  This can lead to more reliable and 

generalizable data. 

IV. Focus on Cognitive Load: Self-paced tasks can be used to assess cognitive load by measuring 

the time participants take to complete them.  This would not be possible with timed tasks, where 

speed is prioritized over the internal effort involved. 

V. Understanding Attention Allocation:  Self-paced tasks, particularly those with multiple stimuli 

or tasks, can provide insights into how participants allocate their attention.  By observing how 

participants choose to focus and take breaks, researchers can gain valuable information about 

the cognitive demands of driving and the impact of distractions. 

Self-paced tasks are not without limitations. They can be more time-consuming to administer and 

analyse compared to timed tasks. The specific design of the self-paced task needs to be carefully 

considered to ensure it is engaging and provides meaningful data. 

Examples of secondary tasks include but are not limited to rhythmic tapping, random number generation, 

verbal shadowing, spatial reasoning, time estimation and production, critical instability tracking tasks, 

and compensatory or pursuit tracking tasks [Cain, 2007]. When selecting a secondary task to measure 

cognitive workload, it is essential to carefully consider the pairing with its primary counterpart, as a 

poorly chosen secondary task can artificially impair performance on the primary task [Young and 

Stanton, 2007].  

The secondary task performance metrics specifically employed to assess driver cognitive performance 

include the peripheral detection task (PDT), tactile detection task (TDT), Sternberg method, and 

working memory tasks such as n-back [van der Horst, 2010; Rupp, 2010; Engström et al., 2005; 

Sternberg, 1996; Angell et al., 2006; Mehler et al., 2011].  
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During PDT, a driver must respond to the onset of peripherally presented stimulus within a specific 

timeframe. For instance, a red square or LED might appear on the driver’s periphery every four seconds 

[Rupp, 2010]. As the task demand increases, drivers tend to miss more peripheral cues, and their 

response time may become longer. This decline in response accuracy and speed indicates peaks in driver 

objective workload. This happens because driving requires a significant investment of cognitive 

resources, including attention, memory, and processing speed and these resources are like a pool of 

mental energy used to manage all driving tasks. When a driver is distracted by a secondary task like 

texting or interacting with the infotainment system, these resources are diverted away from the primary 

driving task.  This depletion of resources leads to a higher cognitive workload. Since Response accuracy 

and speed are objective measures of a driver's performance. When workload increases due to distraction, 

these measures suffer and as cognitive resources become stretched thin, drivers take longer to process 

information and make decisions (slower response speed) which can lead to missed cues, delayed 

reactions, and ultimately, an increased likelihood of errors (decreased response accuracy). 

TDT was explicitly developed as a non-visual version of the PDT [Engström et al., 2005]. This method 

utilizes vibrators attached to the skin to address the limitation of PDT, which can be affected by varying 

light conditions and background contrast [Rupp, 2010]. 

The Sternberg method was developed to study human short-term memory [Sternberg, 1996]. It involves 

presenting participants with a series of general numbers or visual signs to remember and then asking 

them to recall. The modified version of the Sternberg method [Angell et al., 2006] has been shown to 

be superior to PDT and offers the most robust criterion validity across the broadest set of conditions for 

on-road event detection [Rupp, 2010]. However, it is important to note that each one of these tasks 

requires different modalities and tapping into different resources.  

Finally, the n-back task [Mehler et al., 2011] measures the load on working memory in different degrees 

by generally generating stimuli (e.g., numbers or letters) with brief pauses in between to allow the 

participants to repeat the stimuli given n steps before [von Janczewski et al., 2021]. Table 2.3 shows an 

example of n = 0, n = 1, and n = 2 back tasks with alphabet letter stimuli. During this task, participants 

must continuously retain information in their working memory while adding new information and 

comparing it with each other [Peck et al., 2014]. Auditory attention and memory performance while 

performing the n-back task demand resources similar to those required to perform in-vehicle 

infotainment systems while driving [Mehler et al., 2011]. The n-back task has been shown to fulfil the 

criteria for use as a cognitive workload measure while driving [Mehler et al., 2011], as it minimally 

interacts with the primary task (driving itself), requires minimal equipment and time, and is easy to 

score [Janczewski et al., 2021].  
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Table 2.3. Example of alphabet letter stimulus n-back task with n = 0, n = 1, and n = 2. 

Stimulus or response n-back delay 
Letter sequence 

1 2 3 4 5 6 7 8 

Stimulus (as presented to the participant) - A B C F G H I K 

Response expected from the participant 

n = 0 A B C F G H I K 

n = 1 - A B C F G H I 

n = 2 - - A B C F G H 

 

2.7.1.3. Psychological measures 

Psychophysiological measures, developed based on cognitive neuroscience, cognitive psychology, and 

human factors, utilize non-invasive neurophysiological tools to measure the known correlations of 

mental effort and assess workload during a task [McKendrick et al., 2019]. These measures can be 

recorded simultaneously with the task of interest and are sensitive to cognitive workload changes even 

before they are evident in actual task performance [Foy and Chapman, 2018]. The main 

psychophysiological measures include electroencephalogram (EEG), ocular measures, cardiac 

measures, and respiration.  

Brain activity measurement using EEG can reveal different aspects of cognitive load, such as 

movement-related readiness potential and preparatory slow brain potentials, which have been shown to 

be sensitive to attention, demand, and decision-making [Freude and Ullsperger, 2000]. The EEG 

spectrum reveals workload according to the power within different frequency bands or the time shifts 

of events related to potentials. However, the EEG is less often used in field studies since its data 

proneness to artefacts, complexity, and the requirement for sophisticated signal processing equipment 

[Cain, 2007]. 

Ocular measures are sensitive to cognitive demands but dependent on the task type. For example, the 

blink rate declined with increased workload from processing visual stimuli. Still, it increased with an 

increment of load resulting from a memory task [Castor et al., 2003]. 

Currently used ocular measures are: 

I. Eyelid and Blink movements (duration, latency and frequency) 

Concerning the link between blink rate and workload, previous studies reported 

inconsistent results which seem to stem from the difference between cognitive workload 

and visual workload [Marquart et al., 2015]. A review by Kramer [Kramer, 1990] 
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highlighted this very issue and reported studies which showed both increases and decreases 

in blink rate with workload, depending on the visual demands of the task [Kramer, 1990]. 

Further studies have not fully resolved the issue. A car driving study (1998) found blink 

rates decreasing with sharper road curves, suggesting a link to visual difficulty [Huger, 

1998]. However, a later study (2008) observed the opposite for cognitive tasks [Recarte et 

al., 2008], where blink rates increased when listening, talking, or calculating compared to 

a control condition, suggesting a connection to mental effort. Interestingly, the Recarte et 

al. [Recarte et al., 2008] study also saw a decrease in blink rate for more visually demanding 

tasks compared to less demanding ones and concluded that blink rate reflects these two 

kinds of workload in opposing ways: less blinking for high visual demand, and more 

blinking for high mental demand. 

Concerning the blink duration, previous research suggests a decrease in duration as 

workload increases, both mentally and visually [Marquart et al., 2015]. The researchers 

suggest this "blink duration inhibition" might be a way to avoid missing crucial visual 

information which aligns with Kramer's earlier work proposing that blinks are delayed until 

enough visual data is acquired [Kramer, 1990]. In essence, while blink duration decreases 

with workload, how this conclude might depend on the specific demands of the task and 

the need to maintain visual awareness [Marquart et al., 2015]. 

Concerning the time between blinks (latency), previous reviews highlight that an increase 

in latency is noticed with higher cognitive workload [Eggemeier et al., 1990; Carmody, 

1994]. This is suggested to be because of delaying blinking until enough visual information 

is gathered to complete the task effectively [Kramer, 1990].  

Finally concerning the percentage of eyelid closure (PERCLOS), a positive correlation was 

noticed, where people tend to report feeling sleepier, perform worse on tasks, and 

experience more lapses in attention, especially in visual reaction time tasks [Dinges and 

Grace, 1998; Friedrichs and Yang, 2010; Kozak et al., 2005]. 

II. Visual fixation (duration, gaze variation) 

Studies consistently show that as mental workload increases, our eyes dwell longer on 

specific points (fixation duration) and explore a narrower area (gaze concentration). This 

suggests we spend more time processing information when facing demanding tasks 

[Marquart et al., 2015]. This is particularly evident in driving scenarios. Drivers fixate for 

longer periods during hazardous situations, likely to extract crucial information [Reimer 

and Mehler, 2010]. Additionally, research shows that even mentally demanding tasks, like 

listening to instructions, lead to a narrower gaze focus while driving [Recarte and Nunes, 

2000; Reimer, 2009; Reimer and Mehler, 2010, Victor et al., 2005]. Interestingly, drivers 

seem to adjust their gaze behaviour before their driving performance suffers [Reimer, 2009]. 
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III. Pupillometry  

Concerning pupil size, previous research has shown an increase in pupil size with increased 

workload in both on-road and simulator driving studies which consistently showed larger 

pupil diameters during tasks like mental imagery and verbal instructions [Recarte and 

Nunes, 2000; Recarte and Nunes, 2003, Palinko et al., 2010]. 

Cardiac measures are sensitive to task complexity and cognitive workload. Cardiac measurement offers 

advantages in that the measurement devices are relatively cheaper than EEG, require little to no training 

for researchers for data collection, and are less susceptible to noise from participant movements [Wallen 

et al., 2016]. Measurement of cardiac activity includes heart period, also known as interbit interval 

(average time in milliseconds (ms) between heartbeats), heart rate (number of heart contractions 

measured per unit of time), and heart rate variability (variation in pattern between interbeat interval 

calculated using time and frequency domain indices). Heart rate often rises with a higher cognitive 

workload as the body demands more oxygen and energy delivery [Hughes et al., 2019]. Concerning 

heart rate variability, some studies show a decrease in HRV with workload, suggesting the heart's 

activity becomes less adaptable [Hughes et al., 2019]. However, the interpretation of HRV can be tricky 

and depends on factors like stress response and individual differences. A meta-analysis comparing 

different cardiac measurements suggests heart rate variability, heart rate, blood pressure, and heart 

period are sensitive to task demands and elicit the level of cognitive workload, with no measure being 

more sensitive than others [Hughes et al., 2019].  

Heart Rate Variability (HRV): This reflects the variation between heartbeats and can be a more nuanced 

indicator. Some studies show a decrease in HRV with workload, suggesting the heart's activity becomes 

less adaptable. However, the interpretation of HRV can be tricky and depends on factors like stress 

response and individual differences. 

Respiration rate has been observed to increase with a decrease in respiration volume as the mental 

workload increases. Other respiration measures recorded for cognitive workload assessment are time 

for inspiration or expiration, the complete cycle time, the volume, and the flow rate [Cain, 2007].  

In the field of simulation-based studies, the following batteries of cognitive workload measurement 

techniques have been recommended [Farmer and Brownson, 2003]: modified Cooper-Harper 

(subjective), instantaneous self-assessment (subjective), primary and secondary tasks performance 

(objective), heart rate (psychophysiological), heart rate variability (psychophysiological), NASA TLX 

(subjective), and blink rate (psychophysiological) 
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2.7.2. Sleepiness measurement techniques 

There are two primary methodologies for measuring sleepiness: 

I. Subjective measures 

II. Objective measures 

Subjective measures are methods of quantifying individuals’ self-reported sleepiness. These methods 

primarily rely on self-reports, such as rating scales (e.g., Karolinska sleepiness scale (KSS)). These tests 

are known for being inexpensive, straightforward, and less time-consuming compared to objective 

measurement techniques [Cluydts et al., 2002]. However, these tests have some drawbacks, including 

unintended bias and purposeful falsification [Shahid et al., 2010]. Sleepiness rating scales can either 

assess state sleepiness, which measures short-term fluctuations in sleepiness (e.g., Stanford Sleepiness 

Scale (SSS), KSS) or measure a global level of sleepiness (e.g., Epworth Sleepiness Scale, Sleep-wake 

activity inventory) [Shahid et al., 2010]. 

KSS is a one-dimensional measure of situational attention that was developed and validated against 

objective measures of sleepiness, including Electroencephalogram (EEG), slow eye movements (SEM) 

[Åkerstedt and Gillberg, 1990], and performance measures [Kaida et al., 2006]. The KSS contains a 

nine-point Likert scale where participants report their psychophysical state experienced in the last 10 

minutes. Its score is strongly correlated with the time of day [Kecklund and Åkerstedt, 1993] and 

increases with increased periods of sleepiness. The KSS has been reported as a valuable tool in assessing 

changes in response to environmental factors, circadian rhythm, and the effects of drugs [Shahid et al., 

2010].  

There are two versions of the KSS: the original version with word labels on every second (uneven) step 

(1,3,5,7 and 9), and the version developed by Baulk et al., 2001 where word labels are added to the 

remaining four (even) steps as well. These two versions have been shown to be highly correlated across 

time, and no significant difference concerning the labelled and unlabelled parts of the scales was found 

[Miley et al., 2016]. 

Self-reported sleepiness and self-assessed performance capability are unreliable predictors of task 

performance decrements [Frey et al., 2004]. Therefore, Objective measures have been developed to 

provide quantifiable outcomes. Objective measures of sleepiness include but are not limited to, hormone 

levels (e.g., nocturnal melatonin levels), psychomotor vigilance test (PVT), and body temperature.   

Hormone melatonin (5-methoxy-N-acetyltryptamine), known as the sleep hormone, is secreted at high 

levels during the night and low levels during the day [Arendt, 1995]. Melatonin is not stored anywhere 
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systematically in the body. It will rapidly be cleared in the liver with a half-life of around 10 minutes in 

plasma [Iguchi et al., 1982]; therefore, measuring changes in melatonin levels in response to different 

stimuli, such as environmental darkness, has proven to be a very efficient way of investigating effects 

throughout all tissues and organs of the body [Bhagavathula et al., 2021]. It has been proposed that 

melatonin does not make us sleepy by directly activating brain structures that promote sleep. Instead, it 

works by suppressing the activity of brain structures that inhibit wakefulness by inhibiting the SCN 

wakefulness-generating mechanisms (e.g., Orexins, Acetylcholine signals) [Skocbat et al., 1998].  

There are three primary methods of melatonin sampling: salivary, urinary, and blood sampling 

[Benloucif et al., 2008]. Salivary sampling is a non-invasive measurement method with good 

practicality and reliability for field studies and research trials, with samples taken every 30 to 60 minutes. 

Samples are typically collected using a salivary gland stimulator, such as a plastic strip or a small cotton 

swab. The stimulator is placed in the mouth for a few minutes to stimulate saliva and is then stored in 

a small tube. 

Urine sampling, another non-invasive melatonin collection method, can be used to track changes in 

melatonin secretion over time. Urine samples are collected every two to eight hours over a one-day or 

two-day period. Urine sampling is a relatively inexpensive and easy-to-perform method that can be 

applied in various research designs and settings. However, urine melatonin levels are lower than 

salivary levels, resulting in lower resolution and sensitivity when comparing and analysing results. 

Blood sampling is a more invasive method, where samples are obtained through a blood draw from a 

vein in the arm. While invasive, it provides higher accuracy than saliva or urine sampling and reflects 

the overall melatonin in the body. Plasma melatonin levels are approximately three times higher than 

salivary melatonin levels. Therefore, plasma sampling can detect even small changes in melatonin 

levels, particularly beneficial for individuals with low melatonin levels. This method also provides a 

larger effect size, higher resolution, and sensitivity during statistical comparison and analysis [Benloucif 

et al., 2008].  

The psychomotor vigilance test (PVT) is an objective measure of sustained attention and psychomotor 

speed which assesses an individual’s ability to detect and respond quickly to infrequent and 

unpredictable stimuli over a prolonged period. This test tracks the temporally dynamic changes induced 

by the interaction of the homeostatic drive for sleep and the endogenous circadian pacemaker. The 

original version of the PVT was a 10-minute simple visual reaction time test to stimuli occurring at 

random intervals [Dinges and Powel, 1985]. The test focuses on measuring the ability to sustain 

attention and respond promptly. It is one of the most sensitive tests to sleep restriction, the most reliable 

with no evidence of learning over repeated administration, and the most practical test to use in an 
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operational environment [Balkin et al., 2004]. The PVT is highly sensitive to total sleep deprivation 

[Jewett et al., 1999; Doran et al., 2001], partial sleep deprivation [Belenky et al., 2003; Van Dongen et 

al., 2003], sleep homeostatic and circadian drives [Cohen et al., 2010], and inter-participant variability 

in the response to sleep loss [Van Dongen et al., 2004].  

The outcome measures of PVT reported by Basner et al., 2018 are:  

I. The number of lapses 

II. Response speed 

III. Reaction time (mean, median, fastest and slowest 10%, standard deviation) 

IV. False starts, minimum, and maximum reaction time 

The visual version of PVT using computer screens or tablets is undesirable in studies investigating the 

impact of lighting on sustained attention as it exposes participants to additional light [Gabel et al., 2019]. 

Therefore, an auditory version of the PVT (aPVT) was developed for such studies. While the visual 

version of the PVT requires the participant to respond to a visual stimulus on a screen, the auditory 

version requires participants to react to a tone delivered at a constant volume and random intervals 

through headphones [Gabel et al., 2019]. A comparison of the visual and auditory PVT results shows 

that sleep deprivation affects the general pattern of change in attention similarly among different 

modalities of sensory-motor behavioural response [Jung et al., 2011]. In general, reaction measured 

using auditory attention was found to be faster and less variable than visual attention [Jung et al., 2011]. 

Body temperature, another factor regulating the sleep-wake cycle, strongly correlates with sleepiness. 

As the core body temperature, the temperature inside the body, falls, the likelihood of feeling sleepy 

will increase. Core body temperature is controlled by SCN and follows a natural rhythm throughout the 

day, with a peak in the afternoon and early morning. As the SCN starts the melatonin secretion in the 

evening, the core body temperature begins to fall. This drop is one of the triggers of sleepiness.  

Skin temperature, the temperature on the skin's surface, is related to core body temperature by a link of 

blood vessels that carry heat from the core to the skin and vice versa. When the core body temperature 

is high, blood vessels near the skin dilate, which allows heat to escape from the body, and when the 

core body temperature is low, these vessels constrict to help with heat conservation. Unlike core body 

temperature, skin temperature's relation to sleepiness and circadian rhythm follows an inverse trend 

[Marotte and Timbal, 1981], where higher skin temperature is related to higher sleepiness. 

Both attentiveness (vigilance) and sleepiness are related to core body and skin temperatures. Higher 

core body temperature (daytime) and lower skin temperature are associated with optimal attentiveness. 
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On the other hand, lower core body temperature (night-time) and higher skin temperature are associated 

with optimal sleep [Wright et al., 2002; Kleitman and Jackson, 1950; Hull et al., 2003].  

Several techniques for measuring skin temperature exist, including contact and non-contact 

thermometry. Contact thermometry, a direct measure of skin temperature, involves using a probe or 

sensor attached to the skin, such as an iButton temperature sensor. Contact thermometry is cheaper, 

easier to use than non-contact methods, and generally provides higher accuracy. However, these 

methods can be invasive and only apply to small skin areas. 

Contact thermometry has been employed using both wired and wireless sensors. The extensive wiring 

of wired sensors makes them more complicated and less practical for use in everyday situations, as they 

can disrupt daily activities. Wireless peripheral thermometry devices like iButtons address the 

limitations of wired thermometers. An iButton is a wireless data logger capable of directly measuring 

human pointwise skin temperature (Figure 2.4). This device typically consists of a semiconductor 

temperature sensor, an embedded computer chip integrating a 1-Wire transmitter/receiver, a 

clock/calendar, a thermal history log, and memory storage, all enclosed in a stainless steel can (16 × 6 

mm2) and powered by a lithium battery. A systematic review has shown that iButtons can provide valid 

measurements of skin temperature and its changes over time, allowing researchers to obtain accurate, 

continuous skin temperature measurements over extended periods without interfering with participants' 

daily activities [Hasselberg et al., 2013].  

 

Figure 2.4. iButton thermometer device. 

 

Non-contact thermometry includes non-invasive techniques like infrared thermography and thermal 

imaging, which can measure temperature over large areas. However, these methods are more expensive 

and less accurate than contact thermometry for small skin areas. 
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Section 2.7 described different ways to measure cognitive load, including direct and indirect 

measurement techniques. The following section discusses how cognitive load can impair driving 

performance and increase the risk of RTCs. 

 

2.8. Cognitive workload and impaired driving performance 

The challenges associated with cognitive workload have intensified in recent decades as driving 

becomes increasingly complex due to the rise in traffic congestion and the introduction of sophisticated 

information technologies inside the vehicle [da Silva, 2014]. Establishing a direct link between 

cognitive workload and RTCs is a complex task, as measuring a driver's mental state is often indirect 

[Brookhuis and De Waard, 2010], and cognitive workload elements such as distraction often leave no 

physical evidence at the scene of a crash [Strayer and Cooper, 2015]. However, the undeniable impact 

on driving task performance has led researchers to consistently assume a strong association between 

RTC risks and driver cognitive workload [Kantowitz & Simsek, 2000], with loss of life in the field of 

air and ground transportation, often attributed to mental overload or task saturation [Sumwalt et al., 

2019]. 

 

2.8.1. Cognitive load-induced driving impairment 

One viable approach to investigate the relation between cognitive load and impaired driving 

performance is to examine the impairments that emerge in situations that induce cognitive workload 

while driving. Safe driving requires a compelling performance of cognitive tasks, including visual 

scanning, hazard prediction, identification, decision-making, response execution, situational awareness, 

and self-regulation.  

Driver's visual scanning patterns are significantly influenced by cognitive load. When experiencing 

higher levels of cognitive workload, drivers tend to fixate more on the centre of the roadway and less 

on the side or rear-view mirrors or peripheral objects [Reimer et al., 2012; He et al., 2011]. 

Consequently, alterations in the gaze pattern can lead to lateral lane position variation and adversely 

affect drivers' situational awareness. This is the result of: 

I. Shorter Fixations and Saccades: When cognitive workload increases, drivers may exhibit 

shorter fixations on key points (like the road ahead) and make more frequent, smaller saccades 

(eye jumps). This rapid scanning can lead to a less complete picture of the surrounding 

environment, making it harder to detect lane markings or potential hazards at the periphery. 
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II. Attentional tunnelling and narrowed Gaze Focus: As workload rises, drivers might focus their 

gaze more narrowly on the area directly in front of the vehicle. This "tunnel vision" effect 

reduces awareness of what is happening on the sides of the road, making it difficult to judge 

lane position relative to the edges. 

III. Delayed processing and increased fixation durations: in some cases, drivers might show longer 

fixation durations on specific points. While this might indicate an attempt to process complex 

information, it can also lead to delayed reactions if they miss lane markers or drifting tendencies 

while fixated elsewhere. 

IV. Reduced peripheral monitoring and less frequent glances: When workload increases, drivers 

might make fewer glances to check their blind spots or mirrors. This reduced peripheral 

monitoring can make them less aware of vehicles approaching from the side, potentially leading 

to lane swerves to avoid last-minute manoeuvres. 

These alterations in gaze patterns can create a domino effect.  Reduced awareness due to faster scanning 

or tunnel vision can lead to drivers unconsciously drifting out of their lane. This, in turn, might increase 

workload as they try to correct their position, potentially creating a cycle of gaze changes and lane 

variation.  

Anticipation and prediction of hazards are negatively affected by an increase in cognitive workload. 

Drivers tend to make anticipatory glances towards locations where potential hazards might appear in 

the visual scene. This anticipatory glance is impaired when the cognitive workload increases. For 

instance, a study found that drivers not distracted by a secondary task were 50% more likely to make 

anticipatory glances toward potential hazards than those talking on their mobile phones [Taylor et al., 

2015]. 

Inattentional blindness, also known as the “looked but failed to see” phenomenon, is the impairment of 

event identification while performing a cognitively demanding secondary task. This phenomenon 

impairs the identification of objects in the line of sight [Strayer and Drews, 2007] and is widely 

recognized as a significant threat to traffic safety [Herslund and Jørgensen, 2003]. 

Effective decision-making during driving manoeuvres necessitates the evaluation of multiple 

information sources. However, secondary task performance hinders dynamic decision-making 

[Horswill and McKenna, 1999]. Furthermore, divided attention (higher cognitive load) leads to unsafe 

decision-making, increasing the crash risk. For instance, using a mobile phone while driving has been 

shown to increase the likelihood of unsafe lane changes by 11%, and this risk further escalates as driving 

demands intensify (e.g., in higher traffic density) [Cooper et al., 2009].  
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Timely execution of a response is critical for safe driving. Delayed reaction time while driving, induced 

by high cognitive workload, elevates the probability and severity of RTCs [Brown et al., 2001]. This 

delay can manifest while performing a secondary task, such as conversing on a mobile phone [Caird et 

al., 2008]. It can worsen as the perceptual demands of the driving environment increase (e.g., in higher 

traffic density) [Strayer et al., 2003].  

Situation awareness refers to one’s ability to grasp what’s happening around and can be broken down 

into three key components [Endsley, 1988]: 

I. Perception: Perception involves picking up on important cues in one’s environment.  If these 

crucial details are missed, the understanding of the situation (mental picture) is much more 

likely to be wrong. 

II. Comprehension: Situational awareness is not just about noticing things. It is about 

understanding what those things mean. While perceiving cues (perception) is crucial, true 

situational awareness requires more (e.g., high reading comprehension compared to just reading 

words). Comprehension argues the ability to integrate and make sense of information. 

III. Projection: This is the most advanced level of situational awareness. Projection argues the 

ability to project from current events to anticipate future events and their implications for timely 

decision-making. 

Situation awareness facilitates expectancy-based processing of the driving scene [Strayer and Fisher, 

2016] and is mediated by working memory [Heenan et al., 2014]. Drivers must be aware of the objects 

in the driving scene (e.g., bicycles, vehicles, etc.) and update this information as relative positions 

change over time. Even minor lapses in situation awareness can lead to poor performance [Endsley, 

1995]. Higher cognitive workload due to placing demand on working memory (e.g., conversing on a 

mobile phone while driving) degrade driver situation awareness [Heenan et al., 2014]. 

To summarize drivers with higher levels of cognitive workload: 

I. Increase the duration of fixations on the central visual field while scanning the periphery less  

II. Limited in their capacity to recognize and react to unforeseen hazards 

III. Experiences challenges perceiving objects within their visual field 

IV. Make poor decisions 

V. Have slower reaction time in critical situations 

The following two sections explore the relationship between sleepiness and distraction as the two 

primary drivers of cognitive impairment and how they can impair driving performance. 
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2.8.2. Sleepiness and impaired driving performance 

Sleepiness is a major contributor to impaired cognitive performance [Desai and Haque, 2006]. Failure 

to adequately monitor the driving environment is the primary cause of most crashes. However, at the 

last moment, drivers typically attempt some evasive manoeuvres (e.g., braking, turning, etc.). The 

likelihood of such actions being taken by sleepy drivers is low or delayed, rendering the effect 

undetectable or disorganized. Delayed or no reactions increase the severity of such collisions, as it has 

been observed that sleeping-driver crashes result in disproportionately more fatalities [Johns, 2000]. 

The relationship between sleepiness, driving performance, and RTCs has been investigated using 

subjective and objective methods in real-life and simulated driving conditions. 

Real-life subjective studies, such as questionnaire-based [Abe et al., 2011; BaHammam et al., 2014] or 

case-control studies [Philip et al., 2014], rely on self-reported information from drivers and/or police 

after a collision to investigate the association between sleepiness and the occurrence of real or near-

miss RTCs. Objective studies conducted in real-life settings examine the impact of sleepiness on 

measurable parameters such as the frequency of inappropriate line crossings or hazard detection ability 

while driving [Philip et al., 2005; Davenne et al., 2012]. Simulation studies investigate how changes in 

drivers’ sleepiness affect hazard perception latencies [Smith et al., 2009; Johns et al., 2008] and provide 

a safe virtual environment to assess driving behaviour under controlled conditions [Davenne et al., 

2012]. Compared to driving simulators, real-world driving induces more stimulation than simulators, 

improving the result's generalizability [Philip et al., 2005]. However, driving simulators provide a safe 

environment for studying a wide range of driving scenarios, facilitate easy recording of test results, 

enable strict control of experimental setups, and could be more time and cost-effective than real-world 

driving studies. 

Sleepiness while driving elevates the risk of unintentional speed fluctuations and jerking motions, and 

sleep-related crashes are more likely to result in severe injuries or fatalities compared to other types of 

crashes [Akerstedt, 2000; Bunn et al., 2005]. Furthermore, sleepy drivers are more prone to lane drifting 

and react slower to on-road events [Lenné et al., 1998; Philip et al., 2005].  

Table 2.4 summarizes performance decrements associated with insufficient sleep. The extent of 

impairment caused by sleepiness while driving is considered to be comparable to that of alcohol 

intoxication [Roehrs et al., 2003; Powell et al., 2001]. 
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Table 2.4. Performance decrement factors related to sleepiness. 

Performance issue  References 

Delayed reaction  Cajochen et al., 1999 ; Anderson et al., 2010. 

Impaired visual perception  Anderson et al., 2010 ; Russo et al., 2005 

Higher likelihood of distraction  Anderson et al., 2010; Anderson and Horne, 2006. 

Diminished cognitive focus  Anderson et al., 2010 ; Turner et al., 2007. 

Increased likelihood of eyelid closure, 
potentially leading to momentary lapses in 

situational awareness despite open eyes. 

 Anderson et al., 2010. 

Impaired cognitive processing.  Durmer and Dinges, 2005; Ratcliff and Van 

Dongen, 2009. 

Memory impairment.  Turner et al., 2007. 

Deterioration in vigilance with time-on-ask.  Lee et al., 2016; Banks and Dinges, 2007. 

 

Sleep-deprived individuals often underestimate their level of impairment and tend to increase their 

speed, even at the expense of making more mistakes and taking greater risks [Horowitz et al., 2003; 

Killgore et al., 2012]. A meta-analysis suggests that driver sleepiness doubles the risk of RTCs [Bioulac 

et al., 2017]. 

 

2.8.3. Distraction and impaired driving performance 

Distraction impairs the driver’s ability to utilize cognitive resources effectively, which hinders the safe 

and adequate performance of the driving task [Salvucci, 2002]. The relationship between distraction-

impaired driving performance and RTCs can be explored through two main approaches: direct 

investigation linking RTCs and casualties to drivers’ distraction (e.g., mobile phone use by the driver 

prior to the crash) and indirect assessment by highlighting the detrimental effects of distraction on 

critical driving tasks (e.g., increased reaction time due to engagement in distractive activities).  

In previous studies, direct investigation was implemented using two main approaches: 

I. After crash investigation, including crash studies based on police reports and in-depth crash 

reviews (e.g., Beanland et al., 2013) 

II. Naturalistic observational crash studies (NDSs) (e.g., Dingus et al., 2015) 

A review of studies used after-crash investigation reported that distraction contributed to 10-12% of 

RTCs [Regan et al., 2008]. A recent in-depth study of 186 fatal and injury crashes in Australia from 
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2014 to 2018 [Wundersitz, 2019] reported a slightly higher distraction contribution rate of 13.8%. 

However, these types of studies have certain limitations: 

I. Different ways to classify distraction (what activity should be considered distraction?) 

II. Retrospective nature (e.g., unknown or missing information) 

III. Subjectivity and relying on the driver (individuals might offer what they believe to be valid 

justifications, or they could be dishonest) 

IV. Different levels of training of the investigating personnel (e.g., the level of training in crash 

scene investigation varies among police departments, leading to subjectivity and inferential 

weaknesses in police reports)  

V. Lack of proper information on exposure (e.g., frequency and duration of a distractive task) 

An alternative approach to overcoming some of these limitations is naturalistic observational crash 

studies. These studies investigate driver state, behaviour, and performance in real life by equipping 

vehicles with advanced instruments (e.g., radars and sensors) [Dingus et al., 2016]. Real-time 

monitoring helps researchers investigate the drivers’ exact actions in minutes or seconds leading to an 

RTC and near-crash events (events that could lead to a crash but were prevented by a timely manoeuvre 

by the driver) [Dingus et al., 2011].  

An analysis of the findings from the most extensive and most recent naturalistic observational crash 

study, which captured over 35 million miles of naturalistic driving from more than 3500 participants 

(Strategic Highway Research Program Naturalistic Driving Study [Dingus et al., 2015]), highlights that 

drivers engaged in distracting activities more than 50% of the time, which result in RTC risk two times 

higher than those associated with model driving (alert, attentive and sober) [Dingus et al., 2016]. They 

have concluded that observable distraction (use of an in-vehicle handheld device, interaction with 

passengers, and outside distraction) was present in 68.3% of RTCs (but not confirmed as a causal factor). 

Such a rate of distraction presence highlights the potential to prevent four million of the 11 million 

crashes that occur annually in the United States if distraction can be mitigated [Dingus et al., 2016]. It 

is essential to mention that these conclusions and estimations are based on only observable distraction 

and do not include internal or cognitive distraction (e.g., daydreaming). Therefore, the actual 

contribution of distraction in RTCs may be even higher. Naturalistic driving studies also have some 

limitations, including: 

I. Some types of distraction (e.g., internal/cognitive) cannot be identified 

II. Ethical and privacy concerns regarding installing cameras in cars and recording conversations 

III. Expensive in terms of conduction and big data analysis after the study 
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In contrast, indirect investigations focus on assessing the impairment caused by each type of distraction 

(visual and cognitive (e.g., auditory)) while driving. These studies can involve real cars or test tracks in 

laboratory or field settings. Typical performance measures in these studies include vehicle longitudinal 

and lateral control and drivers’ reaction time to potential hazards.  

A meta-analysis by Yusoff et al. 2017 found that exposure to visual and cognitive distractions can lead 

to both increases and decreases in speed. Furthermore, they reported that visual distraction increased 

lane position variability in some studies, while others found no significant difference. None of the 

reviewed studies found a significant impairment in lateral control due to cognitive distraction. Finally, 

they found no studies that investigated the effect of visual distraction on reaction time, while cognitive 

distraction studies found increased reaction time and miss rate while detecting hazards. 

Section 2.8. described various ways in which impaired cognitive performance, and its primary 

components (sleepiness and distraction) can negatively impact driving performance, potentially leading 

to an increased risk of RTCs. The subsequent sections first discuss previous studies on the impact of 

road lighting on drivers and its already known and explored potential benefits. This is followed by a 

discussion of general strategies employed to mitigate sleepiness and distraction, the main elements of 

impaired cognitive performance. The extent to which light can be utilized to mitigate these challenges 

is then discussed. Finally, an evaluation of previous research on implementing light as a mitigation 

strategy for impaired driver cognitive performance, along with their findings and limitations, is 

presented. 

 

2.9. Road lighting and driving in previous research 

The impact of road lighting on driving performance (e.g., visual performance, vehicle longitudinal and 

lateral control, etc.) has been the subject of prior investigations employing field studies and laboratory 

experiments. Field studies are conducted in real roads, where researchers measure and observe driving 

performance either in a controlled road environment by implementing actual driving scenarios (using a 

test track and a real car) or directly from naturalistic driving scenarios where drivers’ behaviour is 

observed in the real world [e.g., Gibbons et al., 2012].  

In contrast, Laboratory studies employ either driving simulators (a computer-based system that 

replicates real-world driving scenarios in a simulated environment) or road scenes (scale models that 

stimulate a driver's view of a road) [e.g., Fotios et al., 2019].  Table 2.5 summarises the existing research 

on road lighting and driving performance. These studies varied in terms of location of conduct (field vs. 

laboratory), lighting interventions, participant demographics (e.g., different age groups), cognitive 
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workload levels (driver vs. passenger, changes in speed and driving task difficulties), and surrounding 

brightness. Additionally, The studies employed different techniques to measure driving performance, 

including hazard reaction time and its performance rate, crash frequency, variation in vehicle lateral 

and longitudinal control, and changes in drivers’ visual performance (e.g., visual acuity). 

Concerning target detection after dark, an increase in road surface luminance and visibility level has 

been shown to improve target detection distance [Van Bommel and Tekelenburg, 1986; Mayeur et al., 

2010; Gibbons et al., 2012]. Similar improvements have been observed in reaction time and relative 

performance rates to hazard detection [Bullough and Rea, 2000; Alferdinck, 2006; Easa et al., 2010; 

Fotios et al., 2019; Chen et al., 2019].  

Concerning vehicle speed after dark, Bullough and Rea, 2000 demonstrated a positive correlation 

between higher luminance and increased driving speed, while no significant variation in speed was 

observed with changes in SPD. Similar findings were noticed in the work of Easa et al., 2010, who 

found that higher light levels led to increased vehicle speed, improved driving confidence, and reduced 

attention. In support, a reduction in vehicle speed was also noticed due to a reduction in road surface 

luminance [Pritchard and Hammett, 2012].  

Finally, concerning vehicle lateral control, Brooks et al., 2005 found no impact even under severe blur 

or extremely low luminance in healthy young adults, as evidenced by constant steering performance. 

On the other hand, Alferdinck, 2006 reported an impairment of vehicle lateral control with decreasing 

background luminance, as indicated by variation in the standard deviation of lateral position, percentage 

of time outside lane, time of line crossing, the standard deviation of steering wheel position, its reversal 

rate, and high-frequency area.  

The findings of these studies can be summed up as follows: 

I. Visual performance in relation to light level (luminance) tends to exhibit a plateau-escarpment 

relationship. At low light levels, an increase in luminance significantly improves visual 

performance (the escarpment). However, there is a point where further increases in luminance 

no longer yield additional improvements in visual performance (the plateau). 

II. Peripheral target detection highly depends on luminance and SPD (improved detection with 

increased S/P ratio of SPD). 

III. Higher luminance provides additional time for a driver to make safe manoeuvres. 

In conclusion, strategically designed road lighting can positively impact driver behaviour on the 

roadway and promote safer driving behaviours. This can be evidenced by improved visibility, better 

speed control, proper lane guidance, improved intersection safety, and increased pedestrian safety. 



49 

 

Table 2.5. Previous research on road lighting and driving performance. Studies are presented in chronological order. 

Reference Method Independent variables Dependent variables 

Van Bommel and 

Tekelenburg, 1986 

Field 

(Controlled road) 
• Average Luminance (0.3, 1, 1.1, 3.4 cd/m2) 

• Surroundings (Bright vs. dark) 

• Target detection (distance) 

He et al., 1997 Laboratory  

(View chamber) 
• Background luminance (0.003, 0.03, 0.1, 0.3, 1, 3, 10 cd/m2) 

• Light source (MH vs. HPS) 

• Target location (on-axis vs. off-axis) 

• Target detection (RT) 

Bullough and Rea, 

2000 

Laboratory 

(Simulator) 
• Background luminance (0.1, 0.3, 1, 3 cd/m2) 

• SPD_S/P ratio (HPS_0.64; Red_1.35; MH_1.78; Blue_3.77) 

• Target detection 

• Vehicle speed 

• Crash frequency 

• Brightness ratings 

Brooks et al., 2005 Laboratory 

(Simulator) 
• Average Luminance (0.003, 0.03, 1.0, 16.7 cd/m2) 

• Induced blur (0, +1, +2, +5, +10 dioptre) 

• Visual field size 

• Target detection 

• Vehicle lateral control  

• Visual acuity 

• Vehicle speed 

Alferdinck, 2006 Laboratory 

(Simulator) 
• Driving speed (70 km/h vs. 100 km/h) 

• Background luminance (0.01, 0.1, 1, 10 cd/m2) 

• Background colour (white, yellow, red, blue) 

• Target eccentricity (-15, -10, …, +10, +15 degree) 

• Target detection (RT and PR) 

• Vehicle lateral control 

Easa et al., 2010 Laboratory 

(Simulator) 
• Average luminance (0.6, 2.5 cd/m2) 

• Age (19-27; 37-56; 63-84) 

• Road type (highway, transition, rural) 

• Target detection (RT) 

• Vehicle lateral control 

• Vehicle speed 

Mayeur et al., 2010 Field 

(Controlled road) 
• VL (3.4, 16.9, 0.5, 1.7, 9.8, 3.0, 13.9, 7.1) 

• Driver vs. passenger 

• Speed 

• Target detection (distance) 

Pritchard and 

Hammett, 2012 

Laboratory 

(Simulator) 
• Average Luminance (0.42, 4.87, 59.95 cd/m2) • Vehicle Speed 
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Reference Method Independent variables Dependent variables 

Gibbons et al., 2012 Field  

(Controlled road)  
• Age (18-34; >65) 

• Overhead lighting (on vs. off) 

• Signage (two types at varying locations) 

• Target object (pedestrian/car/bicycle) 

• Glare (yes vs. no) 

• Pavement markings (waterborne paint vs. type II beads) 

• Target detection (distance) 

Fotios et al., 2019 Laboratory  

(Road scene) 
• Age (18-30 vs. 40-70) 

• SPD (low and high S/P_1 cd/m2, High S/P, _0.1 cd/m2, high 

S/P_2 cd/m2) 

• Overhead light (on vs. off) 

• Target detection (RT and PR) 

Chen et al., 2019 Laboratory 

(Simulator) 
• Workload (watching a scene vs. driving in the scene) 

• Target position (left, middle, and right) 

• Luminance contrast of target (0.1, 0.2, 0.4, 0.8, 1.6, 3.2 cd/m2) 

• Target detection (RT and PR) 
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2.10. Sleepiness and distraction mitigation strategies 

As discussed in section 2.8, driver sleepiness at the wheel can be extremely dangerous and should never 

be ignored, as it can lead to RTCs due to impaired cognitive performance and reaction times. Drivers 

employ various measures to combat sleepiness with varying degrees of effectiveness. Table 2.6 

summarizes the most commonly used countermeasures to sleepiness and their effectiveness: 

 

Table 2.6. Countermeasures to sleepiness. 

Countermeasure Effectiveness Reference 

Rest brake • Reduce physiological sleepiness 

• Reduce subjective sleepiness 

• Improve simulated driving performance 

Phipps‐Nelson et al., 2011 

Nap brake (15-20 min) • Reduce physiological sleepiness 

• Reduce subjective sleepiness 

• Improve simulated driving performance 

Horne and Reyner, 1996; 

Leger et al., 2009 

 

Caffeine consumption • Reduce physiological sleepiness 

• Reduce subjective sleepiness 

• Reduce indices of lane drifting 

De Valck and Cluydts, 

2001; Horne and Reyner, 

1996 

Listening to music • Very small to no effect  Schwarz et al., 2012 

Use of air conditioning or 

window opening 
• Very small subjective sleepiness 

• Negligible on physiological sleepiness 

and driving performance 

Schwarz et al., 2012 

 

Of the above countermeasures, nap brakes are the most effective and long-lasting strategy to mitigate 

sleepiness while driving. 

Driver distraction, which diverts driver attention away from the critical task of driving, can lead to 

delayed reaction times, impaired decision-making, and a loss of situational awareness, significantly 

elevating the risk of collisions. This makes distraction a serious road safety concern, contributing to 

RTCs, injuries, and even fatalities. Existing countermeasures to address distraction include but are not 

limited to, legislation and enforcement, vehicle fleet management, education and training, and the 

design of vehicles, technology, and roads [Regan et al., 2008].  
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2.11. Light as a mitigation strategy 

Light possesses the potential to be employed as an effective countermeasure against sleepiness and 

distraction as a means here, which is called “aids to vision”. The term “aids to vision” is defined and 

used in this thesis as any support to driver vision which includes but is not limited to solutions that 

support visual responses (e.g., higher levels of road lighting, pedestrian high-visibility clothing, …) and 

non-visual responses (e.g., short-wavelength blue-enriched light to mitigate sleepiness). Poorly 

designed road lighting diminishes visibility and increases the likelihood of perceptual errors (e.g., 

distraction) and sleepiness [Boyce, 2014]. As previously mentioned, both sleepiness and distraction can 

elevate cognitive load and delay reaction times to potential hazards. 

 

2.11.1. Visual responses to light as the mitigation strategy 

Regarding visual responses, proper usage of lighting has the potential to: 

I. Enhance visibility of the objects and users on and aside the roads. Improved visibility lets 

drivers anticipate the road ahead and potential hazards, including pedestrians and other road 

users. This early anticipation and detection can help compensate for a proportion of the delayed 

reaction times caused by sleepiness and distraction. 

II. Simplifying driver detection tasks by reducing the cognitive workload imposed by visual 

processing. In other words, by making the detection task easier through proper road lighting, 

the demand for visual processing is reduced, allowing for more cognitive resources to 

compensate for the negative effects of sleepiness and distraction. 

III. Reduce glare from oncoming vehicle headlights, which could significantly contribute to driver 

discomfort and fatigue and increase driver sleepiness [Madvari et al., 2023]. 

An example of “aids to vision” for hazard detectability and conspicuity is the use of high-visibility 

clothing or worn self-luminance devices by pedestrians. Pedestrian conspicuity is defined by Tyrrell et 

al. [Tyrrell et al., 2016] as “the ability to be recognised by a driver as a pedestrian, without prior 

knowledge of their presence in the driving scene”. The clothing typically worn by pedestrians is of low 

reflectance, typically 0.10 or less, comparable to dark grey [Bhise et al., 1977], giving a low contrast 

and a low conspicuity. Rather than rely only on road lighting to improve their conspicuity, pedestrians 

can choose to use on-person devices.  

A first improvement is to wear instead clothing of higher reflectance, such as the high-visibility vest 

more commonly worn by cyclists: the higher reflection of incident light leads to a greater luminance 
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contrast between the clothing and its background. However, the geometry between the observer, the 

reflective surface, and the light source must be correct to be effective. A further improvement is to use 

instead a self-luminous device – a source of light. This is likely to create a higher luminance than a 

high-visibility vest and, therefore, create a higher contrast against the background. Being self-luminous, 

it does not need to be lit by an external light source to be effective. The self-luminous device can be 

improved in two ways: it can flash, and/or it can be worn on the moving limbs to mark bio-motion. 

The effectiveness of “aids to vision” is frequently characterised by the distance at which the target (e.g., 

a pedestrian) is detected, with a larger distance indicating a more effective aid. Sayer and Mefford 

[Sayer and Mefford, 2004] found that adding retroreflective material to a dark-clad pedestrian increased 

the detection distance. However, the amount of retroreflective material did not have an effect. Fekety 

et al. [Fekety et al., 2016] found that adding self-luminous material (electroluminescent in their study) 

to retroreflective clothing enabled pedestrian detection at a greater distance than retroreflective clothing 

alone did. Blomberg et al. [Blomberg et al., 1986] found pedestrians were recognised at greater 

distances when wearing retroreflective bands around the wrists and ankles than when wearing a high-

visibility vest (a fluorescent vest with retroreflective material) and these at a greater distance than the 

baseline pedestrian wearing a white tee shirt. 

 

2.11.2. Non-visual responses to light as the mitigation strategy 

Regarding non-visual responses, exposure to lighting with higher levels of melanopic EDI has been 

shown to reduce attentional lapses significantly, decrease subjective sleepiness, improve attention, and 

improve performance on neurocognitive tests [Rahman et al., 2014; Souman et al., 2018]. 

Moreover, NIF responses that are independent of visual perception could improve saccadic eye 

movements and attentional disengagement [Lee et al., 2021], facilitate cognitive flexibility, and 

decrease switch cost (reaction time of switching mental sets) [Ferlazzo et al., 2014], and improve 

performance on cognitive tasks [Alkozei et al., 2016]. It has been shown that tasks requiring 

psychomotor functioning exposure to light can be superior to caffeine for sustaining performance 

[Beaven and Ekström, 2013]. 

Lee et al. [Lee et al., 2021], studied the effect of short wavelength blue light on saccade latency of 26 

young male participants (age range: 18-30 years old). Two experiments were conducted that involved 

both eye movement control (eye tracker) and attention (fixate at a black dot) to separate their 

contributions from each other. Experiment 1 provided evidence for a facilitatory effect of blue light on 

saccadic eye movements. Experiment 2 further revealed a nuanced interaction, demonstrating that blue 
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light only expedited saccade latency when attention and the oculomotor system operated concurrently. 

A critical assumption underlying this study was that participants' ability to detect the target (a small 

black dot) remained constant across the two lighting conditions (blue and orange).  This assumption is 

crucial because differences in detection thresholds could have influenced saccade latencies independent 

of any oculomotor or attentional effects. However, the findings revealed a more complex pattern.  

Experiment 1 did show a main effect of colour, suggesting faster saccades under blue light.  However, 

both experiments also revealed a significant interaction effect between colour and the gap condition. 

This pattern of results suggests that the influence of blue light on saccade latency cannot be solely 

attributed to differences in target detectability under the two lighting conditions.  The observed 

interaction implies that blue light exerts its influence through a mechanism that is contingent upon the 

specific task demands, such as the presence or absence of a gap in the fixation cue. 

Ferlazzo et al. [Ferlazzo et al., 2014], studied the effects of short-wavelength blue-enriched LED light 

sources on higher-order cognitive functions like visuospatial abilities and executive functions. In this 

study 44 healthy participants (22 males; mean age range 25 years old) performed tasks designed to 

assess visuospatial processing (mental rotation of 3D objects) and executive function (inhibitory control 

and task switching) within a controlled light environment. The results suggest that exposure to short 

wavelength light enhances the cognitive system's ability to manage multiple task representations 

simultaneously, leading to reduced interference and improved performance. Additionally, short 

wavelength light appears to benefit visuospatial processing, as evidenced by fewer errors in the 3D 

mental rotation task. 

Alkozei et al. [Alkozei et al., 2016], investigated the post-exposure effects of blue light on working 

memory performance and associated neural correlates. Thirthy-five healthy participants (18 females) 

were exposed to either blue (469 nm) or amber (578 nm) light for 30 minutes in a darkened room. 

Immediately following exposure, participants performed an N-back working memory task while 

undergoing functional magnetic resonance imaging (fMRI). Participants in the blue light condition 

exhibited significantly faster response times on the N-back task compared to the amber light control 

group. Furthermore, the blue light group displayed increased activation within the dorsolateral 

prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) compared to the amber light 

group. Notably, a positive correlation emerged between greater activation in the VLPFC and faster N-

back response times. 

The prefrontal cortex (PFC) is a critical brain region involved in working memory [Cohen et al., 1997], 

decision-making [Figner et al., 2010], and executive control [Badre and Wagner, 2007]. Improved 

working memory performance has been associated with increased activation of PFC [Owen et al., 2005]. 
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The decision-making process is a trade-off between speed and accuracy (“safe and slow” or “fast but 

risky”) [Bogacz et al., 2010], suggesting that changes in baseline activation levels in the prefrontal 

cortex are opposed to changes in the decision threshold itself. This increment in baseline activation, 

elicited by lighting containing higher levels of melanopic EDI (short-wavelength blue light), was 

observed by cortical responses to cognitive tasks [Perrin et al., 2004]. This increase was demonstrated 

in functional magnetic resonance imaging studies [Vandewalle et al., 2006]. This activation induced 

measurable functional brain responses within prefrontal regions associated with executive functions, 

positively impacting working memory performance [Alkozei et al., 2016]. This impact was found to be 

independent of exposure duration as even short bursts of short-wavelength blue light, as little as one 

minute, have been shown to activate prefrontal cortex regions effectively during auditory working 

memory tasks [Vandewalle et al., 2011]. This light-induced alteration in brain responses, associated 

with improved performance, persisted for at least 30 minutes after termination of the light exposure 

[Alkozei et al., 2016]. 

While the circadian effect of light on sleep and attention is well established [Fisk et al., 2018], the acute 

stimulating effects of light on immediate brain function and cognition remain less understood. The 

potential of short-wavelength blue light to effectively modulate higher-level cognitive processes has 

not been explored [Killgore et al., 2020]. While short-wavelength blue light could potentially influence 

behaviour by modulating cortical activity, its potential could be limited as conscious experience can 

only occur after relative neurons have been activated to a certain extent [Sergent et al., 2004]. Most 

existing studies on light-induced cognitive enhancements have been conducted under highly controlled 

conditions, highlighting the need to investigate these effects in real-world settings. 

 

2.12. Previous studies on the use of short-wavelength light as the mitigation strategy 

To our knowledge, there is scant empirical research exploring the impact of lighting as a 

countermeasure to sleepiness and distraction after dark.  

Bhagavathula et al., 2021 investigated the impact of blue-rich LEDs containing higher levels of 

melanopic EDI on circadian rhythms under dim lighting conditions on the roads. They lit a closed-loop 

road after dark using each of five lighting conditions (Tables 2.7 and 2.8) with their test participants (10 

people with age range between 18 to 30) first spending a two-hour adaptation period (23:00 to 01:00) 

under normal home-indoor lighting levels (Table 2.8) and then driving for two hours (the test period; 

01:00 to 03:00) in a closed-loop road.  
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Table 2.7. Lighting conditions used by Bhagavathula et al., 2021 - general characteristics. 

Light source Correlated colour temperature 

(K) 

Intensity 

(cd/m2) 

Corneal irradiance 

(lx) 

Test period    

HPS 2100  1.5 1.8 

LED 

4000 1.5 1.9 

4000 1 1.4 

4000 0.7  1.1 

No roadway lighting - < 0.05 0.8 

Adaptation period    

LED 4000 - 200 

 

Table 2.8. Lighting conditions used by Bhagavathula et al., 2021 - photometric values at eye level. Equivalent 

daylight illuminance values from CIE S 026/E:2018 for each experimental light condition. 

Light condition 
Alpha-opic equivalent daylight (D65) illuminance, lx 

s-cone-opic M-cone-opic L-cone-opic Rhodopic Melanopic 

Test period    

2100 K HPS-1.5lx 0.3 1.2 1.9 0.5 0.3 

4000 K LED-1.5lx 0.6 1.6 1.8 1.1 0.8 

4000 K LED-1lx 0.5 1.2 1.4 0.8 0.6 

4000 K LED-0.7lx 0.4 1 1.1 0.6 0.5 

Adaptation period    

4000 K LED-200lx 66.4 173.0 194.5 112.4 87.1 

 

They measured salivary melatonin, objective, and subjective attention at 30-minute intervals. Their 

findings did not suggest a significant impact of lighting conditions on melatonin suppression or attention. 

Rodríguez-Morilla et al., 2017 investigated the impact of in-vehicle blue-enriched and orange lighting 

conditions (Table 2.9, 2.10) on nocturnal subjective, physiological, and cognitive measures of 

sleepiness during simulator driving. Their outcome metrics were simulator driving performance as 

examined by lane and speed deviations, auditory reaction time test (PVT), Kronowise ambulatory 

circadian monitoring, and skin temperature. Their samples contained 36 healthy participants (18 to 25 

years). Participants arrived in a lab at 21:00 and stayed under control conditions (<1 lx) for 45 minutes 

(answered the KSS questionnaire, performed PVT, and drove in a simulator). After adaptation, 

participants drove for 60 minutes in the simulator while exposed to one of the lighting conditions.  After 

completing the driving task, participants again answered the questionnaires and performed the PVT. 
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Table 2.9. Lighting conditions used by Rodríguez-Morilla et al., 2017 - general characteristics. 

Light condition - Spectral wavelength (nm) Luminance at the eye* (lx) Intensity (µw/m2) 

Blue light - 440 469 141 

Orange light - 595 410  114 

Lights off < 1 - 

* Measured at the horizontal angel of gaze. 

 

Table 2.10. Lighting conditions used by Rodríguez-Morilla et al., 2017 - photometric values at eye level. 

Equivalent daylight illuminance values from CIE S 026/E:2018 for each experimental light condition. 

Light condition 
Alpha-opic equivalent daylight (D65) illuminance, lx 

Cyanopic  Melanopic Rhodopic Choloropic Erythropic 

Blue light 323 224 294 401 444 

Orange light 4 26 81 271 424 

Lights off - - - - - 

 

Their result indicates that exposure to blue-enriched light, containing higher levels of melanopic EDI, 

decreased distal-proximal temperature gradient and produced larger driving errors when compared with 

orange light. They concluded that physiological arousal due to exposure to light does not always lead 

to improved cognitive performance, and excessive arousal can impair accuracy in complex tasks such 

as driving, which require precision. This can be potentially justified by the Yerkes-Dodson principle 

[Broadbent, 1965] which suggests an optimal arousal level for tasks. While moderate arousal enhances 

focus, exceeding this threshold can impair performance. The impact of light-induced arousal hinges on 

task complexity. While simple tasks might benefit from moderate brain activation, intricate tasks 

requiring precision, like driving, could suffer from overarousal. This excessive arousal depletes 

cognitive resources needed for focused attention and decision-making, leading to errors. Furthermore, 

excessive arousal can narrow attention [Thayer, 1978], hindering the ability to process peripheral 

information critical for tasks like driving. In conclusion, light exposure can improve attention, but its 

effect on cognitive performance may depend on the task.  

Taillard et al., 2012 Investigated the impact of in-vehicle monochromatic blue light (spectral 

wavelength: 468 nm; luminance at the eye: 20 lx; intensity: 7.4 µw/m2) on nocturnal driving 

performance as measured by inappropriate lane crossing (ILC) and standard deviation of the vehicle 

lateral position (SDLP), in 48 healthy participants (aged 20-50 years) who drove 400 km on a motorway 

at night (01:00 – 05:00). They have found that this nocturnal exposure to blue light, rich in melanopic 

EDI, reduced the number of ILC and SDLP events, suggesting that this intervention could be employed 

to mitigate sleepiness while driving after dark.  
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Phipps-Nelson et al., 2009 examined the effects of red and blue in-vehicle lighting conditions (Table 

2.11) on nocturnal subjective and objective indices of sleepiness during simulator driving. Their 

outcome measures included simulator driving performance as evaluated by lane and speed deviations, 

auditory reaction time test (PVT), subjective sleepiness (KSS), salivary melatonin, and brain activity 

(EEG). Their samples comprised eight experienced and healthy drivers (aged 20-43 years). Participants 

were exposed to ambient dim light (< 1 lx) from 18:00 (adaptation period), and the main experiment 

was conducted between 21:00 and 9:00 in the morning, performing three-hour sessions.  

 

Table 2.11. Lighting conditions used by Phipps-Nelson et al., 2009 - general characteristics. 

Light condition - Spectral wavelength (nm) Luminance at the eye* (lx) Intensity (µw/m2) 

Test period   

Blue light - 460 1.12 – 1.15 2.05 – 2.07 

Red light - 620 1.13 – 1.18  0.57 – 0.69 

Adaptation period   

Broad spectrum with peaks at 430 and 620 0.02 – 0.2 0.05 – 0.17 

* Measured at the horizontal angle of gaze. 

 

Their findings demonstrate that blue light exposure with higher melanopic EDI led to suppressed EEG 

activity, a reduced occurrence of slow eye movements, and faster PVT reaction time compared to 

ambient light exposure. However, blue light exposure did not significantly influence simulator driving 

performance, KSS scoring, or salivary melatonin levels compared to ambient light exposure. The 

authors conclude that low-intensity blue light exposure can enhance attention during prolonged 

nighttime performance testing and could be employed to improve attention in situations where bright 

light is impractical, such as driving after dark. 

Regarding distraction, none of the previous studies reported in section 2.9 implemented a source of 

distraction or investigated the impact of road lighting on its mitigation as a means of changes in driving 

performance.  

There is a need to further investigate the impact of lighting as a means of “aids to vision” on the 

mitigation of sleepiness and distraction both under visual and non-visual responses to light. The 

research hypotheses for this thesis are presented in the following section. 
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2.13. Research Hypotheses 

This work aims to determine the extent to which “aids to vision” and conspicuity can mitigate sleepiness 

and distraction when driving. Two experiments were performed to test the following hypotheses: 

H1: An increase in melanopic EDI (lx) leads to a decrease in sleepiness when driving in the 

evening after dark. 

H2: Distraction (via acoustic or visual stimuli) leads to a deterioration in hazard detection, as 

indicated by an increase in reaction time from onset of the hazard stimulus to its detection or a 

decrease in detection rate. 

H3: An increase in road surface luminance leads to an improvement in hazard detection, as 

indicated by a decrease in reaction time from onset of the hazard stimulus to its detection or an 

increase in detection rate while distracted. 

H4: In-vehicle short-wavelength blue light (increment in melanopic EDI exposure) leads to an 

improvement in hazard detection, as indicated by a decrease in reaction time from onset of the 

hazard stimulus to its detection or an increase in detection rate while distracted. 

H5: Pedestrian-worn “aids to vision” lead to an improvement in hazard detection, as indicated 

by a decrease in reaction time from onset of the hazard stimulus to its detection or an increase 

in detection rate while distracted. 

Two distinct experiments were conducted to test the formulated hypotheses. Experiment 1 was designed 

to evaluate Hypothesis H1, while Experiment 2 focused on Hypotheses H2 to H5. A summary overview 

of the research design is presented in Figure 2.5. 
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Figure 2.5. Summary of the thesis methodological structure. 

 

2.14. Summary 

This chapter defined and discussed key literature concerning human vision and its visual and non-visual 

responses to light. It explored the risks associated with driving after dark, driver inattention and its 

contributing factors, and the challenges of nighttime driving.  The chapter continues to examine 

cognitive workload, its relationship to driving performance, and how sleepiness and distraction could 

impair driver’s cognitive performance, potentially leading to road traffic collisions (RTCs). Finally, the 

chapter reviewed previous research on road lighting and its potential as a countermeasure to inattention. 

The chapter concluded with the research hypotheses. The next chapter provides an in-depth description 

of the method used in Experiment 1. 

Thesis goal: identify the extent to which “aids to vision” can be used as a 

countermeasure sleepiness or distraction

Laboratory experimentation

Experiment 1: light as a mitigation to 

sleepiness

Experiment 2: light as a mitigation to 

distraction

Independent variables:

• light condition

Dependent variables:

• Melatonin level

• Audio reaction time

• Self-reported sleepiness

• Skin temperature

Independent variables:

• light condition

• Distraction task modal

• Clothing level

Dependent variables:

Reaction time and performance rate to:

• Hazards

• Distraction task

Reveling the extent to which “aids to vision” counter: 

sleepiness or distraction



 

 

Chapter 3. Method: Experiment 1 
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Chapter 3. Method: Experiment 1 

3.1. Introduction 

Chapter 2, literature review, establishes that lighting conditions might affect sleepiness when driving 

after dark. However, there is a lack of conclusive evidence to support the generalization of these 

findings to outdoor lighting practices specifically designed for drivers. Existing studies have primarily 

examined the impact of non-visual responses to light on sleepiness mitigation, employing higher light 

intensities than those of typical road environments. Additionally, these studies have incorporated dark 

adaptation periods, contrasting with real-world scenarios where individuals are exposed to artificial 

lighting in their nighttime living environments. Consequently, further research is required to investigate 

the potential of light to mitigate sleepiness in natural settings, considering brighter adaptation periods 

and lighting levels that more closely resemble actual outdoor lighting conditions that drivers are 

exposed to after dark.  

An experiment was conducted to test if: 

H1: An increase in melanopic EDI (lx) leads to a decrease in sleepiness when driving in the evening 

after dark. 

This chapter details the method used in Experiment 1. This experiment aimed to explore the extent of 

the benefits of lighting on driver sleepiness during typical journeys under specific lighting conditions 

achievable on roads. This experiment was reviewed by the University of Sheffield ethics board and 

gained approval prior to conduction (reference number 042711, dated the ninth of September 2022). 

 

3.2. Apparatus  

The effects of change in light level and spectrum on attention were investigated in a laboratory study. 

The light levels and test participant posture were selected to resemble driving and walking. The context 

of this experiment was a person seated at home for two hours (adaptation period (AD)) followed by a 

one-hour test period (T) representing a drive or walk. Two participants attended each test session. 

The test environment (Figure 3.1, and 3.2) was one end of a room of dimensions of 3.45 m length, 2.43 

m width, and 2.80 m height. The wall surfaces visible to participants were painted white, of approximate 

reflectance: 0.81.  



63 

 

 

Figure 3.1. Plan layout (left) and front section (right) of the test environment (not to scale). 

 

 

Figure 3.2. Test environment setup (photo was taken from behind the participant position) 

 

Section
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Electric lighting in the room was switched off during the experiment, and the test environment was lit 

using a pair of LED uplighters (THOUSLITE LED Cubes) (Figure 3.3). Each LED array (Dimensions: 

300 mm length, 300 mm width, 210 mm height; emitting size: 270*270 mm) was equipped with 11 

different LED channels, allowing a tuneable spectral range of 400-700 nm and CCT range of 2000-

20000K (Duv tolerance < ± 0.003) with maximum illuminance of 850 lx (D65: 1 metre) and 1250 lx 

(D50: 1 metre).  The lighting conditions are set and controlled using LEDNavigator software.  

 

   

Figure 3.3. THOUSLITE LED Cube-11 (model no: R27). 

 

3.3. Independent variables 

The independent variables used in the test period were: 

I. Lighting condition (combinations of vertical illuminance at the eye (height: 1.5 m), and SPD) 

II. Posture (walking vs. seated) 

 

3.3.1. Lighting conditions 

The lighting conditions are shown in Table 3.1. The reported illuminances are vertical at the height of 

1.5 m above the floor, facing the participants' direction of view. To ensure the uniformity of the light 

levels within the experiment area, the light sources located behind the participants (Figure 3.1) directed 

to the ceiling and a grid of measurements was investigated the SPD, illuminance and luminance on the 

front wall (the end wall in front of the participants) and the tables top (Appendix A). 

Adjustable seats were used to keep the eye height of participants at approximately 1.5 m when seated 

or walking. The lighting condition during AD was chosen to represent the luminous conditions of a 

typical residential setting as recommended by the Society of Light and Lighting [Society of Light, 

Lighting, Chartered Institution of Building Services Engineers, 2002], which recommends a range of   

5 lx to 50 lx for corridors and TV lounge rooms in quasi-domestic buildings (residential).  
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Participants were exposed to one of the four test conditions during the test period. The first lighting 

condition (L1) used an illuminance of 8 lx, which is within the range of subsidiary roads [British 

Standard Institution, 2020] and P-classes for the pedestrian environment [CIE: 115:2010], providing a 

lower illuminance but the same SPD as that for the AD. For outdoor environments, CIE [CIE TN 

007:2017] has suggested that adaption illuminances are estimated as the average horizontal illuminance 

for P-class roads ranging from 2.0 lx to 15.0 lx [British Standard Institution, 2016]. A small survey of 

vertical illuminance measurement on minor and major urban roads in Sheffield, United Kingdom, 

revealed a range of 0.5 lx to 30 lx, which confirmed that 8 lx was within the range of likely experience 

(Appendix B).  

The second lighting condition (L2) used the same photopic illuminance as L1 but changed the SPD to 

increase the melanopic EDI from 3.4 lx to 10.4 lx. This value was chosen to see if an increase in 

melanopic EDI would result in sleepiness mitigation and because a melanopic EDI of 10 lx is the 

maximum recommended for unavoidable activities for (at least) three hours before bedtime to avoid 

melatonin suppression, which would affect sleep quality [Brown et al., 2022] and represent a level 

which might be used in practice. The third lighting condition (L3) used the same SPD as L1 but with 

the illuminance increased to offer similar melanopic EDI as L2. The purpose of lighting condition L3 

is to determine if the increase in melatonin suppression observed in L2 (if any), due to the higher 

melanopic EDI, directly caused mitigated sleepiness and alternatively to highlight whether other factors 

beyond melanopic EDI, inherent to the light spectrum, might influence sleepiness. Lighting condition 

L3 is the same lighting condition used in the adaptation period. The fourth lighting condition (L4) was 

a benchmark condition representing an outdoor setting with no road lighting. 

 

Table 3.1. Light settings (illuminance and SPD-derived metrics) used in the adaptation and test conditions. 

Lighting 

condition  

Ev* (lx) CCT (K) Αlpha-opic equivalent daylight (D65) illuminance (lx)** 

S-cone M-cone L-cone Rhodopic Melanopic 

Adaptation        

AD 25 lx 2700 K 8.2 19.5 25.6 12.7 10.7 

Test         

L1 8 lx 2700 K 2.6 6.1 8.0 4.0 3.4 

L2 8 lx 5800 K 9.2 8.2 8.6 9.4 10.4 

L3 25 lx 2700 K 8.2 19.5 25.6 12.7 10.7  

L4 

44 

<0.5 2700 K <0.5 <0.5 <0.5 <0.5 < 0.5 

* Vertical illuminances at eye level (1.5 m above the floor). 

** Alpha-opic equivalent daylight illuminance calculated using luox calculator (https://luox.app/) [Spitschan et al.]. 

 

https://luox.app/
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3.3.2. Posture 

Regarding posture, during the first two hours (AD), both participants remained seated, but for the 

following one hour (test period), one remained seated to resemble a driver while the other walked on a 

treadmill with a comfortable speed (as chosen by the participant; ranged between 1.2 km/h and 2 km/h) 

to resemble a pedestrian (inducing higher levels of cognitive workload compared to a seated position).  

 

3.4. Dependent variables 

The effect of changes in lighting and posture was measured using four dependent variables: 

I. Melatonin level 

II. Audio reaction time 

III. Self-reported sleepiness 

IV. Skin temperature.  

 

3.4.1 Melatonin level 

Melatonin levels were determined from saliva samples collected using salivettes with a cotton swab and 

cap from SARSTEDT at intervals of approximately 30 minutes during the adaptation and test periods. 

Participants were required to chew a cotton swab for one to two minutes and then place it into a tube 

(Figure 3.4). The tubes were labelled and stored in a freezer set to -20 °C, as recommended to keep the 

saliva sample stable until the time of melatonin level analysis [Middleton, 2013].  

Upon completion of all trials, the samples were packaged in dry ice to reduce degradation and 

transported to the Chorono@work laboratory at the University of Groningen (the Netherlands) for 

analysis using radioimmunoassay. This technique works by mixing a known amount of radioactive 

melatonin (2-1-iodomelatonin or H-melatonin) with a fixed amount of antibody raised against 

melatonin [De Almeida et al., 2011]. The Chorono@work laboratory was selected upon the suggestion 

of Dr. Vikki Revell (Lecturer in Translational Sleep and Circadian Physiology at the University of 

Surrey). This laboratory was also used previously by other members of the LIGHTCAP-MSCA ITN 

project (European Union’s Horizon 2020 research and innovation programme) for their melatonin 

analysis.  
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Figure 3.4. Salivettes with cotton swab and a cap for salvia collection (melatonin sampling). 

 

3.4.2. Audio reaction time 

Attention was measured using an auditory version of the PVT test, which measured reaction time from 

onset to detection of an acoustic stimulus (a 1000 Hz tone). In this experiment, a version of aPVT-B, 

initially developed by [Basner et al., 2018], was used. However, the inter-stimulus interval was 

modified to range from two to six seconds instead of the original two to five seconds. This slight 

difference was expected to reduce the predictability of the stimulus by the participants and, 

consequently, improve the test's sensitivity.  

The loudness of this signal was established at the start of each experiment session to be near the 

audibility threshold for each test participant. Adjusting the loudness to the audibility threshold 

maximizes response delay differences between different experimental conditions [Kohfeld et al., 1981]. 

Each participant's signal loudness was estimated as associated with a 50% detection rate. This threshold 

was measured twice: once when both participants were seated, once when one was seated and the other 

was walking on the treadmill. This was done to include the noise created by the treadmill and walking 

into the threshold calculation. Accordingly, two different thresholds were set for each participant: one 

for the adaptation period and one for the test period. For the PVT test, the loudness of the tone played 

to a test participant was their estimated hearing threshold (50% detection rate), which was increased by 

10 dB. This increase is perceived to be about twice as loud [Stevens, 1957], ensuring the audibility of 

every stimulus. Headphones were worn for this threshold assessment and subsequently for the PVT 

performance. The signal was played for half a second at randomised intervals ranging from two to six 

seconds. Test participants wore headphones and were instructed to press a desk-mounted response 

button as soon as they heard a stimulus. Trials were conducted in pairs. Different stimulus patterns were 

delivered to each participant to prevent the other participant’s mechanical actions from being used as a 

cue. 

cotton swab

cap

tube
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3.4.3. Self-reported sleepiness 

Self-report of sleepiness was assessed using the KSS. This is a 9-point category response scale with the 

categories labelled from 1 (very sleepy) to 9 (extremely alert) (Table 3.2). Participants were asked to 

state their sleepiness level at 30-minute intervals throughout the adaptation and test periods.  

 

Table 3.2. Response categories of the 9-point Karolinska Sleepiness Scale. 

Rating Description 

9 Extremely alert 

8 Very alert 

7 Alert 

6 Rather alert 

5 Neither alert nor sleepy 

4 Some signs of sleepiness 

3 Sleepy, but no effort to keep awake 

2 Sleepy, some effort to keep awake 

1 Very sleepy, great effort to keep awake 

 

3.4.4. Skin temperature 

Skin temperature was measured using temperature sensors (iButtons, DS1922L) attached to each 

participant at four locations: the neck, wrists, and shin. After being attached before the start of the 

adaptation period, these sensors subsequently measured temperatures and recorded them at three-second 

intervals throughout the three-hour experiment. As in previous work [Te Kulve et al., 2018], room 

temperature was also measured using an iButton, here with one suspended at a height of approximately 

one metre above the floor beside the test participants. 

 

3.5. Procedure 

The experiment was conducted between 13 October 2021 and 16 November 2021. The adaptation 

period started at 21:00, which was chosen to be around three hours before the usual sleep time of the 

recruited participants. Participants (two per session) were asked to arrive 45 minutes before the 

adaptation period to enable preparation, with the lighting condition of this preparation period being the 

same as that for the adaptation period. They wore their normal clothing and were asked to bring paper-

based reading material for the intervals between tests. Several tasks were undertaken before the 

adaptation period started: 
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I. Participants were invited to sign the consent form in accordance with ethical approval. 

II. Visual acuity was checked using a Landolt C chart to ensure an acuity of at least 6/12 (the 

minimum standard for driving in the UK [Government Digital Service, 2012]), with participants 

wearing their normal corrective lenses. 

III. Colour blindness was evaluated using Ishihara colour plates illuminated by a D65-simulating source. 

IV. The four temperature sensors (iButton) were fixed onto the skin with adhesive tape. 

V. The participants were seated in their chairs for the adaptation period. The choice of seated or 

walking for the test period was initially assigned randomly by drawing lots from a sealed bag, 

but toward the end of the experiment, the experimenter assigned this to ensure a gender-

balanced participant assignment. 

VI. Each participant’s hearing threshold was measured by presenting a series of tones of different 

loudness in random order, with the participant instructed to press a button upon detection.  

Figure 3.4. summarizes the protocol of this experiment. The dependent variables were recorded at 

regular intervals within the adaptation and test period. Saliva samples, PVT, and KSS were recorded at 

intervals of approximately 30 minutes (Figure 3.5). The PVT test was split into two three-minute blocks, 

one immediately before and one immediately after the interval point at which saliva samples and the 

KSS evaluation were taken. The results of both three-minute blocks were considered as one six-minute 

test, having responses to typically approximately 60 stimuli altogether (no significant difference was 

noticed between first and second block of the PVT test (Appendix B)). 

The measurement points for the KSS, the saliva samples and the PVT were centred on minutes 5, 30, 

60, 90 and 110 in the adaptation phase and minutes 10, 30 and 60 in the test phase. The selection of 

these intervals is upon the suggestion of Doctor Vikki Revell (Lecturer in Translational Sleep and 

Circadian Physiology at the University of Surrey) and other sleepiness psychophysiological experts 

within the LIGHTCAP consortium (https://lightcap.eu/) to enable a proper evaluation of changes in 

melatonin levels. The intervals were labelled AD1 to AD5 in the adaptation phase and T1, T2 and T3 

in the test phase. In the adaptation phase, at minutes 30 (AD2) and 90 (AD4), the KSS and saliva 

samples were recorded, but the PVT test was not conducted. Skin temperature was recorded 

continuously and subsequently interpolated for the two minutes centred on those same points.   

Two hours from the start of the adaptation period, the light setting changed to one of the four test 

conditions (Table 3.1), and one participant transitioned from being seated to walking on the treadmill, 

while the other participant remained seated. The treadmill was set to a comfortable walking speed (as 

chosen by the participant, ranging between 1.2 km/h and 2 km/h. This threshold was set prior to the 

start of the experiment). The measurement schedule in the adaptation period was set so that the second 

part of the final PVT test was completed just before the change in lighting conditions.  
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Figure 3.5. The protocol of Experiment 1.

Arrival: - 45 Start: 0

Test period (64 minutes)Adaptation period (120 minutes)

Melatonin test, KSS, PVT

Tests duration: 8 mins

PVT

-4 till -1

Melatonin

KSS

-1 till 1

PVT

1 till 4

AD1: 5     AD2: 30                AD3: 60               AD4: 90  AD5: 110              

Central Time:           0 T1: 10         T2: 30                T3: 60           

Central time for Melatonin, KSS, PVT tests:

Melatonin test, KSS

Tests duration: 2 mins

Starts at min:         120
If Central Time for tests is  0

Melatonin

KSS

-1 till 1

L1

L2

L3

L4

Ev = 8 lx – Melanopic EDI = 3.4 lx

Ev = 8 lx – Melanopic EDI = 10.4 lx

Ev = 25 lx – Melanopic EDI = 10.7 lx

Ev < 0.5 lx – Melanopic EDI < 0.5 lx
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3.6. Sample 

Participants were recruited through emails posted on volunteer recruitment lists to the University of 

Sheffield staff and students. Participants were selected from those meeting the following criteria: aged 

between 18 and 30 years; healthy (assessed using self-report of no short or long-term medication, 

regular sleep, non-smoker, no history of mental or physical health issues); habitual bedtime not later 

than midnight; not employed for night-time shift work in the past year; and not having travelled over a 

time zone in the past three months.  

Forty participants were recruited, with ten (five males and five females) allocated to each of the four 

lighting conditions shaping a between-subject design. Table 3.3 summarizes the age and gender 

diversity of the participants according to posture and lighting conditions. Participants were asked to 

keep a steady sleep-wake schedule for the seven days before the experiment, which was confirmed 

through a self-reported sleep-wake diary. On the day of their experiment, participants were asked not 

to eat bananas or chocolate during the day, nor take any medication to avoid consuming substances after 

midday which contain alcohol or caffeine and refrain from napping; otherwise, these might influence 

the melatonin analysis [Middleton, 2013]. During the experiment, participants were given a range of 

snacks, including pure orange juice, nuts, and water. Participants were paid £40 upon completion of the 

experiment. 

 

Table 3.3. Age and gender characteristics of the participants by lighting condition and posture. 

Lighting condition Posture  Age (years)  Gender (no) 

- -  Median Min. Max. Male Female 

L1 
Seated  19 18 27  2 3 

Walking  23 19 28  3 2 

L2 
Seated  19 18 26  3 2 

Walking  20 19 30  2 3 

L3 
Seated  23 18 30  3 2 

Walking  19 19 25  2 3 

L4 
Seated  19 18 30  2 3 

Walking  23 19 28  3 2 

 

 



72 

 

3.7. Summary 

Chapter 3 detailed the design of Experiment 1. It described the selection and implementation of 

independent variables: lighting condition, and posture. Furthermore, the chapter comprehensively 

described the measurement techniques (melatonin level, audio reaction time, self-reported sleepiness, 

and skin temperature) used to investigate how changes in independent variables affected the 

hypothesized aim: sleepiness mitigation. A step-by-step protocol outlining the tasks performed by 

experimenters and participants before and during the experiment was presented. This chapter concluded 

with a description of the study sample's demographics and their distribution across different 

experimental groups. The next chapter focuses on the statistical analysis of Experiment 1 findings.



 

 

Chapter 4. Results: Experiment 1 
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Chapter 4. Results: Experiment 1 

4.1. Introduction 

Chapter 3 outlines the methodology employed in Experiment 1, which examines the influence of 

independent variables (lighting conditions and posture) on participants' sleepiness. This chapter 

presents the result of Experiment 1, including outcomes of the four dependent measures: melatonin 

level, audio reaction time, self-reported sleepiness, and skin temperature. Analyses were performed 

using IBM SPSS Statistics version 28.0.0.0. The statistical significance level (alpha) was set at 0.05. 

When necessary, p-values were adjusted using Bonferroni correction to account for multiple 

comparisons [Chen et al., 2017]. 

 

4.2. Data preparation 

Before testing the distribution and selection of the most suitable analysis, the data for each variable 

should be cleaned of any errors and replaced with representative values, if necessary. 

 

4.2.1. Error cleaning 

For audio reaction time, a test participant responded to approximately 60 stimuli in each trial. Each 

participant has completed six trials per experiment night at different times. Recorded results were 

initially controlled to exclude any errors. Generally, two types of errors can occur in vigilance tests: 

errors of omission (lapses of attention) and errors of commission (response without stimuli). The error 

of omission is defined by the threshold of twice the median and measured by considering all reaction 

times without excluding any responses. The error of commission is defined as the responses without 

stimuli or responses faster than 100 ms [Basner and Dinges, 2011]. Therefore, each time the participant 

presses the responses button without a stimulus in advance or with a stimulus but with a pace faster 

than 100 ms, it will be counted as one error of commission. The data for audio reaction time was cleaned 

to include only valid responses for the analysis. No errors existed in the data for melatonin level, self-

reported sleepiness, and skin temperature. 
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4.2.2. Representative values 

For the audio reaction time, the 60 responses to acoustic stimuli per participant in a single trial must be 

condensed into a single value. The most representative of this data might be the mean or median. For 

the 40 participants, each with six trials of responses per experiment night, there are 240 datasets. To 

establish whether mean or median is the better representative value, 20 out of these 240 data sets were 

selected, and the distributions of reaction times were assessed against a normal distribution. The 

majority (80%) highlighted a non-normal distribution (Appendix C, Table C.1). Therefore, the median 

amongst the 60 responses of each participant in a single trial was selected as the representative reaction 

time for a single participant in a specific trial.  

For skin temperature, measured at three-second intervals throughout the experiment and at each test 

location (neck, wrists, and shin), a single representative value for a participant at each test interval must 

be provided before further analysis. To estimate this representative value, the mean temperature for 60 

seconds before and after each test interval was measured for each test location, assuming skin 

temperature is a continuous value and expected to be normally distributed. To establish a single value, 

the mean skin temperature at each location was averaged, providing a single value for each test interval. 

Melatonin level and self-reported sleepiness are already a single value and can be analysed directly.  

 

4.3. Testing the distribution 

The data for each dependent variable were first analysed to determine if they were normally distributed. 

This was done using four methods: comparing measures of central tendency (mean, median, and 

confidence intervals), graphical representations (box chart and histogram), measures of dispersion 

(skewness and kurtosis), and statistical tests (Shapiro-Wilks and Kolmogorov-Smirnov tests). 

The procedure for normality checks was as follows: 

First, the mean and median were compared. If the median was within the range of the mean confidence 

level (CI 95%), then the data was considered normally distributed. Otherwise, the data was not normally 

distributed.  

Second, graphical representations were used to inspect the data. If the data was normally distributed, 

the histogram and boxplot should follow normal distribution shapes Figure 4.1. Otherwise, the graphs 

would be skewed, and the data would not be normally distributed. If one suggests a normal distribution 

and the other suggests otherwise, the distribution is considered “near” normal.  
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Figure 4.1. Normal distribution graphical representation (box chart left side, histogram right side). 

 

Third, measures of dispersion were used to assess skewness and kurtosis. Skewness measures the 

asymmetry of a distribution, and kurtosis measures the sharpness of the peak of a distribution. In a 

normal distribution, skewness and kurtosis should be near zero (skewness: within ±0.5, kurtosis: within 

±1.0). If skewness and kurtosis were within the mentioned ranges, then the data is considered normally 

distributed. Otherwise, the data was not normally distributed. If one suggests a normal distribution and 

the other one suggests otherwise, the distribution is considered “near” normal. 

Fourth, two statistical tests were performed: the Kolmogorov-Smirnov and the Shapiro-Wilks tests. 

These tests are used to determine if a distribution is normally distributed. The significance level for 

these tests was 0.05. If the p-value for both tests was less than 0.05, then the data was not normally 

distributed. Otherwise, the data was considered normally distributed. 

The final decision about whether the data was normally distributed was made based on the results of all 

four methods. If the results of at least two of the methods were "yes" and the other two were “near”, 

then the data was considered normally distributed. Otherwise, the data was not normally distributed. 

 

4.3.1. Melatonin level 

For each participant (40 total) at each test interval, eight total (AD1, AD2, AD3, AD4, AD5, T1. T2, 

T3), there is a single number for melatonin level. The distribution of melatonin levels needs to be 

checked among the 40 participants to select the suitable statistical method for analysis. Melatonin levels 

did not follow a normal distribution (Appendix C, Table C.2) and were analysed using nonparametric 

statistical methods.  
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4.3.2. Audio reaction time 

For each participant (40 total) at each test interval, six total (AD1, AD3, AD5, T1, T2, T3), there is a 

single value as replaced by the median (section 4.2.2). The distribution of these representative values 

needs to be checked among the 40 participants. This distribution was normal (Appendix C, Table C.3), 

so parametric methods have been selected for further analysis. 

 

4.3.3. Self-reported sleepiness (KSS) 

For each participant (40 total) at each test interval, eight total (AD1 to T3), there is a single sleepiness 

score. KSS data are subjective and ordinal; therefore, they must be analysed using non-parametric 

methods. However, to be extra cautious, these data were also checked against normal distribution and 

found to be non-normal (Appendix C, Table C.4). Therefore, non-parametric methods were selected to 

analyse KSS results. 

 

4.3.4. Skin temperature 

For each participant (40 total) at each test interval, eight in total (AD1 to T3), there is a single 

representative as replaced by mean (section 4.2.2). The distribution of these representative values must 

be checked among the 40 participants. This distribution was normal (Appendix C, Table C.5), so 

parametric methods have been selected for further analysis. 

 

4.4. Statistical analysis 

Statistical tests are mathematical tools for analysing data designed to identify patterns and trends in a 

dataset. Selection of proper statistical analysis method is of importance as a wrong selection increases 

the chances of misinterpretation and complete drawing of conclusions. To choose a suitable statistical 

analysis method, study design (e.g., independent or related samples), number of sample groups which 

need to be analysed, distribution of each sample (normal, non-normal) and type of data (e.g., ratio, 

interval, ordinal, etc.) needs to be carefully assessed.  

A dataset that follows a normal distribution should be analysed using parametric tests and mean 

(arithmetic mean for n numbers = 
1

𝑛
 (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛)), should be used as data representative for 
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comparison. In contrast, a dataset which follows a non-normal distribution needs to be analysed using 

non-parametric tests [Parab and Bhalerao, 2010] and median (data are arranged in the order of size, and 

the data in the middle (or the mean of the data in the middle) will be considered as median) should be 

used as data representative for comparison. In the case of normally distributed variables, repeated 

measure ANOVA was employed to test the interactions between variables, followed by pairwise 

comparisons using the t-test when significant differences were observed. For variables that exhibited 

non-normal distribution, and related samples Friedman’s two-way analysis of variance by ranks was 

employed to examine interactions, followed by pairwise comparisons using the Wilcoxon signed rank 

test upon detecting significant differences. Independent samples were analysed using the Kruskal-

Wallis test. 

 

4.4.1. Melatonin level 

Figure 4.2 shows the median melatonin levels for all participants at each test interval (AD1 to T3), 

which highlights a gradual increase as the test interval progresses closer to participants' habitual bedtime 

(midnight). The test rendered a Chi-square value, which was significant (Table 4.1).  

 

 

Figure 4.2. Median melatonin level derived from saliva samples collected at each test interval (all participants). 

Error bars show the interquartile range (IQR). 
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Table 4.1. Melatonin level derived from saliva sample interaction with time, posture, and lighting condition. 

Variables p Chi-square 

Test interval < 0.001 221.2 

 T1 T2 T3 - 

Posture 0.433 0.685 0.543 - 

Lighting condition 0.837 0.880 0.989 - 

 

Figure 4.3 illustrates the alterations in melatonin levels associated with posture changes (walking vs. 

seated) during the test phase. Since posture modifications were only implemented during the test phase, 

the impact of posture on melatonin levels was assessed by comparing the result between the two groups, 

walking (n = 20) vs. seated (n = 20), using the Kruskal-Wallis Test. The result did not indicate a 

statistically significant effect of posture change at any of the test phase intervals (Table 4.1).  

 

 

Figure 4.3. Median melatonin levels derived from saliva samples for posture (seated vs. walking) at the test phase. 

Error bars show the IQR. 

 

The influence of altering lighting conditions (L1-L4) on melatonin levels was explored using two 

approaches. The first approach compared melatonin levels under the four lighting conditions that were 

employed during the test phase. This analysis revealed no statistically significant effect of lighting 

condition changes at any of the test phase intervals (Figure 4.4, Table 4.1).  
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Figure 4.4. Median melatonin levels derived from saliva samples for lighting conditions L1 to L4 at the test phase. 

Error bars show the IQR. 

 

Alternatively, a second approach can be employed, given the fact that all participants experienced the 

same lighting intervention (L3) during the adaptation phase. This serves as a control condition for 

evaluating the effect of lighting conditions on melatonin levels. The effect of lighting conditions was 

investigated by comparing the last melatonin measurement in the adaptation phase (AD5) for 

participants (n = 10) in each lighting condition with their respective test phase intervals (T1-T3). This 

effectively controls for the observed gradual increase in melatonin levels across lighting conditions. 

The general trend was initially examined by comparing melatonin levels between trials AD5, T1, T2, 

and T3. This analysis revealed Chi-squares (L1=20.937; L2=17.182; L3=20.160; L4= 20.758), which 

were all significant (p<0.001). However, subsequent pairwise comparisons (Table 4.2) did not identify 

a meaningful trend in melatonin levels attributable to changes in lighting conditions. The observed 

gradual increase in melatonin levels persisted regardless of any changes in lighting conditions.  

To conclude, the result did not suggest a significant effect of any of the lighting interventions on 

melatonin levels. This implies that melatonin levels exhibited a gradual increase throughout the 

experiment, irrespective of exposure to different lighting conditions (L1, L2, L3, and L4).  
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Table 4.2. p-values for pairwise comparison of melatonin level derived from saliva samples interaction between 

AD5 vs. T1, T2 and T3. 

Lighting condition Trial  T1 T2 T3 

L1 

AD5 1.000 0.516 0.030 

T1 - 0.846 0.030 

T2 - - 0.030 

L2 

AD5 0.444 0.030 0.090 

T1 - 0.030 0.132 

T2 - - 1.000 

L3 

AD5 0.03 0.030 0.042 

T1 - 0.168 0.282 

T2 - - 1.000 

L4 

AD5 0.132 0.030 0.042 

T1 - 0.054 0.048 

T2 - - 1.000 

* Bonferroni adjusted (significant level < 0.05). 

 

4.4.2. Audio reaction time 

Figure 4.5 illustrates the mean audio reaction times at the six intervals where this was measured (AD1 

to T3). Regarding test interval, significant differences were found between the trials (Table 4.3). 

Subsequent pairwise comparison revealed significant differences only between AD1 vs. T1 and AD1 

vs. T2 (Table 4.4). 

 

 

Figure 4.5. Mean reaction times at each test interval as measured using the acoustic PVT. Error bars show one 

standard deviation above and below the mean. 
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In contrast, regarding posture and lighting condition, the interactions (reaction time vs. posture and 

reaction time vs. lighting condition) resulted in no significant differences (Table 4.3).  

 

Table 4.3. Audio reaction time interaction with time, posture, and lighting condition. 

Variables F (df between, df within) p-value* Effect size** 

Test interval (2.299, 73.560) = 5.947 0.003 0.157 

Test interval*Lighting condition (6.896, 73.560) = 0.783 0.602 0.068 

Test interval*Posture (2.299, 73.560) = 1.331 0.271 0.298 

* Greenhouse–Geisser correction. 
** Effect size thresholds: small = 0.20; medium = 0.50; large = 0.80 [Lipsey and Wilson, 2001]. 

Table 4.4. p-values for pairwise comparison of audio reaction time according to the test interval. 

Test interval AD2 AD3 T1 T2 T3 

AD1 0.104 0.562 0.05 0.036 0.086 

AD2 - 1.000 1.000 1.000 1.000 

AD3 - - 0.903 1.000 1.000 

T1 - - - 1.000 1.000 

T2 - - - - 1.000 

* Bonferroni adjusted (significant level < 0.05). 

 

Furthermore, the analysis was repeated for only the three test sessions (T1, T2 and T3), where lighting 

conditions and posture were varied. This analysis did not reveal any significant main effects of lighting 

conditions or posture (Table 4.5). Figures 4.6 and 4.7, respectively, show the mean reaction time 

according to posture (walking vs. seated) and lighting condition (L1 to L4) for trials T1 to T3 (test 

period). 

 

Table 4.5. Audio reaction time interaction with posture and lighting condition (Test phase only). 

Variables F p-value Effect size 

Lighting condition 1.896 0.15 0.151 

Posture 0.301 0.587 0.009 
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Figure 4.6. Mean reaction time for posture (seated vs. walking) at the test phase. Error bars show one standard 

deviation above and below the mean. 

 

 

Figure 4.7. Mean reaction time for lighting conditions L1 to L4 at the test phase. Error bars show one standard 

deviation above and below the mean. 

 

4.4.3. Self-reported sleepiness 

Figure 4.8 illustrates the median sleepiness scores at each interval (AD1 to T3), which highlights a 

gradual decrease as it gets closer to participants' habitual bedtime. The test rendered a Chi-square value, 

which was significant (Table 4.6).  
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Figure 4.8. Median self-reported sleepiness score at each test interval. Error bars show the IQR (sleepiness score: 

1 = very sleep, 9 = extremely alert) 

 

Since the posture change (walking vs. seated) occurred at the test phase, the effect of posture on 

sleepiness score was assessed by comparing the results between the two groups of walking (n = 20) vs. 

seated (n = 20) in the test phase. The analysis revealed near statistically significant effects at T1 and T2 

but not at T3 (Table 4.6). As shown in Figure 4.9, this suggests a tendency for the seated participants 

to report being sleepier than the walking participants. During the adaptation phase, the test did not 

suggest a significant effect at any interval (p ⩾ 0.244 in each case). 

 

Table 4.6. Self-reported sleepiness score interaction with time, posture, and lighting condition. 

Variables p-value Chi-square 

Test interval < 0.001 179.5 

 T1 T2 T3 - 

Posture 0.056 0.091 0.208 - 

Lighting condition 0.662 0.808 0.787 - 
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Figure 4.9. Median self-reported sleepiness scores reported at each test interval according to whether the test 

participant was seated or walking during the test phase. Error bars show the IQR. Note: During the adaptation 

phase, all participants were seated. 

 

The potential influence of lighting condition changes (L1 to L4) on sleepiness score was evaluated using 

two approaches. The first approach compared sleepiness scores under the four lighting conditions 

employed in the test phase. This test suggested no significant effect of change in lighting condition at 

any of the test phase intervals (Figure 4.10 and Table 4.6).  

 

 

Figure 4.10. Median self-reported sleepiness score for lighting conditions L1 to L4 at the test phase. Error bars 

show the IQR. 
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Alternatively, a second approach can be employed, given the fact that all participants experienced the 

same lighting intervention (L3) during the adaptation phase. This serves as a control condition for 

evaluating the effect of lighting conditions on sleepiness scores. The effect of lighting condition was 

investigated by comparing the last sleepiness score in the adaptation phase (AD5) for participants (n = 

10) in each lighting condition with their respective reported test phase intervals (T1-T3). This 

effectively controls the changes in sleepiness score according to the changes in lighting conditions. The 

general trend was initially examined by comparing sleepiness scores between trials AD5, T1, T2, and 

T3. This analysis revealed Chi-squares (L1=10.273; L2=10.273; L3=12.689; L4=10.329), which were 

all significant (p ≤0.016). However, subsequent pairwise comparison (Table 4.7) did not identify a 

meaningful trend in sleepiness scores attributable to changes in lighting conditions. 

To conclude, the result did not suggest a significant effect of any of the lighting interventions on 

reported sleepiness scores. This implies that participants reported higher levels of sleepiness 

irrespective of exposure to different lighting conditions (L1, L2, L3, and L4).  

 

Table 4.7. p-values for pairwise comparison of melatonin level derived from saliva samples interaction between 

AD5 vs. T1, T2 and T3. 

Lighting condition Trial  T1 T2 T3 

L1 

AD5 1.000 1.000 0.240 

T1 - 0.204 0.156 

T2 - - 0.354 

L2 

AD5 1.000 0.576 0.084 

T1 - 0.942 0.138 

T2 - - 0.276 

L3 

AD5 1.000 0.588 0.510 

T1 - 0.150 0.504 

T2 - - 1.000 

L4 

AD5 1.000 1.000 0.240 

T1 - 0.204 0.156 

T2 - - 0.354 

* Bonferroni adjusted (significant level < 0.05). 
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4.4.4. Skin temperature 

Figure 4.11 illustrates the mean skin temperature at each of the eight test intervals. Regarding test 

interval, significant differences were observed among the trials (Table 4.8). These differences were 

investigated further using a pairwise comparison, revealing significant differences only between AD2 

vs. T1 and AD5 vs. T1 (Table 4.9). 

 

 

Figure 4.11. Mean skin temperature at each test interval. Error bars show one standard deviation above and below 

the mean. 

 

In contrast, regarding posture and lighting condition, the interactions (skin temperature vs. posture and 

skin temperature vs. lighting condition) resulted in no significant differences (Table 4.8).  

 

Table 4.8. Skin temperature interaction with time, posture, and lighting condition. 

Variables F (df between, df within) p-value* Effect size 

Test interval (3.924, 125.553) = 4.427 0.002 0.122 

Test interval*Lighting condition (11.771, 125.553) = 1.963 0.627 0.155 

Test interval*Posture (3.924, 125.553) = 2.003 0.639 0.059 

* Greenhouse–Geisser correction. 
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Table 4.9. p-values for pairwise comparison skin temperature according to test interval. 

Test interval AD2 AD3 AD4 AD5 T1 T2 T3 

AD1 1.000 1.000 1.000 1.000 0.074 0.311 1.000 

AD2 - 1.000 1.000 1.000 0.015 0.09 1.000 

AD3 - - 1.000 1.000 0.067 1.000 1.000 

AD4 - - - 1.000 0.927 1.000 1.000 

AD5 - - - - 0.042 1.000 1.000 

T1 - - - - - 1.000 0.084 

T2 - - - - - - 0.605 

* Bonferroni adjusted (significant level < 0.05). 

 

Furthermore, the analysis was repeated for only the three test sessions (T1, T2 and T3), where lighting 

conditions and posture were varied. This analysis did not reveal any significant main effects of posture 

(Table 4.10). However, a significant difference was observed for lighting conditions (Table 4.10). 

Subsequent pairwise comparisons highlighted this significant difference only between lighting 

conditions L1 and L3 and L1 and L4 (Table 4.11). Figures 4.12 and 4.13, respectively, show the mean 

reaction time according to posture (walking vs. seated) and lighting condition (L1 to L4) for trials T1 

to T3 (test period). 

 

Table 4.10. Skin temperature interaction with posture and lighting condition (Test phase only). 

Variables F p-value Effect size 

Lighting condition 4.523 0.009 0.297 

Posture 0.076 0.785 0.002 

 

Table 4.11. p-values for pairwise comparison of skin temperature according to lighting condition. 

Test interval L2 L3 L4 

L1 0.385 0.041 0.011 

L2 - 1.000 0.865 

L3 - - 1.000 

* Bonferroni adjusted (significant level < 0.05). 
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Figure 4.12. Mean skin temperature according to posture (seated vs. walking) at the test phase. Error bars show 

one standard deviation above and below the mean. 

 

 

Figure 4.13. Mean skin temperature according to lighting conditions L1 to L4 at the test phase. Error bars show 

one standard deviation above and below the mean. 
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4.5. Summary 

The aim of Experiment 1 was to explore and examine the effect of different lighting interventions 

delivering different melanopic EDIs on sleepiness-related measures.  The four test conditions presented 

melanopic EDIs of approximately less than half lux to 10 lx, which was insufficient to reveal 

meaningful differences in reaction time to an acoustic stimulus, melatonin levels derived from saliva 

samples, self-reported sleepiness, and skin temperature. These results do not suggest that road lighting 

levels that are accessible and currently practical to use in an application are sufficient to decrease 

drivers' sleepiness after dark. 

The subsequent section will discuss the findings of Experiment 1 and compare them with similar 

previous work. This chapter will further highlight current limitations to the experimental setup and 

suggest potential areas for further research.
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Chapter 5. Discussion: Experiment 1
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Chapter 5. Discussion: Experiment 1 

5.1. Introduction 

The current chapter initially evaluates whether the experimental findings support the hypotheses. It then 

proceeds to critically examine the validity of the current findings by comparison with previous research, 

identifies the limitations of the study, and makes suggestions for further research.  

Experiment 1 investigated hypothesis H1 (An increase in melanopic EDI (lx) leads to a decrease in 

sleepiness when driving in the evening after dark) using four different measures of sleepiness 

(melatonin level, audio reaction time, self-reported sleepiness, and skin temperature) in a laboratory 

setting. The experiment commenced after dark and three hours before the participants’ habitual bedtime. 

Previous research suggests that as the time approaches an individual habitual bedtime, he/she would 

experience increased levels of sleepiness as indicated by higher melatonin levels, slower audio reaction 

time and higher error rates, increased self-reported sleepiness, and higher skin temperature. Experiment 

1 aimed to determine whether exposure to a light intervention with higher melanopic EDI (lx) than 

typically used in road lighting could mitigate sleepiness. The interaction between lighting conditions 

(L1 to L4) and four measures of sleepiness is summarised in Table 5.1. 

 

Table 5.1. Interaction between lighting conditions (L1 to L4) with measures of sleepiness used in Experiment 1. 

Sleepiness measure Impact Interpretation 

Melatonin level  Not significant Melatonin levels gradually increase as bedtime 

approaches, indicating a normal pattern of getting 

sleepy regardless of exposure to any of the lighting 

conditions. 

Audio reaction time (PVT) Not significant Exposure to neither of the lighting conditions 

resulted in a faster reaction time.  

Self-reported sleepiness  Not significant Sleepiness scores gradually decreased as bedtime 

approached, indicating a normal pattern of getting 

sleepy regardless of exposure to any of the lighting 

conditions. 

Skin temperature Significant Skin temperature was higher in lighting conditions 

L3 and L4 when compared with lighting condition 

L1, indicating higher levels of sleepiness. 

 

As stated in hypothesis H1, this experiment aimed to mitigate sleepiness using lighting conditions with 

higher levels of melanopic EDIs. However, the findings regarding physiological arousal indicate that 

higher levels of melanopic EDI in lighting conditions L2 and L3 (≈ 10 lx) compared to L1 (3.4 lx) and 
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L4 (< 0.5 lx) were not sufficient to interfere with the expected gradual increase of melatonin hormone 

as habitual bedtime approached. 

The other physiological measure of this study, skin temperature, exhibited significant changes which 

did not appear to be systematic. As noted in the literature review in Chapter 2, lower skin temperature 

levels are associated with lower levels of sleepiness [Wright et al., 2002; Kleitman and Jackson, 1950; 

Hull et al., 2003]. Therefore, as hypothesized, it was expected that exposure to higher levels of 

melanopic EDI would result in lower levels of skin temperature, while lower levels of melanopic EDI 

would result in higher levels of skin temperature. 

However, while compared to lighting condition L1, exposure to higher levels of melanopic EDI in 

lighting condition L2 did not result in a significant effect, the same levels of melanopic EDI as lighting 

condition L2 with different spectrum and intensity, lighting condition L3 resulted in higher levels of 

skin temperature indicating higher levels of sleepiness despite the expectation of lower levels. 

Regarding lighting condition L4, however, as expected, higher skin temperature levels were observed 

only when compared to lighting condition L1, indicating higher levels of sleepiness under lower levels 

of melanopic EDIs. As a result of these inconsistencies in skin temperature, which might have occurred 

due to slight changes in room temperature in different sessions, the findings do not support hypothesis 

H1 and draw the same conclusion as the other physiological measure: melatonin levels. 

The result of subjective assessment (KSS) and performance in the cognitive task (audio reaction time-

PVT) support the findings of the physiological measures. Regarding subjective assessment, according 

to the hypothesis, it was expected that participants report lower levels of sleepiness when exposed to 

higher levels of melanopic EDI. However, participants reported higher levels of sleepiness as their 

habitual bedtime approached, regardless of the lighting conditions they were exposed to. Similarly, 

regarding performance in the cognitive task, it was anticipated that exposure to higher levels of 

melanopic EDI result in lower levels of sleepiness and, consequently, improved performance in the 

audio reaction time task. However, the result of this task also demonstrates comparable performance 

across all lighting conditions, indicating no significant impact of exposure to higher levels of melanopic 

EDI. 

 

5.2. Comparison with previous research 

Tables 5.2 and 5.3 summarise the current and similar previous studies design, and findings. These 

studies differed in terms of adaptation and test periods, lighting interventions, method of conduction 

(field vs. laboratory), and outcome metrics (sleepiness measurement techniques).
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Table 5.2. Comparison of the current and previous studies’ adaptation, timing, and lighting intervention. 

Study Method 

Timing Illuminance at the eye (lx) 

Adaptation Test Adaptation period Test period* 

- - Ev
** Melanopic Ev Melanopic 

Current experiment Laboratory 21:00 – 22:00 22:00 – 00:00 25.0 10.7 8.0 10.7 

Alshdaifat, and Fotios 2023 Laboratory 21:00 – 22:00 22:00 – 00:00 25 10.7 83 98.8 

Bhagavathula et al., 2021 Field (closed road driving) 23:00 – 01:00 01:00 – 03:00 200.0 87.1 1.9 0.8 

Rodríguez-Morilla et al., 2017 Laboratory (simulator driving) 21:00 – 21:45 21:45 – 23:00 < 1.0 < 1.0 469 224 

Taillard et al., 2012 Field (motorway driving) 07:30 – 00:30 01:00 – 05:00 - - 20 - 

Phipps-Nelson et al., 2009 Laboratory (simulator driving) 18:00 – 21:00 21:00 – 09:00 < 1.0 - 1.15 - 

* Only short wavelength lighting intervention with the highest intensity is reported here (refer to section 2.11.2). 
** Vertical illuminance at the eye (photopic). 

 

Table 5.3. Comparison of the outcome metrics used in the current and previous studies based on the presence of significant effect of short wavelength lighting intervention. 

Study 

Outcome metric (significant effect (✓), non-significant effect ()) 

Melatonin Skin temperature PVT EEG Ocular measure Self-reports Hazard detection Driving performance 

Current experiment  ✓  - -  - - 

Alshdaifat, and Fotios 2023 ✓ - ✓ - - - - - 

Bhagavathula et al., 2021  - - -     

Rodríguez-Morilla et al., 2017 - ✓ ✓ - -  -  

Taillard et al., 2012 - - - - - - - ✓ 

Phipps-Nelson et al., 2009  - ✓ ✓ ✓  -  
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The current findings align with those of Bhagavathula et al., 2021, despite employing a higher 

melanopic EDI (10 lx) compared to their work (0.8 lx). However, the lack of a significant impact on 

sleepiness may not be surprising, considering that the highest melanopic EDI used in the current 

experiment approaches the recommended maximum threshold for the three hours before habitual 

bedtime to prevent melatonin suppression [Brown et al., 2022] and might not be sufficient to elicit the 

anticipated mitigation responses to sleepiness. 

Conversely, Phipps-Nelson et al., 2009, demonstrated that short-wavelength blue light exposure of 

corneal illuminances as low as 1.15 lx has the potential to affect physiological measures of attention 

and mitigate sleepiness, as evidenced by suppressed EEG, reduced incidence of slow eye movement, 

and faster PVT reaction time. These findings are not replicated in the current experiment. However, 

these discrepancies in outcomes could be attributed to the timing of the study; participants in the current 

experiment were examined from 21:00 to midnight, whereas Phipps-Nelson et al., 2009, studied their 

participants at night from 01:00 to 05:00 (early morning), potentially resulting in greater sleep 

deprivation and higher sleep pressure.  

Regardless of these differences, another study by Rodríguez-Morilla et al., 2017 revealed that even 

exposure to melanopic EDIs as high as 224 lx, which has been shown to have a high likelihood of 

affecting physiological measures of attention (e.g., melatonin level, body temperature, brain activity), 

was not sufficient to improve attention by mitigating sleepiness. 

Another major distinction between these studies lies in the lighting levels during the adaptation period. 

Most of the fundamental studies that have proven an effect of light on sleepiness employed periods of 

dark adaptation [e.g., Rahman et al., 2014; Souman et al., 2018]. Among the driving-related studies 

discussed in this chapter, Phipps-Nelson et al., 2009, and Rodríguez-Morilla et al., 2017 utilized periods 

of dark adaptation prior to a bright test period. Conversely, the current experiment and the work of 

Bhagavathula et al., 2021 employed periods of bright adaptation. In terms of practical relevance, periods 

of dark adaptation are unlikely to occur before a real-life driving scenario. 

The influence of light exposure on driving performance is a topic of ongoing research. Several factors 

affect the results driven by such studies: 

I. Physiological Effects and Dark Adaptation: 

Studies utilizing extended periods of dark adaptation followed by bright light exposure (often 

exceeding typical road illumination) have demonstrated significant psychophysiological effects 

on humans. These changes include alterations in melatonin suppression, pupillary response, 

and circadian rhythm regulation. While these findings offer valuable insights into the impact of 

light on human psychophysiological performance, the artificial nature of such dark adaptation 



96 

 

scenarios limits their generalizability to real-world driving situations where drivers are exposed 

to bright light within indoor environments before driving.  

II. Limited Effects Under Realistic Lighting: 

Conversely, research that replicates more realistic lighting conditions, such as transitioning 

from a brightly lit environment to road lighting levels, has yielded less conclusive results. These 

studies have not identified significant physiological changes that directly translate to 

compromised driving performance. This suggests that the human visual system adapts 

relatively quickly to standard bright light followed by lower illumination, potentially 

minimizing any negative effects on driving ability. 

III. Adaptation as a Key Factor: 

The contrasting findings from these research efforts underscore the importance of considering 

adaptation conditions when assessing the impact of light on driving performance. While 

extreme light exposure or prolonged darkness might trigger pronounced physiological 

responses, these scenarios are not representative of typical nighttime driving experiences. 

Future research should prioritize replicating realistic adaptation sequences to gain a more 

comprehensive understanding of how light influences drivers under actual road conditions. 

To date, the studies that have successfully demonstrated a significant impact of light, at least at the 

physiological level, regardless of whether this effect translates to real-world tasks such as driving and 

improving its performance, are those that utilized dark adaptation periods or employed an extreme level 

of melanopic EDI (98.8 lx) combined with a bright period of adaptation [Alshdaifat, and Fotios 2023]. 

On the contrary, studies that employed bright adaptation periods combined with applicable levels of 

road lighting were unable to find significant effects of light, even at the physiological level. This 

suggests that adaptation conditions play a crucial role, and we may need to employ conditions (dark 

adaptation) that are atypical in natural settings to reveal an effect under lighting conditions relevant to 

outdoor lighting. 

 

5.3. Limitations and future research 

This study was limited to a young age group (18-30 years old) and therefore does not represent older 

drivers. There is evidence that ageing alters non-visual responses to light. With ageing, pupil size 

decreases, allowing less light to reach the retina. Additionally, ageing causes changes within the 

crystalline lens, such as increased lens density, which alters spectral absorption, particularly within the 

short wavelength light range. Furthermore, lens darkening due to ageing results in yellow pigmentation, 

reducing light transmission to the retina [Herljevic et al., 2005]. Exposure to short-wavelength blue 
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light has been shown to modulate brain responses regardless of age. However, the impact of short-

wavelength blue light diminishes with ageing [Daneault et al., 2018]. This implies that older adults 

require higher light levels to elicit similar non-visual responses as their younger counterparts. Therefore, 

for the null effect findings of this experiment, it is expected that including older age groups would yield 

similar conclusions. Nevertheless, it remains essential that future research considers a broader range of 

age groups, including the elderly, to further substantiate the findings of the current experiment.  

The salivary sampling method employed in the current experiment for melatonin measurement was 

non-invasive and has been reported as a reliable tool specifically for application and field research 

where conducting blood sampling may interfere with the act of driving. However, blood sampling is 

reportedly more accurate. It has the potential to detect even small changes in melatonin levels, as plasma 

melatonin levels are approximately three times higher than salivary melatonin levels. Obtaining blood 

samples would require authorization from the UK National Health Service (NHS). Repeating this 

experiment with blood samples instead of salivary melatonin might reveal larger melatonin contrasts 

due to lighting interventions and potentially lead to a significant effect of the light interventions on 

melatonin levels. However, the result from the current experiment, using saliva sampling, revealed a 

significant increase in melatonin levels, and for a lighting intervention to be effective in mitigating 

sleepiness, a significant reduction or suppression would be required, implying a complete reversal of 

the melatonin secretion trends observed in the current experiment saliva sampling. Observing such a 

trend will be less likely even by blood sampling under lighting interventions of the current experiment. 

Blood sampling might be an option for future laboratory studies but is less likely to be feasible in field 

studies during driving, as it could interfere with the act of driving and pose safety concerns in the 

unsanitary environment of a car. 

The current experiment was conducted in a controlled laboratory environment where any light spill 

from outside was excluded. The four lighting conditions were derived from the same LED array so that 

the only changes were of intensity and SPD – uniformity was maintained constant. In an outdoor 

environment, drivers would be exposed to changes in lighting due to vehicle headlights, light spills 

from buildings, moonlight, etc. While controlled laboratory exposure ensures measurement of the 

change caused by changes in lighting conditions, the exposure variability of field studies informs us 

about its relevance. Conducting this experiment in a laboratory environment allowed to investigate any 

effect of light intervention on sleepiness and performance in a safe environment [Davenne et al., 2012]. 

Real-world driving involves greater stimulation and cognitive load compared to a seated position in a 

laboratory setting [Philip et al., 2005]. To address this limitation, half the participants were asked to 

walk on a treadmill, as walking has been shown to increase cognitive workload [Perry et al., 2008; 

Hoang et al., 2020] which could potentially simulate the cognitive demands of driving. (Focuses on 

replicating cognitive workload). 
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Regarding melatonin levels, conducting this experiment in a naturalistic environment is likely to yield 

similar conclusions, as, to our knowledge, no interaction exists between cognitive load and melatonin 

levels. However, concerning the auditory reaction time (PVT) task, it is plausible that improved 

performance could be observed under exposure to a higher level of melanopic EDI (lx) when 

considering the combined effects of cognitive impairment induced by naturalistic driving and sleepiness. 

It is important to note that this could be the case if the effect of monotony on cognitive impairment is 

disregarded. Monotonous environments, such as seated positions in a laboratory setting, have also been 

shown to induce cognitive impairment [e.g., Körber et al., 2015]. Theoretically, this cognitive 

impairment, in combination with sleepiness, could have been mitigated by exposure to higher levels of 

melanopic EDI (lx) employed. However, this was not observed in the current experiment. Nevertheless, 

future work could benefit from replicating this experiment under more naturalistic conditions, such as 

in the field or test track, since cognitive load and sleepiness might not be the sole underlying 

mechanisms behind improved driving performance due to exposure to investigated lighting 

interventions. 

Each experimental session involved two participants. The presence of multiple occupants in a vehicle 

is a common real-world driving scenario. Including two participants in a single experimental setup 

could enhance ecological validity by mirroring this aspect of real-world driving. However, from a 

psychological perspective, the simultaneous presence of two participants in the same room and 

experimental session could be considered a limitation of the findings due to potential effects of [Orne, 

2017]: 

I. Social Facilitation: The presence of others can sometimes enhance performance, particularly 

on simple tasks. Participants might feel motivated to work harder or more accurately when they 

know they are being observed. 

II. Demand Characteristics: Participants might alter their behaviour to please the experimenter or 

avoid appearing incompetent. This can lead to biased results. 

III. Distraction: The presence of another participant can be distracting, leading to reduced focus on 

the task at hand. 

IV. Social Inhibition: In some cases, the presence of others can make participants feel anxious or 

self-conscious, leading to poorer performance. 

V. Competition: If the task involves competition, participants might focus on outperforming each 

other rather than on the task itself, potentially distorting results. 

To minimize the potential effects of these factors on the results, participants were given clear 

instructions and conducted practice trials to familiarize themselves with the experimental tasks. They 

were also explicitly instructed to avoid conversing with one another. Auditory stimuli for the PVT tests 
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were presented to each participant at different (randomly assigned) time intervals to prevent one 

participant's response from influencing the others. Additionally, melatonin and skin temperature are 

physiological measures that are not influenced by the number of participants in a single experimental 

trial. 

In the current experiment, participants were instructed to refrain from consuming caffeine-containing 

products after midday on the day of the experiment and to maintain a consistent sleep-wake schedule 

for one week prior to the experiment. This protocol was verified through sleep diaries and personal 

reports. To ensure that they follow this, participants received daily reminders. However, previous work 

has shown the tendency of the participants to misrepresent theoretically relevant information (e.g., 

demographics) to fulfil the explicitly defined criteria for participation in a study [Chandler and Paolacci, 

2017]. Therefore, when participants provide responses for which verification is impossible (e.g. what 

time they went to bed, whether they had coffee that afternoon), it is not unlikely that they may provide 

inaccurate information. This is likely due to a lack of understanding of the implications of inaccurate 

responses and the desire to participate in order to earn money. Alternatively, there are other options 

(e.g., actigraphy) to monitor sleep-wake patterns objectively rather than relying solely on self-reported 

data. Actigraphy devices, worn on the wrist, provide objective measures of sleep patterns and 

parameters, allowing for the assessment of sleep habits in natural sleep environments. Previous research 

suggested actigraphy as an accurate measure to monitor circadian rhythms and sleep patterns prior to 

an experiment [Martin and Hakim, 2011]. However, it has also been suggested not to consider 

actigraphy as the only assessment method. To maximize the validity, future studies may consider using 

actigraphy in parallel with other evaluation methods such as interviews, sleep diaries, etc. [Martin and 

Hakim, 2011].  

Further research is required to assess whether the no-effect findings in the current experiment are real. 

This could involve repeating the experiment with a broader range of lighting conditions, particularly 

lighting of higher melanopic EDI. Additionally, increasing participants' walking speed (thus enhancing 

their cognitive load) and recruiting older or sleep-deprived individuals might provide valuable insight. 

A recent study by Alshdaifat and Fotios in 2023 [Alshdaifat and Fotios, 2023], replicated the current 

experiment setup using a higher level of melanopic EDI (98.8 lx) and was able to prove an effect and, 

therefore, prove that the experiment setup works as expected.  Nevertheless, it is crucial to investigate 

the impact of these lighting conditions on hazard detection while driving, as these changes may improve 

driving performance by mitigating sleepiness while simultaneously affecting object visibility and eye 

adaptation, potentially hindering hazard detection.   
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5.4. Summary 

Chapter 5 discussed the findings of Experiment 1 undertaken to explore the potential of light in 

mitigating sleepiness, thereby aiding attention while driving. It further compared the results of the 

experiment to previous studies and established the reliability of the findings. Additionally, it highlighted 

the limitations of the current work and the implications of these limitations for the findings of the work 

and identified the potential for further research. The next chapter will discuss the method for Experiment 

2. 



 

 

Chapter 6. Method: Experiment 2 
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Chapter 6. Method: Experiment 2 

6.1. Introduction 

The literature review (Chapter 2) established that light can serve as an “aids to vision”, potentially 

influencing distraction by enhancing drivers’ cognitive and visual performance. This could lead to 

improved hazard detection and, consequently, a reduced crash risk. However, the literature lacks 

sufficient evidence to support using light as a distraction mitigator. Previous studies (section 2.9) which 

examined the effects of road lighting on driving performance: 

I. Did not include parallel tasks of driving (e.g., navigating using GPS, conversing with other 

passengers, …). 

II. Were conducted in highly controlled environments where distractive activities had a low 

chance of occurrence. 

III. Tended to highly monitor and observe participants which makes it less likely that participants 

engage in common distractive tasks.  

IV. Did not investigate the potential non-visual responses of light on drivers’ attention and reaction 

to hazards. 

Consequently, there is a need to conduct further research into the potential of light, such as increased 

road surface luminance, in-vehicle short-wavelength blue light, and pedestrian-worn flashing LED 

devices, to mitigate driver distraction effectively. 

Experiment 2 was conducted to test four hypotheses: 

H2: Distraction (via acoustic or visual stimuli) leads to a deterioration in hazard detection, as 

indicated by an increase in reaction time from onset of the hazard stimulus to its detection or a 

decrease in detection rate. 

H3: An increase in road surface luminance leads to an improvement in hazard detection, as 

indicated by an increase in reaction time from onset of the hazard stimulus to its detection or a 

decrease in detection rate while distracted. 

H4: In-vehicle short-wavelength blue light (increment in melanopic EDI exposure) leads to an 

improvement in hazard detection, as indicated by an increase in reaction time from onset of the 

hazard stimulus to its detection or a decrease in detection rate while distracted. 
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H5: Pedestrian-worn “aids to vision” lead to an improvement in hazard detection, as indicated 

by an increase in reaction time from onset of the hazard stimulus to its detection or a decrease 

in detection rate while distracted. 

This chapter details the methodology employed in Experiment 2, which aimed to investigate the extent 

to which light can serve as an “aids to vision” and enhance drivers’ attention during typical journeys 

under specific lighting conditions accessible in vehicles and on roads. This experiment was reviewed 

by the University of Sheffield ethics board and gained approval prior to conduction (reference number 

049792, dated 19 August 2022). 

 

6.2. Apparatus  

Hazard detection was investigated using a 1:10 scale model simulating a driver’s view of a multi-lane 

road with an opposing carriageway (Figure 6.1). 

 

 

Figure 6.1. The scene from just behind the observer’s position. The photo was taken under Lighting condition L2. 

 

This apparatus was used in previous work [Fotios et al., 2018; Fotios et al., 2019] but extended with 

additional detection hazards. The scale model is in a cuboid chamber with dimensions approximately 5 

m long, 2.5 m wide, and 1.5 m high (Figures 6.2 and 6.3), raised on stilts above the laboratory floor. A 

seated participant outside the chamber observed the interior via an acrylic window positioned at the 

base of one end wall. Two neutral density filters (each of transmittance = 0.5) were installed on the 

acrylic window to reduce the luminance from the participant’s perspective without a significant effect 

on the spectrum (spectral transmittance of the neutral density filters checked prior to the experiment 

using JETI spectroradiometer model no. 1511). 
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The chamber floor was constructed from MDF sheets painted predominantly in neutral grey (Munsell 

N5, reflectance = 0.2) to represent the diffuse reflectance of an asphalt road surface [CIE 144:2001]. 

The remaining chamber interior surfaces, including plywood sidewalls, ceiling accents, and the 

windowed end wall, were coated in matte black paint. A dark grey PVC rear projection screen formed 

the chamber's back wall. The road surface was marked with intermittent white lines to delineate lanes. 

Participants were positioned in chairs adjusted to achieve an eye level approximately 150 millimetres 

above the road surface, simulating a driver's perspective. 

The view from the participants was in a middle lane, with additional lanes on the left and right-hand 

sides. Additionally, within the lanes, there was a strip on the nearside (left-hand) edge simulating a 

footpath or hard shoulder. There is an equal-width lane on either side of the centre lane and another 

reduced-width lane (hard shoulder/footpath) on each side (Figure 6.2).  

 

 

Figure 6.2. Plan view of the floor of the apparatus (not to scale). 

 

The room's electric lighting was switched off during the experiment. The test environment was lit using 

a pair of LED arrays (THOUSLITE LED Cubes), the same model of LED array used in Experiment 1, 

to stimulate overhead road lighting (Figure 6.3). The LED strip (Figure 6.2), simulating the in-vehicle 

light, was a Philips light strip model plus V4 (2 metres) with tuneable SPD and intensity. It can provide 

a colour temperature range of 2000-6500 K and a lumen output of 1700 lm and 1140 lm at 4000 K and 

2700 K, respectively. 
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Figure 6.3. Side section of the apparatus (not to scale). 
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6.3. Independent variables 

The independent variables used in this experiment were: 

I. Lighting condition: there were four lighting conditions: two levels of road lighting (L1 and L2) 

and two levels of in-vehicle lighting mixed with road lighting (L3 and L4) 

II. Distraction tasks: there were three levels, including a controlled setting (T1), a visual distraction 

(T2), and an acoustic distraction (T3) 

III. Pedestrian model: there were three versions labelled as clothing levels: grey (C1), high visibility 

(C2), and Flashing LED (C3) 

 

6.3.1. Lighting conditions 

There were four lighting conditions (L1 to L4), as shown in Tables 6.1 and 6.2. lighting conditions L1 

and L2 represented typical road lighting, each having the same SPD but different average road surface 

luminance. A grid of luminance was measured between the two LED arrays (simulating road lighting 

at a spacing of 27 m) to ensure uniformity and measure average luminance on the road surface. The 

details of these measurements are recorded in Appendix D.  

The mean luminance of lighting condition L1 was 0.06 cd/m2 with longitudinal uniformity 

(minimum/maximum) of 0.32. Similarly, the mean luminance of lighting condition L2 was 0.57 cd/m2. 

Compared with the minimum maintained average luminance in dry conditions of M class in British 

Standard [BS EN 13201-2:2015], the mean luminance of L1 (0.06 cd/m2) was lower than class M6 (0.3 

cd/m2). Similarly, the mean luminance in L2 (0.57 cd/m2) was between class M4 (0.75 cd/m2) and M5 

(0.5 cd/m2). 

Lighting condition L3 was a combination of L1 with short-wavelength blue light delivered by an 

overhead LED strip (Figure 6.2), simulating an in-vehicle light source. The combination provided the 

same illuminance at the eye as did lighting condition L2. This was done to compare the contributions 

to detecting increased road surface luminance or enhanced short-wavelength blue light. The in-vehicle 

light was positioned directly above the participant observation point, at a height of 350 mm between 

the LED strip and the observation point (observer’s typical eye height) (Figures 6.2 and 6.3). Similar 

in-vehicle light installations were used in previous work, where a luminaire panel of dimensions 240 

mm (L) × 160 mm (W) × 20 mm (H) was installed right above the driver's head and redirected light to 

the vehicle interior near the driver, illuminating the driver’s face and body [Canazei et al., 2021]. 
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Lighting condition L4 was the same combination of road and in-vehicle light sources as L3 but 

increased the intensity of the in-vehicle short-wavelength blue light to investigate the potential of 

enhanced non-visual responses of this light content on visual and cognitive performance. Lighting 

condition L4 offered a 2-log unit increase of melanopic EDI over L3, a relatively extreme change chosen 

with the expectation of revealing an effect if one exists.  

 

Table 6.1. Lighting conditions used in Experiment 2: general characteristics. 

Light condition Road lighting In-vehicle light 

source 

Combined effect 

Ev* 

(lx) 

L** 

(cd/m2) 

CCT SP 

ratio 

Ev 

(lx) 

M*** 

EDI (lx) 

Ev 

(lx) 

M 

EDI (lx) 

L1 0.03 0.1 2963 1.0 - - 0.03 0.01 

L2 0.13 0.9 2939 1.0 - - 0.13 0.05 

L3 0.03 0.1 2963 1.0 0.09 0.81 0.12 0.83 

L4 0.03 0.1 2963 1.0 13.29 80.56 13.31 80.60 

* Vertical illuminance measured at the eye of the observer.     
** Nominal luminance – Measured by pointing the luminance meter from participant eye position to the location 
of furthest obstacle between the two cars. 
** Melanopic content. 

 

Table 6.2. Lighting conditions used in Experiment 2: SPD-derived metrics. 

Lighting condition  Αlpha-opic equivalent daylight (D65) illuminance (lx)* 

S-cone M-cone L-cone Rhodopic Melanopic 

L1 0.02 0.03 0.04 0.02 0.01 

L2 0.04 0.10 0.13 0.06 0.05 

L3 1.22 0.27 0.16 0.63 0.83 

L4 118.15 27.68 16.80 61.80 80.60 

* Alpha-opic equivalent daylight illuminance calculated using luox calculator (https://luox.app/) [Spitschan et al.] 

 

6.3.2. Distraction tasks 

Participants were required to perform one of the three distraction tasks: control (T1), visual distraction 

(T2), and acoustic distraction (T3). These tasks were designed to impose additional cognitive demands 

on the participants.  

For the control task (T1), participants were instructed to focus their gaze on a cross projected onto the 

chamber's rear wall. Rather than being static, the cross moved, following a random path of movement 

https://luox.app/
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within a 10-degree circle, with the lower fifth excluded to avoid it coming too close to the vehicle ahead. 

This movement represented the typical gaze behaviour of drivers [Winter et al., 2017]. 

This task was used to encourage participants to look ahead rather than toward any of the hazards, thus 

increasing the likelihood that hazards were detected with peripheral vision. However, the degree to 

which participants remained fixated on the cross was not measured. Measured using a Konica Minolta 

LS-150 luminance meter, the cross luminance (no other light sources present and at its central location), 

was1.3 cd/m2 against the background luminance of 0.03 cd/m2. From a viewing distance of roughly 5.1 

metres, the cross occupied a visual angle ranging from 34 to 54 arcmin. This was consistent with 

previous works [Fotios et al., 2018; Fotios et al., 2019].  This task (following the dynamic fixation cross) 

was retained and extended in the other two distraction tasks (T2 and T3). 

During the visual distraction task (T2) trials, the fixation cross was replaced by a random digit between 

1 and 9, being presented for 500 ms every two seconds. Participants were asked to indicate the digit 

that had appeared on the rear screen by pressing the corresponding digit on a small dial pad (Storm 

Interface 720GFXi) located just above the steering wheel (Figure 6.4). The buttons from 1 to 9 on the 

dial pad were white to aid participants in seeing them during the experiment. The Python program 

measured the reaction time automatically and recorded it in a relative log file containing all inputs and 

outputs with accurate timestamps in milliseconds. 

This task simulated that used in previous work [Fotios et al., 2019], but with the oral response replaced 

here by a manual response. This was done to simulate the common distraction to driving of using an in-

vehicle device such as a mobile phone or infotainment system [Robbins and Fotios, 2021].  

 

 

Figure 6.4. The steering wheel and response mechanisms. 

Response button:

• Representing vehicle horn

• Used for reaction to vehicle lane change

Paddle shifter behind the wheel:

• Representing headlamp flash

• Used for reaction to pedestrian

Break pedal:

• Used for reaction to road 

surface obstacles 

Dial pad:

• Representing cell phone or infotainment 

system

• Used for recording participant response 

to visual distraction task
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The acoustic distraction task (T3) was achieved by asking participants to give an oral response to an 

acoustic stimulus in parallel to following the dynamic fixation cross. The stimulus was a synthetically 

voiced randomised series of letters (here, played over wired earbuds). Eight phonologically distinct 

letters (A, B, C, F, G, H, I, K), similar to what was used by Kane et al., 2007, were used to be easily 

distinctive for the researchers to record. These letters were randomised by the Python program, which 

was used to control the secondary tasks. The interval between each letter being read aloud was five 

seconds. They were played by in-ear headphones (Ludos SPECTA Wired Earbuds), and the voice was 

from Google text-to-speech, an assistive service that reads digital texts aloud.  

The researchers recorded participants' verbal responses to the acoustic distraction task immediately after 

a response was given by entering the response directly into the Python program using a computer 

keyboard. To minimize the delay effect on recording a single response, researchers could see the order 

of random letter generation and were able to position their hands toward the correct key before the 

participant gave a response. The reaction time was measured automatically within the Python program 

immediately after a response entered by the researchers. A relative log file including all responses was 

created at the end of each trial, containing all inputs and outputs with accurate timestamps in 

milliseconds.  

While performing the acoustic distraction task, rather than reporting the letter just heard, participants 

were required to repeat the letter heard two positions previously. This delayed letter recall task, known 

as an n-back task, involves participants repeating aloud the sequence presented to them but delayed by 

‘n’ letters [Li et al., 2018, Mehler et al., 2011] (for more information, see section 2.7.1). In this case, 

we used n = 2, meaning participants repeated the letter two positions aloud before the current one. With 

n set to 2, this task presents a similar difficulty to that of a word generation task [Fotios et al., 2021] 

and mirrors the cognitive demands of a conversation with a passenger, a common driver distraction 

[Robbins and Fotios, 2022]. 

 

6.3.3. Pedestrian model versions 

There were three versions of the pedestrian model (Figure 6.6), labelled in the analysis as clothing levels 

C1, C2 and C3. A description of the pedestrian model is given in section 6.4. The three levels of clothing 

were:   
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I. Grey (C1): The side facing the test participant was painted a uniform grey, of reflectance 20%, 

presenting luminances of 0.015 cd/m2 and 0.142 cd/m2 under lighting conditions L1 and L2, 

respectively. The colour Grey was chosen as a neutral colour that appears consistent under 

different lighting conditions [Bhagavathula et al., 2021a]. 

II. High-visibility material (C2): The model had a square piece (20 mm x 20 mm) of retroreflective 

and fluorescent material cut from an ANSI 107 class 2 high-visibility vest. This is the sort 

typically used by both pedestrians and cyclists at night, as well as for occupational safety [Sayer 

et al., 2004], presenting luminances of 0.022 cd/m2 and 0.194 cd/m2 under lighting conditions 

L1 and L2. Following previous work, this was positioned on the pedestrian’s chest [Balk et al., 

2008]. 

III. Flashing LED (C3): A flashing LED was placed at the centre of the grey pedestrian model. The 

LED flashed at a rate of 150 flashes per minute with a luminance of 0.15 cd/m2 (measured in 

the L1 condition).  

 

 

Figure 6.5. Types of pedestrian targets (from left to right: none, a flashing LED light, and a patch of high-visibility 

material). 

 

6.4. Dependent variables 

The two primary dependent variables in Experiment 2 were: 

I. Hazards detection tasks: participants’ ability to detect hazards was assessed using reaction time 

(ms) and detection rate (percentage). 

II. Distraction task performance: participants’ performance to the onset of distractive stimulus on 

visual and acoustic distraction tasks was measured using reaction time (ms) and detection rate 

(percentage). 

C1 C2 C3
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Concerning hazard detection, participants were required to detect three hazards with different variations 

(Table 6.3). The following Sections (6.4.1 to 6.4.3) describe the hazard detection tasks. 

 

Table 6.3. Experiment 2 hazards and their variations. 

Hazard Variation Number of repeats 

Road surface obstacle 

Near distance 3 

Mid distance 3 

Far distance 3 

Vehicle lane change 
Left-hand side 3 

Right-hand side 3 

Pedestrian detection 

Grey clothing  3 

High-visibility clothing 3 

Flashing LED clothing 3 

 

6.4.1 Road surface obstacle 

Participants were required to detect an obstacle suddenly appearing on the surface of the road ahead. 

Detection of this obstacle was indicated by pressing a foot pedal, representing the action of using a 

brake pedal (Figure 6.4). There were three road surface obstacles, situated at near, intermediate and far 

locations in the driver’s lane. The far obstacle was located 4.7 m ahead of the driver, a simulated 

distance ahead of 47 metres from the observer’s eyes: this was the target used in previous work [Fotios 

et al., 2018]. The near and intermediate obstacles were installed for the current work, on the same axis 

along the road as the far obstacle, but at simulated distances ahead of 29 m and 17 m from the eyes. 

The obstacles were formed from a balsawood vane, 60 mm wide and painted matt grey (Munsell N5) 

visually resembling a car tyre lying on its side at a distance. These obstacles, normally hidden below 

the road surface, randomly appeared by a servo motor arm via a designated slot, rising 20 mm above 

the road level. The far, middle and near obstacles subtended angles at the observer’s eyes of 14.6 arcmin, 

23.7 arcmin and 40.4 arcmin in height, and 121.3 arcmin, 71.1 arcmin, and 43.8 arcmin in width. The 

obstacles rose to a height of 20 mm in one second, maintained that height for two seconds, and then 

descended back to the road surface over one second. This rate of growth in visual height is comparable 

with the increase in the apparent size of a static obstacle approached when driving. Only one obstacle 

appeared per trial. 
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6.4.2 Vehicle lane change 

The scene included two vehicles ahead, one in each of the lanes adjacent to the test participant's, located 

4.7 m ahead of the driver, simulating a distance ahead of 47 m.  The second detection task was to note 

when one or other of these vehicles moved from their home lane into the driver’s lane, a lateral 

movement with the distance ahead remaining unchanged. Participants indicated detection by pressing 

a button on the steering wheel (Figure 6.4), an action similar to sounding the vehicle horn.  

The two target vehicles were 1/10th scale body shells of a car (Ford Focus shape), painted the same 

neutral grey (Munsell N5) as the road surface and the lower section of the back wall. The rear of a car 

subtended an angle of 109.7 arcmin in height and 146.3 arcmin in width at the observer’s eyes. 

Headlight and taillight operation was disabled during trials to ensure detection performance was solely 

dependent on changes in road lighting. Lane-changing manoeuvres were enabled by connecting the cars, 

through designated slots in the road surface, to carriages situated beneath, travelling on a shared linear 

guide rail perpendicular to the road and encompassing the three active lanes.  

Two movement protocols were implemented for the vehicles: purposeful lane change and simulated in-

lane drift. During lane changes, the motor drives followed a pre-programmed acceleration profile (60 

mm/s2) to reach a steady lateral speed of 75 mm/s, completing a move from lane-centre to lane-centre 

in 6 seconds. This mimics the typical speed of a lane change [Olsen et al., 2002]. Upon reaching the 

target lane centre (participant’s lane), the car mirrored the exact same manoeuvre to return to its original 

lane. 

In-lane drift, a common consequence of imperfect human steering, was replicated in the vehicles by 

implementing a continuous series of randomized lateral manoeuvres with speeds ranging from 5 mm/s 

to 15 mm/s (and acceleration of 4 mm/s2) keeping the vehicles within a 40mm margin from the lane 

centre.  

 

6.4.3 Pedestrian detection 

A pedestrian model was located on the hard shoulder on the left-hand side. The pedestrian was initially 

hidden from view behind a model heavy goods vehicle (HGV) parked on the hard shoulder. Upon 

initiating the detection event, the pedestrian model would move along the hard shoulder, parallel to the 

direction of travel, mimicking a similar scenario used in previous research [Ābele et al. 2019]. Upon its 

first appearance, the initial distance between the participant’s eyes and the pedestrians was 3835 mm 

(3690 mm forward and 1050 mm to the left). The pedestrian was measured 45 mm wide at the shoulder 
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and 170 mm tall, subtending a height of 152.3 arcmin when first visible to the observer after emerging 

from behind the HGV. Detection of the pedestrian was indicated by the participant operating a paddle 

shifter behind the steering wheel (Figure 6.4), an action similar to flashing the vehicle’s headlights. The 

HGV was positioned facing the driving direction and remained stationary throughout the experiment. 

It was a 1/10th scale body shell (classic Mercedes Unimog), also painted the same neutral grey (Munsell 

N5) as the other vehicles. Taillights were switched off, as were the other vehicles, during trials. 

The pedestrian model was a simple, non-articulated model with no moving parts other than its traverse 

along the side of the road. This model was connected through a slot in the road surface to a carriage 

underneath on a one-metre guide rail, parallel to the run of the road along the hard shoulder lane. The 

pedestrian target travelled along the guide rail at 120 mm/s, mimicking a walking speed of 1.2 m/s. A 

complete trip along the rail took approximately nine seconds, with around 7.7 seconds visible for the 

participants. The reverse side of the pedestrian model featured a square piece (20 mm x 20 mm) of 

retro-reflective material positioned on the pedestrian’s chest in accordance with previous work [Balk et 

al., 2008]. When the high-visibility pedestrian was the next target, the figure rotated behind the HGV; 

afterwards, it rotated back to display either dark clothing or a flashing LED.  

Upon detecting a hazard using one of the three response mechanisms, test participants received auditory 

feedback: “obstacle” for pressing the pedal, “lane change” for pressing the button on the steering wheel, 

and “pedestrian” for operating the paddle shifter behind the steering wheel. This feedback served as 

confirmation of their response registration and indicated whether the correct response mechanism had 

been used.  

The following section will describe the other dependent variable, distraction task performance, which 

was the participants’ performance to the onset of distractive stimulus on visual and acoustic distraction 

tasks. 

 

6.4.4. Distraction tasks performance 

Distraction task performance was measured by analysing reaction time (ms) and detection rate 

(percentage) for both the acoustic and visual distraction tasks, primarily to assess the impact of the 

additional in-vehicle short-wavelength blue light employed in conditions L3 and L4. The distraction 

tasks employed in this experiment fell under the category of secondary tasks used to measure cognitive 

workload (section 2.7.1), with an n = 2 back task employed for acoustic distraction and an n = 0 back 

task for visual distraction. These tasks effectively assessed cognitive performance and held the potential 
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to investigate the influence of mitigation strategies on cognitive performance (e.g., the effects of short-

wavelength blue light rich in melanopic content).  

 

6.5. Procedure 

The experiment was conducted between the 3rd of November 2022, and the 6th of December, 2022. 

Three sessions were scheduled on a single day (11:00 – 13:30, 15:00 – 17:30, and 19:00 – 21:30) to 

explore the impact of time-of-day (the results from this analysis are not included in the current thesis), 

with one participant attending each session. Upon the start of each session, before the adaptation and 

practice period, participants completed several tasks: 

I. Was invited to sign the consent form in accordance with ethical approval . 

II. Visual acuity was checked using a Landolt C chart to ensure an acuity of at least 6/12 (minimum 

standard for driving in the UK [Government Digital Service, 2012]) with participants wearing 

their normal corrective lenses. 

III. Colour blindness was evaluated using Ishihara colour plates. 

IV. Was seated in the chair for the adaptation period. An adjustable seat was used to keep the eye 

height of participants similar.  

V. Wore the noise reduction earmuff (ProCase model PC-08362515) and kept it worn during the 

entire experiment to eliminate the effect of background noise produced by the mechanical 

movement of different parts in the apparatus and, therefore, not providing an auditory clue to 

the visual hazard detection tasks, which otherwise could occur and affect the reaction.  

Figure 6.6 summarises the experimental procedure. The experiment consisted of four blocks of trials 

corresponding to four lighting conditions, presented in a randomised order. Each lighting block 

comprised three sub-blocks corresponding to three types of distraction also presented in a randomised 

order. Each sub-block included 24 presentations of the detection targets: two vehicle lane changes, three 

pedestrians, and three obstacles, each repeated three times in a randomised order (Table 6.3). A 

participant attended a single 2.5-hour test session. Starting with 20 minutes to allow for adaptation to 

the low light level under lighting condition L2, as it was also used for a practice session to enhance 

participants’ familiarity with the experiment. In each trial, the participant was required to perform the 

primary visual task (hazard detection) simultaneously with the distraction task (one per trial). There 

was a random interval of five to ten seconds between each hazard detection task. No two hazards 

overlapped. The number of lane changes was balanced between the two cars. 
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Figure 6.6. The procedure of Experiment 2.

Start
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T? T? T? T? T? T? T? T? T? T? T?

0-Min 30-Min 60-Min 90-Min 120-Min

Single block of trial: Approx 10 min duration

Main visual task Distraction task (T?)(only one in one block of trial)

Control setting (T1)

Visual distraction (T2)

Acoustic distraction (T3)
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6.6 Sample 

Participants were recruited through emails posted on volunteer recruitment lists to staff and students at 

the university. Participants were selected from those meeting the following criteria: aged between 18 

and 30 years. 

Sixty participants were recruited for this experiment. Table 6.5 summarizes the age and gender diversity 

of the participants in each test session. All participants reported normal or corrected-to-normal vision, 

as confirmed by an acuity test and Ishihara colour vision plates. Participants selected their preferred 

time slots from the available options, and researchers ensured proper diversity of participant numbers 

and gender in each test session throughout the day (11:00 – 13:30, 15:00 – 17:30, and 19:00 – 21:30) 

(Table 6.4). 

 

Table 6.4. Age and gender of the participants in each test session. 

Test session No. of 

participants 

Age (years)  Gender (No.) 

Median Min. Max. Male Female 

11:00 – 13:30 21 23 18 30  9 12 

15:00 – 17:30 21 23 18 30  10 11 

19:00 – 21:30 18 24.5 19 30  9 9 

 

6.7. Summary 

Chapter 6 detailed the design of Experiment 2. It described the selection and implementation of 

independent variables: lighting condition, distraction task, and pedestrian model variation. Furthermore, 

the chapter comprehensively described the measurement techniques including hazard detection tasks 

(road surface obstacle, vehicle lane change, pedestrian model) and distraction task performance which 

were used to investigate how changes in independent variables affected the hypothesized aim: 

distraction mitigation. A step-by-step protocol outlining the tasks performed by experimenters and 

participants before and during the experiment was presented. This chapter concluded with a description 

of the study sample's demographics and their distribution across different experimental groups. The 

next chapter focuses on the statistical analysis of Experiment 2 findings.



 

 

Chapter 7. Results: Experiment 2 
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Chapter 7. Results: Experiment 2 

7.1. Introduction 

This chapter presents the results of Experiment 2, the methodology for which was described in Chapter 

6. Experiment 2 investigated the effect of changes in three independent variables (lighting conditions, 

distraction tasks, and pedestrian model versions) on hazard detection tasks (vehicle lane change, road 

surface obstacle and pedestrian appearance) and distraction task performance (acoustic and visual n-

back tasks). Analyses were performed using IBM SPSS Statistics version 28.0.0.0. The statistical 

significance level (alpha) was set at 0.05. When necessary, p-values were adjusted using Bonferroni 

correction to account for multiple comparisons [Chen et al., 2017]. 

 

7.2. Data preparation 

Initial data cleaning procedures focused on identifying and addressing instances of missing or erroneous 

values. These instances typically arose from participants' early, delayed, or absent responses to stimuli 

or hazard detection tasks. 

  

7.2.1. Error cleaning 

Each participant completed 12 sub-blocks of tests (four lighting conditions (L1 to L4) at each of three 

distraction tasks (control (T1), visual (T2) and acoustic (T3)).  

For hazard detection in a single test sub-block, each test participant responded to 24 visual stimuli 

(Table 5.3). Two types of error were anticipated – early or late responses.  

Early responses are those where the participant’s response was given in a shorter time than likely 

possible, indicating a response at random rather than a response to the stimulus. Responses given before 

500 ms were assumed to be early responses for all response tasks, consistent with the time required for 

perception and making the required movement, as characterized for drivers in previous work [Droździel 

et al., 2020].  
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Late responses were defined by the time taken for each hazard to reach the extent of its travel and were 

set at 6000 ms for the vehicle lane change, 3000 ms for road surface obstacles, and 7700 ms for the 

pedestrian model. Incorrect responses, such as pressing the paddle shifter instead of the response button 

in response to the vehicle lane change, were also considered as errors. 

Considering the distraction tasks, each test participant responded to approximately 170 visual 

distraction stimuli and 90 acoustic distraction stimuli under each of the four lighting conditions (L1 to 

L4). Recorded results were first checked to exclude any errors. The Python programs developed for 

these tasks were designed only to record responses within 2.5-second intervals for visual distraction 

and five-second intervals for acoustic distraction, covering the entire period of a single stimulus. If a 

participant did not respond within these intervals, an automated “no response” was recorded for that 

stimulus. Therefore, the responses in these tasks are divided into two groups: “no responses” and 

“number of valid responses”. 

 

7.2.2. Missing data 

Cases of missing data occur when a participant misses all the iterations in which each hazard appeared 

in a sub-block of the test (e.g., missed all three times that the pedestrian grey model was presented). 

Dong and Peng (2013) stated, “Missing data are a rule rather than an exception in quantitative 

research”. The existence of missing data is inevitable as variables need to be designed to be difficult 

enough to be sensitive to changes as they occur. However, missing values are problematic due to: 

I. Introduction of potential bias in estimations and generalisability of the result [Rubin, 1996; 

Schafer, 1997]. 

II. Loss of information in the extent of losing power and increased standard errors [Peng et al., 

2006]. 

III. The design of the statistical procedure is based on the availability of a complete dataset without 

missing values [Schafer and Graham., 2002]. 

Therefore, before analysis, these missing values must be dealt with carefully. Appendix E presents the 

different methods for dealing with missing data. For each case of missing data, different approaches 

were considered, and the results of these methods were compared (Appendix E).  

The cases of missing data were present for hazards road surface obstacle, and pedestrian model but not 

for the hazard vehicle lane change. To minimize the risk of data manipulation, listwise deletion and 

conservative imputation using mean and maximum were implemented in cases of missing values of 
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reaction time to different hazards in this study. Each approach's outcomes were compared with others, 

and any noticeable differences were highlighted. Finally, the most appropriate approach was selected 

for further analysis to provide reliable conclusions while maintaining good statistical power.  

Concerning road surface obstacle participants responded to 36 blocks of tests (four lighting conditions, 

three levels of distraction, and three distances of obstacle). Instances of missing data occurred when 

data was unavailable for one or more of these 36 test blocks. There were 149 cases of missing data 

among the total 2160 average responses to road surface obstacles provided by the 60 participants. In 

total, 40 participants must be dealt with in at least one case of missing data. As stated in Appendix E, 

the three implemented fixes provide the same result for lighting conditions, distraction and obstacle 

distance. Replacing with mean and maximum resulted in similar differences for all variables and their 

interactions. The only difference noticed was when comparing the listwise deletion method with 

replacing with mean and maximum for interactions between lighting*distraction and lighting* 

distraction*distance, where listwise deletion highlighted no significant effect of these interactions. This 

could be expected due to deleting a large proportion of the sample (60 to 20), which could make 

identifying smaller differences more difficult (see Appendix E for further details). 

Concerning pedestrian model participants responded to 36 blocks of tests (four lighting conditions, 

three levels of distraction, and three pedestrian models). Cases of missing data occurred when no data 

was available for one or more of these 36 test blocks. There were 28 cases of missing data among the 

total 2160 average responses to pedestrian models provided by the 60 participants. In total, 18 

participants must be dealt with in at least one case of missing data. As stated in Appendix E, the three 

implemented fixes provide the same result for lighting conditions, distraction and obstacle distance. 

Listwise deletion and replacement with maximum resulted in similar differences for all variables and 

their interactions. The only difference noticed was when comparing the replacing mean method with 

listwise deletion and replacing with the maximum for interactions between lighting*distraction, where 

replacing with mean highlights a significant effect of lighting on reaction to pedestrian model when 

distracted. At the same time, the other two treatments suggest no significant difference. For this 

interaction, looking into pairwise comparison listwise deletion fix shows similar trends (significant 

effect of visual distraction while compared to control and acoustic distraction) when compared to 

listwise deletion and replacing with maximum fixes under lighting condition L1 to L3 but under lighting 

condition L4  replacing with mean does not suggest a significant effect of any distraction while the 

other two methods to fix missing data still highlights the significant effect of visual distraction on 

reaction time under this lighting condition. Therefore, the three methods provide almost the same result 

with some negligible changes (see Appendix E for further details). In Experiment 2, missing data were 

addressed through conservative imputation using the maximum value within each series. 
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7.2.3. Representative values  

In a given test block, each hazard was presented multiple times (Table 5.3) to better estimate the 

detection rate and response time. Subsequent analysis requires that a single value is used to represent 

the response.  

There were three repeated trials per clothing level to detect the pedestrian model. The arithmetic mean 

was used to provide a single value from those three trials. 

The same process was followed for road surface obstacles, and arithmetic mean was used to provide a 

single value as the representative of reaction time to obstacles at each distance for a single participant.  

For lane changes, there were three repeated trials for the left-hand and right-hand vehicles. The current 

work does not consider differences between left-hand and right-hand sides; hence, this gives a set of six 

responses per condition. The best representative of these data might be the mean or the median. For the 

60 participants, with four light conditions and three distraction tasks, there are 720 data sets. Reaction 

times are continuous data and are expected to be normally distributed. Forty-six of these data sets were 

assessed (see section 4.3 for normality test method, Appendix F, Table F.1 for results), of which 37 

(80%) were considered to be normally distributed. Given the difficulty of demonstrating normality for 

small samples, it was assumed that the lane change RT data were drawn from a normally distributed 

population. Therefore, arithmetic mean was used to provide a single value as the representative of 

reaction time to vehicle lane change for a single participant. 

Regarding distraction tasks, participants approximately responded to visual distraction (170 times) and 

acoustic distraction (90 times). For the 60 participants, with four lighting conditions, there are 240 data 

sets for visual distraction and 240 data sets for acoustic distraction. For each distraction task, 24 of these 

data sets were assessed (Appendix F, Table F.2, and F.3), of which 21 (88%) and 23 (96%) were 

considered to be non-normally distributed for visual and acoustic distractions, respectively. Therefore, 

the median was used to provide a single value as the representative of reaction time to both visual and 

acoustic distractions for a single participant. 

 

7.3. Testing the distribution 

The distributions of the dependent variables were examined to determine whether or not they were 

drawn from normally distributed populations and to select the appropriate statistical method for analysis. 
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Data normality was checked for the hazard detection and distraction tasks, encompassing both reaction 

time and performance rates.  

 

7.3.1. Hazard detection 

For each participant (60 total): under each combination of lighting conditions and distraction task, each 

participant's performance is represented by a single value (section 7.2.3) for both reaction time and 

performance rate. The distributions of these values from the 60 participants were analysed using the 

methods described in section 4.2. These analyses are reported in Appendix F. Table 7.1 summarises the 

decisions reached.  

Consider first the reaction time data. Among the 36 combinations of lighting condition, distraction task, 

and obstacle distance or pedestrian model, 29 (80%) road surface obstacle cases and 28 (78%) 

pedestrian model cases were suggested to be normally distributed (Appendix F, Tables F.4 and F.5). 

For vehicle lane change, with 12 combinations of lighting conditions and distraction tasks, eight (67%) 

were suggested to be normally distributed (Appendix F, Table F.6). 

Regarding performance rate, data for the majority of combinations across all three hazards were not 

suggested to be normally distributed (Appendix F, Tables F.7, F.8, and F.9). 

To conclude, reaction times to hazards were analysed using parametric tests as they followed a normal 

distribution and relative performance rates were analysed using nonparametric tests as they followed a 

non-normal distribution. 

 

Table 7.1. Data distribution for detection representatives of road surface obstacles, vehicle lane change, and 

pedestrian models. 

Hazard type Levels Reaction time Performance rate 

Road surface obstacle Near Normal Non-normal 

 Middle Normal  Non-normal 

 Far Normal  Non-normal 

Vehicle lane change Left and right combined Normal  Non-normal 

Pedestrian model Grey Normal  Non-normal 

 High-visibility Normal  Non-normal 

 Flashing LED Normal  Non-normal 
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7.3.2. Distraction tasks 

For each participant (60 total), there is now a single value representing reaction time and performance 

rate for each distraction task ((visual (T2), and acoustic (T3)) under each lighting condition (L1 to L4) 

To determine the appropriate statistical method for analysis, the distribution of these representative 

reaction times and performance rates among the 60 participants for each distraction task needs to be 

examined. Table 7.2 summarizes the normality checks conducted.  

 

Table 7.2. Data distribution for detection representatives of visual- and acoustic-distraction. 

Hazard type Reaction time Performance rate 

Visual distraction Normal Non-normal 

Acoustic distraction Normal*  Non-normal 

* Normality gained while checking residuals.  

 

Regarding reaction time, four (100%) and three (75%) of all files (four lighting conditions) suggested 

a normal to near-normal distribution for visual (T2) and acoustic distraction (T3), respectively 

(Appendix F, Tables F.10 and F.11). Regarding performance rate, under all lighting conditions (L1 to 

L4), the distribution was non-normal (Appendix F, Tables F.12 and F.13). 

To conclude, reaction times to hazards were analysed using parametric tests as they followed a normal 

distribution and relative performance rates were analysed using nonparametric tests as they followed a 

non-normal distribution. 

The following section will present the statistical analysis conducted and their respective results. As 

discussed in section 4.4, reaction time data, which followed a normal distribution, were analysed using 

repeated-measure ANOVA. Conversely, performance data, which followed a non-normal distribution, 

were analysed using the Friedman test. 
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7.4.  Analysis of hazard detection results 

This section will present the analysis of the result for reaction time and performance rate to road surface 

obstacles, vehicle lane change, and pedestrian detection.  

 

7.4.1. Road surface obstacle: reaction time 

Figure 7.1 shows the mean reaction time to road surface obstacles according to lighting conditions, 

distraction tasks, and obstacle distance. Table 7.3 summarises the statistical tests. The results suggest 

significant main effects of lighting conditions, distraction tasks, obstacle distance, and significant 

interactions between lighting*distraction and lighting*distance, except for the interactions between 

distraction*distance and lighting*distraction*distance where no significant difference was found.  

 

    

 

Figure 7.1. The effect of lighting condition (A), distraction task (B), and obstacle distance (C) on mean reaction 

time to detection of the road surface obstacle. Error bars show one standard deviation above and below the mean. 
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Table 7.3. Reaction time to road surface obstacle, interaction with lighting conditions, distraction task, and obstacle 

distance. 

Variables F (df main, df error) p-value Effect size 

Lighting condition (3, 177) = 27.968 <0.001* 0.322 

Distraction task (2, 118) = 72.435 <0.001* 0.551 

Obstacle distance (2, 118) = 119.883 <0.001* 0.670 

Lighting condition*distraction task (6, 354) = 2.145 0.048* 0.035 

Lighting condition*obstacle distance (6, 354) = 2.869 0.01* 0.046 

Distraction task*obstacle distance (4, 236) = 0.720 0.579* 0.012 

Lighting condition*distraction task*obstacle distance (10.83, 638.93) = 1.693 0.072** 0.028 

* Sphericity assumed. 
** Hyynh-Feldt correction. 

 

Pairwise comparison for changes in lighting condition (Table 7.4) revealed a significant difference 

between lighting condition L2 and any other lighting conditions but did not indicate significant 

differences between any other pairs of lighting conditions. Participants reacted to the road surface 

obstacle significantly faster, as identified by mean reaction time, under lighting condition L2 (1407 ms) 

than under lighting conditions L1 (1560 ms), L3 (1564 ms), and L4 (1612 ms).  

 

Table 7.4. p-values for pairwise comparison of reaction time to detection of the road surface obstacle according 

to lighting condition. 

Lighting condition L2 L3 L4 

L1 <0.001 1.000 0.076 

L2 - <0.001 <0.001 

L3 - - 0.301 

* Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparison for changes in distraction task (Table 7.5) revealed a significant difference 

between distraction tasks T1 (control) vs. T2 (visual distraction), as well as between T2 vs. T3 (acoustic 

distraction). However, no significant differences were found between the distraction tasks T1 vs. T3. 

Participants responded to the road surface obstacle significantly slower, as identified by mean reaction 

time, under visual distraction (1652 ms) compared to both control (1462 ms) and acoustic distraction 

(1493 ms). 
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Table 7.5. p-values for pairwise comparison of reaction time to detection of the road surface obstacle according 

to distraction task. 

Distraction task T2 T3 

T1 <0.001 0.171 

T2 - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparison for changes in obstacle distance (Table 7.6) revealed a significant difference in 

reaction time among all three distances: near, mid, and far. As the obstacle distance increased, reaction 

time also increased. This pattern is evident in the mean reaction times for each distance (near: 1346 ms, 

mid: 1589 ms, and far: 1673 ms). 

 

Table 7.6. p-values for pairwise comparison of reaction time to detection of the road surface obstacle according 

to obstacle distance. 

Obstacle distance Mid Far 

Near <0.001 <0.001 

Mid - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

The results indicated an interaction between lighting*distraction (Table 7.3), suggesting that changes 

in lighting conditions may mitigate some of the reported impairments caused by distraction. However, 

pairwise comparisons (Table 7.7) revealed a consistent trend across all lighting conditions (L1 to L4), 

where visual distraction (T2) significantly impaired reaction time to the road surface obstacle compared 

to control condition (T1) and acoustic distraction (T3) (Figure 7.2). 
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Table 7.7. p-values for pairwise comparison of reaction time to detection of the road surface obstacle according 

to the interaction of lighting*distraction. 

Lighting condition Distraction task T2 T3 

L1 
T1 <0.001 1.000 

T2 - <0.001 

L2 
T1 <0.001 1.000 

T2 - <0.001 

L3 
T1 <0.001 1.000 

T2 - <0.001 

L4 
T1 <0.001 0.041 

T2 - 0.014 

* Bonferroni adjusted (significant level < 0.05). 

 

 

Figure 7.2. Lighting*distraction interaction, impact on reaction time to detection of road surface obstacle. Error 

bars show one standard deviation above and below the mean.  

 

The result indicated an interaction between lighting*distance (Table 7.3), suggesting that changes in 
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significant differences were observed between near vs. mid and near vs. far distances, with longer 

reaction times for further distances. However, no significant difference was found between the reaction 

times for mid vs. far distances under these lighting conditions. Under lighting condition L3, the same 

significant differences were observed between near vs. mid and near vs. far distances. Additionally, a 

significant difference was found between mid and far distances, with longer reaction times for further 

distances (Figure 7.3). 

 

Table 7.8. p-values for pairwise comparison of reaction time to detection of the road surface obstacle according 

to the interaction of lighting*distance. 

Lighting condition Obstacle distance Mid Far 

L1 
Near <0.001 <0.001 

Mid - 0.054 

L2 
Near <0.001 <0.001 

Mid - 0.139 

L3 
Near <0.001 <0.001 

Mid - <0.001 

L4 
Near <0.001 <0.001 

Mid - 0.848 

* Bonferroni adjusted (significant level < 0.05). 

 

 

Figure 7.3. Lighting*distance interaction, impact on reaction time to detection of road surface obstacle. Error bars 

show one standard deviation above and below the mean. 
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7.4.2. Road surface obstacle: performance rate 

Figure 7.4 illustrates the median performance rate in response to road surface obstacles across different 

lighting conditions, distraction tasks, and obstacle distances. Table 7.9 summarises the statistical tests 

performed on the data. The results indicate significant main effects of lighting conditions and obstacle 

distance on reaction time but no significant effect of distraction tasks. 

 

       

 

Figure 7.4. The effect of lighting condition (A), distraction task (B), and obstacle distance (C) on median 

performance rate to detection of the road surface obstacle. Error bars show the IQR. 
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Pairwise comparison for changes in lighting condition (Table 7.10) revealed significant differences 

between lighting conditions L2 vs. L3 and L2 vs. L4. However, no significant differences were found 

between any other pairs of lighting conditions (L1, L3, and L4). Participant performance rates were 

significantly higher under lighting condition L2 (median: 100%; mean: 88%) compared to L3 (median: 

100%; mean: 81%) and L4 (median: 67%; mean: 78%).  

 

Table 7.10. p-values for pairwise comparison of performance rate to detection of the road surface obstacle 

according to lighting condition. 

Lighting condition L2 L3 L4 

L1 0.234 1.000 0.69 

L2 - 0.036 <0.001 

L3 - - 1.000 

* Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparison for changes in obstacle distance (Table 7.11) revealed significant differences 

between obstacle distances near vs. far and mid vs. far. However, no significant difference was found 

between obstacle distances near vs. mid. Participant performance rate was significantly higher when 

the obstacle was closer: near (median: 100%; mean: 88%), mid (median: 100%; mean: 84%), and far 

(median: 100%; mean: 76%).  

 

Table 7.11. p-values for pairwise comparison of performance rate to detection of the road surface obstacle 

according to obstacle distance. 

Obstacle distance Mid Far 

Near 1.000 0.012 

Mid - 0.02 

* Bonferroni adjusted (significant level < 0.05). 

 

The interactions for different obstacle distances were examined under the same lighting condition and 

the same distraction task across the lighting condition and distraction task categories. Significant 

differences in performance rate to different obstacle distances were noticed under all lighting conditions 

for visual distraction (T2) (Table 7.12).  
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Table 7.12. Performance rate to detection of road surface obstacles across categories of lighting conditions and 

distraction tasks according to different obstacle distances. 

Lighting condition 
p-value – Chi-square 

T1 T2 T3 

L1 0.494 – 1.411 0.01 – 9.185 0.004 – 10.818 

L2 0.07 – 5.309 0.008 – 9.597 0.246 – 2.804 

L3 0.857 – 0.309 0.035 – 6.710 0.639 – 0.897 

L4 0.575 – 1.106 0.022 – 7.641 0.972 – 0.056 

 

Pairwise compassion reveals significant differences in performance between distances near (median: 

67%; mean: 73%) vs. far (median: 67%; mean: 69%) and mid vs. far (median: 67%; mean: 56%) under 

lighting condition L1. Additionally, under lighting condition L4, a significant difference is observed 

between distances near (median: 67%; mean: 68%) vs. far (median: 67%; mean: 52%) (Table 7.13).  

 

Table 7.13. p-values for pairwise comparison of the performance rate to detection of road surface obstacles across 

categories of lighting conditions for visual distraction according to different obstacle distances. 

Lighting condition Obstacle distance Mid Far 

L1 
Near 0.867 0.015 

Mid  0.036 

L2 
Near 1.000 0.216 

Mid  0.903 

L3 
Near 1.000 0.234 

Mid  0.114 

L4 
Near 0.600 0.039 

Mid  0.561 

* Bonferroni adjusted (significant level < 0.05). 

 

The interactions for different distraction tasks were examined under the same lighting condition and the 

same obstacle distance across the categories of lighting conditions and obstacle distances (Table 7.14). 

For the far obstacle, significant to near-significant effects of distraction were noticed under all lighting 

conditions. Significant to near-significant differences were observed for the near-obstacle under lighting 

conditions L1 and L2.  
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Table 7.14. Distribution of the performance rate to detection of road surface obstacles across categories of lighting 

condition and obstacle distance according to different distraction tasks. 

Lighting condition 
p-value – Chi-square 

Near Mid Far 

L1 0.024 – 9.726 <0.001 – 14.824 <0.001 – 14.134 

L2 0.009 – 11.943 0.366 – 4.210 <0.001 – 21.795 

L3 0.063 – 7.740 0.075 – 7.371 <0.001 – 22.025 

L4 1.000 – 1.422 <0.001 – 19.006 <0.001 – 28.387 

 

Pairwise comparison (Table 7.15) and the summary of the median and mean (Table 7.16) indicate that 

distraction tasks had minimal impact on the near obstacle detection under any lighting condition (L1 to 

L4). However, under lighting conditions, L1, L4, and L3 (near significance; see Table 7.13), visual 

distraction (T2) significantly impaired the detection performance of mid-obstacle compared to control 

(T1) and acoustic distraction (T3). No significant impact of distraction was observed for mid-obstacle 

under lighting condition L2. For the far obstacles under all lighting conditions, visual distraction (T2) 

significantly impaired detection performance when compared to control (T1) and Acoustic distraction 

(T3). No significant difference was observed between control and acoustic distraction under any of the 

lighting conditions and obstacle distances. 

 

Table 7.15. p-values for pairwise comparison of the performance rate to detection of road surface obstacles across 

categories of lighting conditions and obstacle distances according to different distraction tasks. 

Lighting condition Obstacle distance Distraction task T2 T3 

L1 

Near 
T1 0.171 1.000 

T2  0.081 

Mid 
T1 <0.001 0.501 

T2  0.009 

Far 
T1 <0.001 0.054 

T2  0.051 

L2 

Near 
T1 0.051 1.000 

T2  0.016 

Far 
T1 <0.001 1.000 

T2  <0.001 

L3 Far 
T1 <0.001 0.534 

T2  0.006 

L4 

Mid 
T1 <0.001 1.000 

T2  <0.001 

Far 
T1 <0.001 1.000 

T2  <0.001 

* Bonferroni adjusted (significant level < 0.05). 



133 

 

Table 7.16. Median and mean for pairwise comparison of the performance rate to detection of road surface 

obstacle across categories of lighting condition and obstacle distances according to different distraction tasks. 

Lighting condition Obstacle distance Distraction task 
Performance rate (%) 

Median Mean 

L1 

Mid 

T1 100 87 

T2 67 69 

T3 100 81 

Far 

T1 100 79 

T2 67 56 

 T3 67 70 

L2 

Near 

T1 100 88 

T2 100 77 

T3 100 88 

Far 

T1 100 84 

T2 67 66 

T3 100 85 

L3 Far 

T1 100 82 

T2 67 58 

T3 83 76 

L4 

Mid 

T1 100 81 

T2 67 60 

T3 100 79 

Far 

T1 100 77 

T2 67 52 

T3 100 76 

 

The interactions for different lighting conditions were examined under the same distraction task and the 

same obstacle distance across the categories of distraction tasks and obstacle distances (Table 7.17). 

For near-obstacle, a significant effect of lighting conditions was observed for control (T1) and acoustic 

distraction (T3) but not for visual distraction (T2). For mid-obstacle, a contrasting trend was observed, 

where a significant impact of lighting condition was found for visual distraction (T2), but no significant 

impact was noticed for control (T1) and acoustic distraction (T3). For the far-obstacle, no significant 

impact of changes in lighting condition was noticed for the control condition (T1), while a significant 

impact was found for visual (T2) and acoustic distractions (T3). 
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Table 7.17. Distribution of the performance rate to detection of road surface obstacles across categories of 

distraction task and obstacle distance according to different lighting conditions. 

Distraction task 
p-value – Chi-square 

Near Mid Far 

T1 0.004 – 13.466 0.771 – 1.126 0.519 – 2.266 

T2 0.569 – 2.015 0.024 – 9.483 0.045 – 8.069 

T3 0.061 – 7.365 0.613 – 1.808 0.014 – 10.660 

 

Pairwise comparison (Table 7.18) and summary of the median and mean (Table 7.19) highlights that 

for the control condition (T1), the detection performance of only near-obstacle was under impact of 

lighting condition when comparing lighting condition L2 and L4 with better performance under lighting 

condition L2. For visual distraction (T2), the same trend was noticed but only for far obstacles, where 

the detection performance of this obstacle was better under lighting condition L2 when compared to L4. 

No significant impact of change in lighting was noticed under visual distraction for the near obstacle. 

For the acoustic distraction (T3), a significant difference was noticed only for the far obstacle while 

comparing lighting conditions L1 vs. L2 and L2 vs. L4, where higher performance was noticed under 

lighting condition L2 compared to L1 and L4. 

 

Table 7.18. p-values for pairwise comparison of the performance rate to detection of road surface obstacles across 

categories of distraction tasks and obstacle distances according to different lighting conditions. 

Distraction task Obstacle distance Lighting condition L2 L3 L4 

T1 Near 

L1 0.978 1.000 0.372 

L2  0.774 0.024 

L3   0.786 

T2 

Mid 

L1 1.000 1.000 0.618 

L2  1.000 0.054 

L3   0.324 

Far 

L1 0.216 1.000 1.000 

L2  0.468 0.024 

L3   0.972 

T3 Far 

L1 0.018 1.000 1.000 

L2  0.282 0.120 

L3   1.000 

* Bonferroni adjusted (significant level < 0.05). 

 



135 

 

Table 7.19. Median and mean for pairwise comparison of the performance rate to detection of road surface 

obstacles across categories of distraction tasks and obstacle distances according to different lighting conditions. 

Distraction task Obstacle distance Lighting condition 
Performance rate (%) 

Median Mean 

T1 Near 
L2 100 88 

L4 100 75 

T2 

Mid 
L2 100 84 

L4 67 60 

Far 
L2 67 66 

L4 67 52 

T3 Far 

L1 67 70 

L2 100 85 

L4 100 76 

 

7.4.3. Vehicle lane change: reaction time 

Figure 7.5 illustrates the mean reaction time to vehicle lane change according to lighting conditions and 

distraction tasks. Table 7.20 summarises the statistical tests performed on the data. The results indicate 

significant main effects of lighting condition and distraction task but did not suggest significant 

difference for their interaction, lighting*distraction.  

 

   

Figure 7.5. The effect of lighting condition (A) and distraction task (B) on mean reaction time to detection of the 

vehicle lane change. Error bars show one standard deviation above and below the mean.  
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Table 7.20. Reaction time to detection of vehicle lane change interaction with lighting condition and distraction task. 

Variables F (df main, df error) p-value* Effect size 

Lighting condition (3, 177) = 26.449 <0.001 0.310 

Distraction task (2, 118) = 84.065 <0.001 0.588 

Lighting condition*distraction task (6, 354) = 1.745 0.110 0.029 

* Sphericity Assumed. 

 

Pairwise comparison for changes in lighting condition (Table 7.21) revealed significant differences 

between all pairs of lighting conditions except lighting condition L1 vs. L3. Participants responded to 

vehicle lane change significantly faster, as identified by mean reaction time, under lighting condition 

L2 (2208 ms) compared to lighting condition L1 (2440 ms), L3 (2380 ms), and L4 (2548 ms). 

 

Table 7.21. p-values for pairwise comparison of reaction time to detection of vehicle lane change according to 

lighting condition. 

Lighting condition L2 L3 L4 

L1 <0.001 0.774 0.034 

L2 - <0.001 <0.001 

L3 - - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparison for changes in distraction task (Table 7.22) revealed a significant difference 

between distraction tasks T1 (control) vs. T2 (visual distraction), as well as between T2 vs. T3 (acoustic 

distraction). However, no significant difference was found between the control (T1) and acoustic 

distraction (T3). Participants responded to vehicle lane change significantly slower, as identified by 

mean reaction time, when visually distracted (2723 ms) compared to control (2213 ms) and acoustic 

distraction (2245 ms).  

 

Table 7.22. p-values for pairwise comparison of reaction time to detection of vehicle lane change according to 

distraction task. 

Distraction task T2 T3 

T1 <0.001 1.000 

T2 - <0.001 

* Bonferroni adjusted (significant level < 0.05). 
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7.4.4. Vehicle lane change: performance rate 

Figure 7.6 illustrates the median performance rate for vehicle lane change according to lighting 

conditions and distraction tasks.  

 

    

Figure 7.6. The effect of lighting condition (A) and distraction task (B) on median performance rate to vehicle 

lane change. Error bars show the IQR. 

 

The impact of lighting conditions was investigated for each of the three distraction tasks separately. The 

distraction tasks T1 (control) and T3 (acoustic) did not significantly affect the performance rate under 

any of the lighting conditions. However, a significant impact was observed for distraction task T2 

(visual) (Table 7.23).   

 

Table 7.23. Performance rate to detection of vehicle lane changes across categories of lighting conditions based on 

the distraction task. 

Distraction task p-value Chi-square 

T1 0.302 3.645 

T2  0.006 12.440 

T3 0.119 5.851 

 

Pairwise comparison (Table 7.24) revealed a significant difference in the performance during 

distraction task T2 (visual) under lighting conditions L2 vs. L4. The performance rate for vehicle lane 

change was significantly higher under lighting condition L2 (median: 100%; mean: 98%) compared to 

lighting condition L4 (median: 100%; mean: 92%).  
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Table 7.24. p-values for pairwise comparison of performance rate to detection of vehicle lane change across 

categories of lighting condition for visual distraction (T2). 

Lighting condition L2 L3 L4 

L1 0.054 1.000 1.000 

L2 - 0.156 <0.001 

L3 - - 1.000 

* Bonferroni adjusted (significant level < 0.05). 

 

The impact of distraction tasks on performance rate was investigated separately for each of the four 

lighting conditions. Participants' performance to vehicle lane change did not differ significantly under 

lighting conditions L2, L3, and L4. However, a significant difference was observed under lighting 

condition L1 (Table 7.25).  

 

Table 7.25. Performance rate to detection of vehicle lane changes across categories of distraction task based on the 

lighting condition. 

Lighting condition p-value Chi-square 

L1 0.01 9.185 

L2  0.195 3.265 

L3 0.079 5.072 

L4 0.089 4.843 

 

Pairwise comparison (Table 7.26) revealed a significant difference in the performance of visual 

distraction (T2) compared to control (T1) and acoustic distraction (T2) under lighting condition L1. 

Visually distracted participants exhibited a lower performance rate (median: 100%; mean: 93%) when 

compared to both control (median: 100%; mean: 97%) and acoustic distraction (median: 100%; mean: 

98%). 

 

Table 7.26. p-values for pairwise comparison of the performance rate to detection of vehicle lane change across 

categories of distraction task under lighting condition L1. 

Distraction task  T2 T3 

T1 0.036 1.000 

T2 - 0.021 

* Bonferroni adjusted (significant level < 0.05). 
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7.4.5. Pedestrian model: reaction time 

Figure 7.7 shows the mean reaction time to the pedestrian model according to lighting conditions, 

distraction task, and obstacle distance. Table 7.27 summarises the statistical tests on the dataset. The 

results suggest significant main effects of lighting condition, distraction task, clothing level, and 

significant interaction between lighting*clothing and distraction*clothing. However, no significant 

differences were found for the interactions between lighting*distraction and lighting*distraction* 

clothing.   

 

    

 

Figure 7.7. The effect of lighting condition (A), distraction task (B), and obstacle distance (C) on mean reaction 

time to detection of the pedestrian model. Error bars show one standard deviation above and below the mean.  
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Table 7.27. Reaction time to pedestrian model interaction with lighting condition, distraction task, and clothing level. 

Variables F (df main, df error) p-value Effect size 

Lighting condition (2.701, 159.357) = 48.592 <0.001* 0.452 

Distraction task (2, 118) = 20.933 <0.001** 0.262 

Clothing level (1.364, 80.456) = 381.992 <0.001*** 0.866 

Lighting condition*distraction task (5.505, 324.805) = 1.526 0.175* 0.025 

Lighting condition*clothing level (4.156, 245.185) = 29.385 <0.001** 0.332 

Distraction task*clothing level (2.732, 161.171) = 9.341 <0.001*** 0.137 

Lighting condition*distraction task*clothing level (6.098, 359.806) = 0.758 0.605*** 0.013 

* Huynh-Feldt correction. 
** Sphericity assumed. 
*** Greenhouse-Geisser. 
 

Pairwise comparison for changes in lighting condition (Table 7.28) revealed a significant difference 

between all pairs of lighting conditions except lighting condition L1 vs. L3. The rest of the comparisons 

highlight a significant impact of lighting conditions with changes in mean reaction time (Table 7.29). 

 

Table 7.28. p-values for pairwise comparison of reaction time to detection of the pedestrian model according to 

lighting condition. 

Lighting condition L2 L3 L4 

L1 <0.001 1.000 <0.001 

L2 - <0.001 <0.001 

L3 - - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

Table 7.29. Mean values for pairwise comparison of reaction time to detection of the pedestrian model according to 

lighting condition. 

Lighting condition Mean reaction time (ms) 

L1 2566 

L2 2266 

L3 2594 

L4 2934 

 

Pairwise comparison for changes in distraction task (Table 7.30) revealed a significant difference 

between distraction tasks T1 (control) vs. T2 (visual distraction), as well as between T2 vs. T3 (acoustic 

distraction). However, no significant difference was found between the control (T1) and acoustic 



141 

 

distraction (T3). Participants responded to the pedestrian model significantly slower, as identified by 

mean reaction time, when visually distracted (2772 ms) compared to control (2507 ms) and acoustic 

distraction (2491 ms). 

 

Table 7.30. p-values for pairwise comparison of reaction time to detection of the pedestrian model according to 

distraction task. 

Distraction task T2 T3 

T1 <0.001 1.000 

T2 - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparisons of changes in clothing level (Table 7.31) revealed a significant difference 

between all three clothing levels. Flashing LED clothing exhibited the fastest reaction time (1721 ms), 

followed by high-visibility clothing (2560 ms), and finally, the grey model had the slowest reaction 

time (3489 ms). 

 

Table 7.31. p-values for pairwise comparison of reaction time to detection of the pedestrian model according to 

different levels of clothing. 

Clothing level High-visibility Flashing LED 

Grey <0.001 <0.001 

High-visibility - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

The results did not suggest an interaction between lighting*distraction (Table 7.27); in other words, 

changes in lighting condition did not offset the reported impairment from distraction. 

In contrast, a significant difference was observed in the interaction between lighting*clothing (Table 

7.27). In other words, changes in lighting conditions significantly affected the reaction time to 

pedestrian models of different clothing levels. Pairwise comparison (Table 7.32) revealed similar trends 

for grey and high-visibility clothing, with significant differences observed when comparing reaction 

times under different lighting conditions. However, no significant differences were found between the 

lighting conditions when responding to the pedestrian model wearing flashing LED clothing. In other 

words, the use of flashing LED clothing is dominant to the changes in lighting conditions (Figure 7.8). 
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Table 7.32. p-values for pairwise comparison of reaction time to detection of the pedestrian model according to 

the interaction of lighting * clothing. 

Clothing level Lighting condition L2 L3 L4 

Grey 

L1 <0.001 1.000 <0.001 

L2 - <0.001 <0.001 

L3 - - <0.001 

High-visibility 

L1 <0.001 1.000 <0.001 

L2 - 0.005 <0.001 

L3 - - <0.001 

Flashing LED 

L1 1.000 1.000 1.000 

L2 - 1.000 1.000 

L3 - - 1.000 

* Bonferroni adjusted (significant level < 0.05). 

 

 

Figure 7.8. Lighting*clothing interaction, impact on reaction time to detection of pedestrian models. Error bars 

show one standard deviation above and below the mean.  
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to control (T1) and acoustic distraction (T3). However, no significant differences were noticed between 

any of the distraction tasks when responding to the pedestrian model wearing flashing LED clothing. 

In other words, the use of flashing LED clothing mitigated the negative impact of visual distraction 

(Figure 7.9). 

 

Table 7.33. p-values for pairwise comparison of reaction time to detection of the pedestrian model according to 

the interaction of distraction*clothing. 

Clothing level Distraction task T2 T3 

Grey 
T1 <0.001 1.000 

T2 - <0.001 

High-visibility 
T1 <0.001 1.000 

T2 - <0.001 

Flashing LED 
T1 0.103 0.139 

T2 - 1.000 

*Bonferroni adjusted (significant level < 0.05). 

 

 

Figure 7.9. distraction*clothing interaction, impact on reaction time to detection of pedestrian models. Error bars 

show one standard deviation above and below the mean.  
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7.4.6. Pedestrian model: performance rate 

Figure 7.10 illustrates the median performance rate of the pedestrian models across the lighting 

conditions (L1 to L4), distraction tasks, and clothing levels. Table 7.34 summarises the statistical tests, 

emphasizing the significant differences in performance changes due to lighting conditions, distraction 

tasks, and clothing levels. 

 

   

 

Figure 7.10. The effect of lighting condition (A), distraction task (B), and clothing level (C) on median 

performance rate to detection of the pedestrian model. Error bars show the IQR. 
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Table 7.34. Performance rate to detection of pedestrian models according to lighting condition, distraction task, 

and clothing level. 

Variable p-value Chi-square  

Lighting <0.001 70.309 

Distraction <0.001 16.698 

Distance <0.001 98.596 

 

Pairwise comparison for changes in lighting condition (Table 7.35) revealed a significant difference 

between all pairs of lighting conditions, except L1 vs. L2. Participant performance rate was higher in 

lighting conditions L1 (median: 100%; mean: 97%) and L2 (median: 100%; mean: 98%) compared to 

L3 (median: 98%; mean: 95%) and L4 (median: 89%; mean: 87%). 

 

Table 7.35. p-values for pairwise comparison of performance rate to detection of the pedestrian model according 

to lighting condition. 

Lighting condition L2 L3 L4 

L1 1.000 0.042 <0.001 

L2 - <0.001 <0.001 

L3 - - <0.001 

*Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparison for changes in distraction tasks (Table 7.36) revealed a significant effect of visual 

distraction (T2) compared to both control (T1) and acoustic distraction (T3) but did not suggest a 

significant difference between control and acoustic distraction. Performance rate was significantly 

lower while visually distracted (median: 87%; mean: 86%), compared to control (median: 90%; mean: 

88%) and acoustic distraction (median: 90%; mean: 88%). 

 

Table 7.36. p-values for pairwise comparison of performance rate to detection of the pedestrian model according 

to distraction task. 

Distraction task T2 T3 

T1 <0.001 1.000 

T2 - <0.006 

* Bonferroni adjusted (significant level < 0.05). 
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Pairwise comparisons for changes in clothing level (Table 7.37) revealed significant differences 

between all three clothing levels. Participant performance rate was highest for flashing LED clothing 

(median:100%; mean: 100%), followed by high-visibility clothing (median: 99%; mean: 97%). Grey 

clothing (median: 90%; mean: 86%) resulted in the lowest performance rate compared to the other two 

types of clothing levels.  

 

Table 7.37. p-values for pairwise comparison of performance rate to detection of pedestrian models according to 

clothing level. 

Clothing level High-visibility Flashing LED 

Grey <0.001 <0.001 

High-visibility - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

The interactions for different clothing levels were investigated under the same lighting condition and 

same distraction task across the categories of light condition and distraction task. Significant differences 

were noticed under all lighting conditions and distraction task levels except lighting condition L2 under 

distraction tasks T1 (control) and T3 (acoustic) when comparing different clothing levels (Table 7.38). 

 

Table 7.38. Distribution of the performance rate to pedestrian model across categories of lighting condition and 

distraction task. 

Lighting condition p-value – Chi-square 

 T1 T2 T3 

L1 <0.001 – 18.000 <0.001 – 24.043 0.008 – 9.750 

L2 0.368 – 2.000 <0.001 – 14.000 1.000 – 0.000 

L3 <0.001 – 27.395 <0.001 – 34.900 0.024 – 7.429 

L4 <0.001 – 49.563 <0.001 – 66.682 <0.001 – 44.133 

 

 

 

 



147 

 

Pairwise comparison (Table 7.39) and the summary of median and mean (Table 7.40) highlight 

significant differences in the performance between clothing grey vs. high-visibility and grey vs. flashing 

LED in almost all lighting conditions and distraction tasks, but no significant difference was found 

between clothing high-visibility vs. flashing LED. Under lighting condition L4, significant differences 

were noticed between all clothing. 

 

Table 7.39. p-values for pairwise comparison of the performance rate to detection of the pedestrian model across 

categories of lighting and distraction tasks according to different clothing levels. 

Lighting condition Distraction task Clothing level High-visibility Flashing LED 

L1 

T1 
Grey 0.015 0.015 

High-visibility   1.000 

T2 
Grey 0.003 <0.001 

High-visibility  0.471 

T3 
Grey 0.141 0.048 

High-visibility  0.471 

L2 T2 
Grey 0.024 0.015 

High-visibility  1.000 

L3 

T1 
Grey <0.001 <0.001 

High-visibility  0.951 

T2 
Grey <0.001 <0.001 

High-visibility  0.249 

T3 
Grey 0.144 0.051 

High-visibility  0.951 

L4 

T1 
Grey <0.001 <0.001 

High-visibility  0.021 

T2 
Grey <0.001 <0.001 

High-visibility  0.006 

T3 
Grey <0.001 <0.001 

High-visibility  0.003 

* Bonferroni adjusted (significant level < 0.05). 
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Table 7.40. Median and mean for pairwise comparison of the performance rate to detection of the pedestrian 

model across categories of lighting and distraction tasks according to different clothing levels. 

Lighting condition Distraction task Clothing level 
Performance rate (%) 

Median Mean 

L1 

T1 

Grey 100 94 

High-visibility 100 100 

Flashing LED 100 100 

T2 

Grey 100 89 

High-visibility 100 99 

Flashing LED 100 100 

T3 

Grey 100 94 

High-visibility 100 98 

Flashing LED 100 99 

L2 T2 

Grey 100 93 

High-visibility 100 99 

Flashing LED 100 99 

L3 

T1 

Grey 100 88 

High-visibility 100 99 

Flashing LED 100 100 

T2 

Grey 100 83 

High-visibility 100 98 

Flashing LED 100 100 

T3 

Grey 100 93 

High-visibility 100 98 

Flashing LED 100 99 

L4 

T1 

Grey 83 71 

High-visibility 100 95 

Flashing LED 100 100 

T2 

Grey 67 61 

High-visibility 100 93 

Flashing LED 100 100 

T3 

Grey 67 73 

High-visibility 100 92 

Flashing LED 100 99 

 

The interaction for different distraction tasks was investigated under the same lighting condition and 

same clothing level across the categories of lighting condition and clothing level. Significant differences 

were noticed only under lighting conditions L2 and L3 for grey clothing when comparing different 

distraction tasks (Table 7.41). 
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Table 7.41. Distribution of the performance rate to the pedestrian model of different clothing levels across 

categories of lighting conditions based on distraction tasks. 

Lighting condition p-value – Chi-square 

 Grey High-visibility Flashing LED 

L1 0.113 – 4.361 0.174 – 3.500 0.368 – 2.000 

L2 0.011 – 8.933 0.846 – 0.333 0.779 – 0.500 

L3 0.008 – 9.692 0.483 – 1.455 0.135 – 4.000 

L4 0.014 – 8.510 0.672 – 0.794 0.368 – 2.000 

 

Pairwise comparison (Table 7.42) and the summary of median and mean (Table 7.43) highlight a 

significant difference in the performance only when comparing distraction tasks T2 (visual) vs. T3 

(acoustic), where visual distraction significantly impaired performance rate compared to acoustic 

distraction.  

 

Table 7.42. p-values for pairwise comparison of the performance rate to detection of the pedestrian model across 

categories of lighting condition and clothing level according to different distraction tasks. 

Lighting condition Clothing level Distraction task T2 T3 

L2 Grey 
T1 0.087 1.000 

T2 - 0.036 

L3 Grey 
T1 0.372 0.312 

T2 - 0.015 

* Bonferroni adjusted (significant level < 0.05). 

 

Table 7.43. Median and mean for pairwise comparison of the performance rate to detection of the pedestrian 

model across categories of lighting condition and clothing level according to different distraction tasks. 

Lighting condition Clothing level Distraction task 
Performance rate (%) 

Median Mean 

L2 Grey 

T1 100 98 

T2 100 93 

T3 100 99 

L3 Grey 
T2 100 83 

T3 100 93 

 

The interactions for different lighting conditions were investigated under the same distraction task and 

same clothing level across the categories of distraction task and clothing level. Significant differences 

were noticed under all tasks and clothing levels except C3 (flashing LED) when comparing different 

light conditions (Table 7.44). 
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Table 7.44. Distribution of the performance rate to the pedestrian model of different clothing levels across 

categories of distraction tasks based on lighting conditions. 

Lighting condition p-value – Chi-square 

 Grey High-visibility Flashing LED 

T1 0.004 – 13.466 0.005 – 12.913 0.392 – 3.000 

T2 <0.001 – 42.591 0.002 – 14.870 0.392 – 3.000 

T3 <0.001 – 56.690 0.005 – 12.763 0.861 – 0.750 

 

Pairwise comparison (Table 7.45) and summary of the median and mean (Table 7.46) highlight a 

significant difference in performance only when comparing lighting conditions L1 vs. L4 for all 

distraction tasks and clothing levels, L2 vs. L4 for all the distraction tasks and clothing levels except 

distraction tasks T1, clothing level C2, and L3 vs. L4 for all the distraction tasks and clothing levels 

except for all the tasks on clothing level C2.  

 

Table 7.45. p-values for pairwise comparison of the performance rate to detection of the pedestrian model across 

categories of distraction tasks and clothing levels according to different lighting conditions. 

Distraction task Clothing level Lighting condition L2 L3 L4 

T1 

Grey 

L1 0.528 0.606 <0.001 

L2 - 0.024 <0.001 

L3 - - 0.012 

High-visibility 

L1 0.498 1.000 0.042 

L2 - 1.000 0.654 

L3 - - 0.480 

T2 

Grey 

L1 1.000 0.804 <0.001 

L2 - 0.09 <0.001 

L3 - - <0.001 

High-visibility 

L1 1.000 1.000 0.048 

L2 - 1.000 0.048 

L3 - - 0.078 

T3 

Grey 

L1 0.342 1.000 <0.001 

L2 - 0.102 <0.001 

L3 - - <0.001 

High-visibility 

L1 1.000 1.000 0.072 

L2 - 1.000 0.042 

L3 - - 0.150 

* Bonferroni adjusted (significant level < 0.05). 
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Table 7.46. Median and mean for pairwise comparison of the performance rate to detection of the pedestrian 

model across categories of distraction tasks and clothing levels according to different lighting conditions. 

Distraction task Clothing type Lighting condition 
Performance rate (%) 

Median Mean 

T1 

Grey 

L1 100 94 

L2 100 98 

L3 100 88 

L4 83 71 

High-visibility 
L1 100 100 

L4 100 95 

T2 

Grey 

L1 100 89 

L2 100 93 

L3 100 83 

L4 67 61 

High-visibility 

L1 100 99 

L2 100 99 

L3 100 98 

L4 100 93 

T3 

Grey 

L1 100 94 

L2 100 99 

L3 100 93 

L4 67 73 

High-visibility 

L1 100 98 

L2 100 99 

L4 100 92 

 

7.5.  Statistical analysis: hazard detection alternative analysis 

Section 7.4 investigated the likelihood of significant differences by considering variations in road 

surface obstacles at different distances and different clothing levels of the pedestrian model. To focus 

on distraction, an alternative analysis could be performed by ignoring the variations in road surface 

obstacle distances and different clothing levels of the pedestrian model. This approach would yield nine 

responses for road surface obstacles or pedestrian models instead of three responses at each distance or 

clothing level. Additionally, this method would mitigate the issues arising from missing data. This is 

because, between the nine responses to the road surface obstacle or pedestrian model in one block of 

test for a single participant, it is less probable that all iterations were missed, and representative values 

are less likely to be missing values. 
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Similar to the approach described in section 7.2.3, participants’ multiple reaction times to road surface 

obstacle and pedestrian model were replaced with a single representative value per block of test using 

the mean as they followed a normal distribution (Appendix F, Tables F.14, and F.15). For road surface 

obstacles, missing data were present for only two participants, who were excluded from the analysis. 

The results were analysed for the remaining 58 participants. No missing data were found for pedestrian 

models. As discussed in section 7.3 .1, the distribution of those representative values among the 60 

participants was checked (Appendix F, Tables F.16 to F.19), where reaction times were found to follow 

a normal distribution and performance rates followed a non-normal distribution. 

 

7.5.1 Road surface obstacle: reaction time (alternative analysis) 

Figure 7.11 illustrates the mean reaction time to road surface obstacles according to lighting conditions 

and distraction tasks. Table 7.47 summarises the statistical tests performed. The result indicates 

significant main effects of lighting conditions and distraction tasks, but no significant interaction effect 

was found between lighting*distraction.  

 

    

Figure 7.11. The effect of lighting condition (A) and distraction task (B) on mean reaction time to detection of 

the road surface obstacle. Error bars show one standard deviation above and below the mean.  

 

Table 7.47. Reaction time to detection of road surface obstacle interaction with lighting condition and distraction task. 

Variables F (df main, df error) p-value* Effect size 

Lighting condition (3, 171) = 24.392 <0.001 0.300 

Distraction task (2, 114) = 49.126 <0.001 0.463 

Lighting condition*distraction task (6, 342) = 1.616 0.142 0.028 

* Sphericity Assumed. 
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Pairwise comparison for changes in lighting conditions (Table 7.48) revealed significant differences 

between all pairs of lighting conditions except lighting conditions L1 vs. L3 and L3 vs. L4. Participants 

responded to road surface obstacles significantly faster, as identified by the mean reaction time, under 

lighting condition L2 (1409 ms) compared to lighting condition L1 (1550 ms), L3 (1559 ms), and L4 

(1627 ms). 

 

Table 7.48. p-values for pairwise comparison of reaction time to detection of road surface obstacle according to 

lighting condition. 

Lighting condition L2 L3 L4 

L1 <0.001 1.000 0.041 

L2 - <0.001 <0.001 

L3 - - 0.181 

* Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparison for changes in distraction task (Table 7.49) revealed significant differences 

between distraction tasks T1 (control) vs. T2 (visual distraction) and T2 vs. T3 (acoustic distraction), 

but no significant difference between the control (T1) and acoustic distraction (T3). Participants 

responded to road surface obstacles significantly slower, as identified by mean reaction time, when 

visually distracted (1638 ms) compared to control (1470 ms) and acoustic distraction (1501 ms).  

 

Table 7.49. p-values for pairwise comparison of reaction time to detection of road surface obstacle according to 

distraction task. 

Distraction task T2 T3 

T1 <0.001 0.323 

T2 - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

7.5.2. Road surface obstacle: performance rate (alternative analysis) 

Figure 7.12 illustrates the median performance rate for road surface obstacles according to lighting 

conditions and distraction tasks. The effects of lighting conditions were examined individually for each 

of the three distraction tasks. The distraction tasks T1 and T3 did not significantly influence 

performance rate under any of the lighting conditions, while a significant impact was observed for 

distraction task T2 (Table 7.50).   
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Figure 7.12. The effect of lighting condition (A), and distraction task (B) on median performance rate to road 

surface obstacle. Error bars show the IQR. 

 

Table 7.50. Performance rate to detection of road surface obstacles across categories of lighting conditions based 

on the distraction task. 

Distraction task p-value Chi-square 

T1 0.027 9.171 

T2  0.004 13.500 

T3 0.081 6.759 

 

Pairwise comparison (Table 7.51) reveals a significant difference in performance during distraction 

tasks T1 (control) and T2 (visual) in lighting conditions L2 vs. L4. Performance rate to road surface 

obstacle was significantly higher for control (T1) under lighting condition L2 (median: 89%; mean: 

85%) compared to L4 (median: 78%; mean: 78%). Similarly, for visual distraction (T2), the 

performance rate to road surface obstacles was significantly higher under lighting condition L2 (median: 

78%; mean: 72%) compared to L4 (median: 67%; mean: 60%).  

 

Table 7.51. p-values for pairwise comparison of performance rate to detection of road surface obstacle across 

categories of lighting condition for control (T1) and visual distraction (T2) 

Distraction task Lighting condition L2 L3 L4 

T1 

L1 1.000 1.000 0.330 

L2 - 0.858 0.018 

L3 - - 1.000 

T2 

L1 0.486 1.000 0.666 

L2 - 0.450 <0.001 

L3 - - 0.558 

* Bonferroni adjusted (significant level < 0.05). 
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The impacts of distraction tasks on performance rate were investigated in each of the four lighting 

conditions separately. Participants' performances in responding to road surface obstacles were 

significantly different under all lighting conditions (L1 to L4) (Table 7.52).  

 

Table 7.52. Performance rate to detection of road surface obstacles across categories of distraction tasks based on 

the lighting condition. 

Lighting condition p-value Chi-square 

L1 <0.001 20.643 

L2  <0.001 31.875 

L3 <0.001 26.435 

L4 <0.001 32.657 

 

Pairwise comparison (Tables 7.53) and summary of the median and mean (Table 7.54) reveal significant 

differences in the performance of visual distraction (T2) compared to control (T1) and acoustic 

distraction (T2) under all lighting conditions (L1 to L4), but no significant difference was observed 

between control (T1) and acoustic distraction under none of the lighting conditions. 

 

Table 7.53. p-values for pairwise comparison of the performance rate to detection of road surface obstacles across 

categories of distraction task under lighting conditions L1 to L4. 

Lighting condition Distraction task  T2 T3 

L1 
T1 <0.001 0.417 

T2 - <0.001 

L2 
T1 <0.001 1.000 

T2 - <0.001 

L3 
T1 <0.001 1.000 

T2 - <0.001 

L4 
T1 <0.001 1.000 

T2 - <0.001 

* Bonferroni adjusted (significant level < 0.05). 
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Table 7.54. Median and mean for pairwise comparison of the performance rate to detection of road surface 

obstacle across categories of distraction task under lighting conditions L1 to L4. 

Lighting condition Distraction task  
Performance rate (%) 

Median Mean 

L1 

T1 89 83 

T2 67 66 

T3 89 79 

L2 

T1 89 85 

T2 78 72 

T3 89 86 

L3 

T1 89 82 

T2 67 66 

T3 89 79 

L4 

T1 78 78 

T2 67 60 

T3 78 77 

 

7.5.3. Pedestrian model: reaction time (alternative analysis) 

Figure 7.13 illustrates the mean reaction time to pedestrian models according to lighting conditions and 

distraction tasks. Table 7.55 summarises the statistical tests performed. The findings reveal significant 

main effects of lighting condition and distraction task along with a significant interaction between 

lighting*distraction.  

 

      

Figure 7.13. The effect of lighting condition (A) and distraction task (B) impact on reaction time to detection of 

the pedestrian model. Error bars show one standard deviation above and below the mean.  
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Table 7.55. Reaction time to detection of pedestrian model interaction with lighting condition and distraction task. 

Variables F (df main, df error) p-value* Effect size 

Lighting condition (3, 177) = 23.906 <0.001 0.288 

Distraction task (2, 118) = 14.941 <0.001 0.202 

Lighting condition*distraction task (6, 354) = 3.538 0.002 0.057 

* Sphericity Assumed. 

 

Pairwise comparison for changes in lighting condition (Table 7.56) revealed significant differences 

between all pairs of lighting conditions except L1 vs. L3. Participants responded to pedestrian models 

significantly faster, as identified by mean reaction time, under lighting condition L2 (2262 ms) 

compared to lighting condition L1 (2528 ms), L3 (2518 ms), and L4 (2662 ms). 

 

Table 7.56. p-values for pairwise comparison of reaction time to detection of pedestrian models according to the 

lighting condition. 

Lighting condition L2 L3 L4 

L1 <0.001 1.000 0.029 

L2 - <0.001 <0.001 

L3 - - 0.043 

* Bonferroni adjusted (significant level < 0.05). 

 

Pairwise comparison for changes in distraction tasks (Table 7.57) revealed significant effects between 

distraction tasks T1 (control) vs. T2 (visual distraction) and T2 vs. T3 (acoustic distraction). However, 

no significant difference was found between the control (T1) and acoustic distraction (T3). Participants 

responded to pedestrian models significantly slower, as identified by mean reaction time, when visually 

distracted (2723 ms) compared to control (2213 ms) and acoustic distraction (2245 ms).  

 

Table 7.57. p-values for pairwise comparison of reaction time to detection of the pedestrian model according to 

distraction task. 

Distraction task T2 T3 

T1 <0.001 1.000 

T2 - <0.001 

* Bonferroni adjusted (significant level < 0.05). 
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Pairwise comparison (Table 7.58) and summary of means (Table 7.59) highlight significant effects of 

lighting conditions on reaction time for both control (T1) and acoustic distraction (T3) under lighting 

conditions L1 vs. L2, L2 vs. L3, L2 vs. L4, with faster reaction times under lighting condition L2. For 

visual distraction, there were no significant differences in reaction times under different lighting 

conditions. In other words, changes in lighting levels did not significantly mitigate the negative impact 

of visual distraction on reaction time to pedestrian models. 

 

Table 7.58. p-values for pairwise comparison of reaction time to pedestrian model according to lighting 

condition*secondary task interaction for control (T1), visual (T2), and acoustic distraction (T3). 

Distraction task Lighting condition L2 L3 L4 

T1 L1 <0.001 1.000 0.072 

L2 - <0.001 <0.001 

L3 - - 0.446 

T2 L1 0.193 1.000 1.000 

L2 - 0.199 0.106 

L3 - - 1.000 

T3 L1 <0.001 1.000 0.026 

L2 - <0.001 <0.001 

L3 - - 0.019 

* Bonferroni adjusted (significant level < 0.05). 

 

Table 7.59. Median and mean for pairwise comparison of reaction time to pedestrian model according to lighting 

condition*secondary task interaction for control (T1), visual (T2), and acoustic distraction (T3). 

Distraction task Lighting condition Mean reaction time (ms) 

T1 L1 2443 

L2 2121 

L3 2483 

L4 2624 

T3 L1 2469 

L2 2158 

L3 2415 

L4 2673 
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7.5.4. Pedestrian model: Performance rate 

Figure 7.14 shows the median performance rate of the pedestrian models according to lighting 

conditions and distraction tasks.  

  

    

Figure 7.14. The effect of lighting condition (A) and distraction task (B) on mean reaction time to detection of 

the pedestrian model. Error bars show one standard deviation above and below the mean.  

 

The impacts of lighting conditions were investigated for each of the three secondary tasks separately. 

Under all four lighting conditions, the performance rate was significantly different across categories of 

secondary tasks (Table 7.60).   

 

Table 7.60. Performance rate to detection of pedestrian models across categories of lighting conditions based on the 

distraction task. 

Distraction task p-value Chi-square 

T1 <0.001 38.100 

T2  <0.001 49.036 

T3 <0.001 50.651 

 

Pairwise comparison (Table 7.61) and the summary of median and mean (Table 7.62) reveal significant 

differences in performance during secondary tasks T1, T2, and T3 between L1 vs. L4, L2 vs. L4, and 

L3 vs. L4. The highest performance rate was observed under lighting condition L2, followed by L3, 

and the lowest performance under lighting condition L4.  
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Table 7.61. p-values for pairwise comparison of performance rate to detection of pedestrian models across 

categories of lighting condition for control (T1) and visual distraction (T3). 

Distraction task Lighting condition L2 L3 L4 

T1 

L1 1.000 1.000 <0.001 

L2 - 0.072 <0.001 

L3 - - <0.001 

T2 

L1 1.000 0.504 <0.001 

L2 - 0.066 <0.001 

L3 - - <0.001 

 L1 1.000 1.000 <0.001 

T3 L2 - 0.126 <0.001 

 L3 - - <0.001 

* Bonferroni adjusted (significant level < 0.05). 

 

Table 7.62. Median and mean for pairwise comparison of performance rate to detection of pedestrian models 

across categories of lighting condition for control (T1) and visual distraction (T3). 

Distraction task Lighting condition 
Performance rate (%) 

Median Mean 

T1 

L1 100 98 

L2 100 99 

L3 100 96 

L4 89 89 

T2 

L1 100 96 

L2 100 97 

L3 100 94 

L4 89 84 

 L1 100 97 

T3 L2 100 99 

 L3 100 96 

 L4 89 88 

 

The impacts of distraction tasks on performance rate were investigated separately in each of the four 

lighting conditions. Participants' reaction performances to pedestrian models differed significantly 

under lighting conditions L3 and L4 (Table 7.63). 
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Table 7.63. Performance rate to detection of pedestrian models across categories of distraction tasks based on the 

lighting conditions. 

Lighting condition p-value Chi-square 

L1 0.262 2.676 

L2  0.117 4.290 

L3 0.048 6.062 

L4 0.03 6.994 

 

However, pairwise comparison revealed no significant differences in performance rate across categories 

of lighting conditions (Tables 7.64). 

 

Table 7.64. p-values for pairwise comparison of the performance rate to detection of pedestrian models across 

categories of distraction tasks under lighting conditions L1 to L4. 

Lighting condition Distraction task  T2 T3 

L3 
T1 0.219 1 

T2 - 0.102 

L4 
T1 0.147 1 

T2 - 0.135 

* Bonferroni adjusted (significant level < 0.05). 

 

7.6.  Statistical analysis: distraction tasks 

To investigate how exposure to different lighting conditions affects cognitive performance and whether 

participants divert their attention to distraction tasks when the primary visual tasks become more 

challenging due to changes in cognitive load or lighting condition, participant reaction time and 

performance rate to distraction tasks T2 (visual distraction) and T3 (acoustic distraction) were recorded 

and analysed. Due to a system failure, data for one participant while performing the visual distraction 

task was not correctly recorded. This participant was excluded from the analysis, and the responses of 

the remaining 59 participants were used. Concerning acoustic distraction, data analysed for the total of 

60 participants.  
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7.6.1.  Visual distraction (T2): reaction time 

Figure 7.15 illustrates the mean reaction time to the visual distraction (T2) task as influenced by lighting 

conditions. Table 7.65 summarises the statistical tests performed. The findings reveal significant effects 

of lighting conditions on reaction time to visual distraction tasks.  

 

 

Figure 7.15. Lighting conditions impact on reaction time to visual distraction (T2) task. Error bars show one 

standard deviation above and below the mean. 

 

Table 7.65. Reaction time to visual distraction (T2) task interaction with lighting condition. 

Variables F (df main, df error) p-value* Effect size 

Lighting condition (3, 174) = 4.401 0.005 0.071 

* Sphericity Assumed. 

 

Pairwise comparison for changes in lighting condition (Table 7.66) revealed significant differences 

between lighting conditions L2 vs. L3 and L2 vs. L4. Participants responded to visual distraction tasks 

significantly faster, as identified by mean reaction time, under lighting conditions L4 (983 ms) and L3 

(987 ms) compared to lighting condition L2 (1012 ms). 
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Table 7.66. p-values for pairwise comparison of reaction time to visual distraction (T2) task according to the 

lighting condition. 

Lighting condition L2 L3 L4 

L1 0.140 1.000 1.000 

L2 - 0.018 0.014 

L3 - - 1.000 

* Bonferroni adjusted (significant level < 0.05). 

 

7.6.2.  Visual distraction (T2): performance rate 

Figure 7.16 illustrates the median performance rate for the visual distraction task (T2) as influenced by 

lighting conditions. Significant differences were noticed in performance due to changes in lighting 

conditions (Table 7.67). 

 

 

Figure 7.16. Distribution of the performance rate to visual distraction (T2) task across categories of lighting 

condition. Error bars show the IQR. 

 

Table 7.67. Distribution of the performance rate to visual distraction (T2) task across categories of lighting condition 

Variable p-value Chi-square 

Lighting condition <0.001 22.580 
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Pairwise comparison (Table 7.68) highlighted a significant difference in the performance rate between 

lighting condition L1 (median: 96%; mean: 95%) vs. L2 (median: 95%; mean: 93%), L1 vs. L4 (median: 

95%; mean: 93%), and L2 vs. L3 (median: 96%; mean: 93%). 

 

Table 7.68. p-values for pairwise comparison of performance rate to visual distraction (T2) task according to 

lighting condition. 

Lighting condition L2 L3 L4 

L1 <0.001 1.000 0.012 

L2 - <0.001 0.714 

L3 - - 0.096 

* Bonferroni adjusted (significant level < 0.05). 

 

7.6.3.  Acoustic distraction (T3): reaction time 

Figure 7.17 illustrates the mean reaction time to the acoustic distraction (T3) task as influenced by 

lighting conditions. Table 7.69 summarises the statistical tests performed. The findings reveal 

significant effects of lighting conditions on reaction time to acoustic distraction tasks.  

 

 

Figure 7.17. Lighting condition impact on reaction time to acoustic distraction (T3) task. Error bars show one 

standard deviation above and below the mean. 
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Table 7.69. Reaction time to visual distraction (T2) task interaction with lighting condition. 

Variables F (df main, df error) p-value* 

Lighting condition (3, 177) = 4.139 0.007 

* Sphericity Assumed. 

 

Pairwise comparison for changes in lighting condition (Table 7.70) revealed significant differences 

between lighting condition L1 vs. L4. Participant reaction time was faster, as identified by mean 

reaction time, under lighting condition L4 (1489 ms) compared to L1 (1624 ms), L2 (1587 ms), and L3 

(1594 ms). 

 

Table 7.70. p-values for pairwise comparison of reaction time to acoustic distraction (T3) task according to 

lighting condition. 

Lighting condition L2 L3 L4 

L1 1.000 1.000 0.026 

L2 - 1.000 0.140 

L3 - - 0.088 

* Bonferroni adjusted (significant level < 0.05). 

 

7.6.4.  Acoustic distraction (T3): performance rate 

Figure 7.18 illustrates the median performance rate for the acoustic distraction (T3) task as influenced 

by lighting conditions. Table 7.71 summarises the test performed. The result revealed significant 

differences in performance rate to acoustic distraction due to changes in lighting conditions. 
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Figure 7.18. Distribution of the performance rate to acoustic distraction (T3) task across categories of lighting 

condition. Error bars show the IQR. 

 

Table 7.71. Distribution of the performance rate to acoustic distraction (T3) task across categories of lighting 

condition. 

Variable p-value Chi-square 

Lighting condition <0.001 22.580 

 

Pairwise comparison (Table 7.72) revealed significant differences between performance rate under 

lighting condition L1 (median: 83%; mean: 82%) vs. L4 (median: 90%; mean: 86%) and L2 (median: 

86%; mean: 82%) vs. L4. 

 

Table 7.72. p-values for pairwise comparison of performance rate to acoustic distraction (T3) task according to 

lighting condition. 

Lighting condition L2 L3 L4 

L1 1.000 1.000 0.030 

L2 - 1.000 0.024 

L3 - - 0.090 

* Bonferroni adjusted (significant level < 0.05). 
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7.7. Summary 

Experiment 2 aimed to investigate the impact of distraction tasks (visual and acoustic) on reaction time 

and performance rate for primary visual tasks (road surface obstacles, vehicle lane change, pedestrian 

models). Furthermore, the experiment aimed to determine whether different “aids to vision” (increment 

in road surface illuminance, in-vehicle short-wavelength blue light, and pedestrian-worn high-visibility 

or flashing LED clothing) could mitigate the negative effects of the distraction tasks by improving 

visual and/or cognitive performance. 

The findings revealed significant effects on reaction time and performance of primary visual tasks while 

visually distracted, with no such effect observed for acoustic distraction. An increase in road surface 

luminance (L1 to L2) resulted in significant improvements in reaction time and performance for primary 

visual tasks. However, this improvement was not further enhanced by the addition of in-vehicle short-

wavelength blue light (L3 and L4). Pedestrian-worn “aids to vision” (high-visibility clothing and 

flashing LED) significantly improved reaction time and performance for pedestrian models, with 

flashing LED clothing specifically mitigating the negative impact of visual distraction.  

Finally, analysing the reaction time and performance rate on secondary tasks (visual and acoustic 

distraction) highlights that the extreme levels of in-vehicle short-wavelength blue light (L4) can 

potentially improve cognitive performance as recorded by faster reaction time and better performance 

rates. However, this trend was inconsistent across all lighting conditions compared to lighting condition 

L4. 

The subsequent section will discuss the findings of Experiment 2 and compare them with similar 

previous work. This chapter will further highlight current limitations to the experimental setup and 

suggest potential areas for further research.



 

 

 

 

Chapter 8. Discussion: Experiment 2 



169 

 

Chapter 8. Discussion: Experiment 2 

8.1. Introduction 

The current chapter initially evaluates whether the experimental findings support the hypotheses. It then 

proceeds to critically examine the validity of the current findings by comparison with previous research, 

identifies the limitations of the study, and makes suggestions for further research. 

Experiment 2 investigated hypotheses H2 to H5: 

H2: Distraction (via acoustic or visual stimuli) leads to a deterioration in hazard detection, as 

indicated by an increase in reaction time from onset of the hazard stimulus to its detection or a 

decrease in detection rate. 

H3: An increase in road surface luminance leads to an improvement in hazard detection, as 

indicated by a decrease in reaction time from onset of the hazard stimulus to its detection or an 

increase in detection rate while distracted. 

H4: In-vehicle short-wavelength blue light (increment in melanopic EDI exposure) leads to an 

improvement in hazard detection, as indicated by a decrease in reaction time from onset of the 

hazard stimulus to its detection or an increase in detection rate while distracted. 

H5: Pedestrian-worn “aids to vision” lead to an improvement in hazard detection, as indicated 

by a decrease in reaction time from onset of the hazard stimulus to its detection or an increase 

in detection rate while distracted. 

 

This experiment was a scale model of a real driving scene in which participants' reaction time to and 

probability of detecting three potential hazards (road surface obstacle, vehicle lane change, pedestrian 

detection) was investigated. The assumption in Experiment 2 was that enhanced road surface luminance, 

added in-vehicle short-wavelength blue light, and pedestrian-worn “aids to vision” could each mitigate 

the increase in reaction time and decrease in hazard detection rate caused by distraction by improving 

visual and cognitive performance. Table 8.4 summarises whether this experiment's result supported 

each hypothesis:  
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Table 8.1. Experiment 2 hypothesis evaluation based on the result. 

Hypothesis Approved (✓), Rejected () Notes 

H2 ✓ Visual distraction impaired hazard detection, while 

acoustic distraction did not. 

H3 ✓ Improved hazard detection was noticed but did not 

overcome the negative impact of visual distraction. 

H4  Improved hazard detection was not noticed; even 

deterioration was noticed under extreme levels (L4). 

H5 ✓ Improved hazard detection was noticed, which was 

sufficient to overcome the negative impact of visual 

distraction. 

 

The following section will evaluate each hypothesis based on the experiment result and compare the 

findings with previous work.  

 

8.2. Comparison with previous research 

This section presents a discussion of each hypothesis and how the experimental outcomes are assessed 

within the context of the proposed relationships. Further comparisons evaluate the alignment of the 

findings with the previous literature on the subject. For each hypothesis, this analysis will identify 

whether the findings are in line with previous research and further highlight the extent to which the 

findings develop the current knowledge. 

 

8.2.1. Hypothesis 2: 

H2: Distraction (via acoustic or visual stimuli) leads to a deterioration in hazard detection, as indicated 

by an increase in reaction time from onset of the hazard stimulus to its detection or a decrease in 

detection rate. 

As expected, supporting this hypothesis, visual distraction significantly impaired reaction time and 

detection rate to all three hazards (road surface obstacle, vehicle lane change, pedestrian detection). 

However, our results indicate that acoustic distraction did not cause any significant impairment in 

reaction time and detection performance to these hazards.  

Table 8.5. summarises previous research on the effect of distraction while driving. These studies 

differed in their conducted environment (field vs. laboratory), nature of distraction tasks, demographic 
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of the participants (e.g., different age groups), and measurement techniques for assessment of driving 

performance. They employed various measurement techniques to assess the impact of distraction on 

driving performance, including vehicle longitudinal and lateral control, visual performance, cognitive 

performance and hazard detection. The findings from these methods for visual and acoustic distractions 

are discussed next.  

Regarding visual distraction, the current experiment’s findings align with those of previous studies, 

including Engström et al., 2005, Liang and Lee, 2010, Kaber et al., 2012, Young et al., 2013, Chan and 

Singhal, 2013, and Peng et al., 2014, which reported impaired vehicle lateral control due to visual 

distraction. Similar impairment in driving performance, as identified by impaired vehicle longitudinal 

control, have been observed in the works of Engström et al., 2005, Horberry et al., 2006, Kaber et al., 

2012, Young et al., 2013, Chan and Singhal, 2013, Peng et al., 2014, and Strayer et al., 2015.  

Additionally, visual distraction has been shown to impair driving performance by deteriorating visual 

performance, as observed in the studies of Engström et al., 2005, and Kaber et al., 2012, where an 

increment in cognitive load due to distraction resulted in increased gaze concentration and impaired 

peripheral visual scanning. Finally, visual distraction has been observed to impair driving performance 

by reducing the ability to detect hazards [Horberry et al., 2006; Liang and Lee, 2010; Chan and Singhal, 

2013]. 

While the findings of previous studies generally support the detrimental impact of visual distraction on 

driving performance, the evidence surrounding acoustic or auditory distraction is more inconclusive, 

with a tendency for visual distraction to exert a stronger negative impact.  

Regarding vehicle lateral control, studies by Liang and Lee, 2010, Garrison and Williams, 2013, and 

Tarabay and Abou-Zeid, 2018, have observed impairments in driving performance due to acoustic 

distraction, while studies by Rakauskas et al., 2004, Engström et al., 2005a, Törnros, and Bolling 2005, 

and Kaber et al., 2012, have not found such impairments. Similarly, concerning vehicle longitudinal 

control, studies by Rakauskas et al., 2004, Patten et al., 2004, Horberry et al., 2006, Garrison and 

Williams, 2013, and Strayer et al., 2015, have detected impairments in driving performance due to 

acoustic distraction, while studies by Engström et al., 2005a, Kaber et al., 2012, and Tarabay and Abou-

Zeid, 2018, have not observed such effects. Comparably, in terms of visual performance, the study by 

Engström et al., 2005a demonstrated impaired driving performance due to acoustic distraction, while 

Kaber et al., 2012 did not find such a detrimental effect. Lastly, regarding hazard detection, studies by 

Horberry et al., 2006, Caird et al., 2008, Liang and Lee, 2010, and Strayer et al., 2015, have identified 

impaired driving performance due to acoustic distraction.  
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These studies have demonstrated consistent findings regarding driving performance measures while 

visually distracted, where visual distraction has been shown to impair driving performance significantly. 

The current experiment corroborates this conclusion, finding that visual distraction significantly 

impaired reaction time and hazard detection rate for all three hazard types (road surface obstacle, vehicle 

lane change, pedestrian model).  

In contrast, the effect of acoustic distraction on driving performance has been less consistent, with some 

studies reporting significant impairments and others demonstrating minimal or no significant influence. 

The current experiment found no significant difference between the presence of acoustic distraction and 

control condition in terms of reaction time and detection rate to hazards. These discrepancies may be 

attributable to demographical and methodological differences between different studies (Table 8.5): 

I. Task complexity: The impact of distraction depends heavily on the complexity of the driving 

task at hand. Simple tasks like highway driving with minimal traffic might be less affected by 

distraction compared to complex tasks like navigating busy city streets or merging into heavy 

traffic. Drivers can sometimes compensate for distraction on simpler tasks. 

II. Individual differences: People have varying susceptibility to distraction. Some individuals are 

naturally better at multitasking or filtering out irrelevant information, allowing them to perform 

relatively well while distracted. Conversely, others might be easily overwhelmed by 

distractions, leading to significant performance drops. 

III. Difficulty level of the distraction task: The severity of the distraction also plays a role - a 

complex conversation is more distracting than listening to calming music. 

IV. Experience and skill: More experienced drivers can sometimes compensate for distraction to 

a greater degree than novice drivers. They might rely on muscle memory and anticipation to 

handle basic driving tasks while their attention is diverted. 

V. Measurement challenges: Measuring the impact of cognitive distraction on driving 

performance can be complex. Methods like collision data analysis might not accurately capture 

near misses or close calls caused by distraction. Simulator studies offer more controlled 

environments but may not fully replicate real-world driving situations. 

VI. Adaptation and habituation: Over time, some drivers might adapt to a certain level of 

distraction, becoming accustomed to multitasking while driving. 

Notably, a common limitation of previous research is the lack of proper documentation regarding the 

timing of the study. Circadian rhythm and sleep pressure, in addition to distraction, are crucial factors 

influencing participants’ cognitive workload. Consequently, the lack of precise information regarding 

the time of day in which experiments were conducted (e.g., morning, evening) hinders the comparability 

of findings across these studies.
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Table 8.2. Previous research on distraction and driving performance. Studies are presented in chronological order (measurement techniques codded as M1: ocular measures; 

M2: vehicle longitudinal control; M3: vehicle lateral control; M4: hazard detection; M5: subjective; M6: Peripheral detection task; M7: skin conductance; M8: cognitive task 

performance; M9: EEG; M10: cardiac). 

Reference Method Distraction tasks 
Measurement techniques 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Recarte and Nunes, 2000 Field Acoustic ✓          

Rakauskas et al., 2004 Laboratory Acoustic  ✓ ✓ ✓ ✓      

Patten et al., 2004 Field Acoustic & Manual  ✓   ✓ ✓     

Engström et al., 2005a Field 

Laboratory 

Acoustic & Visual  ✓ ✓  ✓  ✓   ✓ 

Törnros, and Bolling 2005 Laboratory Acoustic  ✓ ✓  ✓ ✓     

Horberry et al., 2006 Laboratory Acoustic & Visual  ✓  ✓ ✓      

Caird et al., 2008 Meta-analysis Acoustic  ✓ ✓ ✓  ✓     

Liang and Lee, 2010 Laboratory Acoustic & Visual ✓  ✓ ✓       

Kaber et al., 2012 Laboratory Acoustic & Visual ✓ ✓ ✓     ✓   

Young et al., 2013 Field Visual  ✓ ✓        

Chan and Singhal, 2013 Laboratory Visual  ✓ ✓ ✓       

Garrison and Williams, 2013 Laboratory Acoustic ✓ ✓ ✓     ✓   

Sonnleitner et al., 2014 Field Acoustic  ✓       ✓  

Peng et al., 2014 Laboratory Acoustic & Visual  ✓ ✓        

Wang et al., 2015 Laboratory Visual   ✓      ✓  

Strayer et al., 2015 Field 

Laboratory 

Acoustic & Visual ✓ ✓   ✓ ✓  ✓ ✓  

Karthaus et al., 2018 Laboratory Acoustic & Visual    ✓     ✓  

Tarabay and Abou-Zeid, 

2018 

Laboratory Acoustic  ✓ ✓ ✓       

Öztürk et al., 2023 Laboratory Acoustic  ✓ ✓   ✓  ✓   
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8.2.2. Hypothesis 3: 

H3: An increase in road surface luminance leads to an improvement in hazard detection, as indicated 

by a decrease in reaction time from onset of the hazard stimulus to its detection or an increase in 

detection rate while distracted. 

Table 8.6 summarizes the overall effect of increasing road surface luminance from lighting condition 

L1 (0.1 cd/m2) to L2 (0.9 cd/m2) on reaction time and hazard detection rate. 

 

Table 8.3. Effect of increment in road surface luminance from L1 to L2 on reaction time and detection rate to 

road surface obstacle, vehicle lane change, and pedestrian detection. 

Reaction time Detection rate 

Obstacle Lane change Pedestrian Obstacle Lane change Pedestrian 

Significant Significant Significant Not significant Significant Not significant 

 

The findings of the current experiment demonstrate a substantial improvement in reaction time for all 

three hazards. However, regarding hazard detection rate, the improvement observed due to increased 

road surface luminance was only evident for vehicle lane change. On the other hand, as discussed in 

hypothesis H2, reaction time and detection rate to hazards were impaired when visual distraction was 

present compared to the control condition. To determine if the improvement noted in reaction time and 

detection rate to hazards owing to increased luminance can counteract the adverse impact of visual 

distraction, it is crucial to investigate the interaction between these two variables. Table 8.7 summarizes 

the result of this interaction. 

 

Table 8.4. Effect of interaction between increment in road surface luminance from L1 to L2 on decrement of 

reaction time and detection rate to road surface obstacle, vehicle lane change, and pedestrian detection while 

visually distracted. 

Reaction time Detection rate 

Obstacle Lane change Pedestrian Obstacle Lane change Pedestrian 

Not significant Not significant Not significant Not significant Significant Not significant 

 

The findings reveal that while the impairment in lane change detection rate caused by visual distraction 

is partially alleviated by increasing road surface luminance, this improvement does not extend to the 

other hazard detection rates nor to their relative reaction times. Therefore, an increment in road surface 

luminance from 0.1 cd/m2 to 0.9 cd/m2, while improving the reaction time and detection rate, falls short 

of fully mitigating the adverse impacts of visual distraction on hazard detection. 
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8.2.3. Hypothesis 4: 

H4: In-vehicle short-wavelength blue light (increment in melanopic EDI exposure) leads to an 

improvement in hazard detection, as indicated by a decrease in reaction time from onset of the hazard 

stimulus to its detection or an increase in detection rate while distracted. 

The result indicates that lighting condition L3 with a dimmer amount of melanopic EDI (0.83 lx) and 

lighting condition L4 with extreme levels of melanopic EDI (80.60 lx) did not significantly improve 

reaction time and detection rate to hazards. However, looking only at the distraction tasks (visual and 

acoustic) performance, a trend of improvement in reaction times and performance rate to visual and 

acoustic stimuli can be observed under lighting conditions L3 and L4, which indicate a significant effect 

of added in-vehicle short-wavelength blue light. This finding is in line with the findings of Alkozei et 

al., 2016, who showed similar improvement in performance during an n-back task due to exposure to 

214 lx of blue-enriched light with peak sensitivity at 469 nm. However, the observed trend in the current 

experiment was not consistent across all lighting conditions, and the results of reaction time and 

detection rate to hazards on the road show that the potential noticed improvement in the distraction 

tasks performance may not lead to an improved driving performance as identified by hazard detection. 

There are several reasons why this might have occurred, which require further investigation. 

Firstly, an in-vehicle short-wavelength blue light source may affect the eye's adaptation and, as a result, 

deteriorate the visual performance, leading to poorer or similar reaction times and detection rates than 

lighting conditions without in-vehicle light. Secondly, the observed decline in hazard detection in the 

current experiment may result from participants diverting their attention from the hazard detection task 

to their distraction task performance as the visual task became more challenging due to the presence of 

in-vehicle short-wavelength blue light. This is evident in the consistent performance rates on distraction 

tasks across all lighting conditions, while hazard detection performance deteriorated. Finally, regarding 

acoustic distraction, the experimenters manually entered the participants' responses, which introduces 

the possibility of error due to missed or delayed entry. However, the noticeable improvement in the 

reaction time and performance rate to the visual distraction task remains valid as it was recorded directly 

by the participants (dial pad entry recording, see section 6.3.2).  

It has been suggested that modulating cortical activity using short-wavelength blue light could influence 

behaviour, but the potential may be constrained by the requirement for a certain threshold of neuronal 

activation to trigger conscious experience [Sergent et al., 2004]. Additionally, the potential for short-

wavelength blue light to efficiently affect higher-level cognitive processing, particularly in tasks like 

driving, has not been extensively explored [Killgore et al., 2020]. To our knowledge, the current 

experiment represents the first attempt to investigate whether the observed acute benefits of short-
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wavelength blue light on cognitive performance extend to improved hazard detection while driving. 

The findings of the current experiment did not reveal a significant improvement in reaction time and 

detection rate to hazards in response to exposure to an in-vehicle short-wavelength blue light source. 

  

8.2.4. Hypothesis 5: 

H5: Pedestrian-worn “aids to vision” lead to an improvement in hazard detection, as indicated by a 

decrease in reaction time from onset of the hazard stimulus to its detection or an increase in detection 

rate while distracted. 

The findings regarding the overall effect of changes in clothing level from grey to high-visibility, and, 

subsequently, flashing LED, demonstrate a notable improvement in reaction time and performance rate 

to pedestrians for both high-visibility clothing and flashing LED compared to grey clothing. This aligns 

with the findings of Sayer and Mefford 2004, who observed that incorporating retroreflective material 

into a dark-clad pedestrian increased the detection distance, although the amount of retroreflective 

material did not have an effect. Additionally, Fekety et al., 2016 established that integrating self-

luminous material (electroluminescent in their study) into retroreflective clothing enabled pedestrian 

detection at a greater distance than retroreflective clothing alone. To our knowledge, the use of flashing 

LEDs to improve pedestrian detection has not been previously explored. 

In the presence of visual distraction, consistent with hypothesis H2, reaction time and detection rate 

were impaired compared to the control condition. To examine whether the observed improvement in 

reaction time and performance rate resulting from the alteration of pedestrian clothing from grey to 

high-visibility and flashing LED mitigates the detrimental impact of distraction, it is essential to 

investigate the interaction between these two variables. 

The findings of the current experiment indicate that while high-visibility clothing improved reaction 

time and detection rate compared to grey clothing, visual distraction still resulted in an impairment 

compared to the control condition. However, when utilizing flashing LED clothing, the detrimental 

impact of visual distraction was mitigated, and no difference was observed between the reaction time 

and performance rate while visually distracted compared to the control condition. This suggests that 

employing flashing LED clothing is crucial in mitigating the negative influence of visual distraction on 

pedestrian detection.  
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8.3. Limitations and future research 

The participants in the current experiment were limited to a younger age group (18-30 years old). With 

ageing, alterations in the eye and visual system occur, resulting in a decline in the intensity of short-

wavelength blue light reaching the retina. This implies that higher levels of short-wavelength blue light 

would be required to elicit comparable cognitive benefits in older age groups. While providing more 

light may help deliver enough retinal illumination to induce anticipated non-visual responses like 

enhancing cognitive performance in the elderly, it will be ineffective in addressing the challenges 

associated with increased light scatter as we age. Scattered light diminishes the quality and colour of 

the retinal image [Boyce, 2014].  For drivers, deteriorating visual acuity, contrast sensitivity, colour 

discrimination, visual field size, …, that are associated with ageing, could lead to reduced driving 

performance and safety, particularly when performing manoeuvres in which visibility is restricted, such 

as detecting and avoiding low contrast road hazards [Boyce, 2014].  

For the current experiment, this implies that a further improvement in hazard detection might have been 

observed by increasing the road surface illuminance if older individuals had been included in the study. 

Additionally, while driving, the speed of processing visual information is critical for safe and efficient 

driving performance, highlighting the importance of the cognitive component. Ageing can result in 

slower visual and information processing speeds, particularly when attention is divided [Boyce, 2014]. 

Therefore, with the inclusion of older participants, it is also likely that greater non-visual benefits would 

have been observed in cognitive task performance. However, further investigations are required to 

confirm the existence of these effects, and future studies must consider the investigation of elderly 

individuals. 

The findings of the current experiment suggest that using in-vehicle short-wavelength blue light at the 

intensities employed in this study is insufficient to trigger cognitive benefits that translate to enhanced 

performance in tasks such as hazard detection. However, the present experiment exclusively examined 

the non-visual benefits of short-wavelength blue light. Future research could explore other wavelengths, 

like red light, which has also been shown to induce non-visual potentials [Plitnick et al., 2010]. Future 

investigations might also delve into ocular alterations, both for measuring cognitive performance and 

uncovering any pupillary changes induced by installing an in-vehicle light system, which is likely to 

influence visual performance. 

Pedestrian-worn flashing LED clothing was more effective in mitigating visual distraction than 

increasing road surface luminance. As a result, equipping pedestrians with flashing LED clothing would 

offer a greater advantage for pedestrian safety than simply increasing road surface luminance. However, 

these findings are limited to the simple non-articulated pedestrian model used in the experiment. It has 
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been demonstrated that biomotion, wearing the retroreflective material on moving limbs, further 

enhances pedestrian conspicuity [Wood, 2023]. Consequently, future research could consider 

implementing this technique in combination with flashing LEDs and investigating its potential benefits 

on distraction mitigation. Moreover, it would be of considerable value to investigate the modulation of 

illuminance and flashing rate of the LED device to demonstrate the optimum thresholds. 

The researchers recorded participant responses to acoustic distraction. To ensure accurate 

differentiation while recording, phonologically distinct letters were picked for this task (section 5.3.2). 

Additionally, the computer program for recording this task was designed to display the sequence of 

letter generation to researchers in advance, enabling them to prepare to enter participant responses 

correctly and without delay. However, this method of recording may introduce errors due to researcher 

mistakes, such as entering the wrong letter or responding slowly. This potential limitation to the 

recording method could be addressed in future studies by exploring alternative approaches that ensure 

reliable recording, such as automated scoring using speech recognition techniques [e.g., Monk et al., 

2011] or recording participant responses using a voice recorder [e.g., Öztürk et al., 2023].  

Conducting this experiment in the laboratory provided good control of variables, as discussed in 

Experiment 1 (section 5.2.2). To enhance the similarity of the hazard detection task to actual road 

driving and improve generalisability, participants were asked to follow a dynamic moving cross 

alongside the hazard detection task. This ensured the use of peripheral vision for hazard detection. 

However, the participants in the current experiment did not engage in the actual task of driving, which 

might induce higher levels of cognitive load. Furthermore, drivers' visual scenery and lighting exposure 

on real roads are dynamic, unlike in the current experiment. Future field studies are needed to 

substantiate the findings.  

 

8.4. Summary 

Chapter 8 discussed the findings of the two experiments undertaken to explore the potential of light in 

mitigating distraction and sleepiness, thereby enhancing attention while driving. It further compared the 

results of each experiment to previous studies and established the reliability of the findings. 

Additionally, it highlighted the limitations of the current work and the implications of these limitations 

for the findings of the work and identified the potential for further research. The next chapter will 

summarize the key takeaways from both experiments and underscore the potential implications for 

lighting practice.  



 

 

Chapter 9. Conclusion 
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Chapter 9. Conclusion 

9.1. Thesis aim: 

In 2018, there were 1.35 million road traffic deaths globally [World Health Organization, 2018]. In 

Great Britain, in 2022, there were 153,158 road traffic collisions (RTC) casualties of all severities, 

including 25,945 severe injuries and 1,752 reported deaths [Department for Transport, 2023]. The total 

value of prevention of these collisions is estimated over 43 billion British Pound Sterling [Department 

for Transport, 2024]. 

Historically, research into the human-light interaction has focused primarily on the image-forming 

visual system, investigating the mechanisms underlying light perception and image formation. A recent 

paradigm shift in research occurred following the discovery of non-visual photoreceptors. These 

findings laid the groundwork for exploring the broader influence of light on human psychophysiology 

beyond visual perception – the non-image-forming (NIF) response. Light can modulate various 

physiological processes, including circadian rhythms, sleep, attention, fatigue, body temperature, 

neuroendocrine function, and mood. In recent years, there has been a growing interest in understanding 

methods utilizing light to counter sleepiness and cognitive impairment. For example, a meta-analysis 

by Figueiro et al. [Figueiro et al., 2017] underscored light's potential to induce a rapid acute attentional 

response, similar to caffeine consumption (for a comprehensive overview of visual and non-visual light 

impacts, refer to Chapter 2. Literature Review). These light-modulated responses to human performance 

offer the potential to develop research in traffic collision prevention and mitigation by targeting the 

mechanisms through which light influences driver attention. 

In line with the United Nations resolution [United Nations General Assembly, 2021] to improve global 

road safety and reduce road traffic casualties by at least 50% by 2030, this thesis explored the potential 

of light to support drivers’ attention, specifically addressing impairments caused by sleepiness and 

distraction. 

 

9.2. Research hypothesis and methodological frameworks: 

In this thesis, triangulation techniques [Thurmond, 2001] were employed for both the methodological 

development of the experiments and the overall research design. The primary objective of utilizing 

these techniques was to enhance the robustness and credibility of research findings by offsetting the 

inherent limitations of individual research methods [Thurmond, 2001]. 
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Regarding the methodological framework, multiple subjective and objective measurement techniques 

were concurrently employed within each experiment to comprehensively assess dependent variables. 

Concerning the overall thesis design, aligned with the study's objective of identifying the potential of 

light to mitigate driver inattention due to sleepiness and distraction, distinct experimental designs were 

adopted for each inattention factor. Sleepiness was investigated in Experiment 1, as outlined in 

Hypothesis H1, while distraction was the focus of Experiment 2, as specified in Hypotheses H2 to H5. 

This approach was necessary due to the divergent nature of sleepiness and distraction, requiring distinct 

measurement strategies and experimental conditions. 

H1: An increase in melanopic EDI (lx) leads to a decrease in sleepiness when driving in the 

evening after dark. 

H2: Distraction (via acoustic or visual stimuli) leads to a deterioration in hazard detection, as 

indicated by an increase in reaction time from onset of the hazard stimulus to its detection or a 

decrease in detection rate. 

H3: An increase in road surface luminance leads to an improvement in hazard detection, as 

indicated by a decrease in reaction time from onset of the hazard stimulus to its detection or an 

increase in detection rate while distracted. 

H4: In-vehicle short-wavelength blue light (increment in melanopic EDI exposure) leads to an 

improvement in hazard detection, as indicated by a decrease in reaction time from onset of the 

hazard stimulus to its detection or an increase in detection rate while distracted. 

H5: Pedestrian-worn “aids to vision” lead to an improvement in hazard detection, as indicated 

by a decrease in reaction time from onset of the hazard stimulus to its detection or an increase 

in detection rate while distracted. 

Experiment 1 investigated four different measures of sleepiness (melatonin level, audio reaction time, 

self-reported sleepiness, and skin temperature) in a laboratory setting. The experiment commenced after 

dark and three hours before the participants’ habitual bedtime. Previous research suggests that as the 

time approaches an individual habitual bedtime, he/she would experience increased levels of sleepiness 

as indicated by higher melatonin levels, slower audio reaction time and higher error rates, increased 

self-reported sleepiness, and higher skin temperature. This experiment aimed to determine whether 

exposure to a light intervention with higher melanopic EDI (lx) than typically used in road lighting (up 

to 10 melnopic lx) could mitigate sleepiness. 
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Experiment 2 used a scale model of a real driving scene in which participants' reaction time to and 

probability of detecting three potential hazards (road surface obstacle, vehicle lane change, pedestrian 

detection) was investigated. This experiment explored the impact of distraction tasks (visual and 

acoustic) on hazard detection. Additionally, the experiment sought to ascertain whether various visual 

aids (increased road surface illuminance, in-vehicle short-wavelength blue light, and high-visibility or 

flashing LED clothing worn by pedestrians) could counteract the adverse effects of distraction tasks by 

enhancing visual and/or cognitive performance. The assumption in Experiment 2 was that enhanced 

road surface luminance, added in-vehicle short-wavelength blue light, and pedestrian-worn “aids to 

vision” could each mitigate the increase in reaction time and decrease in hazard detection rate caused 

by distraction by improving visual and cognitive performance. 

Experiments 1 and 2 were collaboratively designed to enhance our understanding of how light can 

potentially mitigate driver inattention induced by sleepiness and distraction. Subsequent section will 

summarize the findings of these experiments. 

 

9.3. Conclusions for this work 

The two laboratory experiments conducted in this thesis provided insight into the potential benefits of 

light (if any) in enhancing or aiding driver attention and ultimately mitigating RTCs and, hence the 

associated casualties.  

Concerning Experiment 1, the four lighting conditions that presented melanopic EDIs of approximately 

less than half lux to 10 lx, failed to reveal notable differences in reaction time to an acoustic stimulus, 

melatonin levels derived from saliva samples, self-reported sleepiness, nor skin temperature. The 

findings of this experiment do not suggest that road lighting at current levels has any effect on driver 

sleepiness after dark. 

Concerning Experiment 2, the findings revealed a negative effect of visual distraction on hazard 

detection (for all three types of hazards), while no such effects were observed under acoustic distraction. 

An elevation in road surface luminance from 0.06 cd/m2 to 0.57 cd/m2 (L1 to L2) was associated with 

improved hazard detection (all three used hazards). However, this improvement was insufficient to 

mitigate the impairment observed due to visual distraction. The use of in-vehicle short-wavelength blue 

light (L3 and L4) did not improve hazard detection and even adversely affected visual performance as 

identified by hazard detection under extreme levels of in-vehicle lighting condition L4 (13.3 lx at the 

eye). Regarding various pedestrian clothing in Experiment 2, both high-visibility clothing and flashing 

LEDs improved reaction time and performance rate, with flashing LED clothing specifically mitigating 
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the negative impact of visual distraction. Analysing the reaction time and performance rate on secondary 

tasks (visual and acoustic distraction) reveals that the extreme levels of in-vehicle short-wavelength 

blue light of lighting condition L4 can potentially enhance cognitive performance, as demonstrated by 

faster reaction times and improved performance rates. However, it is crucial to acknowledge that this 

trend was not consistently observed across all lighting conditions compared to lighting condition L4, 

and further investigation is necessary to establish the benefits of such exposure. 

The findings from Experiments 1 and 2 represent a novel contribution to the field, as to our knowledge, 

they constitute the first known attempts to mitigate driver inattention through light manipulation, 

specifically targeting non-visual responses. These results advance current knowledge and provide a 

foundation for future research, which will be discussed in subsequent sections. 

 

9.4. Contribution to knowledge, limitations, and future research: 

The empirical findings from Experiment 1 do not support that road lighting alteration can be used to 

effectively mitigate sleepiness of drivers after dark and current standard road lighting levels do not 

appear to suppress nocturnal melatonin levels. These findings are important on two fronts: 

I. Previous research indicates that light sources rich in blue wavelengths can enhance human 

attention and cognitive functions. Consequently, it has been hypothesized that blue-enriched 

roadway lighting compared to traditional lighting, could potentially augment driver alertness, 

thereby contributing to enhanced nighttime traffic safety. However, the findings of this research 

indicate that, given current technology and applicable road lighting levels, such modifications 

would not effectively enhance driver attention and consequently improve nighttime road safety. 

This study focused on young adults (18-30 years old), limiting its applicability to a broader age 

range of drivers, particularly older individuals. Age-related changes in ocular physiology and 

light perception may influence results. Future research should broaden the scope by including 

diverse age groups. Additionally, the study was conducted in a controlled laboratory 

environment to isolate the effects of light on sleepiness and performance. While this enabled 

precise measurements, it lacked real-world driving complexities. Further research is necessary 

to verify the null findings of the current experiment. This could involve replicating the study 

with a wider range of lighting conditions, particularly those with higher melanopic EDI. 

II. Past studies have shown that optimal circadian and neuroendocrine function necessitates 

sufficient exposure to bright daylight and subsequent darkness. However, concerns have been 

raised that the prevalence of artificial lighting such as road lighting may disrupt normal sleep, 

circadian rhythms, and neuroendocrine physiology. Such disruptions can cause adverse health 
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outcomes, including increased risk of certain cancers, heart disease, and metabolic disorders 

[Bedrosian et al., 2016]. Notably, the circadian system is particularly sensitive to short-

wavelength (459-484 nm) blue-enriched light, which is prevalent in LED road lighting. Evening 

exposure to LED light has been associated with sleep loss and circadian disruption [Cajochen 

et al., 2011; Chang et al., 2015]. The findings of this thesis demonstrate that alterations in the 

spectral distribution and intensity of roadway lighting exerted no significant influence on 

salivary melatonin suppression among participants. As a result, the spectral power distribution 

of road lighting is unlikely to affect the sleep health of road users, particularly drivers, given 

the subthreshold light dosage encountered in roadway environments. However, this study was 

limited to only one aspect of sleep health (salivary melatonin suppression). Future research 

should extend salivary melatonin measurement into plasma melatonin measurement across 

longer nighttime periods. Additionally, a comprehensive assessment of sleep health, including 

sleep onset, awakenings, duration, efficiency, and quality, is necessary in more naturalistic 

settings to fully understand the impact of roadway lighting on sleep health. 

The empirical findings from Experiment 2, highlight that in-vehicle short-wavelength blue light not 

only fails to mitigate the negative impact of distraction but may also exacerbate visual performance and 

hazard detection challenges. These findings do not support the notion of using such in-vehicle light 

sources to enhance drivers' attention and cognitive performance while distracted. Furthermore, they 

argue against the increasing number of installed displays within vehicles. Such displays not only may 

deter visual performance and hazard detection tasks while driving but could also introduce an additional 

source of visual distraction, which this study found to significantly impair drivers' hazard detection 

capabilities. However, the current study did not investigate ocular changes due to the presence of an in-

vehicle light and is limited to in-vehicle short-wavelength blue-enriched light. Future research could 

explore other wavelengths, like red light, which has also been shown to induce non-visual potentials. 

Future investigations might also delve into ocular alterations to uncover any pupillary changes induced 

by installing an in-vehicle light system, which is likely to influence visual performance.  

Additionally, the results indicated that the use of flashing LEDs could potentially mitigate the negative 

impact on hazard detection for visually distracted drivers, unlike high-visibility clothing. Given the 

increasing prevalence of in-vehicle visual displays and the continued use of mobile phones by drivers, 

despite warnings, high-visibility clothing alone is insufficient to maximize pedestrian safety. This thesis 

posits the implementation of wearable, flashing LED devices for pedestrians as a potential 

countermeasure to mitigate the heightened risk of pedestrian-vehicle collisions associated with 

increasing driver distraction. By enhancing pedestrian detectability, these devices aim to provide a 

critical margin of safety in an environment characterized by divided driver attention. These findings are 

limited to the simple non-articulated pedestrian model used in the experiment. It has been demonstrated 
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that biomotion, wearing the retroreflective material on moving limbs, further enhances pedestrian 

conspicuity [Wood, 2023]. Consequently, future research could consider implementing this technique 

in combination with flashing LEDs and investigating its potential benefits on distraction mitigation. 

Moreover, it would be of considerable value to investigate the modulation of illuminance and flashing 

rate of the LED device to demonstrate the optimum thresholds. 

Finally, the result from the second experiment indicates that an increment in road surface luminance 

improved driver hazard detection. Therefore, for road lighting practice and design, the increased road 

surface luminance, in general, should be of benefit when improved hazard detection of all types is a 

priority. Yet, the threshold of increment and its potential benefits is beyond the scope of this research 

and needs further investigation. 



 

 

Appendices 
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Appendix A. 

Spectral power distribution, illuminance and luminance: measurement grid and relative values, 

Experiment 1. 

The illuminance, luminance and SPD were measured at angles of sight of -30°, -15°, 0°, 15° and 30° 

and on the tabletop, using the illuminance meter (Konica Minolta illuminance meter T-10), luminance 

meter (Konica Minolta luminance meter LS-150), and spectroradiometer (JETI spectroradiometer 

model no 1511) respectively. Figure A.1 shows the measurement grid on the end wall of the laboratory 

(front wall to the participants), with vertical and horizontal alignments of the measurement grid shown 

in sections (A) and (B), respectively. Red and black dots represent the measurement points of 

participants 1(left) and participant 2 (right).  

 

Figure A.1. The grid of measurement on the end wall of the laboratory (sections (A) and (B) represent vertical 

and horizontal alignments, respectively). 

 

The measurements were repeated three times, and the average values were recorded (Table A.1). The 

differences between the participants' lighting exposure were lower than 5%.

(A) (B)
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Table A.1. Illuminance and luminance measurements on the grid. 

Light condition* Measured value** Participant no Measurement points 

- - - Horizontal Vertical Table top 

- - - -15° 0° 15° 30° -30° -15° 15° 30° - 

L1 

Illuminance*** 1 8.05 7.84 7.90 8.21 6.77 7.20 8.99 10.59 6.21 

2 8.06 7.91 7.91 8.18 6.70 7.19 9.03 1.67 6.02 

Luminance**** 1 2.33 2.40 2.43 2.32 1.43 1.84 2.95 2.96 1.94 

2 2.11 2.30 2.41 2.39 1.18 1.78 2.85 2.93 2.09 

L2 

Illuminance*** 1 8.21 8.03 8.06 8.37 6.90 7.33 9.17 10.81 6.4 

2 8.24 8.07 8.07 8.34 6.82 7.32 9.23 10.90 6.38 

Luminance**** 1 2.40 2.48 2.52 2.40 1.48 1.90 3.06 3.07 2.16 

2 2.14 2.37 2.48 2.47 1.27 1.86 2.96 3.04 2.21 

L3 

Illuminance*** 1 25.50 24.87 25.03 26.00 21.41 22.80 28.47 34.07 19.76 

2 25.52 25.04 25.08 25.93 21.22 22.75 28.63 33.77 19.07 

Luminance**** 1 7.39 7.62 7.72 7.37 4.51 5.83 9.41 9.43 6.20 

2 6.60 7.34 7.66 7.59 3.90 5.71 9.12 9.29 6.61 

* The naming is as reported in Chapter. 
** Average value of the three measurements. 
*** Vertical illuminance at the eye aiming at each measurement grid point. 
**** Luminance of each point at the measurement grid (luminance meter set at the eye position). 
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Appendix B. 

The survey of vertical illuminance measurement on minor and major roads in Sheffield, United 

Kingdom / Comparison graphs between first and second block of PVT test. 

Two major roads (one in a residential neighbourhood with no shops nearby and one in a shopping 

neighbourhood) and one minor road (in a residential neighbourhood) in Sheffield, United Kingdom, 

were selected for measurement. Illuminance was measured using an illuminance meter KONICA 

MINOLTA model no T-10M, as follows: 

I. An observer held the illuminance meter at forehead level (approximate height: 170 cm) between 

his eyes and walked from one lamp pole to another. 

II. Illuminance was recorded every metre. A total of 10 measurements were made for each location.  

III. Illuminance was measured three times at each point and averaged to obtain the value for that 

specific location. 

Road 1: Granville, Sheffield, is a major road in a residential neighbourhood with no shops around 

(Figure B.1). Table B.1 presents the illuminance at each measurement point between the two lamp posts. 

 

 

Figure B.1. Granville Road, Sheffield, United Kingdom. 

 

Table B.1. Measured illuminances between the two lamp posts at each point. 

Measurement point (no) Illuminance (lx)* 

1 4.2 

2 3.5 

3 3.2 

4 3.0 

5 2.6 

6 1.3 

7 2.2 

8 2.7 

9 3.2 

10 3.5 
* Vertical illuminance at eye (approx. height 170 cm). 
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Road 2: West Street, Sheffield, a major shopping neighbourhood road (Figure B.2). Table B.2 presents 

the illuminance at each measurement point between the two lamp posts. 

 

 

Figure B.1. West Street, Sheffield, United Kingdom. 

 

Table B.2. Measured illuminances between the two lamp posts at each point. 

Measurement point (no) Illuminance (lx)* 

1 20 

2 17 

3 16 

4 16 

5 15 

6 15 

7 17 

8 18 

9 18 

10 19 
* Vertical illuminance at eye (approx. height 170 cm). 

 

Road 3: Trafalgar, Sheffield, a minor road in a residential neighbourhood (Figure B.3). Table B.3 

presents the illuminance at each measurement point between the two lamp posts. 

 

 
Figure B.3. Trafalgar Street, Sheffield, United Kingdom. 
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Table B.3. Measured illuminances between the two lamp posts at each point. 

Measurement point (no) Illuminance (lx)* 

1 9.1 

2 8.3 

3 7.2 

4 4.2 

5 1.5 

6 1.6 

7 1.8 

8 2.2 

9 4.5 

10 7.8 
* Vertical illuminance at eye (approx. height 170 cm). 

 

 
Figure B.4. Median reaction times to the first and second block of the PVT test for the first round of the PVT test. 
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Figure B.5. Median reaction times to the first and second block block of the PVT test for the second round of the 

PVT test. 

 

 
Figure B.6. Median reaction times to the first and second block block of the PVT test for the third round of the 

PVT test. 
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Figure B.7. Median reaction times to the first and second block block of the PVT test for the fourth round of the 

PVT test. 

 

  
Figure B.8. Median reaction times to the first and second block block of the PVT test for the fifth round of the 

PVT test. 
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Figure B.9. Median reaction times to the first and second block block of the PVT test for the sixth round of the 

PVT test. 
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Appendix C. 

Normality checks, Experiment 1. 

Table C.1. Audio reaction time normality checks for 20 randomly selected out of 240 trials. 

 

  

PVT valid reaction times (participant no_test no) 1_5 2_6 6_5 7_4 8_2 9_3 10_1 11_4 13_3 17_1 19_6 21_3 25_1 27_6 28_4 30_3 31_2 35_2 37_1 39_4

Mean 359 383.83 216 533 406.15 475 498.42 500.5 450 320 327 302 478 329 341.37 488.46 378 395.44 516 373

345 365.45 203.56 505 383.68 445 469.2 450.68 414 300 315 289 433 314 330.29 450.63 364 375.99 490 355

372 402.21 228.44 561 428.62 505 527.64 549.42 485 340 339 314 522 344 352.45 526.29 392 414.89 541 391

Median 350 372 214 516 397.5 452 509 459.5 411 302 320 296 478 318 329 467.5 376 391 501 363

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes

Histogram No Near Yes No No No No No No No No No No No Near Near Yes Near Yes No

Box Plot No Near Yes No Yes No No No No No No No No No No Near Yes Near Yes No

Normality? automated check No Near Yes No Near No No No No No No No No No Near Near Yes Near Yes No

Skewness

(within ± 0.5)
0.311 1.125 0.025 0.581 0.498 1.09 0.994 1.313 0.997 1.635 0.939 2.471 0.444 0.703 0.499 0.878 0.309 0.95 0.683 1.508

yes no yes no yes no no no no no no no yes no yes no yes no no no

Kurtosis

(within ±1.0)
0.613 1.634 10.11 -0.143 0.174 2.1 2.702 1.331 0.036 3.323 1.85 11.31 -0.756 0.3 -0.342 0.544 0.608 1.973 0.597 3.318

yes no no yes yes no no no yes no no no yes yes yes yes yes no yes no

Normality? automated check Yes No Near Near Yes No No No Near No No No Yes Near Yes Near Yes No Near No

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.014 0.128 0.005 0.001 0.001 0.001 0.001 0.012 0.001 0.005 0.047 0.093 0.005 0.392 0.017 0.174 0.001

no no no no yes no no no no no no no no no yes no yes no yes no

Kolmogorov-Smirnov

(level of significance)
0.004 0.006 0.001 0.001 0.008 0.013 0.031 0.001 0.001 0.001 0.2 0.024 0.03 0.072 0.024 0.067 0.2 0.2 0.2 0.002

no no no no no no no no no no yes no no yes no yes yes yes yes no

Noramlity? automated check No No No No Near No No No No No Near No No Near Near Near Yes Near Yes No

Overal Assessment of Normality select mannually Near No Near No Yes No No No No No No No Near Near Near Yes Yes Near Yes No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table C.2. Normality checks for melatonin levels among the 40 participants. 

 

  

Trial AD1 AD2 AD3 AD4 AD5 T1 T2 T3

Mean 0.92 2.278 4.303 7.415 8.768 10.655 13.945 15.86

0.419 1.217 2.63 4.939 6.462 8.306 10.814 13.207

1.421 3.338 5.975 9.891 11.073 13.004 17.076 18.513

Median 0.25 0.65 1.7 4.8 7.85 9.25 12.5 15

Normality? (Yes if median is in 95% CI of mean) automated check No No No No Yes Yes Yes Yes

Histogram No No No No No No No No

Box Plot No No No No No Near Near Near

Normality? automated check No No No No No Near Near Near

Skewness

(within ± 0.5)
2.238 1.85 1.195 1.04 0.589 0.333 0.936 0.009

no no no no no yes no yes

Kurtosis

(within ±1.0)
4.405 3.126 0.509 0.203 -0.617 -0.949 0.76 -0.952

no no yes yes yes yes yes yes

Normality? automated check No No Near Near Near Yes Near Yes

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001 0.016 0.032 0.017 0.212

no no no no no no no yes

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 0.001 0.006 0.2 0.105 0.038 0.099

no no no no yes yes no yes

Noramlity? automated check No No No No Near Near No Yes

Overal Assessment of Normality select mannually No No No No Near Yes Near Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table C.3. Normality checks for median audio reaction time among the 40 participants. 

   

  

Trial (orginal) AD1 AD2 AD3 T1 T2 T3

Mean 415 378 380 366 364 362

377 350 351 343 342 339

452 407 409 389 385 385

Median 382 357 359 356 353 359

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes

Histogram No No No Yes Yes Yes

Box Plot No No No Yes Yes Yes

Normality? automated check No No No Yes Yes Yes

Skewness

(within ± 0.5)
1.782 1.063 1.01 0.416 0.241 0.666

no no no yes yes no

Kurtosis

(within ±1.0)
5.236 0.658 0.426 -0.091 0.087 1.075

no yes yes yes yes no

Normality? automated check No Near Near Yes Yes No

Shapiro-Wilks

(level of significance)
0.001 0.002 0.005 0.391 0.409 0.296

no no no yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.075 0.016 0.022 0.2 0.2 0.2

yes no no yes yes yes

Noramlity? automated check Near No No Yes Yes Yes

Overal Assessment of Normality select mannually No No No Yes Yes Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean

Trial (residual) AD1 AD2 AD3 T1 T2 T3

Mean 0.001 0.001 0.001 0.001 0.001 0.001

-0.289 -0.289 -0.289 -0.289 -0.289 -0.289

0.289 0.289 0.289 0.289 0.289 0.289

Median -0.1691 -0.1525 -0.1208 -0.1479 0.0194 -0.1426

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes

Histogram Yes Near Near Yes Yes Yes

Box Plot Yes Near Near Yes Yes Yes

Normality? automated check Yes Near Near Yes Yes Yes

Skewness

(within ± 0.5)
1.773 0.665 0.663 0.271 0.097 0.435

no no no yes yes yes

Kurtosis

(within ±1.0)
5.636 0.496 0.545 -0.2 -0.376 0.424

no yes yes yes yes yes

Normality? automated check No Near Near Yes Yes Yes

Shapiro-Wilks

(level of significance)
0.001 0.124 0.335 0.741 0.86 0.366

no yes yes yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.07 0.2 0.2 0.2 0.2 0.2

yes yes yes yes yes yes

Noramlity? automated check Near Yes Yes Yes Yes Yes

Overal Assessment of Normality select mannually Yes Yes Yes Yes Yes Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean



198 

 

Table C.4. Normality checks for self-reported sleepiness scores. 

 

  

Trial AD1 AD2 AD3 AD4 AD5 T1 T2 T3

Mean 32.63 32.63 32.51 32.42 32.46 32.22 32.33 32.52

32.38 32.36 32.22 32.17 32.21 31.92 32.05 32.25

32.89 32.89 32.79 32.67 32.71 32.53 32.61 32.78

Median 32.59 32.76 32.72 32.56 32.41 32.37 32.29 32.58

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes

Histogram No No No Yes Near Near No Yes

Box Plot Near No No Yes Yes Near Yes No

Normality? automated check Near No No Yes Near Near Near Near

Skewness

(within ± 0.5)
-1.319 -0.474 -0.565 -0.198 -0.337 -0.609 0.254 -0.179

no yes no yes yes no yes yes

Kurtosis

(within ±1.0)
4.813 -0.191 -0.16 0.332 0.291 0.789 -0.766 -0.098

no yes yes yes yes yes yes yes

Normality? automated check No Yes Near Yes Yes Near Yes Yes

Shapiro-Wilks

(level of significance)
0.003 0.488 0.18 0.902 0.942 0.253 0.229 0.898

no yes yes yes yes yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.189 0.2 0.014 0.2 0.2 0.2 0.2 0.2

yes yes no yes yes yes yes yes

Noramlity? automated check Near Yes Near Yes Yes Yes Yes Yes

Overal Assessment of Normality select mannually Near Yes Near Yes Yes Yes Yes Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table C.5. Normality checks for mean skin temperature among the 40 participants. 

 

Trial AD1 AD2 AD3 AD4 AD5 T1 T2 T3

Mean 32.63 32.63 32.51 32.42 32.46 32.22 32.33 32.52

32.38 32.36 32.22 32.17 32.21 31.92 32.05 32.25

32.89 32.89 32.79 32.67 32.71 32.53 32.61 32.78

Median 32.59 32.76 32.72 32.56 32.41 32.37 32.29 32.58

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes

Histogram No No No Yes Near Near No Yes

Box Plot Near No No Yes Yes Near Yes No

Normality? automated check Near No No Yes Near Near Near Near

Skewness

(within ± 0.5)
-1.319 -0.474 -0.565 -0.198 -0.337 -0.609 0.254 -0.179

no yes no yes yes no yes yes

Kurtosis

(within ±1.0)
4.813 -0.191 -0.16 0.332 0.291 0.789 -0.766 -0.098

no yes yes yes yes yes yes yes

Normality? automated check No Yes Near Yes Yes Near Yes Yes

Shapiro-Wilks

(level of significance)
0.003 0.488 0.18 0.902 0.942 0.253 0.229 0.898

no yes yes yes yes yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.189 0.2 0.014 0.2 0.2 0.2 0.2 0.2

yes yes no yes yes yes yes yes

Noramlity? automated check Near Yes Near Yes Yes Yes Yes Yes

Overal Assessment of Normality select mannually Near Yes Near Yes Yes Yes Yes Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Appendix D.  

Road surface luminance: measurement grid and relative values, Experiment 2. 

Luminance was measured in a grid on the floor of the apparatus. The measurements were made by 

placing the luminance meter (Konica Minolta luminance meter LS-150) at the approximate position of 

the participant's eye and directing it toward the measurement points (Figure D.1). The measurements 

were repeated three times. The average values were recorded in Table D.1 and D.2 for lighting 

conditions L1 and L2, respectively. 

 

 

Figure D.1. Grid for luminance measurement (distances are approximate in centimetres). 
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Table D.1. luminance measurement on the grid under light condition L1. 

Row Column – Luminance* 

- A B C D E F 

1 0.02 0.06 0.09 0.08 0.06 0.02 

2 0.04 0.07 0.09 0.08 0.06 0.04 

3 - 0.07 0.08 0.08 0.06 - 

4 0.04 - - - - 0.03 

5 - 0.05 0.1 0.09 0.05 - 

6 - - 0.07 0.07 - - 

* Luminance of each point at the measurement grid (luminance meter set at the eye position). 

 

Table D.2. luminance measurement on the grid under light condition L2. 

Row Column – Luminance* 

- A B C D E F 

1 0.47 0.65 0.79 0.75 0.54 0.45 

2 0.44 0.61 0.78 0.76 0.56 0.43 

3 - 0.49 0.65 0.65 0.47 - 

4 0.37 - - - - 0.35 

5 - 0.56 0.82 0.81 0.47 - 

6 - - 0.57 0.56 - - 

* Luminance of each point at the measurement grid (luminance meter set at the eye position). 
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Appendix E. 

Dealing with missing data. 

Instances of missing data were noticed during the analysis of Experiment 2 results. This section explores 

various methods to deal with missing data, along with an illustrative example. The rationale behind the 

chosen approach for addressing missing data in Experiment 2 will be discussed at the end of this section. 

There are various methods for handling missing data in statistics. These techniques include complete-

case analysis (listwise deletion), pairwise deletion, last observation carried backwards, conservative 

imputation, multiple imputation using logistic regression, and multiple imputation using predictive 

mean matching [Peeters et al., 2015; Graham, 2009]. The following paragraphs will provide a detailed 

description of each method and an illustrative example to highlight their advantages and disadvantages. 

Consider the following example dataset (Table E.1) showcasing the reaction time of 14 participants 

under six different test conditions. Cases of missing data are represented as cells with “none” values. 

There are nine missing values out of 84 responses provided by the 14 participants.  

 

Table E.1. Example of a data set with missing data.  

Participant (no) 
Test round (reaction times in ms) 

1 2 3 4 5 6 

1 1412 1130 1146 1265 2351 none 

2 1579 1308 1830 1363 1252 1766 

3 1086 1067 1191 984 974 1583 

4 1095 1502 1433 1438 1570 none 

5 1077 1140 1282 1310 1485 2912 

6 923 1530 1482 none 1478 1309 

7 1482 2060 none 1412 1472 none 

8 1151 1789 1540 1171 1533 none 

9 1813 1857 none 1577 1989 1629 

10 1306 1362 1567 1187 1800 1860 

11 1411 1411 1683 none 2005 1315 

12 2185 1922 2106 1647 2333 2494 

13 1700 1436 1105 1560 2117 2202 

14 1577 1257 none 1678 1326 1269 

 

Listwise deletion, also known as complete-case analysis, involves excluding participants with any 

missing value from the analysis. It is the simplest method for dealing with missing data, which allows 

the closest analysis of a data set to its original values without generating any artificial data. However, 
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listwise deletion can significantly reduce sample size, decreasing the relative statistical analysis's power. 

Moreover, it can introduce bias into the results due to the systematic differences between the values that 

are dropped and those that are retained. For instance, if observations with missing data tend to belong 

to a particular subgroup, then listwise deletion will bias the results towards that subgroup. 

In the example dataset (Table E.1), listwise deletion would entail removing eight out of the 14 

participants, eliminating 40 valid responses out of the 84 total responses due to the presence of only 

nine missing values. In this case, listwise deletion reduces the sample size from 14 to six participants, 

significantly diminishing the analysis's power and altering the dataset's mean, median, and standard 

deviation (Table E.2).  

Pairwise deletion only drops observation from the analysis if they have missing data for the analysed 

variables. This can help reduce sample size loss but can introduce bias if the missing data are not missing 

completely at random. In this method, pairwise comparisons only exclude variables when a missing 

value exists specifically between the two comparisons being made. For instance, in our example dataset, 

while comparing test rounds one and two, the comparison is made between all 14 participants. However, 

when comparing test rounds one and three, the comparison is made between only 11 participants due 

to missing values for three of the participants in test round three. The changes in sample size can affect 

the effect size and power when comparing different trials with each other. 

Last observation carried backward imputes missing values with the last observed value for the same 

variable. This method is straightforward to implement and can handle various types of missing data. 

However, if the missing data pattern is not random, this method can introduce bias to the analysis. It is 

also sensitive to outliers, as replacing a missing value with a subsequent value, which could be an outlier, 

can significantly impact the sample’s mean, median, and standard deviation. Moreover, this method can 

also be problematic if the missing value is the first observation or if two consecutive values are missing. 

In our example dataset, the changes can be seen in Table E.2. 

Conservative imputation is designed to be as unbiased as possible, considering that missing data may 

not be missing at random. This means that the probability of a missing value is related to the observed 

values in the dataset. This method replaces the missing values with the most conservative estimates 

possible. This means that the imputed values are likely to be lower or higher than actual values. For 

example, in cases dealing with missing data of a participant's reaction time, a missing value means a 

complete miss of a stimulus. The most conservative value to replace a reaction time needs to be a very 

long reaction time to highlight the effect of missing in the analysis. Therefore, the maximum reaction 

time among a specific participant and several reaction times can be selected as the replacement value 

while running conservative imputation.  This method is designed to be unbiased, but selecting the most 
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suitable and conservative approach to replace missing values is under the effect of the researcher's 

judgment. Moreover, there is a chance of underestimating the true values, which can reduce the power 

of the analysis. In our example dataset, the changes can be seen in Table E.2. 

Multiple imputations using logistic regression are based on creating multiple complete datasets from 

the original dataset. This is done by imputing the missing values for each variable in the dataset multiple 

times, using a logistic regression model to predict the missing values. There are several steps when 

using multiple imputations: 

I. Fit a logistic regression model to the observed data using the variables that do not have missing 

values. 

II. Use the logistic regression model to predict the missing values for each variable. 

III. Impute the missing values for each variable multiple times using the predicted values. 

IV. Create multiple complete datasets from the original dataset by combining the imputed values 

with the observed values. 

V. Analyse the multiple imputed datasets separately. 

VI. Combine the results of the analyses to produce a final estimate. 

Multiple imputation using logistic regression is a relatively complex method. It is particularly useful 

when the missing data are not missing at random or when the variables with missing data are highly 

important for the analysis. However, increasing complexity in a method might be considered data 

manipulation or raise concerns around type I (false positive) or type II (false negative) errors while 

evaluating the results as exact changes made to the original dataset might not be clearly traceable.  

Multiple imputations using predictive mean matching replace the missing values multiple times using 

the predicted values from the matching observations of multiple complete datasets created from the 

original dataset. There are several steps when using multiple imputation using predictive mean: 

I. Fit a predictive model to the observed data using the variables that do not have missing values. 

II. Use the predictive model to predict the missing values for each variable. 

III. Match observations with missing data to observations with complete data that are similar in 

terms of their predicted values. 

IV. Impute the missing values for each variable multiple times, using the predicted values from the 

matching observations. 

V. Create multiple complete datasets from the original dataset by combining the imputed values 

with the observed values. 

VI. Analyse the multiple imputed datasets separately. 

VII. Combine the results of the analyses to produce a final estimate.
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Table E.2. Effects of different methods of dealing with missing data on the example dataset's mean, median, and standard deviation. 

Method 

Test round 

1 2 3 4 5 6 

Mean Median STD Mean  Median  STD Mean  Median  STD Mean  Median STD Mean  Median  STD Mean  Median STD 

Original 1414 1412 332 1484 1424 302 1488 1482 293 1383 1388 202 1692 1552 400 1834 1698 520 

M1 1489 1443 388 1373 1335 276 1514 1425 360 1342 1337 221 1660 1643 474 2136 2031 457 

M2 -  - - - - - - - - - - - - - - - - - 

M3 1414 1412 332 1484 1424 302 1464 1482 278 1364 1337 195 1692 1552 400 1736 1606 478 

M4 1414 1412 332 1484 1424 302 1576 1514 338 1425 1425 214 1692 1552 400 2082 2031 600 

M5 - - - - - - - - - - - - - - - - - - 

M6 - - - - - - - - - - - - - - - - - - 

M1: Listwise deletion; M2: pairwise deletion; M3: last observation carried backwards; M4: conservative imputation (replacing with maximum reaction time); M5: multiple 
imputation using logistic regression; M6: multiple imputation using predictive mean matching. 
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To minimize the risk of data manipulation, listwise deletion and conservative imputation using mean 

and maximum were implemented in cases of missing values of reaction time to different hazards in this 

study. Each approach's outcomes were compared with others, and any noticeable differences were 

highlighted. Finally, the most appropriate approach was selected for further analysis to provide reliable 

conclusions while maintaining good statistical power.  

 

Road surface obstacle 

Participants responded to 36 blocks of tests (four lighting conditions, three levels of distraction, three 

distances of obstacle). Instances of missing data occurred when data was unavailable for one or more 

of these 36 test blocks. There were 149 cases of missing data among the total 2160 average responses 

to road surface obstacles provided by the 60 participants. In total, 40 participants must be dealt with in 

at least one case of missing data. Table E.3 highlights the differences that occurred if any existed, while 

implementing each treatment. Figure E.1 highlights the variations in the mean, median and standard 

deviation of the 36 blocks of the test when implementing each missing data treatment.  

Table E.3. Comparison of the effects of different approaches to deal with missing values while reacting to road 

surface obstacles. 

Variables 
Methods to deal with missing data 

Listwise deletion Replacing with mean  Replacing with maximum 

Lighting condition Significant Significant Significant 

Distraction Significant Significant Significant 

Obstacle distance Significant Significant Significant 

Lighting*distraction Not significant Significant Significant 

Lighting*distance Significant Significant Significant 

Distraction*distance Significant Significant Significant 

Lighting*distraction*distance Not significant Significant Significant 

 

As stated in Table E.3, the three implemented fixes provide the same result for lighting conditions, 

distraction and obstacle distance. Replacing with mean and maximum resulted in similar differences 

for all variables and their interactions. The only difference noticed was when comparing the listwise 

deletion method with replacing with mean and maximum for interactions between lighting*distraction 

and lighting* distraction*distance, where listwise deletion highlighted no significant effect of these 

interactions with respective p values of 0.067, 0.06. However, these p values are near the threshold of 

0.05, and this result is expected due to a significant reduction in sample size (60 to 20) by deleting a 

large proportion of the sample, which could make identifying smaller differences more difficult. 
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Figure E.1. Variations in mean, median and standard deviation of the 36 test blocks when implementing each missing data treatment for road surface obstacle. 

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

re
a
c
ti
o

n
 t
im

e
 (

m
s
)

block of test

orginal  mean orginal  median orginal  STD delete method mean delete method median delete method STD

mean method mean mean method median mean method STD max method mean max method median max method STD



208 

 

Pedestrian model 

Participants responded to 36 blocks of tests (four lighting conditions, three levels of distraction, and 

three pedestrian models). Cases of missing data occurred when no data was available for one or more 

of these 36 test blocks. There were 28 cases of missing data among the total 2160 average responses to 

pedestrian models provided by the 60 participants. In total, 18 participants must be dealt with in at least 

one case of missing data. Table E.4 highlights the differences that occurred if any existed while 

implementing each treatment for the missing values. Figure E.2 highlights the variations in the mean, 

median and standard deviation of the 36 blocks of the test when implementing each missing data 

treatment.  

Table E.4. Comparison of the effects of different approaches to deal with missing values while reacting to 

pedestrian models. 

Variables 
Methods to deal with missing data 

Listwise deletion Replacing with mean  Replacing with maximum 

Lighting condition Significant Significant Significant 

Distraction Significant Significant Significant 

Pedestrian model Significant Significant Significant 

Lighting*distraction Not significant Significant Not significant 

Lighting*model Significant Significant Significant 

Distraction*model Significant Significant Significant 

Lighting*distraction*model Significant Significant Significant 

 

As stated in Table E.4, the three implemented fixes provide the same result for lighting conditions, 

distraction and obstacle distance. Listwise deletion and replacement with maximum resulted in similar 

differences for all variables and their interactions. The only difference noticed was when comparing the 

replacing mean method with listwise deletion and replacing with the maximum for interactions between 

lighting*distraction, where replacing with mean highlights a significant effect of lighting on reaction to 

pedestrian model when distracted. At the same time, the other two treatments suggest no significant 

difference. For this interaction, looking into pairwise comparison listwise deletion fix shows similar 

trends (significant effect of visual distraction (T2) while compared to control (T1) and acoustic 

distraction (T3)) when compared to listwise deletion and replacing with maximum fixes under lighting 

condition L1 to L3 but under lighting condition L4  replacing with mean does not suggest a significant 

effect of any distraction while the other two methods to fix missing data still highlights the significant 

effect of visual distraction on reaction time under this lighting condition. Therefore, the three methods 

provide almost the same result with some negligible changes.  
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Figure E.2. Variations in the mean, median and standard deviation of the 36 blocks of the test when implementing each missing data treatment for pedestrian models. 
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Appendix F.  

Normality checks, Experiment 2. 

Table F.1. Vehicle lane change: 46 randomly selected out of 720 data files (continued on next page). 

 

  

(participant no_light condition no) 2_1 5_4 7_3 10_1 14_4 16_1 22_4 23_1 23_3 25_4 31_4 36_1 37_4 38_3 41_1 45_2 47_2 49_2 52_4 54_2 55_4 58_1 59_2

Mean 1577 2423.83 2024.5 2695.67 1878.17 1930.4 2555 2021.83 2364 2840.33 2390 2467.17 1913.83 1894.33 2897 1826.5 2153.67 1865.8 2345.33 3139.33 2720.83 2082.5 2367.33

1227 1455.64 1798.62 1057.67 1404.18 1533.97 1903.75 1737.12 1662.61 1578.36 1820.47 1762.8 1431.31 1672.14 2154.84 1180.19 1723.58 1289.72 1515.15 1797 2097.03 1707.03 1610.03

1926 3392.02 2250.38 4333.66 2352.15 2326.83 3206.25 2306.55 3065.39 4102.3 2959.53 3171.53 2396.35 2116.53 3639.16 2472.81 2583.75 2441.88 3175.51 4481.67 3344.64 2457.97 3124.64

Median 1586 2321 1995.5 2233 1719.5 1889 2449 1881 2449 2586.5 2537 2377.5 1843 1867 3006 1739 2230 1728 2098.5 2660.5 2723.5 1946.5 2186

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram Yes Near No No Near Yes No No No No Near No Near No No No No No Near No Yes Near No

Box Plot Near Near Near No Near Near No Near Near No Near Near No Near Near Near Near No No No Yes No Near

Normality? automated check Near Near Near No Near Near No Near Near No Near Near Near Near Near Near Near No Near No Yes Near Near

Skewness

(within ± 0.5)
0.421 0.551 -0.061 2.041 0.62 -0.156 0.745 0.909 -0.248 2.045 -0.454 0.418 0.847 0.921 -0.2 0.548 -0.131 1.836 2.152 1.01 -0.103 0.816 0.477

yes no yes no no yes no no yes no yes yes no no yes no yes no no no yes no yes

Kurtosis

(within ±1.0)
0.387 -0.339 0.038 4.588 -1.929 -1.034 -0.801 -1.812 -1.754 4.63 0.085 -1.81 1.775 0.617 -2.636 -1.232 -1.274 3.868 5.039 -0.462 -0.751 -1.323 -1.554

yes yes yes no no no yes no no no yes no no yes no no no no no yes yes no no

Normality? automated check Yes Near Yes No No Near Near No Near No Yes Near No Near Near No Near No No Near Yes No Near

Shapiro-Wilks

(level of significance)
0.928 0.841 0.939 0.022 0.181 0.905 0.468 0.024 0.329 0.018 0.849 0.241 0.69 0.626 0.154 0.447 0.645 0.058 0.007 0.202 0.933 0.22 0.38

yes yes yes no yes yes yes no yes no yes yes yes yes yes yes yes yes no yes yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.2 0.2 0.2 0.017 0.2 0.2 0.2 0.048 0.2 0.005 0.2 0.158 0.2 0.2 0.2 0.2 0.2 0.02 0.003 0.2 0.2 0.2 0.2

yes yes yes no yes yes yes no yes no yes yes yes yes yes yes yes no no yes yes yes yes

Noramlity? automated check Yes Yes Yes No Yes Yes Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Near No Yes Yes Yes Yes

Overal Assessment of Normality select mannually Yes Yes Yes No Yes Yes Yes No Yes No Yes Yes Near Yes Near Yes Yes No No Yes Yes Near Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.1. Vehicle lane change: 46 randomly selected out of 720 data files (rest). 

 

  

(participant no_light condition no) 1_3 2_3 5_2 6_1 12_3 13_4 15_2 16_2 19_3 26_4 27_4 30_2 34_4 36_2 38_2 39_3 40_2 44_3 44_4 49_1 54_1 57_2 60_3

Mean 2542 2589.2 2487.8 1998.4 2573.6 1723.8 2518.6 2302 1942.4 2084.2 2938.4 1948.4 2153.6 2478.8 1874.2 1903.6 2115 3461.8 2438.2 3063.2 2026 1723 3514.4

1503.72 1403.83 1143.53 1628.42 1332 1323.89 2081.85 1760.6 1634.39 1905.6 2254.78 1797.3 1812.43 1466.1 1502.8 1415.21 1698.69 1451.73 1603.56 2484.53 1552.8 1410.82 2121.99

3580.28 3774.57 3832.07 2368.38 3815.2 2123.71 2955.35 2843.4 2250.41 2262.8 3622.02 2099.5 2494.77 3491.5 2245.6 2391.99 2534.31 5471.87 3272.84 3641.87 2499.2 2035.18 4906.81

Median 2614 2291 2062 1885 2369 1661 2633 2251 1837 2103 2697 1882 2102 2151 1731 1801 2096 2662 2368 2912 1929 1745 4102

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram No No No No No No No No Near No No No No No No No No No No No No No No

Box Plot Near No Near Near No Near No Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near

Normality? automated check Near No Near Near No Near No Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near

Skewness

(within ± 0.5)
-0.023 0.807 2.084 0.394 1.91 1.509 -0.904 0.699 1.875 -1.099 0.634 0.526 0.331 0.329 1.731 0.285 0.334 1.031 -0.243 1.508 1.91 -0.521 -0.414

yes no no yes no no no no no no no no yes yes no yes yes no yes no no no yes

Kurtosis

(within ±1.0)
-1.617 -1.008 4.427 -2.966 3.891 2.367 -0.571 1.981 3.704 1.321 -1.126 -3.205 -0.834 -2.606 3.028 -2.102 -1.334 0.157 -0.237 2.411 3.835 -1.29 -2.909

no no no no no no yes no no no no no yes no no no no yes yes no no no no

Normality? automated check Near No No Near No No Near No No No No No Yes Near No Near Near Near Yes No No No Near

Shapiro-Wilks

(level of significance)
0.888 0.322 0.008 0.206 0.04 0.161 0.394 0.618 0.057 0.605 0.598 0.057 0.947 0.351 0.092 0.665 0.855 0.411 0.964 0.275 0.032 0.469 0.157

yes yes no yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes

Kolmogorov-Smirnov

(level of significance)
0.2 0.2 0.021 0.2 0.02 0.2 0.2 0.2 0.104 0.2 0.2 0.138 0.2 0.2 0.2 0.2 0.2 0.199 0.2 0.2 0.042 0.2 0.161

yes yes no yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes

Noramlity? automated check Yes Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Overal Assessment of Normality select mannually Yes Near No Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Central Tendency 95% CI of Mean

Graphical

Measures of dispersion

Statistical tests
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Table F.2. Distraction task T2 (visual distraction): 24 randomly selected out of 240. 

 

  

participant no_lighting condition 6_3 12_1 17_1 18_1 19_1 19_4 20_3 22_3 23_3 25_2 25_3 28_2 29_3 33_4 35_1 45_4 46_1 46_4 47_4 48_2 48_4 58_1 59_3 60_1

Mean 867.8 1048.22 946.9 874.52 1140.49 1079.82 1047.73 982.54 1004.3 1066.6 1101.29 1008.46 981.57 969.37 1029.48 963.38 973.91 861.02 920.47 875.91 859.43 970.81 1210.66 1128.02

844.78 1025.64 919.74 849.47 1101.25 1047.16 1023.11 945.72 980.71 1034.21 1043.3 982.37 947.71 945.56 993.74 943.59 942.14 834.91 893.73 853.12 837.71 936.5 1177.02 1095.38

890.81 1070.79 974.06 899.56 1179.74 1112.47 1072.36 1019.35 1027.9 1098.99 1159.28 1034.56 1015.43 993.18 1065.23 983.17 1005.48 887.12 947.22 898.71 881.15 1005.13 1244.31 1160.65

Median 843.52 1031 942.58 844 1113.54 1031 1015 906 969 1047 1000 976.5 937 953 984 937 937 828 875 844 828 922 1156 1078

Normality? (Yes if median is in 95% CI of mean) automated check No Yes Yes No Yes No No No No Yes No No No Yes No No No No No No No No No No

Histogram Near Near Near No No No No No Near Yes No No No Near No Near Near No No No No No No No

Box Plot Near Near Yes Near No Near Near No Near Yes No Near Near Yes No Near Near Near Near Near Near No No No

Normality? automated check Near Near Near Near No Near Near No Near Yes No Near Near Near No Near Near Near Near Near Near No No No

Skewness

(within ± 0.5)
1.492 0.932 0.355 1.878 1.574 1.386 0.754 2.432 1.231 0.815 1.511 1.756 1.743 0.954 1.489 1.611 1.458 2.19 1.299 1.436 2.129 1.766 1.443 1.128

no no yes no no no no no no no no no no no no no no no no no no no no no

Kurtosis

(within ±1.0)
3.521 1.786 -0.219 5.841 2.747 2.225 0.806 10.103 1.871 0.939 3.038 6.306 5.463 1.846 4.343 4.976 3.638 8.657 2.547 2.346 9.255 3.888 3.053 1.039

no no yes no no no yes no no yes no no no no no no no no no no no no no no

Normality? automated check No No Yes No No No Near No No Near No No No No No No No No No No No No No No

Shapiro-Wilks

(level of significance)
0.001 0.001 0.046 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0..001

no no no no no no no no no no no no no no no no no no no no no no no yes

Kolmogorov-Smirnov

(level of significance)
0.001 0 0.2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no yes no no no no no no no no no no no no no no no no no no no no no

Noramlity? automated check No No Near No No No No No No No No No No No No No No No No No No No No Near

Overal Assessment of Normality select mannually No No Yes No No No No No No Yes No No No Near No No No No No No No No No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.3. Distraction task T3 (Acoustic distraction): 24 randomly selected out of 240. 

 

 

 

 

 

participant no_lighting condition 2_3 4_4 6_2 11_2 12_2 12_3 16_2 17_4 18_2 29_3 30_1 35_1 35_4 38_2 40_4 43_2 43_3 43_4 45_3 47_4 52_1 53_2 58_1 59_1

Mean 1484.84 1683.67 1272.3 1448.79 1456.29 1534.35 1581.47 934.07 2201.53 1351.25 1355.5 1413.09 1122.26 1787.16 1251.59 1398.26 1298.4 1627.26 1010.91 1370.93 2529.08 2250.66 1171.92 1710.01

1379.48 1503.6 1146.12 1306.04 1369.26 1455.74 1488.6 879.28 2075.88 1276.03 1231.03 1275.11 1000.49 1662.87 1184.38 1335.14 1228.33 1510.76 962 1255.52 2295.77 2190.41 1123.76 1563.01

1590.2 1863.74 1398.5 1591.53 1543.31 1612.96 1674.36 988.87 2327.18 1426.47 1479.97 1551.06 1244.03 1911.44 1318.81 1461.37 1368.46 1743.76 1059.81 1486.35 2762.39 2310.9 1220.09 1857.02

Median 1468 1484 1109 1265 1406 1453 1484 922 2078 1312 1203 1257.5 1015 1656 1140 1351 1234 1547 976.5 1187 2241.5 2218 1140 1562

Normality? (Yes if median is in 95% CI of mean) automated check Yes No No No Yes No No Yes Yes Yes No No Yes No No Yes Yes Yes Yes No No Yes Yes No

Histogram No No No No Near Near Near No Near Near Near No Near No No No No Yes No No No No No No

Box Plot Near No No Near Near Near No Near No Near Near Near Near No No Near Near Near Near No No Near Near No

Normality? automated check Near No No Near Near Near Near Near Near Near Near Near Near No No Near Near Near Near No No Near Near No

Skewness

(within ± 0.5)
1.063 2.523 1.832 1.975 2.289 2.078 1.26 0.811 0.863 1.567 1.618 3.628 1.93 0.838 2.441 1.119 1.77 1.147 1.5 1.535 0.945 1.844 1.232 1.941

no no no no no no no no no no no no no no no no no no no no no no no no

Kurtosis

(within ±1.0)
3.57 7.644 3.192 4.522 9.795 5.847 1.887 1.552 0.222 3.524 3.515 16.4 5.587 -0.128 8.266 2.114 3.687 2.865 6.431 3.243 0.102 6.468 1.913 6.337

no no no no no no no no yes no no no no yes no no no no no no yes no no no

Normality? automated check No No No No No No No No Near No No No No Near No No No No No No Near No No No

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no no no no no no no no no no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.2 0.047 0.002 0.001 0.001 0.02 0.006 0.001 0.066 0.001 0.007 0.001 0.001 0.002 0.001 0.001 0.002

no no no no no no no yes no no no no no no no yes no no no no no no no no

Noramlity? automated check No No No No No No No Near No No No No No No No Near No No No No No No No No

Overal Assessment of Normality select mannually No No No No Near No No Near Near Near No No Near No No Yes No Near No No No No Near No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.4. Obstacle detection: Mean reaction among the 60 participants (continued on next page). 

 

  

Lightcondition-task L1T1N L1T1M L1T1F L1T2N L1T2M L1T2F L1T3N L1T3M L1T3F L2T1N L2T1M L2T1F L2T2N L2T2M L2T2F L2T3N L2T3M L2T3F

Mean 1322.83 1573.3 1620.48 1426.43 1658.8 1852.27 1353.65 1627.03 1584.68 1217.28 1381.61 1439.48 1350.93 1560.88 1642.88 1223.1 1395.7 1455.7

1250.49 1493 1524.98 1333.9 1579.67 1753.45 1273.5 1542.91 1498.18 1144.13 1287.98 1361.96 1274.14 1466.09 1547.58 1151.04 1307.13 1351.19

1395.18 1653.59 1715.99 1518.96 1737.93 1951.08 1433.79 1711.15 1671.19 1290.44 1475.25 1517 1427.72 1655.67 1738.19 1295.16 1484.27 1560.2

Median 1323 1546 1620 1419 1659 1852 1354 1578.5 1583.5 1217 1293 1389 1351 1531 1643 1184.5 1323.5 1392.5

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram Yes Near Yes No No Yes No Near Near Near No Yes Near No Yes Near Yes No

Box Plot Near Near Yes Near Yes Near No Near Near Yes No Near Near Near Near Yes Yes No

Normality? automated check Near Near Yes Near Near Near No Near Near Near No Near Near Near Near Near Yes No

Skewness

(within ± 0.5)
0.431 0.755 0.791 1.072 0.035 0.707 0.677 0.704 0.464 0.159 1.308 0.859 0.011 1.009 0.392 1.008 1.887 0.77

yes no no no yes no no no yes yes no no yes no yes no no no

Kurtosis

(within ±1.0)
0.51 0.479 0.847 1.785 -0.38 0.568 0.164 0.019 0.095 -0.679 2.12 0.464 -0.788 1.06 0.063 1.645 6.387 0.004

yes yes yes no yes yes yes yes yes yes no yes yes no yes no no yes

Normality? automated check Yes Near Near No Yes Near Near Near Yes Yes No Near Yes No Yes No No Near

Shapiro-Wilks

(level of significance)
0.456 0.034 0.046 0.003 0.801 0.014 0.021 0.016 0.324 0.236 0.001 0.003 0.343 0.001 0.406 0.007 0.001 0.007

yes no no no yes no no no yes yes no no yes no yes no no no

Kolmogorov-Smirnov

(level of significance)
0.2 0.2 0.2 0.172 0.2 0.001 0.091 0.2 0.2 0.2 0.007 0.027 0.2 0.2 0.2 0.074 0.012 0.042

yes yes yes yes yes no yes yes yes yes no no yes yes yes yes no no

Noramlity? automated check Yes Near Near Near Yes No Near Near Yes Yes No No Yes Near Yes Near No No

Overal Assessment of Normality select mannually Yes Yes Yes Near Yes Near Near Yes Yes Yes No Near Yes Near Yes Near Near No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.4. Obstacle detection: Mean reaction among the 60 participants (rest). 

 

  

Lightcondition-task L3T1C1 L3T1C2 L3T1C3 L3T2C1 L3T2C2 L3T2C3 L3T3C1 L3T3C2 L3T3C3 L4T1C1 L4T1C2 L4T1C3 L4T2C1 L4T2C2 L4T2C3 L4T3C1 L4T3C2 L4T3C3

Mean 4589.83 3526.48 2952.55 5020.62 3922.09 2963.5 4489.98 3531.64 2948.88 4909.64 3971.76 2971.24 4932.45 4157.59 2971.67 4990.05 3784.48 3065.36

4217.47 3398.08 2845.79 4689.35 3747.6 2865.78 4130.17 3381.37 2856.45 4515.88 3656.38 2850.35 4625.32 3924.73 2860.88 4589.94 3583.89 2898.4

4962.19 3654.87 3059.3 5351.89 4096.59 3061.22 4849.78 3681.91 3041.31 5303.4 4287.14 3092.13 5239.58 4390.46 3082.45 5390.36 3985.05 3232.31

Median 4514.5 3483.5 2865.5 4804 3766.5 2930.5 4071.5 3540 2904 4965 3673 2930 4898.5 3945 2938 4966.5 3822.5 2935

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram Near Yes No Near Yes No No Near Yes Near Yes Yes Yes Near Yes Yes Yes Near

Box Plot Yes Yes Near No Near Yes No Near Yes Near Near Yes Yes No Yes Near Yes Yes

Normality? automated check Near Yes Near Near Near Near No Near Yes Near Near Yes Yes Near Yes Near Yes Near

Skewness

(within ± 0.5)
0.611 0.227 1.13 0.648 0.956 1.929 1.415 0.566 0.801 0.709 1.948 1.667 0.65 0.291 3.228 0.59 0.608 2.303

no yes no no no no no no no no no no no yes no no no no

Kurtosis

(within ±1.0)
-0.451 -0.621 1.941 -0.202 0.903 6.979 1.995 0.503 0.612 0.308 6.211 4.272 1.451 -0.884 16.361 0.599 1.172 6.49

yes yes no yes yes no no yes yes yes no no no yes no yes no no

Normality? automated check Near Yes No Near Near No No Near Near Near No No No Yes No Near No No

Shapiro-Wilks

(level of significance)
0.041 0.65 0.006 0.079 0.026 0.001 0.001 0.279 0.06 0.164 0.001 0.001 0.372 0.168 0.001 0.109 0.309 0.001

no yes no yes no no no yes yes yes no no yes yes no yes yes no

Kolmogorov-Smirnov

(level of significance)
0.4 0.2 0.055 0.2 0.084 0.2 0.003 0.2 0.069 0.2 0.002 0.003 0.2 0.074 0.002 0.172 0.2 0.001

yes yes yes yes yes yes no yes yes yes no no yes yes no yes yes no

Noramlity? automated check Near Yes Near Yes Near Near No Yes Yes Yes No No Yes Yes No Yes Yes No

Overal Assessment of Normality select mannually Yes Yes Near Yes Yes Near No Yes Yes Yes No Near Yes Yes Near Yes Yes No

Central Tendency 95% CI of Mean

Graphical

Measures of dispersion

Statistical tests
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Table F.5. Pedestrian model: Mean reaction among the 60 participants (continued on next page). 

 

  

Lightcondition-task L1T1C1 L1T1C2 L1T1C3 L1T2C1 L1T2C2 L1T2C3 L1T3C1 L1T3C2 L1T3C3 L2T1C1 L2T1C2 L2T1C3 L2T2C1 L2T2C2 L2T2C3 L2T3C1 L2T3C2 L2T3C3

Mean 4374.14 3591.98 2957.12 4829.14 3653.21 2976.38 4231.59 3752.43 2997.24 3691.4 3351.57 2844.43 4402.89 3588.33 3041.67 3732.9 351.09 3013.19

4101.72 3414.63 2858.92 4519.71 3471.45 2892.57 3965.11 3551.49 2885.01 3485.2 3149.57 2740.33 4081.68 3414.32 2934.02 3522.57 3118.15 2884.25

4646.57 3769.32 3055.32 5138.58 3834.97 3060.19 4498.08 3953.37 3109.47 3897.61 3553.58 2948.53 4724.08 3762.34 3149.31 3943.23 3584.04 3142.13

Median 4276.5 3573.5 2900.5 4818.5 3644.5 2946 3919.5 3670 2925 3536.5 3285.5 2861.5 4129.5 3466 2921.5 3683 3216.5 2912

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes

Histogram Near Yes No No No Yes No Near Yes No Yes Near Near Yes No No No No

Box Plot Near Yes Near No No Near No Near Yes Near Yes Near Near Near No No No Near

Normality? automated check Near Yes Near No No Near No Near Yes Near Yes Near Near Near No No No Near

Skewness

(within ± 0.5)
0.66 0.252 0.633 0.405 0.524 0.419 0.685 0.385 1.312 1.082 0.791 1.269 0.83 0.383 2.044 0.549 1.824 1.701

no yes no yes no yes no yes no no no no no yes no no no no

Kurtosis

(within ±1.0)
0.021 -0.563 -0.313 -0.332 -0.269 -0.458 0.093 -0.44 2.411 1.243 1.745 4.246 0.698 -0.553 6.481 -0.27 4.477 3.958

yes yes yes yes yes yes yes yes no no no no yes yes no yes no no

Normality? automated check Near Yes Near Yes Near Yes Near Yes No No No No Near Yes No Near No No

Shapiro-Wilks

(level of significance)
0.066 0.351 0.018 0.427 0.172 0.352 0.113 0.462 0.003 0.007 0.117 0.004 0.049 0.384 0.001 0.116 0.001 0.001

yes yes no yes yes yes yes yes no no yes no no yes no yes no no

Kolmogorov-Smirnov

(level of significance)
0.082 0.2 0.009 0.2 0.2 0.2 0.006 0.2 0.026 0.03 0.2 0.2 0.54 0.2 0.005 0.2 0.007 0.036

yes yes no yes yes yes no yes no no yes yes yes yes no yes no no

Noramlity? automated check Yes Yes No Yes Yes Yes Near Yes No No Yes Near Near Yes No Yes No No

Overal Assessment of Normality select mannually Yes Yes Near Yes Yes Yes No Yes Near No Yes Near Yes Yes No Yes No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.5. Pedestrian model: Mean reaction time among the 60 participants (rest). 

 

  

Lightcondition-task L3T1C1 L3T1C2 L3T1C3 L3T2C1 L3T2C2 L3T2C3 L3T3C1 L3T3C2 L3T3C3 L4T1C1 L4T1C2 L4T1C3 L4T2C1 L4T2C2 L4T2C3 L4T3C1 L4T3C2 L4T3C3

Mean 4589.83 3526.48 2952.55 5020.62 3922.09 2963.5 4489.98 3531.64 2948.88 4909.64 3971.76 2971.24 4932.45 4157.59 2971.67 4990.05 3784.48 3065.36

4217.47 3398.08 2845.79 4689.35 3747.6 2865.78 4130.17 3381.37 2856.45 4515.88 3656.38 2850.35 4625.32 3924.73 2860.88 4589.94 3583.89 2898.4

4962.19 3654.87 3059.3 5351.89 4096.59 3061.22 4849.78 3681.91 3041.31 5303.4 4287.14 3092.13 5239.58 4390.46 3082.45 5390.36 3985.05 3232.31

Median 4514.5 3483.5 2865.5 4804 3766.5 2930.5 4071.5 3540 2904 4965 3673 2930 4898.5 3945 2938 4966.5 3822.5 2935

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram Near Yes No Near Yes No No Near Yes Near Yes Yes Yes Near Yes Yes Yes Near

Box Plot Yes Yes Near No Near Yes No Near Yes Near Near Yes Yes No Yes Near Yes Yes

Normality? automated check Near Yes Near Near Near Near No Near Yes Near Near Yes Yes Near Yes Near Yes Near

Skewness

(within ± 0.5)
0.611 0.227 1.13 0.648 0.956 1.929 1.415 0.566 0.801 0.709 1.948 1.667 0.65 0.291 3.228 0.59 0.608 2.303

no yes no no no no no no no no no no no yes no no no no

Kurtosis

(within ±1.0)
-0.451 -0.621 1.941 -0.202 0.903 6.979 1.995 0.503 0.612 0.308 6.211 4.272 1.451 -0.884 16.361 0.599 1.172 6.49

yes yes no yes yes no no yes yes yes no no no yes no yes no no

Normality? automated check Near Yes No Near Near No No Near Near Near No No No Yes No Near No No

Shapiro-Wilks

(level of significance)
0.041 0.65 0.006 0.079 0.026 0.001 0.001 0.279 0.06 0.164 0.001 0.001 0.372 0.168 0.001 0.109 0.309 0.001

no yes no yes no no no yes yes yes no no yes yes no yes yes no

Kolmogorov-Smirnov

(level of significance)
0.4 0.2 0.055 0.2 0.084 0.2 0.003 0.2 0.069 0.2 0.002 0.003 0.2 0.074 0.002 0.172 0.2 0.001

yes yes yes yes yes yes no yes yes yes no no yes yes no yes yes no

Noramlity? automated check Near Yes Near Yes Near Near No Yes Yes Yes No No Yes Yes No Yes Yes No

Overal Assessment of Normality select mannually Yes Yes Near Yes Yes Near No Yes Yes Yes No Near Yes Yes Near Yes Yes No

Central Tendency 95% CI of Mean

Graphical

Measures of dispersion

Statistical tests
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Table F.6. Vehicle lane change: Mean reaction time among the 60 participants. 

 

 

Lightcondition-task C1-Cross C1-Visaul C1-Auditory C2-Cross C2-Visaul C2-Auditory C3-Cross C3-Visaul C3-Auditory C4-Cross C4-Visaul C4-Auditory

Mean 2242.05 2794.52 2282.33 2081.36 2447.27 2095.43 2198.78 2727 2212.82 2330.87 2923.18 2389.72

2122.28 2636.98 2166.29 1933.44 2316.73 1964.19 2078.7 2575.55 2090.56 2204.11 2787.14 2264.85

2361.82 2952.05 2398.37 2229.19 2577.8 2226.08 2318.87 2878.45 2335.08 2457.62 3059.23 2514.58

Median 2091 2801.5 2210 1946.5 2363 1976.5 2190.5 2626 2153 2321 2870 2275.5

Normality? (Yes if median is in 95% CI of mean) automated check No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram Near No Near No No No No Yes No No Near No

Box Plot Near Near Near Near No No Near Yes Near Yes Yes No

Normality? automated check Near Near Near Near No No Near Yes Near Near Near No

Skewness

(within ± 0.5)
0.408 1.36 0.526 1.731 0.662 1.208 0.893 0.496 0.718 1.076 0.446 0.635

yes no no no no no no yes no no yes no

Kurtosis

(within ±1.0)
-0.558 4.834 0.242 5.149 0.061 1.341 1.603 0.346 0.758 2.842 -0.461 -0.449

yes no yes no yes no no yes yes no yes yes

Normality? automated check Yes No Near No Near No No Yes Near No Yes Near

Shapiro-Wilks

(level of significance)
0.036 0.001 0.274 0.001 0.032 0.001 0.014 0.157 0.051 0.006 0.062 0.008

no no yes no no no no yes yes no yes no

Kolmogorov-Smirnov

(level of significance)
0.001 0.2 0.175 0.001 0.2 0.001 0.2 0.971 0.2 0.073 0.2 0.009

no yes yes no yes no yes yes yes yes yes no

Noramlity? automated check No Near Yes No Near No Near Yes Yes Near Yes No

Overal Assessment of Normality select mannually No Yes Yes No Near No Near Yes Yes Yes Yes No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.7. Road surface obstacle: Performance rate among the 60 participants (continued on next page). 

 

  

Lightcondition-task L1T1N L1T1M L1T1F L1T2N L1T2M L1T2F L1T3N L1T3M L1T3F L2T1N L2T1M L2T1F L2T2N L2T2M L2T2F L2T3N L2T3M L2T3F

Mean 82.85 86.75 79.53 73.42 68.95 56.13 85.03 81.17 70.05 88.37 83.42 84.5 76.73 73.37 66.2 88.38 84.5 85.08

75.86 81.23 72.43 65.68 60.42 46.54 77.53 73.84 61.69 81.68 77.82 78.27 68.3 65.46 58.03 81.89 77.88 79.29

89.84 92.27 86.64 81.16 77.48 65.73 92.54 88.5 78.41 95.06 89.02 90.73 85.17 81.28 74.37 94.88 91.12 90.88

Median 100 100 100 67 67 67 100 100 67 100 100 100 100 67 67 100 100 100

Normality? (Yes if median is in 95% CI of mean) automated check No No No Yes Yes No No No Yes No No No No Yes Yes No No No

Histogram No No No No No No No No No No No No No No No No No No

Box Plot No No No No No No No No No No No No No No No No No No

Normality? automated check No No No No No No No No No No No No No No No No No No

Skewness

(within ± 0.5)
-1.823 -1.798 -1.408 -1.006 -0.797 -0.254 -1.991 -1.503 -0.792 -2.436 -0.98 -1.524 -1.326 -0.833 -0.718 -2.502 -1.747 -1.582

no no no no no yes no no no no no no no no no no no no

Kurtosis

(within ±1.0)
2.576 3.775 1.604 0.295 -0.415 -1.289 3.005 1.542 -0.416 5.362 -0.065 1.809 0.684 -0.369 -0.309 6.024 2.647 2.631

no no no yes yes no no no yes no yes no yes yes yes no no no

Normality? automated check No No No Near Near Near No No Near No Near No Near Near Near No No No

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no no no no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no no no no no no no

Noramlity? automated check No No No No No No No No No No No No No No No No No No

Overal Assessment of Normality select mannually No No No No No No No No No No No No No No No No No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.7. Road surface obstacle: Performance rate among the 60 participants (rest). 

 

  

Lightcondition-task L3T1N L3T1M L3T1F L3T2N L3T2M L3T2F L3T3N L3T3M L3T3F L4T1N L4T1M L4T1F L4T2N L4T2M L4T2F L4T3N L4T3M L4T3F

Mean 81.17 83.38 81.73 69.48 70.58 53.37 80.07 81.18 75.63 75.03 81.13 77.27 67.82 60.03 51.7 76.7 78.95 75.58

73.84 76.94 74.57 60.74 62.62 50.01 71.51 74.03 67.88 66.84 73.79 69.91 58.04 51.21 42.79 68.26 72.22 67.99

88.5 89.83 88.9 78.22 78.54 66.73 88.63 88.34 83.38 83.23 88.47 84.63 77.59 68.85 60.61 85.14 85.58 83.18

Median 100 100 100 67 67 67 100 100 83.5 100 100 100 67 67 67 100 100 100

Normality? (Yes if median is in 95% CI of mean) automated check No No No Yes Yes No No No No No No No Yes Yes No No No No

Histogram No No No No No No No No No No No No No No No No No No

Box Plot No No No No No No No No No No No No No No No No No No

Normality? automated check No No No No No No No No No No No No No No No No No No

Skewness

(within ± 0.5)
-1.503 -1.4 -1.585 -0.784 -0.649 -0.288 -1.646 -1.538 -1.153 -1.027 -1.33 -1.02 -0.791 -0.375 -0.14 -1.211 -0.995 -0.877

no no no no no yes no no no no no no no yes yes no no no

Kurtosis

(within ±1.0)
1.542 1.253 1.962 -0.566 -0.666 -0.882 1.493 1.857 0.582 -0.054 0.726 0.102 -0.846 -0.986 -1.119 4.045 0.153 -0.336

no no no yes yes yes no no yes yes yes yes yes yes no 0.28 yes yes

Normality? automated check No No No Near Near Yes No No Near Near Near Near Near Yes Near Near Near Near

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no no no no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no no no no no no no

Noramlity? automated check No No No No No No No No No No No No No No No No No No

Overal Assessment of Normality select mannually No No No No No No No No No No No No No No No No No No

Central Tendency 95% CI of Mean

Graphical

Measures of dispersion

Statistical tests
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Table F.8. Pedestrian model: Performance rate among the 60 participants (continued on next page). 

 

  

Lightcondition-task L1T1C1 L1T1C2 L1T1C3 L1T2C1 L1T2C2 L1T2C3 L1T3C1 L1T3C2 L1T3C3 L2T1C1 L2T1C2 L2T1C3 L2T2C1 L2T2C2 L2T2C3 L2T3C1 L2T3C2 L2T3C3

Mean 0.94 1 1 0.89 0.99 1 0.94 0.98 0.99 0.98 0.98 0.99 0.93 0.99 0.99 0.99 0.99 0.99

0.9 1 1 0.83 0.97 1 0.9 0.96 0.98 0.96 0.96 0.98 0.89 0.97 0.98 0.97 0.97 0.97

0.98 1 1 0.95 1.0044 1 0.99 1.0022 1.0055 0.99 1.0022 1.0055 0.97 1.0044 1.0055 1.0044 1.0044 1.0044

Median 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Normality? (Yes if median is in 95% CI of mean) automated check No Yes Yes No Yes Yes No Yes Yes No Yes Yes No Yes Yes Yes Yes Yes

Histogram

Box Plot

Normality? automated check Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near

Skewness

(within ± 0.5)
-2.659 0 0 -2.439 -5.334 0 -3.03 -4.236 -7.746 -3.564 -4.236 -7.746 -2.285 -5.334 -7.746 -5.334 -5.334 -5.334

no yes yes no no yes no no no no no no no no no no no no

Kurtosis

(within ±1.0)
6.722 0 0 5.963 27.36 0 8.384 16.494 60 11.071 16.494 60 4.737 27.36 60 27.36 27.36 27.36

no yes yes no no yes no no no no no no no no no no no no

Normality? automated check No Yes Yes No No Yes No No No No No No No No No No No No

Shapiro-Wilks

(level of significance)
0.001 1 1 0.001 0.001 1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0041 0.001 0.001 0.001

no yes yes no no yes no no no no no no no no no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 1 1 0.001 0.001 1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0041 0.001 0.001 0.001

no yes yes no no yes no no no no no no no no no no no no

Noramlity? automated check No Yes Yes No No Yes No No No No No No No No No No No No

Overal Assessment of Normality select mannually No Yes Yes No No Yes No No No No No No No No No No No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.8. Pedestrian model: Performance rate among the 60 participants (rest). 

 

  

Lightcondition-task L3T1C1 L3T1C2 L3T1C3 L3T2C1 L3T2C2 L3T2C3 L3T3C1 L3T3C2 L3T3C3 L4T1C1 L4T1C2 L4T1C3 L4T2C1 L4T2C2 L4T2C3 L4T3C1 L4T3C2 L4T3C3

Mean 0.88 0.99 1 0.83 0.98 1 0.93 0.98 0.99 0.71 0.95 1 0.61 0.93 1 0.73 0.92 0.99

0.82 0.97 1 0.75 0.96 1 0.88 0.96 0.97 0.62 0.92 1 0.51 0.89 1 0.65 0.88 0.98

0.95 1.0112 1 0.9 1.0022 1 0.97 0.99 1.0044 0.8 0.99 1 0.7 0.97 1 0.81 0.97 1.0055

Median 1 1 1 1 1 1 1 1 1 0.84 1 1 0.67 1 1 0.67 1 1

Normality? (Yes if median is in 95% CI of mean) automated check No Yes Yes No Yes Yes No No Yes No No Yes Yes No Yes Yes No Yes

Histogram

Box Plot

Normality? automated check Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near Near

Skewness

(within ± 0.5)
-2.297 -7.746 0 -1.648 -4.236 0 -2.449 -3.564 -5.334 -0.918 -2.802 0 -0.504 -2.285 0 -0.833 -2.125 -7.746

no no yes no no yes no no no no no yes no no yes no no no

Kurtosis

(within ±1.0)
4.923 60 0 1.878 16.494 0 5.247 11.07 27.396 -0.446 7.914 0 -1.052 4.737 0 -0.369 3.969 60

no no yes no no yes no no no yes no yes no no yes yes no no

Normality? automated check No No Yes No No Yes No No No Near No Yes No No Yes Near No No

Shapiro-Wilks

(level of significance)
0.001 0.001 1 0.001 0.001 1 0.001 0.001 0.001 0.001 0.001 1 0.001 0.001 1 0.001 0.001 0.001

no no yes no no yes no no no no no yes no no yes no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 1 0.001 0.001 1 0.001 0.001 0.001 0.001 0.001 1 0.001 0.001 1 0.001 0.001 0.001

no no yes no no yes no no no no no yes no no yes no no no

Noramlity? automated check No No Yes No No Yes No No No No No Yes No No Yes No No No

Overal Assessment of Normality select mannually No No Yes No No Yes No No No No No Yes No No Yes No No No

Central Tendency 95% CI of Mean

Graphical

Measures of dispersion

Statistical tests
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Table F.9. Vehicle lane change: Performance rate among the 60 participants. 

 

Lightcondition-task C1-Cross C1-Visaul C1-Auditory C2-Cross C2-Visaul C2-Auditory C3-Cross C3-Visaul C3-Auditory C4-Cross C4-Visaul C4-Auditory

Mean 0.97 0.93 0.98 0.96 0.98 0.97 0.97 0.94 0.98 0.95 0.92 0.96

0.96 0.89 0.96 0.93 0.97 0.95 0.95 0.91 0.96 0.93 0.88 0.93

0.99 0.96 0.99 0.98 0.99 0.99 0.99 0.97 0.99 0.98 0.95 0.98

Median 1 1 1 1 1 1 1 1 1 1 1 1

Normality? (Yes if median is in 95% CI of mean) automated check No No No No No No No No No No No No

Histogram No No No No No No No No No No No No

Box Plot No No No No No No No No No No No No

Normality? automated check No No No No No No No No No No No No

Skewness

(within ± 0.5)
-2.713 -3.076 -3.343 -2.723 -3.768 -2.471 -3.549 -2.995 -1.501 1.076 -1.545 -1.776

no no no no no no no no no no no no

Kurtosis

(within ±1.0)
7.121 13.112 11.432 9.723 14.779 5.674 15.563 11.81 1.184 2.842 1.589 2.268

no no no no no no no no no no no no

Normality? automated check No No No No No No No No No No No No

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no

Noramlity? automated check No No No No No No No No No No No No

Overal Assessment of Normality select mannually No No No No No No No No No No No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.10. Distraction task T2 (visual distraction): Median reaction time among the 60 participants. 

 

lighting condition L1 L2 L3 L4

Mean 991.24 1011.71 986.88 982.92

962.97 982.8 958.66 953.22

1019.5 1040.63 1015.1 1012.61

Median 987 1000 984 953

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes No

Histogram Near Yes Near Near

Box Plot Yes Yes Yes No

Normality? automated check Near Yes Near Near

Skewness

(within ± 0.5)
0.299 0.242 0.11 0.588

yes yes yes no

Kurtosis

(within ±1.0)
0.839 -0.181 -0.244 -0.265

yes yes yes yes

Normality? automated check Yes Yes Yes Near

Shapiro-Wilks

(level of significance)
0.305 0.724 0.887 0.027

yes yes yes no

Kolmogorov-Smirnov

(level of significance)
0.2 0.2 0.2 0.016

yes yes yes no

Noramlity? automated check Yes Yes Yes No

Overal Assessment of Normality select mannually Yes Yes Yes Near

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.11. Distraction task T3 (Acoustic distraction): Median reaction time among the 60 participants. (Left original and right residuals). 

  

  

lighting condition L1 L2 L3 L4

Mean 1623.63 1587.18 1593.98 1489.05

1496.26 1463.03 1469.22 1339.27

1751.01 1711.33 1718.75 1638.83

Median 1422 1453 1499.5 1254

Normality? (Yes if median is in 95% CI of mean) automated check No No Yes No

Histogram No No No No

Box Plot No No No No

Normality? automated check No No No No

Skewness

(within ± 0.5)
0.566 0.615 0.496 0.571

no no yes no

Kurtosis

(within ±1.0)
0.839 -0.499 -0.403 -0.647

-0.622 yes yes yes

Normality? automated check Near Near Yes Near

Shapiro-Wilks

(level of significance)
0.004 0.003 0.02 0.001

no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.002 0.095 0.001

no no yes no

Noramlity? automated check No No Near No

Overal Assessment of Normality select mannually No No Yes No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean

lighting condition L1 L2 L3 L4

Mean -42.174 71.7 51.9 86.67

-206.56 -85.57 -108.56 -103.74

122.21 228.99 212.38 277.1

Median -217 -29.18 -0.98 57.95

Normality? (Yes if median is in 95% CI of mean) automated check No Yes Yes Yes

Histogram No Near Near No

Box Plot No Near Near Yes

Normality? automated check No Near Near Near

Skewness

(within ± 0.5)
0.644 0.475 0.429 0.254

no yes yes yes

Kurtosis

(within ±1.0)
-0.735 -0.328 -0.097 -0.946

yes yes yes yes

Normality? automated check Near Yes Yes Yes

Shapiro-Wilks

(level of significance)
0.006 0.176 0.427 0.055

no yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.001 0.2 0.2 0.003

no yes yes no

Noramlity? automated check No Yes Yes Near

Overal Assessment of Normality select mannually No Yes Yes Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.12. Distraction task T2 (visual distraction): Performance rate among the 60 participants. 

 

lighting condition L1 L2 L3 L4

Mean 95.29 92.73 94.47 92.9

94.43 91.18 92.74 91

96.14 94.27 96.21 94.8

Median 96 95 96 95

Normality? (Yes if median is in 95% CI of mean) automated check Yes No Yes No

Histogram No No No No

Box Plot No No Near Near

Normality? automated check No No Near Near

Skewness

(within ± 0.5)
-0.675 -2.054 -3.397 -3.332

no no no no

Kurtosis

(within ±1.0)
-0.449 6.167 13.889 16.327

yes no no no

Normality? automated check Near No No No

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001

no no no no

Kolmogorov-Smirnov

(level of significance)
0.002 0.001 0.001 0.001

no no no no

Noramlity? automated check No No No No

Overal Assessment of Normality select mannually No No No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.13. Distraction task T3 (Acoustic distraction): Performance rate among the 60 participants. 

 

lighting condition L1 L2 L3 L4

Mean 82 81.9 82.6 86.3

78.5 78.5 79.2 83.5

85.5 85.3 85.9 89.05

Median 83.5 86 85 90

Normality? (Yes if median is in 95% CI of mean) automated check Yes No Yes No

Histogram No No No No

Box Plot No No No No

Normality? automated check No No No No

Skewness

(within ± 0.5)
-1.053 -1.047 -1.208 -0.806

no no no no

Kurtosis

(within ±1.0)
0.558 0.951 1.589 -0.44

-0.622 yes no yes

Normality? automated check Near Near No Near

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001

no no no no

Kolmogorov-Smirnov

(level of significance)
0.003 0.001 0.086 0.001

no no yes no

Noramlity? automated check No No Near No

Overal Assessment of Normality select mannually No No No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.14. Road surface obstacle: 23 randomly selected out of 720 data files (alternative analysis combining all three distances). 

 

  

(participant no_light condition no) 2_1 5_4 7_3 10_1 14_4 16_1 22_4 23_1 23_3 25_4 31_4 36_1 37_4 38_3 41_1 45_2 47_2 49_2 52_4 54_2 55_4 58_1 59_2

Mean 1598.67 1587.33 1880.17 1365.67 1591.83 1614.8 1894.4 1409.67 1476.17 1307.33 1479 2009 1338.83 1224.33 1816 1295.5 1078 1267.4 1262.5 1299.83 1510 1729.33 1480.67

1174.94 657.27 1308.8 1189.99 979.57 958.81 1244.52 941.96 1034.61 810.16 1320.79 1501.48 905.39 924.27 1206.66 994 700.71 1069.88 863.5 929.99 1226.23 1509.91 1077.68

2022.4 2517.39 2451.53 1541.35 2204.1 2270.79 2544.28 1877.37 1917.73 1804.49 1637.21 2516.85 1772.28 1524.39 2425.34 1596.78 1455.29 1464.92 1661.5 1669.68 1793.77 1948.75 1883.65

Median 1435 1128.5 1734.5 1312.5 1502.5 1300 1742 1304 1332.5 1233 1468 1935.5 1351.5 1179 1559 1219.5 978 1317 1312.5 1265 1475.5 1827.5 1387.5

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram No No Near No No No Near Near No No Near Near No Near No No No No Near Yes No No No

Box Plot Near Near No Near No Near No Near Near No No No Near No Near No No No Yes Yes No No No

Normality? automated check Near Near Near Near No Near Near Near Near No Near Near Near Near Near No No No Near Yes No No No

Skewness

(within ± 0.5)
0.82 0.896 1.455 0.446 1.578 0.617 1.399 0.403 0.563 1.441 -0.575 0.548 0.083 1.647 0.888 1.729 0.846 -1.61 -0.208 0.17 0.658 -0.888 1.14

no no no yes no no no yes no no no no yes no no no no no yes yes no no no

Kurtosis

(within ±1.0)
-1.64 -1.862 2.324 -1.177 3.002 -2.791 2.719 -0.282 -1.948 - -0.322 2.249 -1.156 3.175 -1.529 3.316 -0.464 2.588 -1.987 -0.163 -0.683 -1.715 0.863

no no no no no no no yes no no yes no no no no no yes no no yes yes no yes

Normality? automated check No No No Near No No No Yes No No Near No Near No No No Near No Near Yes Near No Near

Shapiro-Wilks

(level of significance)
0.114 0.022 0.27 0.485 0.139 0.128 0.306 0.853 0.218 0.375 0.699 0.365 0.942 0.122 0.088 0.099 0.172 0.137 0.572 0.966 0.456 0.046 0.245

yes no yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes

Kolmogorov-Smirnov

(level of significance)
0.088 0.039 0.2 0.2 0.154 0.093 0.2 0.2 0.2 - 0.2 0.2 0.2 0.07 0.049 0.2 0.138 0.2 0.2 0.2 0.2 0.023 0.2

yes no yes yes yes yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes no yes

Noramlity? automated check Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Near Yes Yes Yes Yes Yes Yes No Yes

Overal Assessment of Normality select mannually Yes No Yes Yes Near Yes Yes Yes Yes Near Yes Near Yes Near Near Near Yes Near Yes Yes Yes No Yes

Central Tendency 95% CI of Mean

Graphical

Measures of dispersion

Statistical tests
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Table F.15. Pedestrian model: 23 randomly selected out of 720 (alternative analysis combining all three clothing levels). 

 

  

(participant no_light condition no) 2_1 5_4 7_3 10_1 14_4 16_1 22_4 23_1 23_3 25_4 31_4 36_1 37_4 38_3 41_1 45_2 47_2 49_2 52_4 54_2 55_4 58_1 59_2

Mean 2661.83 4086.83 4935.67 3193.17 3154.83 4120 3888 3626 4145.5 4991.71 4204.4 4439.5 4264.83 3878.17 3356.17 3464.33 3089.83 3051.4 3202.67 2969.2 4633.33 3290 3987.5

2186.1 2473.27 3028.37 2272.37 2338.68 1658.32 2698.55 2770.93 2468.92 2997.34 1840.41 2785.94 2141.97 3024.25 2957.38 2431.45 2657.9 2996.62 2665 2720.39 2248.13 2915 3048.26

3137.57 5700.39 6842.96 3613.97 3970.99 6598.68 5077.35 4481.07 5822.08 6989.08 6568.39 6093.06 6387.7 4732.08 3754.96 4497.22 3521.77 3106.18 3740 3218.61 7018.54 3664.5 4926.74

Median 2576 3763.5 4220 3184.5 2772.5 3295 4407 3297 3765 4546 3271 4444 3446.5 3871 3346.5 3030 3284 3070 3144 2999.5 3711.5 3262.5 4157.5

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram Near No No No No No No No No No No No No Near No No No No No Near No No No

Box Plot Near Near Near No Near No Near No No Near No No No Yes No No Near No Near Near No Yes Yes

Normality? automated check Near Near Near No Near No Near No No Near No No No Near No No Near No Near Near No Near Near

Skewness

(within ± 0.5)
0.216 0.738 0.769 1.256 0.915 1.166 -0.529 1.507 1.47 0.402 1.613 1.029 1.124 0.291 -0.108 2.256 -0.898 -1.9 0.157 -0.624 1.137 0.086 -0.476

yes no no no no no no no no yes no no no yes yes no no no yes no no yes yes

Kurtosis

(within ±1.0)
1 -0.582 -1.857 2.194 -1.713 0.357 -3.14 1.853 2.244 -1.753 2.458 1.545 0.196 -0.068 -2.03 5.185 -1.446 3.774 -2.408 -0.267 0.146 -2.598 -1.67

yes yes no no no yes no no no no no no yes yes no no no no no yes yes no no

Normality? automated check Yes Near No No No Near No No No Near No No Near Yes Near No No No Near Near Near Near Near

Shapiro-Wilks

(level of significance)
0.904 0.623 0.057 0.192 0.036 0.237 0.091 0.081 0.175 0.328 0.128 0.354 0.123 0.939 0.406 0.002 0.102 0.05 0.356 0.701 0.154 0.261 0.466

yes yes yes yes no yes yes yes yes yes yes yes yes yes yes no yes no yes yes yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.2 0.2 0.057 0.123 0.035 0.2 0.142 0.2 0.2 0.2 0.2 0.2 0.198 0.2 0.2 0.024 0.093 0.095 0.2 0.2 0.2 0.2 0.2

yes yes yes yes no yes yes yes yes yes yes yes yes yes yes no yes yes yes yes yes yes yes

Noramlity? automated check Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Near Yes Yes Yes Yes Yes

Overal Assessment of Normality select mannually Yes Yes Yes Near No Yes Yes Near Near Yes Near Near Yes Yes Yes No Near No Yes Yes Yes Yes Yes

Central Tendency 95% CI of Mean

Graphical

Measures of dispersion

Statistical tests
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Table F.16. Mean reaction time to road surface obstacle among the 60 participants (alternative analysis combining all three distances). 

 

 

Lighting condition - task C1-Cross C1-Visaul C1-Auditory C2-Cross C2-Visaul C2-Auditory C3-Cross C3-Visaul C3-Auditory C4-Cross C4-Visaul C4-Auditory

Mean 1503.29 1616.43 1503.78 1348.38 1505.1 1348.5 1483.48 1683.97 1485.66 1513.05 1711.72 1614.21

1437.63 1550.59 1439.75 1283.07 1436.15 1276.77 1415.29 1609.32 1431.41 1447.58 1619.34 1539.22

1568.95 1682.27 1567.8 1413.69 1574.06 1420.23 1551.67 1758.61 1539.9 1578.53 1804.11 1689.19

Median 1461 1598 1448.5 1322.5 1504.5 1301.5 1473.5 1720.5 1482 1483 1652.5 1555.5

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram No Yes No Yes Near No No No Near No No Near

Box Plot No Yes No Near Near Near Near No Near Near Near No

Normality? automated check No Yes No Near Near Near Near No Near Near Near Near

Skewness

(within ± 0.5)
0.614 0.322 0.654 0.53 0.178 0.933 0.469 0.243 0.131 0.591 0.808 1.362

no yes no no yes no yes yes yes no no no

Kurtosis

(within ±1.0)
0.052 0.397 -0.499 0.235 -0.128 0.686 -0.165 -0.546 -0.53 -0.576 0.724 3.613

yes yes yes yes yes yes yes yes yes yes yes no

Normality? automated check Near Yes Near Near Yes Near Yes Yes Yes Near Near No

Shapiro-Wilks

(level of significance)
0.062 0.746 0.005 0.156 0.706 0.004 0.177 0.16 0.551 0.009 0.032 0.001

yes yes no yes yes no yes yes yes no no no

Kolmogorov-Smirnov

(level of significance)
0.035 0.2 0.01 0.2 0.2 0.004 0.2 0.2 0.2 0.057 0.2 0.2

no yes no yes yes no yes yes yes yes yes yes

Noramlity? automated check Near Yes No Yes Yes No Yes Yes Yes Near Near Near

Overal Assessment of Normality select mannually Yes Yes No Yes Yes Near Yes Yes Yes Near Near Near

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.17. Mean reaction time to pedestrians among the 60 participants (alternative analysis combining all three clothing levels). 

 

 

Lightcondition-task C1-Cross C1-Visaul C1-Auditory C2-Cross C2-Visaul C2-Auditory C3-Cross C3-Visaul C3-Auditory C4-Cross C4-Visaul C4-Auditory

Mean 3742.5 3972.17 3768.62 3421.37 3805.3 3458.27 3783.25 3955.17 3715.03 3924.27 3988.83 3972.85

3616.69 3832.26 3632.9 3268.53 3646.62 3308.04 3648.8 3830.1 3568.83 3768.85 3870.39 3815.28

3868.31 4112.07 3904.34 3574.21 3961.98 3608.49 3914.7 4080.23 3861 4079.69 4107.27 4130.42

Median 3772 3957.5 3662.5 3345 3764.5 3347 3749.5 3890.5 3583 3903 4032.5 3965.5

Normality? (Yes if median is in 95% CI of mean) automated check Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Histogram Yes Yes Near Yes No No Near Near No Near Near No

Box Plot Near Near Near Yes No Near Yes Near No Near Near Near

Normality? automated check Near Near Near Yes No Near Near Near No Near Near Near

Skewness

(within ± 0.5)
0.415 0.301 0.342 1.465 0.785 1.775 0.513 0.744 1.224 0.555 -0.126 0.478

yes yes yes no no no no no no no yes yes

Kurtosis

(within ±1.0)
0.017 -0.212 -0.211 2.978 0.297 5.822 0.485 0.599 2.171 1.544 -0.438 0.316

yes yes yes no yes no yes yes no no yes yes

Normality? automated check Yes Yes Yes No Near No Near Near No No Yes Yes

Shapiro-Wilks

(level of significance)
0.477 0.514 0.504 0.001 0.013 0.001 0.298 0.078 0.001 0.106 0.565 0.131

yes yes yes no no no yes yes no yes yes yes

Kolmogorov-Smirnov

(level of significance)
0.089 0.2 0.2 0.006 0.2 0.052 0.2 0.2 0.017 0.2 0.2 0.2

yes yes yes no yes yes yes yes no yes yes yes

Noramlity? automated check Yes Yes Yes No Near Near Yes Yes No Yes Yes Yes

Overal Assessment of Normality select mannually Yes Yes Yes Near Near Near Yes Yes No Yes Yes Yes

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.18. Performance rate to road surface obstacle among the 60 participants (alternative analysis combining all three distances). 

 

 

Lighting condition - task C1-Cross C1-Visaul C1-Auditory C2-Cross C2-Visaul C2-Auditory C3-Cross C3-Visaul C3-Auditory C4-Cross C4-Visaul C4-Auditory

Mean 0.83 0.66 0.79 0.85 0.75 0.86 0.82 0.66 0.79 0.78 0.6 0.77

0.79 0.6 0.73 0.81 0.67 0.81 0.77 0.61 0.73 0.73 0.54 0.72

0.87 0.73 0.84 0.9 0.78 0.91 0.87 0.72 0.85 0.83 0.66 0.83

Median 0.89 0.67 0.89 0.89 0.78 0.89 0.89 0.67 0.89 0.78 0.67 0.78

Normality? (Yes if median is in 95% CI of mean) automated check No Yes No Yes Yes Yes No Yes No Yes No Yes

Histogram No No No No No No No Near No No No No

Box Plot No No No No No No No Yes No No Near No

Normality? automated check No No No No No No No Near No No Near No

Skewness

(within ± 0.5)
-1.13 -0.741 -1.178 -1.368 -0.706 -1.971 -1.709 -0.36 -1.327 -1258 -0.454 -1.041

no no no no no no no yes no no yes no

Kurtosis

(within ±1.0)
1.51 0.144 0.89 1.461 -0.124 4.72 4.386 -0.548 1.031 1.608 -0.788 0.599

no yes yes no yes no no yes no no yes yes

Normality? automated check No Near Near No Near No No Yes No No Yes Near

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.011 0.001 0.001 0.003 0.001

no no no no no no no no no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.001

no no no no no no no no no no no no

Noramlity? automated check No No No No No No No No No No No No

Overal Assessment of Normality select mannually No Near No No Near No No Yes No No Near Near

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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Table F.19. Performance rate to pedestrian among the 60 participants (alternative analysis combining all three clothing levels). 

Lightcondition-task C1-Cross C1-Visaul C1-Auditory C2-Cross C2-Visaul C2-Auditory C3-Cross C3-Visaul C3-Auditory C4-Cross C4-Visaul C4-Auditory

Mean 0.98 0.96 0.97 0.99 0.97 0.99 0.96 0.94 0.97 0.89 0.85 0.88

0.96 0.94 0.95 0.97 0.95 0.98 0.93 0.91 0.95 0.85 0.8 0.85

0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.96 0.98 0.92 0.88 0.92

Median 1 1 1 1 1 1 1 1 1 0.89 0.89 0.89

Normality? (Yes if median is in 95% CI of mean) automated check No No No No No No No No No Yes No Yes

Histogram No No No No No No No No No No No No

Box Plot No No No No No No No No No No No No

Normality? automated check No No No No No No No No No No No No

Skewness

(within ± 0.5)
-2.434 -2.786 -3.669 -3.061 -1.987 -2.736 -3.307 -1.407 -1.822 -1.127 -0.943 -0.849

no no no no no no no no no no no no

Kurtosis

(within ±1.0)
5.441 8.94 15.2 9.563 3.116 5.671 13.337 0.785 2.105 0.802 0.351 -0.365

no no no no no no no yes no yes yes yes

Normality? automated check No No No No No No No Near No Near Near Near

Shapiro-Wilks

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no

Kolmogorov-Smirnov

(level of significance)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

no no no no no no no no no no no no

Noramlity? automated check No No No No No No No No No No No No

Overal Assessment of Normality select mannually No No No No No No No No No No No No

Central Tendency

Graphical

Measures of dispersion

Statistical tests

95% CI of Mean
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